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RESPONSE OF THIN-WALLED CYLINDERS TO

AERODYNAMIC EXCITATION

SUMMARY
Non-linear vibrations of thin-walled shells under

aerodynamic exoiﬁatioh are investigated using Flugge's thin

hell theory, modlfled to include the effects- of 1arge deform*..
‘ atlons. The theory is applicable to any type of boundary
condltlons and various types of normal loadlng. The formula-
tion includes mean or 1n1t1al deformatlons of the medlan surface.
A-probsbll1st;c—determ1nlstic analysis of-fat;gue, representative
of wiod effeoﬁs on earth-bo;ne stfuctures, is proposed baSed :

on the derived stresses and:the Palmgren-Miner rule. Extentions
of. the non- llnear theory to lnclude structural damplng and to
lanalyse 51ngle mode . static collapse of thin shells ‘are also
outllned.- | | |

" In the random vibration analysis; based on energy methods,

the multi-mode random response of thin shells undef-wind loeding
are studied. A fixed—-free shell oonfiguration is investigated in
detail, though. the formulatlon is applicable to any. type of
‘bOUndary condltlons.

| Osc111atory pressures roond'rigid-cylihdefs'ahd flexible
shells are measured in the.tests conducted in the 43" x 30v 1ow
~speed wind tunnel, Three low pressure transducers—DISA type.
51F32-are employed for the purpose. - The tests cover‘the range

5 to 2.85 x 10°.

of Reynolds numbers of 0.4 x 10 _ _
‘The effect of shell flexibility on the Shedding.of vortices
is studied by‘oomparison with the results of the rigid cylinder .

‘pressure measurements;‘. Also, the 3-D effects.oh the oscillatory"
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pressures are identifigd._

The response of two. thin shells uﬁder wind excitation
are studiéd experimentélly, ﬁsiné‘the results from sfrain
gaugé records. The oscillatory pressures and tﬁe response
are analysed for the rms valﬁes by using analog methods.
Spgétral analysis of‘these signals are carried out oﬁ the
Fouriér Analyser HP5451;A which employs digital analysis
tecbniques. Measured fesponse spectra‘are compared with

those computed from the random vibratién'theory developed

here.
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NOTATION

Fourier pressure coefficients
coefficienﬁs in the dynamic analysis
displacement coefficientsr

viscous damping coefficient,

beam characteristic constant
characteristic velocity

pressufe coefficient

diameter, drag force

fatigue damage

Young's modulus

expected value of

force

coefficients in the random analysis
freguency

Strouhal frequency

equivalent non-dimensional complex
displacement coefficient
structural damping coefficient
thickness of the shell

transfer function

V1

integrals (see Appendix IV)

Weibull index, spring constants in

Duffing's equation

length

l1ift force

slope of S5-N curve, axial mode number
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.M. - ' mass per unit length of the shell
M etc. . moment resultants

n !' o circumferential mode number
N : ~ fatigue life in cycles

.Nx etc. | _ force resultants

p («) probability of occurance

(probability density)

p.(t) pressure
: P (w) o _ . FT of pressure
p ‘ , | force
P (.) | '~ probability of exceedence

dynamic pressure

Q - shear force

R ' return period

Re : Reynolds number

le _ | equivélent Fourier pressure coefficients
Rxx(z') etc. correlations

st ' ~ Strouhal number

t time variable

T N total time (sampling period),

kinetic energy

U, vy W displacements
o ~ strain energy

Vl | ?olume, velocity
W | work potential

W (@) | FT of w

Xy Yy 2y © | | _éhell_coordinates
«

index in ground wind distribution

function
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'p ' _ nqn—dimensional parameter h2/12a2
'g(f) | ~ coherence function
S virtual increment, logarithmic

decrement, Kronecker delta, determinant

A - increment, non-dimensional frequency
parameter S’az w? (1—-1}2 J/E
e etc. - strains
XX _
© angular position, coordinate, inverse

slope of S~N curve
3 beam characteristic constant

(Equation 3.8)

<

Polsson. ratio
non-dimensional axial separation
disfance |
continuous product
: hass dehsity of shell
mass density of air
o, . etc, stresses
standard deviation
y O3 'see Appendix XIIL
period, time delay
14 beam functions
mean sqguare value
circularlfrequency.

w
o ' ‘ total potential

Additional Notation:
coordinate suffixes to displacements

denote derivatives
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- 2u - 2
(e.qg. U =Gy Vg < )

suffix T denotes total quantities
suffik 5 denotes gtatic component
suffix-D denotes dynamic part
superscripf («) denotes time_derivative
(g.g. V] =-€%%)

superscript (*) stands for rms value,
complex conjugate

éuperscrip£ (') denote derivative with
respect to X, on coordinates denotes
different locatiocn

superscript (-} denotes mean values

e
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1.  INTRODUCTION.
1.3 Summary.

A comprehensive review of the literature in the thin
shell tﬁeory is presented including a detailed discussion
of non-linear effects. Importance ofrground wind distri-
bution for loading actions on full scale structures is
briefly described. A review is also given of the measure-
ment énd anélysis.techniques of oscillatory wind pressure'
forces (lift and drag) on circular chinders; The statis-~
tical methods available for fhe response of thin cylindrical
shells to aerodynamic éxcitation are also considered. The
statement of the present pfoblem and methods of analysis are
- then briefly described.

1.2 - General.

Cvlindrical structures form one of‘the most basic
types of construction in the field of civil engineering and
in aerospace engineering practice. With current trends in
design and fabrication these structures increasingly tend to
be slender and thin and as such are amenable to 1arge ampli-
tude response to fluctuating forces and consequent oscilla-.
tory and divergent instabilities. Circular cylinders in
particular experience fluctuéting forces wifh a narrow bkand
.of frequencies in a'uﬁiform wind stream. This is a consé-
quence of the phenomenon of vortex shedding which may be
either stable or unstable depending upon the flow Reynolds
numbéer. In the 1atter case and in the presence of free
.streamrturbulence the freduency band width increases. Thin
c?lindrical shell type st?uctures such as chimneys and

rockets on their launch pads in the ground shear flow of the

"f'i"




earth's boundary layer are thﬁs sﬁbject to steady fluctuat-
ing forces where a definite harmonic is predominant or to a
random pressure field with a number §f harmonicé, and both
present é complicated dynamic responselﬁroblem. This is
particularly important in the estimation of fatigue life..
It is then necessary (i) to develop a suitable shell theory
to evaluate the stress 1evels accurately, which 1mplles the
solution of the determlnlstlc vibration problem to obtaln
the transter function of the structuralsystem,(ii) to assess
and adequately destribe fhe nafure of shear flqw in earth's
boundary layer, (iii) to measure the aerodynamic forces and
moments on the structure in question and (iv) to obtainh the
reéponse of the structure to the measured exaitation inputs.
A 1arge.number-of published works are cited in the

’ L
literature covering one or more aspects of the problem out-

(1) (2)

lined. Marris and Johns presented reviews of wind
induced vibrations and their.importance'in structural design.
In the following sections the present state of the art in the
field is comprehensively reviewed.

1.3 Choice of the Thin Shell Theory.

1.3.1 Basic Thin Shell Theory.

| A large number of different theories have been proposed
by various investigators all purporting to describe the mo-
tion of a thin shell. The differences in these theories
result from differences in the simplifying assumpﬁions made .
and_the exact stage in the derivation at which the assumptions
are ufilized. Rayleigh(3) evaluated the displacements of. a

point on the sheli_surface from an energy consideration

assuming that the middle surface of the shell is inextensible.

- 2 e



(4}

This was shown by Love to be inaccurate near the bound-

aries.

In the well known First Approximétion theory,‘Love(4)
obtained all deformations of the shell in terms of mid-~plane
deformations and the physical assumptiohs (see Appendix I)
ﬁnder which these are deriﬁed have long been accepted for
sufficiently thin shelis. |

Love's(4)

Second Approximation theory assumes that the
_exténtional strains are small compared with the flexural
strains énd that the normal displacements are hot'completeiy
independént of the normal coordinate. Later, Timoshenko ®)
preéenfed a detailed shell theory which is consistent with

(6)

‘the First’App:oximation theory. Basset pointed out the

in;onsisteﬁcies in the First Approximation theory and Vlasov
(7) also pointed out that the above theories contradict the
principie of conser#ation of enérgy and do not satiéfy
Betti's reciprocity condition.

- Starting from three dimensional elasticity equations,
several author§8’9’1o) deduced shell theories retaining terms
fo various degrees of accuracy but these were later found to
5@ of little advantage.. Flugge‘s(ii) theory of thin shells
retains terms of degree higher than those in Timoshenko
theory, yet it is computationally tractable and satisfies
“the reciprocity condition. This theorx has since been an
accepted standard to which other theories are referred to

(12) obtained by physical arguments

for accuruacy. Donnell
equations which were uncoupled in the three displacement co-
 ordinates and hence.simple to use but are limited in accuracy.

. 3



Free vibrations of cylindrical shells also were in-

(13)
(14).

considéring the membrane stresses
(15}

vestlgated by Raylelgh

only. Baron and Blelch and Junger and Rosato

-eccounted for bending stresses in addition- to the membrane

(16) (17)

stresses. Lin and Morgan and Hermann and . hlrsky

included rotatory inertias and shear deformations in their

Yu(iB}

analyses. performed a similar analysis using

Donnell's theory. It was concluded thatethe effect of
shear deformations and rotatory inertia was to reduce the

propagation velocities and to IQWer the natural frequencies;

in an analysis based on a variational
method, considered the nonaxisymmetric motion of shells and

also included.rotatory inertias. Hermann and ArmenakasczO)

- developed nonaxisymmetric ferced motion of cylindrical

shells with initial stresses which forms a more realistic.

(213 analysed this problem according

(22)

approximatien. Reismann
folFlugge's theory. ‘Medige has solved essentially the
equations‘of Reference (20) Without-inifial stresses and has
applied them te‘the cese of blast loading. |
ReCently;_Leissa(ZB) has presented an extensive com-
pilation of published literafure on the vibrations of shells
W1th an appralsal of various theorles concerning compllcatlng
effects such as large deformatlcns, stiffeners etc. Sanders
(24) derived an improved form of Love's first Approﬁimatioh
theory in which all strains vanish for rigid body'mOtions;
This wasachieved by cohsidering the equilibrium equetiens and

the,principle of virtual work in the definition of the strain

displacement relations.




(11)

' In the present invéstigation, Flugge's linear
theory is modified to include geometric non-linearities
arising due to large deformations and the derivations are
carried'out‘ab_initio.

S 1.3.2 Large Deformation Considerations.

When the deformations of the shell are large compared
to the thickness of the shell, the higher order terms in
the strain displacement relations are no longer negligible.
Considerable disagreement in the literature éxists as to
the non-linear behavioﬁr of the sheli and whether it is
hardening or softening due to such geometric non-linearities
and also as to the effect of boundary conditions in such a

case.. Reissner(ZS)

in his pioneering work, reported that
the non-linearity may be either sof tening or ‘hardening
depending on the number of circumferential waves in the mode
shape. The analysis was based on Donnell's theory and the
assumed modes were sinusoidal in both axial and circumfer-
ential directions but not necessarily in time. Chu's(26)
investigétions indicated that the non-linearity is of the

(27) further confirmed Chu's results

hardening type. Nowinski
but his altempt to satisfy the compatibility condition

resulted in satisfaction of a different set of boundary

conditions. Cummings(28)‘obtained a similar hardening be-
haviour.
Evensen(zg) and Olson(BO) observed through experiments

that the non-linearity was softening. The results of

(31) (32)

Evensen indicated that for

and Evensen and Fulton
certain geometries and certain ratios of axial wave number

to circumferential wave number the non-linearity is hardening

—5—




~and for othérs it is softening. These studies were based on
Donnell's theory and for simply sﬁpported‘boundary conditions
butlthe_end moments were ﬁon—zero because of the non-linear
termé. |

(33) so1ved the case with

Matsuzaki and Kobavashi
clamped ends and substantiated by experiments that the non-
" linearity is softening. It is interesting to note that

(29) (30) experiments were also on

Evensen's and Olson's
clamped shells.
Some results in Reference (32) and more recently,

(34) indicated that the shell behaves

those of Leissa and Kadi
like a soft spring initially and as the amplitude is further
increased, it behaves like a hard spring. Mayers and Wrenn

(35) (24) onciluded that

using the "exact" theory of Sanders
the free non~linear vibration is nonperiodic and of the hard-
ening type. Some results of the present investiéation

reported in Reference (36) indicate that the non-linearity is
hardening as applied to a clamped - free thin circular-cylinu

drical shell.

1.4 Ground Wind Distributicn.

Ground-fixed sﬁructures are immeréed in the shear flow '
of earth's boundary layer. An assessment of the wind loads
on them could only be obtained by measurements over.long
periods of time. Extensive data and literature are available
on the subject. The basic wind spéed records are maintained
by the Meteorological Offices. ﬁoweveri cdmplications in the
data analysis arise due to statiétical uncertainty in the
~distribution. An excellent account of wind data has been
given.in Reference‘(37) and of measurement techniques in

Reference (38). Shellérd(Bg)
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and Davenport(40) have discussed




the methods of interpretation of wind records as applied to
structural.design._ References'(41, 42, 43 and 44) have coﬁ—
sidér%d the variation of wind speeds with ﬁ?ght and averaging
time.; Methods of simulation of shear flow of earth's boundary
layer in experimental investigationsrhave béen outlined by

(45). Design codes based on gust speeds of

Cermak and Arya
wind with a fifty year return period have been laid down in
Reference (46). A comparison of various codes of practice is

(47? and Sachs(BB)

discussed by Pierce . A detaililed déscription
of the ground wind distribution based on existing numerical.
data is given elsewhere in the present analysis (see’

Appendix X), However, the experimental investigation in the
present anal&sis is based on "uniform" wind rather than on
simulated shear flow. |

1.5 ~ Flow Field Round a Circular Cylinder.

A large number of researchers have contributed td the
study of flow past circular cylinders, starting from the work

of Strouhal (48}

who showed that the frequency of shedding of
a palilr of complemenﬁary vortices increases ;inearly with flow
velocity over a range of velocities yielding a constant value
of the non-dimensional frequency - the Strouhal number.

(49)

Rayleigh established that the vortex shedding freguency,

and hence the Strouhal number, isalsoa function of Reynolds

number. Tritton(SO), Roshko(51)

and Gould(52) have presented
experimental pressure distribution data covering é large
range of Reynolds numbers. These results have been consoli-
dated in Reference (53). Ekcept for Reference (52} the others
have referred to the time-average pressure distribution on

rigid two dimensional cylinders while (52) has referred to

three dimensional;cylihders and has included root mean square
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pressure measurements in addition to average pressure data.

(54}

Bishop and Hassan measured fluctuating 1ift and

drag forces on a rigid éylinder in the Reynolds number range
of 3,%00 - 11,000 in a water channel. The results indicated
that the fluctuating 1ift forces were an order of magnitude
greatér than the fluctuating drag forces and that the 1lift

.frequency was equal to the frequency of shedding of a pair
of vortices whilst the.drag frequency was twice of that.

(55), Fung(56), Chen(57), Schimdt(ss) and Gerraldcsg)

Keefe
are a few other inVesﬁigators to have studied the fluctu-
ating forces on a rigid cylinder at various Reynolds

humbers. Surry(60)

investigated the influence of the free
stream turbulence on fluctuating pressure distributions
around rigid cylinders at a Reynolds number of approximately
:40,000. Increase in the free stream turbulence resulted in
an increase in the fluctuating 1lift and a decrease in the
fluctuating drag. Also detected was the presence of har-
monics of Strouhal frequency., Gould's(52) tests were at

6 6 in the

high Reynolds numbers of 2.7 x 10~ and 5.5 x 10
compressed air tunnel on 3" and 6" diameter models. From a
correlation study of the pressure distributions on these

rigid cylinders, it was found that due to three dimensional

effects the flow characteristics near the top were so0 phased
as to be more likely to cause in line bending oscillations,
while away from the tip region ovalling was thought to be the
more likely result.

Furgusonranlearkinson(Gl) tested in airflow, a rigid
cylinder on flexible supports and found that the maximum

transverse amplitudes corresponded to ¥5.= 6.1. WOotton(sz)
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conducted wind tunnel tests on model stacks and reported that
the response depends on aspect ratio, mass ratio, damping and
surfa#e roughness. Maximum amplitudes occured at a Strouhal
numbef of Str= 0.16. Both References (54) and (61) have
'shown that there is a range of velocities over which "locking-
in'" occurs characterized by tranéverse oscillations'perpendi—-
cular to the free stream'at freguencies close to the struc-
tural natural frequencies. In a recent study on model piles,

(63) \'

King, Prosser and Johns concluded that the critical 5

depends on a stability parameter (the product of mass and

damping)} and that there are two regions of instability - viz.

unsymmetric and symmetric vortex shedding. Cincotta(64),

(65) (66) 1.(67)

Toebes , Toebes and Ramamurthy and Ukeguchi et a
have studied experimentally the unsteady forces and vorﬁex
excitation of cylinders. It may be noted that in all these
cases, the cylinder considered was rigid but elastically

mounted to allow for the motion of the cylinder.

1.6 ~ Transfer Function Evaluation.

Accurate measurements 6f the aerodynamic forcing func-
tion and of the respconse of the flexible structure should |
lead naturally to a description of the input-output relation
between them in the form of the transfer function of the
system. Such an attempt has been reported by Campbell and-
Etkin(68) for a cylindrical structure with idealized des-
cription of the structural‘stiffness. Response spectra for

(69) (70)

bending of a cantilever was obtained by Cooper Novak

also described response spectra for lateral vibrations of

{71}

“cylindrical structures. Davenport and Handa and

Clarkson(Tz) have derived a statistical description of the




response spectra for slender structures. To the author's:
knowledge there is no 1itérature cited of the accurate
measurement of unsteady'aerodynamic preséures around a
flexible circular Cylindrical shell and of the consequent
dynamic excitation parﬁiculaflf of the three dimensional
kind. o

A vast. amount bf literature is now available on the
- wind effects 6n buildings and stfuctures through conference
prbéedings'(73, 74, 75, 76 and 77). Numerous studies on
wind induced vibrations of structures are also presented in'
Réference (78). The methods for the theoretical eQaluation
df the random response of complicated structures and for
fatigue analysis to some extent have been discussed in

L (79) (80) (81)

detail by Robson s, Crandall ~and Lin

1.7 Statement of the P:oblém.
In the present investigation,

(1) a generalized non-linear thin shell theory of cylin-
drical shells is developed, valid for any boundary
conditién and for any distribution of normal loading
including wind loading,

(ii) the fluctuating aerodynamic pressure distribution is

| measured in real time on two dimensional rigid cylin-
ders and on three dimensional rigid and flexible
cylinders,

(iii) the response of flexible cylinders to various dynamic
inputs is also measured,
and .

(iv)  theoretical and experimental transfer functions based
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on a statistical energy method are.evéluated and a method

of prediction of random fatique life is also cutlined.

1.8 Layout of the Dissertation.
Part A of the thesis is devoted to theoretical

analyses; Part B considers the experimental studies and

- Part ¢ contains the discussion of results.. Information is

generously drawn in to the various sections of the disser-—
tation from the expressions and ideas déveloped in the
thirteén.Appendices. |

In Chapter 2, a non-linear thin shell theory is
developed ab initio, following Flugge's description of
shell mdtion. An energy forhulation is used.. Various
types of surface tractions are considered. Energy for-
mulation of fandom response and fatigue problem based on
Miner's rule are also outlined. |

In Chapter 3,_the methods of dynamic analysis
incorporatiﬁg method of averaging and Rayleigh~Ritz
- procedure are.described; Sdlution procedures are esta-
blished for free linear and free and forced non-linear
vibrations. The characferistic nature of the non-line-
arity is also qualitati&ely established.

In Chapter 4, the static analysis of the. shell is
carried out for impressed time-average Qind loading.

| In Chapter 5, the more realistic p:oblém of wind

excitation inclusive of static deformation is carried
out boﬁh as a deterministic and as a fandom‘pfocess.

In Chapter 6, experimental concepts are developed
in a légical sequence. The various pafameters involved in

the experimental procedure are identified and outlined,
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including the statistical parameters.

In Chapter 7, a Stea&y state vibration study of
flexible shells is described with the shells in QUesﬁion
being under single_point ekditation. The influence of
transducer mass and cable stiffness on the naturallfref
qﬁehcies are accounted for. The respénse ié also obtained
for various magnitudes of the fdrcing.function.

In Chaptef 8, fluctuating'p:essure measurement énd
analysis techniques, instrumehtation'and déta-processing
- equipment are detailed. For accurate measurements of .
fluctuating pressures the use of DISA 51F32 low pressure
transducers is outlined. Techniques of spectral analysis
of ‘the analogue daté carried out on HP 5451A Fourier
 Analyzer is described. Analogue procedure for the evalu-
ation of root mean'square pressures.is'also discussed.

In Chapter 9, the results of various éases of
deterministic analysis are presented.

In Chapter 10 are desCribed‘the_résuits of éxperif
mental measurements and data anélysis. The overall
effecﬁs of pressure distribution on the shell and the
distribution functioné are also diséﬁssed.

In Chapter 11, the results of response analysis
utilizing statistical methods are described. |

in,Chapter 12 the conclusions of this extensive
.integrated study are listed.

It is believed that the list of thirteen Appendices

adequately describes their contents.
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2. FORMULATION,

2.1 . Introductibn.

Deformations encountefed‘ih_modern cylindriéal shéll-
type of structures such as thimneys, missiles and launch
vehicles are coﬁparable in order of magnitude to the thick-
ness of the shell. This implies that the higher order-terms
in the strain displ&cement relations are no longer negli-
gible. Further, accufate evaluation of stress levels is
_necessary from the point of view of éétimation of fatigue
life. Tor the purpose, an accurate shell theory and non;

linear analysis are required. In the literature_Flugge's

(11) (24)

theory and Sanders  theory are looked for whenever

accuracy is important. However, it was demonstrated by

Sharma and Johns(ag) from a comparison with the exact solu-
tion of Forsbérg(83) that Flugge's theory gives acceptable

estimates of natural freguency in a vibration problem when

(84)

used in conjunction with beam functions for displace-

- . ment déscription. Also from a physico-geometrical stand

point, the Strain—displaéement relations and'the'subsequent
vibration analysis may be easily derived.

In the present analysis Flugge's theorj.is hence fol-
lowed and is modified to include non-linearities arising
from large deformations. lFor ease of comparisbn the non-
linear terms in the-analysis_are identified throughout in
. the notainn with chain brackets { } . Expressions for strain
energy, kinetic éneréy, work potentiai,stress resultants aré'
éll derived from first principles in this section.

The derivations are‘subject.td approximationslaséumed

in Flugge's theory (see Appendix I) ekcepting that the



second order terms arising due to large radial deformations
are not negligible in the strain displacement relations.

2.2 Strain-Displacement and Stress-~Strain Relations.

' The‘geometry of the shell and the coordinate system
are shown in Figure (2.1). For end boundary conditions
corresponding to é fixed-free configuration, the circum-
ferential full waves relating to circumferential mode |
numbers n and axial mode shapes associated with the axial
mode numbers m are sketched in Figure (2.2). The displace-~
ments of a point A on the shell element are shown in Figure
(2.3). 1In £erms of mid-plane displacements the general
expressions for strains at any point on the shell volume

derived in Appendix I are

' . 2
Exx = Uy = BWy, o+ {1/2 Wy } ,
Ceo = Yo u N - s 4 /2 To }
a a{z . a(a+z) (gaz)?2
u ; Z z W Wo W
€x9 = © + atz vy ~ (F + Fimx) X # x 6}

a+z a a+o
' 2.1

The non-linear terms enclosed in chain brackets are assumed
to be due to moderate rotations corresponding to large dis-~
placement w in the radial direction. It is to be néted

that the diéplacement relations themselves are linear as 2
consequence of this assumption. Equations (2.1) are the

(11)

same as those of Flugge except for the additional non-

linear terms.

Tt is assumed that the stress strain law is linear.

In addition, consistent with the conventional thin shell

]
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thedry a state of plane stress is assumed. Under these

assumptions,
C,, = O,, = dyz v 0 2.2
and ' |
d_xx = E 2- (€Eyye + Y E 5 )
B B
Oge = LE_ (€ge + Y €y ),
1- v2 -
Oxe = E €.s
' 2{1+V¥V )
or ' ' - | -
O gy 1 Vv 0 €y
696 = E v 0 Gee
1-vy' 2
Oxe 0 0 1=V € 5o
L 2

2.3 Strain Energy. . -

There exists a system of infinitesimally small virtual
c,tralns 5Cxx’ 5(,99 and ‘5Cxe corresponding to a set of
assumed infinitesimally small v1rtua1 ‘displacements Su,
¢5v and d&dw. Assuming a quasi-steady state of stress, the
incremental virtual strain energy due to these displacements

is
. , |

XX XX
2.4

For a Hookean material substitution of Equations (2.3)

3

into (2.4) vyields

: h/p 2m 1 )
=2 2 hel Ve > - (a+z)dedxdz
v "_2—(1_v2 )I f f L (‘32{3{+Gee+ 2VE, wCoet 1V EQXG] |
' © =h/2- 0 0. 2 .
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where (a+z) de dx dz is.an.elemental volumé at a distance z
from the median surface. Since the strains contain 1inéab
and non-linear pérts,,fér convenience the total strain |

energy may be written as |
| | + U

U = 206

U linear non-linear

2.3.1 Linear Strain Energy. .

The strain energy obtained by the substitution of
linear part of Equation (2.1) into Equation (2.5) is termed
here as linear strain energy. Integrating (2.5) with

respect to z and retaining terms up to the order of h3/a®

in the expansion of 1ln 1 * h/2a y ‘the linear
' 1 ~ h/2a
strain energy is
2 1
E
Uyip = ah f ‘f [-uxz + 1 (wavg )2 + 2V u, (vgtw)
2(1-%2) 0 0 a? a

)2 + P [a? w2 + 1 ( wiugg )2

42y (uy +oav x

X

2a2 : a2
2
- 2auxw_,a{X + 21)wxX ( Yoe = Vo Y o+ 1=y { ugc + 3V
2 22

+ 4wxe2 + % Uy = 6Vy Wy )3;7 dx de |,

| 2.7

' 2
where @= h .
12a°

This expression is identical to the one that is derived
in Reference (82).

2.3,2 Non-Linear Strain Energy.

That part of the total strain energy which arises due

_to'non—linear terms and the product'of linear terms with
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non-linear terms in the integral (2.5) is referred to here as
‘the non-~linear strain energy. Integration of this partfof

(2.5) with respect to z and rearranging like terms results in
- en 1l w. & W 4 ‘Vewez wwéz.

Y pnon-linear = — j 'f { = 4 uxwxz =t ' 3
2(1-v970 "0 4 | 4a4 a3 a3

- 2.2
v 2 , \)uxwe2 W, oW
t S W Vg + W) o+ - +

+ (1-Y ) ww (u, + aw

Vs ) 3 }Ydx de 2.8

Xe
where terms up to the order of n3/a’ only are retained in the
logarithmic expansion of 1ln 1+h/2a} It is seen later in
Section (3.3} that this seem%gg{yacomplex integral leads to

a very simple algébraic expression in fhe characteristic
equation under the single mode response asSumption.

2.4 Kinetic Energy.

The kinetic energy of an element at point O on the
median surface (see Figure 2.3) is given by

(65T) yo =% L W2+ (2 + (N2 J4ax dz ade 2.9

An elemental volume at point A at a distance z from the

median surface has kinetic energy
(61) v =3 er@n?+ (w02 + (w2 7 (arz)de dx dz
- va =7 § A YA A .

2.10
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Integration over the volume gives
1 20 h/2

fV.éT = T = ...2_.?.... f f f E (1; _ z\:;x)z + (-@g—z- '\.r + .éz_‘;,e)z
0 0 -h/o '
+ (&)2 1 (a+z) de dx dz.
or
1 em - |
T = gah J J‘ [Tu2 + v2 + Wz-f Pﬂawx(awx - 2u)
B 2 0 4] ‘ o
# (g = v) (ug =33 Jde ax 2.11

where terms in the first parentheses are due to rotatory
inertias and those in the secbnd set of parentheses are
contributed by inéplane-inertiés. It is observed that within
the frame work of assumptibns (1) and (2) in Appendix I the
non-linearity due to large deformations does not affect the
kinetic energy.

2.5 Work Potential.

The work\@one by surface'tractions is evaluated in

~ Appendix II for arbitrary normal loading distribution. It
is assumed that the external loads are harmonic functions
in e direction and in time. The specific types of distri-
bution are considered below.

2.5.1 Concentrated Load at the Tipa

A concentrated locad P is considergd at the free end
X = 1 and e = 0 acting radially inwards on the shell and is
assumed to be harmonic in time with fréquency?ﬁ, defined by
P(t) = -Pcoswt | 2.12a
If w(l) = wy is the tip deflection, the work done is '

W (t) = '(—P)wl cos o t. ‘ 2.13a
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The negative sign of P implies thét the load is acting
radially inwards and the z coordinate is positive radially

outwards.

2.5.2 - Line Load - Beam Function Distribution.
In this hypothetical case, the load is assumed to be
dlstrlbuted spatially along a generator at =0 w1th the

dlstrlbutlon function proportlonal to the clamped free beam

. function (see Appendix III) and to be a 51ngle harmonic in

time. - The functlonal form is
p. (x,£) = =~ py & (x) coswt . o 2.12b
The work done is then,
1

W (f) - Py Jb; G>(x) w (%,t) coswt dx

L}

ioe-, ‘_ | ) t

W (t) = =Py coswt Ja ® (x) w (x,t) dx. 2.13b
where w {(x,t) is the displacement distribution function
along a generator at e = 0 of the form

wo o= $(x) £ (t) = ¢(x) coswt

2.5.3 . Dlstrlbuted Load - Harmonlc Distribution.

The load is distributed uniformly in the axlal d1r~
ection and harmonically in the circumferential direction
in the form | | _
p (x,8,t) = p (e,t) = = pg €os ne cos wt , 2.12c

The work potential is

W t) = J; ' Jg - Py cos ne 'w(x,e,t) cos ot dxde
or '

1 21 .
Wi((t) = -pgycosoet ‘/0 fO - cos ne w(x,e,t) dx de

2.13¢
where w(x,e,t) is the displacement diSttibutidn function

(see Section 3, Equation 3.1).
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2.5.4 - Wind Load Distributioﬁ.'

The more realistic case of wind load distributién'éon—
sidering the vafiation with'héight of the st;ucture-(axiél
direction in the present anélySis) is discqssed in detail
in Appendix XIL The coefficient and the index in the power.
iaw are derived on the basis of the 3~sécond gust data
~given in Reference (46). The circumfefential pressure
distribution may be expressed in the form of a truncated
Fourier series. For the purposes of.analysis, the.totél
_pressure may be resolved 1nto two components namely the
tlme-average_ pressure dlstrlbutlon ‘producing statlc de—
formations and the root mean SQuare (rms) valué of the Fluctu~
ating préssures Qith a characteristic fréquency equal to
the_predominaht frequency in the ave:age power Spectrum;.‘

Symbolically, the sectional total pressure at a point is

pp (x,9,t) = pg (x,0) + p (x,e,t) : : 2.14
such that ps‘(x,e) = P (x,0,t) o 2;15
and ' P (x,e,t) =0. 2.16

where a "bar" indicates a time-average value. Considering
the'fluctuating'part to be a single frequency cbmpqnent,

p (x,8,t) = -~ po'f(ic)'g(e) cos wt . 2.12d
where‘ S £ = ko x~ N o 2.18
with K and « as defined in Appendlx XII. |

and | .Nl _ | |

g (8) =2 a; cos ie | ~ 2.19a

i
i=0
The work done by these fluctuatlng forces could be wrltten

(see Appendix II) as
1 2n

W) = Iy Y -po_f(sc)-g(e)l:ww'% {_gj_.?:ve
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¢ vl + u, w - uw,} 1 cos wt dx de
T * o

2.13d
Similarly the work done_by the timeuéverage -pressures

could be written inclhdinggthe'non-linear terms as

1 .27 A |
, : 2 2vw 2
Wo = /- ey £ () ge(e) Fw 4l - 2V 4 y?
'.S"O;O.- = s -2{-.5-‘ = =
| h Ugw - uwy 3] dx de o 2.13e
where':' ' - Pg (x,8) =" pso'f (x} dq () . 2.12e
with £ (x) defined by (2.18) and | |
' _ N . ‘ ‘ '
dg (e) =% a34° cos ie 2.19b

In.thé.abpvé‘expreSSioné the axial distribution of fluctu-
ating and-time—average' pressures is assuﬁed to be of the
same form,‘asléiven;by.squation (2.18).

The ;oncepté devéléped here are utilized later in the
dynamic and static analyses, once the displacement functions

are chosen so as to satisfy the kinematic boundary conditions.

2.6 Derived Stresses.

| It is essential to‘know the peak stress 1evelérin the
shéll in order to estimate the fatigue life. Tﬁe dynamic
stresses, cléarly, are functions of displacemenﬁs‘and hode
- 'shapes. Expressions are defived here for the stréss resui?
tants in termslof_the mid;plahe di;plécéments. Knowing the
stress resultants the strésses coﬁld_be'compufed. Alternately
the stresses may.be obtained by subétituting Equations (2.1)
into Hooke'é'laW'given‘by Equations (2.2). |

The stress resuiténts on a cylindrical shell elemert

from Figure (2.4) are
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h/2

a ' z
N, = / o, (1+%£) dz
..h/2
h/»
Ne = Ue dz
-h/,
h/p
Nyo = j.. Oxo ( 1+ 37 ) dz
-h/2
| n/s
N, = j Oy A2 . 2.20a
~h/y

Tt is seen that for a cylindrical shell equality of
shear stresses does not imply equality of shear stress

resultants. The moments may be similarly written as

h/2 ‘
- z
M, = ] O { 1 + = ) zd=
~h/,
| L h/2
Me ' e —‘[ Og zd2z
~h/y
: h/2
z
Myo = —.[ - Oye (1 + %) zdz
~h/, .
, h/s
My, = 'g-/ Opy 202 2.20b
—h/2

As in the case of "shear forces'" the "twisting

moments" are not equal. In thin shells this difference is
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small and 1is often neglected. It is, however, very impor-
tant in the exact formulation and is considered in the
present analysis. It should be noted.that in the deriv-
ation of Equations (2.20) hd particular 1aw‘of.stress dis-
tribution is implied. Hence these definitions of "forces‘.T
and "moments" are always valid. The transverse "shear
forces" Q, and Qg have been omitted in accordance with the
plane stress aséumption. Assuming a iinear stress distri-

‘bution, the stresses are given by

o - Ny _ 12 M, z
X o 3
h
N
Tg = o - 12 Mg z
b 3
h.
o _ Nxe _ 12 Mxe pd
X ——
h 13
_ N 12 M z
Cox = hgﬁ - —X 2.21
n3 |
In general, d&ei{céx which implies that linear stress:

diétribution assumption is not.correct.

For a Hookean material, substitution of Egquations
(2.1) and (2.2) into Equation (2.20), and integration over
the thickness yields, in terms of mid-plane displaéements,

the stress resultants as

2
. Vv v W A
N, = Eh , Cuy + {E,wx2}. + 2 —— = { 2. b+
‘ 1-¥ 2 . a a -2 " a
o 2
1 =)
B({ - aw + = = ) 3
xX 2 a2 }



2

Eh e  PYe w. 1 "e '
N = [ 2+ ~=2 4+ X (1+p) +{= —— (1+3¢)} + vu
e 1-¥ 2 a. a . a - 2 a2 ¢ x
/ '
! C : - 2
j | RS
2
u ' : Wy W
Eh =) - : x Ve
N, == [ —= + v, (1+p ) =-pu + }3
¥ 2014w @ x P ¥xe L=
‘ u ' ' W, W .
N =Eh L8 (B ) vy, P, 4 x 2 (1+p )}l
ex 2(1+vy ) a x b *o ¢ a
2.22a
Eh § 2 1 2
My === L o—au, + a” Wy, = {—= & wy b= vilvg vy
Y . : 2
Vg’
1 )
s 1L T2y
{3 }
Eh { W 2
M, = - > [Wog + W * e + vya© v, ]
(Y -
: a
M - EhD [ -2av, + 2a w3
X6 2(1+v ) % -*e
M__ = ERB_ L u - av + Za w + Wy Wg }J
X T Ly ) & X Xe { x Vo }
2.22b

In the above equations the contributions due to
geometric non-linearities are identified by chain brackets.
Omission of these terms result in expressions identical to

"those given in Reference (11).
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2.7 Random Loading.

2.7.1 General.
| The wind loading on chimney like structures covers a

wide range of Reynolds numbers. This implies that the
.nature of the fluctuating aerodynamic loading may be of the
broad band type in tﬁe Reynolds number region where'there
is no regular vortex sheddiﬁg and of the narrow band random
type elsewhere. The.stﬁdy of both types of loading is
important, from the structural responée point-of view,
be&ause the loads are of larger magnitudes (due to higher
wind velocitiés) in the former case while the résonance
effects are predominant in thellattér case., A simple
procedure is developed herein purely inkerms of the power
spectrum of the input and_the mechanical admittance

(freguency response function) of the strﬁcture.

2.7.2 Work Potential.

The total pressure may be recalled to be given by

pp (t) = pg + p (t)
where pp (€)Y = Pg
and p () = O, 2.23

with the functicnal dependence on (X, ) suppressed for
convenience in writing. In the following analysis only
p (t) is considered which implies that the‘mean value is
zero. 1In terms of the Lafdaa&ltransform,'p (t) may be

written as

' ) * it ' ‘
p(t) "é};/ F(iw)e dew 2.24
0 .

where o 6o | -1l t '
o Meiw) = J  po)e dt 2.25



is the btewplace transform of p (t). The.power spectrum of
the pressure can then be obtained by conjugate multiplication
s | |

s (w) = pliw) P Gw ). 2,26
One could how look at the problem in the frequency domain
instead of in the time domain. The work potential for a line
element of load (see Figure 2,5) |

(1w ). lwt Aw = g2y AP (t)

acting along a generator at e' is

1

Aw = f Ap () w a de' 2,27
. O e:e!

In the limit,

n

21 dp (t) Piw) et dew

. - | .
6o . it
2—%/0 l["'(‘l(o Y e dw_-{) wo(x), .

fdw = W a de' gx

6'
2.28

The work done due to.distfibutedrwind loading which is a

f@nction of e only is then obtained by carrying out integration

over de. However, this involves cross—correlation effects of

pressure. These are explained in Sect%on (5.6) where the

analysis procedure is discussed in detail.

2.8 Fatigue Consideraticns Under Wind Loading.
2.8.1 - General.

The importance of the accurate déscriptibn of the load
levels or, eqguivalently, the stress levels in the dynamiq
design of wind-excited structures is clear. The wind speed
distribution in time which causes these stresses follows the

* statistical variations and hence introduces uncertainties in
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the prediction of the fatigue life. As a first step in the
dynamic desigﬁ it is therefore necessary to ascertain thé
'natur%'of the wind loading in the eérth's,shear flow. This
depén&s on the turbulence characteristics of the free stream
and the’shape of the structure. The ffee Qind spectrum |
(Figure 2.6) indicates that the wind fluctuations could be
classified as (1) gust fluctuations ahd (2} mean wind

fluctuations depending on the averaging time. Davenport(SS)

has sugéested an averaging time of 10-20 minutes for Ehe'mean

wind fluctuations. These fluctuations may be diurnal,

~ ¢yclonic or seasonal.

Even in the absence of resonance effects of the struc-

. ture, the response spectrum does not necessarily follow the

mean wind spectrum. .This is because of fhe influence of

vortex shedding and aerodynamic stability on the response.

The geometry of the structure and the free stream turbulence

affect the vortex shedding and the spectral distribution of

- the fluctuating pressures.

From the poinﬁ of view of fatigue analiysis, therefore,
the complicated loadmfesponse problems could be divided'into
two categories:

(1) Mean response fluctuations where the resonance éffects
are negligible due to either high structural stiffness
or dampin;, |

(2) - The dynamic response fluctuations which are.charac-

- | terized by the presence of resonance peaks in the .
response spectrum due to free wind.or/and vortex
shedding.

The first of these two problems provides- an idealization
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implying a "one-to-one" relation bhetween the'loading.and the:
response. A probabilistic analysis of the wind speeds can
be diﬁectly translated to that ef the stress levels and forms
a spec1al case of the general approach developed by Davenport
(86, 87) and ag such is not eon51dered here.

The second problem is mathematically tractable only if
the response spectrum is known either from a theoretical_u
analysis or from experimental measurements on models. - There
would still be a'censiderable uncertainty,rtypical of many
probabiiistic phenomena, es to the choice of representative
averaging time and its influence on the ovérall response
effects. Since one is concerned with the estimation of.the
expected life of Ehe structure the eombined effect of both
'static-and‘dynamic'etresses over the design life period should
be eyaluated. For want of a complete mathematlcal descri ptloﬂ,
the method eutllned in the References (86,87) relles on a
semi-graphical procedure. In the present analysis a theor~
etical method based on a probabilistic-~deterministic approach
.is developed within the frame work of the assumptions of
'PalmQren—Miner cumulative damage rule. The ideas utilised
here have already been applied in other related fields. A
_more detailed discussion of the statlstlcal properties of the
wind is dealt with in Appen@ix X. Though the analysis in the
text is confined to the circuiar cylindrical chimney struc-
ture, the prbcedure is completely general and can be easily
extended to any structure under random wind or earthguake
loading.‘ The procedure is similar to that of the Reference

(86) to a certain extent.



: The probablllstlc dlstrlbutlon of the wind speeds
1dealiy, should be c0n51dered OvVer the entlre de51gn perlod._;
This 15 not always p0551b1e7due.to the faqt that the data are

Vtoo gktensive for the pﬁrposes of reduction. From the map'
bf'isoﬁleths-(equél wind speéds), the maximum wind speed
with a 50 ?eér retufn'pgriod éould-bé'obtéinéd, It is pro-
posed. to assume a.Réyieigh distribution with the sténdafd
dev1at10n oiequal to 25% of thlS maximum wind speed or a -
Welbull functlon w1th ‘the characterlstlc veloclty C equal
to 35% of thls maximurmn w1nd speed;' It should be noted that
-these hypotheses ‘provide viable alfernatlves and that the
:w1nd speeds referred to are 3-sec. gust values. If however,
the typical wind speed déta over a long peribd, of the order
of a.year, are available the standard deviation g or the
characteristic velocity C can be obtained from a plot of the
data on extremum probability graph type I (see Pigure 2.7).
Thé Weibulldistribution is given by. |
: | | | y . _.‘ |
P (V) = exp - (~E.) 2.31
" The value of ‘the index k is. approxlmately 2, in general, and
is thalned.graphlgally_(Flgu:e 2,7), On the other hand, the

Rayleigh distribution for. this problem is represented by
V .
P (V) = exp = (-—~— ). 2.32
Once the distribution is known a'step by step procedure out-

‘lined below is followed.

2.8.2 : Wind Distribdtidh Function. . _




2.8.3 . Method of Approach.

 ‘Figure (2.8a) shows a typical wind-structure config-
uratién. The typical free wind speed variation is shown in
Figurés (2.8b,c) and the wind pressure variation at any
poin£ on the structure is shown in Figufe (2.8d). The
Aerodynamic Transfér Function, which depends on the geometry
of the structure and the flow Reynoldé number, relates the
Figures f2.8b,c) to (2.8d). Pigure (2.8e) illustrates the
response - displacements, bending'moﬁents or stressesw at
a point on the sfructure. Evidently,the Structural Transfer
Function, also called the mechanical admittance or the
- frequency responée function, relates the transformation of
Figure (2.7d) to (2.8e). For a theoretical analysis, there-
'fore, these two functions viz. the aerodynamic admittance
and the mechanical admittance should be evaluated. Then,a
fatique analysis based on derived stresses is a possible
proposition.

The analysis procedure is illustrated in Figure (2.9).

The Qihd veloéity distribution which may be assumed to be a
Gaussian distribution reduces to the Rayleigh distribution
in the wind speeds in an isotfopic atmosphere. Since the
local winds are directional to some extent,the Weibulidistri-
bution is more likely,as explained previously. Figure (2.9a).

illustrates the probability density function given by

p (V) = 4P (V) ' 2.33
d v

The "locking—in"'range of velocities,2 A;V,corresponding to
the known natural. frequencies,f;scan be obtained from:simple

wind tunnel tests on representative flexible shell models.
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If R is the design lifé in years, the number of years over
‘which one of the critical velocities is experiénced by the

structure is -
o

- | | Vi +53V . ‘.
Ry = R [p (V) dv = Rf' 4ENV) gy 2.34
| av
. Vi =L,V

Using the formuiation developed earlier and following the
solution procedure given later in Section (5), the overall
stress distribution in the shell could bé evaluated at the
critical velocity for a known value of structural damping.
The following procedure is adapted for the purpose. The
. aerodynamic admittance functions are shown in‘Figures (2.9b)
and (2.9c) for mean and rms distribution of pressures res-
pectivelyf These functions are chosen at the flow Reynolds
number under consideration. The overall peak stress dis-
tribution in the shell evaiuated from a non-linear analysis of
single mode response levels for these pressures, is shown in
Figure (2,9d). It is now assumed that only tensile stress
peaks contribute to the fatigue damage. PFrom isotrbpy con-
siderations of the wind, and due to the axisymmetry of the
shell it is seen that there is equal (or approximately
equal for the Weibulldistribution) probability that a given
stress peak level occurs. It is_thgn probably a :easonable
approximation to reality to consider for fatigue stress
levels an average positive stress level Eixx defined by

2n

[ Oy Cey £2d0, Ty > 0. 2.35

Oy (£3) =
' - 0

L
210
The non-resonance effects are ignoéored in the present analysis.
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Now the material fatigue behaviour can be represented(Bi)
by the equation

f N o2 = ¢ o 2.3
baséd_on éxperimental data, where Ni is the number 6f cycles
to failure (or fatigue life) at a stress level O,,. Figure
(2.9e) shows the graphical representation of thé above
equation. Thé values of e andjc are o = % s 1s a positive
number C = cg where log CQ) is the ordinate interéept and
(-~ m)} is the slope of the S5-N diagram on the log-log plot.
It should be borne in mind that the above equation is in
general based on alternating stress fatigue tests on stand-
ard fatigue specimens.

The Palmgren-Miner cumulative damage rule states that

the total damage ba is given by

. n.
. - L
P= Ty Wy o= N, 2,37

where nj is the number of cycles of stress peaks at a level
(Cfxx)i. In the present case, the expected number of cycles

of stress at a level (‘gﬁx)i is

ng = f5  Ryq

where R;s1s the expected number of seconds of duration of a

| critical velocity Ve

Substitution for'ni in the Equation 2.37 yields

rTogether_With Equations (2.31) and (2.34) the result is
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- oy - x-1 v.k
= Z: = R Jf : k — exp - (=) 4d V.
/ 1. Ni 5 : ck C
2.38
Now the total damage J9 at failure is given by
from which, the design life Ry in Seconds is
Vi+AiV
' . : k-1 k
‘ 1 v : vV
R = 1/ Lz, f x exp - (=) dv ]
s i ck C
V-84V

2.39
This in essence‘is the "semi—bfobabilistié’analysis
of fatigue and once the expected VQlueé of the duration of
the critical velocities are known from probabilistic esti-
mates, the remaining analysis follows a straight forward
deterministic approach. It is to be noted that the mean
velocity and hence mean stress effects are inherent in the

analysis thus developed.

In Ehis proposed method of analysis, » the stresses are
evaluated utilizing the nonlinear deterministic procedure
(as in Section 5.3). It is implied that the superposition
of the stresses is.valid. However, an experimental verifi-
cation of the theory is not unde;taken. Further, the
flexible models tested displayed amplitudes which ‘were
within the scope of a linear solution, as will be seen
later. Hence, a linear multimode random response analysis
technique is developed in the sections 5.5 and 5.6.

Further discussion of the fatigue analysis outlined above
is omitted in the text that follows.
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3. DYNAMIC ANALYSES.

3.1 ~ Introduction. ' o '
{ Using the energy eﬁpressions derived in Se;tion (2),
the characteristic eguations for the non—liﬁeér single mode
vibration prbblem.afe-obtained in this section. The displaceQ
ments are assumed in beam function form for axial modes and as
harmonic functions for circumferential modes. Thenresponse is
assumed to be periodic and of a single mode £ype; though in
génefal, the non~linear problem has a number'of.periodic and
aperibdic sclutions. The unknownlcoefficients in the assumed
displacements are evaluated using the Rayleigh-Ritz technique.
Due td non—lineafity, the resulting equations are time depen-
dent. One method of "eliminating" this difficulty is by

"averaging" the total potential over one cycle (88,8%9). This

results in a set of three algebraic equations-which, by an
elimination process, could be redﬁced to a cubic character-
istic eqﬁation in a single unknown. In this eguation the
response frequency éppears as a parameter. The real roots of
this equation for various values of the freqdency pérameter
constitute a frequency response plot. The natufe of the plot:
indicates the type non—linearity.‘ For the geometries and
modes considered the geometric non-linearity has a definite
hardening-effect in agreement with the result found in
References (26,27,35) but unlike that of References (31,33). T
This is further substantiated by a novel comparison drawn

with the Duffing's equation (83) forla single-degree~of—.

freedﬁm System.

3.2 . Assumed Displacement Functions.

. In the absence of damping (see Appendix'VI for damping
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considerations), and as a first approximation,a single har;
monici(in the time domain) of the response function could be
assuméd to be either in phase or out of phase with the
forciﬁg function. This assumpfion is justified by the fact
that .the non-linearity is caused by moderate rotations and’
that.the shell is thin, and that.large response may be
expectéd near the linear natural frequency. In other words;
this assumption'is equivalen£ to linearity of displacement
functiqns ahdrno coupling between the harmonics in the

" response {(weak non-linearity). .The displacement functions

(82) are then written as

u/l = [A‘b'(xj + Alwf'(x)j cos ne cos wt
v/l = (B ¢ (%) + Biu/ {(x)]} sin ne cos wt
W,l =

Cc & (x) + C1 Y(x)) cos ne cos wt

| 3.1
where ¢ (x) and w(x) are the beam functions. Prime (')
denotes a derivative of the beam with respect to the axial
coordinate X. Linear combinations of ¢ and y are introducéd
above to permit ény set of edge conditions such as stiffening
edge ring etc., to be approximated. Without loss of gener-
ality, in the analysis that follows the.function y- is omitted.

3.3 Characteristic Equations.

The total potential of the shell volume is

D) = U= (T + W) o B . 3.2
where U, T and W are also functions of time. Application of

the method of averaging(88’89) to the Equation (3.2) yields
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i

T 14T 1 [T 1 (T
J - de = 2 fo vt~ 'fo -Tdt--ﬁ.ﬁ{) W dt

5 - | " 3.3
where € is the time interval between two éuccéssiveldis~
placement positions of the shell.motion in time which have
the same of velocity (the petiod.of oscillations,were the
motion periodici; It is not a necessary condition for the
validity of_thg.method of averaging that the motion is
periodic. In the present analysis, however, the motion is
assumed to be periodic for simplicity.

Substitution of the displacements (3.1) into the
Equation (3.3) in conjunction Qith the Equations(2.7, 2.8,
2.11 and 2.13) on applying the Rayleigh~Ritz procedure

results in the three characteristic equations

(Uj_i - .b T'll) A+ (U12 - P T—lz) B + (U13 - ATiB) C = 05
where the ccefficiehts Uij'are defined as

U, = 2 +-(1+P)‘(’1—v)n21
.U = 2 + (1 »1?.) W2 ( 1 4 3 p) I :

22 - n . —'*-T 7\ m , 2 ?

Uy = 1 cprald v n?-0? - 2933 0% Ty 202-v 1P Ad 1T,
' 1=

U.12 = U21 = \))mnI-l - { 5 ) n )\m 12 .,

) = U = n o+ n}\z‘[-—‘vI +§-<1-v>3:j

23 = U2 = Py 1+3 T2k
' \ S 2 1—v 2

Ugz = Uzq = Vg Ig+ PArg L-Agt (=—) n° IpJ 2
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2

‘ 9 1 4 a4 2 2.2 . :
Uy, = = S I, +n I (146 P ) + = 2n(1+ B I T
34 32 a? - {'}m_'3 4 3 m 5

3.5
and the coefficients Tij are
T22 = 1_} 3ﬁ
-‘ . . 2 W 2
Ty = 1+ B AF1I2 + n° )
Tig = Tpq = 0,
T23 = T32 = 21"1 P) L
P43 = T3g = = Prp Iz 3.6
with,
Y3 = "M Ie
1w 2y ) |
n=- 1 a (1-v7) 2 for point load,
w Eh- 1 '
o 2
n-= 1 20G:-vY "k, for line load
n Eh 1 '
and

‘}15 a (1—'\’2) (-_EE)

- for distributed load.
Eh ! o

3.7
It may be'noted that the Chéfactefistic Eéuations (3.4) are
non-dimensional by virtue of the fact that all the cbeffi—
cients (3.5; 3.6 and 3.7) ére nonédiménsional; TIn the above
equations, the foilowing definitions are employed for
simplicity in the notations: |

e a2 ( 1-v 2 ) w2
. .

A
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m
B = nfr124? | S
L _. |
I1 = ' ‘/c) (p¢)" d-}r{
.
1 = ¢'°  ax

1 a
I =
4 [ ¢ 9}
0 _ | .
. 1 2 2 -
I = ' dx . - 3.9
5 (/7 o o &} B
) _ ,
e = ¢1 for-point load at the tip,
‘ 1 2 - A : _ .
16 = j ¢ dx = 1 for beam function distribution
. 5 ‘
3.10
and
X = x/1

IS for harmonic distribution forms a special case of wind
- loading which is described in detaii_in Section (s).

The formulatién.up to this stage has been completely
géneral. The boundary conditions are for the first time |
‘introduced.in the choice of the beam functions | ¢ n . which
are given in Appendix TIIT for the Clamped—free casé. For
Iany other boundary conditidns, it is only requiredkto eval-
uate the integrals Iy to Ig making use of the_orthogonality

properties of the beam functions. The evaluation of these
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integrals is discussed in Appendix IV for the clamped-free
boundary conditions.

3.4 Solution Procedure.

Whilst confining to the study of pepiodic and approxi-
mateiy periodic vibrations, it is recalled that the formu-~
1atibﬁ is easily extendible to aperiocdic forced and free
motion of the shell. Also,.the‘method of averaging permits
in the éﬁalysis subharmonic and multimode response. iny_
single mode analysis under a point léad at the tip and a
distributed load in the beam function form are considered
in thié section.

3.4.1 Free Linear Vibrations.

Equating the coefficients of the non-linear terms
and the external load function to zero {(i.e., Uz, = O
and Wy, = 0), the Equations (3.4) reduce to three home-
geneous simulténeous equations in the unknowns A, B and C.
This set represents the eigen value problem of free linear
vibrations where the frequency parameter a is still unknown.
The zeros of the determinant of the coefficients of A, B and

C yield the frequency cubic

3 2

-.K3‘A _+ K2 Pa¥ + K1 Py + KO = 0 '3.11
where,
K = Tas T T T2 T T2
3 = Tqq Tpp T3z = Tqq Toz = Top Tq3
- ' 2
Ky = = (UgqTy,T33 + UppT33Tqq + U33TyqTon - Uq1723
. L _
= 2Up3Tq4Tp3 + 2UqpT43Tp3 = UppTizy = 2U13T20Tq3)
K1 =

UpqUsnTay + UppUssTqq + UsaUgqTrp ~ 2U34U23T)3
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2 2 ' ‘ '

| | .
= 2Upp Ugz Ty = Uz Tpp
K. = = (Usn Unn Uon = Us, U2, = U, U
Ko 11 Yz2 Usz 11 Y23 12 Uss -

+ 2Ug, Upg Ugy = Upy Ufy)

This'cﬁbic eQﬁaEion is evaluated fof the Qalues of A
following the Newton'gxggthod. Of the threé roots, the
lowest represents.the predominantly W_mode and is the only
one of significance at the excitation levels of interest.
The other two - predominantly u and v modes, are ignored.

" The effect of omission of fotatory and inplane inertias is

easily checked by putting the coefficients T;; of the

J
kinetic energy, for i # j, to zero. In this case the

characteristic equations obtained are identical to those

in Reference (82). Table (9.1) compares the two results,

one with and the other without rotatory and inplane

inertias with those of Reference (82) and the "exact"

results of Reference (83). The comparison substantiates

the conclusion drawn in Reference (82), namely, that the

beam functions provide good approximations to the dis-

placements in the frequency analysis. The small differ- .
" ences between the present results and those of (82) are

due to the omission in (82) of a constant in the evalu-

ation of integral I, which has now been included.

3.4.°2 Free Non-~Linear Vibrations.

If the forcing function W3y is put to zero in the ‘

Equations (3.4) of the resulting set of equations only the
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last one is non-linear., With A as a parameter, the

equations may be written as

341 A+ 245 B +_a13 C =20

&321 A+ @y Bragy C=0

'a31 A +.a32 B ; a33 C + ag, c3 - o - 3.12
whefe agy = (U5 - A Ty j ) i, 3=1, 2, 3_ahd 534%U34.

Using Cramer's rule in the first two of these equations and

eliminafting A and B in the third equation,

(a3 1 +ap3 Sy +a33 b ) C+ragy =0
where
a a
12 13
61 = a
22 823 )
a a
11 213
12 @23
and. .
| 3411 @12
& =
12 app .

Neglecting the trivial solution at C = 0, the other two

roots are given by the quadratic solution

Cqy Cp = i\//_ -Cag3 §1+ a3 d2 +azzd )
| azy S |

3.14

t is recalled that the Equation (3.13) contains the

non-dimensional frequency A as parameter. A response
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curve sketched in Figure (3.la) may be constructed for
" rvarlous values of frequency ratio 'A‘non /A 1in® It will
be seen later (Section 9.3) = that the numerical value of
the radix is negative for A/ £&lin <1 , giving
imaginary roots. The real roots correspond to

Anon / B y;,>1 , indicating that the non-linearity
is hardening. The more familiar form of the response’
Eurve with . the magnitude of the amplitude IC! plotted
against the frequency ratio is sketched in Figure (3.1b).
This in fact forms the "back bone" of the forced non-linear.
response as will be seen in the next section.

3.4.3 Forced Non-lLinear Vibrations.

The forcing function W30 appears only in the third
of the Equations (3.4) fér the cases of loading (2.6.1)
and‘(2.6.2), since the force is'applied only in the z
direction. As in the previous case substitution for A and

B in terms of C gives a cubic in C

| | o
(a3 Sy + 833 Sp+agy S ) C+agd ¢ -Hyy =0

3.15
which may be written for simplicity as
Ky > + K, C + Ky = O 3.16
3 1 o = O - .
With 7 K3 = a_34 é y .
Kj = aj3S8 4 + 2305 + 2330
where <Si, S, and & are defined in Equation (3.13). h

Equation (3.16) contains the non-dimensional frequency i
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implicitly. The cubic in C is solved for various values

of

TAN

non‘/“&slin with the excitation force as a parameter

using Newton's method to construct a response curve

(Figure 3.2).

Only the real roots of Equation (3.16)_c0nétitute

the response curve. An elegant extention of the formu-

lation to include structural damping is described in

' Appendix VI.

3.4.4

system
linear
.'liﬁear
may be

system

mx

+

Comparison with the Duffing’'s Eguation.

puffing's equétion for a single-degree-of-freedom
forms probably the simplest_example of a non-~
system with viscous Qdamping and with & cubic non-
sp:ing_system;‘ The governing‘differential equation
written, in general, for a Springrmaés—damper

under sinusoidal excitation as

ex + X {x) = F cos wt 3,17

The functional form of k (X)

may be assumed to be a combination of linear -and cubic

terms and then

*e

mx

+

cx 4+ (kq x + k3 x3) = F cos et 3,18

This equation is often called the Duffing's

equation and possesses a number of periodic and aperiodic

solutions (89). In the absence of damping an assumed

harmonic solution for the displacement of the form

X = X5 cos wt : ., ‘ 7 3.19

-in the above equation yields, on integration over one

cYcle.(method of averaging}, a cubic which has the same

. A3 e




form as the Equation (3.15). The sign of the coefficient of
the third degree term in the Equation (3.18) for positive k4
‘indicates the type of non-linearity: -
if Kq > 0, the non-linearity is hardening i.e.;
| the frequencyiincreases with amplitude,
kg £ 0, the non-linearity is softeningri.e.,
| ﬁhe frequehcy'decreases with'incréase
‘in amplitude and
kB = 0, the problem is linéar{

Tn the present formulation (where the sign of the
‘strain energy is pqsitive in the derivations, E§k1 positive
in Duffing's equation) the sign of K3 in the Eqﬁation (3.16)
determines the hature of the non-linearity. The present
problem has, inkact, reduced to a single-degree-of-freedom
‘system under the assumption bf a single harmonic in the
response. For the range of geometries étudiéd, Ky is found
to be positive and hence 1t 1is clear that the non~linearity
has a hardening effect which is in agreement with the |
solution obtained for the response plots in the previous
section. Sinée the perturbation method for étability anal~--
ySis is applicable to the Duffing's equation, it directly
foliows from the-comparison drawn above, that the same method

could be used here for stability considerations.
f
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4, STATIC ANALYSTS.

4,1 + Introduction.

/ The formulation given in Section (2) is applicable £o
‘the static problem also-providedlthat the ;ssumed-displace-
ment functions, in the steédy state,are independent of time.
In other words o= 0 yields the static problem. The
kinetic energy idéntically'vanishes and the applied loads
dﬁe time-average or static loads. The total potential is
then = = U-¥ - 41
‘and there is no need for method of averaging;‘ The.ﬁnknown
'COefficients in the shell displacements are evaluated in
- the 'usual manner using Rayleigh—Ritzlteéhnique. The
linear analysis.of\the static displacemen£rof the shell
is developed here, which is employed in the subsequént |
section for the solution of a more general dynamic anaiysis

including the deformations due to static loads.

4.2 Characteristic Eguations and Their Solution.

4,2.1 - Assumed Displacements.

The assumed displacements of the median surface of
_the shell for N radial modes and M axial modes in the

general case may be written as

T 3 N |
U = Z A _ (x) cos ne’
/1 me1 heg mn m |

vii = X % Bon  Pm (x). sin ne

m=17 n=0 .
MmN ~

Wiy o= 2 > Can ¢m (x) cos ne 4.2

- m=1 n=0 - -



where prime (') denotes a derivative of ‘the beam function
with respect to the axial coordinate x. As in'fhe dynamic
case, the.funétion P is éhosen éo as ﬁo satisfy the
boundary.conditions.- Liﬁear displacément relations are
assumed. As a consequence of thin shell ésSumptions;
initial sﬁate-of loédihg and orthogonality of beam func-
tions, the coupling_betWeen-the'moaes may be assumed to be
a weak one,so thaf each mode could bé solved independw
éntly of the other. General expressiohs)are_derived,in
therfollowing section.forrthe quasi—stéady state but only
the initial state is used in the combined analysis.

4.2.2 Work Potential under Steady Wind.

The variatiohs in sectional flow_prépérties'ére
negligible except in the vicinity of the‘top (as a result
of three'diﬁensional effects); axial variations Qf pressﬁre
are not consideréd here. The circumferential presSure _
distribution may be expressed in the‘form of a truncated
Fourier sefies as
N .
p(e) = p = a; cos ie , 4.3
S . i= .
The Fourier coeffiCients a; are evaluated from existing
data based on wind tunnel tests. The work done.by‘the
external forces.in the quasinstéady state is giveh )

(in Appendix II) by

1o L2 vy 2 | o
W= /' .[' (-pg) a CTw'+ 3“{__" ———— 4 = 4 uyw -~ UWy }J dxde
‘0 0 a a a : ‘

4.4

From equations (4.2), (4.3) and (4.4)

- A6 =



sinee the order of summation and integration are inter-

changeable,
2cC
: m
W--"—polrf 8.21 s —_— a4 Cmn éi,n
>\m '

. T ]
- po .;l...... 1 { 2 _ai ij Cmn (5i+j,n+25i_j,n+(§i+j+n,0.)

+ 2zaiB . C n ((Si+j,n+3csi+j+n,o)'

'+3c3

('Csi+j,n )

i+j+n,0

_ . ‘
* 2 3y .Amj Cmn (Oi+j,n+2 ‘Si—j,n’“ ‘Si+j+n,0) Amlq

= Z2aj Apj Cun (Si4y,n*2Siog,n* Sisjen,0) Pml2!

4.5
where M N N N
2. = g =z Z
m=1 i=0 j=0 n=0

and I4 and I, are defined in Appendix IV.

4,2.3 . Governinq: Equations.

The linear strain energy (2.7) on substitution of

displacements (4.2) reduces to

3
ER1> T s .2 ¢ 2 u
lin 2a(1-v2) mn “‘mn mn
. 2
o Z'on San Y33 * 2 Egp App Bon Y12 + 2 Zpn Bon Cun Y23
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+ 2 z.:mn Amn Cmn U13 . .4‘6

: o - M N
| where Eimn = 521 Ego
and Ug4 etc., are defined in the Equations (3.5).
Application of the Rayleigh-Ritz method to the Equation
(4.1), where W and U are defined by the Equations (4.5)
and (4.6),-resu1ts in a set of3M(N+1)simultaneous equations

in the unknowns Apny B and Cun® However, these equations

mn
are coupled due to the fact that Equation (4.5) contains
higher order terms atising from quasi-steady work.

In the siﬁplifiedlanalysis thelcoupling is ignored i
on the basis of the initial state and the orthogonality'of7 :

beam functions and trigonometric functions and hence the

work potential is
2 c
W-‘—"?poﬁal = m a

{(i.e., first term only in Equation (4.5)). Application of
the Rayleigh-Ritz method to the total potential (4.1) with
U and W given by the Equations (4.6) and (4.7) vields a

set of uncoupled equations of the form
U1 2gn * V12 Bup *+ Vi3 Coan = 0,
Usq Apn * 22 Bun ¥ U23 Can = 0

Usq Apn * U3z Bpy + Uzz Cpn - ( Wyglpp = 0

"pO 7 a a2 ) 2 2Cm
where . ¢ W3o_’mn = L el ( 1-v< )] = &
m
| 4.8a




The suffixes mn may be omitted and the equations may be
solved for A, B and C for all the modes independently.

Writi%g Equations (4.8a) as

i
!
b

Y108+ "p B o+ Yy3 © o= 0
Yar a x Yoy B v Uy o= o0
U U U | |
39 A + 32 B + "33 C - Wy = 0 4.8b

and solving for A, B and C yields

A = %;51 c
S
. S -
B =+ 22 C
CSS
c =+ W30 7 ¢ U13 Sgq U dgo U )
S + 23 S + 33
S S
4,9
where
U1 Ui
2 3
‘551 = . 1
U U
22 23
Ul U13
1 .
652 =
U U
12 23
Ui U12
é = 1 .
5 = U U
12 22

Since all these displacements are liﬁear, super-
position of displacements and stresses holds good in this

linear static analysis.




4.3

Stress Resultants.

The stress resultants given by the linear parts of

Equations (2.22) on substitution of displacements (4.2) in

single mode reduce to

Xe

ex

i

It

1

It

n ) n

Eh i[ AP x+ OV (nB+C) - P:A2 ¢ ¢ Jcos ne
(1-v 2) a _
Eh_ -1-[: nBCD—n2[3C b+ (1+ P ) CP+ \)q‘:; X A Jcos ne
(1~v2) a ' ' ST
’ .
Eh ; iE —nA¢f-+quA(1+B)-+C(p npAJsin ne
2(1+v ) a .
Eh 1 v | ' '
=L -niagd (1+P) + Bp A - C ¢ np ldsin ne
2(14V ) a o
. 4,102
ih 2 PLC - » A o + »2Cc@"-unpB +vn? ¢ C Jcos ne
Eh S plC - n? ¢ ® + Ccd + N ) Jjcos ne
1m V) :
Eh - 7 '
= |3-1r_”_ -2XQ B - 2 >20¢ ncC 3sin ne
2(1+v) ‘ .
'Eh S ' ' P
- pP1C -nAQ® - XPB ~ 220 nC Jsin ne
2(1+v ) ' . :

 4.10b

- The SUffix m denoting the axial mode number has been sup-

pressed in the above equations from X and & .

Each of these stress resultants may be summed over

all the modes to evaluate the corresponding total force

and moment resultants.
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4.4 _ Median Stresses.

The mid-plane stresses are obtained by substituting
the linear part of the strain displacement,relétions (2.1)
for z = 0 and the assumed displacements (4.2) into Hooke's
11aws_(2.3). Again, the stresses are evaluated Separately
Vfor each mode and then summed over all the modes to get

the total stresses:

'$) .' " ) ’
*x . 1 3......2 Ca x o + \J(Bcbn—1-+(:c’p-l»)'jcos ne ,
E a 1- v . a o
CT N n .
e _ 1 l.._....z (VAX® + Bdn 1 4 cod Jcos ne.
E a 'l-‘v - : a a -
(-)-' t '
x _ 1 ;(1' ) CBoeox - A® n  Tsin ne
E a +V

4,11

As before, the suffix m has been suppressed from X and ¢

in the above equations.
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Se COMBINED METHOD.OF ANALYSIS: STATIC PLUS DYNAMIC.

5.1 o Introduction.

The-analySis of the non-linear multi-degree~of-
freédOm'system presents considerable difficulty in the
solution of many simultaneous coupled non-linear equationsf
In the present analysis, these equations are reduced to
- non-linear algebraic equations. Approximéte”methods like
Newton's iterative method(gol with known trial solutions,
provide an answer to the problem but'at the expehse of
considerable computational time; even then,there is no
guarantee that the method converges. Thé soluEion is not
easily Eractable.if the triai solutions are nothknown and
if the static deformationsalso are to be included. Fortu-
nately, the physics of the problem provides a basis‘in the
form of a single frequency dominance at or near the
natural frequency (which is in fact the basis.of determin-
istic analysis). It is then; probably, justified to con-
sider a single frequency deterministic response even if the
loading function contains a number of harmonics. In the
random vibration problem, however,lthe‘spectrmmof the input
and the corresponding response spectnimare considered. It
should be noted that a linear single mode solution is
assumed for the static loading also. Whén considering the
superposition of the‘displacements and surface tractions,

no restriction is imposed on the strains and stresses.

5.2 Modified Displacement Punctions.
Subject to the assumption of a single mode responsé,

the assumed displacements are given by

]
"uw/l = (Ag + A cos wt) @ cos ne
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v/l = (BS + B cos cot) ¢ sin ne
w/l = (Cq + C cos wt) ¢ cos ne 5.1

wWhere the coefficients Ag, Bg and Cg are known from the
linear static solution tSection 4). That such‘an assump-—
tion for the‘displacéments (S.i) is valid follows from the
Ifact that the osciliatory motién does occur over the de-
formed mean position as indicated byrwind>tunnel tests on
flexible shells. Single mode anélysis‘for fhe.separate
Stéﬁic solution is, Strictly speaking, not justifiable.
However, since a weak coupling is expécted.due to ortho-
gonality of_the_assumed.displacemeht functions, it is
believed‘that the present method yields a bettér approxi-
mation to the real situation,at the-same‘time,providing a
model amenable to the solution.

5.3 Combined Characteristic Equations.

The total potential may be now written as

N =Yy +* Upon - (T.+ Wg + Wy + Wgp ) 5.2
where Wg is the work done by the static loading
Wp . is that by dynamic loading and

w is the work done by the static loads due to

SD
components of dynamic displacements.
From the Equations (2.7, 2.8 and 5.1), method of averaging

and integration over x and e yield

3 .2 . 2 82

Uysp = BRI T oy a2, A )y Lu,, (B2+E
| + U (-C2 CZ Y + 20U ( Ac B + AB
33 g +-2 12 5 -5 2
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| . . BC | - . AC

5.3

where U; s are defined by the Equations (3.5).

J
Similarly,

Ehm? 15 2

a(1—%32) 3.

U, = {U34‘(c§‘+-;-c4

non + 3 cS c )}

where U34'is defined by the Equation (3.5).
The kinefic energy does not change and is the same as in

Section (3.3) and is given by

g

' 3 2 2 2
Ehl1° 1w A .. B ct
T = CLTaa = 4+ Tay = + T = 4+ 7T AB
S e 1y *Faeg 33 5 12 |
4+ Tpy BC + Ty3 ACT A 5.5

The work done by the external forces in each mode of excit-

‘ation could be written as

Wy .= 2( -p. ) pma’l 28 @nsCs
| MR = |
| 2y 2¢c a,. C
W = - 1 = n
D ( Py ) matt ==
| and Wep =. 0. 7 ‘ o 5.6

The total work potential is theréfore.

. 27 2¢ ¢ | ‘
W = Tal = (-2p a,qC -p ‘a,C)
b g 087 p =0
5.7
Applying the Ritz techniqﬁe.to the Equation (5.2) one
arriﬁes at |
(Ugq = AT4)A + (Ugy =-AT15)B + (Ugg =~ AT13)C = O,
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.(U2‘1 M‘ATZ'].)A‘ + (U22 - L\T22)B + (U23 - [_\T23)C = Q,

- (Uzq -AT31)A + (U3zp = AT35)B + (Uzg + 4U34-c§ - AT33)C
¢ Us, C3 = Wap = 0. - 5.8
34 ~ 30 7 ¥ *
where WBQ = y]IG,

Uij and T ij are deflned in the Equations (3.5) and (3.6)
and IG is glven by the Equatlon(IV 16¢) and1q is glven by

'(3.7¢). Withih’ the limitations of the assumptions made it is
observed that Ehe effect of static defbrmétions-in a single
mode appears only in the last of the Equatlons (5 8) which

are themselves similar to the Equations (3. 4)

5.4 Solution Procedure.

Because of the similarity between the Equation sets
(3.4) and (5.8) one would naturally expect the solution
procedure to be 31m11ar. Eliminating A and B a cub;c is

obtained in C from the Equations (5.8), of the form

5 _
where Ky, K, are defined as before in which
4 = Usq + 4 U, Co - AT
@33 = V33 = V34 s 33*

The Equation (5.9) contains the frequency paraheter
implicitly. The cubic is solved for the displacement
coefficient C for various values of B hon/ A1ip With the
magnitude of the force pp as the parameter. Only'the real
roots are of significance. The results are discussed in,

‘detail later in a separate section.
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5.5 Random Response Technique,

In continuation with Section(2.7}it is noted that the
random analysis will.be carried out over a linear model. 1In
addition, structural damping is introduced to obtain boundéd
amplitudes in the response (otherwise there.are as many sing-
ularities as the degrees-of-freedom). The structural damping
-force is proportional to Ehe displacements and is in phase
with the velocitieé, It follows then that the damping energy
is proportional to the strain energy.. in other words, one
could write | _
 p.E. = igU o ' | 5,10
where g is the damping factor( hyskerelic type).

The total potential is therefore

A U (14+dig) =T - W, 5,11

At this stage,the assumed diéplacements are introduced in'

y

the form )
u/l = b3 on Pon cp:n cOs ne ekp 1wt
v/l = *mn Bmn. Pn sin ne exp iwt
w/l = Zmu; Cmn_ ¢ cos ne exp iwt ‘5.12

Ignoring coupling between the modes, minimization of
the total potential by the Ritz technique leads to three
simultaneous linear eguations for -each of the (m, n) modes.

These equations are

F11 Amn + Pié Ban + T13 Cmn
F21 Pan + F2p Bup * F23 Cpp = O




F31 Amn * F32 Bon * Fa3 Cpp = W 5.13
where

Fix = Uy (1+ig) - A.Tjk ' 5.14

and for a line load element,

- . 2T I

: 2 1 : . .

W = EijiLl%?l Jf P, dx Jf cos ne’ ade
3R - E hnl 0 0 . -

\ 0o ) : : :
? w— [f d (DR . 5-15
5 fo P ( i ) ¢ |

Avne Brn and Cpp in the above_equatiohs are complex.

The integral over the circular frequency co,
0 w< oo, indicates that the above set of equations is
to be solved for all values of e in the range prescribed.
The solution for the nondimensional coefficients Cyp, could

be written as

20C

on = 9p B (1w) dew cos ne' ade’ o 5.16

where g gy, (iw).

Hence the deflection for all the frequencies is given by

¢
w=l Z ade’ q>m cos ne cos ne’fo h(iw) Im ©XP (iwt)-ldw
or

w=1l j(; Zmn ade ¢ cOs ne cos n§' 9m h(iw) exp (icwt).dec .

a2n
5.17
The mean square value of w is therefore
2.2 1 pe° - P
wo=1% lim = j | 2 qn ade ¢ cos ne cos ne’ gp l"(iw)l deo
2 T ‘ _ .
b“‘Tﬂﬂo 0 :

5.18

- 57 =




Also, the response power spectrum is given by

. ' ) 2
Syw (@) = (Eg. ade’ & cos ne cos ne'jng Spp
5.19
where
. 1 R '
.spp () = 1lim E' I (ie2) | : 5.20
T w00 '

is the power spectral density of the excitation pressure.

5.6 _ Response to Distributed Wind Pressure.

The technique developed in the previoué section is

extended to distributed randém wind loading in this section.
Due to the complexity of the problem, the response spectra

inclusive of resonance effects could be obtained on imposi-

correlated. Wind tunnel tests in uniform free étream sub-
stantiéte the validity of such an assumption ovef a large
part of the surface of the cylindrical shell (see Section 11).
This is also true in the ground shear flow where the corre-
lation lehgth of the flow turbulence are of the order of the
characteristic dimension(height)of the chimney structure.
However, for a more exact analysis measurement of cross-
cotrelations pafticularly‘in the absence of axi-symmetry is
essential, though time-consuming. The analysis technique
developed follows the simplificatiéﬁ on the cross—corre-—
lations and assumes that there is no variation of pressure
in the-axial direction.

The deflection w for the distributed pressure may be
written &s |

T ' o
wo= 1 j“’" JZ Zon Om cos me cos nd g piw) exp (iwt).dw ade
*T0 Yo \ “ - 5.21

|
\
\
\
!
\
\
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|
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tion of another assumption viz. the excitation is fully |
|
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|
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or

w=§J‘¢w(1w) exp (ict) dw o 5,22
0' " ~ . .
where
W (iw) = 12, Py €OS ne g, ‘af cos né b'(iu,) ) ae
| 0 5.23

is the Laploce transform of the displacement w

and

Pl i w) = (1w, o
Therefore the squared displacement in the frequency domain

is given by

- 2 . 2 ‘ . 2‘1 1] | A L
fwdw)| =1°C £, ®, cos ne Iy 2 f cos nep(icw) de o
0
: : 23t ‘n " (i )d"
. . c W
% s P, cos se g* a J 0s se v i . e
0
.or
) 2 : . 2.
9 (iw)| = Zunrs Pm ©p 9y 9 COS ne cos se a“e.
21 2T . :
. ' t . lll" B ] "
.j f cos ne' cos se p (iw) | (icw) de de
0 0

5.24
where (*) indicaﬁes the complex conjugate. |
As a first approximatioh, for circular cylindrical
éhiﬁney of uniform section, the power spectrumof the pressﬁre
could be assumed to be similar both axialiy and circumfer-

~entially so that
.
Picw) = R(e) P (iw)
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- ' Coon :
~and ¥ (1eco) = R(e) I (i) 5.25
Hence
, _ . 2 . ,
J' fw(iw)l =1 Zmnrs Pm ®p 9y 9 COS ne cos se ae.
' n ' w1 _no . :
.f j R(e) R(e) cos ne cos se de de [P (iw)]
0 O ' o . |
5.26
R(e) could be expanded in a Fourier series given by
R(e) = % R: cos je. o 5.27
0 3
j _
Then the integral
20 20
[} ) " t L1 I | 1"
f I R{e} R(®) cos ne cos se de de
o “o R
271 27T JK ' .t ] ] 1 "
=J J' S Rj Ry cos je COs ne. cos ke cos se de de
0 0 jk=0 '
. N=S ,
=l = R, Rg | . 5.28
- n,s=0 ‘
) 2 2 2
es  Iwlic)l = (H(ico)| i (ico)) _ © o 5.29
where the frequency response function H(iw) is ‘giver.l by
C 02 . 2
fTHE = Z5.c @ Py 9p 9, COS ne cos se a” " RyRg
5.30
The Equation (5.29) can also be written as
Sgw (@) = [HUE I Sy, (w) 5.31




The analysis developed_above is linear and hence the
. displacement spectra in u and v afe similar to that in w.
Therefore, from Equations (2.1) and (3.1); following a pro-
cedure similar to that in Equation (5.29) the squared strains

can be written as

|G’xx\ h = EE{ZRI{ mnA _ mnC”_(pml)}'Rl{grsA rsC l(p l)}
: ‘ 1" 1t . 2.
+ Im{ }oim{ }].Q% P_ cos ne cos se RnRS(%)Z‘b{iw)l o
and
€ \2 - SiRrR1{ 9 2o (1R nd]rif o g (140 52}
I€e0 ho = mnB* P mnct e T /3 rsB* %t rsct ta °

;+7Im{ } ooIm }:Iqhi¢k_cos ne cos se RnRS_\hChDH
| 5.32

.where gmn is defined earlier and
_ ) M N M N
2= j;-rnnr's. T z P2 Z ‘zi

Clearly, the computer analysis of the speétral descrip—
tion of the résponse (strain or displacement) can be easily
carried out at varioﬁs chosen frequencies such that the natural
frequencies of the shell also are included.. |

This elegant mathematical model thus gives the aggregate
of the response over a finite number of modes, accounting for

both axial and'circumférential deformations.
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PART B

EXPERIMENTATTION




6. EXPERIMENTAL CONCEPT.

6.1 Introduction.

 Bluff bodies experience fluid dynamic foreee‘of
oscillatdry'naﬁufe when.in a flow field. These oscillatory
forces are due‘tgfihetability in the flow field caused
by one or more reasons of which the study of stable -and
unstable vortexlshedding behind circular cylinders has been
a problem in basic aerodynamics. From the structural
dynamics‘poiﬁt of view thin and elender structures nay

experience resonance effects under such locading in adverse

wind conditions. Aercelastic models previde‘ﬁseful

an : '
1nformatlon 1nkexper1mental 1nvest1gatlon. It is not often
convenient to scale all the non-dimensional parameters to

represent the full seale(gi)Q A khowledge“of the nature
of the aerodynamic forces, oscillatory or otherw1se, is 

" very useful 1nf0rmatlon to the de51gner. A number of
investigators have studled the distribution of time averaged

(50,51,52) covering a wide

pressures reund circular cylinders
range of Reynolds 'numbefs. Figure'(B.l) shows the sgmmary‘
of these inves#igations,,wherein a graph of the mean pressure
coefficient is plotted against the position on the cylinder
-surface. The vortex ehedding phenomenon is not generally
restricted to low Reynolds number, but extends over.arlarge
range. Figure (6.2) "shows the dependence of the Strouhal
number on the Reynblds number where the Strouhal frequency
fS is defined as the frequency of shedding of a palr of
vortices. It is seen from the figure that the Strouhal

number is almost a constant at. 0.2 over a large range of

Reynolds numbers though values. as high as 0.4 are observed




in.the transition rggion of critical to tranéncriﬁiéal
region. in'these investigations on rigid.cifcular cylin-
defs, the measurement of mean (time-éverage) pfessuresf

- through a set of Static'tabpings was a simple matfer.g
Measurement of‘oscillétory'pressures on vibrating cylinders
on the other hand presents many problems as would be clear
iﬁ‘the subsequent discussion.

The experimental‘meﬁhods adapted in a majority‘bf
studies regarding the nature of oséillatory forces on-
circular cyiinder méy:then'be classified as
(i5 - measurement of cylinder motion,

- (41) measurémént of lift and drag acting on a rigid
cylinder and |
(iii)  the study of wake conditions behind the cylinder.
The first of these methods gives only a partial picture
dominated by the natural frequencies of the cylinder model
and not the true nature of the oscillatory forces. The
‘results are also affected bf tﬁé'associated aerodynamic
damping. The Secoﬁd method has the inherent disadvantége
that it gives rather aqbvefall stéte_of the forces over a
finite length regardless of the forcé.distribution-
function. The third fechnique is not;feally’éuitable for
6btaining the fluctuating lift and drag forces and the
results depend on the distancé in the wake from the
cylinder. Extrapolation - to model locatioh is somewhat
doubtful. Thus the technique'of local surface'pressure-.
ments is the énly reliabie method for evaluating the
fluctuating pressureé and may‘berclaSSified as the fourth
category. _ _ | | | |
o e




HoWever, the literature in this aspect is scarce -

BlShOp and I*IzaLssan(S ), Ferguson and Parklnson(si), Sdrry(SO),

(52) and Novak and Flscher(92)

Gould to.c;te most - of thém.-
Thesé‘reports however do not considef the'flexiblé fixedm‘
free circulqr'cglinder configurétion.' It'iS'important to
éonsidef this confiquration since'thé harmonié‘cbmponent in.
the preésure'spéctrum ﬁas Strong influence:on the cylindér
response and conééquently ovaiiing modes of osciliaﬂion}‘.
_iﬁ this investigation; thelexperimenﬁal WOrk.refefs to fixed-
free flexible shell oflfiniﬁe length'with obeh\tdp and'ﬁo.
efflux.f The inﬁestigation is supplemented by meésurements
on rigid cylinders and these details are discussed in
‘Section 8.

6.2  Vibration Characteristics.

In any work involving aeroelastic 5ehaviour or.

' dynamlc stress ana1y51s, the characterlstlc {i.e. the natural)
frequencies of the structure are important. ‘A knowledge of .
s the natural frequencies and of ‘the daﬁping in the system are
adeqguate to describe the system transfer function'provided-
that the system is-lineaf. For small amplitude vibraticns
one might assume llnearlty and the natural frequencies can
be measured experlmentally by the single p01nt exc1tatlon. |
method. The damping constant can be evaluated by a study

 of the decay'of free oScillatiéns. These studies form the
initial investigatich in the preséht aerbdynamié excitation

study.

6.3 Fiow Properties Around Rigid Cylinder.
The distribution of time-average presSures roundf

rigid cylinders has been entensively‘ihvestigated. The
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effects of free stream turbulence,_surface roughness of the
'model and Reynolds: number on this dlstrlbutlon have also
been established.' The frequency of vortex shedding and its
dependence on'tﬁe‘Reynolds number ere well known. However,
'due to the upstream effects, the 1nstantaneous pressures are
expected to be modified. The domlnance of the vortex fre—‘
quency on these pressures is clear. The influence of'free

- stream turbulence and the magnltude of . the fluctuatlng
pressures are,however,not S0’ obv1ous. Also the effect of -
" end conditions and the Reynolds, number effects can be
evaluated only by experimentalemeasurements. These studies
‘were hence conducted onlrigid_circular cylinders as preli-.
minary studies at varieus Reynolds numbers in the region

0.4 x 107

< Re £ 2.9 x 10°. It is desirable to study the
correlation effects for various axiai separation.distances:
and circumferential separatioh angles. This is rather

time consumiﬁg and the model design would be_moke compli—
cated so as to allow for various (i) axial separatlon
distances and (11) circumferential angles. In the present
case, however, the pressure'correlation'study'is attempted
only for two axial separations and twd circumferential

‘separations.

6.4 Flow Properties.Around'Flexibie Cyiinder.

| A cyiindrical_shell is considered as flexibie when
the first few of its natural frequencies (or more exaeﬁly;
the natural‘frequeneies in the service frequency range)
could be exCited in the flow field under consideration.
TQo flexible shells were designed so that the natural fre-

quencies with n=1,2 and 3 modes could be'excited.within the o



capacity of the wind tunnel. One of them (F4) is an approxi-
mate scale model of a full scale chimney. The vortices that
are shed excite the model;at its naturgl frequency, at the
critical.velocities. The excitation frequency is expected

to influence the vortex frequency. In othér words, there is
an intefaction between the two. This aerocelastic interaction
can be brought out experimentally by comparison with rigid
model studies at exactly the same Reynolds numbers. The
details are discqssed in Sectiéns 10 and 11.

6.5 Methods of Analysis of Anaiogue Signals.

The irstantaneous pressures and the shell response
signals are recorded in analogue form on a FM tape recorder.
The methods of analysis of such analogue signals may be
claséified into two categories (93,94):

(1) " analogue analysis, and
(2) digital analysis.

| In both cases, the data are assumed to be stationary
and ergodic and that the methods of analysis of random vari-
ables hold good in the present cése,though there are predomi=--
nant characteristics which make the variables deterministic
at certain Reynolds numbers. The methoeds of analysis des-
cribed here are well established and are described in many
text books on the subject. " The objective hereris to fémili»
-arise with the nctations and to lay the foundation relevant
to the discussion given in Section 11. The limitations of
the digital techniques are elaborated in Appendix VII.

6.5.1 Power Spectrum.

The power spectral density gives the freguency

decomposition of the variable infterms of its mean square




valuesf - The average'squared value will approach an exact
meén square value as the observation time épproaches infinity.
Symbolically, for a variable x (t, w ),wiﬂfone-sided power
spectral density s . (w) = 26 (), the positive half of the

symmetric spectrum in the region 0 <w< oo is given by
. C - T :

Gy (@) = 1im  ==[ lin l-f %2 (t, 0 ,Aw), dt ] 6.1
(I ‘ &w ’I‘
DO >0 T+ 0

- The power spectral dénsity is always a positive real function.
' The mean squared value of the variable is the expected value

of the square of the variable given by

\}/2 = 2 fw & () Aoy = B { X2 (t)} 6.2
pid XX
¢)

where the notation E {+} stands for.the "expected value of".
If the mean value is zero the above expression gives the

2 .
" variance U& .

2
For non-zero mean values, the variance 04 is
5 2
9 = E {x® - %)} 6.3
where’ o
¥ = B {x (&} = 1 = [ x(t)at 6.4
T—soo L 0 '

is the mean value. If x (t) represents white noise, its
power spectrum has a constant magnitude over the entire
frequency range. The principal application of powef
spectrum is in establishing the ffequency response_charac;

teristics if the transfer function of the system is known.
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Symbolically,

2
8y, (@) = JH(w | s (w) 6.5

Yy xx
where H ( W) is the modulus of the transfer function. In
this relation, the phase information is lost.

On the other hand the cross power spectfum which is,

in general, complex giVes the phase information as well:

_Sxy (W) = ny () - iQxy () - 6.6
. s (w) —ie({O)
and H (w) = —de . ,H(w){ e 6.7
SXX‘(“’) ‘ o

Both these methods caﬁ be used for the evaluation of the
transfer function and in the present analysis it is the
latter method that is followed.

6.5.2 Correlation and Coherence Functions.

These are equivalent descriptions in time and fre- = -
guency domains respectively. The autocorrelation function
describes the general dépendence of the values of the data
at one time on the values at another time. Symbolically,
the autocorrelation function

T
. 1.
R (z ) = 1lim = j x (t) x (£ +T) dt
T .

T =00 0 |
6.8

where € is the time delay. Typical plots of autocorrelation
functions are shown in the Figure (6.3). The following in-
formation can be obtained from a study of autocorrelations:

(1) The nwature of the variable as to its randomness, and
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harmonic contenﬁ'and their relative magnitudes.

(ii) The period. of ﬁhe fundamental frequeﬁcy'céntent is
given by 4 times the time delay for the first zero
crossing of the autocorrellogram;

(iii) Non—linearify and damping in the sfstem-if the

| variable is a response data. The autocorrellogram

 would be similar to the Figure (6.3c)”if the system
~is heavily damped or non-linear. The décay is pro-

portional to twice the logarithmic decrement (log-

dec }. This has the advantage of bringing out the
aeroelastic (flutter) characteristics since, in

wind excitation, the overall damping is zero or
negative if the stfucture is in "bounded" flutter
instability and the autocorrellogram indicates_
divergence with time delay. This is a very impor-
tant property of the correlation functions but hasieth
hardly exploited till now.

(iv) The mean value x is given by

ha—

x = A Ry, (oo ) 6.9

and the mean square value is given by

w0

Xm0 Ry (00 610
- Also,

Ry (0) 2 | Ry, (T for all T

for a purely random variable and for a positively
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damped_system and Rxx.is_an even and real valued

function.

From cross corfelation'fUnction one ﬁan qbtaih'aiso
(v) the velodity.of propagation of a disturbance measured

at Ewo points if the spatial.separétion'is known: the

timé délay for the first peak in the cross correllio-

- gram gives ﬁhe_propagation time..
Perhaps the most important properﬁy is its relation

- to spectral density function:

oo | - i2WfcC
Spp (£) = 2/ Ry, (T) e dc
- 03
o i2nf7T
and Ry (T) = ‘ Sxx (f) e daf
—-00
. } o0
or S_xx (f}) = 4/ 'Rxx(t)cos 2NMfTAT
0
0o - ‘
and Rxx (T) = / Sxx (£ Jcos 2TMfT AT 6.11
' 0

It should be noted that throughout this work, the
pqwér‘spectrum Sxx is one sided spectrum defined in the

region 0£ f<oo and Syx = 0 elsewhere.

The following relations also exist between the cross'’

correlation and the cross spectral density:

o ' i2nfe
(T)Y = / S}Cy‘ (f) e daf

-0

Ry
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| | o
and S.. (fY = 2 Jf Ry, (T) e - dt

In the digital analysis, however, only the positive
"half of the symmetric spectrum is computed and hence factor
(%J appears on all those computed power spectral plots where

the normalising factor is different from the mean square

value.
The autocorrelation can also be directly computed
from P
R (T) = lim = x (£) x (¢t +T) dt  6.13
T T 70

The coherence function between the input x (t) and

‘the response y (t) is a real valued function defined by

- >
2 S, (£)
¥ (£) = XY 6.14

xy
Syx (£) Sy (£)

Yy

and satisfies the relation 0 < v;; (f) « 1 provided that
the mean value is éero. For a linear system with well
defined "one-to-one" relation between‘the input and the
respbdnse, Xiy (f) = 1 over all frequencies. The coherence
function is less than unity if

(1) éxtraneouslnoise-is present

(ii) the system is non-linear

(iii) x (t) does not describe completely'the eXcitation

loads.




6.5.3 Transfer Fﬁnction.

The transfer function in the frequency domain, also
called the frequency response function. H (f) is given by
Equations 6.5 and 6.7. The frequenéy response function is
generally.a complex function |

-i e (f)

H{(f) = |H (]| e | - 6.15
The modulus lH (£) | is called the gain factor and the
phase angle e (f) is called the phase factor.

For physically realizable linear systems, H (f)

possesses the following symmetry properties:

*

H (- £) = H (£}
|5 (- 5] = |u )|
and e (- f) = - a (f). _ - 6.16a

Also, for multi-degree-of-freedom systems provided that there

is no modal coupling, the overall response function is

H (£)

= T Hy ()
le | =TT, [H, )]
and e (f) = zn e, (£) 6.16b

where Tj; stands for product over n and §§n fepresents
summation over n.

| This property of the transfer function provides a
powerful tool in the random response analysis bf multi;

degrees-of-freedom systems using normal mode approach
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It should be noted that such normal modes are defined only

for linear systems.

6.5.4 Probability Density Function.
The probability of occurance of a value x such

that X

;<x<x +ax is  p (x) Ax . The function

p (x) is called the probability density function. Random
\
processes in most physically realizable cases follow a -

Gaussian or normal distribution where the probability density

is given by

.2
p (x) = T exp -~ (5L:§5) 6.17
«/?ﬂ—'o'i | 20,

where CH? is the variance and ¥ is the mean value. The
following are scme of the useful properties of probability

density function:

X = jﬁ x p (x) dx 6.18
-0
o 2
and 02 = f (x - %  p (x) dx 6.19
) . ' ) .

i.e. the first and second moments of the probability density
function are, respectively, the mean valué and variance of

the variable. Figure (6.4) shows some of the typical prob-
ability density functions.-‘Related discussions are given in

detail in Appendix XIII.




7o EXPERIMENTAL INVESTIGATION OF VIBRATION RBSPON.SE.
7.1 General. |

| Experimenté have been performed_fo 6btain the linear
.forced'natural frequencies of cantilever shell.. Attempts to
obtain the noﬁ-linear response were not successful due to,
probably, the "jump" phenomencn and the limitations in the
instrumentation particularly in controlling the frequency..
Attempts to measure the médal amplitude distribution also

were not very successful., These are hence omitted in further

aiscussion and only the for&ed vibration analysis of the
flexible shell models (see Chapter 8) are considered herelin.
Experiments conducted to evaluate the influence of pressure
transducer inertia and stiffness of the connecting cables

indicated no significant Cbange in the natural freguencies.

7.2 The Apparatus. '
The apparatus consisted of a rig to fix the sheli in

the cantilever configuration, an electrodynamic exciter

suspended at the top of the shell with a radial excitation:

axis, a power amplifier and an oscillator to drive the exciter. '

The response levels were measured from strain gauges fixed to

the shell and the excitation force levels were measured using

a strain gauge type proving ring. A strain gauge bridge was '

used to resolve the signals to measurable levels and a FM

tapé recorder was used to record the response and force levels.

Figure (7.1) shows a schematic diagram of the apparatus.

T.2.71 " The Models.

Ideally, the thin shell models should be seamless

which is possible in the thickness range of interest only '
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by electroforming. This is a very expensive proposition.

The next best is to construct shells with weldéd or adhesive

- bonded seam_o:'seams. The latter of the two was resorted to
in preference to spot welded construction since welding
alters the material elastic properties. Also adhesive
bonding is inexpensive and could be . ' effected easily. The
shells, 44" and 6" iﬁ diameter, were rolled out of 10 thou
:thick commercial aluminium sheet stock. For ease in con=-
struction and uniformity in bonding, the shells Qere_formed
- with a half inch wide la? joint along a generatrix; The
width of the lap joint was then carefullﬁ;reduced to 4" by -
cutting out the excess material which was then peeled off.
The‘joints thus produced were strong enough to endure all
the wind tunnel and vibration tests performed on the shells.

The vibration tests were conducted with the

base fixture which was later used in wind excitation studies.

The base fixture consisted of a steel plate to which a ring
of height 1" and thickness 3" was fixed. The base of the
shell was then slipped over this ring and another 1" wide
ring clamp with a rubber lining on the insides was tightened
so as to . clamp: the base of the shell. The exciter was
éuspended in contact with the shell, from a bracket by means
thick elastic cords so that the excitation was through the
proviﬁg ring on an initial deformed position of the shell
(see Figure 7.1). This ensured a minimum of inertia effects
of the exciter on the shell ;though excitation at the base
would have been ideal. In the present case, single point
excitation at the base was abandoned because of the local

effects; for excitation forces large enough to induce
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lperceptible deformation levels, the shell being thin,
localized failure occured in.the vicinity of the excitation
point;' S L ‘ “:“fn‘ff‘?‘The shell being
slender, it is believed that the end condition is adequately

represented as fully fixed at the base.

Te2a2 The Excitation System.

| The excitation system consisted of a shaker, an
oscillator, a power.amplifier and a proving ring tbgether
with a strain bridge. The shakér has +3 mm diéplacement
amplitude and.ﬂﬁ7.5 1lbs force amplitude at full load. The
oscillator 18 a variable frequency sine wave generator.
The output power of the power amplifiér is 50 watts at full
load. The proving ring was machined out of mild steel bar
stock te a ring of 1" OD, 1/16" thick and 1/4" wide.
-4 single-axis strain gauges were fixed and the ring was
statically calibrated in tension and compression (see Figure
- 7.2)+ The entire proving ring could be screwed onto the
armature 6f-the exciter. As explained befofe, the exciter.
was then suspended at the top of the shell so as to excite
radial modes, transmitting the force to the shell through
the proving ring.

T7a2.3 , Sensor and Recording System.

" The natural fregquencies can be meaéuréd accurately
by identifying those frequencies at which a .circle is
obtained as the Lissoujas figure on the CRO corresponding
to the input signal ffom the proving ring and output or
response signal from one of the strain gauges fixed on the

shell. Four strain gauges were used for the purpose of

- 76 =




measuring the response, two of them to measure the ovalling
modes and two for bending modes. Alternately, the natural-
frequencies may be taken to bé‘those.at which there is a

Ipeak response in a ffequency pand. Within the limits of
exXperimental errors both methods identified thé same valués of
natural frequencies, and the latter method.was used more
extensively in the.present case.

With the objective of accounting for inertia effects
of the pressure transducer on the pressure measurements with
values proportional to strains (as a first approximation),
transducer response was also recorded at various strain
levels. The different levels of strain were achieved by
varying the excitation force. To measure the logarithmic
decrement the natural frequéncy was ekcited and at steady
State condition the powér to_thé exciter was cut off and the
exciter itself was disengaged from the shell. The strain
gauge response was then recorded. All the signals were
recorded on-a FM tape recordér - Sangamo model 3562 described

later (see Section 8.5).

7.3 Experimental Procedure.
(i). Natural Frequencies.

With the sﬁaker iﬁ'position, the output df the
oscillator through the power amplifier was connected to the
shaker at chosen excitétion'levels. The straiﬁ gauge response
from the proving fing and the shell were monitered on an
oscilloscope. . The oscillator frequencj was gradually in-
creased'starting from a low frequency. When the responsé

signal on the scope was a maximum, the frequency indicated by
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the oscillator was. taken as the natural frequency.,.The mode
'shape‘was identified by using a stroboscoﬁe.‘ The experiment
 was repeated at higher fnequencies. As.a check, the natural
'frequencies were obtained alsé from a Fourier analysis.of.the
recorded ﬁaximum signalé. The experiments were repeated wiﬁh
the pressure transducers in pbsitioﬁ.

(ii) | Response Measurements.

At thé lowest natural_frequency fér one position of
the shaker relative to the reference transducer T, position,
the signals from the strain gauges, the pressﬁre transducer
and the proving ring were recorded at various force levels.

. These were thenanalyzed cn the 1eve1_re¢order {see Section
8.6) to obtain the transducer signal rms levels due to "g"
loadé. Proportional rms cdmponent were intended to be
employed to "eliminate" the inerﬁia effects from the pressure
distribution on oscillating cylinder. Figufe (7.3) shows

the force-response plot for the shell F5, |

(iii) Measuremerit of Structural Damping.

The exponential decay of the free ﬁibrations-gives
a measure of damping. ‘The shell was excited at a natural
frequency and at steady state tﬁe excitation was cut off
simul taneously disengaging the shaker from the shell. The
shell response then decays under its damping {(in air). The
~strain signals Were_recorded and later analysed on the level
recorder, this time.foﬁ‘péak (not rms) levels, to obtain the

- logarithmic decrement as

5= 2un x | 7.4




‘where A; is the amplitude of i£h peak 1ln is the.naturai
logarithm. The method is highly inadequate at higher-fre¥
quenciés due to structural and aerodynamic coupling between.
the modes.

7.4 - : Limitations of the Experimental Analysis.

It is difficult to estimate the effect-of the
shaker on the natural frequency in the present method of

excitation. The two influences viz. the shaker‘inertia and

amplitude contraint imposed by the shaker (thé shakér acts
as a partidl support) are compenéating;ﬁo‘some ektent._ At
the lowest frequency.the overall effect was not noticeab1e 
as observed from the frequency derived during damping mea-
surement. _ _
It was difficﬁlt to identify the modes particularly
n>4and m> 2. This was not considered as a éetback since
wind tunnel excitation modes were generally in thé same
range of 14 n<« 4 and m= 1 or 2. It is emphasized that
the frequencies and the damping were measured in aif and nof

in vacuum.




8. FLUCTUATING PRESSURES AND DYNAMIC RESPONSE.

8.1 Introduction.

Pressure measurements on circuiar cylinders were
conducted in thé open jet wind tunnel in a uniform wind
stream. All pressure data and response signals Qere
recorded on an analogue tape recorder. Digital - analyses

- of the data acquired were performed 6n the special purpose
computer for Fourier analysis.

8.2 | Description of the Wind Tunnel.

The present investigations were conducted in the
uniform wind stream of the Open Jet Return Circuit tunnel
which has an ejector section of 43" x 30". The maximum
free stream velocity attainable is 94 fps at atmospheric

~ pressure. Figure (8.1) indicates the velocity distrie-
bution and the turbulence levels at approximate location
of the modeI(SS). It is assumed that-thé effect of free
stream turbulence is negligible and that the velocity
~distribution could be idealized to a uniform wind stream.
For convenience in the experiments the control panel dial
gauge connected between the settling chamber static and
atmosphere was calibrated over the range of test velocities
against a standard pitot tube located at the representitive
position in the tunnel with the medel in position. The
pitot tube was then taken out of the way so as td ensure
interference - free flow.

8.3 Description of the Models.

Extensive studies were conducted on the three
models R;, R, and R, and the two flexible models F, and

Fge ‘Details of the geometry of the models are shown in

- 80 -




the Figure (8.2). R, and R, were rigid circular cylinders
of diameter 34" and 8%" respectively and of 3" thick PVC
plastic. The éylinders were mounted on wooden base fix-
tures which fitted onto a turntable. The turntable could
be clamped at aﬁy desired incidence of the reference
generatrix with respect to the free stream. The cylinders
were open at the top; The transducers and the oscillators
were clamped to the turntable So as to rotate with the
cylinder. The cylinder R, was tested in the"2-D"configu—
ration also, by fiking a large end plate at the top.

The rigid cylinder R3;6" in diameter, was fabri-
cated in two parts thé top section being of 4" thick
perspex and the lower part made of wood. The cylinder
was of open top and the wooden base fixture was fixed to
a éteel turntable., Top 27" of the cylinder Ry was exposed
to the ffee stream.in the test section. The transducer
and the oscillator were fixed to a traverse which could
be lowered into the cylinder through the open top (see
Figure 8.3) and clamped in position. The traverse and
the turntable could be rotated independently for selecting
the angle of incidence. The connecting wires and the
transducer back pressure tube were taken out from.the top
along the traverse. |

The shells F4 and F5 were made of 10 thou
~aluminium sheet as destribed in Section (7.2). Base
fixify of both shells was effected by clamping rings and
the shells were mounted oh the steel turntable. Top 27"
of shell F4 and top 28" of shell F5 were exposed to the

free stream in the wind tunnel. The transducers were
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located at 13" from the top in both shells. The transducers
“and the oscillators were lowered into the shell Qith the
traverse mechanism at the top of the she1l {see Plate 8.1).
Connecting wires and transducer back pressure tubes wefe
taken out from the tob of the shell. The traverse was
designed to ﬁave an additional degree of freedom in rotation.
To minimise the influence of transducer - cable stiffness,
the mechanism, after locating the transducer in the rubber
gaskets fixed to the shell, was allowed to find itself an
equilibrium position of least influence of the cable stiffe
.ness and then locked in that position. For other angles

of the shell, the traversé_was rotated by the same angle as
the turntable and locked, This ensured minimization of
influence of the cable stiffness and-maintained it to the
same degree for all angular'éositions of the %hell.

8.4 The Transducer System.

The local static pressure at any point on the
shell surface could be expressed as a resultant of the
time—avéraée pressure and oscillatory component (see
Equation 2.14). Clearly, better résolution in osc;llatory
component is achieved by biasing the time-average (or ﬁone
.zero mean) pressure from the total pressure signals. The
requirements of the pressure transducer, then, are:

(1) sensitive as to pick up small fluctuations with

a bias facility
(ii) small in size so that the measured pressure can

be approximated to that at a point
(iii) light in weight so that the inertia in dynamic

measurements does not influence the structure
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(iv) | little acceleration sensitivity

' f - i . . .
(v) #instantaneous’ and linear static and dynamic
response
(vi) convenient to handle.

The DISA Type 51 F 32 low pressure transducer
seemed to meet these requirements and was the best available

at the time. In conjunction with the DISA Type 51 E 32

oscillator, the DISA Type 51 E 01 reactance converter,

a digital dc voltmeter read out and monitoring oscilloscope,
the transducer wés calibrated (see Appendix VIII) as a unit
and referred to herein as the transducer system. The system
can measure pressures from 0.1 to 700 mm of water with an
over préssure of one atmosphere and in the dynamic range

0 to 100 KHz. The meén'pressure bias may be applied by a
"back pressure" (see Section 8.4.1) or electronically by an
appropriate choice of the carr}er frequency {(see Section
8.4.3). A brief description of the relevant individual
instruments is given in the following sections.

8.4.1 The Transducer,

The DISA Type 51 F 32 low pressure transducer is
a capacitive microphone, in which a change in capacitance
is caused by the deformation of a diaphragm due to impressed
pressure. A 3" condenser microphone B & K Type 4135 has
been adapted for the purpose. A schematic diagram of the
microphone cartridge is shown in the Figure (8.4). The
diaphragm and the back plate_éeparated by an insulator
form the two plates of the capacitor (&~ 6.4 PF). A preésure'

tight enclosure is provided behind the diaphragm by means

of an -adapter, of the DISA Type 51 F 33, Any reference
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static pressure may be impressed on the‘backéide_of‘ﬁhe
diaphragm by a length of PTFE tubing conhected to a variable
pressure source. Though the diaphragm can withstand an
over pressure of one atmosphere, it is_prone to be damaged.
if touched. To facilitate ease in handling a'mOdification
" was made to the adapter incorporating an integral protective
cap (seé Pigure 8.5). The weight of the microphone together
with the modified adapter was just éver 8 gms. |
In the pressure range of the preSen#'application,
the effects of temperature changes,'relatiﬁe humidity and
the changes in ambient pressure on transducer sensitivity
are negligible.' Also, the response is omnidirectionai to
the pressure field:. The microphone in its basic (B & K)
configuration has an acceleration sensitivity of z.88‘dB
(O.SN/M2) pressure level at 1 g acceleration in a direction
perpendicular to the plane of the diaphragm. In the present
' clamp out
configuration the inertia of the air column seems to, con-
siderably .  the acceleration sensitivity. Signal to
noise ratios of better than 30 dB were observed in the'worst
~case. Hence, no corrections to account for the vibratory

motioﬁ were applied in the final analysis.

8.4.2 The Oscillator. _

The DISA Type 51 E 32 oscillator‘is connected to
the transducer via a special double shielded cable, the
capacitance of which is greatly reduced by a special circult.
Capacitance changes due to temperature variatiohs or due to
mechanical forces applied £o the cable are conseQuently |
greatly reduced. The sensitivity can be selected in four

ranges: 0.1 PF, 1 PF, 10 PF and 100 PF. These values
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indicate transducer capacitance change for a full scale
variatioﬁ of 6 V of the reactance converter (corresponding
to a 0}5%‘variation of the operating freguency).

The oscillator consists of a Clapp_oscillétdr
coupled to the tuning circuit Cogy and Cpy, (Figure 8.6).
The sensitivity of the oscillator is determined.by the
value 6f ¢1 in parallel with the transducer capacitance
while L1 determines which frequency band is being‘used.
- The selector plug has four different positions one corres-
~ponding each L1 and Cl. The transducer is connected in
parallel with C1 through the double—shielded'cable. The
~ inner shield carries a voltage which eguals the oscillator
voltage in amplitudé and phase. This-is-accomplished by
amplitier Al which has a very‘high input reactance. Trans-
former Tr corrects the phase shift produced by the
amplifier and the capacitive load imposed by the c:abler._
In addition Tr delivers a vdltage, approximafely twice
the oscillator voltage, to one stator of a differential
capacitor Cp. The rotor connects to the tuning circuit.
The other stator connects to the ground. Amplifier A2
drives the cable connecting the oscillator to the converter.
DC. power for Al and the oscillator is obtained from the
cable through an RC circuit.

8.4.3_ The Reactance Converter.

- The DISA Type 51 E 01 reactance converter 1s
designed for detecting and linearizing Ehe signal from a-
capacitive device. The system of measurement is based on’
frequency modulatién of a carrier wave by means of a

reactance change in the transducer. The frequency-sensitive
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detector rectifies the signal following which the DC voltage

variafion wlill be proportional to fhe mechanical influenCe

on the'transducer system. The detector covers the frequenéy

range 4.4 - 5.6 MHz. The converter tuniﬁg_confrol facili-

tates matching with transducer capacitance in the system

working range. This may be effectively utilised in ccmpen-
" sating for the time—averagglpressgre sighal, so that a

resultant signal has a zero mean value. FPigure. (8.7) shows

the working range of the instrument. 1There is also facility
for the correctién of non-linearity and uppef frequency
limiting filters of 0.2 KHz , 2 KHz and 20 KHz. The
sensitivity of the detector in the normal working range is
approximafely +6 volts for = #£9.5 PC frequency swing
around detector zero frequency. The detector_sensitivity
is somewhat dependent on the zero freguency but the vari-
ation does not exceed 10% at 4.4 and 5.6 MHz, respectivelf.
;h the present tests, this zero frequency was_within 5;0
4+0.05 MHz and the results are expected to be within 1%.
The non-linearity in the most sensitive 0.1 PF range is
0.5% and is éorrected for in the reactance converter. The
maximum permissible length of the cable between the con-
verter and read out or record divice is of the order of
200 meters. ' o

8.5 - The Analogue Tape Recorder.

| The pressure and response signals are recorded on
the FM channels of a 14 channel Sangamo Type 3562 recorder/
reproducer. The recorder is bidirectional with two tape 8

speeds of 15 ips and 7% ips. Accuracy of tape speed is
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."i 0.25% of the nominal speed. Input sengitivity is 0.1 to
2.5 volts rms, adjustable by input attenuator for #40%
deviation. The frequency response on FM channels is 5 KHz
:at 15 ips and 2.5 KHz at 7% ips.‘ Signal to noise ratio is
bettef‘than 46 dB. All signals were recorded for later
anélysis, at 7% ips tape speed with a nomiﬁél input level
of 1.4 peak and a centre frequency of 13.5 KHz. DC
linearity is within 0.5% of peak to peak deviation and
AC distortion is less than 1.5% total harmonic distortion
at all speeds.. No additional‘dynamic calibrations were
thefefore required and only é reference calibration was
performed to- obtain absolute levels. Since the gain
contrel is not extefna;ly poséible, the record-replay ‘
was set to unity gain at 1V rms at 50 Hz. Throughout the

"~ experiment, the signals were monitored on standard osciilo—
scopes. N

8.6 ‘ The Level Recorder.

The rms levels were obtained as a first stép in
lthe analysis using the B & K Type 2315 level recorder..;
The paper speed and writing speed were selected such that
the low cut frequency was 2 Hz and by replaying thé tape
at 15 ips (double the recording speed) this frequency‘was
reduced to 1 Hz. This analogue analysis not only provided
a check on the accuracy of the digital process but also
provided a useful guide to the selection of data for

further analysis from a large set of experiments.

8.7 The Digital Data Reduction System.

8.7.1 The Fourier Analyser.

The analogue data acquired on the tape recorder

- 87 =




was further analysed using the Fourier analyser system

HP 5451 A, The system performs analyses of time and-
frequenﬁy data over a frequency range of 0-25 KHz by means
of keyboafd programming. The analogue data_éan be entered
through a 10-bit 2 channel analogue-~to-digital converter
(ADC). Results of all opérations are displayed. on the
osbilloscope. The oﬁtput could be plotted on a x-y
plotter or an on-line digital plotter. _The flexibility of

the system is greatly enhanced by the magnetic tape system

and the facility‘to generate overléys suitable for indivi-
dual requirements. The system, thus, éomprises of 2100A
digital computer, type 180 AR/DR oscilloscope, 5460A
‘display plug~-in unit, 5465A ADC plug-in unit, 5475A
control unit, a teleprinter, HP 200A high speed punch,
HP 5600A magnetic tape.system and an on-line digital
plotter. Only the salient features of the system per-
taining to the present work are explained below in the
follbwing sections.

The Fourier analyser transforms any time domain
data into the components in the frequency domain using a
Finite Fourier Transforﬁ. It is more flexible than
analogue machines for the purpose. Since the data pro-
cessing iS done digitally, it is more accurate and faster.
All the mathematical operations involved in the data pro-
cessiné here are available as keyboard functions and no
knowledge of the software 1is required.

8.7.2 The Analogue-to-Digital Converter.

The HP 5465A analogue~to-digital converter is a

plug-in unit forming a part of the Fourier analyser system.

- 88 -




The digitization ﬁarameters could bé selected either in the
time domain or in the frequency domain using "mode" and
"multiplier" selecting switches. With the choice in one
domain, the parameters in the other are auﬁpmatically fixed.
~ The frequency resoluﬁion and the maximum fregquency were
chosen as the frequency domain parameters in the present
analysis. The ADC is a 10 bit two chénnel unit with a
digitization constant of 17 m seconds. In dual channel
operation, there is a 13 m second gap between the two
signals. Whilst the "free-run" mode provides instantaneous
starting of digitization, a combination of "external-
triggerﬁ mode, "trigger level" and "slope" of trigger
Signal facilitate sychronous digitization if required. Thé
"over load volts" switches determine the initial scale
factors and the scale factoré are automatically adjusted
within if the signal levels exceed the set levels. No data
are lost in the process. The ADC could be used with an
Mexternal clock" as well, in which case "multiplier" sets
the proportional values of the parameter. The digitized
data may be entered into any data 5lock of the compﬁter
memory or may be stored in the ADC through-put file on a
configured magnetic tape. The modes of operation corres-
ponding to particular analyses such as PSD, corre-
lations etc., are dealt with later in Section 211.

8.8 Experimental Procedure.

The experimental procedure and analyses techniques
are briefly described here. Unless otherwise mentioned the

procedure is identical in all the test runs-1 through 34.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

The model is instailed in the tunnel and the con-
tfol panel dial gauge (connected between settling
chamber static tapping and atmosphere) is cali-
brated for tunnel dynamic pressure over the range
of velocities of the experiment. A pitot tube is
used for the purpose which is removed after cali-
brations.

The calibration signals are put on each of the

- record channels - 1V signal on pressure channels

and set calibration signal ( = 120 M strains),
provided in the strain gauge bridge; on the strain
channels.

The model at a selected angular position and the
traverse at an identical angular position are
clamped in position in the wind tunnel.

The pressure transducer calibrations (Appendix VIII)
and strain gauge calibrations are then checked.
The test velocity is attained by adjusting the fan
spéed, the dynamic pressure being read out on a
betz manometer which is connected in parallel with
the dial gauge,

When steady state is reached, the required bias
(see Section 8.4.3) on pressure signals is applied
by a choice of the RC centre fréquencies and the
signals are recorded over a predetermined period.
Steps (5) and (6) are repeated for all test‘speeds
for a given model.

The wind tunnel is then stopped and "transducer

sensitivities" are checked.
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(9 Steps (3)'to (8) are repeated for other angular
positions'at 159 increment of angles in the
ihtervai 0° - 180°. | | |
The_proCedﬁre is repeated for all the five models.
Throughout the experiment signals were monifored
on oscilloscopes. The sensitivity levels were.ﬁhecked
using a digital'BC voltmeter. Ambient conditions at the
beginning and end of the experiments were also noted déwn.

As a first step in the analysis, the analogue rms
levels were obtained from a level recorder at a later time.
10 seconds averaging time and 15 ips replay speéd were used.
The low frequency limit was 1 Haza. From this study, runs
were selected for further digital analysis.

The ADC sétfings were adjusted corresponding ﬁo a
total time T of 1 sec. and frequency resolution of 1 Hz
for dual channel digitization. 20 blocks of size 1024
samples were recorded on a digital magnetic tape with the
énalogue replay at the same speed (7% ips) as record speed.
The rest of the analysis followed systematically standard

digital signal analysis procedures (Appendix VII).

8.9 Limitations.
| Apart from the possible human errors, the experi-
mentation and analyses are subject to the following limit-
ations. (A more complete treatment is given in Appendiﬁ'Ixﬁ)
(1) The signals are not corrected for instrument noise
levels since the signal to noise ratios were
better than 40 dB (with the exception of oscill-

- - ating shell tests).
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(2)

(3)

(4)

(5)

(6)

(7)

(8)

In general, no drift in the sensitivities of trans-

ducers was observed as a consequence of steps (4)
and (85 of Section (8.8}.

O#er-the period of test runs, the changes in
ambient conditions were observed to be small.

No corrections to account for the acoustic noise

‘levels in the wind tunnel laboratory (reverberent

field) were applied. The noise levels measured
(Appendix IX) were less than -30 dB ref 1V,

Analog analysis of 1 second averaging time héd
a maximum deviation . of £ 2 dB in some cases and
the quoted results are the mean of the rms values.

Correlations were obtained from signals from which

the DC levels were eliminated by performing a

forward and inverse FT. Correlations being real
time analyses, the unaveraged data set is a random
set. |

PSD are scaled to account for the interval centred
Haﬁning that was employed. The scale factors
obtained were based on those from the spectra of
single frequency signals of known levels at =as100
hz and a 200 hz from a sine wave generator and
proportional variances.

The values of total damping {(Structural and Aero-
dynamic) obtained from half power values are
corrected for loss of frequency resolution due té
Hanning but are not filtered to eliminate other
modes. The results are stress (strain) amplitude'

dependent as expected and are believed to be
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accurate particularly in lower modes. At higher

modes, even the "unfiltered damping" is consider-:

ably small.

= 93 -




PART C

RESULTS AND _D'ISCUSSI_ONS




9.  RESULTS AND DISCUSSION OF DETERMINISTIC ANALYSES

9.1 Introduction

In this section the results of the theoretical deter-
ministic analyses are discussed. Rotatory and inplane in-
bertias are included in. the results quoted. Axial variation
of pressures ié not considered in the combined solution -

" consistent with the wind tunnel tests. Static solutions
are not discussed since the static analysis is straight
forward. However, the solutions from single mode static

analysis have been incorporated in the combined solution.

8.2 Linear Solution

The free-linear vibration solution is obtained here
as é speciél case of the geheral solution and also to as-—
sess the‘effect of rotatory and inplane inertias. The
frequency determinant, described in Section 3.4.1, is
identical to that of Referencé (82). In'Téble 2.1 the
non~dimensional frequency A& is compared with the exact

solution of Forsberg(83)

and that of Reference (82), It
is seen that the present analysis overestimates the fre-
guency, consistent with the Ritz técﬁnique employed. . It
is observed that.the beam function provides a reasohable
approximation to the axial_displécements. The difference
‘between the present results and those of (82) are due to
fhe omission of a constant of integration'in the latter.

The effect of rotatorj and inplane inertias reduces with
iﬁcrease in radius to thickness ratio and likewise with

increase in the axial mode number m and increase in slen-—

derness ratio. The effect increases .with increase in the
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frequency. In general, while the results imprové with the
inclusion of these inertias, the overall effect on the fre-

quency is still negligible for the geometries considered.

9,3 Free Non-Linear Vibrations

Figures 9.1 to 9.4 illustrate the non-linear response
in the absence of excitation force and zero damping corres—
pdnding to the analysis described in Section 3.4.2. The

free~non-linear response forms the 'back bone' of the

forced résponse and is sufficient to describe the charéc—
teristic naturelof the non-linearity. It is clear from the
figures that the géometric non-linearity introduced in the
analysis is of hardening type wherein an increase in the
magnitude of the‘respoﬁse amplitude is associated with an

1iﬁ)%' The multi-

increase in the frequency ratio (8/a
plication factors associated with the amplitudeC| do not
1convey any special significance; these factors were arrived
at by trial and are for convenience in presentation of the
data. However, for the'mode.(m = 1, n = 1) the 'reduced
amplitude‘_([C[.l3/a3) is coincident over a large number

of slenderness ratios and radius to thickness.ratios (see
Figure 9.1.a). Also, for £he mode (2,1) the influence of
the geometry on -the reduced amplitude is negligible (see
Figure 9.2.a). Considering the absolute amplitude ]C[ '

it is clear from the Figures 9.1 and 9.2 that the influence-
of geometric non-linearity incfeases with increase in the
magnitude of sleﬁderness ratio. The influencé of radius to’

thickness ratio is negligible for the modes (1,1) and‘(2;1):

as ihdicated by Figures 9.1a and 9.2a. Figures 9.3 and 9.4
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~ show the reduced response‘UCia%h% curves with a/rmaé para-
meter. Consideration of absolute ampiitude | indicates
" that the gebmetric‘non-linearitf ' increases‘with_the.
radius to thickness ratio (shbwn by an increase in the cur-—
vature of the response plot). Figure 9.5 which 1s the So=
lution of the linear frequency determinant (Equation 3.11)
indicates £hat for the geométriés ccnsidered (i/a = 153to.
50 and . | a/h = 50 to 6005, the loweét.frequency-is in
either (1,1) or (1,2) mode.

Figure 9.6 shows typical amplitudes in varicus hodes
for a given ratio of corresponding noﬁ-dimensional fre—

quéncy and also the frequency ratio for a given amplitude

corresponding to a typical shell geoﬁétry 1/a = 20 and

é/h = 250. . Though the representatién does not provide any i
absolute measure, it'indicates that the depéndance of abe %
solute amplitude ‘C‘ tends to be identical for higher. |
values of circumferential wave numbers. Also, from the
figure it is observed that for the given geometry-h = 2
mode has the lowest frequency and that the influence of’
geometric non-linearity-is to a larger'extent inn=1

mode as indicated by a higher frequency ratio required to

achieve a given amplitude. Such a diagramatic represent-
ation can be employed in a suitable definition of the're~ ' |

‘duced amplitude: ' o ' | : | |

9.4. Fdrced Non-Linear Vibrations -

Figure 9.7 illustrates the solutionAof forced non-
- linear vibration problem | in. which the parameter is the

‘absolute value of the peak forces applied at the tip, acting
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radially inwards. It is.observed from the figure that the
effect of increase in loading is to broaden the frequenéy
range over which a given amplitude is exceeded,similar to
that in the linear case. As described eaflier,.for larger
values of frequency ratio, theoretically, the émplitude has

three possible values. In practice, however, due to the

associated damping, there occurs a 'jump' from a higher-
‘energy state (see Appendix VI, Fig. VI.1) to a lower energy
state with.the excitation frequency increasing and from a |
~ lower energy state to a higher energy state with the excit-
ation frequency decreasing. The response curves in Figure
9.7 are constructed by scolving the chafacteristic cubic for
various values bf the frequency ratio.

9.5  Natural Frequencies from Vibration Tests.

The comp.u ted natural frequencies of the shells F4

and F5, obtained from the solution of freguency determinant
(see Section 3.4.1), are given in Table 9.2. It ig clear
from the Table that the lowest frequency of the shell F4 is
in mode (1,1) and that of the shell F5 is in mode (1,2).

This result can also be interpolated from the frequency
envelope given in Figure 9.5 (which in fact is the sdlﬁtion
of the same frequency determinant). Table 9.3 compares the
theoretical results with the measured resonance frequencies.
The measured values of the frequencies show better agreement
-at higher frequencies than at lower frequencies (contrary

to the expectations). This may be, probably, due to the fact
that the method of aLaJnPbgyat the base does not ensure 100%
‘fixity; the shell being thin the effect of imperfect boundary

condition diminishes as the frequency increases.  The frequencies
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obtained from the wind tunnel tests are generally lower than
those from the Qibration tests. This is attributed to the
wind effects, perhaps, due to an interaction between the
vortex shedding frequencies and the structural natural fre-
quencies, rather than the 'added mass effects', - The observed
results are in close agreement with those of Reference 97
for a shell geometry 'almost' the same as that of F4. The
interchange of the méde shape for lowest freQuéncy given by
Reference 97 is, probably, becéuse the frequencies in mode.
(1,1) and (1,2) are very close and also, 1l/a for that shell
is slightly higher than 1/a for the shell F4.

9.6 Measurements of Damping

Table 9.5 gives the values of logarithmic decrement
evaluated from response decay plots. Also, the overall
damping coefficients (structural damping + aerodynamic
damping} are given,which were cobtained from the ratio of half
power values of the strain spectra +o the bandwidth,cor-
rected for the effect of single Hanning employed in the
spectral evaluation. The structural damping coefficients
~agree with those of Reference 97, in whichyshalf power method
was used on oscilloscobe traces of_thé response.

.The negative values of the aerodynamic damping.coeffi-
cients indicate the onset of the aeroelastic phen omenon
though no instability was observed (since overall damping is
still positive). In some of the intermediate modes, the
aerodynamic excitation was slightly away from the Corréspond—
ing resonanée frequency and as such the dampinglcoefficients'

are not reliable. It should be noted in this context, that
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the damping coefficients are defined by the ratio of the
band width to thé centre frequeéncy, only at the natural
- frequency; the ratio is alminimum when resonance oCcurs.
The vaiues quoted in the Tabie, consequently, are the

lowest values.
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10. RESULTS AND DISCUSSION OF OSCILLATORY PRESSURE
" AND RESPONSE MEASUREMENTS

“10.1 ] Introduction
{

in this section the experimental data are analyzed for
‘rms values. The time-average (mean) pressure distributions
are taken from other referénceé. The rms pressure distriw-
.butions quoted are obtained bj an analysis with an averag-
ing time of 1 sec., low frequency cut of 1 Hz and
‘high frequency limit of 2.5 KHz. The spectral analyses
and probabilistic analyses both give results which are de-
rived from digital analyses techniques. The relevant de-
tails are described in the following sections. The arrows
in the Figure (6.2) indicate the range of Re covered in
the study. Spectral analysis described later confirms that
the present study does not extend into the transcritical

regime.

10,2 = Mean Pressure Distribution

In the present investigations the mean pressures were
not studied for reasons described below. A large quantity
of reliable information covering a whole range of Re is
readily available 6n the subject. Also,better resolution
of the oscillatory pressures implies the eliminaticn of the
mean pressures from the measurements. Further, the level
recorder is limited by a low fregquency cut of 2 Hz and the
digital spectral analysis requires that the mean values are
Zero. |

Figure (6.1) shows the distribution of mean pressure

coefficient Cp (53) based on Gould's work (52). It is seen
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- from fhe figure that the_Cp values are numerically lower
for finite aspect ratio rigid cylinders than for a:
'2-D cylinder because of 3-D (tip) effecﬁs. This is clearly
iliusérated in Figure (10.1) wherein the axial variation of
-Cp is.depicted.(53).' Likewise the tiﬁ effects are
expected to decrease the magnitude of the oscillatory pres-

sures (see Plate 10.71) due to the presence of tip vortices,

though detailed pressure measurements were not conducted.

10.3 Rigid '"Two Dimensional! Cylinder Surface Pressures

Table (10.1) lists the cylinder gecometries and the
test runs conducted at various Reynolds numbers. Figure
(10.2) shows the distribution of RMS pressure coefficient.

T .
S ra 2, ]%_1__ 2 _ 5 .
C, = L7 Jp(t)dt /5§ Vg atRe=1.63 x 107 in

(60) at Re = 0.4 x 105.

comparison with the results of Surry
The 2-D effect was achieved in the present case by fixing -

a top end plate on the shell R, as described in Section

2
(8.3). Figure (10.3) depicts a typical ipressure level
record. The C;_levels are correct to j;idB ref unity. Not
withstandihg that the test conditions were different in the

two cases good agreement is seen at 'zero' turbulence. Fige-
ure (10.4) shows the C; distribution at two other Reynolds

numbers. It is clear from these figures that the magnitude
of C; decreases with increase in Reynolds'ﬁumber. Attention
is drawn to the high value of C; in the 2-D configuration
tests particularly at low Re. It is also noted that though
the aspect ratio of the cylinder is comJﬂﬁﬁtamiy small

(= 3.3) for the configuration to be of a purely two—dihena

sional nature, never the less, the flow field is uniform
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along the axié of the cylinder as will be later seen in the

correlation studies (Section 11.3).

/

I
10.4  Rigid 'Three Dimensional' Cylinder Surface Pressures

‘A large number of experiments (Runs 1-5 and.9-20) were
conducted on shells Ri’ R2 and R, in order to.bringHout
scale effects. The distribution of the pressure coeffi~
cients is shown in Figures 10.5, 10.6 and 10.7. Clearly,
from Figures 10.1 and 10.5, 'lthe C; nearer the tunnel wall
(as recorded by T3J is considerably lower than that at the
topfﬁr'the‘tWO Re(oqf+emﬂg)Comparison of Figures 10.5 and

10.6 at Re - 1.63 for the response of T, indicates that the

1
oscillatory'pressure depends on the axial position of mea-
suremeﬁt. It is also clear from the Figure (10.5) that the
present investigation shows good agreement with the results
of Reference (52). Perusal of Figﬁres 10.6 and 10.7 1eadé

to the conclusion that for small aspect ratios, the C; is
very much dependent on the axial position of measurement

and on the Reynolds number and exhiblts no ‘lregular
pattern., However, it is clear from Figure (10.8) that for
large aspect ratios, the variation of C; with Re is less
drastic at any given circumferential position. This sug-
gests that excepting in the vicinity of the tip and the base,
a mean C; can be empipyed which is independént of the

Reynolds number for the purposes of Fourier series repre-

sentation. .

- 10.5 Flexible 'Three Dimensional' Shell Surface Pressures

Great care had to be exercised to measure the surface

- 102 =~




pressures on a_flexibié cylinder though the transducer ac-—
_celeration sensitivity is within acceptable limits (see
Appenqu VIII). Comparison of Figures 10.5, 10;9:and 10,10
indicates that the C; values are generélly higherion'the
flexible shells. Clearly there are no apparent accelera-
tion induced signals:in the pressure measurements ohlthe
shell F4 (see Figure 10.9) though high vaiues of C; are
experienced in the vicinity of 165° and 180° ° angles. A
consistent distribution pattern is exhibitted in the'Figure
(10.10) for the shell F5,excepting in the vicinity of 45°
and 135o incidence at lower values of Re (see also Section
- 11.5). These pressure riéés are believed to be due to
févourable phasing of the pressure and motion of the transducers,
possibly iniﬁway mode for the shell F4'andf§valling mode
for the shell F5, rather than acceleration sensitivity for
reasons stated elsewhere. The general consistent pattern

.
of distribution of Cp apparent from both the Filgures 10.%9

and 10.10 suggests that a mean distribution can,prdbablyy

be employed to describe the aerodynamic admittance mathe-

matically. .

10.6 Aerodynamic Admittance Function for Oscillatory Pressures

Table 10.2 gives the rms fluctuating preséure coeffi-
cients round rigid cylinders for typical runs. A tﬁirteen
term Fourier Series expansion‘for this data was fitted and
the coefficients are given iﬁ the Table 10.3. The coeffi-
cient a, representing the uniform distribution round the
cylindér is predominant. No special significance to this
need be attached, since, the distribution represents rms
values, which are always\poSitive. Thé coefficients
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générally‘decay with inéreaéing nﬁmber'of terms. A smaller
number tefms iﬁ‘the expansion can be justifiea'for certain
_ distr%bﬁtions. |
%he rms fiuctuating pressure coefficients, evaluated
as a graphical mean, are given in the Table'iO.é for runs
-9 ﬁo 20 and runs 21 to 34 and thelcorresponding Fourier

coefficients are given in the Table 10.5. These coeffici-

ents of the describing function are later used in the

“‘random response analysis.,

10.7 The Coefficients of Fluctuaﬁinq Lift and Drag

- The rms values of the fluctuating lift and drag
,coefficienﬁs Can.be easily -derived by integratihg the
iﬁﬂine and‘transverse components,of-cg respéctively.

_ N _
Thus, the rms drag coefficient.CD is given by

‘ 21 .
* . * ' .

CD = f Cp . cos e de
O.
21

C o= p, COs ne cos o de
0 '
. ) ’

&

is given by

and the rms lift coefficient Cr,
n
* ¥ . :
¢, =.J[. Cp sin e de
: 0
LA :
= Jf Py cos ne sin e de
0 -
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N
or C = = 2. Z_E;!/(nz—l)
| n=0,2,4---

Tt is noted that the 1ift coefficient is over estimated
due‘to the assumption of alternate vortex shedding. The
iocation of the centre of pressure (rms) can be also
evaluaﬁed eaéily. Table 10.6 gives typical values of the
lift and drag coefficients and the corresponding location
of the centre of oscillatory pressure. From the Table,
it is seen that there is a wide variaticon in the location
of oscillatory C.P. (118° to.1480). It is generally
expected that C£ will be iess than C; for cylinders and
that the C.P. will be in the vicinity of 135°. With the
exceptidn of runs 3, 4, and 8, CL < C; and the C.P. is
located such that there is a greater tendency for the
shell to oscillate with an ovalling (mode 1,2) axié at
1350,.rather than with the axis in line. Such a conclu-
sion will be, however, erronfols unless supported by pressure

correlation studies.
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11. RESULTS AND DISCUSSION OF SPECTRAL ANALYSES
oy

11.1 Introduction
f . ‘
In this section typlcal, measured pressure and response’

data are analyzed using digital spectral analysis tech-

niques. Continuous analogue data (4 min duration at 7% ips
record speed) are digitized and stored on a digital magnetic
tape. A block size of N = 1024 samﬁles with a frequency
resolution of af = 1 Hz and a total time T = 1 sec. are
employed in general. A Hewlett-Packard HP 5451 A Fourier
Analyser system was employed for the analyses described

here.

11.2 Pressure Spectra (Rigid Cvylinders)

Typical pressure power spectra for selected cases are
shown in Figures (11.1 to 11.4). The spectra are corrected
avérages of 10 sét estimates Subject to a'singlelHanning.
Both the ordinate and abscissa in Figures 11.1 to 11.3 are
in log scales. It is clear from Figure (11.1) for the
rigid '2-D' cylinder R2,at Re = 2.26 x 10° (Run No.7), that
there exists predominant vortex shedding with a Stﬁouhél
number of 0.18. In the region of attached flow of 0° to
60° angular position the highér harmonics are not apparent.
At higher angles however, the first and second harmonic of
the Strouhal frequency also are discernibie. The factor-%
in the ordinate description is because the spéctrum obtain=-
ed from the computer is only one half of the symmetric spec-
trum.

The spectra at various angular positions'for the rigid

3=D cylinder R3, at the same Re = 2.26 x 105 (Run No.4},at
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two axial positions corresponding to§‘= 0.965.and §== 1.75
are shown in Figures 11.2 and .11.3. It is seen that

the St#ouhél number is 0.17. In contrast with Figure (11.1)
the hiéher harmonics are not clearly ildentifiable and tﬁe.
magnitude of the squared pressure is two ofderé of magnitude
lower in the predominant frequencies compared with '2-D’
results. In 3~D case there is a tendency for a more uniform
distribution over the frequency band as also broadening of
the peak frequency. It should be noted that the vortex in§
fluence has propagated up stream including the vicinity of
the stagnation line,in contrast with the observations of

(60) wherein no such Strouhal peak was identified at

. Surry
this position. This broadening of the spgctra in the 3-D
case suggests that the wind locad in.a steady wind should
also be tfeated as a random load,provided it is confirmed

. by a probability distribution function {see Section 11.4).
In all these cases the spectra were plotted in linear scaie
alsp,to identify the frequency band as a check against
aliasing. FPigure (11.4) represents these spectra for the

5 (Run No., 19)., It is

rigid cylinder R3 at a Re = 1.9 x 10
obsegved from the figure that, excepting at the stagnation
point, the:e‘is virtually ﬁo spectral energy at higher fre-
quencies implying that there is no apparent need for filt-

ering high freqﬁencies. The analyses up to a maximum fre-

guency of 512 Hz are generally adequate,

11.3 Correlation Studies

The auto—-correlations were obtained as real time func-

tions for an effective period of 0.5 sec. The mean value
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was eliminated from the‘signai by a forward and inverse
transform, clearing the zero frequency component in an
'interwediate step. Wrap-around errors were eliminated as
expléined in Appendix VII. The cross correlations were
normalized with respect to the'product.of zero time delay
auto-correlations. Typical symmeﬁric correlograms and
correlation coefficients of pressures are illustfated in
Figures 11.5 to 11,13. ‘It is seen from Figures 11.5 and
11.6 for a '2-D' cylinder that there is strong influence

of vortex shedding as seen by the cosine form of the curves.
Higher frequencies also are preseht at the stagnétion polint
due to free stream turbulence, at 105° due fo turbulent
separation and at 180° due to wake turbulence caused by
vortices. In general, the correlograms éxhibit a slow de-
cay indicating that the physical process is a combination
of sine-random variation (see Figure 6.3), Figure (11.7)
indicates the axial cross—correlation of pressures at vari-
ous angles and Figure (11.8) gives the axial correlations
coefficient (zero time delay cross correlation). In general,
the first zero crossing and the peaks are approximately at
the corresponding time delays for various angles (excepting
600, 75° and 180°) indicating that the flow field is inde-
pendent of the axial location on.the cylinder. At 1050,
probably due to separation effects the correlations are not
good.

Figures 11.9 and 11.10 display the auto-correlations
at the same Re for the 3-D configuration. It is seen that.
though the influence of vortex shedding is still present
there are higher frequencies throughout the flow field.
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Oniy at 45° where the boundary layer is purely laminar and
the free stream turbulencé influence is negligible, is the
vortex influenCe_strikingly'bredominant. From Figure (11.11)
it céﬁ be said thét the flow field has no varlation in the
direction of cylinder axis. In conjunction Qith Figure
(11.12), poor cross-correlations are observed at angular

positions greater than 45°,  This implies that the flow

field is highly turbuleﬂt at these positions due to the in-
fluence of tip vortices in the BfD case,

Figure (11.13) illustrates the auto-correlations for
the cylinder R3 (Run No. 19). Here again the behaviour is
somewhat erratic and the presencé of higher frequencies also
can be observed. It can be concluded that in this case the
vortex shedding is not stable. These discussions agree with
the conclusions drawn from the spectral study but also pro-

vide more information about the flow field.

i1.4 Probability Description

The pfobability density function provides information
about the mean values and peak excursions in addition to
establishing the nature of a random process. Figures 11.14
to 11.16 illustrate the density of occumences of a value of
C . The analysis was carried out on 'raw' signals. Come
paring with Figure (6.4) one can deduce that the spikes in
the density function indicate the presenée of higher fre-
gquencies. However, the mean curve may be considered as a
narrdwlband random process, If the observation time and
the number of‘samples are large, the process could be ap-
proachéd_as purely random with Gaussian distribution. Fig-

‘ure (11.14) shows the probability density functions of pres-
T 109 - |
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sures at various angular position fof Run No.7. The mean
value of the signals is séen to be zero as indicated by
 the s?mmetfy about the ordinate at zero.
gimilar observations can be inferred from Figure
(11.15) for Run No. 7 and Figure (11;16} forIRun No, 19.
As 1in the case of the rms values previously considered,

the peak values also are smaller in the 3«D case compared

to the 2-D case.. The scale of the abscissa in Figure (16)
is,however;arbitréry.T%e integral of the probability den-
sitf whicﬁ yields the probability distribution is illu-
strated in Figure {(11.17) for Run No.19. It is concluded
that the distribution function can bhe considered as Gaussian
provided that the observation time is large,as would be the
case in wind effects on ground structures.

11,5 Flexible Shell Analysis

Extensive experiments. were conducted on the flexible
shells F4 and F5 to establish the (wind) force-response
characteristics., The complexity of the experimental study,.
inveolving multimode response, dan be seen in that there are
a number of critical velocities. So also, there are many
possible locations on the shell at which the strain-or the
displacement response is a maximum, depending on the mode
of oscillation. Ideally, critical velocities should be
ésfablished from simple, qualitétive tests in the wind
tunnel and the quantitative measurements should be carried
out at and in the neighbourhood. of these velocities. In
the present study, hoWever;'a number of runs were con-
dﬁcted a£ regular intervals on an arbitrary dyhamic pres—

sure scale. _
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The critical velocities measured in preliminary tests
were close to‘Ehe velocities of these runs. This will-be
clearffrom the explanation that follows.

'Pigures 11.18, 11.19 and 11.20 illustrate the progres—
sive development of strains as the test veloéity increases.
The spectra shown are normalized gpectra,so that the area
under the curve is unity. It is clear from the Figure 11.18
that shell F4 exibits a change in mode of oscillation és
the test velocity increases. The mode (1,1) is not clearly
identified due to the fact that the strain gaﬁge at
(66",600) produces little axial strain signals, the gauge
being at the top end. The next four lowest modes are
clearly discernible from these spectra. The progressive
growth of mode (2,3) at 122 Hz from runs 21 to 27 has
masked in growth of the response in (2,2) mode at 114 Hz,
with the gauge located at (66",60°).

Figures 11.19 and 11.20 indicate that the shell F5
is excited at the frequencies and modes given in Table 9.4.
Because of the location of the strain gauges the response
at 70 Hz is missing in Figure 11.19 and two other modes can
not be identified in Figure 20. Tt is clear that the
excitation is at different natural frequencies as the test
velocity varies, . |

| The frequency-weighted power spectra (flspp) of the
oscillatory pressures are given in Figure 11.21 for the
two shells F4 and FS,;at'various velocities. The meésure—
ment point was at 90° angular position to the free stream
direction. The arrows indicate the Strouhal‘(vortex
shedding)_frequenéy. Due to rather an unfortunate choice
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of the location of the ﬁransdﬁcer, the lockinguin_phenoménon
is not clearly bfought out, since ét this 1dcation'dﬁe to
lamin#r sepération, the.VOrtex frequency is masked in the
turbulent pressure signals. The arrows in the figures

| indicaté the Strouhal frequencies. The response.of thé

. transducer to the natural frequencies of the shell is
‘predominant at certain velocities at.this loéation (90°)

as shown by the peaks in the sﬁéctra.

The weighted power spectra of the.strains_given in-
the Figures 11.22,'11.23 and 11.24 convey essentially the
same information;as wés discussed with respect to the
Figures 11.18, 11.20'and 11.19 respecti&ely.‘ Iin thése o
- fiqures, the non-dimensionaiizing factor is the square of.
the dynamic pressure. Frequency-weighting brings out
charaeteristic higher frequencies which are otherﬁise lost
in the noise. The various modes and the corresponding
'frequehcies have been identified and marked on these figures.

Figures 11.25, 11.26, 11.27 and 11.28 indicate the
rms values of the fluctuating strains at various angular
positions. Comparison éf Figures 11.25 and 11,26 for the
shell F4 and Figures 11.27 and 11,28 for the shell F5
indiéate that the‘breathing mode stréins are more critical
than the sway mode stfains, for these geometries.

11.6 Results of Random Response Analysis

The resbonse to whiEe‘noise exclitation, evaluated.for
unit vaiue of the noh;dimensionai coefficient
(a/h) (1~ v?)(a/l)(q/E) (see Equation 5.15), wheré'q iS '
the dynamié pressure, is shown in the FPigures 11,29, 11. 30
and 11.31. . These results were obtained from. the program
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RANDOM. Figufe 11.29 illuStrates.the-strain power spectra
for‘three values of the structural damping coefficient, i
for th-shéll F4 at a lOcationr(GS",GOO). For simplicity,
the eéfect‘of damping is shown only at the structural
pnatural freQuencies. At the other‘points on'the graph,
£he spectral.vélues very nearly coincide. Comparison of
the'Figﬁrés 11.22 and 11.29 indicates that the results
of the theoretical ahalfsis closely follow those of the
experiments. Unfortunately, it is difficult to compare
. thé‘exact'magnitudes since the evaluated input_spectra in
Figure 11.21 are not representative of the total pressure
field. It can be seen, however, that the above non-dimen-
sional constant yields a factor_of (3.45 x 10—9/mhjof water)
for the shell F4land'multiplicatibn of smoothed spectra in
FPigure 11.21 by § times the.spectra in Figure.11.29 yields
the spectra of magnitude comparable fo those in Figure {1222.
Figures 11.30 and 11.31 illustrate the reduced strain
spectra computed for the shell F5 at the three 1o¢ations
(2",0%), (66",45°) and (66",09). Comparison of the computed
épéctra for the first two locations_wifh the measured
spectra given in the Figures 11.24 and 11.23 repsectively,
brings out the ability of the present multimode analysis
to evaluate the strain levels at any given'location._ The
magnitudes of'the computed strain speétra,in conjunction
with Figure 11.21 and the new non-dimensional constant
(5.22 x 10"9/mm of water) for the shell FS,compare.well
with the measured spectra. The effect of structural damping
is illustrated in the figures at the s?ectral peaks corres-
ponding to the néturai frequencies of the shell F5. It is
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observed that the éffect of increasing g from 0.01 to 0.03
is to reduce the spectral-peaks by one order of magnitude.
¢The output/input relations evaluated from the mea-
sured:signals at arbitrary locations are illustrated in
thé Figures 11.32, 11.33 and 11. 34, However; since the

input 1s not representative of the total pressure field,

which is causing the excitation, the figures should be

treated to be as qualitative in nature. It is ﬁoted that
the‘response characteristic of the multi-mode type are
brought out in these figures also, with the peaks clearly
located at the natural frequencles of the shells.

11.7  Notes on the Scales of the Power Spectra

and Run Numbers

The ordinates of the power spectra in the Figures 11.1
-~ to 11.3 and 11.21 to 11.24 are such that for any intermediate

point a linear interpolation is to be.carried out between
each multiples of 10. The number read out should be multi-
plied by 2 so that the result is of the form f. spp/q2 or
£ See,as the case may be. This is as a consequence of re-
placing the dB ordinates in the figures by multiples of
201 e.g. 107° stands for 10 log 10~2 = -40dB. The ordinates
in the Figures 11.22 to 11.31 should be interpolated log-
arithmically. The abscissa in all these figures are in log
scale. |

Throughout the text, the data are identified by the

run number of the tests. For convenience, the conditions

of tests at these runs are listed separately in the Table 11.1.
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12 - CONCLUSIONS

The linear deterministic analysis indicates that the

beam ﬁunctions provide reasonably accurate description of

] _
the displacements, in evaluating the natural frequencies.

The non-linear analysis incofporating large deformation
leads to a "hardening" effect. The energy method formu-

lation, in the form that is adapted,is elegant in that the

ektentionS"tdAthé—analy5és,of single-mode—static-tollapse,

non-linear responsé in the presence structural damping and
probabilistic-deterministic fatigue inclusive of mean or
initial defofmations,can be e?sily carried out as have.
been developed here. |

The multimode random response analysis technique
developed from energy methods, gives results which show
good agreement with the response measurements carried out
in the wind tunnel tests. Increase in damping coefficient
from 0.01 to 0.03 will reduce the strain (power) spectral
peaks to one tenth the original peak.

The oscilllatory pressure measurements indicate that
these pressures are larger in magnitude in 2-D configuration
than in the 3D configuration and the energy in the latter
extends over higher frequencies.' It is also observed that
the harmonics of the Strouhal frequency.are ideﬁtified in
the pressure spéctra; In the Re region of (1.6 to

5, the vortex shedding is unsteady indicating'that

2.85)x 10
a_probabilistic analysis needs to be followed,if the obser-
vation times are large; this will be the case in wind effects
on earth—bornq%tructures where the Re number extends to the

transcritical regime and beyond.

R




-The study of oscillatory pressures on flexible shells .
(first of its kind to the author's knowledge) indicates
‘that.qhese pressures are larger in'magnitude, than those
on ri&id cylindefs. Due to the complexity and the cost.Of
_instrumentation, a more extensive study.invoiving space~
time correlations than attempted heré will, probably,

be
notAjustified. It is observed from the experiments that

there 1s locking-in pheﬁbmenmlover a range of velocities,
“at each.natural frequency of the structure. Also, the
strains in the breathing modes are more severe than in the
sway nodes. |

There is a need for further work, in the measurement
of pressures on full scale structures cover long periods of
time, such that the statistical methods of evaluating wind
loads, which are at present based on velocity méasurements,
can be applied with confidence. The current codes of
practice on wind loading should be modified to incorporate

~dynamic effects to a greater detail.
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APPENDIX T.

STRAIN DIS?LACEMENT RELATIONS FOR A GENERAL SHELL.
'f_Expressions are dérived here for the strain-displace-
ment felations purely from a consideration of the geometry,
for a cylindrical shell in cylindrical coordinates. The
following assumptions are made here though in the derivation
at this stage not all of them are used:
(1) The thickness of . the shell is small compared with the
radius of curvature of the middle surface of the shell.
(2) _Displacemenﬁs,-not necessarily strains, are large so
that the strain~displacement relations are non-linear,
this non-linearity being proportional to the consequent
moderate rotétions corresponding to the radial dis-
placements,
(3} The transverse normal stress is small compared with the
other normal stress components and,may be neglected.
(4) Normals to the median surface before deformation remain
so after deformation and underge no extension.

These are essentially the asSumptioﬁsrof Love's Pirst
Approximétion theory with the exception of assumption (2)
where second.order terms are now included. |

The displacements of a point 0 (see Figure 2.3) in the
median plane are given by u, v and w corresponding to a de-
formed state of the shell. The displacements of another‘point
A at a distance z from the medién surface on the normal at 0

are given by




a + =2 Zz
v = v - —
A a a we ?
» w 1
A — W .

In accordance with the assumption (2) the median surface

strains are

1 2
€y = U, + E-{wx b,
v w2
S W 1 e
oo = & * B o+ 2i-3-)
oo a a 2 a2
u W, W
= = v + =) x “a
xe x = *i—%x—} 2
Expressions 1, 2 are identical to those of Evensen(31}-

The strains at a point A can be evalﬁated by substituting

the displacements (1) into the expressions (2) for strains
' - . : 1 » 1 5 )

and by replacing the operator 3 56 by =iz 55

This results in

1 2

Cxx = Uy = Z Vigy + 'é'{wx}

. o 2
c = -—2.— < X w'.'.g.'.-_‘.!... + .}.{ e 2}

ee ~ a ala+z) ©8 a+z 71 (a+z)
and
u. Wy W
) a+2 z z X " .

€xe = T3z ¥ | vy - §+ 5% wxe_+ { a+z J

3
These expressionfofnlthe basis for the non-linear analysis
developed in the text. The terms in the chain brackets are
the non-linear terms arising due to moderate rotétions in
accordance with the assumption (2) and the second and higher

order terms in the derivatives of u and v have been ignoréd.
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APPENDIX TT.

GENERAL EXPRESSION FOR THE WORK POTENTIAL.

Hére, a general expression for the work done is devel-
oped considering.a quasi-steédy state of the surface tractions.
For the purpose, an area element adedx on the surface of the
shell is considered. Under the thin shell assumption no dis-
tinction is drawn between the outer surface and median surface
of the shell. Due to a displacement state u, v and w the
dimensions of this medianrsﬁrface element would change to
(1 + u, ) dx and (1 + é?) ade (Figure II.1). The projected

areas in the cdordinate directions are

X: - ad g d x (1+ux) w, — -—adedx w,
: v W w
y:  adedx (1+-—§-} (—f-§--+"-§) =adedx (-g - -»-é?-)
| ve | W | ve W
z: adedx (1+u,) (l+z) (1+3)ﬁ= adedx (1+ux+??+'5)
1

The work done by external distributed load pacting radially

inwards is

é -pw adedx 2

wsteady

The incremental work done due to the shell motion is

v

W
Vv s a w
ine x U+ (G -7 v (u vz +3) wladedx

OW, = -B{-w

.The total work done gver the shell volume is

2 w
w..—-..'{ J -pa[w+%{—wx‘u+§—-—§-v+uxw
0 0
v 2
+ 7? w o+ %; } Jdaed=x




or
1 2” ' 1 A 2
w..='-as S pL w+§-{—‘%—-2 < +~g——+uxw-—-uwx}3dxde
0 0 |
4
since
2mn v, 2n 211
J‘ -a—wde = vw|0-f0 vV Vg de
0 .

]
|
Sy
<
£
0,
Q

In the derivations given here no assumption has been
made as to the load distribution function except that the
load is assumed to act radially inwards and the rotations are

small so that the products of rotations are negligible.
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APPENDIX ITII.

CLAMPED-FREE BEAM FUNCTION.

The beam function and its properties (84) for clamped-
free boundary conditions are given below: The beam function

- satisfies the differential equation,

4 & i L

d”®m 4 v :

= p-d._ - or ® = ¢ 1
ax4 omTm , m m : E
and the orthogonality conditions,
: 1 ' ‘ 1 " " ‘
1 1 - _ -
1 J Pr &g dx = 'II ¢, q)s dx = CSrs ) 2
where & is the Kronecker delta.

rs

The characteristic function and its derivatives are

¢h(x) = cosh p, x - cos Pp X = S (sinh Pp x - sin Pr x)_
t ) : )
q%(x) = %m Qé%ﬂ = sinh p, x + sin p, x - ¢y (cosh ppx-—cos PpX)
.n A
q%hd = 15 d ?m = cosh ppx + cos pyx - cp(sinh pyx + sin P X)
p dx ' .
m
“an 3 .
P (x) = 33 d (2m = sinh p x - sin p;x - cp(cosh ppx + cos ppX)}
: Py, dx :
3
The boundary values are
. 1 " e
D (0) = G (0) =@ (1) = P,(2) =0 - 4
The values of Pp and ¢, for the mode m are given by the
transcendental equations
cos pml qoshjpml + 1 =0 . - ' 5




sinh pml - sin Ppt
=

cosh pol + cos p.l _  '| | - 6
‘Table ;11.1 . gives the values of p_ and ¢, for

.".'5‘
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APPENDIX TIV.

EVALUATION OF INTEGRALS.

‘The 1ntegrals 11 ,Ip «seeecs.s Ig which involve
beam functlon have been evaluated using the following
procedure and the orthogonallty propertles.

- Considering the integral

1 ‘ .
I = j cos({p x)dx ' | 1
0 .
if X = 1x
ax = 1d3x 2
. 4
then, I = 1. f . cos (p 1l. x} d'x
‘ -1 o _
I = 1/1 =f cos (pl. x) d ":-c'_ ' 3
0.

A change of variable 31m11ar1y can’ be used to deflne the

non-dimensional 1ntegrals I4 to Ig.

Now, _
. 111 —
Ij_ = f (D q) d x
0 ‘
is written as
1 '. ) n ) _
. o 0 )

omitting bar (=) here and henceforth in this section.

- 136 -




Iiiz.j M’"éx o o

Integrating by parts,

' -1 1 2 2 ' ‘
Ll G¢/p 3 - (¢ ax 5
| - 0 0 -
| 1 1 .
. n ttt .
Also, Iy = [ (jqxhﬂcp'] - J (Jpax ) p1 (¢ ) dx
| 0 0 G
From III.i;
Integrating on both Sides,
TrE ‘ : l
pl :
Substituting (7) in (6)
' 1 -1 ' '
Fiy " | |ll2
b1 0 ' ‘ .
Adding 5 and 8, from III.3,
Ip= (ky+kp)/2 - [ (A% + 8% dx 9
: 0
. . 1 |
where k4 = [ oo /pl ] | ’
0
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ky=L® & /p1 ] ,

0
‘A = sinh px = ¢ cosh px
B = sin px + ¢ cos pPX .
1 L 2% 2y ; 2
«e I, = =— 2(1-c“)sin pl-2(l+c”)cos pl sinh pl-4 plc
4 pl _
10
Now, from (5),
T2 = k1 -1
From (9),
. ) 1
LI = kg-x)/2 ¢ [0 A%+ %) ax 11
0
Hence
I, = %5—-E—4c - 2c¢ (cosh 2pl + cos 2pl) - (1+c2) sin 2pl
pl S

~(1~c?)sin 2pl —(1+c?)sinh pl cos pl +(1~c2)cosh pl sin pl]

12
The integrals
1 1
4
I, = f (o 1% ax 13
0
1
I4=J ((9)4dx 14
0




and 1 . | ‘
15 = ()% d x | . 15
' 0
héve been evaluated numerically uding a Simpson rule
routine with self adjusting step léngtﬁ in double precision
" on the ICL 1904 A computer. It is the evaluatipn of these

integrals that takes a 1arge computational time even in

single precision due to the oscillatory nature of the
function but these are needed to be evaluated only once. |

The following integrals Ig are met with in the work potential

for various cases:

Ig = &1 | for point load, 16 a
Is = 1 i for line load 16 b

1 .
g = j ¢ dx = 2ca for distributed load.

0 M - 16 ¢

The integral
1 .
v [ )
0

can only be evaluated numerically. These values of integrals
for the mode numbers m = 1 to S ,I; to I, are given in the
Table IV.1l.
The other integrals

1 1 5 :

n
Jllq)zdx =J(l) dx = 1 17
0 ' 0 ' _ :

also are met within the analysis and follow from orthogonality
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properties.

The trigonometric integrals involved are listed

'below:
T 21 ' .
1 f coszcot dt = I j coszcot dews = 1 18
ra 2Ti 2
0

2m 20 _ _
J cos? ne de = j sin® ne de =T . 18
0 0 _ & ‘

2T 21 2 27
j cos3ne de =‘f sin3ne de‘=J sin e coszede =f Ccos e sinzecb=0
0 o . 0 0

- : 20

27 2m .
j cos4ne de =J sin4 ne de = éﬂ 21
0 0 4

21 :

J' cos2 ne sin2 ne de = I ' ‘ 22

The values of the following integrals for various cases are

given in'the Table IV.2:

| 21
(i) J cos ie cos je cos ne de 23
0
21
(ii) J cos ie sin je sin ne de 24
0 ‘
L 20 _
(iii) j cos ne cos je cos ne de 25
- 0




21T
(iv) / sin ie sin je cos ne de ' 26
o .




APPENDIX WV

STATIC STABILITY CCNSIDERATIONS

Analogous to the dynamic analysis outlined in
Section 3, a non-linear static analysis is‘invéstigated
here. The displacements are written in single mode form
'énd the coupling between the modes is neglected. Essen-
tially,'the non-linear dynamic anélysis reduces to the
non-linear static one if the frequency A is put to zero.

The assumed displacements are therefore written as

uw/l = A ¢'(x) cos ne
v/ = B @® (x) sin ne
'.w/l = C @(x) cos ne ' 1;

Minimization of the total potential .. with respect to A,

B and C using Ritz procedure yields

U11 A+ U12 B + U13 C=20

U21 A+ U22 B + U23 C =0

U31 A+ U32 B + U33 C + U34 C3 - W3O = 0 2.
'whe¥e U,, etc., afe given by the Equations (3.5). The

11
‘Equations (2) are identical to the Equations (3.4) with

A = 0. Elimination of A and B yields a cubic in C of the

form {(similar to Equation (3,16)),

3

Ky ek, CeKy=0, ' 3,
with Ky = Uy, e}
Ky = Upjg $y + Upy Sy + Uz
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and KO = - w30

wﬁere‘é are defined in Section B‘provided that aij = Uij“
In‘th% present case K3 is always positive and the bifur-
~catioh point'which'corresponds to static collapse (in
single mode) is given by that value.df the impressed wind
pressure for which

3 | 27 2

K1+TKO=O,. 4,

where the mean wind‘pressure is éxpressed in a Fourier.
series expansione. Thé shell is statically stable for all
those values external wind load for which the LHS of
Equation (4) is positive. Though, thiS‘ahalysis is a crude
maﬁhemaﬁiéal'model, it is very useful in selecting the modal

cembination for a refined statiC'collapse analysis.
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APPENDIX VI

"INFLUENCE OF STRUCTURAL DAMPING

 ! The analysié of non-linear vibrations with damping
is m;re difficult due to the introdﬁction of another un-—
known, namely the phése of the response, in each of the
assumed modes. The stfucturél damping model provides a

useful concept which can be easily incorporated iﬁ:a'modi_

fication of the‘present analysis. Since the structural
damping coefficient is proportional to the diéplacement,

it is clear that the energy dissipation is indeed.propo:—
tional to the strain eﬁergy. Also, non~linearity in
stfain—diSplacement relations implies noﬁulinear structural
damping force but the damping coefficient g is linear.
Application of analyéis technique similar to that in

Section (3) yields the three characteristic equations

B + a..

agq A+ 2y, 13C=0
asq A+ 259 B + 353 C=20
Bo. A+ 80, B 4 a,, C 4 a,, Co + W . 0 1
31 '32 33 34 30 e
where - aij_= Uij ( 1+ 1g} - Tij i, j =1, 2 and 3
and ag, = Uz,
with Wy, defined in the Equations (3.7).

In the above equations the arbitrary constants A,
B and C in the assumed displacements (3.1) are complex.

Elimination of A and B in terms of C results in the cubic
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, ; - .
K3 c” o+ K1 C + KO = 0 | : | 2e

where K3, K1 and KO also are complex.
The above equation can be solved numerically using
Newton-Raphson iteration technique. Unless the assumed

initial root is sufficiently close to an actual root the

convergence is not guaranteed. An iteration technique is

developed here based on the physics of the problem namely
the phase and amplitudé relations. An approximate method
of solution making use of these relations but different

from the present is cited in Reference (97). Thus writing

K,

5 ; g j = 0, 1 and 3

i
el
+

frte
Ko

and Cc = x4+ iy

Equation (2) reduces to two coupled real algebraic
cublc equations in x and y, on putting real and imaginary

-parts separately to zero, of the form:

F(x,y) = 0

and G (X, YJ = Oo : 3.

The real roots of Equations (3) are such that the

amplitude
¢ = Jx% y2-
and the phase
e =  tan "l () 4.

From physical considerations, © = 0 when &= 0 which

- 145 - : | IR




implies 'y = 0 and the aﬁplitude is givén by x. Foraneigh~
bouring point which has a finite value of & , the phase is
.nearl§ Zero anﬁ the approximate amplitude is given by X
from the second equation with y = 0. Knowing x, Yy is
évaluated from the first equation. The procedure is re~
peated, alternately evaluating x and y till the desired
accuracy is achieved. The response curve is constructed
point by point -using this procedure. Convergence is not
satisfactory in the region where the phase is nearly-%% .
In_the subseguent regions the phase is nearly T aﬁd the
amplitude is again given predominantly by X. This pro-
cedure is found to converge with in a few iterations.
Figure (VI.1 shows a typical response plot.

In the experimental study of non-linear vibrations,
the part of response curve DE is not traced bcause of the
"jump" phenomenon. With the frequency increasing,'the
response curve is traced along ABD when a jump to a lower
energy state F occurs at D along DDlF. Withrthe frequency
decreasing, the response curve is traced along GFE when a
jump to a.higher energy state B occurs along EﬁlB and the
curve BA is followed for further décrease in frequencye.

In many experiments, where a careful continucus control of
frequency is not possible, the curve traced tends to be

ABEiEG even for increasing frequency.
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APPENDIX VII.

DIGITAL SPECTRAL ANALYSIS TECHNIQUES.

: f .The digital-analysis_techniques are now well estab-
1ishe& and special purpose computers for spéctral analysis
aré commercially available. ©One such is the Fourier
Anaiyzer HP 5451 A and was extensively used throughout this
work; The objective here is to recapitulate the method of
analysis rather than to propose any new technique. The
Fourlier analyzer software comprises of a fast Fourier trans-
form which utilises the fact that the sampling is at uniform
intervals and that the number of samples N is an even nﬁmber.

The Fourier transform (FT) of variable x(t) could. be

written as

X (£) = f‘” x(t) oMY 4 | 1
o
_ For digital operations, the continuous function x(t) must be
replaced by a series of discrete data samples. This is
accomplished by sampling the input x(f) at certain uniform
interfalé of time at. In order to perform the above integral
Ot —~dt should be small. .Due to the physical constraints on
the analogue to digital converter (ADC), a compromise has to
be sought. As a discrete sum, the integral now is the summa-

tion,

+00
X (f) = At S x (nat) si2MEnat 2

b
N=—00

where  x{nsnt) = x,(t) is the nth sample value, the suffix D

denotes discrete function. The FT computed by this summation
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no longerlcontains accurafe maghitude and.phase ianrmatidn
at all f:eQuenciés‘contained in X (f). However, XD (£)
accurétely describes the spectrum of x(t) up to some maximum
- frequency, f .. which is dependent upon the sampling interval
& t and the number of samples N.

Due to the time limitations, the total time of
sampling T is finite such that T = N At. The discréte Fourier
transform (DFT) is thus

n-1 -i2rimafnat
Xp (maf) = at = x (nat) e 3

n=0
bnly periodic functions have such a discréte frequency spectra
and the DPT can be interpretted as a sampled Fourier series.
‘Now, to fully describe a frequency in the spectrum it is
observed that two values viz. magnitude and phase are to be
computed. As a result N time domain data define N/2 com?lex

gquantities in the frequency domain. Symbolically,

N o | |
flax = Af > | 4

~where .Af is defined as the frequency resolution. The summa<~
tion(B)isrone sided and hence the aétual linear spectra is
obtained by multiplying the above by 2 and the powerfépectra
has a factor 4.

It is observed that £ given by the Equation (4)

max
is actually the Shannon limiting frequency. . This would be
cléar from the following explanation., Shannon's sampling
theorem states that slightly more than two samples per period

are required to define uniquely a sinusoid. In sampling a
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1

time function this implies that f . &£ ~—— . In the limit

max _
1 24t

-fma = =—— 'in which it is understood that the maxinum fre-
X 2aA¢t

quency which can be accurately resolved is £ . - Af. It

follows from the sampling theorem that Af = 1 .

Since the starting point of sampling ?s in general
arbitrary, the D?T implies periodicity of the sample set
iﬁself with a period equal to the total Sampling time T
(see Figure VII.1). The DFT will then be erroneous due to
the side lobes introduced as a result of step input at the.
beginning and end of sampling. :A weighted function called
the "window" function is generally used to eiiminate_this

error introduced in digital process.

In the present analysis an interval centred Hanning

2Tt
T

VII.2). Table VII.1l gives the theoretical correction factor

is'employed {see Figure

function given by 1 1 - cos
2

on the main lobe and measured correction factor on the rms
value. It should be noted that the cofrection factor given
should be applied on the linear spectrum. On the power
spectrum, the dB corrections should be doubled and multi-
plication facter shouid be squared. .The increased side lobe
roll-off due to Hanning window enhances the resolution of
other frequencies. Though the exact values éf the primary
frequencies is coarse, with. each Hanning the statistical
uncertainty error reduces considerably (e.g. four ﬂaﬁnings
reduces this error to less than~% dB).

The finite transform introduces another error due to
limitation on the maximum frequency (Shannon limit). The-

frequency contents higher than the set maximum frequency

fold back over the maximum frequency and then over the zero
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frequency, in other words, the value at any given fregquency

oo
is Z Xy @nf_ & f). This effect is called aliasing.
he0 ax

S '. One way of elimi-
‘nating this effect is to filter the signal with an upper

frequency cut equal to f . . The other method is to make

X

frax large enough to contain all-frequenbies of .significant

levels. The latter implies larger core size. In the presént
case however, analysis up to fhax ©f 2500 Hz indicated neglig— -
ible levels of'éignal above 200 Hz. An £, of 512 Hz is

hence believed to be adequate in the ébsence of analog filter-
ing.

The DFT introduces an error called the wrap-around
errbr ih the correlations (as well as in the convolution).
This error is eliminated by adding half as many zeroé,as the
number of samples in the time domain on either side of the
samplé set and computing the correlations for this new.set
of 2 N samples. In the present case, a sample set of N values
was effectively reduced to N/4 zeros in the beginning and N/4
zerbs‘at the end with N/2 sample ;alues in the middle unaltered.
After the correlations are performed the fi;ét and last quarter
represent the +ve and -ve time delay correlation values.

| The rounding off errors introduce numerically high
valﬁes (>1 ) of coherence function at high frequencies._ This
is due to the computational procedure employed in the software,
wherein the sqtare_of the modulus of the cross spectrum is
divided by the product of the input and output power spectray
to obtain the coherence function.. The denominatof then at
higher frequencies has very IOW'véIUes of either the input or

the output as compared to the cross spectral values. The
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"bléck calibrator" in the Fourier Analyzer "masks" the
meaningful range of the coheren'ce.funcﬁtion'. This is easily-
overcome by setting the higher values of .the coherence
‘function £o zero in which case the "block calibrator™
resolves the .range of - interest to the o.ne with a scale which

could be directly used on the graph plotter.
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APPENDIX VIIT

CALIBRATiON OF PRESSURE TRANSDUCER

The low pressure tﬁansducer DISA‘fype'51 F 32 is
an ingeneous adaption of the B & K Type 4135 condenser
microphone well known in aéoustical practice. However,
the present investigation was its maiden application in
the measurement of low pressures. The transducer being a
" capacitive device7microphone—oscillator—reactance converter
was used as integral with the connecting cablés. Exténsive
calibrations were,-therefore, performed to gain confidence
in the instrumentétion. The effect of modification to.the
adapter was also established in the transducer dynamic
résponse_studies., Lateral oscillations of double-shieldéd
cable induced noise levélé of comparable order. The trans—
ducer was sensitive to some extent to accelerations perpen-—
dicular to the diaphragm. These 'nolse" levelé were estab—rl
lished in the single point-excitatioﬁ vibration tests. Tﬁe
transducer is operational at the impressed carﬁier frequency
( = SMHz) only if theltotal capacity of the system is less
than 15 pF in the high sensitivity (0.1 PF) range. Consid~
erable difficulty was eXperien¢ed in the initial stages
since in three out of three cases the double-shielded cableé
had dry joints, The transducers were hormally stdréd in a
desiccator; On drying the.tranducers ('I‘-,l and TB)'in an oven
for two hours at 80°C the sensitivity of T, increased from

1

90mv/mmH 0 to 104mv/mmH.0 and that of T, increased. from

2 2

94mv/mrH,.C to 275mv/mmH

2 2

0. The calibration tests conducted,
therefore, were in the following categories:
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- (1) static calibration
(ii) dynamic calibration
{iii) acceleration sensitivity

[

(iv) in-situ static calibration check.

(1) Static Calibration |
The calibration set up is shown in Plate‘(VIII.l)

and also in the schematic diagram (VIII.1). The pressure
transdecer is enclosed in a PVC capsule with the back
pressure connected to atmosphere through a U tube to damp
out the atmospheric flﬁctuations. The capsule pressure
was adjueted by a micro-manometer and read out on a Betz
manometer. Transducer output was indicated on a digital
voltmeter type Wier Electronics 500 MK2. Capacitance of
the system.was tuned to fhe working range in the 0.1 PP
(= 0~70 ﬁm HZO) range using the oscillator tuning capacitor.
Typical calibration plots in the full scale range 0-6V of.
the system are shown in Figure (VIII.2) and are found to
be linear within the experimental tolerance.
(ii) Dynamic Calibration .

| In tﬁe oﬁiginal (B & K) configuration the micro-
phone has a flat response in the frequency range of 0=5000Hz.
However, the adapter and the cavity between the adapter and
the shell wall were expected to produce cavity resonance
affecting the high frequency response. The transducer was
hence calibrated dynamically against a B & K " microphone.
The calibration set up is shown in Figure (VIII.3). The
transducer was fixed by means of a rubber gasket to a flat

aluminium plate of thickness same as the shell thickness.
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The standard microphone was fixed side'byVSide with the
transducer. Adoustic pressures of approximately 110 dB
'_ were impressed on the ﬁicrophones at a distance of about
48" from a loud speaker. Thelloud Speakér and the level
recorder (B & K Type 2305) were driven by a Sine-Random
generator B & K Type 1024, A typical sweep time of 16
minutes over 050 KHz was employed. Figure.(VIII.4) shows
the dynamic calibration curve , observed to be linear up

to 1500 Hz. Since the initial investigations for the
frequency spectrum did not show any significant energy
content at higher frequencies no filters wefe used to

1imit to this fregquency (1500 Hz).

(1ii)  Acceleration Sensitivity

This, as per specifications, is negligible - 88 dB/

1 g acoustic pressure level = 0.5 N/M2 = 0.051 mm of water
~at 20°C, As remarked eariier, the latéral oscillations
produced some noise levels. Also oscillations of the
transducer along with the shell, with the pressure tapping
sealed indicated very high levels so that wind-on and wind-
of £ fest cdmparisons could not be interpretted to obtain
the acceleration effecté. At the strain levels of the order
" of those in wind excitation tests, pressure transducer reé—
ponse levels in vibration tests indicated a maximum of -30dB
ref 1V in the worst case (see Figure VIII.5). This is
thought to be within experimental errors and no corrections
to the fluctuating pressures were hence applied.

(iv) In-Situ Calibration Checks

A siﬁple technique was devised to ensure that the

pressure seals were in order and no errors due to drift,
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'if any, in the_electronics Qere carried over. This con-
sisted of a three waj (T) pressure connection, one limb
ofIWhéch was connected to a Betz manometer, the other limb
held %ressﬁre tight around the transducer pressure tapping
6n the shell and the third to impress any disired pressufe.
' The transducer response waé indicated on a digital volt~
meter. In general no drift was observed and pressure
leakage was detected in the transducer in only one experi-—
mént which was then set right.and the experiment itsélf

was repeated.
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APPENDTX TX

ERROR ANALYSIS

|

Fxperimental measurements of fluctuating pressures,
‘are subject to the following sources of errors; however, it
is difficult to estimate the contribution of each of these
sources:

1. calibration errors

2. variabiiity of ambient conditions

3. error due to acoustic pressures

4, statistical wvariability of r.m.s. pressures

5. errors due to speétral distortion

6. error due to écceleration sensitivity

The pressure transducer static calibration error was
fouﬁd to;be within i'-.2 percent over the entire range of the
_experiments. The dynamic calibrations were.perférmed ohly
to establish the linearity of the reéponsa and hence, do not

. contribute to the errors. However, no attempt was made to
estéblish the errors in the level recorder. The tape recorder
calibration errors were found to be within % 2,5 percent.

A maximum variation of % 3°C and % 0.9" Hg were
recorded in the ambient conditions over the duration of the
experiments. However, neither were the experiments performed
in a continuous stretch,nor were these ambient changes sﬁdden
and consequently no attempt was made to account for these
variations in evaluating the freé sﬁream'velocity. Also,'it‘
is observed from Figure (8.1a) that there is approximately a
5 percent variation of velocity in a typical cross section of

the wind tunnel. The results are, therefore, expected to be
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within & 5%,
The.acouétic'pressure levels were measured at two
"locations in the wind tunnel laboratory. The results are
shown in Figure (IX.1) and also are given in Table IX.1.
HNo definite t:eﬁd in the noise distribution cén be estab-

lished from these data, but a rough indication of the noise

levels at the tunnel centre line can be obtained by the
assumption of reverberation conditions (uniform‘nbise
levels). It is seen from the_measuremehts that, at the
test velocities, the error due to acoustic pregsure is less
than + 5 percent except at‘Oo angular position. Further,

- it is noted that the acoustic pressure levels are in the
lower end of the transducer sensitivity and hence,are con-
sideréd as too small té'be of any significance.

The statistical variability error in the CuMeSa
readings is approximately.iﬁ/Z:f;T where A f_ is the
effective band width of the spectra. In.the analogue
analysis, the results presentéd are as averaged over approx-
imately 4 minutes and as éuch the errors are negiigible."

lThe spéctral analysis performed, extends from 1 Hz to
512 Hz and as such,there is no truncation efror on the low

- frequency end. On the‘hiéh frequency end,'there isrneglign
iﬁle energy, in general, beyond 100 Hz as seen from Figure

- 11.4, though detailed computations of percentage contributions
of various band widths were not carried out. It is theréfore
“inferred that the truncation errors-are not significant. .

The effect of acceleration sensitivity has been dis- °

cussed in Appendix VIII,
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It is concluded that thé pressure measurements are

subject to a maximum error of % 5%.
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APPENDIX X

GROUND WIND DISTRIBUTION

1. General
The mechanism of generation of wind is a complex

phenomenon. Pressure gradients resulting from temperature

gradients and earth's rotation are the main contributing
factors in thié'process; In. the study of wind effécts.on_
many earthubofne structures,it is only the horizogtal.winds
that cause concern to a degign engineer, Meteorological
Offices throughout the world keep a record of these hori-
zontal Winds.which are measured using anemometers. The
interpretation of these data should be attempted with great
caution since the local effects and the error‘in the instru-
ment are often difficult to estimate. Also the response of
the instruments for winds less than 10 m/sec is not reliable
A map‘of isopleths.(contqurs of equal wind speeds) is more
reliable since it provides a space=-time averége.representing

 the extreme mean hourly speeds over 50 years, derived from
records at various stations and reduced to a reference height
of 10 m.

Dﬁe to the atmospheric béundary layer effects, the
wiﬁd speed varies with height up to the gradient height
(where thé viscosity effécts are neglible). Above the gra-
dient height (200 m to 2000 m) the winds are generated purely
by the pfeséure gradients and unaffected by local terrain.

A power law model following Davenport(71) has been adopted

(46) where in 3-sec. gust speeds at

in the BSCP3: wind ILoads
a height of 10 m are introduced as basic wind speeds.
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Correction factors Sit S, and 5, (see-Appgndix XII) are
incorported to account for topography, dimensions of:the
structure and-expected'life respectively.‘ This gréatly
simplified model is useful in theldesign‘based on the
extreme . expected wind loads, but is inadéquaté iﬁ fatigue
and randbm response analyses. | |

2. Statistical

The statistical propérties(77)
analysis of wind effects_are.discussed here. The;turbulénce
scales in the atmdsphe:e are genefaliy‘iafgé implying that
correlaﬁion heights in free wind are of the same ordef of
magnitude as the size of the structure in question. Under
the assumption of isotropic étmosphere, the sﬁatistical
distribution of wind speeds forms a tﬁo-degrees—of—freedom

system and the distribution function can be assumed to be

Gaussian. If u and v are the components of velocity in two

orthogonal directions in an isotropic plane, the probability

density can be-written_as

p (W) du = '{i;;:;f—— ekp - (u -~ 3)2/2C72u 7 du
v 1u '

p (v) av. = w-i-;;-g—--— exp - [ (v - ?)2/205\,3 v 1.
) 1v : S

Without 1dss‘of generality,d and V may be omitted,and also,
2 2 2 : .
Ogy = aiv- = 04 due to isotropy.

Hence, the joint probability of occurance is
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p (u, v) du dvr = A 5 .éxp - [l(u2 + v2))2xjf 1 .

21 0,
Writing = w? o+ ve = V2
: | _ '21'(. | : .
p (V) av = 1_ 2' exp - (‘12/2012 Y.V dv ge
o 2. . : . '
P o _
or
p V) aV = = exp - (V¥/20,%) av
% S

The probability of-exceedénde is given by

2
1

P>V = exp - (VZ/2072) o .
This is the wéll known Rayleigh distribution.

However, the assumption of isotropy is not strictly
valid since the maximum winds are,in addition to being sub-
jected to local effects,geostrophic éﬁd hence directional.
Further, the winds normally have a steady variaﬁion as con=-
- sequence of.which the sample set of records is not an inde-
pendent set. Weibull distribution function seems to best ‘

fit the yearly distribution of maximum winds and the proba-

bility of exceedence in this case is given by
k
P (V) = exp = (V/C)".

The characteristic wind speed C and the exponent k may be
_obtained from a plot of the numerical data of wind speeds.

In general, k » 2 and the distribution is identical to-
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Rayleigh distribution if C =2 o,-

/ The probability of exceedence of an extreme wind
|

Vmax %nrany year is given by
PV . ) = exp [exp - a<(vmax - V) . 3{

In this expression, for a Weibull distribution the mode ¥ is

$ < ¢ (nm¥E o | 4.

and the'disperSion factor 1& 1is

. 1k
. dv__ _ % (in Ny ¥ | 5.

alnN

where N is the number of independent data points in a given
' sample period, say one year. The maximum wind speed with a
return period R years may be evaluated from the‘expression‘
v £(R) | 6.

V = +

b N RN

wvhere the function

£ (R) = 1n [-1n (4 -.%)J E 7.

From Equations (3, 6 and 7) it 1s clear that
) ) - -
and the modal probability is
Ay 1
P (V) = N : 9.
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In a purely random process with the Rayleigh distribution,
the mode

~ / | | |
v = gOi ~/ 21nN ' 43.

and the dispersiocon

-1 - . : ’ Sao
% = o,/ V7N _ |

If the sample set is not an independent set, the
variation of velocity may be considered as a continuous
random process. The effective number of samples can then

be obtained freom
N = 'v1 T . . . 10.

where T is the total time of sampling and the effective
frequency {(or the number of zero crossing per unit time)

is given by

o, = 2 r J£2 s ae 43 1
1 T4 | S s(£) af

and the power spectrum of the velocity should necessarily
be known. These statistical properties of wind together
with'Palmgren—Miner rule form the basic entities in the

estimation of fatigue life,
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APPENDIX XTI

CCMPUTER PROGRAM

The flow charts of the main program SHELL ANALYSIS,
subroutine CNONLINEAR and thé other main progfam RANDOM are
- given below. SHELL ANALYSIS gives the free linear natural
frequencies, noniiﬁear response and stress resultants for
prescfibed loading. The integrals 11 to I5 are evaluated
separately (in INTEGRALS) in double preéision,using a self-
adjusting step length Simpson rule (DSIMPSON), For (m=) S
modes the execution time for Ehe evaluation of the ihtegrals
was apgroximately 800 seconds on ICL 1905A Computer, with
the higher modes requiring longer times,. The‘rest.of the
analysis‘needs.very liétle computer time. |

RANDOM evaluates the random vibration response -~
- displacements and strains at any prescribed point. dUsing
fhe principle of superposition, the.components of the res-
poﬁse in the first (m,n) normal modes are suﬁméd to obtain
the total response at any prescribed exciﬁation frequency.
The solution vector ( 46} ) is evaluated (m x n x j) times
ahd as such the execution times are large. Typically, for
the evaluation of the w and €, for (j=) 20 spectral points,
with (mxnxj=05x6 x 20), at one prescribed point (x,e)
and for a given value of damping, the execution times re-
gquired were approximately 60 seconds on ICL 1905A Computer

and 150 seconds on ICL 1903T Computer.
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SHELL ANALYSTS

Nonlin. Rot.
Inertia, Stru

Damping

Max, Iter,
Acc,.

Ncases

Naspect

Nmodes

( Ceometry )‘
( Co~ordi. )

Load Type,
. Dyn., Mom.,

Deflec.,

Stress

Fourier
Coefficient

Rms & Mean
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INTEGRALS {—

Integrals,
Beamn

Constants

Loop Ncases

Loop Naspect‘————————;epw

Loop Nmodes

P

e

Strain En.

Kin. En. -

Freq.

Coefft., A4 : .




0

Output : :
Forced CNONLIN.
Respons : _

Characterij
stic
Equations.

‘ Displacement
. Coefficient

Loop jx 2o
I on
¢, 6,9
Loop ie -
Stress
Resultants,

v
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YNORM

Normalize

end loop

Nmodes
Naspect

Ncases

Y

Graph
Cutputs

o

©
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CNONLINEAR

Load
3
loop 3 frequency s
' ~ Char.
Egn.

Response

RCUBIC

!
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Forced Daﬁping
07

Response

Complex
Cubics
" A& B

Y=0 X=7?
from 53

Increment
Fregquencye.
Y¥=0

Y

from RCUBIC

¥




Amp.
Phase

Increment
Freq.
Y = e

end loop j freéuency - _f,;

Free Nonlinear

Tip Load

Line Load (@)

Line Load (uniform)
Osci. Wind Load
Comb. Wind Load
Harmonic Distrib.

s

LX]

e

O s W N R O
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RANDOM : -

l,a,h,E, ¢, Geometrical Constants

—

PRDIST —3 RF(n) n=0,..5| Fourier Coefficients of
RMS pressure distribution

N

PR(m)},CR(m)

m='1,-.5

Fixed-free beam constants

~—

T1(m), I2(m)
INTEGRALS . ) Integrals
_m=1, e 5
HELL . . .

SHEL _ 7 j frequencies including the
ANALYSIS > \ FREQ. () shell natural frequencies
SPECTRAL

, . Load Spectrum
ANALYSIS SF (3) ) j = convenient no. of points
; Damping coefft., co-ordi. of
DC, (x4e)} pt. at which the strain

spectrum is reqd.

Integral fof external loading




F11, F12,..
0...F33

Tij—’ LR 4 .T33

D(3,7)

MATPAC

Eﬁaluate over loop j
determinant to check

frequencies.

end locp m,n

loop m

loop r —pm—end

MATPAC

A{m, n, i)

A

L

P,0

2, 8"

=172

U0 U O S OO

Coefficients of strain

-energy

Coefficients of Kinetic
-energy

External load:

Solution of Characteristic
equation

Solution vector (real parts
i 1,2,3 imaginary parts
i 4,5,6)

o

Fr e




'10;-09 S >
SUM & .
X
end loop n,s .
end loop m,r e
Spectra.
W, S€ .
end loop ] it
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APPENDIX XIX

THE IMPLICATIONS OF CODES OF PRACTICE ON
STRUCTURAL DESIGN OF STEEL CHIMNEYS.

Authors: D.J. Johns & R. Natarajae.

Analyses are presented which considef the most recent wind
loading code and the requirements of the current British Standard
for the design of free~standing steel chimneys.

The wind loading takes account of the local topography, surfnce
roughness and design life of the chimney as well as its height and
a power . law is used to deflne the variation of wind velocity with
helght. -

The design criteria for allowable stress, allowable defleck-
ion and for swaying and charts are obtained for a wide range of
chimney geometries of the design wind speed to satisfy these criteria.

The allowable deflection c¢riterion is in general the more
critical of the two static criteria and the authors question its
validity. : ' -

The two dynamic criteria may also be critical but other factors

may preclude such oscillations from occurring. These factors are

not considered and quantified in the current codes of practice.

Department of Tran port thhnology,
University of Technology,
Loughborough,

, Chimney Design Symposium,
April 9th - 11th, 1973.
Organised by the Centre for Industrial Consultancy and Liaison
Unlverdlty of Edinburgh.
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Notation.

frontal area (pro;ected area on a- plane normal to wind

direction),
defined in the text. -
force coefficient of steel chimney. .

~diameter of chlmney

Young's modulus. _
frequency in sway and ovalllng respectively.,

“bending stress.

acceleration due to grav1ty.
height at which slope changes (see fig. 1. )
height variable '

second moment of area

- coefficient in equation (3)

radius of gyration = d/2V2

~ height of the shell.
" pressure exponent (= 2o¢)
mass per unit length, -

life span in years
probability

dynamic pressure.. B

return pericd in years
factors defined-.in the text
Strauhal number R
thickness of chimney shell-
basic wind speed.

wind speed and helght H in the- veIOC1ty proflle.
‘design wind speed.

critical windspeed in dynamic 1nstab111ty
weight/unit length of chxmney.
velocity index

mode constant

mass density of basic shell material
density of air.
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1. Tntroduction.

British Standard 4076:1966 (ReFerenceAi) includes four design
requirements for free-standing steel chimneys:

(i) allowable stress,

{(ii) allowable deflection.
(iii) swaying oscillations.
(iv) ovalling oscillations.

Although consideration is given_to'dead-weight loadings the.
major loadings are usually those due to the action of the wind.

A previous study (Referenced2) presented design charts based
on Reference Al from which the designer of free-standing steel
chimneys, could at a glance determine the chimney dimensions to
satisfy the above static and dynamic design criteria. These charts
were based on the wind loading code then current. )

The wind loading requirements have recently been revised
(Reference A3) and it is the purpose of the present paper to consider
the implications of the new codes in an analytical treatment of the
chimney design, process. A fuller treatment is presented in Refer-
ence M.

It is assumed throughout that the steel chimney is unlined,
unclad, unstiffened and uniform. The implications of alternative
assumptions are considered in Referencei4d.

2. __Wind Loads,
2.1, General.

RaferenceA3 contains a map of isopleths (lines of equal wind
speed, V) which relate to the maximum gust speeds at a height
10 m above ground which are likely to be exceeded not more than
once in 50 years in open level country.

To obtain the local design wind épeed, Vg, the map wind speed
V is multiplied by the following three factors:-—

S1 for local topographic influences.

32 for surface roughness at the chlmney location, for gust dura—
tion appropriate to chimney size and for varlous chimney
heights.

S3 = for the chimney de51gn life.

Thus Vg = V.51S,83 o S (1)

2.2, S4 Factor for Topography

It is advisable that S4 should always lie within the range
0.85< 51 <1.2 and generally within the range 0.9< Sq<4 1.1. A
value of 54 = 1.0 relates to level, open country and the higher
and lower values relate to exposed and sheltered regions respect-
ively.,
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2.3. S» Factor for Surface Roughness, Gust Duration and

-structures and

_qulred.

Chimney Height (Table Al.)-

~ . The variation of wind velocity with height depends upon the
type of terrain and surface roughness (see FigXII.1 and upon the
averaging time of the gust duration. For chimney heights less than
50 m. the S, factor is given by the 5 second gust data and for
heights greater than 50 m. by the 15 second data.

Although this sudden change in data to bhe used may appear-inu
consistent and a progressive change could be proposed it is believed
that this is not necessary since the given approach should provide
a slmghtly conservatlve designe

ReferenceAB tabulates S2 but for present purposes an empirical
relation of the form

s2 = xS o - (2)

is obtained. TableAl gives the values of K and o< sa obtained for
the four categories of local conditions considered in Referencea3l.

It is seen that for conditions 2, 3 and 4 the values of K and

ol in equation (2) vary from below to above a given height.

ReferenceAB should be consulted for cases where the chlmney is
to be built on a cliff or escarpment since the effect then generally
is to effectively increase the values of S» which should be applied
and to make them thereby more uniform over the given chimney height.
Such effects are considered in ReferenceAd. They generally lead
to a more critical design. ,

2.4, S3 Factor for Design Life

The basic wind speeds, V, in ReferenceA3 have a return period,
T of 50 years. It can easily be shown that the probability of a
given speed Vy exceeding V i.e. S3 > 1.0, occurring in a peried

‘'of N years is

N ' .
P o= 1- (- (3)
Therefore for R = N = 50 years P = 0.63 and'S3 = 1.0.

Plots of S3 are given in ReferenceA3 for different values of P and N
and these should not be extrapolated for N < 2.

Nbrmally Sq = 1.0 but lower values may be taken for temporary
%1gher values for those with an anticipated 1life
longer than 50 years or for those where addltlonal sarety is re-

'i

2.5.  Design Wind Forces. | -
The design dynamic pressure is givén by | |
q = v | | ()

where Vs is given by equation (1).




o - mttod R

In S.T. units equation (4) becomes

- 2 ' _ :

where VS is in m/s‘and g is in N/mg_

The design force is given by

where Ae is the projected frontal area normal tao the wind, and for
most chimney geometries it is realistic to assume that C. = 0.6.
For smooth structures of a diameter greater than 0.25 m. this

value is slightly conservative. Only for smaller diameters or for
roughness levels untypical of chimney construction in general

would higher values of Cg be used. Thus if a chimney has roughness
‘greater than 8% of the diameter e.g. longitudinal ribs, a value of
Cg up to 1.2 to 1.3 might apply as is shown in ReferenceA3.

3, _ Static Analysis based on Allowable Stress.

For a uniform cantilever of diameter d subjected to such a
distributed 1oad, engineer's theory of bending gives

E Iw = d.Cf. q.
Substituting for g,

iv 2 2 K2 g2 - .

EIlw
where m = 2,

For category 1 in TableAl this yields

5 o fa+2 grtl o pme2 -
=3 dCcKV M+ (m+2) — m+l T “me2 :I ' (8a)
where C = C£@5253,

The maximum bendlng stress ﬁj at the base of the cantllever chimney
is _
b max I (m+2)ﬁ (—) (9a)

and fb allowable Z fn max, (See values of fb allowable in Reference

AiL L is the height of the chimney at wBlCh So1, appllss and
= d/2 V2. It should be noted that CV = Ceo § VI, where Vg,

2L'“
¥s the design wind speed at’ helght Lie
' J
For categories (2), (3) and (4) in Table Al the values of S

are given by Kq and mq for heights above h and by K2 and mp for
.HZh. The bending moment is given by \ _
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Cqd 22 nm1+2 5m1+2 M+l mied

M= 5= Kyv ( my 4 2 M m,+1 - H)
' my+2 m2+11 )
+ E.d._ K V2[ H - ._}{D.-H_. + b_rig:-‘_a__
2 2 | (mzfi)(m2+2)_ m, + 1 _ m2+2 |
| for Q<H<Zh
Cd K2V2 ( m1+2 _ HLm1+1 . Lm1+2 )
2 "1 (m1 +1)(m1+2) mi+1 m4+2
| | for hx H<L

(8h)

The maximum bending moment and hence the maxinum bending stress.
occurs at H = 0 and is given by

2 2 B Com, 2
c * % 2 [1-(3) i O VR AT § |
T -
b 1 m1 m2+2 j( ) ('E o, | (9b)
and fb allowable ¥ fb‘

Equations(9)give the values of V satisfying the allowable stress
criterion when f, is the allowable stress andthe height of the
chimney is given by other considerations. Since the basic wind
speed is known, the geometric parameter t can be calculated from
equation(9\

4. Static Analysis based on Aliowable Deflection.

Further integrations of equatlon (8a) yleld the deflection,
. the maximum of whlch at H =L is given by
2.7

.o dC KVE T md 1 1 1
EIWL B 2 E(m+1)(m+2)(m+3)(m+4) = Blnry t 2(m+2):]
202 | .
or EI y = -d-%-’i-l- L iy (10a)

where the function in square brackets is written as fhn). Bquatlon
(10a) can be written as _ —

W . 3 ' ) : : ‘
L _ ¢vZ .2 2 I, d
o= &Yy fm) (2) (%) | (11a)
The allowable maximum deflection as stipulated in Reference 4 is
that -
L ' : .
;A 200 : _ - (12)
The correspondlng equation for categorleg (2}, (3) and (4} is
: j
w o
L _¢cJ2 2.2 14 | j
72 = e VOSS flmg,m,) () (E) ‘ | (11b)
where |
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_ my+1) (g +2) (my+3) (m+4) — 6(m,+1) 2(m,+2)
- o m,+4
SV DI v D NN ¢ V5 9 i (my-m,)
2(m,+3) (m,+3) - 6(m +4) (my+4)

Equations (11) together with equatlon (12) set the criterion
for allowable deflection and as before the geometric parameter t
may be evaluated.

5. Dynamic Analysis based on Sway Oscillations

In the sway mode of oscillation the entire chimney oscillates
in the cantilever beam modes. The structural natural frequencies
are calculated using a simplified model approximating to a single
" degree of freedom system in any one normal mode of vibration. The
- sway mcde natural frequencies of a chimney shell are given in

Reference Al by o
£ e BIg . . (13)

ol N Yy

where Wy is weight per unit length and frequency f is in Hz. The
constant 2 depends on the moue. For the fundamental

The critical wind speed at which the fundamental frequency
is excited can be calculated by using the formula

. where S, = 0.2, is the straunal number.
For a simple uniform steel shell of material density o , equatlon
13 becomes : :

2.5 4 (Ey? | qa
fo= S5 (2) = 2010 —e
s 2?f 2L2 o 2L2

vhere d, L are in metres, . _ ‘ ‘

Equation (14) then becomes o - C ’

, 2 ' :
k )
Vep = 40200 () R (15)

vhere V. is in m/s,
The criterion to avoid sway oscillations is therefore

vcr:> VL

It should he noted that equation (15) is independent if thickness t.
Hence the only way to increase V., is by decreasing (“/k). In '
cases where this is not permissible one should either increase
damping or increase the stiffness by using guys or destroy the
effectiveness of vortex induced forces by means of helical strakes,
perforated shroud etc.
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6. Dynamic Analysis based on Ovalling Oscillations.

The ovalling modes'of'oscillation, also'called the breathing

" modes, could be critical for a range of values of t/d ratios en-

countered in modern design practice. A formula for the simplest

‘ovalling mode given in ReferenceAl is

£o = 622 £/(dy2)% - | T 18)

with t and d in metres.
The critical wind speed at which ovalllng may occur is given in
ReferenceAl by

cr d

fod -
Vep = 55 (17}
S i _
The value of Strduhal_number St = 0.2 is again taken and
Voo = 6220 = | | (18)

w1th Ver in m/s. :
The ovalling crlterlon therefore is

Vcr > VL

In cases where a change of desxgn is not feasible, an end
ring would consmderablv increase f, and hence V., particularly
for smaller values of ( L/x) ratlos used in design practice.
Though it is difficult to substantiate quantitively chimney lining
should have some beneficial effects on ovallirig instability due to
increased t/d (1n proportlon to modular ratio) and due to increased
damping.

7. Dynamic Stability Parameter. - -

It has been shown that vortex induced swaying and ovalling
oscillations are most unlikely when the chimney has a value of
2 mpd /g’d7;7 17 « 23 where mo = mass per unit length = Wo/g; & =
logarithmic decrement, The existing codes do not point out this
fact and since & for steel chimneys should be at least of the order

Cof .03 it may be possible to preclude instability by increasing mo

and/or &.

8. Design‘Charts.

Using the previous analyses it is possible to construct design
charts which give chimney dimsnsions necessary to satisfy the four
basic design criteria listed in Section 1 and analysed in Sections
3 -~ 6. The most critical of the cases are presented in TablesA2 to
5. It is found that the allowable stress criteria is most critical
for category 1 for heights less than 50 metres (TableA2) with that
for category 4 (TableA4) for heights less than 50 metres being at
the othér extreme. ' All the other classificationsifall within these
two cases. It is observed that the difference in design wind
speeds for the two extreme cases above is so small that the error
in using .- the corresponding conservative values given by category
1 is less than 5% over a wide range of geometries. Thus consid-
erable simplification is achieved in the prellmlnary design stages
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by selectlng a suitable geometry from TableAZ, 1nmater1al of the
category under con51deratlon. _

- Similar observation is made for allowable deflection criterion.
The results for allowable deflection are given in TablesA3 and A5
and it is seen that the allowable deflection criterion is at all
times more critical than the allowable stress criterion. This
suggests to’ the authors that the present deflection criterion
which has, apparently, no precise logical basis, be re-appraised
by the British Standards Institution and possibly  removed or re-
placed : _

" The deflection criterion appears to be even more severe than
the swaying mode oscillation criterion (TableA6)} for certain
practical geometries.  However Tablea6 suggests that the top value

of L/k to be considered is about 30 unless remedial measures are
taken to prevent swaying oscillations.

leew1se TableA7 for ovalling mode oscillations suggests that

/t should not exceed 150. However since TableA7 is for an un-
stiffened shell it would be relatively easy to increase the criticeal
design wind speed for such a shell by the addition of ring stiffeners
particularly near to the top of the chimney. ' :

It is therefore clear that to simultaneously satisfy. the
four design criteria would restrict the range of geometries avail-
able to the de51gner. In fact TableA6 suggests. L/kx # 30 and Table
A7 suggests 9/t ¥ 150. Tables 4(a}, 4(b} give corresponding pairs
of values of L/k and 4/t to Drevent Vg exceeding, say, 42 m/s and
it may be seen that L/x ?’30 and d/t;r-iSO would give a safe desxgn.

The 51mpllf1ed ovalllng osc;llatlon criterion used considered
the chimney as a simple ring element and neglected the effects of
chimney length. It has been shown for shorter shells that this
criterion is quite conservative and should then be used with
caution.

9, Alternative Method of Calculation.

It is found that the two dynamic criteria are generally more
critical than the static criteria. Hence the design procedure 1is,
as follows.. ' ‘ :

(i) Select the height L of the chimney such that it satisfies
o the minimum height requirement for efflux considerations.

(ii) Select factor Sq and also choose S3 (Section 2). Calculate
So1, from values of K and o from TableAl and L from step (i)
obtain the value of basic wind speed from Figure 3 of refer-
enceA3, and calculate Vy. Calculate the diameter, d from
k from equation (15). _ X :

. f

(iii) Check for efflux rate and consider forced draught if d is

inadequate.

(iv) Obtain t from equation (18).

(v)  Obtain the design stress fj, from equation (9). Also obtain

o llfi82—
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1? from equation (11). If the allowable deflection criterion
is not satisfied, increase d and/or t such that the allowable
stress crlterlon is also satisfied.

 (vi) In caseé the allowable stress 1s.much,largér tha n design
' stress due consideration should be given to reducing t and
using stlffeners to satlsfy the ovalllng criteriona

(vii) 1If, in the structure built based on thes design procedure,
. .any dynamlc instability is found, which is highly unlikely,
‘consideration should be given to increasing damping by
lining or c¢ladding or by added foundation damping and/or
incorporating devices such as helical strakes (patented}) or
perforated shrouds etc, which minimise the effectiveness of
the vortices being shed.

10. Conclusion.

A simplified procedure for the design of steel chimneys is
described. A method of obtaining the wind loading amenable to in-
tegration over the height of the structure and conforming to the
wind loading code is given. Static and dynamic structural desian

- criteria were considered. Of the two static criteria, the allow-
~able deflection criterion seems to be the more critical and its
" wvalidity is questioned. The geometry is probably dictated mast
- by the dynamic crlterla and hardly at all by static strength
reqULrements.

There is a need for a more Iogical design code which takes
full account of static strength and fatigue considerations and of
possible dynamic instabilities due to vortex sheédding. There is
increasing knowledge of the unsteady nature (gustiness) of the

“wind ‘and the random pressurs fluctuations on the chimney structure
~and a correspondlnr simple analysis for-desxgucrs to apply should
be 1ntroduced as soon 83 possible. .

- 'If a deflection criterion is to be retained it should be cne
"~ which relates the transverse (wind) and dead weight loads when
acting simultaneously to the possibility of static instability "
and/or combined stresses due to compre551on and bending of the ,
chlmney cross-section,
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APPENDTIX XIII

STATISTICS OF RANDOM PROCESSES

I

| .
1. ' Introduction
!

In this section, some probability parameters per-

taining to random fatigue analysis are introduced. These
can be found in many text books on the subject; the objec=
tive here is to write £hése parameﬁér$ in consistent nota-
“tions and,toxderivé the expressions‘using an engiheering

approach.

2a Normal Distribution

A random process x(t) is said to have a normal or
Gaussian distribution when its probability of occurance

(i.e., probability density) is given by

p(x) = ——2—— exp [--XXL 9
Vi o, 2 0,°

' ﬁhere_ o) 'is the standard deviation and % 1is the mean

values given respectively by'

| | < 7
o <& {x°} - (& {x}1°? =-‘%¥-fo2 (t) at

| T
and X =E {x} =4 J x(t)at

Without loss of generality, the discussion that fol

assumes. that the process has a zero mean value. Also, sta
- 184 = '
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arity and ergodicity of the process are assumed.
The probability distribution function which gives the
prdbability of occurance of all values less than a given

value can be written, in general, as

X . . :
p(<x) =)  px)ax 3.
-0 . _ o
- 3. Correlations

. The correlation function R (T) is defined as

T

E §x (t) x (tsvT )} =-%,-f f % (£) x (£ +T) dt
_ =T

R (T)

4.

where T is the time delay. Since the mean value is zero,

the zero time delat correlation gives the variance, i.e.,

2

For a continuous random process with continuous derivatives,

the correlation of jth |, derivative with K th l (t +T)

derivative can be written as

IR Ty B [ () X (e} S.

4, Derivatives of a Random Process

The random process x (t) is assumed to possess higher
- order derivatives. In a purely random process , the derive
atives also are random processes and are completely independ-

ent (uncorrelated).
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Let Nx'

; be the expected number of crossings of a

level x; per unit time. Then the probability of an X; Cross—
ing in én infinitesimally small time dt is given by N4 dt.
If there is such a crossing; it corresponds to either of the

two conditions

x, = l%(e)] dt < x(£) < x; when %(£)<0

or

Xg + [ %(8)] at > x(t) > X3 when %(t)> 0 .

The joint probability density function of x and X can be

written as

px;, %;) dx dk where

X, < x(t) < X, o+ dx and %, < x(t) < %; + d% .

The probability of an X5 crossing can therefore be written as

. oo i '
N, dt = f f P(x;, %;) dx d%
0 x;~1%idt :
0 xi+lildt
]
-0 % pi(xi, %) dx d% 6 a

As dt — 0,

m - [} ..
' - 00
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Since x and X are completely uncorrelated, the joint

- probability density function can be written as a product of

the individual probabilities. - L !

Thus, R o o - ‘
: 0o . l . | ‘
N, = pix;) J/ lxil p (%) a% ‘
-0 :
‘ o _ | ‘
or N, = plx) E {lxi]} _ . 6 b

Therefore, the number of zero crossings per unit time

can be written as

Ny = p(x=0) E { igl %<0 | - | o

or simply, ' : o _ - ‘
.N = p(X:O) E {ISC‘} . "7

The expected number of peaks per unit time is given by the ‘

number of zero crossings of %(t) as : ‘

N = p(x=0) E {1¥1} . 8

In general, the expected number of zerd Crossiﬂgsrof kth - | .‘

derivative can be written as

i

pka$0) E {| =+ ‘ . : ‘

For a Gaussian random process with zero mean value ° |
the following relations between the probability density _ ‘

function and zero time delay correlaticns exist:
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1 2, '

p(x) = . =——— exp [-x°/2R(0)]

f V2 R{O)
p(%x) = ——— exp [ -%X"/-2 R" (o)

-2 R™(0) :
P = ————  exp [-%/2R (0T 9
' 2 R4(0)
In terms of correlations, the expected values can be written as

E {1z} = j“’ X1 p(x) d% ='f%%Rn (6)

-0
m .
E ¥ = / B ¥) a% \/“ iv 10
' : -D0 ‘
- Hence
4 07 2,
Ne: = § o 2Xp (-xi/2 021)
1 O
N, = "1 w o
.1 O3
Ne - iE 1 Ub
e Sk+2
° T Oke1 - 1
where
2 1 4 |
:i = .'Eﬁ.‘/ & () dew
- OO '
2 N o 2 w0
0.‘2 = oy j " s () 4d

- 00
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632 - -%-ﬁ j o s ) dw
. -0
|
.f.

' oo o : . :
o - X f 52 s (@) dw | 12
k42 e :

The number of zero crossings provides an equivalent
“entity,in a random loading,where a definite frequancy of

loading in a fatigue analysis is not easily discernible.
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TABLE 9,1  COMPARISON OF FREQUENCY PARAMETER ( VA x 10 2y, = 250
l/a = 9 : ' ' l/a = 12 |
m= 1
Present : B ' Present
n A B Ref.82  Forsberg A B Ref.82  Forsberg
o (83) o | - (83)
12,9358 2.9358 2.7001 2.6660 1.6828 1.6828 1.5465 1.5530
2 1.0113 1.0113 0.9382 0.9510 0.6263 0.6263 - (.5886 0.5971
3 ' 0.9925 0.9925 0.9761 - 0.,9161 0.9161 0.9105 0.9101
4 147065 1.7065 1.7034 - 1,6901 146901 1.6891 -
‘ 5 2.7289 - 2.7288 2.7281 - 2.7225 2.7225 2.7223 -
L1 6 3,9945 3.9944 3,9942 - 3.9905 3,9905 3.9905 -
o | 7 5,4939 5,.4908 5,4938 - 5.4906 5.4905 5, 4906 -
© 8 742252 7.2249 7.2251 - 7.2221 7.2218 7.222% -
1 9 9.1877 '9,1872 9,1877 - '9.,1848 9.1843 9,1848 -
10 11. 3814 11.3806 11.3814 - 11.3785 11.3777  11.3785 -
L ' ' ' m o 2
. 1 15 5100 15.5100 14,2590 12,4200 9.,4605 9. 4605 8.6181 7.9980
. 2 - 5,7732 5.7738 55,2647 5441780 33,3361 13,3336 23,0220 3.0660
' 3 29,9486 2.9486 2.6969 . 2.7510 1.8279 1.8279 1.6933 - 1.7400
4 2.3699 2.3699 2,2632 2.2950 1.9365 1.9365 1.8944 - 1.9080
5 2.,9561 2,9561 2.9200 2.9260  2.8058 2.8058 2.6936 2.7910
6 4,0977 4.0976 4,0849 4.0760 4.0327 4,0326 - 4.0286 4.0790
7 5,5582 5.5580 5.5530 - 5.5204 5,5204 5.5187 5.5100
8 742753 7.2750 7.2730 - - 7.2475 7.2472 7.2467 -
9 9,2321 9,2317 9,2310 . = 9.2084 9.2079 9.2080 -
10 11,4232 11.4225 11.4226 - 11,4013 11,4006 11. 4011 -

A: No rotatory inertia | ' B: With rotatory inertia




—+

TABLE 9.1 (cont’d,)  COMPARISON OF FREQUENCY PARAMETER (/A x 10%), 2 = 600 |
B S Va =9 a ; | | 1/a= 12 | B
m o= 4
Present | - Present ‘
n ' A ' B Ref,82 Forsberg A B Ref.82 Forsberg
- (83) | (83)
1 2.9358 2,9358 2.7001 2.6650 - 1.6828 1.6828 1.5465  1.5520
2 049702 0.9702  0.8937  0.9074 = 0.5584  0.5584 0.5157 0.5258
3 0.5854  0.5854 045571 0.5635  0,4474 0.4474 0.4358 0.4384
4 0.7500 0.7500 - 0.7428 0.7434 0.7169 0.7169 0.7145  0.7143
51,1475 - 1.1475 1.1455 1.1320 1.1377 1.1377  1.1371 -
| 6. 1.6679 1.6679 1.6672 . =~ 1.6638 1.6638  .1.6636 -
7 242905 242905 2.2903 - 22882 2.2882 2.2881 -
21 8 3.0111 - 3.0111 3.0110 - 3.0094  3.0094 3.0094 - |
s 9 3,8285 = 3.8285 - 3.8285 - 3.8271 3.8270 3.8271 -
v |10 42,7424  4.7424  4,7424 - 4.7411 4.7410 . 4.7411 -
ma= 2 | )
1 15.5100  15.5100 14,2589  12.2400  9.4605 9.4605 8.6180 - o
2 5.7656 5. 7656 5,2556 5.1060 3.3241 3.3241 . 3.0074  3.0170 - -
3 2.8293 .  2,8293  2.5658 2.5950 1.6358 1.6358 1.4839  1.5240
4 1.7802 - 1.7802 1.6353 - 1.6720 1.1630 1.1630 -1.0915 ©1.71150
5 1.5632 1.5632 1.4938 1.5130 1.2891 1.2891 1.2623 1.2700
6 1.8356  1.8356 1.8068 1.8130 . 1.7227 1.7227  1.7129 1.7140
7 2.3688 2.3688 2.3566 2.3560 2.3172 2,3172 2.3132 -
8 3.0554 3.0554 3.0498 3.0460 3.0274 - 3.0274 3.0257 -
9 3.8586 . 3.8586 3,8558 3.8500 . 3.8406 3.8406 3.8397 -
10 - 4.7660 4.7660 4.7645 - 4.7525 4.7525 = 4,7521 -

A: No rotatory inertia B: With rotatory 1nertia




TABLE 9.2 'NATURAL FREQUENCIES OF SHELL F4 (in Hz)
a=2.4375", L=69", E=10.0x10° PST, h=0.01"
f =0.000259 1bmsec®/in?
N
Mode No. ‘ : .
m/n 0 1 2 3 4 5
1 606.21 41.24 44.88 | 121.53 232,71 376,28
2 [1600.98 | 248.42 | 91.44 | 127,58 | 234,13 | 376.97
3. 12472.23 | 652.05 | 225.04 | 161.43 | 241.s58 | 379.51
4 [3361.76 [1182.53 | 424.51 | 237.97 | 268.83 386.24
5 | 4104.18 {1780.70 | 679.87 354.99 | 305.44 | 400.21
" QABLE 9.3 NATURAL FREQUENCIES oF SHELL FS (in Hz)
' a=3", L=69", E-iOxiO PSI h=0,01",
=0.,000259 lb=sec /J.n '
Mode No. ‘ '
‘mn/ n 0 1 2 3 4 5
3 l2472.23 | 774.3 | 271.47 | 152.64° | 171.46 | 253.49
4 |3361.76 |41368.80 | 512.32 | 262.30 | 212.45 | 267.10
5 |4104.18 [2004.20 | 811.15 | 412.80 | 284.26 | 295.09




TARLE 9.4, MEASURED RESONANCE FREQUENCIES (Hz) OF THE SHELLS
s1 SHELL F4 SHELL: F5
No. a Iy X . & e
Mode No. Theory Vib. Tests |W.T.Tests| Ref.96 Mode No. Theory Vib.Tests |W.T.Tests
m,n M,Nn
1 1,1 41.24 33.0 32.3 {1,2)33.0 1,2 32.56 32.5 27.32
2. 1,2 44,88 36.8 38.0 (1,1)43.0 1,1 50.76 48,5 46.0
3 2,2 91.44 87.0 84.0 - 1,3 80.24 79.0 70.0
1 .
WY
o ,
S 2,3 127.58 126.0 122,0 - 2,2 103.19 101.5 93.0
@ - Single point sinusocidal excitation at the tip.

£ - Spectral Analysis of Strain Signals, see Figs. 11.18,11.19,11.20,

K

- wcT.

=

Tests on a

" " "t
2.4 , L a7 4, h = 0,01 Aluminium Shell.
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TABLE 9.5. MEASURED DAMPING COEFFICIENTS

- 761 =~

S1 No. Mode No. & 92 A . geg, | g-aw.&| Ref.97
@ o) o < T &
g

1 , 0.066 0.021 0.03 0.09 0.02-0.025
= 2 . 0.079 0.025 0.026 0.001
. 3 , 0.072 0.023 0.003 0.020
E 4 , 0.073 0.023 . |
a 5 , 0.063 0.020 0.007 0.013

1 , 0.069 0.022 0.011 0.011  {0.02~0.025
3 2 , 0.065 0.021 .
- 3 , 0.072 0.023 '
v a . 0.078 0.025 0,008 0.017
« 5 , 0.066 0.021 »

(n tQ & o @

Structural damping
Aerodynamic damping

Logarithmic decrement from response decay over 10 peaks

Very high overall damping, data not reliable

Half power method from oscilloscope observations {(tests on aluminjum shells)

A e el

Half power method from resonance strain spectra (W.T.Tests) - only lowest values are quoted



TABLE 10.1  DETAILS OF MODELS

- G61T =

Shell Number R1 R2 R3 F4 F5
_Configuration Rigid | Rigid Rigid | Flexible | Flexible
| 3-D ) 3-D, 2-D 3-p 3-D 3-D
Fuily irmersed Fully immersed Partiallf Partially 'Parﬁiallj
| immersed immersed immeréed
Wetted length (inches) 28 28 27 27 28
Run Numbers * 1-2 3-5, 6-8 9-20 21=-27 ;28-34
Material pVC - PVC Perspex Al .Al
'Diameter D (inches) 3.5 8.5 6.0 4,875 6.0
Thickness h (inch) 0.25 0e25 0.25 0,01 - 0.01
Height L (inches) 28 28 69 69 69
Aspect ratio L/D 8 3.3 11.5. 14,15 41.5
a/h - - - 244 300
‘No. of Pressure Trans. 2 3 1 2 2

* See Table 11.1 for details

Cont'd,es
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TABLE 40.1 (cont'd.)

DETAILS OF MODELS

' Shell Number R1 R2 R3 F4 F5
Transducer Location ‘g.25, 0° | 8.2, 0° - 13.0 13.0
- (2.35) (0.965) (2.72) (2.16)
Inches from top, angle from - Ty - 8.2, 120° ' 93.0 13.0 413.0
- (0.965) (2.18) (2.72) (2.16)
/D) 22.0, 0° 14,10, 0° - - -
(6.3) (1.75) - - -
Location of Strain Gauges - - -
Inches from base,angle w.er.t. T, - - -
[ T
= 4—1-72 .-..Tz
T3 Ty :
T :
. L = ! 1 !
Re Range (  x 10°) Qud=1.62 1.63-2.85, | 0.78-2.09 0.85-1.79 0.78-2.09
N . . 1063"2-85 ‘
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TABLE 10.2  IYPICAL VALUES OF c;
Angle ‘\\?un No. 1 2 3 4 6 7 8 19
Degrees R T T1 A A A A A

0 ~ 0.019 0.034 0.014 | 0.013 0.013" 0.010 0.006 | 0,005
.15 0.021* 0.636* 0.014 0.015 0.067 0.022 0.012 0.007"
30 | 0.027 0.040 0.015 0.024 0.122 0.044 0.030 0.011

a5 - 0.046* 0.05 * | 0.019 0.035 | 0.115 0.064 0.058 0.018

60 0.077 0,068 0.037 . 0;059 0.164 0.091 0.095 0.029

75 0.136 0.096 | 0.031 0.091 0.365 0.200 0.158 |  0.050
90 0.108 0.096 0.034 0.069 0.334 0.182 0.160 0.044
105 0.108  0.101 0.040 0.075 0.325 0.154 0.110 0.056
izo 0.108 0.091 0.034 0.059 0.290 0.150 0.090 0.040
.135 0.128 0.102 - 0.030 0.049  0.305 0.163 0.073 0.038
150 0.115 0.108 | 0.029 0.043 0.315 0.159 0.090 0.040
165 0.136 0,115 0.031 0.046 0.265 0.129 0.073 0.045
iao 0.145 0.119 0.032 0.043 0.240 0.115 0.053 O.Q48

* - Extrapoiatéd;

A - Avérage of T1 and T3
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. FOURIER COEFFICIENTS OF FLUCTUATING (RMS) PRESSURE DISTRIBUTION

~ 86T ~

| TABLE'io.g
Run No, —> 1 2 3 4 6 7 8 19
Coefficient ' ' '
ag 009100 0.08162 | 0.02808 | 0.04942 | 0.23279 | '0.11838 | 0.08154{ 0.03371
ay ~0,05276 | ~0.03788 | -0.00769 | ~0.01119 | -0.10982 | ~0.05717 | ~0.02168| =0.01742
3, ~0.02047 ;0,01081 ~0.00784 | -0.02624 | ~0,08767 | ~0.05238 | ~0.05358 | ~0.01221
a, -0,01252 ~0.00584 ~0.00165 :50.00639 ~0.00357 | ~0.00528 | ~0.01583| -0.00316
a, o.00885 | 0.00685 0.00142 | 0.00567 | 0.01767 | 0.00800 | 0.01375| 0.00558
a 0.00883 | 0.00273 ~0.00012 { 0.00313 { 0.01873 0.01738 | 0.01202 ~0.00056
56 1 0;00283_ ~0.00142 | 0.00267 | 0.00167 | ~0.03175 | -0.01358 -0401092 0.00008
a, ~0.00959 | ~0.00110 | 0.00166 | ~0.00265 | -0.02185 001152 | —0.00170 ~0.00007
ag ,~0.00000 | ~0.00050 | -0,00158 | -0.00417 | -0.01267 | ~0.00050 | -0.00142}{ -0.00208
ag 0.00186 | -0.00066 | -0.00235 | 0.00139 | 0.00774 6.0074§ 0.00633 | ~0.00034 |
a0 0.00464 | 0.00247 | ~0.00033 | 0.00407 | 0.01567 | 0.00622 | -0.00075| 0.00338
a4 0.00119 | 0.00025 | '0.00115 | 0.00071 | -0.00473 | -0.00336 | -0.00264| 0.00005
‘a 0.00058 | ~0.00242 | ~0.00754 | -0.00362 | -0.00875

~0.,00483

-0.00171

~0.00196




' TABLE 10.4 VALUES OF c; IN THE DESCRIBING FUNCTION

_J&ngle ' Runs 2 - 20 ~ Runs 21 - 34
o .} 0.005 | T0.010
15 t o.007 0.015
30, _ _ S 0.012 [ 0.020
45 ‘ | 0.018 , 0.025
0 0.027 | 0.040
75 . 0.047 | _o.oés
90 0,042 0.047
105 | 0.047  0.055
120 : B 0.040 - ] 0.050
135 ID | 0.055.- T 0.053
150 - 0.040 . 0.058
165 -~ 0.044 0.062
180  0.047 0.084
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TAB:E 10.5  FOURIER COEFFICIENTS OF THE OSCILLATORY PRESSURE
| DESCRIBING FUNCTION /

|

CoéffiCient Run Nos. 9 - 20 Run Nos. 21 = 34
3y 0.032083 0.045917
a, 50.016585 -0.023351
a, ~0.010123 ~0.005763
ay =0.003690 ~0.006739
a, 0.004667 0.004250
ag 0.000134 ~0.000243
ag ~0.000167 ~ 0.002000
a, -0.000949 -0.002788
ag ~0.001833 ~0.000917
ag 0.001024 -0.002261
210 0.002290 0.003763
a,4 0.000665 20001619
a4, -0.000917 ~0.000250




TABLE 10.6 Cﬁ , Ci and Location of Centre of
Pressure {(RMS) at Various Run Numbers
Run No. CB Ci C.P. Degrees.
from Stagnation
1 10.166 0.102 148.5
2 0.119 0.087 143.8
3 0.0242 0.033 126.2
4 0.0352 0.065 118.5
6 0.345 0.292 139.8
7 0.180 0.153 139.6
8 0.067 0.115 120.2
19 0.055 0.040 144.0
9-20 0.052 0.038 139,8
21-34 0.073 0.046 147.8
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TABLE 11.1  DETAILS OF TEST RUNS

Run No. Velocity Dyn. Pressure . Re Remarks.
- fp s mm water. ( x 103) '
1 21.8 2.75 0.4 3D R1
2 86.7 43.5 1.62 "
3 36.0 7.5 1.63 3D R2
4 49.8 14.4 2.26 "
5 63.0 23.0 2.85 "
6 36.0 7.5 1.63 2n R2
7 49,8 14.4 2.26 "
8 63.0 23.0 2.85 "
9 26.24 4.0 0.84 3D R3
10 38.44 8.6 1.23 "
11 43.69 11.1 1.40 "
12 52.28 15.9 1.67 "
13 56.15 18.3 1.79 "
14 24.50 3.5 0.78 L
15 32.7 6.2 - 1.04 "
16 40.87 9.7 1.31 "
17 47.90 13.3 . 1.53 "
18 54.05 17.0 1.73 "
19 59.43 20.5 1.9 "
20 64.2 23.9 2.09 "
21 32.9 6.3 0.846 3D F4
22 41.46 9.9 1,06 "
23 45,79 12.1 1.18 "
24 54,45 17.1 1.40 "
25 59.83 - 20.7 1.54 "
26 65.07 24.5 1.67 "
27 69.67 28.1 1.79 "
28 24.5 3.5 0.78 3D F5
29 32.67 6.2 1.04 "
30 40.87 9.7 1.31 "
31 47.89 13.3 1.53 "
32 54,05 17.0 1.73 "
33 59.43 20.5 1.90° "
34 64.16 23.9 2.09 "
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TABLE III.1. BEAM CONSTANTS.

m Pl | : o

1.8751 0410  0.7340 955 000
4.6940 9113 1.0184 664 400
7.8547 5743 0.9992 245 000

10.9955" 4074 1.0000 335 530

(S 2 B N O Y

14.1371 6839 1 0.9999 985 501

For m>5, ppl = @m-1)T1/2 and cp = 1.0
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TABLE 1IV.l

INTEGRALS INVOLVING BEAM FUNCTIONS.

1 > 3 . 5
ii 0.24409556|-0.60334863 40.74403279 -0.81795540 0.79261289
12 1.32188804 1.47117873 1 1.25288109 | 1.18174873 | 1.0659110
I3- 2.32664076) 4.25876876 2.9536?377 2f54627272 2.2627730
I, 2.34865697] 1.78057208 ‘1;69284372 1.63632881 1.5929542
I5 2.,03117982 1i49488963 1.07167611 1 0.90929765 | 0.79507604
TABLE IV.2. OTHER INTEGRALS.
case . .

I n = i+j n = i-=j n = j~i

(i) my/2 | Tt/ 2 n/2

(ii) /2 - /2 /2

(iii) /2 W/Z - 1i/2

(iv) - T1/2 T2 wa

- 204 -




TABLE Vil.l. CORRECTION FACTORS FOR HANNING
' . ON LINEAR SPECTRUM

@

* ' :
' NO. OF THEQRETICAL . MEASURED
HANNINGS _ : :
CORRECTION MULTIPLICATION FREQUENCY IMULTIPLICATION
FACTOR. ~ FACTOR. RESOLUTION FACTOR.
4B ‘

1 6.02 2.00 24 f 1.631

2 9.52 2.67 . 3af 1.910

3 ©10.10 3.20 | 4o f ] 2.a02

4 1 11.26 T 3.66 5af -

* As referred to the main lobe , ' o

@ Derived from rms values of 100 Hz and 200 Hz signals
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. TABLE IX.1

NOISE LEVELS IN THE WIND TUNNEL LABORATORY

Free Stream

Dyanmic Equivalent Acoustic Pressure
Velocity Pressure ' mm of water
fps mm of water Location 1 Location 2
36.0 7.5 0.025 0.020
51,0 51,0 0.061- - 0.042
65,0 ©65.0 0.074 0.078
92.0 92.0 0.211 0.260
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SL
No.

1.

= L0o2 ~

Surface Category.

Open country with no
shelter.

Open country with
scattered wind breaks

Country with many wind
breaks: small towns,
outskirts of large
cities. ‘

Surface with numerous
cbstructions e.g.
cilty centres.

Values of X and o4 for Evaluating 52 = KHa<

Table Al.

Height above Class A Class B
Reference datum 3 sec. 5 sec.
‘ (Basic data) (for L<50m)
K o X o{
All heights 0.832 0.080 0.782 0.087

S >Sm (K, o) 0.792 0.087 0.724 0.101

£5m (K,o(,)  0.615  0.178 0.578 0.183
> 7.6m 0.724  0.1017  0.653 0.116

£ 7.6m  0.412 0.275 0.389 0.279
S 44m - 0,600 . 0.130 0.536 0.154
< 14m 0,355  0.274  0.316 0.293

Class C

15 sec.

{for L>50m)

K ol
0.721 0.098 -
0.682 0.108
0.506 0.216
0.601 0.128
0.352 0.293 '
0.488 0.168
0.278 0.316



Design Wind Speed Satisfying Allowable Stress Criterion.Height-less‘than 50 metres.

% ¥ % %

"58.96
49,59
41.40
35.18
29.92
26.63
23.90
21.75

65.5

54,59
45.91
38.33
32.57
27.70
24.66
22.13

20.14

w
69.14
57.62
48.47
40.46
34,38
29.24
26.03
23,36
21.26

-

-V, < 20 m/s

t 11

TableA?. (Category 1).
40 45 50 60 70
Design wind speed Vg m/s

L] - * -

- L . L] > [ 3

o . 68.51 62.54 57490
61.27 57.77 54.81 50.03 46,32
51.06 48.14 45.67 41.69 38.60
42,95 40.90 38.41 35.07 32.47
35.85 33.80 32.07 29.28 27.10
30.47 28.73 27.25 24.88 23.03
25.91 24.43 23.18 21.16 -
23.07 21.75 20.62 - -
20.70 - - - -

TableA3. (Category 4).

L] * .

» " . .
* * . 66.01 61,12
64.68 60.98 57.85 52.81 48,89
53.90 50.82 48,21 44.01 40,74
45,324 42.74 40.55 37.02 34,27
37.85 35.68 33.85 30.90 28.61
32.16 30.32 28.77 26.26 24,31

© 27.35 25.79 24,47 22.33 20.68

21.85 20.60 -

80

54.16
43.33
36,11

- 30.37

25.35

21.55

[ I A |

57,17

45.73
38.11
32.06

26.76

22.74

e

90

68.08
51.06
40.85
34.04
28.63
23.90
20.31

A I A

53.90
43,12
35.93
30.22
25.23

- 21.44

1 vt

100

64.59
48.44
38.75

32.29

27.16
22.68

68.18
51.13

40.91

134,09
28,67

23.94
20,34

125

67‘68
56.40
42.30
33.84
28.20
24.17
20.28

S I T T T |

59.53
44.65

35,72 -

29,77

. 25.51

21.41

S I B O I



9t 25

L e
40 .
50 .
50 69.02
80 44,83
100 3z2.08
120 24.40
140 -
and
over

i “/k

]

© 40 *

;Dso .
60 *
g0 46,49
100 33.25
120 25.30
140 20.08

Design Wind Speed Satisfying Allowable Deflection Criterion.

Height less than 50 metres

30

63.00
40.52
29.28
22.28

35

58.33
37.89
27.11
20.62

60.49
39.29
28.11

21.39

TableAd. (Cateacory 1).

40

Design Wind Speed Vs /s

54,56,
35,44
25.36

45

L.

67.62

51.44
33.41.
23.91

50

L ]

64.15
48.80
31.70
22.68

60

- 58.56

44,55

28.94

20.71

TableAS. (Category 4).

L1

56.58

26.30
20.00

L

™
53.34
34.85
. 24.79

L3

66.52
50.61
32.87
23,52

—
—

e

*

60.73
46.20
30.01
21.47

—

70

- 54,22

41.25
26.79

56.22
42.77
27,78

80

50.72

38.58

25.06

52.59
40.01

- 25.99

it

90

66.83
47.82
36.38
23.63

69.30
49,58
37.72
24.50

100

63.40
45.36
34.51
22.41

65.74
47.04
23.24

111

125

56.70
40,57
30.87

- 2G.05

58.80
42.07




TableAb6. Design Wind Sveed Satisfying
Sway Oscillation Criterion.,

10 402.0

20 100.5
30 44,6

40 25.1

50 ' . 16.1

60 and Less than
over 15

TableA7.  Desiagn Wind Speed Satisfving
Ovalling Oscillations Criterion.

dysg ' Vg m/g
25 . 248.8
50 124.4
75 83.0
" 100 : 62.2
125 50.0
150 41.5
- 175 35.5
200 31.1
225 - 27.6
250 25.0
300 20.7
350 . 17.7
400 15.5
450 and Less than

over 15
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PLATE 81

MODELS & EXPERIMENTAL SiT-UP
a.rigid cylinder R3, b.shell F5
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PLATE 101 SURFACE FLOW PATTERN ON RIGID CYLINDER,Re=165X10
a&c.side views, b. front stagnation
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8-z Plane
FIC.2.3 DISPLACEMENTS
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FIGURE 2.L STRESSES AND STRESS RESULTANTS
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FIGURE 2.5  LINEAR - PRESSURE SPECTRUM
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FIGURE . 2.6 WIND SPECTRUM  {REF.85)
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PROBABILITY OF WIND SPEED >Vmpi

. FIGURE 2.7 PROBABILITY OF WIND SPEEDS (REF.77)
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FIG.IX1 ACOUSTIC NOISE LEVELS IN THE WIND TUNNEL LAB.
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FIG XII'1 WIND VELOCITY PROFILE & SHELL GEOMEITRV










