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RESPONSE OF THIN-WALLED CYLINDERS TO 

AERODYNAMIC EXCITATION 

SUMMARY 

Non-linear vibrations of thin-walled shells under 

aerodynamic excitation are investigated using Flugge's thin 

shell theory, modified to include the effects of large deform-

ations. The theory is applicable to any type of boundary 

conditions and various types of normal loading. The formula-

tion includes mean or initial deformations of the median surface. 

A probabilistic-deterministic analysis of fatigue, representative 

of wind effects on earth-borne structures, is proposed based 

on the derived stresses and the Palmgren-Miner rule. Extentions 

of the non-linear theory to include structural damping and to 

analyse single mode. static collapse of thin shells are also 

outlined. 

In the random vibration analysis; based on energy methods, 

the multi-mode random response of thin shells under wind loading 

are studied. A fixed-free shell configuration is investigated in 

detail, though the formulation is applicable to any type of 

boundary conditions. 

Oscillatory pressures round· rigid cylinders and flexible 

shells are measured in the tests conducted in the 43" x 30" low 

speed wind tunnel. Three low pressure transducers-DISA type 

51F32-are employed for the purpose. 

of Reynolds numbers of 0.4 x 105 to 

The tests cover the range 

5 2.85 x 10 • 

The effect of shell flexibility 6n the shedding of vortices 

is studied by comparison .with the results of the rigid cylinder· 

pressure measurements. Also, the 3-D effects on the oscillatory 



(U) 

pressures are identified. 

The r:esponse of two thin shells under wind excitation 

are studied experimentally, using the results from strain 

gauge records. The oscillatory pressures and the response 

are analysed for the rms values by using analog methods. 

Spectral analysis of these signals ar'e carried out on the 

Fourier Analyser HP5451-A which employs digital analysis 

techniques. Measured response spectra are compared with 

those computed from the random vibration theory developed 

here. 
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1. INTRODUCTION. 

1.1 Summary. 

A comprehensive review of the literature in the thin 

shell theory is presented including a detailed discussion 

of non-linear effects. Importance of ground wind distri­

bution for loading actions on full scale structures is 

briefly described. A review is also given of the measure­

ment and analysis techniques of oscillatory wind pressure 

forces (lift and drag) on circular cylinders. The statis­

tical methods available for the response of thin cylindrical 

shells to aerodynamic excitation are also considered. The 

statement of the present problem and methods of analysis are 

then briefly described. 

1.2 General. 

Cylindrical str.uctures form one of the most basic 

types of construction in the field of civil engineering and 

in aerospace engineering practice. With current trends in 

design and fabrication these structures increasingly tend to 

be slender and thin and as such are amenable to large ampli­

tude response to fluctuating forces and consequent, oscilla­

tory and divergent instabilities. Circular cylinders in 

particular experience fluctuating forces with a narrow band 

of frequencies in a uniform wind stream. This is a conse­

quence of the phenomenon of vortex shedding which may be 

either stable or unstable depending upon the flow Reynolds 

number. In the latter case and in the presence of free 

stream turbulence the frequency band \~idth increases. Thin 

cylindrical shell type structures such as chimneys and 

.rockets on their launch pads in the ground shear flow of the 
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earth's boundary layer are thus subject to steady fluctuat-

ing forces where a definite harmonic is predominant or to a 

random pressure field with a number of harmonics, and both 

present a complicated dynamic response problem. This is 

particularly important in the estimation of fatigue life. 

It is then necessary (i) to develop a suitable shell theory 

to evaluate the stress levels accurately, which implies the 

solution of the deterministic vibratien preblem to ebtain 

the transfer functicn of the structural system, (ii) to assess 

and adequately describe the nature of shear flew in earth's 

boundary layer, (iii) to. measure the aeredynamic forces and 

moments cn the structure in questicn and (iv) tccbtaih the 

response ef the structure to. the measured excitation inputs. 

A large number of published works are cited in the 
l 

literature cevering ene er more aspects of the prcblem out­

lined. Marris (1) and Johns (2) presented r'evie\~s of wind 

induced vibraticns and their importance in structural design. 

In the fcllowing sectiens the present state of the art in the 

field is cemprehensively reviewed. 

1.3 Choice of the Thin Shell Theory. 

1.3.1 Basic Thin Shell Theory. 

A large number ef different theeries have been propesed 

by varieus investigators all purperting to describe the mo-

tien cf a thin shell. The differences in these theories 

result from differences in the simplifying assumptiens made 

and the exact stage in the derivation at which the assumptions 

are utilized. Rayleigh(3) evaluated the displacements of· a 

point en the shell surface from an energy ccnsideratien 

assuming that the middle surface of the shell is inextensible. 



This was shown by Love(4) to be inaccurate near the bound-

aries. 

In the well kno~m First Approximation theory, Love(4) 

obtained all deformations of the shell in terms of mid-plane 

deformations and the physical assumptions (see Appendix I) 

under which these are derived have long been accepted for 

sufficiently thin shells. 

Love's(4) Second Approximation theory assumes that the 

extentional strains are small compared with the flexural 

strains and that the normal displacements are not completely 

independent of the normal coordinate. Later, Timoshenko(S) 

presented a detailed shell theory which is consistent with 

the First Approximation theory. Basset(6) pointed out the 

inconsistencies in the First Approximation theory and Vlasov 

(7) also pointed out that the above theories contradict the 

principle of conservation of energy and do not satisfy 

Betti's reciprocity condition. 

Starting from three dimensional elasticity equations, 

several author~8,9,10) deduced shell theories retaining terms 

to various degrees of accuracy but these were later found to 

be of little advantage. Flugge 1 s(11) theory of thin shells 

retains terms of degree higher than those in Timoshenko 

theory, yet it is computationally tractable and satisfies 

the reciprocity condition. This theory has since been an 

accepted standard to which other theories are referred to 

for accuracy. Donnell(12) obtained by physical arguments 

equations which were uncoupled in the three displacement co-

ordinates and hence simple to use but are limited in accuracy. 

- 3 -



Free vibrations of cylindrical shells also were in­

vestigated by Rayleigh(13) considering the membrane stresses 

only. Baron and Bleich(14) and Junge~.andRosato(15l 

accounted for bending stresses in addition to the membrane 

stresses. Lin and l1organ(16l and Hermann and l1irsky(17) 

included rotatory inertias and shear deformations in their 

analyses. Yu(18l performed a similar analysis using 

Donnell's theory. It was concluded that the effect of 

shear deformations and rotatory inertia was to reduce the 

propagation velocities and to lower the natural frequencies. 

Naghdi(19l in an analysis based on a variatiorial 

method, considered the nonaxisymmetric motion of shells and 

(20) 
also included rotatory inertias. Hermann and Armenakas 

. 
developed nonaxisymmetric forced motion of cylindrical 

shells vii th initial stresses which forms a more realistic 

approximation. Reismann(21) analysed this problem according 

to Flugge's theory. Medige(22) has solved essentially the 

equations of Reference (20) without initial stresses and has 

applied them to the case of blast loading. 

Recently, Leissa(23) has presented an extensive com­

pilationof published literature on the vibrations of shells 

with an appraisal of various theories concerning complicating 

effects such as large deformations, stiffeners etc. Sanders 

(24) derived an improved form of Love's First Approximation 

theory in which all strains vanish for rigid body motions. 

This wa.sachieved by considering the equilibrium equations and 

the principle of virtual work in the definition of the strain 

displacement relations. 
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In the present inv~stigation, Flugge's(11) linear 

theory is modified to include geometric non-linearities 

arising due to large deformations and the derivations are 

carried out ab initio. 

1.3.2 Large Deformation Considerations. 

When the deformations of the shell are large compared 

to the thickness of the shell, the higher order terms in 

the strain displacement relations are no longer negligible. 

Considerable disagreement in the iiterature exists as to 

the non-linear behaviour of the shell and whether it is 

hardening or softening due to such geometric non-linearities 

and also as to the effect of boundary conditions in such a 

case. Reissner(2S) in his pioneering work, reported that 

the non-linearity may be either softening or hardening 

depending on. the number of circumferential waves in the mode 

shape. The analysis was based on Donnell's theory and the 

assumed modes were sinusoidal in both axial and circumfer­

ential directions but not necessarily in time. ChU's(26) 

investigations indicated that the non-linearity is of the 

hardening type. Nowinski(27) further confirmed Chu's results 

but his attempt to satisfy the compatibility condition 

resulted in satisfaction of a different set of boundary 

conditions. Cummings(28) obtained a similar hardening be-

haviour. 

(29) (30) . Evensen and Olson observed through experlments 

that the non-linearity was softening. The results of 

Evensen(31) and Evensen and Fulton(32) indicated that fo~ 

certain geometries and certain ratios of axial wave number 

to circumferential wave number the non-linearity is hardening 
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and for others it is softening. These studies were based on 

Donnell's theory and for simply supported boundary conditions 

but the end moments were non-zero because of the non-linear 

terms. 

Matsuzaki and KObayashi(33) solved the case with 

clamped ends and sUbstantiated by experiments that the non-

linearity is softening. It is interesting to note that 

Evensen's(29) and 01son's(30) experiments were also on 

clamped shells. 

Some results in Reference (32) and more recently, 

those of Leissa and Kadi(34) indicated that the shell behaves 

like a soft spring initially and as the amplitude is further 

increased, it behaves like a hard spring. Mayers and Wrenn 

(35) using the "exact" theory of Sanders (24) concluded that 

the free non-linear vibration is nonperiodic and of the hard-

ening type. Some results of the present investigation 

reported in Reference (36) indicate that the non-linearity is 

hardening as applied to a clamped - free thin circular cylin-

drical shell. 

1.4 Ground Wind Distribution. 

Ground-fixed structures are immersed in the shear flow 

of earth's boundary layer. An assessment of the wind loads 

on them could only be obtained by measurements over long 

periods of time. Extensive data and literature are available 

on the subject. The basic wind speed records are maintained 

by the Meteorological Offices. However; complications in the 

data analysis arise due to statistical uncertainty in the 

distribution. An excellent account of wind data has been 

given in Reference (37) and of measurement techniques in 

Reference (3~). Shellard(39) and Davenport(40) have discussed 
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the methods of interpretation of wind records as applied to 

structural design. References (41, 42, 43 and 44) have con­

sidered the variation of wind speeds with h\ght and averaging 
r ~ 

time.: Methods of simulation of shear flow of earth's boundary 

layer in experimental investigations have been outlined by 

Cermak and Arya(45). Design codes based on gust speeds of 

wind with a fifty year return period have been laid down in 

Reference (46). A comparison of various codes of practice is 

discussed by Pierce(47) and Sachs(38). A detailed description 

of the ground wind distribution based on existing numerical 

data is given elsewhere in the present analysis (see 

Appendix Xl. However, the experimental investigation in the 

present analysis is based on "uniform" wind rather than on 

simulated shear flow. 

1.5 Flow Field Round a Circular Cylinder. 

A large number of researchers have contributed to the 

study of flow past circular cylinders, starting from the work 

of Strouhal(48) who showed that the frequency of shedding of 

a pair of complementary vortices increases linearly with flow 

velocity over a range of velocities yielding a constant value 

of the non-dimensional frequency - the Strouhal number. 

Rayleigh(49) established that the vortex shedding frequency, 

and hence the Strouhal number, is also a function of Reynolds 

number. Tritton(50), Roshko(51) and Gould(52) have presented 

experimental pressure distribution data covering a large 

range of Reynolds numbers. These results have been consoli-

dated in Reference (53). Except for I<eference (52) the others 

have referred to the time-average pressure distribution on 

rigid two dimensional cylinders while (52) has referred to 

three dimensional cylinders and has included root mean square 
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pressure measurements in addition to average pressure data. 

Bishop and Hassan(S4) measured fluctuating lift and 

drag forces on a rigid cylinder in the Reynolds number range 
i 

of 3,600 - 11,000 in a water channel. The results indicated 

that the fluctuating lift forces were an order of magnitude 

greater than the fluctuating drag forces and that the lift 

frequency was equal to the frequency of shedding of a pair 

of vortices whilst the drag frequency was twice of that. 

Keefe(SS), Fung(S6), Chen(S7), Schimdt(S8) and Gerrald(S9l 

are a few other investigators to have studied the fluctu-

ating forces on a rigid cylinder at various Reynolds 

numbers. Surry(60) investigated the influence of the free 

stream turbulence on fluctuating pressure distributions 

around rigid cylinders at a Reynolds number of approximately 

40,000. Increase in the free stream turbulence resulted in 

an increase in the fluctuating lift and a decrease in the 

fluctuating drag. Also detected was the presence of har­

monics of Strouhal frequency. Gould,s(S2) tests were at 

high Reynolds numbers of 2.7 x 10 6 and S.S x 106 in the 

compressed air tunnel on 3" and 6" diameter models. From a 

correlation study of the pressure distributions on these 

rigid cylinders. it was found that due to three dimensional 

effects the flow characteristics near the top \.Jere so phased 

as to be more likely to cause in line bending oscillationst 

while away from the tip region oval ling \>JaS thought to be the 

more likely result. 

Furguson and Parkinson(61) tested in airflow, a rigid 

cylinder on flexible supports and found that the maximum 

V (62) 
transverse amplitudes corresponded to To = 6.1. Wootton 
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conducted wind tunnel tests on model stacks and reported that 

the response depends on aspect ratio, mass ratio, damping and 

surfate roughness. Maximum amplitudes occured at a Strouhal 

number of St = 0.16. Both References (54) and (61) have 

shown that there is a range of velocities over which "10cking-

in" occurs characterized by transverse oscillations perpendi­

cular to the free stream at frequencies close to the struc-

tural natural frequencies. In a recent study on model piles, 

King, Prosser and Johns(63) concluded that the critical v 
'fIT 

depends on a stability parameter (the product of mass and 

damping) and that there are two regions of instability - viz. 

and symmetric vortex shedding. Cincotta (64), unsymmetric 

Toebes (65) , Toebes and Ramamurthy (66) and Ukeguchi et ct.l'( 6 7) 

have studied experimentally the unsteady forces and vortex 

exci tation of cylinders. It may be noted that in all these 

cases, the cylinder considered was rigid but elastically 

mounted to allow for the motion of the cylinder. 

1.6 Transfer Function Evaluation. 

Accurate measurements of the aerodynamic forcing fUl1c-

tion and of the response of the flexible structure should 

lead naturally to a description of the input-output relation 

between them in the form of the transfer function of the 

system. Such an attempt has been reported by Campbell and 

Etkin(68) for a cylindrical structure with idealized des-

cription of the structural stiffness. Response spectra for 

bending of a cantilever was obtained by cooper(69). Novak(70) 

also described response spectra for lateral vibrations of 

cylindrical structures. Davenport(71) and Handa and 

Clarkson(72) have derived a statistical description of the 
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response spectra for slender structures. To the author's 

knowledge there is no literature cited of the accurate 

measurement of unsteady aerodynamic pressures around a 

flexible circular cylindrical shell and of the consequent 

dynamic excitation particularly of the three dimensional 

kind. 

A vast amount of' literature is now available on the 

wind effects on buildings and structures through conference 

procedings (73, 74, 75, 76 and 77). Numerous studies on 

wind induced vibrations of structures are also presented in 

Reference (7S). The methods for the theoretical evaluation 

of the random response of complicated structures and for 

fatigue analysis to some extent have been discussed in 

detail by Robson(79), crandall(SO).and Lin(81). 

1.7 statement of the Problem. 

In the present investigation, 

(i) a generalized non-linear thin shell theory of cylin­

drical shells is developed, valid for any boundary 

condition and for any distribution of normal loading 

including wind loading, 

(ii) the fluctuating aerodynamic pressure distribution is 

measured in real time on two dimensional rigid cylin-

ders and on three dimensional rigid and flexible 

cylinders, 

(iii) the response of flexible cylinders to various dynamic 

inputs is also measured, 

and 

(iv) theoretical and experimental transfer functions based 
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on a statistical energy method are evaluated and a method 

of prediction of random fatigue life is also outlined. 

1.8 Layout of the Dissertation. 

Part A of the thesis is devoted to theoretical 

analyses; Part B considers the experimental studies and 

Part C contains the discussion of results. Information is 

generously drawn in to the various sections of the disser­

tation from the expressions and ideas developed in the 

thirteen Appendices. 

In Chapter 2, a non-linear thin shell theory is 

developed ab initio, following Flugge's description of 

shell motion. An energy formulation is used. Various 

types of surface tractions are considered. Energy for­

mUlation of random response and fatigue problem based on 

Miner's rule are also outlined. 

In Chapter 3, .the methods of dynamic analysis 

incorporating method of averaging and Rayleigh-Ritz 

procedure are described. Solution procedures are esta­

blished for free linear and free and forced non-linear 

vibrations. The characteristic nature of the non-line­

arity is also qualitatively established. 

In Chapter 4, the static analysis of the. shell is 

carried out for impressed time-average wind loading. 

In Chapter 5, the more realistic problem of wind 

excitation inclusive of static deformation is carried 

out both as a deterministic and as a random process. 

In Chapter 6, experimental concepts are developed 

in a logical sequence. The various parameters involved in 

the experimental procedure are identified and outlined, 
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including the statistical parameters. 

In Chapter 7, a steady state vibration study of 

flexible shells is described with the shells in question 

being under single point excitation. The influence of 

transducer mass and cable stiffness on the natural fre­

quencies are accounted for. The response is also obtained 

for various magnitudes .of the forcing function. 

In Chapter 8, fluctuating pressure measurement and 

analysis techniques, instrumentation and data processing 

equipment are detailed. For accurate measurements of 

fluctuating pressures the use of DISA 51F32 low pressure 

transducers is outlined. Techniques of spectral analysis 

of the analogue data carried out on HP 5451A Fourier 

Analyzer is described. Analogue procedure for the evalu­

ation of root mean square pressures is also discussed. 

In Chapter 9, the results of various cases of 

deterministic analysis are presented. 

In Chapter 10 are described the results of experi­

mental measurements and data analysis. The overall 

effects of pressur~ distribution on the shell and the 

d:i,stribution functions are also discussed. 

In Chapter 11, the results of response analysis 

utilizing statistical methods are described. 

In Chapter 12 the conclusions of this extensive 

integrated study are listed. 

It is believed that the list of thirteen Appendices 

adequately describes their contents. 
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2. FORl'1ULATION. 

2.1 Introduction. 

Deformations encountered in modern cylindrical shell 

type of structures such as chimneys, missiles and launch 

vehicles are comparable in order of magnitude to the thick­

ness of the shell. This implies that the higher order terms 

in the strain displacement relations are no longer negli­

gible. Further, accurate evaluation of stress levels is 

necessary from the point of view of estimation of fatigue 

life. For the purpose, an accurate shell theory and non­

linear analysis are required. In the literature Flugge's 

theory(11) and Sanders theory(24) are looked for whenever 

accuracy is important. However, it was qemonstrated by 

Sharma and JOhns(82) from a comparison vlith the exact solu­

tion of F'orsberg(83) that Plugge's theory gives acceptable 

estimates of natural frequency in a vibration problem when 

used in conjunction with beam functions(84) for displace­

ment description. Also from a physico-geometrical stand 

point, the strain-displacement relations and the subsequent 

vibration analysis may be easily derived. 

In the present analysis Flugge's theory is hence fol­

lowed and is modified to include non-linearities arising 

from large deformations. For ease of comparison the non-

linear terms in the analysis .are identified throughout in 

the notation with chain brackets { }. Expressions for strain 

energy, kinetic energy, work potential, stress resultants are 

all derived from first principles in this section. 

The derivations are subject to approximations assumed 

in Flugge's theory (see Appendix I) excepting that the 
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I 

second order terms arising due to large radial deformations 

are not negligible in the 'strain displacement relations. 

2.2 strain-Displacement and Stress-Strain Relations. 

The geometry of the shell and the coordinate system 

are shown in Figure (2.1). For end boundary conditions 

corresponding to a fixed-free configuration, the circum-

ferential full waves relating to circumferential mode 

numbers n and axial mode shapes associated with the axial 

mode numbers m are sketched in Figure (2.2). The displace­

ments of a point A on the shell element are shown in Figure 

(2.3). In terms of mid-plane displacements the general 

expressions for strains at any point on the shell volume 

derived in Appendix I are 

€ xx = + , 

2 
E ee vG W zWee {1!2 we } = + + 

a a+"Z a(a+z) Ta+z)2 

€xe 
uG ( ~ z wxe { Wx we J = + a+z Vx + a+z) + 
a+z a a+z 

2.1 

The non-linear terms enclosed in chain brackets are assumed 

to be due to moderate rotations corresponding to large dis-

placement W in the radial direction. It is to be noted 

that the displacement relations themselves are linear as a 

consequence of this assumption. Equations (2.1) are the 

same as those of Flugge(11) except for the additional non-

linear terms. 

It is assumed that the stress strain law is linear. 

In addition, consistent with the conventional thin shell 
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theory a state of plane stress is assumed. Under these 

assumptions, 

0" zz = O"xz = CJyz la 0 2.2 

and 

0" = E ( E xx + V tee ) , .xx 
1- 'Y 2 

eree = E 

1- V 2 
( €ee + V E- xx 

) 

CJ xe = E €xe 
2 (1+ V ) 

or 

()xx 1 V 0 "'xx 

(J ee = E V 1 0 Gee -
1- '{2 

axe 0 0 1- ")} exe --
2 

2.3 

2.3 Strain Energy. 

There exists a system of infinitesimally small virtual 

strains cS E. xx' b Gee and bE. xe corresponding to a set of 

assumed infinitesimally small virtual displacements 0 u, 

o v and cS w. Assuming a quasi-steady state of stress, the 

incremental virtual strain energy due to these displacements 

is 

bu = c:5 E. xx + 
)dvol 

+ (Jxe O€xe 

2.4 

For a Hookean material sUbstitution of Equations (2.3) 

into (2.4) yields 

E h/2 2JT 1 2 
U =- f J J [€2x +6 + 2(l-V2) x ee 

. -h/2 0 0 2.5 
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where (a+z) de dx dz is an elemental volume at a distance z 

from the median surface. Since the strains contain linear 

and non-linear parts, for convenience the total strain 

energy may be written as 

u = U linear + U non-linear 2.6 

2.3.1 Linear Strain Energy. 

The strain energy obtained by the substitution of 

linear part of Equation (2.1) into Equation (2.5) is termed 

here as linear strain energy. Integrating (2.5) with 

respect to z and retaining terms up to the order of h3 /a 3 

in the expansion of In 1 + h/2a 

1 - h/2a 

. the linear 

strain energy is 

2TI 1 

= Eah J J U lin 
2(1-'~2) 0 0 

+ 

+ 4wxe 
2 + 2 -a 

where ?= h 2 

12a2 

Ue~lxe 

( w +ve )2 + 2V Ux (ve+w) 

a 

+ 

6vx wxe ) JJ 

1-)7 ( 

2 

dx 

u 2 + e 

;2 

de , 

3v 2 x 

2.7 

This expression is identical to the one that is derived 

in Reference (82). 

2.3.2 Non-Linear Strain Energy. 

That part of the total strain energy which arises due 

to non-linear terms. and the product of linear terms \vi th 
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non-linear terms in the integral (2.5) is referred to here as 

the non-linear strain energy. Integration of this part of 

(2.5) with respect to z and rearranging like terms results in 

U 1. non- ~near 

2n 1 

= Eah J J 
2 (1_»2) 0 0 

1-» +--
a 2 wxwe ( ue + avx 

6we 
4 2 

2weewe + + vewe + 
4a4 a 3 a 3 

2 2 

) + 

2 
+ 

4 
we 
-- + 
4a4 

2 2 
W w.· x e 

+ 
2a2 

f3 [-awxxwx 
2 

3wwe 
2 

a 3 

2 
+ vWxwe + 1- wxxwe + wxwe 

a 2 2a2 a 

v W 2 ww 2 e e + e 

a3 a 3 

+ ( 1-)) ) wxwe ( ue + aWxe ) ] } dx de 2.8 

where terms up to the order of h3 /a3 only are retained in the 

logarithmic expansion of In[1+h/2a} It is seen later in 
1-h/ 

Section (3.3) that this seemingl~acomplex integral leads to 

a very simple algebraic expression in the characteristic 

equation under the single mode response assumption. 

2.4 Kinetic Energy. 

The kinetic energy of an element at pOil1.t 0 on the 

median surface (see Figure 2.3) is given by 

(ST) vo = i f[ (~)2 + (v)2 + (w)2 Jdx dz ade 2.9 

An elemental volume at point A at a distance z from the 

median surface has kinetic energy 

( 6 T) VA = i • 2 • 2 • 2 f C (uA) + (vA) + (wA) J (a+z)de dx dz 

2.10 
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Integration over the volume gives 

1 2TT h/2 

Iv eST .f.. f J J 
• z~ )2 (~ 

. z· 2 
= T = ( (u - + v + aWe) 

2 x a 
0 0 -h/2 

+ (~)2 J (a+z) de dx dz. 

or 
1 2TT 

J f [~2 ·2 + ~2 + 
. . • 

T (,ah + v t3 Cawx(awx 2u) = 
2 0 0 

• •• • 
+ (wQ - v) (wQ - 3v) J J de dx 2.11 

where terms in the first parentheses are due to rotatory 

inertias and those in the second set of parentheses are 

contributed by in-plane inertias. It is observed that within 

the frame work of assumptions (1) and (2) in Appendix I the 

non-linearity due to large deformations does not affect the 

kinetic energy. 

2.5 Work Potential. 

The work done by surface tractions is evaluated in 

Appendix II for arbitrary normal loading distribution. It 

is assumed that the external loads are harmonic functions 

in e direction and in time. The specific types of distri-

bution are considered below. 

2.5.1 Concentrated Load at the Tip. 

A concentrated load P is considered at the free end 

x = 1 and e = 0 acting radially inwards on the shell and is 

assumed to be harmonic in time with frequency w, defined by 

p (t) • - p cos w t 

If well = wl is the tip deflection, the work done is 

W (t) = (-P)wl cos w t. 
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The negative sign of P implies that the load is acting 

radially inwards and the z coordinate is positive radially 

outwards. 

2.5.2 Line Load - Beam Function Distribution. 

In this hypothetical case, the load is assumed to be 

distributed spatially along a generator at e=O with the 

distribution function proportional to the clamped-free beam 

function (see Appendix III) and to be a single harmonic in 

time. The functional form is 

i. e., 

p. (x,t) = - PO QJ (x) coswt • 

The work 

w (t) = 

done is then, 
r 1 

-PO J O C\J (x) w (x,t) coswt dx 

1 
w (t) = - Po cosc.<>t fa <\) (x) w (x,t) dx. 

2.12b 

2.13b 

where w (x,t) is the displacement distribution function 

along a generator at e = 0 of the form 

w = 4l(x) f (t) = c\J(x) coscot 

2.5.3 Distributed Load - Harmonic Distribution. 

The load is distributed uniformly in the axial dir-

ection and harmonically in the circumferential direction 

in the form 

p (x,e,t) = p (e;t) = - Po cos' ne cos v:>t 2.12c 

The work potential is 

w (t) = 
J 1 J 2TT 

o 0 - Po cos ne w(x,e,t) cos wt dxde 

or 
211 

W (t) = 

1 

- Po cos cut 1a 10 cos ne w(x,e,t) dx de 

2.13c 

where w(x,e,t) is the displacement distribution function 

(see Section 3, Equation 3.1). 
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2.5.4 Wind Load Distribution. 

The more realistic case of wind load distribution con-

sidering the variation with height of the structure (axial 

direction in the present analysis) is discussed in detail 

in Appendix XIL The coefficient and the index in the power 

law are derived on the basis of the 3-second gust data 

given in Reference (46). The circumferential pressure 

distribution may be expressed in the form of a truncated 

Fourier series. For the purposes of analysis, the .total 

pressure may be resolved into two components namely the 

time-average pressure distribution producing static de­

formations and the root mean square (rms) value of the fluctu-

ating pressures with a characteristic frequency equal to 

the predominant frequency in the average power spectrum. 

Symbolically, the sectional total pressure at a point is 

PT (x,e,t) '" PS (x,e) + p (x,e,t) 2.14 

such that Ps (x, e) = PT (x,e,t) 2.15 

and p (x,e,tl = 0 2.16 

where a "bar" indicates a time-average value. Considering 

the fluctuating part to be a single frequency component, 

p (x,e,t) = - PO f(x) gee) cos tOt 

where = K xc( 

with K and c( as defined in Appendix XII. 

and 

g (e) a i cos le 
i=O 

2.12d 

2.18 

2.19a 

The work done by these fluctuating forces could be written 

(see Appendix 
1 

J w (t) = 0 

II) as 
20 

J o - Po f(x) g (e) [ w + 1 
'2" 
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cos tOt dx de 

Similarly the work done by the time-average pressures 

could be written including the non-linear terms as 

Ws = J 
o 

where 

with f 

1 2T1 

f 
o 

. 2 
- PSO f (x) gS(e) [w + i [~ 

+ uxw.- uWx j J dx de 

PS (x,e) . = PSO f (x) gs (€I ) 

(x) defined by (2.18) and 
N 

gs (e) = L a iS cos ie 
i=O 

2.13d 

2.13e 

2.12e 

2.19b 

In the above expressions the axial distribution of fluctu-

ating and time-average pressures is assumed to be of the 

same form, as given by Equation (2.1S). 

The concepts developed here are utilized later in the 

dynamic and static analyses, once the displacement functions 

are chosen so as to satisfy the kinematic boundary conditions. 

2.6 Derived Stresses. 

It is essential to know the peak stress levels in the 

shell in order to estimate the fatigue life. The dynamic 

stresses, clearly, are functions of displacements and mode 

shapes. Expressions are derived here for the stress resul-

tants in terms of the mid-plane displacements. Knowing the 

stress resultants the stresses could be computed. Alternately 

the stresses may be obtained by substituting Equations. (2.1) 

into Hooke'S la\~ given by Equations (2.2). 

The stress resultants on a cylindrical shell element 

from Figure (2.4) are 
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h/2 

J a x ( 1 + z ) dz a 
-h/2 

h/2 

1 0e dz 
-h/2 

h/2 

"1 axe ( 1 + 
z ) dz a 

-h/2 

h/2 

J o ex dz • 2.20a 

-h/2 

It is seen that for a cylindrical shell equality of 

shear stresses does not imply equality of shear stress 

resultants. The moments may be similarlY written as 

h/2 

Mx -J OX ( 1 + 
z ) zdz = a 

-h/2 

h/2 

Me = -J ere zdz 

-h/2 

h/2 

Mxe -J °xe ( 1 + 
z ) zdz '" a 

-h/2 

erex zdz 2.20b 

As in the case of "shear forces" the "twisting 

moments" are not equal. In thin shells this difference is 
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small and is often neglected. It is, however, very impor-

tant in the exact formulation and is considered in the 

present analysis. It should be noted that in the deriv-

ation of Equations (2.20) no particular law of stress dis-

tribution is implied. Hence these definitions of "forces" 

and "moments" are always valid. The transverse~"shear 

forces" Qx and Oe have been omitted in accordance with the 

plane stress assumption. Assuming a linear stress distri-

bution, the stresses are given by 

= 
NX 12 Mx Z 

'Fl h 3 

= Ne 12 Me Z 
'Fl 

h3 

= 
Nxe 12 ~e Z 

11 h 3 

= 
Nex 12 Mex Z 

11 h 3 
2.21 

In general, O"xe'; o-ex which implies that linear stress 

distribution assumption is not correct. 

For a Hookean material, substitution of Equations 

(2.1) and (2.2) into Equation (2.20), and integration over 

the thickness yields, in terms of mid-plane displacements, 

the stress resultants as 

= 
Eh 
1-» 2 [ux + 

1 

2 
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Ne = 

N xe 

N ex 

Mx 

M e 

M 
xe 

M ex 

2 
Ve ~w Eh [ ee W 1 W 

(1+3 {3 )} + + - (1+(Z» +{-~ + V Ux 
1- V 2 a a a 2 a 2 

I 
I 2 

+ ~ 2:. Y Wx J J 
2 

Eh r: 
ue 

) t 
Wx we 

= + Vx (1+ f-' - f?' wxe + J J 
2 (1+ .~ ) a a 

Eh [ 
ue 

(1+ (?> ) (?> { 
Wx we 

(1+ (3 )JJ = --- + Vx + wxe + 
2 (1+ Y ) a a 

2.22a 

Eh (!> [ -aux + a 2 t2:. 2 Y (ve + wee) = wxx - a Wx 3 -
1- Y 2 2 

2 

1 1 VWe J J + 
2 a 

Eh ~ 
2 2 

[Wee + W +. 
we wxx J = 

1- y2 1 -} + ya 

a 

= ~ [ - 2a Vx + 2a wxeJ 
2 (1+ V ) 

= .!8llL + + 
2 (1+ y ) 

2.22b 

In the above equations the contributions due to 

geometric non-linearities are identified by chain brackets. 

Omission of these terms result. in expressions identical to 

. those given in Reference (11). 
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2.7 Random Loading. 

2.7.1 General. 

The wind loading on chimney like structures covers a 

wide range of Reynolds numbers. This implies that the 

nature of the fluctuating aerodynamic loading may be of the 

broad band type in the Reynolds number region where there 

is no regular vortex shedding and of the narrow band random 

type elsewhere. The study of both types of loading is 

important, from the structural response point of view, 

because the loads are of larger magnitudes (due to higher 

wind velocities) in the former case while the resonance 

effects are predominant in the latter case. A simple 

procedure is developed herein purely in/t:erms of the power 

spectrum of the input and the mechanical admittance 

(frequency response function) of the structure. 

2.7.2 Work Potential. 

The total pressure may be recalled to be given· by 

PT (t) 

where PT (t) 

and p (t) 

= 

= 

= 

Ps 

Ps 

0, 

+ p (t) 

2.23 

with the functional dependence on (x, e) suppressed for 

convenience in writing. In the following analysis only 

p (t) is considered which implies that the mean value is 

zero. In terms of the I-Aplac.e.. transform, p (t) may be 

written as 

pet) 1 ! Od '" :ZlT I" ( i w) e iwt dw 2.2.4 

° 
J~ -iw t 

dt p (t) e 
where 

r-( i w) = 2.25 

° 
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is the L=p.lc.ce transform of p (t). The power spectrum of 

the pressure can then be obtained by conjugate multiplication 

as 

= r- (i w l • t" (iw l. 2.26 

One could now look at the problem in the frequency domain 

instead of in the time domain. The work potential for a line 

element of load (see Figure 2.5) 

= 21T D.P (t) 

acting along a generator at e' is 

1 

l':..w = J 
0 

D.P (t) \-1 I a de' 
e=e' 

2.27 

In the limit, 

::aTT dp (t) = 

• 
• • fdW = W = in/Do 

o 

. 1 
",(~(., ) e~wtd"'l w (x) d ' dx I ~ ~ ~ e=e' a e 

o 
2.28 

The work done due to distributed wind loading whi.ch is a 

function of e only is then obtained by carrying out integration 

over de. HO~lever, this involv.es cross-correlation effects of 

pressure. These are explained in section (5.6) where the 

analysis procedure is discussed in detail. 

2.8 Fatigue Considerations Under Wind Loading. 

2.8.1 General. 

The importance of the accurate description of the load 

levels or, equivalently, the stress levels in the dynamic 

design of wind-excited structures is clear. The wind speed 

distribution in time which causes these stresses follows the 

statiitical variations and hence introduces uncertainties in 
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the prediction of the fatigue life. As a first step in the 

dynamic design it is therefore necessary to ascertain the 

natur~ of the wind loading in the earth's shear flow. This 
i 

depends on the turbulence characteristics of the free stream 

and the shape of the structure. The free wind spectrum 

(Figure 2.6) indicates that the wind fluctuations could be 

classified as (1) gust fluctuations and (2) mean wind 

fluctuations depending on the averaging time. (85 ) 
Davenport 

has suggested an averaging time of 10-20 minutes for the mean 

wind fluctuations. These fluctuations·may be diurnal, 

cyclonic or seasonal. 

Even in the absence of resonance effects of the struc-

ture, the response spectrum does not necessarily follow the 

mean wind spectrum. This is because of the influence of 

vortex shedding and aerodynamic stability on the response. 

The geometry of the structure and the free stream turbUlence 

affect the vortex shedding and the spectral distribution of 

the fluctuating pressures. 

From the point of view of fatigue analysis, therefore, 

the complicated load-response problems could be divided into 

two categories: 

(1) Mean response fluctuations where the resonance effects 

are negligible due to either high structural stiffness 
..; 

or damping, 

(2) The dynamic response fluctuations which are charac-

terized by the presenGe of resonance peaks in the 

response spectrum due to free wind or/and vortex 

shedding. 

The first of these two problems provides an idealization 
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implying a "one-to-one" relation between the loading and the 

response. A probabilistic analysis of the wind speeds can 

be directly translated to that of the stress levels and forms 
I 

a special case of the general approach developed by Davenport 

(86,87) and as such is not considered here. 

The second problem is mathematically tractable only if 

the response spectrum is known either from a theoretical 

analysis or from experimental measurements on models. There 

would still be a considerable uncertainty, typical of many 

probabilistic phenomena, as to the choice of representative 

averaging time and its influence on the overall response 

effects. Since one is concerned with the estimation of the 

expected life of the structure the combined effect of both 

static and dynamic stresses over the design life period should 

be evaluated. For want of a complete mathematical description, 

the method outlined in the References (86,87) relies on a 

semi-graphical procedure. In the present analysis a theor-

etical method based on a probabilistic-deterministic approach 

is developed within the frame work of the assumptions of 

Palmgren-Miner cumulative damage rule~ The ideas utilised 

here have already been applied in other related fields. A 

more detailed discussion of the statistical properties of the 

wind is dealt with in Appeng,ix X. Though the analysis in the 

text is confined to the circular cylindrical chimney struc-

ture, the procedure is completely general and can be easily 

extended to any structure under random wind or earthquake 

loading. The procedure is similar to that Cif the Reference 

(86) to a certain extent. 
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2.8.2 Wind Distribution Function. 

The probabilistic distribution of. the \vind speeds, 
I 

ideal.ly, should be considered over the entire design period. 
i 

This is not always possible due. to the fact that the data QYe 

too extensive for the purposes of reduction. From the map 

of isopleths (equal wind speeds), the maximum wind speed 

with a 50 year return period could be obtained. It is pro-

posed to assume a Rayleigh distribution with the standard 

deviation a1equal to 25% of this maximum wind speed or a 

Weibul1 function with the characteristic velocity C equal 

to 35% of this maximum wind speed. It should be noted that 

these hypotheses provide viable alternatives and that the 

wind speeds referred to are 3-sec. gust values. If, however, 

the typical wind speed data over along period, of the order 

of a year, are available the standard deviation q or the 

characteristic velocity C can be obtained from a plot of the 

data on extremum probability graph type I (see Figure 2.7). 

The Weibull distribution is given by 

p ( V ) = exp 
k 

( V ) 
C 

2.31 

The value of the index k is approximately 2, in general, and 

is obtained graphically (Figure 2.7). On the other hand, the 

Rayleigh distribution for this problem is represented by 

P ( V ) = exp V
2 

( -2) 
. 2<f. 

1 

.. 
2.32 

Once the distribution is known a step by step procedure out-

lined below is followed • 
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2.8.3 Method of Approach. 

Figure (2.8a) shows a typical wind-structure config­

uratibn. The typical free wind speed variation is shown in 
I 

Figures (2.8b,c) and the wind pressure variation at any 

point on the structure is shown in Figure (2.8d). The 

Aerodynamic Transfer Function, which depends on the geometry 

of the structure and the flow Reynolds number, relates the 

Figures (2.8b,c) to (2.8d). Figure (2.8e) illustrates the 

response - displacements, bending moments or stresses- at 

a point on the structure. Evidently,the structural Transfer 

Function, also called the mechanical admittance or the 

frequency response function, relates the transformation of 

Figure (2.7d) to (2.8e). For a theoretical analysis, there-

fore, these two functions viz. the aerodynamic admittance 

and the mechanical admittance should be evaluated. Then,a 

fatigue analysis based on derived stresses is a possible 

proposition. 

The analysis procedure is illustrated in Figure (2.9). 

The wind velocity distribution Ivhich may be assumed to be a 

Gaussian distribution reduces to the Rayleigh distribution 

in the wind speeds in an isotropic atmosphere. Since the 

local winds are directional to some extent, the Weibulldistri­

bution is more likely,as explained previously. Figure (2.9a) 

illustrates the probability density function given by 

p (V ) = 
d P (V) 

d V 
2.33 

The "locking-in" range of velocities, 2 ~iv,corresponding to 

the known natural. frequencies.fi,can be obtained from simple 

wind tunnel tests on representative flexible shell models. 
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If R is the design life in years, the number of years over 

which one of the critical velocities is experienced by the 

structure is 

Ri = R Jp (V) dV =. 

V. + D.i V 
R J~ 

Vi -b. V 
~ 

d P (V) 

d V 
dV 2.34 

Using the formulation developed earlier and following the 

solution procedure given later in Section (5), the overall 

stress distribution in the shell could be evaluated at the 

critical velocity for a known value of structural damping. 

The following procedure is adapted for the purpose. The 

aerodynamic admittance functions are shown in Figures (2.9b) 

and (2.9c) for mean and rms distribution of pressures res-

pectively. These functions are chosen at the flow Reynolds 

number under consideration. The overall peak stress dis­

tribution in the shell evaluated from a non-linear analysis of 

single mode response levels for these pressures, is shown in 

Figure (2.9d). It is now assumed that only tensile stress 

peaks contribute to the fatigue damage. From isotropy con­

siderations of the wind, and due to the axisymmetry of the 

shell it is seen that there is equal (or approximately 

equal for the Weibulldistribution) probability that a given 

stress peak level occurs. It is th~n probably a reasonable 

approximation to reality to consider for fatigue stress 

levels an average positive stress level CYxx defined by 

1 -
2TI 

2fT 

J CY xx ( e, f i )c1e, CYxx > 
o 

o. 

The non-resonance effects are ignored in the present analysis. 

31 -



Now the material fatigue behaviour can be represented(81) 

by the equation 

e 
CJ xx c 2.36 

based on experimental data, where Ni is the number of cycles 

to failure (or fatigue life) at a stress level 6 xx• Figure 

(2.ge) shows the graphical representation of the above 

1 equation. The values of e and Care e = - , is a positive m 

number C = ere o where log ~O is the ordinate intercept and 

(~ m) is the slope of the S-N diagram on the log-log plot. 

It should be borne in mind that the above equation is in 

general based on alternating stress fatigue tests on stand-

ard fatigue specimens. 

The Palmgren-Miner cumulative damage rule states that 

the total damage ~~ is given by 

= ~i 2.37 

where n i is the number of cycles of stress peaks at a level 

< (Jxx) 1· In the present case, the expected number of cycles 

of stress at a level (Oxx) i is 

where Ris is the expected number of ~econds of duration of a 

critical velocity Vi. 

substitution for ni in the Equation 2.37 yields 

Together with Equations (2.31) and (2.34) the result is 
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Now 

from 

I 
Vk - 1 

k-exp 
Ck 

V. -I:>.. V 
~ ~ 

th e total damage :J;) at failure is given by 

!JJ= 1 

which, the design life Rs in seconds is 

Vi +AiV 

fi J k-l 
Rs = 1/ [ "E i Tri 

k Y..- exp 
Ck 

V . -I:>..V 
1. ~ 

k 
(~) d V • 

C 

2.38 

2.39 

k 
- CV) d V 

C 

2.39 

This in essence is the "semi-probabilistid'analysis 

of fatigue and once the expected values of the duration of 

the critical velocities are known from probabilistic esti-

mates, the remaining analysis follows a straight forward 

deterministic approach. It is to be noted that the mean 

velocity and hence mean stress effects are inherent in the 

analysis thus developed. 

In this proposed method of analysis,' the stresses are 

evaluated utilizing the nonlinear deterministic procedure 

(as in Section 5.3). It is implied that the superposition 

of the stresses is.valid. However, an experimental verifi­

cation of the theory is not undertaken. Further, the 

flexible models tested displayed amplitudes which were 

within the scope of a linear solution, as will be seen 

later. Hence, a linear multimode random response analysis 

technique is developed in the sections 5.5 and 5.6. 

Further discussion of the fatigue analysis outlined above 

is omitted in the text that follows. 
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3. DYNA1UC ANALYSES. 

3.1 Introduction. 

I Using the energy expressions derived in Section (2), 

the characteristic equations for the non-linear single mode 

vibration problem are obtained in this section. The displace-

ments are assumed in beam function form for axial modes and as 

harmonic functions for circumferential modes. The response is 

assumed to be periodic and of a single mode type, though in 

general, the non-linear problem has a number of periodic and 

aperiodic solutions. The unknown coefficients in the assumed 

displacements are evaluated using the Rayleigh-Ritz technique. 

Due to non-linearity, the resulting equations are time depen-

dent. One method of "eliminating" this difficulty is by 

"averaging" the total potential over one cycle (88,89). This 

results in ~ set of three algebraic equations which, by an 

elimination process, could be reduced to a cubic character-

istic equation in a single unknown. In this equation the 

response frequency appears as a parameter. The real roots of 

this equation for various values of the frequency parameter 

constitute a frequency response plot. The nature of the plot 

indicates the type non-linearity. For the geometries and 

modes considered the geometric non-linearity has a definite 

hardening effect in agreement with the result found in 

References (26,27,35) but unlike that of References (31,33). 

This is further substantiated by a novel comparison drawn 
~ 

with the Duffing's equation (89) for a single-degree-of-

freedom system. 

3.2 Assumed Displacement Functions .• 

In the absence of damping (see Appendix VI for damping 
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considerations), and as a first approximation,a single har­

monic (in the time domain) of the response function could be 

I assumed to be either in phase or out of phase with the 

forcing function. This assumption is justified by the fact 

that the non-linearity is caused by moderate rotations and 

that the shell is thin, and that large response may be 

expected near the linear natural frequency. In other words, 

this assumption is equivalent to linearity of displacement 

functions and no coupling between the harmonics in the 

response (weak non-linearity). The displacement functions 

(82) are then written as 

ull = 

v/I = 

wll = 

, 
[A $ (x) 

, 
+ A IV (x)] 

1 
cos ne cos wt 

[B !j) (x) + B \j/ (x)] sin ne cos wt 
1 

Cc <J:> (x) + C \j.'(x)J cos ne cos tilt 
1 

3.1 

where <p (x) and \If(x) are the beam functions. Prime (') 

denotes a derivative of the beam with respect to the axial 

coordinate x. Linear combinations of ~ and ~are introduced 

above to permit any set of edge conditions such as stiffening 

edge ring etc., to be approximated. Without loss of gener­

ality, in the analysis that follows the function ~ is omitted. 

3.3 Characteristic Eauations. 

The total potential of the shell volume is 

net) = u - ( T + W ) 3.2 

where U, T and Ware also functions of time. Application. of 

the method of averaging(88,89) to the Equation (3.2) yields 
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1 
'C 

JT: .Il... dt = 1 
o 0 

I 
I 

1 
U dt - -

"G J0.. 1 
o T dt - t: JT:" W dt 

o 
3.3 

where' ~ is the time interval between two successive dis-

placement positions of the shell motion in time \'Jhich have 

the same of velocity (the period of oscillations,were the 

motion periodic). It is not a necessary condition for the 

validity of the method of averaging that the motion is 

periodic. In the present analysis, however, the motion is 

assumed to be periodic for simplicity. 

substitution of the displacements (3.1) into the 

Equation (3.3) in conjunction with the Equations(2.7, 2.8, 

2.11 and 2.13) on applying the Rayleigh-Ritz procedure 

results in the three characteristic equations 

( Uii b T1l) A + (U12 t::. T12 ) B + CUB - t::.TB) c 

( U21 t::. T21 ) A + (U22 - b,T22 ) B + (U23 - 6T23) c 

(U31 - D. T31 ) A + (U32 - 6T32 ) B + (U33 - t::. T 33) c 

" 0, 

" ° 
+ { U34 C

3 
}-t"30 '" 0 3.4 

where the coefficients Uij are defined as 

Uii '" 
2 

Am + ( 1 + p., ) ( 1 
_ v 

) n 2 
12 

2 

U22 
2 ( 1 -v ) ')..2 ( 1 + 3 (?> ) 12 " n + 

2 m 

U33 + ~[A~ 2 2 2 V').?mn2 11 + 2(1- V )n
2 

A; 121 " 1 + ·(n -1) -

Un " U21 '" VA mnIl -
(1-'17 ) 

2 
n "m 12 , 

t123 
2 3 ) I2 J '" U32 '" n + rnAni [ - \l 11 + 2" (1- 'V , 

... (¥) n2 1 2) U13 '" U31 '" 'V ')..m 11 + f:> A m c- )..,. + , m 
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U34 
9 L b. 4 

I3 
4 I 4 (1+6 P-> ) 222 f" )IS! = + n + - :A n (1+ 

32 a 2 m 3 m 
3.5 

and the coefficients Tij are 

T11 = I2 

T22 = 1 + 3 p.. 

T33 = 1 + f->( ,,2 
m I2 + n 2 ) 

T12 = T21 = 0 , 

T23 = T32 = 2n p., , 

T13 = T31 '" ~ "m I2 3.6 

with. 

W30 = "1 I6 

yt 1 a (1_11 2 ) c p 
) = n . 2 

Eh 1 
for point load, 

1'[= 1 a (1- V 2) (-p) 
n Eh 1 

for line load 

and 

11= a (1- '\! 2 ) (- Pal for distributed load. 
Eh 1 

3.7 

It may be noted that the characteristic Equations (3.4) are 

non-dimensional by virtue of the fact that all the coeffi-

cient.s (3.5, 3.6 and 3.7) are non-dimensional. In the above 

equations, the following definitions are employed for 

simplicity in the notations: 

b= 
l? a 2 ( 1- v 2 ) w 2 

E 
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Am '" Pm a 

(3 = h 2 /12 a 2 , 3.8 

1 

11 = io <\) <P " dx 

1 ,2 
12 = j <P dx 

0 

13 
. 1 ,4 dx = { J f <P 

0 

14 { f 1 
4 

dx } = <P 
0 

IS {jl 2 ,2 
dX} 3.9 = <P <P 

0 

16 = (\>1 for point load at the tip, 

1 2 
16 = J <P dx = 1 for beam function distribution 

0 
3.10 

and 

x = x/I 

16 for harmonic distribution forms a special case of wind 

loading which is described in detail in Section (5). 

The formulation up to this stage has been completely 

general. The boundary conditions are for the first time 

introduced in the choice of the beil-m functions 4;> m . which 

are given in Appendix III for the clamped-free case. For 

any other boundary conditions, it is only required to ev&l-

uate the integrals 11 to 16 making use of the orthogonality 

properties of the beam functions. The evaluation of these 
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integrals is discussed in Appendix IV for the clamped-free 

boundary conditions. 

3.4 Solution Procedure. 

vlhilst confining to the study of periodic and approxi-

mately periodic vibrations, it is recalled that the formu-

lation is easily extendible to aperiodic forced and free 

motion of the shell. Also, the method of averaging permits 

in the analysis subharmonic and multimode response •. Only 

single mode analysis under a point load at the tip and a 

distributed load in the beam function form are considered 

in this section. 

3.4.1 Free Linear Vibrations. 

Equating the coefficients of the non-linear terms 

and the external load function to zero (i.e., U34 = 0 

and W30 = 0), the Equations (3.4) reduce to three homo-

geneous simultaneous equations in the unknowns A, Band C. 

This set represents the eigen value problem of free linear 

vibrations where the frequency parameter D is still unknown. 

The zeros of the determinant of the coefficients of A, Band 

C yield the frequency cubic 

K3 1).3 + K2 
£).2 + K1 I). + KO = 0 3.11 

where, 

K3 T11 T22 T33 - T11 
2 

- T22 
2 

'" T23 T13 

K2 (U11T22T33 + U2 2T33T11 + U33T11T22 
2 

'" - - U11T23 

- 2U23T11T23 ... 2U12T13T23 -
2 

U22 T13 - 2U13T22T13) 

= 
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------------------------------------------------------------------------------

KO 

u2 
TU -

2 
T33 + 2U12 U23 T

13 
+ 2U12 U13 T23 23 U12 

- 2U22 U13 T13 -
2 

UB T22 

(Ul1 U22 U33 - Ull 
2 2 U33 = - U23 - U12 

+ 2U12 U23 U13 - U22 
2 U13 ) 

This cubic equation is evaluated for the values of b 
(90) 

following the Newton's method. Of the three roots, the 

lowest represents the predominantly w mode and is the only 

one of significance at the excitation levels of interest. 

The other two - predominantly u and v modes, are ignored. 

The effect of omission of rotatory and inplane inertias is 

easily checked by putting the coefficients Tij of the 

kinetic energy, for i ~ j, to zero. In this case the 

characteristic equations obtained are identical to those 

in Reference (82). Table (9.1) compares the two results, 

one with and the other without rotatory and inplane 

inertias with those of Reference (82) and the "exact" 

results of Reference (83). The comparison substantiates 

the conclusion drawn in Reference (82), namely, that the 

beam functions provide good approximations to the dis-

placements in the frequency analysis. The small differ­

ences between the present results and those of (82) are 

due to the omission in (82) of a constant in the evalu-

ation of integral I1 which has now been included. 

3.4.2 Free Non-Linear Vibrations. 

If the forcing function W30 is put to zero in. the 

Equations (3.4h of the resulting set of equations only the 
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last one is non-linear. With D. as a parameter, the 

equations may be written as 

all A + a 12 B + a 13 C = 0 

a 21 A + a 22 B + a 23 C = 0 

a 31 A + a 32 B + a 33 C + a 34 C3 
= 0 3.12 

Using Cramer's rule in the first two of these equations and 

elimina~ting A and B in the third equation. 

where 

and 
all a12 

a 12 a22 

3.13 

Neglecting the trivial solution at C = 0, the other two 

roots are given by the quadratic solution 

= - ( a13 cS 1 + a23 cS 2 + a33 cS 

a34 c5 

) 

3.14 

It is recalled that the Equation (3.13) contains the 

non-dimensional frequency D. as parameter. A response 
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curve sketched in Figure (3.1a) may be constructed for 

'various values of frequency ratio A / A It will 
L..>. non L..>. lin' 

be seen later (Section 9.3) that the numerical value of 

the radix is negative for /'.:;, non / D. lin < 1 , giving 

imaginary roots. The real roots correspond to 

D. non / D. lin > 1 , indicating that the non-linearity 

is hardening. The more familiar form of the response 

curve with the magnitude of the amplitude lel plotted 

against the frequency ratio is sketched in Figure (3.1b). 

This in fact forms the "back bone" of the forced non-linear 

response as will be seen in the next section. 

3.4.3 Forced Non-Linear Vibrations. 

The forcing function W30 appears only in the third 

of the Equations (3.4) for the cases of loading (2.6.1) 

and (2.6.2), since the force is applied only in the z 

direction. As in the previous case substitution for A and 

B in terms of e gives a cubic in e 

3.15 

which may be written for simplicity as 

= 0, 3.16 

with K3 = a 34 cS 

K1 = a 13 cS 1 + a 23 c5 2 + a33 c5 

and KO = - W30 

where 6 1 , 6 2 and b are defined in Equation (3.13). 

Equation (3.16) contains the non-dimensional frequency A 
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implicitlp The cubic in C is solved for various values 

of A '/ b. with the excitation force as a parameter 
L.:> non lin 

using Newton's method to construct a response curve 

(Figure 3.2). 

Only the real roots of Equation (3.16) constitute 

the response curve. An elegant extent ion of the formu-

lation to include structural damping is described in 

Appendix VI. 

3.4.4 Comparison with the Duffing's Equation. 

Duffing's equation for a single-degree~of-freedom 

system forms probably the simplest example of a non-

linear system with viscous damping and with a cubic non-

linear spring, system. The governing differential equation 

may be written, in general, for a spring,..mass-damper 

system under sinusoidal excitation as 

.. . 
'mx + cx + k (x) " F cos wt 3.17 

'. The functional form of k (x) 

may be assumed to be a cOlfibination of linear 'and cubic 

terms and then 

•• • 
mx + cx + 3.18 

This equation is often called the Duffing's 

equation and possesses a number of periodic and aperiodic 

solutions (e9). In the absence of damping an assumed 

harmonic solution for the displacement of the form 

x = Xo cos wt 3.19 

in the above equation yields, on integration over one 

cycle.(method of averaging), a cubic which has the same 
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farm as the Equation (3.15). The sign of the coefficient of 

the third degree term in the Equation (3.18) for positive k1 

indicates the type of non-linearity: 

if k3 > 0, the non-linearity is hardening i.e., 

the frequency increases with amplitude, 

k3 ~ 0, the non-linearity is softening i.e., 

the frequency decreases with increase 

. in ampli tude and 

k3 = 0, the problem is linear. 

In the present formulation ("here the sign of the 

strain energy is positive in the derivations, ~k1 positive 

in Duffing's equation) the sign of K3 in the Equati.on (3.16) 

determines the nature of the non-linearity. The present 

problem has, in/fact, reduced to a single-degree-of-freedom 

system under the assumption of a single harmonic in the 

response. For the range of geometries studied, K3 is found 

to be positive and hence it is clear that the non-linearity 

has a hardening effect which is in agreement with the 

solution obtained for the .response plots in the previous 

section. Since the perturbation method for stability anal­

ysis is applicable to the Duffing's equation, it directly 

fOllows from the comparison drawn above, that the same method 

could be used here for stability considerations. 
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4. STATIC ANALYSIS. 

4.1 Introduction. 

I The formulation given in Section (2) is applicable to 

the static problem also provided that the assumed displace-

ment functions, in the steady state,are independent of time. 

In other words cU= 0 yields the static problem. The 

kinetic energy identically vanishes and the applied loads 

are time-average or static loads. The total potential is 

then ..!L= U-w 4.1 

and there is no need for method of averaging. The unknown 

coefficients in the shell displacements are evaluated in 

the usual manner using Rayleigh-Ritz technique. The 

linear analysis of the static displacement of the shell 

is developed here,I1hich is employed in the subsequent 

section for the solution of a more general dynamic analysis 

including the deformations due to static loads. 

4.2 Characteristic Eauations and Their Solution. 

4.2.1 Assumed Displacements. 

The assumed displacements of the median surface of 

the·shell for N radial modes and M axial modes in the 

general case may be written as 

M N cp' 
u/l = L :;[ Amn (xl cos ne 

m=l n=O 
m 

M N 
v/I = L L Bmn <llm (xl sin ne 

m=1 n=Q 

M N 

w/I = L 2: Cmn <Pm (xl cos ne 4.2 

m=1 n=O 
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where prime (') denotes a derivative of the beam function 

with respect to the axial coordinate x. As in the dynamic 

case, the function ~m is chosen so as to satisfy the 

boundary conditions. Linear displacement relations are 

assumed. As a consequence of thin shell assumptions, 

initial state of loading and orthogonality of beam func-

tions,the coupling between the modes may be assumed to be 

a weak one,so that each mode could be solved independ-

ently of the other. General expressions are derived in 

the following section for the quasi-steady state but only 

-the initial state is used in the combined analysis. 

4.2.2 Work Potential under Steady Wind. 

The variations in sectional flow properties are 

negligible except in the vicinity of the top (as a result 

of three dimensional effects); axial variations of pressure 

~are not considered here. The circumferential pressure 

distribution may be expressed in the form of a truncated 

Fourier series as 

peel 
s 

= 

N 

2: 
i=O 

ai cos ie 4.3 

The Fourier coefficients ai are evaluated from existing 

data based on wind tunnel tests. The work done by the 

external forces in the quasi-steady state is given 

(in Appendix II) by 

1 211 2 2vwe ,,2 
vi = j j (-ps) a (w' + 1. pi _ ---- + + uxw - u\~x} ) 

2 a- a a 
dxde 

0 0 4.4 

From equations (4.2), (4.3) and (4.4) ,"'1 
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SL1'tcethe order of summation and integration are inter-

changeable,. 

w = - Po TT a
2 

1 

- Po 

where 

2-= 
M 

:> 
m=l 

a· 
~ 

N 

~ 
i=O 

N 

L 
j=O 

o i, n 

and 11 and 12 are defined in Appendix IV. 

4.2.3 Governing Equations. 

4.5 

The linear strain energy (2.7) on substitution of 

displacements (4.2) reduces to 

Eh1 3 TT 
2a(l- '»2) 
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-- - -- ------- - - -- - - ---------------------------

+ 2 ~mn Amn Cmn U13 4.6 

M N 

where ':'E mn = L. L 
m=1 n=O 

and U11 etc., are defined in the Equations (3.5). 

Application of the Rayleigh-Ritz method to the Equation 

(4.1), where VI and U are defined by the Equations (4.5) 

and (4.6), results in a set of3M(N+1)simultaneous equations 

in the unknovms Amn , Bmn and Cmn • However, these equations 

are coupled due to the fact that Equation (4.5) contains 

higher order terms arising from quasi-steady work. 

In the simplified analysis the coupling is ignored 

on the basis of the initial state and the orthogonality of 

beam functions and trigonometric functions and hence the 

work potential is 

w = 4.7 

(i.e., first term only in Equation (4.5». Application of 

the Rayleigh-Ritz method to the total potential 

U and vI given by 

set of uncoupled 

U11 Amn 

T121 Amn 

U31 Amn 

the Equations 

equations of 

+ 

+ 

+ 

= 

U12 Bmn 

U
22 Bmn 

U32 Bmn 

-Po [_ a 
E h 
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(4.6) and (4.7) 

the form 

+ U13 Cmn = 0 

+ U
23 Cmn = 0 

+ U33 Cmn ( 

( 1- \)2 ) J 

(4.1) with 

yields a 

, 

W30)mn = 0 

4.8a 



The suffixes mn may be omitted and the equations may be 

solved for A, Band C for all the modes independently. 

writihg Equations (4.8a) as 

U A U B + 
U C 0 '11 + 12 13 = 

U A U B U C 0 21 + 22 + 23 = 

U A U B U C W30 0 4.8b 31 + 32 + 33 = 

and solving for A, Band C yields 

A 
6 S1 

C = -;s-;-
B = 

°S2 
+- C 

Os 
C W30 / ( u cS Sl U °S2 U = + 13 ) 

cSs 
+ 23 cS· 

+ 33 
S 

4.9 

where 

U U 

6 Sl 
12 13 

= 
U U 

22 23 

U U 

6 S2 
11 13 

= 
U U 

12 23 

U U 

6S 
11 12 

= • 
U U 

12 22 

Since al~ these displacements are linear, super-

position of displacements and stresses holds good in this 

linear static analysis. 
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4.3 stress Resultants. 

The stress resultants given by the linear parts of 

Equations (2.22) on sUbstitution of displacements (4.2) in 

single mode reduce to 

11 11 

= Eh 1.[ A <P >- + <)lv (nB+C) - f?> ",2 
(l-v 2) a 

cD C :J cos ne 

11 Eh 1.[ nB</l _n2 f3 C <)l + Ne = (1+ p.. ) CCP+ vcp >- A Jcos ne 
(1- V 2) a 

I I Eh le N = - nA </l + B <p.", (1+ p) + C cp n f-'.A J sin ne xe 2 (1+)1 ) a 

Eh l[ 
I 

N - nA (jl (1+ P-> ) B <P .A - C <P n f->.A :J sin ne ex = + 
2(1+-v ) a 

4.10a 

Eh 11 2 III 2 C Jcos Mx = f" le - A A <P + >- C cp ·-vn<pB + vn <p 
1- ,,2 

= 
Eh 
1- v 2 j?> 1 C 

= Eh [3lC 
2(1+)) ) 

M = ex 
Eh [' le 
2 (1+ v ) 

2 - n C <P + 

B 

-nACj) 

C</> + ::icos ne 

n C :Jsin ne 

I I 

>-</> B 2>-<pnC Jsin ne 

4.10b 

The suffix m denoting the axial mode number has been sup-

pressed in the .above equations from A and cl>. 

Each of these stress resultants may be summed over 

all the modes to evaluate the corresponding total force 

and moment resultants. 
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4.4 Median Stresses. 

The mid-plane stresses are obtained by substituting 

the linear part of the strain displacement relations (2.1) 

for z = 0 and the assumed displacements (4.2) into Hooke's 

laws. (2.3). Again, the stresses are evaluated separately 

for each mode and then summed over all the modes to get 

the total stresses: 

C5xx I 
= 

E a 

= 
E 

I 

a 

1 
1- V 2 

1 
~2 

1 1 
= 

E a 2(1+V) 

" [ A .),. q, + » (B <p n 1 + C q, 1 ) ·Jcos ne , 
a a· 

" 
[vA>-(j) +BcPnl + Jcos ne . 

a 

[B<P>- - A cP n Jsin ne 

4.11 

As before, the suffix m has been suppressed from A and ~ 

in the above equations. 
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5. COMBINED METHOD OF ANALYSIS: STATIC PLUS DYNAMIC. 

5.1 Introduction. 

The analysis of the non-linear multi-degree-of­

freedom system presents considerable difficulty in the 

solution of many simultaneous coupled non-linear equations. 

In the present analysis, these equations are reduced to 

non-linear algebraic equations. Approximate methods like 

Newton's iterative method(90~ with known trial solutions, 

provide an answer to the problem but at the expense of 

considerable computational time; even then,there is no 

guarantee that the method converges. The solution is not 

easily tractable if the trial solutions are not known and 

if the static deformations also are to be included. Fortu-

nately, the physics of the problem provides a basis in the 

form of a single frequency dominance at or near the 

natural frequency (which is in fact the basis of determin­

istic analysis). It is then, probably, justified to con-

sider a single frequency deterministic response even if the 

loading function contains a number of harmonics. In the 

random vibration problem, however, the spectrum of the input 

and the corresponding response spectru~are conSidered. It 

should be noted that a linear single mode solution is 

assumed for the static loading also. When considering the 

superposition of the displacements and surface tractions, 

no restriction is imposed on the strains and stresses. 

5.2 Modified Displacement Functions. 

Subject to the assumption of a single mode response, 

the assumed displacements are given by 

. ull = (AS +A cos wt) 
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v/l = (BS + B cos ""t) cj:> sin ne 

w/l = (CS + C cos wt) <\) cos ne 5.1 

vihere the coefficients AS' BS and Cs are known from the 

linear static solution (Section 4). That such an assump-

tion for the displacements (5.1) is valid follows from the 

fact that the oscillatory motion does occur over the de-

formed mean position as indicat.ed by wind tunnel tests on 

flexible shells. Single mode analysis for the. separate 

static solution is, strictly speaking, not justifiable. 

However, since a weak coupling is expected due to ortho-

gonality of.the assumed displacement functions, it is 

believed that the present method yields a better approxi-

mation to the real situation,at the same time, providing a 

model amenable to the solution. 

5.3 Combined Characteristic Equations. 

The total potential may be now written as 

5.2 

where is the work done by the static loading 

WD is that by dynamic loading and 

WSD is the work done by the static loads due to 

components of dynamic displacements. 

From the Equations (2.7, 2.8 and 5.1), method of averaging 

and integration over x and e yield 

= 
E h 13 n 2 

[Ull ( 2 A2 
)+ U22 ( B2 B2 

AS + + -
a (1- 1J2)· 2 

S 2· 

U33 ( 2 C2 
) + 2 U12 ( AS BS + 

AB ) + Cs + 2 2 
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+ 
BC AC 

2 U23 ( BS Cs + -- ) + 2 U13 ( AS Cs + -- )J 
. 2 2 

~here Uij are defined by the Equations (3.5). 

Similarly, 

where U34 is defined by the Equation (3.5). 

5.3 

The kinetic energy does not change and is the same as in 

Section (3.3) and is given by 

5.5 

The work done by the external forces in each mode of excit-

ation could be written as 

Ws 2( ) 2 2c a nS Cs = -p TTa 1 
S /' 

( ) 2 2c an C WD = -p n al 
D ;>-

and WSD = O. 

The total work potential is therefore 

W = 
2c 
A 

( - 2p 
S 

ans C - P 
S D 

Applying the Ritz technique to the Equation (5.2) one 

arrives at 
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+ 5.8 

where = 

Uij and Tij are defined in the Equations (3.5) and (3.6) 

and I6 is given by the Equation (IV. 16c) and Yj. is given by 

'(3.7d. Within the limitations of the assumptions made it is 

observed that the effect of static deformations in a single 

mode a.ppears only in the last of the Equations (5.8) Vlhich 

are themselves similar to the Equations (3.4). 

5.4 Solution Procedure. 

Because of the similarity between the Equation sets 

(3.4) and (5.8) one would naturally expect the solution 

procedure to be similar. Eliminating A and B a cubic is 

obtained in C from the Equations (5.8), of the form 

+ Kl C + KO = 0, 5.9 

where K3 , Kl are defined as before in which 

= + 

The Equation (5.9) contains the frequency parameter 

implicitly. The cubic is solved for the displacement 

coefficient C for various values of .6. non I L'!.lin with the 

magnitude of the force PD as the parameter. Only the real 

roots are of significance. The results are discussed in. 

detail later in a separate section. 
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5.5 Random Response Technique. 

In continuation with Sectionl2.7lit is noted that the 

random analysis will be carried out over a linear model. In 

addition, structural damping is introduced to obtain bounded 

amplitudes in the response (otherwise there are as many sing-

ularities as the degrees-of-freedom). The structural damping 

force is proportional to the displacements and is in phase 

with the velocities. It follows then that the damping energy 

is proportional to the strain energy. In other words, one 

could write 

D.E. = igU 

where g is the damping factor ( h\:l:5!:e.r~iie t\:lpe). 

The total potential is therefore 

.n... = .·U ( 1 + ig) - T - W. 

At this stage, the assumed displacements are introduced 

the form 
'-'\ 

u/l = :E mn Amn (j)' cos ne exp iwt m 

v/I = :E mn Bmn. qJm sin ne exp iwt 

w/l = ';:'mn Cmn <Pm cos ne exp iwt 

5.10 

5.11 

in 

5.12 

Ignoring coupling between the modes, minimization of 

the total potential by the Ritz technique .leads to three 

simultaneous linear equations for-each of the (m, n) modes. 

These equations are 

- 56 -



F31 Amn + F32 Bmn + F33 Cmn = W 5.13 
3R 

where 

F' k . J = Ujk ( 1 + ig ) .6. Tjk 5.14 

and for a line load element, 

2TI ., 

a (1- 'V 2) 1 
W ~ <Pm dx fo cos 

., 
ade'. = 

E h n 12 
ne 

3R 

,J.... {'" 1"( iw ) 
~TT 0 

d CO • 5 •. 15 

Amn , Bmn and Cmn in the above equations are complex. 

The integral over the circular frequency cU, 

o ~ w < 00 , indicates that the above set of equations is 

to be solved for all values of 00 in the range prescribed. 

The solution for the nondimensional coefficients Cmn could 

be written as 

2TTCmn = gm t' (i LV) do.:> cos ne' ade' 5.16 

where gm = gm (icu). 

Hence the deflection for all the frequencies is given by 

or 

w=l Lmn ade' CPm cos ne cos 
ZlT 

'!oo ne r(iuJ) gm exp 
o 

(iwt) .dw 

w=!.. I'" ;;e:mn adE! 4l m cos ne cos nE! gm }l (i<..)) exp (iw t) .d<D 
ZTf 0 

5.17 

The mean square value of w is therefore 

, 2 
J 00 I :E mn add ct>m cos ne cos ne' gm r (iw)1 do:> 
o 

5.18 
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Also, the response power spectrum is given by 

2 
Sww (w) == (:E mn ads' <Pm cos ne cos ne'jgm!) Spp 

where 

Spp (c,) = lim 
1 
T 

2 
11" (iw) I 

5.19 

5.20 

is the power spectral density of the excitation pressure. 

5.6 Response to Distributed Wind Pressure. 

The technique developed in the previous section is 

extended to distributed random wind loading in this section. 

Due to the complexity of the problem, the response spectra 

inclusive of resonance effects could be obtained on imposi-

tion of another assu!!,ption viz. the excitation is fully 

correlated. Wind tunnel tests in uniform free stream sub-

stantiate the validity of such an assumption over a large 

part of the surface of the cylindrical shell (see Section 11). 

This is also true in the ground shear flow where the cor re-

lation length of the flow turbulence are of the order of the 

characteristic dimensionlheight)of the chimney structure. 

However, for a more exact analysis measurement of cross-

correlations particularly in the absence ofaxi-symmetry is 

essential, though time consuming. The analysis technique 

developed {ollows the simplification on the cross-corre-

lations and assumes that there is no variation of pressure 

in the axial direction. 

The deflection w for the distributed pressure may be 

written as 

w = 1- J"" J2TI £mn <Dm cos ne cos n<f gm 
z:rr, 0 0 
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or 

w =~rrJOO "fJ (iw ) exp (icot) dw 

o 
5.22 

where 

~ (iw) = 

2IT 
I cos ne to! (iw ) de' 1 Lmn <\lm cos ne gm a J 

o 5.23 

is the L~pl~ce transform of the displacement w 

and 

r' (i w ) = I'" (i cc) ) I El = J 

Therefore the squared displacement in the frequency domain 

is given by 

2 
I ~ (i (0) I = 12 [ "'" z- mn 

2Tl 

<P m cos ne gm a J cos n~ ",,'( i co) d'; 

o 
211 

• 

" 
• ::£ rs </J r cos se g* a 

r J 0 cos 
" "4f, se t" (iw)de 

or 

2 
1'Y9 (iw)/ = Zmnrs 'Pm </Jr gm g:' cos ne cos se 

2 a • 

2n 

. J 
o 

2IT 

J cos n,J cos se' 

o 

t If. ,11 
I'" (i<.O), r (ia» de de 

5.24 

where Co) i.ndicates the complex conjugate. 

As a first approximation, for circular cylindrical 

chimney of uniform section,the pO\~er spectrumof the pressure 

could be assumed to be similar both axially and circumfer-

entially·so that 

, 
= R(e) r- (iw) 
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I1 • 'I. 

and r- (i «0) = R(e) r (iw) 5.25 

Hence 

I 2 2 • 2 
1'~(i(v)1 = 1 L mnrs $m <Pr gm gr cos ne cos se a· 

" , It,,, 2. 
R(e) cos ne cos se de de Itv(iCtJ)\ 

5.26 

R(e) could be expanded in a Fourier series given. by 

J 

R(e) "'}:. Rj cos je. 
j=O 

5.27 

Then the integral 

• 
•• 

2n 2n 

J J ,,1 t It de' " R(e) R(e) cos ne cos se de 
o 0 

2n 2TT JK 

=J J ~ 
, , " "'ft 

Rj Rk cos-je cos ne cos ke cos se de de 

o 0 jk=O 

2 
Iw(i{()) = 

N=S 

~ 
n,s=O 

2 
fH(iw) 1 

2 
11"'- (ieo)1 

5.28 

5.29 

where the frequency response function H(i~) is given by 

2 • 2 2 . 
IH(ic",)/ = :Emnrs <Pm4>r gm gr cos ne cos se a TT RnRs 

5.30 

The Equation (5.29) can also be written as 

5.31 
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The analysis developed above is linear and hence the 

displacement spectra in u and v are similar to that in w. 

Therefore, from Equations (2.1) and (3.1), following a pro­

cedure similar to that in Equation (5.29) the squared strains 

can be written as 

and 

2 
lE: \ = ee h 

+ Imi } .lm { 1J <Pm <:Pr cos ne cos \ p.( iw) I 
2 

se R R n s 

5.32 

where gmn is defined earlier and 

M N M N 

L= 7' = z:. ~ ~ :[ -mnrs 
m",l n=O r=l s=O 

Clearly, the computer analysis of the spectral descrip­

tion of the response (strain or displacement) can be easily 

carried out at various chosen frequencies such that the natural 

£requencies of the shell also are included. 

This elegant mathematical model thus gives the aggregate 

of the response over a finite number of modes, accounting for 

both axial and circumferential deformations. 
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6. EXPERIMENTAL CONCEPT. 

6.1 Introduction. 

Bluff bodies experience fluid dynamic forces of 

oscillatory nature when in a flow field. These oscillatory 
Ctn . 

forces are due to ... instability in the flO\~ field caused 

by one or more reasons of which the study of stable and 

unstable vortex shedding behind circular cylinders has been 

a problem in basic aerodynamics. From the structural 

dynamics point of view thin and slender structures may 

experience resonance effects under such loading in adverse 

wind conditions. Aeroelastic models provide useful 
an 

information in,texperimental investigation. It is not often 

convenient to scale all the non-dimensional parameters to. 

represent the full scale(91). A knowledge of the nature 

of the aerodynamic forces, oscillatory or otherwise, is 

very useful information to the designer. A number of 

investigators have studied the distribution of time averaged 

pressures round circular cylinders(SO,Sl,S2) covering a wide 

range of Reynolds numbers. Figure (6.1) shows the summary 

of these investigations, wherein a graph of the mean pressure 

coefficient is plotted against the position on the cylinder 

surface. The vortex shedding phenomenon is not generally 

restricted to low Reynolds number, but extends over a large 

range. Figure (6.2) shows the dependence of the Strouhal 

number on the Reynolds number where the Strouhal frequency 

fS is defined as the frequency of shedding of a pair of 

vortices. It is seen from the figure that the Strouhal 

number is almost a constant at 0.2 over a large range of 

Reynolds numbers though values as high as 0.4 are observed 
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in the transition region of critical to trans-critical 

region. In these investigations on rigid circular cylin­

ders, the mea,surement of mean (time-average) pressures 

through a set of static tappings was a simple matter. 

Measurement of oscillatory pressures on vibrating cylinders 

on the other hand presents many problems as would be clear 

in the subsequent discussion. 

The experimental methods adapted in a majority of 

studies regarding the nature of oscillatory forces on 

circular cylinder may then be classified as 

(i) measurement of cylinder motion, 

(ii) measurement of lift and drag acting on a rigid 

cylinder and 

(iii) the study of \oJake conditions behind the cylinder. 

The first of these methods gives only a partial picture 

dominated by the natural frequencies of the cylinder model 

and not the true nature of the oscillatory forces. The 

results are also affected by the associated aerodynamic 

damping. The second method has the inherent disadvantage 

that it gives rather anpverall state of the forces over a 

finite length regardless of the force distribution 

function. The third technique is not,really suitable for 

obtaining the. fluctuating lift and drag forces and the 

results depend on the distance in the wake from the 

cylinder. Extrapolation to model location is somewhat 

doubtful. Thus the technique of local surface pressure­

ments is the only reliable method for evaluating the 

fluctuating pressures and maybe classified as the fourth 

category. 
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However, the literature in 

Bishop and Hassan(S4), Ferguson and 

GOUld(S2) and Novak and Fischer(92) 

this aspect is scarce -

P k ' (61) sur'ry(60) ar l.nson, , 

to cite most of them. 

These reports however do not consider the flexible fixed-

free circular cylinder configuration. It is important to 

consider this configuration since the harmonic component in 

the pressure spectrum has strong influence on the cylinder 

response and consequently oval ling modes of oscillation. 

In this investigation, the experimental work refers to fixed-

free flexible shell of finite length with open top and no 

efflux. The investigation is supplemented by measurements 

on rigid cylinders and these details are discussed in 

Section 8. 

6.2 Vibration Characteristics. 

In any work involving aeroelastic behaviour or 

dynamic stress analysis, the characteristic (Le. the natural) 

frequencies of the structure are important. A knowledge of 

",the natural frequencies and of the damping in the system are 

adequate to describe the system transfer function provided 

that the system is linear. For small amplitude vibrations 

one might assume linearity and the natural frequencies can 

be measured experimentally by the single point excitation 

method. The damping constant can be evaluated by a study 

of the decay of free oscillations. These studies form the 

initial investigation in the present aerodyn~mic excitation 

study. 

6.3 Flow Properties Around Rigid Cylinder. 

The distribution of time-average pressures round 

rigid cylinders has been entensively investigated. The 
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effects of free stream turbulence, surface roughness of the 

model and Reynolds; number on this distribution have also 

been established. The frequency of vortex shedding and its 

dependence on the Reynold:; number are well knovm. However, 

due to the upstream effects, the instantaneous pressures are 

expected to be modified. The dominance of the vortex fre~ 

quency on these pressures is clear. The influence of free 

stream turbulence and the magnitude of. the fluctuating 

pressures are, however, not so obvious. Also the effect of 

end conditions and the Reynolds number effects can be 

evaluated only by experimental measurements. These studies 

were hence conducted on rigid circular cylinders as preli-. 

minary studies at various Reynolds numbers in the region 

5 5 0.4 x 10 L Re L 2.9 x 10. It is desirable to study the 

correlation effects for various axial separation distances 

and circumferential separation angles. This is rather 

time consuming and the model design would be more compli­

cated so as to allow for various (i) axial separation 

distances and (ii) circumferential angles. In the present 

case, however, the pressure correlation study is attempted 

only for two axial separations and two circumferential 

separations. 

6.4 PlOvl Properties Around PI exible Cylinder. 

A cylindrical shell is considered as flexible when 

the first few of its natural frequencies (or more exactly, 

the natural frequencies in the service frequency range) 

could be excited in the flow field under consideration. 

Two flexible shells were designed so that the natural fre­

quencies with n=1,2 and 3 modes could be excited within the 
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capacity of the wind tunnel. One of them (F4) is an approxi­

mate scale model of a full scale chimney. The vortices that 

are shed excite the model,at its natural frequencY,at the 

critical velocities. The excitation frequency is expected 

to influence the vortex frequency. In other words,there is 

an interaction between the two. This aeroelastic interaction 

can be brought out experimentally by comparison with rigid 

model studies at exactly the same Reynolds numbers. The 

details are discussed in Sections 10 and 11. 

6.5 Methods of Analysis of Analogue Signals~ 

Theimtantaneous pressures and the shell response 

signals are recorded in analogue form on a FM tape recorder. 

The methods of analysis of such analogue signals may be 

classified into two categories (93,94): 

(1) analogue analysis, and 

(2) digital analysis. 

In both cases, the data QJe assumed to be stationary 

and ergodic and that the methods of analysis of random vari­

ables hold good in the present case, though there are predomi­

nant characteristics which make the variables deterministic 

at certain Reynolds numbers. The methods of analysis des­

cribed here are well established and are described in many 

text books on the sUbject. The objective here is to famili­

arise with the notations and to lay the foundation relevant 

to the discussion given in Section 11. The limitations of 

the digital techniques are elaborated in Appendix VII. 

6.5.1 Power Spectrum. 

The power spectral density gives the frequency 

decomposition of the variable i~erms of its mean square 
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values. The average squared value will approach an exact 

mean square value as the observation time approaches infinity. 

Symbolically, for a variable x (t, W ), wi th one-sided power 

spectral density Sxx(w) = 2Gxx (w), the positive half of the 

symmetric spectrum in the region 

lim 1 

o <00<00 is given by 
T 

J x2 
( t, (0 ,L> cD) d t J 

o 
6.1 

The power spectral density is always a positive real function. 

The mean squared value of the variable is the expected value 

of the square of the variable given by 

= 2 j't) 
o 

& ( (v) dUl xx = 6.2 

where the notation Et·} stands for the "expected value of". 

If the mean value is zero the above expression gives the 
2 

. variance (j 1 • 
2 

For non-zero mean values, the variance CJ1 is 

= E { (x (t) 

where 

x = E { x (t)} 

2 

x) } 

lirn 

T-'" 
1 

T J 
T 

x (t) dt 

o 

6.3 

6.4 

is the mean value. If x (t) represents v/hite noise, its 

power spectrum has a constant magnitude over the entire 

frequency range. The principal application of power 

spectrum is in establishing the frequency response charac-

teristics if the transfer function of the system is known. 
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Symbolically, 

2 
= I H ( w) I Sxx «.l) 6.5 

where H (u:» is the modulus of the transfer function. In 

this relation, the phase information is lost. 

On the other hand the cross power spectrum which is, 

in general, complex gives the phase information as well: 

Sxy ( w) = Cxy (w) iQxy (w) 

Sxy ( w) 
-ie ({O ) 

and H ( w) = = I H ( w) I e 
S (w) xx 

6.7 

Both these methods can be used for the evaluation of the 

transfer function and in the present analysis it is the 

latter method that is followed. 

6.5.2 Correlation and Coherence Functions. 

These are equivalent descriptions in time and fre-

quency domains respectively. The autocorrelation function 

describes the general dependence of the values of the data 

at one time on the values at another time. Symbolically, 

the autocorrelation function 

Rxx ( ~) ~ lim 
T ....... OO 

1 

T 

T 

J x(t) x (t +(;) dt 

o 

where L is the time delay. Typical plots of autocorrelation 

functions are shown in the Figure (6.3). The following in-

formation can be obtained from a study of autocorrelations: 

(i) The nature of the variable as to its randomness, and 
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harmonic content and their relative magnitudes. 

(ii) The'period of the fundamental frequency content is 

given by 4 times the time delay for the first zero 

crossing of the autocorrellogram. 

(Hi) Non-linearity and damping in the system if the 

variable is a response data. The autocorrellogram 

would be similar to the Figure (6.3c)·'if the system 

is heavily damped or non-linear. The decay is pro-

portional to twice the logarithmic decrement (log 

dec). This has the advantage of bringing out the 

aeroelastic (flutter) characteristics since, in 

wind excitation, the overall damping is zero or 

negative if the structure is in "bounded" flutter 

instability and the autocorre1logram indicates 

divergence with time delay. This is a very impor­

tant property of the correlation functions but h~~~~ 

hardly exploited till now. 

(iv) The mean value x is given by 

x = 6.9 

and the mean square value is given by 

'f~ 2 
x = 6.10 

Also, 

for all "C 

for a purely random variable and for a positively 

- 69 -



damped system and Rxx.is an even and real valued 

function. 

~rom cross correlation function one can obtain also 

Cv) the velocity of propagation of a disturbance measured 

at two points if the spatial separation is known: the 

time delay for the first peak in the cross corrello-

gram gives the propagation time. 

Perhaps the most important property is its relation 

to spectral density function: 

and 

or 

and 

= 

- i 2TTft: 

Rxx (~) e dt: 

i2nf"t; 

Sxx (f) e df 

4 J
oo 

Rxx (t:) cos 2 n f c: d t: 

o 

1
00 

Sxx ( f ) cos 2 TT f ~ d ~ 

o 
6.11 

It should be noted that throughout this work, the 

po\~er spectrum Sxx is one sided spectrum defined in the 

region 0 ~ f < co and = o elsewhere. 

The following relations also exist between the cross" 

correlation and the cross spectral denSity: 

00 

Rxy (,C) = J S:x:y'( f) 
-CQ 
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and 2 J
OO 

Sxy (£) = 
-00 

-i2J1f"c 

R:xy ("C) e de; 

6.12 

In the digital analysis, however, only the positive 

half of the symmetric spectrum is computed and hence factor 

il) appears on all those computed power spectral plots where 
2 

the normalising factor is different from the mean square 

value. 

The autocorrelation can also be directly computed 

from 
T 

= lim 1. J X (t) x (t + t:) d t 

T-'" T 0 
6.13 

Th~ coherence function between the input x (t) and 

the response y (t) is a real valued function defined by 

2 
¥ (£) = xy 

1

2 
Sxy (f) 

6.14 

Sxx (£) Syy (f) 

2 
and satisfies the relation O~--txy (f) ~ 1 provided that 

the mean value is zero. For a linear system with well 

defined "one-to-one" relation between the input and the 
2 

response, txy (f) = lover all frequencies. The coherence 

function is less than unity if 

(i) extraneous noise is present 

(H) the system is non-linear 

(iii) x (t) does not describe completely the eXcitation 

loads. 
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6.5.3 Transfer Function. 

The transfer function in the frequency domain, also 

called the frequency response function.H (f) is given by 

Equations 6.5 and 6.7. The frequency response function is 

generally a complex function 

H (t) = 

The modulus IH (f) 

phase angle e (f) 

-i e (f) 

IH (fl\ e 6.15 

is called the gain factor and the 

is called the phase factor. 

For physically realizable linear systems, H (f) 

possesses the following symmetry properties: 

H (- fl = 
• H (t) 

I H (f) I 

and e (- f) = - e (t). 6.16a 

Also, for multi-degree-of-freedom systems provided that there 

is no modal coupling, the overall response function is 

H (f) = 

\ H (f) = 

and e (f) = 2:n 
6.16b 

where T~l stands for product over nand Y-n represents 

summation over n. 

This property of the transfer function provides a 

powerful tool in the random response analysis of multi­

degrees-of-freedom systems using normal mode approach 
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- --------------- --------

It should be noted that such normal modes are defined only 

for linear systems. 

6.5.4 Probability Density Function. 

The probability of occurance of a value x such 

p (x) D x. The function 

p (x) is called the probability density function. Random 

processes in most physically realizable cases follow a 

Gaussian or normal distribution where the probability density 

is given by 

p (x) exp 6.17 

where ol is the variance and x is the mean value. The 

following are some of the useful properties of probability 

density function: 

- fe>? (x) dx x = x P 6.18 
-«) 

0- 2 J~ 
2 

and " (x - x)" p (x) dx 1 6.19 
-00 

i.e. the first and second moments of the probability density 

function are, respectively, the mean value and variance of 

the variable. Figure (6.4) shows some of the typical prob-

ability density functions. Related discussions are given in 

detail in Appendix XIII. 
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7. EXPERIMENTAL INVESTIGATION OF VIBRATION RESPONSE. 

7.1 General. 

Experiments have been performed to obtain the linear 

forced natural frequencies of cantilever shell. Attempts to 

obtain the non-linear response were not successful due to, 

probably, the "jump" phenomenon and the limitations in the 

instrumentation particularly in controlling the frequency. 

Attempts to measure the modal amplitude distribution also 

were not very successful. These are hence omitted in further 

discussion and only the forced vibration analysis of the 

flexible shell models (see Chapter 8) are considered here2in. 

Experiments conducted to evaluate the influence of pressure 

transducer inertia and stiffness of the connecting cables 

indicated no significant change in the natural frequencies. 

7.2 The Appar~. 

The apparatus consisted of a rig to fix the shell in 

the cantilever configuration, an electrodynamic exciter 

suspended at the top of the shell with a radial excitation 

axis, a power amplifier and an oscillator to drive the exciter. 

The response levels were measured from strain gauges fixed to 

the shell and the excitation force levels were measured using 

a strain gauge type proving ring. A strain gauge bridge was 

used to resolve the signals to measurable levels and a FM 

tape recorder was used to record the response and force levels. 

Figure (7.1) shows a schematic diagram of the apparatus. 

7.2.1 The Models. 

Ideally, the thin shell models should be seamless 

which is possible in the thickness range of interest only 
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by electroforming. This is a very expensive proposition. 

The next best is to construct shells with welded or adhesive 

bonded seam or seams. The latter of the two was resorted to 

in preference to spot welded construction since \~elding 

alters the material elastic properties. Also adhesive 

bonding is inexpensive and could be effected easily. The 

shells, 41f" and 6" in diameter, were rolled out of 10 thou 

thick commercial aluminium sheet stock. For ease in con~ 

struction and uniformity in bonding, the shells were formed 

wi th a half inch vJide lap joint along a genGratrix. The 

width of the lap joint was then carefull:l-reduced to i" by 

cutting out the excess material ~Jhich was then peeled off. 

The joints thus produced were strong enough to endure all 

the wind tunnel and vibration tests performed on the shells. 

The vibration tests were conducted with the 

base fixture which was later used in wind excitation studies. 

The base fixture consisted of a steel plate to which a ring 

of height 1" and thickness _~II was fixed. The base of the 

shell was then slipped over this ring and another 1" wide 

ring clamp vJi th a rubber lining on the insides was tightened 

so as to ' clc\-tnp the base of the shell. The exciter was 

suspended in contact with the shell, from a bracket by means 

thick elastic cords so that the excitation was through the 

proving ring on an initial deformed position of the shell 

(see Figure 7.1). This ensured a minimum of inertia effects 

of the exciter on the shel1 1 though excitation at the base 

would have been ideal. In the present case, single point' 

excitation at the base was abandoned because of the local 

effects; for excitation forc~large enough to induce 
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perceptible deformation levels, the shell being thin, 

localized failure occured in the vicinity of the excitation 

point. "'(he shell being 

slender, it is believed that the end condition is adequately 

represented as fully fixed at the base. 

7.2.2 The Excitation System. 

The excitation system consisted of a shaker, an 

oscillator, a power amplifier and a proving ring together 

with a strain bridge. The shaker has ±3 mm displacement 

amplitude and :t 7.5 lbs force amplitude at full load. The 

oscillator is a variable frequency sine wave generator. 

The output power of the power amplifier is 50 watts at full 

load. The proving ring \1aS machined out of mild steel bar 

stock to a ring of 1" OD, 1/16" thick and 1/4" wide. 

4 single-axis strain gauges were fixed and the ring was 

statically calibrated in tension and compression (see Figure 

7.2). The entire proving ring could be screwed onto the 

armature of the exciter. As explained before, the exciter 

was then suspended at the top of the shell so as to excite 

radial modes, transmitting the force to the shell through 

the proving ring. 

7.2.3 Sensor and Recording System. 

The natural frequencies can be measured accurately 

by identifying those frequencies at which a.circle is 

obtained as the Lissoujas figure on the eRO corresponding 

to the input signal from the proving ring and output or 

response signal from one of the strain gauges fixed on the 

shell. Four strain gauges were used for the purpose of 
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measuring the response, two of them to measure the ovalling 

modes and two for bending modes. Alternately, the natural 

frequencies may be taken to be those at which there is a 

peak response in a frequency band. ~Ji thin the limits of 

experimental errors both methods identified the same values of 

natural frequencies, and the latter method was used more 

extensively in the present case. 

With the objective of accounting for inertia effects 

of the pressure transducer on the pressure measurements with 

values proportional to strains (as a first approximation), 

transducer response was also recorded at various strain 

levels. The different levels of strain were achieved by 

varying the excitation force. To measure the logarithmic 

decrement the natural frequency was excited and at steady 

state condition the power to the exciter was cut off and the 

exciter itself was disengaged from the shell. The strain 

gauge response was then recorded. All the signals were 

recorded on a FM tape recorder - Sangamo model 3562 described 

later (see Section 8.5). 

7.3 Experimental Procedure. 

(i) Na tural Frequencies. 

With the shaker in position, the output of the 

oscillator through the power amplifier was connected to the 

shaker at chosen excitation levels. The strain gauge response 

from the proving ring and the shell were monitered on an 

oscilloscope. The oscillator frequency was gradually in­

creased starting from a low frequency. When the response 

signal on ·the scope was a maximum, the frequency indicated by 
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the oscillator was taken as the natural frequency. The mode 

shape was identified by using a stroboscope. The experiment 

was repeated at higher frequencies. AS.a check, the natural 

frequencies were obtained also from a Fourier analysis of the 

recorded maximum signals. The experiments were repeated with 

the pressure transducers in position. 

(ii) Response Measurements. 

At the lowest natural frequency for one position of 

the shaker relative to the reference transducer T6 position, 

the signals from the strain gauges, the pressure transducer 

and the proving ring were recorded at various force levels. 

TlY"se were then analyzed en the level recorder (see Section 

8.6) to obtain the transducer signal rms levels due to "g" 

loads. Proportional rms component were intended to be 

employed to "eliminate" the inertia effects from the pressure 

distribution on oscillating cylinder. Figure (7.3) shows 

the force-response plot for the shell FS. 

(Hi) Measurement of Structural Damping. 

The exponential decay of the free vibrations gives 

a measure of damping. The shell was excited at a natural 

frequency and at steady state the excitation was cut off 

simultaneously disengaging the shaker from the shell. The 

shell response then decays under its damping (in air). The 

strain signals were recorded and later analysed on the level 

recorder, this time. for peak (not rms) levels, to obtain the 

logarithmic decrement as 

1 ln 
n 

7.1 
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where Ai is the amplitude of ith peak In is the natural 

logarithm. The method is highly inadequate at higher fre­

quencies due to structural and aerodynamic coupling between 

the modes. 

7.4 Limitations of the Experimental Analysis. 

It is difficult to estimate the effect of the 

shaker on the natural frequency in the present method of 

excitation. The two influences viz. the shaker inertia and 

amplitude contraint imposed by the shaker (the shaker acts 

as a partial support) are compensating to some extent. At 

the lowest frequency the overall effect was not noticeable. 

as observed from the frequency derived during damping mea­

surement. 

It was difficult to identify the modes particularly 

n > 4 and m > 2. This was not considered as a setback since 

wind tunnel excitation modes were generally in the same 

range of 1 ~ n ~ 4 and m = 1 or 2. It is emphasized that 

the frequencies and the damping were measured in air and not 

in vacuum. 
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8. FLUCTUATING PRESSURES AND DYNAMIC RESPONSE. 

8.1 Introduction. 

Pressure measurements on circular cylinders were 

conducted in the open jet wind tunnel in a uniform wind 

stream. All pressure data and response signals were 

recorded on an analogue tape recorder. Digital analyses 

of the data acquired were performed on the special purpose 

computer for Fourier analysis. 

8.2 Description of the Wind Tunnel. 

The present investigations were conducted in the 

uniform wind stream of the Open Jet Return Circuit tunnel 

which has an ejector section of 43" x 30". The maximum 

free stream velocity attainable is 94 fps at atmospheric 

pressure. Figure (8.1) indicates the velocity distri~' 

bution and the turbulence levels at approximate location 

of the model(9S). It is assumed that the effect of free 

stream turbulence is negligible and that the velocity 

distribution could be idealized to a uniform wind stream. 

For convenience in the experiments the control panel dial 

gauge connected between the settling chamber static and 

atmosphere was calibrated over the range of test velocities 

against a standard pitot tube located at the representitive 

position in the tunnel with the model in position. The 

pitot tube was then taken out of the way so as to ensure 

interference - free flow. 

8.3 Description of the Models. 

Extensive studies were conducted on the three 

models R1 , R2 and R3 and the two flexible models F4 and 

FS. ,Details of the geometry of the models are shown in 
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the Figure (8.2). Rl and R2 \vere rigid circular cylinders 

of diameter 3t" and 8t" respectively and of i" thick PVC 

plastic. The cylinders were mounted on wooden base fix-

tures which fitted onto a turntable. The turntable could 

be clamped at any desired incidence of the reference 

generatrix with respect to the free stream. The cylinders 

were open at the top. .The transducers and the oscillators 

were clamped to the turntable so as to rotate with the 

" 11 cylinder. The cylinder R2 was tested in the 2-D configu-

ration also, by fixing a large end pla~e at the top. 

The rigid cylinder R3: 6" in diameter, vJas fabri­

cated in two parts the top section being of i" thick 

perspex and the lower part made of wood. The cylinder 

was of open top and the wooden base fixture was fixed to 

a steel turntable. Top 27" of the cylinder R3 was exposed 

to the free stream in the test section. The transducer 

and the oscillator were fixed to a traverse which could 

be lowered into the cylinder through the open top (see 

Figure 8.3) and clamped in position. The traverse and 

the turntable could be rotated independently for selecting 

the angle of incidence. The connecting wires and the 

transducer back pressure tube were taken out from the top 

along the traverse. 

The shells F4 and FS were made of 10 thou 

aluminium sheet as des'cribed in Section (7.2). Base 

fixity of both shells was effected by clamping rings and 

the shells were mounted on the steel turntable. Top 27" 

of shell F4 and top 28" of shell FS were exposed to the 

free stream in the wind tunnel. The transducers were 
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located at 13" from the top in both shells. The transducers 

and the oscillators were lowered into the shell with the 

traverse mechanism at the top of the shell (see Plate 8.1). 

Connecting wires and transducer back pressure tubes were 

taken out from the top of the shell. The traverse was 

designed to have an additional degree of freedom in rotation. 

To minimise the influence of transducer - cable stiffness, 

the mechanism, after locating the transducer in the rubber 

gaskets fixed to the shell, was allowed to find itself an 

equilibrium position of least influence of the cable stiff­

ness and then locked in that position. For other angles 

of the shell, the traverse was rotated by the same angle as 

the turntable and locked. This ensured minimization of 

influence of the cable stiffness and maintained it to the 

same degree for all angular positions of the shell. 

8.4 The Transd~cer System. 

The local static pressure at any point on the 

shell surface could be expressed as a resultant of the 

time-average pressure and oscillatory component (see 

Equation 2.14). Clearly, better resolution in oscillatory 

component is achieved by biasing the time-average (or non­

zero mean) pressure from the total pressure signals. The 

requirements of the pressure transducer, then, are: 

(i) sensitive as to pick up small fluctuations with 

a bias facility 

(ii) 

(iii) 

small in size so that the measured pressure can 

be approximated to that at a point 

light in weight so that the inertia in dynamic 

measurements does not influence the structure 

82 -



(iv) little acceleration sensitivity 

(v) "instantaneous" and linear static and dynamic 

response 

(vi) convenient to handle. 

The DISA Type 51 F 32 low pressure transducer 

seemed to meet these requirements and was the best available 

at the time. In conjunction with the DISA Type 51 E 32 

oscillator, the DISA Type 51 E 01 reactance converter, 

a digital dc voltmeter read out and monitoring oscilloscope, 

the transduc~r was calibrated (see Appendix VIII) as a unit 

and referred to herein as the transducer system. The system 

can measure pressures from 0.1 to 700 mm of water with an 

over pressure of one atmosphere and in the dynamic range 

o to 100 KHz. The mean pressure bias may be applied by a 

"back pressure" (see Section 8.4.1) or electronically by an 

appropriate choice of the carrier frequency (see Section 

8.4.3). A brief description of the relevant individual 

instruments is given in the following sections. 

8.4.1 The Transducer. 

The DISA Type 51 F 32 low pressure transducer is 

a capacitive microphone, in which a change in capacitance 

is caused by the deformation of a diaphragm due to impressed 

pressure. A i" condenser microphone B & K Type 4135 has 

been adapted for the purpose. A schematic diagram of the 

microphone cartridge is shown in the Figure (8.4). The 
-

diaphragm and the back plate s'eparated by an insulator 

form the two plates of the capacitor ("" 6.4 PF). A pressure 

tight enclosure is provided behind the diaphragm by means 

of an 'adapter, of the DISA Type 51 F 33. Any reference 
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static pressure may be impressed on the backside of the 

diaphragm by a length of PTFE tubing connected to a variable 

pressure source. Though the diaphragm can withstand an 

over pressure of one atmosphere, it is prone to be damaged 

if touched. To facilitate ease in handling a modification 

was made to the adapter incorporating an integral protective 

cap (see Figure 8.5). The weight of the microphone together 

with the modified adapter was just over 8 gms. 

In the pressure range of the present application, 

the effects of temperature changes, relative humidity and 

the changes in a.mbient pressure on transducer sensitivity' 

are negligible. Also, the response is omnidirectional to 

the pressure field. The microphone in its basic (B & K) 

configuration has an acceleration sensitivity of ~ 88 dB 

(0.SN/M2) pressure level at 1 g acceleration in a direction 

perpendicular to the plane of the diaphragm. In the present 
%..n-,p Ot.Lt 

configuration the inertia of the air column seems to" con-

siderably the acceleration sensitivity. Signal to 

noise ratios of better than 30 dB were observed in the worst 

case. Hence, no corrections to account for the vibratory 

motion were applied in the final analysis. 

8.4.2 The Oscillator. 

The DISA Type 51 E 32 oscillator is connected to 

the transducer via a special double shielded cable, the 

capacitance of which is greatly __ reduced by a special circui t. 

Capacitance changes due to temperature variations or due to 

mechanical forces applied to the cable are consequently 

greatly reduced~ The sensitivity can be selected in four 

ranges: .0.1 PF, 1 PF, 10 PFand 100 PF. These values 
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indicate transducer capacitance change for a full scale 

variation of 6 V of the reactance converter (corresponding 

to a 0.5% variation of the operating fr.equency). 

The oscillator consists of a Clapp oscillat6r 

coupled to the tuning circuit C2a and C2b (Figure 8.6). 

The sensitivity of the oscillator is determined by the 

value of Cl in parallel with the transducer capacitance 

while Ll determines which frequency band is being used. 

The selector plug has four different pOSitions one corres­

ponding each Ll and Cl. The transducer is connected in 

parallel with C1 through the double-shielded cable. The 

inner shield carries a vol tagB v/hich equals the oscillator 

voltage in amplitude and phase. This is accomplished by 

amplifier Al whiCh has a very high input reactance. Trans-

former Tr corrects the phase shift produced by the 

amplifier and the capacitive load imposed by the cable. 

In addition Tr delivers a voltage, approximately twice 

the oscillator voltage, to one stator of a differential 

capacitor Cp. The. rotor connec~s to the tuning circuit. 

The other stator connects to the ground. Amplifier A2 

drives the cable connecting the oscillator to the converter. 

DC. power for Al and the oscillator is obtained from the 

cable through an RC circuit. 

8.4.3 The Reactance Converter. 

The DISA Type 51 E 01 reactance converter is 

designed for detecting and linearizing the signal from a 

capacitive device. The system of measurement is based on 

frequency modulation of a carrier wave by means of a 

reactance change in the transducer. Th~ frequency-sensitive 
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detector rectifies the signal following which the DC voltage 

variation will be proportional to the mechanical influence 

on the transducer system. The detector covers the frequency 

range 4.4 - 5.6 MHz. The converter tuning control facili-

tates matching with transducer capacitance in the system 

working range. This may be effectively utilised in compen-

sating for the time-average pressure signal, so that a 

resultant signal· has a zero mean value. FIgure. (8.7) shows 

the working range of the instrument. There is also facility 

for·the correction of non-linearity and upper frequency 

limiting filters of 0.2 KHz , 2 KHz and 20 KHz. The 

sensitivity of the detector in the normal working range is 

approximat.ely ±6 volts for :I: 9.5 PC frequency swing 

around detector zero frequency. The detector sensitivity 

is some,~hat dependent. on the zero frequency but the vari-

ation does not exceed 10% at 4.4 and 5.6 MHz, respectively. 

In the present tests, this zero frequency was within 5.0 

±0.05 MHz and the results are expected to be within 1%. 

The non-linearity in the most sensitive 0.1 PF range is 

0.5% and is corrected for in the reactance converter. The 

maximum permissible length of the cable between the con-

verter and read out or record di vice is of the .order of 

200 meters. 

8.5 The Analogue Tape Recorder. 

The ~ressure arid response signals are recorded on 

the FM channels of a 14 channel Sangamo Type 3562 recorderl 

reproducer. The recorder is bidirectional vii th two tape , 

speeds of 15 ips and 7~ips. Accuracy of tape speed is 
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± 0.25% of the nominal speed. Input sensi ti vi ty is 0.1 to 

2.5 volts rms, adjustable by input attenuator for ±40% 

deviation. The frequency response on FM channels is 5 KHz 

at 15 ips and 2.5 KHz at 7i ipso Signal to noise ratio is 

better than 46 dB. All signals were recorded for later 

analysis, at 7i ips tape speed with a nominal input level 

of 1.4 peak and a centre frequency of 13.5 KHz. DC 

linearity is within :1:0.5% of peak to peak deviation and· 

AC distortion is less than 1.5% total harmonic distortion 

at all speeds. No additional dynamic calibrations were 

therefore required and only a r~ference calibration was 

performed to obtain absolute levels. Since the gain 

control is not externally possible, the record-replay 

ViaS set to unity gain at 1V rms at 50 Hz. Throughout the 

experiment, the signals were monitored on standard oscillo­

scopes. 

8.6 The Level Recorder. 

The rms levels were obtained as a first step in 

the analysis using the B & K Type 2315 level recorder. 

The paper speed and writing speed were selected such that 

the low cut frequency was 2 Hz and by replaying the tape 

at 15 ips (double the recording speed) this frequency was 

reduced to 1 Hz. This analogue analysis not only provided 

a check on the accuracy of the digital process but also 

provided a useful guide to the selection of data for 

further analysis from a large set of experiments. 

8.7 The Digital Data Reduction System. 

8.7.1 The Fourier Analyser. 

The analogue data acquired on the tape recorder 
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was further analysed using the Fourier analyser system 

HP 5451 A. The system performs analyses of time and 

frequency data over a frequency range of 0-25 KHz by means 

of keyboard programming. The analogue data can be entered 

through a 10-bit 2 channel analogue-to-digital converter 

(ADC). Results of all operations are displayed. on the 

oscilloscope. The output could be plotted on a x-y 

plotter or an on-line digital plotter. The flexibility of 

the system is greatly enhanced by the magnetic tape system 

and the facility to generate overlays suitable for indivi­

dual requirements. The system; thus, comprises of 2100A 

digital computer, type 180 AR/DR oscilloscope, 5460A 

display plug-in unit, 5465A ADC plug-in unit, 5475A 

control unit, a teleprinter, HP 200A high speed punch, 

HP 5600h magnetic tape system and an on-line digital 

plotter. Only the salient features of the system per­

taining to the present work are explained below in the 

following sections. 

The Fourier analyser transforms any time domain 

data into the components in the frequency domain using a 

Pinite Fourier Transform. It is more flexible than 

analogue machines for the purpose. Since the data pro­

cessing is done digitally, it is more accurate and faster. 

All the mathematical.operations involved in the data pro­

cessing here are available as keyboard functions and no 

knowledge of the software is required. 

8.7.2 The Analogue-to-Digital Converter. 

The HP 5465A analogue-to-digital converter is a 

plug-in unit forming a part of the Fourier analyser system. 
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The digitization parameters could be selected either in the 

time domain or in the frequency domain using "mode" and 

"multiplier" selecting switches. With .the choice in one 

domain, the parameters in the other are automatically fixed. 

The frequency resolution and the maximum frequency were 

chosen as the frequency domain parameters in the present 

analysis. The ADC is a 10 bit two channel unit with a 

digi tization constant of 17 .!~ seconds. In dual channel 

operation, there is a 13 ~ second gap between the two 

signals. Whilst the "free-run" mode provides instantaneous 

starting of digitization, a combination of "external­

t.rigger" mode, "trigger level". and "slope" of trigger 

signal facilitate sychronous digitization if required. The 

"over load volts" switches determine the initial scale 

factors and the scale factors are automatically adjusted 

within if the signal levels exceed the set levels. No data 

are lost in the process. The ADC could be used with an 

"external' clock" as well, in which case "multiplier" sets 

the proportional values of the parameter. The digitized 

data may be entered into any data block of the computer 

memory or may be stored in the ADC through-put file on a 

configured magnetic tape. The modes of operation corres-

ponding to particular analyses such as PSD, corre-

lations etc., are dealt with later in Section 11. 

8.8 ]OxpE£imental Procedure. 

The experimental procedure and analyses techniques 

are briefly described here. Unless otherwise mentioned the 

procedure is identi'cal in all the test runs-1 through 34. 
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(1) 

- _.- - ---------------------~ 

The model is installed in the tunnel and the con-

trol panel dial gauge (connected between settling 

chamber static tapping and atmosphere) is cali­

brated for tunnel dynamic pressure' over the range 

of velocities of the experiment. A pitot tube is 

used for the purpose which is removed after cali-

brations. 

(2) The calibration signals are put on each of the 

record c~annels - lV signal on pressure channels 

and set calibration signal ( :: 120 jt strains) , 

provided in the strain gauge bridge, on the strain 

channels. 

(3) The model at a selected angular position and the 

traverse at an identical angular position are 

clamped in position in the wind tunnel. 

(4) The pressure transducer calibrations (Appendix VIII) 

and strain gauge calibrations are then checked. 

(5) The test velocity is atta.ined by adjusting the fan 
-' 

speed, the dynamic pressure being read out on a 

betz manometer which is connected in parallel with 

the dial gauge. 

(6) When steady state is reached, the required bias 

(see Section 8.4.3) on pressure signals is applied 

by a choice of the RC centre frequencies and the 

signals are recorded over a predetermined period. 

(7) Steps (5) and (6) are repeated for all test speeds 

for a given model. 

(8) The wind tunnel is then stopped and "transducer 

sensitivities" are checked. 
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(9) steps (3) to (8) are repeated for other angular 

positions 'at 150 increment of angles in the 

interval 0 0 
- 1800

• 

The procedure is repeated for all the five models. 

Throughout the experiment signals were monitored 

on oscilloscopes. The sensitivity levels were checked 

using a digital'liC voltmeter. Ambient conditions at the 

beginning and end of the experiments were also noted down. 

As a first step in the analysis, the analogue rms 

levels were obtained from a level recorder at a later time. 

10 seconds averaging time and 15 ips replay speed were used. 

The low frequency limit wa.s 1 Hz. From this study, runs 

were selected for further digital analysis. 

The ADC settings were adjusted corresponding to a 

total time T of 1 sec. and frequency resolution of 1 Hz 

for dual channel digitization. 20 blocks of size 1024 

samples were recorded on a digital magnetic tape with the 

analogue replay at the same speed (7t ips) as record speed. 
o 

The rest of the analysis followed systematically standard 

digital signal analysis procedures (Appendix VII). 

8.9 Limitations. 

Apart from the possible human errors, the experi­

mentation and analyses are subject to the following limit­

ations. (A more complete treatment is given in Appendix IX~) 

(1) The signals are not corrected for instrument noise 

levels since the signal to noise ratios were 

better than 40 dB (with the exception of oscill-' 

ating shell tests). 
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(2) In general, no drift in the sensitivities of trans­

ducers \.;a:s observed as a consequence of steps (4) 

and (8) of Section (8.8). 

(3) Over the period of test runs, the changes in 

ambient conditions were observed to be small. 

(4) No corrections to account for the acoustic noise 

levels in the wind tunnel laboratory (reverberent 

field) were applied. The noise levels measured 

(Appendix IX) were less than -30 dB ref 1V. 

(5) Analog analysis of 1 second averaging time had 

a maximum deviation of! 2 dB in some cases and 

the quoted results are the mean of the rms values. 

(6) Correlations were obtained from signals from which 

the nC levels were eliminated by performing a 

forward and inverse FT. Correlations being real 

time analyses, the unaveraged data set is a random 

set. 

(7) PSD are scaled to account for the interval centred 
-, 

Hanning that was employed. The scale factors 

obtained were based on those from the spectra of 

single frequency signals of known levels at ~100 

hz and ~200 hz from a sine wave generator and 

proportional variances. 

(8) The values of total damping (Structural and Aero-

dynamic) obtained from half power values are 

corrected for loss of frequency resolution'due to 

Hanning but are not filtered to eliminate other' 

modes. The results are stress (strain) amplitude 

dependent as expected and are believed to be 
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accurate particularly in lower modes. At higher 

modes, even the "unfiltered damping" is consider-

ably small. 
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9. RESULTS AND DISCUSSION OF DETERrlINISTIC ANALYSES 

9.1 Introduction 

In this section the results of the theoretical deter-

minis tic analyses are discussed. Rotatory and inplane in-

ertias are included in the results quoted. Axial variation 

of pressures is not considered in the combined solution 

consistent with the winci tunnel tests. Static solutions 

are not discussed since the static analysis is straight 

forward. However, the solutions from single mode static 

analysis have been incorporated in the combined solution. 

9.2 Linear Solution 

The free linear vibration solution is obtained here 

as a special case of the general solution and also to as-

sess the effect of rotatory and inplane inertias. The 

frequency determinant, described in Section 3.4.1, is 

identical to that of Reference (82). In Table 9.1 the 

non-dimensional frequencyJ21 is compared with the exact 

solution of Forsberg(83) and that of Reference (82). It 

is seen that the present analysis overestimates the fre-

quency, consistent with the Ritz technique employed. It 

is observed that the beam function provides a reasonable 

approximation to the axial displacements. The difference 

between the present results and those of (82) are due to 

the omission of a constant of integration in the latter. 

The effect of rotatory and inpla.ne inertias reduces with 

increase in radius to thickness ratio and likewise with 

increase in the axial mode number m and increase in slen-

derness ratio. The effect increases with increase in the 

_ 94 -



--_. ---------------------------------------------------------------

frequency. In general, while the results improve with the 

inclusion of these inertias, the overall effect on the fre-

quency is still negligible for the geometries considered. 

9.3 Free Non-Linear Vibrations 

Figures 9.1 to 9.4 illustrate the non-linear response 

in the absence of excitation force and zero damping corres-

ponding to the analysis described in Section 3.4.2. The 

free-non-linear response forms the 'back bone' of the 

forced response and is sufficient to describe the charac-

teristic nature of the non-linearity. It is clear from the 

figures that the geometric non-linearity introduced in the 

analysis is of hardening type wherein an increase in the 

magnitude of the response amplitude is associated with an 

increase in the frequency ratio (.6; A lin)"!' The mul ti­

plication factors associated with the amplitude) Cl do not 

convey any special significance; these factors were arrived 

at by trial and are for convenience in presentation of the 

data. However, for the mode (m = 1, n = 1) the 'reduced 

amplitude' (ICI l3/a 3) is coincident over a large number 

of slenderness ratios and radius to thickness ratios (see 

Figure 9.1.a). Also, for the mode (2,1) the influence of 

the geometry on the reduced amplitude is negligible (see 

Figure 9.2.a). Considering the absolute amplitude Icl , 
it is clear from the Figures 9.1 and 9.2 that the influence 

of geometric non-linearity increases with increase in the 

magnitude of slenderness ratio. The influence of radius to' 

thickness ratio is negligible for the modes (1,1) and (2,1) 

as indicated by Figures 9.1a and 9.2a. Figures 9.3 and 9.4 
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show the reduced response <lC J a2/h~ curves with al h as para­

meter. Consideration of absolute amplitude Ic! indicates 

that the geometric non-linearity increases with the 

radius to thickness ratio (shown by an increase in the cur-

vature of the response plot). Figure 9.5 which is the so­

lution of the linear frequency determinant (Equation 3.11) 

indicates that for the geometries considered (l/a = 15 to 

50 and a/h = 50 to 600), the lowest frequency is in 

either <1,1) or (1,2) mode. 

Figure 9.6 shows typical amplitudes in various modes 

for a given ratio of corresponding non-dimensional fre-

quency and also the frequency ratio for a given amplitude 

corresponding to a typical shell geometry l/a = 20 and 

a/h '" 250. Though the representation does not provide any 

absolute measure, it indicates that the dependance of ab­

solute amplitude Icl tends to be identical for higher. 

values of ·circumferential wave numbers. Also, from the 

figure it is observed that for the given geometry n = 2 

mode has the lowest frequency and that the influence of· 

geometric non-linearity is to a larger extent in n = 1 

mode as indicated by a higher frequency ratio required to 

achieve a given amplitude. Such a diagramatic represent-
, 

ation can be employed in a suitable definition of the re-

• duced amplitude. 

9.4 Forced Non-Linear Vibrations 

Figure 9.7 illustrates the solution of forced non-

linear vibration problem in. which the parameter is the 

absolute value of the peak forces applied at the tip. acting 
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radially inwards. It is observed from the figure that the 

effect of increase in loading is to broaden the frequency 

range over which a given amplitude is exceeded, similar to 

that in the linear case. As described earlier, for larger 

values of frequency ratio, theoretically, the amplitude has 

three possible values. In practice, however, due to the 

associated damping, there occurs a 'jump' from a higher 

energy state (see Appendix VI, Fig. VI.1) to a lower energy 

state with the excitation frequency increasing and from a 

lower energy state to a higher energy state with the excit­

ation frequency decreasing. The response curves in Figure 

9.7 are constructed by solving the characteristic cubic for 

various values of the frequency ratio. 

9.5 Natural Frequencies from Vibration Tests. 

The compu ted natural frequencies of the shells F4 

and FS, obtained from the solution of frequency determinant 

(see Section 3.4.1), are given in Table 9.2. It is clear 

from the Table that the lowest frequency of the shell F4 is 

in mode (1,1) and that of the shell FS is in mode (1,2). 

This result can also be interpolated from the frequency 

envelope given in Figure 9.5 (which in fact is the solution 

of the same frequency determinant). Table 9.3 compares the 

theoretical resul ts \vi th the measured resonance frequencies. 

The measured values of the frequencies show better agreement 

at higher frequencies than at lower frequencies (contrary 

to the expectations). This may be, probably, due to the fact 

that the method of oLa..m.pi.~ at the base does not ensure 100%­

fixity; the shell being thin the effect of imperfect boundary 

condition diminishes as the frequency increases. The frequencies 
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obtained from the wind tunnel tests are generally lOoler than 

those from the vibration tests. This is attributed to the 

wind effects, perhaps, due to an interaction betvleen the 

vortex shedding frequencies and the structural natural fre­

quencies, rather than the 'added mass effects'. The observed 

results are in close agreement with those of Reference 97 

for a shell geometry 'almost' the same as that of F4. The 

interchange of the mode shape for lowest frequency given by 

Reference 97 is, probably, because the frequencies in mode 

(1,1) and (1,2) are very close and also, l/a for that shell 

is slightly higher than l/a for the shell F4. 

9.6 Measurements of Damping 

Table 9.S gives the values of logarithmic decrement 

evaluated from response decay plots. Also, the overall 

damping coefficients ~tructural damping + aerodynamic 

damping) are given,which were obtained from the ratio of half 

power values of the strain spectra to the bandwidth,cor­

rected for the effect of single Hanning employed in the 

spectral evaluation. The structural damping coefficients 

agree with those of Reference 97, in which,half power method 

was used on oscilloscope traces of the response. 

The negative values of the aerodynamic damping coeffi­

cients indicate the onset of the aeroelastic phe n omenoYl 

though no instability was observed (since overall damping is 

still positive). In some of the intermediate modes, the 

aerodynamic excitation was slightly a.lay from the correspond­

ing resonance frequency and as such the damping coefficients 

are not reliable. It should be noted in this context, that 
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the damping coefficients are defined by the ratio of the 

band width to the centre frequenc~only at the natural 

frequency; the ratio is a minimum when resonance occurs. 
: 

The values quoted in the Table, consequently, are the 

lowest values. 

- 99 -



10. RESULTS AND DISCUSSION OF OSCILLATORY PRESSURE 

AND RESPONSE MEASUREMENTS 

10.1 I Introduction 
I 

In this section the experimental data are analyzed for 

rms values. The time-average (mean) pressure distributions 

are taken from other references. The rms pressure distri-

butions quoted are obtained by an analysis with an averag-

ing time of 1 sec., low frequency cut of 1 Hz and 

high frequency limit of 2.5 KHz. The spectral analyses 

and probabilistic analyses both give results which are de-

rived from digital analyses techniques. The relevant de-

tails are described in the following sections. The arrows 

'in the Figure (6.2) indicate, the range of Re covered in 

the study. Spectral analysis described later confirms that 

the present study does not extend into the transcritical 

regime. 

10.2 Mean Pressure Distribution 

In the present investigations the mean pressures were 

not studied for reasons described below. A large quantity 

of reliable information covering a whole range of Re is 

readily available on the subject. Also,better resolution 

of the oscillatory pressures implies the elimination of the 

mean pressures from the measurements. Further, the level 

recorder is limited by a low frequency cut of 2 Hz and the 

digital spectral analysis requires that the mean values are 

zero. 

Figure (6.1) shows the distribution of mean pressure 

coefficient C (53) based on Gould's work (52). It is seen 
p 
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from the figure that the Cp values are numerically lower 

for finite aspect ratio rigid cylinders than for a 

2-D cylinder because of 3-D (tip) effects. This is clearly 
! 

illustrated in Figure (10.1) wherein the axial variation of 

C is depicted (53). 
p . 

Likewise the tip effects are 

expected to decrease the magnitude of the oscillatorYpres­

sures (see Plate 10.1) due to the presence of tip vortices, 

th~ugh detailed pressure measurements were not conducted. 

10.3 Rigid 'Two Dimensional' Cylinder Surface Pressures 

Table (10.1) lists the cylinder geometries and the 

test runs conducted at various Reynolds numbers. Figure 

(10.2) shows the distribution of RMS pressure coefficient 

C; = [~ } p2(t) d~ -t; ~ ~ v~ at Re = 1.63 x 105 in 

comparisonOwith the results of surry(60) at Re = 0.4 x 105• 

The 2-D effect was achieved in the present case by fixing 

a top end plate on the shell R2 as described in Section 

(8.3). Figure (10.3) depic.ts a typical pressure level 

record. • The C levels are correct to ± ldB ref unity. Not 
p 

withstanding that the test conditions were different in the 

two cases good agreement is seen at 'zero' turbulence. Fig-

• ure (10.4) shows the C distribution at two other Reynolds 
p 

numbers. It is clear from these figures that the magnitude 
• 

of Cp decreases with increase in Reynolds number. Attention 

• is dra\vo to the high value of Cp in the 2-D configuration 

tests particularly at low Re. It is also noted that though 

the aspect ratio of the cylinder is cOl1l.-/XIra.t&ely small 

(= 3.3) for the configuration to be of a purely two-dimen~ 

sional ,nature, never the less, the flow field is unifor.m 
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along the axis of the cylinder as will be later seen in the 

correlation studies (Section 11.3). 

10.4 
I 

Rigid 'Three Dimensional' Cylinder Surface Pressures 

A large number of experiments (Runs 1-5 and 9-20) were 

conducted on shells R1, R2 and R3 in order to bring out 

scale effects. The distribution of the pressure coeffi-

cients is shown in Figures 10.5, 10.6 and 10.7. Clearly, 

from Figures 10.1 and 10.5, • the C nearer the tunnel wall 
p 

(as recorded by T3) is considerably lower than that at the 
!> . 

top for the two Re(O·+-I·G~rD) Comparison of Figures 10.5 and 

10.6 at Re ~ 1.63 for the response of Tl indicates that the 

oscillatory pressure depends on the,axial position of mea-

surement. It is also clear from the Pigure. (10.5) that the 

present investigation shows good agreement with the results 

of Reference (52). Perusal of Figures 10.6 and 10.7 leads 

• to the conclusion that for small aspect ratios, the C is 
p 

very much dependent on the axial position of measurement 

and on the Reynolds number and exhibits no regular 

pattern. However, it is clear from Figure (10.8) that for 

• large aspect ratios, the variation of C with Re is less 
p 

drastic at any given circumferential position. This sug-

gests that excepting in the vicinity of the tip and the base, 
.. , 

a ~ Cp can be employed which is independent of the 

Reynolds number for the purposes of Fourier series repre-

sentation •. 

10.5 Plexible 'Three Dimensional' Shell Surface Pressures 

Great ca~e had to be exercised to measure the surface 
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pressures on a flexible cylinder though the transducer ac­

,celeration sensitivity is within acceptable limits (see 

Append~x VIII). Comparison of Figures 10.8, 10.9'and 10.10 

• indicates that the C values are generally higher on' the 
p , . 

flexible shells. Clearly there are no apparent accelera-

tion induced signals in the pressure measurements on the 

• shell F4 (see Figure 10.,9) though high values of Cp are 

experienced in the vicinity of 1650 and 1800 angles. A 

consistent distribution pattern is exhibitted in the Figure 

(10.10) for the shell F5,excepting in the vicinity of 450 

and 1350 incidence at lower values of Re (see also Section 

11.5). These pressure rises are believed to be due to 

favourable phasing of the pressure and motion of the transducers, 
~e ~ 

possibly inAsway mode for the shell F4 and~ovalling mode 

for the shell F5, rather than acceleration sensitivity for 

reasons stated elsewhere. The general consistent pattern 

• of distribution of Cp apparent from both the Figures 10.9 

and 10.10 suggests that a mean distribution can,probably. 

be employed to describe the aerodynamic admittance mathe-

matically. ' 

10.6 Aerodynamic Admittance Function for Oscillatorv Pressures 

Table 10.2 gives the rms fluctuating pressure coeffi-

cients round rigid cylinders for typical runs. A thirteen 

term Fourier Series expansion for this data was fitted and 

the coefficients are given in the Table 10.3. The coeffi-

cient ao representing the uniform distribution round the 

cylinder is predominant. No special significance to this 

need be attached, since, the distribution represents rms 

values,· which are always positive. The coefficients 
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generally decay with increasing number of terms. A smaller 

number terms in the expansion can be justified for certain 

distributions. 
i 

The rms fluctuating pressure coefficients, evaluated 

as a graphical mean, are given in the Table 10.4 for runs 

·9 to 20 and runs 21 to 34 and the corresponding Fourier 

coefficients are given in the Table 10.5. These coeffici-

ents of the describing function are later used in the 

random response analysis. 

10.7 The Coefficients of Fluctuating Lift and Drag 

The rms values of the fluctuating lift and drag 

coefficients can be easily derived by integrating the 

-~. . il¥ine and transverse components of Cp respectively • 

• Thus, the rms drag coefficient CD is given by 

211 
• 

fo 
• 

CD '" C cos e de p 

'" 
J2fT 

Pn cos ne cos e de 

0 

• or CD '" Pl Tf 

• 
and the rms lift coefficient CL is given by 

• JTT • 
CL = C sin e de p 

0 

'" JfT Pn 
. 0 

cos ne sin e de 
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N 

or - 2 
2 P,/ (n - 1) 

I 

]t is noted that the lift coefficient is over estimated 
! 

due to the assumption of alternate vortex shedding. The 

location of the centre of pressure (rms) can be also 

evaluated easily. Table 10.6 gives typical values of the 

lift and drag coefficients and the corresponding location 

of the centre of oscillatory pressure. From the Table, 

it is seen that there is a wide variation in the location 

of oscillatory C.P. (118° to 148°). It is generally 

• • 
expected that CL will be less than CD for· cylinders and 

that the c.p. will be in the vicinity of 1350
• With the 

• • 
exception of runs 3, 4, and 8, CL < CD and the C.P. is 

located such that there is a greater tendency for the 

shell to oscillate with an ovalling (mode 1,2) axis at 

135°, rather than with the axis in line. Such a conclu-

sion will be, however, erro~U5 unless supported by pressure 

correlation studies. 
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11. RESULTS AND DISCUSSION OF SPF:CTRAL ANALYSES 

11.1 Introduction 

I 
Ih this section typical, measured pressure and response 

data are ana1yzed using digital spectral analysis tech­

niques. Continuous analogue data (4 min duration at 7t ips 

record speed) ~re. digitized and stored on a digital magnetic 

tape. A block size of N = 1024 samples with a frequency 

resolution of 4f = 1 Hz and a total time T = 1 sec. are 

employed in general. A Hew1ett-Packard HP 5451 A Fourier 

Analyser system was employed for the analyses described 

here. 

11.2 Pressure Spectra (Rigid Cylinders) 

Typical pressure power spectra for selected cases are 

shown in Figures (11.1 to 11.4). The spectra are corrected 

averages of 10 set estimates subject to a single Hanning. 

Both the ordinate and abscissa in Figures 11.1 to 11.3 are 

.in log scales. It is clear from Figure (11.1) for the 

rigid '2-D' cylinder R2,at Re = 2.26 x 10 5 (Run No.7), that 

there exists predominant vortex shedding with a Strouha1 

number of 0.18. In the region of attached flow of 00 to 

60 0 angular position the higher harmonics are not apparent. 

At higher angles however, the first and second harmonic of 

the Strouha1 frequency also are discernible. The factor i 
in the ordinate description is because the spectrum obtain-

ed from the computer is only one half of the symmetric spec-:-

trum. 

The spectra at various angular positions for the rigid 

.3-D cylinder R3,at the same Re = 2.26 x 105 (Run No.4),at 
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two axial positions corresponding to S" 0.965 and 5 = 1.75 

are shown in Figures 11.2 and 11.3. It is seen that 
I 

the Strouhal number is 0.17. In contrast with Figure (11.1) 
I 

the higher harmonics are not clearly identifiable and the 

magnitude of the squared pressure is two orders of magnitude 

lower in the predominant frequencies compared with '2-D' 

results. In 3-D case there is a tendency for a more uniform 

distribution over the frequency band as also broadening of 

the peak frequency. It should be noted that the vortex in~ 

fluence has propagated up stream including the vicinity of 

the stagnation line.in contrast with the observations of 
(60) . 

. Surry wherein no such Strouhal peak was identified at 

this position. This broadening of the spectra in the 3-D 

case suggests that the wind load in a steady wind should 

also be treated as a random load,provided it is confirmed 

by a probability distribution function (see Section 11.4). 

In all these cases the spectra were plotted in linear scale 

also,to identify the frequency band as a check against 

aliasing. Figure (11.4) represents these spectra for the 

rigid cylinder R3 at a Re = 1.9 x 105 (Run No. 19). It is 

observed from the figure that, excepting at the stagnation 

point, there, is virtually no spectral energy at higher fre­

quencies implying that there is no apparent need for filt-
-

ering high frequencies. The analyses up to a maximum fre-

quency of 512 Hz are generally adequate. 

11.3 Correlation Studies 

The auto-correlations were obtained as real time func-

tions for an effective period of 0.5 sec. The mean value 
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was eliminated from the signal by a forward and inverse 

transform, clearing the zero frequency component in an 

interljlediate step. Wrap-around errors were eliminated as 
I 

explained in Appendix VII. The cross correlations were 

normalized with respect to the product of zero time delay 

auto-correlations. Typical symmetric correlograms and 

correlation coefficients of pressures are illustrated in 

Figures 11.5 to 11.13. It is seen from Figures 11.5 and 

11.6 for a '2-D' cylinder that there is strong influence 

of vortex shedding as seen by the cosine form of the curves. 

Higher frequencies also are present at the stagnation point 

due to free stream turbulence, at 1050 due to turbulent 

separation and at 1800 due to wake turbulence caused by 

vortices. In general, the correlograms exhibit a slow de-

cay indicating that the physical process is a combination 

of sine-random variation (see Figure 6.3). Figure (11.7) 

indicates the axial cross-correlation of pressures at vari-

ous angles and Figure (11.8) gives the axial correlations 

coefficient (zero time delay cross correlation). In general, 

the first zero crossing and the peaks are approximately at 

the corresponding time delays for various angles (excepting 

600 , 75 0 and 1800
) indicating that the flow field is inde­

pendent of the axial location on the cylinder. At 1050
, 

probably due to separation effects the correlations are not 

good. 

Figures 11.9 and 11.10 display the auto-correlations 

at the same Re for the 3-D configuration. It is seen that· 

though the influence of vortex shedding is still present 

there are higher frequencies throughout the flow field. 
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Only at 450 where the boundary layer is purely laminar and 

the free stream turbulence influence is negligible, is the 

vortex influence strikingly predominant. From Figure (11.11) 
,I 

it can be said that the flow field has no variation in the 

direction of cylinder axis. In conjunction with Figure 

(11.12), poor cross-correlations are observed at,angular 

positions greater than 450
• This implies that the flow 

field is highly turbulent at these positions due to the in-

fluence of tip vortices in the 3-D case. 

Figure (11.13) illustrates the auto-correlations for 

the cylinder R3 (Run No. 19). Here again the behaviour is 

somewhat erratic and the presence of higher frequencies also 

can be observed. It can be concluded that in this case the 

vortex shedding is not stable. These discussions agree with 

the conclusions drawn from the spectral study but also pro-

vide more information about the flow field. 

11.4 Probability Description 

The probability density function provides information 

about the mean values and peak excursions in addition to 

establishing the nature of a random process. Figures 11.14 

to 11.16 illustrate the density of occuuences of a value of 

c. The analysis was carried out on 'raw' signals. Com­
p 

paring with Figure (6.4) one can deduce that the spikes in 

the density function indicate the presence of higher fre-

quencies. However, the mean curve may be considered as a 

narrow band random process. If the observation time and 

the number of samples are large, the process could be ap-

proached as purely random with Gaussian distribution. Fig­

ure (11.14) shows the probability density functions of pres­

- 109 -



sures at various angular position for Run No.7. The mean 

value of the signals is seen to be zero as indicated by 

the symmetry about the ordinate at zero. 
I 

Similar observations can be inferred from Figure 

(ll.lS) for Run No. 7 and Figure (11.16) for Run No. 19. 

As in the case of the rms values previously considered, 

the peak values also are smaller in the 3-D case compared 

to the 2-D case. The scale of the abscissa in Figure (16) 

is.however,arbitrary. The integral of the probability den­

sity which yields the probability distribution is illu-

strated in Figure (11.17) for Run No.19. It is concluded 

that the distribution function can be considered as Gaussian 

provided that the observation time is large,as would be the 

case in wind effects on ground structures. 

11.S Flexible Shell Analysis 

Extensive experiments were conducted on the flexible 

shells F4 and FS to establish the (wind) force-response 

characteristics. The complexity of the experimental study, 

involving multimode response, can be seen in that there are 

a number of critical velocities. So also, there are many 

possible locations on the shell at which the strain or the 

displacement response is a maximum, depending on the mode 

of oscillation. Ideally, critical velocities should be 

established from simple, qualitative tests in the wind 

tunnel and the quantitative measurements should be carried 

out at and in the neighbourhood of these velocities. In 

the present study, however, a number of runs were con-

ducted at regular intervals on an arbitrary dynamic pres-

sure scale. 
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The critical velocities measured in preliminary tests 

were close to the velocities of these runs. This will be 

clear ifrom the explanation that follows. 
! 
IFigures 11.18, 11.19 and 11;20 illustrate the progres-

sive development of strains as the test velocity increases. 

The spectra shown are normalized spectra,so that the area 

under the curve is unity. It is clear from the Figure 11.18 

that shell F4 exibits a change in mode of oscillation as 

the test velocity increases. The mode (1,1) is not clearly 

identified due to the fact that the strain gauge at 

(66",60 0
) produces little axial strain signals, the gauge 

being at the top end. The next four lowest modes are 

clearly discernible from these spectra. The progressive 

growth of mode (2,3) at 122 Hz from runs 21 to 27 has 

masked in growth of the response in (2,2) mode at 114 Hz, 

with the gauge locate,d at (66",60 0
). 

Figures 11.19 and 11.20 indicate that the shell FS 

is excited at the frequencies and modes given in Table 9.4. 

Because of the location of the strain gauges the response 

at 70 Hz is missing in Figure 11.19 and two other modes can 

not be identified in Figure 20. It is clear that the 

excitation is at different natural frequencies as the test 

velocity varies. 

The frequency-weighted power spectra (f S ) of the 
pp . 

oscillatory pressures are given in E'igure 11.21 for the 

two shells F4 and FS,' at various velocities. The measure­

ment point was at 90
0 

angular position to the free stream 

direction. The arrows indicate the Strouhal (vortex 

shedding) frequency. Due to rather an unfortunate choice 
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of the location of the transducer, the locking-in phenomenon 

is not clearly brought out, since at this location due to 
I 

laminar separation, the vortex frequency is masked in the 

turbulent pressure signals. The arrows in the figures 

indicate the Strouhal frequencies. The response of the 

transducer to the natural frequencies of the shell is 

predominant at certain velocities at this location (90 0
) 

as shown by the peaks in the spectra. 

The weighted power spectra of the strains given in 

the Figures 11.22, 11.23 and 11.24 convey essentially the 

same information,as was discussed with respect to the 

Figures 11.18, 11.20 and 11.19 respectively. In these 

figures, the non-dimensionalizing factor is the square of. 

the dynamic pressure. Frequency-weighting brings out 

characteristic higher frequenGies which are otherwise lost 

in the noise. The various modes and the corresponding 

frequencies have been identified and marked on these figures. 

Figures 11.25, 11.26, 11.27 and 11.28 indicate the 

rms values of the fluctuating strains at various angular 

posi tions. Comparison of Figures 11 •. 25 and 11.26 for the 

shell F4 and Figures 11.27 and 11.28 for the shellF5 

indicate that the breathing mode strains are more critical 

than the sway mode strains, for these geometries. 

11.6 Results of Random Response Analysis 

The response to white noise excitation, evaluated for 

unit value of the non-dimensional coefficient 

2 (a/h)(l-")J )(a/l)(q/E) (see Equation 5.15), where·q is 

the dynamic pressure, is shown in the Figures 11.29, 11.30 

and 11 •. 31. These results were obtained from. the program 
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RANDOM. Figure 11.29 illustrates the strain power spectra 

for three values of the structural damping coefficient, 

for the shell F4 at a location (66",60o ). For simplicity, 
I 

! 
the effect of damping is shown only at the structural 

natural frequencies. At the other points on the graph, 

the spectral values very nearly coincide. Comparison of 

the Figures 11.22 and 11.29 indicates that the results 

of the theoretical analysis closely follow those of the 

experiments. Unfortunately, it is difficult to compare 

the exact magnitudes since the evaluated input spectra in 

Figure 11.21 are not representative of the total pressure 

field. It can be seen, however, that the above non-dimen­

sional constant yields a factor of (3.45 x 10-9(mmof water) 

for the shell F4 and multiplication of smoothed spectra in 

Figure 11.21 by q times the spectra in Figure 11.29 yieldS 
.:: ~: 

the spectra of magnitude comparable to those in Figure 1i.22. 

Figures 11.30 and 11.31 illustrate the reduced strain 

spectra computed for the shell F5 at the three locations 

(2",0°), (66",450
) and (66",0°). Comparison of the computed 

spectra for the first two locations with the measured 

spectra given in the Figures 11.24 and 11.23 repsectively, 

brings out the ability of the present multimode analysis 

to evaluate the strain levels at any given location. The 

magnitudes of the computed strain spectra, in conjunction 

with Figure 11.21 and the new non-dimensional constant 

( -9 5.22 x 10 (mm of 11ater) for the shell FS, compare well 

with the measured spectra. The effect of structural damping 

is illustrated in the figures at the spectral peaks corres-

ponding to the natural frequencies of the shell FS. It is 

- 113 -



observed that the effect of increasing g from 0.01 to 0.03 

is to reduce the spectral peaks by one order of magnitude. 

IThe output/input relations evaluated from the mea­
I 

suredsignals at arbitrary locations are illustrated in 

the Figures 11.32, 11.33 and 11.34. However, since the 

input is not representative of the total pressure field, 

which is causing the excitation, the figures should be 

treated to be as qualitative in nature. It is noted that 

the response characteristic of the multi-mode type are 

brought out in these figures also, with the peaks clearly 

located at the natural frequencies of the shells. 

11.7 Notes on the Scales of the Power Spectra 

and Run Numbers 

The ordinates of the power spectra in the Figures 11.1 

to 11.3 and 11.21 to 11.24 are such that for any intermediate 

point a linear interpolation is to be carried out between 

each multiples of 10. The number read out should be multi­

plied by 2 so that the result is of the form f. S /q2 or 
pp 

f S ,as the case may be. This is as a consequence of re­ee 

placing the dB ordinates in the figures by multiples of 

-2 2 20: e.g. 10 stands for 10 log 10- = -40dB. The ordinates 

in the Figures 11.29 to 11.31 should be interpolated 10g-

arithmically. The abscissa in all these figures are in log 

scale. 

Throughout the text,the data are identified by the 

run number of the tests. For convenience, the conditions 

of tests at these runs are listed separately in the Table 11.1. 
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12 CONCLUSIONS 

beam 

the 

The linear deterministic analysis indicates that the 

~unctions provide reasonably accurate description of 
I 

d~splacements, in evaluating the natural frequencies. 

The non-linear analysis incorporating large deformation 

leads to a "hardening" effect. The energy method formu-

lation,in the form that is adapted,is elegant in that the 

---exten ti-ons--to-th-e-analyses of sing 1 e-mode-s ta tic-coll ap se, 

non-linear response in the presence structural damping and 

probabilistic-deterministic fatigue inclusive of mean or 

initial deformation~can be easily carried out as have 

been developed here. 

The multimode random response analysis technique 

developed from energy methods, gives results which show 

good agreement with the response measurements carried out 

in the wind tunnel tests. Increase in damping coefficient 

from 0.01 to 0.03 will reduce the strain (power)spectral 

peaks to one tenth the original peak. 

The oscillatory pressure measurements indicate that 

these pressures are larger in magnitude in 2-D configuration 

than in the 3-D configuration and the energy in the latter 

extends over higher frequencies. It is also observed that 

the harmonics of the Strouhal frequency are identified in 

the pressure spectra. In the Re region of(1.6 to 

2.85)x 105, the vortex shedding is unsteady indicating that 

a probabilistic analysis needs to be followed,if the obser-

vation times are large; this will be the case in wind effects 

on earth-born~tructures where the Re number extends to the 

transcri tical regl.me and beyond. 
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The study of oscillatory pressures on flexible shells 

(first of its kind to the author's knm,ledge) indicates 

that~hese pressures are larger in magnitude, than those 
. I , 
on rigid cylinders. Due to the complexity and the cost of 

instrumentation, a more extensive study involving space-

time correlations than attempted here will, probably, 
be 

notA justified. It is observed from the experiments that 

-- --tliere ~s lock~ng-in phenomenon over a range of velocities, 

at each natural frequency of the structure. Also, the 

strains in the breathing modes are more severe than in the 

sway modes. 

There is a need for further work, in the measurement 

of pressures on full scale structures over long periods of 

time, such that the statistical methods of evaluating wind 

loads, which are at present based on velocity measurements, 

can be applied with confidence. The current codes of 

practice on wind loading should be modified to incorporate 

dynamic effects to a greater detail. 
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APPENDIX I. 

STRAIN DISPLACEMENT RELATIONS FORA GENERAL SHELL. 

I Expressions are derived here for the strain-displace­

ment relations purely from a consideration of the geometry, 

for a cylindrical shell in cylindrical coordinates. The 

following assumptions are made here though in the derivation 

at this stage not all of them are used: 

(1) The thickness of·the shell is small compared with the 

radius of curvature of the middle surface of the shell. 

(2) Displacements, not necessarily strains, are large so 

that the strain-displacement relations are non-linear, 

this non-linearity being proportional to the consequent 

moderate rotations corresponding to the radial dis­

placements. 

(3) The transverse normal stress is small compared with the 

other normal stress components and may be neglected. 

(4) Normals to the median surface before deformation remain 

so after deformation and underg·o no extension. 

These are essentially the assumptions of Love's First 

Approximation theory with the exception of assumption (2) 

where second order terms are now included. 

The displacements of a point 0 (see Figure 2.3) in the 

median plane are given by u, v and w corresponding to a de­

formed state of the shell. The displacements of another point 

A at a distance z from the median surface on the normal at 0 

are given by 

= 
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= 

= 

a + z 
a 

w '. 

v z 
a 

1 

In accordance with the assumption (2) the median surface 

strains are 

exx = U x + 
1 2 '2 {wx } , 

2 
ve w w .!~-2-} eee = + + a a 2 a2 

exe = Vx + ue Wx we 
a + { a J 2 

Expressions 1, 2 are identical to those of (31 ) Evensen • 

The strains at a point A can be evaluated by substituting 

the displacements (1) into the expressions (2) for strains 

and by replacing the operator 1 f?-
a ,06 

by 1 
a+z .' 

This results in 

z 
= a(a+z) + 

and 

3 

These expression for m the basis for the non-linear analysis 

developed in the text. The terms in the chain brackets are 

the non-linear terms arising due to moderate rotations in' 

accordance with the assumption (2) and the second and higher 

order .terms in the derivatives of u and v have been ignored. 
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APPENDIX 11. 

GENERAL EXPRESSION FOR THE WORK POTENTIAL. 

Here, a general expression for the work done is devel-

oped considering a quasi-steady state of the surface tractions. 

For the purpose, an area element adedx on the surface of the 

shell is considered. Under the thin shell assumption no dis-

tinction is drawn between the outer surface and median surface 

of the shell. Due to a displacement state u, v and w the 

dimensions of this 

(1 + ux ) dx and (1 

median surface element would change to 
ve 

+ ii) ade (Figure 11.1). The projected 

areas in the coordinate directions are 

y: 

z: 

1 

The work done by external distributed load p acting radially 

inwards is 

= - p w a d e d x 2 

The incremental work done due to the shell motion is 

hw. 
~nc 

= 
we 

- .!? {- w u + (.Y. - -) v + 2 x a a 
Ve W 1 

(ux + ii + a) wJ a d e d x 

3 

The total work done over the shell volume is 

W 

1 2TI 

= J J 1 v 2 we 
- pa [ W + 2 { - Wx u + a a v + U x w 

o 0 

w2 
w+ a} ]dedx 
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or 

w = - a 

1 2T1 

~ ! pC w + 

. 2 
1. { .':'L 
2 a 

o 0 
4 

since 

2fT 2TI 

w d e = v w 10 fo v we de 

2TT 

= 

Io 
v we de 

In the derivations given here no assumption has been 

made as to the load distribution function except that the 

load isassume~ to act radially inwards and the rotations are 

small so that the products of rotations are negligible. 
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APPENDIX 111. 

CLAMPED-FREE BEAM FUNC'rION. 

The beam function and its properties (84) for clamped-

free boundary conditions are given below. The beam function 

satisfies the differential equation, 

= or 1 

and the orthogonality conditions, 

1 1 11 11 

1 J <Pr <Ps dx ~ f <Pr <Ps dx = 6rs = 
1 

2 

0 0 

where Ors is the Kronecker delta. 

The characteristic function and its derivatives are 

<Pm(x) = cosh Pm x - cos Pm x - cm (sinh Pm x - sin Pm x) 

, 
1 d <Pm <t>m(X) = (lX'"'" = sinh Pm x + sin P x- cm (cosh Pmx -cos 
Pm m 

" 1 d2<Dm <\fu(x) = p2 dx2 
= cosh Pmx + cos Pmx - cm(sinh Pmx + 

m 

,In 

The boundary values are 

, It tI, 

(!)m(O) = C)7m(O) = <Pm(l) = $m(l) = 0 

The values of Pm and cm for the mode m are given by' the 

transcendental equations 

134 

sin 

3 

4 

5 

Pmx ) 

Pmx) 



sinh Pml sin Pml 
cm = 6 cosh Pml + cos Pml 

I ' 
'Table III.1 gives the values of Pm and cm for 

m ::::: 1, 2, ••... 5. 

1---··_····--.. _ ..... -........ - ... - -----.-.... . · .... ~ ----... -.-.. -~-.--.--- .-.-.--.~ -¥'.'--"-'-- --_ ... --. 
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APPENDIX IV. 

EVALUATION OF INTEGRALS. 

The integrals 11,12 •••••••.•. I 6 which involve 

beam function have been evaluated using the following 

procedure and the orthogonality properties. 

Considering the integral 

I COS(p x)dx 1 

if x = I x 

dx = 1 d x 2 

1-
then, I - 1. Io cos (p l. x) d x 

1-
I = I/l = 10 

cos (pI. x) d x 3 

A change of variable similarly can be used to define the 

non-dimensional integrals, I1 to 16. 

Now, 
1 

J " 
I1 = <P4> d x 

0 

is written as 

i " 
I1 = 

10 
<pw d x 

omitting bar (-) here and henceforth in this section. 
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Thus, 

" 

Integrating by parts, 

Also, 

, 1 
I1 = [ cp <p / pI J 

o 

1 
11 

Il = [ <J <P dx ) Cl> J 
o 

From IIL1, 

q,iv = (j) 

Integrating on both Sides, 

'U' 

(j? 

pI 
= J<pd x 

Substi tuting (7) in (6) 

1 

Il = <12' " [ ... 
<1>" ] 

pI 0 

Adding 5 and 8, from III.3, 

1 

- S 
o 

1 

- S 
o 

1 

- J 
0 

1 

, 2 
(<P) dx 

tt' <J <p dx ) pI (<tJ ) d x 

'" 2 (<1> ) d x 

11 = (k1 + k 2 ) / 2 - J (A2 + B2) d x 

o 

1 

where k1 = [ <P <p / pI J 
o 
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" '" 
1 

4J / pI J , 
o 

A '" sinh px c cosh px 

B '" sin px + C cos px .• 

1 
'" 

4 pI 

Now, from (5), 

From (9), 

•• 

Hence 

1 

I2 - (k 1 - k 2 )/ 2 + f (A2 + B2) d x 

o 

10 

11 

I2 = L [-4c - 2c (cosh 2pl + cos 2pl) - (1+c2 ) sin 2pl 
2pl 

12 
The integrals 

1 

J 
• )4 I3 = ($ d x , 13 

0 

1 

I4 = J ( ctJ )4 d x 14 

0 
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and 1 

15 

o 

have been evaluated numerically using a Simpson rule 

routine with self adjusting step length in double precision 

on the ICL 1904 A computer. It is the evaluation of these 

integrals that takes a large computational time even in 

single precision due to the oscillatory nature of the 

function but these are needed to be evaluated only once. 

The following integrals 16 are met with in the work potential 

for various cases: 

I6 = <PI for point load, 16 a 

I6 = 1 for line load 16 b 

1 

I6 S <\:l dx 2ca 
= = 

0 ).1 
for distributed load. 

16 c 

The integral 

1 

I6 = J x 0( <p dx 16 d 

0 

can only be evaluated numerically. These values of integrals 

for the mode numbers m = 1 to 5,I1 to IS are given in the 

Table IV.l. 

The other integrals 

1 

J <t> 2 dx 
o 

1 

= J <\lit 2 dx 

o 
= 1 17 

also are met within the analysis and follow from orthogonality 
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properties. 

The trigonometric integrals involved are listed 

below: 

2n 

~ J-C cos2 cvt dt ~n 10 cos2 wt dw 1 
= = 

0 
21T 

J cos2 

0 

2TI 

f cos
2 

o 

2 

2)1 

ne de 10 
. 2 IT = s~n ne de = 

2)1 2n 

= J sin3ne de 
o 

=J sin e cos2ede 
o 

2IT 

= J sin 4' ne de = 

o 

ne sin2 ne de = n 
4 

3IT 
4 

18 

19 

27T 

= J cos e sin2e <Je;0 
o 

20 

21 

22 

The values of the following integrals for various cases are 

given in the Table IV.2: 

2IT 

Ci) 10 cos ie cos je cos ne de 23 

2IT 
CH) Jo 

cos ie sin je sin ne de 24 

2n 
(Hi) J cos ne cos je cos ne de 25 

0 
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(iv) 

2TT 

j sin ie sin je cos ne de 

o 
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APPENDIX V 

STATIC STABILITY CONSIDERATIONS 

Analogous to the dynamic analysis outlined in 

Section 3, a non-linear static analysis is investigated 

here. The displacements are written in single mode form 

and the coupling between the modes is neglected. Essen-

tially, the non-linear dynamic analysis reduces to the 

non-linear static one if the frequency A is put to zero. 

The assumed displacements are therefore written as 

/ A /h' (x) u 1 = ~ cos ne 

v/I = B <p (x) sin ne 

w/l = C Ql(x) cosne 1. 

Minimization of the total potential SL with respect to A, 

Band C using Ritz procedure yields 

U11 A + U12 B + U13 C = 0 

U21 A + U22 B + U23 C = 0 

U31 A + U32 B + U33 C 3 
+ U34 C - W30 = 0 

where U11 etc., are given by the Equations (3.5). The 

Equations (2) are identical to the Equations (3.4) with 

2. 

A = O. Elimination of A and B yields a cubic in C of the 

form (similar to Equation (3.16», 

K3 C
3 

+ Kl C + KO = 0, 3. 

with K3 = U34 <5 

Kl = U13 °1 + U23 6 2 + u33 6 
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and 

where! ° are defined in Section 3 provided that aij = Uij" 

In the present case K3 is always positive and the bifur­

cation point which corresponds to static collapse (in 

single mode) is given by that value of the impressed wind 

pressure for which 

+ = o 

where the mean wind pressure is expressed in a Fourier 

series expansion. The shell is statically stable for all 

those values external wind load for which the LHS of 

4. 

Equation (4) is positive. Though, this analysis is a crude 

mathematical model, it is very useful in selecting the modal 

combination for a refined static collapse analysis. 
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APPENDIX VI 

INFLUENCE OF STRUCTURAL DP~PING 

The analysis of non-linear vibrations with damping 

is more difficult due to the introduction of another un­

known, namely the phase of the response, in each of the 

assumed modes. The structural damping model provides a 

useful concept which can be easily incorporated in a modi­

fication of the present analysis. Since the structural 

damping coefficient is proportional to the displacement, 

it is clear that the energy dissipation is indeed.propor­

tional to the strain energy. Also, non-linearity in 

strain-displacement relations implies non-linear structural 

damping force but the damping coefficient g is linear. 

Application of analysis technique similar to that in 

Section (3) yields the three characteristic equations 

all A + a 12 B + an C = 0 

a2l A + a 22 B + a 23 C = 0 

a3l A + a 32 B + a33 C + a 34 C3 + W30 = 0 1. 

where aij = Uij 
( 1 + ig) - Tij i, j = 1, 2 and 3 

and 

with W30 defined in the Equations (3.7). 

In the above equations the arbitrary constants A, 

Band C in the assumed displacements (3.1) are complex. 

Elimination of A and B in terms of C results in the cubic 
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2. 

where K3 , K1 and KO also are complex. 

The above equation can be solved numerically using 

Newton-Raphson iteration technique. Unless the assumed 

initial root is sufficiently close to an actual root the 

convergence is not guaranteed. An iteration technique is 

developed here based on the physics of the problem namely 

the phase and amplitude relations. An approximate method 

of solution making use of these relations but different 

from the present is cited in Reference (97). Thus writing 

K. = Pj + iqj j = 0, 1 and 3 
J 

and C = x + iy 

Equation (2) reduces to two coupled real algebraic 

cubic equations in x and y, on putting real and imaginary 

. parts separately to zero, of the form: 

F (x, y) = 0 

and G (x, y) = O. 3. 

The real roots of Equations (3) are such that the 

amplitude 

c 

and the phase 

= 

= tan-1 ( y. ) 
x 

From physical considerations, e = 0 when t>= 0 which 
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implies y ~ 0 and the amplitude is given by x. Foraneigh-

bouring point which has a finite value of b , the phase is 
I . 

nearly zero and the approximate amplitude is given by x 

from ~he second equation with y ~ O. Knowing x, y is 

evaluated from the first equation. The procedure is re-

peated, alternately evaluating x and y till the desired 

accuracy is achieved. The response curve is constructed 

point by point using this procedure. Convergence is not 
TT 

satisfactory in the region where the phase is nearly :2 . 

In the subsequent regions the phase is nearly TT and the 

amplitude is again given predominantly by x. This pro-

cedure is found to converge with in a few iterations. 

Figure (VIo1l shows a typical response plot. 

In the experimental study of non-linear vibrations, 

the part of response curve DE is not traced bcause of the 

"jump" phenomenon. With the frequency increasing, the 

response curve is traced along ABD when a jump to a lower 

energy state F occurs at D along DD 1F. With the frequency 

decreasing, the response curve is traced along GFE when a 

jump to a higher energy state B occurs along EE1B and the 

curve BA is followed for further decrease in frequency. 

In many experiments, where a careful continuous control of 

frequency is not possible, the curve traced tends to be 

ABE1EG even for increasing frequency. 
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APPENDIX VII. 

DIGITAL SPECTRAL ANALYSIS TECHNIQUES. 

. i 
! The digital analysis techniques are now well estab-

lished and special purpose computers for spectral analysis 

are commercially available. One such is the Fourier 

Analyzer HP 5451 A and was extensively used throughout this 

work. The objective here is to recapitulate the method of 

analysis rather than to propose any new technique. The 

Fourier analyzer software comprises of a fast Fourier trans-

form which utilises the fact that the sampling is at uniform 

intervals and that the number of samples N is an even number. 

The Fourier transform (FT) of variable x(t) could be 

written as 

x (f) = Jro x(t) 
-00 . 

-i2nft e dt • 
1 

For digital operations, the continuous function x(t) must be 

replaced by a series of discrete data samples. This is 

accomplished by sampling the input x(t) at certain uniform 

intervals of time c. t. In order to perform the above integral 

b. t __ dt should be small. Due to the physical constraints on 

the analogue to digital converter (ADC), a compromise has to 

be sought. As a discrete sum, the integral now is t.he summa-

tion, 

where 

x (f) = 
D 

+0> 
At 2: x (n At) e;i2lTfnAt , 

n=-oo 

2 

x(n c.t) = xn(t) is the nth sample value, the suffix D 

denotes discrete function. The F'r computed by this summation 
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no longer contains accurate magnitude and phase information 

at all frequencies contained in X (f). However, XD (i) 
j 

accurately describes the spectrum of x(t) up to some maximum 
, . 

frequency, f max which is dependent upon the sampling interval 

~ t and the number of samples N. 

Due to the time limitations, the total time of 

sampling T is finite such that T = N 6t. The discrete Fourier 

transform (DFT) is thus 

n-1 - i 2filll..6fnL\.t 
XD (m Af) = A t ~ x (n L\.. t) e 

n=O 
3 

~nly periodic functions have such a discrete frequency spectra 

and the DFT can be interpretted as a sampled Fourier series. 

No\v, to fully describe a frequency in the spectrum it is 

observed that two values viz. magnitude and phase are to be 

computed. As a result N time domain data define N/2 complex 

quantities in the frequency domain. Symbolically, 

N 

2 
4 

where Af is defined as the frequency resolution. The summa--

tion(3) is one sided and hence the actual linear spectra is 

obtained by multiplying the above by 2 and the pOlver . spectra 

has a factor 4. 

It is observed that f max given by the Equation (4) 

is actually the Shannon limiting frequency •. This would be 

clear from the following explanation. Shannon's sampling 

theorem states that slightly more than two samples per period 

are required to define uniquely a sinusoid. In sampling a 
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time function this implies that f max 
1 . 

= - ~n 
2At 

which it is understood f max 

<:: _1_. In the limit 
·2At 

that the maximum fre-

quency which can be accurately resolved is f max - Af. It 

follows from the sampling theorem that L>f = 
1 

T 
Since the starting point of sampling is in general 

arbitrary, the DFT implies periodicity of the sample set 

itself with a period equal to the total sampling time T 

(see Figure VII.l). The DFT will then be erroneous due to 

the side lobes introduced as a result of step input at the 

beginning and end of sampling •. A weighted function called 

the "window" function is generally used to eliminate this 

error introduced in digital process. 

In the present analysis an interval centred Hanning 

function given by ~ I 1- cos 2~t I is employed (see Figure 

VII.2). Table VII.l gives the theoretical correction factor 

on the main lobe and measured correction factor on the rms 

value. It should be noted that the correction factor given 

should be applied on the linear spectrum. On the pOlver 

spectrum, the dB corrections should be doubled and multi-

plication factor should be squared. The increased side lobe 

roll-off due to Hanning window enhances the resolution of 

other frequencies. Though the exact values of the primary 

frequencies is coarse, with each Hanning the statistical 

uncertainty error reduces considerably (e.g. four Hannings 

reduces this error to less than ; dB). 

The finite transform introduces another error due to 

limitation on the maximum frequency (Shannon limit). The· 

frequency contents higher than the set maximum frequency 

fold back over the maximum frequency and then over the zero 
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frequency, in other words, the value at any given frequency 
00 

is :z:. XD (2nf max ± f). 
n=O 

This effect is called aliasing. 

I One way of elimi-

nating this effect is to filter the signal with an upper 

frequency cut equal to f max ' The other method is to make 

f max large enough to contain all frequencies of significant 

levels. The latter implies larger core size. In the present 

case however, analysis up to f max of 2500 Hz indicated neglig~ 

ible levels of signal above 200 Hz. An f max of 512 Hz is 

hence believed to be adequate in the absence of analog filter-

ing. 

The DFT introduces an error called the wrap-around 

error in the correlations (as well as in the convolution). 

This error is eliminated by adding half as many zeros as the 

number of samples in the time domain on either side of the 

sample set and computing the correlations for this new. set 

of 2 N samples. In the present case, a sample set of N values 

was effectively reduced to N/4 zeros in the beginning and N/4 

• 
zeros at the end with N/2 sample values in the middle unaltered. 

After the correlations are performed the first and last quarter 

represent the +ve and -ve time delay correlation values. 

The rounding off errors introduce numerically high 

values (>1 ) of coherence function at high frequencies. This 

is due to the computational procedure employed in the software, 

wherein the square of the modulus of the cross spectrum is 

divided by the product of the input and output power spectra,· 

to obtain the coherence function. The denominator then at 

higher frequencies has very low values of either the input or 

the ou.tput as compared to the cross spectral values. The 
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"block calibrator" in the Fourier Analyzer "masks" the 

meaningful range of the coherence function. This is easily· 

overcome by setting the higher values of·the coherence 

function to zero in which case the "block calibrator" 

resolves the range of interest to the one with a scale which 

could be directly used on the graph plotter. 
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APPENDIX VIII 

CALIBRATION OF PRESSURE TRANSDUCER 

The low pressure transducer DISA Type 51 F 32 is 

an ingeneous adaption of the B & K Type 4135 condenser 

microphone well known in acoustical practice. However, 

the present investigation was its maiden application in 

the measurement of low pressures. The transducer being a 

capacitive device microphone-oscillator-reactance converter 

was used as integral with the connecting cables. Extensive 

calibrations were, therefore, performed to gain confidence 

in the instrumentation. The effect of modification to the 

adapter ~las also established in the transducer dynamic 

response studies. Lateral oscillations of double-shielded 

cable induced noise levels of comparable order. The trans-

ducer was sensitive to some extent to accelerations perpen-

dicular to the diaphragm. These "noise" levels were estab-

lished in the single point excitation vibration tests. The 

transducer is operational at the impressed carrier frequency 

(~ 5MHz) only if the total capacity of the system is less 

than 15 pP in the high sensitivity (0.1 PP) range. Consid­

erable difficul ty ~las experienced in the initial stages 

since in three out of three cases the double-shielded cables 

had dry joints. The transducers were normally stored in a 

desiccator. On drying the tranducers (Tl and T3 ) in an oven 

for two hours at BOoC the sensitivity of Tl increased from 

90mv/mmH20 to 104mv/mmH20 and .that of T3 increased from 

94mv/mmH20 to 275mv/mmH20. The calibration tests conducted, 

therefore, were in the following categories: 
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(i) static calibration 

(ii) dynamic calibration 

I (iii) acceleration sensitivity 

(iv) in-situ static calibration check. 

(i) Static Calibration 

The calibration set up is shown in Plate (VIII.l) 

and also in the schematic diagram (VIII.l). The pressure 

transducer is enclosed in a PVC capsule with the back 

pressure connected to atmosphere through a U tube to damp 

out the atmospheric fluctuations. The capsule pressure 

was adjusted by a micro-manometer and read out on a Betz 

manometer. Transducer output was indicated on a digital 

voltmeter type Wier Electronics 500 MK2. Capacitance of 

the system was tuned to the working range in the 0.1 PF 

(= 0-70 mm H
2

0) range using the oscillator tuning capacitor. 

Typical calibration plots in the full scale range 0-6V of 

the system are shown in Figure (VIII.2) and are found to 

be linear within the experimental tolerance. 

(ii) Dynamic Calibration 

In the original (B & K) configuration the micro-

phone has a flat response in the frequency range of 0-5000Hz. 

However, the adapter and the cavity between the adapter and 

the shell wall were expected to produce cavity resonance 

affecting the high frequency response. The transducer was 

hence calibrated dynamically against a B & K i" microphone. 

The calibration set up is shown in Figure (VIII.3). The 

transducer was fixed by means of a rubber gasket to a flat 

aluminium plate of thickness same as the shell thickness. 
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The standard microphone was fixed side by side with the 

transducer. Acoustic pressures of approximately 110 dB 

were impressed on the microphones at a distance of about 

18" from a loud speaker. The loud speaker and the level 

recorder (B & K Type 2305) were driven by a Sine~Random 

generator B & K Type 1024. A typical sweep time of 10 

minutes over 0-50 KHz was employed. Figure.(VIII.4) shows 

the dynamic calibration curve t observed to be linear up 

to 1500 Hz. Since the initial investigations for the 

frequency spectrum did not show any significant energy 

content at higher frequencies no filters were used to 

limit to this frequency (1500 Hz). 

Acceleration Sensitivity 

This, as per specifications, is negligible - 88 dBI 

1 g acoustic pressure level ~ 0.5 N/M2 = 0.051 mm of water 

at 200 C. As remarked earlier, the lateral oscillations 

produced some noise levels. Also oscillations of the 

transducer along with the shell, with ·the pressure tapping 

sealed indicated very high levels so that wind-on and wind­

off test comparisons could not be interpretted to obtain 

the acceleration effects. At the strain levels of the order 

of those in wind excitation tests, pressure transducer res­

ponse levels in vibration tests indicated a maximum of -30dB 

ref ~V in the worst case (see Figure VIII.5). This is 

thought to be within experimental errors and no corrections 

to the fluctuating pressures were hence applied. 

(iv) In-Situ Calibration Checks 

A simple technique was devised to ensure that the 

pressure seals were in order and no errors due to drift, 
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if any, in the electronics were carried over. This con-

sisted of a three way (T) pressure connection, one limb 

L of wh~ch was connected to a Betz manometer, the other limb 

held 'pressure tight <round the transducer pressure tapping 

on the shell and the third to impress any disired pressure. 

The transducer response was indicated on a digital volt-

meter. In general no drift was observed and pressure 

leakage was detected in the transducer in only one experi-

ment which was then set right and the experiment itself 

'was repeated. 
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APPENDIX IX 

ERROR ANALYSIS 

I 
I • 
Experlmental measurements of fluctuating pressures, 
I 

are subject to the following sources of errors; however, it 

is difficult to estimate the contribution of each of these 

sources: 

1. calibration errors 

2. variability of ambient conditions 

3. error due to acoustic pressures 

4. statistical variability of r.m.s. pressures 

5. errors due to spectral distortion 

6. error due to acceleration sensitivity 

The pressure transducer static calibration error was 

found to be within i 2 percent over the entire range of the 

experiments. The dynamic calibrations were performed only 

to establish the linearity of the response and hence, do not 

contribute to the errors. However, no attempt was made to 

establish the errors in the level recorder. The tape recorder 

calibration errors were found to be within t 2.5 percent. 

A maximum variation of ;!; 30 C and! 0.9" Hg were 

recorded in the ambient conditions over the duration of the 

experiments. However, neither were the experiments performed 

in a continuous stretch, nor were these ambient changes sudden 

and consequently no attempt was made to account for these 

variations in evaluating the free stream velocity. Also, it 

is observed from Figure (8.1a) that there is approximately a 

5 percent variation of velocity in a typical cross section of 

the wind tunnel. The results are, therefore, expected to be 
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within;!; 5%. 

The acoustic pressure levels were measured at two 

locations in the wind tunnel laboratory. The results are 

shown in Figure (IX.1) and also are given in Table IX.1. 

No definite trend in the noise distribution can be estab­

lished from these data, but a rough indication of the noise 

levels at the tunnel centre line can be obtained by the 

assumption of reverberation conditions (uniform noise 

levels). It is seen from the measurements that, at the 

test velocities, the error due to acoustic pressure is less 

than + 5 percent except at 00 angular position. Further, 

it is noted that the acoustic pressure levels are in the 

lower end of the transducer sensitivity and hence,are con­

sidered as too small to be of any significance. 

The statistical variability error in the r.m.s. 

readings is approximately 1/.//:::.. feT where /:::"fe is the 

effective band width of the spectra. In the analogue 

analysis, the results presented are as averaged over approx­

imately 4 minutes and as such the errors are negligible. 

The spectral analysis performed, extends from 1 Hz to 

512 Hz and as such,there is no truncation error on the low 

frequency end. On the. high frequency end, there is neglig­

ible energy, in general, beyond 100 Hz as seen from Figure 

11.4, though detailed computations of percentage contributions 

of various band widths were not carried out. It is therefore 

·inferred that the truncation errors are not significant. 

The effect of acceleration sensitivity has been dis­

cussed in Appendix VIII. 
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It is concluded that the pressure measurements are 

subject to a maximum error of ± 5%. 
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APPENDIX X 

GROUND \'IIND DISTRIBUTION 

1. General 

The mechanism of generation of wind is a complex 

phenomenon. Pressure gradients resulting from temperature 

gradients and earth's rotation are the main contributing 

factors in this process~ In. the study of wind effects on 

many earth-borne structures,it is only the horizontal winds 

that cause concern to a design engineer. Meteorological 

Offices throughout the world keep a record of these hori-

zontal winds which are measured using anemometers. The 

interpretation of these data should be attempted with great 

caution since the local effects and the error in the instru-

ment are often difficult to estimate. Also the response of 

the instruments for winds less than 10 m/sec is not reliable 

A map of isopleths (contours of equal wind speeds) is more 

reliable since it provides a space-time average representing 

the extreme mean hourly speeds over 50 years,derived from 

records at various stations and reduced to a reference height 

of 10 m. 

Due to the atmospheric boundary layer effects, the 

wind speed varies with height up to the gradient height 

(where the viscosity effects are neglible). Above the gra­

dient height (200 m to 2000 m) t.he winds are generated purely 

by the pressure gradients and unaffected by local terrain. 

. (71) A power law model followkng Davenport has been adopted 

in the BSCP3: Wind Loads(46) where in 3-sec. gust speeds at 

a height of 10 m are introduced as basic wind speeds. 
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Correction factors 51'. 52 and S 3 (see Appendix XII) are 

incorported to account for topography, dimensions of the 

structure and expected life respectively. This greatly 

simplified model is useful in the design based on the 

extreme expected wind loads, but is inadequate in fatigue 

and random response analyses. 

2. Statistical 

The statistical properties(77) required in a refined 

analysis of wind effects are discussed here. The turbulence 

scales in the atmosphere are generally large implying that 

correlation heights in free wind are of the same order of 

magnitude as the size of the structure in question. Under 

the assumption of isotropic atmosphere, the statistical 

distribution of wind speeds forms a two-degrees-of-freedorn 

system Cind the distribution function can be assumed to be 

Gaussian. If u and v are the components of velocity in two 

orthogonal directions in an isotropic plane,the probability 

density can be written as 

p (u) du = 
'1/2 Tf O'"1.u 

1 

p (v) dv dv 1. 

Without loss of generality~u and v may be omitted,and also, 

- 0"2 - 1 due to isotropy. 

Hence,the joint probability of occurance is 
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p (u, v) du dv = 
1 

• 

Writing + = 

2lT 

(V)dV 1 f (V2/20} ).V dV de p = 
2na 2 exp -

1 0 

or 

W) dV V (V2/20: 2) dV P = 
0 2 exp - 1 

1 

The probability of exceedence is given by 

p (>V) .. exp 2. 

This is the well known Rayleigh distribution. 

However,· the assumption of isotropy is not strictly 

valid since the maximum winds are,in addition to being sub-

jected to local effects,geostrophic and hence directional. 

Further,the winds normally have a steady variation as con-

sequence of which the sample set of records is not an inde­

pendent set. Weibull distribution function seems to best 

fit the yearly distribution of maximum winds and the proba-

bility of exceedence in this case is given by 

P ('7V) = exp _ (V/C)k. 

The characteristic wind speed C and the exponent k may be 

. obtained from a plot of the numerical data of wind speeds. 

In general, k!<:: 2 and the distribution is identical to 
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Rayleigh distribution if C = ~ cr1• 

! 
The probability of exceedence of an extreme wind 

V in max 
any year is given by 

A. 
= exp [exp - 0< (V - v) max • 3 • 

In this expression, for a Weibull distribution the mode Y is 

A 
C Cln N) llk v = 4. 

and the dispersion factor 1/0( is 

d 0 
1-k 

1/0( 
C Cln N)"""i< = dlnN = k 

5. 

where N is the number of independent data points in a given 

sample period, say one year. The maximum wind speed with a 

return period R years may be evaluated from the expression 

V = 
A .1 
v + <>< 

where the function 

f (R) = ln [- ln (1 - ~)] 

From Equations (3, 6 and 7) it is clear that 

p (V ) 
max = 

1 l-R' 

and the modal probability is 

p (~) = .1 
N 
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In a purely random process with the Rayleigh distribution, 

the mode-

I 
= ,0"1 .J 2lnN 4a. 

and the dispersion 

Sa. 

If the sample set is not an independent set, the 

variation of velocity may be considered as a continuous 

random process. The effective number of samples can then 

be obtained from 

= "1 T 10. 

where T is the total time of sampling and the effective 

frequency (or the number of zero crossing per unit time) 

is given by 

= = [ J f 2 S(t) df 

J S(t) df 
11. 

and the power spectrum of the velocity should necessarily 

be known. These statistical properties of wind together 

with Palmgren-Miner rule form the basic entities in. the 

estimation of fatigue life. 
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APPENDIX XI 

COMPUTER PROGRAr-! 

The flow charts of the main program SHELL ANALYSIS, 

subroutine CNONLINEAR and the other main program RANDOM are 

given below. SHELL ANALYSIS gives the free linear natural 

frequencies, nonlinear response and stress resultants for 

prescribed loading~ The integrals 11 to 15 are evaluated 

separately (in INTEGRALS) in double precision. using a self-

adjusting step length Simpson rule (DSIMPSON). For (m=) 5 

modes the execution time for the evaluation of the integrals 

was ap~roximately 800 seconds on ICL 1905A Computer, with 

the higher modes requiring longer times. The rest of the 

analysis needs very little computer time. 

RANDOM evaluates the random vibration response -

displacements and strains at any prescribed point. using 

the principle of superposition, the components of the res-

ponse in the first (m,n) normal modes are summed to obtain 

the total response at any prescribed excitation frequency. 

The solution vector ( i 6} ) is evaluated (m x n x j) times 

and as such the execution times are large. Typically, for 

the evaluation of the wand e for (j=) 20 spectral points, e 

with (m x n x j = 5 x 6 x 20), at one prescribed point (x,e) 

and for a given value of damping, the execution times re-

quired were approximately 60 seconds on ICL 1905A Computer 

and 150 seconds on ICL 1903T Computer. 
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SHELL ANALYSIS 

Nonlin. Rot. 

Inertia, 

Damping 

Max. Iter. 
Acc. 

Ncases 

Naspect 

Nmodes 

Co-ordi. 

Load Type, 
Dyn., Mom., 
Deflec., 
Stress 

Fourier 

Coefficient 

Rms & Mean 



Integrals, 

Beam 

Constants 
INTEGRALS ~>---~ 

'--__ ~---J 

Loop Ncases ---~--I 

Loop Naspect -----."..-1 

Loop Nmodes ----:..-1 

Output 

Nat.Fre 

Output 

A4 

No 

Strain En. 

Kin. En. 

Freq. 

Cubic 

Yes 

Non-lin. 

Coefft. A4 



Output 
Forced 

Respons 

Output 

Loop jx 

Loop ie 

No 

CNONLIN. 

Yes 

Characteri 
stic 
Equations. 

isplacemen 
~~~ Coefficien 

rp, rjJ', </J" 

Stress 

Resultants 
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I 

Output 1 

2 

YNORM 1--;---1 Normalize 

end loop 

Nmodes 
Naspect 
Ncases 

Graph 
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ENT 

loop j frequency 

CNONLINEAR --

1,2, •• 6 

Load 
i-'-_---1Coefficien 

Char. 

Eqn. 

Backbone Yes 

Response 

No 

RCUBIC 
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Forced 

Response 

No 

No 

Complex 
Cubics 
A & B 

y=o X=,? 
from 

A 

Increment 
Frequency. 

y=O 

X:=: 
from 

A 

x = ---
y = ? 
from B 

y = ---
X = ? 
from A 
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---------------------------------------~ 

I 

end loop j frequency 

0 : 

1 : 

2 : 

3 

4 . 
5 

6 : 

Amp. 
Phase 

Increment 
Freq. 
y ~ ---

Free Nonlinear 

Tip Load 

Line Load (0) 

Line Load (uniform) 

Osci. Wind Load 

Comb. Vlind Load 

Harmonic Distrib. 
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i 

I PRDIST J ?--

, 

INTEGRALS 

SHELL 

ANALYSIS 

SPECTRAL 

ANALYSIS 

Loop j 
Loop m 

Loop n 

. . . 

RANDOM 

START 1 

\ 

1,a,h,E, ~ ,jA 

I 

\ 

RF(n) n=O, •• 5 

\ I 

I PR(m) ,CR(m) \ 

m=1, •• 5 

\ ) 

I \ 
11(m) , !2(m) 

m=1, •• 5 
\ J 

FREQ. (j ) 

ISF (j) 

DC, (X,,,) 

';> 

/ 
I 

CJ 
- 1'71 -

Geometrical Constants 

Fourier Coefficients of 
RMS pressure distribution 

Fixed-free beam constants 

Integrals 

j frequencies including the 
shell natural frequencies 

Load Spectrum 
j = convenient no. of points 

Damping coefft., co-ordi. of 
pt. at which the strain 
spectrum is reqd. 

Integral for external loading 



I 

MATPAC 

Evaluate over 
determinant t 
frequencies. 

end loop m,n 

loop m 

loop 

~) 

F11, F12, •• 

•••• F33 

T11, ••• T33 

0(3,7) 

- - """'*" --

loop j 
o check 

MATPAC 

A(m, n,i) 

cjJ, rp" 

r 

~,~" 

CJ 

Coefficients of strain 
.energy 

Coefficients of Kinetic 
energy 

External load: 

Solution of Characteristic 
equation 

Solution vector (real parts 
i = 1,2,3 imaginary parts 
i = 4,5,6) 



loop n 
loop 5 

I 
i 

SUMW, SUM €. 
e 

SUM E-x 

end loop n,s 
end loop m,r « 

Spectra 
SI'I, S€ e 
se x 

end loop j 

Output 
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APPENDIX XII 

THE IMPLICATIONS OF CODES OF PRACTICE ON 
STRUC'ruRAL DESIGN OF S'rEEL CHIHNEYS •. 

Authors: D.J. Johns & R. Nataraja. 

Analyses are presented \'Ihich consider the most recent wind 
loading code and the requirements of the current British Standard 
for the design of free-standing steel chimneys. 

The wind loading takes account of the local topography, surface 
roughness and design life of the chimney as well as its height and 
a power .law is used to define the variation of wind velocity with 
height. 

The design criteria for allowable stress, allowable deflect-
ion and for swaying and charts are obtained for a wide range of 
chimney geometries of the design wind speed to satisfy these criteria. 

The allowable def1~ction criterion is in general the more 
critical of the two static criteria and the authors question its 
validity. 

The two dynamic criteria may also be critical but other factors 
may preclude such oscillationsfrora occurring. These factors are 
not considered and quantified in the current codes of practice. 

, Chimney Design Symposium, 
April 9th - 11th, 1973. 

Department of Transport Technology, 
University of Technology, . 

Loughborough, 

I 
, 

Organised by the Centre for Industrial Consultancy and Liaison 
University of Edinburgh. 
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I 
! Notation. 

frontal area (projected area on a plane normal to wind 
direction) • 

C 

Cf 
cl 

E 

fs,fo 

fb 
g 

h 

H 

I 

K 

k 

L 

defined in the text. 

force coefficient of steel chimney. 

diameter of chimney 

Young's modulus. 

frequency in sway and ovalling respectively. 

bending stress. 

acceleration due to gravity. 

height at which slope changes (see fig. 1.) 
height variable 

second moment of area 

coefficient in equation (3) 

radius of gyration = d/2 {2 
height of the shell. 

m pressure exponent (= 20<) 

mo mass per unit length. 
N life span in years 

P probability 

. q 
oR 

~lS2S3 

St 
t 

V 

dynamic pressure •• 

return ·periodin years 
factors defined-.in the text 

SOtrauhal number 

thickness of chimney· sheli­
basic wind speed. 

VH 
VL, Vs 

Vcr 
Wo 

wind speed and height H in the velocity profile. 
design o~lind speed. 

0< 

f3 
(5 

f 

critical wind speed in dynamic instability 
weight/unit length of chimney. 

velocity index 

mode constant 

mass density of basic shell material 

density of air. 
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. 1. Introducti~ 

British Standard 4076:1966 (ReferenceAl) includes four design 
requirements for free-standing steel chimneys: 

(i) 
(H) 
(iH) 
(iv) 

allowable stress. 
allowable deflection. 
swaying oscillations. 
ovalling oscillations. 

Al though consideration is given to dead \~eight loadings the 
major loadings are usually those due to the action of the wind. 

A previous study (ReferenceA2) presented design Charts based 
on ReferenceAl from which the designer of free-standing steel 
chimneys, could at a glance determine the chimney dimensions to 
satisfy the above static and dynamic design criteria. These charts 
were based on the wind loading code then current. 

The w:.nd loading requirements have recently been revised 
(Reference A3) and it is the purpose of the present paper to consider 
the implications of the new codes in an analytical treatment of the 
chimney design process. A fuller treatment is presented in Refer­
ence A1. 

It is assumed throughout that the steel chimney is unlined, 
unclad, unstiffened and uniform. The implications of alternative 
assumptions are considered in ReferenceA4. 

2. Wind Loads. 

2.1. General. 

ReferenceA3. contains a map of' isopleths (lines of equal wind 
speed, V) \lihich relate to the maximum gust speeds at a height 
10 m above ground ~/hich are likely to be exceeded not I more than 
once in 50 years in open level country. 

To obtain the local. design wind speed, Vs, the map wind speed 
V is multiplied by the following three factors:-

Sl for local topographic influences. 
S2 for surface roughness at the chimney location, for gust dura­

tion appropriate to chimney size and for various chimney 
heights. 

S3 for the chimney design life. 

Thus (1) 

2.2. SlFactor for Topography 

It is advisable that Sl should always lie within the range 
0.85<% Sl ~ 1.2 and generally within the range 0.9~ Sl ~ 1.1. A 
value of Sl = 1.0 relates to level, open country and the higher 
and lmler values relate to exposed and sheltered regions respect­
ively. 
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, 2.3. S2 Factor for Surface Roughness, Gust Duration and 

Chimney Height (Table Al.)' 

The variation of wind velocity. with height depends upon the 
type' of terrain and surface roughness (see Fi~XII.~ and upon the 
averaging time of the gust. duration.. For chimney heights less than 
50 m. the S2 factor is given by the 5 second gust data and for 
heights greater than 50 m. by the 15 second data. 

Although this sudden change in data to be used may appear in­
consistent and a progressive change could be proposed it is believed 
that this is not necessary since the given approach should provide 
a slightly conservative design~ 

ReferenceA3 tabulates S2 but for present purposes an empirical 
relation of the form 

~ 
= KH (2) 

is obtained. TableAl gives the values of K and ot so obtained for 
the four categories of local conditions considered in ReferenceA3. 

It is seen that for conditions 2, 3 and 4 the values of K and 
0< in equation (2) vary from below to above a given height. 

ReferenceA3 should be consulted for cases ~Ihere the chimney is 
to be built on a cliff or escarpment since the effect then generally 
is to effectively increase the values of S2 which should be applied 
and to make them thereby more uniform over the given chimney height. 
Such effects are considered in ReferenceA4. They generally lead 
to a more critical design. 

2.4. S3 Factor for Design Life 

The basic 
T of 50 years. 
given speed Vx 
of N years is 

wind speeds, V, in ReferenceA3 have a return period, 
It can easily be shown that the probability of a 

exceeding V i.e. S3 > 1.0, occurring in a period 

p = (3) 

Therefore for R = N = 50 years P = 0.63 and S3 = 1.0. 
Plots of 53 are given in ReferenceA3 for different values of P and N 
and these should not be extrapolated for N < 2. 

Normally S3 = 1.0 but lower values may be taken for temporary 
structures and higher values for those with an anticipated life 
longer than 50 years or for those where additional safety is re­
quired. 

2.5. Design Hind Forces. I 
The design dynamic pressure is given by 

q = (4) 

where Vs is given by equation (1). 
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· In S.I. units equation (41 becomes 

q = 0.613 v; 
2 where Vs is in m/s and q is in N/m. 

The design force is given by 

(5) 

(6) 

where Ae is the project.ed frontal area normal to the wind, and for 
most chimney geometries it is realistic to assume that ef = 0.6. 
For smooth structures of a diameter greater than 0.25 m. this 
value is slightly conservative. Only for smaller diameters or fOr 
roughness levels untypical of chimney construction in general. 
would higher values of Cf be used. Thus if a chimney has roughness 
greater than 8% of the diameter e.g. longitudinal ribs, a value of 
Cf up to 1.2 to 1.3 might apply as is shown in ReferenceA3. 

3. Static Analysis based on Allowable Stress. 

For a uniform cantilever of diameter d subjected to such a 
distributed load, engineer's theory of bending gives 

For category 1 in TableA1. this yields 

11 = t d 2 2[ if1+2 HLm+l Lm+2 
] (8al C K- V (m+l)(m+2) m+1 + m+2 

where C 2 2 = Cff?Sl S3' 

The maximum bending stress fb at the base of the cantilever chimney 
is 

2 2 
S2L C V (L) 
(m+2)n k 

2 
( d ) 

t 
(9a) 

and fb allol'lable ':?- fb max. (See values of fb allol'lable in Reference 
Al). L is the height of the chimney at w~iCh S2L appli2s and 

k = d/2 .f2. It should be noted that CV S~L ~ Cf' ~ V sL where V sL 
is the design I'lind speed at height L. 

I 
For categories (2), (3) and (4) in TableAl the values of S2 

are given by Kl and m1 for heights above h and by 1(2 and m2 for 
H" h. The bending moment is given by 
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---------------~ -----

_ Cd K2V2 
- 2 1 

Hm1 +2 

( (ml +1)(m1+2) 

for 0 < H<::h 

+ 

for h;c H.<r. 

(Sb) 

The maximum bending moment and hence the maximum bending stress. 
occurs at H = 0 and is given by 

e v
2 S~L 

fb = 11 m
1 

+ 2 [1- (9b) 

and fb allowable"?!' f b • 
Equations(9)give the values of V satisfying the allowable stress 
criterion when fb is the allowable stress andthe height of the 
chimney is given by other considerations. Since the basic Hind 
speed is knoHn, the geometric parameter t can be calculated frOIn 
equation (9). 

4. Static Analysis based on Allowable Deflection. 

Further integrations of equation (8a) yield the deflection • 
. the maximum of Hhich at H = L is given by 

de K2V"2 Lm+4 [ 1· 
ET WL = 2 (m+1)(m+2)(m+3)(m+4) 

1 
6(m+l) + 

( lOa) 

where the function in square brackets is Hritten as f{m). Equation 
(lOa) can be IVritten as 

(lla) 

The allowable maximum deflection as stipulated in Reference 4 is 
that 

(12) 

The corresponding equation for categories (2) , ( 3) and (4) is 

wL eJ2 3 i 
v2S2 f(m1 ,m2 ) (L) (d ) I r:;- = --"E 2L k t (llb) 

where 
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(h/L)m1+3(m2-m1 ) 
- 2(m1+3)(m

2
+3) • 

Equations (11) together with equation (12) set the criterion 
for allowable deflection and as before the geometric parameter t 
may be evaluated. 

5. Dynamic Analysis based on Sway Oscillations 

In the sway mode of oscillation the entire chimney oscillates 
in the cantilever beam modes. The structural natural frequE'ncies 
are calculated using a simplified model approximating to a single 
degree of freedom system in anyone normal mode of vibration. The 
sway mode natural frequencies of a chimney shell are given in 
Reference Ai by 

--:..(3--",- J E I<L . 
fs = 2TfL2 VIa . 

(13) 

where \'10 is v!eight per unit 
constant P depends on 
Mode fO = 3.515. 

length and frequency f is in Hz. 
the mooe. For the fundamental 

l'he 

The critical wind speed 
is excited can be calculated 

fs d 
Vcr = St 

at which the fundamental frequency 
by using the formula 

(14) 

where St = 0.2, is the Strouhal number. 
For a simple uniform steel shell of material density (J , equatiori 
13 becomes 

f 
2.5 

5 = 2iT 
-Si_ (E) t 
2L2 0' 

= 2010 _d_ 
2L2 

where d, L are in metres. 
Equation (14) then becomes 

. 2 
Vcr = 40200 (~) 

v/here Vcr is in m/so 
The criterion to avoid sway oscillations is therefore 

J 

(15) 

It should be noted that equation (15) is independent Ef thickness t. 
Hence the only way to increase Vcr is by decreasing (/k). In 
cases v/here this is not permissible one should either increase 
damping or increase the stiffness by using guys or destroy the 
effectiveness of vortex induced forces by means of helical strakes, 
perforated shroud etc. 
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6. Dynamic Analysis based on Ovallinq Oscillations. 

The ovalling modes of oscillation, also called the breathing 
modes, could be critical for a range of values of t/d ratios en­
countered in modern design practice. A formula for the simplest 
oval ling mode given in ReferenceAl is 

fo = 622 t/{d/2)2 (16) 

with t and d in metres. 
The critical wind speed at which ovalling may occur is given in 
ReferenceAl by 

fod 
Vcr = ~ . (17) 

t 

The value of Strb~hal number St = 0.2 is again taken and 

t 
Vcr = 6220 d (lB) 

with Vcr in m/so 
The oval ling criterion therefore is 

In cases where a change of design is not feasible, an end 
ring would considerably increase fo and hence Vcr, particularly 
for smaller values of (L/k) ratios used in design practice. 
Though it is difficult to sUbstantiate quantitively chimney lining 
should have some beneficial effed:s on ovalling instability dUe to 
increased t/d (in proportion to modular ratio) and due to increased 
damping. 

7. Dyn;>mic Stability Param'2ter. 

It has been shown that vortex induced swaying and ovalling 
oscillations are most unlikely when the chi~~ey has a value of . 
2 modi /r?d 2 /" 17 .. 23 where mo = mass per unit length = ~lo/g; b = 
logarithmic decrement. The existing codes do not point out this 
fact and since 6 for steel chimneys should be at least of the order 
of .03 it may be possible to preclude instability by increasing mo 
and/or S. 

8. Design Charts. 

Using the previous analyses it is possible to construct design 
charts which give chimney dimensions necessary to satisfy the four 
basic design criteria listed in Section 1 and analysed in Sections 
3 - 6. The most critical of the cases are presented in TablesA2 to 
5. It is found that the allowable stress criteria is most critical 
for category 1 for heights less than 50 metres (TableA2) with that 
for category 4 (TableA4) for heights less than 50 metres being at 
the other extreme. All the other classificationsifall within these 
two cases. It is observed that the difference in design wind 
speeds for the two extreme cases above is so small that the error 
in using the corresponding conservative values given by category 
1 is less than 5% over a wide range of geometries •. Thus consid­
erable .simplification is achieved in the preliminary design stages 
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I by selecting a suitable geometry from TableA2, immaterial of the 
category under consideration. 

Similar observation is made for allowable deflection criterion. 
The results for allowable deflection are given in TablesA3 and A5 
and it is seen that the allowable deflection criterion is at all 
times more critical than the allowable stress criterion. This 
suggests to the authors that the present deflection criterion 
which has, apparently, no precise logical basis, be re-appraised 
by the British Standards Institution and possibly removed or re­
placed. 

The deflection criterion appears to be even more severe than 
the sVlaying mode oscillation criterion (TableA6) for certain 
practical geometries. However.TableA6 suggests that the top value 
of L/k to be considered is about 30 unless remedial measures are 
taken to prevent swaying oscillations. 

d Likewise TableA7 for oval ling mode oscillations suggests that 
/t should not exceed 150. However since TableA7 is for an un­

stiffened shell it would be relatively easy to increase the critical 
design wind speed for such a shell by the addition of ring stiffeners 
particularly near to the top of the chimney. 

It is therefore clear that to simultaneously satisfy. the 
four design criteria would restrict the range of geometries avail­
able to the designer. In fact 1'ableA6 suggests L/k:;" 30 and Table 

A7 suggests d/t~ 150. Tables 4(a), 4(b) give corresponding pairs 
of values of L/k and d/t to prevent V~ exceeding, say, 42 m/s and 
it may be seen that L/k l' 30 and d/t;r 150 would give a safe design. 

The simplified ovalling oscillation criterion used considered 
the chimney as a simple ring element and neglected the effects of 
chimney length. It has been shown for shorter shellS that this 
criterion is quite conservative and should then be used with 
caution. 

9. Alternative Method of Calculation. 

It is found that the two dynamic criteria are generally more 
critical than the static criteria. Hence the design procedure is, 
as follows •. 

(i) Select the height L of the chimney such that it satisfies 
the minimum height requirement for efflux considerations. 

( ii) 

(iii) 

Select factor Si and also choose S3 (Section 2). 
S2L from values of K and eX. from TableAl and L from 
obtain the value of basic wind speed from Figure 3 
enceA3, and calculate VL. Calculate the diameter, 
k from equation (15). 

I 

Check for efflux rate and consider forced dtaught 
inadequate. 

(iv) Obtain t from equation (18). 

Calculate. 
step (i) 
of refer­
d from 

if d is 

(v) Obtain the design stress fb from equation (9). Also obtain 
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WL 
-r;- frolT' equation (11). If the allowable deflection c!:'ite!:'ion 
is not satisfied, increase d and/or t such that the allowable 
stress criterion is also satisfied. 

(vi) In case the allowable stress is much larger thE' n design 
stress due consideration should be given to reducing t and 
using stiffeners to satisfy- the ovalling criterion. 

(vii) If, in the structure built: based onthes design procedure. 
any dynamic instability- is found. which is highly unlikely. 
consideration should be given to increasing damping by­
lining or cladding or by added foundation damping and/or 
incorporating devices such as: he,lical stralces, (patented} or 
perforated shrouds etc. which minimise the e,ffectiveness Qf 
the vortices being shed. 

10. Conclusion. 

A simplified procedure for the design of steel chimneys is 
described. A method of obtaining the Idnd loading amenable to in­
teg!:'ation ove!:' the height of the structure and conforming to the 
wind loading code is given. Static and dynamic structural'design 
criteria were considered. Of the two static criteria, the allOl'I­
able deflection criterion seems to be the more critical and its 
validity is questioned. The geometry is probably dictated most 
by the dynamic criteria and hardly- at all by static strength 
requirements. 

There is a need for a more logical design code ~Jhich takes 
full account of static strength and fatigue considerations and of 
possible dynamic instabilities due to vortex shedding. There is 
increasing kno~Jledge of the unsteady nature (gustiness) of the 
wind and the random pressur-= fluctuations .on the chimney- structure 
and a corresponding simple analysis for designers to apply shOUld 
be introduced as soon as possible~ 

If a deflection criterion is to be retained it should be one 
which relates the transverse (wind) and dead weight loads ,~Jhen 
acting simultaneously to the possibility of static instability' 
and/or combined stresses due to' compression and bending of the 
chimney cross-section. 
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APPENDIX XIII 

STATISTICS OF RANDOM PROCESSES 

1. I Introduction 

In this section, some probability parameters per-

taining to random fatigue analysis are introduced. These 

can be found in many text books on the subject; the objec-

tive here is to write these parameters in consistent nota-

tions and to derive the expressions using an engineering 

approach. 

2. Normal Distribution 

A random process x(t) is said to have a normal or 

Gaussian distribution when its probability of occurance 

(i.e., probability density) is given by 

where 

p(x) exp '= 
1 

[-
(x_x)2 J 
2 0" 2 

1 

cr1 is the standard deviation and x is the mean 

values given respectively by 

and 

2} [ 2 1 E {x - E {x} J '= 2T 

1 
'=2T' 

T 

J 
-T 

x (t) dt 

T 

J 
-T 

1. 

2. 

Without loss of generality, the discussion that follows 

assumes· that the process has a zero mean value. Also, station­
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arity and ergodicity of the process are assumed. 

The probability distribution function which gives the 

probability of occurance of all values less than a given 

value can be written, in general, as 

x 

P «x) =! . p (x) dx 
-0:> 

3. Correlations 

The correlation function R (-r;) is defined as 

T 

3. 

R ("C) = E t x (t) x (t+ 'C ) } 
1 
2'r f :x: (t) x (t +1:) dt 

-T 
4. 

where r is the time delay. Since the mean value is zero, 

the zero time delat correlation gives the variance, i.e., 

R (0) = 

For a continuous random process with continuous derivatives, 

the correlation of jth It derivative with th I 
k (t+oz;) 

derivative can be written as 

5. 

4. Derivatives of a Random Process 

The random process x (t) is assumed to possess higher 

order derivatives. In a purely random process , the deriv­

atives also are random processes and are completely independ-

ent (uncorrelated). 
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Let Nxi be the expected number of crossings of a 

level x. per unit time. 
~ 

Then the probability of an xi cross-

ing in kn infinitesimally small time dt is given by Nxi dt. , 
If there is such a crossing, it corresponds to either of the 

two conditions 

\x(t) \ dt < x(t) < xi when x(t) < 0 

or 

xi + I x( t) I dt > x( t) > xi when x(t» 0 • 

The joint probability density function of x and x can be 

written as 

where 

and 

The probability of an xi crossing can therefore be written as 

6 a 

As dt - 0 , 

= 

186 



---. --_. ---------------------------------------------

Since x and x are completely uncorrelated, the joint 

probability density function can be written as a product of 

the individual probabilities. 

Thus, 

N xi = p (xi) ;00 I xi I p (xi) dx 
_00 

or N xi = P (xi) E {I xi]} 6 b 

Therefore, the number of zero crossings per unit time 

can be written as 

= p (x=O) E { I x I x=O} 

or simply, 

= p (x=O) E 7 

The expected number of peaks per unit time is given by the 

number of zero crossings of xCt) as 

N = p (x=O) E e 
8 

. th -
In general, the eXpected number of zero crossings of k 

derivative can be written as 

= 

For a Gaussian random process with zero mean value 

the following relations between the probability density 

function and zero time delay correlations exist: 
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p(x) 
1 [_x2/2 R(O)] 

'" exp 

i 
J2 R(O) 

I 
p(x) '" exp C _x2/_2 RI! (O)J 

J-2 R"(O) 

p(x) '" exp (_5(2/ 2 R
iv (0):1 9 

J2 R4 (O) 

In terms of correlations, the expected values can be written as 

E {IXI} = jO> Ixl p (x) dx =J .=l RI! 
TT 

(0) 

-00 

E : fOO 
_00 

I xl p(x) dx =) ~ R
iv 

(0) 10 

Hence 

N. .1 0"2 
(-xi12 if1 ) '" exp 

X~ 'IT 0"1 

NO ")}1 
1 (12 

'" = 1T 0"1 

N "\)2 
1 0'3 

'" = IT e 0"2 

• 
• 

• 

Nk ..1 O"k+2 
'" 0 1T O"k+l 11 

where 

0- 2 1 JOO «(,) dCA3 
1 '" 2i1 5 

_0:> 

0"2 1 fa> 2 (c..) dw 
2 '" 2rr c..) s 

_00 
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cr 2 1 j'XJ 4 (w) dCA) 
3 = 2n w s 

-co 
I 
I· 
, . 
• 

• 

2 1 JOO 2k+2 (c.> ) dcD 12 
CJk +2 

= 2ii' CA) s 

-00 

The number of zero crossings provides an equivalent 

entitY,in a random loading,where a definite frequency of 

loading in a fatigue analysis is not easily discernible. 
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TABLE 9.1 COMPARISON OF FREQUENCY PARAMETER (~x 10 2 ), ~ c 250 

l/a = 9 l/a '" 12 

m '" 1 

Present Present 
-" --

n A B Ref.82 Forsberg A B Ref.82 Forsberg 

(83) (83) 

1 2.9358 2.9358 2.7001 2.6660 1.6828 1.6828 1.5465 " 1.5530 
2 1.0113 1.0113 0.9382 0.9510 0.6263 0.6263 0.5886 0.5971 
3 0.9925 0.9925 0.9761 - 0.9161 0.9161 0.9105 0.9101 
4 1.7065 1.7065 1.7034 - 1.6901 1.6901 1.6891 -
5 2.7289 2.7288 2.7281 - 2.7225 2.7225 2.7223 -
6 3.9945 3.9944 3.9942 - 3.9905 3.9905 3.9905 -
7 5.4939 5.4908 5.4938 - 5.4906 5.4905 5.4906 -
8 7.2252 7.2249 7.2251 - 7.2221 7.2218 7.2221 -
9 9.1877 9.1872 9.1877 - 9.1848 9.1843 9.1848 -

10 11.3814 11.3806 11.3814 - 11.3785 11.3777 11.3785 " -

" ( m = 2 

1 15.5100 15.5100 14.2590 12.4200 9.4605 9.4605 8.6181 7.9980 
2 5.7739 5.7738 5.2647 5.1780 3.3361 "3.3336 3.0220 3.0660 
3 2.9486 2.9486 2.6969 2.7510 1.8279 1.8279 1.6933 1.7400 
4 2.3699 2.3699 2.2632 2.2950 1.9365 1.9365 1.8944 1.9080 
5 2.9561 2.9561 2.9200 2.9260 2.8058 2.8058 2.6936 2.7910 
6 4.0977 4.0976 4.0849 4.0760 4.0327 4.0326 4.0286 4.0790 
7 5.5582 5.5580 5.5530 - 5.5204 5.5204 5.5187 5.5100 
8 7.2753 7.2750 7.2730 - 7.2475 7.2472 7.2467 -
9 9.2321 9.2317 9.2310 - 9.2084 9.2079 9.2080 -

10 11.4232 11.4225 11.4226 - 11.4013 11.4006 11.4011 -

A: No rotatory inertia B: With rotatory inertia 



1/13. .. 9 

.. 

Preseni: 

n A g 

. 

1 2.9358 2.9358 
2 0.9702 0.9702 
3 0.5854 0.5854 
4 0.7500 0.7500 
5 1.1475 1.1475 
6 1.6679 1.6679 
7 2.2905 2.2905 
8 3.0111 3.0111 
9 3.8285 3.8285 

10 4.7424 4.7424 

1 15.5100 15.5100 
2 5.7656 5.7656 
3 2.8293 2.8293 
4 1.7802 1.7802 
5 1.5632 1.5632 
6 1.8356 1.8356 
7 2.3688 2.3688 
8 3.0554 3.0554 
9 3 .. 8586 3.8586 

10 4.7660 4.7660 
. 

A: No rotatory inertia 

COMPAR!SON OF FREQUENCY PARAMETER (~ x 10 2 ), ~ = 600 

l/a = 12 

m .. 1 

Present 
. ----

Ref.8:!! Forsberg A B Ref.82 Forsberg 

(83' (83) 

2.7001 2.6650 1.6828 1.6828 1.5465 1.5520 
0.8937 ·0.9074 0.5584 0.5584 0.5157 0.5258 
0.5571 0.5635 0.4474 0.4474 0.4358 0.4384 
0.7428 0.7434 0.7169 0.7169 0.7145 0.7143 
1.1455 1.1320 1.1377 1.1377 1.1371 -
1.6672 - 1.6638 1.6638 ·1.6636 -
2.2903 - 2.2882 2.2882 2.2881 -
3.0110 - 3.0094 3.0094 3.0094 -
3.8285 - 3.8271 3.8270 3.8271 -
4.7424 - 4.7411- 4.7410 4.7411 -

. 

m = 2 

14.2589 12.2400 9.4605 9.4605 8.6180 -
5.2556 5.1060 3.3241 3.3241 3.0074 3.0170 
2.5658 2.5950 1.6358 1.6358 1.4839 1.5240 
1.6353 1.6720 1.1630 1.1630 1.0915 1.1150 
1.4938 1.5130 1.2891 1.2891 1.2623 1.2700 
1.8068 1.8130 1.7227 1.7227 1.7129 1.7140 
2.3566 2.3560 2.3172 2.3172 2.3132 -
3.0498 3.0460 3.0274 3.0274 3.0257 -
3.8558 3.8500 3.8406 3.8406 3.8397 -
4.7645 - 4.7525 4.7525 4.7521 -

B: with rotatory inertia 
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TABLE 9.2 

Mode No. 
m / n 

1 

2 

3 

4 

5 

~ABLE 9.3 

Mode No. 
m / n 

'1 

.2 

3 

4 
. 

5 

NATURAL FREQUENCIES OF SHELL F4 (in "Hz) 
6 a=2.4375", L=69", E=10.0xl0 PSI, h=O.Ol" 

=0.000259 lb_sec2/in4 , 

I 

0 1 2 3 4 

606.21 41.24 44.88 121.53 232.71 

1600.98 248.42 91.44 127.58 234.13 

2472.23 652.05 225.04 161.43 241.58 

3361.76 1182.53 424.51 237.97 268.83 

4104.18 1780.70 679.87 354.99 305.44 

NATURAL FREQUENCIES OF SHELL FS (in Hz) 

0.",3", L=69"~ E:10xl06 PSI, h=O.Ol", 

=0.000259 Ib-sec2/in4 

0 1 2 3 4 

606.21 50.76 32.S6 80.24 153.19 

1600.98 301.98 103.19 93.01 155.91 

2472.23 774.3 271.47 152.64' 171.46 
. 

• 3361.76 1.368.80 512.32 262.30 212.45 

i 4104. '18 .2004.20 811.15 412.80 284.26 

'- 192 -

5 

376.28 

376.97 

379.51 

386.24 

400.21 

5 

247.62 

248.66 

253.49 

267.10 

29S.09 
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I 
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TABLE 9.4. MEASURED RESONANCE FREQUENCIES (Hz) OF THE SHELLS 

SI 
SHELL F4 

No. 
Vib. Tests@ J- -l'. 

Mode No. Theory W.T.Tests Ref.96 Mode No. 
m,n m,n 

-
1 1,1 41.24 33.0 32.3 (1,2) 33.0 1,2 

2 1,2 44.88 36.8 38.0 (1,1) 43.0 1,1 

3 2,2 91.44 87.0 84.0 - 1,3 

4 1,3 121.53 122.0 114.0 - 2,3 

5 2,3 127.58 126.0 122.0 - 2,2 

@ - Single point sinusoidal excitation at the tip. 

- Spectral Analysis of Strain Signals, 
n 11 

- W.T. Tests on a '" 2.4 , L - 71' , h = 

see Figs. 11.18,11.19,11.20. 
" 0.01 Aluminium Shell. 

SHELL F5 

Theory Vib.Tests@ 

32.56 32.5 

50.76 48.5 

80.24 79.0 

93.01 88.0 

103.19 101.5 

W.T.Tests£ 

27.32 

46.0 

70.0 

86.0 

93.0 



----------------=----=----_. 
TABLE 9.5. MEASURED DAMPING COEFFICIENTS 

51 No. Mode No. €, g-9. Aw - 9'+-9 s: = ~-~ Ref.97 
@ 

-IT 05"" - Q. l:'A. 0:> iT 
~ £. 

1 1,1 0.066 0.021 0.03 0.09 0.02-0.025 
'<J' 2 1,2 0.079 0.025 0.026 0.001 
r... 
... 3 2,2 0.072 0.023 0.003 - 0.020 ... 
Q) 4 1,3 0.073 0.023 • -.c 

UJ 5 2,3 0.063 0.020 0.007 - 0.013 

1 1,2 0.069 0.022 O.Oll - 0.011 0.02-0.025 
If) 2 1,1 0.065 0.021 • -r... 
..; 3 1,3 0.072 0.023 • -
rl 

Q) 4 2,3 0.078 0.025 0.008 - 0.017 .c 
UJ 5 2,2 0.066 0.021 • -

@ - Logarithmic decrement from response decay over 10 peaks 

£ - Half power method from resonance strain spectra (W.T.Tests) - only lowest values are quoted 

~ - Half power method from oscilloscope observ.ations (tests on aluminium shells) 

• - Very high overall damping, data not reliable 

~ Structural damping 

9a. - Aerodynamic damping 



TABLE 10.1 DETAILS OF MODELS 

Shell Number R1 R2 R3 F4 F5 

Configuration Rigid Rigid Rigid Flexible Flexible 
, 

3-D 3-D, 2-D 3-D 3-D 3-D 

Fully immersed Fully immersed Partially Partially Partially 

immersed immersed immersed 

Wetted length (inches) 28 28 27 27 28 

Run Numbers • 1-2 . 3-5, 6-8 9-20 21-27 28-34 

Material PVC PVC )?erspex Al Al 

Diameter D (inches) 3.5 8.5 6.0 4.875 6.0 
. 

Thickness h (inch) 0.25 0.25 0.25 0.01 0.01 

Height L (inches) 28 28 69 69 69 

Aspect ratio LID 8 3.3 11.5 14.15 11.5 
. 

alh . - - - 244 300 

No. of Pressure Trans. 2 3 1 2 2 
. 

• See Table 11.1 for details 
Cont'd ••• 
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TABLE 10.1 (cont'd.) DETAILS OF. MODELS 

. 

Shell Number Ri R2 R3 F4 F5 

Transducer Location T1 '8.2.:, 00 
. 8.2, 0° - . 13.0 13.0 

(2.35) (0.965) (2.72) (2.16) 

Inches from top, angle from T1 T2 - 8.2, 1200 13.0 13.0 13.0 

- (0.965) (2.16) (2.72) (2.16) 

(x/D) T3 22.0, 00 14.10, 00 - - -
(6.3) (1.75) - - -

Location of Strain Gauges 51 ° 00 - - - ;1.,-90 2, 

Inches from base,angle w.r.t. T2 52 ° 45° - - - 1,-45 . 2, 

53 
·0 

00 - _. - 66,-90 66, 

S4 
0 66, 45° - - - 661-45 

I I I 

@ ® '8-c,~)-c{~- '1j. h s" - '-'l{ s, sf ' -
"I3 1': . 

.3 
1"2.-

I , , 
I I 

. 

Re Range ( x 105 ) 0.4-1.62 1.63-2.85, 0.78-2.09 0.85-1.79 0.78-2.09 
1.63-2.85 

,>I .• " ._, " ,W. ~" -"-s ,] .<. • ;;. ~' I.'. " \. ·4 FJ 4ii _ • \ ; " .......,---~.-•. ~."' , .• t.' . ,. i 



• TABLE 10.2 . TYPICAL VALUES OF C
p 

Angle ;~Run No. 1 2 3 4 6 7 8 19 
Degrees Tt Tt A A A A A 

. 

0 0.019 0.034 0.014 0.013 0.013 0.010 0.006 0.005 

·15 0.021" 0.036' 0.014 0.015 0.067 0.022 0.012 0.007 
.. 

30 0.027 0.040 0.015 0.024 0.122 0.044 0.030 0.011 
I 

45 0.046' 0.05 ' 0.019 0.035 0.115 0.064 0.058 0.018 

60 0.077 0.068 0.037 0.059 0.164 0.091 0.095 0.029 

75 0.136 0.096 0.031 0.091 0.365 0.200 0.158 0.050 

90 0.108 0.096 0.034 0.069 0.334 0.182 0.160 0.044 
. 

105 0.108 0.101 0.040 0.075 0.325 0.154 0.110 0.056 
. 

120 0.108 0.091 0.034 0.059 0.290 0.150 0.090 0.040 

135 0.128 0.102 0.030 0.049 0.305 0.163 0.073 0.038 

150 0.115 0.108 0.029 0.043 0.315 0.159 0.090 0.040 

165 0.136 0.115 0.031 0.046 0.265 0.129 0.073 0.045 

180 0.145 0.119 0.032 0.043 0.240 0.115 0.053 0.048 

• - Extrapolated, A - Average of Tl and T3 



TABLE 10.3 FOURIER COEFFICIENTS OF FLUCTUATING (RMS) PRESSURE DISTRIBUTION 

Run No. --?' 1 2 
. 

3 4 6 7 
. 

8 19 
Coefficient 

. a 
. 0 0.09100 0.08162 0.02808 0.04942 0.23279 0.11838 0.08151 0.03371 

-0.05276 ~ -0.00769· -0.01119 -0.10982 -0.05717 -0.02168 -0.01742 a 1 1-0.03788 
. 

a 2 
-0.02047 -0.01081 -0.00784 -0.02624 -0.08767 -0.05238 -0.05358 -0.01221 

a 3 -0.01252 ,..0.00584 -0.00165 -0.00639 -0.00357 -0.00528 -0.01583 -0.00316 

a 4 
0.00883· 0.00683 0.00142 0.00567 0.01767 0.00800 0.01375 0.00558 

as 0.00883 0.00273 -0.00012 0.00313 0.01873 0.01139 . 0.01202 -0.00056 
, 

a 6 
0.00283 -0.00142 0.00267 0.00167 -0.03175 -0.01358 -0.01092 0.00008 

, 
a

7 
-0.00959 -0.00110 0.00166 -0.00265 -0.02185 -0.01152 -0.00170 -0.00007 

a
8 

. -0.00000 -0.00050 -0.00158 -0.00417 -0.01267 -0.00050 -0.00142 -0.00208 

a
9 

0.00186 -0.00066 -0.00235 0.00139 0.00774 0.00745 0.00633 -0.00034 

. 

a 10 
0.00464 0.00247 -0.00033 0.00407 0.01567 0.00622 -0.00075 0.00338 

all 0.00119 0.00025 0.00115 0.00071 -0.00473 -0.00336 -0.00264 0.00005 

a
12 

-0.00483 -0.00171 0.00058 -0.00242 -0.00754 -0.00362 -0.00875 -0.00196 



TABLE 10.4 

Angle 

0 

15 

30 

45 

60 

75 

90 

105 

120 

135 

150 

165 

180 
. 

VALUES OF C' IN THE DESCRIBING FUNCTION 
P 

Runs 9 - 20 Runs 21 -

0.005 . 0.010 

0.007 0.015 

0.012 0.020 

0.018 0.025 
.. . 

0.027 0.040 

. 

0.047 0.055 

0.042 0.047 
... 

0.047 0.055 

0.040 0.050 

0.035 0.053 
. 

0.040 0.058 

0.044 0.062 

0.047 0.084 
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TAB: E 10.5 FOURIER COEFFICIENTS OF THE OSCILLATORY PRESSURE 

DESCRIBING FUNCTION 

Coefficient Run Nos. 9 - 20 Run Nos. 21 - 34 , 

a O 
0.032083 0.043917 

. 

a 1 -0.016585 -0.023351 

a 2 -0.010123 -0.005763 

a 3 -0.003690 -0.006739 

a 4 0.004667 0.004250 

a 5 0.000134 -0.000243 

a 6 _0.000167 0.002000 

a 7 -0.000949 -0.002788 

a 8 -0.001833 -0.000917 
. 

. 

a 9 0.001024 -0.002261 

a 10 0.002290 0.003763 

all 0.000665 -0.001619 
• 

a 12 -0.000917 -0.000250 

. - 200 -



TABLE 10.6 

Run No. 

1 

2 

3 

4 

6 

7 

8 

19 

9-20 

21-34 

CD ' CL and Location of Centre of 

Pressure (RMS) at Various Run Numbers 

C' C' C.P. Degrees D L from Stagnation 

0.166 0.102 148.5 

0.119 0.087 143.8 

0.0242 0.033 126.2 

0.0352 0.065 118.5 

0.345 0.292 139.8 

0.180 0.153 139.6 

0.067 0.115 120.2 

0.055 0.040 144.0 

0.052 0.038 139.8 

0.073 0.046 147.8 
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Run No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

TABLE '11.1 DETAILS OF TEST RUNS 

Velocity Dyn. Pressure Re 
f p s mm water. ( x 105 ) 

21.8 2.75 0.4 

86.7 43.5 1.62 

36.0 7.5 1.63 

49.8 14 •. 4 2.26 

63.0 23.0 2.85 

36.0 7 •. 5 1.63 

49.8 14.4 2.26 

63.0 23.0 2.85 

26.24 4;0 0.84 

38.44 8.6 1..23 

43.69 11.1 1.40 

52.28 15.9 1.67 

56.15 18.3 1.79 

24.50 3.5 0.78 

32.7 6.2 1.04 

40.87 9.7 1.31 

47.90 13.3· 1.53 

54.05 17.0 1. 73 

59.43 20.5 1.9 

64.2 23.9 2.09 

32.9 6.3 0.846 

41.46 9.9 1.06 

45.79 12.1 1.18 

54.45 17.1 1.40 

59.83 20.7 1.54 

65.07 24.5 1.67 

69.67 28.1 1. 79 

24.5 3.5 0.78 

32.67 6.2 1.04 

40.87 9.7 1.31 

47.89 13.3 1.53 

54.05 17.0 1. 73 

59.43 20.5 1.90 

64.16 23.9 2.09 
. - ~u~-

Remarks. 

3D Rl 

" 

3D R2 
I. 

" 

2D R2 
I. 

" 

3D R3 

" 
" 
" 
" 
" 
I. 

" 
" 
" 
" 

" 

3D F4 

" 
" 
" 
" 

" 
" 

J 
3D F5 

" 
" 
" 
" 

" 

" 
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TABLE IIr.l. BEAM CONSTANTS. 

m Pm1 
. 

1 1.8751 0410 0.7340 

2 4.6940 911.3 1.0184 

3 7.8547 5743 0.9992 

4 10.9955' 4074 1.0000 

5 14.1371 6839 0.9999 

Cm 

955 000 

664 400 

245 000 

335 530 

985 501 

(2m-l) n /2 and cm ~ 1.0 . 

203 



TABLE IV.1 INTEGRALS INVOLVING BEAM FUNCTIONS. 

I~ 
1 2 3 4 5 

11 0.24409556 -0.60334863 -0.74403279 -0.81795540 1-0.79261289 

12 1.32188804 1.47117873 1.25288109 1.18174873 1.0659110 

13 2.32964076 4.25876876 2.95369377 2.54627272 2.2627730 

14 2.34865697 1. 78057208 1.69284372 1.63632881 1. 5929542 

15 2.03117982 1.49488963 1.07167611 0.90929765 0.79507604 

TABLE IV.2 OTHER INTEGRALS. 

~ n = i+j n = i-j n = j-i 

(i) TT /2 TT/2 TI/2 

(ii) TT /2 - IT/2 TT/2 

(iii) n/2 TT/2 - n/2 

(iv) -IT/2 TT/2 Tf/2 
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TABLE V11.1. CORRECTION FACTORS FOR HANNING 

ON LINEAR SPECTRUl1 

• 
NO. OF 

THEORETICAL 

HANNINGS 

CORRECTION MULTIPLICATION FREQUENCY 
FACTOR. FACTOR. RESOLUTION 

dB 

1 6.02 2.00 2 A f 

2 9.52 2.67 3A f 

. 

-

3 10.10 3.20 46f 

4 11.26 3.66 5Af 

• As referred to the main lobe 

@ Derived from rms values of 100 Hz and 200 Hz 

- 205 -

, 

MEASURED @ 

MULTIPLICATION 
FACTOR. 

1.631 

1.910 

2.102 

-

-

, 

signals 



TABLE IX.1 NOISE LEVELS IN THE WIND TUNNEL LABORATORY 

Free Stream Dyanmic Equivalent Acoustic Pressure 
Velocity Pressure mm of water 
fps mm of water Location 1 Location 2 

36.0 7.5 0.025 0.020 

51.0 51.0 0.061 0.042 

65.0 65.0 0.074 0.078 

92.0 92.0 0.211 0.260 
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SL 
No. Surface Category.· 

1. Open country with no 
shelter. 

2. Open country with 

scattered wind breaks 

.3. Country with many wind 
breaks: small towns, 
outskirts of large 
cities. 

f\) 4. 
o 

Surface with numerous 
obstructions e.g. 
city centres. 

-l 

<>< Values of K and ~ for Evaluating $2 = KH 

Table Al. 

Height above Class A Class B 
Reference datum 3 sec. 5 sec. 

(Basic data) (for L<50m) 
K 0< K 0( 

All heights 0.832 0.080 0.782 0.087 

)5m (K1 0» 0.792 0.087 0.724 0.101 

£: 5rn (K2 cX2) 0.615 0.178 0.578 0.183 

> 7.6m 0.724 0.101 0.653 0.116 

:'!f; 7. 6m 0.412 0.275 0.389 0.279 

)14rn 0.600 0.130 0.536 0.154 

:5:. 14m 0.355 0.274 0.316 0.293 

Class C 
15 sec. 

(for L>50m) 
K 0{ 

0.721 0.098 

0.682 

0.506 

0.601 

0.352 

0.488 

0.278 

0.108 

0.216 

0.128 

0.293 

0.168 

0.316 

I 

-_··---·1 
I 

.' I 

I 

I 

I 

I 
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Design Wind Speed Satisfying Allowable Stress Criterion,Height less than 50 metres. 

TablcA2. (Category 1). 

d 
L/k 

It25 30 35 40 45 50 60 70 80 90 100 125 
Design wind speed Vs m/s 

50 • • • • • • • • • • • 67.68 
60 • • • • • • • • • 68.08 64.59 56.40 
80 • • • • • 68.51 62.54 57.90 54.16 51.06 48.44 42.30 
100 • • 65.5 61.27 57.77 54.8t 50.03 46.32 43.33 40.85 38.75 33.84 
120 64.59 58.96 54.59 51.06 48.14 45.67 41.69 38.60 36.11 34.04 32.29 28.20 
140 54.33 49.59 45.91 42.95 40.90 38.41 35.07 32.47 30.37 28.63 27.16 24.17 
160 . 45.35 41.40 38.33 35.85 33.80 32.07 29.28 27.10 25.35 23.90 22.68 20.28 
180 38.54 35.18 32.57 30.47 28.73 27.25 24.88 23.03 21.55 20.31 
200 32.78 29.92 27.70 25.91 24.43 23.18 21.16 

I 220 29.18 26.63 24.66 23.07 21.75 20.63 
240 25.18 23.90 22.13 20.70 

~260 23.83 21.75 20.14 
ill 280 21.79 

.1 300 20.01 

TableA3. (Category 4) • 

50 • • • • • • • • • • • • 
60 • • • • • • • • • • 68.18 . 59.53 
80. • • • • • • 66.01 61.12 57.17 53.90 51.13 44.65 
100 • • 69.14 64.68 60.98 57.85 52.81 48.89 45.73 43.12 40.91 35.72 . 
120 68.18 62.24 57.62 53.90 50.82 48.21 44.01 40.74 38.11 35.93 34.09 29.77 
140 57.35 52.35 48.47 45.34 42.74 40.55 37.02 34.27 32.06 30.22 28.67 25.51 
160 47.87 43.70 40.46 37.85 35.68 33.85 30.90 28.61 26.76 25.23 23.94 21.41 
180 40.68 37.14 34.38 32.16 30.32 28.77 26.26 24.31 22.74 21.44 20.34 
200 34.60 31.59 29.24 27.35 25.79 24.47 22.33 20.68 
220 30.80 28.11 26.03 24.35 22.95 21.78 
240 27.64 25.23 '23.36 21.85 20.69 
260 25.15 22.96 21.26 
280 23.00 21.00 
300 21.12 - -, 

• Vs) 70 m/s - Vs < 20 m/s 



. . 
Design Wind Speed SaHsfving Allowable Deflection Criterion. Height less than 50 metres 

TableM. (Cateaor'l 1). 
d/ t 25 30 35 40 45 50 60 70 80 90 100 125 

L/k Design Wind Speed Vs n/s 

40 • • • • • • • • • 66.83 63.40 56.70 50 • • • • 67.62 64.15 58.56 54.22 50.72 47.82 45.36 40.57 60 69.02 63.00 58.33 54.56. 51.44 48.80 44.55 41.25 38.58 36.38 34.51 30.87 80 44.83 40.92 37.89 35.44 33.41 31.70 28.94 26.79 25.06 23.63 22.41 20.05 100 32.08 29.28 27.11 25.36 23.91 22.68 20.71 
120 24.40 22.28 20.62 
140 
and 
over 

I • 
'"'/k Table-AS. (Category 4) • 

N 
040 • • • • • • • • • 69.30 65.74 58.80 
\!) 50 • • • • • 66.52 60.73 56.22 52.59 49.58 47.04 42.07 J 60 • 65.33 60.49 56.58 53.34 50.61 46.20 42.77 40.01 37.72. 35.78 32.01 80 46.49 42.44 39.29 36.75 34.65 32.87 30.01 27.78 25.99 24.50 23.24 20.79 100 33.26 30.36 28.11 26.30 24.79 23.52 21.47 

120 25.30 23.10 21.39' 20.00 -140 20.08 - -160 - - -and 
over 

• Vs> 70 m/s 

- Vs <20 m/s 



TabJ.eA6. Design Wind Soeed Satisfying 
~~Osci.ll a tiel) Cri terion. 

L/k Vs m/s 

10 402.0 
20 100.5 
30 44.6 
40 25.1 
50 16.1 
60 and Less than 
over 15 

Table A7.· Design I'lind Speed Satisfy~!.l-E. 

d/t 

25 
50 
75 

100 
125 
150 
175 
200 
225 
250 
300 
350 
400 
450 and 
over 

Oval ling Oscillations Criterion. 

Vs m/s 

248.8 
124.4 
83.0 
62.2 
50.0 
41.5 
35.5 
31.1 
27.6 
25.0 
20.7 
17.7 
15.5 

Less than 
15 

_ 210 _ 
·0 



\ 
IV 

PLATE 8.1 MODELS 8. EXPERIMENTAL SET- UP 
a.rigid cylinder R3. b. shell F5 



PLATE 10j SURFACE FLOW PATTERN ON RIGID ~YLlNDER,Re=1.65X105 
. a &c. side views, b. front stagnation 



P LATE VII!.l STAT le CAll BRA TION SET-UP 
& DETArLS OF TRANSDUCER 
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FIGURE 2·~ STRESSES AND STRESS RESULTANTS 
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(LOW f) 
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. (HIGH 9) 

c. 
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d. 

e. 
FIGURE 2·8 a. WIND-STRUCTURE CONFIGURATION 

b &c FREE WINO VARIATION - LOW & HIGHFREUUENCY 
d. LOCAL PRESSURE VARIATION 
e. RESPONSE 
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VELOCITY FT/SEC. 

PERCENT TURBULENCE 

FIG. B·1u VELOCITY DISTRIBUTION &. b. TURBULENCE 
LEVELS AT APPROXIMATE MODEL LOCATION 
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