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Abstract

Transient premixed flames are significant in areas such as spark-ignition engines and gas

explosions. However, physical understanding and accurate prediction remain challenging due

to the fact that the flame typically transits from early quasi-laminar to fully turbulent, and

the interactions with the surrounding solid structures often lead to the continuous stretching

of the flame front. This study has considered the large eddy simulation (LES) techniques for

the simulations of transient turbulent premixed flames. The LES technique has evolved as a

powerful computational tool for the prediction of unsteady flame propagation. The difficulty

of applying LES for turbulent premixed combustion is to account for the thin flame front using

appropriate methods. This thesis considers a dynamic flame surface density (DFSD) model to

close the filtered reaction rate. It automatically computes the model parameter based on the

characteristics of the resolved flame front. The model is first validated in a one-dimensional

laminar case to ensure the correct behaviours including the filtered flame thickness and laminar

burning velocity with the absence of sub-grid turbulence.

The LES-DFSD approach is then applied to study the transient flame propagation past

solid obstacles in a small-scale combustion chamber. The present work explores the model

capabilities for the three different fuel/air mixtures (propane, methane and hydrogen) and

obstacle configurations using a series of experimental test cases. The sensitivity of results to

the numerical conditions including the methods of flame initiation, grid resolution, turbulence

parameters and the filter width is also investigated. Generally, the approach is found to be

successful in capturing the essential flame characteristics during the unsteady flame propagation.

Critical parameters such as the maximum overpressure and flame speed are correctly predicted

compared with experiments. The evolution of the sub-grid wrinkling factor serves as an

indicator of the strength of the flame-turbulence interactions for various test environments.

LES has the capability of reproducing the vortex and turbulence structures generated by the

obstacles. The impact of the number, location and size of the obstacles is discussed, and

combustion characteristics of three fuels are compared.
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Chapter 1

Introduction

1.1 Background and motivation

Combustion has been the primary means of energy utilisation for many decades, and the need

for the safe and clean use of oil and gas continues to grow [1]. The benefits of combustion are

present in almost every aspect of our daily life. The modern transportation systems often rely

on the combustion of hydrocarbon fuels. Electricity generation mainly requires the burning of

coal or natural gas. Industrial processes involve the heavy use of combustion devices such as

boilers and ovens. While the heat and power accompanying combustion plays a profound role

in our society, the downside issues including fire hazards, accidental explosions and pollutant

emissions also result from combustion.

Turbulent premixed combustion is a category of combustion processes where the fuel and

air are sufficiently mixed before the occurrence of the chemical reaction. Practical devices such

as spark-ignition (SI) engines, lean-burn gas turbines and industrial gas burners often involve a

considerable amount of premixed burning. On the other side, burning of a premixed gas cloud

in buildings or offshore areas may cause a rapid increase of pressure, leading to undesired gas

explosions.

1.1.1 Internal combustion engines

A practical example of the application of turbulent premixed combustion is the SI engine.

Its profound influence on the overall engine performance such as the brake power and fuel

economy motivates the study of flow and combustion in engines. Furthermore, the legislative

requirements for emissions also drive the design and optimisation of internal combustion (IC)

engines to meet the increasingly stringent emission standards.

The in-cylinder flows in an SI engine are inherently turbulent, and the chaotic nature of
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turbulence contributes to cycle-to-cycle variations in the engine operation. Figure 1.1 shows

flame images taken through a pent-roof window, indicating the early flame development and

its interaction with flows and the cylinder walls. Motions of swirl and tumble may be produced

and managed by the geometric configurations of the intake ports and valves, piston crown and

the combustion chamber. In a typical automotive engine, their length scales can be of the order

of the bore to sub-millimetre. Corresponding time scales can range from a few microseconds

to some milliseconds [2], and the flame is highly unsteady due to turbulence effects of various

scales and strengths. In-cylinder turbulent eddies may wrinkle the propagating flame front

so that the flame surface area increases. However, very high turbulence intensities induce

excessive strain and tear apart flame fronts. This process may hinder the flame propagation

and lead to flame extinction.

Figure 1.1: Typical images of flame development and propagation in a lean-burn stratified-
charge SI engine. Reproduced from Aleiferis et al. [3].

The engine optimisation traditionally follows repetitive hardware modifications, excessive

testing and exhaustive analysis of experimental data, and this iterative process is often slow

and costly. The use of computational fluid dynamics (CFD) techniques for engine design and
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support has become increasingly popular during the last two decades, thanks to the substantial

development in numerical methods and computing resources. Compared with experiments,

CFD is relatively inexpensive and flexible, and it can potentially shorten the design cycle of

the product by minimising the number of experimental tests. Validated 3-D CFD models can

couple with 0-D or 1-D system simulation codes to provide high modelling capabilities [4].

There have been well-established CFD codes for analysing in-cylinder flow and combustion of

IC engines, for examples: KIVA [5] and STAR-CD [6].

1.1.2 Vented flame deflagrations

Accidental release of flammable gas or vapour into a cloud may produce a combustible fuel-air

mixture. In such a situation a combustion wave can be triggered if a suitable ignition source

is present. It may subsequently lead to high overpressure in the presence of confinements and

obstructions, depending on how much pressure expands away from the burned gases and how

fast the flame travels.

Generally, a flame can propagate in two different modes through the flammable gas cloud:

(i) deflagration and (ii) detonation. The most common mode is the deflagration where the

flame front travels at subsonic (relative to the speed of sound in the unburned mixture) speed,

typically of the order of 1− 1000 m/s [7]. In contrast, a detonation is a supersonic combustion

wave coupled with a shock wave. In this case, the flame velocity can be 1500 − 2000 m/s

[7]. The consequences of gaseous explosion hazards often lead to the destruction of buildings,

off-shore plants and equipment in process industries, and the damage caused by the initial

overpressure is generally more severe than the ensuing fires.

Burned gas

Flame front

Vent 
opening

Obstacles

Turbulence

Fuel-air

Figure 1.2: Schematic of turbulence generation by obstacles in a vented deflagration.

Figure 1.2 gives an example of how turbulence can be induced by obstacles and confinement
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in a vented explosion. The deflagration normally starts out as a slow laminar flame, and it is

likely to accelerate in a confined and obstructed (e.g. process equipment) environment. The

evolution of flame acceleration due to turbulence generated from obstacles is responsible for

many severe damages in real-world explosions.

Figure 1.3 briefly illustrates the mechanism of pressure build-up in partially-confined vented

explosions with the presence of obstacles. During the combustion process for a typical hydro-

carbon fuel, the burned gases can expand by a factor of up to 9 [7] and induce a turbulent flow

field ahead of the flame front. The interaction between the flame and flow leads to an increase

in the burning rate and flame velocity, which further strengthens the downstream turbulent

flow field. The typical positive feedback mechanism of explosions results in considerable flame

acceleration and large pressures and even transition to detonation in certain cases.

Expansion

Venting

Flow 
Turbulence

Obstacles

Combustion

Pressure 
build-up

+
+

-

Figure 1.3: The mechanism of pressure build-up for a vented deflagration in the presence of
solid obstructions. Promotion (+) or suppression (−).

Explosions in chemical process plants are physically sophisticated, and predicting the

produced overpressure for safety guidance could be a challenging task. In the final report of

the Buncefield incidence (Figure 1.4) [8], for example, the investigation board estimated that

700−1000 mbar of overpressure would have been generated in the Northgate and Fuji car parks

of the site, based on the degree of damage to the adjacent buildings. However, overpressure

calculation using available simple models substantially underestimated the case, giving only up

to about 50 mbar in a similar environment. It indicates the uncertainties in the overpressure

predictions and the complex mechanisms involved in the explosion at the Buncefield scenario.

Parameters such as maximum explosion overpressure and its time of incidence are vital

for design engineers and safety managers. Hence, there is a growing need for prediction and

risk assessment tools for the safe design of many industrial structures and processes. Thus,
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Figure 1.4: The gas explosion of the Buncefield incident. Image from [8].

accurate prediction and assessment of explosion is a challenging task. There have been several

early attempts to use simple correlations and formulas for predictions of explosion pressures in

compartments [7]. However, the typical weakness with such formulas is that they do not take

into account turbulence generation and flame acceleration, therefore, the results can be an order

of magnitude different from experiments [7]. The main advantage of such numerical calculations

is the much cheaper computational cost compared to 3-D numerical simulations, and they also

account for simple flame shapes and geometries. However, as a typical explosion in process

industries often involves obstacles such as pipe racks or congested plants, such zero-dimensional

models are generally unable to consider the effects of obstacle-generated turbulence and flame

stretch. Applying CFD in chemical process plants safety is a relatively new research field.

Thanks to the improvements in computational technology and resources, CFD is becoming

a more attractive and reliable tool as an alternative to experiments in process industries.

Commercial and open-source CFD codes such as FLACS [9] and Fire Dynamics Simulator

(FDS) [10] were mainly developed for fire and explosions. Robust and efficient engineering

design in process industries can also benefit from the combination of CFD and advanced

statistical methods to optimise product performance by understanding the effects of various

design factors. For example, it is possible to combine CFD and mathematical correlations

to efficiently predict the explosion overpressure in a wide range of operating scenarios [11].

Compared with the conventional empirical approaches for design and decision making, new

correlations proposed based on CFD are attractive to designers and engineers [12].
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1.1.3 Hydrogen: features and safety

Hydrogen (H2) as an alternative fuel and an energy carrier has many benefits due to its high

heat value, renewable capability and the absence of harmful emissions [13]. The utilisation of

hydrogen lies in hydrogen fuel cell electric vehicles [14, 15], hydrogen-fuelled internal combustion

engines [16] and heating in buildings and industry [17]. However, some of its properties require

additional engineering controls and considerations to ensure the safe use [18, 19]. As hydrogen

is much lighter than air and rapidly dissipates when released, a leak often leads to fast mixing

with surrounding air. Also, it has a wide range of flammability limits and relatively low ignition

energy, making burning and accidental explosion of hydrogen-air mixtures more likely. The

situation may be less severe in an open space since H2 rises quickly into the atmosphere, but

it can be a dangerous gas in confined or partially-confined regions involved in its production,

storage, transport and end-user application [20].

Explosion hazards and safety issues while working with hydrogen has been a significant

concern in its related storage, buildings and processing plants [19–22]. Compared with other

common fuels such as methane (CH4) and propane (C3H8), hydrogen explosions are potentially

more dangerous due to its high combustion speed and excessively generated overpressure.

The possibility of hydrogen leaks and subsequent explosions in situations such as tunnels

and refuelling stations [19, 23] necessitates an improved understanding of the features and

behaviours of hydrogen explosions. Yanez et al. [24] reported the production, discharge,

accumulation and explosion of hydrogen during the Fukushima-Daiichi accident (March 11,

2011) and estimated the amount of hydrogen involved to be 130 kg. Based on the consequence

of the explosion, they concluded that even with the a considerably smaller amount of H2, a

destructive explosion would have occurred.

Quantitative risk assessment (QRA) is becoming essential for the future safe design and

operation of hydrogen-related systems including fuel tanks and stations. For the first time,

the Sandia National Laboratories (SNL) has been developing a comprehensive software toolkit,

namely the Hydrogen Risk Assessment Models (HyRAM), to provide QRA combining prob-

ability methods, physical models and consequence analysis (failure and risk metrics) [25].

Figure 1.5 is a methodology flowchart [25] showing modules for the two main hazards: jet fires

and deflagrations combined with the models for hydrogen release. As illustrated by SNL [25],

CFD-based physical models play an essential role in predicting the overpressure and impulse

signals into the HyRAM interface. Furthermore, methods for protecting structures from in-
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Figure 1.5: Illustration of the quantitative risk assessment tool: HyRAM. Reproduced from
[25].
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ternal explosions including venting and suppression require the knowledge of the explosion

characteristics, and there is a demand for developing accurate and efficient CFD models in the

hydrogen community. Overpressure and flame acceleration involved in a hydrogen explosion

can be dependent on various conditions such as the hydrogen mass fraction in the flammable

mixture, size of surrounding obstructions and the initial atmospheric condition. Therefore, it

is necessary to study a range of scales and conditions for the estimation of hydrogen explosion

hazards.

1.2 Computational approaches for turbulent combustion

The description of turbulent combustion using CFD may be divided into three categories: direct

numerical simulation (DNS), Models for Reynolds-averaged Navier-Stokes (RANS) equations

and large eddy simulation (LES) [26]. Figure 1.6 summarises the properties of the three

methods using an energy spectrum. DNS resolves the whole of the turbulence spectrum, as

shown in Figure 1.6. It is expected to give the most accurate results but is limited only for

academic flows (e.g. combustion in a small cubic domain) due to the excessive computational

cost. The use of RANS based models is commonly accepted in industries due to their relatively

low computational cost and moderate accuracy, e.g. the KIVA code for engine simulation [5]

and the FLACS software for gas explosions in buildings and off-shore process plants [27]. LES,

in general, is accepted as the next generation tool for turbulence modelling. It has been able

to bridge the gap between classical RANS modelling and expensive DNS to a certain extent.

The use of LES has become increasingly popular as a more reliable prediction tool than RANS

for simulating complex flow phenomena encountered in various engineering applications, e.g.

the commercial code FDS [10] applies LES to study fire and explosions. Figure 1.7 gives an

example of computed temperature signals at one point of the computational domain from DNS,

RANS and LES for a stationary flame.

1.2.1 DNS

On a DNS mesh, the three-dimensional instantaneous Navier-Stokes equations are directly

solved, providing that all the turbulence scales, as well as their effects on combustion, are

explicitly determined. In principle, a DNS grid must be fine enough to resolve the smallest

eddies which are of the size of the Kolmogorov length scale `κ =
(
ν3/ε

)1/4
[29], where ν and ε

are the kinematic viscosity and dissipation rate of turbulent kinetic energy, respectively. Also,

the Kolmogorov time scale τk = (ν/ε)1/2 limits the time step ∆t used in the simulation [29].
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Figure 1.6: Turbulence energy (E) spectrum as a function of wave number (k). kc is the cut-
off scale for LES. Characteristic results are also shown from the computations of a turbulent
jet using DNS, LES and RANS, respectively [28].

On top of that, as the inner flame structure (for premixed flames) has also to be resolved, a

sufficient number of grid points (at least 20 with simple chemistry [26]) are required in the flame

front. Hence, the demanding computation makes DNS constrained to flows with low Reynolds

numbers and simplified geometries. For a stationary flame given in Figure 1.7, DNS based

simulations would produce all the time variations of temperature, similar to a high-resolution

experimental probe.

1.2.2 RANS

RANS based computation requires solving for a Reynolds averaged set of conservation equations,

modelling all turbulent motions in the energy spectrum. Since it only calculates mean quantities,

a RANS mesh is significantly coarser than DNS, allowing for faster computations. Typically,

the unclosed Reynolds stress terms require a turbulence model such as the famous k− ε model

[29], and the mean reaction rate needs closing with a combustion model. Figure 1.7 shows

a constant temperature computed by (steady-state) RANS in a stationary system, referring

to the mean value at the point. Compared with DNS results, the mean flow characteristics

captured in RANS appears to be smoother.

Transient solutions are available with the inclusion of the unsteady terms in the RANS

equations, and this may be referred to as (unsteady) RANS (URANS). This technique is

still the industry standard for applications such as gas turbines, piston engines and explosions.

Due to the nature of the time-averaged approximation to the conservation equations of fluid
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dynamics, RANS models give the smoothed appearance of the results even in highly resolved

simulations, e.g. Figure 1.6. Consequently, the evolution of large eddy structures of flames and

the local transient events are lost.

Fuel 
+

Oxidiser

Figure 1.7: An example of the local temperature computed by RANS, LES and DNS.

1.2.3 LES

Applying the LES technique to combustion aims to achieve greater spatial and temporal

fidelity on finer grids by faster computers. It lies between DNS and RANS where large scales

of turbulent motions are explicitly calculated while the effects of smaller eddies are modelled.

This approach involves solving for a set of filtered governing equations derived by applying

a low-pass filter. Sub-grid models for turbulence and combustion are required to account for

the scales lost in the filtering process. As shown in Figure 1.7, LES captures low-frequency

temperature variations compared to DNS.

LES is now accepted as an accurate computational tool in predicting critical characteristics

of turbulent combustion. It has a clear advantage over the classical RANS based methods in

the capability of accounting for time-varying nature of the flow in situations such as combustion

instabilities and cycle-to-cycle variations in IC engines. This feature is particularly useful in

transient processes such as propagating premixed flames described in Sections 1.1.1 and 1.1.2.

As the majority of industrial combustion processes are highly sophisticated, developing new

and improving existing combustion sub-models for LES is essential.
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1.3 Objectives and thesis outline

Reliable LES simulations are often limited by the accurate sub-models to account for various

time and length scales of turbulence and their interaction with the flame. Among currently

available models for turbulent premixed combustion, the flame surface density (FSD) based

models are attractive due to the simplicity and robustness.

The objective of the present study is twofold: (i) to assess the capability of a newly

implemented dynamic flame surface density (DFSD) model in predicting transient premixed

combustion; (ii) to investigate the underlying physics and mechanisms of propagating flames

with the presence of obstructions. Specific objectives and efforts of this thesis are described as

follows.

Chapter 2 outlines the fundamental features of turbulent premixed flames and the various

sub-grid models available. A brief list of formalism for calculating FSD and wrinkling factor

is included, and the dynamic modelling of FSD is discussed. Next, different methods for

initialising combustion are reviewed. Then, the literature about hydrogen simulation and

propagating flames with obstacles is reviewed.

Chapter 3 presents the governing equations and the combustion model used for the present

study. A brief introduction to the conservation equations for reacting flows and the LES

filtering approach is given, followed by the description of the DFSD model. Methods of flame

initiation investigated in this work are also included.

Chapter 4 describes the numerical methods adopted in this work. The main elements of

the in-house code PUFFIN including spatial discretisation, pressure correction algorithm and

boundary conditions are introduced. Then, the implementation of the current combustion and

ignition models is outlined. The computational set-up is first tested in a series of 1-D laminar

cases, and the results are presented to justify the correct model behaviour when the turbulence

effect vanishes.

Chapter 5 includes the experimental test cases considered for model validation. A wide

range of flow configurations is used to investigate the influence of obstacles and the model

performance. Averaging of pressure signals and the uncertainties in experiments are discussed.

Chapter 6 presents the results using the stoichiometric propane/air mixture. A compre-

hensive parametric study is conducted to investigate the sensitivity to model factors including

ignition modelling, filter width, Smagorinsky constant and mesh resolution. The flame propa-

gation and pressure rise are investigated phenomenologically, and two families of flow configu-
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rations are used to illustrate the effect of obstructions. Another focus is the flame-turbulence

interactions interpreted by the sub-grid wrinkling factor and the LES regime of combustion.

In Chapter 7, the results of lean hydrogen/air mixtures are presented. The effect of location,

number and size of the obstacles is discussed. Lastly, a comparison is given among the three

fuels (propane, methane and hydrogen) regarding the combustion characteristics and model

performance.

Finally, Chapter 8 summarises the conclusions from the present work with critical contri-

butions towards the prediction capabilities, understanding transient flame propagation. Sug-

gestions are given for further extensions of the in-house code and future direction of research.



Chapter 2

Literature Review

This chapter reviews the essential elements needed to describe and model turbulent premixed

combustion and lays the theoretical foundation for the work conducted in this thesis. Section 2.1

outlines the features and mathematical descriptions of turbulent premixed flames. Section 2.2

includes an overview of the available modelling approaches for the filtered chemical source term

in LES. The algebraic flame surface density models and the dynamic formalisms are specifically

discussed in Section 2.3. Section 2.4 explores the methods of initialising combustion, and the

suitable options for the present study are identified. Finally, some of the previous experimental

and numerical work regarding flame propagation with obstacles are described in Section 2.5.

2.1 Turbulent premixed flames: general features

Premixed combustion takes places when the fuel and oxidiser are mixed prior to ignition. A

propagating flame front travelling towards the turbulent unburned flows, and their interactions

can greatly alter the characteristics of the flame. Rather than reviewing the vast and complex

subjects of chemical kinetics and turbulence, the focus of this section is on the features of flame-

turbulence interactions and the resulting regime diagrams of turbulent premix combustion.

2.1.1 Interactions between flows and flames

Turbulence and flames have a two-way interaction. On the one hand, turbulence is altered by

combustion due to the strong flow acceleration through the flame front. It is induced by the

heat release generated from the chemical process. On the other hand, the flame structure can

be modified by turbulent eddies of different sizes. The approach to study turbulent flames is

greatly based on the understanding of laminar flames. There are two important properties for an

unstrained laminar flame: the burning velocity (s0
L) and the flame thickness (δ0

L), respectively.

Recall that the laminar premixed combustion manifests itself as the propagation of a thin (δ0
L
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of the order of 0.1 mm) flame front in a mixture of fresh reactants, the burning velocity s0
L

for a usual hydrocarbon/air flame at standard condition is of the order of 0.2 − 1 m/s. In

turbulent premixed combustion, the flame front can travel at a speed of tens to hundreds of

meters per second due to the influence of turbulent eddies, and the interaction may strongly

increase the overall flame speed and thickness.

2.1.1.1 The influence of flames on flows

The flame front in premixed combustion separates the cold unburned and hot burned gases.

The flow pattern may be changed in certain scenarios because of the thermal expansion. For a

turbulent flame, the strong flow acceleration across the flame front resulting from the density

ratio of the unburned and burned gases (ρu/ρb ≈ 8 for a common hydrocarbon fuel/air mixture)

may subsequently modify the vorticity and turbulent flow field. On the other hand, as the

temperature considerably changes from the unburned to the burned side (300 − 2000 K),

the kinematic viscosity ν increases significantly, resulting in a much smaller local Reynolds

number in the burned gases compared with the fresh mixture. This phenomenon may lead to

relaminarisation of a turbulent flow after ignition [26].

2.1.1.2 The influence of turbulence on flames: wrinkling

The main mechanism controlling the turbulent premixed flame is wrinkling. As illustrated

in Figure 2.1, the flame surface can be distorted by the incoming turbulent eddies of various

length scales. It results in an increase in the flame surface and an overall enhancement of the

mass consumption rate. The increase of the turbulent flame speed sT due to the growth in the

total flame surface AT is sT ∝ AT s0
L.

Flame front

Eddies

Figure 2.1: Illustration of flame wrinkling by turbulence. The flame surface is distorted by
turbulent eddies of various scales. The dark area denotes the burned gases. The flame front
propagates from right to left.
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2.1.2 Regimes of turbulent premixed combustion

Turbulent premixed combustion is often described as the interaction between a flame front

and eddies of various sizes, from Kolmogorov (`κ) to integral (`0) scales. Combustion regimes

diagrams identified by various velocity and length scales are important to justify the turbulence

influences on flames and validity of turbulent combustion models. Diagrams have been proposed

by Borghi [30], Peters [31], Abdel-Gayed et al. [32], and Poinsot et al. [33]. They indicate

essential information whether the flows contain flamelets, pockets or distributed reaction zones.

In this section, an updated regime diagram by Peters [34] and an LES version by Pitsch and

De La Geneste [35] are presented. The three non-dimensional numbers, namely the turbulent

Reynolds (Ret), Damköhler (Da) and Karlovitz (Ka) numbers [36] are used to differentiate

various regimes of combustion. The turbulent Reynolds number based on integral length scale

characteristics is defined as

Ret =
u′`0
ν

=
u′`0
sLδL

(2.1)

where u′ is the root-mean-square (RMS) velocity. Note that in Eq. (2.1), the flame thickness

is defined as δL = D/sL [36] and the Schmidt number Sc = ν/D is taken as unity. The

Damköhler number is expressed as the ratio of the integral time scale (τ0) of turbulence and

chemical or flame (τc) time scale:

Da =
τ0

τc
=
sL`0
u′δL

(2.2)

The chemical reaction process is much slower than the turbulent mixing rate when Da � 1,

and this condition corresponds to a well-stirred reactor where nearly all of the turbulent eddies

are embedded in the reaction zone. In contrast, if Da� 1, it defines a fast-chemistry regime,

and the flame may be seen as ‘flamelets’. The Karlovitz number is defined as the ratio between

the flame time scale (τc = δL/sL) and Kolmogorov time scale τκ,

Ka =
τc
τκ

=
δ2
L

`2κ
(2.3)

It is useful to define a second Karlovitz number based on the inner reaction zone thickness `δ

as

Kaδ =
`2δ
`2κ
≈ 0.01Ka (2.4)
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assuming the inner layer thickness `δ ≈ 0.1δL [36, see Eq. (1.100)].

The classical Peters regime diagram [34] is shown in Figure 2.2. Two flamelet regimes are

of practical interest: corrugated flamelets (CF) and thin reaction zones (TRZ). In the former

regime, the Kolmogorov scale is still larger than the laminar flame thickness (δL < `κ), meaning

that the entire flame structure is not disturbed by turbulence. While in the thin reaction zone,

the smallest eddies of the Kolmogorov length scale can enter into the flame structure since

`κ < δL. However, they are still larger than the inner layer thickness `δ, therefore, cannot

penetrate into the reaction zone (Kaδ < 1). The smallest eddies enter the preheat zone and

enhance scalar mixing but do not penetrate the inner layer. The broken reaction zone (BRZ)

corresponds to the region beyond the line Kaδ = 1 when mixing is faster than chemistry and

Kolmogorov eddies are smaller than the inner layer thickness. The BRZ regime is usually

avoided in fully premixed combustion systems, as the small eddies may enter the inner layer

and perturb it with the possibility of local extinction [36].
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Figure 2.2: Regime diagram of Peters [34] for turbulent premixed flames (reproduced from
[34])

The Peters diagram requires physical quantities such as u′ and `0 which are not available

in an LES simulation. Since the focus of this work is on combustion modelling in the LES

context, the regime diagram for LES constructed by Pitsch [37] is presented below, which uses

the filter width as a unique parameter. In the LES diagram, the non-dimensional groups are

defined in terms of the filter width ∆ and the characteristic sub-grid velocity fluctuation u′∆
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as

Re∆ =
u′∆∆

sLδL
, Da∆ =

sL∆

u′∆δL
(2.5)

To evaluate the Karlovitz number in Eq. (2.3), an estimation of the dissipation rate ε is required.

From dimensional arguments

ε =
ν3

`4κ
(2.6)

and the following scaling relation can be obtained with the assumption of constant Schmidt

number ν = D = sLδL [35]:

ε =
u′3

`0
=
u′3∆
∆

=
(sLδL)3

`4κ
(2.7)

Finally, the Karlovitz number Ka (Eq. (2.3)) in the diagram can be rewritten as [35]

Ka =

√
δL
s3
L

ε =

√(
u′∆
sL

)3 δL
∆

(2.8)

A second Karlovitz number, Kaδ, can be defined similarly based on the thickness of the inner

layer of the reaction zone (Eq. (2.4)). The important point is that the Karlovitz number is

independent of ∆ and is based entirely on the physical quantities. Eq. (2.8) implies how u′∆ is

influenced by the variations in the filter width as a result of constant Karlovitz number, but

practically, as u′∆ is a modelled quantity in LES, the changes may not match the variation in

∆ to maintain a constant Ka. The Gibson scale `G = s3
L/ε is also introduced to divide the

diagram further.

Figure 2.3 contains the information on LES regime diagram and gives some insights into

combustion modelling. Moving horizontally in the diagram alters turbulence/chemistry inter-

action with constant ∆, while the effect of filter width with the same physical parameters can

be investigated by moving vertically. Reducing ∆ would result in a decrease in u′∆, as can

be seen from Eq. (2.8). A change in ∆ does not alter the combustion regime across Ka = 1

and Kaδ = 1, i.e. between any of CF, TRZ and BRZ regimes. In order to illustrate the

implications of this diagram, the modelled part of the combustion process is assumed to be

in the CF regime, for example, ∆/δL = 500 and Ka = 0.2. When ∆ is reduced below `G, u′∆

would be less than sL. Then, the modelled part of combustion will enter into the wrinkled
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Figure 2.3: Regime diagram of Pitsch and De La Geneste [35] for LES of turbulent premixed
flames (reproduced from [35]).

flamelets regime. Since a smaller filter width accompanies with a more substantial resolved

part of the flame, the corrugated flamelets are now at resolved scales.

Decreasing the filter width further when ∆ < `κ, all the turbulence is resolved in this

laminar flamelets regime. However, the filter width is still larger than the reaction zone

thickness (∆ > `δ), meaning that not all of the flame is resolved. When ∆ < `δ, the length

scale of the reaction zone is resolved, and the simulation essentially reaches the DNS limit.

Clearly, the regime diagram for LES (Figure 2.3) illustrates the turbulence-chemistry interaction

of the modelled part of the combustion and the influence of the characteristic sub-grid length

scale ∆.

2.2 Overview of premixed combustion models

Models of premixed combustion for RANS have been used for a few decades, while the devel-

opment of LES combustion models is still at an early stage. As a direct numerical simulation

for the 3-D unsteady turbulent premixed flame would be too expensive to perform under the

present computational power, models have been proposed to provide a prediction of essential

characteristics of the problem. Sub-models based on the flamelet concept are cases where

physical insights have been used to simplify the problem. It regards a turbulent premixed

flame as laminar flamelets embedded in a turbulent flow field and was initially proposed in the
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RANS context. It is typically applicable in situations of large Da with turbulent eddy scales

larger than the flame thickness. Flamelet modelling often uses a reaction progress variable c to

describe the progress of the chemical reaction in the flame front, and it may be defined as the

non-dimensional fuel mass fraction or temperature between the unburned and burned gases.

While a complete set of governing equations will be presented in Chapter 3, the transport

equation for filtered c̃ in LES is described here to facilitate the subsequent discussions:

∂ρc̃

∂t
+
∂(ρũic̃)

∂xi
+

∂

∂xi
ρ (ũic− ũic̃) =

∂

∂xi

(
ρD

∂c

∂xi

)
+ ω̇c (2.9)

where ω̇c represents the filtered reaction rate, and it is the main challenge of modelling the

turbulent premixed combustion. The following sections provide an overview of the various

approaches for modelling turbulent premixed flames. The statistical methods [38] such as

probability density function and conditional moment closure are of less relevance to the present

work and are thus not included.

2.2.1 Difficulties in LES of turbulent premixed combustion

Figure 2.4 shows a difficulty of applying LES in premixed combustion: the thickness of the

flame (δ0
L) is usually only a fraction of 1 mm, and it is generally much smaller than a typical

LES mesh size ∆x. It means that typically no portion of the filtered chemical source term can

be resolved in LES [39]. Therefore, the modelling effort comes to the representation of the

filtered reaction rate in the governing equations, for example, the source term ω̇c in Eq. (2.9).

When the flame is thinner than the LES grid size, solving for the progress variable c is fairly

stiff in space and can lead to numerical issues [26]. Three main techniques have been proposed

to overcome the issue: (i) use a flame-tracking method such as the G-equation [35, 37, 40]; (ii)

compute an artificially thickened flame instead [41–44]; (iii) solve for a filtered flame instead,

with a filter larger than the mesh size [45–49].

It is worth noting the distinction between modelling turbulence and combustion. In mo-

mentum transport, most of the turbulence energy lies in large or resolved scale motions, leaving

the small scales modelled. However, combustion is mostly a sub-grid scale (SGS) phenomenon,

and this implies the difficulty of treating it properly.

2.2.2 “No model” approach

This most straightforward approach in RANS is to completely neglect the effects of turbulence

on combustion and express the mean reaction rate only in terms of the mean temperature
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Figure 2.4: Issue of resolving the flame front on an LES mesh: the flame is thinner than the
mesh grid.

or mass fraction [26]. In LES, this corresponds to computing the filtered reaction rate only

as a function of resolved quantities (e.g. c̃), neglecting the sub-grid contributions. Assuming

single-step chemistry with the Arrhenius form, the filtered reaction rate can be expressed as

ω̇c ≈ ω̇(c̃) =−Acρ (1− c̃) exp

(
−Ta
T̃

)
= −Acρ (1− c̃) exp

[
−Ta

Tu + c̃(Tb − Tu)

] (2.10)

where Ac is the pre-exponential constant and Ta is the activation temperature. This method

is only relevant when the chemistry has a much larger time scale than turbulence (i.e. low

Damköhler number limit), e.g. Nieuwstadt and Meeder [50] have simulated the chemical

reactions in atmospheric boundary layers using this approach. However, the approach is

inadequate in most of the cases for turbulent combustion [26]. Nevertheless, this highlights the

importance of accounting for the sub-grid effect of the turbulence on combustion.

2.2.3 Eddy-break-up (EBU) model

The classical RANS closures such as the EBU model, first proposed by Spalding [51], can be

extended to the LES context as [52]

ω̇c ≈ CEBU
∆√
ksgs

ρc̃(1− c̃) (2.11)

where CEBU is flow-dependent model constant, and the sub-grid turbulent kinetic energy ksgs

may be estimated from an algebraic expression or a balance equation. A typical drawback of
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this method is that the model constant CEBU requires adjustment from case to case.

2.2.4 Level-set (G-equation)

The G-equation formalism may be seen as a numerical technique rather than a model. It avoids

resolving a too thin flame front by treating the flame thickness as zero, and the flame front is

indicated by a tracking field variable G [26]

∂ρG̃

∂t
+
∂ρũiG̃

∂xi
= ρusT |∇G| (2.12)

where sT is the SGS turbulent burning velocity requiring closure, and it is generally based on

[26]:

sT
sL

= 1 + αg

(
u′∆
sL

)n
(2.13)

where u′∆ is the SGS turbulence level. The constants αg and n in Eq. (2.13) are specified

by the user. The variable G usually identifies a signed distance from the flame front, and it

can be smoothed out to be resolved on the LES mesh [39]. The level-set approach provides

information only on the flame front but not on the structure, and the coupling with the flow

equations is still challenging [40].

2.2.5 Artificially thickened flames

The artificially thickened flame model for LES (TFLES) was directly derived from RANS and

has been used by many researchers [41, 42, 53, 54]. The key idea of the thickened flame model

is to thicken the flame so that it can be well resolved numerically but keep the same laminar

burning velocity [41, 42, 44]. The following relation can be obtained from the laminar flame

theory [55]:

sL ∝
√
Dω̇ and δL ∝

D

sL
.

Thickening can be achieved practically by replacing thermal and molecular diffusivity D with

FD, and the reaction rate ω̇ by ω̇/F where F is the thickening factor. Consequently, the flame

is thickened from δL to FδL while sL is kept constant. For sufficiently large F , the flame can

be resolved on the LES grid. The thickened flame approach is attractive from the numerical

point of view. The actual flame is replaced by a thicker laminar one without filtering hence

sub-grid-scale models may not be required [41]. The chemical reactions described by Arrhenius



Overview of premixed combustion models 22

law can be maintained, and various phenomena such as ignition and flame/wall interactions

may be directly accounted for without ad-hoc sub-models [26].

However, the interaction between turbulence and chemistry is modified as the flame is

thickened from δL to FδL due to the change in Damköhler number. Da is decreased by a factor

of F to D/F , therefore, the flame and turbulence interaction may be modified. This means

that the thickened flame becomes less sensitive to the wrinkling induced by turbulent eddies,

and consequently, less flame surface area is generated compared to that of the un-thickened

flame. An efficiency function Γ∆ or an effective wrinkling factor Ξ is derived and added to the

diffusion and reaction rate terms to tackle this drawback [41, 56]. For practical implementation,

for example, in the context of a progress variable (or fuel mass fraction), the transport equation

may take the form [41, 52, 56]:

∂ρc̃

∂t
+
∂(ρũic̃)

∂xi
=

∂

∂xi

(
ρDFΓ∆

∂c̃

∂xi

)
+
A

F
ρΓ∆(1− c̃)exp

(
−Ta
T̃

)
(2.14)

The central problem of applying TFLES is to evaluate the efficiency function Γ∆ in Eq. (2.14)

and comprehensive discussions have been given by Colin et al. [41] and Charlette et al. [56].

2.2.6 Flame surface density

Flame surface density methods have been extensively used for RANS simulations [38] and were

first introduced to LES by Boger et al. [45]. Their argument is that even though the flame

front (i.e. the gradient of c) is too thin to be resolved on an LES grid, the filtered progress

variable c̃ may be resolved using a spatial filter with the size ∆ greater than the mesh size ∆x.

The flame surface density Σ is defined as the available flame area per unit volume [38]. It can

either be modelled by solving for an additional transport equation [56–60] or using an algebraic

formalism [42, 45, 46, 61, 62]. For example, the unclosed Σ transport equation derived by

Hawkes and Cant [57] has the form:

∂Σ

∂t
+
∂ũiΣ

∂xi
= −

∂((ui)s − ũi)Σ
∂xi

+ (aT )sΣ−
∂(wNi)sΣ

∂xi
+

(
w
∂Ni

∂xi

)
s

Σ (2.15)

where Ni is the local normal direction, aT denotes the surface strain due to the fluid flow, (...)s

represents averaging over the flame surface, and w is the local relative propagation speed. The

RHS terms of Eq. (2.15) require closure.

On the other hand, the algebraic models generally relate Σ with a sub-grid wrinkling factor

Ξ, i.e. Σ = f(c̃,Ξ). Ξ can be assumed to be a constant depending on the flow condition
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[48], solved from a transport equation [63] or determined dynamically from the resolved flame

information [47] As the algebraic FSD approach is adopted for the present study, it is further

discussed in Section 2.3.

2.3 Algebraic flame surface density models

The purpose of applying algebraic FSD models is to avoid solving for a transport equation

for Σ where more unclosed terms would appear. Algebraic models are generally efficient and

relatively easy to implement. They can also benefit from a dynamic procedure where model

constant may be determined on-the-fly. In this section, some of the available algebraic models

are reviewed, with the focus of Boger et al. [45] based models and their refinement in the past

few years. In LES, the filtered equation for c is recast here as

∂ρc̃

∂t︸︷︷︸
temperal

+
∂

∂xi
(ρũic̃)︸ ︷︷ ︸

convection

= − ∂

∂xi
(ρuic− ρũic̃)︸ ︷︷ ︸

unresolved flux

+
∂

∂xi

(
ρD

∂c

∂xi

)
︸ ︷︷ ︸
molecular diffusion

+ ω̇c︸︷︷︸
reaction rate

(2.16)

The RHS terms of Eq. (2.16) require modelling. The filtered molecular diffusion and reaction

rate terms can be combined as a single flame-front displacement term [38, 45, 64]

∇ · (ρD∇c) + ω̇c = ρw|∇c| (2.17)

with w being the displacement speed of the iso-c surface. As a first step, Boger et al. [45]

proposed an algebraic expression to close the displacement term.

2.3.1 Boger’s algebraic model

Most of FSD based methods for LES originate from the study of Boger et al. [45], which is

discussed in this section. By defining a sub-grid-scale flame surface density (flame surface per

unit volume) Σ = |∇c|, the flame front displacement term in Eq. (2.17) can be written as

ρw|∇c| = 〈ρw〉s Σ = 〈ρw〉s Ξ|∇c| (2.18)

where 〈...〉s represents the surface average. Ξ is the sub-grid-scale flame wrinkling factor (i.e.

the sub-grid flame surface divided by the projected surface in the propagating direction) defined

as

Ξ = |∇c|/|∇c| (2.19)
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such that

Σ = Ξ|∇c| (2.20)

and Ξ = 1 for a plane flame front. Assuming laminar flame elements the surface average term

can be defined as

〈ρw〉s ≈ ρusL (2.21)

where ρu and sL are unburned gas density and laminar flame speed, respectively. This derivation

leads to the expression for the displacement term in Eq. (2.17):

ρw|∇c| ≈ ρusLΣ = ρusLΞ|∇c| (2.22)

It is important to mention that not only Ξ requires modelling but |∇c| also needs closure as c

is an unknown quantity from the transport equation of c̃. Boger et al. [45] proposed a simple

algebraic expression by filtering the DNS data:

Σ = 4

√
6

π
Ξ
c (1− c)

∆
(2.23a)

or simply expressed as

Σ = 4α
c (1− c)

∆
(2.23b)

where ∆ is the filter width and α =

√
6

π
Ξ is a model coefficient. Eq. (2.23b) approximates the

flame surface density as a parabolic function of c̃. In Eq. (2.23b), ∆/α represents the degree

of flame wrinkling [65] and is subject to change based on mesh resolution, etc. [66].

2.3.1.1 Practical considerations

Two possibilities arise for calculating Σ in LES: (i) use Eq. (2.20) with an additional closure

for Ξ [67, 68]; (ii) use Eq. (2.23b) and specify α prior to the simulation. In fact, the majority

of Σ models have the formulation of Eq. (2.20) and only differ due to the evaluation for Ξ.

Hence, the expression of Eq. (2.23b) essentially approximates the term Ξ|∇c| using a parabolic

function which assembles the classical Bray-Moss-Libby (BML) formula in RANS [69, 70].

However, there is a concern that the un-weighted filtered progress variable c in Eq. (2.20) is not
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directly available from LES. A relation between the un-weighted c and mass-weighted c̃ needs

to be provided, and this may be obtained using an expression similar to the BML formulation

[70] or an extended version for LES proposed by Chakraborty and Cant [71]. The formalism

of Eq. (2.20) has been used to study transient premixed flames by Di Sarli et al. [72] and Di

Sarli et al. [73, 74].

The unresolved scalar flux term in Eq. (2.16) is usually modelled using a simple gradient

expression

ρ(ũic− ũic̃) = − µt
Sct

(2.24)

with the turbulent viscosity and Schmitt number denoted as µt and Sct, respectively. However,

it also contains a contribution from the counter-gradient transport (CGT) (i.e. with a sign

opposite to the prediction using Eq. (2.24)) [45, 61], and it is promoted with higher heat release

factor [45]. Some researchers (such as Ma et al. [62]) recommended the use of a simple explicit

CGT model to avoid unintended flame thickening occurring in their work. The CGT can also

be accounted for implicitly by replacing c with c̃ in Eqs. (2.20) and (2.23b) [46, 61], and this

treatment is also mentioned recently by Allauddin et al. [75]. The present study uses the

implicit method for the CGT.

On the other hand, when applying Eq. (2.23b) in LES, the choice of the LES filter width

∆ may not be trivial. It is worth noting that Boger et al. [45] applied a spatial Gaussian filter

of various sizes ∆ > ∆x on the DNS data to obtain a filtered flame front. In LES, the effect

of introducing a filter for the c̃ equation is to numerically resolve the filtered flame front on

an LES grid. For a general LES solver applying implicit filtering, this may be naturally set

to ∆ = ∆, consistent with the filter width of the momentum equations. Note that it is the

∆/α, not the filter width alone that plays the role of evaluating Σ as the model coefficient α

in Eq. (2.23b) also requires adjustment. The successful work of Kirkpatrick et al. [76] and

Gubba et al. [77] have demonstrated the ability of this formulation in calculating transient

flame propagation though they included the resolved molecular diffusion term [see 76, Equation

24] in the c̃ equation. As illustrated by Mercier et al. [78], the filter width ∆ is regarded as a

dedicated parameter for the flame and may be referred to as a “combustion” filter. Note that

the original Boger et al. [45] model has been subsequently refined by researchers to recover

the laminar behaviour of the flame when turbulence vanishes [46], and to introduce a dynamic

formalism to evaluate Ξ [47].
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2.3.2 Refinement of Boger’s model

The Boger et al. [45] algebraic model has been refined by Boger and Veynante [46] considering

the counter-gradient scalar transport (replacing c in Eq. (2.23b) by c̃) and recovering laminar

propagation (modifying diffusion term). The modified c̃ equation is

∂ρc̃

∂t
+

∂

∂xi
(ρũic̃) =

∂

∂xi

[(
ρus

0
L∆

16
√

6/π
+

µt
Sct

)
∂c̃

∂xi

]
+ 4ρus

0
L

√
6

π
Ξ
c̃ (1− c̃)

∆
(2.25)

Eq. (2.25) was slightly modified later [47, 79] where the modelled turbulent flux term is dropped

from Eq. (2.25) and is replaced by Ξ in the diffusion term. Based on that, the c̃-transport

equation adopted for the present study is written as [47]

∂ρc̃

∂t
+

∂

∂xi
(ρũic̃) =

∂

∂xi

(
ρuΞs0

L∆

16
√

6/π

∂c̃

∂xi

)
+ 4ρus

0
L

√
6

π
Ξ
c̃ (1− c̃)

∆
(2.26)

For the present study, both Eq. (2.25) and Eq. (2.26) have been tested and the difference

between the solution is negligible. Hence, Eq. (2.26) is adopted for this work.

Note that the filtered flame thickness would be uncontrolled when Eq. (2.22) is used in

conjunction with Eq. (2.16). Ma et al. [62] reported that this issue is particularly applicable

to the gradient-type |∇c| models. In contrast, computation using Eq. (2.26) is free from the

issue, and the flame thickness is controlled by ∆.

Klein and Chakraborty [80] provided a new definition of wrinkling factor as Ξ = |∇c|/|∇c̃|

but maintain the original form of the c̃ equation (Eqs. (2.16) and (2.17)) to gain the control of

the flame thickness. However, Ma et al. [62] viewed the lack of flame thickness control is of

limited influence in practical cases.

Another critical improvement regarding Eq. (2.25) is that the laminar burning velocity is

ensured when turbulence vanishes. This is essential for reducing errors in simulating transient

propagating flames where a laminar phase could be present. It can be said that the filter ∆ is a

dedicated parameter to resolve the flame front on the LES grid, and a rigorous explanation of

the consistency between flow and flame filter scales is given by Mercier et al. [78]. The control

of resolved flame thickness and the reproduction of laminar propagation for the current model

setup have been addressed using a one-dimensional test (see Section 4.9).

2.3.3 Closure of the sub-grid wrinkling factor

The sub-grid-scale flame wrinkling factor Ξ defined by Eq. (2.19) may be evaluated using an

algebraic formalism or calculated dynamically based on the resolved flame characteristics. The
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filtered reaction rate is written under the generic form [47, 68, 81, 82] as

ω̇c = Ξ
W (c̃)

∆
(2.27)

where W (c̃)/∆ corresponds to the resolved (filtered) reaction rate without sub-grid wrinkling

(∆ = 1). The sub-grid-scale wrinkling factor Ξ represents the ratio of total to resolved flame

surfaces in the filtering volume [81]. It has been shown by Veynante and Moureau [81] that

Eq. (2.27) can be used to generalise some of the classical turbulent combustion models such

as level-set, thickened flame and FSD. For example, in Boger et al. [45] algebraic model,

W (c̃) = 4ρus
0
L

√
6

π
c̃ (1− c̃) using Eq. (2.27). As a demonstration, the flame surface density Σ

[45] can be split into the resolved and unresolved parts:

Σ = 4

√
6

π

c̃ (1− c̃)
∆︸ ︷︷ ︸

resolved

+ 4

√
6

π
(Ξ− 1)

c̃ (1− c̃)
∆︸ ︷︷ ︸

unresolved (SGS)

(2.28)

2.3.3.1 Algebraic models for flame wrinkling factor

The algebraic FSD model requires an expression for the sub-grid wrinkling factor Ξ. Table 2.1

summarises the formulations of selected algebraic models for Ξ in the literature. Note that the

derivation for these expressions can vary. For example, Colin et al. [41] derived their models

according to a DNS study of vortex flame interactions, while Fureby [67] considered Ξ using

a fractal-based approach. Most of the models in Table 2.1 require evaluating an efficiency

function Γ∆. It may have various forms based on their derivation, e.g. Colin et al. [41] provides

Γ∆ = 0.75 exp

[
−1.2(

u′∆/s
0
L

)0.3
](

∆

δ0
L

)2/3

(2.29)

and Charlette et al. [56] proposed a general fitting function for Γ [see 56, Equation 30]. A

realistic evaluation of Γ∆ is of central importance for using models such as Colin et al. [41]

and Charlette et al. [56] formulations.

Most of the models for Ξ require the sub-grid-scale velocity fluctuations u′∆ as an input.

It is typically estimated using the Smagorinsky model [83] from the computed SGS turbulent

viscosity [62] or using a scale-similarity approach [41, 84]. The evaluation of u′∆ is not trivial as

it provides the information of turbulence at SGS level that interacts with the flame. One may

expect the algebraic FSD closures to be influenced by the evaluation of u′∆ since its modelling
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Table 2.1: List of some available algebraic formulations for Ξ

Publications Formulation Description

Angelberger et al. [42] Ξ = 1 + α1Γ∆
u′∆
s0
L

α1: model constant

Charlette et al. [56] Ξ = 1 +min

[
∆

δ0
L

,Γ∆
u′∆
s0
L

]β1
β1 = 0.5

Colin et al. [41] Ξ = 1 + α1
2 ln(2)

3cms(Re
1/2
t − 1)

Γ∆
u′∆
s0
L

Ret: turbulent Reynolds number

cms = 0.28

Fureby [67] Ξ =

(
Γ∆

u′∆
sL

)Df−2

Df : fractal dimension

Weller et al. [63] 1 + 2c̃(Ξ∗ − 1)
Ξ∗ = 1 + 0.62

(
u′∆lκ
ν

)√
u′∆
s0
L

lκ: Kolmogorov length scale

remains an open question. Langella et al. [85] have recently studied the piloted stoichiometric

methane-air Bunsen flame using an algebraic closure for the filtered scalar dissipation rate

of the progress variable. They found that the LES results have some sensitivity to the u′∆

model [85]. However, the influence of u′∆ on the Ξ formulations is generally not sufficiently

investigated in the literature. This is part of the motivation of applying a dynamic formalism

where Ξ is not solely computed based on the SGS turbulence information.

2.3.4 Dynamic formalism for the flame surface density

Dynamic combustion models are mostly inspired by the successful modelling of the SGS

turbulence in the momentum transport, first proposed by Germano et al. [86]. The basic

idea is to take advantage of the known instantaneous resolved large scales to adjust the model

parameters automatically. This is typically realised by comparing the LES resolved field at the

filter scale and this field at the test-filter scale.

Dynamic modelling of flame surface density Σ, or more generally, the wrinkling factor Ξ,

intends to evaluate the sub-grid reaction rate based on the resolved flame features (by test

filtering). In this way, the model parameter is self-adjusted to account for various levels of flame

wrinkling by turbulence. It has several advantages over the algebraic closure: (i) it extracts

information from the filtered flame front, thus avoid evaluating the SGS turbulence quantities

such as u′∆ in Table 2.1; (ii) most of the algebraic closures are derived assuming equilibrium

between flame and turbulence [53]. However, the model parameter constants (e.g. β1 in

Table 2.1) would not be valid for cases where the flame is initially laminar and progressively
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stretched by turbulent eddies, and it typically occurs in the development of a deflagrating

flame.

2.3.4.1 Knikker et al. [61] dynamic model

One of the first dynamic models was proposed by Knikker et al. [61] and Knikker et al. [87] from

a priori test on experimental data. Recall that the flame surface density Σ can be separated

into

Σ = |∇c| = Ξ∆ |∇c| = |∇c|︸︷︷︸
resolved

+
(
|∇c| − |∇c|

)
︸ ︷︷ ︸

unresolved

(2.30)

Knikker et al. [61] assume the unresolved FSD to be similar (proportional) to the resolved

part between the grid and test-filter scales:

Σ = |∇c| = Ξ∆ |∇c| = |∇c|+Ks

(
|̂∇c| − |∇ĉ|

)
(2.31)

where .̂.. denotes the test-filter operation. The model coefficient Ks is determined by identifying

the sub-grid scale flame surface as a fractal surface:

Ks =
1

1− (∆̂/∆)2−D

[(
∆

δc

)D−2

− 1

]
(2.32)

The inner cut-off scale δc is generally a function of the laminar flame thickness. The fractal

dimension D may be evaluated algebraically [66] or dynamically [87]. The gradient type |∇c|

may be replaced by the parabolic expression of Boger et al. [45] in the dynamic formalism.

The derivation of Knikker et al. [87] similarity model was primarily motivated to build a link

between the resolved and unresolved flame surface density. It avoids the possible deficiencies of

directly estimating the wrinkling factor by sub-grid-scale turbulent properties [81]. This model

was subsequently implemented numerically by Gubba et al. [88] for turbulent deflagration

problems with satisfactory results.

2.3.4.2 Wang et al. [47] dynamic model

The dynamic model used in this thesis is primarily based on the work of Wang et al. [47].

Following the work of Charlette et al. [68], Wang et al. [47] proposed a simple fractal-like

dynamic formalism

Ξ =

(
∆

δc

)β
(2.33)
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where β = D − 2 is the model parameter. Eq. (2.33) ensures that β = 0 for planar laminar

flames (Ξ = 1). β can be determined dynamically equating flame surfaces when computed at

filtered and test-filtered level [47, 81, 82]:

(
∆

δc

)β 〈
|̂∇c|

〉
=

(
γ∆

δc

)β 〈
|∇ĉ|

〉
(2.34)

where 〈·〉 represents the volume averaging introduced to eliminate un-physical fluctuations,

and it should be larger than the test filter. Eq. (2.34) uses a “Germano-like” identity [68] and

assumes that the two wrinkling factors (at filtered and test-filtered scales) are uniform over

the averaging volume. Then, the model parameter β is

β =
ln
(〈
|̂∇c|

〉
/
〈
|∇ĉ|

〉)
ln (γ)

(2.35)

The combination of the LES and test filter operators gives an effective filter width γ∆:

γ∆ =

√
∆2 + ∆̂2 (2.36)

where ∆̂ is the test-filter width and is typically larger than ∆. Eq. (2.35) provides a dynamic

formalism for determining β. By construction, γ is greater than unity (ln(γ) > 0), and

|̂∇c| ≥ |∇ĉ|. In their practical implementation [47, 53], β was updated every 100 LES time

steps only, considering the flame evolving time compared with time step limit by their LES

solver. As a first step, Wang et al. [47] and Wang et al. [53] assumed a uniform or global

model parameter β on the resolved flame surface based on (i) flame and turbulence in the

test cases have homogeneous behaviours, (ii) reduced computational cost compared with a

local approach and (iii) ease of numerical implementation. It results in the use of the whole

computational domain for the volume averaging, and β only evolves with time. When the

averaging volume 〈·〉 is limited to the vicinity of a point at the flame, β is a local parameter

varying in both space and time. In the local formalism, volume averaging is later replaced by

a Gaussian filter [81, 82] considering the ease of implementation.

However, Eq. (2.36) involves the complexity of evaluating the un-weighted c. Based on a

priori analysis [81, 89], Eq. (2.35) is approximated by

β ≈
ln
(
〈|̂∇c̃|〉/〈|∇̂̃c|〉)

ln (γ)
(2.37)
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Eq. (2.37) has been confirmed by DNS analysis [81]. The unweighted averaging or Gaussian

filtering 〈·〉, larger than the test-filter scale, is performed over the resolved flame front. The

size of this Gaussian filter, ∆m, is implicitly assumed to be 1.5∆̂ < ∆m < 3∆̂. The model was

proved to recover unity wrinkling factor (Ξ = 1 and β = 0) under the laminar flame conditions

or when the flame wrinkling is fully resolved [47, 82]. The dynamic model has been tested

for a flame kernel growth problem by Wang et al. [47] (Eq. (2.35)) and for a Bunsen burner

configuration by Schmitt et al. [82] (Eq. (2.37)).

As reported by Mouriaux et al. [79] very recently in the context of IC engine simulations,

Ξ predicted by Eq. (2.37) could be erroneous close to the computational domain boundaries.

Mouriaux et al. [79] showed that for 1-D laminar flames, Ξ� 1 close to the boundary due to

the fact that Σ1 = |̂∇c̃| is larger than Σ2 = |∇̂̃c| in Eq. (2.37). Mouriaux et al. [79] proposed a

modified Σ2,mod = |∇̂c̃| in Eq. (2.37) to overcome this difficulty. Corrections for computational

boundaries are implemented in this work. Un-physical Ξ values may also occur when flame

fronts interact at the test-filter scale, and they are also corrected by Mouriaux et al. [79].

However, corrections for flame front interactions are not included in the present study as they

do not cause unrealistic numerical issues.

2.4 Initialisation of combustion

The nature of LES computation requires an appropriate method to initialise combustion. It is

known that the characteristics of combustion during the early stage of flame kernel formation is

fundamentally different from its fully developed phase as the flame has not achieved equilibrium

and propagation is mainly influenced by volumetric expansion. Description of ignition and

early combustion is often of less importance in simulating statistically stationary flames (e.g.

a turbulent swirling flame in an industrial burner [90]) as results are generally processed over

a time period after the initial transients [91]. On the other hand, devices such as IC engines

are operated with a cyclic variation. In order to predict in-cylinder pressure development and

pollutant formation, a correct prediction of the initial combustion stages is of great importance

traditionally in engine simulations. As the present study compares transient simulation data

including pressure and flame position with the experiments, the initiation and early stages

of flame propagation are considered to be of greater effects. This section first outlines the

difficulties of modelling an ignition process. Then, some of the techniques for numerical flame

initiation are reviewed, and their relevance to the present work is discussed.
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2.4.1 Difficulties of modelling ignition

The initiation of ignition is a challenging modelling problem. Firstly, the length and time

scales of the initial breakdown phase, energy deposition and kernel formation are generally

much smaller than that in the flame propagation phase. Secondly, estimation of initial kernel

size and temperature depends largely on energy deposited thus an accurate description of the

plasma and breakdown phase is needed. Thirdly, chemical reactions at the electrical discharge

phase are highly complex in nature involving high-temperature plasma physics. Consequently,

general chemical kinetics of combustion is only applicable when the plasma formation is not

significant, and the kernel temperature is sufficiently low [92]. In addition to the sophisticated

physical phenomena present during the ignition, local flow conditions such as turbulence are

often not negligible and affect the kernel development. The initial flame kernel exhibits a

laminar-like behaviour and is often observed to be spherical under general circumstances [93].

The kernel could be subsequently stretched and deformed with the presence of strong turbulence

particularly in IC engines [94].

A complete ignition process is physically complex to model. It involves spark channel

breakdown, radical formation and recombination, surface chemistry, mixture inhomogeneity,

heat dissipation and turbulence-chemistry interactions [95]. In general, standard CFD codes

cannot simulate plasma thermodynamics. Thus, simplified approaches have been proposed for

most engineering applications. More importantly, the methodology and implementation of an

ignition model are strongly linked to the main combustion model to be coupled with.

2.4.2 Lagrangian models

The difficulty of detailed ignition modelling lies on resolving the very short characteristic time

(less than 10−6 s) and length (of the order of the spark gap size or laser focus point) scales

compared with that of the ignition system. Hence, it is often not practical to compute ignition

details on a typical numerical grid. To avoid this issue, some researchers [96, 97] proposed

methods based on the Lagrangian framework where the flame kernel is tracked as marked

particles. The Lagrangian approaches may be advantageous as they are less dependent on the

grid and flame kernel sizes.

The first attempt was the discrete particle ignition kernel (DPIK) model proposed by Fan et

al. [96] and further extended by Tan and Reitz [97] in SI engine simulations. In their approach,

the flame kernel is assumed to be spherical and is represented with particle markers identified

with an index searching algorithm. One of the benefits of the DPIK model is that the flame
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kernel size is not restricted to the grid size during the very early stage of the ignition process.

Therefore, the use of a very fine numerical mesh is not necessary. The marked particles move

radially at velocities that are determined from turbulence level, equivalence ratio, pressure

and temperature in the spark region, and the increase in flame kernel diameter is calculated

subsequently, and the fuel burn rate can be computed by the adopted chemical scheme [97].

Transition to the main combustion model takes place when the kernel size reaches the order of

the integral turbulence length scale of the flow field [96].

Another Lagrangian-based method is the arc and kernel tracking ignition model (AKTIM)

proposed by Colin et al. [98]. In this model, the spark plug is identified by a set of discrete

particles to include the heat losses of the kernel [98]. More importantly, a wrinkling factor

Ξ is introduced to account for the influence of turbulence at the early stage of the kernel

development. The evolution of Ξ is formulated via the production and destruction terms in

the transport equation of the flame surface density. The AKTIM model was later adapted to

the Eulerian framework and extended to LES [59, 99].

Similar to the DPIK and AKTIM models, Dahms et al. [100] introduced a spark-ignition

model (called SparkCIMM) to better account for localised spark plasma channel. More recently,

a model was constructed by Lucchini et al. [101] with the inclusion of an electrical circuit

model and real properties of the high-temperature gas.

Most of the Lagrangian models are developed in the RANS context, and the exchange of

information between the CFD and ignition codes are required. Flow field properties such as

burning velocity, unburned gas temperature and density are passed to the Lagrangian ignition

model. Out of the ignition model, the Lagrangian flame kernel is usually reconstructed as a

distribution of the corresponding Σ field used in the main CFD code.

2.4.3 Autoignition models

In contrast to spark or laser assisted ignition, autoignition is generally encountered where the

combustible mixture is in contact with a very hot surface, and it also takes place in compression

ignition machines. The complex physics (e.g. high-temperature plasma, electrical circuit, etc.)

and the sudden thermal expansion associated with the spark are typically not relevant in an

autoignition event. In terms of modelling, general chemical kinetics at the ignition stage are

of great importance in order to predict the autoignition process. Therefore, the emphasis has

been put on incorporating appropriate ignition kinetics in order to capture properties such as

the ignition delay time [102, 103].
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2.4.4 Energy deposition approach

Ignition may also be modelled by depositing energy into a selected number of computational

cells which approximately represents the spark channel size. An early attempt was made to

incorporate a spark power profile in the energy equation by Bradley and Lung [104], where

the simulation started just after the breakdown phase. The initial channel temperature was

set to 10, 000 K according to the experimental data, neglecting the plasma physics. A simpler

method is to completely neglect the electric-spark physics and only deposit energy leading to

autoignition-like behaviours [105]. The deposition may end when a cut-off temperature limit

is reached during which the reaction rate is evaluated using an Arrhenius type model [105].

More recently, an energy deposition (ED) model in LES was investigated for both laser and

electrical spark ignition in a turbulent jet [106] and a rocket-like burner [107]. The advantage

of this approach is that no separate models are required. Instead, a temporal and spatial

varying source term is added to the energy equation, and the formation of the initial kernel

is explicitly computed by the LES solver. A volumetric source term Q̇ was parametrised by

the energy transmitted to the gas as well as the duration and characteristic size of the spark

defined as a Gaussian distribution [107]. The LES grid size is reduced at the ignition point,

and the distinction between the laser and electrical spark is mainly the amount of transmitted

energy described in the ED model [107]. Evidently, the ED model gives the energy profile that

reproduces the effect of the real spark when the kernel temperature has decreased below the

ionization temperature, thus ignoring the plasma phase. Note that using the ED approach

benefits from the coupled TFLES combustion model [41, 43], while the implementation may

be less straightforward in FSD based combustion models as the heat release term is typically

not driven by the temperature. A thickened flame based model expresses the chemical source

term using Arrhenius law via a global one-step or multi-step chemical scheme. This means

that the temperature rise resulting from the initial energy deposition can directly trigger the

finite-rate chemistry [107]. It is necessary to ensure the combustion model only works on a fully

established kernel. Hence, flame thickening is employed after the mass fraction of a burned

product species reaches a threshold (e.g. 90%) of that at chemical equilibrium [107].

2.4.5 Flame initiation for LES-FSD

With more refined meshes and smaller time steps in LES compared with RANS, the Lagrangian

particle tracking techniques may be less attractive due to their computational inefficiency [95].

There are several points to consider when initialising combustion in the LES-FSD context: (i)
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during the initial flame development, the calculation of Σ from the main combustion formalism

is not theoretically valid as the flame front is not fully established, (ii) it is often convenient

to work with the flame surface density during the very early stage of the kernel formation, and

(iii) an LES simulation cannot resolve a too small flame kernel (less than the filter width ∆),

and a flame kernel model must account for the total reaction rate separately when the volume

of burned gases is too small.

It is worth mentioning that here the term ‘ignition’ is used more loosely in the sense of a

numerical (thickened or filtered) flame, representing the period before a flame is established

numerically (e.g. c̃ = 1 in the computational domain). For the present study, flame initiation

has been investigated comparatively using a flame kernel model and a filtered burned kernel.

2.4.5.1 Flame kernel models

Flame kernel models are used to take into account the initial stage of kernel development,

which corresponds to the increase of c̃ from zero to unity. Richard et al. [59] proposed a spark

ignition model (AKTIM) coupled with a coherent flame model in LES. It was then extended

by Colin and Truffin [108] to incorporate multi-ignition description, and the model is known as

ISSIM-LES. The phases of using such a flame kernel model are generalised as follows [59, 99]:

(i) an initial profile of progress variable or FSD matching the imposed small burned volume,

(ii) an FSD expression during the ignition period with flame wrinkling taken into account,

and (iii) transition to main combustion model when the flame is fully established. Practically,

using a flame kernel model requires replacing the FSD in the source term of the c̃ equation.

2.4.5.2 Initialisation of burned flame kernel

As an alternative to modelling ignition, a simulation may also be initialised by imposing a

sufficiently large flame kernel. Thus, the very early stage of the kernel formation is not included.

Initialising combustion with a burned flame kernel is often used due to the simplicity, and it

can be realised by setting a region of burned gases (c̃ = 1). In the majority of FSD combustion

formulations, the profile of ∇c̃ affects the initial period of computation. Di Sarli et al. [72]

investigated the sensitivity of the LES results to the initial burned flame kernel including the

size and SGS turbulent velocity fluctuations, and they found that a minimum kernel size is

needed to initiate the flame propagation. Wang et al. [47] provide a profile for ∇c̃ by filtering

the solution from the 1-D computation of a laminar premixed propagating flame at filter width

∆. As this method [47] is robust and computationally efficient, it is applied in most of the

simulations performed in this thesis.
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2.5 Flame propagation with obstructions

Combustion and flame propagation in the presence of obstacles are of particular interest for the

current study. Geometric factors including spatial confinement and obstructions significantly

affect the flame behaviours. A variety of physical phenomena have been found in the flame

propagation including (i) turbulent shear layers from obstacles and their interactions with

flame, (ii) flame instabilities [109] such as Landau-Darrieus (LD) instability [110, 111] due

to thermal expansion of the gas, (iii) flow instabilities [112] such as Rayleigh-Taylor (RT)

instability resulting from flame acceleration towards the unburned gas and Kelvin-Helmholtz

(KH) instability triggered by the velocity shear, (iv) pressure wave generation and flame-acoustic

interactions due to the confinement [113, 114], (v) deflagration-to-detonation transition (DDT)

under certain conditions [115], and (vi) external combustion as a result of venting [116, 117].

These phenomena determine the behaviours of the propagating flames and the strength of each

mechanism depends on the geometric configuration and the stage of flame propagation. For

example, in a vented deflagration with obstacles, the LD instability controls the initial quasi-

laminar phase, while the effect becomes relatively weak once the flame transits to turbulent.

2.5.1 Experimental studies

The effects of obstacles in vented deflagrations have been experimentally studied by many

researchers in lab-scale combustion chambers. Fairweather et al. [118] investigated the effects

of turbulence-inducing rings in cylindrical vessels and found that large overpressure is only

generated in the later stages of the deflagration due to the turbulent combustion induced by

the obstacles. Ibrahim and Masri [119] studied the influence of a single central obstruction of

various cross-sectional shapes (cylinder, square, triangle, etc.) and dimensions. They pointed

out that the maximum overpressure generally increases with the blockage ratio, but the rate

of increase depends on the obstruction geometry. A similar study has also been conducted

by Park et al. [120] with more statistics on the flame front obtained from the experiment.

Another series of experiments have been performed by Ibrahim et al. [121] to investigate the

flame/solid interactions in turbulent premixed flame propagation and highlighted the transient

recirculating flow formed behind the solid obstacle. The unburned gas flow field ahead of a

propagating flame has also been visualised by Johansen and Ciccarelli [122] using a schlieren

based photographic technique. The KH instability, laminar vortex roll-up and multiple scales

of turbulence have been observed within the fresh gas in the presence of repeated obstacles

[122]. The effects of cross-wise obstacle position have been studied by Wen et al. [123], and
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they found that the rate of flame acceleration is the highest when three obstacles are centrally

located while it is the lowest when mounted on the same side of the chamber. Wen et al.

[124] also conducted experiments with varying angles for a single side-mounted obstacle. The

collected sequential flame images [124] show that the gap between the obstacle and the chamber

wall affects the flame shape and acceleration. The impact of obstacle separation distance has

been explored by Na et al. [125], and they pointed out that the overpressure, flame speed and

turbulence level can be higher even with obstacles of lower blockage but spaced optimally. A

series of experimental tests have been performed by [65, 126, 127] where baffle plates are used

to promote the generation of turbulence, and the smaller-scale (50×50×250 mm) combustion

chamber made detailed measurement feasible. There are also a few papers [127–131] providing

data for the flame propagation of hydrogen and H2 enriched fuels.

2.5.2 Numerical studies

Numerical study of transient flame propagation has been performed in the context of RANS [11,

118, 132–134] for both lab and industrial scale cases. Catlin et al. [132] predicted the premixed

flame propagation in a large-scale cylindrical vessel consisting of turbulence-inducing rings using

the RANS approach. In their mathematical model, turbulence ahead of the flame modelled

using a standard k − ε closure, and combustion was described with a modified power-law eddy

breakup formalism. A similar numerical study has been conducted by Fairweather et al. [118]

where the predicted flame shape and position were in good agreement with experiments. In

the studies of Fairweather et al. [118] and Catlin et al. [132], the combustion model was

considered semi-empirical since the turbulent diffusion and source terms in the energy and

progress variable equations were modified to give a specified turbulent burning velocity. Patel

et al. [133] applied a transport FSD approach to simulate lab-scale deflagration with three

central rectangular obstacles. Their numerical results highlighted the impact of using a linear

or non-linear eddy viscosity turbulence model. Given that the computations performed in

these studies [118, 132, 133] were two-dimensional with semi-empirical parameters, the RANS

results provided adequate information such as flame shape and acceleration.

In the past few years, LES has been extensively used in the research of propagating turbulent

flames [65, 72–74, 76, 77, 88, 99, 135–138]. Kirkpatrick et al. [76] conducted LES computations

for a combustion chamber with a single rectangular obstacle using the original Boger’s FSD

formulation Eq. (2.23b) with an additional molecular diffusion term in the c̃ equation. The

model parameter β in Eq. (2.23b) was set to a value to give a correct turbulent flame speed as
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in the experiments [76]. The importance of the velocity boundary condition at the far-field (i.e.

outside the vent) is also discussed in the study [76]. Masri et al. [65] applied a similar FSD

model to a combustion chamber with one baffle and a central obstruction and commented on

the following: (i) flame propagation can be divided into quasi-laminar, turbulent and blow-

down regions, and the mesh size may be specified based on them; (ii) the difference between

the coarse and fine meshes lies in the quasi-laminar stage of flame propagation, while both

grids have similar results for the rate of change in pressure and the flame propagation speed

downstream of this region. However, peak overpressures were found out to be different; (iii)

grid independence in LES for reacting flows was not a matured consideration compared to

RANS, and the filter width plays an important role in the simulation. It was also suggested

by Masri et al. [65] that a smaller scale chamber would be of greater significance and practice

in terms of forming a thorough analysis of the numerical accuracy in LES.

The use of the gradient form of the Boger’s expression [45], i.e. Eq. (2.20), has been found

in the work of Di Sarli et al. [72] and Di Sarli et al. [73, 74] with the wrinkling factor closed

using the Charlette’s formalism [56]. Their study has shown that the magnitude of the flame

wrinkling factor has a substantial influence on the peak overpressure, considering the same

experiments presented in [133]. Gubba et al. [77] applied the Boger’s algebraic model [45] to

investigate flame propagation in a small-scale combustion chamber with removable baffle plates

and a square central obstacle, and the work has then been extended by Gubba et al. [88] using

the Knikker’s [87] dynamic FSD model. It has been demonstrated by Gubba [139] that the

overpressure prediction is improved with the dynamic model, and Abdel-Raheem et al. [140]

subsequently applied it to simulate the hydrogen deflagration with satisfactory results. The

same combustion chamber has also been studied by Quillatre et al. [137], Volpiani et al. [138],

and Vermorel et al. [141] using the thickened flame model. Vermorel et al. [141] investigated

the performance of the two formalisms for the sub-grid wrinkling factor, namely Colin’s [41]

and Charlette’s [56] expressions in combustion chambers of three scales. It was concluded that

LES agreed well with experiments at a given chamber scale and a fixed model constant for the

wrinkling factor, while the performance was not the same for the larger-scale cases. Hence, a

priori fitting of the model parameters may be required for such algebraic models to be applied

in various scales of problems [141]. Volpiani et al. [138] combined the thickened flame model

with a dynamic formalism for the wrinkling factor. They first conducted a few preliminary 2-D

DNS tests and pointed out that the accurate prediction of flow and turbulence structures ahead
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of the flame are crucial for the overall flame propagation. They commented that the inner

cut-off length scale also plays an important role in the prediction of the maximum overpressure.

The 3-D LES tests [138] successfully predicted the essential flame behaviours, and the evolution

of the model parameter also helped to illustrate the combustion characteristics for different

obstacle arrangements. Volpiani et al. [138] also commented on the peak overpressure affected

by using an iso-thermal or adiabatic boundary condition on the chamber walls.

2.6 Summary

A comprehensive review of the literature and the relevant modelling considerations is given

in this chapter. Turbulent premixed combustion manifests itself as propagating flame fronts

towards the fresh gas, subjected to interactions with the turbulent flow field. The influence of

turbulence on the flame is wrinkling and stretching present in most of the practical cases, and the

characteristics of interaction can be described using a regime diagram. The difficulty of using

LES for turbulent premixed combustion is that the real flame front is generally thinner than

the computational grid size. Thus, the filtered chemical source term in the transport equation

has to be modelled completely. Out of the available combustion models in the literature, the

FSD approach addresses this issue by resolving the filtered flame front which usually crosses a

few grid points. The conventional algebraic FSD models are popular due to their simplicity

and robustness, but a drawback is that the model parameter needs to be predefined prior

to a simulation according to similar experimental data. The highlight of the present work is

the incorporation of a dynamic formalism in the renowned algebraic FSD expression of Boger

et al. [45] to automatically adjust the model coefficient (the sub-grid wrinkling factor Ξ) in the

simulation. After a thorough review of various aspects of the dynamic combustion modelling in

the literature, the model of Wang et al. [47] has been adapted and implemented in the present

work. It is expected that the flame initiation in LES may affect the early and overall flame

propagation. Thus, various methods for initialising combustion are reviewed. In the context

of the LES-FSD approach, initialising a flame kernel is generally related to the way of giving

the c̃ profile, and the effect will later be discussed in the later chapters. The process of flame

propagation with the presence of obstacles constitutes abundant flow and flame phenomena

ranging from turbulence generation to flow instabilities. Compared to experiments, numerically

studying the process is significant to reveal the underlying physics and to predict the essential

flame characteristics. The present study will provide insights and modelling considerations

into the physical problem.
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Governing Equations and Models

This chapter serves to present the essential mathematical elements of the LES computations

performed in this work. The instantaneous conservation equations of mass, momentum and

scalars for reacting flows are listed first. Section 3.2 provides a brief introduction to LES

filtering, and a complete set of filtered governing equations for the current study is given.

Section 3.3 includes the mathematical description of the combustion model which forms the

core of this work. Finally, the methods for flame initiation investigated in this study are

explained in Section 3.4.

3.1 Conservation equations for reactive flows

The starting point for a computational study is a series of governing equations for the phenomena

under investigation. Reactive flows are governed by a set of balance equations including mass,

momentum, species and energy [55]. Under various assumptions and simplifications, they are

appropriate to be solved numerically.

3.1.1 Conservation of mass and momentum

The conservation of mass in a Cartesian coordinate (xi with i = 1, 2 and 3) can be written

using the index notation as

∂ρ

∂t
+
∂ρui
∂xi

= 0 (3.1)

where ρ is the density, and ui is the velocity in the i-direction. The equations of momentum

are

∂ρui
∂t

+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
2µ

(
Sij −

1

3
δijSkk

)]
+ bi (3.2)
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where ∂p/∂xi is the pressure gradient, and bi is the body force. The Kronecker delta δij = 1 if

i = j, otherwise δij = 0. The strain-rate tensor

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

in Eq. (3.2) relates the stress tensor τij to the velocity gradients for a Newtonian fluid.

3.1.2 Conservation of scalars

To describe a chemically reactive flow requires solving for transport equations of scalars in

addition to those of mass and momentum. For a general scalar φ, the transport equation is of

the form

∂ρφ

∂t
+
∂(ρuiφ)

∂xi
=

∂

∂xi

(
ρD

∂φ

∂xi

)
+ ω̇φ (3.4)

where D is the molecular diffusivity (using Fick’s law), and ω̇φ is the source term.

Primitive variables such as mass fraction Yk or mole fraction Xk have to be solved for

each species k to represent the chemical processes involved in combustion. Directly solving the

scalar transport equations for all the species with an appropriate chemical kinetic mechanism

is not yet applicable in turbulent combustion. The difficulty with the direct method is the

dramatic computational time requirement due to a large number of species and reactions

involved in a detailed fuel chemical mechanism. Stiffness caused by the wide range of chemical

and turbulence time scales could be significant without a substantial mechanism reduction. In

the case of premixed combustion, it is a common practice to solve for only one scalar: the

progress variable c. It can be defined as a normalised quantity, e.g. temperature (T ), product

mass fraction (YP ) or fuel mass fraction (YF ), which increases monotonically from zero in the

unburned gases to unity in the burned gases:

c =
T − Tu
Tb − Tu

, c =
YP − Y u

P

Y b
P − Y u

P

or c = 1− YF
Y u
F

(3.5)

where the super- or sub-scripts u and b represent the unburned and burned status of the gas

mixture, respectively. The transport equation of c can be derived from Eqs. (3.4) and (3.5) as

∂ρc

∂t
+
∂(ρuic)

∂xi
=

∂

∂xi

(
ρD

∂c

∂xi

)
+ ω̇c (3.6)

under the assumption of low Mach number and unity Lewis number.
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Obtaining the temperature field usually requires solving an energy equation. Various forms

may be used in a CFD code considering the primary variable, e.g. total energy, sensible energy,

total enthalpy or temperature. For the present work, an equation using the specific sensible

enthalpy is

∂ρh

∂t
+
∂(ρuih)

∂xi
=
∂p

∂t
+ 2µ

(
Sij −

1

3
δijSkk

)
:
∂ui
∂xj

+
∂

∂xi

(
µ

Pr

∂h

∂xi

)
+ q̇

′′′
(3.7)

The first three terms on the right-hand side are contributions from pressure work, viscous

dissipation and flow dilatation. Surface heat conduction is written with a Prandtl number

Pr, and the last term q̇′′′ is the heat release rate per unit volume representing the enthalpy

generated to the fluid as a result of chemical reaction. Note that the enthalpy h in Eq. (3.7)

is defined with respect to the reference point h(298K) = 0. In addition, temperature and

enthalpy are related by the following polynomial

h = a0 + a1T + a2T
2 (3.8)

where a0, a1 and a2 are mixture dependent constants.

An equation of state is necessary to relate pressure, density and temperature. For an ideal

gas, it is

p =
ρR0T

M
(3.9)

where R0 = 8.314 (J/mol ·K) is the universal gas constant, and M is the molecular weight of

the mixture. For gases, the molecular viscosity also varies significantly with temperature and

is calculated using a linear relation between the two properties.

3.2 Filtered governing equations

The instantaneous Navier-Stokes equations (Eq. (3.2)) are valid for both laminar and turbulent

flows. However, unless a numerical grid is sufficiently fine (i.e. towards DNS), most turbulence

motions cannot be captured for a flow with a moderate Reynolds number. It is known that

the large scales of turbulence generally control the behaviour of a flow, and they tend to be

dependent on the flow and geometry. In contrast, the small turbulent eddies are more universal

and may be modelled with fewer efforts. The idea of LES is to only numerically resolve the

large and flow-controlling turbulent motions, while the effect of the small and unresolved scales
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is modelled.

3.2.1 LES filtering

Spatial filtering is generally used to partition the solution space into resolved and unresolved

scales in LES. The application of a spatial filter G to a field variable φ(x′, t) is defined as

φ(x) =

∫
Ω
G(x− x′; ∆(x))φ(x′, t)dx′ (3.10)

Typical filters used in LES are the box filters and Gaussian filters [142]. Applying an explicitly

defined filter function is also known as ‘explicit’ filtering. In contrast, common LES solvers

realise the filtering procedure implicitly by the applied computational grid and discretisation.

Hence, an ‘implicit’ filter function is not needed nor can be determined [143]. The cut-off width

∆ is generally of the order of the grid size, which is set to

∆ = 2(δxδyδz)1/3 (3.11)

where δx, δy and δz are the grid spacing in x, y and z directions, respectively.

In LES, an instantaneous field variable φ is decomposed into large-scale, resolved part φ

and sub-grid-scale, fluctuating part φ′ as

φ = φ+ φ′ (3.12)

Typically, for problems in which there are large changes in density, it is convenient to use a

Favre filtered (density weighted) form of decomposition,

φ = φ̃+ φ′′ (3.13)

where

φ̃ = ρφ/ρ (3.14)

3.2.2 Filtered mass and momentum equations

The Favre filtered governing equations of mass and momentum are

∂ρ

∂t
+
∂ρũi
∂xi

= 0 (3.15)
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∂ρũi
∂t

+
∂(ρũiũj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[
2µ

(
S̃ij −

1

3
δijS̃kk

)]
+ b̃i −

∂τ sgsij

∂xj
(3.16)

with the filtered rate of strain tensor as

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
(3.17)

The unclosed sub-grid stress tensor τ sgsij arises from the advection term

τ sgsij = ρ(ũiuj − ũiũj) (3.18)

and most of the closure methods for the SGS stress tensor are based on locally resolved velocities.

3.2.2.1 Closure of SGS stress tensor: Smagorinsky model

The Smagorinsky model is a widely-used eddy viscosity model, and it assumes that the

anisotropic part of the SGS stress tensor is proportional to the large-scale strain-rate ten-

sor:

τ sgsij −
1

3
δijτ

sgs
kk = −2µt

(
S̃ij −

1

3
δijS̃kk

)
, (3.19)

In Eq. (3.19), the eddy viscosity µt is a function of the filter size and the strain rate

µt = ρC∆
2
∣∣∣S̃∣∣∣ (3.20)

where
∣∣∣S̃∣∣∣ =

√
2S̃ijS̃ij , and C is a dimensionless coefficient. In the classical model, it is specified

a priori and is often written as the Smagorinsky coefficient Cs =
√
C. The isotropic part of

the SGS stress tensor, τ sgskk , is modelled using the relation [76]

τ sgskk = 2ρCI∆
2
∣∣∣S̃∣∣∣2 (3.21)

with CI of the order 0.01. For incompressible flows, the isotropic part of the SGS stress is

absorbed into the pressure. However, this term may be significant for compressible flows.

A dynamic procedure proposed by Germano et al. [86] uses local instantaneous flow

conditions to calculate the Smagorinsky model coefficient (Cs) dynamically. The dynamic

Smagorinsky (DS) model involves the application of a test filter to the velocity field to extract
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information from the smallest resolved scales which is then used to calculate the coefficient.

The DS model has been predominantly used in the present study, and more details of the

model are provided in Appendix A.

3.2.3 Filtered equation for progress variable

The Favre-filtered equation for the progress variable is written as

∂ρc̃

∂t
+
∂(ρũic̃)

∂xi
+

∂

∂xi
[ρ (ũic− ũic̃)] =

∂

∂xi

(
ρD

∂c

∂xi

)
+ ω̇c (3.22)

The filtered molecular diffusion term can be divided into resolved and unresolved parts as [52]

∂

∂xi

(
ρD

∂c

∂xi

)
=

∂

∂xi

(
ρD

∂c̃

∂xi

)
+

[
∂

∂xi

(
ρD

∂c

∂xi

)
− ∂

∂xi

(
ρD

∂c̃

∂xi

)]
(3.23)

and the unresolved part in Eq. (3.23) is often not explicitly modelled [52], resulting in

∂

∂xi

(
ρD

∂c

∂xi

)
=

∂

∂xi

(
µ

Sc

∂c̃

∂xi

)
(3.24)

using a Schmidt (Sc) number to relate momentum and molecular transports. The sub-grid

scalar flux in Eq. (3.22) arises from the filtered convection term and is typically closed using

the simple gradient approach [26]

ρ (ũic− ũic̃) = − µt
Sct

∂c̃

∂xi
(3.25)

where Sct is a turbulent Schmidt number. Then, the filtered c̃-equation can be expressed as

∂ρc̃

∂t
+
∂(ρũic̃)

∂xi
=

∂

∂xi

[(
µ

Sc
+

µt
Sct

)
∂c̃

∂xi

]
+ ω̇c (3.26)

The final form of Eq. (3.26) will be shown in Section 3.3 to account for the counter-gradient

transport [26, 45] and the filtered reaction rate ω̇c

3.2.4 Filtered energy equation

The filtered enthalpy equation takes the form

∂ρh̃

∂t
+
∂(ρũih̃)

∂xi
+

∂

∂xi

[
ρ
(
ũih− ũih̃

)]
=
∂p

∂t
+ 2µ

(
S̃ij −

1

3
δijS̃kk

)
:
∂ũi
∂xj

+
∂

∂xi

(
µ

Pr

∂h̃

∂xi

)
+ q̇′′′

(3.27)
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where the sub-grid heat flux term is approximated using a gradient model similar to Eq. (3.25)

ρ
(
ũih− ũih̃

)
= − µt

Prt

∂h̃

∂xi
(3.28)

and the filtered heat release term for premixed combustion is expressed as

q̇′′′ = ω̇c(Y
u
F − Y b

F )∆HF (3.29)

where the Y u
F and Y b

F are the mass fraction of the fuel in the unburned and burned gases,

respectively, and ∆HF is the respective heat of combustion of the fuel. The Favre-filtered

equation of state

p =
ρR0T̃

M
(3.30)

is used to obtain the filtered density. In the LES solver, Eqs. (3.16), (3.22) and (3.27) are

solved numerically, and the mass conservation (Eq. (3.15)) is realised by deriving a Poisson’s

equation for the pressure correction, as will be described in Chapter 4.

3.3 The dynamic flame surface density model

While a typical premixed flame front cannot be resolved on an LES computational mesh, the

filtered flame (can be seen as ∇c̃) can be discretised on an appropriate grid. It avoids the

numerical difficulty in computing the sharp jump of temperature or progress variable within one

computational cell. The filtered transport equations of mass and momentum have been shown

in Section 3.2.2, and the modelling effort for combustion lies in the c̃ equation (Eq. (3.22)).

As has been reviewed in Section 2.3, the present work applies a dynamic FSD formalism to

account for the flame wrinkling based on the resolved flame information. Thus, following [47,

81, 82], the c̃ equation is of the form

∂ρc̃

∂t
+

∂

∂xi
(ρũic̃) =

∂

∂xi

(
ρuΞs0

L∆

16
√

6/π

∂c̃

∂xi

)
+ 4ρus

0
L

√
6

π
Ξ
c̃ (1− c̃)

∆
(3.31)

where Ξ is the sub-grid wrinkling factor; s0
L denotes the unstrained laminar burning velocity

and ∆ = nres∆x is the LES combustion filter size. Note that the model implicitly assumes

that ∆ is larger than the mesh size ∆x in order to resolve the filtered progress variable gradient
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by around ∆/∆x grid points. The evaluation of Ξ is based on a fractal-like expression [47]:

Ξ =

(
∆

δc

)β
(3.32)

A dynamic procedure is applied to compute the model parameter β, and the formalism [81,

89] is

β ≈
ln
(〈
|̂∇c̃|

〉
/〈|∇̂̃c|〉)

ln (γ)
(3.33)

where test filtering is denoted by the operator .̂.. at filter size ∆̂, and the 〈...〉 operation

represents the volume averaging. The constant

γ =

√
1 +

(
∆̂/∆

)2
(3.34)

corresponds to the effective filter size, considering the combination of the two filters of widths

∆ and ∆̂. In this study, testing filtering is realised by a spatial three-dimensional Gaussian

filter G(x) of the form [45, 53, 144]

G(x, y, z) =

(
6

π∆̂2

)3/2

exp

[
− 6

∆̂2

(
x2 + y2 + z2

)]
(3.35)

Note that the test-filter size ∆̂ specified in Eq. (3.35) is with respect to the physical coordinates

and is independent of the local mesh size. It needs to be sufficiently large compared to the

resolved flame for the dynamic model to capture the wrinkling of the resolved flame front

(typically ∆̂ ≥ ∆). Volume averaging 〈...〉 in Eq. (3.33) is also performed by using the Gaussian

filter of size ∆m over the computational domain. Finally, the corrections for calculating β close

to the computational boundaries are considered [79]. It is important to note that the use of

Eq. (3.31) includes a modified diffusion term to control the resolved flame thickness (gradient

of c̃). The same treatment has also been applied in the diffusion term of the energy equation

[41] to ensure that thermal and mass transports are consistent.

3.4 Methods for flame kernel initiation

The FSD computed from Eq. (3.31) is theoretically valid only when a fully established flame

front is present, and the flame kernel is sufficiently large (typically compared with ∆) to be

resolved on the LES grid. For the present study, four methods (described below as I1-I4) have
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been investigated for initialising the combustion.

I1: use a flame kernel model to account for the very early stage of the kernel formation and

switch to the main combustion model when the kernel is established

I2: impose a filtered flame kernel larger than the filter width ∆ from the solution of 1-D

laminar flame calculation

I3: impose a kernel of burned gases larger than the filter width ∆ and apply a Gaussian filter

on it

I4: set progress variable c̃ = 0.5 in an ignition region

These methods will be described in the following sections.

3.4.1 I1: Flame kernel model

The flame kernel model is based on the work of Richard et al. [59] and Colin and Truffin [108].

In their studies [59, 108], a coherent flame model for LES is used where Σ is obtained from

a transport equation. Note that the c̃ equation [see 59, Equation 8] is of the similar form as

the present work where the resolved flame thickness is controlled by the diffusion term. The

method starts with defining a sufficiently small amount of burned gases (compared with the

combustion chamber) of the mass mign at the ignition location. Following Colin and Truffin

[108], it is defined with a cylinder of radius 2δ0
L: mign = 4πρud0δ

0
L, where d0 is the estimated

size of the initial spark. Then, this burned gas volume is filtered at scale ∆ using a Gaussian

function and is imposed on the computational domain:

c̃ = c0 exp

[
−|x− xign|2

(0.6∆)2

]
(3.36)

where xign is the location of the ignition point. The constant c0 is evaluated to ensure that

Eq. (3.36) satisfies the integral

∫
Ω
ρbcdV = mign (3.37)

where Ω denotes the computational domain. The initialisation weakly depends on the value

of c0 providing that it is small, meaning that the mass of the initial burned gases is negligible

compared with that in the whole combustion chamber. Assuming that the initial kernel grows

spherically, the volume can be approximated as the total volume occupied by the burned gases:
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Vb =

∫
Ω
cdV (3.38)

Consequently, the corresponding kernel radius and the mean flame area are

rb = [3Vb/(4π)]1/3 and Am = 4πr2
b (3.39)

Taking into account the possible flame front wrinkling by small-scale turbulence, the total

flame area is

At = ΞkerAm (3.40)

where Ξker is a single wrinkling factor at the stage of kernel development. Finally, the local

flame surface density Σker is computed using the Boger et al. [45] algebraic expression:

Σker = ksc̃(1− c̃) (3.41)

The parameter ks should be evaluated so that the total flame surface is distributed spatially

over the computational grid

ks =
At∫

Ω c̃(1− c̃)
(3.42)

The resulting filtered reaction rate during ignition is modified to

ω̇c = ρus
0
LΣker (3.43)

Eq. (3.43) is used until the maximum value of c̃ reaches unity somewhere in the computational

domain, and the kernel radius is not smaller than ∆. This means that a fully resolvable

flame kernel has been established. Thereafter, ω̇c is evaluated with the expression of the main

combustion model in Eq. (3.31).

During the initial flame propagation, the wrinkling factor Ξker is set to unity. Different

from a fully resolved flame front, a rigorous mathematical expression for Ξker would be more

complicated for a very small flame kernel in the SGS range. This treatment has been confirmed

by Colin and Truffin [108] for the relatively low turbulence intensities in an engine environment
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during the kernel formation. Considering the reasonably low initial turbulence level in the

experimental test cases for the present study, Ξker ≈ 1 is expected to be physically valid.

3.4.2 I2: Filtered flame kernel from a 1-D solution

The primary purpose of this approach is to impose a sufficiently large burned flame kernel

at the ignition point of the domain so that there is no need to consider the flame formation

process. Simulation is initiated by imposing a flame kernel of burned gases at the position of

the ignition source. The initial profile of filtered progress variable c̃ across the flame front is

given by filtering the steady solution of one-dimensional propagating laminar flame under the

LES filter scale ∆.

The procedure practically includes a 1-D calculation of laminar flame with detailed chem-

istry, filtering the flame profile according to the LES filter size and imposing a filtered burned

flame kernel on the LES grid. First, a one-dimensional calculation of stoichiometric propane/air

mixture is performed using a detailed chemical reaction mechanism, GRI 3.0 [145] in the spe-

cialised software, FlameMaster [146]. Note that the resulting flame profile from the 1-D

computation is still thinner than the mesh size of LES. Hence, a one-dimensional Gaussian

filter [144] described by Eq. (3.44) is employed to obtain the Favre-filtered progress variable c̃

under specified LES filter size ∆. Finally, a burned kernel with a specified size is superimposed

in the computational domain.

G(x) =

(
6

π∆2

)1/2

exp

(
−6x2

∆2

)
(3.44)

3.4.3 I3: Pre-filtered burned flame kernel approach

In this approach, a burned flame kernel with a unit step function (c̃ = 1 within the burned gas)

is first imposed in the numerical domain. Then, the Gaussian filter expressed by Eq. (3.44) is

applied to the kernel to obtain a filtered profile of c̃. Note that this treatment of burned flame

kernel is very similar to that by filtering the 1-D laminar solution, but it does not require a

prior 1-D computation. The approach aims to investigate the influence of ∇c̃ profile on the

early flame propagation since it is essentially ∇c̃ that drives the reaction rate for the present

combustion model.

3.4.4 I4: Setting a region of “burning” cells

This model sets c̃ = cign in a region where 0 < cign < 1 and computes the kernel growth using

the main FSD model. It is a comparatively crude treatment of ignition compared to the flame
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kernel model considering that the value of cign and the size of the ignition region may decide

the formation of the flame.

3.5 Summary

This chapter details the mathematical models used for the present work. The filtered governing

equations of mass, momentum, progress variable and energy are solved numerically in LES. A

turbulence model is required to close the sub-grid stress term in the momentum equations, and

a combustion model is needed to close the filtered chemical source term in the c̃ equation. The

core of this study is the dynamic FSD model where the sub-grid wrinkling factor is evaluated

dynamically based on the c̃ profile of the resolved flame front. The present work also investigates

the impact of flame kernel initiation with four different approaches. An LES simulation may be

initialised by using an ignition model for the initial kernel growth, or by imposing a sufficiently

large burned kernel so that LES is able to resolve it.
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Numerical Approach

The conservation equations of mass, momentum and scalars (e.g. progress variable) are dis-

cretised and solved numerically on a computational grid. An in-house LES code PUFFIN [66]

written in FORTRAN 90/95 has been used in this work. The code has been applied to study

a range of premixed [76, 135], non-premixed [91, 147] and partially-premixed [148] combus-

tion and also non-reactive [149] flow problems. This chapter provides an overview of various

numerical aspects and solution methodologies implemented in the LES code PUFFIN. One-

dimensional test cases (Section 4.9) have also been conducted in order to verify the capability

of the combustion model in recovering the laminar flame behaviour.

4.1 Discretisation of transport equations

PUFFIN uses finite volume spatial discretisation methodology, on a forward staggered, non-

uniform, Cartesian grid, as shown in Figure 4.1. The conservation equations for momentum

and scalar variables presented in Section 3.1 are all in a similar form and can be represented

by a generic transport equation:

∂ρφ

∂t
= −∂(ρuiφ)

∂xi
+

∂

∂xi

(
Γ
∂φ

∂xi

)
+ Sφ (4.1)

where φ is a generic variable (velocities, specific enthalpy, etc.), Γ is a kinematic diffusion

coefficient and Sφ is a general source term.

Integrating Eq. (4.1) over a volume V bounded by a surface A and using the Divergence

Theorem yields the integral form of the equation:

∂

∂t

∫
V
ρφdV︸ ︷︷ ︸

unsteady

= −
∫
A
ρuiφdAi︸ ︷︷ ︸

advection

+

∫
A

Γ
∂φ

∂xi
dAi︸ ︷︷ ︸

diffusion

+

∫
V
SφdV︸ ︷︷ ︸

source

(4.2)



Discretisation of transport equations 53

Scalar 
cell

v cell

u cell
x

y

Figure 4.1: Staggered grid and node placement in two dimensions. Circles are scalar nodes;
horizontal arrows are nodes of u velocity component and vertical arrows are the nodes of v
velocity component. Examples of u, v and scalar cells are highlighted.

The term on the LHS is the unsteady term, while the terms on the RHS are the advection,

diffusion and sources terms.

Figure 4.2 displays a cell and its neighbours in two dimensions. The subscript P refers to

the cell for which the integrals in Eq. (4.2) are to be computed. East (E), North (N), West

(W ) and South (S) correspond to the locations of cell centres. Lower letters (e.g. e, s, etc.)

represent the centroids of respective cell faces. The notation of a three-dimensional cell would

include Up (U) and Down (D) as cell centres and u and d for the cell faces.

P
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Figure 4.2: A finite volume cell and its neighbours in the xy-plane.
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4.1.1 Unsteady term

The unsteady term is discretised by assuming φ at the node is representative throughout the

cell. Using a central-difference approximation for the time derivative at n+ 1/2 gives

∂

∂t

∫
V
ρφdV ≈ (ρφ)n+1 − (ρφ)n

∆t
∆V (4.3)

where the superscript n is the time level.

4.1.2 Advection term

The advective flux across the cell face e is given by

FA,e = (ρu∆A)eφe = Ceφe (4.4)

where Ce = (ρu∆A)e. Interpolation with a linear profile can be used to evaluate φe at the face

centre:

φe = (1− θ)φP + θφE (4.5)

where the weighting factor for the interpolation is θ = ∆xe/∆xE . ∆xe and ∆xE are the

distances from the node P to the face centroid e and the east neighbour node E, as shown in

Figure 4.2. The evaluation of (ρu)e depends on whether the variable φ is a scalar or velocity

component due to the use of a staggered grid. When φ is a scalar, ue is found directly, but

ρe has to be interpolated using Eq. (4.5). In contrast, when φ is a velocity component, linear

interpolation is required to find ue while ρ is obtained directly.

Summing the advective fluxes across all faces gives a formula for the discrete advection

operator:

∫
A
ρuiφdAi ≈

∑
Cf

[
(1− θf )φP + θfφnb +

∑
SQUICKf

]
(4.6)

where nb is a generic subscript for neighbour cells and f is for a quantity evaluated at a cell

face. The source term SQUICK is to account for the curvature of the field for when the QUICK

scheme is applied.
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4.1.3 Diffusion term

Using the central difference approximation to the gradient, the diffusive flux of φ across a cell

face is given by

FD,e = (Γ∆A)e
φE − φP

∆xE
= De(φE − φP ) (4.7)

where De = (Γ∆A)e/∆xE . The diffusion coefficient at the face centre Γe is calculated by linear

interpolation.

Summing the diffusive fluxes across all the faces gives a formula for the discrete diffusion

operator:

∫
A

Γ
∂φ

∂xi
dAi ≈

∑
Df (φnb − φP ) (4.8)

4.1.4 Source term

Source terms vary for each variable. In the momentum equations (Eq. (3.2)), these include

terms of pressure gradient and the force due to gravity and compressibility. For the enthalpy

equation (Eq. (3.7)), source terms include contributions from pressure work, viscous dissipation

and flow dilatation as well as a chemical source term in the case of reactive flows. The reaction

rate is also a source term in the equation for the reaction progress variable. All source terms are

treated by evaluating the function representing the source term Sφ at the node and multiplying

by the volume of the cell:

∫
V
SφdV ≈ SφP ∆V (4.9)

A general expression is written as

SφP ∆V = SimpφP + Sexp (4.10)

where the “implicit” and “explicit” refer to the manner in which the components of the source

term are integrated in time. The implicit component is integrated using an implicit time-

stepping scheme, while integration of the explicit component uses an explicit scheme.
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4.1.5 Complete discretised equation

The resulting discretised transport equation for a general variable φ is [66]

(ρφ)n+1 − (ρφ)n

∆t
∆V =

{∑
Cf [(1− θf )φP + θfφnb]

}(n−2,n−1,n,n+1)

+
{∑

Df [φnb − φP ]
}(n−1,n,n,n+1)

+ {SimpφP }(n−1,n,n+1) + {Sexp}(n−2,n−1,n,n+1)

(4.11)

where the curly brackets {} with superscripts (n−2, n−1, · · · ) represent a weighted average of

the term evaluated at the listed time levels, which gives an estimate of the term at the (n+1/2)

time level, as discussed in Section 4.2. After collecting coefficients, Eq. (4.11) becomes

An+1
P φn+1

P =
∑
nb

(An+1
nb φn+1

nb ) + Simpφ
n+1
P + Sn+1

exp

+

[∑
nb

(Annbφ
n
nb)−AnPφnP + Simpφ

n
P + Snexp

]

+

[∑
nb

(An−1
nb φn−1

nb )−An−1
P φn−1

P + Simpφ
n−1
P + Sn−1

exp

]

+

[∑
nb

(An−2
nb φn−2

nb )−An−2
P φn−2

P + Sn−2
exp

]
(4.12)

where the coefficients corresponding to the node AP and its neighbours Anb are formed from

the Cf ’s and Df ’s representing advective and diffusive contributions.

4.2 Time advancement

The spatially discretised governing equations need to be advanced in time to obtain solutions

to time-accurate, unsteady simulations. The conservation equation for a scalar φ integrated in

time using the Crank-Nicolson scheme is

(ρφ)n+1 − (ρφ)n

∆t
∆V =− 1

2

[
Hn+1(φn+1) +Hn(φn)

]
+

1

2

[
Ln+1(φn+1) + Ln(φn)

]
+

1

2

[
Sn+1
imp φ

n+1 + Snimpφ
n
]

+
1

2

[
Sn+1
exp (φn+1) + Snexp(φ

n)
]

(4.13)

where H(φ) is the discrete advection operator
∑
Cf [(1−θf )φP +θfφnb] and L(φ) is the discrete

diffusion operator
∑
Df [φnb − φP ].
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Time integration of the momentum equations uses either Crank-Nicolson or the second

and third order hybrid Adams schemes. In the hybrid schemes, advection terms are treated

explicitly using an Adams-Bashforth scheme while diffusion terms are treated implicitly using

Adams-Moulton [66]. As an example, the momentum equations integrated using the Crank-

Nicolson scheme can be expressed as:

ρn+1u∗ − ρnun

∆t
∆V =− 1

2

[
Hn+1(u∗) +Hn(un)

]
+

1

2

[
Ln+1(u∗) + Ln(un)

]
+

1

2

[
Sn+1
imp u

∗ + Snimpu
n
]

+
1

2

[
Sn+1
exp u

∗ + Snexpu
n
]
−Gpn−1/2

(4.14)

Compared with Eq. (4.13), the additional pressure gradient term Gpn−1/2 is evaluated at

n−1/2 time level. The approximate velocities calculated at n+1 time level before the pressure

correction step are denoted with superscripts ∗. The advection terms in the momentum

equations are non-linear and hence require an iterative procedure with the Crank-Nicolson

scheme to retain second order accuracy. It should be noted that for reactive flows where density

and viscosity vary significantly, iteration of the overall solution procedure is necessary to obtain

the correct value of ρn+1 in the unsteady term and µn+1 in the diffusion term.

4.3 Pressure correction method

The pressure correction in PUFFIN is based on a fractional step method for compressible flows.

The algorithm is briefly described in the following paragraph, and a detailed illustration can

be found elsewhere [see 66]. For reactive flows, both the velocity and density fields must be

corrected simultaneously to ensure mass conservation. Since density depends on both pressure

and temperature, an iterative method is required. The mth iteration of the time step from

t = n to t = n + 1 is considered, and the superscript n + 1 is left off for clarity. Any terms

with superscripts m, m− 1 or ∗ refer to steps in the iterations towards the solution at n+ 1.

First, the equations for the progress variable and the enthalpy are solved giving the tem-

perature field for the mth iteration Tm. An approximate density field ρ∗ for the mth iteration

is then found using the equation of state with the temperature Tm and the pressure from the

previous iteration Pm−1:

ρ∗ =
RTm

pm−1
(4.15)
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where R is the specific gas constant. The momentum equations are integrated using ρ∗ and

pm−1 to find an approximate solution u∗i :

(ρ∗u∗i )
n+1 − (ρui)

n

∆t
= Υ(u∗i , u

∗
i )−

1

2

[
∂pn

∂xi
+
∂pm−1

∂xi

]
(4.16)

where Υ is an operator representing the remaining terms in the momentum equation. An

equation for the pressure correction can be derived as [66]

1

RTm
p′

∆t
− ∆t

2

∂2p′

∂x2
i

= −
[
ρ∗ − ρn

∆t
+
∂(ρ∗u∗i )

∂xi

]
(4.17)

where the pressure correction is defined as p′ = pm − pm−1. Once p′ is found, it is used to

correct pressure, velocity and density:

pm = pm−1 + p′ (4.18a)

ρm = ρ∗ +
p′

RTm
(4.18b)

u∗i =
1

ρ∗

[
ρmumi +

∆t

2

∂p′

∂xi

]
(4.18c)

The pressure correction equation (Eq. (4.17)) is discretised in space in a similar manner to the

transport equations for other variables. Integrating Eq. (4.17) yields

1

RTm
p′

∆t
∆V − ∆t

2

∑(
∂p′

∂xi
∆A

)
f

= −
[
ρ∗ − ρn

∆t
∆V +

∑
(ρ∗u∗i∆A)f

]
(4.19)

Second-order central differences are used to calculate the gradients ∂p′/∂xi. It is important to

use the same discretisation for the pressure gradient in the momentum and pressure correction

equations. This minimises the projection error and ensures convergence if an iterative scheme

is used.

4.4 Solution of algebraic equations

The system of algebraic equations, obtained through numerical discretisation, is generally solved

using linear equation solvers. PUFFIN has two solvers, namely Alternating-Direction-Implicit

(ADI) solver and Bi-Conjugate Gradient Stabilized (BiCGStab) solver with a Modified Strongly

Implicit (MSI) pre-conditioner. The present study has been carried out using BiCGStab to

solve the momentum, scalar and pressure correction equations, which is more efficient and

requires ten-times less number of iterations to achieve the same level of convergence by ADI
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[66].

4.5 Boundary conditions

Boundary conditions give additional constraints to the partial differential equations. These

may include solid, inflow and outflow boundaries. In the present investigation, the problem

considered is the propagation of turbulent premixed flames, evolved from stagnant condition in

a chamber with multiple solid obstacles. Outflow boundary conditions are imposed outside the

chamber, while solid boundaries are used to represent walls and obstacles along the borders

and within the domain (e.g. the rectangular obstruction in the experimental test cases for

the present study). The details of these boundary conditions are described in the following

sections.

4.5.1 Solid boundaries

At solid wall boundaries, the normal and tangential velocity components are set to zero, corre-

sponding to the impermeable and the no-slip conditions at the wall. For turbulent boundary

layers in which it is not possible to resolve the viscous sub-layer, a wall function is used in

order to apply the correct shear force to the fluid. The power-law wall function of Werner and

Wengle [150] is used in this work.

4.5.2 Outflow boundaries

The outflow boundary conditions generally use a zero normal gradient

∂φ

∂n
= 0 (4.20)

or a convective outlet boundary condition

∂φ

∂t
+ Ub

∂φ

∂n
= 0 (4.21)

where Ub is the bulk velocity across the boundary. It is very important in the case of compressible

flows that the pressure wave generated within the chamber must be allowed to leave smoothly

without reflection. Since the pressure field is dependent on the velocity field, the boundary

conditions applied for the velocity will determine the pressure wave behaviour. Boundary

conditions of Eqs. (4.20) and (4.21) work well when the dominant force on the fluid flow is due

to advection and diffusion. However, in the present case (Chapter 5), due to the compressible

nature of the propagating flame, the dominant force is the pressure gradient resulting from
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pressure waves radiating from the chamber. Consequently, both of the boundary conditions

would result in significant pressure reflections. Hence, to overcome this problem, Kirkpatrick

[66] developed a new non-reflecting boundary condition for velocity, analogous to commonly

used convective boundary conditions in incompressible LES

vi =

(
vi−1 −

∆xi
a

∂vi−1

∂t

)
R3
i−1

R3
i

(4.22)

where vi is the velocity on the boundary, vi−1 is the velocity in the adjacent cell within the

domain, ∆xi is the distance between the two nodes, Ri and Ri−1 are the distances from the

two nodes to the centre of the open end of the chamber and a is the speed of sound, which

is the “convective” velocity. The numerical domain has to be extended sufficiently from the

outlet of the cavity to ensure that this boundary condition is accurate.

4.6 Solution procedure

The overall solution procedure for each time step follows similar to that of Kirkpatrick [66] for

compressible flows. The following steps are performed in a timing loop

Step 1: Solve scalar transport equations (e.g. Eq. (4.13)) including the progress variable and

enthalpy.

Step 2: Compute fluid properties such as temperature, molecular viscosity and density based

on provided thermodynamic relations.

Step 3: Solve momentum equations for the velocity components (e.g. Eq. (4.14)).

Step 4: Solve the pressure correction equation (Eq. (4.17)).

Step 5: Correct pressure, velocity and density fields (Eq. (4.18)).

Step 6: Check mass conservation error and repeat steps 4 and 5 as required.

Step 7: Calculate eddy viscosity µt.

Step 8: Compute other terms such as the pressure gradient (∂p/∂t) and Skk (Eq. (3.19)).

Typically, about eight outer iterations of this procedure are required to obtain satisfactory

convergence at each time step. For the present test cases of strong transient nature, the time

step is varied to ensure that the Courant number, CFL = ui∆t/∆xi remains less than 0.5.
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4.7 Implementation of the DFSD model

The implementation of the dynamic FSD model described in Section 3.3 uses Eqs. (3.31)

to (3.33). To illustrate the motivation of flame filtering approach, Figure 4.3 gives an example

of a 1-D Gaussian-filtered (Eq. (3.44)) progress variable of unit step function representing a

1-D flame. It is apparent that more grid points are present in the c gradient when the filter

width increases. Similar to the turbulence modelling, the present flame filtering is implicit

considering the filter width ∆ as a function of the grid size in Eq. (3.31), so that no explicit

filtering is needed.
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Figure 4.3: Effect of a spatial Gaussian filter (Eq. (3.35)) having a size ∆ larger than the
mesh size ∆x.

The expression for the model parameter β (Eq. (3.33)) requires the determination of test-

filtered gradient of the resolved progress variable 〈|̂∇c̃|〉. Note that in practice β may be

a local (evolving in space and time) or global (a single value for the entire flow field, only

evolving with time) parameter [53, 82]. When the volume-averaging operation 〈...〉 is the

overall computational domain, it corresponds to a global parameter, while a small volume

refers to a local parameter β [82]. However, the global formalism is designed for reducing the

computational cost for homogeneous flows and is not considered suitable for the present highly

unsteady cases.

A Gaussian filter (Eq. (3.35)) is used for the test-filtering operation. It is different from the

usual three- or five-point discrete filters [151, 152] as the test-filter for the DFSD model should

be large enough to contain the wrinkling of the filtered flame [53]. Unlike in unstructured

mesh where calculating the gradient ∇c̃, range searching for the filter domain [153] and storing

the Gaussian weights may be a significant computational overhead [53, 95], the present imple-
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mentation in the structured code is much more straightforward. Practically, the test-filtering

operation has been constructed by using a combination of three 1-D Gaussian filters in the x, y

and z directions, respectively, and each direction is filtered independently [152]. The simplicity

also lies in the computation of the discrete Gaussian-filter weights, which would need to be

pre-stored in a 1-D table for an unstructured solver [53, 95]. The test-filtered quantities are

obtained based on the definition of a convolution filter over the computational domain Ω as

̂̃
φ(x) =

∫
Ω
G(x− x′)φ̃(x′)dx′ (4.23)

The filtered field at the ith grid point is obtained by applying a discrete (2M+1)-point filter

to the variable φ as

̂̃
φi =

M∑
l=−M

glφ̃i+l (4.24)

where the filter coefficients gl are the Gaussian weights taking into account the grid spacing,

and by definition, they satisfy

M∑
l=−M

gl = 1 (4.25)

Wall

Flow domain

�Δ

Figure 4.4: Test filter near the computational boundary.

For a structured CFD solver, the number of points M within half of the Gaussian filter
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(∆̂) is specified by the 1-D filter function. Note that the filtering operation (Eq. (4.24) is

performed sequentially in the x, y and z-direction of the domain of the combustion chamber.

Test-filtering near solid boundaries requires special treatments since the Gaussian function

would be spatially incomplete. It typically occurs when the distance between the point to be

filtered and the boundary is smaller than the test filter size, as shown in Figure 4.4. In such a

case, the test-filtering domain is extended to at least the size of ∆̃ to ensure that the Gaussian

filtering (Eq. (4.25)) is complete. Another necessary treatment is to replace |∇̂̃c| by |∇̂c̃| near

the boundary to avoid the non-realistic values of β [79]. Finally, the wrinkling parameter β is

calculated within the effective flame region (defined here as 0.02 < c̃ < 0.98).

PW E

LES grid filter Combustion filter
Combustion test filterLES test filter

Figure 4.5: Filters for momentum equation and combustion.

Figure 4.5 illustrates the size of the filters involved implicitly or explicitly in the LES solver.

The present LES grid filter ∆ = 2∆x specifying the cut-off width for the turbulence modelling.

An LES test filter would be present if the dynamic Smagorinsky model was applied, and the

size is set to twice the grid filter [66]. Regarding combustion, the filtered flame is implicitly

defined by the filter width ∆, typically larger than four times the grid size. The dynamic FSD

model applies a Gaussian test filter ∆̂ of at least the size of ∆. In addition, the volume average

also uses a Gaussian filter of the size 1.5∆̂ ≥ ∆m ≤ 3∆̂.
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4.8 Implementation of the flame kernel model

Implementing the flame kernel model (i.e. method I1 in Section 3.4.1) is straightforward,

and the mesh size around the ignition point has been found to have a minimal effect on the

resulting c̃ profile. Note that the DFSD model is not applied when the flame kernel model

is in control, as the flame front is not established or resolvable at this stage. It means that

the sub-grid wrinkling of the flame font is only computed when the kernel is sufficiently large.

For simulations starting with burned flame kernels, the dynamic FSD model would initially

predict a low wrinkling in some regions of the laminar flame front, and this is typical for small

spherical laminar flame kernels [79].

4.9 1-D planar flame tests

The aim of this section is to discuss the performance of the implemented combustion model

in simple cases corresponding to laminar flame propagation. The significance of these tests is

reflected in the fact that in almost all the practical deflagration processes the flame starts as a

laminar flame and transits to turbulent depending on the flow conditions. It is thus necessary

to validate the model in the absence of turbulence to ensure: (i) β = 0 (Eq. (3.33)) or Ξ = 1

(Eq. (3.32)) for a planar laminar flame [47], and (ii) the laminar flame speed is recovered, and

the numerical flame thickness is controlled.

The test corresponds to a one-dimensional, plane, laminar premixed flame, subject to no

sub-grid scale turbulence or flame wrinkling. Since the present combustion model requires the

unstrained laminar burning velocity s0
L as an input, it is essential to reproduce this speed in a

simulation when turbulence vanishes. This 1-D analysis serves to provide a clear interpretation

of the model behaviours.

4.9.1 Theoretical analysis

The test case considered here is a tunnel-shape configuration as illustrated in Figure 4.6

[48]. In this configuration, the gas velocities in the unburned and burned gases are uu and

ub, respectively. The flame is initiated near the open side of the tunnel, and it travels into

quiescent gas towards the closed end. The apparent flame propagation velocity, denoted by up,

represents the speed at which the flame propagates relative to the walls, and it will be used

as the diagnostic to interpret the numerical results. Based on the definition of s0
L, up can be
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𝑢𝑢𝑝𝑝 = 𝑠𝑠𝐿𝐿0

Unburned 
mixtureBurned gases

𝑢𝑢𝑏𝑏 < 0 𝑢𝑢𝑢𝑢 = 0

Flame front

𝜌𝜌𝑏𝑏 𝜌𝜌𝑢𝑢

z

Figure 4.6: Tunnel configuration where a flame travels in the positive z-direction towards the
closed end of the domain.

expressed as

up = s0
L − uu (4.26)

Given that uu = 0 because of the wall at the closed end, up = s0
L when the flame is not too

close to the end wall. It is worth mentioning that if the flame travels towards the open end,

the apparent velocity will increase due to the thermal expansion such that uu < 0. Note that

from the continuity at the flame front

ρus
0
L = ρb(up − ub) (4.27)

Eq. (4.27) may be rewritten to obtain ub as

ub = s0
L

(
1− ρu

ρb

)
or ub = s0

L

(
1− Tb

Tu

)
(4.28)

where the relation of ideal gases is used.

4.9.2 Numerical consideration

A schematic of the computational domain for the test case is shown in Figure 4.7, where the

flame travels in the positive z-direction. Note that 1-D simulations may be performed using a

separate code solving for 1-D equations, with the assumption that the momentum equations

reduce to a 1-D Euler equation without pressure gradient [62]. Realising that the in-house

code PUFFIN is not able to solve for 1-D governing equations, pseudo 1-D simulations have
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been performed where only 2 cells (limited by the discretisation) are placed in the x- and

y-directions. This corresponds to a uniform cubic mesh of size ∆x = 0.5 mm, similar to that

used in the 3-D turbulent simulations. The results confirmed that the flame and flow structures

have negligible y and z variations, while the configuration is still treated as three dimensional.

Since numerics are expected to play a minimal role in this case, the 1-D analysis may serve to

obtain the desired laminar burning velocity and adiabatic flame temperature prior to the 3-D

turbulent cases. Constant pressure at atmosphere is given at the open end of the chamber, and

all the solid boundaries are treated as slipped walls to avoid shear forces on the flame front.

Initially, the flame may be initiated by setting c̃ in a few layers of cells at the open end, and

the influence of flame initiation will be discussed.

Atmospheric 
pressure

Slip walls

Plane flame

x

y
z

Figure 4.7: Schematic of computational domain and boundary conditions for the 1-D laminar
deflagration.

In the simulation, the propagation velocity up can be related to the burned volume Vb as

up =
dVb
dt

1

A
(4.29)

where A is the cross-section area of the domain. The volume occupied by the burned gas may

be obtained from the simulation according to

Vb(t) =

∫
Ω
c(t)dV (4.30)
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where the spatial integration of the progress variable is performed over the computational

domain of volume Ω.

A series of runs have been conducted to investigate the trends of up as well as the filtered

flame thickness against the filter width ∆. In the simulation, s0
L = 40 cm/s is specified in the

FSD model, which is a typical burning velocity for a stoichiometric propane/air mixture. The

calculated up can be compared against the exact s0
L to discuss the model performance.

4.9.3 Results

Figure 4.8 displays the computed flame speed up and the filtered flame thickness with a range

of filter widths ∆ = nres∆x where 2 ≤ nres ≤ 15. The flame speed is overestimated by ∼ 40%

when ∆ = 2∆x, but the error reduces with the increase in ∆ as the computed flame speed

(up) approaches to the pre-specified exact value s0
L. Another observation is that when ∆ is

small, the estimated up tends to fluctuate with time, meaning that the numerical solution is

less stable. The present code requires a filter width of ∆ ≥ 5∆x for the error between up and

s0
L to be less than 10%, which agrees with the literature using similar models [59, 78, 99, 154].
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Figure 4.8: Effect of filter width. Left : comparison of calculated and exact flame speeds.
Right : flame thickness.

The instantaneous c̃ profiles across the flame front are displayed in Figure 4.8 at the

same instant of time. The spatial deviation of c̃ with ∆ = 2∆x is due to the largely over-

predicted flame speed. As the computed wrinkling factor is unity in all the cases considered

here, Figure 4.8 essentially illustrates the effect of numerical flame resolution. When the

flame filter size is small (nres < 4) so that the c̃-gradient is numerically stiff, there will be a

tendency to develop numerical oscillations and the inaccuracy of flame propagation speeds.

While a too thick filtered flame may induce a change in its interaction with turbulence, these

results emphasise the importance of ensuring a well-resolved flame front in a simulation so
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Figure 4.9: Instantaneous flame contoured by the progress variable.

that the flame behaviours are controlled by the combustion model instead of other numerics.

Figure 4.9 shows the direct consequence of the filter-to-grid ratio as the numerical flame tends

to be smeared. It is found out that the effective c̃-gradient developing at the flame location

is approximately resolved by nres grid points, indicating the control of flame thickness by the

model.

Figure 4.10 presents the influence of the flame initiation and mesh resolution on the

predicted laminar flame propagation speed. The initial plane flame has been initialised by

imposing various c̃ profiles in the first 8 cells at the open end of the domain, denoted by c̃0.

As shown in Figure 4.10, there is no observable difference in the predicted flame speed after a

short early transient. On the other hand, the grid size has an impact on the flame speed at the

same filter to grid ratio. Figure 4.10 shows that the computed speed increases by about 4%

when the grid size doubles. Figure 4.11 presents the temperature variation across the flame

using various filter width, and it is clear that the burned gas temperature approaches to the

adiabatic flame temperature (Tad ≈ 2250 K for a stoichiometric propane/air mixture) as the

∆/∆x increases.

It should be noted that the heat of combustion ∆HF in the code is specified by the user to

obtain the desired burned gas temperature. This is primarily due to the fact that the specific

heats may not be realistic for the composition in the burned mixture. The same treatment has

also been found in an earlier version of the open-source code FDS [154]. The discussions made in

the 1-D analysis provided insights into the behaviours of the combustion model, especially the

significance of the flame resolution controlled by ∆. On the other hand, both unity wrinkling

factor (not shown here) and correct laminar flame propagation are proved to be recovered using
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Figure 4.10: Left : influence of the flame initialisation; c̃0 is the initial c̃ profile in the first
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Figure 4.11: Computed temperature profiles using different filter width.

the present dynamic FSD formalism when turbulence effects vanish.

4.10 Summary

This chapter presents various aspects of the numerical techniques adopted for the present

study. The simulations performed in this work use the structured LES solver PUFFIN [66],

and the discretisation of equations and other numerical treatments are included in the chapter.

Implementation of the DFSD model in PUFFIN requires considering the size of the flame

test filter, especially at the solid boundaries. Methods of flame initiation in the context of

FSD are described and will be investigated in Chapter 6. The code with the implemented

models is first tested in a 1-D laminar configuration, and the analysis serves to illustrate the

behaviours of the combustion model. It is verified that the current model is able to reproduce

the correct laminar flame speed and unity wrinkling factor with the absence of turbulence, and



Summary 70

this is considered important in describing the early quasi-laminar stage of a typical deflagration.

The consequence of the filter to grid ratio for the flame is highlighted, and a sufficient flame

resolution is required for the numerical accuracy.



Chapter 5

Test Cases and Numerical Setup

This chapter describes the experimental test cases considered for the present study. The

combustion research group at the University of Sydney performed experiments [126, 127, 155,

156] to investigate the critical issue of transient premixed flame propagation and the influence

of turbulence and solid obstacles on the burning rate. These experiments are used in the

present numerical study. The highlight of the combustion chamber is the ability to produce

various turbulence environment using obstructions. Section 5.1 gives the specifications of

the combustion chamber, flow configurations based on the obstacle arrangements, and some

issues and uncertainties involved in the experiments. A brief introduction and some technical

details of the various measuring techniques and laser ignition system are provided. Section 5.2

provides an example of the averaging of the experimental pressure signals for the validation of

the numerical results. The computational domain and settings of simulations are illustrated

in Section 5.3.

5.1 Experimental considerations

An important factor influencing the design of the experimental rig is that it should be readily

applicable to numerical simulations. It requires appropriately defined initial and boundary

conditions, less complex geometry and appropriate physical size for LES [65]. In the earlier

studies of Ibrahim et al. [121] and Masri et al. [157], a sizeable experimental chamber

with a volume of about 20 litres was used to study premixed flames propagating past one

turbulence generator and a solid obstacle. This configuration posed two main issues: (i) the

turbulence generated was not sufficiently high; (ii) LES conducted for the experiments were

time-consuming.

Taking into account the suitability for both the model validation for CFD and the desired
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optical accessibility, the experimental rig was developed by Kent et al. [158] with a volume of

only 0.625 litres. Compared with the earlier chambers [121, 157], this alternative design allows

for

(i) the use of multiple turbulence-generating grids without running the risk of deflagration

to detonation transition.

(ii) broad optical access.

(iii) improved control including laser ignition (compared to spark ignition) and hinged flap

(compared to plastic film) for sealing the vent.

(iv) a substantial reduction in the computational time for sensible LES.

It is important to note that the physical size of the problem is by no means a limitation on

applying reliable LES in real-world scenarios. However, the present LES study aims to resolve

sufficient length scales at an affordable cost in these test cases. Kent et al. [158] studied the

flame wrinkling scale by measuring the length and the linear distance between two points on

a contorted flame front from the OH images. Hall et al. [126] performed experiments using

the vessel to investigate the effects of position and frequency of obstacles. The latest version

of the combustion chamber has been reported by Alharbi et al. [127] including the tests of

hydrogen and two other hydrocarbon fuels, and its reconfigurable capability to generate a

range of configurations facilitates the validation of the present computational setup.

5.1.1 Combustion chamber specification

The combustion chamber is a Perspex square prism, with internal dimensions of width W =

50 mm and length L = 250 mm, which gives an overall volume of 0.625 L and a ratio L/W = 5.

The external prism is constructed from 20 mm thick Perspex walls, encapsulating the inner

combustion chamber. The chamber can accommodate three removable baffle plates (also

referred to as grids or obstacles in the rest of the thesis) with a schematic shown in Figure 5.1b.

Each baffle consists of five 4-mm wide and 3-mm thick strips evenly separated by six 5-mm

gaps, producing an area blockage ratio (ABR) of 40% in the flow direction. A single baffle

also creates a volume blockage ratio (VBR), i.e. the ratio of blocked volume to the total

volume of the chamber, of 0.48%. These may be located at any of the three locations: 19 mm

(B1), 49 mm (B2) and 79 mm (B3) from the base. A further solid obstruction with a square

cross-section can be placed such that its lower surface is 96 mm away from the base plate.
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Two solid obstacles may be used, a small one with a cross-section of 12 × 12 mm or a large

one with a size of 25× 25 mm. They create ABRs of 24% and 50% (VBRs of 1.152% and 5%),

respectively.
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Figure 5.1: Specifications of the explosion chamber used in the experiment [156] (not to scale,
dimensions are in mm).

5.1.2 Experimental procedures

Experiments are conducted with three different fuels, hydrogen, compressed natural gas, CNG,

liquefied petroleum gas, LPG (95% C3H8, 4% C4H10 and 1% C5 + hydrocarbons by vol.),

each with two equivalence ratios Φ. For CNG and LPG, Φ = 0.8 and 1.0 are examined while

only lean hydrogen-air mixtures of Φ = 0.7 and 0.8 are used. This is due to the excessive

overpressure generated by stoichiometric mixtures of hydrogen, potentially exceeding the 100
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kPa of pressure transducers.

In the experiment, the fuel-air mixture enters the atmospheric pressure chamber through

a non-return valve, and it is allowed to rest before each ignition event. The stagnant fuel-air

mixture is then ignited by focusing the infrared output from an Nd:YAG laser 2 mm above the

base, and it sets the time zero for each experimental run. Simultaneously, the laser imaging

system is trigged to start collecting images. The hinged flap at the chamber exit rises 1 second

before ignition to allow venting throughout the explosion.

5.1.2.1 Pressure measurement

Pressure is recorded at 25 kHz using two Keller type PR21-SR piezo-electric pressure trans-

ducers. One of them located diagonally on the base plate, with 10 mm distance from two

adjacent walls, and the other one was mounted in the wall just downstream from the main

obstacle (186 mm from the base, equidistant from two walls).

5.1.2.2 High-speed imaging of the flame front

The chamber is constructed with a rectangular viewing window and extended optical access

area to all of the baffles and square obstacle positions. Therefore, High-speed imaging of laser-

induced fluorescence from OH (LIF-OH) is able to include the propagation of the flame over

all of the obstructions. Flame structure and position are captured as spatially resolved images

of chemical species concentrations by laser-induced fluorescence (LIF). It excites chemical

species by absorbing photons, making them emit light that can be monitored. Heat release in

a combustion process produces H atoms, and they are reacting with oxygen subsequently to

produce more OH radicals. Evidently, OH is a major species and is only created within the

thin reaction zone. Therefore, images of OH species are collected as a sensible indication of

the flame front.

High-speed imaging of LIF-OH with a repetition rate of 5 kHz is performed providing an

excellent representation of the evolution of the reaction zones. As reported by Al-Harbi [156],

a full experimental cycle takes 35 s for LPG, 30 s for CNG and 25 s for hydrogen.

This well-devised experiment setup is of specific interest for modelling hydrogen explosion

using LES. Experimentally, the compact size of this combustion chamber makes accurate

measurement and repeated experimental runs more feasible. In addition, as LES for combustion

is often grid-dependent to an extent, modelling the small-scale chamber makes it affordable

to resolve a range of flow length scales in order to reveal the underlying physics of vented

deflagration. Using obstacles with rectangular cross-sections is not only physically efficient in
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generating turbulence but also simplifies the mesh generation for LES. Finally, a variety of

possible obstacle arrangements provides a wide range of excellent test cases for the validation

of the dynamic combustion model.

5.1.3 Flow configurations

Various combinations of obstacles in the test chamber make it possible to conduct a detailed

study of the effects of obstacles on vented deflagration. Figure 5.2 displays 11 configurations

using different permutations of baffles and obstacles investigated numerically for the present

study, while a total of 18 configurations were tested in the experiments for each of the three fuels

(LPG, CNG, and H2) [156]. A code is used to identify each configuration in order to specify

the obstruction locations and size of the solid obstacle. For example, 0B0S stands for the case

where one baffle plate is at B2 and the small central obstacle (S) are placed downstream of the

ignition point, and BBBL represents the configuration where three baffle plates B1, B2 and

B3, as well as the large central obstacle (L), are positioned in the same order away from the

chamber bottom.

The chamber height and configurations were specified so that the combustion process

started as a slow laminar deflagration and transformed to a fast turbulent deflagration mainly

by the turbulence generation by obstacles. It should be noted that the flame acceleration

would not trigger detonation (i.e. DDT) even for hydrogen under the experimental conditions.

Thus, it has been ensured that the current mathematical models and numerical framework are

sufficient to describe the whole deflagration.

5.1.4 Other considerations

Since the experiment is highly transient, optimal initial conditions have been determined to

reduce sources that could affect the repeatability of the runs [155]. Each experiment starts

with filling fuel-air mixture while the venting flap at the chamber exit is closed, which is 10 s

for all the fuels. The filling time has been carefully monitored to make sure the chamber is

filled with enough mixture. Then, the mixture needs to settle throughout the chamber in order

to be ignited from rest. The settlement needs to be throughout the chamber to ensure that

the mixture is ignited from rest. After the settling period (15 s for LPG, 10 s for CNG and

5 s for hydrogen), the flap opens and lasts for one second. Right after that, the flammable

mixture is ignited by the Nd:YAG laser, and the time between the flap opening and ignition

was examined and monitored. At the end of each experiment, the chamber is given time to

expel the exhaust gases after the run and before refilling takes place. The exhaust fan may
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(a) 000S (b) B00S (c) 0B0S (d) 00BS

(e) BB0S (f) B0BS (g) 0BBS (h) BBBS

(i) 000L (j) BBBL (k) BBB0

Figure 5.2: A list of configurations studied in this thesis with a code indicating if a baffle is
present (B) or not (0) and whether a small (S) or a large (L) central obstacle is used [127].
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affect the chamber pressure due to its closeness to the open side of the chamber. Thus, the fan

speed and the distance between the exhaust and the chamber open end have been optimised.

Another factor to consider is that the temperature of the ignition mixture is influenced by

that of the chamber which stores a certain amount of heat. During the two-hour test, the initial

temperature prior to each ignition event increases, while the maximum chamber temperature

only changes slightly. To reduce the effect of this error on overpressure and the time taken

to reach peak pressure, the chamber is preheated for thirty minutes before the experiment

starts. In the earlier experimental work [126], the top venting flap rises to about 45◦ from the

chamber lid. Al-Harbi [156] concerned that the flap position could obstruct the gas venting,

and a small effect on the pressure record has been found using different opening angles. Thus,

a modification was made to fully open the flap, i.e. 90◦.

The pressure data collected is subject to variations caused by variability in mixture compo-

sition, the power of the laser igniter, pressure transducer voltage, high-speed imaging signals,

system vibration, etc. The experiment was repeated at least 30 times for each configuration,

resulting in multiple pressure-time traces from the pressure transducer. It was considered

sufficient to obtain a reliable and representative value for the mean peak pressure, its rate of

change, and the time taken to reach the peak.

5.2 Averaging of pressure signals

The pressure inside the chamber is a primary parameter to investigate in both the combustion

experiment and numerical simulation. Since a particular interest of using the experimental

data is to obtain the maximum overpressure and the time taken to reach it, the raw pressure

signals have been appropriately averaged for the purpose of model validation.

Figure 5.3 illustrates the averaging process of the raw experimental pressure signals, with

an example of the configuration B0BS using a lean H2/air mixture at Φ = 0.7. Note that the

mean overpressure for each case presented in this thesis is averaged from at least 30 individual

experimental realisations. A representative average of the experimental data is required for

the verification of the developed computational model. Even though uncertainties exist in the

experimental process including the ignition energy, the opening of the venting flap, system

vibration, etc. [156], the repeatability is very high, and the pressure trends in each experiment

are very similar [156]. It can be seen from Figure 5.3 that generally the internal pressure

maintains a low value in the early stages of the explosion and almost monotonically increases

up to its peak from t ≈ 4 ms. Therefore, the averaging procedure is performed after shifting
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all the pressure traces in time to match the maximum overpressure of each one. The range

of the overpressure magnitude and the time taken to reach the peak pressure (tp,exp) are also

shown in the processed data to facilitate the comparison with the numerical results.

0 2 4 6
Time (ms)

400

0

400

800

1200

O
ve

rp
re

ss
ur

e 
(m

ba
r)

B0BS

Individual runs

0 2 4 6
Time (ms)

400

0

400

800

1200

O
ve

rp
re

ss
ur

e 
(m

ba
r)

B0BS

tp, expExp mean

Figure 5.3: Processing of the overpressure data at the chamber base from the experiments for
configuration B0BS (H2, Φ = 0.7). Left : original pressure signals. Right : averaged pressure
data. Statistical envelope (grey background). The range of time taken to the peak overpressure
in the experiment (tp,exp with ).

5.3 Computational setup

Numerical simulations of the test cases have been conducted using the in-house code PUFFIN

[66]. The spatial discretisation of the momentum equations applies QUICK for the advection

terms and second-order central differences for the others. Second-order central differences are

also used for the pressure correction equation. Conservation equations for scalars use second-

order central difference scheme for diffusion terms. SHARP [159] is applied for advection terms

of the scalar equations to avoid problems associated with oscillations in the solution. The

equations are advanced in time using a fractional step method. A Crank-Nicolson scheme is

used for the time advancing of momentum and scalar equations. Mass conservation is enforced

using an iterative projection method for compressible flow in which pressure, velocity and

density fields are corrected simultaneously. Sub-grid-scale turbulence is typically modelled

using the dynamic Smagorinsky eddy viscosity model [86].

The computational domain includes the venting combustion chamber and the surrounding

atmosphere. Figure 5.4 shows a schematic of the generated mesh along the midplane of the

chamber for the configuration BBBS. The domain of the explosion chamber has dimensions of

50× 50× 250 mm, and the size of the whole computational domain is 325× 325× 500 mm. A

typical numerical grid has 120× 120× 476 cells in the x, y and z directions, respectively, with

85 × 85 × 423 cells within the chamber. The cells are distributed uniformly in the chamber,
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Figure 5.4: Vertical section through the computational domain and grid in the yz-plane for
configuration BBBS.

giving a grid size of ∆x ≈ 0.59 mm. The mesh size is chosen to ensure that the filtered

flame thickness (≈ ∆) is smaller than the gaps between the strips of the baffle plates. While

applying uniform mesh within the chamber is not necessarily a rule of thumb, it is preferred

here considering: (i) same local filter and test-filter width; (ii) capture turbulent motions at

the same resolution within the chamber. The grid is expanded with an expansion ratio (in

the z-direction) of rz ≈ 1.07 from the chamber towards the far-field boundaries to save the

computational time. The dynamic procedure for turbulence is not used in the external domain

to eliminate the possible commutation errors in this region.

Within the chamber, adiabatic and no-slip boundary conditions are employed on the solid

walls of the chamber, and the 1/7th power law wall function of Werner and Wengle [150] is

used to calculate the shear stress at the solid wall. Due to the excessive axial inertial force

generated from the flame propagation, solutions are insensitive to the wall-function models [66].

Non-reflecting boundary conditions [76] are applied to the boundaries of the far fields. From

the preliminary investigation, they should be applied with a sufficiently large (in the axial

direction) external plenum to minimise the effect of reflected pressure waves on the internal

pressure field of the chamber.

Initial conditions have energy and reaction progress variable set to zero everywhere and the
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fuel mass fraction stoichiometric in accordance with the experiment. The initial velocity field

is quiescent, with a random perturbation to allow the development of turbulence. Simulation

is typically initiated by imposing a filtered burned flame kernel at the ignition point of the

chamber.

The discretised equations are solved using a Bi-Conjugate Gradient solver with an MSI pre-

conditioner. The time step is limited to ensure the Courant–Friedrichs–Lewy (CFL) condition

such that CFL < 0.51 with the extra limitation that ∆t < 0.1 ms. The solution for each time

step requires around eight iterations to converge, with residuals for the momentum equations

less than 2.5×10−5 and scalar equations less than 2.0×10−3. In addition, the mass conservation

error is less than 5.0× 10−8. The computation for propane and methane has been performed

on an HP Z420 workstation with an Intel Xeon 3.5 GHz processor, while hydrogen simulations

are on an HP Z840 workstation with the same processor. A typical LES run for the case BBBS

(the most turbulent and time-consuming) requires about 408 and 312 CPU hours for propane

and hydrogen, respectively, until the leading edge of the flame exits the explosion chamber.

5.4 Summary

The experimental test cases are small-scale vented deflagrations with a series of in-built ob-

structions. The size, geometry and design of the combustion chamber take into account various

aspects of experiments and modelling. An apparent feature of the experimental setup is the

capability to create a range of obstacle configurations. The overpressure signals approximately

averaged from the original pressure signals facilitates the comparison between the numerical

and experimental results. The computational setup is detailed including the domain, boundary

and initial conditions and various numerical schemes.
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Results and Discussion: Propane

This chapter presents LES results using propane as the fuel. Section 6.1 provides an in-depth

parametric analysis of the sensitivity of the LES calculation regarding the influential factors

including flame initiation, Smagorinsky constant, filter width and mesh size. Section 6.2

illustrates the development of the propagating flame and the mechanisms driving the pressure

build-up inside the combustion chamber using the LES data. Characteristics of flame-turbulence

interactions are studied in Section 6.3 including the LES regime of combustion for the present

simulations. Results of several selected flow configurations are presented in Section 6.4.

6.1 Parametric study

Recall that Section 4.9 presents the impact of filter width ∆ and the correct behaviour of the

DFSD model with the absence of turbulence in the steady-state 1-D laminar cases. Since the

current research interest is mainly three-dimensional transient flame propagation ranging from

initially laminar to fully turbulent, the results may be influenced by a range of factors such as

coefficients in the turbulence and combustion models. This section examines the sensitivity

of simulation results to some of the numerical parameters. Note that the effect of numerical

schemes is not within the scope of this thesis but can be found in [66]. The parametric

investigation does not intend to select the optimised set of coefficients but to realise and assess

the sensitivity of the current computational setup to a range of typical modelling parameters.

As a complete parametric investigation would be exhaustive, the present work focuses on (i)

initialisation of combustion, (ii) Smagorinsky constant Cs, (iii) mesh size and (iv) combustion

filter width ∆. In the dynamic wrinkling formalism, the test filter size is set to ∆̂ = 1.1∆ [81],

and the inner cut-off scale is δc = 4δ0
L [61]. The fuel properties are set as: s0

L = 39.0 cm/s

[160, 161] and δ0
L = 0.37 mm [47] for the stoichiometric propane/air mixture at atmospheric
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conditions (T = 298 K and p = patm). The basic computational set-up has been illustrated in

Section 5.3.

6.1.1 Effect of combustion initialisation

Models for flame initiation may be divided into two categories: (i) using an ignition model for

the development of the initial flame kernel; (ii) start the simulation with an already established

burned flame kernel. Table 6.1 presents the four approaches (labelled as I01-I04) investigated

in the present work, and they have been described in Chapter 3.

Table 6.1: List of methods investigated for initialising combustion

Method Description Initial c̃ profile

I01 Ignition by flame kernel model c̃ defined by Eq. (3.36), only ignition
point specified

I02 Start with a burned flame kernel Filtered from 1-D solution, hemi-
sphere with 4−mm radius

I03 Start with a burned flame kernel Filtered from a unit step function,
hemisphere with 4−mm radius

I04 Ignition by setting a region c̃ = 0.5, hemisphere with 4 − mm
radius

When applied to the present test cases, the flame is initiated at the bottom of the combustion

chamber, near the closed end. Figure 6.1 shows the computed flame kernels (iso-lines of c̃) in

the configuration 000S using the four approaches at various time instants when the kernels are

sufficiently large. It can be seen that small differences in c̃ exist at the intersection between

the kernel and the bottom wall. When the ignition is taken into account (i.e. I01 and I04), the

wall shear takes into effect as the kernel establishes close to the chamber bottom wall, while

this influence will not be seen if starting from burned kernels (i.e. I02 and I03). The difference

in the c̃ distribution across the flame front is considered small given that the early turbulence

intensity around the ignition point is sufficiently low.

The influence of the flame initiation methods on the pressure trace and flame propagation

are investigated using the configuration 000S and BBBS representing the least and most

turbulent cases, respectively. Figure 6.2 displays the overpressure and the flame front position

from the four approaches and the experiments for the configuration 000S. It can be noticed

that the timing (tp,LES) and magnitude (Pp,LES) of the pressure peak varies using different

flame initiation approaches. The calculation using the flame kernel model gives a later tp,LES ,

while starting from a burned kernel generally leads to early tp,LES , and the discrepancy can be

about 3.5 ms. One may expect this consequence as the burned kernel models simply neglected
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Figure 6.1: The structure of fully established flame kernels denoted by the iso-lines between
c̃ = 0.1 and c̃ = 0.9 in the configuration 000S: (a) flame kernel model (I01), t = 3.1 ms, (b) c̃
from 1-D solution (I02), t = 0.1 ms, (c) pre-filtered burned kernel using a Gaussian filter (I03),
t = 0.1 ms and (d) ignition using the main combustion model (I04), t = 1.4 ms.

the initial flame development. It can be seen that the initial treatment of the flame kernel

has a non-trivial impact on the time taken to reach the pressure peak. Applying the same

methods in the case BBBS results in similar effects. As can also be seen from Figure 6.3, the

variation in tp,LES is about 3.3 ms for the configuration BBBS, and this is similar between the

two configurations. On the other hand, the influence on the pressure peak magnitude is found

to be small, with the deviation less than 3 mbar for the configuration 000S. The flame kernel

treatment affects the early pressure fluctuations but has limited effect on the overpressure

trend once it increases sharply.

The flame position profiles shown in Figure 6.2 illustrates that even with the same com-

bustion model, the early-stage propagation speed is affected by the flame kernel modelling.

The flame propagates faster when initialised using a filtered c profile from the 1-D laminar

solution, while applying the flame kernel model leads to a slower propagation. Interestingly,

as the flame becomes turbulent interacting with the central obstacle, the difference in flame

speed tends to vanish. This is also seen for the configuration BBBS (Figure 6.3(right)) as

the flame propagates roughly at the same speed after passing the second baffle plate. It may

be concluded that the flame initiation has an impact on the quasi-laminar phase of the flame

propagation, but the effect becomes much less significant in the turbulent stage. Since the
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Figure 6.2: LES results with four flame initialisation methods: configuration 000S. Left :
overpressure. Right : flame front position (leading edge of c̃ = 0.5).

primary contribution to the peak pressure is the turbulent phase of combustion, initial flame

kernel treatment has a limited influence on the magnitude of the peak overpressure.
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Figure 6.3: LES results with four flame initialisation methods - configuration BBBS. Left :
overpressure. Right : flame front position (leading edge of c̃ = 0.5).

Table 6.2 summaries the practical considerations regarding flame initiation in the LES-

FSD context. When using the flame kernel model (I01), one does not need to specify an

ignition region, and the early flame development is calculated by the model. By contrast, the

other three models require the specification of an appropriate kernel radius. Note that if the

imposed flame kernel is too small in terms of the number of computational cells, the flame

may just dissipate instead of propagating downstream. Therefore, a sufficient and reasonable

kernel size is essential for using such models. Since the initial velocity field in the present

test cases is quiescent, the turbulence effect is only dominant in the later phases of the flame

propagation when the turbulence and vortex are sufficiently developed. The advantage of using

a realistic ignition model would be more apparent in a case of more turbulent and chaotic
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environment such as engine cylinders where the early flame kernel may be stretched, wrinkled

or even convected away [108]. However, as the measurements, theory and modelling technique

regarding ignition and early kernel formation in the SGS range are not yet matured, such

ignition models still require further development [108]. For the rest of the study presented in

this thesis, simulations are initiated with a burned flame kernel.

Table 6.2: Summary of advantages and disadvantages of each method for combustion initiali-
sation.

Method Advantage Disadvantage

I01
No ignition radius specified

Very early stage described

Extra computational time

Very early stage may be insignificant

I02 Realistic c profile
1-D flame results in advance

Specify kernel radius

I03 Profile directly available
Specify kernel radius

Profile may not be realistic

I04 Make use of main combustion model
Ignition region large enough

Initial c̃ value has an effect

6.1.2 Grid sensitivity study

The motivation to study the grid sensitivity is twofold: (i) to investigate the dependence of

results on the mesh resolution; (ii) to verify the quality of LES regarding the resolution. In

most steady RANS simulations, the grid-independent solution may be found by refining the

mesh. However, it is a much more complicated issue for transient cases using LES. As the

filter width is generally linked to the grid spacing in the implicit LES approach, an LES would

eventually tend to reach DNS when the grid size is progressively reduced [162]. For reacting

LES, additional SGS models for combustion on top of modelling turbulence lead to other

difficulties of assessing LES quality [163]. Thus, LES results are generally dependent on mesh

resolution to an extent [164].

Table 6.3 displays the three grids used for the present investigation with the mesh refined

from grid A to C, and all of them have cubic cells uniformly distributed within the chamber

domain. The most turbulent case (BBBS) is selected for the verification since the sub-grid

models are expected to be more influential compared with the other less turbulent ones.

Figure 6.4 shows that as the mesh is refined from grid A to B, the peak pressure increases by

around 26%, with a further increase of 3.8% seen by changing from grid B to C. The calculated

values of tp,LES appear to be very close using the three mesh sizes, but the relationship between

the two is not monotonous. As expected, the early pressure development, as well as the flame
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Table 6.3: Specification of the three grids studied

Grid ∆x (mm) No. of cells (million)
within the chamber within the chamber

A 1 1.4
B 0.75 3.0
C 0.59 6.9

propagation speed is much less dependent on the mesh or filter size. A noticeable variation

on the pressure trace is only found after t ≈ 7 ms. Flame speed computed by grid C becomes

slightly higher after the second baffle, while the early propagation is not sensitive to the grid

size. While the earlier work of Masri et al. [65] using the original Boger’s FSD formalism [45]

shows that the initial quasi-laminar phase is grid-dependent to an extent, the present model

formulation ensures the mesh resolution has a minimal influence on the flame propagation

speed at the early stage.
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Figure 6.4: Sensitivity to mesh resolution as the number of cells increases from Grid A to C:
configuration BBBS. Left : overpressure. Right : flame front position.

A quantitative method to assess the quality of the grid in terms of turbulence resolution is

known as the Pope’s criterion [165]. It states that the resolved portion of the total turbulent

kinetic energy (TKE), ηtke should be typically greater than 80% for a good grid resolution.

ηtke =
kres
ktot

= 1− ksgs
ktot

(6.1)

where kres and ksgs are the resolved and SGS parts of the total kinetic energy, ktot, respectively.

The resolved part is defined as

kres =
1

2
(u′21 + u′22 + u′23 ) (6.2)
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where u′i (i = 1, 2 and 3) represents the RMS velocity fluctuations in the x, y and z directions,

respectively, with respect to the Favre-filtered mean quantities from LES [164]. Note that

the Favre notation ũi for velocities is dropped here for convenience. The mean velocity Ui is

calculated using a common time average defined by

Ui(x, t) =
1

tav

∫ t+tav

t
ui(x, t)dt (6.3)

where tav is the time interval used for temporal integration. Given the transient nature of the

problem, the average has been performed on a rolling basis throughout the simulation with

a tav = 0.1 ms [74]. The choice of the averaging time interval takes into account a sufficient

sample of data points and the need to capture the transient velocity signal. The SGS part of

the total TKE may be estimated as

ksgs =
ν2
t

(Cs∆)2
(6.4)

where νt = µt/ρ is the turbulent kinematic viscosity given by the Smagorinsky model with Cs

being the Smagorinsky constant. The grid filter scale ∆ used in the LES solver is twice the

characteristic grid size ∆ = 2(δxδyδz)1/3 [66].

Figure 6.5: Resolved portion of turbulent kinetic energy conditioned in the flame front zone
(0.05 < c̃ < 0.95): (a) grid A with ∆x ≈ 1 mm and (b) grid C with ∆x ≈ 0.59 mm.

Figure 6.5 shows the contribution of the resolved TKE in the flame front (0.05 < c̃ < 0.95)

in the fully turbulent stage using grid A and C. The percentage of resolved kinetic energy is
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generally lower on grid A with a typical value less than 40% before the third baffle. For grid C,

kres reaches > 95% in the regions downstream of the second baffle plate, while it considerably

decreases closer to the ignition end of the chamber. The reason is that the turbulent intensity

is substantially lower in these areas where the flame is quasi-laminar. Consequently, Pope’s

criterion [165] is reasonably satisfied for both grids as the ηtke > 80% in the majority of the

flame, and grid C has a comparatively smaller under-resolved region. The variation in the

overall flame structure between the two grids indicates the importance of mesh resolution in

determining the resolved flame shape. Thus, the rest of the study uses grid C considering that

it resolves a sufficient percentage of flow length scales to capture the essential flame dynamics.

6.1.3 Influence of Smagorinsky constant

A sensitivity study is performed with the three Smagorinsky constants Cs: 0.05, 0.1 and

dynamic evaluation. For the classical Smagorinsky model, Cs between 0 and 0.2 are typically

found in the literature for the reactive LES. Using a Cs → 0 would be equivalent to not

applying a turbulence model, meaning there is no contribution from the sub-grid scales to the

turbulent momentum and scalar fluxes. Figure 6.6(left) shows that using a Cs = 0.1 tends to

give a lower overpressure once the rate of pressure rise significantly goes up at around 8 ms,

while the dynamic Smagorinsky model would give a moderate peak pressure. In contrast, the

early stage of pressure build-up (t < 8 ms) has a very weak dependence on the Cs value. The

flame-front locations shown in Figure 6.6(right) indicate a relatively weak correlation between

the flame front speed and the Smagorinsky constant throughout the deflagration.

Figure 6.7(left) displays the evolution of the sub-grid wrinkling factor. The spatially

averaged 〈Ξ〉f is defined as

〈Ξ〉f (t) =

∫
Vf

Ξ(x, t)dV∫
Vf
dV

(6.5)

where Vf denotes the volume occupied by the flame (0.05 < c̃ < 0.95). While the calculation

of Cs does not affect the SGS wrinkling in the early stage, it has a substantial influence after

passing the second baffle plate. Using the DS model apparently leads to a higher Ξ, followed by

the cases with Cs = 0.05 and Cs = 0.1, and it reflects the relative difference in the overpressure

magnitude between t = 8 ms and t = 10 ms (Figure 6.6(left)). However, a considerable drop

in Ξ using the dynamic Smagorinsky model is seen after passing the central obstruction, and

the sub-grid wrinkling is highest with Cs = 0.05 compared with the other two cases. This
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study shows that the relative magnitudes of the Ξ throughout the deflagration determine the

peak overpressure as a large Ξ generally delivers greater heat release. Setting Cs = 0.1 gives

a consistently low sub-grid flame wrinkling, leading to the lowest pressure peak. Comparing

the DS model and Cs = 0.05, one can see that similar magnitudes of the pressure peaks are

caused by the alternating wrinkling factors.

Based on the assumption and the derivation of the present dynamic combustion model [47,

81], the computation of Ξ depends solely on the wrinkling level of the resolved flame front as

a result of test-filtering. Hence, different values of Cs modify the turbulence structures that

interact with the resolved flame fronts. As the DFSD model evaluates Ξ based on the resolved

flame structure, Cs is not directly associated with the combustion model (e.g. through the

calculation of u′∆). Therefore, the Cs values indirectly link to the Ξ by the varying shapes of

the resolved flame fronts.
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Figure 6.6: Influence of Cs using classical and dynamic Smagorinsky turbulence models:
configuration BBBS. Left : with dynamic combustion model. Right : flame position.
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Figure 6.7: Left: Effect of Cs on the sub-grid wrinkling factor. Right: simulations neglecting
the sub-grid reaction rate (Ξ = 1) - configuration BBBS.
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To further illustrate the link between the Cs and the combustion model, Figure 6.7(right)

presents the overpressure traces from the simulations in which Ξ is set to unity. Due to

the neglect of the SGS reaction rate, the contribution from the sub-grid flame-turbulence

interactions is not taken into account. Thus, it lowers the overpressure magnitude substantially

compared with Figure 6.6(left). Figure 6.7(right) shows that the pressure is much less sensitive

in this case. Despite the small variation in the pressure peaks, using Cs = 0.1 still leads to

a lower pressure peak, and Cs = 0.05 gives the highest one. It is likely to be caused by the

various levels of interactions between the resolved flame and turbulence.

It is important to notice that neglecting SGS contribution of the filtered reaction rate

(Ξ = 1) would normally lead to insufficient overpressure build-up and slow flame propagation.

As will be illustrated in the subsequent sections, the contribution of the sub-grid wrinkling varies

depending on the factors such as the mesh resolution, fuel type and obstacle configurations.

Figures 6.6 and 6.7 reveal that the influence of the turbulence parameters such as Cs is mainly

to alter the wrinkling of the resolved flame front. Consequently, the dynamic FSD model would

evaluate the sub-grid flame/turbulence interactions based on the resolved flame wrinkling. It

also highlights the significance of accurately resolving the turbulent motions for the reliable

application of the DFSD model.

6.1.4 Impact of the filter width

Flame filter width ∆ is a critical parameter determining the filtered flame thickness. As first

discussed in Section 4.9 using a range of 1-D laminar tests, the flame or the c̃ gradient is

typically resolved on about nres grid points where ∆ = nres∆x. Another finding from the

1-D test is that the laminar behaviours of the flame can be reproduced given that the flame

is well-resolved, i.e. ∆ is sufficiently large. The 3-D study considers four filter widths where

nres = 4, 6, 8 and 10. Figure 6.8 shows that as ∆ increases the overpressure and flame position

traces tend to converge. A minimum ∆ threshold is present when nres ≈ 4, below which the

simulation would considerably over-estimate the overpressure and the flame speed.

Figure 6.9 presents the evolution of the wrinkling factor using various filter widths. It is

apparent that the flame wrinkling factor is close to unity and subsequently evolves to take into

account the unresolved flame surface. As the computational domain has uniform mesh inside

the combustion chamber, the local filter and test filter widths for the flame do not vary during

the propagation. The formalism of the DFSD model (Eq. (3.31)) implies that the computed Ξ

should compensate the increase of the filtered flame thickness due to ∆ as ω̇c ∼ Ξ/∆. Figure 6.9
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Figure 6.8: Sensitivity to filter width: configuration BBBS. Left : overpressure. Right : flame
front position.

confirms that the sub-grid wrinkling level increases to account for the thicker resolved flame

due to the use of a larger filter width. It is also worth pointing out that 〈Ξ〉f tends to be more

sensitive to obstructions when a larger filter width is chosen, e.g. between B1 and B2. Thus,

this study also shows the essential capability of the DFSD model to evaluate the sub-grid flame

wrinkling at different filter scales.
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Figure 6.9: Evolution of the spatially averaged wrinkling factor 〈Ξ〉f using different filter
widths.

6.1.5 Other considerations

Apart from the numerical schemes, there are other parameters and coefficients that can alter

the overall calculation. The thermochemical properties, namely the laminar burning velocity

s0
L and thermal flame thickness δ0

L, would have an influence on the overall results as they are

part of the combustion model. The role of s0
L is in the evaluation of the reaction rate ω̇c. A

larger s0
L would generally lead to higher overpressure and faster flame propagation, but the
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value of s0
L varies in the literature. For stoichiometric propane/air mixture at T = 298 K and

p = patm, measured laminar burning velocity may range from 35.0 cm/s to 45.0 cm/s [161],

and the variation is also substantial for the lean hydrogen/air mixture [166]. Regarding the

laminar flame thickness, the present study adopts the concept of the thermal flame thickness

defined using the maximum temperature gradient [167]. While the value is assumed to be

constant, δ0
L may vary slightly if the chamber pressure is excessively high. The influence of δ0

L

mainly comes from its relation to the inner cut-off scale δc in the DFSD model.

Another factor to consider is the parameters in the dynamic wrinkling formulation, namely

the test filter size ∆̂, the averaging filter size ∆m and the inner cut-off scale δc. As illustrated

by Veynante and Moureau [81], the inner cut-off scale should be prescribed by the user and

cannot be determined by the dynamic procedure. Knikker et al. [61] found that δc varies from

3 to 4 times the thermal flame thickness from an experimental study, and Wang et al. [47] used

δc = 3δ0
L for the simulation of turbulent flame kernels. While the inner cut-off scale should be

of the order of the laminar flame thickness [81], uncertainties of this parameter still exist for

the current model. The present work uses δc = 4δ0
L following Knikker et al. [61]. The test filter

size ∆̂ should be slightly larger than the filter size ∆, typically 1 < ∆̂/∆ < 2 [81] to capture

the resolved flame wrinkling. The averaging volume or filter width ∆m is typically larger than

the test-filtered flame thickness [81] and has been found to have a fairly limited influence for

the present study.

Table 6.4: List of simulations and their parameter settings for the configuration BBBS. The
time taken to reach the peak pressure (tp) and the maximum overpressure (pmax). The text of
the base simulation is in italic.

Simulation Initialisation Cs Grid ∆/∆x Deviation
method tp, % pmax, %

I01-dynCs-gC-f6 I01
dyn

C
6

34.5 4.5
I02-dynCs-gC-f6

I02

0 0
I02-Cs005-gC-f6 0.05 4.1 6.3
I02-Cs01-gC-f6 0.1 4.5 -27.4
I02-dynCs-gA-f6

dyn

A 3.1 24.4
I02-dynCs-gB-f6 B 6.2 -4.7
I02-dynCs-gC-f4

C

4 -10.9 27.9
I02-dynCs-gC-f8 8 3.1 5.7
I02-dynCs-gC-f10 10 0.8 -9.5
I03-dynCs-gC-f6 I03

6
14.7 5.3

I04-dynCs-gC-f6 I04 17.9 3.5

Table 6.4 summarises the simulations performed to investigate the effect of numerical

parameters in the configuration BBBS. The time taken to reach the peak pressure (tp) and
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the maximum overpressure (pmax) for each case are displayed with the deviation from the

base simulation I02-dynCs-gC-f6. In general, flame kernel initiation has a profound role in

determining the computed tp, but it has a much weaker influence (< 5%) on pmax. The impact

of the flame filter width ∆ remains weak (with a variation < 10%) on both tp and pmax as long

as the filtered flame is sufficiently resolved on the LES mesh (i.e. ∆ > 4∆x). The Smagorinsky

constant affects the evaluation of the dynamic combustion model since it alters the structure

of the resolved flame front. Note that the behaviours of the results also rely on other factors

such as the thermochemical properties and the dynamic model parameters. In the following

sections, simulations have been performed according to the parameters of the base simulation

I02-dynCs-gC-f6.

6.2 Phenomenological study

This section studies the phenomenon of the deflagration using LES, with the focus on the

dynamic behaviours of the propagating flames and the mechanisms driving the pressure rise

in the vented chamber. It also aims to show how LES can be used to help understand the

complex transient combustion process leading to pressure build-up.

6.2.1 Development of propagating flames

Figure 6.10 displays a sequence of high-speed images of laser-induced fluorescence from OH

(LIF-OH) from the experiment (Figure 6.10a) and calculated resolved FSD contours from

LES (Figure 6.10b) in the configuration 000S. Note that the LIF-OH images only mark the

reaction zone qualitatively, and large values of resolved FSD indicates the numerical reaction

zone calculated from LES. Due to some difficulties in the experiments, two imaging tiers were

used to capture the maximum viewable height but not the whole explosion chamber [156].

The right-hand side of the LIF-OH images appears blank since the laser sheet is blocked in

the corresponding region [156]. These high-speed images are compared with the contours of

resolved FSD from LES to demonstrate the flame shape and to validate the global degree of

contortion of the flame at various stages. As there is a slight time variation in flame position

for each experimental run, the starting time t0 of the first flame image from LES is chosen so

that the furthest flame leading edge matches that of the high-speed image. The time intervals

between successive LES images are kept the same as in the high-speed images. The LES images

(Figure 6.10b) shows that after ignition, the flame is quasi-laminar until it reaches the square

obstruction. Then, the flame becomes corrugated behind the obstacle, as also confirmed by
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the LIF-OH images (Figure 6.10a). The resolved flame front on LES follows the same trend

as experiments, where it is only subjected to a strong stretch at a distance downstream of the

central obstacle.

(a) LIF-OH images (false colourised) from experi-
ments [156].

(b) LES images coloured by the resolved part of
the FSD.

Figure 6.10: Time sequence of flame propagation: configuration 000S. Physical times after
ignition are indicated at the top of each image. Time instant when the position of flame leading
edge from LES matches the corresponding LIF-OH image (t0).

Figure 6.11 gives a comparison of the propagating flame between the experiments (Fig-

ure 6.11a) and LES (Figure 6.11b) for the configuration BBBS. It can be seen from Figure 6.11

that the leading edge of the flame hits the first baffle plate and starts protruding through the

narrow vents. As a result, the flame separates into finger-like shapes. However, at this early

stage, the flame is not much wrinkled because the turbulence level is low behind the first baffle.

Between the first and the second baffle plates, the four finger-shape flame humps merge and

are also seen to propagate laterally towards the walls of the chamber. Note that the flame

forms four fingers again when it hits the second baffle plate. It is then subjected to noticeable

stretch due to higher local turbulence. After jetting out of the third baffle, the flame becomes

significantly stretched and wrinkled. It encounters the central square obstacle at a very high

speed and subsequently wraps around it. The highly wrinkled flame front propagates past the

last obstruction and gets reconnected quickly in the recirculation zone. After that, the flame

propagates toward the chamber exit.

Note that the ‘geometrical’ effect of obstacles with a sharp-edged cross-section in the

direction of flame propagation can be identified from the flame images. It can be seen from

the successive LES images that there are small packets of unburned mixture trapped in the
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(a) LIF-OH images (false colourised) from experi-
ments [156].

(b) LES images coloured by the resolved part of
the FSD.

Figure 6.11: Time sequence of flame propagation: configuration BBBS. Physical times after
ignition are indicated at the top of each image. Time instant when the position of flame leading
edge from LES matches the corresponding LIF-OH image (t0).

burned gases on the faces of some obstructions (e.g. strips of the baffle plates), left by the

distorted flame front wrapping around them. For instance, the last images of both LES and

experiments clearly show the trapped fresh gases in the recirculation zone downstream of the

square obstacle. As a matter of fact, the trapped fresh mixture is typically present in the

upstream and downstream regions of the baffle bars and the square obstacle and they will be

consumed subsequently and contribute to the internal pressure rise of the chamber at later

stages of the explosion. Comparison between the LIF-OH images (Figure 6.11a) at 12 ms and

12.8 ms and also between their corresponding LES images (Figure 6.11b) confirms that the

trapped mixture in the area upstream of the central obstacle has been burned. Overall, the

numerical and experimental images (Figures 6.10 and 6.11) for both configurations demonstrate

the capability of reproducing flame structure, propagation rates and the entrapment of the

unburned gases at various stages of the deflagration using LES.

6.2.2 Mechanisms of pressure rise

This section aims to explicate the mechanisms associated with the accumulation and release

of the chamber internal pressure. The goal is to illustrate the link between the overpressure

history and the flame propagation for explosions in a vented enclosure using LES. Configuration

BBBS is used here as a demonstration and the analysis can also be extended to all other cases.

Figure 6.12 presents the spatial distribution of the internal overpressure at five instants from

the LES. As pressure is found to be nearly homogeneous in the cross-section of the explosion
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Figure 6.12: Spatial distribution of overpressure along the axial direction from the ignition
end and between the first two baffle strips for configuration BBBS. Pressure profiles are
extracted from the LES and the physical times are indicated.

chamber, only the axial profiles are given. It can be seen from Figure 6.12 that the pressure

remains nearly uniform in the region of obstacles while there is a negative gradient from the

most downstream obstruction towards the chamber exit (250 mm). As expected, the maximum

internal pressure is located near the closed end of the chamber where ignition takes place. Hence,

the overpressure monitored on the chamber base is considered for the analysis and discussion

in the rest of the section.

The increase and decrease of overpressure within the explosion chamber can be directly

explained by the competition between the two phenomena: expansion of the gases and venting

at the chamber exit. The rate of gas expansion can be represented by the rate of volume change

of the fresh unburned gases with the burned gases. In LES, this may be calculated from

V̇expa =
∂

∂t
Vb

(
1− ρb

ρu

)
(6.6)

where ρu and ρb are the densities of unburned and burned mixtures, respectively. The volume

occupied by the burned gases, Vb, can be evaluated by integrating c over the entire computa-

tional domain Ω: Vb =
∫

Ω c dV [47]. The venting rate is computed as the volume flow rate

across the chamber exit:

V̇vent =

∫
Aexit

ũ · ñ dA (6.7)
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where ũ and ñ are the velocity and its normal direction, respectively.
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Figure 6.13 displays the rates of expansion and venting and their relation to the evolution

of overpressure in the explosion for case BBBS. Times of flame moving through the midpoints

of all the obstructions are also identified as B1, B2, B3, and Sq.Ob. The figure also indicates

the time taken to reach the peak overpressure and the time when the flame exits the chamber.

When V̇expa > V̇vent, pressure builds up inside the chamber. In contrast, V̇expa > V̇vent will

lead to a decrease in overpressure.

It is clear from Figure 6.13 that the overpressure history is closely related to the competition

between gas expansion and venting. Before the flame reaches the second baffle, pressure

increases gradually in a fluctuating way. A similar pattern can also be observed from the

experimental pressure signals in other configurations. The fluctuation is represented by the

alternative evolution of both expansion and venting rates. When the flame is at the upstream

position of B2, the explosion chamber is efficiently vented, given that the expansion and venting

rates grow at very close values and the pressure remains relatively low. At this early stage of

the explosion, the expanded volume created by the burned gas from the combustion process
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can be properly exhausted through the venting from the chamber outlet. Overpressure begins

to rise sharply between B2 and B3 where the flame starts to transit from quasi-laminar to

fully turbulent. This is reflected by the significant growth in the expansion rate at almost

the same time. Meanwhile, rapid burning also pushes more unburned mixture towards the

chamber exit, inducing a corresponding enhancement in explosion venting. However, a lag

between the two phenomena means that the flow is not sufficiently expelled from the chamber

and it gives rise to the pressure rise. Maximum overpressure is reached when the venting rate

takes over the expansion rate. It takes place between the square obstacle and the chamber

open end as it is the furthest obstruction downstream encountered by the flame. Beyond this

point, overpressure drops because venting is relatively more efficient than combustion for the

rest of the fresh gases within the chamber. At about 10.2 ms, the leading edge of the flame

exits the chamber and the expansion rate stops rising. The combustion rate is only maintained

for a very short period before decreasing, as a result of the burning of the remaining fresh

gases at the corners of the chamber and in the wake area of the obstructions. In the meantime,

the venting rate is adjusted by the acoustic reflection, and consequently, pressure drops and

oscillates towards the atmospheric level. As shown in Figure 6.13, both venting and expansion

rates decrease in an alternative manner after the flame leaves the chamber, generating weak

peaks observed in the pressure history from LES. The oscillations of overpressure after the

first peak reproduced by LES agree with the frequency observed in the experiments (not shown

in this thesis) [156]. The computation of these oscillations is closely related to the size and

the velocity boundary condition of the extended computational domain which resembles the

external atmosphere. However, reliable prediction of pressure oscillations due to acoustics

is outside the scope of this study. The discussion here primarily intends to demonstrate

the identification and quantification of venting and expansion processes related to the whole

overpressure history in an explosion event.

6.3 Flame-turbulence interactions

An essential feature of these cases is the interaction between the flame front and the obstacle-

generated turbulence. The flame surface evolution and the flame propagation mechanism are

predominantly governed by the unburned gas flows such as turbulent eddies and shear layers

generated downstream of solid obstacles. Johansen and Ciccarelli [122] provided a visualisation

of the unburned gas flow field ahead of an accelerating flame in an obstructed channel. They

found that the initially formed vortices are laminar with a defined structure, and unstable and



Flame-turbulence interactions 99

fully turbulent shear layers grow with time due to the upstream flame propagation [122]. It is

thus useful to characterise the role of obstructions in the path of the flame travelling. The two

cases with distinct turbulent environments, configurations 000S and BBBS, are considered in

this section.

Figure 6.14: Vortex structure and flame-turbulence interaction: configuration 000S. (a)-(c):
iso-surface of Q = 5× 106 s−1 at various time instants. (d)-(f): flame front (c̃ = 0.5) coloured
by the vorticity magnitude at corresponding time instants.

Figure 6.14 captures the sequential vortex structure and its interactions with the flame

front for the case 000S. Q-criterion [168] is an indicator of turbulent flow and has been used

in visualising vortical structures in reacting flows [169, 170]. The unburned gas flow ahead of
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Figure 6.15: Vortex structure and flame-vortex interaction: configuration BBBS. (a)-(c):
iso-surface of Q = 5× 106 s−1 at various time instants. (d)-(f): flame front (c̃ = 0.5) coloured
by the vorticity magnitude at corresponding time instants.
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the flame starts from quiescent and gradually develops in the wake of the central obstruction

as a result of the gas expansion, confinement and blockage. Another factor influencing the

flow development is the passage between the obstacle and the chamber side walls dictated

by the area blockage ratio (ABR = 0.24 in this case). From Figure 6.14d-f, the vorticity

magnitude contoured on the flame implies the strength of interaction between the turbulence

and the resolved flame font. As turbulent structures are predominantly located behind the

obstacle, the flame front remains quasi-laminar before reaching it. It is also clear that the

vortical structure in the wake area grows as the flame approaches the central obstacle, but the

flame-flow interactions only begin after the flame passes the obstacle. As the deflagration is

a highly transient process, it is expected that the location of the central obstacle governs the

turbulence generation in the case of the single obstruction. The obstacle-generated turbulence

would not have sufficient time to develop if its location is too close to the initial flame kernel,

and consequently, the flame-turbulence interactions would be relatively weak. In contrast, if

the obstacle was placed very close to the chamber exit, most of the fresh mixture would have

been consumed before interacting with it.

Figure 6.15 gives the turbulence and flame snapshots for the case BBBS at three locations

same as that in Figure 6.14. Figure 6.15a shows that the sharp-edged rectangular grids are

particularly effective in creating turbulence. As the iso-surfaces of the Q-criterion are at the

same values between the two configurations, it indicates the much more substantial turbulence

generation. It is clear that the relatively short separation between the third baffle and the

central obstacle makes the region full of turbulent eddies, and it gives rises to a considerable

flame wrinkling as shown in Figure 6.15e. On the other hand, turbulence has not developed

much behind the first baffle plate due to its short distance away from the ignition end. At

the early stage, the patterns of the turbulent vortex shedding resulting from the baffle plates

are more coherent (Figure 6.15). However, the propagating flame front breaks these patterns

by producing eddies of smaller scales. Comparing the snapshots when the flame has just

passed the central obstacle (Figure 6.14e and Figure 6.15e) for the two configurations, it can

be seen that the flame front has already been substantially wrinkled by propagating through

the three successive baffle plates. Despite the considerable turbulence effect at the later phase,

interactions do not occur on the entire flame. Figure 6.15e and f confirm that in the region

before the third baffle the flame only subjects to a weak turbulence influence.

Figure 6.16 presents the overpressure traces from the experiments and LES for the two



Flame-turbulence interactions 102

0 2 4 6 8 10 12 14 16
Time (ms)

100

50

0

50

100

150

O
ve

rp
re

ss
ur

e 
(m

ba
r)

(a)

000S

tp, exp

Exp
LES

0 2 4 6 8 10 12
Time (ms)

(b)

BBBS

Figure 6.16: Overpressure traces between LES and experiments. Configuration: (a) 000S
and (b) BBBS. mean experimental pressure signal ( ). The range of time taken to the first
peak overpressure in the experiment, tp,exp ( ).

configurations. Evidently, the overpressure remains low at the early stage of combustion for

both cases. In spite of the slight over-estimation, LES captures the overpressure trends correctly

for both configurations. Based on LES, the pressure magnitude is low before a sharp increase

is seen at t = 13 ms and t = 6 ms for the two configurations, respectively. The peak pressure

of the configuration BBBS is nearly four times higher than the other, and it is primarily due

to the strong turbulent intensity generated using the three baffle plates. For the filtered flame

front, the flame-turbulence interactions are divided into the resolved and the sub-grid parts.

The former is directly taken into account by the resolved portion of the filtered reaction rate,

while the latter is estimated using the sub-grid wrinkling factor. Figures 6.14 and 6.15 also

illustrate that the resolved part of the interactions is related to the turbulence motions resolved

on the LES grid, and it is substantially higher for the configuration BBBS. The effect of the

smaller-scale turbulence on the filtered flame front is compensated by the sub-grid wrinkling

factor Ξ.

Figure 6.17 shows the evolution of the mean wrinkling factor 〈Ξ〉f over the flame propagation

for the two configurations. In general, the sub-grid wrinkling factor calculated for the case

BBBS is greater than that in 000S due to the presence of the baffle plates. Under the same

numerical condition, 〈Ξ〉f can reach up to 1.45 with the case BBBS, while that of the other

remains less than 1.2. The initial wrinkling factor is close to unity as the turbulence influence

on the imposed flame kernel is negligible. For the case 000S, 〈Ξ〉f remains to be unity before

passing the square obstacle due to the relatively long quasi-laminar phase. By contrast, in
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Figure 6.17: Evolution of flame wrinkling factor. Configuration: (a) 000S and (b) BBBS.

the case BBBS, the flame is continuously wrinkled and the SGS part of the contribution to

the reaction rate increases when passing through successive obstructions. In the blow-down

region downstream of the last obstacle, fast flame propagation is still maintained by the local

turbulence, and 〈Ξ〉f has a tendency to stabilise. LES reproduces the essential physical process

for the deflagration and the impact of the obstructions.

Figure 6.18 gives the sequential flame images contoured by the sub-grid wrinkling factor

Ξ for both configurations. It also indicates the dynamic nature of the combustion model in

evaluating the flame wrinkling for various turbulent environments. For the configuration 000S,

the entire flame remains quasi-laminar until hitting the central obstruction (t = 11.8 ms), and

Ξ ≈ 1 for the flame region during this period. Sub-grid flame wrinkling is only significant

after passing the obstacle where Ξ is high around the leading edge of the flame and behind the

obstacle (e.g. at t = 14.5 ms). It contributes to the main pressure peak as shown in Figure 6.16a.

Comparatively, for the configuration BBBS, the sub-grid flame wrinkling evolves with time

but remains relatively low before the third baffle plate (t = 7.6 ms). Due to the short distance

between the third grid and the central obstacle, a strong turbulent flow field is generated in the

region where the Ξ reaches up to 1.7 (e.g. at t = 8.6 ms and t = 9.0 ms). It leads to the sharp

rise in the overpressure trace as shown in Figure 6.16b. Evidently, the presence of the baffle

plates enhances the contribution of the sub-grid reaction rate, resulting in faster local flame

propagation in areas of high Ξ. Downstream of the square obstacle (t = 9.7 ms), the overall Ξ

decreases but is still considerably maintained by the flame-turbulence interactions in the second

half of the chamber. Note that even in the turbulent phase, the sub-grid contribution of the
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Figure 6.18: Three-dimensional flame images (iso-surface of c̃ = 0.5) contoured by Ξ at various
time instants. (a) to (f) correspond to the flame leading edge (c̃ = 0.5) at 35, 65, 90, 120, 170 mm
away from the ignition end. Top: configuration 000S. Bottom: configuration BBBS.
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flame wrinkling remains low for the entire deflagration in areas where the flame is quasi-laminar

(near the ignition end). Figure 6.18 also illustrates the capability of the dynamic FSD model in

accounting for both the temporal and spatial sub-grid flame wrinkling for the least and most

turbulent cases. It can also be concluded from Figures 6.15 and 6.17 that the higher peak

overpressure generated by configuration BBBS is a consequence of both the greater resolved

and sub-grid parts of the flame-turbulence interactions. As a matter of fact, the application of

a combustion test filter means the intrinsic link between the resolved and the sub-grid flame

surfaces.

6.3.1 LES regime of combustion

The Pitsch LES regime [35, 39] for turbulent premixed combustion is used here to characterise

flame-turbulence interactions in a deflagration event. Regime diagrams for RANS proposed

by Borghi [30] and Peters [34] generally use the physical quantities such as u′/sL and `0/δL

to indicate different regimes. The LES regime proposed by Pitsch and De La Geneste [35] is

constructed introducing the modelling parameters including the filter width ∆ and sub-grid

velocity fluctuation u′∆. Thus, it characterises the sub-grid turbulence-flame interactions and

provides insights into the modelling aspects.

As demonstrated in Section 2.1.2, the Karlovitz number may be evaluated using the laminar

flame scales and sub-grid velocity fluctuations u′∆ as

Ka =

√
δL
s3
L

ε =

√(
u′∆
sL

)3 δL
∆

(6.8)

where ε is the viscous dissipation rate, and u′∆ corresponds to the sub-grid velocity fluctuations

at the flame filter scale. Following Wang et al. [53] and Vermorel et al. [99], it may be scaled

from the LES grid filter scale ∆ as

u′∆ = u′
∆

(
∆/∆

)1/3
(6.9)

using the fluctuations at the flow filter scale u′
∆

. It may be computed as [99]

u′
∆

=
νt

Cs∆
(6.10)
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where the eddy viscosity νt is estimated from the Smagorinsky model [42, 60]

νt = (Cs∆)2
√

2S̃ijS̃ij = (Cs∆)2

√
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)2

(6.11)

Combining Eqs. (6.10) and (6.11) results in

u′
∆

= Cs∆

√
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)2

(6.12)

It should be noted that the Cs and u′∆ in Eqs. (6.9) and (6.12) must be positive to ensure the

validity of evaluating Ka using Eq. (6.8). However, the application of the dynamic Smagorinsky

model may result in negative Cs caused by the negative eddy viscosity µt in certain regions of

the flame. As a matter of fact, negative eddy viscosity is associated with backscatter where

energy from the sub-grid scales transfers to the resolved scales of motions. On the other hand,

negative eddy diffusivity for scalars is related to counter-gradient turbulent diffusion. According

to Veynante et al. [171], high heat release rates at the flame front lead to significant dilatation

and pressure gradients, promoting the counter-gradient diffusion. It is expected in the present

test cases from the numerical point of view [66]. Thus, simulations of constant Cs = 0.07 are

performed here for evaluating the LES regime diagram to avoid the issue of negative µt.

Figure 6.19 shows the location of the present simulations in the LES regime diagram

(constructed based on [144]) throughout the deflagration. Due to the nature of the transient

flame propagation, an averaged Karlovitz number is extracted from the computational nodes

in the filtered flame front (0.05 < c̃ < 0.95) at each time step. The regime plot ranges

horizontally resulting from the uniform grid (hence the filter width) within the chamber. Sub-

grid combustion takes places in the thin reaction zone when Ka > 1, and it lies in the corrugated

flame regime for Ka < 1. Further increase in Karlovitz number (Ka > 100 or Kaδ > 1) would

bring the flame into the broken reaction zones (not shown in Figure 6.19), and some numerical

methods designed for thin fronts may become inappropriate [39]. Another critical length scale

corresponding to the smallest size of an eddy that can cause flame front wrinkling is the Gibson

scale [36]:

`G =
s3
L

ε
=
s3
L∆

u′∆
3 (6.13)

Combining Eqs. (6.8) and (6.13) with the condition of ∆ = `G gives the line of Ka−2 = ∆/δL
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in the LES regime diagram (Figure 6.19). Under the constant filter width, flame wrinkling is

controlled by the Karlovitz number. The thin reaction zone regime is of the particular interest

in which most practical premixed combustion devices are operated [39]. As illustrated by Pitsch

[39] and Fiorina et al. [144], on the left-hand side of the ∆ = `G line, the flame front wrinkling

is fully resolved on the filter scale, while the right-hand-side of the ∆ = `G line indicates the

existence of the sub-grid scale wrinkling. Note that even when the flame wrinkling is resolved

on the grid, the current simulations will not enter the zone of resolved turbulence as the filter

width is still much larger than the Kolmogorov scale.
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Figure 6.19: LES regime diagram [144] for turbulent premixed combustion considering the
filtered flame front (0.05 < c̃ < 0.95) at various time instants - configuration BBBS. The colour
from dark blue to light yellow indicates the time advancement during the flame propagation.

Figure 6.19 also indicates the locations of the flame leading edge in the regime diagram.

Since the filter width is constant in the simulation, obstacles induce a continuous growth in

the flame Karlovitz number, causing its positive movement in the diagram. It is evident that

the flame wrinkling is fully resolved at the LES filter before reaching the second baffle B2 due

to the low turbulence intensity. This indication in the regime diagram reasonably agrees with

the computed low sub-grid wrinkling factor (Ξ ≤ 1.15) prior to B2, as shown in Figure 6.17b.

However, the computed mean Ξ value is not exactly zero at the flame front during the period,
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as shown in Figure 6.18(bottom)b considering (i) there are uncertainties in the estimation of

u′∆ for the regime diagram; (ii) the test-filtering operation captures non-zero wrinkling of the

resolved progress variable field stretch. Nevertheless, since u′∆ is not directly related to the

model formulation of combustion, both the DFSD model and the regime diagram confirm the

weak contribution from the sub-grid scale reaction rate during the initial flame propagation. As

the flame propagates further, the sub-grid contribution of the flame wrinkling begins to grow,

and it impacts the propagation speed of the filtered flame front. The flame enters the thin

reaction zone regime from the corrugated flamelets after passing the third baffle. Evidently, the

main pressure peak is reached when the flame is within the thin reaction zone regime, and the

substantial Karlovitz number indicates the intensive interaction of flow and combustion on the

smallest turbulent scales. Figure 6.19 also confirms that the deflagrating flame will not transit

to the broken reaction zone for the entire deflagration so that the filtered flame front retains its

flamelets-like structure. While the sub-grid scale wrinkling dominates in the turbulent stage of

the deflagration, the overall flame wrinkling is expected to be resolved to a larger extent with

the future increase in computational power. Hence, it highlights the importance of correctly

predicting the laminar flame propagation and the turbulence generated in the path of the

deflagration.

6.4 Comparative study of flow configurations

Detailed analysis of pressure trends and flame behaviours are only given for five configurations,

clustered into two families as shown in Figure 6.20. Each configuration has an associated

code representing the number and position of obstructions. For example, configuration BB0S

indicates baffles at the first two locations near the ignition end and a small solid square obstacle.

Family 1 intends to investigate the effects of increasing the number of baffle plates starting

from one baffle furthest from the ignition point (configuration 00BS, 0BBS and BBBS), while

family 2 is to study the impact of increasing baffle plates starting from one plate closest to the

ignition point (configuration B00S, BB0S and BBBS).

6.4.1 Combustion characteristics: family 1

Family 1 (Figure 6.20a) consists of configurations 00BS, 0BBS and BBBS with a progres-

sively increasing number of baffle plates that are positioned furthest from the ignition bottom.

Figure 6.21 presents the histories of overpressure at the base of the chamber from LES and

experiments for the configurations in family 1. Some data processing of raw experimental
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(a) Family 1 (b) Family 2

Figure 6.20: Configurations classified into two families.

pressure signals was conducted to facilitate the comparison against the numerical results. First,

pressure signals are aligned based on the peak overpressure for each realisation and are then

grouped in a statistical envelope, in order to perform averaging and to visualise the variation

in overpressure magnitudes for all the signals. Next, the mean pressure trace is plotted within

the envelope to view the pressure trend and mean peak overpressure from experiments. Lastly,

as there is a slight shift in time due to the variability in the ignition for each run, the variation

in the time to reach the peak (referred to as “time-to-peak”) is indicated in Figure 6.21. Ex-

perimental mean pressure trace is placed according to the averaged times taken to reach the

peak. Predicted LES pressure is also plotted to compare with the experimental data.
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Figure 6.21: Comparison of predicted and measured pressure-time traces for configurations
in family 1: (a) 00BS, (b) 0BBS and (c) BBBS. Mean experimental pressure signal ( ).
The range of time taken to the first peak overpressure in the experiment, tp,exp ( ).

It can be seen from Figure 6.21 that LES with the DFSD model is able to correctly

predict the trend and magnitude of overpressure compared with experiments. The calculated

time instant for the peak overpressure also matches the experiments well. Furthermore, the

predicted maximum overpressure is in good agreement with experiments. This is encouraging

because the peak pressure is one of the most important parameters used in the safe design
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of buildings and equipment. It can be observed that the trend of overpressure rise is similar

for all the three configurations in family 1. It is apparent that following ignition, the pressure

grows in a fluctuating manner but remains relatively low (less than 10 mbar) in the initial

period of the explosion. Then, it increases sharply up to the peak pressure and the process is

almost monotonic. Thereafter, the overpressure begins to drop, and it oscillates towards the

atmospheric pressure due to acoustics. It should be noted that considering the computational

time and practical importance, calculated magnitudes of subsequent weak pressure peaks are

not validated in the present study.

Figure 6.21 also shows the impact of the number of baffle plates and their positions with

respect to distance from the ignition bottom. Evidently from both LES and experiments,

increasing the number of baffles gives rise to increased turbulence, faster flames and shortens

the time to reach the peak pressure. Generally, the maximum overpressure also increases when

extra baffle plates are added from 00BS to BBBS. From experiments, the magnitude of the peak

pressure increases by about 52% when an additional baffle is added upstream of the third one,

i.e. from 00BS to 0BBS, which is also excellently reproduced by LES. Interestingly, although

configuration BBBS gives the highest overpressure level as expected, the relative growth is

considered small when the first baffle is added in configuration 0BBS. Changing from 0BBS to

BBBS, LES predicts an increase in peak pressure by around 18% while it is only 1.4% in the

experiments. It may reveal that the effect of the first baffle is not as significant as predicted

numerically. One possible interpretation is that the DFSD model tends to overestimate the

level of flame wrinkling in this case, while the influence of turbulence on the flame is practically

not that strong when the flame passes the first baffle. It also explains the slight advance in

the calculated time-to-peak for configuration BBBS compared with experiments. Nevertheless,

LES is able to mimic the pressure rise and fluctuation in the early stage of the explosion. It is

also satisfactory in predicting the peak overpressure, its time of incidence as well as pressure

gradient in all three configurations.

Flame acceleration is responsible for the rapid burning of the fresh mixture and the sub-

sequent rise in internal pressure in an explosion enclosure. It is known that the flow around

the obstacles results in an increase of flame surface and it can lead to flame acceleration. In

addition to the ‘geometrical’ factor, turbulence and eddies may also wrinkle the flame front at

the same time.

Locations of the midpoints of the three baffle plates (B1, B2, B3) and the central square
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Figure 6.22: Propagation speed of the flame’s leading edge from LES and experiments.
Configurations in family 1: (a) 00BS, (b) 0BBS and (c) BBBS.

obstacle (Sq.Ob.) are also annotated in the figure. Experimentally, flame displacements are

derived from the measured LIF-OH flame images. The speed of the flame leading point is

then computed knowing that the high-speed imaging system has a repetition rate of 5 kHz.

Numerically, it is calculated from the flame position identified by c̃ = 0.5.

Figure 6.22 displays the speed of flame leading point from LES and experimental measure-

ments. To understand the phenomenon and mechanism of flame acceleration, configuration

BBBS is taken here for the illustration. Throughout the explosion event, the flame front speed

increases significantly from ∼ 5 m/s close to the bottom end of the chamber to ∼ 140 m/s

near the top exit. Initially, the flame is laminar and expands hemispherically before touching

the side walls. Consequently, the flame front moves relatively slowly within the chamber until

turbulence develops. The leading-edge speed in the early stage is mainly determined by two

factors: (i) the laminar burning velocity of the fuel/air mixture, and (ii) thermal expansion

caused by the density difference between the unburned and burned gases. A slight increase

in flame speed can be observed as the flame propagates through the first baffle, B1. Flame

acceleration across B1 seems to be a more of a weak ‘geometrical’ impact on the flame surface,

compared to the effect of flame stretch due to turbulence. Flame speed remains relatively low

(less than 20 m/s) between B1 and B2 and starts to rise again when the flame moves through

B2. Interestingly, a noticeable decrease in flame speed can be observed right after the second

baffle from both LES and experiments. Around B3, flame starts to accelerate remarkably due

to the high turbulence level. A sudden drop in speed is then predicted by LES after wrapping

around the central obstacle and a similar trend is also present in the experimental measure-

ments. This is likely to be caused by the unavoidable lateral movement when interacting
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with the eddies and wake around the central obstacle. Thereafter, flame speed increases in a

quasi-steady manner towards the chamber exit, as predicted by LES. However, comparison

with experiments is not applicable in the region close to the open end. Notice that in spite

of the high congestion of obstructions, the flame front tends to decelerate after propagating

through each baffle plate mainly due to the lateral movement and interference from vortices

and eddies.

0 100 200
Flame position (mm)

1.0

1.2

1.4

1.6

1.8

〈 Ξ
〉 f

 (-
)

(a)

B3
Sq.Ob.

0 100 200
Flame position (mm)

(b)

B2
B3

Sq.Ob.

0 100 200
Flame position (mm)

(c)

B1
B2

B3
Sq.Ob.

Figure 6.23: Evolution of the mean sub-grid wrinkling factor 〈Ξ〉f from LES. Configurations
in family 1: (a) 00BS, (b) 0BBS and (c) BBBS.

Figure 6.22 also reveals the effects of baffle plates in this series of configurations. Comparing

configuration 0BBS and BBBS with the case of the single baffle, 00BS, it is noticeable that

increasing the obstruction frequency leads to greater flame propagation speed in the blow-down

region after the last obstruction. The kinks in the speed profiles are because of the temporary

slowdown of the flame front right before it encounters an obstacle. Globally, LES reproduces

the essential dynamic behaviours of the explosion such as flame acceleration and deceleration

in all three configurations very well. Slight deviations from the experimental measurements

can be noticed when the flame is downstream of the square obstacle in the blow-down region.

This may be partially due to the limited time resolution of high-speed images considering the

high turbulence and flame front speeds within the region.

Figure 6.23 gives the evolution of the flame wrinkling factor with respect to the flame front

position. It shows the close relationship between the obstructions and the sub-grid wrinkling

factor, and the increase in the obstacle frequency in this order promotes the continuous rise of

Ξ. Evidently, the sub-grid flame wrinkling only becomes significant when the flame passes an

obstacle. Downstream of the square obstruction, the wrinkling factor tends to stabilise for the

three configurations.
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6.4.2 Combustion characteristics: family 2

Family 2 consists of configuration B00S, BB0S and BBBS where baffles increase from 1 to

3 from the ignition end. The explosion characteristics of configurations in this family and

comparison with family 1 are discussed in this section.
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Figure 6.24: Comparison of predicted and measured pressure-time traces for configurations
in family 2: (a) B00S, (b) BB0S and (c) BBBS. Mean experimental pressure signal ( ).
The range of time taken to the first peak overpressure in the experiment, tp,exp ( ).

Figures 6.24 and 6.25 present the pressure history and flame front speed, respectively for

this family. Within the family, peak pressure increases with respect to the number of baffles and

its incidence time also advances. This is expected as additional baffles increase the turbulence

level and the interaction with the flame front, enhancing the burning rate as a result. Compared

to family 1, configurations B00S and BB0S have lower peak pressures than their counterparts

00BS and 0BBS where the same number of baffles are applied. It can be observed that for the

cases of a single baffle plate and a square obstacle, moving the baffle from B3 to B1 leads to

a ∼ 50% reduction in peak overpressure. This is reflected from both experiments and LES

although the peak pressure is somewhat overestimated in LES for case B00S. It reveals the

influence of the baffle position with respect to the square obstacle and ignition end.

Figure 6.25 proves that for the case B00S, the relatively large distance between the baffle

and square obstacle allows the flame to relaminarise before it reaches the central obstacle. This

results in a noticeable small increase in the pressure history after the flame passes the first

baffle. Encouragingly, LES is able to reproduce the first pressure peak in this case though there

is a slight time difference compared to the experiments. Similarly, for the configuration BB0S,

the separation between the second baffle and the obstacle allows the flame to relaminarise.

Therefore, it can be concluded that the distance between the baffle plate and the ignition

source controls the pressure level and the global flame propagation. It is worth mentioning
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Figure 6.25: Propagation speed of the flame’s leading edge from LES and experiments.
Configurations in family 2: (a) B00S, (b) BB0S and (c) BBBS.

that relaminarisation can occur in a deflagration if the distance between adjacent obstructions

is sufficiently large.
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Figure 6.26: Evolution of the mean sub-grid wrinkling factor 〈Ξ〉f from LES. Configurations
in family 2: (a) B00S, (b) BB0S and (c) BBBS.

Another interesting observation is that for the case BB0S only, there is a noticeable small

pressure peak when it is dropping following the main peak, at around 10 ms (Figure 6.24b).

The weak peak has been found to occur when the flame is located between the central obstacle

and the chamber exit, which is also reproduced by LES. From the numerical perspective, the

instantaneous increase in overpressure can be reflected by the sudden rise in the flame wrinkling

factor or global burning rate within the chamber. On the other hand, there could be trapped

unconsumed fresh gases upstream and downstream of the obstructions after propagating past

them, and the combustion of these may be a contributory source of turbulence depending

on the configuration. Therefore, the subsequent consumption of a relatively large amount of

trapped unburned mixture may contribute to the weak overpressure rise after the main pressure
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peak in configuration BB0S. However, further experimental and numerical investigations of

flow and flame structures around this weak peak are needed for a complete explanation.

Figure 6.26 shows the averaged sub-grid wrinkling factor as a function of the flame front

location, indicating the dynamic nature of flame/turbulence interactions. The level of wrinkling

generally increases when the flame leading edge encounters a solid obstruction. Figure 6.26a

illustrates the phenomenon of flame relaminarisation associated with the configuration B00S

as the sub-grid wrinkling drops between the separate obstacles, revealing a decrease in the

contribution of the SGS turbulence on the total reaction rate. The peak values of the wrinkling

factor (typically after the square obstacle) reflect the relative magnitudes of the maximum

overpressure for the three cases.
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Figure 6.27: Summary of the time taken to reach the main pressure peak from experiments
and LES for 8 configurations.

The performance of the current computational model in a range of obstacle scenarios may

be evaluated by a critical parameter, namely the main peak overpressure. Figure 6.27 shows

the time taken to reach the main peak overpressure extracted from the experimental and LES

results. The calculated times to peak are within the range of experimental errors, and the

largest deviation occurs for the configuration BBBS where the prediction is ∼11% ahead of

the experimental average. Figure 6.28 shows the magnitude of the pressure peaks from LES

and experiments. The predictions of configuration 00BS, B0BS and 0BBS are most consistent

with the experiments and the relative error is less than 7%. The trend of maximum pressure
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Figure 6.28: Summary of the magnitude of the main pressure peak at the base of the chamber
from experiments and LES for 8 configurations.

corresponding with configurations is also correctly captured by LES. Notable discrepancies are

found in cases B00S and 0B0S where they are overestimated by ∼ 20 mbar. It is noted that

slightly over-predicted pressure peaks are also present in several other configurations (e.g. 000S

and BB0S). This may be partly due to the non-inclusion of the chamber heat loss as a result

of the adiabatic boundary condition on the walls of the chamber. However, as the flame/wall

interactions and heat transfer in a highly unsteady explosion event are not well understood,

the present treatment is thought to be effective.

Comparing Figures 6.27 and 6.28 reveals that the time to peak and the magnitude of the

pressure peak are not always negatively correlated. For instance, the maximum pressure of the

case 0BBS is almost twice that of BB0S, but the incidence time for the latter is more than 2 ms

faster, as indicated by both LES and the experiment. This may be explained by the difference

in the flame front location where the main pressure peak is reached. The study of obstacle

arrangement within the chamber (Figure 6.28) also shows that the optimal case for producing

internal pressure is the BBBS configuration which has three baffles and a square obstacle. In

this case, the flame stretches to a very high level as it passes the three successive baffles, which

is a result of the high level of turbulence caused by the baffle plates. The progressive increase

in burning rate leads to continuous flame acceleration and considerable pressure build-up.



Chapter 7

Results and Discussion: Hydrogen

This chapter mainly presents the results using hydrogen as the fuel considering its speciality

as a fuel and the growing need of evaluating hazards in accidental hydrogen explosions. The

study focuses on the influence of obstacle number, location and size on the critical combustion

parameters and flame characteristics. Another investigation is the impact of fuel type where

the results of methane, propane and hydrogen are compared.

Table 7.1 displays a total number of eleven configurations classified into 6 groups to facilitate

the analysis of the impact of obstructions. Groups 1-4 are used to investigate the influence

of the turbulence-generating baffle plates, while groups 5 and 6 intend to examine the impact

made by changing the size of the central obstacle. This classification of flow configurations is

made to represent various means of blockage including the number and location of the baffles as

well as the size of the solid central obstacle. Computational settings for the lean hydrogen/air

deflagration (Φ = 0.7) are same as the base simulation for propane (see Table 6.4) with the

different thermochemical properties. The laminar burning velocity and flame thickness are set

to s0
L = 125 cm/s [166] and δ0

L = 0.12 mm [141], respectively.

7.1 Qualitative study

The physical phenomena and the typical flame behaviours behind the hydrogen-air deflagration

are discussed in this section using configuration B0BS as an example. Figure 7.1 shows the

shape of the typical hydrogen-air explosion flame extracted experimentally and numerically

for configuration B0BS. The reaction zone is marked using a sequence of high-speed images of

LIF-OH in the experiment [127], which is indicated using the contour of c̃ numerically from

LES. Evidently from Figure 7.1, LES is able to reproduce both the flame structure and the

global propagation speed. It can be noticed that the flame shape continuously changes during
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Table 7.1: Configurations classified into groups to study the influence of obstructions

Group Description Configuration

1
Baffles are progressively increased and
kept furthest from ignition end

00BS, 0BBS, BBBS

2
Baffles are progressively increased from
ignition end

B00S, BB0S, BBBS

3
Two baffles are positioned at different
stations of the chamber

BB0S, B0BS, BBBS

4
One baffle is positioned at a different
station of the chamber

B00S, 0B0S, 00BS

5
Central obstacle size increases with all
three baffle plates present

BBB0, BBBS, BBBL

6
Small or large central obstacle without
any baffle plates

000S, 000L

the explosion. Initially, the flame is laminar and expands hemispherically before impinging on

the first baffle plate. It penetrates the grid and separates into four fingers primarily resulting

from the ‘geometric’ stretch caused by the strips of the baffle plate. Then, they quickly merge

with each other due to the lateral spread of the flame. Meanwhile, the surface area of the

flame tends to decrease before reaching the next grid. The flame then jets through the gaps

of B3 and immediately strikes the square obstacle. It can be seen that the flame front is very

much corrugated when interacting with the obstacle. After passing the last obstruction (square

obstacle), the flame is significantly wrinkled (t = 4.4 ms of the LIF-OH images) and propagates

towards the chamber outlet. The blockage introduced by the central obstruction also leaves

a small amount of unburned mixture behind it when wrapped by the flame front. It is then

consumed when the leading flame point is further downstream, as indicated by both high-speed

and LES images. It can be noticed that the flame spreads faster in the upper part of the

combustion chamber. This is due to the increased flame distortion caused by the interaction

with the upstream obstacles.

Figure 7.2 shows the calculated overpressure distribution along the axial direction on the

mid-plane of the chamber for the configuration B0BS. The pressure has been found to be nearly

uniform on the xy-plane (i.e. cross-section) of the chamber. During the explosion process,

the magnitude of the internal pressure rises as well as its spatial range of influence, which is

approximately the region of the burned gases. Note that the wall pressure (downstream of the

central obstacle) measured in the experiments is consistently lower than the base and it may

suggest that a pressure gradient exists within the chamber [156]. This is further confirmed by

LES with a negative pressure gradient vertically along the chamber, which drives the explosion
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Figure 7.1: Comparison of H2 flame propagation between simulations and experiments for
configuration B0BS. Top: LIF-OH high-speed images from the experiments [156]. Bottom:
LES flame images contoured by c̃. t0 is set to match the position of the flame leading point
with the high-speed image. Time intervals between successive LES images are kept the same
as the experiment.
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gases out across the outlet. A large pressure drop to atmospheric level due to venting can be

found near the exit of the combustion chamber. Furthermore, both the numerical (not shown

here) and the experimental results [156] confirm that the two pressure probes on the chamber

base and on the wall downstream of the central obstacle have given similar pressure patterns

in all the test cases. Therefore, the analysis and discussion of the rest of this paper will focus

on the pressure at the bottom of the vessel.
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Figure 7.2: Overpressure distribution along the axial direction on the mid-plane of the
chamber (y = 14 mm from the centre) for configuration B0BS at various times. Positions of
the first and the third baffle plates (B1 and B3) and the central square obstacle (Sq.Ob.).

Figure 7.3 shows the flow dynamics and flame-flow interactions in the hydrogen explosion

for the configuration B0BS extracted from LES. The evolution of the flame is plotted by

the iso-line of c̃ = 0.5, and the turbulence level may be seen by the vorticity contour. The

recirculation zones and the turbulence level may be seen from the vorticity contour and the

flame front is defined using the iso-line of c̃. As demonstrated earlier, the presence of obstacles

may greatly promote the combustion rate and significantly increase the explosion overpressure.

The obstacles can induce vortices and turbulence of various length scales and strength. For

instance, at t = 2.2 ms, weak recirculation regions behind the downstream obstacles can be

observed even if the flame front is only interacting with the first grid. The degree of turbulence

in the wake area of B3 and Sq.Ob. gradually becomes stronger with the rapid approach of

the flame front. Intense flame-turbulence interactions make the flame surface wrinkle. As

can be seen from t = 3.8 ms in Figure 7.3, it not only speeds up the flame but also creates
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more turbulence. Note that even in the downstream area of the last obstruction, the fast

explosion is sustained by the continuous interactions between the propagating flame front and

the generated turbulence in this region. As hydrogen explosions are usually rapid and highly

unsteady, LES proves itself as a valuable tool in visualising the entire explosion process and in

helping to understand its underlying physics.

Figure 7.3: Numerical snapshots of the flame front represented by the iso-line of c̃ =
0.5 with vorticity contours for configuration B0BS. Time instants correspond to t =
0.1, 2.2, 3.1, 3.8 and 4.1 ms (from left to right).

7.2 Overview of overpressure prediction

Figure 7.4 shows the comparison of the maximum overpressure and its time of incidence between

LES and the experiments for all the configurations studied in this paper. It is clear that the

magnitude and timing of the peak pressure are strongly related to the configuration of the

explosion chamber. Maximum pressure can increase by up to 400% from less than 200 to

∼ 1000 mbar changing from the configuration 000S to BBBL when the VBR increases from

1.15% to 6.44%. It is important to realise that a real explosion in hydrogen process plants is

likely to occur in much larger scales. Thus, the generated maximum overpressure can be much

higher in larger-scale scenarios. As can be seen from groups 1 and 2, the more congested the

obstacles, the higher the overpressure peak it can reach. The position of the baffle plates also

plays a vital role in determining the maximum pressure, e.g. group 3 and 4. Generally, the
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peak pressure decreases when the grids are closer to the ignition source or large separation

distance is present between two successive obstacles. Results of groups 5 and 6 reveal that

the size or the blockage level of the central square obstacle significantly affects the pressure

magnitude.
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Figure 7.4: Comparison of the peak overpressure and its incidence time between the exper-
iments and LES for all studied configurations: (a) Group 1, (b) Group 2, (c) Group 3, (d)
Group 4, (e) Group 5 and (f) Group 6. Experimental mean values and variations (hollow
symbols with error bars of time to peak and maximum overpressure).

Overall, LES gives satisfactory results compared with experiments in terms of both the

timing and magnitude of the maximum overpressure. This implies that the applied DFSD

model successfully accounts for the flame wrinkling in a range of flow configurations with

various turbulence level. In terms of the overpressure magnitude, the numerical calculations

give excellent predictions for cases such as 0BBS, BBBS and BBBL. A small degree of over-

estimation can be seen on configuration BB0S, 0B0S and BBB0. The largest discrepancy

(absolute error) lies in the case 00BS where it is under-predicted by ∼ 250 mbar. Calculated

time taken to reach the peak pressure, tp,LES , is generally within or close to the range of the

experimental measurement for all the test cases. Experimentally, the mean time taken to reach

the peak overpressure varies approximately from 4 to 7 ms depending on the configuration. In
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general, one may expect that the greater the pressure peak, the shorter the time of occurrence.

It is true when the number of grids increases, i.e. group 1 and 2, and this effect can be explained

by the increased rate of flame propagation. However, there are some exceptions where the

relationship between the two is more complicated. For example, in group 3, the maximum

pressure of BB0S is only half of 0BBS, but its time of incidence is obviously shorter than

the latter. As it can be seen, LES also shows a correct prediction behaviour consistent with

the experimental results. Note that the variation in the timing and magnitude of the peak

overpressure does exist in the experimental measurements, e.g. a comparatively wide range of

tp,exp for the configuration 000S. Considering that LES results are from a single realisation,

factors including the initial turbulence level, numerical schemes and thermochemical properties

of the fuel can affect the results to an extent. Thus, with the current modelling setup, the

discrepancies shown in Figure 7.4 are thought to be acceptable. In general, all trends seen in

experiments for key parameters such as peak pressure and time to peak are predicted reasonably

well. This study, therefore, reveals the capability of the developed computational setup in

capturing crucial explosion characteristics and calculating these critical design-related factors

for a range of obstacle arrangement.

7.3 Effect of obstruction arrangements and size

This section focuses on presenting and analysing the impact of the number and location of

obstacles on the hydrogen-air explosion characteristics. Results of group 1 to 4 are discussed here

with a different arrangement of turbulence-generating baffle plates (or grids). All configurations

in these groups have a small square obstacle downstream of the grids.
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Figure 7.5: Comparison of overpressure between LES and experiments. Mean experimental
signal ( ). The variation in tp,exp ( ). Configurations in group 1: (a) 00BS, (b) 0BBS
and (c) BBBS.
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Figure 7.6: Comparison of flame propagation speed between LES and experiments. Configu-
rations in group 1: (a) 00BS, (b) 0BBS and (c) BBBS.

Figures 7.5 and 7.6 show the numerical and experimental overpressure-time traces and

flame front speeds for the configurations in group 1. It is apparent that the introduction of

more obstructions in the path of the flame propagation increases the overall turbulence level

generated within the chamber. Note that the addition of baffle plates increases the VBR of

the chamber. Therefore, the cause for the increased overpressure is expected from the more

intensive interactions between the propagating flame front and the extra obstructions. Both

LES and experiments indicate that adding another grid to the case 0BBS (i.e. changing from

0BBS to BBBS) does not significantly increase the overpressure peak. This may reflect the

weak effect of having the lower grid compared to the other two. Figure 7.6 indicates that

adding additional grids also contributes to the higher flame speed in the region downstream of

the central obstruction.

Computed maximum pressures are consistent with the experimental results for most of the

cases. However, an apparent underestimation has been found for configuration 00BS, where it

is ∼ 250 mbar less than the mean experimental value. A closer look at the pressure trace reveals

that the early-stage overpressure matches well with the experiment despite the under-prediction

of the peak. Further investigation shows that the flame wrinkling factor in the turbulent stage

of the deflagration is apparently lower than configurations such as 0BBS considering that their

peak pressures are of similar values. The lack of predicted flame wrinkling is responsible for

the under-prediction in this case.

Figures 7.7 and 7.8 present the pressure and flame speed evolutions for group 2 config-

urations. Compared with group 1, here obstruction grids are added starting closest to the

ignition end. In this order, maximum pressure almost doubles when an additional grid is
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Figure 7.7: Comparison of overpressure between LES and experiments. Mean experimental
signal ( ). The variation in tp,exp ( ). Configurations in group 2: (a) B00S, (b) BB0S
and (c) BBBS.
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Figure 7.8: Comparison of flame propagation speed between LES and experiments. Configu-
rations in group 2: (a) B00S, (b) BB0S and (c) BBBS.

placed. Comparison between the overpressure history and the corresponding flame speed (e.g.

Figures 7.7 and 7.8) indicate that high overpressure is commonly accompanied by a large flame

propagation speed. Both numerical and experimental flame speed results have shown that the

flame front is generally accelerating during the explosion process and it is responsible for fast

burning rate and subsequent rise in the internal pressure.

The exact mechanism of flame acceleration due to obstacles and confinement is complex.

It may involve several types of flow instabilities such as the well-known RT instability [112].

Furthermore, self-acceleration resulting from the intrinsic wrinkling of expanding laminar flame

[112] may be present in the early development and quasi-laminar stage of the explosion. It is

noted that LES mesh does not resolve the real flame front and no models are currently available

for these instabilities [134] of the laminar flame, as they are physically not well understood.

However, for all the test cases considered here, the effect of obstacle-generated turbulence is
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so dominant that the influence of the flame surface growth due to these instabilities may be

neglected.

Overall, the prediction of flame velocity by large eddy simulations is in good agreement with

the experimental results. Resulted from the blockage and the high reactivity of hydrogen, the

flame acceleration is significant in the explosion. The velocity reaches ∼ 160 m/s for case BBBS

just downstream of the square obstacle, and the flame can accelerate up to about 300 m/s close

to the exit as predicted by LES. Note that the maximum viewable distance of the LIF-OH

system is about 150 mm in the experiment where measurements are available. The kinks in

the speed profiles due to the temporary slowdown of the flame front right before it encounters

an obstacle are also properly reproduced numerically. It indicates that the dynamic behaviour

of flame propagation is correctly captured by the developed model. Slight deviations from

the experimental measurements can be noticed when the flame is downstream of the square

obstacle in the blow-down region. This may be partially due to the limited time resolution of

high-speed images considering the high turbulence and flame front speeds within the region.

LES also has excellent performance in reproducing the overpressure trends and magnitudes.

It can be noticed (e.g. from Figure 7.7) that even details such as small turning points in

the pressure curves due to sudden changes in the burning rate are properly computed. This

reflects the main advantage of using the DFSD model as the model coefficient accounting for

the SGS flame wrinkling adjusts automatically in the simulation. It is particularly useful in the

present test cases since the level of the flame front wrinkling can vary significantly for various

configurations of obstacles. In addition, the flame wrinkling also evolves gradually in a single

case where the deflagrating flame may grow from early quasi-laminar to fully turbulent.
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Figure 7.9: Comparison of overpressure between LES and experiments. Mean experimental
signal ( ). The variation in tp,exp ( ). Configurations in group 3: (a) BB0S, (b) B0BS
and (c) 0BBS.
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Figure 7.10: Comparison of flame propagation speed between LES and experiments. Config-
urations in group 3: (a) BB0S, (b) B0BS and (c) 0BBS.

Figures 7.9 and 7.10 demonstrate the effect of alternating the position of two baffle plates.

Note that all the cases in group 3 have the same blockage ratio (i.e. VBR), only the position

of the grids varies. It clearly shows that higher overpressure is generated when the two grids

are closer to the central obstruction. Comparatively, for configuration BB0S, the separation

between the second baffle and the obstacle allows the flame to relaminarise. This is also the

case for B0BS where the flame decelerates before contacting B3 as also illustrated in Figure 7.3.

It can be identified by the lower flame speed just before the Sq.Ob. compared to the other two

configurations.

Figures 7.11 and 7.12 shows that the position of a single grid inside the chamber increases

the pressure to different degrees. For configuration B00S, due to the closeness of the lower

baffle plate to the ignition source and the small thickness of the grid (3 mm), the flame front

is only slightly stretched by B1 and then relaminarises as it passes. This is identified by a

noticeable bump in the pressure trace at ∼ 4 ms from both LES and experiments. It is also

interesting to see that adding B1 to case 000S does not alter the peak overpressure very much

(see Figure 7.4) even though the blockage ratio increases.

Figure 7.13 illustrates the effect of the single grid on the flame front structure just before

contacting the square obstacle. For both cases of 000S and B00S, the flame front essentially

travels to the square obstacle in a quasi-laminar manner. Although the greater vertical flow

velocity of the latter indicates that the flame does propagate faster, it also promotes the venting

from the top of the chamber. The lack of generated overpressure by adding the first grid may

also be explained by the efficient venting after the flame passes B1 because of the relatively long

separation distance between B1 and Sq.Ob. Accordingly, LES predicts a maximum overpressure
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Figure 7.11: Comparison of overpressure between LES and experiments. Mean experimental
signal ( ). The variation in tp,exp ( ). Configurations in group 4: (a) B00S, (b) 0B0S
and (c) 00BS.

0 100 200
Flame position (mm)

0

50

100

150

200

250

300

Fl
am

e 
sp

ee
d 

(m
/s

)

(a)

B1

Sq.Ob.

Exp
LES

0 100 200
Flame position (mm)

(b)

B2

Sq.Ob.

0 100 200
Flame position (mm)

(c)

B3
Sq.Ob.

Figure 7.12: Comparison of flame propagation speed between LES and experiments. Config-
urations in group 4: (a) B00S, (b) 0B0S and (c) 00BS.

of ∼ 200 mbar for both 000S and B00S despite that the experimental values are slightly lower.

A closer look at Figure 7.13 reveals that the flame structure substantially changes when

moving the grid from the lower (B1) to the middle position (B2). Since the axial velocity

(∼ 40 m/s .vs. ∼ 10 m/s) at the baffle openings increases in time, the Reynolds number

of the fresh gases based on the scale of the grid is higher. Furthermore, the formation of

a few disconnected flame islands behind the baffle strips confirms the presence of stronger

recirculation zone when flame-baffle interactions occur. This explains the more wrinkled

and corrugated flame front for case 0B0S. The significant growth of the flame surface area

before reaching the central obstacle also enhances their subsequent interactions, and the sub-

grid wrinkling automatically detected by the DFSD model will be higher. Consequently, the

computed maximum overpressure of the case 0B0S is more than twice of that in the case B00S

(∼ 400 mbar .vs. ∼ 200 mbar), as also proved by the experiments. Therefore, it may be
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Figure 7.13: Effect of the single grid (baffle plate) as illustrated by the flame front structure
(iso-lines of c̃ = 0.2 and c̃ = 0.8) before reaching the square obstacle for configurations: (a)
000S, (b) B00S and (c) 0B0S. Contours of negative axial velocity (w) indicate recirculation
regions in the flow.

concluded that the distance between the grid and the ignition source serves as a controller and

the generated overpressure is higher as the grid moves further downstream.

Figures 7.14 and 7.15 present the overpressure history for the configurations in groups 5

and 6. It is recalled that group 5 consists of the configurations BBB0, BBBS and BBBL in

which central obstacle starts from none to large. Group 6 constitutes configuration 000S and

000L where no baffles are present. As expected, increasing the size of the obstruction enhances

the peak pressure. For instance, Figure 7.15 shows that when the central obstacle is the only

obstruction in the chamber, the maximum overpressure is nearly doubled by using a large one.

In this case, the ABR almost doubled by changing from 000S to 000L and the VBR of the

latter (5%) is about four times of the former (∼1.2%).

Comparison between Figures 7.14 and 7.15 reveals that with the presence of the three

baffle plates, the maximum pressure is generally higher than the configurations with only the

central obstruction. It shows the effectiveness of the baffles plates in creating turbulence and
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Figure 7.15: Comparison of overpressure signals between LES and experiments for group 6
configurations. Mean experimental signal ( ). The range of tp,exp ( ).

the contribution of continuous flame-turbulence interactions towards the internal pressure of

the explosion chamber. The high turbulence intensity in the shear layer of the sharp-edged

baffle strips leads to the largely wrinkled flame front when reaching the central obstruction.

Figure 7.14 also shows that the maximum pressure increases by ∼30% when a small obstacle is

added to configuration BBB0. A further rise of ∼20% is seen when it is replaced by the large

one. Note that the overpressure generated by configuration BBBL is the highest among all the

cases and it can reach nearly 1000 mbar (1 bar). Again, LES successfully captures the details

on the pressure trace such as the sudden decrease in the overpressure at about 4 ms.

It is worth mentioning that both ABR and VBR are critical explosion-related parameters

[7]. However, as has been demonstrated, the explosion overpressure is also influenced by the

arrangement of obstacles in a multi-obstruction environment. Hence, LES is potentially a

useful tool in complex obstructed process areas where simple correlations using parameters
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(a) (b)

(c) (d)

Figure 7.16: Flame snapshots (contoured by c̃) of group 5 configurations (BBB0, BBBS and
BBBL) showing the effect of the size of the central obstacle on the flame propagation. (a)
t = 3.6 ms. (b) t = 3.7 ms. (c) t = 3.9 ms. (d) t ≈ tp,LES .
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such as the blockage ratio are not sufficient.

Figure 7.16 shows the later stage of the explosion extracted from LES for the configurations

BBB0, BBBS and BBBL at various time instants. It can be seen that the deflagrating flame

behaves differently based on the size of the obstacle at the central position. Without the

central obstacle (i.e. the configuration BBB0), the fingers-like flame fronts induced by B3

merge and it propagates towards the outlet. When an obstacle is placed, the flame tends to

wrap around it and get further distorted. Note that the size of the obstacle plays an important

role in the flame front structure. The passage between the side of the obstacle and the wall

of the combustion chamber becomes narrower when the size is larger, causing the flame to be

ejected from there at high speed. Furthermore, the large obstacle introduces a wider turbulent

wake behind it where the flame is significantly wrinkled. On the other hand, some unburned

hydrogen-air mixture is trapped when passing it, as shown at t = 3.9 ms from Figure 7.16.

The last snapshot of Figure 7.16 displays the flame location where the overpressure peaks

(t ≈ tp,LES) for each configuration in the simulation. It can be seen that when the maximum

pressure is reached, the flame is at a position closer to the outlet if the degree of obstruction

is increased. This may be due to the higher propagation speed of the flame front. For the case

BBBL, the peak pressure is reached when the leading edge of the flame is nearly at the exit of

the chamber. This is also confirmed in the experiments [156] that the flame location where the

maximum overpressure is reached depends on the obstacle arrangement, and it may be more

downstream when the overall turbulent intensity of the chamber is higher.

7.4 Comparison of three fuels

This section compares the combustion behaviours of individual fuels regarding the pressure

build-up within the chamber as well as the flame characteristics. The present study considers

three fuel/air mixtures: CNG (Φ = 1), LPG (Φ = 1) and hydrogen (Φ = 0.7), and the

first two are treated using their primary components, namely propane and methane in the

numerical simulation. Table 7.2 lists the laminar burning velocity and flame thickness used for

the combustion model, and all other numerical settings are identical for the three fuels.

Table 7.2: List of input laminar flame properties for the three fuel/air mixtures.

Fuel type s0
L (cm/s) δ0

L (mm)

CH4 36.0 [172] 0.41 [141]
C3H8 38.5 [160] 0.37 [47]
H2 125 [166] 0.12 [137, 141]
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While the actual deflagration depends on a range of conditions, the magnitude of peak

pressure may be ranked qualitatively for common fuels. Bjerketvedt et al. [7] carried out

experiments using stoichiometric hydrogen/air and several hydrocarbon/air mixtures and re-

ported that the explosion pressure is highest using hydrogen and lowest with methane under

the same experimental configuration. Considering that the rate of gas expansion predomi-

nantly determines the pressure rise in the deflagration, the influential factors of fuels mainly

lie in the intrinsic laminar burning velocity and the adiabatic flame temperature. Typically,

under the constant atmospheric condition (p = 1 atm and T = 298 K), the stoichiometric

CH4/air mixture has an adiabatic flame temperature of Tad ≈ 2225 K, and C3H8 has a similar

value of ∼ 2266 K, calculated numerically using the GRI 3.0 mechanism [173]. For a lean

H2/air (Φ = 0.7) mixture, Tad ≈ 2000 K [174, 175]. Note that the measured laminar burning

velocities have a noticeable margin in the literature. At standard atmosphere, stoichiometric

propane/air mixture can have s0
L ranging approximately from 35 to 45 cm/s [160, 161]. For

CH4/air mixtures, it may range from 32 to 40 cm/s [172], and the variation for the lean

H2/air mixture is even larger (100 to 150 cm/s) [166, 176]. However, qualitatively the flame

velocity for hydrogen is the highest followed by propane and methane, and the latter two have

similar magnitudes. The thickness of a flame has multiple definitions [167], and there are also

uncertainties in the measurement. In this study, the thermal flame thickness is used based on

the maximum temperature gradient in a planar laminar flame.

Results of six configurations with one and two baffle plates are presented here to reveal the

role of the fuel type in various flow scenarios. Figures 7.17 to 7.19 display the numerical and

experimental overpressure time traces for methane, propane and hydrogen, respectively. It can

be seen that LES appropriately estimates the overpressure trend and magnitude and reproduces

the influence of the obstacles for the three fuel/air mixtures. The maximum pressure of H2 is

an almost an order of magnitude higher than that of CH4 and C3H8 even at a lower equivalence

ratio of Φ = 0.7. For instance, overpressure rises to a maximum of ∼ 50 mbar and ∼ 80 mbar

for methane and propane, respectively for the configuration B0BS, while it reaches more than

700 mbar with hydrogen. Given that the burned gas temperature is, in fact, lower for hydrogen

compared with the other two fuels, the excessive generated pressure is mainly due to its higher

laminar flame speed. The higher gas velocity ahead of the flame enhances the venting rate,

however, the much more rapid consumption rate of the fresh mixture gives rises to the large

pressure rise.
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Figure 7.17: Computed and experimental overpressure traces using methane (Φ = 1.0) for
six configurations from (a) to (f).
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Figure 7.19: Computed and experimental overpressure traces using hydrogen (Φ = 0.7) for
six configurations from (a) to (f).

Also, the time taken to reach the main pressure peak depends on the fuel type. For the

studied configurations, the variation in computed tp,LES is 10−15 ms (Figure 7.17) for methane,

8 − 13 ms (Figure 7.18) for propane and 4 − 5 ms for hydrogen. Similar values of tp,exp can

also be found from the experiments, and it takes roughly two times longer for methane and

propane to attain the major pressure peak compared to the hydrogen cases. The LES-DFSD

approach also makes a reasonable prediction in the details of the pressure evolution. Take the

configuration BB0S, for example, there is a tiny pressure peak before the maxima at around

4 ms for hydrogen (Figure 7.19d), while it is not present for methane (Figure 7.17d) or propane

(Figure 7.18d). In contrast, a small peak after the maxima can be found at about 10 ms for

propane (Figure 7.18d) in the experiment, and it is also predicted numerically.

Figure 7.20 illustrates the flame structure when interacting with obstacles using the c̃

field extracted from LES. The cases of methane and hydrogen are considered here since the

propane/air flame behaves in a fairly similar manner as methane. Also shown in Figure 7.20

are the LIF-OH images for the flame front in the experiments, assuming that OH radical

adequately indicates the reaction zone. Due to the numerical filtering effect, the comparison

between the flame shapes from LES and experiments may not be straightforward. Thus, only

a qualitative investigation has been made to reveal the essential flame characteristics. Note

that the leading edges of the two flames have proceeded at the same distance from the square
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Figure 7.20: Comparison of numerical and experimental flames showing the effect of the
obstacle on the flame. Top: Configuration BB0S. Bottom: Configuration 0B0S. (a) methane
and (b) hydrogen. Contour lines in LES indicate the regions of 0.05 < c̃ < 0.95.
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obstacle as shown in Figure 7.20(top), however, the hydrogen/air flame (Figure 7.20(top)b)

seems to have consumed more of the unburned gases in the recirculation area compared with

methane (Figure 7.20(top)a). Although the hydrogen flame has a much higher inertia in the

axial direction due to the considerable propagation speed, the stronger turbulence motions in

the wake of the central obstruction enhance the flow-induced lateral movement of the flame.

The two separated flame fronts resulting from the blockage of the central obstacle tend to merge

faster in the hydrogen case (Figure 7.20(top)b). The LIF-OH images (Figure 7.20(top)a and

b) also confirm the more rapid consumption of the trapped unburned mixture when hydrogen

is used as the fuel. It is an indication of the more intensive vortex structures behind the

central obstacle. Figure 7.20(bottom)a and b further demonstrate that for the configuration

with a single baffle (i.e. 0B0S), the methane/air flame fingers merge at a slower rate than

that of hydrogen due to the less turbulent environment behind the baffle strips. The contours

of progress variable in Figure 7.20(top)a and b show isolated pockets of reactants trapped in

the burned gases behind the second baffle plate, and they contribute to the burning rate in

the later stage of the deflagration. There are considerably more reactant pockets in the case

of methane (Figure 7.20(top)a) compared with that of hydrogen (Figure 7.20(top)b). It is

again due to the more recirculating turbulent flows generated behind the baffle enhancing the

consumption of this trapped fresh mixture in the case of hydrogen.

Figure 7.21(left) shows the flame position computed by LES and that extracted from the

LIF-OH images. It can be seen that the overall prediction is satisfactory, but after the second

baffle plate, the LES overestimates the flame position to a small extent. The deviation between

the numerical and experimental results also comes from the initial condition in LES such as

the initial flame kernel size. Throughout the deflagration process, the hydrogen flame travels

much faster than methane and propane and reaches the chamber exit in about 4 ms. From the

slope of the position curves, the flames of methane and propane have almost the same velocity

after ignition, but the speed of the latter increases beyond the former after passing the first

obstacle. Interestingly, after passing the second baffle, the difference in the axial velocity of

the two flame leading edges is not obvious. It may result from the strong flame-turbulence

interaction in the lateral direction. The speed-up locations in Figure 7.21(left) reveals that the

hydrogen deflagrating flame not only propagates at a higher rate but also responds more to

the obstructions. It is due to the positive feedback loop regarding the obstacle-enhanced flame

propagation. A more rapid flame velocity of hydrogen would create stronger turbulent flows
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behind the obstruction where the interaction would also be more intensive.
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Figure 7.21: The influence of fuel type on the flame position (left) and sub-grid wrinkling
factor (right) for the configuration BB0S. Numerical flame leading edge is located at c̃ = 0.5
furthest from the ignition end. Averaged wrinkling factor 〈Ξ〉f evaluated within 0.05 < c̃ < 0.95.

Figure 7.21(right) presents the computed sub-grid wrinkling factor 〈Ξ〉f in the path of the

flame propagation. It is important to reiterate that in the LES-DFSD approach, Ξ represents the

level of flame-turbulence interaction at sub-grid scale, while the effect of large-scale turbulence

on the filtered flame is resolved on the mesh. The overall sub-grid wrinkling evolves following a

similar trend for the three fuels. As the flame is not yet wrinkled by turbulence motions before

encountering the first baffle, 〈Ξ〉f ≈ 1, and it grows between adjacent obstacles to account for

the unresolved flame surfaces. Passing the square obstacle, the mean sub-grid wrinkling factors

of CH4/air and C3H8/air flames tend to stabilise, while that of the H2/air flame drops towards

the chamber exit. The absolute value and the rate of change of 〈Ξ〉f are considerably larger

for the hydrogen/air flame at all phases of the deflagration. Especially in the later turbulent

stage, the hydrogen flame has a significantly higher mean Ξ of about 1.8, compared with 1.3

for propane and 1.1 for methane. Based on the definition of Ξ, one can relate the resolved

(ω̇res) and the total (ω̇tot) reaction rates as ω̇tot = Ξω̇res. Thus, it is useful to examine the

contribution of the resolved part of the combustion rate ηres as

ηres =
ω̇res
ω̇tot

=
1

Ξ
(7.1)

From Figure 7.21, it is clear that for the filtered hydrogen flame, a significant portion of the

reaction rate results from the sub-grid scale. It shows that only half of the reaction rate is

resolved on the grid when 〈Ξ〉f reaches 2.0. In contrast, most of the combustion rate (ηres ≈91%

for 〈Ξ〉f = 1.1) is resolved for methane even in the later turbulent stage. Furthermore, the

evolution of mean wrinkling factor reflects the higher sensitivity to the obstructions for the
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H2/air flame, indicating the stronger turbulence influence at the sub-grid scale.

For the present study, lean hydrogen/air flames produce significantly higher (more than six

times) maximum overpressure compared with that of stoichiometric methane and propane. The

hydrogen flame is also found to induce stronger turbulence in the recirculation areas behind

the baffle strips and central obstruction. It is due to the more intensive flame/turbulence

interactions at both the resolved and sub-grid scales when hydrogen is used as the fuel. The

LES-DFSD approach correctly captured the characteristics of flame and flow when using

different fuels, and it also achieved satisfactory predictions of pressure and flame position.



Chapter 8

Conclusions and Future Perspectives

8.1 Conclusions and present contributions

The present research work focuses on simulating transient turbulent premixed flames using the

LES-DFSD approach. The study is motivated by the fact that deflagrating flames typically

start being laminar and develop to fully turbulent. The level of flame-turbulence interactions is

strongly dependent on the surrounding obstructions and confinement. While applying algebraic

FSD models in LES is attractive, its satisfaction is often prohibited by the uncertainty of

determining the model parameters in the model. Hence, a more robust approach to evaluate

the model parameter is necessary for the successful modelling of a range of combustion scenarios.

The present research has implemented, tested and evaluated a dynamic FSD model for studying

propagating flames in the presence of solid obstacles.

The first investigation was to demonstrate the correct behaviours of the present FSD model

in terms of the flame propagation speed and the filtered flame thickness. For this purpose, a

series of 1-D laminar flame tests have been conducted where the effect of turbulence is absent.

The tests have shown that the present model formulation is able to recover the correct laminar

burning velocity. On the other hand, the filter width has been found to be a critical parameter

controlling the thickness of the numerical flame. The calculated laminar propagation speed

converged to the exact value as the filter size increases. It was also confirmed that the effective

filtered flame front described by the progress variable generally crosses nres grid points where

∆ = nres∆x. The 1-D test cases also revealed that the successful use of the FSD model requires

a sufficient flame resolution. For a typical LES grid, one should ensure that nres > 4, otherwise,

the filtered flame would be under-resolved, and consequently, the laminar flame propagation

cannot be recovered in the absence of turbulence.
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The LES-DFSD approach has then been applied to study the unsteady flame propagation

in a small-scale vented combustion chamber. The experiments have been performed at the

University of Sydney using three fuels, namely CNG, LPG and hydrogen, with the first two

treated as methane and propane numerically. Abundant and high-quality data of pressure

signals and LIF-OH flame images are also available from the experiment. The combustion

chamber contains three removable baffle plates and a central obstacle with a square cross-section.

A distinct advantage of the test set-up is the ability to provide various level of turbulence by

altering the obstacle frequency, location and size. LES results of overpressure and flame front

position have been compared with the experimental measurements to assess the capability of

the modelling approach and to give insights into the flame propagation process.

To lay the foundation for the subsequent numerical tests, a sensitivity study was conducted

using the stoichiometric propane/air deflagration in the configuration BBBS. It aims to examine

the influence of modelling factors including flame initiation, Smagorinsky constant, mesh size

and filter width on the LES results. The fact that LES cannot resolve a very small flame

kernel made it necessary to consider the appropriate approaches to initialising the simulation.

Four methods of combustion initialisation have been tested in the context of LES-DFSD: (i)

using a separate ignition model, (ii) start with a burned flame kernel with a filtered 1-D

flame solution as the c̃ profile, (iii) initiate a burned flame kernel with a unit step function

as the c̃ profile, and (iv) numerically ignite the gas by setting a region of c̃ = 0.5. It has

been found that the effect of ignition modelling mainly lies in the early quasi-laminar phase

of the deflagration. Furthermore, the timing of the main pressure peak is strongly linked

to the flame initiation, while its magnitude remains insensitive to an extent. In the early

quasi-laminar stage, the leading edge of the flame travels faster when starting with a burned

flame kernel than computing using an ignition model. However, the difference in predicted

flame propagation speeds is negligible when the turbulence effect becomes significant. The

Smagorinsky constant was found to have a moderate influence on the overpressure magnitude

especially in the later stage, although the propagation speed was fairly insensitive to the

parameter. On the other hand, the filter width of the flame should be chosen to ensure that

the filtered flame is sufficiently resolved. An under-resolved flame gives a much faster flame

propagation and higher peak overpressure, while they tend to converge when the filter width

increases.

After the sensitivity study, a qualitative comparison has been made between the LES
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and LIF-OH flame images for the stoichiometric propane/air flame. It showed the ability of

the present modelling approach in predicting the flame structure throughout the deflagration.

Clearly, LES results also helped to understand the mechanism of pressure build-up inside

the chamber by monitoring the evolution of both gas expansion and venting rates. It has

been demonstrated that flame-turbulence interactions due to obstacles play a critical role in

the deflagration, noting that the rectangular baffle plates are efficient turbulence generators.

Comparing the configurations 000S and BBBS, there was a strong flame wrinkling downstream

of the central obstacle for the latter case, resulting from the smaller and more intensive turbulent

structures in the second half of the chamber. Also, the DFSD model automatically captured

the evolution of the sub-grid wrinkling factor, and consequently a much higher pressure peak

is computed in the configuration BBBS. By constructing an LES regime diagram of turbulent

premixed combustion for the case BBBS, it was confirmed that the flame wrinkling is largely

resolved before reaching the second baffle. Furthermore, the overpressure peak was reached

when the flame front is within the thin reaction zone of the regime. Promising results such as

the peak overpressure and flame speed have been obtained for a range of obstacle configurations

using stoichiometric propane/air mixture. It proved the capability of the present numerical

set-up in reproducing essential features for transient flame propagation such as the flame

relaminarisation for certain configurations. The sub-grid wrinkling factor was seen as an

excellent indicator of the dynamic behaviours of the flame propagation.

The LES-DFSD approach has then been applied to study the hydrogen deflagration with

a total number of eleven flow configurations. Satisfactory agreements have been seen between

the LES and experiments regarding the timing and magnitude of the maximum overpressure.

The position of the baffle plates largely controls the level of flame-turbulence interaction. For

the configurations with the same number of baffles, the smaller separation distance between

obstacles leads to more intensive flame front wrinkling. One should note that a flame may

relaminarise in the cases where the distance between two adjacent obstacles is sufficiently large.

The first baffle plate has been found to have a relatively weak influence on the overall pressure

development. It is due to the closeness between the ignition point and the grid, leading to an

insufficient time for the turbulence to be created. A further investigation was carried out to

study the effect of the obstacle size. It showed that a larger square obstacle typically induces

higher peak pressure resulting from a greater level of blockage. It has also been demonstrated

that when the pressure peak is reached, the flame leading edge would be more downstream if
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a larger central obstacle was used.

Finally, the impact of the fuel type has been investigated using the three fuels, namely

methane, propane and hydrogen. In general, the effects of obstacle arrangement were similar

for all the fuels considered in this study. While the pressure traces and flame behaviours were

to be similar between methane and propane, hydrogen generated an order-of-magnitude higher

maximum pressure even with a lean mixture. The calculated sub-grid wrinkling factor and the

flame position tracking also revealed the higher sensitivity to obstructions when using hydrogen.

Both the LES and LIF-OH images illustrated the difference in flame structure between the

hydrogen/air and methane or propane/air deflagrations. In the test cases using hydrogen as

the fuel, the more rapid flame propagation was found to induce a stronger turbulence field in

the wake of the obstructions. Also, the individual flame fingers caused by the obstacle tended

to merge at a faster speed. LES results also confirmed the quicker consumption of the trapped

reactant pockets behind the obstructions in the hydrogen deflagration. Under the same mesh

resolution, the calculated sub-grid wrinkling factor for hydrogen was substantially higher than

that of propane and methane, indicating a considerable portion of the reaction rate at sub-grid

scale. Encouragingly, LES also captured the dynamics shown on the pressure curves for the

three fuels such as the sudden changes before or after the main peak for some flow cases.

One of the main contributions of the present research work is the implementation, testing

and validation of a dynamic FSD combustion model to evaluate the model coefficient on-the-fly.

Compared to the conventional algebraic closures where model coefficients are empirical and

constant, it has increased the capability of capturing the dynamic nature of flame-turbulence

interactions and the early quasi-laminar stage of the deflagration. The present study has also

helped to establish a good level of confidence in using the large eddy simulation technique for

transient turbulent premixed propagating flames in a series of flow configurations. It has also

identified the influence of a wide range of numerical factors such as methods for flame initiation

and turbulence parameters. The validated LES computation has enhanced the understanding

of the mechanisms of turbulence generation by obstacles and pressure build-up in vented flame

deflagrations. For the first time, a systematic study of a series of obstacle configurations and

fuel types has been carried out using the novel LES-DFSD approach for testing and performance

assessment. The satisfactory results indicate the advantage of using the present LES-DFSD

framework to understand and predict such unsteady combustion phenomena.
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8.2 Recommendations for future work

The present work is only considered preliminary to describe and predict more complex reacting

flows in practical engineering systems. Future validation work on the LES-DFSD approach

can involve the study of stratified combustion where a premixed flame occurs in a spatially

non-uniform mixture distribution. Stratification aims to reduce soot and fuel consumption in

practical combustion processes and is often encountered in real gas explosion scenarios. Another

validation could be larger-scale deflagrations where the scaling effect and model behaviours

are of the practical interest [141]. To achieve that, the in-house code needs to be extended to

include the capability of accounting for reaction at various mixture concentrations. It may be

realised through tabulated chemistry [144], or a simpler approach to relate the burning velocity

in the equation of progress variable with the local mixture equivalence ratio under the laminar

flamelet assumption [48]. In addition, the role of intrinsic flame instabilities [112, 177] could be

identified as they may be dominant in obstacle-free deflagrations where flame wrinkling due to

turbulence is considerably weak. While the exact contribution and mechanism of the intrinsic

instabilities remain unclear, they are very likely to be a sub-grid phenomenon in LES. A first

attempt could be to introduce a quasi-laminar burning velocity or to include a corresponding

wrinkling factor to take into account the resulting increase in the flame surface [177].
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Appendix A

Dynamic Smagorinsky Model

The eddy viscosity µt is a function of the filter size and the strain rate

µt = ρC∆
2
∣∣∣S̃∣∣∣ (A.1)

where
∣∣∣S̃∣∣∣ =

√
2S̃ijS̃ij and C is a dimensionless coefficient. In the classical model, C is specified

a priori and is often written as the Smagorinsky coefficient Cs =
√
C.

The dynamic procedure [86] uses local instantaneous flow conditions to calculate the

Smagorinsky model coefficient dynamically. The procedure involves the application of a test

filter to the velocity field to extract information from the smallest resolved scales which is then

used to calculate the coefficient. The application of a test filter to the filtered Navier-Stokes

equations leads to a test-level SGS stress tensor

Tij = ̂ρuiuj − 1/ρ̂
(
ρ̂ui ρ̂uj

)
(A.2)

The resolved turbulent stresses (in the advection term), or Leonard stresses

Lij = ρ̂̃uiũj − 1/ρ̂
(
ρ̂ũiρ̂ũj

)
(A.3)

can be calculated from the filtered velocity filed. Germano [178] related Lij to the two SGS

stress tensors through the identity

Lij = Tij − τ̂ sgsij (A.4)
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which can be used to derive an expression for C∆2 in Eq. (A.1)

C∆
2

= − LijMij − 1/3LllMmm

2 (MijMij − 1/3MllMmm)
. (A.5)

Here

Mij = α2ρ̂|̂̃S|̂̃Sij − ρ ̂|S̃|S̃ij , (A.6)

where

∆̂ = α∆ (A.7)

is the ratio of the test and grid filter widths and is usually taken as 2. The tensors are contracted

with Mij rather than Sij as suggested by Lilly [179]. The value for C∆
2

is then substituted

into Eq. (A.1) to give the eddy viscosity µt.

The Smagorinsky model with the dynamic procedure used to calculate C∆
2

has the correct

behaviour near a wall and in laminar flow and allows energy backscatter. Values of the model

coefficient tend to fluctuate considerably in space and time, and some form of averaging is

usually required to avoid stability problems.
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