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Abstract

Fault diagnostic methods aim to recognize when a fault exists on a system and to identify
the failures which have caused it. The fault symptoms are obtained from readings of sensors
located on the system. When the observed readings do not match those expected then a fault
can exist. Using the detailed information provided by the sensors a list of the failures that
are potential causes of the symptoms can be deduced. In the last decades, fault diagnostics
has received growing attention due to the complexity of modern systems and the consequent
need of more sophisticated techniques to identify failures when they occur. Detecting the
causes of a fault quickly and efficiently means reducing the costs associated with the system

unavailability and, in certain cases, avoiding the risks of unsafe operating conditions.

Bayesian Belief Networks (BBNs) are probabilistic graphical models that were developed for
artificial intelligence applications but are now applied in many fields. They are ideal for
modelling the causal relations between faults and symptoms used in fault diagnostic pro-
cesses. The probabilities of events within the BBN can be updated following observations

(evidence) about the system state.

In this thesis it is investigated how BBNs can be applied to the diagnosis of faults on a
system with a model-based approach. Initially Fault Trees (FTs) are constructed to indicate
how the component failures can combine to cause unexpected deviations in the variables
monitored by the sensors. The FTs are then converted into BBNs and these are combined
in one network that represents the system. The posterior probabilities of the component
failures give a measure of which components have caused the symptoms observed. The tech-
nique is able to handle dynamics in the system introducing dynamic patterns for the sensor

readings in the logic structure of the BBNs.

The method is applied to two systems: a simple water tank system and a more complex fuel
rig system. The results from the two applications are validated using two simulation codes
in C++ by which the system faulty states are obtained together with the failures that cause
them . The accuracy of the BBN results is evaluated by comparing the actual causes found

with the simulation with the potential causes obtained with the diagnostic method.

Key Words: System Fault Diagnostics, Model-based Diagnosis, Bayesian Belief Networks,

Fault Tree analysis.
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Chapter 1

Introduction

System Fault Diagnostics represents the process of the identification and isolation of under-
lying causal faults from a number of effects that are observed on a monitored system [1].
In recent decades, the growing complexity of modern systems has been the motivation for
research to study automated diagnostic methods. This is particularly necessary for systems
in which safety is important as in the airline industry, power and nuclear plants and for

chemical processes.

1.1 Fault Detection and Diagnosis

Systems cannot be perfectly reliable. It can be assumed that at some point any system will
encounter some sort of fault. A Fault is defined by Isermann [2] as a deviation that prevents
the system from fulfilling a particular purpose The general supervision process is illustrated
in the following phases:

- Fault Detection: When a fault occurs during system monitoring a fault message should be
given. The presence of a fault is normally detected through the analysis of signals that come
from sensors located on the system. These sensors are usually located at critical points in
the system and they measure a number of variables that describe the process function. So,
if the signal behaviour deviates from the expected one in the normal operating conditions,
a fault is likely to have occurred.

- Fault Diagnosis: The cause of the fault should be diagnosed and the failure isolated. This,
in principle, could be done manually, inspecting the system components in search of a failure,
but it is not always possible. The system may be large, constituted by many sub-systems
and components, or complex, so that the inspection is difficult and time consuming. In

addition, the fault may represent a hazard and a diagnosis is required quickly. In these
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cases, an automated diagnostic system is needed. This is usually a method that uses some
mathematical modelling technique or logical thinking and it is able to predict or give an
indication of the causes of the fault.

- Fault FEvaluation: After the cause of the fault is localised, an assessment is carried out to
understand how the failure affects the system. Faults can be classified depending on the risk
they represent.

- Decision: At this stage, considered the type of fault encountered, a decision is made and
the system can be either stopped from operating or the operating mode can be changed. In
the latter case, the process can continue and repair is delayed. If operation is stopped, the
last phase of the process is the:

- Fault Elimination: The fault is eliminated either by repairing the component that has
caused it or replacing it with a working component and the system can return to its normal
functioning.

The aim of a fault diagnostic system is to tell if a fault has occurred and, if this is the case,

to diagnose the cause (or causes) of the malfunctioning.

1.2 Fault Diagnostic System Characteristics

The efficiency of a method is measured based on several factors. Venkatasubramanian et al.
3] [4] [5] and Price [6] provide two lists of characteristics that a diagnostic system should
have. Both of them take into account the detection and diagnosis time. A quick response
from a diagnostic system, in the case of failure, can be critical, for example, in a chemical
process, where a leak can represent a risk for the people and the environment. Reducing the
time taken to diagnose a fault may also reduce the costs of inoperative time for the system.
For example, in the airline industry, the diagnosis of a failure in an aircraft before the flight

can cause delays and cancellations.

Other factors regard the diagnostic method itself as a system, for example maintainability,
efficient construction, minimum effort from the user and optimal cost/benefit ratio. Prob-
ably the most important criteria concern the accuracy of the results of the method. The
diagnosis, in principle, should be able to identify exactly the failure, or multiple combina-
tions of failures, that have caused the fault. In reality, the diagnosis will provide a set of
hypotheses and the real cause should be one of these. The diagnostic method should also be
able to recognise any type of failures, including unknown malfunctioning that have not been
observed before, this characteristic is called novel identifiability [6]. Moreover, the method

should be adaptable to changes in the system, such as changes in the environmental condi-
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tions or in the process variables.

The importance of these factors will depend on the particular system application and differ-
ent methods may meet a criterion better than others, therefore produce better results when
applied to particular systems. In general there is not a general diagnostic system that meets

all the requirements that were mentioned.

1.3 Fault Diagnostic Approaches

The type of diagnostic reasoning can be identified, depending on the approach taken to the

problem, as: case-based, model-based and rule-based.

Case-based diagnostic systems rely on historical data known about previous actions taken
for specific fault symptoms. So it uses acquired experience to solve new problems [7]. One
important characteristic that a case-based reasoning system depends on is the experience
gained, that is the cases available from the acquired data. Experience should be compre-
hensive and sufficient to cover all possible situations of failures. This can be difficult to
obtain for new systems. Moreover, for systems that require safety, such as nuclear plants
or aircrafts, there can be a lack of knowledge regarding some extraordinary events due to
their infrequent occurrence. On the other hand, case-based reasoning can be useful when
the understanding of the system is poor and knowledge of previous cases and actions taken

is adequate.

Model-based diagnostics relies on a more theoretical understanding of the system, the so
called systematic knowledge [8]. This is the knowledge typically obtained from the engineers
responsible for designing and building the system and it is related to the physical function-
ing of the components that constitute the system. In model-based diagnostic reasoning, a
theoretical model of the system is built and used to compare its actual behaviour with the
expected one. If the system shows some deviation from the model, then the system may be
faulty and a list of potential causes is provided analysing the actual functioning of the system
and how it should work. A model created for a particular system usually cannot be used for
other systems and it is also difficult to adapt to changes in the system itself. For this reason,
a model-based approach is considered expensive. Model-based approaches can be divided
into qualitative and quantitative models. In [3], quantitative models are considered those
who rely on a deep physical understanding of the process and that describe it in terms of the
quantitative input and output variables. Qualitative models, instead, describe the process

in qualitative terms, considering a symbolic representation of the system variables.
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Rule-based diagnostic reasoning makes use of “IF condition THEN consequence” statements
that regards the fault propagation process [9]. The knowledge that is better suited for
this type of diagnostic is the expert knowledge, which is normally acquired by performing
maintenance and it is expressed in the form of cause-effect associations. A diagnostic system
that is rule-based will comprise a set of rules and an inference method that derives a decision
by analysing and combining such rules. This approach is considered straightforward because
each rule regards a different piece of information on the system, such as the relation between
symptom and fault or between component and sub-system. On the other hand, rule-based
reasoning can be difficult to implement for large systems as the number of rules needed to

perform fault diagnostic becomes larger.

1.4 Methods used in Fault Diagnostics

Diagnostic systems make use of several methodologies. The same method can be applied
with different approaches. In this section Failure Modes and Effects Analysis (FMEA) and
Fault Tree Analysis (FTA) are briefly introduced. Bayesian Networks are then discussed in

more details.

1.4.1 Failure Modes and Effects Analysis

FMEA is a qualitative procedure for the analysis of the failure modes of a system and the
determination of their causes and effects [6]. The analysis is carried out considering the effect
of each individual potential component failure mode on the system, the component failures
can be ranked according to their effects on the functioning of the system. This can be used
to determine critical features in the system design or to identify the cause of a fault given
the observed effect. A quantitative analysis can also be performed when reliability data are

included.

The main limitations of this method are represented by the fact that generally single faults
are considered in the system as engineers carry out the inspection and record the informa-
tion and this can be a time consuming process. For this reason FMEA can be difficult to
apply to fault diagnostics [10]. However, the fact the FMEA remains one of the most widely
used approaches is motivated by its straightforward procedure. This technique is also used
by experts to help identify potential failure modes and weak component or sections in the

system.
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Recent research has moved to the direction of automated FMEA and extending it to deal
with multiple-failure situations [11]. Generating an FMEA automatically is not only faster
but it also allows the analysis of multiple faults. Automated FMEA has been applied to

electrical automotive systems [12] and for software FMEA [13].

1.4.2 Fault Tree Analysis

FTA is a type of analysis in which an undesired high level event, such as a malfunction
in a system, is analysed using logical thinking in order to create a graphical structure that
models the causes of the event. It is one of the most used tools in system safety and
reliability assessment. A Fault Tree (F'T) is constituted by gates and events. The top event
represents a failure mode for the system or an undesired event associated with it. By means
of Boolean gates (AND/OR), each event is broken down and expressed in terms of its causes
that represent lower level events. The process is carried out until basic events are reached.
In a system these would be the component failures. An application of FTA to diagnostics
with a model-based approach can be found in the work of Hurdle et al. [14], [15]. The
authors use non-coherent F'T's to model the fault diagnosis of systems including dynamic
behaviour. Non-coherent FTs contain NOT logic and are therefore able to deal with both
failing and working components in the system. This approach has proved to be more effective
than using only coherent FTs [16]. In the method, all deviating scenarios of a system are
identified. These are defined as the combinations of sensor readings that result in a deviating
behaviour of the system from the expected. For each sensor reading a FT is created and
for each scenario, the corresponding FTs for each symptom are combined with an AND
gate. Finally, the possible causes of a scenario are found by means of generating the prime
implicants of the F'T obtained in this way and using the importance measures. The method
was first developed considering only static sensor readings. Dynamics have been included in
the analysis identifying the sensor patterns for the deviating and non-deviating states of the
system. The model is validated on two examples: a water tank system and a fuel rig system.
The method has the advantage of developing a complete study for the faults of the system
and for its deviating behaviour. Its effectiveness has also been proved. On the other hand,

it involves building and analysing very large FTs for each system malfunction.

1.4.3 Bayesian Networks

Bayesian Belief Networks (BBNs) or Bayesian Networks (BNs) are probabilistic graphical
models represented as Directed Acyclic Graphs (DAGs). These are applied in many fields
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where reasoning under uncertainty is required. The networks are composed of nodes, repre-
senting variables of interest (e.g. the occurrence of an event or a component of a system),
and links joining the nodes, representing causal relations among the variables. Nodes and
links constitute the qualitative part of the network, i.e. its structure, while the quantitative
part is represented by the probability associated with the variables. Each node has a finite
number of exhaustive and mutually exclusive states that it can assume. Every node with
direct predecessors (parent) is associated with a Conditional Probability Table (CPT) that
contains the probability of each state of the node for any possible combination of the states
of the parents. For the nodes with no parents (root nodes) the CPT specifies the probability

of being in each of the states of the associated variable [17].

When the states of some of the variables in a network are known, it is possible to calculate
the updated probability, given the new evidence, of the remaining unknown variables. Eval-

uating this probability, known as posterior probability, is the main task in a BN.

1.4.4 System Fault Diagnostics using Bayesian Networks

BNs are ideal for representing visually and conceptually the relations between faults and
symptoms characteristic of the processes of fault detection and diagnosis [18], [19]), [20],
[21]. Inference in the networks can represent the observed symptoms and posterior proba-
bilities provide a means of identifying possible causes. Inference can actually be introduced
with any reasoning associated with some given evidence, not only in symptom outputs but

also with any observed facts about the variables of the system.

One of the most stressed factors in the literature about BNs is their capability to handle
uncertainty. This term is associated either with the randomness of the problem they are try-
ing to model or with the lack of knowledge on the phenomenon [22]. Model parameters can
be difficult to assess and the uncertainty of their estimation propagates through the model
giving a corresponding uncertainty in the output. For example, in FTA uncertainties related
to basic events failure probabilities would cause a consequent uncertainty in the top event
probability. BNs are considered able to handle uncertainty as the inherent uncertainties in
the system can be absorbed into the conditional probability tables [23]. Moreover, they are
capable of learning missing data entries [24]. In [25] the learning problem is generally stated
as follows: if U is a set of variables and D is a training set of known values D= {uy, ..., u,},
the task is to find a network B that best matches D. The question can be seen as an opti-

mization problem but many other approaches have been studied and most of the research
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is now focusing on algorithms and methods in the learning process. The authors in [26] dis-
tinguish four classes of learning: known structure and observable data, unknown structure
and observable data, known structure and non observable data and unknown structure and
non observable data. Learning the structure is considered generally more complicated as
the number of possible candidate networks grows exponentially when the number of nodes
in the networks grows. Methods have been studied to deduce both the structure and the
probabilities of a partially known network, but research has focused more on the derivation

of the probabilistic values once the topology is known [27].

Most of the literature on fault diagnostics using BNs has a case-based approach [28], [26],
[29], [30]. Generally, the system variables are identified and the topology of the network is
created. However, there is not a structured approach on how to do this process. The nodes
are created considering the factors that intervene in the diagnostic reasoning and the links
are introduced considering how these factors influence one another. Experts generally do
this by brainstorming. Once the structure is found, the probability distribution associated
to the network is obtained training the BN with the history data known about the previous
faults. This is a type of learning. When the network is complete, it can be studied to reveal

which are the causes of certain faults and it can be used for different types of analysis.

There are not many works in fault diagnostics using BNs with a model-based approach (an
example is in [31]). The reason is that specifying the conditional probability tables of a BN
is time consuming and requires great efforts from the experts. In most cases, the probability
of the networks is generated automatically from data. Despite this tendency, [32] lists many
disadvantages of automatically generated networks compared with the ones created directly
from the knowledge of experts and engineers. The data sets considered for automatically
generated networks is often assumed to be completely representative of the distribution of the
data, i.e. independent and identically distributed, but this is a very restrictive assumption.
The inaccuracy of the data values can also lie in the absence of some fault types. In the
diagnosis of a nuclear plant, for example, data of some rare type of accident is scarce and

simulations are needed but these can carry errors or distortions.

1.5 Objectives of the research

BNs are an ideal tool to model diagnostic systems. However, their use in fault diagnostics
poses two main problems. One concerns the fact that there is not a structured way for
building BNs as there is, for example, for F'T's. The other problem has to do with the condi-

tional probabilities of the network, which are difficult to obtain or even estimate. For these
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reasons, BNs have been mostly used with case-based approaches, obtaining the probabilities
by training a network structure with data on previous fault situations. These methods have
some disadvantages:

- they need adequate statistical data about observed faults in the system, these data are
often incomplete and inadequate;

- automatically generated BNs can be difficult to understand by the expert, especially when
the structure is also partially or completely deduced from data;

- algorithms and procedures for training networks can be very complex.

This research aims at finding a way to build a model-based diagnostic system using BNs

with the following characteristics:

e The method should give a general and structured procedure to build a BN for the
diagnosis of a system. The BN should be obtained from the F'T's of the system, assum-
ing that the system functioning is well understood and the failure probability of the

components are known.

e The diagnostic should be able to give accurate results applied to a simple water tank
system. The BN analysis should be able to tell when a fault has occurred on the system
and produce a ranked list of component failures that are potential causes for the system
fault.

e The method should be able to handle dynamic effects on the system.

e The results of the method must be validated. A simulation could be written for this
purpose to automatically generate the failures in the system and produce the symptom
outputs. Introducing the outputs from the simulation into the method itself, one can

check if the correct causes are identified for each fault scenario.

e The fuel rig system should be used to test the application of the method for larger
and more complex systems. A simulation should again validate the results for this

application.
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Bayesian Networks

2.1 Preliminary Notions

2.1.1 Bayesian Probability

According to Judea Pearl [33], in the Bayesian interpretation of probability

(...) probabilities encode degrees of belief about events in the world and data are used to
strengthen, update, or weaken those degrees of belief. In this formalism, degrees of belief
are assigned to propositions (sentences that take on true or false values) in some language,

and those degrees are combined and manipulated according to the rules of probability calculus.

In Bayesian Probability, therefore, the mathematical theory of probability is applied to the
degree to which a belief is considered probable. In this context, the Bayes’ theorem gives
a criterion for updating belief when new knowledge is introduced. This process is called
Bayesian Inference. This subsection gives a brief summary of the most important concepts

of probability theory considered under this approach.

The object of our study is a probabilistic model (or probability space), this is defined as an
encoding of information that permits us to compute the probability of every well-formed

sentence S [33] in accordance with the following three axioms
1. 0<PA)<I1
2. P(sure proposition) = 1

3. P(AorB)=P(A)+P(B) where A and B are mutually exclusive propositions.
(2.1)
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In the model, a set of atomic propositions, A, B, C, -- -, is given and the well-formed sen-
tences S correspond to any possible Boolean combination of the atomic propositions. The
elementary events in the language are combinations of atomic propositions in which they or
their negations appear only once. The set of elementary events correspond to the sample

space in classical probability theory.

The joint distribution function is an application that assigns a non-negative weight to any of
the elementary events such that the sum of the weights result to be 1. Any joint probability
function gives a complete probabilistic model. In the case of continuous variables, the joint
distribution can be given by an algebraic expression such as those describing the normal
and exponential distributions. For discrete variables, there are representation methods that
infer the distribution from the relationships among the variables. Graphical models are an

example of these representations.

From the axioms 2.1, it follows that the probabilities associated to the propositions of the
model must respect the following rules:

If B; are a set of n exhaustive and mutually exclusive propositions, the following law holds

P(A) = iP(A/\BZ-) =P(ANDBy)+---+ P(ANB,), (2.2)

where the notation A A B; indicates the joint event and P(A) is referred to as the marginal
probability, that is, the result of the operation of summing up probabilities over all B;. Equa-

tion 2.2 is know as the law of total probability.

The formalism P(A | B) specifies the belief in A given the assumption that B is known.
This is called the conditional probability. When P(A | B) = P(A), A and B are said to be
independent. In Bayesian probability, conditional probability is not defined in terms of joint
events, A | B is rather seen as A in the context specified by B. This approach seems to be
more compatible with human reasoning. As a consequence, the joint probability is defined

in term of the conditional probability by the following formula

P(AAB) = P(A| B)P(B) (2.3)

which is known as the product rule. A useful generalization of the product rule is the following

P(A) = Z P(A | B;)P(By) (2.4)

10
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where, again, B; are exhaustive and mutually exclusive. Here the belief in A is a weighted
sum over the beliefs of all possible ways in which A can occur. Assuming that equation 2.4

is applied in some larger context K, it can be written, in a more general way, as:
P(A|K)=> P(A|B;,K)P(B;| K). (2.5)

Given n events, Ay, As, ... ,A,, the probability of the joint event can be written as the

product of n conditional probabilities by the following formula, called the chain rule

P(Al/\AQ/\ e A An>:P(An‘An_1, ety Ag, A1> P(A2|A1> P(Al) (26)

As it has been said before, in Bayesian probability the concept of inference plays a central

role. The rule of updating probabilities is given by the following

P(e| H)YP(H)
P(e) ’

P(H | e) = (2.7)

which gives the posterior probability of H given the evidence e, P(H | e), in terms of the
previous belief P(H), or prior probability, and P(e | H), the likelihood that e will occur
when H is true. Equation 2.7 is called the inversion formula. In some texts, equation 2.7 is

stated as Bayes’ Theorem.

2.1.2 Graphs

A graph is defined as a set V' of vertices or nodes together with a set E of edges or links con-
necting some vertices in pairs. A variable is associated to any vertex and the links represent
a certain relation that correlates two variables. When an edge has a single arrowhead, it is
directed. When all edges in a graph are directed, then the graph itself is said to be directed.
Figure 2.1 shows an example of a directed graph with V' = {A, B, C, D, E, F, G} and
E = {(A,C),(B, D), (C, E), (D, A), (D, E), (D, F), (E,G)}.

A path in a graph is a sequence of edges such that each of them starts with the vertex ending
in the previous edge, e.g. {(A,C),(C,E),(E, D)} in figure 2.2, where the notation (A, C)

represents the edge connecting the vertex A to vertex C.

Two vertices in a graph are said to be connected if there exists a path between them. Al-

though self-loop cycles are not admitted in a graph, i.e. an edge cannot connect the same

11
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Figure 2.1 — Example of a directed graph.

Figure 2.2 — Example of a path of the graph in figure 2.1.

vertex (e.g. (A, A)), a directed graph may have directed cycles, that is a path starting and
ending with the same vertex. A graph is called acyclic if it contains no such directed cycles.
When a graph is both directed and acyclic, then it is called a Directed Acyclic Graph (DAG).
The graph in figure 2.1 is an example of DAG.

Undirected graphs, also called Markov networks, and DAGs have been used to facilitate
the representation of probability distributions and to facilitate the process of inference [34].
Undirected graphs find their applications in the representation of spatial relations, while

DAGs represent causal and temporal relations.

12
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2.2 Definition and Properties of Bayesian Networks

2.2.1 Definition

A Bayesian Network (BN) is defined as a pair B = ((V, E), P) where (V, E) is a directed
acyclic graph constituted by the set of discrete variables V' = {X;, X5, ... X, } and the set
of edges E, and P is the joint distribution associated to the variables. Each variable has a
finite set of exhaustive and mutually exclusive states. The edges represent a causal relation

between two nodes, in the sense that the node parent is a direct cause of its node son (figure

2.3).
@parem

san

Figure 2.3 — x causes y.

The joint distribution P(X;, X, ...X,) over the set of variables {X;, X,, ...X,} is
defined as a table of the joint probabilities P(X; A Xo A--- A X,,) given for all values that
{X1, Xo, ... X,} can assume. In the very simple case of two binary variables X; and Xs,
with states, respectively, {X;, X;} and {X,, X5}, the joint distribution P(X1, X3) is given
by the probabilities P(X; A X5), P(X; A X3), P(X; A Xs) and P(X; A X).

The chain rule of probability (equation 2.6) applied to the variables {X;, Xo, ... X, } gives
the joint distribution

P(Xy, ..., X)) =[[P(X; | Pay), (2.8)

where Pa; are the predecessors of X; to which the probability of X; is sensitive to, also
called Markovian parents of X;. Rigorously, P(a;) is defined as the minimal subset of
{X1, Xo, ... X, } satisfying

P(Xi \ Pai) = P(Xi | X1, Xi—l)u (2-9)

where P(a;) is minimal in the sense that none of its proper subsets satisfies equation 2.9. The
joint distribution of a set of variables gives all information needed about the distribution.

From equation 2.8, it can be seen that the probability function in a BN is given by specifying

13
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a set of conditional independence assumptions together with a set of Conditional Probability
Tables (CPTs), that is specifying the prior probabilities of all root nodes and the conditional
probabilities of all non-root nodes given all possible combinations of their parents. As the
edges in the graph represent the conditional relations between a node and its parents, a
variable is independent from its non-descendants variables.

Take the example of a BN with ten variables as in figure 2.4,

S

© @
©

Figure 2.4 — Example of BN.

here the joint distribution is given by

P(Xy, Xy, -+, X10) = [ P(Xi | pai) =

P(X1)P(X2)P(X5 | X1)P(Xy | X1, Xo)P(X5 | X4)
P(X+ | X5)P(X6)P(Xs | X¢)P(Xo | X6, X1)P(X10 | Xo).

The prior probability has to be specified for X, X5 and Xg, which are the only nodes without

14
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parents. For all other variables, a CPT has to be provided. If we assume that the variables
are binary, for example they represent the components of a system in the states W (working)
and F (failing), the CPT for a variable with n parents will have 2" entries. For the variable
Xy in the graph in figure 2.4, for example, the entries of the CPT correspond to all possi-
ble values of the variables parents Xg and X7: {Xg = W, X7 = W}, {Xg = W, X; = F},
{Xe=F,X; =W} and { X4 = I, X7 = F'}. Therefore, the probabilities in the CPT will be
8:

1PX9:W‘X6:W/\ X7:W),

2PX9:F|X6:W/\ X7:W),

e
e
»

=W |Xe=WA X;=F),

o~
e
»

o=F|Xeg=WA X;=F),

o
o)
>~

QZW‘X6:F/\ X7:W),

S
o)
>

9:F|X6:F/\ X7:W),

~
e

(
(
(
(
(
(
(Xo=W|Xe=FA X;=F),
(

The probability in the network can be updated from observation introducing evidence for
some variables, that is, assigning fixed values to some of them. Evidence will be denoted as
e, where e = {X;, .-+, X,,} is a subset of variables. The task consists in calculating the
posterior probability distribution on a set of variables of interest (), given the evidence e:
P(Q | e). In the network shown in figure 2.4, we could for example obtain evidence that
indicates that the component represented by X, is definitely working. This fact introduces
the evidence e = {X; = W}. This evidence influences the causal connections between X;
and X5, in fact, if before the state of X; had an influence on X5, now they are independent.
It can be said that X, blocks the flow of information along the graph, this concept is known
as d-separation. To define it rigorously, some concepts about network connection types need
to be introduced. A node B in a path T is said to be linear, converging or diverging if it is

connected to the previous and the following nodes according to figure 2.5.
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e

3

B
e
e

1

Figure 2.5 — Connection Types: 1. Linear, 2. Converging, 3. Diverging.

In [33] the three configurations are referred to respectively as chain, collider and fork. A
path T from A to B with the evidence nodes e is said to be d-connecting (and the nodes A

and B are d-connected) if every interior node [ in the path is either:

e linear or diverging and not in e,

e converging, and either I or one of its descendants is a member of e.

Two nodes will be d-separated if there are no d-connecting paths between them. This gives
another independence rule between the variables, apart from the trivial rule that a variable
is independent from its non-descendants. In the previous example, node X5 will be indepen-

dent from Xj if evidence about X, is given.

The basic task in BNs is the computation of P(H | e), where e is a set of observations and
H is a set of variables of interest. This is known as inference. The computation of the
probability is conceptually easy as it comes from the inversion rule (equation 2.7) where the
joint probabilities can be computed from the conditional probabilities defined in the CPTs.

This will be made more clear with two examples in the following subsections.

2.2.2 Example: Fire alarm system

Let us take the example of a fire alarm system that is often considered in literature. The
alarm can start caused by a fire or by a test. There is a certain probability that the alarm
would fail in both cases. When the alarm goes off, an evacuation is planned to take place.
Again there is a probability that the evacuation would fail to take place when the alarm goes

on. The variables of a BN that can model this system are fire, test, alarm and evacuation

16
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and they will all be binary with the states true (t) and false (f). The BN will be as in figure

2.6.
fire

Figure 2.6 — Example of BN for the fire alarm system.

To specify the joint distribution the prior probability for the variables without parents, fire

and test, are needed:

P(fire =1t) =0.001,
P(fire = f) = 0.999, (2.10)

P(test =t) = 0.1,
P(test = 1) = 0.9, (2.11)

and the CPTs for the variables alarm and evacuation are shown in figures 2.7 and 2.8.

Parent Hode(s) alarm
fire Test bar charts
T 0.4
T F 0.3
T 0.3
F F 0.01

Figure 2.7 — CPT for the node alarm.
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Parent Hode(s) Evacuation

alarm ﬁ F bar charts
T 09 |01 | |

F 0.0m 0.933

Figure 2.8 — CPT for the node evacuation.

The probability of evacuation can be calculated from the law of probability in equation (2.2)

marginalizing all the variables except evacuation out of P(evacuation,alarm, fire,test):

P(evacuation) = Z Z ZP(evacuatian, alarm, fire, test), (2.12)

alarm fire test

writing explicitly the sums for the variable test, fire and alarm , equation (2.12) becomes

P(evacuation, alarm = t, fire = t, test = t) + P(evacuation, alarm = t, fire = t, test = f) +

+ P(evacuation, alarm = t, fire = f,test = t) + P(evacuation, alarm = t, fire = f,test = f) +
+ P(evacuation, alarm = f, fire = t, test = t) + P(evacuation, alarm = f, fire =t test = f) +
+ P(evacuation, alarm = f, fire = f,test = t) +P(evacuation,alarm = f, fire = f,test = f).

Each of these can be obtained in terms of the conditional probabilities and the prior prob-
abilities by means of the chain rule in equation 2.6, therefore the probability of evacuation

becomes:

P(evacuation) =

= P(evacuation | alarm = t)P(alarm =t | fire=1t A test =t)P(fire =1t)P(test =1t) +
P(evacuation | alarm = t)P(alarm =t | fire =t A test = f)P(fire =t)P(test = f) +
P(evacuation | alarm = t)P(alarm =t | fire = f A test =t)P(fire = f)P(test =1t) +
P(evacuation | alarm = t)P(alarm =t | fire = f Ntest = f)P(fire = f)P(test = f) +
P(evacuation | alarm = f)P(alarm = f | fire =t A test =t)P(fire =t)P(test =t) +

( f)+
P(evacuation | alarm = f)P(alarm = f | fire = f Atest =t)P(fire = f)P(test =1t) +

(

JP(

P(evacuation | alarm = f)P(alarm = f | fire =t Atest = f)P(fire =t)P(test =
)P(
)P(

P(evacuation | alarm = f)P(alarm = f | fire = f A test = f)P(fire = f)P(test = f).

For the state true of evacuation, from the CPTs, it follows that:
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P(evacuation =t) =0.9 - 0.9 - 0.001 - 0.1 + 0.9 - 0.8 - 0.001 - 0.9 +

+09-08-0999 - 01 + 09 - 0.01 - 0999 - 0.9 +
+ 0.001 - 0.1 - 0.001 - 0.1 + 0.001 - 0.2 - 0.001 - 0.9 +
+0.001- 0.2 - 0.999 - 0.1 + 0.001 - 0.99 - 0.999 - 0.9 = 0.0816.

When evidence is introduced on some variables in the network, the posterior probability can
be calculated employing Bayes’ rule (equation 2.7). In general, for any joint distribution P,

the application of the Bayes’ rule leads to the formula:

B, S
P(E | H)P(H) 2 P(H.E.5)

s
P(E) YN P(H.E,S)
H S

where H is the set of variables of interest, E is the given evidence and S is the set of all

P(H | E) =

(2.13)

variables excluding the ones in H and in E. In this case, one could be interested in knowing
the probability of an evacuation when a fire is not taking place, that is when fire = f. This
is expressed by the conditional probability P(fire = f | evacuation = t) and, by equation
2.13, is given by:

Z ZP(evacuatz’on =t, alarm, fire = f, test)

alarm test

Z Z ZP(evacuation =t, alarm, fire, test).

fire alarm test

P(fire=f | evacuation =t) =

(2.14)
The numerator in 2.14 is given by:

Z ZP(evac =t, alarm, fire = f, test) =

alarm test

P(evac=1t A alarm =t A fire=f A test =t) +
+ Pevac=t A alarm = f N fire=f N test =t) +
+ Plevac=1t A alarm =t A fire=f A test = f) +

+ Plevac =t A alarm = f A fire=f A test=f) =
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= P(evac =t | alarm =1t) P(alarm =t | fire = f A test =t) P(fire = f) P(test =t) +

+ P(evac =t | alarm = f) P(alarm = f | fire = f Ntest =t) P(fire = f) P(test =t) +
+ P(evac =t | alarm =t) P(alarm =t | fire = f Atest = f) P(fire = f) P(test = f) +

+ P(evac =t | alarm = f) P(alarm = f | fire= f Ntest = f) P(fire = f) P(test = f) =

09 -08 -0999 - 0.1 + 0.001 - 0.2 -0999 - 0.1 + 09 - 0.01 - 0.999 - 0.9 +

+ 0.001 - 0.2 - 0999 - 0.9 = 0.0802.
While the denominator in 2.14 is given by:

Z Z ZP(evacuatz’on =t, alarm, fire, test) =

fire alarm test
P(evac=1t A alarm =t A fire=f A test =t) +
+ Plevac=1t A alarm =t N fire=f A test = f) +
+ P(evac =t A alarm =t A fire=t A test =t) +
+ Plevac=1t A alarm =t N fire=t A test=f) +
+ P(evac =t A alarm = f N fire=f N test =t) +
+ Plevac=t A alarm = f A fire=f A test=f) +
+ Plevac=t A alarm = f A fire=t A test =t) +

+ Plevac=1t A alarm=f N fire=t A test = f)=

= P(evac =t | alarm =t) P(alarm =t | fire= f A test =t) P(fire = f) P(test =t) +
+ P(evac =t | alarm =t) P(alarm =t | fire = f Atest = f) P(fire = f) P(test = f) +
+ P(evac =t | alarm =t) P(alarm =t | fire=t A test =t) P(fire =t) P(test =t) +

+ P(evac =t | alarm =t) P(alarm =t | fire =t A test = f) P(fire =t) P(test = f) +
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alarm = f| fire= f Ntest =t) P(fire = f) P(test =t) +

(fire = f) P(test = f) +
(fire =1t) P(test =t) +

P
P

evac =t | alarm = f)
P
) P

+ P( )
+ P(evac =t | alarm = f) P(alarm = f | fire = f Atest = f)
+ P(evac =t | alarm = f) P(alarm = f | fire=1t A test =t)
+ P(

evac =t | alarm = f) P(alarm = f | fire =t Atest = f) P(fire =t) P(test = f) =

=09 -08-0999 - 01 + 09 - 0.01 - 0999 - 0.9 +
+09 -09 -0001-01+ 09 -08-0.001-09+
+0.00L - 0.2 - 0999 - 0.1 + 0.001 - 0.9 - 0.999 - 0.9 +
+ 0.001 - 0.1 - 0.001 - 0.1 + 0.001 - 0.2 - 0.001 - 0.9 = 0.0816.

And therefore the result is given by:

0.0802
0.0816
this is the probability of an evacuation taking place with no fire.

P(fire=f | evacuation =t) =

= 0.9828,

2.2.3 Example: Happiness

We now consider an example where we try to model how the happiness of a individual is
influenced. In a very simplified situation, we could assume that there are three factors that
make an individual happy: health, love and success. A BN describing our system will have
four nodes and health, love and success will be parents of happiness. We can assume all four
variables will have three states: low (), medium (m) and high (h). The structure of the

network will be as in figure 2.9.

/

Figure 2.9 — Example of BN.

To specify the joint distribution we need to know the prior probability for the variables
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without parents, health (HE),

P(HE =1)=0.1, P(HE =m) = 0.3, P(HE = h) = 0.6, (2.15)
P(LO =1)=0.3, P(LO=m) =04, P(LO=h)=0.3, (2.16)
P(SU =1) = 0.3, P(SU =m) = 0.4, P(SU =h) =0.3, (2.17)

the CPT for the node Happiness (HA) will have 3% entries, as it has 3 parents and 3 states.
Figure 2.10 shows the CPT for happiness:

Parent Hode(s) HA
HE LO su medium bar chartz
low 0907 0.07404 0.01836
low | medium|| 0866 010385 00305
high nat4 0145 0.041
lotw 0.763 0196 0.041
low | medium | medium || 0.732 0.206 0.062
high 0.691 0227 0.0az
lotw 0649 0238 0113
high | medium || 0608 0.237 0155
high 0567 0.258 0175
low 0515 0.279 0.206
low | medium|| 0464 0.3z 0216
high 0423 034 0237
low 0.267 0.371 0.268
medium | medium | medium|[ 0.233 0412 0233
high 0237 0433 033
low 0175 0.454 0.371
high | medium || 0.144 0444 0412
high 0113 0444 0443
o 0124 .28967 048633
lowe [ medium|| 0124 03285 05475
high 0113 030278 058422
o 0113 [.29547 053153
high | mediurn | mediurn || 0.093 02833 (62369
high 0.0s2 027174 [ E4626
o 0062 027187 [ EEET3
high | medium || 0.041 0237 0722
high 0.021 017286 .806174

Figure 2.10 — CPT for the node happiness.

To calculate P(H A), from the law of total probability in equation 2.2, we need to marginalise
HE, LO and SU out of P(HA,HE, LO, SU):

P(HA)=> "> P(HA HE, LO,SU), (2.18)

HE LO SU
where the probability of the joint event can be calculated in terms of the conditional prob-

abilities:
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P(HA=h AN HE=1 A LO=m A SU=1) =
=PHA=h|HE=1 A LO=m A SU=I1)P(HE =1) P(LO =m) P(SU =)

which, considering equations (2.15) (2.16) (2.17) and substituting the numbers from the CPT
in figure 2.10, gives

=0.041-0.1-0.4-0.3 = 0.0016. (2.19)

Summing up all the possible combinations for the node happiness, the prior probabilities

are:

P(HA=1)=02159, P(HA=m) = 0.3265, P(HA = h) = 0.4776. (2.20)

In terms of the posterior probabilities, for example, one could be interested in knowing the

probability of love being in the state low when happiness is high. This is given by:

> > P(LO=1, HA=h, HE, SU)
P(LO=1|HA=h)=2E3Y (2.21)

Y NN P(LO, HA=h, HE, SU).

HE SU LO
The denominator in 2.21 equals P(HA = h), which has already been obtained. The nu-
merator is the marginalisation of HE and SU out of P(LO =1, HA=h, HE, SU) and ,
applying the chain rule (equation 2.6), it can be obtained as:

S ST P(LO=1, HA=h, HE, SU) =

HE SU

P(HA=h|HE =1 ANLO =1ASU =1)P(HE = )P(LO = )P(SU = )+
+P(HA=h|HE =1 ANLO =1ASU =m)P(HE = 1)P(LO = )P(SU = m)+
+P(HA=h|HE =1 ANLO =1ASU = h)P(HE = 1)P(LO = |)P(SU = h)+
+P(HA=h|HE=1 NLO=1ASU =1)P(HE = 1)P(LO = )P(SU = l)+

+P(HA=h|HE=1 ANLO=hASU =1)P(HE

+P(HA=h|HE=1 ANLO=1ASU =1)P(HE

)P(
)P(
)P(

+P(HA=h|HE =1 ANLO=mASU =1)P(HE
)P(
)P( [)P(LO = 1)P(SU = 1)+
)P(

+P(HA=h|HE=m ALO=1ASU =1)P(HE =m)P(LO = )P(SU = 1)+
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+P(HA=h|HE=h NLO=1ASU=1)P(HE = h)P(LO = )P(SU = 1) =
0.01896- 0.1 0.3 - 0.3 + 0.03015 - 0.1 - 0.3 - 0.4+ 0.0041 - 0.1- 0.3 - 0.3+
+0.206-0.3-0.3-0.3+0.216-0.3-0.3- 0.4+ 0.237-0.3- 0.3 - 0.3+
+0.48633 0.6 - 0.3 - 0.3 + 0.5475 - 0.6 - 0.3 - 0.4 + 0.58422 - 0.6 - 0.3 - 0.3 = 0.1178.

Therefore:

0.1178
P(LO=1|HA=h)=——— = 0.2468. 2.22
( | ) 0.4776 ( )
Since the connection type of the network is converging, if evidence is not given to the node
happiness, the remaining three variables are d-separated and, as a consequence, independent.

Therefore:
P(HE| LO, SU) = P(HE),

P(LO | HE, SU) = P(LO),
P(SU | HE, LO) = P(SU).

On the other hand, when evidence is given to the variable happiness, the three parents will
become d-separated and they will influence each other. For example, if the state of the
happiness is known, and it is high, assuming love is in the state [ow makes the probability
of the remaining two variables, health and success, increase. In fact, under the hypothesis of
our model, knowing that the individual is happy but without love would make us infer he
is healthy or successful. If instead the state of the variable happiness is known to be low,

assuming the state of love is high makes the probability of health and success decrease. In
fact, if e = {HA = h, LO =1}, for example, P(HE =) is given by:

Y P(HE =1, HA=h, LO =1, SU)

P(HE=1|HA=hALO =1) = Y = 0.0076. (2.23)
> Y P(HE, HA=h, LO =1, SU)

SU HE

The same calculation can be done updating the prior probability with the evidence intro-
ducing to HA, e = {HA = high}. The updated probability P* can be calculated for HFE,
LO and SU as before and they will result to be:

24



Chapter 2. Bayesian Networks

PHE=1)=PHE=1|HA=h)=0.0164,
P*HE =m)=P(HE =m | HA=h) = 0.1928,
PYHE=h)=PHE=h|HA=h)=0.7908, (2.24)

PLO =1)=P(LO=1| HA = h) = 0.2468,
P*(LO =m) = P(LO =m | HA = h) = 0.3915,
P*(LO=h)=P(LO=h| HA=h) = 0.3617, (2.25)

P*(SU =1)=P(SU =1| HA = h) = 0.2761,
P*(SU =m) = P(SU =m | HA = h) = 0.3998,
P*(SU =h) = P(SU = h | HA = h) = 0.3241. (2.26)

Then the probability in 2.23 is given by
P(HE=h|HA=hANLO=1)=P*(HE=h|LO=1) =

Y PYHE=I, LO=1, SU)

=Y = 0.0076 (2.27)
> ) PY(HE, LO=1, SU)

SU HE

which eliminates the variable HA and gives the same result.

2.2.4 Network Simplification Methods

The Noisy or assumption

The number of entries in the CPTs of a BN can easily become large, it has been seen in fact
from the previous example that this number grows exponentially with the number of parents
and for a variable with m states and n parents it equals m”.

Some simplification in the assumptions can help in reducing it. The so called noisy or
assumption is one of these, it allows the number of probabilities to specify for a variable to
grow linearly with the number of its parents.

Consider the configuration shown in figure 2.11

25



Chapter 2. Bayesian Networks

X1

<

Figure 2.11 — Configuration for the noisy or assumption.

and let X;, ---, X, be binary parents of Y with states T (true) and F' (false) and assume
that, for any 7, X; = T causes Y = T with a certain probability, unless a preventing factor,
called an inhibitor, prevents it with probability ¢;. The noisy or assumption assumes that

all such inhibitors are independent, therefore, if

then
PY=F|X,=T, -, X, =T)=]] &

We see now the effect of this assumption in an example. In the network for the fire alarm
system in figure 2.6, the node alarm has two parents, fire and test. Both of them, when in
the state true, cause the alarm to be true with a certain probability, so there is a preventing
factor that causes the state of the parents not to affect the one of the child. For example,
for fire, this could be due to the failure of the sensor and, for test, to the failure of the
testing system itself. In a general situation, as the two nodes parents are binary, the CPT
for alarm should contain 4 probabilities (as in figure 2.7). Assuming the preventing factors
inhibitors of the parents are independent, as in the case described, reduces the probabilities

to be specified to 2, in fact, if we assume the inhibitors have probability ¢; and ¢s:
P(alarm = F | fire="T) = ¢,

P(alarm = F | test =T') = qq,

that is, ¢; the probability of the failure of the sensor and ¢, the probability of the failure of

the test system, we will have that:
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P(alarm =T | fire =T Ntest = F) =1— P(alarm = F | fire =T Ntest =T) =1 — q1¢o.

Assuming that the inhibitors are independent makes it easier to calculate the combined
probabilities so, in the CPTs, it will not be necessary to specify the probability of a variable

for any configuration of the parents.

Divorcing

The noisy or assumption is a particular case of a more general method called divorcing.
This consists in introducing a mediating variable that plays the role of child for a number of
parents so that the configurations are partitioned into smaller sets. For example, consider
the configuration in figure 2.12. This can be transformed introducing a variable Z as the
child of X; and X5 and parent of Y. If we assume the variables are all binary, the CPT
for Y in figure 2.12 contains 2% probabilities. In figure 2.13 the CPT for Y contains now 23
probabilities and a CPT for Z has to be introduced with 22 entries, but, still, 22 + 23 < 24,

o

Figure 2.12 — Configuration for the divorcing method.

Y

Figure 2.13 — X3 and X2 are divorced from X3 and X4 introducing Z.
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2.2.5 Learning

The term [earning indicates semi-automatic methods able to modify or evaluate a model by
means of the experience obtained in creating it. It can be either qualitative or quantitative,
depending on whether it concerns the topological structure or the probability of the network,
and it is called batch learning if it makes use of databases of cases or adaption if it involves a
process of consecutive modifications when new cases are acquired [17]. Batch learning falls
under the category of case-based reasoning as it makes use of acquired data from previous

experience.

Estimating the prior probabilities of a BN can be subjective and there are several methods
to carry out this task. If two or more methods are given to determine the probabilities of
a network whose structure is known and these give rise to different distributions, a learning
process can be used to find the model that is the closest to the real process or the smallest and
less expensive. In modifying a distribution during a learning process, some measurements
are introduced to estimate the distance between a distribution and its approximation or
modification. Among the others, the euclidean distance between two distributions P and P’

is defined as:

Dist (P, P')

> (P(X) - PI(X)). (2.28)

X
In order to compare the structure of two networks in a process of qualitative learning we
need to define the size of a BN. This is also a measure that can be useful when algorithms
are implemented for models with a very large number of variables. Given a network B with
variables V', denoting with Sp(X') the number of all different configurations that the parents

of X can assume, the Size of B is given by:

Size (B) = » _ Sp (X). (2.29)

XeV
The networks in figure 2.12 and 2.13 have respectively size 36 and 26. For the first one, 36 is
given by 4 + 25, the four probabilities of the nodes without parents plus the 2° probabilities
in the CPT of the variable Y. For the second network, 26 is given by 4 + 23 + 2, the four
probabilities of the variables without parents, the 2% probabilities of the CPT of Z and the
24 probabilities of the CPT of Y.

Size and distance are used to define the acceptance measure of a modified network as:
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Acc (P, B") = Size(B') + k Dist(P, P'), (2.30)

where P’ is the joint probability associated with the modified structure B’, P is the one for
B and k is a positive real number. In a learning process searching for a possible structure of
a BN the acceptance has to be minimized to get a network of small size whose distribution

is not too far from the original one.

2.2.6 Algorithm Methods

It has been seen how inference in a BN can be calculated by means of the Bayes’ rule, how-
ever, when performing the evaluation automatically, the task consists of implementing an
efficient algorithm to perform the computation for any given graphical structure. Inference
algorithms are generally NP-hard (Non-deterministic Polynomial-time hard) but some meth-
ods have been found to be useful. Some of them, such as the message passing approach or
the join-tree and cut-set conditioning methods, are briefly described by Pearl and Langseth
[33] [35] and, in more details in [17].

2.2.7 Dynamic Bayesian Networks

BNs are in their first formulation a static model. But since then, there have been a number
of efforts for extending the networks’ definition in order to make them able to represent time,
for situations where, for example, the probability of a variable changing its state depends on
the time or if the parameters of the system changes with time. In literature there are several
definitions of Dynamic Bayesian Networks or Temporal Bayesian Networks or, in general,
BNs that incorporate temporal features. The authors give similar names to different con-
cepts and sometimes the same name for different definitions. There are two approaches that
can be distinguished: in [36], the authors classify them considering whether they represent
the time as points or instances or if they divide it in time intervals. In some approaches,
Dynamic networks are seen as a general case of Temporal networks where the term dynamic

refers to any change the system is subjected to as the change in state [37].

In the PhD thesis [38], the author considers an approach where the events considered occur
at an instant in time but the network is studied evolving at different time slice. The author
then modifies the definition to allow growing complexity in the networks but they become

more difficult to apply to a large scale problem.
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2.3 Converting FT's into BNs

In [39] the authors make a comparison between BNs and FTA techniques for dependability
problems. They show how a F'T can be mapped into a BN and that any analyses performed
with the FT methods by means of the minimal cut sets procedure can be carried out in
a BN. Furthermore, some new analysis are permitted in a BN, such as the calculation of
the posterior probability of a subset of components given the fault. Therefore any FT
corresponds to a BN and any techniques applied to a FT can be performed in a BN, but the
latter allows some more modelling solutions [40]. These arguments will be presented with a

simple example.

2.3.1 FT Conversion Methods

The operations of the algorithm to obtain a BN from a F'T are given below. It is assumed
that the FT will have only AND and OR gates, the resulting BN will by binary, the variables

will represent states of the components of a system and the two values they can assume will

be labelled with FALSE (V') for the working state, and with TRUE (V') for the failing state.

However the algorithm can be generalised to any FT.

Regarding the qualitative part of the BN:
1. any basic system component of the FT corresponds to a root node in the BN;

2. any gate of the F'T corresponds to a node in the BN, in particular the gate whose output
is the top event in the F'T will be labelled as fault node;

3. the nodes in the BN has to be connected as the gates in the FT.

Figure 2.14 shows how the structure of a simple F'T is converted into the structure of a BN.

Regarding the probability, the quantitative part of the BN:

1. to any root node in the BN it is assigned the same prior probability of its corresponding

basic event in the FT;

2. to any node in the BN corresponding to a AND gate in the FT it is associated a CPT
such that the node is TRUE with probability 1 if and only if all parents are TRUE;

3. to any node in the BN corresponding to a OR gate in the FT it is associated a CPT
such that the node is TRUE with probability 1 if and only if at least one of its parents
is TRUE.

30



Chapter 2. Bayesian Networks

(Bt ) B )( B3 )( B4 )
e " ) (63 )
(FauLT )

Figure 2.14 — Basic events B1l, B2, B3 and B4 correspond to the homonym nodes; gates G2 and G3 correspond to
nodes G2 and G3 and the top event corresponds to the node FAULT.

Parent Hode(s) G2
B1 B2 ﬁ Ho bar chartz
Ves | _Tes_|| 1.0 0.0 D
Mo 0.0 1.0
Mo Tes 0.0 1.0
Mo 0.0 1.0

Figure 2.15 — CPT corresponding to an AND gate.

For an AND gate, such as G2 in figure 2.14, the CPT will result as in figure 2.15.
For an OR gate, such as G3 in figure 2.14, the CPT will be that in figure 2.16

Parent Node(s) G3 |
B3 B4 ﬁ bar chartz
Yes Tes 1.0
Mo 1.0
e 1.0
Na No || 0.0

Figure 2.16 — CPT corresponding to an OR gate.

The conversion method can be extended to FTs with other gates and the CPTs in the
corresponding networks will follow the logic tables of the gates. For example, for the NOT
gate in figure 2.17, the CPT will be as in figure 2.18.
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@ @©
d @

Figure 2.17 — Configuration corresponding to a NOT gate.

Paremt Hode(s) B
A ﬁ Ho bar charts
Ve 0.0 1.0
No 1.0 no [

Figure 2.18 — CPT corresponding to a NOT gate.

The unavailability of the top event in a FT corresponds to the prior probability of the node
labelled as fault in the BN. The unavailability of a sub-system in a F'T corresponds to the
prior probability of the corresponding nodes in the BN. In a FT, these computations are
obtained by means of the minimal cut sets, in a BN they can be obtained as P(H | e)
where H represents the fault (or the variables of the sub-system) and the evidence is the
empty set, e = (). The posterior probability can be also computed in a BN and this can
be considered for a single component, for a subset of components or for all components
except the ones to which evidence has been assigned. When the fault is given as evidence,
the posterior probability of each component gives the criticality of each of them and the
posterior probability of a sub-system gives the criticality of the sub-system in causing the

system failure.

2.3.2 Bayesian networks from Fault Trees with repeated events

When in a F'T a basic event appears more than once, it is said that it has repeated events. FTs
with repeated events can be mapped into BNs simply creating a single node for every basic
event and linking with more than one link the nodes that correspond to the repeated events.

In figure 2.19 the FT has the basic event A appearing twice as output of the gate G2 and G3.
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Gl

(52 G3

=
D (3 :

Figure 2.19 — Example of F'T with repeated events.

The BN corresponding to the FT in figure 2.19 is shown in figure 2.20. Node A appears only
once but is linked with two links to both node G2 and G3.

Figure 2.20 — BN corresponding to figure 2.19.

When a F'T has many repeated events, its corresponding BN can assume a graphical structure
where the links intersect themselves in a way that can make the visual understanding of the
network more complicated. The same procedure can be applied for a FT with repeated
branches. The corresponding BN will result in having nodes with more than one link as in
figures 2.21 and 2.22.

The intersections of the links, especially for large networks, is a disadvantage of the graphical
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Figure 2.22 — Example of BN corresponding to the FT in figure 2.21.

representations of the BNs. In the following section, the conversion procedure from FTs to

BNs is shown with the example of a pressure tank system.

2.3.3 Example: Pressure Tank System

The conversion algorithm and the probability computation will be discussed with the ex-
ample of the pressure tank system, a system that discharges fluid from a reservoir into a

pressure tank with a control system that regulates the operation of the pump. This example
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is used only in this section for showing the conversion algorithm. Here is the description of
the system [41]:

<

—E— : ) _ outlet valve
i pressure pressure
— R
(PRS)

motor{  J-----emamn

Figure 2.23 — Pressure Tank System.

The function of the control system is to regulate the operation of the pump. It is assumed
that it takes 10 minutes to pressurise the tank. The pressure switch has contacts which are
closed when the tank is empty. When the threshold pressure has been reached, the pressure
switch contacts open, de-energising the relay K2 so that K2 contacts open, removing power
from the pump motor to cease operation. The tank is fitted with an outlet valve which
allows the tank contents to be used when required. When the tank is empty the pressure

switch contacts close and the cycle repeats.

Initially the system is considered to be in its dormant (de-energised) mode: tank empty,
switch S1 contacts open, relay K1 contacts open, timer relay (TIM) contacts closed, pres-

sure switch contacts closed.

System operation is started by momentarily depressing switch S1. This applies power to the
relay K1 closing K1 contacts so that K1 is now electrically self-latched. Switch S1 contacts
open. The closure of K1 contacts allows power to the relay K2 whose contacts close and

start the pump motor.
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The timer relay (TIM) is provided as a safety shut-down mechanism in the event that the
pressure switch contacts fail to open when the tank is full. Initially the timer contacts are
closed when the power is applied to K2 and this starts a clock in the relay. When the timer
contacts open this breaks the circuit to relay K1 whose contacts open removing power from
K2 and stopping the pump motor. When the circuit with K2 and the timer relay is de-
energised, this resets the timer relay clock to zero. When the system stops due to a safety

shut-down it requires a manual restart.

The top event considered is Pressure Tank Owverfilled and the component failure modes are

PRS Pressure switch fails to open
K2 Relay K2 contacts fail closed
K1 Relay K1 contacts fail closed
TIM Timer relay fails to time out

S1 Switch contacts fails closed

and they have the following failure rates:

PRS If the pressure switch contacts fail to open this failure will be revealed since it will
result in either the pressure tank becoming over-pressurised or the timer contacts open-
ing (which requires a manual restart). This event has a failure rate A = 1 x 10™* per

hour. The failure event could occur anytime in the 10 minutes operational time.

K2 If K2 relay contacts fail to open then the tank will become over-pressurised and is hence
a revealed failure. This failure has a rate of occurrence of A = 1 x 1072 per hour and

could occur anytime in the 10 minutes operation time.

K1 If relay K1 contacts fail to open this failure will be unrevealed. Its rate of occurrence
is A = 1 x 1073 per operation. These contact are inspected/tested at intervals of one

year.

TIM The time contacts are a safety feature of the system. Its failure is therefore unrevealed
and occurs with a rate A = 1 x 107* per hour. This component is also inspected in

intervals of one year.

S1 If the switch fails to open after it is initially closed, this alone will not cause any problems

and hence it will not be revealed. This has a failure probability per operation of 0.01.
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Figure 2.24 shows the FT relative to the system described above, its minimal cut sets are
{K2}, {PRS, K1}, {PRS, TIM}, {PRS, S1}.

Pressure Tank
Overfilled

is closed

K2 contact

N

KZis
energised

N

Fressure
switch
fails closed

System
Control

K1is closed

K2 contact
fails closed

51 switch
fails closed

K1 fails
closed

Timer fails

)

®

)

®

Figure 2.24 — FT for the Pressure Tank System.

Following steps {1 —2—3} in the conversion algorithm for the qualitative part of the FT, the

structure of the BN will result as in figure 2.25. It can be seen that 5 root nodes have been

created corresponding to the basic events S1, K1, K2, PRS and TIM. The two remaining

gates SystemControl and k2energised correspond to two nodes.

Node SystemControl corresponds to an OR gate, then its CPT will be as in figure 2.26

following the general rule given in figure 2.16.

Node K2energised corresponds to an AND gate, so its CPT will be as in figure 2.27 following

the general rule given in figure 2.15.

37



Chapter 2. Bayesian Networks

K2energised @

Figure 2.25 — BN for the Pressure Tank System.
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Figure 2.26 — CPT for the node SystemControl.
Parent Hode(s) k2energised
PRS SystemControl ﬁl‘lu ({works) bar chartz
s (i) |—r 23] 1.0 0.0 I
Mo [wiorkz) 0.0 1.0
ez [failz] 0.0 1.0
No lworks) = arks] || 0.0 1.0

Figure 2.27 — CPT for the node K2energised.

Finally, the node Fault corresponds to an OR gate, so its CPT will be as in figure 2.28

The probability of failure P for the nodes without parents can be calculated from the failure
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Parent Hode(s) Fault
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Mo [warks]|| 1.0 0.0
Yes [falg] || 1.0 [T
No lwarks] S ekl 0.0 10

Figure 2.28 — CPT for the node Fault.
rates, considering the operational time of 10 minutes. For the components whose failure is
revealed, considering the approximation P = 1 — e~ a \t, the probabilities are:

e P(PRS) =1 x107* = 0.16 x 10~* = 0.000016,
o P(K2)=0.16 x 1072 = 0.001600,

e P(S1) = 0.010000.

For the components with unrevealed failure K1 and TIM, inspected at intervals of one year,

the following formula is used [42] :

1
P=1——(1—¢M 2.31
A‘9( e ), (2.31)

where 6 represents the time between inspections in unit time. Here the unit time is the

operational time of 10 minute. If the system has two operations per day, the probabilities

are:
o P(K1)=1— o5ter(l — 7107 x T80y = 0.339851,
o P(TIM) =1 — =rigg (1 — 7107 ¥ T80)) = 0035628,

where the value 730 is the number of operations in one year 6 = 2 - 365 operations.

The structure function for the top event unreliability in the FT is

T=1-(1-K2)(1—-PRS K1)(1— PRS TIM)(1 — PRS S1),

an that, with the pivoting method, gives

— PRS[1— (1 - K2)(1 — K1)(1 — TIM)(1 — S1)] + (1 — PRS)[1 — (1 — K?2)].
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Substituting the probabilities of the basic events gives for the top event probability:

Q = P(PRS)[1 — (1 — P(K2))(1 — P(K1))(1 — P(TIM))(1 — P(S1))]+
+(1 = P(PRS))[1 — (1 — P(K2))] = 0.001606.

The same result can be achieved for the BN calculating the prior probability of the node
fault (denoted by F') marginalising over all the other variables:

P(F) =
=3 3 Y S 3 Y P(F.K2energ, K2, PRS, SysCont, K1,TIM, S1).
k2energ K2 PRS SysCont K1 TIM S1

This can be done first calculating P(SystemControl) as

P(SystemControl) = Z Z Z P(SysCont, K1,TIM, S1),

K1 TIM S1
then P(K2energised) as

P(K2energised) = Z Z P(PRS, SysCont, K2energ),
PRS SysCont

and finally

P(F) = Z Z P(F, K2energ, K2).

K2energ K2

The result is shown in figure 2.29 and it has been calculated with MSBNx, a free BN Editor
and Toolkit from Microsoft (see Appendix C).

Spreadsheet I Bar Chart | Recommendations

D @ K Hode Mame State 0 | State 1
D@ K2 fault e M

O Frs oo01E 09964
i[Je SystemCantral
D@ TIt

D@ kZ2energized

Figure 2.29 — Prior Probability of the node Fault in the BN.

The FT and BN calculations lead to the same results. Assuming that the system is faulty,
that is, giving evidence to the node fault, the posterior probabilities of the single components

are calculated and shown in figure 2.30.
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E_m Spreadsheet I Bar Chart | Recommendations I
Fault = Yes
K1 Node Mame State 01 | State 1
K2 fault YVes No
PRS 1.0000 0.0000
1 K1 YVes Mo
SystemContral 02322 0.70va
Tikd K2 Yes No
kZ2energised 09968 00032
PRS YVes No
0.0032 0.9968
51 YVes Mo
0o 0.9833
gystem control Ves Mo
0.3245 0.6755
TIH Ves Mo
0.0358 0.9642
K.2 energised Ve Mo
0.0032 09968

Figure 2.30 — Posterior probabilities of the components, given that the system has failed.

These are obtained by equation 2.13. For example, for node K1, this becomes

P(K1=Yes|F=Yes) =

3> > > > P(F=Y,K2energ, K2, PRS, SysCont, K1 =Y,TIM, S1)

_ k2energ K2 PRS SysCont TIM S1

Y Y Y Y S Y P(F =Y, K2energ, K2, PRS, SysCont, K1, TIM, S1)’

k2energ K2 PRS SysCont K1 TIM S1

Component K2 appears to be the one which has the higher probability to have caused the
failure of the system. Apart from the top event, other types of evidence can be introduced.
An example is shown in figure 2.31, where all posterior probabilities are considered given

that the control system has failed.

D%m Spreadsheet I Bar Chart I Recommendations
Mode Mame State 0 | State 1
fault e Mo
0.0016 0.9984
k1 Yes Mo
SystemControl = Yes 0.9004 0.0996
T k2 e Mo
k2energised 0006 0.9984
FRS Yes Mo
0.0000 1.0000
51 e Mo
0.0310 0.9690
zystemn contral Yes Mo
1.0000 0.0000
TIM ez Mo
01105 0.8895
.2 energized Tes Mo
0.0000 1.0000

Figure 2.31 — Posterior probabilities when the evidence about the system control is given.

In this case, K1 is the component that has the highest probability to have caused the failure

of the control system.
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Even though it is not possible to update probability following evidence with FTA, importance
measures are used in order to obtain information on the criticality of the components of the

system. In the next section, the principal importance measures are defined.

2.4 Importance Measures

The Importance Measure is a very effective means to evaluate the role of the components
in contributing to the occurrence of the fault on the system. Assigning a numerical value
to each component allows them to be ranked according to their criticality with respect to
the top event and it can help identifying potentially weak areas of the system. They can be
probabilistic or deterministic depending on whether they involve the component’s probability
or not. In the following subsections three of the most important probabilistic measures will
be discussed [42]. For the purpose of the BN method developed in the thesis they are not
used, however it can be useful to see how these are calculated to compare the FTA and BN

methods.

2.4.1 Birnbaum’s Measure of Importance

Given a system with n components, a critical state of the system for component i is a state
of the remaining n — 1 components such that the failure of component ¢ causes the system

to pass from the working to the failing state.

Birnbaum’s measure of importance of a component i, denoted by G;(q), is defined as the
probability of the system to be in a critical state for component i [43]. This represents the
maximum increase in risk when component 7 is failed compared to when component i is
working. It can be calculated as the sum of the probabilities for the system of being in
its critical states for component i. An expression for G;(q) can also be given in terms of
conditional probability. If Q(1;,q) denotes the probability that the system fails given that
component ¢ has failed and Q(0;, q) is the probability that the system fails with component

1 working, then:

Gi(q) = Q(1;, q) — Q(04, q). (2.32)

Birnbaum’s importance measure is used to define other measures such as the criticality
measure and it can be useful in calculating several system performance measures such as
system failure frequency. In fact the frequency of failure of the system can be calculated in

term of Birnbaum’s measure and failure frequency of the components as follows:
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Weys = Y Giw;. (2.33)

2.4.2 Criticality Measure of Importance

Criticality measure of importance of a component i is denoted by I; and it is defined as the
probability that the system is in a critical state for component i considering the probability
of failure of component i, ¢;(t), weighted by the system unavailability Qs,s(g(t)) [43]:

g, = Gil@att) (2.34)

Qsys(a(t))

Given the occurrence of the top event, this measures determines whether the failure of the
system is a result of the failure of the component. The criticality measure modifies the
Birnbaum measure by considering the probability of the component failure. In this way it
is possible to avoid assigning high importance measures to events that are very unlikely to
occur focusing on the truly important basic events. The Criticality measure is therefore

appropriate to improve system performance.

2.4.3 Fussel-Vesely Measure of Importance

Fussel-Vesely measure of importance is constructed considering minimal cut sets. It is defined
as the probability of the union of the minimal cut sets that contain component ¢ given that

the system has failed:

- P(Uk|iek Cr)
b= @)

The Fussel-Vesely measure determines the probability that component ¢ has contributed to

(2.35)

the system failure.

2.4.4 Importance Measures in Bayesian Networks

It has been seen that Birnbaum’s measure can be calculated in terms of posterior probability
by equation 2.32 and, as a consequence, the Criticality measure can be obtained in terms
of posterior probability as well. It is therefore always possible to calculate the first two
importance measures examined for any node ¢ with states yes and no of a BN. Birnbaum

measure is given by:

Gi = P(fault = yes | i =yes) — P(fault = yes | i =no), (2.36)
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and, as a result, the Criticality measure is given by:

_ P(fault =yes | i =yes) — P(fault =yes | i =no) P(i)
I = P(Fault) : (2.37)

Regarding the Fussel-Vesely measure, this is not obtainable directly from the BN as it

employs the minimal cut sets and these are not derivable from the network itself. In the
next section, the example of a system with its F'T model and its BN will be discussed. The
importance measures of the components will be calculated from the network and they will

be compared with the posterior probability.

2.5 The Firewater Deluge System

In this section it is considered a simplification of the Firewater Deluge System described in
[44]. Figure 2.32 shows a diagrammatic overview of the system and the following subsection

gives a description of its functioning and of the components’ failure modes and failure rates.

2.5.1 Description

The function of the deluge system is to supply, on demand, water at a controlled pressure to
a specific area on the platform protected by the system. As such, the Firewater Deluge Sys-

tem (FDS) comprises of a deluge skid, firewater pumps, associated equipment and ring mains.

The deluge valve set comprises three main elements: the main distribution line, a water
closing circuit and a control air circuit. Upon receipt of a signal from the Main Fire and Gas
Panel (MFGP), the solenoid valves (SV1 and SV2) are de-energised and open thus releasing
air pressure from the control air circuit. The air pressure drop allows the valmatic release
valve (MRM) to open, and water from the water closing circuit (WVR) runs to drain. This
causes the pressure on the deluge valve diaphragm (WV) to fall. When the pressure on
the diaphragm has fallen sufficiently, the firewater main pressure acting on the underside of
the deluge valve overcomes the load imposed by the diaphragm, allowing the flow into the

distribution pipes onto the hazard.
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Figure 2.32 — Firewater deluge system.
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The system may also be operated manually by opening the system local manual release valve
(MRM) on the skid. This allows air to escape from the control air circuit and the system

operates as described above.

The deluge systems are connected to a pressurised ring main network. The ring main pressure
is maintained by a jockey pump drawing water from the sea. Falling pressure is detected by
three pressure sensors (PT1, PT2 and PT3), which subsequently send a signal to the MFGP.
When low pressure is detected by at least two of the three sensors, the MFGP activates the
firewater pumps to supply water direct from the sea at sufficient pressure to meet the deluge
requirements. There are two pumps, one (E) being powered from the main electric power
plant and the other (D) from a diesel engine. The diesel pump is supplied by a tank. The

following failures rates values can be found in [44].

EVENT DESCRIPTION and FAILURE RATES

SI Failure of MFGP to correctly select and send a close signal to the solenoid valves;
A =2x 1077 per hr.

WBS Strainer, located upstream of the water deluge valve, blocked; A\ = 2.8x 107° per hr .

WIVB Blockage of the locked open butterfly valve located upstream of the water deluge
valve; A = 1.8x 107° per hr.

WV Water deluge valve fails to open; A = 4x 10~° per hr.
MRM Manual release mechanism fails to dump instrument air; A = 1x 1075 per hr.

SV1 - SV2 Solenoid activated valves fails to dump instrument air on receipt of the signal
from the MFGP; \gyvi = 3x 1076 per hr, Agve = 2x 1077 per hr.

WVR. Valmatic relief valve sticks closed on activation; A = 5x 107 per hr.
EFB - DFB The pump, which includes seawater filter, is blocked by debris; A = 2.8x 107° per hr.

EIVB - DIVB Firewater pump isolation valve being blocked. The butterfly isolation valve

operates on the header from pump to ring main; A = 1.8 x 10~° per hr.
EIVC - DIVC The firewater pump isolation valve is left closed after pump test; @) = 0.01.

EPRVO - DPRVO Pressure relief valve on header from pump to ring main fails open;
A = 1.2x 1075 per hr.

EDVO - DDVO Test line, used to dump flow from firewater pumps overboard during test,
is left open after completion; () = 0.01.
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ECVB - DCVB Check valve on header between the pump and ring main blocked; A =
2.5x 107° per hr.

E Failure of the electric pump; A = 5x 10~ per hr.
D Failure of the diesel pump; A = 5x 10~ per hr.

EFSU - DFSU Failure of fire pump selector unit to initiate start of the pump on detection

of failure to restore ring main pressure; A\ = 8x 1075 per hr.

PT1 - PT2 - PT3 Failure of ring main low pressure sensors to indicate low ring main pres-

sure; Apr; = 7x 1075 per Ar, Apro = 1.4x 1075 per hr, A\prs = 2.1x 1075 per hr.

The failures are supposed to be unrevealed and inspected at intervals of six months. The
unavailability of the components is given by equation 2.31 considering the operational time
of 12 hours:

UNAVAILABILITIES

SI ¢ = 3.599x 1075 WBS ¢ = 5.0231x 1072 ; WIVB ¢ = 3.2393x 10~* ;

WYV ¢ = 7.16556x 1073; MRM ¢ = 1.79784x 1073 ;

SV1 - SV2 gsy; = 5.398x 1074, ggve = 3.59137x 1073; WVR. ¢ = 8.9946x 107,

EFB - DFB ¢ = 5.0231x 1073 ; EIVB - DIVB ¢ = 3.23301x 1073;

EIVC - DIVC ¢ = 0.01; EPRVO - DPRVO ¢ = 2.15389x 1073 ;

EDVO - DDVO ¢ =0.01; ECVB - DCVB ¢ = 4.48653x 1073; E ¢ = 8.48345x 1072 ;
D ¢ = 8.48345x 1072; EFSU - DFSU ¢ = 1.43861x 1073;

PT1 - PT2 - PT3 gpr; = 1.25894x 1073, gpro = 2.51577x 1073, gppg = 3.77049x 1073 .

2.5.2 Fault Tree model

Figures 2.33, 2.34 and 2.35 show the FTs for the top event Firewater system fails to protect.

47



Chapter 2. Bayesian Networks

Firewater system fails
to protect
No water through
the nozzle

No water through
the strainer Strainer is|
blocked

butterfly valve|
is blocked

no water through the|
butterfly valve

no water through water deluge valve
the water deluge fails to open
valve

water closing circuit
is closed

water deluge valve
fails blocked

|
valmatic relief valve
sticks closed

no signal to the water|

closing circuit

automatic
mechanism fails

1
no signal to the solenoid valves
solenoid valves fail to de-energize
MFGP fails to send signal
on detection of fire

VD @&

Figure 2.33 — Firewater deluge system FT (1 of 3).
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Figure 2.34 — Firewater deluge system FT (2 of 3).
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Figure 2.35 — Firewater deluge system FT (3 of 3).
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MINIMAL CUT SETS

The minimal cut sets for the FT are 73, of which, one cut set of order 3, 4 cut sets of order
1 and 69 of order 2.
The top event probability has been obtained by the software Fault Tree Plus (see Appendix
C):

@ = 0.027025,

as shown in figure 2.36.

[i]

FALILT
Q=2 7025e-2

FIREMWATER FAILS

]

Figure 2.36 — Top event probability (Fault Tree Plus).

2.5.3 Bayesian model

A BN for the system has been derived as shown in figure 2.37.
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Figure 2.37 — BN for the Deluge System (Hugin software).

The probability of the node fault equals the top event probability in the F'T, as shown in

figure 2.38:
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Figure 2.38 — Probability of Fault (Hugin).

2.5.4 Importance Measures analysis

Table 2.1 relates the posterior probability, the unavailability, the Birnbaum’s measure, the

Criticality measure and the failure rate of the components of the system.

Companent Fosterior o Birnbaum Criticality A

E 0.4062445 0.05348345  0.11185045 0.351204606 0.0005
D 0.4062445 0.05348345 0.11185045 0.351204606 0.0005
WY 026514521 000716556 0.97999717 0.259341463 0.00004
WES 0.18586825 0.0050231  0.977856965 0.151753183 0.000023
FT2 0.00296931 0251577 0.00483435 0.045468654 0.000014
EMNG - DIV 0.0478867 4 001 010342339 0.038269454 ) 5.59295E-05
EDW0 - DOWO 0.0478867 4 001 010342339 0.038268454 5 592095E-05
R 0.033258244 000032946 0.97385088 0.032412148 0.000005
EFE - DEF 0.02405393 0.0050231  0.10290607 | 0.012126975 0.000023
ECYE - DCVE 0.02143454 0.00443653 01023506 0.017074614 0.000025
ENE - DIVE 0.01543183 000323301 00272126 0.012288557 0.000013
WB 0.01193629 000032393 097329022 0.011666136 0.0000015
EPRWD - DPRYWO 0.01032864 0.00215689 0.10261048 0.003139421 0.000012
EFSU - DFSU 0.00683904 ) 000143861 010253667 0.00545828 0.000003
FT3 000428012 000377049 0.00366666 0.000511566 0.000021
FT1 000154265 000125894 0.00509802 0.000234071 0.000007
MR 0.00180029  0.00179734 0.0000369 2.45477E-O6 0.00001
Sl 0.00003332 0.00003599 0.00174925 2.32952E-0B 0.0000002
541 0.00053233 0.0005323  0.00000B25 1.25457E-07 0.000003
W2 0.00352149 000352137 0.00000024 1.24917E-07 0.00002

Table 2.1 — Posterior probabilities and importance measures for the components of the firewater deluge system.

It has been observed that the criticality measure and the posterior probability follow a similar
trend. This has to be expected as they both determine whether the failure of the system
is a consequence of the failure of the component. Figure 2.39 compares the values of the
posterior probability and criticality measure for the components of the system.

Similar results can be observed for the component measures of the pressure tank system

analysed in section 2.3.3.
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Figure 2.39 — Criticality measure and Posterior probability of the firewater deluge system components.

2.6 Summary

BNs represent an efficient modelling tool for reliability analysis as capable of performing the
same analysis as the FTA. In particular it has been seen how a F'T can be mapped into a BN
and how this technique can provide the same information as the probability of failure of the
system, the Birnbaum measure and the criticality measure. Furthermore, by BN modelling
it is possible to calculate the posterior probability of the nodes of the network. This gives
a measure of the criticality of the component with respect to the occurrence of the Fault
node (or the top event) and it has being found to have a trend which is very similar to the
criticality measure. The posterior probability, although, has the advantage to allow evidence
to be introduced to more than one variable. For example, in a fault diagnostics procedure,
when the system is inspected, evidence could be introduced to the components that are found
in the working state. In this way, an updated probability is obtained for any configuration
of the system. Furthermore, the analysis by means of BNs is immediate, while with FTA
each scenario is studied by first calculating the prime implicants and then the criticality of
the components. The comparison of the two techniques leads to the conclusion that they
provide a similar analysis but BNs could bring more modelling solutions in processes like

fault diagnostics as they are able to update the probability when evidence is introduced.
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Furthermore, BNs seem to give a more concise representation, when for example, derived
from FTs with repeated events. Given this, research has been directed toward the use of

BNs in fault diagnostics.
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Chapter 3

An Application of Bayesian Networks

for System Fault Diagnostics

Introduction

FTA has been applied successfully to system fault diagnostics in a number of methods over
the past years. One of these applications has been studied in [14], where different schemes
are analysed for detecting faults and combinations of faults in a simple water tank level

control system.

In [39], the authors make a comparison between BNs and FTA techniques for dependabil-
ity problems. In particular, they show how a FT can be mapped into a BN and that any
analysis performed with the FT methods by means of the minimal cut sets procedure can

be carried out in a BN. We have shown the conversion procedure and an example in chapter 2.

In this chapter it is investigated how BNs can be applied to fault detection with a similar
approach to the one mentioned above that made use of FTA. A method has been obtained
converting the FTs into BNs. The choice to obtain the networks from the FTs is motivated
by the fact that there is not a general structured way to build a BN, while FTA provides a
method to create a FT to model an event in terms of its direct causes by introducing logic
gates and basic events. In this chapter we show how the two methods obtained give similar
results, but that using BNs has several advantages compared with FTA: the graphical repre-
sentation is more concise and, for the purpose of fault detection, BNs give a straightforward
approach when it comes to identifying the component failures by using posterior probability

introducing evidence in the network.
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The methods are demonstrated and compared using a simple water tank system. The com-
mercial software package Hugin Researcher has been used for the creation and the evaluation

of the networks (see Appendix C).

3.1 The Water Tank System

This section describes the operation of a simple water tank system illustrated in figure 3.1.
This system will be used for the fault diagnostics in this and in the following chapter. Al-
though the system functioning is simple, it still poses problems in terms of some dynamic
aspects. The aim of the system is to maintain the level of the water in the tank between two

fixed limits.
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Figure 3.1 — Water Tank System

3.1.1 System Component Description

The systems consists of a number of components:

- the tank and the overspill tray denoted respectively TANK and TRAY;

The purpose of the tray is to collect any water leaking through a fracture or overflowing
from the top, this is located underneath the tank.

- valves V1, V2 and V3;

Valve V1 is an air-to-open inlet valve located at the top of the tank. The valve is open or
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closed depending on the level of the water detected by level switch S1. When S1 indicates
that the level is below the required level, controller C1 opens V1 to allow water into the
tank. When the level is above the limit, C1 closes V1 to stop the flow into the tank.

Valve V2 is a manual outlet valve and it is activated in response to demand by an operator.
Valve V3 is an air-to-close valve that it is activated by controller C2 as a safety measure in
case of a failure that causes the level of water to rise up to a risky level detected by the level
switch S2. In this circumstance, controller C2 opens V3 to let the water flow out of the tank
in order to reduce the level of the water in the tank.

- level switches S1 and S2 measure the level of the water in the tank and they are connected
respectively to controllers C1 and C2.

- pipes make up sections P1 - P6.

When the system is operating normally, valve V2 is open letting water out of the tank and
V1 is open to replace the water from V2. The water level is kept constant. Valve V3 should

be closed as it only opens if a critical level is reached due to a failure in the system.

3.1.2 System Operating Modes and Scenarios

There are four sensors that monitor the functioning of the system. Three of them, VF1,
VF2 and VF3, are located next to the valves V1, V2 and V3, respectively. These detect
water flow through the valves, therefore their readings will be either Flow (F) or No Flow
(NF). Another sensor, SP1, is located in the overspill tray and it detects potential presence
of water leaked or overflowed from the tank. Its readings will be Water (W) or No Water
(NW). All sensors are assumed to be perfectly reliable.

Since each of the four sensors has two different outcomes, there will be 16 possible different
scenarios of the system resulting from any possible combination of sensor outcomes. These
are listed in table 3.1.

The system has two operating modes: ACTIVE and DORMANT. In the ACTIVE mode
valve V2 is open letting the water out of the system while valve V1 is open to let the water
drain from the tank. Valve V3 should be closed and there should be no water in the overspill
tray. The sensor readings correspond to scenario 4 in table 3.2. In the DORMANT mode
the system is in standby with all valves closed and no water in the tray, as in scenario 16.
When the tank is in the ACTIVE operating mode and the sensor readings differ from the

ones in scenario 4 , then a deviation (fault) is expected from the normal functioning of the
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Scenario | VF1 VF2 VF3 SP1
1 F F F W
2 F F F NW
3 F F NF W
4 F F NF NW
5 F NF F W
6 F NF F NW
7 F NF NF W%
8 F NF NF NW
9 NF F F W
10 NF F F NW
11 NF F NF W
12 NF F NF NW
13 NF NF F W%
14 NF NF F NW
15 NF NF NF W
16 NF NF NF NW

Table 3.1 — List of system scenarios.

system. The same occurs if the system is in the DORMANT mode and the sensor readings

show a different behaviour from scenario 16.

3.1.3 Component Failures

The component failures are listed in table 3.2.

Component Failure Description
P,B(1<i<6) Pipe P; blocked

P,F Pipe P; fractured
V,FC (1 <i<3) Valve V; fails closed
V,FO Valve V; fails open
S;FH (1 <i<2) Switch S; fails high
S;FL Switch S; fails low
C;,FH Controller C; fails high
C,FL Controller C; fails low
TR Water tank ruptured
TL Water tank leaks
NWMS No water from main stream

Table 3.2 — Component failures description.

The 6 sections of pipes can fail blocked or fractured; valves fail closed or open; level switch-
esfail high or low (sensing water level higher that it is and lower that it is) and controllers
fail high or low in the same way.

It is assumed that components can only fail in one way at a time. For example TANK can
fail either leaking (TL) or fractured (TR), both failures can not occur at the same time
(TR.TL).
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3.1.4 System Operating Assumptions

A number of assumptions are made for the system:

- when the system starts operating in the ACTIVE mode, the level of the water in the tank
is adequate;

- valves V1 and V2 are assumed to have the same capability, so, if they are both open and
V3 is closed, assumed that the water is at the required limit, the amount of water entering
the tank equals the amount of water leaving the tank and the level remains constant;

- pipes P5 and P6 are assumed to have a larger cross sections compared to the others in
order to facilitate the process when the level of water needs to be quickly reduced in the
tank;

- if the tank fails ruptured, all the water will leave the tank at a faster rate than refillment
is possible;

- if the tank fails leaking, the flow out through the leak is always assumed to be capable of
being replaced by the flow in through valve V1.

- component failure P2F cannot be detected because a fracture in pipe section P2 would still
allow water to flow into the tank.

- component failure P4F cannot be detected for a similar reason, because a fracture in pipe
section P4 would still allow the water to flow through valve V2 out of the tank. Both P2F
and P4F remain failures for the system but because of the location of the sensors they are
not detectable.

3.2 The Non-coherent Fault Tree Method

In [14] the authors consider the water tank level control system to describe an application
of FTA to fault diagnostics with a non-coherent method. Non-coherent FTs make use of
NOT logic together with AND and OR logic, taking into account both component-failing
and component-working states. With this approach more information about the system can
be included in the analysis. The best results are shown for a scheme in which non-coherent
FTs of deviating and non-deviating sensors readings are combined together in a F'T with
an AND gate. The term deviating refers to some behaviour which is not expected but it
is understood. Prime implicants of the resulting F'T are derived for each of the 16 possible
scenarios in both ACTIVE and DORMANT modes. In the following subsection, the process

of the construction of the non-coherent F'T's for the water tank is explained in more detail.
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3.2.1 Fault Tree construction

Non-coherent F'T's are build for each of the following events:
- No Flow through Valve V1,

- Flow through Valve V1,

- No Flow through Valve V2,

- Flow through Valve V2,

- Flow through Valve V3,

- No Flow through Valve V3,

- Water in the Ouverspill Tray,

- No Water in the Overspill Tray.

These are all possible sensor outcomes. Some of them may represent an expected behaviour
for an operating mode and a deviating behaviour for the other, for this reason, in the FT
structure, the operating mode has to be specified. Starting from the top event, the im-
mediate causes are found and connected using OR and AND gates. The basic events are
the component failures of the system and the working components. To include the working

components, NOT logic is used.

Figures 3.2, 3.3, 3.4 and 3.5 show the non-coherent FT for sensor reading Flow through
Valve V1. This is shown in several parts as it would be too large for one figure. In figure
3.2, the box at the top of the tree contains the top event Flow Through Valve V1. This is
unexpected when the system is in the DORMANT mode, while it is the required behaviour
in the ACTIVE operating mode.

In order to have flow through valve V1, two conditions need to be true, water should be
available to pass through and the valve should be open, therefore an AND gate is used to
connect them. Each of the two events is then analysed again asking what caused this? until
the components, in their working or failing states, are reached. For example, on the left
branch of the FT in figure 3.2, the first basic event is NWMS, which represents the negation
of the failure NWMS, No Water from the Main Supply. This means that the water supply

must be working.

Once the structure of the non-coherent FT is build, a qualitative analysis can be carried out
obtaining its prime implicants. A prime implicant is defined as a minimal combination of

component states (working or failing) which cause the F'T top event (see [45]).
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Figure 3.2 — Non-coherent FT for Flow through Valve V1 (1 of 4).

Sensor S1| [ Controller C1| [ Valve V1
does NOT|| does NOT does NOT
fail High fail high fail Closed

For the FT discussed, in the ACTIVE mode, there is only one prime implicant containing

only working components as flow through valve V1 is expected:

1) NWMS.P1B.P1F.P2B.V1FC.C1FH.S1FH.V2FC.P3B.P3F.P4B.TR.

For the DORMANT mode, there will be 11 prime implicants, including both working and

failing components:

1) VIFO.NWMS.P1B.P1F.P2B.V1FC,
2) C1FL.NWMS.P1B.P1F.P2B.V1FC.C1FH,

4) TR.NWMS.P1B.P1F.P2B.V1FC.C1FH.SIFH.TL,
5) TL.NWMS.P1B.P1F.P2B.V1IFC.C1IFH.SIFH.TR,

)
)
3) SIFL.NWMS.P1B.P1F.P2B.VIFC.C1FI.SIFH,
)
)
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6) P3F.NWMS.P1B.P1F.P2B.V1FC.C1FH.S1IFH.P3B.TR,

7) P5F.NWMS.P1B.P1F.P2B.VIFC.C1FH.S1FH.P5B.TR,

9) V3FO.NWMS.P1B.P1F.P2B.VIFC.C1FH.S1FH.V3FC.P5B.P5F.P6B.TR,

)
)
8) V2FO.NWMS.P1B.PIF.P2B.VIFC.CIFH.SIFH.V2FC.P3B.P3F.P4B.TR,
)
0

10) C2FH.NWMS.P1B.P1F.P2B.V1FC.C1FH.S1FH.V3FC.C2FH.P5B.P5F.P6B.TR,

11) C2FH.NWMS.P1B.P1F.P2B.V1FC.C1FH.S1FH.V3FC.C2FH.S2FH.P5B.P5F.P6B.TR.
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Figure 3.3 — Non-coherent FT for Flow through Valve V1 (2 of 4).
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Figure 3.5 — Non-coherent FT for Flow through Valve V1 (4 of 4).
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In the left branch of the FT in figure 3.4, house events are used. These are events that
have probability either 1 or 0, so they are used to turn on or off entire branches of the tree
depending on the state of some variables. In this case, they are used to model the ACTIVE
and DORMANT operating modes.

Figure 3.6 shows the non-coherent F'T for the sensor reading Flow through Valve V2 in the
ACTIVE mode.

Flow Through
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Valve V2 Water can pass ‘Water is available
does NOT through Pipes in the Tank
fail closed P3 and P4

=

Tank is NOT
fractured

P3 is blocked and P4 is NOT]
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locked

No Water from
the Main Supply

‘Water can pass
through P1 and P2

:HIV;XIT CT does NOT| [S1 does NOT Pélis E%T
0ES fail Hi H 1 OCKe:
fail closed ail High fail High and NOT

fractured

Figure 3.6 — Non-coherent FT for Flow through Valve V2 in the ACTIVE mode.

There is only one prime implicant for the ACTIVE mode, containing only working compo-

nents because flow through valve V2 is expected, and this is:

V2FC.P3B.P3F.P4B.TR.VIFC.C1FH.S1FH.P1B.P1F.P2B.NWMS.

In the DORMANT mode, the FT representing flow through valve V2 has a similar logic to

the one in figure 3.6 and it has another prime implicant:

V2FO.V2FC.P3B.P3F.P4B. TR.VIFC.C1FH.S1FH.P1B.P1F.P2B.NWMS.

Figures 3.7, 3.8 and 3.9 show the non-coherent FT for sensor reading Flow through Valve
V3.
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Figure 3.9 — Non-coherent FT for Flow through Valve V3 (3 of 3).

Figures 3.10, 3.11, 3.12 and 3.13 show the non-coherent F'T for sensor reading Water in the
Qverspill Tray.
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Figure 3.10 — Non-coherent FT for Water in the Overspill Tray (1 of 4).
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Figure 3.11 — Non-coherent FT for Water in the Overspill Tray (2 of 4).
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Figure 3.13 — Non-coherent FT for Water in the Overspill Tray (4 of 4).

<

It is so far been illustrated the F'Ts for the following events:
Flow through Valve V1,

Flow through Valve V2,

Flow through Valve V3,

Water in the Overspill Tray.

These are the only FTs that are necessary for the purpose of the BN method, for a complete

list of F'Ts of the water tank system with their prime implicants, one can refer to [46].

Once all F'Ts are constructed, each deviating scenario of the system is studied creating a F'T
that models the scenario. This is obtained connecting with an AND gate the FTs relative to
the events that represent the sensor readings of the particular scenario. This is illustrated

with an example.
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It is assumed that the sensor readings corresponding to scenario 1 are observed in the system
when it is operating in the ACTIVE mode. Scenario 1 occurs when flow is detected through
all three valves and water is present in the overspill tray (see table 3.1). The behaviour of
the system corresponds to the one expected only for valve V1 ad V2. Water is unexpected
through valve V3 and also in the water spill tray. Figure 3.14 shows the F'T for scenario
1. This includes the deviating as well as the non-deviating sensors. For the non-deviating
sensors, the negation of the deviating F'T is included using a NOT gate. This approach has

shown to produce better results than only including in the FT the deviating sensors [46].

ACTIVE mode
Scenario 1
NOT No Flow NOT No Flow Flow Through Water in the
Through Valve V1 Through Valve V2 Valve V3 Overspill Tray
No Flow Through No Flow Through
Valve V1 Valve V2

Figure 3.14 — Structure of the FT for scenario 1 in the ACTIVE mode.

Results for scenario 1, that is the component failures that may have caused the malfunction,
are obtained analysing the prime implicants of the FT in figure 3.14. These include the
component failures as well as the working components. If the working components are

removed, we are left with the potential causes for the scenario. These are listed in table 3.3.

Potential causes
1 TL.S2FH
TL.C2FH
3 TL.V3FO

Table 3.3 — Potential causes for scenario 1 in the ACTIVE mode, using the non-coherent FT method .

The results from the FT method for scenario 1 listed in table 3.3 show that there are 3
combinations of component failures that cause the scenario. A leakage in the tank must
have occurred, as it appears in all 3 prime implicants. This failure will cause the unexpected

behaviour of water in the Overspill Tray. This is the only possible explanation as a fracture
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and an overflow are to be excluded. A fracture in the tank is not possible because this would
cause the water to leave the tank immediately and flow through valve V2 and V3 would
not be possible with an empty tank. An overflow from the top of the tank is not possible
because flow is observed through valve V2 and V3 and it is assumed that the water entering
the tank from valve V1 equals the water from valve V3, so the level could not have risen up
to the top in this scenario. For the deviation of the sensor corresponding to valve V3, there
are three possibilities. The valve might have failed open, the controller might have failed
high, keeping the valve open, or, the switch might have failed high, measuring the level of
water at the safety limit. Therefore, either S2FH, C2FH or V3FO are true.

3.3 The Fault Detection method using Bayesian Networks

Chapter 2 illustrates how a FT can be converted into a BN. This enables a method to be
developed with BNs using a similar approach to the one just described. In fact, creating a
BN that represents the system would enable us to find the possible causes for the scenarios
by calculating the posterior probability. In this way, we would have the advantage of avoid-

ing building and evaluating large F'T's for each scenario.

A model for the fault detection of the water tank system has been created using BNs with
the following steps:
Conversion: the four non-coherent F'Ts relative to the sensor readings:

Flow through Valve V1,

Flow through Valve V2,

Flow through Valve V3,

Water in the QOuverspill Tray,
are converted to four BNs (see figures 3.15, 3.16, 3.17 and 3.18);
Connection: the BNs are connected together to form an Object Orientated Bayesian Net-
work (OOBN), which is a class of distinct BNs that are connected to each other in a unique
BN that represents the system and that incorporates all scenarios (see figure 3.21);
Evaluation: evidence is given to the fault nodes of the BNs representing the sensor read-
ings in accordance to the 16 possible scenarios in table 3.1. The component failures whose
posterior probability have increased with respect to the prior probability are the potential
causes for the scenario. A list of the potential causes is produced for each scenario of the
ACTIVE mode (see tables 3.6 and 3.7).
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3.3.1 Converting the FTs into BNs

In this subsection the detailed networks for the ACTIVE operating mode are shown. The
FTs have been converted using the method described in chapter 2. All event nodes have
states yes and no. The failure probability for all component failures are, for simplicity, spec-
ified as ¢ = 0.001667. It was chosen to give the same figure to all components in order to

compare the results with the ones from the FTA.

Figure 3.15 shows the BN obtained converting the F'T for Flow through Valve V1.
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Figure 3.15 — BN for Flow through Valve V1 in the ACTIVE mode.
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When evidence yes is given to the fault node, Flow through Valve V1, a number of root
nodes (components) will have posterior probability that equals 1. These are failures and
non-failures that have definitely occurred when flow is observed. Some others will have in-
creased or decreased their prior probabilities according to their contribution to the sensor

outcome.

From the network itself, it is not possible to find the exact combinations of failures that
cause the sensor outcome, but only the values of each posterior probability. Nevertheless,
we know that when a node has posterior probability 1, then the relative component failure

will be contained in all prime implicants.

When evidence yes is given to node Flow through Valve V1, the following non-failing com-

ponents will have posterior probability 1:

NOT NWMS, NOT P1B, NOT P1F, NOT P2B, NOT V1FC.

As a consequence, the corresponding component failures, NWMS, P1B, P1F, P2B and V1FC,
will have posterior probability 0. These represent the component failures that must not have
occurred in order to have a correct behaviour through valve V1. Water should be available
from the main stream, pipe section P1 should not have failed blocked or fractured and valve
V1 should not have failed closed. Other components, such as the controller C1 or the level
switch S1 should not have failed. In fact, for example, if controller C1 fails high, it would
cause the closure of the valve and consequent no flow. But, the reason NOT C1FH does
not have posterior probability 1 is that, even if the controller has failed high, the failure of
the valve in the open position would still cause flow through. Therefore, NOT C1FH has

increased its posterior probability but it is not a certain event.

If evidence no is given to the fault node in the BN, that is, if an unexpected behaviour is
observed in valve V1, the posterior probability would reveal the potential causes of the fault.
The component failures in table 3.4 will have increased posterior probability. The first 5
causes are the most probable. They are in fact direct causes of the the fault, that is, each of
them, alone, would cause the fault in any situation. Causes number 6 and 7 are direct causes
but their occurrence alone would not result with the fault in the case of another failure, that
is VIFO for C1FH and both V1FO and C1FH for S1FH. This means that the switch failure

causes flow unless the valve fails open or the controller fails high.
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Pot. causes Probab. (in % )
1) NWMS 10.12
2)  PIB 10.12
3) PIF 10.12
1)  P2B 10.12
5 VIFC 10.12
6) CIFH 10.11
7)  SIFH 10.09
8) P3B 9.97
9)  P4B 9.96
10) V2FC 9.96

Table 3.4 — Potential causes for No Flow through Valve V1 from the posterior probabilities in the BN.

Causes number 8, 9 and 10 are indirect causes. If, for example, pipe section P3 fails blocked,
this would cause the level of the water in the tank to rise and, as a consequence, valve V1
would close and flow through the valve would stop. The prime implicants obtained from the
FT No Flow through Valve V1 are indicated in table 3.5.

Prime Implicants
) NWMS

) PIB

) PIF

) P2B

)  VIFC

)  CIFH.V1FO
)

)

)

0

S1FH.V1FO.C1FL
P3B.V1FO.C1FL.S1FL
P4B.V1FO.C1FL.S1FL

)  V2FC.V1FO.C1FL.S1FL

Table 3.5 — Prime Implicants obtained from the FT No Flow through Valve V1.

The tables show consistent results. The prime implicants show the exact combinations of
components, failing and working, that lead to the malfunction. The posterior probability of
the BN show the probability, given the fault, that the component failure has contributed to
the fault. Figure 3.16 shows the BN obtained converting the FT for Flow through Valve V2.
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Figure 3.16 — BN for Flow through Valve V2 in ACTIVE mode.

Comparing the BN in figure 3.16 with the corresponding FT in figure 3.6, one can see that
in the BN structure the root nodes representing component failures have been connected to
the working states of the components. This is done because it will facilitate the connection
of the networks at the next stage.

After giving evidence yes to Flow through Valve V2, nodes:

V2FC, P3B, P3F,PAB, TR, VIFC, CiFH, SIFH, PiB, PIF, P2B, NWMS

will have posterior probability 1. These correspond to the components non-failures of the
prime implicant found for FT Flow through Valve V2. Figure 3.17 shows the BN obtained
converting the FT for Flow through Valve V3.
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Figure 3.17 — BN for Flow through Valve V3 in ACTIVE mode.
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Finally, figure 3.18 shows the BN obtained converting the F'T for Water in the Overspill

Tray.
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Figure 3.18 — BN for Water in the Overspill Tray in ACTIVE mode.
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Since the same failure probability has been given to all component failures, even if it is not
possible to derive the minimal cut sets, the posterior probability can give a measure in which
each node contributes to the sensor outcome. This can be compared with the number of
prime implicants a component fault belongs to. When a node has posterior probability 1,

the correspondent component’s fault will belong to all prime implicants.

When the method is applied in a real world situation, the components’ prior probabilities
will not be the same for all components. Furthermore, the posterior probability takes into

account the timing factor. For example, the posterior probability of node NOT P3B when
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evidence yes is given to Flow through Valve V1 is not exactly 1, because pipe P3 blocked
is not a direct cause for flow through valve V1. However, the posterior probability is very
close to 1 because pipe P3 blocked would obstruct the flow out of the tank and this would
make the level of water increase. In this case level switch S1 would detect the level of water
above the limit and controller C1 would close the valve. Still, in case the switch or the the

controller failed low, or the valve itself failed open, there would be flow through V1.

In the next subsection, the networks relative to the sensor readings will be connected together
to analyse different system level scenarios. The advantage of this is that only one network
is constructed and all scenarios will be produced giving evidence to the sensor nodes. We
have chosen to distinguish the BNs relative to the ACTIVE operating mode and to the
DORMANT mode. In principle, the two modes could be described in one network adding a
node that has probability 1 or 0 that models house events in the FT.

3.3.2 Connecting the networks

Once the BNs relating to the sensor outputs are created, these are connected together to
form a unique BN, able to model all system scenarios. In order to visualise the whole network
easily, input and output nodes have been used in the networks from the previous section.
These are nodes that are visible from outside so they can be seen and used in networks
contained in other files (this is a feature in version 6.8 of Hugin Researcher). Using input
and output nodes we are able to create a class collection of networks, called object orientated
Bayesian Network (OOBN) [47].

The BNs shown in the previous section will be subnetworks of a master network representing
the system. The subnetworks and the master network will form the OOBN. This approach
was found after trying to connect the networks together in one large BN. The resulting sys-
tem BN contains 240 nodes and dealing with it proved difficult for two reasons. Firstly, the
visualisation of a large BN on a computer screen is troublesome and, secondly, locating the
nodes from a large list can take a long time. Furthermore, when it comes to the process of
evaluating the network, it is not necessary to display all the information about the system,
only the nodes representing the component failures and the sensor outputs are needed. Us-
ing OOBNs has allowed the model to improve both graphically and in terms of probability
evaluation. The graphical view of the separate subnetworks is more concise and clear. The
probability evaluation is also facilitated as one can consider the whole system BN and the

section separately.
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Input nodes are displayed as in figure 3.19. They are fictitious nodes for the network they
belong to and they are identical to the nodes they are linked to. So they are identical to
their nodes parents. For our purpose, the root nodes representing component faults of the

system contained in the networks are input nodes.

& C1 B

Figure 3.19 — Input node.

Output nodes are displayed as in figure 3.20. They are nodes that can be used as parents
of nodes belonging to other networks. In the water tank system networks, fault nodes

representing sensor readings are output nodes.

O

Figure 3.20 — Output node.

It is now possible to connect the four networks creating a new BN that contains the com-
ponent fault nodes as parents of the fictitious component faults nodes. The four output
nodes will be parents of the node level, which will be the fault node of the new network.
Figure 3.21 shows the system BN. The 28 nodes at the top, represent the component failures
of the system. They link toward four square boxes that represent the BNs modelling the
sensor outputs. In figure 3.22, one of the squared boxes is expanded to show the INPUT
and OUTPUT nodes that belong to the BN relative to valve V2.

In this way, it is possible to visualise how the root nodes in the BN link to the input nodes
in the subnetworks and the output nodes in the subnetworks link to the node called Lewvel.
This is a node with 4 states: Low, Normal, High and Very high. It is assumed that the
level of water in the tank is predictable in the different scenarios. If the level of water in the
tank could be measurable, evidence could be given to the node level as well and this would
add extra information. In our particular case, this extra node does not actually give any

advantage.

3.3.3 Evaluating the BN

It is now possible to give evidence to the nodes representing the sensor outputs obtaining the
posterior probabilities of the component failures. These probabilities provide a measure for

the components for having caused the fault when a deviation from the normal functioning is
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Figure 3.22 — System BN in ACTIVE mode.

observed by the sensors. So we can obtain a list of potential causes for any scenario. Figure

3.23 shows how the posterior probabilities are displayed by the Hugin program interface. For

for which the sensor outputs are as in table 3.1, evidence yes is given to all four

scenario 1,

fault nodes of the BNs relative to the sensors. These nodes can be accessed from the window

The posterior probabilities

in figure 3.23 in the software with no need to open the other BNs.

of the component faults are also displayed. Once this BN is created, the evaluation is a matter

of seconds. The evaluation consists of giving evidence to four nodes and a list of potential
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causes is obtained.

- active
-] active_senst

ID active_sens2

B0 active_senst

0.000556 yes
99.999444 no

16.667454 yes
83,332546 no

22,222994 yes
FEFTI006 no

0.000370 yes
99,999530 no

0 yes
100 no

0 yes
100 no
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100 no

0 yes
100 no

27778071 ves
F2,221929 no

16.667546 yes
3,332454 no

27773071 yes
72221929 no

0.001431 yes
99,993519 no

Figure 3.23 — Posterior probabilities in the software Hugin.

In the next subsection, the causes are listed for the ACTIVE operating mode for all possible

scenarios.

3.3.4 Results

Results are shown in details for the ACTIVE mode. The posterior probabilities of the com-
ponent failures that represent potential causes are given for all observable scenarios in tables
3.6 and 3.7.

When the posterior probability equals the prior probability, it can be assumed that the
component failure has not influenced the sensor outcomes. In other words, the evidence
introduced by the sensor observations does not change the probability of the component fail-
ure. In the same way, when two events A and B are independent, the conditional probability
equals the probability: P(A given B) = P(A). Therefore a component failure is considered a

potential cause for a scenario if its posterior probability, which is the conditional probability
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given the sensor observations, is greater than the prior probability.

Scenario Symptoms Possible Causes
VF1 VF2 VF3 SP1 Component Probability (%)
1 Flow Flow Flow YWater 1TL 100
2%3F0 33.334444
3 C2FH 33.333889
4 52FH 33.333333
2 Flow Flow Flow Mo Water 1%3F0 33.334444
2 C2FH 33.333889
3 52FH 33.333333
3 Flow Flow Mo Flow Water 1TL 100
ACTIVE 4 Flow Flow Mo Flow Mo Water Mo Causes
5 Flow Mo Flow  Flow YWater 1TL 100
2 P3B 27778302
3 P4B 27778302
4 W2FC 27778302
5%3F0 22203272
G C2FH 22.222501
7 52FH 22222531
8 P3F 16.667685
9W1FO 16.667593
10/ C1FL 16.667315
11 51FL 16.66431
6 Flow Mo Flow  Flow Mo Water 1 P3B 27778302
2 P4B 27778302
I W2FC 27778302
4 %3F0 22203272
5 C2FH 22.222501
5 52FH 22222531
7 P3F 16.667685
8W1FO 16.667593
9 C1FL 16.667315
10/ 51FL 16.66431
7 Flow Mo Flow  MNo Flow Water 1 TR 99993334
2 TL (0.006666
3 51FL 0.005416
4 52FL 0.005416
5 %W3FC 0.005416
B C2FL 0.00516
7WIFO 0.005
8 C1FL 0.004583
9 P3B 0.003333
10 P3F 0.003333
11 P4B 0.003333
12 W2FC 0.003333
8 Flow Mo Flow  MNo Flow Mo Water 1/P3F 99.990001
2 P5F (0.006666
3 P4B 0.005
4 W2FC 0.005
5 P3B 0.003333

Table 3.6 — Possible causes for scenario 1-8 when the system is operating in the ACTIVE mode.

Results for scenario 1 are shown in table 3.6. In this scenario the identified potential causes
for the deviating functioning of the system are 4: TL, V3FO, C2FH and S2FH, with proba-
bilities, respectively, 1, 0.3333, 0.3333 and 0.3333. So, the tank must have a leak and valve
V3 may have failed open, the controller and the sensor may have failed high with similar

probability. These are the correct potential causes. In fact, water is detected in the overspill
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tray but it cannot come from a rupture in the tank, because the tank contains water which is
flowing out of valve V2. Therefore a leak is causing the presence of water in the overspill tray.
There must also be a failure that is causing valve V3 to stay open, so either V3FO, C2FH or
S2FH must have occurred. For this scenario, with the FTA diagnostic method, 3 minimal
cut sets were calculated (see table 3.3), these are TL.V3FO, TL.C2FH and TL.S2FH. Results
from the BN and from the FTA show the same behaviour.

Scenario Symptoms Possible Causes
VF1 VF2 VF3 SP1 Component Probability (%)
15 Mo Flow Mo Flow Mo Flow Water 1 TR B6.665417
270 33.3345583
3 MiWWE 16.667014
4 P1B 16.667014
5 P1F 16.667014
G P2B 16.667014
7 WIFC 8.334826
g C1FH 8.334687
2 51FH 8.334549
10 P3B 0.00z222
11 P3F 0.00z222
12 P4B 0.00z222
13 W2FC 0.00z222
16 Mo Flow Mo Flow Mo Flow Mo Water 1%2FC 14.2835544
2 MiWE 14.286735
3 P1B 14.286735
4 P1F 14.286735
5 P2B 14.286735
5 P3B 14.285782
7 P4B 14.285544
g P3F 0.002143
2 C1FH 0.001905
10 51FH 0.001905
11 %1FC 0.001905

Table 3.7 — Possible causes for scenario 15 and 16 when the system is operating in the ACTIVE mode.

For scenario 4 there are no causes, this is because the sensor readings for this scenario are
the expected ones and the system is working normally. Scenarios 9 to 14 do not provide any
results. This is because the evidence from sensor VF1 and VF2 are in contradiction. That is
No Flow through Valve V1 and Flow through Valve V2 cannot occur at the same time in the
BN. The FTs built for the system and, consequently, the BNs do not take into account the
time factor. They analyse the system in steady state time. Therefore, assuming that there
is no water through valve V1 and water is still leaving the tank through valve V2 implies
that, after a period of time, the tank would be empty, so water through valve V2 would be
impossible to observe. The method has the limitation of not considering dynamics in the

system.

Another limitation of the diagnosis is the fact that component failures PAF, P6F and P2F
are always undetected. However this is due to the fact that the sensors are located corre-

sponding to the valve, therefore, in order to detect these failures, another 3 sensors would
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be necessary. However, this does not represent a problem with the method, but it shows the
need for more sensors for an effective fault diagnostic method. Apart for these disadvantages,
the BN method is able to detect all the potential causes in the scenarios and it does not

show any failures that are not actual causes.

Compared with the FTA technique, BNs do not find the exact combinations of failures that
can cause a fault as they are not able to produce minimal cut sets or prime implicants.
However, in case of a fault, it can be more useful to have a list of potential causes that
is ranked starting from the most probable. BNs would also allow, during the inspection,
to further update the probability when evidence is observed on the states of the system
components. Therefore, for example, if the first component in the list is actually found

working, evidence no can be given and a new list can be produced.

3.4 Summary

A method for the fault detection and diagnosis of a system has been introduced using BNs
with this procedure: first, non-coherent F'Ts are built to model the sensor outputs. FTs
are then converted into BNs and these are connected together. The posterior probability is
used to list the potential causes for the deviating scenarios of the system. The method is
demonstrated with the example of a water tank system. BNs provide similar results as the

FTA but it has many advantages:

- they are easier to deal with since the scenarios are studied in only one network that is
analysed giving evidence to its nodes,

- they are more concise in their graphical representations,

- the diagnosis time results faster as there is no need to deduce the prime implicants,

- not only do they identify the possible failures, but they also provide a quantification of the
probability associated with a failure. This could also be done with FTA using importance
measures but it involves further calculations.

- they allow the introduction of extra evidence about the system. For example, in a main-
tenance procedure, when a component is found faulty or working, the probability can be

updated giving evidence to the node representing the component.

The main disadvantage of the method is that it does not take into account dynamics in the
system. Therefore, some scenarios cannot be studied as they are not observable in steady
state time. This can be improved introducing sensor readings that measure the flow rate of

the water through the valves, rather than just Flow or No Flow.
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Chapter 4

Introducing Dynamics in the Fault

Diagnostic method

Introduction

In the previous chapter, a fault diagnostic method has been presented based on BN and
FTA techniques. The advantages of both techniques are exploited by combining the use of
the two methods together and results show the effectiveness of this approach by application
to an example of a water tank system. One of the issues not resolved by this method, when

applied to some types of system, is the consideration of dynamic effects.

Systems are often dynamic. This means that their variables and parameters change con-
tinuously with time. However, considering dynamic factors in the system when performing
fault diagnostics adds difficulties to the task. In the previous analysis, in order to simplify
the diagnosis, the sensors were considered to provide very simple information describing,
for example, the flow through a valve in only two ways: Flow or No Flow. In real systems,
sensors are generally capable of providing much more information, such as how the measured
variable varies over time. So, in the case of a flow sensor, the reading could be the flow rate
over time rather than simply a static reading: Flow. This simplification in the previous
method produces limitations on the analysis since some scenarios are not observable without

considering the time trends of the sensor observations.

In [46] the problem is approached introducing dynamic sensor patterns in the diagnosis. In
this chapter, we try to follow a similar method using BNs. Since the introduction of more
sensor information increases the size of the BNs, the issue of reducing the size of the BNs

and optimizing the use of the nodes are confronted.
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4.1 Diagnostic method phases

The aim is to produce a general method that is applicable for the diagnosis of many systems
and that is also able to deal with some dynamic aspects. Therefore, the procedure is first
described in a general way and it is then demonstrated again making use of the water tank

system example.

The diagnostic model is built in two stages: the “system modelling and preparation stage”
and the “FTs and BNs development stage”. In the first phase, the system is analysed in
a structured manner in order to identify its sections and, from the ways that the sections
behave, all possible system scenarios. In the second phase, first, non-coherent F'T's are built
representing the deviating states of the sections, then, these F'T's are converted into BNs that
are used to create a unique network to represent the system. The main difference of this
approach with respect to the one in the previous chapter is that the F'T's and BNs are built
modelling the functioning of the sections in the system, rather than the sensor outcomes.
This allows the introduction of more sensor readings that take into account the dynamic

variables in the system. The following two sections relate to the two stages of the method.

4.2 System Modelling and Preparation stage

All available information should be collected about the system and its components. Depend-
ing on the tasks of different groups of components or sub-systems, the system is divided into

sections.

Each section consists of a number of components that are connected together in the system
and accomplish a particular task in the process. In every section, there should be at least
one sensor monitoring the state of a significant variable for the section. The state of this

variable gives an idea of how well the section is performing.

By examining the effects that component failures produce on the functioning of the sections,
all possible states are identified for each section. These will include the working state and
a number of failing states that depend on the complexity of the section and on the different

ways a section can fail to carry out the task for which it is designed.

Once the states are identified for each section, the behaviour of the variables monitored by
the sensors of the sections are observed in the different section states. This should lead to

the identification of all possible patterns that a section sensor follows. At times, a single
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state can give rise to several sensor patterns.

Finally, the combinations of patterns for the sensor readings are used to list the system
scenarios. A system scenario is a set of patterns that is observable on the system when a
combination of section states (functioning and failed) occurs. Not all possible combinations

of patterns in the sections are always achievable in a system.

The modelling and preparation stage described above can therefore be divided in four sub-
stages:

- system division into sections,

- identification of section states,

- identification of sensor patterns,

- identification of system scenarios.

This procedure is carried out on the example of the water tank system in the following
subsection. The system assumptions are the same as in chapter 3 with the only difference

that now sensors S1 and S2 are considered components as well as level sensors.

4.2.1 System division into Sections

The water tank system is divided into 4 sections, indicated in figure 4.1 with the dashed-lined
boxes. Each section contains a sensor. Sections 1, 2 and 3 correspond to the flow sensors
VF1, VF2 and VF3 respectively. Section 4 contains the tray with sensor SP1.

Section 1 is comprised of valve V1, pipe sections P1 and P2, the controller C1 and sensor S1.
The task performed by the section is to introduce water to the tank when the level of water
is below the requested limit and to stop the water flow when this limit is reached. Sensor

VF1 monitors the flow rate through valve V1.

Section 2 includes valve V2 and pipe sections P3 and P4. As the valve is operated manually,
the section should simply allow water to flow out of the tank or stop the water flow when

requested. Sensor VF2 measures the flow rate through the valve.

In section 3 there is valve V3, pipe sections P5 and P6, controller C2 and sensor S2. The
section task is to allow the water to quickly leave the tank in case of a failure that causes
the water level to rise above a safety limit. The sensor in this section, VF2, monitors the

flow rate through valve V3.

86



Chapter 4. Dynamics in the Fault Diagnostic method

Fnlet 1Section 1

1 ! 1
: i A;’O J, : Section 3

3
y
N
3
r
5

Section 2 r""""""“'"':'.'":
:| TRAY @ i

Figure 4.1 — Division into sections in the water tank system.

Section 4 includes the overspill tray and the tank. The overspill tray’s task is to collect any
spillage from a leak, a rupture or an overflow from the tank. The sensor, SP1, is located in
the tray and detects the level of water in the tray. The rate of change of the level can also

be measured.

An extra section can also be included by considering the water level in the tank and asso-
ciating to it the sensors S1/S2 that measure the level of water in the tank. This cannot be
considered an actual section as the state of it depends on the state of the whole system.
However it will be added as section 5 of the system as it gives extra information on the level

of water in the tank and it can validate the states of the other sections.

4.2.2 Identification of Section States

From the description of the sections above, it can be seen that the functioning of sections 1,
2 and 3 depend on the state of the flow through their valves. Section 1 is in its working state
if valve V1 is able to open and close according to the level of water in the tank. We deduce
that section 1 is failing if it does not perform this task, and this can happen in two ways:
water flows into the tank when the level has already reached the requested limit or there is
no flow into the tank when water is needed. Therefore, there are three possible states for

section 1:
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- Working (W): valve V1 is able to open and close according to the level of water in the
tank.

- High Flow (HF): valve V1 is always open allowing water into the tank when this is not
needed, that is, when the required level is reached.

- Low Flow (LF): valve V1 is always closed and it does not allow water to enter the tank

when the level is below the requested limit.

Section 2 and section 3 are similar to section 1, therefore they have 3 possible states: Work-
ing (W), High Flow (HF), and Low Flow (LF). The description of the states is the same as
for section 1 with the difference that valves V2 and V3 are considered for section 2 and 3
respectively. Note that for section 2, in the ACTIVE mode, failures causing HF are hidden
as valve V2 should always stay open. So, for the analysis of the ACTIVE mode, the section
can be effectively only in states W or LF. For the same reason, in the DORMANT mode,
section 2 has only two states: W and HF.

Regarding section 4 (tank/tray), this is not a process section and is only there to provide
information on the status of other elements of the system. The only failing component rele-
vant to the section is the tank (T). The associated sensor, SP1, monitors the level of water

in the tray. Therefore, there are 2 states for section 4:

- Working (W): the tank is working (it does not fail leaking or ruptured),
- Failing (F): the sensor detects water in the tray caused by a rupture or a leak from the

tank (overflowing does not imply that the section is failing).

Note that the section is considered in its working state if the presence of water in the tray
is caused by an overfilling. This is because only the failures of the components contained in
a section can cause the section itself to be in a failing state. If the section has a different
behaviour from the one expected and this is a consequence of the malfunctioning of other
parts of the system, the section is still considered to be working. In summary, regarding the

ACTIVE mode, the sections of the system can be in the following states:

- Section 1: Working (W), High Flow (HF), Low Flow (LF)
- Section 2: Working (W), Low Flow (LF)

- Section 3: Working(W), High Flow (HF), Low Flow (LF)
- Section 4: Working(W), Failing (F).

Section 5 has 2 states: Working (W), if the level of water in the tank is kept constant,
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or Failing (F), if a failure in the system causes the level of water to decrease, increase or
oscillate. However, the state of section 5 is a consequence of the states of the components of

the other 4 sections.

4.2.3 Identification of Sensor Patterns

In the normal operating mode, flow rate is constant through valves V1 and V2 and no flow is
observed through V3. When there is a failure in the system, different flow rate measurements
can occur. For example, if valve V1 fails closed, there will be no flow through valve V1 so
that the level of water in the tank will decrease and the flow rate through valve V2 will also

decrease as a consequence of the decreasing pressure from the water in the tank.

Assuming the level of water in the tank is initially set to normal and single or multiple fail-
ures occur before the system is started, the following patterns are observable for each sensor

reading;:

Sensor VF1 - Measuring flow through valve V1 in section 1
Possible patterns:
1. Constant Flow
2. No Flow
3. From Constant Flow to No Flow
4. Oscillating Flow

Figure 4.2 represents plots for all possible patterns observed for the sensor VF1 in section 1.
These were identified considering the failure states of the section and looking at how these
effect the flow trends.

Section 1 patterns

1 2

YAV

0 ol ol
Costant Flow No Flow From Constant Flow to Oscillating Flow
No Flow

Figure 4.2 — Patterns describing possible flow rate through V1.

As the changes in the flow in section 1 only depend on the valve opening and closing, flow is
either constant or zero. In reality, in the act of closing a valve, the flow would not go from

a non zero value to zero instantly. The plots reflects this behaviour.
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Sensor VF2 - Measuring flow through valve V2 in section 2. Possible patterns:

1. Flow (either decreasing or constant)
2. No Flow

Both a decreasing and a constant flow through valve V2 in the ACTIVE mode reveal that

the section is failing. For this reason, all non zero flow readings can be grouped in a unique

pattern.

Section 2 patterns

e———

0 of
Flow

No Flow

Figure 4.3 — Patterns describing possible flow rate through V2.

Sensor VF3 - Measuring flow through valve V3 in section 3. Possible patterns:

1. Decreasing Flow
2. No Flow
3. Oscillating Flow

Section 3 patterns

IJ:2
0

Decreasing Flow

of
No Flow

YAV

Oscillating Flow

Figure 4.4 — Patterns describing possible flow rate through V3.

The oscillating flow pattern in section 3 occurs when water leaves the system only through

valve V3, as a consequence of a failure in section 2. As the level reaches the safety limit

the valve is first open and successively closed as the level drops to an acceptable limit. This

happens as the cross section of the pipes in section 3 are assumed to be larger that the other

pipes.

Sensor SP1 - Measuring the level of water in the tray in section 4 Possible patterns:

1. No Water in the Tray
2. Increasing Water in the Tray
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Section 4 patterns

1 | 2 |
0 0
No Water Increasing Water
in the Tray in the Tray

Figure 4.5 — Patterns describing possible level of water in the tray in section 4.

Since it is assumed that all the failures have occurred before the system is started and that
components cannot be repaired during monitoring, the only possible failing pattern for the
water in the tray is increasing. In case of a leak, the level would increase slowly while a

rupture would cause a sudden rise.

Sensor S1/S2 - Measuring the level of water in the tank in section 5. Possible Patterns:
Constant Level

Decreasing Level

Oscillating Level

Increasing Level (to the Safety Limit)

U W

Increasing level over the Safety Limit (overspill of the tank)

Section 5 patterns

1:%;;3?\”‘41"’ 5JL/—/

]

Constant Level Decreasing Level Oscillating Level Increasing Level Increasing Level
to the safety Limit over the safety Limit

Figure 4.6 — Patterns describing possible level of water in the tank in section 5.

Pattern 3 identifies the behaviour of the level of water in the tank that are caused by either

an oscillating pattern in section 1 or in section 3.
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4.2.4 Identification of System Scenarios

A scenario is defined as a combination of sensor patterns that is observable in the system
as a consequence of one of more component failures. In general this stage could give some
problems. In fact, being able to list all possible scenarios can be difficult when the systems
are large, complex and with many sensors. For such systems, the method can still be used
without this step, that is without knowing exactly the complete list of possible scenarios.
There are two ways the diagnostic method can be used: on-line and off-line. The type of
analysis we are describing here would be done off-line, before the system is operated, to study
the potential causes of all system scenarios. If the diagnostic method is used on a system
on-line, while it is operating, it is not necessary to know all possible scenarios. Simply, when
a scenario is observed on the system, the causes are deduced from the BNs. The reason it is
useful to know all system scenarios in this context is because the method can be validated,

checking if the BNs are able to find the actual causes for each of the system scenario.

The total combinations of patterns for the water tank system are 240. But only 24 of them
can actually occur in the system, so they represent system scenarios. This is because in the
water tank system the behaviour of one section influences the others, therefore the sensor
patterns are associated. For example if the patterns in VF1 and VF3 are oscillating then,

as a consequence, the level pattern will be oscillating as well.

The scenarios are listed in figure 4.1. This list is obtained manually in the case of the water
tank and it is validated by a simulation code in C4++ that is described later in section 4.5.
For the moment, we can assume that the scenarios are found manually observing the system

operation and from the experts knowledge.
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Scenario VF1

VF2

1 Constant Flow Flow

2 Constant Flow Flow

Sensors
VF3

Decreasing Flow

Decreasing Flow

SP1
Mo Water

81/382

Decreasing Level

Increasing Water Decreasing Level

3 Constant Flow Flow Mo Flow Mo Water Constant Level
4 Constant Flow Flow Mo Flow No Water Decreasing Level
5 Constant Flow Flow Mo Flow Increasing Water Decreasing Level

6 Constant Flow Mo Flow

7 Constant Flow Mo Flow

Decreasing Flow

Decreasing Flow

No Water Decreasing Level

Increasing Water Decreasing Level

@ Constant Flow Mo Flow  MNo Flow Mo Water Constant Level
9 Constant Flow No Flow Mo Flow No Water Decreasing Level
10 Constant Flow Mo Flow Mo Flow Increasing Water Decreasing Level
11 Constant Flow Mo Flow  MNo Flow Increasing Water Increasing Over

12 Constant Flow Mo Flow

13/ Constant Flow Mo Flow

Oscillating Flow

Oscillating Flow

Safety

No Water Oscillating Level

Increasing Water Oscillating Level

14 Mo Flow Flow Decreasing Flow MNo Water Decreasing Level
15 No Flow Flow Decreasing Flow Increasing Water |Decreasing Level
16 Mo Flow Flow Mo Flow No Water Decreasing Level
17 Mo Flow Flow Mo Flow Increasing Water Decreasing Level
18 Mo Flow Mo Flow  Decreasing Flow No Water Decreasing Level
19 Mo Flow Mo Flow Mo Flow Mo Water Constant Level
20 Mo Flow Mo Flow Mo Flow Mo Water Decreasing Level
21 /Mo Flow Mo Flow  No Flow Increasing Water Decreasing Level
From Flow to Mo Flow  No Flow No Water Increasing Level
Mo Flow
23 Elsn.f\irllating Mo Flow Mo Flow Increasing Water Oscillating Level
24 Mo Flow Mo Flow Decreasing Flow Increasing Water Decreasing Level

Table 4.1 — System Scenarios.

Scenario 1 occurs when section 1 is Working or failing with High Flow, section 2 is definitely
Working, section 3 is failing with High Flow and the over-spill tray is Working. Considering
the sensor patterns and the level in the tank, for all scenarios one can understand the section

states and, consequently, the behaviour of the system.

At this point, the system modelling and preparation stage is over and FTs and BNs can be
built.
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4.3 Fault Tree and Bayesian Networks Development stage

Non-coherent FTs are built for each failing section state. This is more convenient than build-
ing F'T's that model the sensor outcomes because the same outcome can occur in different
situations. While the state identifies the actual way a section is failing. FTs for sections
working state, that is success trees, are not necessary as these will be modelled using poste-

rior probability in the BNs.

The FTs are converted into BNs with two differences with respect to the procedure used in
the previous chapter: nodes representing the failures of a component are grouped in a unique
node and the BNs relative to different failing states of a section are grouped in one network.
We obtain in this way a BN for each system section, that will be called section BNs. The
root nodes of the section BN are the components of the section and the fault nodes are the
failing states. A section BN may have more than one fault node as a section of the system

can fail in different ways.

Once the system BNs are built, they are connected to form a BN that models the entire
system, called the system BN. Section BNs and the system BN together form a class of
BNs, that is an Object Orientated Bayesian Network (OOBN). As described in the previous
chapter, input and output nodes are used to connect the networks, but some extra nodes are
introduced to represent the section states and the sensor patterns. Fach sensor is modelled
by a node whose states are the possible patterns of the sensor, as the patterns of any sensor
are exhaustive and mutually exclusive. The section nodes are connected to other nodes that
represent section states. They can be connected together as the analysis of the sensor pat-
terns reveal the states of the section. The section nodes are finally connected to the fault

nodes of the section BNs that are output nodes.

In summary, the F'T's and BNs development stage is achieved in 3 sub-stages:
- Building Non-coherent F'T's

- Converting FTs into BNs (building the sections BNs)

- Connecting the section BNs (building the system BN).

In the following subsections this procedure is applied to the water tank system. The analysis
is considered only for the ACTIVE operating mode as for the DORMANT mode it is very

similar.
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4.3.1 Building Non-coherent Fault Trees

The deviating states of the sections of the water tank system, among sections 1 to 4, are 6:

Section 1: High Flow (HF) and Low Flow (LF)
Section 2: Low Flow (LF)

Section 3: High Flow (HF) and Low Flow (LF)
Section 4: Failing (F)

A non-coherent FT is built for each of these. FTs for section 5 are not considered because
this is not an actual section as the states of it are a consequence of the component failures
of the whole system. The sensor of section 5 is still observed to validate the section states
and it will be introduced in the BN structure.

Figure 4.7 shows the non-coherent FT for state High Flow in section 1.

[
Water is Available |
and can be passed Valve V1is

into the tank

spuriously Open
Wateris Available] | Valve V1 | | Water can pass Valve V1 fails Controller C1 keeps
from Main Supply| | does Not through Pipes Open and Not Closed Valve V1 Open
fail Closed Pland P2 ,ﬁ‘
Valve V1 Sensor 51 indicates
fails Open Valve V1 LSt aLow Level
does Not Fails Low

P1is Not Blocked
and Not Fractured

P2 is Not Blocked

A
) ()

i fail Closed

Figure 4.7 — Non-coherent FT for High Flow in section 1.

The event High Flow occurs if water flow passes through valve V1 when it is not expected.
If this F'T is compared with the one in chapter 3 in figures 3.2, 3.3, 3.4 and 3.5 that models
Flow through Valve V1, it can be seen how considering dynamics has made the FT's simpler.

This is because before the event Flow through Valve V1 was considered in all possible con-
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texts, while now High Flow identifies a specific situation.

There are 3 prime implicants for the F'T in in figure 4.7, the possible combinations of working

and failing components in the system that cause High Flow:

1) VIFO.NWMS.P1B.P1F.P2B.V1FC
2) CIFL.NWMS.P1B.P1F.P2B.VIFC.C1FH
3) SIFL.NWMS.P1B.P1F.P2B.V1FC.C1FH.S1FH.

Deducing the prime implicants from the F'T's can be used as a way of checking their accuracy
but it is not necessary for the purpose of the method itself.

Figure 4.8 shows the non-coherent FT for state Low Flow in section 1.

[
Water is unable |

to pass through Failure to Open
Valve V1

Valve V1

P1 is Blocked Valve V1 fails Controller C1 keeps
or Fractured Closed Valve V1 Closed

VENTCFL\

fails Closed Valve V1
P1is Blocked Plis Fractured does Not

and Not Fractured | |and Not Blocked @ fail Open

Figure 4.8 — Non-coherent FT for Low Flow in section 1.

No water is available
from the Main Stream

P2 is Blocked

Si S1 indicat
Controller C1 2115}?_1{:%]1 ]_L‘“evecla ©
Fails high

The FTs relative to the other deviating section states are built with a similar procedure. In
the next subsection, it is explained how they are converted into BNs.

4.3.2 Converting Fault Trees into Bayesian Networks

The algorithm to convert a FT into a BN is given in chapter 2 and it is now used with a
modification made for the nodes that correspond to the basic events. The basic events in

the F'T's represent the component failures of the system. Some components can have several
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failure modes and it is assumed that they cannot occur at the same time. For example, valve
V1 can fail open or closed, but if it has failed open it cannot fail closed. It is equivalent to
say that the failure modes of a component are mutually exclusive. If we represent a com-
ponent as a node in a BN, the failure modes could be the states of the node. Including the
working state of a component, the states would also be exhaustive. For example, V1 can be
working, failed closed or failed open. One has to be true and V1 cannot be found in another
state. The states of a node in a BN are by definition exhaustive and mutually exclusive so
it becomes natural to make this change in the conversion. Introducing the components as
root nodes gives also two advantages:

- it reduces considerably the number of root nodes, as before if a component had 3 compo-
nent failures, 3 nodes were needed to represent it while one node with 4 states is sufficient
now.

- the non-coherent logic is made simpler. The states of a node are mutually exclusive by
definition, therefore when a component failure appears in a BN there is no need to specify
that the other component failures from the same component have not occurred. This had
to be done in the non-coherent F'T structure, as can be seen from the FT in figure 4.8 for
example for the event P1 is Blocked or Fractured. Introducing the components as root nodes,
P1 failed blocked automatically excludes that fails fractured and also with the events on the

other way around.

As an example, component V1 is represented by a node called V1 with 3 states: Working,
Fails Closed and Fails Open, with conditional probability table as in table 4.2.

V1
Working 0.99996666
Fails Closed  0.00001667
Fails Open 0.00001667

Table 4.2 — CPT of node V1.

The FTs relating to the same section are converted and combined together in one unique
BN. Therefore, each BN will have as many fault nodes as the deviating states of the section.
Section 1 has 2 deviating states, high flow and low flow, so section 1 BN has two fault nodes
as in figure 4.9.

Similar BNs are created for the other 3 sections and they can be found in appendix A.

4.3.3 Connecting the Bayesian Networks

Figure 4.10 shows the system BN obtained connecting the section BNs. On the top of the

graphical representation are the root nodes representing the components of the entire sys-
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and not Fractured
P2 is not
Blocked
V1 does not fail
Closed
Water can pass through
Pipes P1 and P2

Water is available
from Main Supply
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Figure 4.9 — Section 1 BN.
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Fractured

Water is Unable to Pass
Through Valve V1

tem. They link to the input nodes contained in the section BNs, represented in the figure
with rectangular boxes called SEC1, SEC2, SEC3 and SEC4. The output nodes belonging
to the section BNs link to some nodes that are their exact image, called SeclHighFlow,
Sec1LowFlow, Sec2LowFlow, Sec3HighFlow, Sec3LowFlow and SecjFailing. They represent
the deviating section states and they assume the same probability as the output nodes con-
tained in the BNs. These nodes then link to 4 nodes that represent the sections, called
Section 1, Section 2, Section 3 and Section 4. The states of these 4 nodes are the deviating
states of the sections plus the working state. For example, node Section 1 has 3 states: W,
HF and LF, corresponding to the working state and the 2 deviating states, High Flow and

Low Flow. The conditional probabilities are as in figure 4.11.

As it is impossible that High Flow and Low Flow occur at the same time for section 1, the
probability for the entry of the table corresponding to both High Flow and Low Flow in
state yes are given as 50% to HF and 50% to LF but this is a random choice as any other

probability would not make any difference.

Sections 2, 3 and 4 have similar nodes. The section nodes link to 5 nodes that represent
the sensor patterns called Patterns 1, Patterns 2, Patterns 3, Patterns 4 and Patterns 5,
corresponding to sensors VF1, VF2, VF3, SP1 and level sensor S1/S2 respectively. The

patterns observed in the sensors are seen as a consequence of the states of the sections plus
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SECH4
SecdFailing

COIRCED

Figure 4.10 — System BN.

SecllowFlow yes no

Sec 1HighFlaw YEes no VEs no
i (u} (u} 0 1
HF 0.5 0 1 0
LF 0.5 1 0 0

Figure 4.11 — Conditional Probability Table for node Section 1 in figure 4.10.

the pattern observed for the water level. For example, Patterns 1 depends on the state of
Section 1 and on the pattern observed in the level. The states of node Patterns 1 are the
possible observable patterns for sensor VF1, that is, Flow, No Flow, From Flow to No Flow
and Oscillating Flow. The CPT for Patterns 1 is represented in figure 4.12 and it shows all
possible situations for the behaviour of the sensor pattern. For example, if Section 1 is in
the Working state and the level observed in the tank is constant then the observed pattern
in Section 1 will be Constant Flow, therefore, in the first entry of the CPT, state Constant
has probability 1 and all the other states have probability 0.

If the level in the tank is Increasing and section 1 has not failed, that is, it is in the working
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Patterns 1

Patterns 5 Constant Decreasing Increasing Oscillating Increasing to Full ]
Section 1 W HF LF W HF LF W HF LF W HF LF e HF LF |
Zonstank 1 1 ] 1 1 ) 0 1 ] ] 1 ) 0 1 ]
To Flow 0 ) 1 0 0 1 0 ) 1 0 0 1 0 ) 1
From Flow k.. (0 o ] ] ) ) 1 o ] ] ) ) 1 o ]
Oszcillating Fl. .. 0 o ] ] ) ) 0 o ] 1 ) ) 0 o ]

Figure 4.12 — Conditional Probability Table for node Patterns 1 in figure 4.10.

state, then the observed pattern for section 1 is From Flow to No Flow, this means that
the valve V1 will close and flow goes from constant to no flow. Instead, if the level is in-
creasing but the section has failed with HF, the pattern in the section will remain constant.
All possible combinations of states are included in the CPT. The nodes corresponding to
other pattens have similar CPTs. Node Patterns 2 only depends on the state of Section 2,

therefore it only has one parent and it does not depend on the trend observed in the tank level.

The structure and probability of the BN is obtained in the way described. The next section

now illustrates how such BN can be used for the diagnosis of the system faults.

4.4 Employment of the Diagnostic Method

The method described can be used to derive the list of possible causes for each scenario of
the system. A scenario is a combination of sensor patterns that are observable in the system.
To derive the component failures that are most likely to have caused a scenario, evidence is
given to the following nodes: Patterns 1, Patterns 2, Patterns 3, Patterns 4 and Patterns
5. The posterior probability is considered for the failure modes of the components. These

are ranked starting from the most probable to obtain a list of potential causes for the scenario.
Scenario 1 is now considered as an example. The sensor patterns in scenario 1 are:

Constant Flow in VF1(Patterns 1)
Flow in VF2 (Patterns 2)

Decreasing Flow in VF3 (Patterns 3)
No Water in SP1 (Patterns 4)
Decreasing Level in S1/S2 (Patterns 5)

Evidence is introduced to the corresponding states of the nodes Patterns 1, Patterns 2,

Patterns 3, Patterns 4 and Patterns 5, as it can be seen in figure 4.13.
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E|’|:| Patterns 1

100 Constant

: - Mo Flow

- From Flow to Mo Flow
- Dscillating Flow

100 Flow
- Mo Flow

100 Constant or Decreasing Flow
- Mo Flow
- Oscillating Flow

- Water
100 Mo ‘Water

- Constant
100 Decreasing
- Increasing
- Oscillating
- Increasing to full

Figure 4.13 — Probability of the nodes Patterns 1-5 when evidence corresponding to scenario 1 is introduced in the BN.

The updated probability is propagated back through the nodes of the network to the root
nodes. This is the probability of the component failures to have contributed to scenario 1.
Figure 4.14 shows these probabilities displayed in the software Hugin for node C2. Scenario
1 occurs if a failure in section 3 causes valve V3 to open when this is not necessary, in
other words, section 3 is failing high. Section 1 is either working or failing high, as flow
is requested in the tank due to the decreasing level. Section 2 and section 4 are working.
As a consequence of the flow through valve V3, the level in the tank is decreasing. It is
clear that a failure must have occurred in section 3. One of these is represented by the
controller C2 failing high, that is, causing the valve to open when this is not necessary. The
BN correctly identifies this failure as the posterior probability of C2 in the state fails high is
approximately 33.3337% and therefore it has increased with respect to its prior probability,
which was 0.001667%.
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B6.665643 working
33,333796 Fails high
0.000556 Fails lowve

.D Patterns 3
.D Patterns 4

Figure 4.14 — Posterior probability of node C2 in scenario 1.

Components V3 and S2 have also increased their posterior probability (displayed in figures
4.15(a) and 4.15(b)) with respect to their prior probability, which was 0.001667%.
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Figure 4.15
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It is interesting to note that state fails closed of node V3 has posterior probability 0 as this
is an impossible event for scenario 1 where flow is observed through the valve. State fails low
of sensor S2 has probability 0.0005% . This is decreased with respect to the prior probability
but it is not 0 as it is still possible that sensor S2 fails low in this scenario in the event that
V3 fails open or C2 fails high.

In summary, the list of potential causes for scenario 1 are:

V2 fails open with probability 33.334%
C2 fails high with probability 33.3337%
S2 fails high with probability 33.3337% .

These are the actual causes for the scenario. Therefore, the method is able to identify cor-

rectly the failures in scenario 1.

Tables 4.3, 4.4 and 4.5 display the results obtained for scenarios 1-24. Although the method
identifies correctly the vast majority of the causes among all scenarios, there is a limitation
due to the fact that for some scenarios the diagnostic system does not detect the fractures
in the pipe sections located next to the sensors. This is the case of scenario 4, which occurs

when pipe P5 fails fractured, and it is discussed in the following section.
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Scenario Symptoms Patterns Possible Causes
VF1 VF2 VF3 SP1 $1/82 Component  Probability (%)
1 Constant Flaw Decreasing Na Water Decreasing VIFO 23334
Flow F o Level
2 |C2FH 33.3337
3 |SEFH 33.3337
2 Constant Flow Decreasing \Water Decreasing R 0
Flow F o Level
2 TL 50
3 W3FO 33.334
4 |C2FH 33.3337
5 |S2FH 33.3337
Expected 3 Constant Flow Mo Flow | No Water Fonstant MNo Causes
Flow Level
4 Constant Flow Mo Flow | Mo Water Decrezsing Mo Causes
Flow Level
5 Constant | g NoFlow | Water | DEETEESING 4 g 50
Flowy Level
2 TL a0
6 Constant Mo Flow Decreasing Mo Water Decreasing 1 vaFO 33334
Flow F o Level
2 |C2FH 33.3337
3 |S2FH 33.3337
4 |P3B 25.0005
5 |P3F 25.0005
6 |P4B 25.0005
7 W2FC 25.0005
7 Constant M Decreasing Decreasing
o Flow Wyater TR a0
Flow F o Level
2 TL 50
3 W3F0 33.334
4 |C2FH 33.3337
5 |S2FH 33.3337
6 P3B 25.0005
7 P3F 25.0005
g P4B 25.0005
9 WZ2FC 25.0005
8 tanstant Mo Flow | Mo Flow | o Water Constant Mo Causes
Flowy Level
1 |P3B 25.0005
2 P3F 25.0005
3 |P4B 25.0005
4 W2FC 25.0005
9 Constant Mo Flow | Mo Flow | No VWater Decreasing MNo Causes
Flow Level
1 P3B 25.0005
2 |P3F 25.0005
3 PAB 25.0005
4 WZFC 25.0005
10 Constant |\ Flow | NoFlow | Water | DSST#ESING 4 g 50
Flow Level
2 TL a0
3 P3B 25.0005
4 |P3F 25.0005
5 P4B 25.0005
B W2FC 25.0005
1 Constant |\ Flow | Mo Flow | Water | "OERSING g eqpy 333329
Flovr Cwer Safaty
2 WIFD 33.3339
3 S1FL 33.3337
4 |P3B 25.0005
5 |P3F 25.0005
6 P4B 25.0005
2 W2FC 25.0005
3 PEB 16.6674
4 |PEF 16.6674
5 |FEB 16.6674
6 %3FC 16.6674
7 |CZFL 16.6671
g |S2FL 16.667
12 Constant Mo Flow Oscillating Mo Water Oscillating 1 CIFL 333399
Flowy Flona Level
2 MIFD 33.3339
3 |S1FL 33.3337
4 |P3B 25.0005
5 |P3F 25.0005
B |P4B 25.0005
7 WaFC 25.0005

Table 4.3 — Results for scenarios 1-12 with the BN method.
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Scenario Symptoms Patterns Possible Causes
VF1 VF2 VF3 SP1 §1/52 Component |Probability (%)
1 Constant Mo Flow Qscillating Watar Oscillating 1 TR 50
Flow Flow Level
2 T 50
3 CIFL 33.3339
1 VIFD 33.3339
5 |BIFL 33.3337
6 P3B 25.0005
7 P3IF 25,0005
8 P4 25,0005
9 WIFC 25,0005
14 MNoFlow | Flow DECTEaSING oy, Decreasing o aey 33334
Flonwe Level
2 C2FH 33,3337
3 S2FH 33,3337
4 NWMS 15,3653
5 PIB 15,3853
6 PIF 15,3853
7 P2 15,3853
8 CIFH 14,2863
9 SIFH 14,2862
10 WIFC 14,2862
15 NoFlow | Flow 0201838y Decreasing o 50
Flow Level
2 T 50
3 VIFO 33.334
4 C2FH 33.3337
5 S2FH 333337
6 NWMS 15,3053
7 PlB 15,3053
8 PIF 15,3653
9 PR 15,3653
10 C1FH 14,2863
11 S1FH 14,2662
12 WIFC 14,2862
16 MNoFlow | Flaw Mo Flaw | No Water Def;f‘;‘”% MWIMS 15.3853
2 PIB 15.3853
3 PIF 15.3853
4 P2B 15,3853
5 CIFH 14,2863
6 SIFH 14,2862
7 VIFG 14,2862
17 MoFlow | Flow  NoFlow = ‘Water Def_r::‘esl‘”g 1 TR 50
2 T 50
3 NWMS 15,3053
4 PIB 15,3653
5 PIF 15,3653
6 PR 15,3653
7 CIFH 14,2863
8 SIFH 14,2862
9 VIFC 14,2662
18 Mo Flow | Mo Flow 2S5 o viater Def_r;f‘;‘”g VaFO 3.3
2 C2FH 33.3337
3 S2FH 33.3337
4 P3B 25,0005
5 P3F 25,0005
6 PiB 25,0005
7 VIFC 25,0005
8 NWMS 15.3853
9 PiB 15.3853
10 PIF 15.3853
11 P2B 15.3853
12 CIFH 14,2863
13 |S1FH 14.2062
14 WIFC 14.2062

Table 4.4 — Results for scenarios 13-18 with the BN method.
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Scenario Symptoms Patterns Possible Causes
VF1 V2 VF3 SP1 $1/82 Component Probability (%)
19 MoFlow | MoFlow Mo Flow | Mo Water CT;E“* 1 P 25,0005
GE 25.0005
3 P4B 25.0005
4 VIFC 25.0005
5 NS 153853
B PIB 15.3853
7 PIF 15.3853
8 PE 15.3863
9 CIFH 153861
10 VIFC 153851
1 51FH 7 6931
20 Mo Flow | NaFlaw Mo Flaw | No Water Def_';f‘;‘”% F3E 25.0005
2 P 25.0005
3 P4B 250005
4 VIFC 250005
5 NWMS 15.3653
GIE 15.3853
7 PIF 15.3853
8 FuE 15.3853
9 GIFH 14.2663
10 |S1FH 142662
1 WIFC 14.2862
21 MNoFlow | NoFlow  NoFlow | Water Def_r;f‘;‘”g 1 TR 50
2 T 50
3 P3B 25.0005
4 PIF 25.0005
5 P4B 25.0005
B VIFC 25.0005
7 NS 15.3853
8 PIB 15.3653
9 PIF 15.3653
10 P2E 15.3653
11 [C1FH 14.2863
12 [S1FH 14.2662
13 WIFG 14.2862
22 From Flow |\ flow Mo Flow | Mo Water "CE85IN0 4 pag 250005
to Mo Flow Level
GE 25.0005
3 P4B 25.0005
4 VIFC 25.0005
23 Oscilaling | o clow | Mo Flow | water | DSSHAING g 50
Flow Level
2 T 50
3 P3B 25.0005
4 PIF 25.0005
5 P4B 25.0005
B VIFC 25.0005
24 Mo Flow | No Flow DPCIeasing . Decreasing 4 \op 50
Flowwe Flowe
2 T 50
3 VaFO 33.34
4 CZFH 33.3357
5 S2FH 33.3357
GEE 25.0005
7 P 25.0005
§ P4E 25.0005
9 VIFC 25.0005
E 15.3853
1 P1B 15.3653
12 PIF 15.3653
13 P28 153853
14 [CIFH 142863
18 |S1FH 14.2862
15_VIFC 14.2862

Table 4.5 — Results for scenarios 19-24 with the BN method.
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4.4.1 The case of Scenario 4

From the table in figure 4.3 it can be seen that the BN method is not able to identify any
failure to cause scenario 4. The only difference this scenario shows with respect to scenario 3,
the expected behaviour, is the level trend in the tank. The flow rate through the three valves
and the water level in the tray are the ones expected. The BN method assumes that the level
in the tank is a consequence of the other 4 patterns, therefore it does not find any failure.
This assumption is always true with only two exceptions, when pipe sections P3 or P5 fail
fractured and when the tank fails leaking or fractured. In some scenarios, these failures can
be hidden. In the case of scenario 4 for example, although the sensor patterns are correct,
the level in the tank is decreasing because there is loss of water through the pipe. But this
loss of water is undetected because the sensor is located after the pipe in correspondence of
the valve. The BN method does not use the information about the level in the tank. The
fact that the level of water is decreasing and that no flow is detected through valve V3 brings

to the conclusion that section 3 is working, while it is actually failing.

4.4.2 Modification of system BN

Some modification to the system BN are made in order to include some undetected failures
in a few scenarios. This can be done by linking the node patterns 5 with the nodes relative
to the section states plus nodes P3, P5 and T. Node Patterns 5 was a root node before while
now it has 7 parents. Its CPT can be determined because knowing the states of the other 4
sections, plus the state of P3, P5 and T, the tank level pattern can be determined exactly.
For example, if section 1 works, section 2 works, section 3 fails low and P3, P5 and T work,
then the level in the tank will be constant. If, instead, section 1 works, section 2 works,
section 3 fails low and P3 and T work while P5 fails fractured, then the level in the tank

will be decreasing.

Figure 4.16 shows the system BN with the addition of the links from T, P3, P5 and the
section nodes to the node Patterns 5. An extra node called Scenarios has also been added at
the bottom of the graphical representation. This does not change the nature of the way the
diagnosis works but it can be useful for giving evidence in a faster way. As each scenario is a
combination of sensor patterns, instead of giving evidence to each of the 5 nodes representing
the patterns, node Scenarios has 24 states representing the scenarios and it is linked to the
5 nodes. When evidence is given to one of its states, the nodes representing the patterns
automatically assume the correct evidence for that particular scenario. So the probability is

calculated giving evidence only to a node.

107



Chapter 4. Dynamics in the Fault Diagnostic method

Sec1HighFlow

Patterns & Level

I Patterns 4
Patterns 3

Figure 4.16 — System BN with the modification of the node scenarios and the links to node Patterns 5.

5

The BN is now able to recognise when a fracture occurs on P3 or P5 depending on the level
of the tank decreasing when it is not expected. For example, for scenario 4, which is caused
by a fracture on pipe P5, the only node with increased posterior probability is P5 with state
fractured at 100% and the other states at 0 % . This can be seen on figure 4.17 in which
node Scenarios has been given evidence to its state / representing scenario 4. The posterior

probability of state fractured of node P5, as a consequence, is 100 % .
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0 warking
0 blocked
100 Fractured
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b [ Patterns 1
.D Patterns 2
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Figure 4.17 — Posterior probability of node P5 for scenario 4 with the modified system BN.

The results of the BN method for all scenarios with the modification introduced by linking
Patterns 5 Level are discussed in section 4.6 and the results of the modified BN are compared
with the ones in the tables in figure 4.3, 4.4 and 4.5. In order to be able to validate the
results, a simulation code has been written in C++. Using the simulation of the system, it
is possible to assess the effectiveness of the diagnosis for all scenarios. In the next session

the simulation code is presented.

4.5 Validation of the Diagnosis with the Simulation of the system

The results of the BN method are validated by a simulation code in the programming lan-
guage C++. The code is written for two purposes, the first is to deduce all possible scenarios
for the system and the other is to obtain the list of the actual component failures that lead
to each scenario. Comparing the causes that are found by the BN method and the actual

failures from the simulation gives a measure of the effectiveness of the method.

4.5.1 Simulating a Fault in the System

The code is structured in different parts. A function of the code is used to simulate the
functioning of the system for a period of time when a number of failures are induced on the

water tank. This function is called Tank Functioning. The function has three inputs:

- the structural parameters of the tank, such as the section of the pipes and the dimensions
of the tank;

- the initial conditions, such as the initial volume of water in the tank;
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- the failures that are present in the system (any number of failures is allowed).
After a period of time, decided by the user, the function returns two outputs:

- the water level in the tank;

- the 5 sensor patterns observed on the system.

It is assumed that the failures have occurred before the system is started, this assumption

is motivated by the fact that the BN system was designed with the same assumption.

At each time step, the function calculates the water that enters the tank and the water that
leaves the tank. The amount of water entering the tank depends only on section 1. If the
valve is open and there are no failures such as blockages in the pipes, the flow rate through
valve V1 is constant. The amount of water leaving the tank depends on the states of sections
2 and 3 and it also depends on the tank itself when a fracture or a leak are present. The
flow rate through valves V2 and V3 depends on the level of water, since a larger volume of
water produces a higher pressure and, as a consequence, it causes the flow rate to increase.
At each time step, the amount of water that has entered the tank and the water that has
left is calculated and the water level is updated. In a text file, the values of the flow rates
for sensors VF1, VF2 and VF3 are stored together with the level of water in the tray and
the level of water in the tank. Figure 4.18 shows an example of such an output file. The
values at the top represent the structural parameter of the tank, these are read from an
input file where the user can indicate the inputs for the code. In this example, two failures
are supposed to have occurred in the system. For each time step, the tank and tray level

and the flow rates through the valves are written in the file.
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Value of tank_height: Z.000000
Value of tank radius: 1.000000

Walue of Ac: 3141553
Talue of al: 0.030000
Waluwe of af: 0.001000
Value of a3: 0.00z000

Valwe of adt: 0.000100
Walue of w: 0_.18&300

Total wolume: & Z233000
Pequired wolume: E&.0Z&400
Safety wolume: 5.962250

Failures:

Walwe W3 fails Open
No Water in the Main Scresm

Initial wolume = 5_ 000000 m™3
Initial lewvel = 79.E5E73212 % of the tank

Tank Lewel: Tray Lewvel: Flow through Walwe W1: Flow through Walwve W2: Flow through Valwe Wi:
73577145 % 0. 000000 % 0000000 litres/sec 0.005531 litresisec 0.011183% litresssec
72574478 % 0.000000 % 0000000 litresfsec 0.005591 litres/sec 0.011183 litresisec
79571800 % 0.000000 % 0.000000 litres/sec 0.005591 litres/ssc 0.011187 litresfsec
TA_EER130 % 0.000000 % 0000000 litres/sec 0.005831 litres/sec 0.01118% litress/sec
79 Eeedel % 0.000000 % 0.000000 litres/sec 0.008E2]1 litres/sec 0.011187 litresisec
79_EB3739 % 0. 000000 % 0000000 litres/sec 0.005531 litresisec 0.011187 litresssec
72 EEl119 % 0.000000 % 0.000000 litres/sec 0.005591 litres/sec 0.01118% litresisec

Figure 4.18 — Example of an Output File generated by the simulation code (1).

At the end of the observation the sensors patterns are calculated based on these values, the

output file will end with a few lines as in figure 4.19.

12 et20232 % 0. 000000 % 0.000000 litres/ sec 0.00z779 litres/zec 0.00LEES litresfsec
13 EEE7ET % 0. 000000 & 0.000000 litres/sec 0.00z772 litresfsec 0.00EEES litresfsec
19655420 % 0. 000000 % 0.000000 litres/ sec 0.00z779 litres/zec 0.00LEES litresfsec
13 654104 % 0000000 % 0.000000 litres/fsec 0002779 litresfsec 0. 005858 litresfsec
13 8EE773 % 0. 000000 % 0.000000 licres/sec 0.00z77% litres/zec 0.00LEEEY litresfsec
13 &6E1451 % 0000000 % 0.000000 litres/fsec 0002779 litresfsec 0. 005857 litresfsec
13 6E01zZE % 0. 000000 % 0.000000 licres/sec 0.00z772 litres/zec 0.00LEEEY litresisec
19642300 % 0. 000000 % 0.000000 litres/ sec 0002778 litres/sec 0. 00L5EEY litresfsec
12647472 % 0. 000000 % 0.000000 licres/sec 0.00z772 litres/zec 0.00LEEEY litresisec
19 645147 % 0. 000000 % 0.000000 litres/ sec 0002778 litres/sec 0. 00L5EEE litresfsec
13644221 % 0. 000000 & 0.000000 licres/fzec 0.00z2772 litresfszec 0.00EEEE litresfzec
19643494 % 0000000 & 0.000000 litres/ sec 0.00z2778 litres/sec 0. 005556 litresfsec
129, 64Z1e2 % 0. 000000 % 0.000000 litres/ sec 0.00z772 litres/zec 0.00LEEE litresfsec
19 64034ZF % 0000000 % 0.000000 litres/fsec 0002778 litresfsec 0. 005856 litresfsec
13 633E1L % 0. 000000 % 0.000000 licres/sec 0.00z2772 litres/zec 0.00LEEEE litresfsec
129638187 % 0000000 % 0.000000 litres/fsec 0002778 litresfsec 0005855 litresfsec

Sensors outbcomes after & mimates:
No Flow throagh Valwe V1

Flow through Walve WE

Decreasing Flow throagh Valwe W3
No Water in the Owerspill Tray

Decreasing Lewel in the Tank

-

Figure 4.19 — Example of an Output File generated by the simulation code (2).

A simple pattern recognition algorithm is performed to identify the patterns from the list of

values generated. The possible patterns are known for each sensor, so the procedure is better
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defined as a pattern matching problem. Since every sensor has different potential patterns,
the algorithm is different for every sensor. For example, the patterns for VF2, measuring
flow rate through valve V2, are either Flow or No Flow as all the possible flow patterns that
are non zero are grouped together. Therefore, the pattern recognition for sensor VF2 is very
simple as it consists in checking for any non zero values of the flow through valve V2. If such
a value exists, then the pattern is Flow otherwise it is No Flow. As failures can only occur

before the system is started, it is impossible that patterns change during observation.

Regarding sensor VF1, measuring the flow rate through valve V1, there are 4 possible pat-
terns:

1. Constant Flow

2. No Flow

3. From Constant Flow to No Flow

4. Oscillating Flow.

In order to match the behaviour on the system with one of these, the algorithm calculates for
each time step the difference of the flow rate value with the previous one. If these differences
remain zero, then patterns 1 or 2 are selected, if one of these is negative, then pattern 3 is
considered and if they change sign, then the oscillating pattern is detected. In the example
shown, the values of the first sensor (in the third column of figures 4.18 and 4.19) do not
change and it is sufficient to check one of them to determine that the pattern is No Flow. A

similar procedure is used for all patterns.

It has to be said that this simple patterns matching algorithm could not work on real sensors,
as these are generally affected by noise and a small positive or negative change in the flow
rate could be caused by a random variation error in the readings. However, for the purpose

of our research, the intention is to use this only for the values generated by the simulation.

Depending on the system parameters, the observation time to be able to correctly observe
the patterns can change. For example, if the level in the tank is increasing due to a failure,
but the system is not observed for a sufficient interval of time, the level in the tank may not
reach the limit where valve V1 is set to close. For the structural parameters in the example,
the observation time is set to 5 minutes as this is sufficient to correctly identify the faulty
behaviours. By changing the physical structure of the tank, as the pipes sections or the tank
volume, it is possible to change the minimum necessary observation time and adapt it to the

requirements of a particular system.
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4.5.2 Automatic generation of the Faults in the System

The computer program is also capable to work in loop, iterating the function Tank Function-
ing, automatically generating the failures on the system. For example an output file can be
created listing the scenarios that are produced by the single failures. One component failure
at the time is induced in the system, the tank level is reset each time to the required level
and the system is started and run for 5 minutes, or any given time. The sensor patterns

caused by each failure are then stored on a file.

A similar procedure is used to create a simulation of the system that aims to detect all possi-
ble scenarios. This is achieved by inducing all possible single failures, then all combinations
of 2 and 3 failures. The scenarios that are found for the first time are numbered and when
the same scenario is observed again a counter variable is incremented. In this way, the code
is able to count the scenarios that are caused by combinations of up to 3 failures and for
each scenario the number of times that it occurs is memorised together with the compo-
nent failures that have caused it. There are 240 combinations of sensor patterns, given by
4 (number of patterns for VF1) times 2 (number of patterns for VF2) times 3 (number of
patterns for VF3) times 2 (number of patterns for SP1) times 5 (number of patterns for
S1/S2). Among these, only 23 of them are observed by the simulation. These correspond to
the first 23 that are listed in table 4.1 and that were found manually. The 24th scenario is

not detected by the simulation because it is caused only by combinations of 4 or more failures.

For each of the 23 scenarios in the simulation, the occurrence of each component failure is
also counted. For example, scenario 1 is generated 118 times. This means that 118 com-
binations of failures have led to the sensor readings corresponding to scenario 1. Of these
118 combinations, C2FH, controller C2 failing high, belongs to 47 of them. It may be said
that C2FH contributes in the 39.83 % of cases to cause scenario 1. In the following, this is
referred as the occurrence of a component failure for a particular scenario. In table 4.6 the

failure occurrences for scenario 1 are listed in a descending order.

The first 3 failures in the table represent real causes for the scenario, the others are failures
that may have occurred in that scenario but they are not the responsible for this deviating
behaviour. For example, VIFO may always occur when flow is observed through the valve
but, as flow is expected, this is a hidden failure for the scenario as it will be revealed when
no flow will be required at some point. Since the deviation of scenario 1 is not caused by
section 1, V1FO is not considered an actual cause. It is necessary, for each scenario, to

manually identify the actual causes and to discard the hidden ones. This is not a difficult
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Failure  Occurrence
V3FO 56
C2FH 47
S2FH 40
V1FO 30
CI1FL 27
P2F 24
P4F 24
P6F 24
V2FO 24
S1FL 24
S2FL 16
C2FL 9
S1FH 6
C1FH 3
P1B 0
P1F 0
P2B 0
P3B 0
P3F 0
P4B 0
P5B 0
P5F 0
P6B 0
V1FC 0
V2FC 0
V3FC 0
TR 0
TL 0
NWMS 0

Table 4.6 — Occurrence of the Component Failures for Scenario 1.

task as the actual causes are always ranked as first and when a hidden cause appears on the
list, the following ones are never actual causes. The reason this happens in the simulation
is that some scenarios are caused only by a single failure, as in the case of scenario 1. Since
all combinations of 3 failures are induced, when a real failure occurs together with 2 of the
hidden failures for the scenario, this leads to that scenario. However, since the hidden failures
occur only to “complete” the set of failures, their occurrences will never be greater than a

real cause. In the next subsection, all the results of the simulation code are presented.

4.5.3 Results of the Simulation Code

Tables 4.7 and 4.8 list the results for the 23 scenarios identified by the simulation code. For
each scenario, the occurrence of the actual causes identified by the simulation are given.
These represent the component failures that are responsible for the deviating behaviour of

each scenario. In the next section, these results will be used to validate the diagnostic
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method.
Scenario Simulation Results Scenario Simulation Results
Component Occurrence |Occurrence in % Component Occurrence  Occurrence in %
! WaFo 5 47 48% 13
C2FH 47 39.83% TL 9 100.00%
SIFH 40 33.90% F3B 3 33.33%
F4B 3 33.33%
WIFC 3 33.33%
2 ™ a7 S0.00% YIFD 3 33.33%
TL 27 £0.00% S1FL 3 33.33%
WIFD ] 40.74% CIFL 3 3333%
C2FH 20 37.04%
S2FH 18 33.33% 14
WaF0 a0 39.47%
Expected C2FH 83 36.40%
S2FH 76 33.33%
WS 45 19.74%
P1B 42 18.42%
4 PSF 90 100.00% FIF a2 18.42%
F2B 42 16.42%
VIFC 42 18.42%
s ™ a1 S0.00% CIFH 29 17.11%
TL aq £0.00% S1FH 36 15.79%
6 V3IFD A7 A017% 13 L 21 61.76%
C2IFH 43 36.75% YaFo 14 41.18%
S2FH 39 33.33% C2ZFH 13 38.24%
FIE 33 28.21% R 12 38.24%
P3F 33 2821% S2FH 7 20.53%
P4B 33 28.21% F1B ] 14.71%
V2FC 33 2821% FIF ] 14.71%
F2B 5 14.71%
VIFC 5 14.71%
U ™ 1 S0.00% S1FH 5 14.71%
TL 12 £0.00% NVYMES ] 14.71%
Y3FQ 3 33.33% C1FH 4 11.76%
S2FH 8 3333% P3F 100/ 100.00%
C2FH B 33.33%
P3E B 25 00% 1%
F3F [3 25.00% WIS 176 21.97%
P4B 3 25.00% PIB 159 19.85%
W2FC 3 25.00% P1F 159 19.85%
P2E 159 19.85%
8 VIFC 159 19.85%
PaF 180 180.00% CIFH 147 18.36%
S1FH 137 17.10%
o PSF 53 100.00%
P3B 18 27.12% v R 112 51.85%
P3P 18 27.12% T 104 2815%
P4B 16 27 12% NS 39 16.06%
VaFe 18 2712% F1B 37 17.13%
F1F 37 17.13%
10 F2B 37 17.13%
TR 55 75.34% WIFC 37 17.13%
P3F 30 41.10% C1FH 36 16.67%
T 18 24 BB% S1FH 33 15.28%
P4B 17 23.29%
V2FC 17 23.29%
P38 18 21.92% 18 WIFQ pL] 33.33%
S2FH 28 33.33%
" C2FH 28 33.33%
P3E 15 33.33% P3B 21 56 00%
F4E 15 33.33% B3F 5 55 00%
V2FC 15 33.33% PAG 21 25 00%
YIFO 15 33.33% WIFC 21 25 00%
S1FL 15 33.33% P1E 12 14.20%,
CI1FL 15 33.33% P1F 12 14,200,
PEB 2 20.00% P2E 12 14.29%
PEE E 20.00% VIFC 12 14.29%
Warc 3 20.00% S1FH 12 14.29%
S2FL 2 20.00% CIFH 12 14.29%
C2FL 3 20.00% NS 12 14.29%
12 WVIFO % 43.85%
P36 24 2.11%
CIFL p7] 38.60%
FP4E 21 36.64%
V2FC 21 36.84%
S1FL 19 33.33%

Table 4.7 — Simulation Results for Scenarios 1-18.
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Scenario Simulation Results
Component Occurrence Occurrence in %

P3B 111 IF.258%
P4B 104 34.50%
W2FC 104 34.90%
M S a5 18.46%
P1B 52 17.45%
P1F a2 17.45%
P2B a2 17.45%
WI1FC a2 17.45%
C1FH 43 16.44%
S1FH 46 15.44%
2 P3F 118 G4.69%
P&k 28 20.14%
b 5 24 17.27%
P1B 23 16.55%
P1F 23 16.55%
P2EB 23 16.55%
W1FC 23 16.55%
C1FH 22 15.83%
S1FH il 15.11%
P4B 14 10.07%
W2FC 14 10.07%
2 TR 28 50.00%
TL 28 40.00%
P3B 14 25.00%
P3F 14 25.00%
P4B 14 25.00%
W2FC 14 25.00%
P1B 5} 14.29%
P1F 8 14.29%
P20 &} 14.29%
W1FC 5} 14.29%
S1FH 5} 14.29%
C1FH 8 14.29%
NYWIMS g 14.29%
22
P3E 61 43.57%
P4B a2 37 14%
w2FC a2 I 14%
B TL 28 100.00%
P3E 11 38.29%
PaB 10 3571%
W2FC 10 3571%

Table 4.8 — Simulation Results for Scenarios 19-23.

4.6 Results and Discussions

The results obtained by the diagnostic method using BNs are assessed by comparing them
with the results obtained by the simulation code. The results obtained using the modified
BN in figure 4.10 and 4.16 are also compared. In the following, the method developed using
the BN in figure 4.10 will be referred to as method I, while the improved BN in figure 4.16
will be referred to as method II. This was the one obtained linking the node relative to the

level of water in the tank.

Method I, compared with the simulation results, is able to identify the majority of the poten-
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tial causes for they faulty scenarios of the system. The results for method I are summarised
in the table in figure 4.9. Of the 172 failures among all scenarios, it detects 168 of them,
therefore it correctly finds 97.67 % of the failures. Although, it gives two main problems:

- for two scenarios that are caused by a single failure, scenario 4 and scenario 8, the method
does not find any cause;

- among all scenarios, the method indicates 9 component failures that are not actual causes

for the system state.

Summary
Scenario  Actual Causes Causes |dentified | Causes Not Found Extra Causes
1 3 3
2 5 5
3 u] u]
4 1 u] 1
5 2 2
B 7 7
7 9 9
=] 1 u] 1
9 5 4 1
10 5] 5]
11 1 13 2
12 5] 7 1
13 7 9 2
14 10 10
15 12 12
16 7 7
17 9 9
18 14 14
19 10 11 1
20 11 10 1
21 13 13
22 3 4 1
23 4 5] 2
24 16 16
TOT 172 177 4 9

Table 4.9 — Summary of results for method I.

The limitations of method I have been completely solved by method II. This is in fact able
to find all causes of the scenarios and it does not indicate any extra causes that are not
among the ones found by the simulation. The diagnosis can be considered 100% effective
compared with the simulation that takes into account the behaviour of the system when up

to 3 failures occur.

The two methods and the simulation results are summarised and compared with all details
of failures and probabilities in the tables in figures 4.10, 4.11 and 4.12.
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Scenario Possible Causes Method | Possible Causes Method Il Simulation Results
Component Probability (%) Component  Probability (%) Component Occurrence Occurrence in %

11 W3FO 33334 1 W3F0 33.334 1 W3F0 56 47.46%

2 C2FH  33.3337 2 C2FH 333337 2 C2FH 47 39.83%

3 S2FH 33.3337 3 S2FH 333357 3 S2FH 40 33.90%

21 TR 50 1 TR a0 1 TR 27 50.00%

2 L 50 2 TL a0 2 L 27 50.00%

3 V3IFO 33334 3 W3F0 33.334 3 W3FD 22 40.74%

4 C2FH  33.3337 4 C2FH 333337 4 C2FH 20 37.04%

5 S2FH 33.3337 |} S2FH 333357 |} S2FH 18 33.33%

Expemeg Mo Causes Mo Causes Mo Causes

4 Mo Causes 1 PaF 100 1 PaF 90 100.00%

5 1 TR 50 1 TR a0 1 TR 9 50.00%

L 50 2 TL 50 2 L 91 50.00%

6 1 V3IFO 33334 1 W3F0 33.334 1 W3F0 47 40,17 %

2 C2FH  33.3337 2 C2FH 333337 2 C2FH 43 36.75%

3 S2FH 33.3337 3 S2FH 333357 3 S2FH 39 33.33%

4 P3B 25.0005 4 P38 25.0005 4 F3B 33 28.21%

5 P3F  25.0005 ) F3F| 250005 ) F3F 33 28.21%

g F4B  25.0005 B P4B  26.0005 B P4B 33 28.21%

7 Ww2FC  25.0005 7 W2FC) 25.0005 7 W2FC 33 28.21%

71 TR 50 1 TR a0 1 TR 12 50.00%

2 L 50 2 TL A0 2 L 12 £0.00%

3 V3IFO 33334 3 W3F0 33.334 3 W3F0 g 33.33%

4 C2FH  33.3337 4 C2FH 333337 4 S2FH g 33.33%

5 S2FH 33.3337 g S2FH 333357 g C2FH g 33.33%

5 P3B  25.0005 B P38 25.0005 B F3B B 25.00%

7 P3F  25.0005 7 F3F| 250005 7 F3F g 25.00%

g F4B  25.0005 g P4B  26.0005 g P4B g 25.00%

9 Ww2FC  25.0005 9 W2FC) 25.0005 9 W2FC B 25.00%

8 No Causes 1 P3F 100 1 P3F 100 100.00%

91 F3B 25.0005 1 PaF 100 1 PaF 59 100.00%

2 P3F  25.0005 2 P38 25.0005 2 F3B 16 K%

3 F4B  25.0005 3 F3F| 250005 3 F3F 16 2712%

4 Ww2FC  25.0005 4 P48 25.0005 4 P4B 16 27.12%

) W2FC) 25.0005 ) W2FC 16 K%

o 1 P3B 25.0005 1 TR 79.9988 1 TR 55 75.34%

2 P3F  25.0005 2 F3F|  40.0002 2 F3F 30 41.10%

3 P4B  25.0005 3 TL  20.0011 3 L 18 24.66%

4 W2FC 25.0005 4 P48 20.0008 4 P4B 17 23.29%

|} W2FG) 20,0007 |} W2F G 17 23.28%

B P38 20.0004 B F3B 16 21.92%

1" 1 CIFL 333339 1 P3B 333342 1 F3B 15 33.33%

2 WIFO  33.3339 2 CIFL 333339 2 P4B 15 33.33%

3 SIFL 33.33%7 3 W1FO| 333339 3 W2F G 15 33.33%

4 P3B 25.0005 4 P48 333337 4 Kale] 15 33.33%

5 P3F  25.0005 ) SIFL 333337 ) S1FL 15 33.33%

g F4B  25.0005 B W2FC) 333336 B C1FL 15 33.33%

7 Ww2FC  25.0005 7 PsB 20.001 7 PsB 9 20.00%

] F5B  16.6674 g PEEB 20.0007 g PGB 9 20.00%

9 PSF  16.6674 9 W3FC) 20,0007 9 W3FC 9 20.00%

10 FEB  16.6674 10 C2FL 200003 10 S2FL 9 20.00%

11 Ww3IFC  16.6674 1 S2FL 200003 11 C2FL 9 20.00%
12 C2FL  16.6671
13 S2FL 16667

12 1 CIFL 333339 1 P3B 333342 1 VIFD 25 43.66%

2 VIFO  33.3339 2 CIFL 333339 2 F3B 24 42.11%

3 S1FL 333337 3 W1FO| 333339 3 C1FL 22 38.60%

4 F3B  25.0005 4 P46 333337 4 P4B 21 36.64%

5 P3F  25.0005 ) SIFL 333337 ) W2FC 21 36.84%

g F4B  25.0005 5] W2FC) 333336 5] S1FL 19 33.33%
7 W2FC 25.0005

Table 4.10 — Summary of the results of the two methods and the simulation code for scenarios 1-12.

118



Chapter 4. Dynamics in the Fault Diagnostic method

Scenario Possible Causes Method | Possible Causes Method Il Simulation Results
Component Probability (%) Component  Probabhility (%) Component Occurrence Occurrence in %
13 1 TR 50 1 L 100 1 L 9 100.00%
2 L 50 2 P38 333342 2 F3B 3 33.33%
3 CIFL 333339 3 CIFL 333339 3 P4B 3 33.33%
4 WVIFO  33.3339 4 W1FO| 333339 4 W2F G 3 33.33%
5 S1FL 333337 ) P48 333337 ) Kale] 3 33.33%
g F3B  25.0005 5] SIFL 333337 5] S1FL 3 33.33%
7 P3F  25.0005 7 W2FC) 333336 7 C1FL 3 33.33%
8 P4B  25.0005
9 W2FC 25.0005
1" 1 W3IFO 33334 1 W3F0 33.334 1 W3F0 90 39.47%
2 C2FH  33.3337 2 C2FH 333337 2 C2FH 83 36.40%
3 S2FH 33.333F 3 S2FH 333337 3 S2FH 7B 33.33%
4 NyWhIS 153853 4 MywhdS 14,2864 4 NS 45 19.74%
5 F1B  15.3853 g P16 14.2864 g F1B 42 15.42%
] P1F  15.3853 5] P1F| 142864 5] F1F 42 18.42%
7 F2B  15.3853 7 P2E 14.2864 7 F2B 42 15.42%
g C1FH  14.2863 g CIFH 142863 g WIFG 42 15.42%
9 S1FH 14.2862 9 S1FH 142852 9 C1FH 33 17.11%
10 W1FC 14.2862 10 VIFC) 14,2862 10 S1FH 36 15.79%
15 1 TR 50 1 TR a0 1 TL 2 B1.76%
2 L 50 2 L a0 2 W3F0 14 41.18%
3 W3FO 33334 3 W3F0 33.334 3 C2FH 13 38.24%
4 C2FH  33.3337 4 C2FH 333337 4 TR 13 38.24%
5 S2FH 33.333F ) S2FH 333337 ) S2FH 7 20.55%
g NyWhIS 153853 B MywhdS 14,2864 B F1B 5 14.71%
7 F1B  15.3853 7 P16 14.2864 7 F1F 5 14.71%
] P1F  15.3853 g P1F| 142864 g F2B 5 14.71%
9 F2B  15.3853 9 P2E 14.2864 9 ali 5 14.71%
10 C1FH  14.2863 10 CIFH 142863 10 S1FH 5 14.71%
1 S1FH 14.2862 1 S1FH 142852 11 HYWIS 5 14.71%
12 WG 14.2862 12 VIFC) 14,2862 12 C1FH 4 11.76%
16 1 NyWhIS 153853 1 MyWhS 153853 1 NS 176 21.97%
2 F1B  15.3853 2 P16 153853 2 F1B 159 19.85%
3 P1F  15.3853 3 P1F| 153853 3 F1F 153 19.85%
4 F2B  15.3853 4 P2B 153853 4 F2B 159 19.65%
5 C1FH  14.2863 g CIFH 142863 g WIFG 159 19.85%
5 S1FH 14.2862 B S1FH 142852 B C1FH 147 18.35%
7 WI1FC  14.2862 7 WVIFC) 14,2862 7 S1FH 137 17.10%
17 1 TR 50 1 TR a0 1 TR 112 51.65%
2 L 50 2 L a0 2 L 104 48.15%
3 NyWhIS 153853 3 MywhdS 14,2864 3 NS 39 15.06%
4 P1B 153853 4 P18 14.2864 4 P1B 37 17.13%
5 P1F  15.3853 ) P1F| 142864 ) F1F 37 17.13%
g F2B  15.3853 B P2E 14.2864 B F2B 37 17.13%
7 C1FH  14.2863 7 C1FH 142863 7 WIFC 37 17.13%
] S1FH 14.2862 g S1FH 142862 g C1FH 36 16.67 %
9 WG 14.2862 9 VAFC) 14,2862 9 S1FH 33 15.28%
1B 1 V3IFO 33334 1 W3F0 33.334 1 W3F0 28 33.33%
2 C2FH  33.3337 2 C2FH 333337 2 S52FH 28 33.33%
3 S2FH 33.333F 3 S2FH 333337 3 C2FH 28 33.33%
4 F3B  25.0005 4 P3E  25.0005 4 F3B 21 25.00%
5 P3F  25.0005 g F3F| 250005 g F3F 21 25.00%
] F4B  25.0005 5] P48 25.0005 5] P45 21 25.00%
7 W2FC 25.0005 7 W2FC) 25,0005 7 W2FC 21 25.00%
g NyWhS  15.3853 g MywhS 14,2864 g F1B 12 14.29%
9 F1B 153853 9 P18 14.2864 9 F1F 12 14.29%
10 P1F  15.3853 10 P1F| 142864 10 F2B 12 14.29%
1 P2B 153853 1 P28 142864 11 WIFC 12 14.29%
12 C1FH  14.2863 12 C1FH 142863 12 S1FH 12 14.29%
13 S1FH 14.2862 13 S1FH 14.2862 13 C1FH 12 14.29%
14 WG 14.2862 14 VAIFG) 14,2862 14 MRS 12 14.29%

Table 4.11 — Summary of the results of the two methods and the simulation code for scenarios 13-18.
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Scenario Possible Causes Method | Possible Causes Method Il Simulation Results
Component Probability (%) Component  Probabhility (%) Component Occurrence Occurrence in %
19 1 F3B 25.0005 1 P3B 333342 1 F3B 111 37.25%
2 P3F  25.0005 2 P48 33.3342 2 P4B 104 34.90%
3 F4B  25.0005 3 W2FC) 333336 3 W2FC 104 34.90%
4 W2FC 25.0005 4 CIFH 142853 4 HYIS 55 18.46%
5 NYWS  15.3853 ) WwWhS 14,2863 ) F1B 52 17.45%
g F1B  15.3853 B P16 14.2863 B F1F 52 17.45%
7 P1F  15.3853 7 P1F| 142863 7 F2B 52 17.45%
8 P2B 153853 8 P28 142863 8 WIFC 52 17.45%
9 C1FH  15.3851 9 S1FH 14.2862 9 C1FH 45 16.44%
10 W1FC 15.3551 10 VIFG) 14,2862 10 S1FH 46 15.44%
1 S1FH 7.6931
200 1 F3B 25.0005 1 F3F| 999949 1 F3F 118 84.65%
2 P3F  25.0005 2 MywhdS 14,2864 2 P5F 28 20.14%
3 F4B  25.0005 3 P16 14.2864 3 MRS 24 17.27%
4 Ww2FC  25.0005 4 P1F| 142864 4 P1B 23 16.55%
5 NYWhS  15.3853 4 P2E 14.2864 4 F1F 23 16.55%
g F1B  15.3853 B CIFH 142863 B F2B 23 16.55%
7 P1F  15.3853 7 S1FH 142852 7 WIFC 23 16.55%
] F2B 153853 g VIFC) 14,2862 g C1FH 22 15.83%
9 C1FH  14.2863 9 PaF 0.0066 9 S1FH 21 15.11%
10 S1FH 14.2862 10 P4B 0.0033 10 P4B 14 10.07 %
11 W1FC 14.2862 1 W2FC 0.0033 11 W2FC 14 10.07 %
211 TR 50 1 TR a0 1 TR 28 50.00%
2 L 50 2 L a0 2 L 28 50.00%
3 F3B  25.0005 3 P3E  25.0005 3 F3B 14 25.00%
4 P3F  25.0005 4 F3F| 250005 4 F3F 14 25.00%
5 P4B  25.0005 5 P48 25.0005 5 P4B 14 25.00%
g W2FC 25.0005 B W2FC) 25,0005 B W2FC 14 25.00%
7 NyWhIS 153853 7 MywhS 14,2864 7 F1B g 14.29%
8 P1B 153853 8 P18 14.2864 8 P1F 3 14.29%
9 P1F  15.3853 9 P1F| 142864 9 F2B g 14.29%
10 F2B  15.3853 10 P2E 14.2864 10 WIFG g 14.29%
1 C1FH  14.2863 1 C1FH 142853 11 S1FH 3 14.29%
12 S1FH 14.2862 12 S1FH 142862 12 C1FH g 14.29%
13 WG 14.2862 13 VAFC) 14,2862 13 NS g 14.29%
221 F3B 25.0005 1 P3B 333342 1 F3B 61 43.57%
2 P3F  25.0005 2 P48 33.3342 2 P4B 52 37.14%
3 F4B  25.0005 3 W2FC) 333336 3 W2FC 52 37.14%
4 W2FC  25.0005
23 1 TR 50 1 L 100 1 L 28 100.00%
2 L 50 2 P3B 333342 2 F3B 11 39.29%
3 F3B  25.0005 3 P46 333337 3 P4B 10 /7%
4 P3F  25.0005 4 W2FC) 333336 4 W2FC 10 3571%
5 F4B  25.0005
g W2FC 25.0005

Table 4.12 — Summary of the results of the two methods and the simulation code for scenarios 19-23.

The occurrence of the components in the simulation code gives a measure of the probability
for a failure to have occurred in a particular scenario. This measure is very similar to the
posterior probability and this is proved by the fact that the ranking of the components in
the BN methods and in the simulation results are similar. It can be concluded that the
BN method is able to find the potential causes of a fault in the system and the posterior
probability gives an efficient way to produce the most probable causes among the potential

ones.

4.7 Summary

This chapter has described a general method for the application of BNs to the fault diagno-
stic of a dynamic system. The method is applied to the example of the water tank system.

By introducing the sensor patterns, the analysis is now able to study the scenarios that were
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not observable in the method previously shown. The effectiveness of the diagnosis is vali-
dated by a simulation code that generates the scenarios and the actual causes of the system.
With respect to FTA, the BN diagnosis is faster and more concise and all the advantages

that were pointed out in the previous chapter are confirmed.

Two methods were developed. In method I the root nodes representing the component fail-
ures link to the nodes that represent the patterns of 4 of the 5 sections of the system. Method
I is then improved introducing the links to patterns 5 in the system BN, that is, considering
the tank level as a consequence of the failures in the system. This modification makes the
BN able to find all the actual causes of all scenarios and it does not indicate any false cause.

The method can be considered, for this example, 100 % accurate.

Even though the simulation code that validates the method only considers up to 3 failures
in the system, this is not restrictive as only one scenario was left out of the simulation. The

actual failures of this scenario were found manually and then compared with the method.

A limitation of the method is represented by the assumption that the failures have occurred
before the system is started and this can be restrictive to those situation where a failure
occurs after some time with respect to other failures. However, this problem is beyond the

scope of the research reported in this thesis.

The method should be used for a larger and more complex system to prove its applicability.
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Chapter 5

Application of the Diagnostic Method
to the Fuel Rig System

Introduction

In this chapter, the diagnostic method described in chapter 4 is applied to a fuel rig system.
As the fuel rig is considerably larger than the water tank system, the method is modified
and adapted to deal with the increased complexity of the diagnosis. This application should
prove that the method can be applied to systems that are more complex with respect to the

water tank system.

5.1 Fuel Rig system Description

The fuel rig system is based on a real aircraft fuel system, the Advance Diagnostic Test-bed
(ADT) is located at the System Engineering Innovation Centre (SEIC) in Loughborough
(figure 5.1).

The facility consists of a number of tanks, pumps, valves, flow meters, level sensors, and other
components which form the mechanical and electrical parts of a modern aircraft fuel system
([48], [49]). The instrumentation can be connected and used with different configurations
and it is possible to induce some types of faults into the rig. For the purpose of our research
a particular configuration has been chosen in which the system comprises three fuel tanks: a
wing, a collector and a main tank. Fuel is fed from both the main and the wing tank into the
collector tank, and, from the collector tank, it is pumped into the engine. Figure 5.2 shows
a schematic of the system. Each tank has two fuel stream lines, with two pumps. Only one
line is used at the time and the other represents a back up in the case of a failure.

Fuel is fed into the engine only from the collector tank. When the level in the collector tank
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Figure 5.2 — Schematic of the fuel rig configuration.

drops below threshold 77, fuel is transfered from the wing tank into the collector. When the
wing tank is empty or if the level in the collector tank reaches the limit 75, fuel is pumped
from the main tank into the collector tank. Since it is assumed that the flow rate of fuel
pumped into the collector tank equals the fuel out of the tank, the level in the collector
tank in the normal operation should never increase. The engine is represented by a larger
tank located underneath the three tanks and it is possible to refill the tanks from the engine

through a refilling line.
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5.1.1 Components Description

The main tank is represented in figure 5.3. The two fuel stream lines are labelled as L1
and L2. The following components are contained in line L1: a pump (PP0110), a powered
isolation valve (IVP0110), a controller (CT0110), a back pressure valve (BP0110) and 6
sections of pipe work (P0101-P0106).
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Figure 5.3 — Main Tank of the Fuel Rig System.

Line L2, which is used as a back up line, has the same components, labelled as: PP0120,
IVP0120, CT0120, BP0120 and P0107-P0112. The two lines join together into the main
outflow line of the tank, which contains two components: pipe sections P0113 and P0114.
When the engine is started, both pumps in the lines are activated but, for the line on standby;,
the powered isolation valve stays closed so that fuel is re-circulated back into the tank via
a recycle line. There are two recycle lines, labelled as recycle lines L1 and L2. Recycle line
L1 contains the following components: a pressure relief valve (PSV0110) and 3 sections of
pipe work (P0115-P0117). Similarly, the components of the recycle line L2 are PSV0120
and P0118-P0123. A drainage line is also located at the bottom of the tank and it is used

to simulate dumping of fuel from the aircraft, its components are: a power isolation valve
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(IVP0130), a controller (CT0130) and 3 pipe sections (P0121-P0123). Each tank has 7 sen-
sors, one of which is a level transmitter that measures the level of fuel in the tanks. The
others are flow sensors that measure the flow rate at different points in the pipes. In the
main tank, LT0110 is the level sensor, FT0110 and FT0120 are located in lines L1 and L2
respectively, FT0111 and FT0121 are in the recycle lines, FT0130 measures the flow rate in
the outflow line and, finally, FT0100 is at the drainage line.

The Wing and Collector Tanks have similar components to the ones described for the Main
Tank. The numbers used to identify the components for each tank are as follows:

Main Tank 01**,

Wing Tank 02%%

Collector Tank 03**,

For example, the power isolation valves that belongs to line L1 and line L2 of the wing tank
are labelled as IVP0210 and IVP0220 respectively.

Several failure modes are considered for each component of the system. For example, pipe
work sections have 4 failure modes: Blocked, Fractured, Partially Blocked and Leaking. A
blockage in a pipe is defined as a failure that would cause fuel flow to stop completely, a
fracture would cause all the fuel to be lost from the pipe, while a leak represents a partial
loss. A partial blockage would allow only half of the fuel to pass through the pipe. Table 5.1
lists all component failures of the system. Considered that each tank has 35 components,
that the pipes, the valves and the pumps have 3 or 4 failure modes while the controllers have

2 failure modes, there are in total 396 component failures in the system.

Component Failure Modes

Pumps PP###* 1 Fails On - 2 Fails Shut Off - 3 Fails Mechanically - 4 Fails Leaking

Valves [VPH##* 1 Fails Open - 2 Fails Blocked - 3 Fails Partially Blocked - 4 Fails Leaking
Valves PSV**** 1 Fails Open - 2 Fails Blocked - 3 Fails Partially Blocked - 4 Fails Leaking
Valves BP**** 1 Fails Blocked - 2 Fails Partially Blocked - 3 Fails Leaking

Controllers CT**** 1 Fails True - 2 Fails False

Pipes PH#** 1 Fails Blocked - 2 Fails Fractured - 3 Fails Partially Blocked - 4 Fails Leaking

Table 5.1 — Component failure modes.

5.1.2 System Operating Modes

The system has two operating modes: ACTIVE and DORMANT. In the DORMANT mode,
there is no fuel transfer and the pumps are shut down. In the ACTIVE mode, all pumps in

the tanks are activated and fuel is fed from the collector tank into the engine. The transfer
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of fuel from the main and the wing tanks depends on the level in the collector tank.

The level thresholds are: Empty (E), Pump Shut Off (PSO), Low (L), Adequate Section
(AS), Required Level (RL), High Level (HL), and Full (F) (as indicated in figure 5.2). In the
collector tank, the adequate section has two additional thresholds indicated as T7 and T5.
Their use is to specify whether fuel is pumped into the collector from the main or the wing
tank. If the level of fuel in the collector tank is above 77, then the flow from the wing tank
into the collector tank is stopped. If the level drops below threshold T}, then fuel is pumped
into the collector tank in order to keep the tank replenished. Fuel from the main tank is al-
lowed into the collector tank if the level drops below threshold T5. In the case the level in all
tanks drops below the Pump Shut Off limits, then the pumps are shut off to prevent damage.

If dumping of fuel is simulated on the rig, the collector tank is drained to Low, while both
the main and the wing tank are drained to PSO. The amount of fuel left in the collector

tank is used for the landing.

5.2 Fuel Rig Diagnostic System

In chapter 4, a method is described for the diagnostics of dynamic systems. The following
is a brief summary of the procedure:

First, the system is divided into sections, each section has the capability to effect a system
process variable and contains a sensor that monitors the trends of the variable of interest.
The possible trends of the monitored variables are studied and they are correlated to the
states of the section. In this way, specific patterns are identified for each possible section
failed state. Non-coherent FTs are then built to represent the causality relations between
the failed states of the sections and the component failures. The FTs are converted into
BNs and these are connected together in a network that represents the system and by
which all system scenarios can be analysed. The trends observed in the sensors are also
included in the structure of the BN so that evidence can be introduced to the networks
when a particular sensor observation is made. The posterior probability is calculated for
the component failure events in all scenarios and the list of the component failures whose
posterior probability has increased with respect to their prior probability is derived. This
gives the list of potential causes for all system scenarios. The method is implemented in
two stages: the system modelling and preparation stage and the BN development stage. In
the first stage all information known about the system is collected and the system sections,

states and scenarios are identified. F'T's and BNs are then built to model the fault causality
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of the system. After this, the system is ready to perform the diagnostics. The details of
the application of the method to the fuel rig system is described in the next two sections.
Some adaptations are necessary, such as the division into sub-systems due to the size of the

problem or the use of identical BNs for redundant parts of the system.

5.3 System Modelling and Preparation stage

For this stage, the following tasks are performed:

1. the system is divided into sub-systems and, in turn, the sub-systems are divided into
sections,

2. the section states are identified,

3. all possible sensor patterns for each section variable are identified,

4. the system scenarios are listed.

5.3.1 System division into sub-systems and sections

The fuel rig system comprises 105 components, 18 flow sensors and 3 level sensors. Due
to its size, it was necessary to divide it into sub-systems. The diagnostics is carried out
by first identifying the faulty sub-systems and then focusing on them individually to detect
the causes. It is natural to divide it in 3 sub-systems: the main tank, the wing tank and
the collector tank. There could be an extra sub-system, consisting of the refuelling part,
that was not considered in this analysis. Each tank is then analysed individually, so that
the division into sections, the identification of the section states and patterns is performed
three times. As the tanks have a very similar structure, we will focus here in details only on
the analysis of the main tank. The diagnostics should also take into account the operating
modes of the system, as different sensor readings are expected in different modes. We will
only consider the ACTIVE mode.

The main tank is divided into 6 sections, relative to the 6 flow transmitters located in the
pipes: fuel line L1, fuel line L2, recycle line L1, recycle line L2, the drainage line and the
outflow line. An extra section, the tank itself, can be considered in correspondence to the
level sensor, but the state of the level in the tank depends on the states of the other sections,

as the level in the tank is a consequence of the fuel flow in the pipes.

5.3.2 Identification of section states

Once the system is divided into sections, accounting for the sensor outcomes and the com-

ponent failures, one should be able to identify for each section a number of possible states.
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These will include the working state and each failed state.

In the main tank, for each section, four possible states are identified: Working (W), High
Flow (HF), Low Flow (LF) and Partial Flow (PF). High Flow occurs if unexpected full flow
is observed in a line when no flow was expected. Low flow occurs when, vice versa, no flow
is observed and full flow was expected. Finally, partial flow is the state corresponding to a
situation when a partial blockage or a leak in a pipe work or in a valve causes unexpected
partial flow through the line. For the purpose of building the BNs, partial flow is studied by
considering it separately for the situation when flow or no flow is expected. Therefore there
will be two separate FTs, one whose top event is Partial Flow when flow is expected and

one for Partial Flow when no flow is expected.

5.3.3 Identification of sensor patterns

For each section state, the sensor outcomes should show a number of possible dynamic be-
haviours for the monitored variable. The readings can be grouped together to form possible

trends for the variable. For each section, all possible variable patterns are identified.

In the main tank, the possible patterns are identified for each of the 6 sensors. Figure 5.4

shows the possible flow patterns for sensor FT0110 in the fuel line L1.

Line L1 sensor reading patterns

-\

—
0 of 0 0 0
Constant Flow No Flow From Constant Partial Flow From Partial
to No Flow to No Flow

Figure 5.4 — Reading patterns for sensor FT0110 in the main tank.

Whether a pattern is expected or not depends on the particular phase the system is in. The
system phase depends on the level of fuel in the collector tank. To facilitate the analysis and
to be able to tell which pattern is expected, it in necessary to divide the ACTIVE operating
mode into phases. For the entire system, 6 phases are identified. In phase 1 the level in the
collector is between threshold 77 and the required level (RL), so fuel is fed into the engine
from the collector tank and there is no flow into the collector tank from either the main or
the wing tank. The system is in phase 2 when the level in the collector tank is at 77, here the
fuel starts to be pumped from the wing tank into the collector tank and from the collector

into the engine. This phase is terminated when the level in the wing tank reaches the PSO
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limit and the system goes into phase 3, in which the level in the collector tank is between
thresholds T} and T;. At this point, again there is no transfer of fuel from the main and
wing tanks into the collector tank. Fuel is pumped from the main into the collector tank
when the level in the collector tank reached threshold 75 in phase 4. Phase 5 starts when
the level in the main tank reaches limit PSO, at this stage, the collector tank is emptied to
the PSO limit. The final phase, phase 6, is reached when all tank levels are at PSO limit
and no fuel is transferred into the engine. Table 5.2 shows the phases of the system in the

active mode, with the level in the collector tank indicated as L..

Phase Level interval
Ty < L. < RL
Lc = Tl

T, < L.<T
L.=1T,

PSO < L. < Ty
L.=PS0O

O U W N~

Table 5.2 — Phases of the ACTIVE operating mode.

Figure 5.5 shows the expected sensor readings of the main tank sub-system for phase 4 of
the ACTIVE operating mode.

Line L1 Flow rate Line L2 Flow rate Recycle Line 1 Recycle Line 2 Outflow Line Tank Level
Flow rate Flow rate Flow rate RL
PSO
Y \ 1\ ;
h

o of 0

=]

Figure 5.5 — Expected sensor patterns for the sensors in the main tank when the system is in phase 4 of the ACTIVE
operating mode.

In phase 4, the fuel is transferred from the main tank into the collector tank and from the
collector into the engine. As a consequence, the level of fuel in the collector tank remains
constant and it decreases in the main tank from threshold TL to PSO. Fuel is expected to
pass along line L1 and it should be recirculated back through the recycle line L2. Therefore
no flow is expected in the recycle line L1 and in the line L2. The flow in the outflow line
is the same as the one from line LL1. The tank level decreases from TL to PSO and, when
it reaches PSO, the pumps are stopped and flow in line L1, in the outflow line and in the

recycle line L2 goes from flow to no flow.

The flow patterns among all scenarios in all phases for the flow sensors can be distinguished
in 3 types, Flow, No Flow and Partial Flow. This simplification can be done if one does
not consider the phase transitions, that is the patterns that are observable when the system

goes from one phase to the other. For example, if the system goes from phase 4 to phase
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5, the expected pattern for the flow rate in line L1, sensor FT0110, should be From Flow
to No Flow. If the phases are distinguished, then the expected pattern in phase 4 results
Flow while the expected pattern in phase 5 is No Flow. With this assumption, the possible

patterns for sensor FT0110 are shown in figure 5.6.

0 ol 0
Constant Flow No Flow Partial Flow

Figure 5.6 — Possible patterns for the sensor in line L1 excluding the ones at the stage transitions.

The same patterns can be considered with this assumption for all the other sensors in the

main tank and in the other sub-systems.

5.3.4 System scenarios

A system scenario is defined as a combination of sensor patterns that can be observed on the
system. Considering that each of the 6 sections in the main tank can follow three patterns,
there are 729 possible combinations of patterns that can generate possible scenarios for the
main tank. This number becomes even larger if all three sub-systems are considered. How-
ever, using BNs it is not necessary to identify which of the patterns combinations are the
actual scenarios for the system as the diagnosis can be performed on line when a scenario is
observed. Moreover, knowing the scenarios is not required for building the BNs. In previous
FT based methods, listing and studying the possible scenarios was necessary for the calcu-

lation of the prime implicants.

Obtaining the scenarios can be useful for the validation of the method, since the actual and
the potential causes identified can be compared for each scenario and the accuracy of the
method can be assessed. This will be done later on in the chapter using a simulation code

for the system, in a similar way as was performed for the water tank system.

5.4 Bayesian Networks Development

Four tasks are performed at this point:
1. building non-coherent F'Ts for the failing states of the sections,
2. converting the FTs into BNs,

3. connecting the BNs to form a unique BN for each sub-system,
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4. creating a BN that models the entire system and that is used to understand which

sub-system is likely to be faulty.

5.4.1 Non-coherent Fault Trees construction

Non-coherent FTs are built for all deviating states of the sections. Non-coherent logic in-
cludes both failed and working states of the components so that NOT gates are included in
the FTs. In the main tank, for example, section 1 has 3 deviating states: High Flow, Low
Flow and Partial Flow. Because the causality of the failure modes depends on the working
phases of the system, the FTs are differentiated for the different phases. For example, for
line L1 and its state Partial Flow, two F'Ts are built, one corresponds to phase 4, when line
L1 is expected to provide fuel, and the other is for all other phases, in which there should
not be fuel transfer through line L1. In total there are 4 non-coherent FT's built for line L1

with the following top events:

- High flow (when no flow is expected),
- Low flow (when flow is expected),
- Partial Flow when flow is expected,

- Partial Flow when no flow is expected.

The FTs construction follows the same process used for the water tank system. However the
FTs are much larger for two reasons. One is the increased number of components and the

other is the number of failure modes considered for each component.

5.4.2 Conversion of the FTs into BNs

The FTs are converted into BNs. All F'Ts representing the causes of the deviating states of
the same section are converted in a unique network. In a similar way as for the water tank
system, the top event is converted into a node representing the deviating section states, while
the basic events are root nodes in the networks. The basic events in the F'T are component
failures. As each component can have many failure modes, the number of nodes and links
in the BN can be minimised by creating for each component a node whose states are the

working plus the failed states.

For the main tank, a BN is created for each section in all system phases. The choice of
different BNs depending on the phase of the system is motivated by the fact that it is not
necessary to include the BN for which evidence will not be given. For example, if the system

is in phase 4, flow is expected at the sensor FT0110 in section 1, therefore the BNs that
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will be considered are the ones that relate to the FTs whose top events are Low Flow and
Partial Flow when flow is expected. It would still be possible to create BNs that include
all possible working modes, but they are larger and they carry no extra information for a

particular system phase.

The section relating to the drainage line remains unchanged for all phases of the ACTIVE
mode, as no flow is always expected. In this case, two FTs are included in the network:
High Flow and Partial Flow. The top events are converted into the fault nodes (at the top
in figure 5.7), and the components of the section are the root nodes at the bottom. There
are only 5 components in the drainage line: 2 sections of pipework, a valve and a controller.
Figure 5.7 shows the structure of the BN.

The next figure, figure 5.8, shows the BN for fuel line L1 in phase 4 of the ACTIVE mode.
Two FTs are included in this BN and it is already quite large. If all deviating states would
be included, representing all phases of the system, four FTs would be converted into the BN
and this would double its size. Figures 5.9 and 5.10 represent separately the two subnetworks

that form figure 5.8. These are included for a better reading.

The choice of representing the networks now upside down with respect to the previous ones
is simply motivated by the fact that having the fault nodes at the top and the component
failures at the bottom with the links pointing upward can make the conversion and the
comparison with the original FTs easier. However this graphical scheme does not make any

difference to the logical meaning and the probability structure of the BNs.
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Appendix B contains all the BNs for the main tank.

Redundant Sections

When building the FTs and BNs for the fuel rig system, it was clear that some of their
logic structure, which models how the component failures cause the symptoms, are repeated
many times. For example, line L1 and line L2 are very similar, as well as recycle line L1
and recycle line L2. This is true for the sections that provide the system with redundancy,
but it can be observed for the entire sub-systems. BNs allow these similarities to be used
in order to avoid a repetition of the same logic. It is the same principle as for the repeated

basic events in the F'T's that appear only once in the BN structure.

For example, the BNs relating to the recycle line L2 has the same logic structure as the BN

for recycle line L1 with the replacement of the following components:

- P0107 instead of P0101,

- P0108 instead of P0102,

- P0118 instead of P0115,

- P0119 instead of P0116,

- P0120 instead of P0117,

- PP0120 instead of PP0110,

- PSV0110 instead of PSV0120.

The sensor FT0121 in the recycle line L2 has the same role as sensor FT0111 in recycle
line L1. As all BNs representing the sections belong to a same class collection, a BN for
recycle line L2 can be created including the BN for recycle line L1 as in figure 5.11. The
fault nodes at the bottom representing the deviating sensor states of the recycle line L2 are
linked to the fault nodes in the external BN for the recycle line L1. Similarly the input
nodes representing the components in the recycle line L2 link to the components belonging
to recycle line L1. In this way, the input nodes assume the same probability as for the nodes
in the external BN. This procedure can be done for the sections of the system or for entire
sub-systems. For example, the main tank in phase 4 has the same expected behaviour as
the wing tank in phase 2. The BN created for the main tank sub-system for phase 4 will be
identical to the BN for the wing tank sub-system for phase 2 with the replacement of the
correct components and the sensors labels. This will be shown in more details when all BNs

relating to the sections are connected together.
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Figure 5.11 — BN for recycle line L2 created using the BN for recycle line L1.
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5.4.3 Connecting the BNs

As for the water tank system, the BNs relating to the separate sections are connected to-
gether creating a class collection for each sub-system. A BN master represents the entire
main tank. The BNs relating to the sections of the main tank are visible from the network

master. This is represented in figure 5.12.

Figure 5.13 visualises how the input nodes of the system BN link to the external BN and the
output nodes in the section BNs link to the patterns nodes at the bottom of the figure. It
is also possible to see how two patterns nodes, representing line L1 and line L2 link outside
the network to the section BN representing the outflow line. This was done to reduce the
size of the BN for the outflow line as its patterns depend on the patterns in line L1 and L2.
Therefore, instead of repeating the BN structure for the deviating patterns in the two fuel
lines, two input nodes are created representing the behaviour in line L1 and line L2. The

size of the BN for the outflow line becomes in this way much smaller.

The 6 nodes at the bottom of the graphical representation of the BN represent the patterns of
the sensor readings. Each of them has 3 states: Flow, No Flow and Partial Flow. Evidence
is given to them when the sensor readings are observed and the posterior probability is
calculated to identify the potential causes. A BN is obtained in this way for every sub-
system in each of the operating phases. Connecting all of them to form a BN for the entire
system makes the problem size very large. Instead, a BN can be created for the system
to understand which sub-system is faulty and then the faulty sub-system can be studied

separately to find the potential causes.
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A BN is created for each sub-system. In many cases, sub-systems can be very similar. For
the fuel rig system, the main tank and the wing tank have the same components. The
functioning of the main tank in phase 4 of the ACTIVE mode is the same as for for wing
tank in phase 2. When creating the BN for the wing tank, one can use the BN for the
main tank substituting the component nodes and the sensor nodes. This can be done by
simply creating a BN that links to the main tank BN. The root nodes for the components
in the wing tank link to the input nodes of the main tank and the fault nodes representing
the sensor readings in the main tank link to the fault nodes in the wing tank. Figure 5.14

represents the BN for the wing tank created with this procedure.
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Figure 5.14 — BN for the wing tank created using the BN for the main tank.

The fact that entire sub-systems have similar functioning and the same types of components
is something that is common to many types of system. This characteristic of the method

applied to the fuel rig can therefore be generalised.

5.4.4 Creating the system BN

Once the BNs are created for each of the sub-systems, a BN is constructed to model the
system, this will be referred to as the system BN. For each sub-system one or more sensors
are selected. These sensors should give an idea of the state of the sub-system, that is, they
should be able to tell if a sub-system is working or failing. The number of sensors that
can identify the state of a sub-system is generally smaller than the total number of sensors,
which are located at different points for detecting the state but also to identify the faulty

components. The system BN is created with two types of nodes, the nodes that represent the
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sub-systems and the nodes that represent the sensor patterns. The first link to the second

as the states of the sub-systems influence the sensor patterns.

Figure 5.15 represents the BN that models the fuel rig system. This is built to identify which
sub-system is more likely to be faulty. It is not necessary to observe all sensors in the system
to do so, the sensors that are used are only 6: the flow sensors in the three outflow lines and

the three level sensors in the tanks.

Main Level Pattern
LTO110 Collector Outflow Pattern
FT0330

Collector Level Pattern
LT0310

Figure 5.15 — BN for the entire fuel rig system.

Three of the four root nodes at the top of the network are labelled as: MAIN, WING and
COLLECTOR. These nodes have 2 states: working and faulty. The extra root node, phase,
is a node with 6 states and it represents the phases of the system. The 6 nodes at the
bottom represent the sensors mentioned above and they are all, except the one for LT0310,
connected to the node phase and to their corresponding sub-system nodes. For example,
the node representing the level in the main tank has two node parents, MAIN and phase,
and it has 3 states: Constant, Increasing and Decreasing. The state of the level in the main
tank depends on the state of the tank itself and it also depends on the phase the system is
in. If, for example, the main tank is working and the system is in phase 4, then the level
in the main tank is decreasing. The node for the level in the collector tank, labelled as
Collector Level Pattern LT0310, has two extra parents which are the nodes representing the
flow sensors in the outflow lines of the main and wing tank. This is because the behaviour
of the level in the tank depends on the state of the tank itself, on the phase of the system
and on the flow that enters the tank from the other two tanks. If for example, the main tank
and the wing tank are faulty and flow enters the collector tank from both of them, the level

in the collector tank will be increasing in all phases of the ACTIVE operating mode. This
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BN can be used to determine if a fault has occurred in the system and which sub-system,
or sub-systems, have caused it. This is done giving evidence to the 6 sensor nodes plus
the node phase and calculating the posterior probability of the root nodes representing the
sub-systems. If the posterior probability of the faulty state of one these nodes is greater
than 50 %, then the sub-system BN for that particular phase can be analysed. The reason
the posterior probability should be greater than 50 % is purely because the prior probability

for these nodes is set as 50% for each of their states.

5.4.5 Diagnostic System application

The diagnostic system is applied in two steps. First, the BN that represents the entire sys-
tem is used to determine whether the system is faulty or not and which of the sub-systems
could be the cause of the fault. Then the sub-systems that were identified in this way are
considered in turn by observing the patters from their sensors and calculating the posterior
probability for their component failures. The diagnosis application is shown with an exam-
ple. When the sensors that are monitored on the entire system show a deviation from the
expected behaviour, the system is found faulty. We consider a particular situation where the

sensors have the states represented in figure 5.16.

These probabilities correspond to the situation when in phase 2 of the active mode, the fuel
should be passed from the wing tank into the collector tank. Node phase has evidence 100%
to its state 2. Because of the assumption that the amount of fuel entering the collector tank
equals the fuel leaving the collector tank, the level of fuel should stay constant. From the
observation of sensors outputs, there is no flow through the outflow line of the wing tank
(evidence 100 % to the state No Flow of node Wing Outflow Pattern FT0230) and the level
in the wing tank is decreasing (evidence 100% to the state Decreasing of node Wing Level
Pattern LT0210). In the main tank, there is no flow in the outflow line and the level is
constant as expected (evidence 100 % to state Constant of node Main Level Pattern LT0110
and to state No Flow of node Main Outflow Pattern FT0130). Finally, for the collector
tank, Flow is observed in the outflow line and the level is decreasing (evidence 100 % to
the state Decreasing of node Collector Level Pattern LT0310 and to the state Flow of node
Collector Outflow Patter FT0330).

141



Chapter 5. Fuel Rig System

B fuelig

- COLLECTOR,

| 90,909091 working
— 9,090909 Faulky
- @ Collectar Level Pattern LTOZ10
-1 - Constant
I 100 Decreasing
/1 - Increasing
[ Callectar Cutflow Pattern FT0E30
100 Flow
- Mo Flow
- Partial Flov
E-@ROMA
| 96,153846 working
1 3.846154 Faulty
=0 Main Level Pattern LT0110
I 100 Canstant
— - Increasing
- - Decreasing
[ tain Qutflow Pattern FTO130
— - Flow
I 100 Mo Flow
- Partial Flov
0 working
: 100 Faulky
(=1 @] Wing Level Pattern LTOZ10
----- 1 - Conskant
----- I 100 Decreasing
----- — - Increasing
=1 @I wing Outflow Pattern FT0230
----- 1 - Flow
----- [ 100 Ma Flaw
----- 1 - Partial Flow
=1 phase
----- — - Skake 1
----- I 100 State 2
----- — - Skake 3
----- — - State 4
----- — - State 5
----- — - State 6

Figure 5.16 — Evidence and Posterior probabilities in the system BN.

As a consequence, the COLLECTOR, MAIN and WING nodes have posterior probabilities
that show that the collector and the main tank are working while there is a failure in the wing
tank. Node COLLECTOR has posterior probability 90.90% for its state working, MAIN has
posterior probability 96.15% for its steate working, while node WING is 100% faulty. At
this point, the BN for the wing tank sub-system is considered and the readings from all the
sensors in the wing tank are observed, evidence is given to the corresponding nodes and the

posterior probability is obtained for the components of the wing tank.

The component failures that have increased their posterior probability with respect to the
given prior probability are the potential causes of the fault in the sub-system and, conse-
quently, in the system. In our example, we assume that the patterns observed in the sensors

in the wing tank are as in figure 5.17.

142



Chapter 5. Fuel Rig System

-
- pOP0215
- P0219
- Pzz0
P02z
P22z

E-pOrsvoz10
- pOrsvoze0
EI---.D Patterns 1 Drain Line FTO0Z00

----- 1 - MO Flow

----- I 1001 Flow

----- 1 - Partial Flow
[—ZI---.D Patterns 2 Line L1 FTOZ10

----- I 100 Ma Flow

----- 1 - FLOW

""" —1 - Partial FLow
EI---.D Patterns 3 Line L2 FTOZ20

----- I 100 MO FLOW

----- 1 - Flow

----- 1 - Partial FLow
=1 Patterns 4 Recycle Line L1 FT0211

----- 1 - MO FLOW

----- I 100 Flow

""" —1 - Partial Flow
- §pCPatterns 5 Recycle Line L2 FT0ZZ2L

----- 1 - Mo Flow

----- I 100 FLOW

----- 1 - Partial Flow
=i Patterns & Outflow Line FTOZ30

----- I 100 Ma Flow

----- 1 - FLOW

""" —1 - Partial FLow

Figure 5.17 — Sensor evidence in the wing tank.

The sensor patterns are unexpected in line L1, where there is no flow, while full flow is de-
tected through the recycle line L1. Line L2 and recycle line L2 show the expected patterns.

There is no flow through the outflow line and unexpected flow through the drain line.

Given the evidence in the BN, the posterior probabilities that have increased with respect
to the prior probability are shown in figure 5.18. The results in the figure are summarised
and ranked in table 5.3. Here, the component failures that are most likely to have caused
the deviation from the expected behaviour in the wing tank are listed. It can be seen that a
failure must have occurred in the drain line, either the valve has failed open or the controller
has failed true (that is, keeping the valve open). Another failure is also present in line 1,
this must be a blockage in the pipes or in the valve but it cannot be a fracture or a leak,
because full flow is observed in the recycle line. The BN is also able to understand that the

blockage cannot have occurred before P0203 as this would also have caused no flow in the

recycle line.
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Figure 5.18 — Potential causes for a fault in the wing tank when the sensor are as in figure 5.17.

Component Failure Probability (% )
IVP0230 fails open 50.1672
CT0230 fails true 49.9163
IVP0210 fails blocked 11.2220
P0213 fails blocked 11.2218
P0203 fails blocked 11.2128
CT0210 fails false 11.1943
P0214 fails blocked 11.1850
P0204 fails blocked 11.1847
P0205 fails blocked 11.1754
BP0210 fails blocked  11.1385
P0206 fails blocked 11.1385

Table 5.3 — Ranked list of the potential causes found in figure 5.18.

If two or more sub-systems are found faulty, then all the appropriate BNs should be studied
to obtain the component failures. For this particular example, the BN method is able to

identify all the potential causes of the scenario. However, in order to evaluate the method, a
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system simulation is needed and results should be found and compared with the simulation.

Results from these two tasks are provided in the next two sections.

5.5 System Simulation

The fuel rig system is quite a large system to be simulated with all its sub-systems and with
all the possible failures. As the behaviour of the sub-systems are very similar and they have
the same types of components, in order to validate the method, it is sufficient to simulate
the main tank and it can be assumed that the collector tank and the wing tank give very

similar results.

A simulation code was written in C4++ whose aims are to deduce all possible scenarios that
can occur for the 6 sensor patterns in the main tank when up to 3 failures are present in the
sub-system and to identify, for each of these scenarios, the failures that are most likely to
have caused the fault. The first task, deducing the scenarios, is something that would be very
long to do by hand as, considering that the 6 sensors have all 3 possible patterns, there are
729 possible pattern combinations. To identify the system scenarios manually, it would be
necessary to check each of them. Regarding the second task, identifying the potential causes
for each scenario, this is exactly what the BN method does and, therefore, the simulation

provides a means to validate the results.

The simulation of the main tank is more difficult compared with the simulation of the water
tank system in chapter 4. This is because the sub-system is constituted of more components
but also, and more importantly, because several failure modes are considered. In particular
the partial failure modes can be difficult to model. A partial failure is defined as a failure
on the system that may record as partial flow by the flow sensor. For example, a partial
blockage in pipe P0104 causes partial flow through the line but it would also cause partial
flow through the recycle line as part of the water would push the valve PSV110 and it would
manage to pass through sensor FT0111.

The structure of the code is similar to the simulation performed for the water tank system
in chapter 4. There is a basic function that has as inputs the structural parameters of the
tank, the initial conditions and the failures and it gives as outputs the patterns observed
in the variables measured by the sensors. This function can be iterated in a loop inducing
all possible combinations of failures, up to three. Grouping together the results that the
failures produce, the scenarios can be listed and the component failures that lead to each

scenario are observed. In the next subsection, it is explained how the code is able to predict

145



Chapter 5. Fuel Rig System

the sensor patterns with the example of the line L1 in the main tank.

5.5.1 Simulating line L1

The simulation code is divided into modules. Each of them models the behaviour of a section
in the main tank. They are considered separately but they influence each other, for example,
the sensor pattern in the outflow line depends on the behaviour of the flow in lines L1 and
L2 and flow through the outflow line cannot be observed if there is no flow through both
lines. It is shown here in detail how the sensor pattern in line L1 can be predicted when any

number of failures are considered in the line. We will refer to figure 5.3.

The inputs given to the code are the level of water in the tank, the system phase and the
failures assumed to have occurred. The output is, in this case, the pattern observed for the
flow measured at sensor FT0110. It is assumed that the system is in phase 4, therefore fuel
is supposed to flow from the main tank into the collector tank. The fuel should pass through
line L1 while line L2 is kept on stand-by as a back up. In the code, the line is divided into
parts, each part corresponds to a component in the line. The components considered in the
line are P0101, PP0110, P0102, P0103, IVP0110, P0104, P0105, BP0110, P0106, P0113 and
P0114. For each component, two variables are defined, one is used to memorise the fuel
flow that passes through the component, and the other the fuel that is eventually lost in
correspondence to the component. These variables assume values from 0 to 1, from 0 flow
to full flow, and they are called fuel through and fuel out.

If the tank is not empty and P0101 is working, fuel through at P0101 is 1 while fuel out
at P0101 is 0. If, instead, P0101 has failed leaking, only partial flow will manage to pass
through the pipe and a part of it will leave through the leak, therefore fuel through at P0101
will be 0.75 and fuel out is 0.25. If P0101 has failed blocked, both fuel through and fuel
out are 0. If at any point in the line fuel through becomes 0, then this is transmitted to all
following parts of the line. If fuel through is 0, then fuel out will also be 0 for the following
sections, in this way, if a fracture occurs after a blockage, there is no fuel loss through the
fracture as no fuel has reached the point where the fracture has occurred due to the blockage.
It is assumed that a fracture causes all fuel to be lost through it, while a leak causes a quarter
of the fuel to be lost. When a blockage occurs in the line after the sensor, not only does
it cause fuel through to be 0 corresponding to the faulty component and for the following
components, but it also gives a 0 value to the component in the line that precedes it, unless
a fracture or a leak are causing loss of fuel. After considering all components in the line and
establishing all the values of fuel through and fuel out, the sensor pattern at FT0110 simply
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depends on the value of fuel through at P0104, which is the component located immediately

before the sensor. The logic reasoning in the line L1 is shown schematically step by step:

It is assumed that fuel through, representing the amount of fuel that is able to pass through
the line, has a value for each component of the line, so, for example, the value of it at com-
ponent P0104 is indicated as fuel through (P0104). The fuel that is lost through a fracture
or a leak is represented by fuel out. The values of these variables are determined step by

step starting from the first component, P0101, and ending with P0114.

At P0101

If the tank is empty or the level is below the SO limit, then fuel through =0, fuel out =0

for all components in the line and, as a consequence, FT0110 has pattern No Flow.
If PO101 is blocked, then fuel through (P0101) =0, fuel out (P0101) = 0.

If PO101 is fractured, then fuel through (P0101) =0, fuel out (P0101) = 1.

If PO101 is leaking, then fuel through (P0101) = 0.75, fuel out (P0101) = 0.25.

If PO101 is partially blocked, then fuel through (P0101) = 0.5, fuel out (P0101) = 0.

At PP0110

Initially, the value of fuel through at PP0110 is set as the previous value, that is,

fuel through (PP0110) = fuel through (P0101). In this way, if there was a blockage or a
fracture in P0101, no fuel would reach PP0110. Then the possible failure modes of pump
PPO0110 are considered.

If PP0110 fails shut off, then fuel through (PP0110) =0, fuel out (PP0110) = 0.
If PP0O110 fails mechanically, fuel through (PP0110) = 0.5 % fuel through (P0101),
fuel out (PP0110) = 0. A mechanical failure is assumed to cause partial flow through the

pump, similar to a partial blockage in a pipe section. Only half flow is pumped in the line.

If PP0110 fails leaking, then fuel through (PP0110) = 0.75 % fuel through (P0101),
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fuel out (P0101) = 0.25 % fuel through (P0101). This means that 25 % of the fuel that
was transferred from P0101 to PP0110 is lost through the leak while 75 % of the fuel that

was transferred from P0101 to PP0110 manages to be passed to the next component.

At P0102

Initially, fuel through (P0102) = fuel through (PP0110). Then the possible failures modes
of P0102 are considered.

If P0102 is blocked, then fuel through (P0102) =0, fuel out (P0102) = 0.

If P0102 is fractured, then fuel through (P0102) = 0 and
fuel out (P0102) = fuel though (PP0110). This means that all the fuel that has passed
from PP0110 to P0102 is lost.

If P0102 is leaking, then fuel through (P0102) = 0.75 % fuel through (PP0110),
fuel out (P0101) = 0.25 * fuel through (PP0110).

If P0102 is partially blocked, then fuel through (P0102) = 0.5 * fuel through (PP0110),
fuel out (P0102) = 0. In this case, a partial blockage causes all the flow to pass through

the line.

For the remaining components, the reasoning is similar with the difference that the compo-
nents that are located after the sensor influence the values of fuel through for the components
that are located before. For example, if P0113 is blocked, unless one of the pipe sections
that are located between the sensor and P0113 have failed leaking or fractured, then fuel
through at P0104 is set to 0. When P0114 is reached, the sensor pattern can be determined

as follows.

FTO0110

If fuel through (P0104) = 1, then the pattern at FT0110 is full flow. This occurs when

there are no blockages in the line and no leaks or fractures.

If fuel through (P0104) = 0, then the pattern at FT0110 is no flow. This occurs when there
is a blockage in a pipe section, a valve has failed blocked, the pump has failed shut off or

there is a fracture in a pipe section that precedes the sensor.
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If 0 < fuel through (P0104) < 1, then the pattern at FT0110 is partial flow. This is

caused by a leak or a partial blockage.

LTO0110

The pattern of the level sensor in the main tank can be determined considering again the
values of fuel through but also the values of fuel out are needed. This is because now if fuel
through is 0 at P0114, this does not imply necessarily that fuel is not leaving the tank. For
example, if there is a fracture at P0101, this causes no flow at FT0110, but the level in the
tank is decreasing anyway. The pattern in LT0110 can be either constant or decreasing. The
fuel level cannot increase, as for the collector tank, because fuel does not enter the tank. The
level is calculated considering the initial level and subtracting at each time step the amount
of fuel that leaves the tank from the failed components (leaks and fractures) and the fuel

that leaves the tank from the outflow line.

5.5.2 Generating the failures

The main use of the simulation code is to automatically generate all possible combinations
of failures, up to 3, in the main tank sub-system and deducing the scenarios. A scenario for
the main tank is a combination of sensor patterns that are observed when one or multiple
failures occur. The code induces the failures, it runs the system for a period of time and
it memorises the sensor patterns obtained. The scenarios that are obtained in this way are
counted and the component failures that cause each of them are also recorded. For each possi-

ble scenario, it is recorded how many times it occurs and which component failures lead to it.

The scenarios are identified using ternary numbers. Each sensor can assume 3 patterns: No
Flow, Flow, Partial Flow. The digits 0, 1 and 2 are associated to them as follows: 0 No
Flow, 1 Flow and 2 Partial Flow. Giving this order to the flow sensors in the main tank:
FT0100, FT0111, FT0121, FT0120, FT0121 and FT0130, a patten combination is identified
with a ternary number. For example, the ternary number 210100 identifies the following
combination of patterns: Partial Flow in sensor FT0100 (2), Flow in sensor FT0111 (1), No
Flow in sensor FT0121 (0), Flow in sensor F'T0120 (1) and No Flow in sensors FT0121 and
FTO0131. Not all combinations of patterns are possible on the system, for example, if there is
No Flow through both the fuel lines, then the same pattern must occur in the outflow line.
The simulation code creates a text file where all scenarios are listed. Of the 729 possible
combinations of patterns, 195 are the ones that can be observed when up to 3 failures can

occur on the system.
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5.5.3 Simulation results

The simulation code creates a text file with a summary of the results for all scenarios. For
each scenario that results from some combination of failures, the following information are
recorded: the sensor patterns, the scenario number obtained converting the ternary number
given by the sensor patterns into decimal, the occurrence of the scenario (that is the number
of times it is generated by the code) and the occurrence of each of the component failures
for the scenario (that is the number of times a failure appears in any combination). These
results are shown for the first scenario identified by the simulation in table 5.4. This occurs
when No Flow is observed in all sensors except in the recycle line 2 where there is full flow
through the line. The scenario number is 3 as the ternary number 000010 corresponds to the
decimal 3. The number of failure combinations in this scenario are 67932. The component
failures are listed and ranked based on the number of times they appear in a combination.
For example, PO101 blocked appears in 9234 of the 67932 combinations, that is, it causes

the scenario in the 13.59 % of cases.

In table 5.4 the component failures are displayed in two columns only to fit the table in one
page. In total, there are 108 component failures that can occur in this scenario. Some of
them, which appear first in the ranked list, are the potential causes for the scenario. These
are the components whose failures explain the deviating behaviour of the system, the others
are hidden failures. As for the water tank system, in the fuel rig system the potential causes
are ranked first in the list because of the nature of the simulation. When a scenario can be
caused by less than 3 failures, as all combinations of 1, 2 and 3 failures are automatically
generated, some combinations must contain 1 or more failures that are not actual causes
and they are used by the code to complete the set. Therefore, when a hidden failure is iden-
tified, all the following component failures are hidden as well. In the example, the first 22
component failures represent potential causes for the scenario. The 23rd component failure
is CT0130 fails true, this is a failure that occurs in the controller located in the drainage
line that keeps the valve closed. In all phases of the ACTIVE operating mode the valve in
the drainage line is required to be closed, hence this failure is not an actual cause for the
scenario and it will remain hidden until, in another operating mode, the drainage line will

be used to simulate the dumping of fuel.

The simulation code produces 195 tables such as the one for scenario 3 in table 5.4. Com-
paring the results of the simulation with the posterior probability in the system BN, one
can assess the accuracy of the diagnostic method for all scenarios that are caused by up to 3

failures. Table 5.5 shows a summary of the scenarios obtained by the simulation where the
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sensor in the drainage line has the pattern No Flow. The scenarios can be divided in three
groups, depending on the pattern in the drainage line, whether it is No Flow, Full Flow and
Partial Flow. The drainage line does not have any component in common with the other
sections of the main tank. The results for the scenarios in which the sensor in the drainage
line, FT0130, shows No Flow are the ones where no failures occurred in the drainage line.

This is because No Flow is the expected pattern.
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Scenario 3
Cccurrence 67532
Drainage Line 0 Mo Flow
Line 1 0 Mo FLaw
Line 2 0 Mo FLow
Recycle Line 1 0 Mo FLow
Recycle Line 2 1 Flow
Outflow Line 0 Mo Flow
Component Failure Occurrence Occ. (%) Component Failure  Occurrence Occ. (%)
1 PO101 blocked 9234 1389% 66 CTO110 true 956 1.41%
2 POM01 fractured 9234 1359% 67 PO105 part blocked 955 1.41%
3 PO102 blocked 9234 1359% 68 PO106 part blocked 955 1.41%
4 POM02 fractured 9234 1359% 69 PO106 leaking 955 1.41%
5 PO103 fractured 9234 1389% 70 PO113 part blocked 955 1.41%
6 PPO110 off 9234 1359% 71 PO114 fractured 955 1.41%
7 PO104 fractured 8637 1271% 72 PO114 leaking 955 1.41%
8 P0115 blocked 1997 2.94% 73 BPO110 part blocked 955 1.41%
9 PO115 fractured 1997 2.94% 74 P07 fractured 952 1.40%
10 PO116 blocked 1987 2.94% 75 PO117 part blocked 952 1.40%
11 PO116 fractured 1997 2.94% 76 PO17 leaking 952 1.40%
12 PO117 blocked 1997 2.94% 77 PSYW0110 open 952 1.40%
13 PS%0110 blocked 1997 2.94% 78 PSW0110 part blocked 952 1.40%
14 PO105 blocked 1650 2.43% 79 P00 leaking 952 1.40%
15 BPO110 blocked 1638 2.41% 80 PO113 fractured 943 1.40%
16 PO113 blocked 1633 2.40% 81 P0113 leaking 949 1.40%
17 PO106 blocked 1632 2.40% 82 PO0114 part blocked 943 1.40%
18 PO114 blocked 1627 2.40% 83 PO106 fractured 943 1.39%
19 P0104 blacked 1634 2.26% 84 P0115 part blocked 943 1.39%
20 PO110 blocked 1534 2.26% 85 PO115 leaking 943 1.39%
21 CT0110 false 1528 2.25% 86 PO116 part blocked 943 1.39%
22 P0103 blocked 1412 2.08% 87 PO116 leaking 943 1.39%
23 CT0130 true 1045 1.54% 88 BPO110 leaking 937 1.36%
24 P0109 blocked 1003 1.48% 89 PO105 fractured 931 1.37%
25 PO110 blocked 982 1.45% 90 PO105 leaking 931 1.37%
26 PO111 blocked 9582 1.45% 91 PPO110 on 834 1.23%
27 PO121 blocked 952 1.45% 92 PPO110 leaking G934 1.23%
28 P0121 fractured 952 1.45% 93 PPO110 fails mechanic 834 1.23%
29 P0122 blocked 982 1.45% 94 1vP0O110 part blocked 834 1.23%
30 P0122 fractured 952 1.45% 95 PO104 part blocked 833 1.23%
31 PO1032 blocked 982 1.45% 95 PO104 leaking 833 1.23%
32 PPO120 on 982 1.45% 97 P0103 leaking 831 1.22%
33 PO120 blocked 952 1.45% 958 PO103 part blocked 712 1.05%
34 PO130 blocked 952 1.45% 95 PO101 part blocked 705 1.04%
35 PSYO120 open 982 1.45% 100 PO101 leaking 705 1.04%
36 PD109 part blocked 975 1.44% 101 |PO102 part blocked 705 1.04%
37 WPO130 leaking 975 1.44% 102 | PO102 leaking 705 1.04%
38 PSY0120 part blocked s 1.44% 103 | IvPO120 part blocked 47 0.07%
39 P0120 fractured 968 1.42% 104 | IvPO130 open 35 0.05%
40 PD120 part blocked 968 1.42% 105 | IvPO130 part blocked 35 0.05%
41 PO120 leaking 968 1.42% 106 | IvPO120 open 21 0.03%
42 CTOM20 falsstemp 968 1.42% 107 |CTOM20 false 21 0.03%
43 CTOM30 false 968 1.42% 108 | IVPO120 leaking 7 0.01%
44 PO110 fractured 951 1.41% 108 PO107 blocked 0 0.00%
45 PO110 part blocked 951 1.41% 110 PO107 fractured 0 0.00%
46 PO110 leaking 951 1.41% 111 |/PO107 part blocked 0 0.00%
47 PO111 fractured 951 1.41% 112 |PO107 leaking 0 0.00%
43 PO111 part blocked 951 1.41% 113/P0108 blocked 0 0.00%
49 PO111 leaking 951 1.41% 114 |PO108 fractured 0 0.00%
50 PO112 blocked 951 1.41% 115/ PO108 part blocked 0 0.00%
51 PO112 fractured 951 1.41% 116 PO108 leaking 0 0.00%
52 PO112 part blocked 951 1.41% 117 |P0109 fractured 0 0.00%
53 PO112 leaking 951 1.41% 118 PO109 leaking 0 0.00%
54 PO121 part blocked 951 1.41% 119/P0118 blocked 0 0.00%
55 PO121 leaking 951 1.41% 120 P0118 fractured 0 0.00%
56 PO122 part blocked 951 1.41% 121 P0118 part blocked 0 0.00%
57 PO122 leaking 951 1.41% 122 |P0118 leaking 0 0.00%
58 PO123 fractured 961 1.41% 123/P0119 blocked 0 0.00%
59 PO123 part blocked 951 1.41% 124 P0119 fractured 0 0.00%
60 PO123 leaking 951 1.41% 125 PO119 part blocked 0 0.00%
61 BPO120 blocked 951 1.41% 126 PO119 leaking 0 0.00%
62 BPO120 part blocked 951 1.41% 127 |PO120 blocked 0 0.00%
63 BPO120 leaking 951 1.41% 128 PPO120 off 0 0.00%
B4 IvPO110 leaking 958 1.41% 128 PPO120 leaking 0 0.00%
65 WVPO110 open 957 1.41% 130 PPO120 fails mechanic 0 0.00%
131 |PS%0120 blocked 0 0.00%
132 | PEW0120 leaking 0 0.00%

Table 5.4 — Results from the simulation code for scenario 3.
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Scenario Mumber of
Actual Causes
3 2
5] 38
9 21
12 9
15 24
18 20
21 17
24 20
27 18
28 11
29 10
36 g
37 9
38 9
46 30
47 10
B2 10
B3 12
G5 15
71 10
80 28
81 15
g2 12
g3 16
g4 3

85 Expected
86 4
a7 15
88 14
g9 21
108 7
109 2
110 5]
135 2
136 1
137 a]
142 4
143 5]
162 32
164 2
165 14
167 9
165 25
170 2
180 5
182 17
183 5
185 5]
186 18
188 7
189 15
190 18
191 11
207 4
208 =]
209 11
216 16
218 11
223 13
224 9
234 4
235 13
236 7
241 9
242 11

Table 5.5 — Scenarios and number of potential causes identified by the simulation code for the scenarios in which the

pattern is the drainage line is No Flow.
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Scenario 85 occurs when the patterns in the main tank are as follows: No Flow in the
drainage line, Flow in line L1, No Flow in line L2, No Flow in the recycle line L1, Flow in
the recycle line L2 and Flow in the outflow line. These are the expected sensor patterns for

the phase 4 of the active operating mode.

Changing the pattern in the drainage line to Flow, the scenarios obtained by the simulation
have exactly the same causes as the ones for No Flow, with the addition of two extra causes,
which are the valve in the drainage line failing open and the controller CT0130 failing true.
A similar thing can be said for the scenarios in which the pattern in the drainage line is
Partial Flow, the scenarios are the same with the extra failures that cause partial flow in
the drainage line, which are 7 and they are the partial blockages and leaks of the pipe and
valve in the line. There are 65 scenarios that occur when up to 3 failures are induced in the
system and in which the first sensor reading is No Flow. The other 130 scenarios are the ones
obtained adding 242 to the scenario number and that are produced by the extra 2 causes
in the drainage line (second column in the table in table 5.6) and the ones obtained adding
484 to the scenario number and that are produced by the extra 7 causes in the drainage line
(third column in the table 5.6).

Table 5.6 lists the scenarios and the number of actual causes for each scenario. Given the
scenario number, it is possible to obtain the sensor patterns that identify the scenarios as
these are given by the digits of the ternary number equivalent to the decimal number that
labels the scenario. For example, let us consider scenario 3, the equivalent ternary is 10.
Writing 10 in 6 digits gives 000010, that is scenario 3 is the one for which the patterns for
the sensors are 0, 0, 0, 0, 1 and 0, that is, No Flow in the drainage line, in line 1 and 2, in

the recycle line L1 and in the outflow line, and Flow in the recycle line L2.
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Scenario

242

Murnber of
Actual
Causes

11

Murnber of
Scenario | Actual
Cauges
245 24
248 40
251 23
254 1
287 26
260 22
263 19
266 22
269 20
270 13
271 12
278 10
279 1
280 1
288 32
289 12
304 12
305 14
307 17
313 12
322 30
323 17
324 14
325 18
326 5
327 2
328 =]
329 17
330 16
331 23
350 9
351 4
352 =]
377 24
378 3
379 10
384 =]
385 =]
404 34
406 24
407 16
409 11
A0 27
M2 29
422 7
424 19
425 7
427 =]
428 20
430 9
431 17
432 20
433 13
449 5]
450 10
451 13
458 18
460 13
465 15
466 1
476 =]
477 15
478 9
483 1
484 13

Scenatio

457
4390
493
496
499
502
505
508
511
212
513
520
521
522
530
531
546
547
549
555
564
565
566
567
565
569
570
571
572
573
552
593
554
519
620
521
526
527
546
545
549
551
552
554
G54
BEE
567
569
570
672
673
574
575
551
5a2
B3
700
702
07
708
718
719
720
725
726

Murnber of
Actual
Cauges

Table 5.6 — Scenarios and number of potential causes identified by the simulation code.

The scenarios that are not found by the simulation code are the scenarios that are caused

ot
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by more than 3 failures and the scenarios that cannot occur for any combination of failures.
The results of the diagnostic method are validated using the simulation results in the next

section.

5.6 Results

The BN method is validated using the simulation results. For each scenario, the posterior
probability of the nodes that represent the actual causes identified in the code is checked.
This was done manually. Although there are 195 scenarios, the section regarding the drainage
line can be considered independently as its components are not common to any other sec-
tion. The deviating behaviour represented by the unexpected patterns in the drainage line
are correctly identified by the BN diagnosis. This is quite a simple problem as there are only
4 components that belong to the drainage line. Excluding the drainage line simplifies the

problem of checking the results from 195 scenarios to 65.

The process of comparing the simulation results with the BN method is explained with the
example of scenario 3. In scenario 3, the sensor patterns are the ones shown in figure 5.4.
Evidence is given to the nodes representing the sensor patterns of the BN that models the
main tank. The posterior probability of all root nodes, the component failures, is deduced.
In table 5.7, the posterior probabilities of the component failures is added in a column next
to the simulation occurrence given by the simulation. The actual causes of scenario 3 are
the first 22 in the list. It can be seen that the only component failures that have increased
the posterior probability with respect to their prior probability are the first 22 components.
It can also be seen that these are the only ones whose posterior probability has increased.
The diagnostic method, for this scenario, has given accurate results. Comparing the two
columns of results in the table, the occurrence in percentage given by the simulation and the

posterior probabilities, it can also be seen how the ranking of the two results is very similar.

The diagnosis is checked for each of the other 64 scenarios, considering if the actual causes
found by the code are among the potential causes identified by the BN method. A complete
list of the number of actual causes and causes identified is given for all scenarios in table 5.8.
Calculating that the total number of actual causes is 2787 and that the causes identified by
the method are 2724, the diagnosis correctly identifies 97.73 % of the failures.
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Scenario 3
CQccurrence B7532
Drainage Line 0 Mo Flow
Line 1 0 Mo FLow
Line 2 0 Mo FLow
Recycle Line 1 0 Mo FlLow
Recycle Line 2 1 Flow
Cutflow Line 0 Mo Flow
Component Failui Occurrence Occ. (%)  Posterior Prob. Component Failur Occurrence Occ. (%) Posterior Prob.
1 P0O101 blocked 9234 13.59% 14.0291% 66 CTO110 true 956 1.41% 0.1665%
2 P01 fractured 9234 13.59% 14.2352% 67 PO105 part blocked 955 1.41% 0.0613%
3 POM02 blocked 9234 13.59% 14.2352% 68 PO10B part blocked 955 1.41% 0.0613%
4 POM02 fractured 9234 13.59% 14.2352% 69 PO106 leaking 955 1.41% 0.1661%
5 PO103 fractured 9234 13.59% 14.2352% 70/ PO113 part blocked 955 1.41% 0.0016%
6 PPO110 off 9234 13.59% 13.9219% 71/ PO114 fractured 955 1.41% 0.1668%
7 PO104 fractured 8637 1271% 13.9795% 72/ PO114 leaking 955 1.41% 0.1668%
8 P0115 blocked 1997 2.94% 0.3754% 73 BRFO110 part blocke 955 1.41% 0.0613%
9 PO115 fractured 1997 2.94% 0.3754% 74 POT fractured 952 1.40% 0.1663%
10 PO116 blocked 1997 2.94% 0.3754% 75 PO117 part blocked 952 1.40% 0.1664%
11 PO11E fractured 1997 2.94% 0.3754% 76 PO117 leaking 952 1.40% 0.1663%
12 PO117 blocked 1997 2.94% 0.3754% 77 PSv0110 open 952 1.40% 0.1663%
13 PS%0110 blocked 1997 2.94% 0.3754% 78 PSY0110 part block 952 1.40% 0.1664%
14 PO105 blocked 1650 2.43% 0.2707% 79 P5Y0110 leaking 952 1.40% 0.1664%
15 BFO110 blocked 1638 2.41% 0.2702% 80 PO113 fractured 949 1.40% 0.1665%
16 PO113 blocked 1633 2.40% 0.2729% 81/ PO113 leaking 949 1.40% 0.1665%
17 PO106 blocked 1632 2.40% 0.2702% 82 PO114 part blocked 249 1.40% 0.0008%
18 PO114 blocked 1627 2.40% 0.2723% 83 PO106 fractured 243 1.39% 0.1661%
19 PO104 blocked 1534 2.26% 0.2709% 84 PO115 part blocked 943 1.39% 0.1661%
20 I¥PO110 blocked 1534 2.26% 0.2846% 85 PO115 leaking 243 1.39% 0.1661%
21 CTONMD false 1528 2.25% 0.2844% 86 PO116 part blocked 243 1.39% 0.1661%
22 P0O103 blocked 1412 2.08% 0.2361% 87 PO11E leaking 943 1.39% 0.1661%
23 CTOM30 true 1045 1.54% 0.0019% 88 BPO110 leaking 937 1.38% 0.1661%
24 PO109 blocked 1003 1.48% 0.1695% 89 PO105 fractured 931 1.37% 0.1655%
25 PO110 blocked 982 1.45% 0.1689% 90 PO105 leaking 931 1.37% 0.1655%
26 PO111 blocked 932 1.45% 0.1689% 91 PFO110 on 834 1.23% 0.0728%
27 PO121 blocked 9582 1.45% 0.1675% 92 PPO110 leaking 834 1.23% 0.0728%
28 PO121 fractured 982 1.45% 0.1675% 93 PPO110 fails mecha 834 1.23% 0.0728%
29 P0122 blocked 982 1.45% 0.1675% 94 WPO110 part blocke 834 1.23% 0.1207%
30 PO122 fractured 952 1.45% 0.1675% 95 PO104 part blocked 833 1.23% 0.0612%
31 PO1032 blocked 982 1.45% 0.1675% 96 PO104 leaking 833 1.23% 0.0728%
32 PP0120 on 982 1.45% 0.1672% 97 PO103 leaking 831 1.22% 0.1862%
33 VPO120 blocked 982 1.45% 0.1695% 98 PO103 part blocked 712 1.05% 0.0454%
34 IvPO130 blocked 9582 1.45% 0.1675% 93 PO101 part blocked 705 1.04% 0.0607 %
35 PSY0120 open 982 1.45% 0.1675% 100/ PO101 leaking 705 1.04% 0.0607 %
36 PO109 part blocked 7o 1.44% 0.0023% 101 PO102 part blocked 705 1.04% 0.0607 %
37 WPO130 leaking Ers 1.44% 0.1675% 102 PO102 leaking 705 1.04% 0.0607 %
358 PS0120 part blocl a7s 1.44% 0.0000% 103 vPO120 part blocke 47 0.07% 0.0020%
39 PO120 fractured 968 1.42% 0.1672% 104 %PO130 open 3 0.05% 0.0013%
40 PO120 part blocked 968 1.42% 0.0000% 105 WPO130 part blocke 35 0.05% 0.0013%
A1 PO120 leaking 968 1.42% 0.1672% 106 vPO120 open 21 0.03% 0.0000%
42 CTOM20 falseternp 968 1.42% 0.0002% 107 | CTOM20 false 21 0.03% 0.1686%
43 CTOM30 false 960 1.42% 0.1669% 108 WPO120 leaking 7 0.01% 0.0025%
44 PO110 fractured 9561 1.41% 0.1672% 109 PO107 blocked 0 0.00% 0.0000%
45 PO110 part blocked 9561 1.41% 0.0023% 110/ PO107 fractured 1} 0.00% 0.0000%
46 PO110 leaking 961 1.41% 0.1669% 111 PO107 part blocked 0 0.00% 0.0000%
47 PO111 fractured 961 1.41% 0.1670% 112 PO107 leaking i} 0.00% 0.0000%
43 PO111 part blocked 9561 1.41% 0.0023% 113 PO108 blocked 0 0.00% 0.0000%
49 PO111 leaking 961 1.41% 0.1669% 114 PO108 fractured 1} 0.00% 0.0000%
50 PO112 blocked 961 1.41% 0.1689% 115/ P0108 part blocked 0 0.00% 0.0000%
51 PO112 fractured 9561 1.41% 0.1669% 116/ PO108 leaking 0 0.00% 0.0000%
52 PO112 part blocked 9561 1.41% 0.0023% 117 PO109 fractured 1} 0.00% 0.0000%
53 PO112 leaking 961 1.41% 0.1669% 118 PO109 leaking 0 0.00% 0.0000%
54 P0121 part blocked 961 1.41% 0.1666% 119/P0118 blocked i} 0.00% 0.0000%
55 PO121 leaking 9561 1.41% 0.1666% 120/ P0118 fractured 0 0.00% 0.0000%
56 PO122 part blocked 961 1.41% 0.1666% 121/P0118 part blocked 1} 0.00% 0.0000%
57 PO122 leaking 961 1.41% 0.1666% 122/P0118 leaking 0 0.00% 0.0000%
58 P0123 fractured 9561 1.41% 0.1666% 123 P0119 blocked 0 0.00% 0.0000%
59 PO123 part blocked 9561 1.41% 0.1666% 124 PO119 fractured 1} 0.00% 0.0000%
B0 PO123 leaking 961 1.41% 0.1666% 125/ P0119 part blocked 0 0.00% 0.0000%
61 BPO120 blocked 961 1.41% 0.1672% 126 P0119 leaking i} 0.00% 0.0000%
62 BPO120 part blocke 9561 1.41% 0.0025% 127 P0120 blocked 0 0.00% 0.0000%
63 BPO120 leaking 961 1.41% 0.1669% 128 PPO120 off 1} 0.00% 0.0000%
B4 IvPO110 leaking 958 1.41% 0.1665% 129 PPO120 leaking 0 0.00% 0.0000%
65 IvPO110 open 957 1.41% 0.1663% 130 PPO120 fails mecha i} 0.00% 0.0000%
131 PS%0120 blocked 1} 0.00% 0.0000%
132 PEY0120 leaking 1} 0.00% 0.0000%

Table 5.7 — Compared results of simulation (occurrence of component failures) and BN method (posterior probability)
for scenario 3.
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Murmber of Number of Murmber of Number of Murber of Mumber of
Scenario Actual Causes Scenario Actual Causes Scenario | Actual Causes
Causes Identified Causes |ldentified Causes |dentified
3 2 22 245 24 24 487 29 29
5 3a 7 248 40 39 4580 45 44
9 il l 251 23 23 4593 23 2a
12 9 9 254 1 1 4595 16 16
15 24 24 257 265 25 4595 il kil
18 20 20 250 22 22 a02 a7 27
21 17 17 263 19 19 a05 24 24
24 20 19 2RR 22 M s08 e 26
a7 18 18 255 20 20 a11 25 25
28 1Al 1 270 13 13 512 18 18
29 10 10 el 12 12 a13 17 17
36 a a 78 10 10 520 15 15
37 9 9 erc] 11 11 521 16 16
34 9 9 280 1 1 a2 16 16
45 3 2a 288 32 an 530 En 35
47 10 10 285 12 12 31 17 17
G2 10 10 304 12 12 545 17 17
53 12 12 305 14 14 a47 19 19
53 15 15 07 17 17 A48 22 22
71 10 10 3 12 12 555 17 17
an 2a 24 32 3n 26 a64 35 k)l
a1 15 15 323 17 17 =) 22 22
a2 12 12 324 14 14 i 19 19
83 16 16 325 18 18 a67 23 23
a4 3 3 32 A A st 10 10
85 Expected 327 2 2 ] 7 7
a5 4 4 328 G G 570 1 1
a7 15 15 324 17 17 a71 22 22
a3 14 14 330 16 16 a72 al il
89 il l In 23 23 a73 23 2a
108 7 7 350 9 9 a2 14 14
109 2 2 351 4 4 a53 9 9
110 5 5 352 a a 584 13 13
135 22 22 77 24 24 G159 29 29
136 1 1 ars 3 3 F20 a a
137 a 1 ] 10 3 B2 15 a
142 4 4 384 5 5 E25 11 11
143 G 3 385 a ] 527 13 10
162 32 32 404 34 34 BB 39 39
164 22 22 405 24 24 F45 29 29
165 14 14 407 16 16 545 21 21
167 9 9 408 1 1 Fa1 16 16
168 25 25 410 7 7 =2y 32 32
170 27 27 412 29 29 G54 34 34
180 a a 422 7 7 [siat] 12 12
182 17 17 424 19 19 S5t 24 24
183 3 3 425 7 7 BE7 12 12
185 G G 427 a a G55 13 13
186 18 18 428 20 20 E70 25 25
183 7 7 430 9 9 E72 14 14
183 15 15 431 17 17 673 22 22
140 18 18 432 20 20 G74 25 25
191 1 11 433 13 13 B75 18 18
207 4 4 445 5 5 == 11 11
208 a a 450 10 10 G2 15 15
208 11 a 451 13 10 =] 18 15
215 16 13 458 18 15 700 23 20
218 1Al 1 450 13 13 702 18 18
223 13 13 455 15 15 o7 20 20
224 ] 7 4EE 11 ] 708 16 14
234 4 4 476 G G 718 1 1
235 13 13 477 15 15 718 20 20
235 7 7 478 9 9 720 14 14
21 9 9 483 11 11 725 16 16
242 1Al 1 484 13 13 726 18 18

Table 5.8 — Summary of results comparison between the simulation and the diagnosis.
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Among the scenarios there is one in particular where the BN method fails to correctly iden-
tify the causes of the fault, it is scenario 137. This can give a typical example of why the
BN diagnosis can go wrong. Scenario 137 occurs when the sensor patterns are as follows
(ternary number 012002):

Drainage line: No Flow
Line L1: Flow

Line L2: Partial Flow
Recycle line L1: No Flow
Recycle line L2: No Flow
Outflow line: Partial Flow.

The simulation generates this scenario with the component failure occurrences shown in table
5.9.

Scenario Occurrence Drainage Line Line L1 Line L2 Recycle Line 1 Recycle Line 2 Outflow Line
137 25 0 1 2 0 1] 2

100.00%
28.00%
25.00%
20.00%
16.00%
16.00%

8.00%
8.00%

I%PO120 part blocked 2
PO105 fractured

PO10E fractured

PO113 leaking

PO111 fractured

PO112 fractured

PO105 leaking

5
7
7
3
4
4
2
PO10E leaking 2

Table 5.9 — Results from the simulation code for scenario 137.

The table shows only the actual causes of the scenario. From the sensor readings, it seems
that line L1 is working as flow is correctly flowing through the line and no flow is sensed
on the recycle line. Partial flow occurs on the outflow line. There is also an unexpected
behaviour in the line L2 as no flow is expected while partial flow is measured. The scenario
occurs when there is a partial blockage in the valve in line L2, IVP0120. The cause of partial
flow in the outflow line is either due to line L1 or line L2. If the fault is in line L1, there is a
fracture in pipe P0105 or P0106 and partial low comes from line L2. If, instead, there is a
fracture in line L2, in either PO111 or P0112, there should be a leak in either P0105, P0O106
or P0113 that is causing partial flow in the outflow line. In the BN, the cause of the partial
flow in the outflow line is justified with the partial flow through line L.2. Therefore, only the
failure in the valve IVP0120 is detected. This error comes from the fact that fractures in
the pipes are failure modes that are difficult to detect. The BN could be modified ad hoc to
be able to understand this particular scenario, however it is difficult to obtain a diagnostic

method applied to a system such as the fuel rig that is 100 % accurate.
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5.7 Discussions and Conclusions

The diagnostic method developed using BNs has been applied to the fuel rig system. A
validation achieved by comparing the results with a simulation program in C++4 shows that
considering the scenarios generated by up to 3 failures the diagnosis is able to find 97.73 %
of the failures in the main tank sub-system. The simulation was carried out for a particular
phase of the active operating mode of the main tank, but this can be extended to the whole
system because of the similarities of the sub-systems and phases. The method has been
modified and adapted with respect to that reported in the previous chapter. The division
into sub-systems allows the networks to be kept relatively small even if the system is much
larger than the water tank. The BN also allows the use of similar sub-systems or redundant
parts in order to use the same nodes without the need of repeating entire networks that
are logically equivalent. The BNs are also diversified depending on the phase the system is
in, that is, depending on the sensor behaviour that is expected. This helps in reducing the

complexity of the BNs.

The application to the fuel rig system has proved that using BNs with this diagnostic ap-
proach is effective. Calculating the posterior probability and evaluating the scenarios is
simpler than calculating the prime implicants and the importance measures in FTA. More-
over, using BN is possible to produce a list of hidden failures for a scenario. These are the
component failures that show the same symptoms if they are failing or working for a partic-

ular operating mode. For example, the blockage in a valve when this is supposed to be closed.

The main disadvantage of the method is the fact that the sensors are assumed to be 100%
reliable. This can represent a restrictive assumption. An approach that could be taken to
adjust the method including sensor failures is to modify the CPTs of the nodes represent-
ing the sensor patterns making them probabilistic rather than deterministic. If the failure
probability of a sensor is known, this could be treated as a component and the probability
of failure is introduced in the pattern nodes. Introducing sensor failures would make the
diagnosis less accurate as a deviating pattern could be caused by a fault in the system or a
fault in the sensor. However, when an impossible scenario is observed, then a failure in one
of the sensors must have occurred and the BN could be used to determine which sensor is

most likely to have failed.
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5.8 Summary

The diagnostic method has been applied to the fuel rig system. This has required some

adaptations and modifications in order to reduce the complexity of the networks.

The diagnostic procedure is applied in two stages. First a BN representing the system is
used to detect which of the sub-systems is potentially faulty and then the BN modelling the

sub-systems are evaluated to identify the component failures that have caused the fault.

The evaluation of a network consists of introducing the evidence provided by the sensors and
calculating the posterior probability of the nodes. Once the BNs are developed and created,

this is a fast procedure compared with the calculation of the prime implicants in FTA.

A simulation program in C++ is used to generate the faulty scenarios of the systems and
the failures that cause them. Comparing the results from the simulation enables the method

to be validated and the diagnosis has proved to be accurate.

161



Chapter 6

Summary, Conclusions and Further
Work

6.1 Introduction

In this thesis a fault diagnostic method has been developed using BNs. The method uses FT's
for the purpose of building the networks. In this way, the advantages of both techniques
are employed: systematic construction with FTs and the ability to introduce evidence in
the evaluation with BNs. The aim of the research was to establish if BNs could be used
effectively for system diagnostics using a model-based approach. BNs have shown with this
application they are ideal in the field of fault diagnostics when used with a model-based
approach. The diagnostics methodology was applied to two systems, the water tank system
and the fuel rig system, and the results were validated with two simulation codes in C++.
This chapter summarises the achievements of the research and suggests further work that

can be continued in the same direction.

6.2 Summary

6.2.1 Achievements

The main achievement of the research was the creation of a general approach that uses
BNs for a model-based fault diagnostic system. Literature on BNs is dominated by case-
based diagnostic reasoning, where the probabilities of the networks are obtained by training
them using historical data known about previous faults. The method developed gives a gen-
eral, straightforward and structured way to build a class of BNs and to evaluate them. The

aim of the strategy is detecting when the system is faulty and diagnosing the cause or causes.
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The diagnostic system is built in two stages: the modelling and preparation stage and the
FTs and BNs development. The modelling and preparation stage and the development of
the F'T's follows the approach taken from a previously developed diagnostic system that uses
FTA. FTs are then converted into BNs and these are manipulated to form a BN that models
the entire process. When the observed sensor readings deviate from those expected, the BN
posterior probability is calculated and a list of potential causes is obtained. Introducing
BNs has several advantages with respect to the F'T's that can be grouped in two aspects: the
graphical representation and the probability evaluation. The graphical representation of the
BNs is more concise because repeated events can be avoided and because BNs allow more
modelling solutions such as the introduction of nodes with several states that represent the
system components. Regarding the evaluation, that is the calculation of the causes of a fault,
with the FTA approach, a different F'T is built for every faulty scenario of the system. The
prime implicants are then calculated for this FTs and finally the importance measured are
considered. Using BNs enables to evaluate the same model for every scenario of the system
by simply introducing evidence on the nodes that represent the symptoms. The posterior
probability gives a measure of the likelihood for a component failure to be the cause of a

fault. The calculation of the updated probability is almost instant with the software used.

6.2.2 Characteristics of the method

One of the aims of the research was to be able to model dynamic behaviours in the system.
This was done introducing sensor patterns in the analysis and creating nodes in the BNs
whose states represent the sensor patterns. The patterns symbolises dynamic trends that
are observable in the sensors, therefore they show how a monitored variable changes over
time. This is an important dynamic aspect in the system because considering static sen-

sor readings can give a limitation to the number of scenarios and causes that can be analysed.

Another relevant aspect of the diagnosis is the fact that is a general approach. In principle,
any system for which F'Ts can be built can be diagnosed using this strategy. The way the
component failures cause a system fault must be understood and the failure probabilities of

the components must be available.

6.2.3 The water tank system

The diagnostic method is applied to the water tank system with two approaches. First, the
system is studied in steady state and the FTs and BNs are built without considering the

dynamics of the system. This approach has shown to provide accurate results however it
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was unable to take into account all faulty scenarios. For this reason, the method has been
improved introducing dynamic sensor patterns. The scale of the problem was relatively small

and a more complex system had to be studied to prove the method applicability.

6.2.4 The fuel rig system

The fuel rig system is considerably larger than the water tank system, in terms of number of
components and failure modes considered. The method was improved considering a division
into sub-systems and modifying it introducing a two stage “modularization” strategy. In the
first stage, a BN is evaluated to understand which sub-system contains the cause of a fault
while in the second stage, the faulty sub-system or sub-systems are considered one at the

time to identify the component failures that represent potential causes.

6.2.5 Validation of the method

In order to validate the results given by the diagnostic system, one should know all the ways
a system can fail, that is, the scenarios, and, for each of them, the component failures that
cause them. In this way, for each scenario, one can check if the method correctly identifies
the actual causes. For both the water tank system and the fuel rig system, a simulation code
in C++ was implemented. These codes produce the system scenarios when up to 3 failures
occur and they also create the list of potential causes for each scenario. Comparing the
results from the simulation and the ones from the diagnostic methods allows the accuracy

of the method to be assessed.

6.3 Conclusions

e The method gives a general and structured approach for building BNs for the fault
diagnostics of a system. It is applicable to a wide range of systems: the ones for which
the component failure probabilities are known and the sensor trends and the causality of
the system failure modes are understood. The method is less suitable for those systems
whose systematic knowledge is poor and for which, instead, data are available from
previous fault situations. The networks are obtained from the conversion of FTs with
some modifications such as the introduction of a structure logic that models the sensor
readings of the system and that allows all scenarios to be studied with the same BNs.

Therefore, the introduction of BNs has simplified the FTA diagnostic approach.

e The diagnostic has proved to give accurate results when applied to a simple water tank
system. The BN analysis is able to tell when a fault occurs on the system and it produces

a ranked list of component failures that are potential causes for the system fault. Once
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the BNs are built for a system, the diagnosis can be performed almost instantly as the

posterior probability calculations are fast due to the deterministic nature of the BNs.

e The method is able to handle dynamic effects on the system as the patterns of the

sensor readings are considered in the BN structure.

e The results of the method are validated with a simulation program that automatically
generates the failures in the system and produces the symptom outputs. Comparing
the results produced by the simulation and by the BN allow the accuracy of the fault

diagnostics to be assessed.

e The fuel rig system is finally used to test the application of the method for larger and
more complex systems. A simulation programme again validates the results for this

application.

e To refer back to the parameters that a diagnostic system should have, mentioned in
section 1.2 of chapter 1, the method developed has an efficient construction, as it is
structured, it has an optimal cost/benefit ratio as it is software based, it is not difficult
to maintain and it gives a quick response when sensors evidence is introduced. The
strategy is also able to detect failures that have not been encountered before, as it
does not rely on previous experience. Once the BN for the system is built, however,
changes in the system, in the environmental conditions or in the process variables may
be difficult to incorporate in an existing network, therefore the method may not be

easily adaptable to substantial changes.

6.4 Further Work

The research leaves some points that could be further investigated. One regards the system
sensors in two aspects: their unreliability and their location. Other aspects concern the ap-
plication of the method, which could to be extended to an entire system such as an aircraft

or to systems of different nature from the ones considered.

e In the approach taken in this thesis it is assumed that the sensors are perfectly reliable.
However, sensors are components and, as such, they may fail in a number of different
failure modes. In order to introduce unreliable sensors, the CPTs of the nodes repre-
senting the sensors could be modified substituting 1s with the failure probability of the
sensor. In this way, the logic of the BN would represent the event “the component fail-
ures cause the sensor to show this patterns unless with a certain probability the sensor

has failed” rather than “if certain component failures occur then, with probability 1,
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the sensor shows this behaviour”. In the thesis this modification was not included in

order to assess the results from the method with the simulation codes.

The other aspect that regards the sensors is their location when considering their whole
life costs. Sensors are an important part of any system, the more the sensors the more
accurate a diagnosis will be. However they are also generally expensive and their number
is kept to an optimal minimum. Some more work could be done to understand, given
a limited number of sensors available, which is their optimal localisation on the system

or which number of sensors is the best considering a cost/effect ratio.

Further work could be done applying the diagnostic method developed for the fuel rig
on the real system in real time. Some failures can be induced in the laboratory rig
such as blockages in the pipe sections, pump failures or pipe leakage. A code could
be developed to directly accept the sensor information from the system for a period of
time after a failure has been induced and run automatically the BN with the sensor
evidence. The code should also include a pattern recognition routine that converts the

observed sensor trends into an identified pattern.

The method has shown to be applicable to systems of the size of the fuel rig. However
the modularisation has shown that by dividing a system in sub-systems, the analysis
can be carried out in two stages. This approach could also be taken on very large
systems, such as aircrafts, iterating the division until a sub-system of a manageable size
is reached (for example, considering 6 sensors as in the case of the sub-systems of the

fuel rig). This could be proved on a specific application.

The BN strategy was applied on two systems that are of different size but they are
similar in the component types and structure. In order to prove its adaptability and

generality, a study could be carried out on systems of different nature and scope.
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Appendix A

Bayesian Networks for the Water

tank system

In this appendix the BNs for section 2, 3 and 4 of the water tank system are shown. Section

1 BN is represented in figure 4.9 of chapter 4.

A.1 Bayesian Network for Section 2

Section 2 of the water tank system comprehends two FT's for the event Flow and Low Flow.
The two output nodes in figure A.1 represent the top events, while the input nodes at the

top are the components of the section.

P3 is not Blocked
and not Fractured

Water can Pass through
Pipes P3 and P4

P4 is not
Blocked

Pipe P3 is blocked or

V2is not Closed Fractured or P4 is Blocked
Flow in Section 2 Low Flow in Section 2

Figure A.1 — BN for section 2 of the water tank system.
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Appendix A

A.2 Bayesian Network for Section 3

The BN for section 3 is represented in figure A.2. This is constituted by two BNs modelling
High Flow and Low Flow in the section.

s Y L D | C vi ) Cec2 Y =2 )

Controller C2
keeps V2 closed

\/3 Fails Closed and Valve V2 does not

l fail Closed

Failure to Open
Valve V3

Signal from Sensor S2
indicates a Low level
in the tank

ontroller C2 Fails Hig
and V3 does not fail
Closed

S2 indicates High
Tank Level and V3
does not fail Closed

P5 is Blocked or
Fractured

P5 is Not
Blocked or
Fractured

Controller C2 keeps
V3 Open

V3 is Spuriously Open
Failure causing
Failure Causing No Flow
Flow

High Flow
in Section 3 Low Flow
in Section 3

Figure A.2 — BN for section 3 of the water tank system.

V3 fails Open
and NOT Closed

P6 is Not
Blocked

Water can Pass Through
Pipes P5 and P6

Water is Unable to Pass
Through Pipes P5 and P6

A.3 Bayesian Network for Section 4

The BN for the tray/tank section is very simple as the section is its failing state when there

is water in the overspill tray that is caused by a rupture or a leak in the tank.

Tank Leaking Tank Rupturad

Water in the Overspill Tray

Figure A.3 — BN for section 4 of the water tank system.
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Appendix B

Bayesian Networks for the Fuel Rig

system

In this appendix the BNs for the main tank sub-systems are shown for phase 4 of the AC-
TIVE operating mode. The BNs for the drainage line and for line L1 are represented in
figures 5.7 and 5.8 of chapter 5. In the following, the BNs for line L2, for the recycle lines

and for the outflow line are displayed.

The BN for line L2 is shown in figure B.1. As No flow is expected in line L2 when the system
is in phase 4, the unexpected readings are Flow and Partial Flow. The BN comprehends two
subnetworks for the two unexpected behaviours. These are displayed in other two figures to
be better readable, figure B.2 and B.3.

The BN for the recycle line L1 is shown in figure B.4. In phase 4, No Flow is expected
through the sensor in the recycle line L1, therefore the unexpected patterns are Flow and

Partial Flow, these are represented in figure B.5 and B.6 respectively.

Recycle line L2 BN is represented in figure B.7. As the expected behaviour through its
sensor is Flow, the BN includes the FTs whose top events are No Flow and Partial Flow.

The separate BNs for these events are represents in figures B.8 and B.9.

The sensor located in the outflow line should detect full flow through when the system is in
phase 4. Therefore, the unexpected patterns for the outflow line are Partial Flow and No
Flow. The BN in figure B.10 shows the entire BN while figures B.11 and B.12 represent the

two subnetworks.
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2

B.1 Bayesian Networks for Line

— o:cn \Idian_ = ﬂ:cu\n. NEE M :su M, mosn '

Figure B.1 — BN for line L2 section of the main tank for phase 4.
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Figure B.2 — BN for Flow in line L1 section of the main tank for phase 4.
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Figure B.3 — BN for Partial Flow in line L1 section of the main tank for phase 4.
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B.2 Bayesian Networks for the Recycle line L1

Figure B.4 — BN for recycle line L1 section of the main tank for phase 4.
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Figure B.5 — BN for Flow in the recycle line L1 section of the main tank for phase 4.
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Figure B.6 — BN for Partial Flow in the recycle line L1 section of the main tank for phase 4.
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B.3 Bayesian Networks for the Recycle line L2
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Figure B.7 — BN for recycle line L2 section of the main tank for phase 4.
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Figure B.8 — BN for No Flow in the recycle line L2 section of the main tank for phase 4.
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B.4 Bayesian Networks for the Outflow line
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Figure B.10 — BN for line L2 section of the main tank for phase 4.
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Figure B.11 — BN for No Flow in the outflow line section of the main tank for phase 4.
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Figure B.12 — BN for Partial Flow in the outflow line section of the main tank for phase 4.
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Fault Trees and Bayesian Networks

Softwares

In this appendix the softwares used for the thesis work are presented and briefly described.
Fault Trees have been built and evaluated using Fault Tree Plus (or FaultTree+), while two
softwares were used for Bayesian Networks: MSBNz and Hugin Researcher. The following

sections explain the features and characteristics of each of them.

C.1 Fault Tree Plus

Fault Tree Plus is a widely used software for the construction and evaluation of FTs as well
as Event Tree and for Markov analysis. In the thesis work, it has been used to produce the
graphical representation of the FTs and to calculate the unreliability of the top events as

well as the importance measures of the components.

C.2 MSBNx

MSBNXx is a free application for the creation and evaluation of BNs [50]. It was used in the
initial phases of the research. The figures and the simple calculations of the example in the
first two chapter are performed with this software. Among the free softwares available, MS-
BNs has been found to be straightforward in the graphical interface and in the probabilities
features. However, it has many limitations in particular in terms of the size of the networks
that can be created. For this reason, Hugin was chosen for the development of the BNs of

the water tank system and the fuel rig system.
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C.3 Hugin Researcher

Hugin produces several commercial softwares for general decision support tools using statis-
tical models [51]. Hugin Researcher aims at academics and it allows advanced applications
of BNs. The graphical interface permits the implementation of Object Oriented Bayesian
Networks, this was particularly useful for the thesis as it enables to handle large size BNs.

The software also incorporates automated learning from databases.
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