B Loughborough
University

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the
following Creative Commons Licence conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the waorlk

Under the following conditions:

Attribution. ¥ou rmust attribute the wark in the manner specified by
the author or licensor,

MWoncommercial. vYou may not use this work for commercial purposes,

Mo Derivative Works, vou may not alter, transform, or build upon
this work,

& For any reuse or distribution, vou must make clear to others the license terms of
this work,

® Any of these conditions can be waived if you get permission from the copyright
holder,

Your fair use and other rights are in no way affected by the above.

This is a hurman-readable summary of the Legal Code (the full license).

Disclaimer BN

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

A Fast Reliability Analysis for an Unmanned Aerial Vehicle
Performing a Phased Mission

by
James Poole
A Doctoral thesis
Submitted in partial fulfilment of the requirement for the award of

Doctor of Philosophy of Loughborough University

January 2011

© by James Poole, 2011

Abstract

It is becoming more common for Unmanned Aerial Vehicle (UAV) to perform phased
mission where the phase’s causes of failure may be different. The reliabilities of the
phases are required throughout the mission in order to make future decisions for the
mission. However, previous research of phased mission analysis has shown it to be
very complex and take significantly long amounts of time. Also the analysis cannot
be performed before the mission because information that is only available when the
mission is active is required for the analysis. The aim of this research is develop new
methods for a phased mission analysis which can obtain the phases reliabilities on a
real structure UAV mission, where all the components are non-repairable, in the

fastest time as possible.

The present methods are explored and the outcome is that the methods based on
Binary Decision Diagram (BDD) analysis are the most efficient. Therefore the BDD
analysis is use as a starting point for the new method. The phase mission BDD
based methods are improved by altering the procedure of the analysis. Also modules

that can appear in many phases can be taken out to simplify the analysis.

Search methods that lookup computations that have already been done before are

investigated to determine how much impact it has on the speed of the analysis.

A method that restructures the phase’s mission fault trees to optimize the number of
modules that can be taken out is developed. It is tested on a real UAV mission and it
is shown to significantly simplify the analysis. This method is extended by situation
where a mission is being reconfigured several times throughout a mission and the
analysis also has to be done several times. Additional changes are made by using

part of the analysis of the original mission for the new one to speed up the analysis.

A method is developed which identifies parts of the analysis referred to as groups
which can treated as a mini phase missions. Each group can be performed on

separate processer in parallel that reduces the online analysis.

| dedicate my Ph.D to

My Mum

Acknowledgements

| would like to thank my supervisors Professor John Andrews and Dr Wen-Hua Chen
for their guidance, advice and encouragement throughout the course of my Ph.D. |
would like to say a huge thanks to my family for their support and endless
enthusiasm. | also like to say thanks to the friends that | have made throughout my

time at university for their friendship and laughter.

1

Contents

Introduction

1.1
1.2
1.3
1.4
1.5
1.6

Risk and Reliability Assessment
System Failure Quantification
Fault Tree Analysis

Binary Decision diagrams
Phased Mission System
Research Objective

Reliability Tools

2.1
2.2

2.3
24

2.5
2.6
2.7

Introduction

Fault Tree Analysis

2.2.1 Introduction

2.2.2 Construction of a fault tree

Qualitative Analysis

Quantitative Analysis

2.4.1 Top Event Probability

2.4.2 Upper and lower Bounds for the existence
of system failure

2.4.3 Minimal cut Upper Bound

Expected number of system failures

Structure Functions

Binary Decision Diagram

2.7.1 Introduction

2.7.2 Properties of the BDD

2.7.3 Formation of a BDD using If-Then-Else Structure

2.7.4 BDD Minimisation

2.7.5 Top event probability

O© N N O W -

11
11
11
11
13
14
14
15

16
17
19
21
21
22
23
27
27

3 Phased Mission Systems

3.1
3.2

Introduction
Non-Repairable System
3.2.1 Introduction
3.2.2 The Cut Set Cancellation method
3.2.3 PMS Unreliability Approximation
3.2.4 Individual Phase Unreliability
3.2.4.2 Fault Tree Restructuring Techniques
3.2.4.3 Obtain the Prime Implicants PMS
3.2.5 Laws of Boolean Phase Algebra
3.2.6 Binary Decision Diagrams for Phased Mission Systems
3.2.7 Imperfect Fault Coverage

3.2.8 Cause-Consequence-Analysis

4 Development of new method for PMS Analysis using BDD

4.1
4.2
4.3
4.4

4.5
4.6
4.7

Introduction
Efficient BDD method for PMS Analysis
Concise representation of mission phase failure (Method 1)

Alternative approach for Phased Mission Analysis using
based on the Trivedi method (Method 2)

Fault Tree Modularisation

Appling Modularisation to phase mission analysis (Method 3)

Results

29
30
30
34
36
39
40
42
43
52
59
60

61
61
68
74

85
90
107

5 Investigating the distribution of analysis time spent on recursive
function

5.1 Introduction

5.2 Storing the BDD in the code

118
118

5.3 Recursive function for the qualitative analysis

5.4 Modifying the recursive function for the qualitative analysis for
PMS node

5.5 Investigating the analysis time taken for the nodes search function

5.6 Investigating the analysis time taken for the computation loop up

function

6 Modularization by repeated gates and events method

6.1 Introduction

6.2 Restructuring technique
6.2.1 Push-up
6.2.2 Common-input Push-up
6.2.3 Elimination

6.2.4 Factorization

6.3 Worked example
6.3.1 Inputting the fault tree to the program
6.3.2 Restructuring the fault tree
6.4 Results
6.4.1The test mission example
6.4.2 The effects of restructuring and taking out modules on the trees
6.4.3 The times of the mission calculation

6.4.5 Conclusion and further work

7 Updating the Phased Mission Analysis with mission reconfiguration

7.1 Introduction
7.2 Reconfiguration
7.3 The phase tasks
7.4 The method

Vi

119
122

124
136

142
143
143
144
147
148

150
153
156
185
185
186
190
192

193
193
194
195

7.4.1 Analysis of Original Mission
7.4.2 Analysis of Reconfigured Mission

7.5 Results and discussion

8 Parallelization of a PMS Analysis

8.1 Introduction

8.2 The method

8.3 Example

8.4 Fault trees structure of practical UAV mission
8.5 Results and testing

8.6 Summary

9 Conclusions and Future Work

9.1 Summary of Work
9.2 Conclusions
9.3 Further Work
9.3.1 Factorization
9.3.2 Optimum BDD Ordering schemes for PMS
9.3.3 Multi Platform Missions
9.3.4 Dependency
9.3.5 Multi Component states
9.3.6 Important Measure

Reference

Appendices
Appendix A Mission data of random generated phase fault trees
Appendix B Mission data of UAV generated phase fault trees

Vii

196
200
204

208
208
212
218
219
222

223
227
228
228
229
229
229
229
230

231

234
245

Appendix C
Appendix D
Appendix E
Appendix F

Results for search lookup technique on Method 3

Results for search lookup technique on Method 2

Fault trees data for mission task phases ASW, ASUW and SAR
Mission Fault tree structure

F.1 Introduction

F.2 Phases of the mission

F.3 Sub-Systems
F.3.1 Hydraulic system
F.3.2 Flight Control system
F.3.3 Avionic System
F.3.4 Fuel system
F.3.5 Landing gear system
F.3.6 Braking system
F.3.7 Engine Turbo-fan
F.3.8 Reverse Thrust
F.3.9 Electrical system

F.4 Method of building fault trees

viii

274
280
285
290

290
290
294
294
297
299
302
304
307
309
311
313
315

A(Oati]
A

Api
A(t)
C

Ci

Ciy

E

J

F()

Ey (1)

mcs

(tiﬂoo)

Nomenclature

Component A in the failed state at some point in phase i

Component A in the working state throughout phase i

Component A fail at some point in the between phases i and |

Availability function

Consequence of an event

Existence of minimal cut set i

The event that the kth cut set exist in phase |

Boolean expression that represents the failure combinations of
phase j.

Unreliability function

Failure cumulative distribution probability function for component X
up to time t in phase |

Boolean logic of group i in phase j

Criticality function for event i (Birnbaum’s measure of importance)

Total number of minimal cut sets in phase j.

Minimal cut-set i in phase j.

Total number of basic event in the ith minimal cut-set of the jth
phase

Number of basic events in the minimal cut set C,-

Total number of minimal cut sets.

PFC,
PFC,,

Pr(C)

qx
qx(t)

qxj(t)

9,

Qk/j

o)
O viesu

Q MISS

Q MISSINEX

BDD node i
Total number of cut sets in phase j.

Probability

Failure logic from the fault tree of phase i

The event that the system is in the failed state in phase |
Phase failure combination for phase |

Phase failure combination for phase j where K is the last phase

Probability of existence of minimal cut set i

The probability that basic event X exists

The probability that basic event X exists at time t

Probability that the component X is in the failed state at t given
that it was in the working state at the beginning of the phase j.

Probability that mission failure occurs in phase j

Probability that mission failure occurs in phases k given that the

mission has be successful up to phase j.
Unavailability function
Minimal cut set upper bound

The exact mission unreliability.

Unreliability mission bound using the inclusion-exclusion

expansion

Q MISSINEX -CC

Q MISSMCB

Q MISSMCB - CC

0,)
R

R(?)

w.

1

Wy (0)

vas (tO k4 tl)

>

0 missivex With cut set cancellation technique

Minimal unreliability bound using the minimal cut set bound to
estimate phase unreliability

0 wmissuce With cut set cancellation technique

System, or top event, unavailability function (failure probability)

Risk
Reliability function

Duration of phase i and t

System unreliability in phase i

Unconditional failure intensity for component i
System unconditional failure intensity
Expected number of system failure (top event occurrences)

in (t09t1)

Component X failure occurs in phase i
Component X failure occurs in phasesitoj

Component X failure does not occur throughout phases i to |

The event that the component X is in the failed state at the end

of the phase i

The event that the component X is in the working state at the

end of the phase i

Xi

Component hazed rate

Structure function for minimal cut set C;

System structure function, where X is vector of
components binary indicator variable

Structure function for component x

xii

Chapter 1: Introduction

1.1 Risk and Reliability Assessment

There are systems in industries, such as nuclear, aeronautical, offshore and
transport that when they fail can cause catastrophic consequences. Examples
of such catastrophes are the explosion on the Piper Alpha oil platform in 1988
and the fire at the Chernobyl nuclear power plant in 1986, both of these
examples resulted in multiple fatalities. To decrease the likelihood of such
events occurring and to increase the safety of such systems, safety

assessments are regularly conducted.

Reliability and risk methods have been around for a number of years with
significant advances been made since Second World War. These methods
calculate the probability or frequency of system failure along with the

consequences and from this a decision can be made if the risk is acceptable.

The risk or “expected loss’, R, of any hazardous event is defined as the
product of its consequence, C, and the probability or frequency of its

occurrence, P, shown in equation 1.1.

R=CXP (1.1)

The risk can be decreased by reducing the consequence of the event, or by

reducing the probability or frequency of the event.

The procedure to quantify the risk for a specific system hazard goes through

the following four stages:

1. Identification of the potential safety hazards.
2. Estimation of the consequences of each hazard.

3. Estimation of the probability of occurrence of each hazard

4. Calculate the risk and compare the results of the analysis against the

acceptability criteria.

The Consequence of a system hazard is usually obtained by predicting the
number of fatalities. Modelling the consequence depends upon the industry
since the system failure mode will be different from one industry to another.
The reliability methods that calculate the probability and frequency of system
hazard are: Event Tree Analysis (ETA), Markov Analysis and Fault Tree
Analysis [1] which is commonly used and will be discussed in more detail later

in this chapter.

Once for a system hazard the consequence and probability or frequency have
been obtained, the risk can be calculated by equation 1.1. Now it must be
decided if the risk is acceptable or not. The HSE (Health and Safety

Executive) provide a three-band approach called the ALARP [1] principle

which is shown in figure 1.1.

Frequency Unacceptable

ALARP

Acceptable

Consequence

Figure 1.1: The ALARP principle

If the risk falls in the acceptable region then the risk is low enough to be
permissible if current safeguards are maintained. If the risk falls in the
unacceptable region then the risk is too high and must be reduced. The region
between the two bands is called the ALARP region which is referred to as ™ as
low as reasonably practicable’. If the risk falls into this region then the risk
must be been shown to be as low as possible, whilst still being economically

feasible.

1.2 System Failure Quantification

Reliability techniques are used to calculate the reliability performance of
systems and components. System parameters such as reliability are generally
computed in terms of the parameters of the components of the system. The
main parameters that describe the system and component performance are

defined below:

The unreliability of a system or component is defined as:

e The probability that a system or component fails to function
successfully over a specified time period[O,f) and is denoted

by F(¢).

The complement of unreliability is reliability. The reliability of a system or

component is defined as:

e The probability that a system or component function successfully

over a specified time period [0, l‘) , is denoted by R(¢) .Therefore:

R(t)+ F(r) =1 (1.2)

This parameter is more relevant for a system or a component where failure
can only occur once such as catastrophic failure (non-repairable), therefore
for the system to be successful it must function continuously over the

specified time period.

When considering a system or a component which is repairable. A more

appropriate parameter is the unavailability, which is defined as:

e The probability that a system or component is in the failed state at

time t, O(¢)
Unavailability can also be defined as:

e The fraction of the total time that the system or component is in the

failed state.

The complement of unavailability is availability A(?) . The two definitions of
availability which correspond to the pervious two unavailability definitions are
as follows:

o The probability that a system or component is working at time t.

e The fraction of the total time that the system or component is

successfully operating. Therefore:

Q(t)+A(t):1 (1.3)

If the system or component is non-repairable then the parameters unreliability

and unavailability are equal.

The hazard rate, also referred to as the conditional failure rate, is a parameter
which measures the rate at which the system or component failure occurs is

defined as:

e The probability that a system or component failure occurs

during the interval [#,% + dt) , where dt is small, given that it

has functioned successfully in the interval [0, 7)

The hazard rate plotted against time is commonly assumed to follow a curve
called the reliability bath-tub curve, shown in figure 1.2.

Hazard
rate

2
Useful-life

v

Time

Figure 1.2: Bathtub Curve

The first phase of the curve shows the hazed rate decreasing. This is due to
weak components that are eliminated. In the second phase the hazed rate
stays approximately constant this is referred as the useful life phase. In the
last phase the hazed rate increases due to the component wearing out. The
reliability for a component that assumes that the hazed rate 1 is constant

(useful life phase) can be expressed as a function of time in equation (1.4).

R(t)y=e " (1.4)

More parameters can be expression as mathematical functions which are
presented in [1]. The parameters of a system are generally expressed in
terms of the components parameters. There are several methods which can
be used to calculate system reliability parameters. The most popular one
which is used a lot in system safety assessment is Fault Tree analysis. This is

discussed in the next section.

1.3 Fault Tree Analysis

The Fault Tree Analysis was developed by H.A.\Watson in the 1960s [1]. This
is a deductive analysis method that provides a visual, symbolic diagram that
logically represents the cause of a particular system failure mode by the
concept of a ‘what can cause this’ approach. From this diagram the

probability and frequency of system failure can be calculated.

The failure mode which is considered is referred to as the top event. The fault
tree is constructed by starting with the top event and working downwards,
building the fault tree beneath. Therefore branches are coming off from below
the top event and logically describe the combination of events that cause this.
This process continuous, until the basic events are encountered, which are
the lowest form of causes. This is an example of ‘top-down™ technique, an
alternative method is a "bottom-top™ approach such as FMEA which starts with
a set of component failure conditions and considers the possible cause from

these by a "what happens if* approach.

Kinetic tree theory developed by Vesely in 1970’s [2] is used to calculate

reliability parameters such as the probability and frequency of the top event,

this information is used to determine if the risk is acceptable by the required
safety standards. The disadvantage of using kinetic tree theory for the
quantitative analysis is that for a large fault tree it becomes computationally
intensive. This results in approximations being made which lead to
inaccuracies in the calculation. However, a new method is developed which
helps overcome this problem that is referred to as the Binary Decision
Diagram method and is discussed in the next section.

1.4 Binary Decision diagrams

The Binary Decision Diagrams (BDD) technique for Fault tree Analysis was
developed by Rauzy [3]. The BDD is construed by converting a Fault Tree,
which encodes the system failure logic. Qualitative and Quantitative analysis
are performed on the BDD, which is significantly more efficient than
performing it on the original fault tree. The solution is exact and therefore

there is no need for an approximation.

The BDD construction process requires the basic events from the fault tree to
be placed in order. The size of the resulting BDD will depend on the order.
Sizes can vary considerably depending on different orderings. Therefore the
choice of order is important to have an efficient analysis. Previous research
has never found a method of ordering which all ways results in the smallest
size BDD.

1.5 Phased Mission System

Many systems operate what are known as phased mission. If a system must
operate successfully over multiple, consecutive and non-overlapping periods
(phases), where each phase performs a different function, then it is known as
a Phased Mission System (PMSs). Many practical systems are PMSs, for

example an aircraft flight mission that is divided into: taxiing to the runway,

take-off, climbing to the correct altitude, cruising, descending, landing and

taxiing back to the terminal as shown in figure 1.3.

. [] - L] L] L]
Phase 1 Phase2 &= Phase3 : Phase 4 : Phase5 1 Phase6 » Phase 7
. [] - L] L] L]

Taxi E Take

. DescenE Land E Taxi
off H H

Altitude

Cruise

v

Time

Figure 1.3 example of Phased Mission

Throughout the mission the configuration, success criteria and component
behaviour may changes between the different phases, since the phases
accomplish different objectives. Each phase is identified by a phase index,
phase length, success criteria, and failure parameters. A component may fail
in any phase in the mission but may or may not contribution to the failure of
that phase.

The PMS reliability is defined as the probability that the system operates
successfully in all of its phases. The PMS unreliability is defined as the
probability that at least one phase will not operate successfully. The reliability
of the mission may not in general be obtained by the simple multiplication of
the individual phase reliabilities since the phases are statistically dependent.

The PMS analysis is significantly more complex than a single phase mission.

Qualitative analysis takes care of the dependencies between the phases. It
identifies all possible causes of the phase and mission failure in terms of the
component failures (basic events), which are also identified by which phase
the failure occurs in. Once the qualitative analysis has been done and the
components’ failure probabilities are known the quantitative analysis of the
system can be done. It calculates the probability that the mission fails and

hence what is the reliability of the system.

Previous research has solved the Phased Mission Problem by fault tree
analysis, Markov analysis and simulation. Fault tree analysis is commonly
used in industry for calculating the probability of system failure. This can be
extended to solve systems consisting of more than one phase, where the
failure logic will be different in the phases. Therefore the PMS problem is
more complex than the single phase system. In the case where the
assumption has been made that the components are not independent from
each other, for example that the components can be repaired, then the
Markov method is used. In some situations the system is too complex to
model using deterministic analysis. In such circumstances, simulation is
applied. The advantage of simulation is that it has a good representation of

the system. However, the disadvantage is that it is computationally expensive.

1.6 Research Objective

The aim of this project is to develop an efficient way of calculating the
reliability of phased mission analysis. The application focus for this work is a
UAV (unmanned aerial vehicle) mission and to perform analysis in the fastest
time as possible in order for the results to be used in the decision making. The
importance for this is that UAV have decision making algorithms that need to
run in real time to decide whether to continue the mission or to change it. A
reliability phased mission analysis of the rest of the mission or an alternative
mission is important information in the decision-making algorithm. Therefore a
phased mission reliability analysis must be performed in real-time. Mission

reliability analysis is important for UAV’s as opposed to manned aircraft since

9

they have a human doing the decisions making. Only the case of non-
repairable components is considered throughout this research since the UAV
is non-repairable during its mission. The objectives of this research are

followed:

o Review all existing Phased mission analysis methods.

o Identify aspects of the analysis which could be performed faster. Since
the objective is for the work to be applicable to a UAV mission
advantage can be taken of features which are specific to this problem.
The means identified to speed-up calculations will not necessarily

generalise to other system.

¢ Improve the more efficient existing methods.

e Investigate into the efficiency of lookup search techniques for

computations that have already been done before.

e Explore the effectiveness for taking out modules common to all phases

in the mission.

e Develop a method for restructuring the phase fault trees in the aim of

taking out an optimum number of modules.

e Apply the developed method to an aircraft system where mission is

expressed in different phases.

e Apply the fastest PMS analysis method for a UAV obtained from this
research to a situation where the mission is been reconfigured

throughout.

e Explore ways of parallelizing the analysis so the computations can be
shared between several processers. Therefore reducing the overall

time of time of the analysis.

10

Chapter 2: Reliability Tools

2.1 Introduction

There are many methods that can be used to obtain the reliability
performance of a system in term of reliability performance of the components
of that system. This chapter discusses these methods and among the more

common method is fault tree analysis.

2.2 Fault Tree Analysis

2.2.1 Introduction

A Fault tree is a visual symbolic diagram that logically represents the causes
of a particular system failure mode by the concept of a * what can cause this’
approach. Therefore a fault tree illustrates the events that cause the
occurrence of the system failure and the causes of these events until the

basic events are encountered.

2.2.2 Construction of a fault tree

Once a particular system failure mode is identified then the fault tree
construction process starts with this failure mode as the top event. Branches
then come off from below the top event which logically describes the
combination of events that cause this. This development process is continues,
until the basic events are encountered. The basic events are the lowest form
of causes, failure probability data is required for these events for the fault tree

to be analysed.

A fault tree is a diagram that contains two types of symbols, events and gates.
There are two types of events, intermediate or basic events, which symbols

are shown in table (2.1). The intermediate events can be expressed by other

11

events and the basic events cannot. The gate symbols have one branch

coming off the top to the output event, and one or more coming off the bottom

representing the cause. There are three main types of logic gates "AND",

"OR™ and 'NOT" which correspond to the Boolean operators ‘intersection’,

‘union’ and ‘complementation’. The gates symbols are shown in table (2.2).

Event symbol

Meaning of symbol

Top event

or intermediate event
description box. These events are further
developed by a logic gate

O

Basic event

Table 2.1: Event Symbols

Gate symbol Gate name Relationship
Output event occurs if
Q AND gate all input events occur
simultaneously
Output event occurs if at
Q OR gate least one input event
occurs.
NOT gate Output event occurs if

input event does not

Table 2.2: Gate Symbols

If the fault tree just contains 'AND" and "OR’ gates then it this known as a

coherent system. On the other hand if the fault tree also contains 'NOT" gates

then it is known as a non-coherent system.

12

Once the fault tree is constructed then qualitative and quantitative analysis is

performed. This is discussed in the next two sections.

2.3 Qualitative Analysis

The goal of qualitative analysis is to obtain the combinations of the basic
events that will cause the failure of the system. Each combination that causes

system failure is known as a cut set, which is defined as follows:

e A cut set is a collection of basic events such that if they all occur, the

top event also occurs.

However, a cut set may cause system failure without all of its basic events
occurring. For example, A, B and C are basic events that make up a cut set,
but the occurrence of A and B alone will cause system failure. Therefore the
occurrence of C is irrelevant. It is only necessary to obtain the cut sets which
do not contain any irrelevant basic events, these are referred to as minimal

cut sets and are defined as:

e A minimal cut set is the smallest combination of basic events, such that

if any basic event is removed from the set, the top event will not occur.

The order of minimal cut set is the number of basic event that it contains.

Generally lower orders contribute more to system failure.

Cut sets and minimal cut sets are relevant for coherent systems. However, if a
system is non-coherent then the failure cause may include working
component state and the equivalent to the cut sets are known as implicants

and minimal cut sets as prime implicants.

The two main methods for obtaining the minimal cut sets from a fault tree are

‘top-down’ and “bottom-up” analysis. The ‘top-down™ method starts off with

13

the top event and then substitutes a Boolean logic expression that represents
its causes. The process repeats itself by substituting the logic expressions for
the cause of these events. This process terminates when the top event
expression just contains basic events. Alternatively the "bottom-top™ method
starts at the bottom of the fault tree and works upwards. The notation used in

this logic expression is by connection "o ° for "AND" logic and "+ for 'OR’
logic. By manipulation the top event expression is expressed in a sum-of-
product form from which the minimal cut set can be extracted. To just obtain
the minimal cut sets Boolean algebra laws such as the absorption law can be

applied to remove redundancy.
2.4 Quantitative Analysis

The quantitative analysis of a fault tree is the evaluation of the parameters of
the top event such as: probability of occurrence, frequency and expected

number of occurrences.
2.4.1 Top Event Probability

The probability of the top event can be obtained by applying the inclusion-
exclusion expansion to the minimal cut sets and then substituting probabilities

of the basic events into it.

The probability that a minimal cut set Ci exists at time t is calculated by the

product of the probabilities of the basic events required to exist at time t, this

is shown in equation (2.4).

N,
Pr(C)=]]4c0) 2
C=1

Where NCi is the total number of basic events in the minimal cut set and

qyx (f) is the probability that basic event X exists at time t.

14

The top event exists at time t if one or more minimal cut sets exist at time t,

this is expressed by the union of the minimal cut sets and is shown in

equation (2.5) and denoted by O, (¢) .

N,

mcs

Q,, () ="Pr U C, (2.5)

i=1

Where chs is the total number of minimal cut sets.

Equation (2.5) can be expanded by the inclusion-exclusion explanation as

follows:

7”11

Osy(1) = ZPr(C) >3 Pr(C, NC)) + ot (1) PHC, NC, M. T,)

i=2 j=l

(2.6)

This expansion transforms the calculation from computing the probability of
one complex event to many probabilities of simpler events. However, systems
may contain a large number of minimal cut sets in which case the expansion
becomes unpractical because of the many calculations that have to be

performed. To overcome this an approximation is required.
2.4.2 Upper and lower Bounds for the existence of system failure

The first term in the expansion (2.6) will give an upper bound for the top event
this is called the rare approximation. The first two terms will give a lower

bound, shown in the inequality (2.7).

mcs mcs i-1 mcs

ZPr(C) DY PrC NC)H<O,, ()< ZPr(C) 27

i=2 j=1

15

Furthermore truncating the expansion at any odd number of terms will result
in an upper bound and truncation at on even number of terms will result in a

lower bound. If more terms are taken this will give a better approximation.
2.4.3 Minimal cut Upper Bound

A more accurate upper bound for the top event probability is the Minimal Cut

Upper Bound. The concept for this bound is as follows:
Pr(system failure) = Pr(at least one minimal cut set exists)

= 1-Pr(no minimal cut sets exist)

And also,

N,

Mcs

Pr(no minimal cut sets exist) 2 H Pr(minimal cut set i does not exist)
i=1

Note, in the case when there is no common basic events in the minimal cut

sets then the inequality becomes equality.

Therefore the complement is.

N,

mcs

Pr(System failure) < 1-H Pr(minimal cut set i does not exist)
i=l

Therefore the upper bound QMCSU is:

N,

msc

Ovesy =1- H[l —Pr(C,)] 2.8)

i=l

16

2.5 Expected number of system failures

The expected number of failures for a system over the interval [fo NARS

denoted by Wsys (t,,1,) and defined as:

4]
W (1) = [w, (0)dt

t, (2.9)

Where Wsys(f) is the system unconditional failure intensity function, which is
defined as the rate that the system failure occurs at time t. If the system is
represented by a fault tree then the occurrence of the top event means that
the system has failed. Therefore Wsys(t)dt is defined as the probability of the

occurrence of the top event that occurs in the interval [t, t + dt). This can be

expressed as:

Wsys = Z:; Gz(g)) Wi

(2.10)

where n is the total number of components in the system, w.is the
unconditional failure intensity for component i and G,(¢) is the Criticality

function [1].

The Criticality function for component i is defined as the probability that the
system is in a critical state with respect to component i thus the failure of
component i will then cause the system to go from the working state to the

failed state. The 2 common ways for obtaining the Criticality function are:

1. The sum of the probabilities of all the critical system states for
component i. For example a system has 3 components A,B and C.
The minimal cut sets for system failure are {A} and {BC}. The

procedure of calculating the criticality function for component A is

17

shown in table 2.3 where the first column shows all the different
combination of the states of the other components. The second
column is the probability of the state and third identity if the particular
state is critical for A.

State Probability Critical system state for
component A

BC q,(1-q.) Yes

BC (1-45)qc Yes

BC (1-g,)1-q.) Yes

BC q59c No

Table 2.3: Process for obtaining the probabilities of all the critical system

states for component A.

Therefore the criticality function for component A is the sum of the Critical

system state for component A, which is shown below:

G (@) =qs1-gc)+A—=q)qc+A—qz)1—qc)

=1—-quq.

2. The partial derivative of the top event probability with respect to the

particular component failure probability which is given by:

(2.11)

For example considering the criticality function for component A as in the
same system as the pervious example. First using the inclusion-exclusion

explanation in equation (2.6) to obtain the top event probability which is:

18

0=9,+959¢c —9.4959¢

The partial derivative with respect to q ,is

oQ
—_— 1_
an quc

Alternative way of calculating partial derivative is by first principles, shown in
equation (2.12).

00(q) 0(,,9)-0(0,,9)
8q. =0 (2.12)

1

Therefore the criticality function for component i can be calculated by top
event probability given that component i has definitely failure minus the top
event probability given that component i definitely working. This expression is

shown in equation (2.13).

Gi(g):Q(liag)—Q(Oiaﬁ) (2.13)

2.6 Structure Functions

The System Structure Function represents the state of the system which is

determined by the state of its components. A state of component X is

represented by a binary indicator variable ¢, as shown below:

19

1 if the component as failed

b =

0 if the component is working
(2.14)

The System Structure Function is also represented by a binary indicator

variable shown be

1 if the system as failed

By (X) =

0 if the system is working

(2.15)

Where,

I:(¢X19¢X29"""9¢Xn) (2.16)

The System Structure Function is expressed in terms of the component binary

indicator variable as shown in equation (2.17).

N,

mcs

4, =1-] [0-4) o

Where ¢Ci is a binary indicator variable for the minimal cut set C; and this is

expressed as the product of the binary indicator variables for the components

that are contained in the set, as shown in equation (2.18).

¢c,. — H ¢X 2.18)

Where,

1 if the cut set exists

0., =

! 0 ifthe cut set does not exist

(2.19)
The Expected value of System Structure Function is the probability of the top

event as shown below.

El9,,,(X)]=Pr(g,,(x) = 0)- 0+ Pr(g,, (x) =1)-1
= Pr(g,,(x) =1)
=0,

Therefore,

sts = E[¢sys (X)] (2.20)

If there are no common components between the minimal cut sets then this

implies they are independent and the following is true:

Elg,,(x)]= ¢, (E[x]) 2.21)

However in most system minimal cut sets will not be independent.

2.7 Binary Decision Diagrams

2.7.1 Introduction

A disadvantage with fault tree analysis is when the fault tree becomes large,

especially when modelling PMSs, the qualitative analysis (minimal cut sets)

and quantitative analysis (probability of the top event) performed on the fault

21

tree becomes very computationally intensive. A method to overcome this is to
convert the fault tree into a Binary Decision Diagram (BDD) before the
qualitative and quantitative analysis is performed. The BDD allows the
efficient qualitative analysis and accurate quantitative analysis. Rauzy [3] was
one of the first to consider using BDDs for reliability analysis and formalised

the analysis process for fault trees.

2.7.2 Properties of the BDD

A BDD is a directed acyclic graph which consists of two types of nodes, non-
terminal and terminal, which are linked by branches. The non-terminal nodes
represent the basic events from the fault tree. The terminal nodes represent
the state of the system, e.g. 1 the occurrence of the top event and 0 the non-
occurrence of the top event. When considering reliability analysis the basic
events will represent the components failures and the top event will represent
system failure. The first node at the top of a BDD is a non-terminal node and

is referred to as the root node. An example is shown in figure 2.2.

Non- <4—— Terminal 0
terminal Node
Node

Terminal

1 Node

Figure 2.2: Example of BDD.

22

Every non-terminal node has two branches coming off the bottom of the node.
The left branch with a one representing where the basic event in the node has
occurred and the right branch with a zero representing that the basic event
has not occurred see figure 2.2. The size of the BDD is defined by the number

of non-terminal nodes.

The paths to a terminal 1 node can then be used to generate a cut set. For
example the BDD in figure 1.2 contains 2 paths to a terminal 1, AB and
ABC . The cut sets can be obtain from these paths by ignoring the

complements variables. The cut sets are therefore AB and AC .

There are many methods of constructing a BDD from a fault tree. The
methods require an order to be placed on the basic events, this will determine
the order of non-terminal nodes from top to bottom and affect the size of the
BDD. Therefore this may be chosen to minimize the size of the BDD. This

work was considered and extended by Bartlett and Andrews [4], [5].
2.7.3 Formation of a BDD using If-Then-Else Structure

Rauzy [3] developed a method for converting the fault tree into a BDD. The
BDD construction is based on the concept of the if-then-else (ite) structure
which is derived from Shannon’s decomposition of a formula that can be
written as shown in equation (2.22). Therefore the resulting BDD will encode
this.

f(x) = Xf, + Xf, (2.22)

where f(x) is a Boolean function that is being decomposed, this will be the top

event of the fault tree. The Boolean function is being pivoted about

variable X . fland f2 are the Boolean functions f(x) with X =1 and X =0

respectively.

23

Therefore the structure ite(X,f1,f2) represents a Boolean expression and is
defined by “ if X occurs, then consider f1,else consider f2” where X is the
pivoting basic event, and f1 and f2 are the Boolean expression with X=1 (X

has occurred) and X=0 (X has not occurred) respectively.

In the BDD the variable X will be written inside the node, f1 and f2 will be
below the 1 and 0 branches respectively, has shown in figure 2.3. f1 and 2
will also in turn have an ite structure and so will their sons and so on until the

terminal 1 or 0 nodes are encountered.

f1 f2

Figure 2.3: BDD node of ite(X, f1, f2)
First step in the converting procedure is to assign every basic event to an ite

form. In the second step all gates containing only basic events can be

connected to an ite structure so if:

J =it X, f1, f2)
H=ite(Y, gl.g2)

are inputs to a gate of type * (where * can be either AND or OR) then the

output event is:

f X<Y J*H=ite(X, f1*H, f2+H)

t X=Y J*H=ite(X, f1*gl, 2% g2)

24

Where X<Y means that event X is considered before Y in the ordering.

The ite method is applied below to the fault tree in figure 2.4 with ordering
A<B<C.

Top

« [@
OO

Figure 2.4: Example of a Fault tree

First all the basic events are given an ite structure.

A = ite(A4,1,0)

B =ite(B.,1,0)

C =ite(C,1,0)
Now choose a gate where all the inputs have already been given an ite
structure, for the example G1. Now an ite structure is obtained for this gate by

applying the operator of the gate type to all the gate inputs. Then the process

is repeated until all gates are defined. The computation is as follows:

Gl=AUB
= ite(4,1,0) + ite(B,1,0)
ite (A,l,ite (B,1,0))

25

Then moving up the tree structure to the top event:

Top=GInC
=ite(A,1,ite(B,1,0))-ite(C,1,0)
= ite(A,ite(C,1,0),ite(B,ite(C,1,0),0))

The top event ite structure holds all the information of the lay out of the
resulting BDD (all connections of the nodes and branches). Therefore the
resulting BDD is shown in figure 2.5. The ite method has the advantage that it
does not need to know the minimal cut sets prior to calculating the top event
probability. However, a disadvantage is that it does not encode the minimal
cut sets directly. The next section discusses a technique that further
transforms the BDD into a BDD that does just encodes the minimal cut

sets.

Figure 2.5: BDD constructed from fault tree in figure 2.3

26

2.7.4 BDD Minimisation

If the BDD just produces minimal cut sets then the BDD is in a minimal form.
For the majority of fault trees the BDD is not of this form. Rauzy [3] developed

a method to create a minimized BDD from the initial one.

A general node with the ite structure in a BDD is:

F =ite(x, 1, f2) (2.23)

If o is a minimal solution of f1 and not a minimal solution of f2 then

xXNo is a minimal solution of F. The minimal solutions of f2 will also be a

minimal solution of F. Therefore the set of all minimal solutions of F are
denoted by § Olmn(F) and are expressed as follows.

sol

min

(£) =[{0 Nxp][sol;, ()]

m

Recursive application of this rule successfully computes a BDD which is

minimized.
2.7.5 Top event probability

To calculate the probability of the top event from the BDD first the paths
through the BDD to a terminal 1 node are obtained. For example the BDD in

figure 2.5 has two paths that terminate in a 1 which are:

If at least one of these paths occurs then the top event will occur. The

probability of the top event occurring is the sum of the probabilities of these

27

paths occurring. Since all the paths though the BDD are disjoint. The

calculation to obtain the top event probability for the example is as follows:

Q,, =Pr(AC + ABC)
= Pr(AC) + Pr(ABC)

=q,9c. +10-9,)9;9,

In summary, all the previous parameters, Qualitative and Quantitative
Analysis can be applied for single phase system. However, the nature of this
project is Phased Mission System. The next section discusses how all the

previous methods can alter to account for a Phased Mission System.

28

3 Phased Mission Systems

3.1 Introduction

If a system must operate successfully over multiple, consecutive and non-
overlapping periods (phases) then it is a Phased Mission System (PMSs).
Many practical systems are PMSs, for example an aircraft flight mission that is
divided into: taxiing to the runway, take-off, climbing to the correct altitude,
cruising, descending, landing and taxiing back to the terminal. PMS analysis
has received substantial attention over the last three decades. It is
complicated as unlike usual system assessment the system failure does not
always correspond with a component failure. A component may fail in any
phase in the mission but may or not contribution to the failure of that phase.
Each phase is identified by a phase index, phase length, success criteria, and
failure parameters. A PMS may vary in configuration, success criteria, and

component behaviour in different phases.

The PMS reliability is defined as the probability that the system operates
successfully in all of it's phases. The PMS unreliability is defined as the
probability that at least one phase will not operate successfully. The reliability
of the mission may not in general be obtained by the simple multiplication of
the individual phase reliabilities since the phases are statistically dependent; if
this situation is true, then every component in every phase must be working at
the beginning of the phase and the phases must have no component in
common. Hence PMS analysis is much more complex than a single phase
mission. Special techniques must be obtained to take care of the
dependencies between the phases. To find out how the system fails, which is
referred to as the failure modes, a method is required to express the system
failure in terms of the components’ failure (cut sets): this is called qualitative
analysis. Once the components’ failure probabilities are known and the
qualitative analysis has been done, the system failure probability may be
calculated and hence the reliability of the system: this is called quantitative

analysis of the system.

29

PMS can be divided into two categories - appropriate for either non-repairable
or repairable systems. Once a component has failed in the non-repairable
system it will remain in the failed state for the rest of the mission. Once a
component has failed in the repairable system it is possible that the
component may be restored back into the working state during the mission.
The following section discusses techniques that have been found appropriate

for non-repairable systems.
3.2 Non-Repairable System
3.2.1 Introduction

Esary and Ziehms [6] were the first to consider the analysis of PMSs. Each
phase configuration is represented by a reliability block diagram or by a fault
tree. The components perform independently of each other, and each of them
may be in one of two states, functioning or failed. Since the system is non-
repairable, once component failure has occurred it will stay in the failed state
for the rest of the mission. Esary and Ziehms presented a method which
transforms and simplifies the PMS into an equivalent single phase system.

This method is discussed in the next section.

If the Multi-Phased Mission can be transformed into a single phase then

existing methods for single phase mission analysis can be used.

Let X, denote the event that the component X is in the failed state at the
end of the phase i which implies that the component failure occurred in phase
i or in one of the previous phases e.g. X . =1 means that this event is true.
Conversely,)Ti denotes the event that the component X is in the working

state at the end of the phase i which implies that the component has worked
through out phase i and all of it previous phases. One of the disadvantages of
this Boolean variable is that it does not indicate where the failure occurs.

Therefore let x, denote the event that component X failure occur in phase i.

30

The relationship of these two variables is that the failed state of the
component can be replaced by the sum (where "+ means logical OR) of
components failures occurring in phase i and all of the previous phases. The

equivalent in fault tree PMS analysis is replacing the basic event X, by the

gate shown in figure 3.1.

X.:x1+x2—|—+ X, (3.1)

Component X fails
during the
first i phases.

Figure 3.1: Component phase failure representation.

From now on in the review we will just consider the mission failure causes

expressed using fault trees. Consider an example phased mission system.

The failure criteria of each phase, represented by the fault trees given by La
Band and Andrews [13] are shown in figure 3.2. The procedure of

transformation consists of a two step process:

1) Replace every component in the fault trees by the gate structure shown in

figure 3.1.

31

2) Join every phase failure fault tree by an OR gate to represent the cause of

mission failure.

Failure in phase 1

=
O

Failure in phase 2

©

Failure in phase 3

|

N ®EE

Figure 3.2: Example Phase Failure conditions.

Applying the transformation procedure the mutli-phase mission failure cause

becomes the single equivalent fault tree shown in figure 3.3.

32

System Failure

Mission
Phase 1 Phase 2 Phase 3
Failure Failure Failure

.

2

cloyolo
N0
ocojeee

Figure 3.3: Equivalent Fault tree for the mission failure causes.

00

33

The disadvantage of the procedure shown above is that each component in
the system is expanded to many variables to represent it's failure in each
phase. The problem then gets computationally intensive as the number of
variables becomes very large. Methods can be used to reduce the number of
components of the PMS. One of the popular methods is discussed in the

following section.

3.2.2 The Cut Set Cancellation Method

Several methods can be used to simplify the phase configuration before the
transformation procedure. One method was used by Esary and Ziehms [6], is
called cut set cancellation.

Cut set cancellation works such that if a minimal cut set of an earlier phase
contains any minimal cut set from a later phase, the minimal cut set may be
removed from the earlier phase. For example consider the phases which are

illustrated by the fault trees in figure 3.2.

The minimal cut sets in each phase are:

{A,B, C} phase 1
{A}, {BC} phase 2
{A}L{B}{C} phase 3

{A,B,C} can be removed from phase 1 since each individual component
occurs as a minimal cut set in phase 3. For the same reason {A} in phase 2
can be removed. The minimal cut set {B,C} can also be removed since {B}
and {C} occur in phase 3. The cancellation leaves the PMS in a concise form
of only the phase 3 cut sets. Hence the fault tree evaluation will be much
simpler. In this example the step 2 of the transformation is not even needed
since one single phase is left. The equivalent single fault tree is shown in

figure 3.4. Therefore the entire system will fail if any of the events

a,,a,,a5,b,,b,,b,,¢,,c,,c; occur. The probability of this event is the unreliability

34

of the entire PMS and can be calculated by the inclusion-exclusion expansion

from equation (2.6).

Failure of PMS

AR R I
000 000

Figure 3.4: Equivalent single phase fault tree.

Esary and Ziehms [6] state and prove that cut cancellation does not affect

mission reliability.

In summary, the method presented by Esary and Ziehms is very useful in
transforming the multi-phased mission into an equivalent single phase, which
enables existing techniques to be used to calculate the entire mission
reliability. Cut set cancellation simplifies the quantitative analysis of the entire
mission by removing irrelevant minimal cut sets. The disadvantage of cut set
cancellation is that only the unreliability of the entire mission can be
calculated, and not the unreliability of each of the phases. If after simplification
the phased mission analysis is still very large e.g. a large number of variables,
then it might be necessary to use an approximation. The following discusses

approximation methods for PMS.

35

3.2.3 PMS Unreliability Approximation

Esary and Ziehms [6] presented a method for approximating mission reliability
by calculating the reliability of every individual phase and then multiplying
them together. There are two choices of component reliabilities to use,
conditional or unconditional. It was proved that, if the conditional component
reliabilities are used, the method gives an upper bound for mission reliability
and unconditional component reliabilities gives a lower bound for mission

reliability.

The conditional phase reliability for a given component is the probability that
the component failure occurs in the phase given that the component was
working at the beginning of the phase. The unconditional phase reliability for a
given component is just the probability that the component failure occurs in

the phase.

Burdick et al [7] developed and reviewed Esary and Ziehms’ methods; four

methods for unreliability mission approximation were found:

A) The INEX method

This approximation is denoted by QMISSINEX and the procedure of

calculating it is described in the following steps:

1) From the fault tree or an appropriate logic model of each phase obtain

the minimal cut sets for each phase.

2) Calculate the unreliability of each phase Q . by using the inclusion —

exclusion expansion.

3) The inclusion-exclusion expansion is used again on the set of phase

unreliabilities QJ where j = 1,...... ,n and n is the total number of

phases. The expansion will give successive upper and lower bounds.

36

Usually this will be approximated by the rare event upper bound, or any

other upper bound order of the expansion.

Oussivex = ZQ] (3.2)
j=l

B) The INEX-CC method

This approximation is denoted by QMISS]NEX—CC .

The procedure is very similar to method A the only difference is an additional
step between stages 1 and 2. The extra step is the cut-set cancellation which
is described in section 2.2.2. The approximation will be generally less than the

method in A since there are fewer cut-sets.

C) The MCB method

This approximation is denoted by QMISSMCB and the procedure of

calculation is described in the following steps:

1) From the fault tree or an appropriate logic model of each phase obtain
the minimal cut sets for each phase.

2) Let MCS denote the ith minimal cut-set in phase j. Calculate the

i

probability of the minimal cut set by:

(3.3)

[=n,
P(MCSz'j) :HP(xz)
/=1

37

Where " ; is the total number of basic event in the ith minimal cut-set of

the jth phase and X, for [/ =1...... n ij are the basic events of the

minimal cut-set.

3) Calculate the individual phase unreliabilities Qj estimate by

0,=1-[Ja-Paucs,)) »

Where kj is the total number of minimal cut sets in phase j.

4) QMISSMCB is calculated in the same way as in step 3 of the INEX

method.

D) The MCB-CC method

This approximation is denoted by QM]SSMCB-CC.

This procedure is very similar to method C the only difference is an additional
step between stages 1 and 2. The extra step is the cut-set cancellation which

is described in section 2.2.

Burdick et al [7] reviewed that the ordering of the bounds are as follows:

QMISSM CBCC
< < QM[SSMCB

QM[SS = QM[SS[NEXCC = (3.5)

QM[SSINEX

Where Q,, is the exact mission unreliability.

38

All of these methods are very useful for PMS with a large number of
components and phases since otherwise the calculations would become too

computationally intensive.

3.2.4 Individual Phase Unreliability

3.2.4.1 Introduction

One of the disadvantages of calculating the unreliability by the Esary and
Ziehms method shown in section 3.2.1 is that it does not calculate the
unreliability of the individual phases. La Band and Andrews [13] present a
method that calculates the unreliability of the individual phases as well as the

unreliability of the entire mission.

The method used to obtain the unreliability of any phase i uses a fault tree
structure which combines the causes of success in previous phases i-1,...,1

with the causes of failure of phase i. Therefore the causes of system

unreliability in phase i denoted by Qi are represented by the AND of the

success of phases 1..i-1 and the failure in phase i which is illustrated by the

fault tree in figure 3.5.

Failure During Phase i

.

Success in Previous Phases Failure conditions

; Met during phase i

Failure in Failure in
Phase 1 Phase i-1

Figure 3.5: Fault Tree for failure during phase i.

39

Once all the Phase unreliabilities have been calculated then the entire mission

unreliability denoted by Q,,,; can be obtained using:

QMISS = Z Qi (3.6)
i=1

Where n is the total number of phases.

Previously the minimal cut sets of the fault tree have been obtained by either
a top-down or a bottom-up method. In this case there were no NOT gates in
the tree which makes the fault tree coherent. Now the combinations of basic
event working and failed states that lead to the occurrence of the top event
are not referred to as minimal cut sets, instead they are referred to as the

Prime Implicants.

This fault tree requires significantly more effort to solve, since Cut set
Cancellation cannot be used. The next section discusses techniques which
can be used to reduce the problem complexity.

3.2.4.2 Fault Tree Restructuring Techniques

Before the Prime Implicants are obtained fault tree restructuring techniques
can reduce the size of the fault tree and therefore obtain the Prime Implicants

more efficiently using less memory and time requirements.

First the not logic is pushed down the fault tree using De Morgans’s laws so

the not logic applies to the basic events.

There are three stages of this technique: contraction, factorisation and

extraction. Each is described in the following sections.

40

Contraction

Subsequent gates of the same type in the fault tree are contracted to form a

single gate. This will result in alternating sequence of AND and OR gates.

Factorisation

Replacing the basic events that always occur together in the same gate type
by a complex event, which is usually represented by a unique number greater
or equal to 2000. However, since NOT gates are included in the fault tree to
be taken out as a factor then the event has to occur such that either of the

following occur in the fault tree.

2000= A4+ B 2000 = 4 -B (3.7)
2001 = A-B 2001 = A+ B (3.8)
Extraction

If the fault tree contains a certain structure as shown in figure 3.6 a and b it

may be replaced by simpler structure.

Figure 3.6.a: Extraction Operation

41

2

Figure 3.6.b: Extraction Operation

3.2.4.3 Obtain the Prime Implicants PMS

Due to the non-repairable nature of the component failure event a, new

algebra is used to obtain the minimal cut sets or prime implicants for phased

mission [13].

A summary of the new algebraic laws are:

X, X, = X,

x;x, =0

xl.xl.)j = X,

x,x, =0
O X, = X,
X+ X+ +X, =X

(3.9)

Where X ; ; is used to denote the event that component failure occurs in

phasesitojand fl’,j is that the event X does not occur throughout phases i

to j, where j > 1i.

Once the Prime Implicants have been obtained from the fault tree by using the
algebraic Boolean laws, then the unreliability can be calculated by substituting

the Prime Implicants in the inclusion-expansion.

In summary this method of calculating the unreliability of a individual phase i

consists of the follow steps:

1) construct the fault tree which is a combination success phases 1..i-1

and the failure of phase i.

2) reduce the size of the fault tree by applying contraction, factorisation

and Extraction techniques.

3) Obtain the Prime Implicants by using the old and new Boolean

algebraic laws.

4) Use the inclusion-exclusion and the component failure probabilities to

calculate the phase unreliability.

Once the unreliability has been calculated for every phase then the

unreliability of the entire mission is obtain by the sum of these unreliabilities.
3.2.5 Laws of Boolean Phase Algebra

This section discusses methods for obtaining the unreliability of a PMS by
using Boolean algebra. Dazhi and Xiaozhong [9] present method which
expresses the combinations of components that exist in the failed state in

different phases to fail the mission. The method is based on the concept of

43

component failure existence, instead of occurrence that was used in previous

methods. Therefore new algebra laws are developed to account for this.

The intersection and union of the Boolean events X , and X , were

considered, where i and j are general phases with the order j =i > 1. The

concept of equation (3.10) is used and simplified as shown below:

Il
=
:
+
-
=
}

=X, + U, (3.10)

Expression (3.10) is also used to simplify the intersection of two events as

shown below:

XX, =X, X, + ka

J
k=i+1

=X, + U(Xl.xk)

k=1+i

= X, (3.11)

44

For the union of two events:

J
X +X =X+ X, + [x,

k=1+i

=X, + L]Jxk

k=1+i

:Xj

(3.12)

Similarly to the component failure, if the system is in the failed state at phase j
then the phase failure could have occurred in any phases 1...... j- This is
expressed in equation (3.13).

Pj:p1+p2+ +p, (3.13)

Where Pj this the event that the system is in the failed state in phase j and

p , is the event that the system failure occurs in phase i, which can be obtain

by

P = Cjx (3.14)

Where C},k is the event that the kth cut set exist in phase jand N . is the

mscj

total number of cut sets in phase j.

The mission unreliability can be obtained by putting the equations (3.13) and

(3.14) together and then calculating the probability of this expression.

45

Qmiss = Pr(Pn)
n [Nmsg

~v{ Up, |- U Uc,.
j=1

pafl e (3.15)

The cut sets cancellation technique (in section 3.2.2) is automatically
implemented in equation (3.15). Dazhi and Xiaozhong applied the Boolean
algebra and expressions described above to compute the probability of

accident sequences.

Obtaining the unreliability of a PMS by equation (3.15) and applying the
Boolean laws to simplify the algebra avoids the need in the Esary and Ziehms
method, for the failure of a component in different phases to be represented
separately as different basic events and also converting the mission into a
single phase system. Therefore Dazhi and Xiaozhong method is less

computationally intensive compared to Esary and Ziehms.

This work is extended by Kohda et al [10] which obtain further Boolean laws

by using the minimal cut set and path sets of each phase.

Somani and Trivedi [11] present a method for PMS unreliability analysis which
is also based on Boolean algebraic methods. The unreliability calculation is

exact and computationally efficient.

Instead of transforming the PMS into an equivalent single phase mission
where the fault tree suffers from a large number of variables, as occurs in the
Esary and Ziehms method. The Somani and Trivedi method solved each
phase fault tree individually. However since the phases are dependent there

must be information passed from phase to phase to account for this.

46

One of the main concepts used in this method is the cumulative distribution
functions with a mass at the origin, which is used for the components failure
probability. A component X has a cumulative distribution function at time t

given by
gy =(1-e")+e*(1-e") (3.16)

Where 7, is the time at the start of the phase and A s the failure rate.

This function has a mass at the origin given by (1—e*") which is the

probability that the component is in failed state at the start of the phase, the
second term of the function represents the continuous part of the distribution
function which is the probability that the component is in the failed state time t

AND that the component has been working up to time 7;.

Somani and Trivedi [11] considered phase- independent failure criteria. This
means that the phases have the same system configuration and failure
criteria, but the components failure rate may change from phase to phase.
Hence only the components failure combinations are obtained from the fault
tree for the last phase. Three situations were considered for this problem
corresponding to three different versions of component failure distributions
with mass at the origin — phase dependent failure rate, age dependent failure
rate, and random phase durations. Further a method was presented for
phase-dependent failure criteria which is more complex than the previous
situation since the system configuration and failure criteria varies from phase
to phase. A combination of components failure may exist before the relevant
phase that it is contained in the failure criteria, which means all of the
individual components failure have occurred in an earlier phase, this would
result in an instant system failure at the start of the relevant phase this is
referred to as latent failure. There are four possible cases for a combination of
components failure across a phase boundary that could affect the state of the

system which are as follows.

47

1. A combination of component failures does not lead to system

failure in both phases i and i+1.

2. A combination of component failures leads to system failure in

both phases i and i+1.

3. A combination of component failures does not lead to system
failure in phase i but leads to system failure in phase i+1.

4. A combination of component failures leads to system failure in

phase i but not in phase i+1.

In the first two cases the failure criteria do not change with respect to the
failure combination from phase i to i+1. The third case can be treated as
failure of the system if the combination occurs in either phase, since if the
combination occurs in phase i then it will exist in phase i+1 which will result in
a failure at the transition point. The unreliability of these three cases can be
evaluated by just quantifying the fault tree for phase i+1, this is the same
approach as the phase-Independent failure criteria situation. The fourth case
is more complex. A method is presented to account for the fourth case. The
failure combinations are divided into two categories — common failure

combinations and phase failure combination.

Common Failure Combinations

The common failure combinations are the component failure combinations
which are common to all of the phase after the stringent criterion as been
applied. Therefore the combinations are obtained from the last phase in the

mission.

The unreliability for common failure combinations are computed by obtaining
the failure distribution for each component in the combination and solved the
fault tree for the last phase. This is the same method as the case phase

independent failure criteria.

48

Phase Failure Combination

The phase failure combination for phase i which is the component failure
combinations which contribute to system failure in phase i but not contribute
to system failure in any phases after i. Phase failure combination for phase j

(PFC;) is expression:
PFC = (((Em +1)m +z)m 143 mE) (3.17)

Where Ej is a Boolean expression that represents the failure combinations

of phase j. Equation (3.17) may be simplified by using De Morgans’s law that

results in:

PFC ; = EJ(EJH U E)) (3.18)

The Boolean variable used for the components existing in the failure state in
the jth phase, which will be in the Boolean expression for E , is the same

has the equation (3.1). In addition to this the Boolean variable representing a

component existing in the working state in the jth phase shown in equation

(3.19) will be needed, since E_j will need to be obtained:
X . = XX, X . (3.19)

Since the PFC]. are in terms of Xj,)_(j for the relevant components. Algebra

rules are required to simplify PFC ; for each phase. The Boolean laws which

are used in the simplification:

49

WX +X, > X
5.X,+X, > X,

6. X, +X, o1 (3.20)

The sixth law shows the deficiency, since from the Boolean law of

complementation, an event OR its complement become true. Hence the

correct expression would have been Xi + Xi —> 1, which is not the same as

rule six. Hence approximate results will be obtained by the application of this

simplification technique.

The expressions)_(in and X, +)?j cannot be simplify any further,)_(in is
the event that the component X is in the working state at the end of the phase
i, and then fails in phase j. The expression X, +)_(j has no physical meaning.

The probability of these events are more complex than the other but can be

obtained by:

P()_(in ZI)ZET_XXJ']:E[Z(I_)_(J')]

=EFX]-EXX,]=PX,=)-PX,=1) @21

50

PX, +X;)=PX, =)+PX, =1) (3.22)

(since X, and X, are disjoint)

The system unreliability is obtained by first computing the PFC for every

phase then is given by:

n—1

Oyss=Pr(E,)+) Pr(PFC) (3.23)

J=1

Where n is the total number of phases and Pr(£)) is the probability of the top

failure event of the fault tree for phase n.

Somani and Trivedi [11] also obtain an expression for the unreliability at the

end of the kth phase which is given by:

k
0, =D Pr(PFC ;,) (3.24)

j=1

Where PFC,, is very similar to PFC, the only different is that the phase k is

treated as the last phase in the expression and any phase after k will be

ignored. It can be obtained by:
PFG, =PFG, NE, (3.25)

Somani and Trivedi identifies the jump in unreliability between the phases
which is due to the different failure criteria in the next phase. Somani and

Trevedi demonstrated this method by an example of a PMS of 3 components

51

and 3 phases. It was assumed that the phases could occur in any order.
Therefore all permutations were calculated.

Ma and Trivedi [12] extended this work by computing the mission unreliability
in the form of disjoint products. The algorithm was implemented in the
SHARPE software package.

3.2.6 Binary Decision Diagrams for Phased Mission Systems

Converting a single fault tree into a BDD was demonstrated in section (2.7).
Computing the unreliability of a BDD is very computationally efficient, which is
useful when dealing with large systems. BDD transformation can also be
applied to PMS, which is useful since PMS do become large. This section
reviews methods that convert PMS, phase failure conditions are generally
represented by fault trees, into a single BDD and then calculates the

unreliability from the BBD.

Trivedi et al [14] present a method that converts multiple phase missions into
a single BDD. A component is in the failed state in a phase if the failure
occurred in the phase or any of the previous phases as described in section

3.2.1 and illustrate in figure 3.1.

The function ¢, (1) is defined as the probability that the component X is in

the failed state at t given that it was in the working state at the beginning of
the phase. This function is used to define the failure cumulative distribution

function £, (¢) which is:

j-1

F ()= H[l 0] |+ T~ g (1| 9,

=1

(3.26)

Where T, is the duration of phase i and t is the time measured from the start

ofthephasej, 0 < r < T, .

52

The first term in the function is the probability that the component X failed in
any of the phases 1...... j-1. The second term is the probability that the
component is functioning until phase j-1 and then fails in phase j.

As in the original method for constructing a BBD (shown in section (2.7)) an
order for the variables is required. Trivedi et al chooses two methods for
ordering the basic events. These correspond to two different operators. The

orders are has follow.

1) Forwards Phase-Dependent Operation (PDO) is defined as any order
in which the basic events that belong to the same component stay
together and then are ordered as the same order as the phases, for

example:

X <Xy <eeoer<XX, -

2) Backwards Phase-Dependent Operation (PDO) is similar to the
previous order, the difference is that the order of the basic events that
belong to the same component are in the reverse order of the phases,

for example:

X >X, > >X, 528

A new operator for ite structure is used which deals with the case of basic

events belonging to the same component. This operator is demonstrated

below. E, and Ej represents two nodes of ite structure, which are:

E, =ite(x;,G,,G,)

(3.29)

53

E. =ite(x,,H H,) (3.30)

J

Where i and j are general phases with order i<j,G,, G,, H,and H, are

also ite structure coming off the branches.

The binary operator * is applied to E,— and Ej and the result is as follows:

Forwards PDO:
Ei *Ej = ite(xioGlan)*ite(xjoHlst):ite('xisGl *Hlst *Ej)

(3.31)
Backwards PDO:

E, * E, = ite(x;,G,,G,) xite(x,, H,H,) =ite(x, E, * H,G, * H,)
(3.32)

The ordering of the basic events is important, since the size of the BDD will be
affected by the order. The backwards PDO will generally generate a smaller
BDD than the forwards PDO.

An algorithm follows, which converts a logic model of a PMS, which is

represented by a set of fault trees, into a single BDD.

1. Use equation (3.26) to obtain the value for each variable.

2. Order components and their corresponding variables using the
heuristic method.

3. Generate the BDD for each phase using ordinary logical
operations.

4. Use phase-algebra and the corresponding backward PDO to
combine these BDD to obtain the final BDD from the BDD of
each phase.

5. Calculate the unreliability of PMS (using an evaluation algorithm)
from the final BDD.

54

Once the BDD is constructed (step 4) by the backwards ordering methods the
branches will either connect variables (nodes) that belong to different or the
same component. The '0° branches will always connect variables that belong
to different component since the PDO has cancelled this type of common
component connection. However, the "1 branches may connect variables that
belong to different or the same component. This is all taken into account when

evaluating the BDD.

Consider a general node in the BDD.

G=ite(X,,G,,G,)=X,-G+X,-G, (3.33)

G2 will not contain any variables that belong to X since the "0 branch will

always connect variables that belong to different components. Therefore the

events X, and G2 are always statistically independent. This implies that
Pr(X, -G, =) =Pr(X, =1)-Pr(G, =1) (3.34)

There are two cases which are considered for computing the probability of G

they are as follows:

1. When the "1° branch connects variables of different components, which
means that G, does not contain any variables that belong to X.

2. When the "1° branch connects variables of the same component, which

means that G | does contain a variable that belongs to X.

The method for evaluating case 1 is the same as for evaluating BDD for a

single phase. The calculation is as follows:

PrG=1)=HG]|=EX,-G +X,-G,]

95

= E[X,]- E[G,]+ E[X,]- E]G,]
= E[G,]+(1- E[X,])- (E[G,]- E[G,])

=PrG, =1)+(1-Pr(X, =1))- (PrG, =1)~Pr(G, =1))

(3.35)

For the second case which is more complex since the events X, and G] are

not independent, to overcome this problem phase algebra is applied from
equation (3.20) to account for this. The calculation is as follows.

First consider a general ite structure G, which contains a variable that

belongs to component X.
G, = lte(XiaHnHz) =X, -H +X,-H, (3.36)
The calculation of G is as follows:

Pr(G=1)=E[G]=E[X, -G, +X,-G,]
=HX,-(X,-H+X,-H,)+HX]- HG,]
=HX,-X,-H +X,-X,-H,]+ E[X,]- E[G,]

=E[X,-H +X,-H,]-HX,]- [H,]+EX,]- HG,]

56

- E[G,1+ ELX - (EIG, - ETH,)

=Pr(G, =1)+(1-Pr(X, =1))-(Pr(G, = 1)~ Pr(H, =1))

(3.37)

The Unreliability of the PMS is calculated in step 5 by evaluating the BDD by
using either equations (3.36) or (3.37) depending on if the variables from the
nodes being connected belong to the same component or different

components.

Trivedi et al also consider the unreliability jump at the phase boundaries. This
is due to components failure which occurred in the previous phases, which did
not affect the system at the time but do in the new phase, this is referred to as
a latent failure. The unreliability jump was calculated by computing the
difference of unreliability at an instant before and after the boundaries of the

phases.

Xing and Dugan [16] consider the limitations of Trivedi et al method. The
method obtains the correct BDD for the PMS if the following ordering rules are

satisfied:

1) For every phase the ordering schemes must be consistent or the

same.

2) All variables which belong to the same component must stay together
in the ordering. Then ordered in the same order as the phases or the
reverse of the phases depending on if the forwards or backwards

ordering is chosen.

If any ordering scheme was implemented then the method would not obtain

the correct BDD, since the operator (PDO) do not account for a general

57

ordering scheme. The incorrect BDD would contain impossible paths. For
example using the backwards PDO to construct the BDD for the mission,
which may contain paths where you have the success of a component in a
phase then later on in the path the failure of the same component but in an

early phase. For example figure 3.7 shows an impossible path (4, =0 B, =0

4, =1).

Figure 3.7: BDD with an arbitrary ordering scheme.

However, impossible paths can be removed which will result in the correct
BDD. The removed process is as follows: The input branch into the node
which makes the path impossible is reconnected to the right son of that node,
therefore the left son and any nodes which follow after are remove from the
BDD. For example using this technique on the BDD in figure 3.7 results in the
BDD shown figure 3.8.

58

Figure 3.8: BDD where impossible paths have be removed.
A similar technique is used when a forward PDO is used. Removing the
impossible paths eliminates the limitations on the ordering of BDD, therefore
any ordering scheme may be implemented to construct the final BDD for the
PMS.

Summary, the method presented by Trivedi et al [14] successfully constructs
an efficient BDD which represents the combination of the components which
would fail the PMS. Xing and Dugan [16] consider the ordering limitations of

the Trivedi et al method and present a technique to eliminate them.

3.2.7 Imperfect Fault Coverage

The papers that have been reviewed so far have only considered two
outcomes of a system and component, which are failure and success. In
practise systems and components can have more than one failure mode. For
example a component might have a failure mode which cause immediate
failure of the entire mission even if fault-tolerance mechanisms exist; these
are called single point failure. Xing and Dugan [15],[17] considered imperfect
fault coverage in a PMS. Imperfect coverage means that the components in
the system have two failures outcomes: uncovered failure (single point failure)
and covered failure (local effect to the component). A generalized PMS
method is proposed to account for imperfect fault coverage. Xing extended

this work [19] by developed an efficient method for calculating the reliability of

59

PMS which accounts for common cause failure as well as imperfect fault
coverage.

Tang and Dugan [20] present a method, which is based on BDD, for
computing the reliability of a PMS which also accounted for multimode failures
which is a generalization of imperfect fault coverage. The method presents
more dependence algebra to deal with dependences between the failure

modes.

3.2.8 Cause-Consequence-Analysis

Cause-Consequence-Analysis is an alternative approach for modelling
system failure; the analysis is based on a diagram. A cause-consequence-
diagram represents logically all the system outcomes and its subsequent
quantification. These features are useful when modelling a PMS. The disjoint
nature of the diagram makes the quantification process more efficient. Vyzaite
el at [21] outline the methods for using a cause-consequence-diagram for

modelling the reliability of a PMS.

60

Chapter 4: Development of new method for PMS Analysis
using BDD

4.1 Introduction

Previous research published on non-repairable PMS shows that the more
efficient approaches for PMS analysis result when the method uses BDDs.
Therefore in this chapter the BDD method is investigated and approaches

developed to make further advances in its efficiency.
4.2 Efficient BDD method for PMS Analysis

Prescott et al [24] presents a fast analysis method based on the BDD for
calculating the individual phase failure probability and the entire mission
unreliability of a PMS. The method treats component failures in different
phases as independent variables when building the BDDs. This means that a
global variable ordering is not required and therefore the ordering of each
phase’s variables can be separated and is just dependent on the fault tree
structure of the failure causes of a particular phase. If the mission is to be
formed from a list of potential phase operations, the BDDs of the individual
phases can be built before the configuration of a mission is known. This
allows the phase failure BDDs to be obtained quickly and at short notice

before the mission is due to begin.

After the phase failure occurrence BDDs have been built the next stage is to
evaluate them to obtain the phase unreliability’s. This requires the failure data
for the components. The notation used for a non-repairable component A in

the failed state at some point in phase i is as follows:

A(Oati]

61

Where [; is the time when phase i ends.

The interval 0 to 7 ; means that the component failure could have occurred

anywhere in this interval in order for it to be in the failed state at some point in

phase i.

The notation used for a Component A in the working state throughout phase i
is:

A

(tiaoo)

If the component failure occurs in the interval ¢, to « then the component is

in the working state in phase i and all preceding phases.

This interval notation is very useful for a fast evaluation of the BDDs since
expressing the period in which the failure can occur deals with the
dependency of variables that represent the same component failure but in
different phases. The dependencies are dealt with as follows: when tracing
through the BDD and two variables representing the same component failure
are encountered the intersection of the variable time intervals is taken as the
time period in which both component failure events can be satisfied

simultaneously.

Paths representing causes of a phase failure due to combinations of
component conditions which cannot occur at the same time can be produced
in the BDD. Such impossible paths in the BDD may occur since all the
component variables were falsely assumed to be independent in the building
stage. The impossible paths are recognised when two variables representing
the same component have associated failure time intervals that do not
intersect. This is accounted for by ignoring this path and moving on to the next

one.

62

The procedure of the method

The procedure for the method is shown by running through a simple example.
First given that a fault tree for each of the phases is known, each individual
phase BDD can be obtained before the mission is known. For example the
fault trees that represent the phase failure logic for three possible phases of a

mission are shown in figure 4.1.

Phase Y Phase X Phase Z

() e () e G4

NP RNOIO

Figure 4.1 Simple phased mission failure causes

The three fault trees in figure 4.1 are converted to BDDs by providing
individual orderings of the basic events which is shown in figure 4.2. So far the
method has been independent of the mission configuration. However the next
step depends on the mission configuration and is performed when the mission
has been defined.

BDD Y

Figure 4.2: BDDs that are converted from the fault trees from figure 4.1

63

The procedure to obtain a BDD that represents the logic for system failure in a
particular phase i is as follows. Convert all the previous phase BDDs 1...i-1 to
success BDDs. The success BDD represents the success logic of the phase
and is the dual of the failure BDD. To convert from one form to the other
requires the one and zero terminal nodes to be inter-changed. Now join these
success BDDs for the phases to be performed prior to each phase i in the
mission with the failure BDD of phase i to obtain the causes of failure in phase
i having successfully reached this phase. This is done by reconnecting the
branches of the success BDD phase 1, that have a terminal one node, to the
root node of the success BDD phase 2. This BDD joining procedure is
continued with the next success phase BDD and so on until the last success
BDD phase i-1 has been joined and then the failure BDD i is joined.
Continuing with the example where the mission is known and is phases ZXY.
The BDD for the failure in phase 1 is just BDD Z. The BDD for failure in phase

2 and phase 3 are shown in figures 4.3 and 4.4

Figure 4.3: BDD for failure in phase 2

64

Figure 4.4: BDD failures in phase 3

Once the BDDs have been built the second stage is to use them to evaluate
the unreliability. Component failure data is required for this stage. The method
is then to trace from the root node of the BDD and record the variables
encountered on the paths that terminate in a one node. Phase variables on a
path which represent the same component are combined by taking the
intersection of their related time intervals. If the time intervals do not intersect
then the path is an impossible path and is ignored. Continuing with the

example the paths through the 3 phase failure BDDs generated are traced to

65

obtain the paths and then simplified to eliminate the dependencies between

the variables, this process is shown below.

The paths from BDD Z failure in phase 1. (see Figure 4.2) are:

(0 ,1]

C Ay B

(I ,00)*7(0,117(0,1]

The paths from the BDD generated failure in phase 2. (ie phase Z works and

phase X fails), Figure 4.3 are:

C(l ,OO)A(O,I]B(I,OO)B(0,2]C(0,2] — C(LZ]A(OJ]B[M]

C(l ,OO)A(LOO)B(O,.?]C(OJ] - C[LZ]A(LOO)B(O,Z]

The paths from the BDD generated for failure in phase 3 (ie phase Z works,

phase X works, phase Y fails), Figure 4.4, are:

¢ A(O,I]B(LOO)B(OJ]C@,OO)A(0,3]B(0,3] — C(2,OO)A(0,1]B[1,2]

(1,0)
C(l,oo)A(o,l]B(l,oo)B(o,z]C(z,oo)A(o,3]B(3,oo)C(0,3] — Impossible path

C(LOO)A(O,I]B(I,OO)B@,OO)A(0,3]B(0,3] - C(LOO)A B[2,3]

(0,1]
C(l,oo)A(o,l]B(l,oo)B(z,oo)A(o,3]B(3,oo)C(o,3] — C[1,3]A(0,1]B(3,oo)

C(LOO)A(I,OO)B(O,2]C(2,°0)A(0,3]B(0,3] — C(2,OO)A[1,3]B(0,2]

66

C(l,oo)A(l,oo)B(O,2]C(2,oo)A(0,3]B(3,00)C(0,3] — Impossible path

C(I,OO)A(LOO)B(2,°0)A(0,3]B(0,3] — C(LOO)A[L3]B[2,3]

C(LOO)A(LOO)B(2,°O)A(0,3]B(3,00)C(0,3] — C[1,3]A[1,3]B(3,°0)

The probability of a path is calculated by the product of the probabilities of the
events (variables) in the path since a path does not contain any dependencies
between the variables after it is simplified.

N
i
Path Probability = []Pr(x'cin)) (4.1)
i=1

Where N is the total number of variables in the simplified path and X; ;) is

the variable that component X fails in the interval (jk). Then once the
probabilities of all the paths have been calculated the probability of the failure
in that phase is the sum of the probabilities of the paths, since all the paths

are disjoint

=

phase i unreliability = Z Pr(path ;) (4.2)

i=1

Where N is the total number of paths in the BDD for failure in phase i.

67

4.3 Concise representation of mission phase failure (Method 1)

Considering the method described in the previous section [24] it is
unnecessary to build all the phase failure BDDs separately since potentially all
of the information can be obtained from the final phase failure occurrence
BDD. This process is performed as follows. The terminal one of the individual
phase BDD is replaced by the phase number. Considering again the last
example where the mission is phase Z then X then Y and the individual phase
BDDs are shown in figure 4.2. The results of converting there to phase BDDs

are shown in figure 4.4.

BDD Y

BDD Z

Figure 4.4: BDDs for phases Y,X AND Z

The individual phase BDDs are now taken in the order in which they occur in
the mission. Developing BDDs for failure in a phase which accounts for
successful operation in previous phases is carried out and results in the BDD

for the final shown in figure 4.5.

68

Figure 4.5: The main BDD that contain the failure logic for every phase

Evaluating this BDD is similar to the original method (Prescott method) except
that the probability of failure in phase i is the sum of probabilities of the paths
which terminate at node i. This means that the unreliability of the phases is
calculated simultaneously unlike the other method which calculates them one

phase at a time. This method will be called method 1 from now on.

69

Results

To test the new method fault trees that represent the failure logic of six
mission phases were considered. The number of gates, events and other
characteristics of the fault trees are shown in table 4.1 and the fault trees are
shown in diagrams in appendix B under mission set 5. Since all of the phase
fault trees are converted to a BDD before the mission is analysed the number

of nodes in each phase BDD are also shown in table 4.1.

Phase Number of Number of Percentage | Number of
Gates (OR,AND) Events Of Nodes
(Number of Different In BDD
different Events
events)
1 17 (9,8) 25 (19) 76% 27
2 14 (8,6) 20 (14) 70% 20
3 15 (7,8) 22 (16) 72% 25
4 15 (7,8) 22 (16) 72% 25
5 14 (8,6) 20 (14) 70% 20
6 17 (9,8) 26 (20) 76% 31

Table 4.1 Characteristics of fault trees of the possible phases from the first

mission

Different missions were created by taking different combinations of phases 1-
6 and different mission lengths. Phases could be repeated. The mission
configurations and the times taken to calculate the mission unreliability using
the two methods: Prescott method (original method) and method 1 (new

modified) are shown in table 4.2.

70

Number of Mission Time of old Time of new | Percentage
phases Configuration Method Method improvement
(Prescott method) | (method 1)
6 1,2,3,4,5,6 0.06s 0.06s 0%
1,4,3,2,3,5,6,1 0.34s 0.28s 17.6%
18 1,2,3,4,5,6,1,2,3,4, 37.67s 31.66 16%
5,6,1,2,3,4,5,6
22 1,5,4,6,2,1,3,2,3,4, 3min 2.64s 2min 20.9s 22.8%
5,3,1,3,5,6,3,3,21,
2,3
26 1,5,4,6,2,1,3,2,3,4, 6min 33.99s 4min 56.29s 24.4%
5,3,1,3,5,6,3,3,2,1,
2,311,234
34 1,5,4,6,2,1,3,2,3,4, 38min 21.54s 30min 31.1s 20.3%

5,3,1,3,5,6,3,3,2,1,
2’3’1 7273’4,,2,3’4,5,
3,5,6,3

Table 4.2: Result time of mission calculation

The results show that generally the more phases in the mission the greater

the improvement in the analysis times obtained from method 1 when

compared to the Prescott method. This would be expected as more saving is

made on the time taken in building the BDDs and evaluating them. Further

experiments were carried out where more phases were created with fault

trees larger than those used in the pervious mission model experiments. The

fault tree characteristics used for the new phase failure causes are shown

table 4.3 and the fault trees are shown, in file format, in appendix A under

mission set 2.

71

Phase Number of Number of Number of
Gates (OR,AND) events Nodes
In BDD
1 13(10,3) 30 30
2 13(10,3) 32 31
3 13(10,3) 30 51
4 13(10,3) 29 29
5 13(10,3) 32 47
6 13(10,3) 33 22

Table 4.3 Characteristics of fault trees of the possible phases from the second

mission

Considering the information given for the fault trees in table 4.3 the trees and
the BDDs that are created do not seem significantly larger than those used in
the previous experiment. However the information does not indicate the
occurrence of common sub BDDs where there is more than one input branch
going into the same node. In a simple BDD where the basis events
represented by the nodes are all independent it would not be much more
effort to evaluate a BDD with common sub BDDs since modularisation may be
applied. However in this method the variables in the BDD are dependent and
therefore modularisation may not be applied and every path must be traced
through the structure. The information in table 4.4 shows the number of nodes
including repeated ones in the BDDs and is obtain by tracing through every
possible path of the BDD starting from the root node, assuming there are no

impossible paths.

72

Phases for first Number of Phases for second | Number of nodes
Missions nodes Missions
considered considered
1 10 1 88
2 5 2 40
3 28 3 175
4 28 4 151
5 5 5 514
6 34 6 63

Table 4.4 Number of nodes for the BDDs from the two missions

Table 4.4 shows that the new fault trees are larger than the previous trees in
terms of the work required for their analysis. Different missions were again
created by taking different combinations of phases 1-6 and different mission
lengths allowing some phases to be repeated. The mission configurations and

analysis times for the two methods are shown in table 4.5.

Number Mission Time of old Time of new Percentage

of Configuration Method Method improvement
phases (Prescott method) | (method 1)

3 1,4,5 8.9s 8.8s 1%

3 6,2,3 0.69s 0.66s 4%

3 4,3,1 3.4s 3.4s 0%

3 21,5 2.4s 2.3s 4%

4 2,341 54.39s 54.33s 0.1%

4 5,6,1,2 2min 31.9s 2min 29.1s 2%

4 2,3,6,1 43.2s 42 .8s 1%

5 3,1,6,4,2 2hr 55min 50.3s | 2hr 54min 8.6s 1%

5 51,4,2,6 6hr 26min 6.3s | 6hr25min7.5s 0.0025%

Table 4.5 Running time of the two PMS analysis method

73

The results of the improvement of the method 1 (new method) compared to
the Prescott method (original method) on the missions shown in table 4.5 are
significantly less than the improvement obtained considering the smaller trees.
Observing the results, every time the number of mission phases is increased
by one the calculation time significantly increases. This is because when a
phase BDD is joined to the mission so far BDD, its evaluation is performed by
tracing through the structure. The number of times a node is traced is
potentially increased by the product of the number of terminal one nodes on
the BDD to which the new phase BDD will be joined times the trace of the
additional BDD.

Conclusion

The main advantage of the newly developed method compared to the
previous method is that only one BDD has to be built and evaluated to
calculate the unreliability of all the phases. This BDD will be the same size
and structure as the BDD created for the analysis of the final phase in the
previous method. Therefore the new method will take less computational effort
to calculate than the previous one. However, the last BDD will be significantly
larger than those for previous phases. A disadvantage of the new approach is
that the unreliability of the phases can only be calculated once the whole
procedure is over, however the original approach obtained the phase
unreliability’s as it progressed, which in some cases would be an advantage.
The problem with both of these methods is that every time an additional phase
is included in the mission the number of nodes including repeated ones
increases dramatically, therefore different approaches must be considered

that simplify the BDD to reduce the number of nodes including repeated ones.

4.4 Alternative approach for Phased Mission Analysis using BDDs based
on the Trivedi method (Method 2)

Methods to improve the BDD analysis of PMS as presented in the previous
section treat the phases independently until the point when the mission BDDs

are evaluated. Therefore making the analysis fast until the evaluation stage is

74

performed when the advantages gained are lost for larger problems. The
method presented in this section which is referred to as Method 2 explores an
extension of the Trivedi method [14] discussed in chapter 3 and which deals
with the dependency between the phases as the BDDs are being built and
evaluated. The method is extended by calculating the unreliability of the
individual phases as well as the overall mission. The method is discussed and

explained below by demonstrating its application to an example.

The fault trees of the possible phases in the mission are those used earlier

shown in figure 4.1.

Ordering

Since the event dependencies are going to be dealt with at the stage of
building the mission BDDs a global order of the events must be decided. The
method goes through every fault tree labelling events using a depth-first
traversal starting at the top gate and then to the first son. Once the sub-tree of
the son gate has been traced through completely then the next son is
considered and so on. When each gate is being visited the input events are
listed in the order they appear unless they have already been listed. Going
back to the example and starting with phase Y. First gate G1 is considered
and the input event is listed A. Now the son of gate G1 is considered which is
gate G2. The input events of gate G2 are recorded B and C. Since there are
no gate inputs to G2 we therefore trace back to gate G1 and as all the inputs
to this gate have been traced, then the phase Y ordering has been completed.
The current order is A<B<C. The next two phase fault trees are now traced

through, however all of the events have already been listed.

The mission

Now the mission is created from all the possible phases. A phase can be
repeated several times throughout the mission. All the calculations done until
this stage have been done off-line. Continuing with the example the mission

which is selected is phase Z first, phase Y second and then phase X last.

75

Component failure models

In the method, developed by Prescott et al [24], the component failure data for
the individual phases are obtained from files at the beginning of the code.
However this method uses a more complex way of calculating the component
failure data for the individual phases, which is more realistic to a UAV mission.
The method uses the exponential distribution function for calculating the
probability that component failure occurs in phase i which is shown in the

expression below.

-AT, —2,T —AiT; -AT,
e e L. e " (l—e) (4.3)
Where 4, 4, 4, are the component failure rates in the phases of the
mission and 7, T, T, are the durations of the phases. The expression

depends on the order of the phases in the mission, therefore this calculation
has to be done after the mission is known, which was not the case in previous

method (method 1) in this chapter.
Phase ordering components

In the Trivedi method there are two options for ordering the component failure
events, forward and backward phase ordering, which was discussed in
Chapter 3 section 3.2.6. The new method presented here uses backward
ordering. Each component in the global order is replaced by the set of phase
variables for that component in the order of the last phase to the first phase.

For the example the ordering is as below.

Ayy <Ayy <Ay <By; <By, <By <C3<C, <Gy 44

76

Building the individual phase BDDs

The phase fault trees are converted to the equivalent BDD form. After each
individual phase BDD has been obtained it is copied into the main BDD two
dimensional array and also the variables are converted to account for the

phase ordering. The phase fault trees from the example are converted to

BDDs and the variables are changed to phase ordering as shown in figure
4.6.

Phase 3
Phase 1 Phase 2 BDD X
BDD Z BDD Y
N7
1
0
N8 0
1 0
1 0

Figure 4.6: BDD that have be converted from phase fault trees

Building and evaluating the phase failure BDD

When combining the phase BDDs with each other, node variables belonging

to the same component but different phases are encountered and the

7

dependencies are dealt with. When evaluating the phase BDDs an alternative
formula will be used for nodes with dependencies. Each node will only have to
be evaluated once unlike the previous method which has to trace through the

nodes several times.

The previous methods for combining the BDDs to obtain phase failure BDDs
was accomplished by changing all the previous phase failure BDDs to
success BDDs, by changing the terminal nodes around. All of these success
BDDs were combined with the failure BDD of the particular phase with a AND
operator. However considering the current method an approach based on the
Trivedi method is used. The BDD computation formula shown in equation 3.31
and 3.32 in chapter 3 and the global ordering means that when building phase
BDDs it is computationally intensive when compared to Method 1. However
there is an alternative way to do this part of the calculation that will be less
computationally intensive. Instead a sequence of attaching the next phase
failure BDD to the last phase BDD by an OR operator is used after each
phase has been attached the BDD evaluated. These BDDs represent the
events that the system has failed in that particular phase or any previous
phase. So taking any probability of these BDDs in this sequence and
subtracting the previous probability in this sequence gives the probability that
the system failure occurred in that phase. The proof that it is equal is shown

below.

For this proof the Boolean variable p; is used which represents the failure

logic from the fault tree of phase i and p, represents the success logic from

the dual of the fault tree of phase i. The left hand side of the equation 4.5
below represents the system has been successful in phases 1 to i. The right

hand side is just the original expression copied i-1 extra times. The extra
expressions are modified by replacing p; by p, to P, in turn one for each

extra expression. The sum of all these extra expressions is equal to 0

therefore they can be added on (Note + is used for OR in this logic

78

expression). Now the intersection (AND) of these events p, p,...p,, can be

taken out as a factor of this expression.

D> Ds P = P Paree--Di i D;

+ P DyeeDi Py
+ PDsee-Di1 P>

+ D\Dye--Di 1 Pi

= DD PPttt D) (4.5)

Now the NOT operator is applied to both sides of the equation 4.5 and De
Morgan's law [1] is used to expand the terms out. The outcome of this is

equation 4.8.

DDl = DDy PP+ P+ D+ A D) (4.6)

Pttt tp,+p

- p+p,+..A+p +p+p+p,+...+p)

79

= pt+tp,te.t+p +(p,pDDiy) (4.7)

Now take the probability of both sides.

Pr(PA TP Tt D,Th)

= Pr(AitPTT Py +DDDs- iy) w@s

These two expressions can be separated because the events are mutually

exclusive.

Pr(P TP T-TP,Th)

— Pr(ptpt..+p)+Pr(]71']_71]_72----_1'—1) (4.9)

Now take the first term of the right-hand over to the left hand side.

Pr(A+Dt-FP4tP) - Pr(AA TPyt D)

= Pr(DiD>-- DD,) (4.10)

Equation 4.10 means that the probability of the mission being successful from
phase 1 up to phase i -1 and then failing in phase i is equal to the probability
that the mission fails in any phase 1 to i, minus the probability that the mission

fails in any phase 1 to i-1. This expression is very helpful when building and

80

evaluating the phase BDDs since the BDDs that represent the terms on the
left-hand side of equation 4.10 can all be built by adding on a phase on the
current expression. Therefore this is more efficient than starting to build each
failure phase BDD from scratch to obtain the right-hand side of equation 4.10.
Continuing with the example, building and evaluating the phase failure BDDs

is as follows.

The formulas 3.31, 3.32, 3.35 and 3.37 from Chapter 3 section 3.2.6 are used
for combining the BDDs together and for evaluating them for the probabilities.
The probability of failure in the first phase is just the evaluation of the phase 1

BDD in figure 4.6 which is the evaluation of node 1 which is shown below.

Probability of node 2:
P(N,=1)=1+{-Pr(B,, =1))-Pr(Cy, =1)-1)

Probability of node 1:
Pr(N,=1)=Pr(N, =1+ (1- Plr(AO’1 =1)) .(Pr(CO,1 =1)-Pr(N, =1))

Probability of failure in phase 1

Pr(p, =1) =Pr(N, =1)

The first and second phase are combined by an OR as shown in figures 4.7
and 4.8 and the final BDD with top node 11 shown in figure 4.10.

81

Figure 4.8: Phase 1 OR Phase 2 BDDs combined

82

Figure 4.9: Phase 1 OR Phase 2 BDDs simplify

Now node 11 is evaluated as shown below. This is the probability that the
mission fails in phase 1 or 2. However the probability that the mission is
successful in phase 1 and failure occurs in 2 is the evaluation of node 10

minus node 1 shown in equation 4.12.

Probability of node 5:
P(N, =1)=1+A-Pr(By, =1))-Pr(Cy,, =1)-1)

Probability of node 10:
Pr(N,, =1)=Pr(N; =1)+ (1-Pr(4,, =1))-(Pr(C,, =1)—Pr(N =1))

Probability of failure in phase 1 or Phase 2:

Pr((p, + p,)=1)=Pr(N,, =1)

Probability of failure occurs in 2:
Pr(p,p, =1)=Pr(N,, =1)-Pr(N, =1)
(4.11)

83

The same procedure is applied to phase 3 has the previous phase and is

shown below in Figure 4.10 and 4.11.

1 0

Figure 4.11: (Phase 1 OR Phase 2) OR Phase 3 BDD
84

Probability of node 11:
Pr(N, =1)=1+(1=Pr(B,, =1)-(Pr(Cyy=1)-1)

Probability of node 12:
Pr(N,, =) =Pr(N,, =)+ (- Pr(Bo,3 =1))- (Pr(Co,z =1)—-Pr(N,, =1))

Probability of node 13:
Pr(N,; =1) = Pr(C0,3 =)+ (1- Pr(Bo,3 =1)) - (Pr(CO,l =1)- Pr(C0,3 =1))

Probability of node 14:
Pr(N,, =1)=Pr(N,, =)+ (- Pr(Ao,z =1))-(Pr(N,; =1) = Pr(N, =1))

Probability of failure in phase 1 or Phase 2 or Phase 3

Pr((p, + p, + p3) =1 =Pr(N, =1)

Probability of failure occurs in 3:
Pr(p,p,p; =1) =Pr(N, =1)—Pr(N,, =1)
(4.12)

4.5 Fault Tree Modularisation

Modularisation methods identify independent sub trees of a fault tree that can
be calculated separately. This simplifies the fault tree, making its easier to
analyse. These independent sub trees are known as modules which are
defined as a section of the fault tree which is completely independent from the
rest of the tree so that all the gates and events it contains do not occur
anywhere else in the rest of the tree. These modules can be treated as
individual fault trees and analysed separately. There are several methods that
perform modularisation, however the most efficient which is going to be
discussed in this section is linear-time algorithm [25]. This method is the most

efficient since it only scans through the tree twice to obtain all the modules.

85

Linear - Time Algorithm

This algorithm is performed in two depth-first traversals of the fault tree. The
first passes through the tree structure and records, step by step, the order in
which gates and events are visited. Therefore the information of the step
number at the first, second and final visit to every gate and event is obtained.
This is explained by going through the technique performed on the fault tree
shown in figure 4.12. Going through the tree in a depth-first manner and
recording the step number at which the gates and events visited, the visited
order is shown in table 4.6. The algorithm always considers the event inputs
ahead of the gate inputs when scanning through the tree. Every gate will be
visited at least twice once scanning down the structure and the other time
tracing back up. If the gate is repeated more than once then when visiting the
gate after the first encounter the gate is just listed but the events below it are
not considered again, therefore treated like an event. This is shown in table

4.6 when gate G4 is visited again on its second appearance on the 30th visit

86

Top

Figure 4.12: Example fault tree to explained the linear-time algorithm

;
2

Eﬁ

G6

5060

G4

G8

Step 1 2 3 4 5 6 7 8 9 10 11
number
Node Top G1 a G5 c G4 d G8 e f G8
Step 12 13 14 15 16 17 18 19 20 21 22
number
Node G4 G5 G1 G2 G6 g b h G6 G7 b
Step 23 24 25 26 27 28 29 30 31
number
Node i G7 G2 G3 a c G3 G4 Top

Table 4.6: The list of order of visited from the depth-first traversal of the fault

tree in figure 4.12

87

From the visit list in table 4.6 information is obtained for every gates first,
second and last visit step number which are shown in table 4.7. In the table
the second and the final visit for the gates are the same except for gate G4
which is different since it appeared more than once in the tree. Also the

equivalent information is obtained for the events and shown in table 4.8.

Gate Top | G1 G2 G3 G4 G5 G6 G7 G8

1t visit 1 2 15 26 6 4 16 21 8

2"Mvisit | 31 | 14 25 29 12 13 20 24 11

Final visit | 31 | 14 25 29 30 13 20 24 11

Min 2 3 16 3 7 5 17 18

Max 30 | 27 24 28 11 28 22 23 10

Table 4.7: Visits number and MAX and MIN value for the gates in the fault

tree
Event a b C d e f g h i
1% visit 3 18 5 7 9 10 17 19 23
2" visit 27 | 22 28 7 9 10 17 19 23
Final visit | 27 | 22 28 7 9 10 17 19 23

Table 4.8: Visits number for events in the fault tree

Now the algorithm moves on to the second pass through of the tree which
obtains the maximum (Max) of the last visits and the minimum (min) of the first
visits of descendants of each gate this is also shown in table 4.7. Now there is
enough information for the algorithm to identify the modules. If a gate has any
descendant which has a smaller first visit step humber than the first visit step
number of the gate, then that descendant must occur beneath another gate.
Similarly, if a gate has any descendant which has a last visit step number

greater than the second visit step number of that gate, then also that

88

descendant must occur beneath another gate. Therefore a gate can be

identified as a module if and only if:

e The first visit to each descendant is after the first visit to the gate.

and

e The last visit to each descendant is before the second visit to the gate.

If these conditions are satisfied then it means that none of the descendants
can appear anywhere else in the tree (except for beneath another appearance
of the same gate) which makes the gate a module. Therefore the algorithm
goes through each gate and compares the min and max values with the first

and second visit step number of its descendants.

Going back to the example shown in table 4.7 shows that gates G1, G5 and
G6 max values are greater than their second visit step numbers therefore the
gates cannot be modules. Also gates G3 and G7 cannot be modules because
their min values are smaller than their first visit step humber. Therefore the
gates that satisfy the module conditions are gates G2, G4, G8 and also the
top gate which is always a module. Each of these module gates are now
replaced in the fault tree by a module event. This is shown in figure 4.13
which assigns modular event M1 to gate G2, modular event M2 to gate G4,
and modular event M3 to gate G8. Now the module gates can be analysed
separately and the results used for the module events which they replace in
the main fault tree. Modularization significantly reduces the computations

needed for the analysis.

89

(a) The modularised fault tree

@@@

) Module M1 b) Module M2 (c) Module M3

Figure 4.13: The fault tree after the modules have been taken out

4.6 Applying Modularisation to phase mission analysis (Method 3)

This section discusses a new method, which is referred to as Method 3, for
performing a phase mission analysis that applies the modularization technique
from section 4.5 to the Trivedi approach discussed in section 4.4.
Modularization has been explored in the context of performing a single phase
analysis and been found to be very successful in its efficiency. Its benefits
have not been overly explored for a phase mission analysis. This new method

is going to be discussed and explained by considering an example for which

90

the fault trees for the possible phases are shown in figure 4.14. This example
has been specially chosen because it covers all of the special cases of the
method. The method takes out module gates of the mission. However
depending on which phases are chosen for the mission a gate may be a

module or not.

Identify modules

First the gates which are modules are identified for each of the phase fault
trees. The linear time algorithm is used which was discussed in the previous
section. It is applied to the fault trees shown in figure 4.14 to identify its
modules. The modules are listed in the first row and the top event gates that

belong to it are listed in the second row of table 4.9.

Phase X Phase Y Phase Z

Figure 4.14: Example of three phase fault tree

91

Identify which modules are beneath other modules.

The information of which modules are beneath other modules is essential
when it comes to building and evaluating the BDD of the module gates since a
BDD for a module cannot be built unless all the modules beneath it are built.
This information is obtained as follows. Every possible pair of modules is
considered. First it is checked if they belong to the same phase since if they
didn't it would be impossible for one of them to be beneath another. The first
gate in the pair is referred to as the ‘above gate’ and the second the ‘below
gate’. Now the visit information from the linear time algorithm is used. If the
first visit step number of the ‘above gate’ is less than the first visit step number
of the ‘below gate’ and if second visit step number of the ‘above gate’ is
greater than the second visit step number of the ‘below gate’ then the ‘below
gate’ is beneath the ‘above gate’. Also if any of the visit step numbers, of the
‘below gate’, after the second visit are greater than first visit step number of
the ‘above gate’ and less second visit step number of the ‘above gate’ then
also the below gate is beneath the ‘above gate’. These rules are shown
below. Continuing with the example, all the modules beneath other modules

are shown on row four of table 4.9.

IF(

first visit step number of the above gate < first visit step number of the below
gate

AND

second visit step number of the above gate > second visit step number of the
below gate

)

Then below gate is beneath the above gate.

OR

92

IF(

first visit step number of the above gate

< visit step numbers of the below after the second visited <
second visit step number of the above gate

)

Then below gate is beneath the above gate.

Module M1 M2 | M3 | M4 | M5 M6 M7 M8 M9

Module G1 G2 G3 | G4 G5 G6 G7 G8 G9
Gate

Phase that X X X X Y Y Y Y Z

Belongs to
Modules G2 G3 G4 - G6 G7 G8 - -
Beneath G3 G4 G7 G8

G4 G8

Node forthe | N25 | N23 | N22 | N20 | N26 | N23 | N22 | N20 | N28
module

logic

Module - G6 G7 | G8 - G2 G3 G4 -
Gate

equal

Contradiction Y Z - - X Z - - X
phase Z Z Y

Table 4.9: All the information of the potential modules
Ordering
The variables are ordered by a depth first ordering followed by the module
events. The ordering of the variables in the example is shown below in

equation 4.13.

93

A<B<G<F<H<I<J<C<D<E<MlI<M2<
M3<MA<MS<M6<MT<MI8<M9 (4.13)

Building the BDDs for all the possible modules

It is unknown which of the modules that are listed in table 4.9 will be modules
in the mission, since the mission is unknown at this stage. Therefore all the
BDDs are built for the modules since potentially any of them could be modules
in the mission. When building the BDDs all of the components are treated as
single variables instead of multi-phase. There are two reasons for the
variables been treated as a single phase. One is that the calculation for the
common logic throughout the possible phases will only be performed once.
Secondly if there are two or more modules which are logically equivalent but
are labelled as different gates or are structured differently then since only one
order is used the algorithm will recognize this. Therefore it will reduce the
calculations. When the BDD of a module is built the gate to that module is
replaced by its module event in the faults tree. A BDD is only built for a
module if all of the modules beneath it have had a BDD built for it.
Considering the example, first the single node BDDs are created for the
events and module events these are nodes N1 to N19 and are shown in figure
4.15.

N1 N2 N10
1 0 1 0 = ———— 1 0
1 0 1 0 1 0
/@R N11 @ N12 N19
--------- 1 0
1 0 1 0
/ 1 0
1 0 1 0

Figure 4.15: Single node BDD for events and possible modules

94

Now the first module BDD that is built is for module 4 because it does not
have any modules beneath it. The node that is created for the logic of the
module is N 20. This is recorded in the fifth row of table 4.9 .Therefore the
module event 4 replaces gate G4 in the fault trees. Also gate G8 is replaced
by module event 4 because that it is logically equivalent to G4. These
changes to the fault tress and the module BDDs are shown in figure 4.16.

Phase X Phase Y Phase Y

Figure 4.16: The fault trees after module 4 replaces gate G4 and G8

95

The next module BDD that is built is for module 3 which is represented by
node 22 and is also logically equivalent to gate G7. The module gates G3 and

G7 are replaced by module 3 and this is shown in figure 4.17.

Phase X Phase Y Phase Z

Gl [| G5) e
D[

s
=
®

Figure 4.17: The fault trees after module 3 replaces gate G3 and G7

Now the next module BDD that is built is for gates G2 and G6 which are
logically equivalent and all the modules beneath them have been built. The
BDD is represented by node 23 and is shown in figure 4.18 with the changes

to the fault trees.

Phase X Phase Y Phase Z

G1 G5 (] oo

O O OOEC

Figure 4.18: The fault trees after module 2 replaces gate G2 and G6
The top gates to the fault trees are modules and therefore the BDDs are built

for them and represented by nodes N25, N26 and N28 this is reported in table
4.9 and shown in figure 4.19.

97

Gate 1 for module 1

Gate 9 for module 9

Gate 5 for module 5

Figure 4.19: BDDs of the fault trees phase if all modules were take out

Contradiction phases to the modules to a single phase

When phases are combined to form a mission some of the modules of the
individual phases will not be modules of the combined logic function. It is
established which potential modules are mission modules and which are not
for every module of the individual phases. However at is stage the mission is
still unknown so a list of phases for every potential module is obtained which
are referred to as contradiction phases. A contradiction phase for a particular
potential module is defined as a phase such that if it was chosen for the
mission then that potential module is not a module in the mission. So when
the mission is known the algorithm can identify which potential modules are

modules of the mission by comparing their list of contradiction phases to the

98

list of phases in the mission. The algorithm obtains the contradiction phases
for a potential module by listing all of the gates and events that appear under
it. Then it scans through a phase fault tree and lists all of the components in a
second list. The two lists are then compared to see if they have a common
component. If they do then that phase is a contradiction phase for that
module. This is done for every phase. However there is a special case, if a
phase contains a module which is logically equivalent to the potential module
then that phase is not a phase contradiction. This procedure needs to be
performed on the fault trees before the modules were extracted therefore the
program copies the fault trees before the modules are taken out and the
procedure is performed on the copied versions. Returning to the example the
phase contradictions to the modules are shown on row 7 of table 4.9.
Considering gate G1 which has two phase contradictions Y and Z. Phase Y
because it has components G, F, H, | and J in common and phase Z because
it has component G in common. Considering gate G2 as well which has
contradiction phase Z because it has component G in common. In this case
phase Y is not a contradiction phase even though it has components in
common since these components appear under gate G6 which is logically
equivalent to gate G2. The algorithm does this for each gate module of a

single phase.

Mission

Now the mission is entered, defined in terms of all the possible phases. The
phases can appear more than once in the mission. Two example missions are
going to be considered and these are as follows:

Mission one

Mission one is defined as phase X then Y then Z. Now that the mission is

known the component failure probabilities can be calculated as the same in

the current method described in section 4.4.

99

Identify the mission modules for mission one

A mission module is a module for a single phase which is also a module for
the whole mission. To establish the modules which are not mission modules
the contradiction phases shown on row seven of table 4.9 are scanned. If any
of its contradiction phases is contained in the mission then it cannot be a
mission module. Therefore if a module is not a module in the mission it is put
back by replacing it with its top gate in the fault trees. Considering the
example, gates G1, G2, G5, G6 and G9 all have phase contradictions in the
mission therefore they are all replaced in the fault tree structure by their top

event gates. This is shown in figure 4.20.

Phase 1 Phase 2 Phase 3
Y

X Z
G1 - . G5 - G9
clolmPNoInk:. O

Figure 4.20: The phase fault trees after all the mission modules have be taken

out for mission 1

Phase failure probabilities for the modules of mission 1

So far each module has been taken out of the tree structure and treated as a
single event. Now the module phase failure data must be calculated. It is
calculated by treating the module as a mini phased mission with the logic
being the same in every phase. A module’s BDD can only be evaluated once

all of the modules in that BDD have been evaluated. The example mission 1

100

contains two modules M3 and M4 which have BDDs that are represented by
the nodes N22 and N20 respectively. First module M4 that is represented by
node N20 is evaluated since it doesn't have any modules contained within it.
Each phase BDD will be the same logic therefore the only difference will be
variable labels which represent the failure in different phases. These are

shown in figure 4.21.

N20
Module 4 branch from
fault tree 1

N7

1 0

BDD for the logic of modules
4 for single phase case

BDD for the logic of modules
4 failing in phase 1

BDD for the logic of modules
4 failing in phase 1 or 2

BDD for the logic of modules
4 failing in phase 1, 2 or 3

Figure 4.21: Phases BDDs for module 4
101

The phase module BDD failure probabilities are calculated by using equation
4.10 and the node probabilities are evaluated by the formulas 3.35 and 3.37
from Chapter 3 section 3.2.6. However the evaluation is simplified because the
phase logic is identical for each phase so when they are ORed together then
the results is just a logic expression of the last phase. The calculations for this

procedure are shown below.

Probability of node 30:
Pr(Ny =1)=Pr(1, =1)-Pr(J,, =1)

Probability of node 32:
Pr(Ny, =1)=Pr(1,, =1)-Pr(J,, =1)

Probability of node 34
Pr(Ny =1)=Pr(L5 =1)-Pr(J,5 =1)

The probability of module 4 N20 fails in phase 1:
Pr(Ny =1)

The probability of module 4 fails in phase 2:
Pr(N;, =1) = Pr(N, =1)

The probability of module 4 fails in phase 3:
Pr(N; =1) - Pr(N;, =1)

Now module 3 can be evaluated since the module it contains has been
evaluated. The same procedure is applied as when evaluating module 4. The

phase BDDs for module three are shown in figure 4.22.

102

BDD for modules 3

Failure in phase 1 BDD for modules 3

Failure in phase 1
or2

BDD for modules 3
Failure in phase 1
or2or3

Figure 4.22: Phases BDDs for module 3

103

The calculations for the probability of module 3 in the phases are shown

below.

Probability of node 37:
Pr(N, =1) = Pr(Fo,=1D)+(0- Pr(F,, = 1)) -Pr(HO’1 =1)+

(1=Pr(Fy, =1))-(1=-Pr(H,, =1) -Pr(M4,, =1)

Probability of node 40:
Pr(N, =1) = Pr(Fy, = 1)+ (1 — Pr(F,, = 1)) -Pr(HO,2 =1)+

(1 — Pr(Fy, = 1) -a1- Pr(Ho,z =1)) -PI‘(M40’2 =1)

Probability of node 43:
P(Ny;=1)=Pr(Fy; =1)+ (A -Pr(Fy5;=1) -Pr(H,; =1)+

(I-Pr(Foy =1)-(1=-Pr(H,5=1) -Pr(M4,, =1)

The probability of module 3 fails in phase 1:
Pr(Ny =1)

The probability of module 3 fails in phase 2:
Pr(N, =1)-Pr(Ny =1)

The probability of module 3 fails in phase 3:
Pr(Ny,; =1)-Pr(N, =1)

Now that all the modules have been taken out and quantified for the Phase
failure probabilities. The rest of the method stages performed to obtain all the
phase unreliabilities are: phase ordering components, building the individual

phase BDDs and building and evaluating the phase failure BDD. This is

104

exactly the same has method 2 presented in section 4.4 under the sub

headings:

1) Phase ordering components
2) Building the individual phase BDDs
3) Building and evaluating the phase failure BDD

A second mission is demonstrated which is mission 2 and contains phases X
and.

Identify the mission modules for mission 2
Mission two contains phases X then Y. The gates G1 and G5 are not modules

in this mission since they have phase contradictions. Therefore these two

gates are put back in the fault trees which are then shown in figure 4.23.

Phase 1 Phase 2
X Y

G1 - G5
O

Figure 4.23: The phase fault trees after all the mission modules have be taken

out for mission 2

Phase failure probabilities for the modules of Mission2

The phase BDDs for module 2 are shown in figure 4.24. Module 3 is
contained in module 2 and since the evaluation for this was discussed in the

previous mission it will not therefore be repeated.

105

BDD for modules 2 BDD for modules 2
failure in phase 1 failure in phase 1 or 2

Figure 4.24: Phases BDDs for module 2

Following the same procedure as before, the calculations for the module
probabilities in different phases are evaluated using the phase BDD's in figure

4.24:

Probability of node 45:
P(N, =1)=Pr(G,, =1)+ (1 -Pr(G,, =1))-Pr(M3,, =1)

Probability of node 47:
P(N, =1)=Pr(G,,=1)+A-Pr(G,, =1))-Pr(M3,, =1)

The probability of module 2 fails in phase 1:
Pr(N, =1)

The probability of module 2 fails in phase 2:
Pr(N,; =1)-Pr(N, =1)

106

Now that the modules have been extracted and quantified for the Phase
failure probabilities. The rest of method stages to obtain all the phase
unreliabilities are: phase ordering components, building the individual phase
BDDs and building and evaluating the phase failure BDD.

4. 7 Results

All of the methods presented in this chapter have been tested for the running
time by analysing eight mission sets which are made up of from 5 to 9
possible phases. Information of the fault trees such as: structure
characteristics, number of gates and events are shown with the fault trees, in
file format, in appendix A. The missions are split into two groups. In the first
group which consists of mission sets 1 to 4, each mission set contains an
individual standard fault tree structure for all its possible phases and the
events in these trees are randomly positioned. Therefore the fault trees do not
represent any particular real system. The second group which also consists of

4 missions represent UAV missions made up of 5 to 8 possible phases.

For the first 4 mission sets, the information shown in the Appendix A includes
a diagram of a fault tree structure which represents the phase failure for all
possible phases in that mission. Also there is a table which contains
information on the characteristics of the fault trees. The first column contains
the phase number, the second the number of gates, the third the number of
events including repeated events, the fourth the number of events not
included the repeated events, and the fifth the number of common events
such as if the event is contained within another phase. Also a second table
contains the information of the number of modules, gates and events not
including repeated ones in the entire mission. The last piece of information
shown for the mission is the fault tree of the phases in data format. For
missions 5 to 8, which represent UAV missions, information is shown in
Appendix B. The information is the same as for missions 1 to 4 described
above except that the fault trees in these missions do not have the same
structure in each phase and therefore a standard structure diagram of the fault

tree is not shown. The fault trees representing the phase failure in mission 5

107

are relatively small therefore they are shown in a diagram. The fault trees
representing the phase failure in the missions 6-8 are large and therefore are
just shown in data format. The subsystems which the fault trees are
construction from are shown in diagrams in Appendix F with a descriptions.
The missions 6 to 8 are just one mission progressively getting more complex
by expanding the tree branches that represent failure of the power supplies
such as DC power, AC power and hydraulic power. In mission 6 the power
supplies are represented by basic events and in missions 7 and 8 they are

represented by sub fault trees that are complex.

First missions are analysed using Method 1 (section 4.3), Method 2 (section
4.4) and Method 3 (section 4.6) for a comparison. The run times of the
performance are shown in table 4.10. The first column contains which mission
set being analysed, the second the mission configuration, the third the online
run time of Method 1, the fourth the number of modules taken out of the
mission, the fifth which is split into two, the online and off-line run times of
Method 2 and the sixth which is also split into two, the online and off-line run
times of Method 3.

Comparing the online times of Method 2 and Method 1 shows that for the
mission configurations from set 5 improvement increase dramatically as the
number of phases in the configuration increases. For example, as the number
of phases in the mission increase to 18 the online running time was hundreds
of times faster. As the number of phases in the mission increases to 25
analysis times are thousands of times faster for Method 2 compared to
Method 1. This significant improvement is because the mission set is from a
UAV mission and therefore has a structure featuring a lot of common logic
between the phases. The common logic is an advantage for Method 2 since it
deals with its dependencies at the building stage of the BDD’s. Also
contributing to this improvement are aspects of looking up any BDD'’s
computation that has already be done. This will be more of advantageous
where there is more common logic between the phases. Method 1 takes
significantly longer to calculate these missions as the number of phases

increases since every time a phase is added the number of tracing operations

108

in the BDD analysis dramatically increases. For the missions from mission set
1 Method 2 did not out perform Method 1 as it did in the missions from set 5.
These fault trees were from a random mission set and, as such, had a
different type of structure which did not feature a lot of common logic between
them. Therefore the functions such as looking up the previously performed
computations of BDDs operations and nodes did not substantially reduce the
time of calculation. The two methods generally performed the same however
when the number of phases within the mission increased to five Method 2 ran
out of memory because of the amount of BDD lines created and the
computation operations to be stored for the lookup function. However Method
1 does not suffer from this since it evaluates a path at a time and then deletes
it.

Comparing Method 2 with Method 3 using the missions from set five there
was not that much difference in the running time calculation since they were
small fault trees and therefore they were not large enough for a proper
comparison. From the 7 missions from mission set 1, four of them were faster
on Method 3. However there was not a significant difference in the two
methods performance since the fault trees are random and depending on
which phases are picked for the missions the number of modules and their
size will be different. The off-line analysis times for these missions was mainly
the management of the data storage for the code and therefore as the mission

size increases the memory increases and the off-line time increases.

109

Mission Mission Method No Method 2 Method 3
set Configuration 1 modules online offline online offline
5 123456 0.06s 0.03s (0.06s) 0.03s | (1.66s)
5 143235 0.28s 4 0.05s (0.085) | 0.05s | (1.66s)
,6,1
S 1,2,3,4,5,6, 31.66 4 0.13s (0.09s) 0.13s (1.72s)
1,2,3,4,5,6,
1,2,3,4,5,6
5 154,621, | 2min20.9s 4 0.16s (0.11s) 0.17s | (1.75s)
3,2,3,4,5,3,
1,3,5,6,3,3
2,1,2,3
5 154,6,2,1,3, | 4min 56.29s 4 0.19s (0.14s) 0.22s | (1.75s)
2,3,4,5,3,1,3,
5,6,3,3,2,1,2,
3,1,2,34
5 1,5,4,6,2,1,3, | 30min 31.1s 4 0.30s (0.16s) 0.29s (1.76s)
2,3,4,53,1,3,
5,6,3,3,2,1,2,
3,1,2,3,4,2,3,
4,5,3,5,6,3
1 1,4,5 8.8s 9 8.45s 0.85s 1.02s 1.83s
1 6,2,3 0.66s 4min 4.39s 1min50.29 4.44s
57.53s s
1 4,31 3.4s 9.63s 0.88s 2.23s 1.41s
1 21,5 2.3s 0.08s 0.17s 0.84s 1.19s
1 2,3,4,1 54.33s 5 2min 3.45s 4min 7.86s
56.2s 16.04s
1 5,6,1,2 2min 29.1s 3 1min 2.88s 1min 7.88s
52.24s 35.85s
1 2,3,6,1 42.8s 1 24min 9.61s 24min 15.62s
56.84s 17.06s
1 3,1,6,4,2 2hr 54min 3 3 hour 9.61s 3 hour 37.08s
8.65 9min 1min
027s 45.49s
1 51,4,2,6 6hr25min7.5s 4 1 hour 19.36s 1 hour 31.64s
32 min 56min
47.43s 26.2s

Table 4.10: Online and offline running times for Methods 1,2 and 3 on
mission set 1 and 5

110

Mission Mission No Method 2 Method 3
set Configurati | modules
on
online offline online offline
1 1,2,3 2 1.75s 0.41s 1.97s 1.31s
1 1,2,3,4 5 4min 3.89s 5min 9.38s
2.15s 13.8s
1 1,2,3,4,5 35min 9.36s 1 hour 63.71s
52.69s 19min
56.24s
1 1,2,4 9 0.29s 0.27s 0.53s 1.19s
1 1,2,4,6 33.82s 1.55s 35.51s 3.38s
1 1,2,4,6,5 1 hour 20.94s 1 hour 25.84s
25min 14min
6.99s 50.00s
1 24,6 10 12.64s 0.98s 3.52s 2.03s
1 2,465 5 1hour 17.12s 42min 20.27s
13min 56.05s
4.15s
1 2,4,6,5,1 4 1hour 17.13s 1Thour 24.09s
15min 14min
9.51s 10.45s
1 2,3,5 12.42s 0.78s 29.61s 2.53s
1 2,3,5,1 14.5s 0.88s 33.13s 2.52s
1 2,3,5,1,4 3min 3.70s 13min 12.91s
34.94s 55.62s
1 1,2,7 4 0.86s 0.29s 1.05s 1.30s
1 1,2,7,3 20min 8.63s 29min 17.17s
33.37s 31.61s
1 3,4,8 7 M M 19min 14.49s
45.49s

Table 4.10 continued: Online and offline running times for Methods 2 and 3

on mission set 1

111

22 Missions were analysed by Methods 2 and 3 from mission sets 2, 3 and 4, the
results of which are shown in tables 4.11, 4.12 and 4.13. Five online running times
of these missions were the same, 13 were faster for Method 2 and 4 was a faster
Method 3. When one method was faster than the other it was however not
significantly faster than the other method (less than a factor of 2). The number of
modules extracted ranged from 1 to 11. The lack of improvement by taking out
modules was because the fault trees from the mission did not feature
characteristics which enabled the extraction of modules that were large enough for
it to result in significant improvements. This is down to the randomness of the

trees.

The extra time that Method 3 took to perform the analysis was down to the extra
calculations for applying a modularized method which because of the tree

characteristics did not prove to be worth the investment.

Mission Configuration No Method 2 Method 3
set modules
online offline online offline
2 1,2,3 7 0.06s 0.11s 0.86s 2.58s
1,2,3,4 6 14.14s 1.03s 2min 6.48s
31.73s
1,2,5 11 0.03s 0.09s 0.44s 0.56s
1,2,5,6 7 1.23s 0.38s 8.55s 3.69s
1,2,5,6,3 6 1min 2.42s 23min 15.45s
35.6s 21.74s
2 3,4,5,6 7 M M 2min 6.52s
50.59s

Table 4.11: Online and offline running times for Methods 2 and 3 on mission
set 2

112

Configuration No Method 2 Method 3
Mission
modules
set
online offline online offline
3 1,2,3 2 0.01s (0_083) 0.01s 1.51s
3 1,2,3,4 2 0.03s (0_093) 0.03s 1.52s
3 1,2,3,4,5 3 0.09s (0_133) 0.11s 1.86s
3 1,2,3,4,5,6 1 1.64s (0_363) 1.92s 1.89s
3 1,2,3,4,5,6,1,2 1 2.30s (0_445) 2.40s 1.94s
3 1,2,3,4,5,6 1 3.36s (0_553) 6.63s 2.16s
1,2,3
3 1,2,3,4,5,6 1 8.92s (0_783) 18.44s 2.16s
1,2,3,4
3 1,2,3,4,5,6 1 19.63s (1 _063) 33.05s 2.95s
1,2,3,4,5
3 1,2,3,4,5,6 1 32.36s (1 _503) 48.31s 3.22s
1,2,3,4,5,6
3 1,2,3,4,5,6 1 1min (2.28s) 2min 4.48s
1,2,3,4,5,6 31.41s 29.75s
1,2,3,4,5,6

Table 4.12: Online and offline running times for Methods 2 and 3 on mission

set3

113

Mission | Configuration No Method 2 Method 3
Set modules
online offline online offline
4 12,3 0 0.14s | (0.13s) | 0.17s | (1.73s)
4 1,2,3,4 0 1.79s | (0.38s) 2.03s (2.00s)
4 1,2,3,4,5 1 29.14s | (1.39s) | 32.31s (3.17s)
4 1,2,3,4,5,1,2,3 1 4min (4.09s) 3min (5.38s)
38.23s 23.43s
4 12345 1 10min | (6.16s) | 8min | (7.89s)
1,2,3,4,5 46.51s 0.94s
4 1,2,3,4,5 1 33min | (11.27s) | 23min | (11.41s)
1,2,3,4,5 41s 54s
1,2,3,4,5

Table 4.13: Online and offline running times for Methods 2 and 3 on mission
set 4

Mission set six represents a UAV mission and the results are shown in table
4.14. The results showed that there is no significant difference between the
performance of Method 2 and 3 since the modules are not large enough to
make a big impact even though there are a lot modules identified. So basic
events representing failure of the energy supplies were replaced with sub
trees as shown in appendix B. This develops a new mission set which is
referred to as mission set seven. Results of the analysis are shown in table
4.15. The results show that as the number of phases increases Method 3
performs significantly better due to the modularization. Finally the DC power
supply sub tree was replaced with an even larger and more complex sub tree
in the mission, referred to as mission set 8. The results of the mission analysis
are shown in table 4.16. Again the results show that by taking out lager and
more complex modules it has a significant impact on the improvement offered
by the modularized Method 2. For example the last mission of mission set 8
took 3 min 53.99s on Method 2 and 1.08s on Method 3 which is a sufficient
improvement. Approximately the time saved by modularization on the online

time is just shifted to the off-line time.

114

Mission Configuration No Method 2 Method 3
modules
online offline online offline

6 1,2 18 0.02s | (0.09s) | 0.001s (4.33s)
6 17 77 0.01s | (0.11s)| 0.02s | (4.28s)
6 3,5 ” 0.01s [(0.13s)| 0.001s (4.31s)
6 34 85 0.02s | (0.14s)| 0.016s | (4.27s)
6 3,7 84 0.01s [(0.13s)| 0.016s (4.28s)
6 5,4 90 0.03s | (0.11s)| 0.001s (4.28s)
6 6.7 89 0.01s | (0.14s)| 0.01s | (4.25s)
6 4,7 97 0.02s | (0.13s) 0.01s (4.28s)
6 1,2,8 27 0.01s | (0.34s) 0.02s (4.31s)
6 1,2,3 51 0.01s | (0.13s) 0.02s (4.27s)
6 1,3,6 85 0.03s | (0.13s) 0.01s (5.06s)
6 1,3,5,4 133 0.03s | (0.14s) 0.02s (4.33s)
6 3,6,4,7 172 0.06s | (0.14s) 0.03s (4.33s)
6 3,5,6,4,7 214 0.06s | (0.16s) 0.03s (4.50s)
6 1,2,3,5,6,4,7 230 0.08s | (0.17s) 0.05s (4.47s)
6 1,2,3,4,5,6,7,8,9 246 0.11s | (0.22s) 0,06s (4.48s)
6 1,2,3,4,5,6,7,8,9 246 0.36s | (0.41s) 0.31s (4.97s)

1,2,3,4,5,6,7,8,9
6 1,2,3,4,5,6,7,8,9 246 0.73s | (0.58s) 0.73s (5.50s)

1,2,3,4,5,6,7,8,9

1,2,3,4,5,6,7,8,9

Table 4.14: Online and offline running times for Methods 2 and 3 on mission
set 6

115

Mission Configuration No Method 2 Method 3
modules

online offline online offline

7 1,2,3,4,5,6,7,8,9 531 9.30s | (3.27s) | 0.09s (5.56s)

7 1,2,3,4,5,6,7,8,9 531 11.48s | (3.88s) | 0.45s (6.92s)
1,2,3,4,5,6,7,8,9

7 1,2,3,4,5,6,7,8,9 531 20.92s | (5.28s) | 1.09s (7.61s)
1,2,3,4,5,6,7,8,9
1,2,3,4,5,6,7,8,9

Table 4.15: Online and offline running times for Methods 2 and 3 on mission

set7
Mission Configuration No Method 2 Method 3
modules
online offline online offline
8 1,2,3,4,5,6,7,8,9 661 27.91s (4.48s) 0.11s (7.44s)
8 1,2,3,4,5,6,7,8,9 661 1min (9.08s) 0.27s (8.17s)
1,2,3.4,5, 1.53s
8 1,2,3,4,5,6,7,8,9 661 Tmin | (13.00s) | 0.48s (8.77s)
1,2,3,4,5,6,7,8,9 39.02s
8 [123456789| 661 2min | 17.66s) | 0.77s | (9.29s)
1,2,3,4,5,6,7,8,9 46.73s
1,2,3,4,5,
8 1,2,3,4,5,6,7,8,9 661 3min | (21.36s) | 1.08s (9.50s)
1,2,3,4,5,6,7,8,9 53.99s
1,2,3,4,5,6,7,8,9

Table 4.16: Online and offline running times for Methods 2 and 3 on mission

set8

116

Conclusion

The comparison of 3 methods has been performed by the analysis of 8
mission sets that are separated into two groups containing randomly
generated missions and those representing a UAV mission structure. The
results showed that Method 2 Alternative Trivedi and Method 3 that has
modularization significantly out-performed Method 1. However Method 1 is
more memory efficient and has a better chance of providing an answer. The
Modularized Method 3 compared to the Non-Modularized Method 2 is only
better where complex modules can be taken out which would take a
significant amount of time to calculate online even though it will take a long
time. Modularization shifts the analysis time to off-line. This is shown in the
results as the mission experiments increased in module complexity then the
improvement increases with it. However if fault trees in a mission do not
feature this characteristic then the modularized method does not yield
sufficient improvement as was shown from the random mission sets 1-4

which performed badly since they did not have these characteristics.

117

Chapter 5: Investigating the distribution of analysis time spent

on recursive functions

5.1 Introduction

Programming recursive functions can be very computationally intensive since
they can call their self many times. It is very important to consider how they will
be handled when aiming to do a fast analysis. Therefore this section will
investigate the amount of time taken up by iterative functions in the codes of

the methods discussed so far.

There are two recursive functions in Methods 2 and 3. The first recursive
function is applied for the qualitative analysis and consists of building the
BDDs that represent the failure logic. The second recursive function is applied
for the quantitative analysis that consists of evaluating the BDDs. This
recursive function is less computationally intensive compared to first recursive
function for the qualitative analysis. The number of the times the quantitative
recursive function is performed is the number of BDD nodes and will only take
several seconds. As such, as the analysis tackles missions with larger fault
trees the amount of time taken up by this the quantitative iteration function will
not grow huge compared to the rest of the time taken up by other calculations.
However the number of qualitative recursive function applications performed is
not necessarily the number of nodes in the final BDD but the number in
generating the final BDD. This could result in the recursive function for the
qualitative analysis taking up large amounts of analysis time. Therefore this
chapter will only investigate the recursive function for the qualitative analysis

since this has a greater impact on the time of analysis.

5.2 Storing the BDD in the code

A BDD is stored in the program as an array of elements that represents a node

in the BDD it consists of three integers. For example, figure 5.1 shows a small

118

BDD consisting of three nodes and how it is stored in file format. The first
integer represents the component in the node, the second array entry is the
element in the array that represents the node branching off to the left (1-
branch), the third array entry is the element in the array that represents the
node branching off to the right (O-branch). For representing the terminal failure

node 1, -1 is use since 1 could mean the first element of the array.

A -1 0
B -1 0
C -1 0
B -1 3
A 4 0

Figure 5.1: BDD in file format

5.3 Recursivefunction for the qualitative analysis

A.Rauzy [3] presents a recursive function for the logic operators AND and OR
for combining BDDs together which are applied in all the codes of the methods
in this thesis. This function is shown in figure 5.2 and will be expanded in this
section. As described above the BDDs are stored in an array in the code. So
the function parameters are the elements entered for the two nodes of the
array which are going to be combined by some logical operator which are
referred to as node 1 and node 2. The operator is also a parameter and can be

OR or AND. The function returns the elements for the entry for the node which

119

is a result of the node 1 and 2 be combined together. The function performs

the computation of node 1 and node 2 in at most seven stages as follows:

1)

2)

3)

4)

5)

6)

7)

Checks to see if node 1 and node 2 are equal. If so the function

terminates and node1 is return as the result. This is shown on line 4.

Checks to see if either nodes 1 or 2 are terminal nodes if so the function
terminates and returns the Boolean logic of the node 1 and 2 with
operator which will be 1, 0, node 1 or node 2 . This is shown between
lines 6 to 10.

Look up to see if the computation has already be done since all the
computations are recorded. If so the function terminates and returns the

look up result. This is shown between lines 13 to 15.

This stage is the fundamental stage it obtains the new node by calling
itself. This is the ite operation described in chapter 2 section 2.7.3. This

is shown between lines 18 to 38.

Checks to see if the left and right branches of the new node are equal if
this is true then the function terminates and returns the left branch node.
This is shown between lines 40 and 41.

Search through all the elements in the array of all nodes created to see
if the new node already exists. If it does then the function terminates

and returns the already existing node.

This stage records the computation and returns the new node.

120

1 node_new computation(op, node_1 , node_2)

2{

if (node_1 == node_2) return node_1;

if (node_1 ==0 || node_1 ==-1|| node_2==0 || node_2==-1)

{

else

if (op==1) return (node_1 | node_2);
else return (node_1 & node_2);

int x;

if ((x=search_new_compute(op, node_1, node_2))!=0)
return x;

else

{
intU, V;
if (component_of _node_1==component_of node 2)

U=computation(op,branch_1_node_1, branch_1_node_2);
V=computation(op, branch_2_node_1, branch_2_node_2);

x=ite[F][O];
}
else
{
if (component_of node_1< component_of node_2)
U=computation(op, branch_1_node_1, node_2);
V=computation(op, branch_2_node_1, node_2);
x= component_of_node_2
}
else
{
U=computation(op, node_1, branch_1_node_2);
V=computation(op, node_1, branch_2_node_2);
x= component_of node_1;
}
}
if (U==V)
return U;
else
{
if (U==-1 && V==0) return x;
int p=R, find=0;
while (find==0 && p>0)
{
if (oranch_1_node_p==U && branch_2_node_p==V &&
component_of _node_p==x)
{
record_computation_outcome(); return node_p;
}
p--;

}
component_of_node_new=x;
branch_1_node_new=U;
branch_2_node_new=V,
record_computation_outcome(): return node_new;

}

Figure 5.2: Function for operating BDD nodes

121

The final number of elements in the array are not necessary the number of
nodes in the BDD. There are a number of nodes that are the result of
intermediate calculation used to create the final BDD. All these nodes are
added to the array. A problem with the method is that the number of nodes
stored can become vast which causes a memory management allocation
problem. For every node has an allocation in the array of the BDD but it does
not take up the majorly of the memory used by the code. There is another
array which takes up more. Every computation that is performed is recorded.
Every node computation is assigned to an element in an array that stores the
results of the computation. Even though this has the disadvantage of taking up
a lot of memory, the advantage is that it enables quick check to see if the

computation has already been performed.

5.4 Modifying the recursivefunction for the qualitative analysis for PMS

nodes

The modification to the recursive function for the computation combining two
phase nodes together using the Trivedi formula shown in equations 3.31 and
3.32 in chapter 3 are implemented by replacing the lines of code 19 to 39 in

figure 5.2 with the piece of code shown in figure 5.3.

122

if (component_of_node_1==component_of_node_2) {

if (component_order_of_node_1==component_order _of node_2)

U=computation(op,branch_1_node_1, branch_1_node_2);
V=computation(op,branch_2_node_1, branch_2_ node_2);
x= component_order_of_node_1
}

else

{

if (component_order of_node_1< component_order_of node_2)

U=computation(op, branch_1_node_1, node_2);
V=computation(op, branch_2_node_1, branch_2_node_2);
x= component_of_node_1

else
{
U=computation(op, node_1, branch_1_node_2);
V=computation(op, branch_2_node_1, branch_2_node_2);
x= component_of node_2;

}
else{
if (component_order _of_node_1==componen_order t_of _node_2)
U=computation(op,branch_1_node_1, branch_1_node_2);
V=computation(op, branch_2_node_1, branch_2_node_2);
x= component_order_of_node_1
}
else
{
if (component_order _of _node_1< componen_order t_of node_2)
{
U=computation(op, branch_1_node_1, node_2);
V=computation(op, branch_2_node_1, node_2);
x= component_of node_1
}
else
U=computation(op, node_1, branch_1_node_2);
V=computation(op, node_1, branch_2_node_2);
x= component_of_node_2;
}
}
}

Figure 5.3 :function for operating BDD for Phases nodes

123

5.5 Investigating the analysis time taken for the nodes search function

Out of the seven stages of the computation for combining two nodes discussed
above, stage 6 generally takes longer than any other stage. This is because it
involves searching through the entire list of nodes that have already been
created to check if the new node already exists. The time spent on stage 6 will
depend on how many nodes to search through to find the node if it already
exists and how many times stage 6 is performed in the analysis. As the
analysis proceeds the number of nodes to search increases since new entries
are continually added. This can take up a significant amount of time. This is
investigated by running Method 2 and 3, that are based on the Trivedi method
one with modularization and the other without, on 86 missions from 8 different
mission sets, shown in appendix A and B, with a standard node search going
through each element of the array one by one, without the search of existing
nodes, and one with a standard C++ map to assist the search which is a sorted
associative array of unique keys and associated data. Relative measurements
are recorded and are shown in tables in appendix C for Method 3 and
appendix D for Method 2. The first column recorded the mission set the
phases belong to. The second column contains the mission configuration.The
online and offline times are recorded to compare the performance of the
alternative approaches and are shown in columns three to five. In the upper
half of thecell contains the online time and lower halfcontains the offline
time.The total number of BDD nodes that are created to perform the analysis
with an existing node search and without are recorded in column 6 and 8. The
number of successful searches for existing nodes is recorded in column
7.There are two measurements shown for the number of nodes that are
created and the number of successful searches for nodes that have already
been created. The first number which is contain in the upper half of the cell
represents the number of nodes or successful searches for when the failure
event occurs in a phase BDD and number in the lower half of the cell is the
number of nodes or successful searches for all the individual phase failure
BDDs. Generally the measurement for the failure occurring in a phase BDD is
much higher than the one for all the individual phase failure BDDs because the

combined phase BDDs are more complex than single phase BDDs.

124

The data for the online times of the analysis of these three approaches are
plotted against the size of the analysis, defined by the number of nodes
created. For each mission set the data from Method 3 is plotted in graphs 5.1
to 5.9 and also the data from Method 2 is plotted in graphs 5.10 to 5.19

12000

1 OO0 /

8000 /
—pe S tandard search

SO00 i Mo p search

/ - Mo saarch

4000 /

- “-_a«*_"".’,

O P Ty

o S00000 1000000 1800000 2000000 2500000

online times

number of nodes created

Graph 5.1: Online times of Method 3 on set 1 with standard search, map

search and no search

300

s \ap s2ETCH

w0 s28TCH

online times

000

numberof nodes created

Graph 5.2: Online times of Method 3 set 1 with map and no search

125

1500

[}
g 1000 —e— Standard search
E —a&— Map search
T 500 No search
o
0

0 200000 400000 600000 800000 1000000

Number of nodes created

Graph 5.3: Online times of Method 3 on set 2 with standard search, map

search and no search

160
140
120
100

—e— Standard search
—=— Map search

No search

Online times

Number of nodes created

Graph 5.4: Online times of Method 3 on set 3 with standard search, map

search and no search

—e— Standard search
—&— Map search
No search

Online times

Number of nodes created

Graph 5.5: Online times of Method 3 on set 4 with standard search, map

search and no search

126

—e— Standard search
—&— Map search
No search

Online times

0 2000 4000 6000 8000 10000 12000

Number of nodes created

Graph 5.6: Online times of Method 3 on set 5 with standard search, map

search and no search

—e— Standard search
—=&— Map search
No search

Online time

Number of node created

Graph 5.7: Online times of Method 3 on set 6 with standard search, map
search and no search

—e— Standard search
—#&— Map search

No search

Online time

| ’_/k/"

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of nodes

Graph 5.8: Online times of Method 3 on set 7 with standard search, map

search and no search

127

—e— Standard search
—=&— Map search

No search

Online time

B

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Number of node

Graph 5.9: Online times of Method 3 on set 8 with standard search, map

search and no search

=y Standard s2arch
mmffe Wz p s2arch
=g Mo sEETCh

Online time

Numberof node

Graph 5.10: Online times of Method 2 on set 1 with standard search, map

search and no search

e Wap search
e [0 search

8 o5 B8 EEEH

Numberof node

Graph 5.11: Online times of Method 2 on set 1 with map search and no search

128

g Stendard search
e Mo p seanch

== Mo search

Online time

Numberof nodes

Graph 5.12: Online times of Method 2 on set2 with standard search, map

search and no search

200
180
160
140
120
100

—e— Standard search
—=— Map seaarch
No search

Online time
oo
o

Number of nodes

Graph 5.13: Online times of Method 2 on set 3 with standard search, map

search and no search

_E —e— Standard search
2 —&— Map search

= No search

o

Number of node

Graph 5.14: Online times of Method 2 on set 4 with standard search, map

search and no search zoom in

129

2500

2000

1500
—e— Standard search

1000 —=®— Map search

No search

Online time

500

000

-500
Number of node

Graph 5.15: Online times of Method 2 on set 4 with standard search, map

search and no search zoom out

—e— Standard search
—m— Map seach
no search

online time

0 2000 4000 6000 8000 10000

number of nodes

Graph 5.16: Online times of Method 2 on set 5 with standard search, map

search and no search

—e— Standard search
—m— Map search
No search

Online time

0 10000 20000 30000 40000 50000

number of nodes

Graph 5.17: Online times of Method 2 on set 6 with standard search, map

search and no search

130

700

600

500 -

400 —e— Standard search

—=&— Map search
300 -

No search

Online time

200

100

0 " ’—'—":!—_,——:—'

0 100000 200000 300000 400000 500000

Number of nodes

Graph 5.18: Online times of Method 2 on set 7 with standard search, map

search and no search

250

200 + /
/ —e— Standard search

-
a
o

—&— map search

// No seach

—

0 500000 1000000 1500000 2000000

-
o
o

online time

o
o

number of nodes

Graph 5.19: Online times of Method 2 on set 8 with standard search, map

search and no search

Discussion of results for Method 3 analysis

First the results shown in appendix C from the analysis performed on Method

3 are discussed. 74 out of the 84 mission analyses perform faster without a

search. For the remaining 10 missions, 7 of them ran out of memory allocation

before an answer was obtained. The total number of nodes created when

analysed using a normal search, for these 7 missions, was reaching 6 figures

with the total number of successful searches approximately doubling this

figure. The other 3 missions did not perform better without a node search

131

because the total number of nodes created is much greater without the search.
These missions had a higher amount of successful searches. Graphs 5.1 and
5.2 for mission set 1 show the approaches perform fastest in the order of not
having a search, using a map search, and then the standard search. The
standard search takes significantly longer than the other approaches and as
the number of nodes created grows the gap increases. Comparing not having
a search with a map search shown in graph 5.2, it can be seen that as the
number of nodes created increases the map search takes significantly longer
then not having a search. These large results are due to the number of nodes
growing every time the computation function searches for existing nodes and
potentially having to scan through the entire list. Also the mission set 1 is
created from random fault trees and therefore there will not be that much
common logic between them and relatively few repeated nodes. The approach
using the map search is more efficient than the standard search since it checks
to see if a new node is already in the list faster than the standard search.
However the search may just be suited to, how the data is ordered in the array.
Similar results are shown in graphs 5.3 to 5.5 for other mission sets 2-4 that
are created by random fault trees. However for the mission sets 3 and 4 shown
in graphs 5.4 and 5.5 as the number of nodes grows greater than about
100000, not having a search approach causes the online time to grow greater
than the other two search approaches. This is because in these two mission
sets when the missions starts getting large, the phases start repeating causing
more common logic and hence more repeated nodes. The searches are
therefore more successful and not having a search is a disadvantage. Also the
not having a search approach runs out of memory before the other two
approaches. For example mission set 4 when the number of nodes created
gets greater than 300000, the memory runs out. These results are shown in
the table in the Appendix C. Mission sets 5 to 8 are different to 1 to 4 since the
fault trees represent the failure of UAV phases instead of being randomly
generated. The results follow a similar trend to the results from mission sets 1-
4. Not having a search generally performs the analysis in the fastest times
except for mission set 5 where as the number of nodes grows it becomes the
slowest time. However all the online times of mission set 5 are small, less than

one second. Also the phase fault trees from mission set 5 are small so

132

missions can be analysed that contained many phases (up to 34) which are
constructed from 6 different phases. Therefore the phases are repeated
multiple times which increases the common logic which is an advantage for the
search approaches. The standard search performs better than the map search
for the mission sets 5-8 which was the opposite way around to mission sets 1-
4. The standard search is more suited to the order in which the nodes occur in
the list for missions 5-8. For mission sets 1-4, as the number of nodes get
larger, the no search approach starts to slow down or run out of memory. This
is not the case for missions of sets 6-8. However the fault trees that are
analysed are not large enough since for this effect to take place a lot of
modules would have been taken out. The next results discuss are for Method
2 where modules are not taken out and the fault trees will be larger and will

give a better indictor.

Results discuss on the analysis on Method 2

The three approaches of a search are performed on Method 2.Method 2 is
different to Method 3 in that it does not take out modules. The results are
shown in appendix D which consist of 86 missions, 57 from the random
mission sets, and 28 the UAV structure mission sets. The missions from the
random mission sets will not vary that much compared to the performance on
the Method 3 since they are randomly generated trees and will not have a lot
of modules to be taken out. As these missions increase in size the difference in
performance increases for the 3 different approaches. The data for mission
sets 1-4 are plotted in graphs 5.10 to 5.15. These results are very similar to
those on Method 3 because the mission from sets 1-4 have few modules. The
data for the mission sets 5-8 which represent UAV mission analysis, the online
time of the three search approaches are plotted in graphs 5.16 to 5.19. The
results for Method 3 on mission sets 5 and 6 were also similar to those
perform on Method 2 since the modules that were taken out are relatively
small. However for mission sets 7 and 8 very different results were achieved
which are shown in graphs 5.18 and 5.19 The graphs show that not having a
search performs badly compared to the analysis using Method 2. This is down

to the fact that the mission sets 7-8 were significantly reduced by taking out

133

modules and now they are larger. The potential modules left in the faults tree
provides a lot of common logic and increases the number of successful

searches and favours for the search approaches.

Further analysis of the results

The results so far for the three search approaches show that not having a
search is generally the fastest, but as the number of successful searches
grows it becomes slower compare to the other two search approaches. The
number of successful searches depends on the common logic between the
phases and will grow by increasing the number of repeated phases which
provides more common logic. If the number of successful searches increases
then this will be an advantage for the search approaches over not having
search approach. It is shown in four graphs that have been plotted for the
percentage of improvement of not having a search approach compared to the
map search approach against the number of successful searches weighted
(dividend) by the number of nodes created. Graphs 5.20 and 5.21 are for the
mission sets 1-4 and 5-8 data from Method 3 and 5.22 and 5.23 are for
Method 2. The results show that for the mission sets 1-4 on Method 3 that as
the number of successful searches increases relevant to the number of nodes
a decrease in the percent of improvement of the no search approach
compared to the map search approach. The results for the mission sets 5-8 on
Method 3 do not give great evidence of this, but the samples of missions are
relatively small. The graph 5.22 is similar to 5.20 since the random mission
sets 1-4 do not have lot of modules taken out. The graph 5.23 from the mission
set 5-8 analysed using Method 2 has a stronger evidence of the below
discussion in the data since the method does not take out modules which
leaves a significant amount of common logic for the mission sets 5-8. This is
expected since these are UAV mission and will contain a lot of common logic

between the phase increase the number of repeated nodes.

134

Percentage online time improvement

Data plotted for method 3 preformed on mission sets 1-4

_
N

-
N

-
o

of no search from map search

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Number of successful searches weighted by number of nodes

Graph 5.20: Data plotted for method 3 performed on mission set 1-4

Precentage online time improvment of

Data plotted for method 3 preformed on mission sets 5-8

180
160
140
120
100
80
60

40

no search from map search

20

0 0.02 0.04 0.06 0.08 0.1 0.12

Graph 5.21: Data plotted for method 3 performed on mission set 5-8

135

Data plotted for method 2 preformed on mission sets 1-4

20

L J
i d

18

16

14

12

-
$

-
*
.

of no search from map seaqrch

2 &

Percentage online time improvement

*
*

o N A O 0 O
<
*
*

* .

0 0.5 1 1.5 2 2.5 3 3.5

Number of successful searches weighted by number of nodes

Graph 5.22: Data plotted for method 2 preformed on mission set 1-4

Data plotted for method 2 preformed on mission sets 5-8
18
é C 1B
3]
S5 14+
‘5_ 3 & PS *
E g2
= g
= =
= . ° 3
° § 61 = s .
95 4/ ¢ o
g5 .
8o 2 5
[*
“ 0 S S - S o
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
Number of successful searches weigted by number of nodes

Graph 5.23: Data plotted for method 2 preformed on mission set 5-8

5.6 Investigating the analysis time taken for the computation look up

function

The third stage of the computation function checks in a looks up table to see if

the computation that will be performed has already been done before. This is

136

shown on lines 14 and 15 in figure 5.2. This stage does not take that much
online time because of how the results of the computation are stored. Every
node is assigned an element in an array. Every element in the array for a node
contains all the computations that have been done with it so far and records
the operator, the other node in the computation, and the resultant node. So the
function directly searches the relevant elements for that node instead of the
whole array. Whilst this stage does not take up that much analysis time a
drawback is however that storage of all of these computations takes a lot of
memory. Approximately 4 times as much has storing the nodes. For a larger
problem with a great number of nodes there will be more elements in the array

required.

The impact that the look up computations has on the analysis will be
investigated by applying Method 2 with a C++ map search on the missions
that are shown in tables 5.1 and 5.2 which have been used throughout this
thesis and counting the number of times the look up computation stage is
successfully used and recording the online and offline times together with the
number of nodes created. Then the analysis is repeated but this time without
the lookup computation stage, recording the online and offline times, and the
number of nodes created for a comparison. There are two measurements
shown for the number of nodes that are created, the number of look up
operations for computations that have already been calculated. The top level
numbers in the table are for when the failure occurs in a phase BDD and those
below are the numbers for all the individual phase failure BDDs. These results

are shown tables 5.1 and 5.2.

137

Mission
Set

Configuration

Method 2 with map
With out computation

Method 2 with map
With computation

Look up Look up
Times | Number | Times | Number | Number
Online Of Online of of
(offline) | nodes | (offline) | nodes | Look up
Created Created
1 1,2,4 5min 11107 0.61s 11107 4662
23.05s 1496 (0.22s) 1496 212
(0.08s)

1 2,15 6min 5800 0.34s 5800 1027

26.5s 2435 (0.14s) 2435 550
(0.16s)

1 1,2,3 1 hour 28042 1.72s 28042 14220
7min 2191 (0.41s) 2191 296
14.2s

(0.17s)

1 4,3,1 Tmin 67664 4.31s 67664 37586

7.03s 2601 (0.88s) 2601 415
(0.25s)

1 2,3,5 15 hr 61724 9.19s 61724 158288
24min 3766 (0.78s) 3766 795
5.7s

(0.25s)
1 6,2,3 >16hr 39.16s | 372684 | 235186
(4.34s) 3079 742
2 1,2,5 1min 2630 0.14s 2630 340
49.02s 1105 (0.11s) 1150 154
(0.2s)
2 1,2,3 4min 3974 0.22s 3974 1037
53.01s 1211 (0.11s) 1211 189
(0.2s)
2 1,2,5,6 >24hr 1.34s 22520 10804
(0.34s) 1269 167
3 1,2,3 0.59s 1407 0.06s 1407 150
(0.20s) 477 (0.06s) 477 15
3 1,2,3,4 38.86s 2476 0.13s 2476 398
(0.75s) 649 (0.08s) 649 38

3 1,2,3,4,5 5hr 5736 0.30s 5736 2290
3min 946 (0.14s) 946 80
16.9s

(0.90s)
4 1,2,3 5.78s 6661 0.39s 6661 3038
(0.16s) 974 (0.14s) 974 285
4 1,2,3,4 52.19s 27740 1.83s 27740 20393
(0.17s) 1301 (0.38s) 1301 348

Table 5.1: The analysis results of the impact of the look up computation

138

Mission | Configuration Method 2 with map Method 2 with map
Set With out computation With computation
Look up Look up
Times | Number | Times | Number | Number
Online of Online of of
(offline) | nodes | (offline) | nodes | Look up
Created Created
4 1,2,3,4,5 56min 119206 10.83s 119206 | 136417
35.5s 1529 (1.41s) 1529 446
(0.18s)
5 1,2,3,4,5,6 0.64s 1277 0.08s 1277 191
(0.14s) 206 (0.03s) 206 98
5 1,4,3,2,3,5 0.98s 1730 0.09s 1730 298
6,1 (0.18s) 206 (0.06s) 206 146

5 1,2,3,4,5,6 2.14s 4547 0.31s 4547 699
1,2,3,4,56 | (0.16s) 206 (0.08s) 206 354
1,2,3,4,5,6

5 1,5,4,6,2,1 2.88s 5803 0.41s 5803 935
3,2,3,4,5,3 | (0.16s) 206 (0.11s) 206 436
1,3,5,6,3,3

2,1,2,3,

5 1,5,4,6,2,1 3.44s 6930 0.66s 6930 1150
3,2,3,453 | (0.17s) 206 (0.14s) 206 521
1,3,5,6,3,3
2,1,2,31,2

3,4

5 1,5,4,6,2,1 4.56s 9153 0.66s 9153 1483
3,2,3,4,53 | (0.17s) 206 (0.16s) 206 686
1,3,5,6,3,3
2,1,2,31,2
3,4,23,4,5

3,5,6,3
6 1,2,8 0.06s 1107 0.08s 1107 10
(0.15s) 369 (0.13s) 369 20
6 1,2,3 0.09s 1371 0.09s 1371 10
(0.16s) 633 (0.11s) 633 51
6 1,3,6 23min 2092 0.13s 2092 41
11.6s 971 (0.14s) 971 157
(0.31s)
6 1,3,5,4 >24hr 0.19s 3363 330
(0.14s) 1167 339
7 1,2,3 >24hr 0.42 5815 10
(0.18s) 4505 2704
8 1,2,3 >24hr

Table 5.2: The analysis results of the impact of the look up computations

139

The online times of 26 missions from the 8 mission sets analysed by Method 3
with a computation look up function and without are shown in tables 5.1 and
5.2. All of the 26 missions perform significantly faster with the computation look
up function rather than without. The online times of the analysis with the look
up function did not exceed a minute, with an average of 2.83 seconds. For the
analysis without the look up function 4 of the missions did not even obtain a
result after 24 hour for the rest that did had an average online time of 1 hour
which is over 1000 times longer than with the look up function. The big
different in the results is down to how many successful look ups there are
which is shown in the last column of tables 5.1 and 5.2 and each computation
look up could potentially save a sufficient amount of calculation. In summary
the results show that the computation look up function has a sufficiently large
impact on the speed of the analysis. However a disadvantage is that the

memory can be used up about 4 times as fast.

Summary

My research shows that the decision to use a search for the repeated
computations can have a very sufficient impact on the analysis time. Whether
the search will speed up or slow down the analysis will depend on the nature of
the mission. If there are many common logic sections in the phase fault trees
which cause the same nodes to be built in the BDD, then the search can help
the speed of the analysis as shown in the UAV mission example. However
when the number of nodes grows then the time spent on an individual search
will also grow. If there is not a lot of common logic between the phases then it
will not be worth the time spent on the search. This is shown in the mission
examples for the randomly generated phase failure condition whose analysis is
improved willout the search. If a search approach is implemented then a big
factor on the analysis times is which type of search to apply. My research
investigated two types of searches: a normal search comparing every
individual element in the array in the order the node was created, and a C++
map assisted search. It shows that generally the C++ map performs better on
the random mission sets and the normal search performed better on the UAV

structure mission sets. Therefore the type of search which performs best will

140

depend on the structure of the BDD which determines the order that the BDD

nodes are listed in the array.

141

Chapter 6: Modularization by repeated gates and events

method

6.1 Introduction

In a fault tree there is a relationship between the positions of repeated gates
and events and the number of independent modules which can be extracted. If
a gate has at least one repeated gate or event beneath it, which occurs
somewhere else in the tree then it cannot be a module. Another way of looking
at this is to take a repeated gate or event and to trace up through the tree from
every position at which the gate or event appears in the tree until all the paths
intersect. All the gates that the paths pass though to the point of convergence
cannot be a module. For example consider figure 6.1. The repeated event 1
occurs twice. The paths go through gates 3, 4 and 5 before they intersect at

gate 1 therefore gates 3,4 and 5 are not modules.

Pl
—
|
Pl N
GATER
— []
[JcaTE4 | & | | 7 |
| r=0 =0
pal e P
e —— GaTES
e
r=0 r=0 | r=0
I 4 | [5 | [1 |
r=0 r=0 r=0

Figure 6.1: Fault tree with the path between the event 1

142

A method of obtaining the module gates of a fault tree is to go through all the
repeated gates and events and perform the technique shown above to find out
which gates are not modules. Therefore once all of the repeated gates and
events have been considered the gates that have never had a path that go
though them and have not therefore been excluded from the module list are
modules. This method and Rauzy linear time algorithm both obtain the
modules in an efficient way. However this method is applied instead because it
also obtains the repeated gates and events that prevent non-module gates

from being modules.

The main goal of this project is to develop a faster running calculation for a
PMS analysis and this can be achieved by modularizing the problem where
possible. In the process described above, the fault tree representation for the
same logic function is not unique. If the size of the paths are minimal then the
paths will trace through less gates. Therefore restructuring the tree, minimizing
the number of non-module gates encountered, will maximize the number
module gates. If more modules can be taken out of the tree then the

calculation will run faster.

6.2 Restructuring technique

The restructuring technique will be expanded on for the occurrence of
repeated gates in the tree structure rather than repeated events. However the
method that is applicable for gates will generalize for events also. The fault
tree restructuring is carried out using a sequence of processes as described

below:

6.2.1) Push-up

Push-up is a similar idea to the contraction process described earlier. Pushing
up the repeated gate until the gate type of the next two gates above it have
different gate types. For example consider figure 6.2 below where G4 is a
repeated gate. As G3 and G2 are the same gate type, G4 can therefore be

pushed up to be an input to G2. As shown the gate to which G4 is now an

143

input (G2) is an OR gate which inputs to an AND gate (G1) and so satisfies the
requirement that the two gates immediately above gate G4 are different. This
restructuring effectively removes G3 from the path enabling it to be considered

as a potential module.

ﬂ ° restructure

@@ “

Figure 6.2: Example of the Push-up technique

6.2.2) Common-input Push-up

Common-input push-up is a similar idea to the Extraction operation presented
earlier. Consider the two fault tree structures shown in figures 6.3 a and b.
These have an OR gate and an AND gate at the top respectively. The
repeated gate features as an input to each of the branches which input to the
top event. Note gates G1 —Gn, g1 —gn and the repeated gate can be either OR
or AND gates. The restructuring identifies that the repeated gate can be taken
out as a common factor. This has the effect of removing several gates from the

path which can now be considered as potential modules.

144

G1 Gn E1 E2 aql agn
Repeated
gate Repeated
gate
restructure
Repeated
gate

Figure 6.3 a: Common-input Push-up technique

145

Repeated
gate

Repeated
gate

al an
Repeated
gate
restructure

Figure 6.3 b Common-input Push-up technique

146

6.2.3) Elimination

If two repeated gates are positioned in the tree so that one of them is an
immediate input to a gate and the second occurrence also features as an input
to another gate on a lower level in the fault tree structure under these
conditions then elimination is possible. This is shown in figures 6.4 and 6.5
below. The gate to which the repeated gates provide an input is referred to as
the primary gate (G1) and the one to which the lower repeated gate is an input
is referred to as the secondary gate (G4). If the primary and secondary gates
are of the same type then the second occurrence of the repeated gate into the
secondary gate can be removed (Figure 6.4). However, if the gates types are
different then the secondary gate can be removed (Figure 6.5).

G1
G1
G2
G2
Repeated R ted
epeate
gate G3 gate
G3
6?) restructure 6 6
G4 >
G4
Repeated
gate

Figure 6.4: Example of an elimination for the same type case

147

G1

restructure
G2
Repeated g
gate G3
Repeated
olle :
G4
Repeated
gate

Figure 6.5: Example of an elimination for the different type case

6.2.4) Factorization

This restructuring technique is different from the others presented which
reduce the paths between the repeated gates and events in order to maximize
the number of potential modules. The factorization technique adds a gate
which in turn changes two non-module gates to module gates. Also the added
gate will be a module. If two non-module gates always occur together under
the same gate type and all the gates and events that occur beneath the two
gates only occur there and nowhere else, then these two gates are dependent
but independent of the rest of the tree. In this situation their combination can
be a module. For example consider the example shown in figure 6.6, Assume
that gate G1 and G2 are not modules and that all the gates and events

beneath G1 and G2 only occur under G1 and G2 and nowhere

148

else therefore gates G1 and G2 are dependent of each other but not the rest
of the tree. Therefore since gates G1 and G2 always occur together under the
same gate type we can combine the gates under a new gate which is of the
same gate type as the gate to which they were originally inputs as shown in

figure 6.6. This results in G1 and G2 becoming modules.

() es
e e
O M= 00N
Ja)a .

M o
[] [e
5 e 60
O New gate 5%

G2

restructure

G1 G2
Figure 6.6: Gates G1 and G2 Being combined by Factorization

149

6.3 Worked example

In order to explain the method and the implementation in the program, the
method will be applied to the fault tree illustrated below in figure 6.7. This is
only a single phase example but is sufficient to demonstrate the features of the
method. The method for the single and multi-phase cases are the same in
principle since the method would perform the restructuring stage on the
possible phases of a mission all at once as if it was a single phase. The
objective of the algorithm below is to restructure the fault tree of the mission
phases to maximize the number of modules that can be extracted by using the
techniques discussed above. The algorithm and example below only expand
the restructuring stage of the method since the analysis is performed as in the

method discussed in section 4.6.

The program goes through the steps as follow:

1) Input the data of all the fault trees of the possible phases. Note all the
fault tree phase data files are combined into one since for the UAV
example that it attempts to solve the phases have a lot of branches in
common. This will avoid repeating these branches in files several
times which the code for the pervious methods did. The code
identifies the top gates of the phases by searching though the data

for gates which appear as outputs but do not appear as inputs.

2) Consider every repeated gate i that could potentially be from a phase
in the final mission. Note the restructuring stage does not restructure
the phase trees one by one it works on them simultaneously since all

the trees are combined together in the same arrays.

2.1) Find the top intersection gate of all the occurrences of gate i

2.2) Push-up (from 6.2.1) all the occurrences of gate i as

much as possible.

150

2.3) Common-input Push-up (from 6.2.2) all the occurrences of

gate i as much as possible.

2.4) If (the previous step 2.3) has at least one common push

then go back to step 2.1.

3) Go through every repeated gate i, that potentially could be from a
phase in the final mission, to identify Elimination (6.2.3) where
possible and then eliminate the necessary gate

4) Apply steps 2 and 3 to all the repeated events as well.

5) Go through every possible non-module gate pair to see if they can be
factorised (6.2.4).

151

Figure 6.7: An Example fault tree

152

6.3.1

Inputting the fault tree to the program

The first step is to input the fault tree from a file into arrays within the code.

Each line in the file represents a gate in the tree. The information given

consists of the gate name, type (1 for OR gate and 2 for a AND gate), number

of gate inputs, number of event inputs and the input gate and event list follows.

Even if the gate is repeated in the tree it will only appear once in the data. The

format of the data file for the tree in figure 6.7 is show in table 6.1 below.

Gate name Gate type Number of Number of Inputs
gates events

G1 2 3 0 G2 G3 R3
G2 2 2 0 G4 G5
G4 1 1 1 G7 A

G7 2 2 0 G9 G10
G9 1 1 1 G11D
G11 1 1 2 R1HI

R1 1 0 2 zZ W
G10 1 1 1 R1E

G5 2 1 1 G8 B

G8 2 1 1 R2 F

R2 1 1 1 X G12
G3 2 2 1 G6R2C
G6 1 1 1 R3 G

R3 1 1 1 Y G13
G12 2 0 2 Y J
G13 2 0 2 X K

Table 6.1 Data file for the fault tree shown figure 6.7

153

The program reads in the file line by line. Each column forms an array. The

data which is a string type in the file is changed to a numerical format because

manipulation of numerical information is more efficient than string data. To do

this basic events are assigned a number from 1 to 9999 and gates are

numbered from 10000 upwards. The numerical version is shown in Table 6.2.

Gate Gate type Number of | Number of Inputs
name gates events
10000 2 3 0 10001 10011 10013
10001 2 2 0 10002 10008
10002 1 1 1 10003 1
10003 2 2 0 10004 10007
10004 1 1 1 10005 2
10005 1 1 2 10006 3 4
10006 1 0 2 56
10007 1 1 1 10006 7
10008 2 1 1 10009 8
10009 2 1 1 10010 9
10010 1 1 1 10 10014
10011 2 2 1 10012 10010 12
10012 1 1 1 10013 13
10013 1 1 1 11 10015
10014 2 0 2 11 14
10015 2 0 2 10 15

Table 6.2: The numerical fault tree data for figure 6.7

154

The top gate is identified by searching through the gates to see which one
does not occur in any of the input gate list. The inputs array is a 2 dimension
array the elements are arranged as follows. The first element 0 to (number of
gates -1) are occupied by the gates and the elements (number of gates) to
(number of gates + number of the event) are occupied by the events. Other
arrays that are created from the input data are the parents arrays for gates and
events. The number of parent gates is stored along with the parent gates
which they provide input to the child gate, this information is used in applying

the restructuring technique.

155

6.3.2 Restructuring the fault tree

Now that the fault tree and parents arrays have being created the restructuring
technique can begin. The numerical fault tree is show in figure 6.8 which
corresponds to table 6.2.

Top

10000

10001
10011

10002 10008 .
E] 10012
10003

0 - 10009
10004 10007 - °
10005 ‘

10010 10013

10006
0 . 10014 0 . 10015

Figure 6.8: The example fault tree in the numerical form

156

The program identifies and processes each repeated gate one at a time. There
are 3 repeated gates in the tree: gates 10006, 10010 and 10013. The code
starts with gate 10006 which appears twice under gates 10005 and 10007.

Top intersection gate for repeated gate 1

The top intersection gate of a repeated gate is where all the paths which are
obtained by beginning at the appearances of the repeated gates and tracing
up the tree to the gate where the paths intersect. This is used when pushing
up the repeated gate when the top intersection is reached pushing up stops.
Since the goal is to minimize the paths, going past the top intersection may
increase the paths. To obtain the top intersection gate of a repeated gate go
through each occurrence of the repeated gate and trace a path of gates up the
tree until the top gate is reached. For example gate 10006 occurs twice the
two paths are: path 1 gates 10005, 10004, 10003, 10002, 10001 and 10000.
Path 2 gates 10007, 10003, 10002, 10001 and 10000. The top intersection

gate, where all the paths intersect, is gate 10003.

Special case

When tracing up the tree, if the current gate that is getting passed through has
more than one parent then that path can make multiple paths as shown in
Figure 6.9. However the other parent gates of the current gate can only be
explored if the current top intersection is higher than the current gate. This is
necessary because if the current top intersection gate is not above the current
gate then the current gate should be the top intersection gate. If this is the
case and the parent gates of the current gate are explored then these paths
will intersect with each other to give a false top intersection gate, which will be
higher than the current gate. For example considering figure 6.10 where the
top intersection gate is not above the current gate then the parent gates are
not considered. However if the current intersection gate is above the current

gate then the parent gates are considered as paths as shown in figure 6.11.

157

Occurrence 1 Occurrence n-1 Occurrence n

Current gate

D The repeated gate

Figure 6.9: The special case

Occurrence 1 Occurrence n-1 Occurrence n

The current top intersection gate Current gate

The repeated gate Q
Q Q The repeated gate
The repeated gate

Figure 6.10: Example of the special case for finding the top intersection gate

158

Q The current top intersection gate

Occurrence 1 Occurrence n-1 Occurrence n

é Current gate

The repeated gate

'Q The repeated gate Q

The repeated gate

Figure 6.11: Example of the special case for finding the top intersection gate

Push-up 1

The aim of this stage is to push up all of the occurrences of a repeated gate,
so that the distance between them is reduced. A gate which is repeated
(referred to has gate i) is pushed up by considering the gates at two levels
above it, the first gate which has as input gate i (which is referred to as gate)
and second gate which has as input gate j (which is referred to as gate z). If
the gate j and gate z are of the same type and gate j is not the top intersection
gate then gate i can be pushed up from gate j to gate z. This is shown in figure
6.12 below.

159

Gate z

Gate z
Gate j .
Gate j Gate i
Gate i
Gate z
_ Gate z
Gate j
Gate j Gate i
Gate i

Figure 6.12 demonstration of the push up

However the above push up technique only covers the case if there is only one
parent gate (gate z) of gate j in the tree. So if there is more than one parent
gate of gate j then all of them must be considered. If all the gates z are of a
different type to gate j then no push up is done. But if at least one gate z is the
same type as gate j then each gate z will have to be considered one by one. If
the gates are of the same type then the same process is applied as in the
singular case. However if the gate types are different then a new gate must be
created, which is the same type as gate j and which is positioned in between
gate j and gate z. Gate i is pushed up to this new gate. This is shown in figure
6.13.

160

Gate z 1 Gate z 2 Gatez 3 Gatez 4

() a

Gate j Cj

Gate i
v
Gate z 1 Gatez 3
Gate z 2 Gatez 4
New New
Gate 1 Gate 2
] [[]
Gate i Gate i Gate i Gate i

Gate j

Figure 6.13: Push up technique for multiple appearances of gate i

161

The code applies the push-up procedure as follows. When the code has
selected a repeated gate (gate i) and the top intersection gate has been
obtained for it then the push up process can begin. The code goes through the
parent gates of gate i which are referred to as gate j, one by one. The push up
process is applied and the code records all of the gates where gate i is going
to be pushed up to, in an array. The code then goes through the array of gates
and checks to see if gate i already exists as an input to it. If no then gate i is
put has an input to the gate, altering the input and parents arrays. Once this
has been done for gate j then gate i is removed from it, altering the input and

parents arrays. The code does this for every repeated gate.

Considering again the example, the top intersection gate for gate 10006 as
been obtained and is gate 10003, the pushing up process can start. The code
looks up the first occurrence of this gate from the list in the inputs array and
sets its parent to be gate j which is gate 10005. It considers the possible
parents of gate j (10005), which there is only one, gate 10004. Gate 10004 is
the same type as gate 10005 (OR) and this is not the top intersection gate.
Therefore the code considers gate 10004 and looks up its parents. It only
occurs once, as input to gate 10003. Gate 10003 is of different type to gate
10004, therefore the furthest that this first occurrence of gate 10006 can be
pushed up to is gate 10004, so the code records this gate. Now the code goes
through all of the gates recorded in the array where gate 10006 is going to be
pushed up to from its first appearance. There is only one gate in the array gate
10004. First the code scans through gate 10004 inputs to see if gate 10006 is
already there. If it is there then there is no need to insert it. However, it does
not appear there, therefore gate 10006 is inserted, altering the input and
occurrence arrays of the data. Now the input of gate 10006 to gate 10005 is
removed. The next occurrence of gate 10006 is considered which has parent
gate 10007 that has type OR. It occurs once in the tree as input to gate 10003
of type AND. This is of a different type to gate 10007 therefore the second
occurrence of gate 10006 is not pushed up at all. The changes to the tree and

data are shown in figure 6.14.

162

Top

10000

10001
10011

10008 .
E] 10012

10002 E]
olar™

ws)

R1 = Gate 10006

R2= Gate 10010

R3= Gate 10013
10004 10007

ONO

Figure 6.14: The example fault tree after pushing up gate 10006

163

Common-input Push-up 1

The aim of this stage is searching through the whole tree for the repeated gate
i in the form of structure pattern that appears in Figure 6.3 then applying
common push-up to it. The code does this in two steps. The first step identifies
and records the gates where the repeated gate is going to be pushed out of,
which is referred to has current gate 2.The second step goes through the
recorded gates one by one, from this information the code inserts and removes
the repeated gates where necessary in the tree data and also alters the

parents gates data.

For the first step the code goes through all of the parent gates of the repeated
gate. This gate being considered is referred to as current gate 1.Then the code
goes through all of the parent gates of current gate 1. This gate is then
considered and is referred to as current gate 2. If the current gate 1 has the
same type as current gate 2 then the search ends and the code moves on to
the next current gate 1. However if the gates are of different type then the
search continues. For it to continue it is also required that current gate 2 must
not have any input events, just gates. The code goes through the inputs of
current gate 2 one by one. This gate is referred to as current gate 3. If all
current gates 3 are of a different type to current gate 2 and at least one of their
inputs is the repeated gate then a common push can be applied, this is shown
in figure 6.15. The code goes through the criteria required and if it passes then
current gate 2 is recorded in an array for the second step. Then the whole

process is repeated with the next current gate 1.

164

Current
Gate 2

Current Current
Gate 1 | | =rereerereressereseee Gate 3

Current Current
i i Gate 4 Gate 4
Repeated
Gate i

Figure 6.15: Example of common push up technique

The second step has two parts to it, the first part inserts the repeated gate in
its new position and the second removes the repeated gate from its old
position. The code goes one by one through all the gates (referred to as
current gate 2) in the array that was recorded in the first step. The code for the
first part goes through all the occurrences of current gate 2. It refers to a
parent gate of current gate 2 as ‘gate up’. If ‘gate up’ is a different type than
current gate 2 then the repeated gate is inserted as one of ‘gate up’ inputs only
if it does not already appear there. However, if ‘gate up’ is of the same type as
current gate 2 then a new gate is created which goes in between current gate
2 and ‘gate up’, and is different type to both of them. The repeated gate is
inserted as an input to this new gate. The code does this by altering the data of

the tree and parents gates array. This is shown in Figure 6.16.

165

Gate up 1 Gate up 2 Gate up 3 Gate up 4

[()

Current gate 2

Gate up 2 Gate up 4 []
New New
Gate up 1 Q Gate 1 Gate up 3 Q Gate 2]

Gate i Gate i Gate i Gate i

Current gate 2

Figure 6.16: Example of inserting the repeated gate for a common push up

166

The second part deletes the repeated gates as input from current gate 1 as
shown in Figure 6.15 to Figure 6.17. However, there is a special case to
consider. If current gate 1 has at least one parent gate that is not belonging to
the array that records the common push up, then if the repeated gate is
deleted then those parent gates will be incorrect. This problem is overcome by
creating a new gate which is the same as current gate 1 except that the
repeated gate is not included in the inputs. Now the code goes through the
parent gates of current gate 1 and if it does belong to the common push up
array then the data is changed so that it is an input of the new gate instead of

the current gate 1, this is shown in figure 6.18.

Current
Gate 2
Current Current
Gate 1 | | =rererererereressssin, Gate 3
Current Current
Gate 4 Gate 4

Figure 6.17: Example of removing the repeated gate for a common push up

167

Another parent of Current Current
Gate 1 which is not in the Gate 2

common push up array

Current
Gate 1
Repeated Repeated
gate gate
v
Another parent of Current
‘] Gate 1 which is not in the ‘] Current
common push up array Gate 2
Current New
Gate 1 gate
Repeated Repeated
gate gate

Figure 6.18: Special case for common push up for removing the repeated gate

168

Now back to the example. In figure 6.14 the current fault tree is shown. The
code takes the first occurrence of gate 10006, which has parent gate 10004
and this is referred to as current gate 1. Next the code takes the parent gates
of gate 10004 which there is only one, gate 10003, and this is referred to as
current gate 2. Current gates 1 & 2 are of different type, therefore continue to
the next step. The code scans through the inputs of gate 10003, there are two
which are both a different type than gate 10003 and have the repeated gate
10006 as an input. Gate 10003 also has no event inputs therefore the code
records gate 10003 in the common push up array. Now the code moves on to
the next occurrence of gate 10006, which has parent gate 10007. It also
identifies that gate 10003 needs to be recorded in the common push up array,
but since it is already recorded it is not necessary to record it again. Now step
two, the elements of the common push up array are gone through one by one.
There is only one element in this array gate 10003. Therefore the code scans
through the parent gates of gate 10003, there is only one gate 10002. Gate
10002 is of a different type to gate 10003 therefore the repeated gate 10006 is
inserted to gate 10002. Now the code goes through the remove process part 2
of the step 2. It checks for the special case which was discussed in the
algorithm description above. The special case does not occur in this example.
Therefore gate 10006 is just removed from gates 10004 and 10007. The

changes that have been made are shown in figure 6.19.

169

Top

10000

10001
10011

10008 .
E] 10012
0 . 10009

10003
R1 = Gate 10006

R2= Gate 10010

10007 R3= Gate 10013

Figure 6.19: Fault tree after a common input push up of gate 10006

170

Push-up 2

Now because there was a common input push up activated the process is
repeated because the tree has now changed, more push-ups may be possible.
Going back to the example in figure 6.19 gate 10006 cannot be pushed up the
tree structure any more. Since the two gates above it are of different types.
Common push up is considered again. Since there is only one occurrence of

gate 10006 there is no common push up.

Top intersection gate for repeated gate 2 (gate 10010).

The two paths which are traced up the tree from the two appearance of gate
10010 (R2) intersect at gate 10000. Therefore gate 10000 is the top gate of

intersection for the repeated gate 10010.

Push-up 3

The first parent gate of the first occurrence of gate 10010 is gate 10009 which
has gate type AND. The three gates above are of the same gate type therefore
gate 10010 can be pushed up to gate 10000 and removed as an input from
gate 10009. Now considering the second occurrence of gate 10010. This is an
input to AND gate, the gate above is also an AND gate, therefore this gate can
be pushed up to gate 10000. However the gate 10000 already has an input
gate 10010. This means that gate 10010 is just deleted as an input to gate
10011.The tree after these changes is shown in figure 6.20. There is only one
appearance of R2 in the structure now and therefore the Common-input Push-

up and Elimination techniques are not necessary.

171

) ap

R2

R3

o () () [

g 10003 JE ‘ R1 = Gate 10006

R2= Gate 10010

10007 R3= Gate 10013

Figure 6.20: Fault tree after a push up of gate 10010.

172

Now consider the next and final repeated gate 10013 (R3). Gate 10013
appears twice in the tree under gates 10000 and 10012.

Top intersection gate for repeated gate 3 (gate 10013).

The top intersection gate of the two appearance of gate 10013 (R3) is the top
gate 10000.

Push-up 4

Consider first the appearance of gate 10013 which is an input to the OR gate
10012. The gate above is gate 10011 which is an AND gate therefore the gate
cannot be pushed up. Now considering the second appearance which is
already an input to the top gate in the fault tree therefore this too cannot been

pushed up any more.

Common-input Push-up 2

There is no structure pattern in the tree of similar to that shown in figure 6.3.

Therefore no common-input Push-up can be done.

Elimination

The Elimination technique simplifies structure patterns of the form shown in
figures 6.4 and 6.5 and described in section 6.2.3. Processing the technique
requires the identification of pairs of primary and secondary gates as defined in
that section. The implementation of the programming for performing this
technique is straightforward. It searches for the pairs of primary and secondary
gates and removes the appropriate gate depending on if the primary and
secondary gate types are the same or different. However there is one
complication which needs consideration because of how the data of the fault
tree was stored in the arrays. All the gates are only defined once even if the
gate is repeated. For a gate which is repeated and contains a potential
secondary gate branching from beneath it (this gate is referred to as gate x)

then depending on which type of parent gate of gate x that is being considered

173

there may exist a primary AND gate, primary OR gate or not one at all.
Modifying the potential secondary gate for a primary gate above it may be
incorrect when considering another parent gate of gate x. For example in
figure 6.21 there is a fault tree shown that has a repeated gate (referred to as
GR), which is going to be considered. Gate GR is an input to gates G1, G5
and G7. There are also other repeated gates in the tree. Gate G1 is an input to
gates G2 and G4. Gate G4 is an input to gates G5 and G6. So gate G1 is a
secondary gate and G5 is a primary OR gate and G7 is a primary AND gate for
gate GR. This information is obtained by starting with the secondary gate G1
and tracing up the tree searching for primary gates. There are three possible
paths. The first path contains gates G1, G2, G3 and the top gate this path
does not contain any primary gate. The second path contains gates G1, G4
and G5 which is an OR primary gate. Therefore elimination can be carried out
by removing gate GR as a input to gate G1, but this will be incorrect for the
first path and incorrect for the third path which leads to a primary AND gate
G7. The solution to overcome this problem is to first obtain all of the possible
paths from the secondary gate. If the paths lead to different primary gate types
or no primary gate at all, then the gates of the paths that belong to more than
one path with different primary gate outcomes are copied. These copied gates
have their labels modified and are then replaced with the original gate for one

of the paths.

174

G7

|
c3 E] G5 E] G6 GR Repeated
gate
|
G2 [j GR Repeated gate G4

G1

GR Repeated gate

Figure 6.21: Example of a fault tree which is going to have elimination

performed on it

Since the main example being worked through does not feature the special
cases of the Elimination procedure, its procedure and coding is explained by
application to the fault tree shown in figure 6.21. The secondary gate, labelled
G1, has as an input the repeated gate GR. First the paths to primary gates or
the top gate if a primary gate is not encountered are obtained. The code scans
up from the secondary gate G1 to establish all the possible paths and records
them in an array. There are three such paths. The first path is gates G1, G2,
G3 and the top gate. This path does not encounter any primary gates. The
second path is gates G1, G4 and G5 which is a primary OR gate. The third
path includes gates G1, G4, G6, and G7, which is a primary AND gate. The
gates in the paths are labelled as shown on the fault tree in figure 6.22. The
first path is labelled as PTOP, the second path is labelled as POR and the third
path is labelled as PAND. Now that the paths have been obtained the building

and rearranging of the gates can start.

175

PTOP Q Top Gate

G7
PAND

PTOP G3 R
E] POR E] 5 Ge ¢
PAND
|
PTOP C] G2 GR G4 POR PAND

PTOP POR PAND G1

GR

Figure 6.22: Example of a fault tree for elimination which included the paths

on it

First the paths which lead to a primary gate of opposite gate type to the
secondary gate are considered. Since the secondary gate G1 is an OR type
then the paths that lead to a primary AND gate are considered first. The code
scans up path PAND. It misses gate G1 and goes on to gate G4 because gate
G4 will be the first to be modified. First the gate in the path is checked to see if
it exists in other paths. Gate G4 also exists in path POR therefore gate G4
must be copied and modified and replaced by the copied gate for path PAND.
The copied gate is referred to as gate N1. Now gate N1 is modified for the path
by removing the secondary gate G1 as an input. The next gate in the path to
be considered is gate G6. Gate G6 does not exist in any other paths therefore
it can be just modified by replacing the input of gate G4 with new modified gate
N1. Now the path that leads to a primary AND gate does not overlap with any

other path. The changes to the fault tree are shown in figure 6.23.

176

Top Gate
PTOP
G7 PAND
PTOP [] G3 POR E] G5 li

GR PAND

PTOP Cj G2 G|R G4 Cj SoR G6 Cj

N1 PAND

PTOP POR G1

GR

Figure 6.23: Example of a fault tree after first elimination

Next the code scans along the path which leads to primary gates of the same
gate type of the secondary gate. Since the secondary gate is an OR type
therefore the code scans up path POR. Starting with gate G1 since this will be
the first gate to be modified. Gate G1 also belongs to the path PTOP therefore
it is copied and modified. The copied gate is referred to as gate N2 and it is
modified by removing the repeated gate GR from the inputs. The next gate
considered in the path is gate G4. Gate G4 does not belong to any other paths
so it is just modified by replacing the input of gate G1 by the new modified gate
N2. Since none of the paths which lead to different outcomes now insect with
each other, all of the possible eliminations are performed. The fault tree

changes are shown in figure 6.24.

177

PTOP

PTOP Top Gate

PTOP G3 boR E] G5 D AND G7
]
POR G4 GR PAND G6 GR
G2
POR N2 PAND N1
G1

PTOP

GR

Figure 6.24: Example of a fault tree after second elimination

Considering again (figure 6.20) the main example, for the elimination process
to be applied it needs at least two occurrences of a gate to be considered.
Since gates 10006 (R1) and 10010 (R2) only appear once there is no
elimination possible. Considering the final repeated gate 10013 (R3), this
appears twice in the tree under gates 10012 and 10000.

Elimination 1

The code considers all the possible secondary gates of gate 10013 one by
one. The first secondary gate is gate 10012. The code scans up the fault tree
from gate 10012 searching for primary gates and recording the paths to them.
All the gates above gate 10012 only occur once in the tree therefore there is
only one path which leads to a primary AND gate. The path consists of gates
10012, 10011 and the top gate. Now that the paths have been recorded the

second part of the procedure can be performed which copies, modifies and

178

replaces gates. Since there is only one path there are no overlaps of gates
listed between difference paths and therefore none of the gates will have to be
copied which makes this elimination very simple. The code starts with the gate
10011 in the path and skips gate 10012 since this will be the first gate to be
modified because the primary and secondary gates types are different. Since
gate 10011 does not belong to another path it is modified by removing the
secondary gates 10012 from its input. The resulting changes of the tree are
shown in figure 6.25. The code moves on to the next secondly gate of gate
10013 which is the top gate. Since the gate 10013 only appears once in the
tree there is no primary gate to pair up with therefore there is no more possible

elimination for gate 10013.

Apply the restructuring techniques to the repeated events

The same restructuring techniques push-up, common push up and elimination
are also applied to the repeated events. In the example there are only two

repeated events 10 and 11 and they do not have any possible moves from the

three techniques therefore the tree is not altered.

179

Top

10000

10001
10011 10010 - 10013

10015

10014

()
ooz [~ G ° G 0 G °

w [[(5
)
[0

Figure 6.25: Fault file after all the possible push-up, common-input Push-up

and elimination being preformed

180

The next stage of processing in the code deletes any gate from the tree with
just one input and that input is pushed up to the parent gate of the gate which
has be deleted. In the example shown in figure 6.25 there are two gates with a
single input which will be deleted: gates 10007 and 10011. So the event 12
which is an input to gate 10011 becomes an input to gate 10000. Similarly

event 7 is pushed up to gate 10003.

Identifying modules

The code identifies modules by going through every repeated gate and event
and tracing up the tree from their location to the highest level intersection gate
of the particular repeated gate or event. Every gate that is traced through has
an array associated with it which records all the repeated gates and events
that get traced through it. Returning to the example shown in figure 6.25, there
are no repeated gates in this tree and just two repeated events 10 and 11. The
code considers event 10 first which appears twice in the tree as inputs to gates
10010 and 10015 and has a top intersection point at gate 10000. The code
traces event 10 from its two appearances to the top intersection gate it passes
on the first path through gate 10010, and the second path through gates
10013 and 10015 which are prevented from being modules. The event 11
appears as inputs to the gates 10014 and 10013 which obtain the top
intersection gate 10000. The code traces event 11 from its two appearances to
the top intersection gate it passes through gate 10013 on the first path, and
gates 10010 and 10014 on the second path which are prevented from being
modules. This information is recorded and shown in the array below. In the first
one-dimensional array in element 10 which relates to gate 10010 is the value 2
which means that two repeated gates or events which occur elsewhere in the
tree prevent it from being a module. In the two- dimensional array in column 10
are the values 10 and 11 which are the events preventing gate 10010 from
being a module. A similar pattern of information is seen in the values in column
13 representing gate 10013. The arrays also shows also that gates 10014 and
10015 have one repeated event which prevents it from being a module which
are events 10 and 11 respectively. The code can now identify which gates are

modules and which ones are not. If the gate does not have any repeated gates

181

or events preventing it from being a module then the elements of the one-
dimensional array entry relating to the gate will be equal to zero. Otherwise, if
it is not equal to zero then it has repeated gates or events preventing it from
being a module.

Therefore the array shows gates 10010, 10013, 10014 and 10015 are not

modules and every other gate is.

One-dimension array where each entry corresponds to a gate in the fault tree
and contains the number of repeated gates and events that prevent it from

being a module.

Figure 6.26: One-dimension array

Two-dimension array contains those repeated gates and events prevent any

gate it from being a module.

10 10 |11 |10

11 11

Figure 6.27: Two-dimension array

Factorization

The Factorization procedure searches for two non-module gates, which always
occur as inputs to gates which are all of the same type, and when these gates
are combined they form a module. Therefore these two gates are dependent
but independent of the rest of the tree and so their combination forms an
independent sub tree. For this procedure to be performed information is used
from the arrays above which contain every gate and a list of which gates and

events, appearing on branches beneath it, prevents it from being a module.

182

Having formed the above arrays, the code scans through all the possible non-
module gate pairs. The gates in the pairs are referred to as gate 1 and gate 2.
If gate 1 and gate 2 are always inputs to the same gates and all of those gates
are of the same gate type then the factorization procedure can continue.
Otherwise they cannot be combined to form a module and the next gate pair is
considered. Now the second stage of this procedure tests if gate 1 and gate 2
were combined would they be a module. If the combination is a module then
any gate or event that branches off under either of gates 1 or 2 would only
appear under gates 1 or 2. Therefore the code obtains information about the
gates and events beneath gates 1 and 2. The code scans beneath gates 1 and
2 and records all the repeated gates and events beneath them both in an array
which is referred to as list. Every gate and event in the list is then examined by
going through every appearance of the gate or event and tracing up the tree.
The code traces up the tree to see which gates is encountered first out of gate
1, gate 2 and the top gate. If for any trace the top gate is encountered before
gates 1 and 2 then gates 1 and 2 cannot be combined to form a module.
However if all the traces encounter gates 1 and 2 before the top gate then they
can be combined to form a module. If gates 1 and 2 can be combined to form
a module then the code creates a new gate with the same gate type as the
parents of gates 1 and 2 and adds gate 1 and gate 2 as inputs. This new gate

replaces gates 1 and 2 everywhere they appeared in the fault tree.

In the example shown in figure 6.25, the code only finds one pair of gates
10010 and 10013 which are non-modules and always occur together. The list
of repeated gates and events below these two gates contains only events 10
and 11. These events in the list are traced up from every appearance of the
tree to see if they encounter the top gate or gates 10010, 10013 first. Both
events from both of their locations encounter gates 10010 or 10013 first before
the top gate. Therefore gates 10010 and 10013 can be combined to form a
module. The code created a new gate referred to as 10016 which of gate type
AND (since gates 10000 is an AND type). The new gate has as inputs gates
10010 and 10013 and is itself an input to gate 10000 which replaces gate 1
(10010) and gate 2 (10013). These final changes to the tree are shown in
figure 6.28.

183

10016

- [
e[

Figure 6.28: fault tree after the Factorization process

184

After the factorization the code deletes any gate from the tree with just one
input and that input is pushed up to the parent gate of the gate which has be
deleted. Even those which have already been done before the factorization
procedure as a special case which creates a gate with only one input. If two
gates were factored that were the only input of their parent gate then after
factorization the parent gate would only have one input this is shown is figure
6.29.

Factorization
G1

v

New gate
G2 G3
G2 G3

Figure 6.29: Special case of factorization that creates an unnecessary gate

6.4 Results

6.4.1 The test mission example

In the previous chapter the fault trees for phases of a UAV mission, shown in
date format in Appendix B under mission set 9, were created with top events
representing catastrophic failure or mission failure. All the fault trees are put
together in one data file. This is done because the tree phases share a lot of
common branches. The number of distinct gates in all the phases is 980 and
the distinct events 1007. The majority of the fault trees developed for the
phases are only slightly smaller than a fault tree for the entire mission, since

there is a lot of common sub-trees between the phases. Some of the gates are

185

repeated through the mission several times because of common aircraft

functions and the energy sources required for them.

6.4.2 The effects of restructuring and taking out modules on the trees

All the phase fault trees are restructured by the method discussed in this
chapter and all the possible modules are taken out. Tables 6.3 and 6.4 show
the number of distinct gates and events for the catastrophic and mission failure
fault trees and tables 6.5 and 6.6 show them after the restructuring and
modules are taken out. They are significantly reduced, table 6.7 and 6.8 shows
the percent reduction of the number of distinct gates and events. The
percentage reduction in the number of distinct gates ranges from 80.1% to
96.3% with an average of 90.8%. The percentage reduction in the number of
distinct events ranges from 76.7% to 93.2% with an average of 87.5%. This
has significantly reduced the size of the fault trees. The total number of
modules taken out of all the fault trees is 106. This successful simplification is
down to the common functions and energy sources required between the
phases that occur many times throughout the fault tree. These common sub-
sections which spread throughout the fault trees at different levels pervert
many higher level gates from being modules. When the restructuring
techniques are applied common sub-sections are bought closer together that
changes a large number of non-module gates to module gate. Since the
common sub-sections that prevented them from being modules have been
pushed past it. Also contributing to the saving of time was the restructuring
and factorising techniques applied to the particular Dc and Ac power sub-
section which share common components and are the most complex parts of
the fault trees. The restructuring bought them together and the factorization
made it so they could be combined to form a module therefore the BDD for it

was built offline saving online time.

186

Mission Catastrophic Failure Fault Tree
Phase Number of Distinct Number of Distinct
gates Events
Start up (1) 51 60
Taxi out (3) 51 60
Take off (5) 682 805
Climb (7) 582 692
Cruise (9) 582 691
Decent (11) 705 847
Land (13) 689 781
Taxi in (15) 51 60
Shutdown (17) 51 60

Table 6.3: Characteristics of the catastrophic phase failure before restructuring

and modules are taken out

Mission Mission Failure Fault Tree
Phase
Number of Distinct Number of Distinct
gates Events
Start up (2) 699 841
Taxi out (4) 556 659
Take off (6) 668 791
Climb (8) 719 862
Cruise (10) 697 838
Decent (12) 705 847
Land (14) 812 937
Taxi in (16) 333 384
Shutdown (18) 52 61

Table 6.4: Characteristics of the mission phase failure before restructuring and

modules are taken out

187

Mission Catastrophic Failure Fault Tree
Phases Number of Number of Number of Number of
Distinct Distinct Nodes used Nodes in
gates Events Making the phase BDD
Phase BDD
Start up (1) 10 15 116 31
Taxi out (3) 10 15 116 31
Take off (5) 32 66 871 229
Climb (7) 35 58 1359 425
Cruise (9) 35 58 1358 425
Decent (11) 35 61 1431 449
Land (13) 30 61 638 218
Taxi in (15) 10 15 116 31
Shutdown (17) 10 15 110 31

Table 6.5: Characteristics of the catastrophe phase failures after restructuring

and module are taken out

Mission Mission Failure Fault Tree
Phases Number of Number of Number of Number of
Distinct Distinct Nodes used Nodes in
gates Events Making the phase BDD
Phase BDD
Start up (2) 30 60 654 232
Taxi out (4) 30 56 565 213
Take off (6) 32 65 860 228
Climb (8) 35 62 1435 450
Cruise (10) 35 61 1430 449
Decent (12) 35 61 1430 449
Land (14) 30 64 698 230
Taxi in (16) 23 33 346 160
Shutdown (18) 10 15 127 31

Table 6.6: Characteristics of the mission phase failures after restructuring and

module are taken out

188

Mission

Catastrophic Failure Fault Tree

Phases Percentage Percentage
Reduction Reduction
in number of gates in number of events

Start up (1) 80.1 75.0
Taxi out (3) 80.1 75.0
Take off (5) 95.3 91.8
Climb (7) 93.9 91.6
Cruise (9) 93.9 91.6
Decent (11) 95.0 92.8
Land (13) 95.6 92.2
Taxi in (15) 80.1 75.0
Shutdown (17) 80.1 75.0

Table 6.7: Percent Reductions of the catastrophe failure phases after

restructuring and module are taken out

Mission Mission Failure Fault Tree
Phases Percentage Percentage
Reduction Reduction
in number of gates in number of events
Start up (2) 95.7 92.9
Taxi out (4) 94.6 91.5
Take off (6) 95.2 91.8
Climb (8) 95.1 92.8
Cruise (10) 95.0 92.7
Decent (12) 95.0 92.8
Land (14) 96.3 93.2
Taxi in (16) 93.1 914
Shutdown (18) 80.8 76.7

Table 6.8: Percentage Reductions of the mission failure phases after

restructuring and module are taken out

189

The number of BDD nodes used is also shown in the tables 6.5 and 6.6.
However these values are not exactly the value relating to the final BDD, since
the BDD is created by continually generating new BDD branches which
replace the old branches. The old branches are retained within the count since
they may be used again when looking—up the previous computations to avoid
repetition and also to delete them would take up time, it is more efficient for
them to be left. The exact number of nodes in the phase BDDs are shown in
the last column of tables 6.5 and 6.6. The number of nodes in the phase BDD

is less than number of nodes used making the phase BDDs.

6.4.3 The times of the mission calculation

The results of the times of the mission calculation are shown in table 6.9 for
catastrophe failure, and table 6.10 for mission failure. The first column
represents the mission in terms of the phases identified by, the phase numbers
taken from table 6.9 and table 6.10. The second column is the online time of
calculation, once the mission starts. The third column is the offline calculation,
all the calculation that can be done before the mission starts. The offline
calculation is similar for all the missions as shown in the table it is usually
about 6 seconds. The forth column is the number of BDD nodes used for the
whole calculation. This is not the number of nodes in the final BDD, as was
discussed earlier in the chapter. These online times are very efficient, since big
trees are calculated with a real time analysis of under 30 seconds. This is far
superior to the ordinary method without restructuring the tree. The ordinary
method from chapter 4 section 6 attempted to do just one of these phases
(cruise phase) and ran for about 2 hour 34 minutes before running out of
memory. Even if it had enough memory the calculation time would exceed 2
hour 34 minute. When the ordinary code inputs all the possible phases and
tries to build all the module BDDs, at the offline stage, it run for 10 min and run
out of memory. So without restructuring the ordinary code cannot build some
of the modules. However this does not apply to all the phases. Phases start

up, taxi out and shutdown for catastrophe failure and the shutdown mission

190

failure. These phases can be calculated as many times as needed by the
conventional method. Since these phases are all ground phases almost all of
the tree is just the sub-tree that represents the event of the engines being on

fire and can be taken out as a module, which just consists of one gate and two

events.

Mission Online times in Offline time in Number
Seconds Seconds of Nodes

1,3,5,7,9 0.50 6.34 18433

1,3,5,7,9,11,13 2.39 6.31 37729

1,3,5,7,9,11,13,15 2.61 6.38 43684

1,3,5,7,9,11,13,15,17 | 3.38 6.33 61771

1,3

1,3,5,7,9,11,13,15,17 | 4.45 6.38 74731

1,3,5,7

1,3,5,7,9,11,13,15,17 | 5.83 6.38 83361

1,3,5,7,9

1,3,5,7,9,11,13,15,17 | 8.97 6.33 96994

1,3,5,7,9,11

1,3,5,7,9,11,13,15,17 | 10.97 6.30 115055

1,3,5,7,9,11,13,15,17

1,3,5,7,9,11,13,15,17 | 24.97 6.30 180438

1,3,5,7,9,11,13,15,17

1,3,5,7,9,11,13,15,17

Table 6.9: Results of the missions made up from the catastrophe failure phase

tree

191

Mission Online times in | Offline time in Number of

Seconds Seconds Nodes

2,4,6,8,10,12 214 6.31 36552

2,4,6,8,10,12,14,16,18 4.16 6.33 59401

2,4,6,8,10,12,14,16,18 15.50 6.32 137461
2,4,6,8,10,12,14,16,18

2,4,6,8,10,12,14,16,18 35.61 8.13 215521
2,4,6,8,10,12,14,16,18
2,4,6,8,10,12,14,16,18

Table 6.10: Results of the missions made up from the missions failure phase

tree

6.4.5 Conclusion and further work

The results are very efficient. This is down to considering the nature of the
phase tree structure. Since there are a lot of common aircraft functions
between the phases. These functions are generally only dependent on each
other due to power sources and sensor information (avionics). The method
developed restructures the tree so sub trees of power sources and senior
information can be pulled out of the functions and stop them preventing other
gates from being modules. By doing this makes the functions independent

from each other, which enables simplification of the tree.

192

Chapter 7: Updating the Phased Mission Analysis with mission

reconfiguration

7.1 Introduction

While a mission is being performed the mission objective may change as a result of
failure diagnosed or rerouting due to emerging threats. This alters the phases in the
remainder of the mission. A new analysis needs to be done for what is effectively a
new mission to calculate the probability of the mission failure given that the mission
has already successfully completed up to the point where the change was made.
This is practical in a real mission situation since the mission objective could change
throughout the mission, potentially several times. The calculations of the analysis
need to be performed in the fastest time possible since it is an online time analysis
used to aid the mission planning. Since the analysis is being updated from the old
mission, it can be performed by reusing parts of the old mission analysis to analyse
the new mission; this can potentially significantly reduce the time of the analysis.
This chapter presents and demonstrates an extension to the current phased mission
analysis method, shown in chapter 4. The analysis can then be updated when the
mission profile changes. The method is tested on some further phases that represent

different mission objectives and are explained below.
7.2 Reconfiguration

Throughout the duration of a mission, the UAV must self-adapt to changes
happening in the environment, mission objectives and the aircraft operational state.
The mission is reconfigured by considering the changing factors and optimizing to
produce best chance of the mission being completed successfully. The mission
planning process can be split into three stages: mission generation, mission analysis
and mission reconfiguration. A diagram of this procedure is shown in figure 7.1 [28].
The procedure starts with generating a mission plan from the information provide on
the mission objectives. The mission is analysed to predict the phase and mission
reliability. This is updated when the mission progresses from information provided by
the fault diagnostic systems onboard and changing weather conditions or emerging

threats. The results are used to make a decision to either reconfigure or to continue

193

the mission. If the mission is to be reconfigured this is carried out to optimize the

reliability of the mission by changing the remaining phases of the mission.

5 |3
g 3 % » a
g2 | 28| £ r+ At
S ® € © =
c c o C ©
w o oo s l
| | e e e
1
! Mission | 1Y v v
1 1
I objectives ' i
1 | 1 .
| H i Mission Ph g
i - 1 iabili ase an
' Known Mission .] Reliability [) ™ .
' | information 1 pan :—V: Models Mission Reliability
: ' 1 | (FTA, BDD)
' | !
! I_nltlal > ! !
! requirements I !
I____________________T_ _____ | L e e
Mission Generation Mission Reliability Analysis
Reconfiguration

(Optimization) using GA

Figure 7.1: The onboard decision making strategy

7.3 The phase tasks

Phase tasks are presented in this section which can be used to construct practical
UAV phased missions. This phase and mission information was obtained from work
done by Samuel Chew [26]. The task phases for the UAV mission are anti-
submarine warfare (ASW), anti-surface warfare (ASUW) and search and rescue
(SAR). These task phases require a combination of the sub-systems to function as

follows:

e Tactical Command System (TCS) — interacts with the sub-system to provide
the crew with all the information to compete the mission. It interfaces with
the crew through the use of keyboard, mouse, programmable entry panels
and mulit-function displays.

e Defensive Aids Sub-system (DASS) - this sub-system detects threats to the
aircraft, evaluates the size and type of threats and then transmits signals to

other subsystems.

194

e Flight Management System (FMS) - calculates the position and other

navigational information for the aircraft.

e Magnetic Anomaly Detector (MAD) — detects fluctuations in the earth’s

magnetic field which could indicate the presence of a submarine.

e Stores — the objects that are stored on the aircraft such as weapons.

e Radar/ldentification of Friend or Foe (Radar/IFF) — detects the type of items
and detected. For example surface vessels may be detected then classified

and tracked.

e Electronic Support Measures (ESM) — detects emission of electromagnetic

data and obtains information about the emitter such as its position.

e Electro-Optical Surveillance/ Detection (EOSDS) — obtains day and night

images while the aircraft is airborne.

The fault trees that represent failure of these phase mission tasks are shown in

appendix E.

7.4 The method

The mission unreliability calculation process for an updated mission is an extension
of the method from chapter 4 section 4.4 (Method 2). It is explained by means of an

example analysis. Given that there are four possible phases to make up a mission

and their fault trees containing three different events are shown in figure 7.2.

195

Phase Y Phase X Phase Z Phase W

() et () 63 G4 G6
O oE =Y o

Figure 7.2: Fault trees of phases Y,X,Z and W

7.4.1 Analysis of Original Mission

Suppose the original mission is made up of three phases in the order of Z, Y and X.
For analysis the fault trees are first converted to BDDs (variable order A<B<C) and

the variables converted to phase variables, as shown in figure 7.3.

Figure 7.3: Phases BDDs for phases Z, Y and X

Now Method 2 from chapter 4, section 4.4 is used for calculating the phase
unreliability probabilities of the original mission plan, the calculations are shown

below:

196

For Phase 1

Probability of node 2:

Po(N,=1)=1+(1-P(B,, =1) -®P(C,, =1)-1)
Probability of node 1:

P(N, =1)=P(N,=1)+(A-Pr(45, =1))-Pr(Cy,, =1)-Pr(N, =1))
Probability of failure in phase 1

Pr(P, =1)=Pr(N, = 1)

For Phase 2

Figure 7.4: Phase 1 OR Phase 2 BDDs

197

The BDD for failure at the end of phase 2 is obtained as shown in figure 7.4.
Probability of node 5:

P(N;=1)=1+(1~-Pr(B,,=1))-Pr(Cy,, =1)-1)
Probability of node 10:

Pr(N,, =1)=Pr(N;=1)+(1-Pr(4,,=1))-(Pr(C,, =1)-Pr(N5 =1))
Probability of failure in phase 1 or Phase 2:

Pr((P+P,)=1)=Pr(N, =1)

Probability of failure occurs in 2:

Pr(P,P,=1)=Pr(N, =1)-Pr(N, =1)

For Phase 3

Figure 7.5.a: (Phase 1 OR Phase 2) OR Phase 3 BDDs combined

198

Figure 7.5.b: (Phase 1 OR Phase 2) OR Phase 3 BDDs combined

The BDD representing mission failure at the end of phase 3 is developed as shown
in figure 7.5 a and b.

Probability of node 11:

Pr(N, =1)=1+(1~-Pr(B,,=1) (Pr(Cy, =1)-1)

Probability of node 12:

Pr(N, =1)=Pr(N,, =1)+ (1 -Pr(By; =1))-(Pr(Cy, =1) - Pr(N,, =1))
Probability of node 13:

Pr(N; =1)=Pr(Cy;=1)+A-Pr(B,;=1)-Pr(C,, =1)-Pr(C,; =1))
Probability of node 14:

Pr(N, =1)=P(N, =)+ (A -Pr(4,, =1)) - Pr(N,; =1)-Pr(N, =1))
Probability of failure in phase 1 or Phase 2 or Phase 3

Pr((P + P, + P)=1)=Pr(N,, =1)

199

Probability of failure occurs in 3:

PT(EE& =1)=Pr(N, =1)-Pr(N,, =1)
7.4.2 Analysis of Reconfigured Mission

The method analyses the reconfigured mission, given that the original mission was
successful up to a particular phase, to produce the failure of future phases. The
method reduces its online time of analysis by reusing information obtained from the
analysis of the original mission. This can be achieved because the method builds a
sequence of phase BDDs by continually combining the BDD established to the
current phase with that of the next phase BDD and then quantifying the BDD at each
step for the failure probability. Then each probability of failure from mission start to
the end of a phase is subtracted from the previous one to obtain the phase failure
probabilities. This is demonstrated in the example above. The reconfigured mission
will be the same as the original mission to the point where the reconfiguration is
instigated. Therefore the new analysis can continue from the point in the sequence
where the mission has already been successful instead of starting from the
beginning. The phase failure probabilities are substituted in the formula in 7.1 to
obtain the conditional probabilities that failure occurred after it was successful up to a
certain point in the mission. This equation is from reference [27], where n is the total
number of phases in the mission, k is the phase that the reconfigured mission failure
occurs and j is the phase that the mission has been successful up to. The previous

example is used again to demonstrate the process and is shown below.

0, =L

1=i

O , is the probability that mission failure occurs in phase i.

0., ; is the probability that mission failure occurs in phases k given that the

mission has be successful up to phase j.

200

To consider mission reconfiguration suppose that the mission successfully
completes phases 1 and 2 and then something happens so that the phases after
phase 2 are replaced with phases W and X. Now phase W is phase 3 and phase X is
phase 4. Their fault trees are converted to BDDs and the variables are converted to
phase variables as shown in figure 7.6. The method now needs to calculate the
probabilities of the mission failure occurring in phases 3 and 4 given that it was
successful up to phase 2. Also the phase variable event probabilities are
recalculated for phases 3 and 4 since these will have changed due to the

reconfiguration from the old mission to the new mission.

Phase 3 Phase 4
BDD W BDD X

Figure 7.6: Phase 3 and Phase 4 BDDs for the new mission

When creating the BDD that represents failure in phases 1 OR 2 OR 3 for the new
mission, the BDD from the previous analysis that represents failure in phases 1 OR 2
shown in figure 7.4 can be reused. The reused BDD is then combined with the BDD
that represents the failure causes for phase 3, shown in figure 7.7, by the OR
operator. This can be done since the first two phases are the same and the
sequence of adding the following phase BDD by an OR operator can be continued.
The BDD created for failure in phases 1 OR 2 OR 3 of the new mission is shown in

figure 7.7.

201

Figure 7.7: (Phase 1 OR Phase 2) OR Phase 3 BDDs combined for new mission

The new BDD for failure in phases 1 OR 2 OR 3 is quantified to establish its failure
probability. This probability is subtracted from the probability calculated for the
original mission of failure in phases 1 OR 2 to obtain the probability that failure

occurs in phase 3.The working for this shown below.

Probability of node 15:
Pr(N;s =1)=1+0-Pr(4,;=1))-Pr(Cyy =1)-1)
Probability of failure in phase 1 or Phase 2 or Phase 3

Pr((P + P, + P,)=1)=Pr(N; =1)

202

Probability of failure occurs in 3:

Pr(PP,P, =1)=Pi(N,; =1)-Pr(N, =1)

The analysis continues to develop the BDD for failure in phases 1 OR 2 OR 3 OR 4
of the new mission using the previous BDD that was created and combining this with
the BDD for the failure of phase 4.

Figure 7.8: (Phase 1 OR Phase 2 OR Phase 3) OR Phase 4 BDDs combined for

new mission

Using BDD for failure in phases 1 OR 2 OR 3 OR 4, shown in figure 7.8, the

probability of failure in phase 4 is calculated shown below.

203

Probability of node 20:

Pr(N, =1)=Pr(C,, =1)+ (1 - Pr(B,, = D) -Pr(Cy5=1)-Pr(C,, =1))
Probability of node 19:

Pr(N,y =1) =1+ (1~ Pr(4y, =1))-(Pr(Ny =1)—1)

Probability of failure in phase 1 or Phase 2 or Phase 3 or Phase 4

Pr(P+ P, + P, +P,)=1)=Pr(N,y =1)

Probability of failure occurs in 3:

Pr(P, P,P,P, =1)=Pr(N,, =1)-Pr(N =1)

To calculate the probabilities of phase failure in the new phases of the mission
conditional on success up to phase 2, the unconditional probabilities calculated

above are substituted into equation 7.1.

7.5 Results and discussion

The phases that are selected to test this method are listed in table 7.1. The phases
in rows 1 to 5 and 11 to 14 are general UAV mission phases that were used in
chapter 6 and their fault trees are shown in appendix B under mission set 8. The
phases in rows 6- 10 are specific mission task phases that were discussed earlier
and their fault trees are shown in appendix E. Prior to the analysis the fault trees are
re-structured to take out modules applying the method from chapter 6. The analysis
of the sequence of missions is performed both with and without the updating

approach and the online running times are recorded for comparison.

204

Number

Phases name

Start up

Taxi out

Take off

Climb

Cruise

ASW

ASW_ATT

ASUW

©| 0 Nl O O & WO N

ASUW_ATT

-
o

SAR

—
—_—

Decent

—_
N

Land

—_
w

Taxi in

—_
I

Shutdown

Table 7.1: The phase name

The results are shown in table 7.2. The first column is the number of times the
mission has had an updated analysis performed on it. The second column is the
number of phases that are successful up to the point where the mission is altered.
The third column is the mission configurations in term of the phase index numbers
relating to phases in table 7.1. The phase index numbers shown in bold indicates
that the phases have already been completed successfully. The forth column shows
the online times of the updated analysis being performed and fifth column shows the

online times without the updated analysis (ie just method 2 after restructuring and

the modules have been taken out.)

205

Number of Phase Mission Online Online
updating mission time with time
successful updating | without
up to method | updating
method
1 0 1,2,3,4,5,11,12,13,14 10.68s 9.26s
2 5 1,2,3,4,5,6,7,5,11,12,13,14 10.00s 9.92s
3 8 1,2,3,4,5,6,7,5,8,9,5,11,12,13,14 13.15s 14.44s
4 11 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10, 20.83s 22.74s
11,12,13,14
5 15 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 | 17.32s 31.79s
,8,8,9,10,11,12,13,14
6 20 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 | 31.37s 47.81s
,8,8,9,5,8,9,5,11,12,13,14
7 24 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 | 46.55s 1 min
,8,8,9,5,8,9,5,5,6,8,10,5,11,12,13, 7.54s
14
8 29 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 Tmin 1 min
,8,8,9,5,8,9,5,5,6,8,10,5,10,5,10,5 9.75s 34.49s
,6,7,5,11,12,13,14
9 37 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 1 min 2 min
,8,8,9,5,8,9,5,5,6,8,10,5,10,5,10,5 | 10.05s 10.19s
,6,7,5,5,6,7,8,9,10,5,11,12,13,14
10 42 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 1min 2min
,8,8,9,5,8,9,5,5,6,8,10,5,10,5,10,5 | 18.68s 51.06s
,6,7,5,5,6,7,8,9,10,5,5,10,5,10,5,6
,10,11,12,13,14
11 49 1,2,3,4,5,6,7,5,8,9,5,5,10,5,10,6,7 1min 2min
,8,8,9,5,8,9,5,5,6,8,10,5,10,5,10,5 | 30.19s 52.72s

,6,7,5,5,6,7,8,9,10,5,5,10,5,10,5,6
,10, 5,6,7,10,11,12,13,14

Table 7.2: The Online times of the analysis with and without the updating method

The online analysis times for the eleven missions analysed shows that for the first

two missions the updated approach is not faster than without, but only less by

approximately 10%. As the mission sequence progresses the improvement of the

analysis time of the updated approach compared to without it increases. On the last

three missions analysed the updated approach is approximately twice as fast. The

206

reason for these results is that as the mission gets larger there are more
computations to reuse which reduces the analysis times. For example the last
mission contains 57 phases and the first 49 have been completed successfully.
Without the updated method, therefore not using any analysis done before, the
analysis would combine the entire 57 phase BDDs together in a sequence. However,
when using the updated approach the BDD for the first 49 phases has already been
developed from the previous analysis, therefore it can be reused and only the BDDs
for the last 8 phases in the sequences have to be newly combined. The approach
successfully reduces the number of computations for this practical situation of
continually updating the mission analysis. The method will be more successful in
reducing the online analysis time for missions with multiple reconfigurations
throughout and where the majority of the mission has already been successful. This
is practical as real missions can have any reconfigurations throughout its duration.
Conversely if a mission has one reconfiguration after its first phase then it will not be

as effective.

207

Chapter 8: Parallelization of a PMS Analysis

8.1 Introduction

Large calculation procedures can be broken down into their sub-calculations. These
sub-calculations may depend on each other and therefore have to be performed in a
particular ordered sequence. Conversely if the sub-calculations are independent they
can be performed simultaneously. The advantage of breaking down the PMS
analysis calculation procedure into independent sub-calculations for a real time
analysis is that each sub-calculation can be performed on a separate computer
which will reduce the online time for obtaining the results. This chapter explains,
demonstrates, and tests a method which splits the PMS analysis into independent

calculations to be performed in parallel.

The method identifies parts of the set of fault trees from the PMS that can be
analysed independently from the rest of the fault trees. These independent parts are
referred to as groups. Each group can be treated as a smaller PMS therefore they
can be analysed in the same way. The motivation for identifying these groups is that

they can be analysed simultaneously, reducing the overall calculation time.

8.2 The method

Assume that a mission of n phases for which the failure cause for each phase is
represented by a fault tree is to be analysed. The steps below identify if the fault

trees of the phased mission can be analysed in parallel and explains the procedure.

1) All of the top gates of the n fault trees must be OR types for the procedure to
continue. This is restrictive since if at least one top gate is an AND type the
method cannot be performed, however the majority of fault trees that

represented aircraft mission phases will have an OR type top gate.

2) All of the input gates to the top gates are identified and referred to as level

one gates.

208

3)

6)

7)

8)

For every level one gate all of the repeated gates and events that appear at
any level beneath it are identified and recorded.

For every level one gate all of its repeated gates and events that appear
beneath it are traced up from every appearance in the fault trees to locate
their gate of intersection, or to another level one gate, which will be recorded.
These recorded level one gates that are reached will be logically dependent
with the level one gate on which the trace procedure was initiated which

means that the two gates have events and gates in common.

A group of level one gates is formed containing all the level one gates in the
group that are logically dependent. This entire group is logically independent
of the rest of the level one gates that are not in the group and the rest of the

fault trees.

A group is not further considered if there is any pair of level one gates in the

group which belong to the same phase.

All of the level one gates in a group must be a module of the fault tree to

which it belongs. If not then the entire group cannot be considered further.

Now in the groups that are left, all of the level one gates that they contain are
removed from the fault trees. Each group is treated as an individual phased
mission. These together with the original phase mission with the groups

elements removed are analysed to obtain their probabilities of phase failure.

The final analysis is performed by combining the probabilities from the
calculations for each group and the ordinary phase mission with the group

elements removed by the formula given below.

209

£ i.7 is the Boolean logic of group i in phase j.

ki is the Boolean logic of the failure causes of phase i after the group elements

have been removed.

The probabilities of group i failure up to the end of each mission phase in turn are

calculated in step 8 of the above procedure and shown below:

Pr(g

Pr(gi,l +gi,2)

The probabilities of failure at the end of each of the k, phase after the group

elements have been removed form all the phase mission fault trees are also

calculated in step 8 of the procedure defined.

Pr(k,)
Pr(k, +k,)

Now the phases failure probabilities can be expressed in terms of the probabilities

generated in step 8 above.

210

The probability of phase 1 failure can be broken down to all the level one gates in

phase 1 and the rest of the logic that is not part of any group.

Pr(pl)=Pr(g1,1+gz,1+g3,1+ ------ +gm,l+k1)
Applying the inclusion-exclusion expansion equation (2.26), gives:

Pr(g,,)+Pr(g,,)+Pr(g;)+...... +Pr(g,.,)+Pr(k,)

- Pr(gl,l : gZ,I)-Pr(g2,1 : g3’1)-

m+1
- (_1) ’ Pr(g1,1'g2,1'g3,1'--- 'gn,l'kl)

Since the groups are independent, the probability of two logic events occurring

together is just the product of their probabilities. This gives the following:

= Pr(gl,l)+ Pr (gz,l)+Pr (g3,l)+ ------ +Pr (gm,l)+Pr(k1)
-Pr(g,) Pr(g,,)-Pr(g,,)Pr(g,,)- oo,

...... (-D""Pr(g,,)-Pr(g,,)...Pr(g,,) Pr(k,) (8.1)

All the terms in the expression have already been calculated and therefore just need
to be substituted in. The same form of expression is produced for the mission failure
at the end of each phase. The working is shown below. The failure probability at the

end of phase 2 is.

Pr(p,+p,)

Re-arranging the terms together with the groups they belong to gives:

211

= Pr((g1,1 tg.,)+(g2,1 tg,,)+"'+(gm,l+gm,2)+(k1 +ik,))

Applying the inclusion-exclusion expansion again gives:

=Pr(g1,1 tg,,)+Pr(g2,1 tg,,)+ ---------- +Pr(gm,] tg.,.,)+

Prik, +5,)-Pr((s., tg..) (8. %8..))-Pr((e., +e.) (., tg5.))-

“(_1)’"“ Pr((gl,l +g1,2)'(g2,1+g2,2) """ (gm,1+gm,2)'(k1 +k2))

=Pr(g1,1 +g.,)+Pr(g2,1 +g,,)+ --------- +Pr(gm,l +g.,..)+Pr(k1 +k2)
'Pr(g1,1 +g1,2) Pr(gz,1 +g2,2)' Pr(g1,1 +g1,2) Pr(g“ +g3,2)

(_1)m+1 Pr(g..tg,) Pr(g2,1 tg,,)"'Pr(gm,l +gm,2)' Pr(kl +k2) (8.2)

This process can be repeated for each of the mission phases.
8.3 Example
The method is demonstrated by working through an example PMS analysis. The

fault trees that represent the failure causes for the phases of the mission are shown

in figure 8.1. The working is as follows:

212

Phase 1

Phase 3

Eg G14
|
() o
Ve (3)
G18

Figure 8.1: Fault trees for the three Phase mission example.

213

1)

2)

All the top gates of the fault trees are OR gates therefore the procedure can

continue.

All the input gates to the top gates of the fault trees are recorded and referred

to as level one gates and they are shown in the first row of table 8.1.

Every level one gate has all of its branches scanned and all of the repeated
gates and events that are encountered are listed. This information is critical
for identifying which level one gates are dependent or independent of each
other. For example gate G2 has repeated events A, B, C listed and no
repeated gates beneath it. The information for all of the level one gates is

shown in the second row of table 8.1.

This step works out which level one gates are dependent or independent of
each other. The level one gates are considered one at a time. For each level
one gate all of the repeated gates and events that appear beneath it are
examined one by one. Each repeated gate or event has all of its
appearances in the mission identified and these are traced up through the
tree structure until the top points of intersection are reached. This could be
another level one gate then in this case it is recorded as dependent. For
example consider the level one gate G2 with repeated events that appear
beneath it A, B and C. The appearances of event A are located first. Event A
appears three times as inputs to gates G2, G10 and G16 and the top points
of intersection are the top gates G1, G7 and G14 since the paths traced do
not intersection each other before these gates. When the paths are traced up
from gates G10 and G16 they reach the level one gates G8 and G15. These
are therefore in the same dependence group as gate G2 which is recorded.
The tracing up procedure is also performed for the appearance of events B
and C and they obtain the same result of reaching gates G10 and G16. Now
the other level one gates are considered and the results of their dependents

are shown in the third row of table 8.

Now it is identified which level one gates are dependent, the groups are

formed to create independent mission elements. A group is defined by a set

214

8)

of level one gates which are dependent but independent of the rest of the
level one gates that are not in the set. These are obtained by going through a
procedure using the information shown in table 8.1. Starting with the first
level one gate G2, assign it to group 1 and assign its level one gates, that it is
dependent on (G8 and G15), to group 1 as well. Next all other level one
gates that are dependent on gates G8 and G15 are also assigned to group 1.
All of the possible level one gates that can go into group 1 are listed and the
procedure will keep on repeating. So group 1 now contains the gates G2, G8
and G15. The procedure moves on to the next level one gate that does not
belong to a group yet. Gate G3 is considered and the same procedure is
performed to form group 2 which consists of the level one gates G3, G9 and
G17. Now all the level one gates belong to a group so the procedure stops.

Groups 1 and 2 are then checked to establish if they contain only one level
one gate belonging to any phase. Group 1 has gate G2 belonging to phase 1,
gate G8 from phase 2, and gate G15 from phase 3. Group 2 has exactly one
gate belonging to each of phases 2 and 3. Therefore the required condition
for step 6 is satisfied and the method moves on to step 7. This is necessary
because if there is more than one level one phase gate appearing in the

same group then they cannot be extracted to form an independent mission.

Each level one gate for groups 1 and 2 must be a module of the particular
phase it belongs to (independent from the rest of the phase fault tree it
appears in). Gates G2 and G3 are modules in the phase 1 fault tree, also
gates G8 and G9 are modules for phase 2, and gates G15 and G17 for
phase 3. This is necessary because if the level one gate is not a module of
the phase then the group that it belongs to cannot be extracted to form an

independent mission

All the groups are extracted from the phase fault trees shown in figure 8.1

and each group forms its own phased mission, this shown in figure 8.2.

215

Level one G2 G3 G8 G9 G15 G17

gate
Repeated A E A H A H
gates and B F B F C G
events C G C G D F
H D E
Dependent G8 G9 G2 G3 G2 G3
level one G15 G17 G15 G17 G8 G9
gates

The group Group 1 Group 2 Group 1 Group 2 Group 1 Group 2
belonging

to

The phase Phase 1 Phase 1 Phase 2 Phase 2 Phase 3 Phase 3
belonging

to

Table 8.1: information of the level one gates

9) All of the phased missions, the groups: and the phase fault trees after the
groups are extracted, are analysed by the standard method explained in
chapter 4 to yield the probability of failure in every ‘phase’ or any of the
pervious phases. These results are substituted in the equations (8.1) and

(8.2) to obtain the probability of failure for the entire phased mission.

216

Phase 1

Phase 1 of
group 1

Phase 2

Phase 3

Phase 2 of
group 1

8
G1 G11

oclo

M -
oOar

Phase 1 of
group 2

Phase 2 of
group 2

EEE

Phase 3 of
group 1

ar

oo (o)

Phase 3 of

group 2

G17

Figure 8.2: The groups of the fault trees for Phase mission

217

8.4 Fault trees structure of practical UAV mission

An example of a UAV mission where cause of failure is represented in fault trees
shown in figure 8.3. The phases in the mission require specified sub-systems to
function. A sub-system is likely to be required in more than one phase such as the
hydraulic system and the fuel system. In the example the hydraulic and fuel systems
cannot be taken out as modules because the failure criteria are different in each
phase, as shown by its index. However the parallelization approach discussed can
take out the hydraulic and fuel system as independent groups that can be treated

and analysed by the same phased mission methods.

Phase 1
Hydraulic Fuel Electrical Flight Avionic
System 1 System System 1 Control System 1
1 System1
Phase 2
Hydraulic Fuel system Electrical Flight Avionic
System 2 2 System 2 Control System 2
System2
Phase 3
Hydraulic Fuel Electrical Braking Landing
System 3 System System 3 System Gear
1 System

Figure 8.3: Fault trees structure of practical UAV mission

218

8.5 Results and Testing

The parallelization method is designed to reduce the online time required to perform
a UAV phased mission analysis. For example consider if a common aircraft function
is required in several phases, the part of the fault tree developing the causes of its
failure can be taken out as a module of the fault tree for the whole mission, (as
carried out in the methods chapters 4 and 6). Now consider a further layer of
complexly if the sub-systems failure criteria may differ in the different phases. This
case is practical for a real aircraft mission since a sub-system may not perform the
same task in all of its phase. For example the fuel system may have different failure
criteria in the take off phase compared to the cruise phase.

To test the method the UAV mission phases considered in chapter 7 and shown in
appendix E section 1 (listed and numbered in table 8.2) are modified by changing
some of the sub-systems for the mission task phases ASW, ASW_ATT, ASUW,
ASUW and SAR so they have different failure criteria in these phases. These
changes are shown in appendix E section 2. The parallelization method is applied to
the Phased Mission Analysis method from chapter 6 which restructures the fault
trees to optimize the number of modules that can be taken out and is the best
method produced for a UAV PMS analysis. Parallelization is applied to the method
once the fault trees have been restructured and modules have been taken out, and
after the method continues to quantify the phase failure probabilities. The
parallelization procedure along with the restructuring of the fault trees and module

extraction can be done off line.

219

Number

Phases name

1

Start up

Taxi out

Take off

Climb

Cruise

ASW

ASW_ATT

ASUW

O O N| O O & WO DN

ASU_ATT

-
o

SAR

—
—_—

Decent

—_
N

Land

—_
w

Taxi in

—_
I

Shutdown

Table 8.2: The UAV mission phases

Table 8.3 contains the results. The second column lists the mission configuration in
terms of the phase numbers that are shown in table 8.2. The third column lists the
online times for the method when parallelization is applied, there is a list of times
which are the online calculation times of the individual parallelization tasks that the
method was separated into. The maximum of these times is the one contained in
brackets. This time is important since the maximum time is the overall online time
that these tasks can be carried out in, because all of these calculations are

performed simultaneously. The fourth column lists the online times without the

parallelization been applied.

220

Mission Mission Configuration Parallelization Method
Number times time
1 1,2,3,4,5, 6, 11,12,13,14 0.19s,0.20s,0.44s,0.09s,7.945(7.94s) 1 min 26.3s
2 1,2,3,4,5, 8, 11,12,13,14 0.19s,0.19s,0.45s,0.09s,8.39s(8.39s) 1 min 26.06s
3 1,2,3,4,5,10 ,11,12,13,14 0.19s,0.17s,0.11s,0.08s,7.445(7.44s) 25.25s
4 1,2,3,45 ,6,7, 11,12,13,14 0.29s,0.28s,2.69s,0.13s,10.095(10.09s) | 1 min 27.01s
5 1,2,3,4,5 ,8,9,11,12,13,14 0.29s,0.19s,0.09s,0.09s,8.555(8.55s) 1 min 25.5s
6 1,2,3,4,5, 6,7,10,11,12,13,14 0.38s,0.41s,3.13s,0.11s,12.85(12.8s) 16 min 6.9s
7 1,2,3,4,5,6,7,8,9,10,11,12,13,14 | 0.79s,0.73s,4.05s,0.25s,16.77s (16.77s) | 20min 3.1s

Table 8.3: Running times of Parallelization and Method

The results in table 8.3 shows a significant improvement of the online time of the
analysis when performed using the parallelization method. The online times for the
parallelization calculations range from 7 to 17 seconds, while without parallel
calculation ranges from 25 seconds to 20 minutes. Missions 1 - 5 take approximately
1 minute without parallelization and approximately 10 seconds with parallelization.
These missions contain 10 to 11 phases, however only 1 or 2 mission phases
numbered 6 to10, phases 6 to 10 are these whose characteristics are most suited to
parallelization. So increasing the number of times these phases are contained in the
mission provides the biggest improvements due to the parallelization approach. For
mission 7, the online times with parallelization takes just over 10 seconds and

without over 15 minutes which is a dramatic difference.

One of the reasons for the success of the parallelization approach is that the
calculation is divided over several computers. However this is not the main reason
for the dramatic improvement since the sum of the parallelization analysis times do
not approximately add up to the online calculation time without the parallelization
approach. The main reason for the significant improvement is the reduction in the
complexity of the analysis. For example with the analysis performed without using

parallelization, all of the BDDs are built together and contain all of the different

221

groups and the rest of the mission left over when parallelized. Building the BDDs
together dramatically increases the complexity, since every time a new element node
is computed on the BDD, the procedure has to go through the BDD until it reaches
the position where it has a greater order value than the nodes beneath it. Also the
number of the nodes recorded increases which is a big issue for efficiency since
every time one computation of a node is performed the function scans through the
entire list of nodes. As investigated in chapter 5 when a parallelization approach is
chosen the BDDs of the different groups are built separately and stored in different

lists.

8.6 Summary

The parallelization is successful in reducing the complexity of the PMS analysis and
negligible time is invested for the performance of the method. However a condition
for the parallelization to obtain its full benefits in a practical application is to have
several computers available however when the method was tested it was on the
same computer with the individual calculation times measured. The main factor in
how successful the parallelization is in minimizing the online time is due to the group
sections taken out of the fault trees this reducing the complexity of the analysis. The
method requires some conditions and characteristics of the fault trees, which at first
might seem quite restrictive. However these conditions and characteristics are very
common throughout real UAV mission phase fault trees. For example the majority of
mission phase fault trees have a OR top gate. Also independent parts (groups)
occurring throughout the set of phase fault trees will appear in practical, complex,
sub-systems which are required throughout a mission. Therefore this method of
parallelization is very relevant and will reduce the time of online analysis of real UAV

phased mission.

222

Chapter 9: Conclusions and Future Work

9.1 Summary of Work

Autonomous systems such as UAVs perform what are known as phased missions.
By calculation of the probabilities that failure will occur duringthe phasesand over the
entire mission it is possible to use this information to make decisions on the future of
the mission. These probabilities will need to be updated as the mission progresses
and phases are successfully completed and also whenchanges in the situation, such
as the weather conditions or component failure, occurs. To contribute to the decision
making process the analysis must be performed online in the fastest possible time.
However previous research has shown that phased mission analysis can be very

computationally intensive.

The aim of this project is to investigate the efficiencyof existing PMSanalysis
methods and to develop new methodsthat will be faster and therefore able to be
applied to online analysis. In order to achieve a fast analysis, advantage can be
taken of the characteristics of a UAV mission plan and not aimed at coping with
genericfailure logic forms. The cause of phase failure is represented by fault
treesand an assumption is made that all the components of the UAV are non-
repairable for the mission duration.

First a review was carried out on all the existing PMS methods, reported in chapter
3. There was a strong trend that the methods that converted their fault tress to
BDDsfor the analysis were much more efficient. Therefore in chapter 4 new BDD
based methods for PMS analysis were developed and compared. ThePrescott et
almethod [24]was used as a starting benchmark by running some test example
missions and recording the online and offline times. The method was efficientas it
converts the phase failure cause fault trees to BDDs before the mission configuration
is known. Also all the components are treated as phase independent for building the
phase failure BDDs, which means they are built instantly by connecting the previous
success phase BDDs to the root node of the BDD that represents the failure cause

of the current phase. However the next stage of the analysis is to trace through the

223

phase failure BDDs to calculate the phase failure probabilities which proves to be
computationally intensive.This method is improved sinceevery phase unreliability can
be obtainedby tracing through the final phase failure BDD.Thisalters the approach by
Prescott and is referred to as method 1. Method 1 reduces the number of
computations compared to the Prescott et al method by not needing to trace through
all of the phase failure BDDs before the final phase. The results show that for online
time method 1 was reduced up to 20%. However for larger problems the time taken
to evaluate the final phase failure BDDbecomes significant and reduces the impact

on the overall online time, to approximately only 1%improvement.

Since tracing through the BDDs is very computationally intensive a new method is
developed which is an extension of the Trivedi method [13]. The new method
calculates the unreliability of the individual phases as well as the overall mission, and
is referred to as Method 2.The calculation procedure is also modified for efficiency by
rearranging the phase unreliability Boolean formulas so that the phase failure BDD
can be obtained by adding to previous phase failure BDDs. The Trivedi method
deals with the phase dependencies whilst building the BDD and during thenode
evaluating stage for the probabilities. Each BDD node only has to be evaluated once
which improves on the previous method whichtraces through the nodes many times.
Methods 1 and 2 were tested for speed on mission fault treeexamples which have
been randomly generated or are related to a UAV mission. The results showed that
Method 2 is significantly faster than Method 1 for the UAV mission due to the logic
structures whichresult from real applications. However for the randomly generated
fault trees mission Method 2 does not out perform Method 1 since the random fault
trees do not containmany common branches. To improve the speed of Method 2,
modularisation was applied to take out independent parts of the fault trees that can
be analysed separately. This significantly reduces the size of the overall mission fault
trees and is referred to as Method 3. These modules can appear many times in UAV
mission fault trees since many phases require the same function (such as flaps) or
the power system (such as the fuel system). Method 3 applies the linear-time
algorithm [24] to a PMS to identify the modules. Method 3 was also tested on the two
sets of mission fault trees for a comparison against Method 2.The online time
analysis for the randomly generated fault trees were generally not improved by the

modularisation approach because they did not have many modules. On themission

224

for a UAV operation the improvement was significantfor Method 3 compared to
Method 2. For missions with more, larger and complex modules, the online time for
the biggest mission was reduced from approximately 4 minutes to 1 second. This is
down to taking out large complex subsystems such as the DC and AC power

supplies.

In chapter 5 the impact of the recursive functions on the analysis time of a PMS are
investigated. The recursive function [2], that is applied inbuilding the BDDs, and is
modified for PMS analysis, is focussed on since it can be very computationally
intensive. There are two stages in the function which can grow significantly. The first
searches through all the nodes to establish if the node that has been created already
exists. The second stage looks up to see if the computation of the two nodes has
already been performed. The first stage which searches for the existence of nodes
was tested on 86 missionsby running the analysis with and without thesearch and
by an alterative search that is a C++ map. The online and offline times were
recorded along with, the number of nodes created and the number of successful
searches achieved. The results show that not having a search was a lot faster for the
mission consisting of randomly generated phase fault trees since every time the
function was called it did not scan through the entire list of nodes already created.
However when tested on the PMS for a UAV the search was a lot quicker since there
were a lot of successful searches due to the common structure between the phase
fault trees. Therefore time was saved by not repeating computations and the option
of not having a search approach performed badly because the number of nodes
created became very large and in some cases exceeded the memory capacity. Out
of the two searches the normal search performed faster for the mission with the
randomly generated fault trees and the C++ map search performedfaster for the
UAV mission. This shows that if a search is used then different searches may be
suited to different fault tree structures. Also therecursive function used by Rauzy
looks up to establish if a computation of two nodes has already been carried out. The
lookup procedure does not take a lot of time to do but requires a lot of memory. The
computation lookup was investigated by running the analysis with and without the
lookup and recording: the online times, number of nodes created, and number of
successful look ups. All results show that the lookup procedure is used a lot for all

examples and plays a big part in the speed of the analysis.

225

Taking out modules from the PMS and analysing them separately has shown to be
very effective for UAV mission analysis. The phase fault trees from UAV missions
have characteristics that allow a lot of modules to be extracted. In chapter 6 a
method is developed that restructures the fault trees to takeout the maximum
number of modules for a PMS analysis. It was established that in the fault trees there
is a relationship between the position of repeated gates and events and the number
of independent modules that can be extracted. The method restructures the fault
trees by considering the repeated events and gates one at a time. All of the
appearances of a repeated event or gate are brought closer together in the
treestructure by operations such as push-up, common-input push-up and elimination.
The method is tested on the full scale UAV mission. These phase fault trees contain
980 distinct gates and 1007 distinct events. The number of distinct gates and events
are recorded before and after the fault trees are restructured and modules are taken
out. The number of distinct gates was reduced on average by 90.8% and distinct
events by 87.5%. Also the online times are recorded for the method with and without
restructuring and the modules taken out. All the online times for taking out modules
were less than 30 seconds and when modules were not taken out the method failed
to obtain an answer. Even just trying to analysis one of these phases the code would
run for 2 hours and runs out of memory. The method is very successful in analysing
a large scale problem UAV PMS in a short amount of time. The success is down to
significantly reducing the fault tree complexityby maximising the number of modules
that can be extracted. This is very effective on the UAV mission structure phase fault

treesbecause they contain lots of common functions and energy supply sources.

In chapter 7 the PMS method presented in charter 6 was extended to consider the
practical situation where the UAV mission needs to be reconfiguredpartway through.
Reconfiguration can be due to a failure diagnosed or rerouting required to avoid
emerging threats. The method updates the analysis of the PMS for the new
reconfigured mission in an efficient way by reusing phase BDDs from the original
mission. The probabilities of phase failure given that it was successful up to a point
in the mission are predicted. The method was testedon missions to perform tasks
such as anti-submarine warfare (ASW), anti-surface warfare (ASUW) and search

and rescue (SAR). The missions were analysed reusing the previous phases

226

BDDsand also without this approach. The online analysis times were recorded for a

comparison. The results show that as the mission progresses and the number of

completed phases grows the greater the benefit of thenew approach.

An additional parallelization technique that adds to the efficiency of the running of the

online analysis is developed in chapter 8. This enables the analysis to be performed

faster by using several processors.

9.2 Conclusions

The aim of this research was to develop new methods that analyse the

phaseunreliabilities of a real UAV mission in the shortest possible time. The following

conclusions are made:

PMS based on the BDD technique are the most efficient for obtaining the

phase unreliabilities in the quickest time.

Method 1 improved the PMS method for building the phase BDDs failure
enabling the failure causes for each phase to be obtained offline. However
when the method quantifies the phase BDDs for larger problems the time it

takes grows significantly.

Method 2, which is an extension of the Trivedi method, obtains the phase
failure probabilities as well as the entire mission unreliability in a more efficient
way. This method is more effective than method1 for UAV missions. Since it
deals will the component dependencies between phases whilstcreating the
phase BDDs.

Modularization significantly reduces the complexity of UAV mission online
analysis since here are many modules due to common functions and power

supplies throughout the phases.

227

e Restructuring techniques can be applied to the phase fault trees offline to
maximise the number of modules for a UAV mission. The extraction of these

modules from the phase fault trees simplifies the analysis dramatically.

e Search lookup techniques for recursive functions in the analysis only have
positive impact on reducing the online analysis if there are many repeated
computations which are commonly performed when analysing the UAV
missions. However where the analysis does not have many repeated
computations such as in randomly generated missionstructures lookup
techniques will have the adverse effect of increasing online analysis. In
additional to this, different search techniques have a different affect on the

speed of the analysis.

e The parallelization method significantly reduces the online time analysis for

UAV missions.

9.3 Further Work

The result of this research leads to thepossibility of further areas of investigation.

Potential directions are discussed in the following section.

9.3.1 Factorization

In chapter 6 a technique was used in the PMS method which factorizes a pair of
gates in the fault trees that always occur together and are just dependent on each
other, so the pair can be combined and taken out as a module. An extension to this
technique could combine and factorize a set of gates that only depend on each

other. For example three, four or even more gates could be factorized together.

9.3.2 Optimum BDD Ordering Schemes for PMS

A lot of research has given attention to the optimum BDDnode ordering scheme.

This has proven to have a big impact on the efficiency of the analysis. Little research

228

has been done on optimum nodeordering schemes for a PMS. Different ordering
schemes can be effective for different fault treestructures. Therefore research could
be conducted to produce an ordering scheme for maximizing the efficiency phase

fault trees for a UAV mission.

9.3.3Multi Platform Missions

Research has been carried out for the analysis of multi-platform missions. In this
thesis the focus of the analysis was on a single UAV mission. The research could be
extended to consider a set of autonomous vehicles (such as UAV’s, ground vehicles
etc)that work together to achieve a common mission. First the methods developed in
this thesis could be applied to a multi-platform mission analysis. Secondly the
efficiency of the calculations can be investigated. For exampleone area where the
analysis time could be reduced is that the UAVs may have common subsystems,
such as communications, or might be exactly the same vehicle type. Therefore parts

of analysis on one UAV may be reused in the analysis of another.

9.3.4 Dependency

The methods developed in this thesis assume that component failures are
independent from each other. However in practical situationssome of the UAV
component failure states may have dependencies between each other. Methods
have already been developed for the single phase case analysing systems with
component dependencies. The application of these methods could be investigated

and developed for the PMS case.

9.3.5Multi Component States

Throughout this research it has been assumed that all the components are in one of
two states, failed or working. However, a component could exist in one of several

failure or partial failure. Methods could be developedto analysis this situation for a
PMS.

229

9.3.6 Importance Measure

Work has been conducted to establish importance measures for PMS.
Measuresrelate components and minimal cut sets and quantify the amount they
contribute to the failure of the mission or phase. An importance measure could be
developed to indicate how a UAV sub-system contributes to the failure of the mission
or to aphase.

230

Reference

[1] J.D. Andrews, T.R. Moss, “Reliability and Risk Assessment’, Second
Edition, Professional Engineering Publishing Limited, 2002.

[2] W.E Vesely, ‘A Time-Dependent Methodology for Fault Tree Evaluation’,
nuclear Design and Engineering, vol. 13, 1970, pp 337-360.

[3] A.Rauzy, “New Algorithms for Fault”,Reliability Engineering and System
Safety, vol 40, 1993,pp203-211.

[4] R.M. Sinnamon, J.D. Andrews, “Improved Efficiency in Qualitative Fault
Tree Analysis”, Quality and Reliability Engineering Int, vol 13, no. 5, 1997,
pp293-298.

[5] R.M. Sinnamon,J.D. Andrew, “Improved Accuracy in Quantitative Fault
Tree Analysis”, Quality and Reliability Engineering Int, vol 13,
no.5,1997,pp285-292.

[6] J.D.Esary, H. Ziehms, “Reliability of Phased Missions”, Reliability and
Fault-Tree Analysis, Society for Industrial Appied Mathematics, Phila 1975, pp
213-236,1974 September.

[7]1 G.R Burdick, J.B.Fussell, D.M.Rasmuson, J.R.Wilson, “Phased Mission
Analysis: A Review of New Developments and an Application”, IEEE trans.
Reliability, vol R-26, 1977 Apr, pp 43-49

[8] D.F.Montague,J.B.Fussell, “A Methodogy for Calculating the Expected
Number of Failure of a System Undergoing a Phased Mission”,Nuclear
Science and Engineering, vol 74, 1980, pp 199-209

[9] Xue Dazhi, Wang Xiaozhong, “ A Practical Approach for Phased Mission
Analysis”,Reliability Engineering and System Safety, vol 25,1989,pp 333-347.

[10] T.Kohda, M. Wada, K. Inoue, “A Simple Method for Phased Mission
Analysis”, Reliability Engineering and System Safety, vol 45, 1994, pp299-309

[11] AK.Somani, K.S.Trivedi, “Boolean Algebraic Methods for Phased-
Mission System Analysis”, in Proceedings of Sigmetrics, 1994 May, pp 98-
107.

[12] Y.Ma,K.S.Trivedi, “ An algorithm for reliability of phased-mission
systems”,Reliability Engineering and System and Safety, vol 66,1999.pp157-
170.

[13] R A La Band, J D Andrews, “ Phased Mission Modelling using Fault Tree

Analysis”, Department of Aeronautical and Automotive Engineering.
Loughborough, Leicestershire, UK.

231

[14] X.Zang, H.Sun, and K.S.Trivedi, “A BDD-based algorithm for reliability
analysis of phased-mission systems,” IEEE Transactions on Reliability, vol.
48, pp. 50-60, March 1999.

[15] L.Xing, J.B.Dugan, “Analysis of Generalized Phased-Mission Systems
Reliability, Performance, and Sensitivity” IEEE Transactions on Reliability, vol.
51, pp. 199-211, June 2002.

[16] L.Xing, J.B.Dugan, “Comments on PMS BDD Generation in “ A BDD-
Based Algorithm for Reliability Analysis of Phased-Mission Systems™ IEEE
Transactions on Reliability, vol. 53, pp. 169-173, June 2004.

[17] L.Xing, J.B.Dugan, “A Separable Ternary Decision Diagram Based
Analysis of Generalized Phased-Mission Reliability”, IEEE Transactions on
Reliability, vol. 53, pp. 174-184, June 2004.

[18] R. La Band, “Systems Reliability for Phased Missions”, Doctor of
Philosophy of Loughborough University, March 2005.

[19] L.Xing, “Reliability Evaluation of Phased-Mission System with Imperfect
Fault Coverage and Common-Cause Failures”, IEEE Transactions on
Reliability, vol. 56, pp. 58-67, June 2007.

[20] Z.Tang, J.B.Dugan, “BDD-Based Reliability Analysis of Phased-Mission
Systems with Multimode Failures”, IEEE Transactions on Reliability, vol. 55,
pp. 350-360, June 2006.

[21] G.Vyaite, S.Dunnett, J.Anderws, “Cause-consequence analysis of non-
repairable phased mission”, Reliability Engineering and System Safety, vol
91,pp 398-406, 2006

[22] J.K.Vaurio, “Fault tree analysis of phased mission system with repairable
and non-repairable component”, Reliability Engineering and System Safety,
vol 74,pp 169-180, 2001

[23] Y.Ou,J.B.Dugan, “Modular Solution of Dynamic Multi-Phase Systems”,
IEEE Transactions on Reliability, vol. 53, pp. 499-508, December 2004.

[24] D.R.Prescott, R.Remenyte, S.Reed, J.D.Andrewes,”A Fast Analysis
Method for Phased Mission Using the Binary Decision Diagram Method”,
Department of Aeronautical and Automotive Engineering, Loughborough
University.

[25] Y.Dutuit, A.Rauzy “A Linear-Time Algorithm to Find Modules of Fault

Trees” IEEE Transactions on Reliability, vol. 45, pp. 422-425, September
2002.

232

[26] samuel crew thesis ,”"Systems Reliability Modelling for Phases Missions
with Maintenance Free Operating Periods 2009” Department of Aeronautical
and Automotive Engineering, Loughborough University

[27] D R Prescott “Multipaltion phased mission reliability modelling for mission
planning” Department of Aeronautical and Automotive Engineering,
Loughborough University

[28] K.Brazensite, W.H.Chen, J.D. Andrews “Reliability Based Mission

reconfiguration for UAVs using Genetic Algorithm Approach” Department of
Aeronautical and Automotive Engineering, Loughborough University

233

Appendix A: Mission data of random generated phase fault trees

Mission set 1

Each gate has 3 events inputs

TOP
Possible phases No gate No events No events No common
Fault tree (OR,AND) Including not including Phase
repeated repeated Events
events events not including
repeated
events
1 13 (10,3) 33 27 23
2 13 (10,3) 33 30 19
3 13 (10,3) 33 29 22
4 13 (10,3) 33 31 20
5 13 (10,3) 33 32 18
6 13 (10,3) 33 31 23
7 13 (10,3) 33 32 24
8 13 (10,3) 33 31 27

234

Number of modules that are in all the possible 48
phase
Number of gate not repeated in all the possible phase 103
Number of event not repeated in all the possible 201
phase

TOP1 1 3 3 G1 G2 G3 JeJe BjjBjj BdjBdj
G1233G4G5G6 AACCBB

G4 1 0 3 DdDd JcJc BdbBdb

G5 1 0 3 BafBaf DeDe BheBhe

G6 1 0 3 GgGg DgDg BgcBgc

G2 2 3 3 G7 G8 G9 BafBaf BgcBgc BjdBjd
G7 1 0 3 BfbBfb BgeBge BbhBbh

G8 1 0 3 Il AA BbjBbj

G9 1 0 3 BfbBfb BbcBbc BgaBga

G3 2 3 3 G10 G11 G12 BjfBjf BfhBfh BfbBfb
G10 1 0 3 BdBd BjaBja BaiBai

G111 0 3 GgGg BeaBea DhDh

G121 0 3 BciBci BihBih Iflf

TOP2 1 3 3 G13 G14 G15 BddBdd BjBj BfdBfd
G132 33 G16 G17 G18 BeBe DcDc BcbBceb
G161 0 3 Inlh FcFc lele

G17 1 0 3 FiFi BehBeh BjjBjj

G18 1 0 3 BB BajBaj BiaBia

G142 3 3 G19 G20 G21 HeHe BdhBdh BbjBbj
G191 0 3 Iblb FdFd BjjBjj

G20 1 0 3 BfiBfi Iblb CdCd

G211 0 3 EeEe BcfBcf BiiBii

G152 3 3 G22 G23 G24 BdBd AA FeFe

G22 1 0 3 BbjBbj DhDh DD

G23 1 0 3 BaeBae BcgBcg Jidi

G24 1 0 3 BifBif BffBff FfFf

TOP3 1 3 3 G25 G26 G27 BjeBje HaHa BciBci
G252 3 3 G28 G29 G30 BceBce BB HfHf

G28 1 0 3 EE BbdBbd BheBhe

G29 1 0 3 BddBdd Iflf CdCd

G30 1 0 3 BigBig BhgBhg BggBgg

G26 2 3 3 G31 G32 G33 BhcBhc BfhBfh
BggBgg

G311 0 3 Jede BgbBgb BcjBcj

G32 1 0 3 DfDf EeEe BbiBbi

G33 1 0 3 BbgBbg FjFj FfFf

G27 2 3 3 G34 G35 G36 BgiBgi BefBef BhgBhg
G34 1 0 3 FF Iflf BjhBjh

G35 1 0 3 BejBej DdDd DcDc

G36 1 0 3 GgGg BheBhe BahBah

TOP4 1 3 3 G37 G38 G39 Il BehBeh BheBhe
G37 2 3 3 G40 G41 G42 BeiBei Idld BbaBba
G40 1 0 3 BjgBjg BagBag DcDc

G411 0 3 BbdBbd GjGj BahBah

G42 1 0 3 GdGd HiHi HeHe

G38 2 3 3 G43 G44 G45 BhaBha CjCj DeDe
G43 1 0 3 BdiBdi GaGa EjE;j

G44 1 0 3 BdBd BdgBdg DaDa

G45 1 0 3 JdJd EfEf DhDh

G392 3 3 G46 G47 G48 FF HeHe JcJc

G46 1 0 3 JJ HaHa BbhBbh

G47 1 0 3 BghBgh CaCa JbJb

G48 1 0 3 BhjBhj BchBch BjbBjb

235

TOPS5 1 3 3 G49 G50 G51 BfBf BefBef GaGa
G49 2 3 3 G52 G53 G54 BcjBcj DcDc BbBb
G52 1 0 3 BdhBdh HdHd BiaBia

G53 1 0 3 BbeBbe EiEi HeHe

G54 1 0 3 FbFb EaEa FF

G50 2 3 3 G55 G56 G57 BdaBda BdiBdi JcJc
G55 1 0 3 ljlj BbbBbb BceBece

G56 1 0 3 HbHb BcfBcf BfaBfa

G57 1 0 3 CiCi EfEf DhDh

G512 3 3 G58 G59 G60 BgiBgi EgEg BibBib
G58 1 0 3 BebBeb DD BiiBii

G59 1 0 3 lala GbGb CfCf

G60 1 0 3 BaaBaa FF BggBgg

TOP6 1 3 3 G61 G62 G63 BecdBed BdgBdg DeDe
G612 3 3 G64 G65 G66 Jcdc FcFc Iflf
G64 1 0 3 BejBej DfDf BhBh

G65 1 0 3 BghBgh BdeBde BgBg

G66 1 0 3 BbcBbc BbiBbi BggBgg

G62 2 3 3 G67 G68 G69 CcCc Il CfCf
G67 1 0 3 CjCj HfHf BecBec

G68 1 0 3 Dgbhg CaCa BhbBhb

G69 1 0 3 BagBag BfbBfb BdjBdj

G63 2 33 G70 G71 G72 DdDd JiJi BfeBfe
G70 1 0 3 BbgBbg JeJe BgBg

G711 0 3 lili BhhBhh ljlj

G72 1 0 3 Dgbg BheBhe BihBih

TOP7 1 3 3 G73 G74 G75 BfaBfa BgcBgc
GaGa

G73 2 3 3 G76 G77 G78 BgaBga BefBef
BdbBdb

G76 1 0 3 DfDf BheBhe CdCd

G77 1 0 3 EeEe DhDh Iglg

G78 1 0 3 BfjBfj HiHi JiJi

G74 2 3 3 G79 G80 G81 BceBce BjBj
BahBah

G79 1 0 3 EJEd BbeBbe Iblb

G80 1 0 3 BbfBbf JIJf JjJj

G811 0 3 FdFd BdcBdc BdjBdj

G752 3 3 G82 G83 G84 BgjBgj EiEi GeGe
G82 1 0 3 BcdBcd ljlj EcEc

G83 1 0 3 JdJd BdjBdj BfdBfd

G84 1 0 3 BeiBei JbJb Iflf

TOP8 1 3 3 G85 G86 G87 BgdBgd lele BgeBge
G85 2 3 3 G88 G89 G90 BagBag BfhBfh BbbBbb
G88 1 0 3 BheBhe BjjBjj BdbBdb

G89 1 0 3 DcDc BbBb BcaBca

G90 1 0 3 BafBaf BdcBdc BiaBia

G86 2 3 3 G91 G92 G93 BbfBbf DD BedBed
G91 1 0 3 BaeBae BjBj EbEb

G92 1 0 3 AA BbdBbd BdjBdj

G93 1 0 3 BdgBdg BeaBea BfaBfa

G87 2 3 3 G94 G95 G96 BfbBfb JiJi DcDc

G94 1 0 3 BdiBdi BffBff BiiBii

G95 1 0 3 lala DdDd BjbBjb

G96 1 0 3 BdjBdj BfeBfe EjEj

236

Mission set 2

Each gate has 0- 3 events inputs

TOP
Possible phases No gate No events No events No common
Fault tree (OR,AND) Including not including Phase
repeated repeated events
events events
1 13(10,3) 30 28 12
2 13(10,3) 32 31 15
3 13(10,3) 31 29 16
4 13(10,3) 29 29 13
5 13(10,3) 32 31 12
6 13(10,3) 33 31 23
Number of modules that are in all the possible 50
phase
Number of gate not repeated in all the possible 72
phase
Number of event not repeated in all the possible 175
phase

237

TOP1131G1G2G3 Jede TOP2 13 1G13 G14 G15 BddBdd
G1233G4G5G6 AACCBB G132 33 G16 G17 G18 BeBe DcDc BcbBcb
G4 10 2 JcJc BdbBdb G161 0 2 Ihlh FcFc

G5 1 0 3 BafBaf DeDe BheBhe G17 1 0 2 FiFi BehBeh

G6 1 0 3 GgGg DgDhg BgcBgc G18 1 0 3 BB BajBaj BiaBia
G2230G7G8G9 G142 31 G19 G20 G21 HeHe

G7 1 0 3 BfbBfb BgeBge BbhBbh G19 1 0 3 Iblb FdFd BjjBjj

G8 10 2 1l BbjBbj G20 1 0 3 BfiBfi Iblb CdCd

G9 1 0 3 BfbBfb BbcBbc BgaBga G211 0 3 EeEe BcfBcf BiiBii

G3 2 3 3 G10 G11 G12 BjfBjf BfhBfh BfbBfb G152 3 3 G22 G23 G24 BdBd AA FeFe
G10 1 0 2 BjaBja BaiBai G22 1 0 2 BbjBbj DhDh

G111 0 2 BeaBea DhDh G23 1 0 3 BaeBae BcgBcg Jidi

G12 1 0 3 BciBci BihBih Iflf G24 1 0 3 BifBif BffBff FfFf

TOP3 1 3 2 G25 G26 G27 BjeBje HaHa TOP4 1 3 1 G37 G38 G39 BehBeh
G252 31 G28 G29 G30 BceBce G37 2 32 G40 G41 G42 BeiBei Idld
G28 1 0 2 EE BbdBbd G40 1 0 3 BjgBjg BagBag DcDc

G29 1 0 2 BddBdd Iflf G411 0 2 BbdBbd GjGj

G30 1 0 3 BigBig BhgBhg BggBgg G42 102 GdGd HeHe

G262 30G31G32G33 G38 2 3 3 G43 G44 G45 BhaBha CjCj DeDe
G311 0 3 JeJe BgbBgb BcjBcj G43 1 0 3 BdiBdi GaGa EjEj

G32 1 0 3 DfDf EeEe BbiBbi G44 10 2 BdBd DaDa

G33 1 0 3 BbgBbg FjFj FfFf G45 1 0 3 JdJd EfEf DhDh

G27 2 3 3 G34 G35 G36 BgiBgi BefBef G392 31 G46 G47 G48 Jcdc

BhgBhg G46 1 0 3 JJ HaHa BbhBbh

G34 1 0 3 FF IfIf BjhBjh G47 1 0 2 BghBgh JbJb

G35 1 0 3 BejBej DdDd DcDc G48 1 0 2 BchBch BjbBjb

G36 102 GgGg BahBah

238

TOPS5 1 3 3 G49 G50 G51 BfBf BefBef GaGa
G49 2 3 3 G52 G53 G54 BcjBcj DcDc BbBb
G52 1 0 3 BdhBdh HdHd BiaBia

G53 1 0 3 BbeBbe EiEi HeHe

G54 1 0 3 FbFb EaEa FF

G50 2 3 1 G55 G56 G57 BdaBda

G55 1 0 3 ljlj BbbBbb BceBece

G56 1 0 2 HbHb BcfBcf

G57 1 0 3 CiCi EfEf DhDh

G512 30 G58 G59 G60

G58 1 0 3 BebBeb DD BiiBii

G59 1 0 3 lala GbGb CfCf

G60 1 0 2 BaaBaa FF

TOP6 13 1 G61 G62 G63 Jidi

G612 3 3 G64 G65 G66 Jcdc FcFc IfIf
G64 1 0 2 BejBej DfDf

G65 1 0 3 BghBgh BdeBde BgBg

G66 1 0 3 BbcBbc BbiBbi BggBgg
G622 32 G67 G68 GB9 CcCc i

G67 1 0 3 CjCj HfHf BecBec

G68 1 0 3 Dgbg CaCa BhbBhb

G69 1 0 2 BagBag BdjBdj

G63 2 33 G70 G71 G72 DdDd JiJi BfeBfe
G70 1 0 3 BbgBbg JeJe BgBg

G711 0 3 lili BhhBhh ljlj

G721 0 2 DgDhg BheBhe

Mission set 3

Each gate has 0- 3 events inputs

TOP

239

Possible phases No gate No events No events No common
Fault tree (OR,AND) Including not including Phase
repeated repeated Events
events events not including
repeated
events
1 13(10,3) 31 22 8
2 13(10,3) 32 22 7
3 13(10,3) 31 26 9
4 13(10,3) 29 18 5
5 13(10,3) 33 22 10
6 13(10,3) 33 23 15
Number of modules that are in all the possible 6
phase
Number of gate not repeated in all the possible 72
phase
Number of event not repeated in all the possible 107 (101)
phase

TOP1131G1G2G3BB
G1233G4G5G6 AACCBB
G4 10 2 JcJc BdbBdb

G5 1 0 3 BafBaf DeDe BheBhe
G6 1 0 3 GgGg DgDhg BgcBgc
G2230G7G8G9

G7 1 0 3 BfbBfb BdbBdb CC
G8 1 0 2 1l BbjBbj

G9 1 0 3 DgDbg BbcBbc BgaBga
G3233G10 G11 G12 DeDe BfhBfh Il
G10 1 0 2 BjaBja DgDg

G111 0 2 BeaBea DhDh

G12 1 0 3 AA BihBih Iflf

TOP2131G13 G14 G15 FeFe

G132 3 3 G16 G17 G18 BeBe FfFf BcbBcb
G16 1 0 2 Ihih Iblb

G17 1 0 2 FiFi BehBeh
G18 1 0 3 BB Iblb BiaBia
G14 231 G19 G20 G21 BehBeh
G19 1 0 3 Iblb FdFd BjjBjj
G20 1 0 3 BfiBfi Iblb BeBe
G21 1 0 3 BB BcfBcf BiiBii
G152 3 3 G22 G23 G24 BB AA FeFe
G22 1 0 2 BbjBbj BehBeh
G23 1 0 3 BaeBae BcgBcg Jidi
G24 1 0 3 DhDh BffBff FfFf

240

TOP3 1 3 2 G25 G26 G27 BjeBje HaHa
G252 31 G28 G29 G30 BceBce

G28 1 0 2 EE BbdBbd

G29 1 0 2 BddBdd Iflf

G30 1 0 3 BigBig BhgBhg BbdBbd
G262 30 G31G32G33

G311 0 3 Jede BgbBgb DcDc

G321 0 3 DcDc EeEe BbiBbi

G331 0 3 BbgBbg FjFj EE

G27 2 3 3 G34 G35 G36 BgiBgi BefBef Iflf
G34 1 0 3 FF IfIf BjhBjh

G35 1 0 3 BejBej DdDd DcDc

G36 1 0 2 DfDf BahBah

TOP4 1 3 1 G37 G38 G39 BehBeh
G37 232 G40 G41 G42 BeiBei DaDa
G40 1 0 3 Bj BagBag BjbBjb

G411 0 2 DaDa GjGj

G421 02 Jbdb HaHa

G38 2 3 3 G43 G44 G45 BagBag CjCj B;j
G43 1 0 3 BdiBdi GaGa EjEj

G44 102 HeHe DaDa

G451 0 3 JdJd EfEf DhDh

G392 3 1 G46 G47 G48 EJE;j

G46 1 0 3 JJ HaHa CjCj

G47 102 DaDa JbJb

G48 102 CjCj BjbBjb

TOPS5 1 3 3 G49 G50 G51 BfBf BefBef GaGa
G49 2 3 3 G52 G53 G54 BcjBcj DcDc BbBb
G52 1 0 3 BdhBdh GaGa BiaBia

G53 1 0 3 FbFb EiEi DhDh

G54 1 0 3 FbFb lala GaGa

G50 2 3 1 G55 G56 G57 BdaBda

G55 1 0 3 ljlj BbbBbb BceBece

G56 1 0 2 HbHb BcfBcf

G57 1 0 3 BdhBdh EfEf BbBb

G512 30 G58 G59 G60

G58 1 0 3 DhDh DD DhDh

G59 1 0 3 lala GbGb GaGa

G60 1 0 2 BaaBaa BbBb

TOP6 1 3 1 G61 G62 G63 Jidi

G612 3 3 G64 G65 G66 Jcdc FcFc Iflf
G64 1 0 2 BejBej BhhBhh

G65 1 0 3 BdjBdj BdeBde BgBg

G66 1 0 3 BejBej Jidi BggBgg

G622 32 G67 G68 G69 CcCc i

G67 1 0 3 CcCc HfHf Jidi

G68 1 0 3 DgDhg HfHf BheBhe

G69 1 0 2 BagBag BdjBdj

G632 33 G70 G71 G72 DdDd Jidi lili
G70 1 0 3 BbgBbg JeJe BgBg

G711 0 3 lili BhhBhh ljlj

G721 02 DdDd BejBej

241

Mission set 4

Each gate has 2 events inputs

TOP
Possible phases No gate No events No events No common
Fault tree (OR,AND) Including not Including Phase
repeated repeated Events
events events not including
repeated
events
1 15(5,10) 30 22 10
2 15(5,10) 30 19 12
3 15(5,10) 30 21 14
4 15(5,10) 30 22 12
5 15(5,10) 30 24 18
Number of modules that are in all the possible 4
phase
Number of gate not repeated in all the possible 56
phase
Number of event not repeated in all the possible 40 (37)
phase

242

TOP1122G1 G2 BaBa
G1222G3G4AAGG
G3122G5G6HH CC
G520 2 CbCb FF

G6 2 0 2 BiBi BcBe

G4 122 G7 G8 BdBd BgBg
G7 2 0 2 BeBe CfCf

G820 2 CC BjBj

G2 222 G9 G10 BeBe BbBb
G9 122 G11 G12 CgCg EE
G112 02 BfBf CdCd

G122 0 2 CfCf BeBe

G10 122 G13 G14 FF BeBe
G132 02 CbCb BfBf

G142 0 2 BdBd BgBg

TOP2122G15G16 Il ChCh
G15222G17 G18 CC EE

G17 122 G19 G20 CfCf BcBc
G19202 CcCc CeCe

G202 02 CaCaBiBi

G18 122 G21 G22 BdBd CbCb
G212 0 2 CgCg CfCf
G22202JJDD

G16 222 G23 G24 CfCf CeCe
G23 122 G25 G26 CiCi BiBi
G252 0 2 BeBe CaCa
G26202JJEE

G24 122 G27 G28 BdBd CgCg
G27 2 0 2 BfBf BcBe

G28202 CaCaDD

TOP3 1 2 2 G29 G30 BiBi BcBe
G29 2 2 2 G31 G32 CC BgBg
G31 122 G33 G34 BdBd CaCa
G33202JJ GG

G342 02 BhBh DD

G32 122 G35 G36 CjCj BeBe
G352 02 CcCelll

G362 02 BB BaBa

G30 222 G37 G38 CC JJ

G37 122 G39 G40 BeBe CeCe
G392 0 2 CiCi CdCd

G402 021l CaCa

G38 122 G41 G42 CbCb BB
G412 02 DD CdCd

G422 0 2 CfCf GG

TOP4 1 2 2 G43 G44 BdBd CbCb
G43 2 2 2 G45 G46 BeBe EE
G45 1 2 2 G47 G48 CiCi BaBa
G47 202 CcCc JJ

G48 2 0 2 CgCg BbBb

G46 12 2 G49 G50 ChCh GG
G49 2 0 2 HH BfBf

G50 2 0 2 BhBh BaBa

G44 2 2 2 G51 G52 BfBf CCf
G51 122 G53 G54 JJ BaBa
G53 2 0 2 CcCc CdCd

G54 2 0 2 AA CeCe

G52 12 2 G55 G56 CcCc ChCh
G55 2 0 2 BB BbBb

G56 2 0 2 HH CdCd

243

TOP 122 G43 G44 jam GG
G432 22 G45 G46 bb EE
G451 22 G47 G48 CiCi BaBa
G47 2 0 2 BfBf BcBe

G48 2 0 2 chch olol

G46 122 G49 G50 CiCi GG
G49 2 0 2 HH BfBf

G502 0 2 gwgw BaBa

G44 2 2 2 G51 G52 BfBf CfCf
G51122G53 G54 ii erer
G53 202 CcCc CdCd

G54 202 AA CeCe

G52 122 G55 G56 CcCc ChCh
G55202BBDD

G56 2 0 2 HH caca
ENDOFTREE

244

Appendix B: Mission data of UAV generated phase fault trees

Mission set 5

Possible phases No gate No events No events
Fault tree (OR,AND) Including repeated not Including
events repeated events

1(takeoff) 17 (9,8) 25 19
2(Climb) 14 (8,6) 20 14

3(enroutec) 15 (7,8) 22 16

4(enroteu) 15 (7,8) 22 16
5(decent) 14 (8,6) 20 14
6(Land) 17 (9,8) 26 20

245

Takeoff

CANC COMM

I I
LGEARRET ~ AVION

G11

VALVE10 VALVE20

[I
ENG2 BIRD2

PUMP2

G14 G15 G16

G5
VALE4C TANK2 TANK1 TANK2 VALE40 TANK1

I I
ENG1 BIRD1

PUMP1

I I I I
VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

246

I I I I
FLIGHT =~ STORM COMM AVION

G14 G15 G16

VALE4C TANK2 TANK1 TANK2 VALE40 TANK1

PUMP1

VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

247

Enroutec

. .
520 oo T T T |
STORM AVION COMM AVION

ATC AIRCRAFT

G14 G15 G16

VALE4C TANK2 TANK1 TANK2 VALE40 TANK1

VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

248

Enrouteu

. .
520 o1 | | | |
STORM AVION COMM AVION

ATC AIRCRAFT

G12 G13 G14

VALE4C TANK2 TANK1 TANK2 VALE40 TANK1

VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

249

I I I I
FLIGHT =~ STORM COMM AVION

G14 G15 G16

VALE4C TANK2 TANK1 TANK2 VALE40 TANK1

PUMP1

VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

250

T 1
CANC COMM

I I I
LGEARRET AVION FLIGHT

G11

VALVE10 VALVE20 [T
ENG2 BIRD2

| G14 | | G15 | | G16 |
I I I I I I
G5 VALE4C TANK2 TANK1 TANK2 VALE40 TANKT
[[
ENG1 BIRD1
PUMP1

VALE3C TANK1 TANK1 TANK2 VALE30 TANK2

251

All the UAV fault trees have been constructed from the UAV subsystems which are

shown in diagram with descriptions in appendix F.

Mission small UAV mission

Possible phases No gate No events No events
Fault tree (OR,AND) Including repeated | not Including repeated
events events
1 SM_STARTUP 10(6,4) 9 9
2 SM_TAXIOUT 10(6,4) 9 9
3 SM_TAKEOFF 65(49,16) 92 77
4 SM_CLIMB 98(73,25) 161 117
5 SM_CRUSIE 76(60,16) 130 97
6 SM_DECENT 76(60,16) 130 97
7 SM_LAND 91(76,15) 121 95
8 SM_TAXIIN 10(6,4) 9
9 SM_SHUTDOWN 10(6,4) 9

SM_STARTUP 111 PGATES343 BATTDAM
PGATES343 12 0 ENG1FIRE ENG2FIRE

SM_TAXIOUT 11 1PGATES5373 BATTDAM
PGATES373 12 0 ENG1FIRE ENG2FIRE

SM_TAKEOFF 120 PGATE485 PGATE487

PGATE485 10 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE487 150 PGATE3 THRUST_10R2 ENG1FIRE ENG2FIRE NOTRETH
PGATE3 120 AILERONS SLATS

SM_CLIMB 120 PGATE490 PGATE491

PGATE490 103 BADWEATER BATTDAM BIEDSTRIKE

PGATE491 16 0 PGATE802 ENG1FIRE ENG2FIRE NOTRETH NOTUNDCARR THRUST_1&2
PGATE802 1 30 SLATS SPOILERS RUDDERS

SM_CLIMB 120 PGATE490 PGATE491

PGATE490 103 BADWEATER BATTDAM BIEDSTRIKE

PGATE491 16 0 PGATE802 ENG1FIRE ENG2FIRE NOTRETH NOTUNDCARR THRUST_1&2
PGATE802 1 30 SLATS SPOILERS RUDDERS

SM_DECENT 12 0 PGATE539 PGATES540

PGATES39 102 BADWEATER BATTDAM

PGATES540 150 PGATE5052 NOTUNDCARR THRUST_1&2 ENG1FIRE ENG2FIRE
PGATES052 12 0 ELEVATORS SPOILERS

SM_LAND 120 PGATE5068 PGATE507

PGATE506 10 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE507 16 1 PGATE511 ENG1FIRE ENG2FIRE UNDERCARRIAGEF1 THRUST 10R2 BRAKING_F
RE_THRUST F

PGATE511 13 0 ELEVATORS AILERONS RUDDERS

SM_TAXIIN 111 PGATE5133 BATTDAM

252

PGATES5133 12 0 ENG1FIRE ENG2FIRE

SM_SHUTDOWN 1 1 1 PGATE5163 BATTDAM
PGATES5163 12 0 ENG1FIRE ENG2FIRE

ELEVATORS 111 HTOP1 ELEVATOR

HTOP1 22 0 HGATE1 HGATE2

HGATE1 11 1HY_LIQ_LE_ACT1 EL_ACT1
HY_LIQ_LE_ACT1 120 HGATE68 HYDRAULICFAIL
HGATE68 112 DCPOWER ServoE1 POSTION_SENSOR
HGATE2 111 HY_LIQ_LE_ACT2 EL_ACT2
HY_LIQ_LE_ACT2 12 0 HGATE75 HYDRAULICFAIL
HGATE75 112 DCPOWER ServoE2 POSTION_SENSOR

AILERONS 1 11 HGATE601 AILERON

HGATE601 22 0 HGATE602 HGATEG03

HGATEG02 111 HY_LIQ_LA_ACT1 AI_ACT1
HY_LIQ_LA_ACT1 120 HGATE770 HYDRAULICFAIL
HGATE770 112 DCPOWER ServoAl1 POSTION_SENSOR_LA
HGATEGO03 111 HY_LIQ_LA_ACT2 AI_ACT2
HY_LIQ_LA_ACT2 120 HGATE775 HYDRAULICFAIL
HGATE775 112 DCPOWER ServoAl2 POSTION_SENSOR_LA

SLATS 111 SHTOP1 SLAT

SHTOP1 22 0 SHGATE1 SHGATE2

SHGATE1 11 1HY_LIQ_S_ACT1 S_ACT1

HY_LIQ_S_ACT1 120 SHGATE68 HYDRAULICFAIL
SHGATEG8 112 DCPOWER ServoS1 SPOSTION_SENSOR
SHGATE2 111 HY_LIQ_S_ACT2S_ACT2
HY_LIQ_S_ACT2 120 SHGATE75 HYDRAULICFAIL
SHGATE75 112 DCPOWER ServoS2 SPOSTION_SENSOR

SLATS 111 SHTOP1 SLAT

SHTOP1 22 0 SHGATE1 SHGATE2

SHGATE1 111 HY_LIQ_S_ACT1S_ACT1

HY_LIQ_S_ACT1 120 SHGATE68 HYDRAULICFAIL
SHGATEG8 112 DCPOWER ServoS1 SPOSTION_SENSOR
SHGATE2 111 HY_LIQ_S_ACT2 S_ACT2
HY_LIQ_S_ACT2 120 SHGATE75 HYDRAULICFAIL
SHGATE75 112 DCPOWER ServoS2 SPOSTION_SENSOR

SPOILERS 111 SPHTOP1 SPOILER

SPHTOP1 220 SPHGATE1 SPHGATE2

SPHGATE1 11 1 HY_LIQ_SP_ACT1 SP_ACT1
HY_LIQ_SP_ACT1 120 SPHGATE68 HYDRAULICFAIL
SPHGATE68 1 1 2 DCPOWER ServoSP1 SPPOSTION_SENSOR
SPHGATE2 111 HY_LIQ_SP_ACT2 SP_ACT2
HY_LIQ_SP_ACT2 120 SPHGATE75 HYDRAULICFAIL
SPHGATE75 1 12 DCPOWER ServoSP2 SPPOSTION_SENSOR

RUDDERS 111 HGATE621 RUDDER

HGATEG21 22 0 HGATE622 HGATE6G23

HGATEG622 111 HY_LIQ_RU_ACT1R_ACT1
HY_LIQ_RU_ACT1 120 HGATE787 HYDRAULICFAIL
HGATE787 112 DCPOWER ServoR1 POSTION_SENSOR_R
HGATE623 11 1HY_LIQ_RU_ACT2 R_ACT2
HY_LIQ_RU_ACT2 120 HGATE792 HYDRAULICFAIL
HGATE792 112 DCPOWER ServoR2 POSTION_SENSOR_R

UNDERCARRIAGEF1 111 FOS_UNLOCK1 UNCLOC1UNLOC
FOS_UNLOCK1 22 0 HGATE336 HY_LIQ_UNLOC1_A1
HGATE336 103 LATL1STUCK LA1L1LEAK LA1L1RUPT
HY_LIQ_UNLOC1_A1 120 HGATE398 HGATE685
HGATE398 2 2 0 UNSEQVALF1 UNSEQVALF2

UNSEQVALF1 121 DCPOWER HYDRAULICFAIL LSEQ1VF
UNSEQVALF2 12 1 DCPOWER HYDRAULICFAIL LSEQ2VF
HGATE6851 11 DCPOWER LSEV1L1P1

HGATE334 120 HGATE338 HY_LIQ_UNLOC1_A2
HGATE338 1 0 3 LA2L1STUCK LA2L1LEAK LA2L1RUPT

253

HY_LIQ_UNLOC1_A2 120 HGATE398 HGATEG86
HGATE686 111 DCPOWER LSEV2L1P1

BRAKING_F 12 1 HGATE720 HY_LIQ_BRS L WHEEL_F
HGATE7202 02 L_BKE_1F L_BKE_2F

HY LIQ_BRS 220 HGATE722 HGATE723

HGATE722 120 LEFTANTI-SKID HY_LIQ_FR_BCV1
LEFTANTI-SKID 1 3 0 DCPOWER HGATE724 SIG_F_ANTSS
HGATE724 102 BRLSVOMD BRLSVOLECK

SIG_F_ANTSS 120 HGATE732 HGATE733

HGATE73222 0 HGATE734 HGATE735

HGATE734 102 BRASUTINO BRASU1WR

HGATE735 1 02 BRASU2NO BRASU2WR

HGATE733 220 HGATE736 HGATE737

HGATE736 1 02 BRTRS1INO BRTRS1WR

HGATE737 102 BRTRS2NO BRTRS2WR

HY_LIQ_FR_BCV1 130 HGATE738 DCPOWER HYDRAULICFAIL
HGATE738 102 BRBCVIMD BRBCV1LEAK

HGATE723 120 RIGHTANTI-SKID HY_LIQ_FR_BCV2
RIGHTANTI-SKID 1 3 0 DCPOWER HGATE729 SIG_F_ANTSS
HGATE729 1 0 2 BRRSVOMD BRRSVOLECK

HY_LIQ_FR_BCV2 130 HGATE739 DCPOWER HYDRAULICFAIL
HGATE739 102 BRBCV2MD BRBCV2LEAK

RE_THRUST_F 120 FGATE114 FGATE115

FGATE114 120 L_RTDOOR THRUSTL

L_RTDOOR 111 FGATE116 L_RTDOORS

FGATE11622 0 FGATE117 FGATE118

FGATE117 120 FGATE120 HY_LIQ_LCDR_ACT1

FGATE120 1 0 3 HA1LDRSTUCK HA1LDRLECK HA1LDRRUPT
HY_LIQ_LCDR_ACT1120 FGATE126 HYDRAULICFAIL
FGATE126 111 DCPOWER RTSEVLDR_1

FGATE118 120 FGATE122 HY_LIQ_LCDR_ACT2

FGATE122 1 0 3 HA2LDRSTUCK HA2LDRLECK HA2LDRRUPT
HY_LIQ_LCDR_ACT2 120 FGATE129 HYDRAULICFAIL
FGATE129 111 DCPOWER RTSEVLDR_2

FGATE115111 R_RTDOOR THRUSTRR

R_RTDOOR 111 FGATE132 R_RTDOORS

FGATE1322 20 FGATE133 FGATE134

FGATE133 120 FGATE136 HY_LIQ_RCDR_ACT1

FGATE136 10 3 HATIRDRSTUCK HA1RDRLECK HA1RDRRUPT
HY_LIQ_RCDR_ACT1 120 FGATE141 HYDRAULICFAIL
FGATE141 111 DCPOWER RTSEVRDR_1

FGATE134 120 FGATE138 HY_LIQ_RCDR_ACT2 FGATE138 1 0 3 HA2RDRSTUCK HA2RDRLECK HA2RDRRUPT
HY_LIQ_RCDR_ACT2 120 FGATE143 HYDRAULICFAIL
FGATE143 111 DCPOWER RTSEVRDR_2

ENG1FIRE 2 1 1 FUELFLOWHIL NOTCLENGFLOW
FUELFLOWHIL 111 FGATE171 FLACECHI
FGATE171 211 FGATE173 Fevent172

FGATE173 102 FLACPUHI FRACPUHI

ENG2FIRE 2 1 1 FUELFLOWHIR NOTCRENGFLOW
FUELFLOWHIR 111 FGATE174 FRACECHI
FGATE174 211 FGATE173_2 Fevent175
FGATE173_2 102 FLACPUHI_2 FRACPUHI_2

NOTRETH 12 0 FGATE145 FGATE146

FGATE145 121 RETRLACTS FGATE155 RTLCSTUCK

RETRLACTS 130 FGATE149 FGATE150 FGATE151

FGATE149 202 RETHLACT1ST RETHLACT2ST

FGATE150 2 02 RETHLACT1ST RETHLACT3ST

FGATE151 202 RETHLACT2ST RETHLACT3ST

FGATE155 120 FGATE156 FGATE157

FGATE156 2 0 3 RETHSIGNL&BU1 RETHSIGNL&BU2 RETHSIGNL&BU3
FGATE157 2 0 3 RETHSIGNFMS1 RETHSIGNFMS2 RETHSIGNFMS3
FGATE146 12 1 RETRRACTS FGATE155 RTRCSTUCK
RETRRACTS 13 0 FGATE152 FGATE153 FGATE154

FGATE152 2 02 RETHRACT1ST RETHRACT2ST

FGATE153 2 02 RETHRACT1ST RETHRACT3ST

FGATE154 2 02 RETHRACT2ST RETHRACT3ST

NOTUNDCARR 120 HGATE741 HGATE742

254

HGATE741 12 0 HGATE743 HGATE744

HGATE743 2 0 3 NOTUNDSIGL&B1 NOTUNDSIGL&B2 NOTUNDSIGL&B3

HGATE744 2 0 3 NOTUNDSIGFMS1 NOTUNDSIGFMS2 NOTUNDSIGFMS3

HGATE742 2 4 0 NOTUNLOCK1 NOTDOORDN NOTUNLOCK3 NOTWHEELDN

NOTUNLOCK1 111 HGATE745 NOTUNDUNLOCK1

HGATE745 2 3 0 HGATE746 HGATE747 HGATE748

HGATE746 104 NOTUNDA1LOC1 NOTUNDA2LOC1 NOTUNDS1LOC1 NOTUNDS2LOC1
HGATE747 104 NOTUNDA1LOC1 NOTUNDA3LOC1 NOTUNDS1LOC1 NOTUNDS3LOC1
HGATE748 104 NOTUNDA2LOC1 NOTUNDA3LOC1 NOTUNDS2LOC1 NOTUNDS3LOC1
NOTDOORDN 11 1 HGATE753 NOTUNDDOOR

HGATE753 2 3 0 HGATE754 HGATE755 HGATE756

HGATE754 104 NOTUNDA1DOOR NOTUNDA2DOOR NOTUNDS1DOOR NOTUNDS2DOOR
HGATE755 104 NOTUNDA1DOOR NOTUNDA3DOOR NOTUNDS1DOOR NOTUNDS3DOOR
HGATE756 104 NOTUNDA2DOOR NOTUNDA3DOOR NOTUNDS2DOOR NOTUNDS3DOOR
NOTUNLOCK3 111 HGATE749 NOTUNDUNLOCK3

HGATE749 2 3 0 HGATE750 HGATE751 HGATE752

HGATE750 104 NOTUNDA1LOC3 NOTUNDA2LOC3 NOTUNDS1LOC3 NOTUNDS2LOC3
HGATE751 104 NOTUNDA1LOC3 NOTUNDA3LOC3 NOTUNDS1LOC3 NOTUNDS3LOC3
HGATE752 104 NOTUNDA2LOC3 NOTUNDA3LOC3 NOTUNDS2LOC3 NOTUNDS3LOC3
NOTWHEELDN 1 1 1 HGATE757 NOTUNDWHEEL

HGATE757 2 3 0 HGATE758 HGATE759 HGATE760

HGATE758 104 NOTUNDATWHEEL NOTUNDA2WHEEL NOTUNDS1WHEEL NOTUNDS2WHEEL
HGATE759 104 NOTUNDATWHEEL NOTUNDA3WHEEL NOTUNDS1WHEEL NOTUNDS3WHEEL
HGATE760 104 NOTUNDA2WHEEL NOTUNDA3WHEEL NOTUNDS2WHEEL NOTUNDS3WHEEL

THRUST_10R2 111 THRUSTL THRUSTR

THRUST_1&2 1211 THRUSTL THRUSTR

THRUSTL 14 0 DCPOWER ENGINEL FUELENGL ACPOWER

ENGINEL 120 FGATE80 FGATES81

FGATES80 1 06 FENG1COM FENG1CH FENG1TUR FENG1EX FENG1SHA FENG1FAN
FGATE81 112 TOLEFTHP FLSPNOZ FLHPCOCK

TOLEFTHP 111 FGATE108 FLVALF

FGATE108 104 FLACECPEX FLACECPIN FLACECPSLOW FLACECPNO
FUELENGL 111 FGATE37 FLLPCCLOSE

FGATE37 12 0FGATE38 LL_FUEL

FGATE38 11 1LTEMSENSERS FLHEATF

LTEMSENSERS 22 0 FGATE40 FGATE41

FGATE40 102 FLTEMSEN1INO FLTEMSEN1WR

FGATE41 102 FLTEMSEN2NO FLTEMSEN2WR

LL_FUEL 112 FGATE54 FPIP1 FLNRVF

FGATES54 12 0FGATE5S5 FROM_LTANK

FGATES5 104 FLACPUNO FLACPUSLOW FLACPUSIND FLACPUSEXD
FROM_LTANK 120 FGATE58 L_AIRPRESS

FGATES8 1 0 3 FLTANMD FLTANRUP FLTANLEAK

L_AIRPRESS 120 FGATE60 FGATEG61

FGATEGO 22 0 FGATE63 FGATEG4

FGATEG3 1 02 FLAPS1INO FLAPS1WR

FGATEG64 102 FLAPS2NO FLAPS2WR

FGATEG61 102 FLVENTIN FLVENTOUT

255

Mission 7

Mission medium UAV mission

Possible phases No gate No events No events
Fault tree (OR,AND) Including repeated not Including
events repeated events
1 SM_STARTUP 10(6,4) 9 9
2 SM_TAXIOUT 10(6,4) 9 9
3 SM_TAKEOFF 222(144,48) 298 254
4 SM_CLIMB 225(168,57) 363 294
5 SM_CRUSIE 203(155,48) 336 274
6 SM_DECENT 203(155,48) 336 274
7 SM_LAND 218(171,47) 312 272
8 SM_TAXIIN 10(6,4) 9 9
9 SM_SHUTDOWN 10(6,4) 9 9

HYDRAULICFAIL 23 0 HYSUBSYS1 HYSUBSYS2 HYSUBSYS3
HYSUBSYS1 130 HGATE17 HGATE18 HY1PUMPS

HGATE17 103 H1PIP1 H1PRVOPEN H1NRV

HGATE18 12 0 HGATE20 HGATE25

HGATE20 12 0 HGATE23 LOW_TO_RES1

HGATE23 104 H1RLEAK H1RMECH H1RAERO H1RLIQ
LOW_TO_RES1 111 HGATE127 H1REPIP

HGATE127 121 HGATE28 HGATE128 HY1HEEXV

HGATE28 105 H1HBLOCK H1HNOFLUID H1HNOPRESS H1HINT H1HLEV
HGATE128 22 0 HGATE129 HGATE130

HGATE129 102 HY1TEMS1NO HY1TEMS1WR

HGATE1301 02 HY1TEMS2NO HY1TEMS2WR

HGATE2522 0 HGATE19 H1BYPASS

HGATE19 102 H1FOB H1FGAP

H1BYPASS 111 HGATE120 HY1BYPASSBLO

HGATE120 1 1 1 HGATE121 HY1BYVAL

HGATE12122 0 HGATE123 HGATE124

HGATE123 1 02 HY1FBSENNO1 HY1FBSENWR1

HGATE124 1 0 2 HY1FBSENNO2 HY1FBSENWR2

HY1PUMPS 2 30 HGATE21 HGATE27 H1ACELPUMP

HGATE21 120 HGATE16 H1IMECPUMPCON

HGATE16 105 H1IMPUMP H1MPLOSPEED H1MPINT H1MPEXT H1MPBLOCK
H1MECPUMPCON 13 0 HY_UMS_AVIONIC HGATE22 HGATE141
HY_UMS_AVIONIC 104 HYDR_UNIT FMS UMS DATA_BUS
HGATE22 102 H1LGBOXNO H1LGBOXLOW

HGATE14122 0 HGATE109 HGATE110

HGATE109 10 2 H1PSENNO1 H1PSENWR1

HGATE1101 02 H1PSENNO2 H1PSENWR2

HGATE27 104 H1ALOPRESS H1AINT H1ADISCH H1ASUPLY
H1ACELPUMP 12 0 HGATE113 H1ACPUMPCON

HGATE1131 05 H1ACPPUMP H1ACPLOSPEED H1ACPINT H1ACPEXT H1ACPBLOCK

H1ACPUMPCON 120 HY_UMS_AVIONIC HGATE141
HYSUBSYS2 13 0 HGATE31 HGATE32 HY2PUMPS
HGATE31 103 H2PIP1 H2PRVOPEN H2NRV

256

HGATE32 12 0 HGATE34 HGATE35

HGATE34 120 HGATE184 LOW_TO_RES2

HGATE184 1 0 4 H2RLEAK H2RMECH H2RAERO H2RLIQ
LOW_TO_RES2 111 HGATE186 H2REPIP

HGATE186 1 31 HGATE187 HY_UMS_AVIONIC HGATE188 HY2HEEXV
HGATE187 105 H2HBLOCK H2HNOFLUID H2HNOPRESS H2HINT H2HLEV
HGATE18822 0 HGATE190 HGATE191

HGATE1901 02 HY2TEMS1NO HY2TEMS1WR

HGATE191 102 HY2TEMS2NO HY2TEMS2WR

HGATE3522 0 HGATE192 H2BYPASS

HGATE1921 02 H2FOB H2FGAP

H2BYPASS 111 HGATE194 HY2BYPASSBLO

HGATE194 121 HGATE195 HY_UMS_AVIONIC HY2BYVAL

HGATE1952 2 0 HGATE196 HGATE197

HGATE196 1 0 2 HY2FBSENNO1 HY2FBSENWR1

HGATE197 1 0 2 HY2FBSENNO2 HY2FBSENWR2

HY2PUMPS 2 3 0 HGATE37 H2ACELPUMP1 H2ACELPUMP2

HGATE37 104 H2ALOPRESS H2AINT H2ADISCH H2ASUPLY
H2ACELPUMP1 120 HGATE168 H2ACPUMP1CON

HGATE168 1 0 5 H2ACP1PUMP H2ACP1LOSPEED H2ACP1INT H2ACP1EXT H2ACP1BLOCK
H2ACPUMP1CON 120 HY_UMS_AVIONIC HGATE173

HGATE1732 20 HGATE174 HGATE175

HGATE174 1 0 2 H2PSENNO1 H2PSENWR1

HGATE1751 02 H2PSENNO2 H2PSENWR2

H2ACELPUMP1 120 HGATE168 H2ACPUMP1CON

HGATE168 1 0 5 H2ACP1PUMP H2ACP1LOSPEED H2ACP1INT H2ACP1EXT H2ACP1BLOCK
H2ACPUMP1CON 120 HY_UMS_AVIONIC HGATE173

HGATE1732 20 HGATE174 HGATE175

HGATE174 1 0 2 H2PSENNO1 H2PSENWR1

HGATE1751 0 2 H2PSENNO2 H2PSENWR2

H2ACELPUMP2 12 0 HGATE177 H2ACPUMP2CON

HGATE177 105 H2ACP2PUMP H2ACP2LOSPEED H2ACP2INT H2ACP2EXT H2ACP2BLOCK
H2ACPUMP2CON 120 HY_UMS_AVIONIC HGATE173

HYSUBSYS3 13 0 HGATE45 HGATE46 HY3PUMPS

HGATE45 10 3 H3PIP1 H3PRVOPEN H3NRV

HGATE46 12 0 HGATE48 HGATE49

HGATE48 12 0 HGATE50 LOW_TO_RES3

HGATES0 1 0 4 H3RLEAK H3RMECH H3RAERO H3RLIQ

LOW_TO_RES3 111 HGATE162 H3REPIP

HGATE162 1 31 HGATE52 HY_UMS_AVIONIC HGATE163 HY3HEEXV
HGATES52 105 H3HBLOCK H3HNOFLUID H3HNOPRESS H3HINT H3HLEV
HGATE16322 0 HGATE164 HGATE165

HGATE164 102 HY3TEMS1NO HY3TEMS1WR

HGATE1651 02 HY3TEMS2NO HY3TEMS2WR

HGATE49 22 0 HGATES53 H3BYPASS

HGATES3 102 H3FOB H3FGAP

H3BYPASS 111 HGATE156 HY3BYPASSBLO

HGATE156 121 HGATE157 HY_UMS_AVIONIC HY3BYVAL

HGATE157 22 0 HGATE158 HGATE159

HGATE158 1 0 2 HY3FBSENNO1 HY3FBSENWR1

HGATE159 1 0 2 HY3FBSENNO2 HY3FBSENWR2

HY3PUMPS 2 30 HGATES5 HGATE132 HGATE146

HGATES5 1 04 H3ALOPRESS H3AINT H3ADISCH H3ASUPLY
HGATE1321 20 HGATE56 H3MECPUMP1CON

HGATES6 105 H3MPUMP H3MPLOSPEED H3MPINT H3MPEXT H3MPBLOCK
H3MECPUMP1CON 130 HY_UMS_AVIONIC HGATE136 HGATE143
HGATE136 1 0 2 HIRGBOXNO H1RGBOXLOW

HGATE143 220 HGATE144 HGATE145

HGATE144 1 0 2 H3PSENNO1 H3PSENWRH1

HGATE1451 0 2 H3PSENNO2 H3PSENWR2

HGATE146 120 HGATE147 H3ACPUMPCON

HGATE147 105 H3ACPUMP H3PACLOSPEED H3ACPINT H3ACPEXT H3ACPBLOCK
H3ACPUMPCON 120 HY_UMS_AVIONIC HGATE143

DCPOWER 12 0 GATEDC2 GATEDC3

GATEDC2 2 3 0 GATEDC4 GATEDC5 GATEDC17

GATEDC17 1 3 3 GATEDC18 GATEDC19 GATEDC20 DC10 DC11 DC12
GATEDC18 2 0 3 DC1 DC2 DC3

GATEDC19 2 0 3 DC4 DC5 DC6

GATEDC20 2 0 3 DC7 DC8 DC9

GATEDC4 2 0 3 DC1 DC2 DC3

GATEDC5 1 0 3 DC4 DC5 DC6

GATEDC3 2 2 0 GATEDC6 GATEDC?

GATEDC6 2 2 0 GATEDC8 GATEDC9

257

GATEDCS8 1 1 3 GATEDC13 DC4 DC7 DC8

GATEDC13 2 3 3 GATEDC14 GATEDC15 GATEDC16 DC10 DC11 DC12
GATEDC14 10 3 DC1 DC2 DC3

GATEDC15 1 0 3 DC4 DC5 DC6

GATEDC16 1 0 3 DC7 DC8 DC9

GATEDC9 1 0 3 DC3 DC9 DC10

GATEDC7 2 2 2 GATEDC10 GATEDC11 DC12 DC13

GATEDC10 102 DC11 DC12

GATEDC11 103 DC1 DC11 DC4

ACPOWER 12 0 GATEAC2 GATEAC3
GATEAC2 2 2 0 GATEAC4 GATEACS
GATEAC4 20 3 AC1AC2 AC3
GATEAC5 10 3 AC4 AC5 AC6
GATEAC3 2 2 0 GATEAC6 GATEACY
GATEAC6 2 2 0 GATEAC8 GATEAC9
GATEACS8 10 3 AC4 AC7 AC8
GATEAC9 10 3 AC3 AC9 AC10
GATEACY7 2 2 2 GATEAC10 GATEAC11 AC12 AC13
GATEAC10 102 AC11 AC12
GATEAC11 103 AC1AC11 AC4

Mission 8

Mission Large UAV mission

Possible phases No gate No events No events
Fault tree (OR,AND) Including repeated not Including
events repeated events
1 SM_STARTUP 10(6,4) 9 9
2 SM_TAXIOUT 10(6,4) 9 9
3 SM_TAKEOFF 277(192,55) 387 356
4 SM_CLIMB 280(216,64) 452 396
5 SM_CRUSIE 258(203,55) 425 376
6 SM_DECENT 258(203,55) 425 376
7 SM_LAND 273(219,54) 401 374
8 SM_TAXIIN 10(6,4) 9 9
9 SM_SHUTDOWN 10(6,4) 9 9

DCPOWER 230 LEFT_FCDC CEN_FCDC RIGHT_FCDC
LEFT_FCDC 130 EGATE4 LEFT_PWRS EGATE93

EGATE4 104 ELLBUSNO ELLBUSLLOW ELLBUSMD ELLBUSOH
LEFT_PWRS 240 LVDC_BUS L_PMG HOT_BBUS CEN_PWRS2
LVDC_BUS 120 EGATE9 EGATE10

EGATE9 104 ELLVDCNO ELLVDCLOW ELLVDCMD ELLVDCOV
EGATE10220 L_TRU RVDC_BUS2

258

L_TRU111 EGATE13 EGATE14

EGATE13104 ELLTRUNO ELLTRUMD ELLTRUWR ELLTRUOV

EGATE14 220 LAC_XTRBUS GEN_RAT

LAC_XTRBUS 120 EGATE17 EGATE18

EGATE17 1 04 ELLACXTRBNO ELLACXTRBLOW ELLACXTRBMD ELLACXTRBOV
EGATE18240 L_LGEN L_APUGEN L_RGEN L_BKUPGEN

L_LGEN 120 EGATE24 EGATE25

EGATE24 103 EL_AVIONIC CPU ELLGCBO

EGATE25105 ELL_MGENMD ELL_MGENNO ELL_MGENLOW ELL_MGENPU ELL_MGENOV
L_APUGEN 130 EGATE26 EGATE27 EGATE47

EGATE26 1 03 EL_AVIONIC CPU ELAPBOPEN

EGATE27 105 ELAPUMD ELAPUNO ELAPULOW ELAPUPU ELAPUOV

EGATE47 103 EL_AVIONIC CPU ELLBTBOPEN

L_RGEN 140 EGATE28 EGATE29 EGATE48 EGATE49

EGATE28 1 03 EL_AVIONIC CPU EL_RGCBOPEN

EGATE29 105 ELRMGENMD ELRMGENNO ELRMGENLOW ELRMGENPU ELRMGENOV
EGATE48 103 EL_AVIONIC CPU ELRBTBOPEN

EGATE49 103 EL_AVIONIC CPU ELLBTBOPEN

L_BKUPGEN 120 EGATE30 EGATE31

EGATE30 1 03 EL_AVIONIC CPU ELLBUSTCOPEN

EGATE31 111 EGATE33 ELVSCFFAIL

EGATE33 220 EGATE34 EGATE35

EGATE34 105 ELLBUGENMD ELLBUGENNO ELLBUGENLOW ELLBUGENPU ELLBUGENOV
EGATE351 05 ELRBUGENMD ELRBUGENNO ELRBUGENLOW ELRBUGENPU ELRBUGENOV
GEN_RAT 106 EL_RATOV EL_RATNO EL_RATMD EL_RATNOE EL_RATLOW EL_RATPU
RVDC_BUS2 120 EGATE55 EGATES6

EGATES5 104 ELRVDCBUSNO ELRVDCBUSLOW ELRVDCBUSMD ELRVDCBUSOV
EGATES6 120 EGATES7 EGATES8

EGATES7 220 GEN_RAT RAC_XTRBUS

RAC_XTRBUS 120 EGATE79 EGATE36

EGATE79 26 0 RAC_XTRBUS2 LAC_XTRBUS2 R_LGEN R_BKUPGEN R_APUGEN R_RGEN
RAC_XTRBUS2 14 0 EGATE36 EGATE37 EGATE30 EGATE46

EGATE37 240 R_LGEN R_BKUPGEN R_APUGEN R_RGEN

LAC_XTRBUS2 14 0 EGATE120 EGATE30 EGATE46 EGATE17

EGATE12024 0 L_LGEN L_APUGEN L_RGEN L_BKUPGEN

EGATE17 104 ELLACXTRBNO ELLACXTRBLOW ELLACXTRBMD ELLACXTRBOV
EGATE46 103 EL_AVIONIC CPU ELRBUSTOPEN

R_LGEN 140 EGATE25 EGATE24 EGATE48 EGATE49

R_BKUPGEN 12 0 EGATE46 EGATE31

R_APUGEN 130 EGATE26 EGATE48 EGATE27

R_RGEN 120 EGATE29 EGATE28

EGATE36 1 04 ELRACXTRBNO ELRACXTRBLOW ELRACXTRBMD ELRACXTRBOV
EGATES8 1 04 ELTRU2NO ELTRU2MD ELTRU2CON ELTRU20V

L PMG105 ELLPMGMD ELLPMGNO ELLPMGLOW ELLPMGPU ELLPMGOV
HOT_BBUS 120 EGATE64 EGATE6G5

EGATEG64 1 04 ELHOTBATNO ELHOTBATLOW ELHOTBATMD ELHOTBATOV
EGATEG5 220 BATTBUS MAINBATT

BATTBUS 104 ELBATBUSNO ELBATBUSLOW ELBATBUSMD ELBATBUSOV
MAINBATT 1 0 4 ELMANBATNO ELMANBATLOW ELMANBATMD ELMANBA
CEN_PWRS2230 L_PMG HOT_BBUS R_PMG

R_PMG 105 ELRPMGMD ELRPMGNO ELRPMGLOW ELRPMGPU ELRPMGOV
EGATE93 102 EL_AVIONIC ELLCBROPEN

CEN_FCDC 130 EGATE68 EGATE94 CEN_PWRS

EGATEG8 1 04 ELCBUSNO ELCBUSLOW ELCBUSMD ELCBUSOV

EGATE94 102 EL_AVIONIC ELCCBROPEN

CEN_PWRS 240 L_PMG HOT_BBUS R_PMG LEFT_PWRS2

R_PMG 105 ELRPMGMD ELRPMGNO ELRPMGLOW ELRPMGPU ELRPMGOV
LEFT_PWRS2230 LVDC_BUS L_PMG HOT_BBUS

RIGHT_FCDC 130 RIGHT_PWRS EGATE90 EGATE95

RIGHT_PWRS 220 R_PMG RVDC_BUS

RVDC_BUS 120 EGATES5 EGATE92

EGATE92 220 EGATE77 LVDC_BUS2

EGATE77 120 EGATES8 EGATE112

EGATE11222 0 RAC_XTRBUS GEN_RAT

LVDC_BUS2120 EGATE9 L_TRU

EGATE90 1 04 ELRBUSNO ELRBUSLLOW ELRBUSMD ELRBUSOH

EGATE95 102 EL_AVIONIC ELRCBROPE

259

Mission 9

Full scale UAV mission

C_STARTUP 111 PGATES534 BATTDAM

M_STARTUP 13 0 PGATE539 PGATES540 ICE

C_TAXIOUT 111 PGATE537 BATTDAM

M_TAXIOUT 130 PGATE542 PGATES543 ICE

C_TAKEOFF 13 0 PGATE485 PGATE487 PGATE486

M_TAKEOFF 1 30 PGATE518 PGATE519 PGATE520

C_CLIMB 130 PGATE490 PGATE491 PGATE492

M_CLIMB 1 30 PGATE521 PGATE522 PGATES523

C_CRUISE 130 PGATE495 PGATE496 PGATE497

M_CRUISE 1 30 PGATE524 PGATE525 PGATES526

C_DECENT 130 PGATES500 PGATE501 PGATES02

M_DECENT 130 PGATE527 PGATE528 PGATES529

C_LAND 130 PGATE506 PGATES507 PGATES08

M_LAND 13 0 PGATE530 PGATE531 PGATES32

C_TAXIIN 111 PGATE513 BATTDAM

M_TAXIIN 130 PGATE545 PGATES546 ICE

C_SHUTDOWN 111 PGATE516 BATTDAM

M_SHUTDOWN 120 PGATE548 PGATE549

PGATE3 150 AILERONS ELEVATORS RUDDER FLAPS SLATS

BRAKEMER 2 1 1 BRAKING_F OBJRUNWAY

PGATE9 130 ELEVATORS AILERONS RUDDER

PGATE17 130 ELEVATORS AILERONS RUDDER

PGATEG65 120 SLATS FLAPS

PGATE72 150 ELEVATORS AILERONS RUDDER FLAPS SLATS

ENG1FIRE 22 0 FUELFLOWHIL NOTCLENGFLOW

ENG2FIRE 22 0 FUELFLOWHIR NOTCRENGFLOW

PGATE485 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE486 1 30 BRAKEMER ICE COLLISION

PGATE487 150 PGATE3 THRUST_10R2 ENG1FIRE ENG2FIRE NOTRETH
AILERONS 120 L_AILERON R_AILERON

ELEVATORS 120 L_ELEVATOR R_ELEVATOR

RUDDER 111 HGATE621 RUDDER

FLAPS 120 L_FLAP R_FLAP

SLATS 120 L_SLAT R_SLAT

THRUST_10R2 120 THRUSTL THRUSTR

PGATE490 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE491 150 PGATE9 THRUST_1&2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE492 120 ICE COLLISION

THRUST_1&222 0 THRUSTL THRUSTR

NOTUNDCARR 120 HGATE741 HGATE742

PGATE495 1 0 2 BADWEATER BATTDAM

PGATE496 1 50 PGATE17 THRUST_1&2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE497 120 ICE COLLISION

PGATES500 1 0 2 BADWEATER BATTDAM

PGATE501 150 PGATE505 THRUST_1&2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE502 120 ICE COLLISION

PGATE505 16 0 ELEVATORS AILERONS RUDDER FLAPS SLATS SPOILERS
SPOILERS 120 L_SPOILER R_SPOILER

PGATE506 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE507 1 6 0 PGATE511 THRUST_1&2 UNDERCARIAGEF1 ENG1FIRE ENG2FIRE RE_THRUST_F
PGATES508 121 ICE COLLISION OBJRUNWAY

PGATE511 130 ELEVATORS AILERONS RUDDER

UNDERCARRIAGEF1 16 0 HGATE318 HGATE319 HGATE320 HGATE321 HGATE322 HGATE323
PGATE513 120 ENG1FIRE ENG2FIRE

PGATE516 1 20 ENG1FIRE ENG2FIRE

PGATES518 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE519 150 PGATE72 THRUST_10R2 ENG1FIRE ENG2FIRE UNDERCARRIAGEF2
PGATES520 130 ICE COLLISION BRAKEMER

PGATES521 16 0 PGATE505 NOTUNDCARR THRUST_1&2 ENG1FIRE ENG2FIRE NOTRETH
PGATE522 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATES523 120 ICE COLLISION

PGATE524 1 0 2 BADWEATER BATTDAM

PGATE525 150 PGATE505 NOTUNDCARR THRUST_1&2 ENG1FIRE ENG2FIRE
PGATE526 120 ICE COLLISION

PGATE527 1 0 2 BADWEATER BATTDAM

PGATES528 150 PGATE505 NOTUNDCARR THRUST_1&2 ENG1FIRE ENG2FIRE
PGATE529 120 ICE COLLISION

PGATES30 1 0 3 BADWEATER BATTDAM BIEDSTRIKE

PGATE531 16 0 PGATE505 UNDERCARRIAGEF1 THRUST_1&2 ENG1FIRE ENG2FIRE RE_THRUST_F

260

PGATE532 121 ICE COLLISION OBJRUNWAY
PGATE534 12 0 ENG1FIRE ENG2FIRE

PGATE537 120 ENG1FIRE ENG2FIRE

PGATE539 10 2 BADWEATER BATTDAM

PGATE540 150 PGATE505 THRUST _10R2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE542 10 2 BADWEATER BATTDAM

PGATE543 150 PGATE65 THRUST_10R2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE545 10 2 BADWEATER BATTDAM

PGATE546 14 0 THRUST_1&2 NOTUNDCARR ENG1FIRE ENG2FIRE
PGATE548 10 2 BADWEATER BATTDAM

PGATE549 12 0 ENG1FIRE ENG2FIRE

ICE211 PGATE552 ICEWEATER

PGATE552 112 DCPOWER ANTIICEF ICESENSORS

DCPOWER 120 EGATE82 PWR_HIGHDC

COLLISION 130 PGATE553 PGATES54 PGATES555

PGATE5532 11 NAVINFO MOUNTON

PGATE554 2 11 PGATE556 OTHERAIRCRAFT

PGATE5552 0 2 GROUND GPWS

NAVINFO 120 HGATE238 HGATE239

PGATE556 20 2 ATC TCAS

BRAKING_F 120 HGATE718 HGATE719

HTOP123 0 HGATE1 HGATE2 HGATE3

HGATE1 120 HGATE4 HY_LIQ_LE_ACT1

HGATE2 12 0 HGATE6 HY_LIQ_LE_ACT?2

HGATE3 120 HGATES HY_LIQ_LE_ACT3

HGATE4 10 3 HA1LESTUCK HA1LELEAK HA1LERUPT
HY_LIQ_LE_ACT1120 HGATE68 HYDRAULICFAIL

HGATE6 10 3 HA2LESTUCK HA2LELEAK HA2LERUPT

HY_LIQ_LE_ACT2 120 HGATE75 HYDRAULICFAIL

HGATES 10 3 HA3LESTUCK HA3LELEAK HA3LERUPT

HY LIQ_LE_ACT3 120 HGATES2 HYDRAULICFAIL

HGATE10 104 HLESVOIMD HLESVO1INSIGN HLESVO1LECK HLESVO1WISIGN
HY_PRE_LOW 230 HYSUBSYS1 HYSUBSYS2 HYSUBSYS3

HYSUBSYS1 130 HGATE17 HGATE18 HY1PUMPS

HGATE16 105 HIMPUMP H1MPLOSPEED H1MPINT H1MPEXT H1MPBLOCK
HGATE17 103 H1PIP1 H1PRVOPEN H1NRV

HGATE18 12 0 HGATE20 HGATE25

HGATE19 102 H1FOB H1FGAP

HGATE20 120 HGATE23 LOW_TO_RES1

HGATE21 120 HGATE16 HIMECPUMPCON

HGATE22 102 H1LGBOXNO H1LGBOXLOW

HGATE23 10 4 H1RLEAK H1RMECH H1RAERO H1RLIQ

LOW TO_RES1111 HGATE127 H1REPIP

HGATE25 22 0 HGATE19 H1BYPASS

HY1PUMPS 2 30 HGATE21 HGATE27 H1ACELPUMP

HGATE27 104 H1ALOPRESS H1AINT H1ADISCH H1ASUPLY

HGATE28 105 H1HBLOCK H1HNOFLUID H1HNOPRESS H1HINT H1HLEV
HYSUBSYS2 13 0 HGATE31 HGATE32 HY2PUMPS

HGATE31 103 H2PIP1 H2PRVOPEN H2NRV

HGATE32 12 0 HGATE34 HGATE35

HY2PUMPS 2 30 HGATE37 H2ACELPUMP1 H2ACELPUMP2

HGATE34 12 0 HGATE184 LOW_TO_RES2

HGATE35 22 0 HGATE192 H2BYPASS

HGATE37 10 4 H2ALOPRESS H2AINT H2ADISCH H2ASUPLY

HYSUBSYS3 13 0 HGATE45 HGATE46 HY3PUMPS

HGATE45 103 H3PIP1 H3PRVOPEN H3NRV

HGATE46 12 0 HGATE48 HGATE49

HY3PUMPS 2 30 HGATE55 HGATE132 HGATE146

HGATE48 12 0 HGATE50 LOW_TO_RES3

HGATE49 22 0 HGATE53 H3BYPASS

HGATE50 10 4 H3RLEAK H3RMECH H3RAERO H3RLIQ

LOW TO_RES3 111 HGATE162 H3REPIP

HGATE52 105 H3HBLOCK H3HNOFLUID H3HNOPRESS H3HINT H3HLEV
HGATE53 102 H3FOB H3FGAP

HGATE55 10 4 H3ALOPRESS H3AINT H3ADISCH H3ASUPLY

HGATE56 105 H3MPUMP H3MPLOSPEED H3MPINT H3MPEXT H3MPBLOCK
HGATE58 104 HLESVO2MD HLESVO2INSIGN HLESVO2LECK HLESVO20SIGN
HGATE63 10 4 HLESVO3MD HLESVO3INSIGN HLESVO3LECK HLESVO30SIGN
HGATE68 14 0 HGATE10 POSTION_SENSOR FCAVIONIC DCPOWER
POSTION_SENSOR 22 0 HGATE70 HGATE71

HGATE70 102 HLEPOSSEN1NO HLEPOSSENWO1

HGATE71 102 HLEPOSSEN2NO HLEPOSSENWO2

HGATE75 14 0 HGATE58 POSTION_SENSOR FCAVIONIC DCPOWER
HGATES82 14 0 HGATE63 POSTION_SENSOR FCAVIONIC DCPOWER
HY_PRE_HIGH 120 HY_PRE_HIGHT HY_PRE_HIGH2

261

H1ACELPUMP 120 HGATE113 H1ACPUMPCON

H1MECPUMPCON 14 0 HY_UMS_AVIONIC HGATE93 HGATE108 DCPOWER
HY_UMS_AVIONIC 14 0 HYDR_UNIT FMS UMS DATA_BUS

HGATE93 12 0 HGATE22 THRUSTL

HYDR_UNIT 2 30 HGATE97 HGATE98 HGATE99

HGATE97 102 HSUINO1 HSUIWR1

HGATE98 102 HSUINO2 HSUIWR2

HGATE99 102 HSUINO3 HSUIWR3

FMS 230 HGATE102 HGATE103 HGATE104

UMS 230 HGATE105 HGATE106 HGATE107

HGATE1021 02 FMSNO1 HSFMSWR1

HGATE103 102 FMSNO2 HSFMSWR2

HGATE104 102 FMSNO3 HSFMSWR3

HGATE1051 02 UMSNO1 HSUMSWRH1

HGATE106 102 UMSNO2 HSUMSWR2

HGATE107 102 UMSNO3 HSUMSWR3

HGATE108 1 20 HGATE141 DCPOWER

HGATE109 102 H1PSENNO1 H1PSENWR1

HGATE1101 02 H1PSENNO2 H1PSENWR2

HGATE113105 H1ACPPUMP H1ACPLOSPEED H1ACPINT H1ACPEXT H1ACPBLOCK
H1ACPUMPCON 140 HY_UMS_AVIONIC ACPOWER HGATE108 DCPOWER
LAND&BRAKEAVIONIC 14 0 HGATE267 DATA_BUS NAVINFO FMS
ACPOWER 120 EGATE96 PWR_HIGHAC

H1BYPASS 1 1 1 HGATE120 HY1BYPASSBLO

HGATE120 1 31 HGATE121 HY_UMS_AVIONIC DCPOWER HY1BYVAL
HGATE12122 0 HGATE123 HGATE124

HGATE1231 02 HY1FBSENNO1 HY1FBSENWR1

HGATE124 1 02 HY1FBSENNO2 HY1FBSENWR2

HGATE127 14 1 HGATE28 HY_UMS_AVIONIC HGATE128 DCPOWER HY1HEEXV
HGATE128 22 0 HGATE129 HGATE130

HGATE1291 02 HY1TEMS1NO HY1TEMS1WR

HGATE1301 02 HY1TEMS2NO HY1TEMS2WR

HGATE132120 HGATE56 H3MECPUMP1CON

H3MECPUMP1CON 14 0 HY_UMS_AVIONIC HGATE134 HGATE135 DCPOWER
HGATE134 120 HGATE136 THRUSTR

HGATE13512 0 HGATE143 DCPOWER

HGATE136 1 0 2 HIRGBOXNO H1RGBOXLOW

HGATE1412 20 HGATE109 HGATE110

HGATE1432 2 0 HGATE144 HGATE145

HGATE144 1 0 2 H3PSENNO1 H3PSENWR1

HGATE1451 0 2 H3PSENNO2 H3PSENWR2

HGATE146 120 HGATE147 H3ACPUMPCO

HGATE147 1 05 H3ACPUMP H3PACLOSPEED H3ACPINT H3ACPEXT H3ACPBLOCK
H3ACPUMPCON 140 HY_UMS_AVIONIC HGATE135 ACPOWER DCPOWER
H3BYPASS 111 HGATE156 HY3BYPASSBLO

HGATE156 1 31 HGATE157 HY_UMS_AVIONIC DCPOWER HY3BYVAL
HGATE157 22 0 HGATE158 HGATE159

HGATE158 1 0 2 HY3FBSENNO1 HY3FBSENWR1

HGATE159 1 0 2 HY3FBSENNO2 HY3FBSENWR2

HGATE162 14 1 HGATE52 HY_UMS_AVIONIC HGATE163 DCPOWER HY3HEEXV
HGATE1632 2 0 HGATE164 HGATE165

HGATE164 1 02 HY3TEMS1NO HY3TES1WR

HGATE1651 02 HY3TEMS2NO HY3TEMS2WR

H2ACELPUMP1 12 0 HGATE168 H2ACPUMP1CON

HGATE168 1 0 5 H2ACP1PUMP H2ACP1LOSPEED H2ACP1INT H2ACP1EXT H2ACP1BLOCK
H2ACPUMP1CON 14 0 HY_UMS_AVIONIC HGATE171 ACPOWER DCPOWER
HGATE171 120 HGATE173 DCPOWER

HGATE17322 0 HGATE174 HGATE175

HGATE174 1 0 2 H2PSENNO1 H2PSENWRH1

HGATE1751 0 2 H2PSENNO2 H2PSENWR2

H2ACELPUMP2 12 0 HGATE177 H2ACPUMP2CON

HGATE177 105 H2ACP2PUMP H2ACP2LOSPEED H2ACP2INT H2ACP2EXT H2ACP2BLOCK
H2ACPUMP2CON 14 0 HY_UMS_AVIONIC HGATE71 ACPOWER DCPOWER
HGATE184 1 04 H2RLEAK H2RMECH H2RAERO H2RLIQ

LOW_TO_RES2 111 HGATE186 H2REPIP

HGATE186 14 1 HGATE187 HY_UMS_AVIONIC HGATE188 DCPOWER HY2HEEXV
HGATE187 1 05 H2HBLOCK H2HNOFLUID H2HNOPRESS H2HINT H2HLEV
HGATE1882 2 0 HGATE190 HGATE191

HGATE1901 02 HY2TEMS1NO HY2TEMS1WR

HGATE191 102 HY2TEMS2NO HY2TEMS2WR

HGATE1921 0 2 H2FOB H2FGAP

H2BYPASS 111 HGATE194 HY2BYPASSBLO

HGATE194 1 31 HGATE195 HY_UMS_AVIONIC DCPOWER HY2BYVAL
HGATE1952 2 0 HGATE196 HGATE197

HGATE196 1 0 2 HY2FBSENNO1 HY2FBSENWR1

262

HGATE197 1 0 2 HY2FBSENNO2 HY2FBSENWR2
FCAVIONIC 16 0 ACT_DR_COM FCU ADC DATA_BUS NAVINFO FMS
ACT_DR_COM 2 3 0 HGATE202 HGATE203 HGATE204
HGATE202 102 AVADC1INO AVADC1WR
HGATE203 102 AVADC2NO AVADC2WR
HGATE204 1 0 2 AVADC3NO AVADC3WR

FCU 23 0 HGATE206 HGATE207 HGATE208
HGATE206 102 AVFCUINO AVFCU1WR
HGATE207 102 AVFCU2NO AVFCU2WR
HGATE208 1 0 2 AVFCU3NO AVFCU3WR

ADC 230 HGATE214 HGATE215 HGATE216
HGATE214 120 HGATE217 AIR1SENSORS
HGATE21512 0 HGATE218 AIR1SENSORS
HGATE216 120 HGATE219 AIR1SENSORS
HGATE217 102 AVAIRDC1NO AVAIRDC1WR
HGATE218 1 0 2 AVAIRDC2NO AVAIRDC2WR
HGATE2191 02 AVAIRDC3NO AVAIRDC3WR
AIR1SENSORS 13 0 HGATE221 TOTALAIR AIRTEM
HGATE2212 3 0 HGATE224 HGATE225 HGATE226
TOTALAIR 2 30 HGATE227 HGATE228 HGATE229
AIRTEM 2 30 HGATE230 HGATE231 HGATE232
HGATE224 1 02 AVSAS1NO AVSAS1WR
HGATE2251 02 AVSAS2NO AVSAS2WR
HGATE226 1 0 2 AVSAS3NO AVSAS3WR
HGATE227 102 AVTAS1INO AVTAS1WR
HGATE228 1 0 2 AVTAS2NO AVTAS2WR
HGATE229 1 0 2 AVTAS3NO AVTAS3WR
HGATE2301 02 AVTEASINO AVTEAS1WR
HGATE231 102 AVTEAS2NO AVTEAS2WR
HGATE2321 02 AVTEAS3NO AVTEAS3WR
DATA_BUS 2 30 HGATE234 HGATE235 HGATE236
HGATE234 1 0 2 AVDBUS1NO AVDBUS1WR
HGATE2351 0 2 AVDBUS2NO AVDBUS2WR
HGATE236 1 0 2 AVDBUS3NO AVDBUS3WR
HGATE23824 0 IRS GPS VOR DMO

HGATE239 22 0 HGATE244 HGATE245

IRS 220 HGATE246 HGATE247

GPS 220 HGATE248 HGATE249

VOR 220 HGATE250 HGATE251

DMO 220 HGATE252 HGATE253

HGATE244 2 2 0 HGATE254 HGATE255
HGATE2452 2 0 HGATE256 HGATE257
HGATE246 1 0 2 AVIRS1INOPOS AVIRS1WRPOS
HGATE247 1 0 2 AVIRS2NOPOS AVIRS2WRPOS
HGATE248 1 0 2 AVGPS1NOPOS AVGPS1WRPOS
HGATE249 1 0 2 AVGPS2NOPOS AVGPS2WRPOS
HGATE2501 02 AVVOR1NO AVVOR1WR
HGATE251 102 AVVOR2NO AVVOR2WR
HGATE2521 02 AVDMO1NO AVDMO1WR
HGATE253 102 AVDMO2NO AVDMO2WR
HGATE254 1 0 2 AVIRSTNOATT AVIRS1WRATT
HGATE2551 02 AVIRS2NOATT AVIRS2WRATT
HGATE256 1 0 2 AVGPS1NOATT AVGPS1WRATT
HGATE257 1 0 2 AVGPS2NOATT AVGPS2WRATT
HGATE267 2 3 0 HGATE268 HGATE269 HGATE270
HGATE268 1 0 2 AVLNB1NO AVLNB1WR
HGATE269 1 0 2 AVLNB2NO AVLNB2WR
HGATE2701 0 2 AVLNB3NO AVLNB3WR
L_ELEVATOR 111 HTOP1 L_ELEVATOR
R_ELEVATOR 111 HGATE462 R_ELEVATOR
L_AILERON 111 HGATE601 L_AILERON
R_AILERON 111 HGATE610 R_AILERON
L_SPOILER 111 HGATE630 L_SPOILER
R_SPOILER 1 11 HGATE639 R_SPOILER
L_FLAP 111 HGATE648 L_FLAP

R_FLAP 111 HGATE657 R_FLAP

L_SLAT 111 HGATE664 L_SLAT

R_SLAT 111 HGATE673 R_SLAT

HY_PRE_HIGH1 13 0 HGATE289 HGATE290 HGATE291
HY_PRE_HIGH2 23 0 HGATE292 HGATE293 HGATE294
HGATE2892 11 HY1_HIGH_PRE H1COFFVOPEN
HGATE2902 11 HY2_HIGH_PRE H2COFFVOPEN
HGATE2912 11 HY3_HIGH_PRE H3COFFVOPEN
HGATE292 111 HY1_HIGH_PRE H1COFFVCLOSE

263

HGATE293 111 HY2_HIGH_PRE H2COFFVCLOSE
HGATE294 1 11 HY3_HIGH_PRE H3COFFVCLOSE
HY1_HIGH_PRE 2 11 HGATE295 H1PRVCLOSE
HY2_HIGH_PRE 2 11 HGATE305 H2PRVCLOSE
HY3_HIGH_PRE 2 11 HGATE312 H3PRVCLOSE
HGATE295 1 2 0 HGATE296 HGATE297

HGATE296 1 1 1 HGATE300 H1MPHISPEED
HGATE297 111 HGATE303 H1ACHISPEED

HGATE300 121 HY_UMS_AVIONIC HGATE302 OV_PWR_LENG
HGATE3022 02 H1PSENWR1 H1PSENWR2
HGATE303120 HY_UMS_AVIONIC HGATE302
HGATE305 12 0 HGATE306 HGATE307

HGATE306 1 11 HGATE308 H2AC1HISPEED
HGATE307 111 HGATE309 H2AC2HISPEED
HGATE308 120 HY_UMS_AVIONIC HGATE310
HGATE309120 HY_UMS_AVIONIC HGATE310
HGATE3102 0 2 H2PSENWR1 H2PSENWR2
HGATE312 120 HGATE313 HGATE314

HGATE313 111 HGATE315 H3MPHISPEED
HGATE314 111 HGATE316 H3ACHISPEED
HGATE315121 HY_UMS_AVIONIC HGATE317 OV_PWR_RENG
HGATE316 120 HY_UMS_AVIONIC HGATE317
HGATE317 2 0 2 H3PSENWR1 H3PSENWR2
HGATE318 111 FOS_UNLOCK1 UNCLOC1UNLOC
HGATE3191 11 FOS_DOORDN UNCDAMDR
HGATE3201 11 FOS_LOCK2 UNCLOC2LOC
HGATE321 111 FOS_UNLOCK3 UNCLOC3UNLOC
HGATE322 111 FOS_UNCDR UNLEGFAIL
HGATE323 111 FOS_LOCK4 UNCLOC4LOC
FOS_UNLOCK1 23 0 HGATE333 HGATE334 HGATE335
FOS_DOORDN 2 3 0 HGATE378 HGATE379 HGATE380
FOS_LOCK2 2 3 0 HGATE351 HGATE352 HGATE353
FOS_UNLOCK3 230 HGATE360 HGATE361 HGATE362
FOS_UNCDR 2 3 0 HGATE387 HGATE388 HGATE389
FOS_LOCK4 2 30 HGATE369 HGATE370 HGATE371
UNDERCARRIAGEF2 16 0 HGATE325 HGATE326 HGATE327 HGATE328 HGATE329 HGATE330
HGATE3251 11 FOS_UNLOCK4 UNCLOC4UNLOC
HGATE326 111 FOS_UNCUP UNLEGFAIL
HGATE327 111 FOS_LOCK3 UNCLOC3LOC
HGATE328 111 FOS_UNLOCK2 UNCLOC2UNLOC
HGATE329111 FOS_DOORUP UNCDAMDR
HGATE3301 11 FOS_LOCK1 UNCLOC1LOC
FOS_UNLOCK4 230 HGATE429 HGATE430 HGATE431
FOS_LOCK3 2 30 HGATE441 HGATE442 HGATE443
FOS_UNLOCK2 2 30 HGATE447 HGATE448 HGATE449
FOS_DOORUP 23 0 HGATE342 HGATE343 HGATE344
FOS_LOCK1 2 3 0 HGATE453 HGATE454 HGATE455
FOS_UNCUP 230 HGATE435 HGATE436 HGATE437
HGATE333 120 HGATE336 HY_LIQ_UNLOC1_A1
HGATE334 120 HGATE338 HY_LIQ_UNLOC1_A2
HGATE335 120 HGATE340 HY_LIQ_UNLOC1_A3
HGATE336 1 03 LA1L1STUCK LA1L1LEAK LA1L1RUPT
HY_LIQ_UNLOC1_A1120 HGATE398 HGATE685
HGATE338 1 0 3 LA2L1STUCK LA2L1LEAK LA2L1RUPT
HY_LIQ_UNLOC1_A2 120 HGATE398 HGATE686
HGATE340 1 0 3 LASL1STUCK LA3L1LEAK LA3LRUPT
HY_LIQ_UNLOC1_A3 120 HGATE398 HGATE687
HGATE342 120 HGATE381 HY_LIQ_DRUP_A1
HGATE343 120 HGATE383 HY_LIQ_DRUP_A2
HGATE344 120 HGATE385 HY_LIQ_DRUP_A3
HGATE351 120 HGATE354 HY_LIQ_LOC2_A1
HGATE352 12 0 HGATE356 HY_LIQ_LOC2_A2
HGATE353 120 HGATE358 HY_LIQ_LOC2_A3
HGATE354 1 0 3 LA1L2STUCK LA1L2LEAK LA1L2RUPT
HY_LIQ_LOC2_A1120 HGATE398 HGATE694
HGATE356 1 0 3 LA2L2STUCK LA2L2LEAK LA2L2RUPT
HY_LIQ_LOC2_A2 120 HGATE398 HGATE695
HGATE358 1 0 3 LA3L2STUCK LA3L2LEAK LA3L2RUPT
HY_LIQ_LOC2_A3 120 HGATE398 HGATE696
HGATE360 120 HGATE363 HY_LIQ_UNLOC3_A1
HGATE361 120 HGATE365 HY_LIQ_UNLOC3_A2
HGATE362 12 0 HGATE367 HY_LIQ_UNLOC3_A3
HGATE363 1 0 3 LA1L3STUCK LA1L3LEAK LA1L3RUPT
HY_LIQ_UNLOC3_A1120 HGATE398 HGATE703
HGATE365 1 0 3 LA2L3STUCK LA2L3LEAK LA2L3RUPT

264

HY_LIQ_UNLOC3_A2120 HGATE398 HGATE704
HGATE367 1 0 3 LA3L3STUCK LA3L3LEAK LA3L3RUPT
HY_LIQ_UNLOC3_A3 120 HGATE398 HGATE705
HGATE369 120 HGATE372 HY_LIQ_LOC4_A1
HGATE370 120 HGATE374 HY_LIQ_LOC4_A2
HGATE371 120 HGATE376 HY_LIQ_LOC4_A3
HGATE3721 03 LA1L4STUCK LA1L4ALEAK LA1L4RUPT
HY_LIQ_LOC4_A1120 HGATE398 HGATE712
HGATE374 1 0 3 LA2L4STUCK LA2L4LEAK LA2L4RUPT
HY_LIQ_LOC4_A2 120 HGATE398 HGATE713
HGATE376 1 0 3 LA3L4STUCK LA3L4LEAK LA3L4RUPT
HY_LIQ_LOC4_A3 120 HGATE398 HGATE714
HGATE378 120 HGATE381 HY_LIQ_DRDN_A1
HGATE379 120 HGATE383 HY_LIQ_DRDN_A2
HGATE380 120 HGATE385 HY_LIQ_DRDN_A3
HGATE381 103 LATDRSTUCK LA1DRLEAK LA1DRRUPT
HY_LIQ_DRDN_A1120 HGATE398 HGATEG88
HGATE383 1 03 LA2DRSTUCK LA2DRLEAK LA2DRRUPT
HY_LIQ_DRDN_A2 120 HGATE398 HGATEG89
HGATE385 1 0 3 LASDRSTUCK LA3DRLEAK LA3DRRUPT
HY_LIQ_DRDN_A3 120 HGATE398 HGATEG90
HGATE387 120 HGATE390 HY_LIQ_UNCDR_A1
HGATE388 120 HGATE392 HY_LIQ_UNCDR_A2
HGATE389 120 HGATE394 HY_LIQ_UNCDR_A3
HGATE390 1 0 3 LATUNCSTUCK LATUNCLEAK LATUNCRUPT
HY_LIQ_UNCDR_A1120 HGATE398 HGATE706
HGATE392 1 0 3 LA2UNCSTUCK LA2UNCLEAK LA2UNCRUPT
HY_LIQ_UNCDR_A2 120 HGATE398 HGATE707
HGATE394 1 0 3 LASUNCSTUCK LA3UNCLEAK LA3UNCRUPT
HY_LIQ_UNCDR_A3 120 HGATE398 HGATE708
LAND_SIGNAL 150 NAVINFO DATA_BUS LAND_BRA_UNI HGATE416 FMS
HGATE398 22 0 UNSEQVALF1 UNSEQVALF2
UNSEQVALF1 131 HYDRAULICFAIL LAND_SIGNAL DCPOWER LSEQ1VF
UNSEQVALF2 131 HYDRAULICFAIL LAND_SIGNAL DCPOWER LSEQ2VF
HYDRAULICFAIL 120 HY_PRE_HIGH HY_PRE_LOW
LAND_BRA_UNI 2 30 HGATE413 HGATE414 HGATE415
HGATE413 102 AVLANUNITNO AVLANUNIMWR
HGATE414 1 0 2 AVLANUNI2ZNO AVLANUNI2WR
HGATE4151 02 AVLANUNI3NO AVLANUNI3WR
HGATE416 22 0 HGATE417 HGATE418

HGATE417 1 0 2 AVUNDSEN1INO AVUNDSEN1WR
HGATE418 1 0 2 AVUNDSEN2NO AVUNDSEN2WR
HGATE429 120 HGATE372 HY_LIQ_UNLOC4_A1
HGATE430 120 HGATE374 HY_LIQ_UNLOC4_A2
HGATE431 120 HGATE376 HY_LIQ_UNLOC4_A3
HY_LIQ_UNLOC4_A1120 HGATE398 HGATE715
HY_LIQ_UNLOC4_A2120 HGATE398 HGATE716
HY_LIQ_UNLOC4_A3 120 HGATE398 HGATE717
HGATE4351 20 HGATE390 HY_LIQ_UNCUP_A1
HGATE436 12 0 HGATE392 HY_LIQ_UNCUP_A2
HGATE437 120 HGATE394 HY_LIQ_UNCUP_A3
HY_LIQ_UNCUP_A1 120 HGATE398 HGATE709
HY_LIQ_UNCUP_A2 120 HGATE398 HGATE710
HY_LIQ_UNCUP_A3 120 HGATE398 HGATE711
HGATE441 120 HGATE363 HY_LIQ_LOC3_A1
HGATE442 120 HGATE365 HY_LIQ_LOC3_A2
HGATE443 12 0 HGATE367 HY_LIQ_LOC3_A3
HY_LIQ_LOC3_A1120 HGATE398 HGATE700
HY_LIQ_LOC3_A2 120 HGATE398 HGATE701
HY_LIQ_LOC3_A3 120 HGATE398 HGATE702
HGATE447 120 HGATE354 HY_LIQ_UNLOC2_A1
HGATE448 1 20 HGATE356 HY_LIQ_UNLOC2_A2
HGATE449 120 HGATE358 HY_LIQ_UNLOC2_A3
HY_LIQ_UNLOC2_A1120 HGATE398 HGATE697
HY_LIQ_UNLOC2_A2120 HGATE398 HGATE698
HY_LIQ_UNLOC2_A3 120 HGATE398 HGATE699
HGATE453 120 HGATE336 HY_LIQ_LOC1_A1

HGATE454 120 HGATE338 HY_LIQ_LOC1_A2
HGATE45512 0 HGATE340 HY_LIQ_LOC1_A3
HY_LIQ_LOC1_A1120 HGATE398 HGATE682
HY_LIQ_LOC1_A2 120 HGATE398 HGATE683
HY_LIQ_LOC1_A3 120 HGATE398 HGATE684
HY_LIQ_DRUP_A1 120 HGATE398 HGATE691
HY_LIQ_DRUP_A2 120 HGATE398 HGATE692
HY_LIQ_DRUP_A3 120 HGATE398 HGATE693

265

HGATE462 2 3 0 HGATEG00 HGATE464 HGATE465
HGATEG00 120 HGATE466 HY_LIQ_RE_ACT1

HGATE464 120 HGATE468 HY_LIQ_RE_ACT2
HGATE4651 2 0 HGATE470 HY_LIQ_RE_ACT3
HGATE466 1 0 3 HATRESTUCK HA1RELEAK HA1RERUPT
HY_LIQ_RE_ACT1120 HGATE761 HYDRAULICFAIL
HGATE468 1 0 3 HA2RESTUCK HA2RELEAK HA2RERUPT
HY_LIQ_RE_ACT212 0 HGATE766 HYDRAULICFAIL
HGATE470 1 0 3 HABRESTUCK HA3RELEAK HA3RERUPT
HY_LIQ_RE_ACT3 120 HGATE768 HYDRAULICFAIL
HGATEG601 2 3 0 HGATE602 HGATE603 HGATE6G04
HGATEG602 120 HGATEG05 HY_LIQ_LA_ACT1

HGATEG603 120 HGATE607 HY_LIQ_LA_ACT2
HGATEG04 120 HGATEG09 HY_LIQ_LA_ACT3
HGATEG05 1 0 3 HA1TLASTUCK HA1LALEAK HA1LARUPT
HY_LIQ_LA ACT1120 HGATE770 HYDRAULICFAIL
HGATEG07 1 0 3 HA2LASTUCK HA2LALEAK HA2LARUPT
HY_LIQ_LA ACT2120 HGATE775 HYDRAULICFAIL
HGATEG09 1 0 3 HASLASTUCK HASLALEAK HA3LARUPT
HY_LIQ_LA ACT3 120 HGATE777 HYDRAULICFAIL
HGATE6102 30 HGATE611 HGATE612 HGATEG13
HGATE611 120 HGATE614 HY_LIQ_RA_ACT1
HGATE61212 0 HGATE616 HY_LIQ_RA_ACT2
HGATE613 120 HGATE618 HY_LIQ_RA_ACT
HGATE614 1 0 3 HATRASTUCK HA1RALEAK HA1RARUPT
HY_LIQ_RA_ACT1120 HGATE779 HYDRAULICFAIL
HGATE616 1 0 3 HA2RASTUCK HA2RALEAK HA2RARUPT
HY_LIQ_RA_ACT2120 HGATE783 HYDRAULICFAIL
HGATE618 1 0 3 HASBRASTUCK HA3RALEAK HA3RARUPT
HY_LIQ_RA_ACT3 120 HGATE785 HYDRAULICFAIL
HGATEG6212 30 HGATEG22 HGATE623 HGATEG24
HGATE622 12 0 HGATE625 HY_LIQ_RU_ACT1

HGATE623 12 0 HGATE627 HY_LIQ_RU_ACT2
HGATE624 120 HGATE629 HY_LIQ_RU_ACT3
HGATEG625 1 0 3 HATRUSTUCK HATRULEAK HATRURUPT
HY_LIQ_RU_ACT1 120 HGATE787 HYDRAULICFAIL
HGATE627 1 0 3 HA2RUSTUCK HA2RULEAK HA2RURUPT
HY_LIQ_RU_ACT2 120 HGATE792 HYDRAULICFAIL
HGATE629 1 0 3 HASRUSTUCK HA3RULEAK HA3RURUPT
HY_LIQ_RU_ACT3 120 HGATE794 HYDRAULICFAIL
HGATE6302 3 0 HGATE631 HGATE632 HGATE6G33
HGATE631 120 HGATE634 HY_LIQ_LS_ACT1
HGATE632 12 0 HGATE636 HY_LIQ_LS_ACT2
HGATE633 12 0 HGATE638 HY_LIQ_LS_ACT3
HGATE634 1 0 3 HA1LSSTUCK HA1LSLEAK HA1LSRUPT
HY_LIQ_LS_ACT1 120 HGATE796 HYDRAULICFAIL
HGATE636 1 0 3 HA2LSSTUCK HA2LSLEAK HA2LSRUPT
HY_LIQ_LS_ACT2120 HGATE801 HYDRAULICFAIL
HGATE638 1 0 3 HA3LSSTUCK HA3LSLEAK HA3LSRUPT
HY_LIQ_LS_ACT3 120 HGATE803 HYDRAULICFAIL
HGATEG39 2 30 HGATE640 HGATE641 HGATEG42
HGATEG640 120 HGATEG643 HY_LIQ_RS_ACT1

HGATE641 120 HGATE645 HY_LIQ_RS_ACT2
HGATE642 120 HGATE647 HY_LIQ_RS_ACT3
HGATE643 1 0 3 HATRSSTUCK HA1RSLEAK A1RSRUPT
HY_LIQ_RS_ACT112 0 HGATE805 HYDRAULICFAIL
HGATE645 1 0 3 HA2RSSTUCK HA2RSLEAK HA2RSRUPT
HY_LIQ_RS_ACT212 0 HGATE809 HYDRAULICFAIL
HGATE647 1 0 3 HA3BRSSTUCK HA3RSLEAK HA3RSRUPT
HY_LIQ_RS_ACT3 120 HGATE811 HYDRAULICFAIL
HGATE648 2 3 0 HGATE649 HGATE650 HGATEG51
HGATEG649 120 HGATEG52 HY_LIQ_LF_ACT1

HGATEG50 120 HGATE654 HY_LIQ_LF_ACT2

HGATE651 120 HGATEG56 HY_LIQ_LF_ACT3
HGATE652 1 0 3 HA1LFSTUCK HA1LFLEAK HA1LFRUPT
HY_LIQ_LF_ACT1120 HGATE813 HYDRAULICFAIL
HGATEG54 1 0 3 HA2LFSTUCK HA2LFLEAK HA2LFRUPT
HY_LIQ_LF_ACT2120 HGATE818 HYDRAULICFAIL
HGATEG56 1 0 3 HASLFSTUCK HA3LFLEAK HA3LFRUPT
HY_LIQ_LF_ACT3120 HGATE820 HYDRAULICFAIL
HGATE657 2 30 HGATE658 HGATEG659 HGATE6G60
HGATE658 12 0 HGATE661 HY_LIQ_RF_ACT1

HGATE659 12 0 HGATE662 HY_LIQ_RF_ACT2

HGATE660 120 HGATE663 HY_LIQ_RF_ACT3

266

HGATEG61 1 0 3 HATRFSTUCK HA1RFLEAK HA1RFRUPT

HGATE662 1 0 3 HA2RFSTUCK HA2RFLEAK HA2RFRUPT
HGATE663 1 03 HA3RFSTUCK HA3RFLEAK HA3RFRUPT
HY_LIQ_RF_ACT1120 HGATE822 HYDRAULICFAIL
HY_LIQ_RF_ACT2 120 HGATE826 HYDRAULICFAIL
HY_LIQ_RF_ACT3 120 HGATE828 HYDRAULICFAIL
HGATE664 2 30 HGATE665 HGATEG66 HGATEG67
HGATE665 12 0 HGATE668 HY_LIQ_LSL_ACT1

HGATE666 120 HGATE670 HY_LIQ_LSL_ACT2

HGATE667 120 HGATE672 HY_LIQ_LSL_ACT3
HGATE668 1 03 HA1LSLSTUCK HATLSLLEAK HA1LSLRUPT
HY_LIQ_LSL_ACT1120 HGATE830 HYDRAULICFAIL
HGATE670 1 03 HA2LSLSTUCK HA2LSLLEAK HA2LSLRUPT
HY_LIQ_LSL_ACT2 120 HGATE834 HYDRAULICFAIL
HGATE672 1 03 HA3LSLSTUCK HA3LSLLEAK HA3LSLRUPT
HY_LIQ_LSL_ACT3 120 HGATE836 HYDRAULICFAIL
HGATE673 230 HGATE674 HGATE675 HGATE676
HGATE674 120 HGATE677 HY_LIQ_RSL_ACT1
HGATE675 120 HGATE679 HY_LIQ_RSL_ACT2

HGATE676 120 HGATE681 HY_LIQ_RSL_ACT3
HGATE677 1 03 HATRSLSTUCK HATRSLLEAK HA1RSLRUPT
HY_LIQ_RSL_ACT1 120 HGATE838 HYDRAULICFAIL
HGATE679 103 HA2RSLSTUCK HA2RSLLEAK HA2RSLRUPT
HY_LIQ_RSL_ACT2 120 HGATE842 HYDRAULICFAIL
HGATE681 103 HA3RSLSTUCK HA3RSLLEAK HA3RSLRUPT
HY LIQ_RSL_ACT3 120 HGATE844 HYDRAULICFAIL
HGATE682 12 1 LAND_SIGNAL DCPOWER LSEV1L1P2
HGATE683 12 1 LAND_SIGNAL DCPOWER LSEV2L1P2
HGATE684 12 1 LAND_SIGNAL DCPOWER LSEV3L1P2
HGATE685 12 1 LAND_SIGNAL DCPOWER LSEV1L1P1
HGATE686 12 1 LAND_SIGNAL DCPOWER LSEV2L1P1
HGATE687 12 1 LAND_SIGNAL DCPOWER LSEV3L1P1
HGATE688 12 1 LAND_SIGNAL DCPOWER LSEV1DRP1
HGATE689 12 1 LAND_SIGNAL DCPOWER LSEV2DRP1
HGATE690 12 1 LAND_SIGNAL DCPOWER LSEV3DRP1
HGATE691 12 1 LAND_SIGNAL DCPOWER LSEV1DRP2
HGATE692 12 1 LAND_SIGNAL DCPOWER LSEV2DRP2
HGATE693 12 1 LAND_SIGNAL DCPOWER LSEV3DRP2
HGATE694 12 1 LAND_SIGNAL DCPOWER LSEV1L2P1
HGATE695 12 1 LAND_SIGNAL DCPOWER LSEV2L2P1
HGATE696 12 1 LAND_SIGNAL DCPOWER LSEV3L2P1
HGATE697 12 1 LAND_SIGNAL DCPOWER LSEV1L2P2
HGATE698 12 1 LAND_SIGNAL DCPOWER LSEV2L2P2
HGATEG699 12 1 LAND_SIGNAL DCPOWER LSEV3L2P2
HGATE700 12 1 LAND_SIGNAL DCPOWER LSEV1L3P2
HGATE70112 1 LAND_SIGNAL DCPOWER LSEV2L3P2
HGATE702 12 1 LAND_SIGNAL DCPOWER LSEV3L3P2
HGATE703 12 1 LAND_SIGNAL DCPOWER LSEV1L3P1
HGATE704 12 1 LAND_SIGNAL DCPOWER LSEV2L3P1
HGATE705 12 1 LAND_SIGNAL DCPOWER LSEV3L3P1
HGATE706 12 1 LAND_SIGNAL DCPOWER LSEV1UNCP1
HGATE707 12 1 LAND_SIGNAL DCPOWER LSEV2UNCP1
HGATE708 12 1 LAND_SIGNAL DCPOWER LSEV3UNCP1
HGATE709 12 1 LAND_SIGNAL DCPOWER LSEV1UNCP2
HGATE710 12 1 LAND_SIGNAL DCPOWER LSEV2UNCP2
HGATE711 121 LAND_SIGNAL DCPOWER LSEV3UNCP2
HGATE71212 1 LAND_SIGNAL DCPOWER LSEV1L4P1
HGATE713 121 LAND_SIGNAL DCPOWER LSEV2L4P1
HGATE714 12 1 LAND_SIGNAL DCPOWER LSEV3L4P1
HGATE71512 1 LAND_SIGNAL DCPOWER LSEV1L4P2
HGATE716 12 1 LAND_SIGNAL DCPOWER LSEV2L4P2
HGATE717 12 1 LAND_SIGNAL DCPOWER LSEV3L4P2
HGATE718 12 1 HGATE720 HY_LIQ_BRS L_WHEEL_F
HGATE719 12 1 HGATE721 HY_LIQ_BRS R_WHEEL_F
HGATE7202 02 L_BKE_1F L _BKE_2F

HGATE721202 R_BKE_1F R_BKE_2F

HY_LIQ_BRS 220 HGATE722 HGATE723

HGATE722 120 LEFTANTI-SKID HY_LIQ_FR_BCV1
HGATE723 120 RIGHTANTI-SKID HY_LIQ_FR_BCV2
HGATE724 1 02 BRLSVOMD BRLSVOLECK

LEFTANTI-SKID 14 0 HGATE724 SIG_F_ANTSS LAND&BRAKEAVIONIC DCPOWER
SIG_F_ANTSS 120 HGATE732 HGATE733

HY LIQ_FR_BCV114 0 HGATE738 LAND&BRAKEAVIONIC HYDRAULICFAIL DCPOWER
RIGHTANTI-SKID 140 HGATE729 SIG_F_ANTSS LAND&BRAKEAVIONIC DCPOWER

267

HGATE729 1 0 2 BRRSVOMD BRRSVOLEC

HGATE7322 2 0 HGATE734 HGATE735

HGATE7332 20 HGATE736 HGATE737

HGATE734 1 0 2 BRASUTINO BRASU1WR

HGATE7351 02 BRASU2NO BRASU2WR

HGATE736 1 0 2 BRTRS1NO BRTRS1WR

HGATE737 102 BRTRS2NO BRTRS2WR

HY_LIQ_FR_BCV214 0 HGATE739 LAND&BRAKEAVIONIC HYDRAULICFAIL DCPOWER
HGATE738 102 BRBCVIMD BRBCV1LEAK

HGATE739 1 0 2 BRBCV2MD BRBCV2LEAK

HGATE741 120 HGATE743 HGATE744

HGATE7422 4 0 NOTUNLOCK1 NOTDOORDN NOTUNLOCK3 NOTWHEELDN
HGATE7432 03 NOTUNDSIGL&B1 NOTUNDSIGL&B2 NOTUNDSIGL&B3

HGATE744 2 0 3 NOTUNDSIGFMS1 NOTUNDSIGFMS2 NOTUNDSIGFMS3
NOTUNLOCK1 111 HGATE745 NOTUNDUNLOCK1

NOTDOORDN 11 1 HGATE753 NOTUNDDOOR

NOTUNLOCK3 111 HGATE749 NOTUNDUNLOCK3

NOTWHEELDN 1 11 HGATE757 NOTUNDWHEEL

HGATE7452 3 0 HGATE746 HGATE747 HGATE748

HGATE746 1 04 NOTUNDA1LOC1 NOTUNDA2LOC1 NOTUNDS1LOC1 NOTUNDS2LOC1
HGATE747 1 0 4 NOTUNDA1LOC1 NOTUNDA3LOC1 NOTUNDS1LOC1 NOTUNDS3LOC1
HGATE748 1 04 NOTUNDA2LOC1 NOTUNDA3LOC1 NOTUNDS2LOC1 NOTUNDS3LOC1
HGATE749 2 30 HGATE750 HGATE751 HGATE752

HGATE750 1 04 NOTUNDA1LOC3 NOTUNDA2LOC3 NOTUNDS1LOC3 NOTUNDS2LOC3
HGATE751 104 NOTUNDA1LOC3 NOTUNDA3LOC3 NOTUNDS1LOC3 NOTUNDS3LOC3
HGATE7521 04 NOTUNDA2LOC3 NOTUNDA3LOC3 NOTUNDS2LOC3 NOTUNDS3LOC3
HGATE753 2 30 HGATE754 HGATE755 HGATE756

HGATE754 1 0 4 NOTUNDA1DOOR NOTUNDA2DOOR NOTUNDS1DOOR NOTUNDS2DOOR
HGATE7551 04 NOTUNDA1DOOR NOTUNDA3DOOR NOTUNDS1DOOR NOTUNDS3DOOR
HGATE756 1 0 4 NOTUNDA2DOOR NOTUNDA3DOOR NOTUNDS2DOOR NOTUNDS3DOOR
HGATE757 230 HGATE758 HGATE759 HGATE760

HGATE758 1 0 4 NOTUNDATWHEEL NOTUNDA2WHEEL NOTUNDS1WHEEL NOTUNDS2WHEEL
HGATE759 1 0 4 NOTUNDATWHEEL NOTUNDA3WHEEL NOTUNDS1WHEEL NOTUNDS3WHEEL
HGATE760 1 04 NOTUNDA2WHEEL NOTUNDA3WHEEL NOTUNDS2WHEEL NOTUNDS3WHEEL
HGATE761 140 HGATE762 POSTION_SENSOR_RE FCAVIONIC DCPOWER
HGATE762 1 04 HRESVO1MD HRESVO1INSIGN HRESVO1LECK HRESVO1WISIGN
POSTION_SENSOR_RE 22 0 HGATE764 HGATE765

HGATE764 1 0 2 HREPOSSEN1NO HREPOSSENWO1

HGATE765 1 0 2 HREPOSSEN2NO HREPOSSENWO2

HGATE766 14 0 HGATE767 POSTION_SENSOR_RE FCAVIONIC DCPOWER
HGATE767 1 0 4 HRESVO2MD HRESVO2INSIGN HRESVO2LECK HRESVO2WISIGN
HGATE768 14 0 HGATE769 POSTION_SENSOR_RE FCAVIONIC DCPOWER
HGATE769 1 0 4 HRESVO3MD HRESVO3INSIGN HRESVO3LECK HRESVO3WISIGN
HGATE77014 0 HGATE771 POSTION_SENSOR_LA FCAVIONIC DCPOWER
HGATE7711 04 HLASVO1MD HLASVO1INSIGN HLASVO1LECK HLASVO1WISIGN
POSTION_SENSOR_LA 220 HGATE773 HGATE774

HGATE773 102 HLAPOSSEN1NO HLAPOSSENWO1

HGATE774 1 0 2 HLAPOSSEN2NO HLAPOSSENWO2

HGATE77514 0 HGATE776 POSTION_SENSOR_LA FCAVIONIC DCPOWER
HGATE776 1 0 4 HLASVO2MD HLASVO2INSIGN HLASVO2LECK HLASVO2WISIGN
HGATE777 14 0 HGATE778 POSTION_SENSOR_LA FCAVIONIC DCPOWER
HGATE778 1 04 HLASVO3MD HLASVOSINSIGN HLASVO3LECK HLASVO3WISIGN
HGATE77914 0 HGATE780 POSTION_SENSOR_RA FCAVIONIC DCPOWER
HGATE780 1 0 4 HRASVO1MD HRASVO1INSIGN HRASVO1LECK HRASVO1WISIGN
POSTION_SENSOR_RA 220 HGATE781 HGATE782

HGATE781 1 0 2 HRAPOSSEN1NO HRAPOSSENWO1

HGATE782 1 0 2 HRAPOSSEN2NO HRAPOSSENWO2

HGATE783 14 0 HGATE784 POSTION_SENSOR_RA FCAVIONIC DCPOWER
HGATE784 1 0 4 HRASVO2MD HRASVO2INSIGN HRASVO2LECK HRASVO2WISIGN
HGATE78514 0 HGATE786 POSTION_SENSOR_RA FCAVIONIC DCPOWER
HGATE786 1 0 4 HRASVO3MD HRASVO3INSIGN HRASVO3LECK HRASVO3WISIGN
HGATE787 14 0 HGATE788 POSTION_SENSOR_R FCAVIONIC DCPOWER
HGATE788 104 HRSVO1MD HRSVO1INSIGN HRSVO1LECK HRSVO1WISIGN
POSTION_SENSOR_R 220 HGATE790 HGATE791

HGATE790 1 0 2 HRPOSSEN1NO HRPOSSENWO1

HGATE791 1 0 2 HRPOSSEN2NO HRPOSSENWO2

HGATE792 14 0 HGATE793 POSTION_SENSOR_R FCAVIONIC DCPOWER
HGATE793 1 0 4 HRSVO2MD HRSVO2INSIGN HRSVO2LECK HRSVO2WISIGN
HGATE794 14 0 HGATE795 POSTION_SENSOR_R FCAVIONIC DCPOWER
HGATE7951 0 4 HRSVO3MD HRSVOSINSIGN HRSVO3LECK HRSVO3WISIGN
HGATE796 14 0 HGATE797 POSTION_SENSOR_LSP FCAVIONIC DCPOWER
HGATE797 1 0 4 HLSPVO1MD HLSPVO1INSIGN HLSPVO1LECK HLSPSVO1WISIGN
POSTION_SENSOR_LSP 220 HGATE799 HGATES800

HGATE799 1 0 2 HLSPPOSSEN1NO HLSPPOSSENWO1

268

HGATES800 1 0 2 HLSPPOSSEN2NO HLSPPOSSENWO2

HGATE801 14 0 HGATE802 POSTION_SENSOR_LSP FCAVIONIC DCPOWER
HGATE802 1 0 4 HLSPVO2MD HLSPVO2INSIGN HLSPVO2LECK HLSPSVO2WISIGN
HGATE803 14 0 HGATE804 POSTION_SENSOR_LSP FCAVIONIC DCPOWER
HGATE804 1 04 HLSPVO3MD HLSPVOSINSIGN HLSPVO3LECK HLSPSVO3WISIGN
HGATE805 14 0 HGATE806 POSTION_SENSOR_RSP FCAVIONIC DCPOWER
HGATE806 1 0 4 HRSPVO1MD HRSPVO1INSIGN HRSPVO1LECK HRSPSVO1WISIGN
POSTION_SENSOR_RSP 22 0 HGATE807 HGATES808

HGATE807 1 0 2 HRSPPOSSEN1NO HRSPPOSSENWO1

HGATE808 1 0 2 HRSPPOSSEN2NO HRSPPOSSENWO2

HGATE809 14 0 HGATE810 POSTION_SENSOR_RSP CAVIONIC DCPOWER
HGATE810 1 0 4 HRSPVO2MD HRSPVO2INSIGN HRSPVO2LECK HRSPSVO2WISIGN
HGATE811 14 0 HGATE812 POSTION_SENSOR_RSP FCAVIONIC DCPOWER
HGATE812 1 04 HRSPVO3MD HRSPVO3INSIGN HRSPVO3LECK HRSPSVO3WISIGN
HGATE813 14 0 HGATE814 POSTION_SENSOR_LF FCAVIONIC DCPOWER
HGATE814 1 04 HLFSVO1MD HLFSVO1INSIGN. HLFSVO1INSIGN HLFSVO1WISIGN
POSTION_SENSOR_LF 220 HGATE816 HGATES1

HGATE816 1 0 2 HLFPOSSEN1NO HLFPOSSENWO1

HGATE817 1 0 2 HLFPOSSEN2NO HLFPOSSENWO2

HGATE818 14 0 HGATE819 POSTION_SENSOR_LF FCAVIONIC DCPOWER
HGATE8191 04 HLFSVO2MD HLFSVO2INSIGN. HLFSVO2LECK HLFSVO2WISIGN
HGATE820 14 0 HGATE821 POSTION_SENSOR_LF FCAVIONIC DCPOWER
HGATE821 104 HLFSVO3MD HLFSVOS3INSIGN. HLFSVO3LECK HLFSVO3WISIGN
HGATE822 14 0 HGATE823 POSTION_SENSOR_RF FCAVIONIC DCPOWER
HGATE823 1 04 HRFSVO1MD HRFSVO1INSIGN. HRFSVO1INSIGN HRFSVO1WISIGN
POSTION_SENSOR_RF 22 0 HGATE824 HGATES825

HGATE824 1 0 2 HRFPOSSEN1NO HRFPOSSENWO1

HGATE825 1 0 2 HRFPOSSEN2NO HRFPOSSENWO2

HGATE826 14 0 HGATE827 POSTION_SENSOR_RF FCAVIONIC DCPOWER
HGATES827 1 04 HRFSVO2MD HRFSVO2INSIGN. HRFSVO2INSIGN HRFSVO2WISIGN
HGATE828 14 0 HGATE829 POSTION_SENSOR_RF FCAVIONIC DCPOWER
HGATE829 1 0 4 HRFSVO3MD HRFSVO3INSIGN. HRFSVO3INSIGN HRFSVO3WISIGN
HGATE830 14 0 HGATE831 POSTION_SENSOR_LSL FCAVIONIC DCPOWER
HGATE8311 04 HLSLSVO1MD HLSLSVO1INSIGN. HLSLSVO1INSIGN HLSLSVO1WISIGN
POSTION_SENSOR_LSL 22 0 HGATE832 HGATES833

HGATE832 1 02 HLSLPOSSEN1NO HLSLPOSSENWO1

HGATE833 1 0 2 HLSLPOSSEN2NO HLSLPOSSENWO2

HGATES834 14 0 HGATE835 POSTION_SENSOR_LSL FCAVIONIC DCPOWER
HGATE835 1 04 HLSLSVO2MD HLSLSVO2INSIGN. HLSLSVO2INSIGN HLSLSVO2WISIGN
HGATE836 14 0 HGATE837 POSTION_SENSOR_LSL FCAVIONIC DCPOWER
HGATE837 1 0 4 HLSLSVO3MD HLSLSVO3INSIGN. HLSLSVO3INSIGN HLSLSVO3WISIGN
HGATE838 14 0 HGATE839 POSTION_SENSOR_RSL FCAVIONIC DCPOWER
HGATE839 1 04 HRSLSVO1MD HRSLSVO1INSIGN. HRSLSVO1INSIGN HRSLSVO1WISIGN
POSTION_SENSOR_RSL 22 0 HGATE840 HGATE841

HGATE840 1 0 2 HRSLPOSSEN1NO HRSLPOSSENW1

HGATE841 1 0 2 HRSLPOSSEN2NO HRSLPOSSENWO2

HGATE842 14 0 HGATE843 POSTION_SENSOR_RSL FCAVIONIC DCPOWER
HGATE843 1 0 4 HRSLSVO2MD HRSLSVO2INSIGN. HRSLSVO2INSIGN HRSLSVO2WISIGN
HGATES844 14 0 HGATE845 POSTION_SENSOR_RSL FCAVIONIC DCPOWER
HGATE8451 04 HRSLSVO3MD HRSLSVOSINSIGN. HRSLSVO3INSIGN HRSLSVO3WISIGN
PWR_HIGHAC 130 GATE204 GATE205 GATE206

THRUSTL 12 0 ENGINEL FUELENGL

THRUSTR 120 ENGINER FUELENGR

ENGINEL 120 FGATE80 FGATES1

FUELENGL 111 FGATE37 FLLPCCLOSE

ENGINER 120 FGATE109 FGATE110

FUELENGR 111 FGATE44 FRLPCCLOSE

F_AVIONIC 140 UMS FMS DATA_BUS FAULUNIT

FAULUNIT 230 FGATE34 FGATE35 FGATE36

FGATE34 102 FFUINO FFU1WR

FGATE351 02 FFU2NO FFU2WR

FGATE36 102 FFU3NO FFU3WR

FGATE37 120 FGATE38 FGATE43

FGATE38 1 30 LTEMSENSERS F_AVIONIC FGATE42

LTEMSENSERS 22 0 FGATE40 FGATE41

FGATE40 112 DCPOWER FLTEMSEN1NO FLTEMSEN1WR

FGATE41 112 DCPOWER FLTEMSEN2NO FLTEMSEN2WR

FGATE42 111 ACPOWER FLHEATF

FGATE43220 LL_FUEL RL_FUEL

LL_FUEL 112 FGATE54 FPIP1 FLNRVF

RL_FUEL 131 FGATE74 FGATE75 RR_FUEL FPIPCRO

FGATE44 120 FGATE45 FGATE46

FGATE45 14 0 RTEMSENSERS F_AVIONIC FGATE48 DCPOWER

FGATE46 220 RR_FUEL LR_FUEL

RTEMSENSERS 22 0 FGATE49 FGATES50

269

FGATE48 111 ACPOWER FRHEATF

FGATE49 112 DCPOWER FRTEMSEN1NO FRTEMSEN1WR
FGATES50 112 DCPOWER FRTEMSEN2NO FRTEMSEN2WR
RR_FUEL 112 FGATE65 FPIP2 FRNRVF

LR_FUEL 131 FGATE79 FGATE75 LL_FUEL FPIPCRO
FGATES54 120 FGATE55 FROM_LTANK

FGATE551 14 ACPOWER FLACPUNO FLACPUSLOW FLACPUSIND FLACPUSEXD
FROM_LTANK 120 FGATES58 L_AIRPRESS

FGATE58 1 03 FLTANMD FLTANRUP FLTANLEAK

L_AIRPRESS 13 0 FGATEG0 FGATEG61 F_AVIONIC

FGATE6022 0 FGATE63 FGATE64

FGATE61 112 DCPOWER FLVENTIN FLVENTOUT

FGATE63 112 DCPOWER FLAPS1NO FLAPS1WR

FGATE64 1 12 DCPOWER FLAPS2NO FLAPS2WR

FGATEG5 120 FGATE66 FROM_RTANK

FGATEG66 1 14 ACPOWER FRACPUNO FRACPUSLOW FRACPUSIND FRACPUSEXD
FROM_RTANK 12 0 FGATE68 R_AIRPRESS

FGATEG68 1 0 3 FRTANMD FRTANRUP FRTANLEAK
R_AIRPRESS 130 FGATE70 FGATE71 F_AVIONIC
FGATE70220 FGATE72 FGATE73

FGATE71 112 DCPOWER FRVENTIN FRVENTOUT

FGATE72 112 DCPOWER FRAPS1NO FRAPS1WR

FGATE73 112 DCPOWER FRAPS2NO FRAPS2WR

FGATE74 202 FLPRESEN1 FLPRESEN2

FGATE75120 FGATE78 F_AVIONIC

FGATE78 1 03 FCROVID FCROVED FCROVCL

FGATE79 2 02 FRPRESEN1 FRPRESEN2

RE_THRUST_F 120 FGATE114 FGATE115

FGATE80 106 FENG1COM FENG1CH FENG1TUR FENG1EX FENG1SHA FENG1FAN
FGATE81 112 TOLEFTHP FLSPNOZ FLHPCOCK

TOLEFTHP 120 FGATE84 FGATE108

FGATE84 121 EC_AVIONIC ECSENSORSL FLVALF
EC_AVIONIC 16 0 DATA_BUS FMS ADC NAVINFO FADEC TMS
FADEC 2 3 0 FGATEQ0 FGATE91 FGATE92

FGATE90 102 FFADECINO FFADEC1WR

FGATE91 102 FFADEC2NO FFADEC2WR

FGATE92 102 FFADEC3NO FFADEC3WR

TMS 23 0 FGATE95 FGATE96 FGATE97

FGATE95102 FTMSINO FTMS1WR

FGATE96 102 FTMS2NO FTMS2WR

FGATE97 102 FTMS3NO FTMS3W

ECSENSORSL 130 FGATE99 FGATE100 FGATE101

FGATE99 220 FGATE102 FGATE103

FGATE10022 0 FGATE104 FGATE105

FGATE10122 0 FGATE106 FGATE17

FGATE102 1 02 FTEMSEN1NOL FTEMSEN1WRL

FGATE103 102 FTEMSEN2NOL FTEMSEN2WRL

FGATE104 1 0 2 FPRSEN1NOL FPRSEN1WRL

FGATE105 1 0 2 FPRSEN2NOL FPRSEN2WRL

FGATE106 1 0 2 FSPSEN1TNOL FSPSEN1WRL

FGATE107 102 FSPSEN2NOL FSPSEN2WRL

FGATE108 114 ACPOWER FLACECPEX FLACECPIN FLACECPSLOW FLACECPNO
FGATE109 106 FENG2COM FENG2CH FENG2TUR FENG2EX FENG2SHA FENG2FAN
FGATE110 112 TORIGHTHP FRSPNOZ FRHPCOCK
TORIGHTHP 12 0 FGATE112 FGATE113

FGATE112121 EC_AVIONIC ECSENSORSR FRVALF
FGATE113 114 ACPOWER FRACECPEX FRACECPIN FRACECPSLOW FRACECPNO
FGATE114 120 L_RTDOOR THRUSTL

FGATE11512 0 R_RTDOOR THRUSTR

L_RTDOOR 111 FGATE116 L_RTDOOR

R_RTDOOR 111 FGATE132 R_RTDOOR

FGATE116 23 0 FGATE117 FGATE118 FGATE119

FGATE117 120 FGATE120 HY_LIQ_LCDR_ACT1

FGATE118 120 FGATE122 HY_LIQ_LCDR_ACT2

FGATE119120 FGATE124 HY_LIQ_LCDR_ACT3

FGATE120 1 0 3 HA1LDRSTUCK HA1LDRLECK HA1LDRRUPT
HY_LIQ_LCDR_ACT1 120 FGATE126 HYDRAULICFAIL
FGATE122 1 0 3 HA2LDRSTUCK HA2LDRLECK HA2LDRRUPT
HY_LIQ_LCDR_ACT2 120 FGATE129 HYDRAULICFAIL
FGATE124 1 0 3 HASLDRSTUCK HA3LDRLECK HA3LDRRUPT
HY_LIQ_LCDR_ACT3 120 FGATE131 HYDRAULICFAIL
FGATE126 121 DCPOWER LAND&BRAKEAVIONIC RTSEVLDR_1
FGATE129 121 DCPOWER LAND&BRAKEAVIONIC RTSEVLDR_2
FGATE131 121 DCPOWER LAND&BRAKEAVIONIC RTSEVLDR_3
FGATE1322 3 0 FGATE133 FGATE134 FGATE135

270

FGATE133 120 FGATE136 HY_LIQ_RCDR_ACT1
FGATE134 120 FGATE138 HY_LIQ_RCDR_ACT2

FGATE135 120 FGATE140 HY_LIQ_RCDR_ACT3

FGATE136 103 HATRDRSTUCK HA1RDRLECK HA1RDRRUPT
HY_LIQ_RCDR_ACT1 120 FGATE141 HYDRAULICFAIL

FGATE138 103 HA2RDRSTUCK HA2RDRLECK HA2RDRRUPT
HY_LIQ_RCDR_ACT2 120 FGATE143 HYDRAULICFAIL

FGATE140 10 3 HA3RDRSTUCK HA3RDRLECK HA3RDRRUPT
HY_LIQ_RCDR_ACT3 120 FGATE144 HYDRAULICFAIL

FGATE141 121 DCPOWER LAND&BRAKEAVIONIC RTSEVRDR 1
FGATE143 12 1 DCPOWER LAND&BRAKEAVIONIC RTSEVRDR 2
FGATE144 12 1 DCPOWER LAND&BRAKEAVIONIC RTSEVRDR_3
NOTRETH 120 FGATE145 FGATE146

FGATE145 12 1 RETRLACTS FGATE155 RTLCSTUCK

FGATE146 12 1 RETRRACTS FGATE155 RTRCSTUCK

RETRLACTS 130 FGATE149 FGATE150 FGATE151

RETRRACTS 13 0 FGATE152 FGATE153 FGATE154

FGATE149 2 0 2 RETHLACT1ST RETHLACT2ST

FGATE150 202 RETHLACT1ST RETHLACT3ST

FGATE151 202 RETHLACT2ST RETHLACT3ST

FGATE152 2 02 RETHRACT1ST RETHRACT2ST

FGATE153 2 0 2 RETHRACT1ST RETHRACT3ST

FGATE154 2 0 2 RETHRACT2ST RETHRACT3ST

FGATE155 120 FGATE156 FGATE157

FGATE156 20 3 RETHSIGNL&BU1 RETHSIGNL&BU2 RETHSIGNL&BU3
FGATE157 20 3 RETHSIGNFMS1 RETHSIGNFMS2 RETHSIGNFMS3
ECSENSORSR 130 FGATE158 FGATE159 FGATE160

FGATE158 220 FGATE161 FGATE162

FGATE159 220 FGATE163 FGATE164

FGATE160 220 FGATE165 FGATE166

FGATE161 102 FTEMSENINOR FTEMSEN1WRR

FGATE162 102 FTEMSEN2NOR FTEMSEN2WRR

FGATE163 102 FPRSEN1NOR FPRSENTWRR

FGATE164 102 FPRSEN2NOR FPRSEN2WRR

FGATE165 102 FSPSENINOR FSPSEN1WRR

FGATE166 102 FSPSEN2NOR FSPSEN2WRR

FUELFLOWHIL 1 1 1 FGATE171 FLACECHI

NOTCLENGFLOW 121 ECSENSORSL F_AVIONIC FLECVOPEN
FUELFLOWHIR 1 11 FGATE174 FRACECHI

NOTCRENGFLOW 12 1 ECSENSORSR F_AVIONIC FRECVOPEN
FGATE171220 FGATE172 FGATE173

FGATE172 121 FGATE74 F_AVIONIC FLLPCOPEN

FGATE173 102 FLACPUHI FRACPUHI

FGATE174 220 FGATE175 FGATE173

FGATE17512 1 FGATE79 F_AVIONIC FLRPCOPEN

LEFT_FCDC 130 EGATE4 LEFT _PWRS EGATE93

CEN_FCDC 130 EGATE68 CEN_PWRS EGATE94

RIGHT_FCDC 130 RIGHT PWRS EGATE90 EGATE95

EGATE4 104 ELLBUSNO ELLBUSLLOW ELLBUSMD ELLBUSOH
LEFT_PWRS 24 0 LVDC BUS L_PMG HOT BBUS CEN_PWRS2
LVDC_BUS 120 EGATE9 EGATE10

L PMG 105 ELLPMGMD ELLPMGNO ELLPMGLOW ELLPMGPU ELLPMGOV
HOT_BBUS 120 EGATE64 EGATE65

EGATE9 104 ELLVDCNO ELLVDCLOW ELLVDCMD ELLVDCOV
EGATE10220 L_TRU RVDC_BUS2

L_TRU 120 EGATE13 EGATE14

RVDC_BUS2 120 EGATE55 EGATE56

EGATE13104 ELLTRUNO ELLTRUMD ELLTRUWR ELLTRUOV
EGATE14220 LAC_XTRBUS GEN_RAT

LAC_XTRBUS 120 EGATE17 EGATE18

GEN_RAT 106 EL_RATOV EL RATNO EL_RATMD EL_RATNOE EL_RATLOW EL_RATPU
EGATE17 104 ELLACXTRBNO ELLACXTRBLOW ELLACXTRBMD ELLACXTRBOV
EGATE18250 L_LGEN L_APUGEN L_RGEN L_BKUPGEN RAC_XTRBUS2.
L_LGEN 120 EGATE24 EGATE25

L_APUGEN 130 EGATE26 EGATE27 EGATE47

L_RGEN 14 0 EGATE28 EGATE29 EGATE48 EGATE49

L_BKUPGEN 120 EGATE30 EGATE31

RAC_XTRBUS2. 14 0 EGATE36 EGATE37 EGATE30 EGATE46
EGATE24 121 EL_AVIONIC CPU ELLGCBO

EGATE25105 ELL_MGENMD ELL_MGENNO ELL_MGENLOW ELL_MGENPU ELL_MGENOV
EGATE26 121 EL_AVIONIC CPU ELAPBOPN

EGATE27 105 ELAPUMD ELAPUNO ELAPULOW ELAPUPU ELAPUOV
EGATE28 121 EL_AVIONIC CPU EL_RGCBOPEN

EGATE29 105 ELRMGENMD ELRMGENNO ELRMGENLOW ELRMGENPU ELRMGENOV
EGATE30 121 EL_AVIONIC CPU ELLBUSTCOPEN

271

EGATE31 111 EGATE33 ELVSCFFAIL

EGATE33 220 EGATE34 EGATE35

EGATE34 105 ELLBUGENMD ELLBUGENNO ELLBUGENLOW ELLBUGENPU ELLBUGENOV
EGATE351 05 ELRBUGENMD ELRBUGENNO ELRBUGENLOW ELRBUGENPU ELRBUGENOV
EGATE36 104 ELRACXTRBNO ELRACXTRBLOW ELRACXTRBMD ELRACXTRBOV
EGATE37 240 R_LGEN R_BKUPGEN R_APUGEN R_RGEN

R_LGEN 14 0 EGATE25 EGATE24 EGATE48 EGATE49

R_BKUPGEN 120 EGATE46 EGATE31

R_APUGEN 130 EGATE26 EGATE48 EGATE27

R_RGEN 120 EGATE29 EGATE28

EGATE46 121 EL_AVIONIC CPU ELRBUSTOPEN

EGATE47 121 EL_AVIONIC CPU ELLBTBOPEN

EGATE48 121 EL_AVIONIC CPU ELRBTBOPEN

EGATE49 121 EL_AVIONIC CPU ELLBTBOPEN

EGATE55 104 ELRVDCBUSNO ELRVDCBUSLOW ELRVDCBUSMD ELRVDCBUSOV
EGATES6 120 EGATES7 EGATES8

EGATES7 22 0 GEN_RAT RAC_XTRBUS

EGATES58 104 ELTRU2NO ELTRU2MD ELTRU2CON ELTRU20V

EGATE64 104 ELHOTBATNO ELHOTBATLOW ELHOTBATMD ELHOTBATOV
EGATE652 20 BATTBUS MAINBATT

BATTBUS 104 ELBATBUSNO ELBATBUSLOW ELBATBUSMD ELBATBUSOV
MAINBATT 104 ELMANBATNO ELMANBATLOW ELMANBATMD ELMANBATOV
EGATE68 104 ELCBUSNO ELCBUSLOW ELCBUSMD ELCBUSOV
CEN_PWRS 240 L_PMG HOT_BBUS R_PMG LEFT_PWRS2

R_PMG 105 ELRPMGMD ELRPMGNO ELRPMGLOW ELRPMGPU ELRPMGOV
CEN_PWRS2230 L_PMG HOT_BBUS R_PMG

LEFT_PWRS2230 LVDC_BUS L_PMG HOT_BBUS

RIGHT_PWRS 220 R_PMG RVDC_BUS

EGATE92 220 EGATE77 LVDC_BUS2

EGATE77 120 EGATES8 EGATE112

LVDC_BUS2 120 EGATE9 L_TRU

RAC_XTRBUS 120 EGATE79 EGATE36

EGATE79250 LAC_XTRBUS2 R_LGEN R_BKUPGEN R_APUGEN R_RGEN
LAC_XTRBUS2 14 0 EGATE120 EGATE30 EGATE46 EGATE17

EGATE822 30 LEFT_FCDC CEN_FCDC RIGHT_FCDC

PWR_HIGHDC 130 GATE1 GATE2 GATE3

EL_AVIONIC 140 FMS UMS DATA_BUS EL_UNIT

EL_UNIT23 0 EGATE87 EGATE88 EGATES89

EGATE87 102 AVELUNINO AVELUN1WR

EGATES88 102 AVELUN2NO AVELUN2WR

EGATE89 102 AVELUN3NO AVELUN3WR

EGATE90 104 ELRBUSNO ELRBUSLLOW ELRBUSMD ELRBUSOH
RVDC_BUS 120 EGATES5 EGATE92

EGATE93 111 EL_AVIONIC ELLCBROPEN

EGATE94 111 EL_AVIONIC ELCCBOPEN

EGATE95 111 EL_AVIONIC ELRCBROPEN

EGATE96 2 30 LACMAINBUS RACMAINBUS SBACMAINBUS

LACMAINBUS 12 0 EGATE99 EGATE103

RACMAINBUS 120 EGATE100 EGATE104

SBACMAINBUS 120 EGATE101 ACSTBY

EGATE99 104 ELLACBUSNO ELLACBUSLOW ELLACBUSMD ELLACBUSOV
EGATE100 1 0 4 ELRACBUSNO ELRACBUSLOW ELRACBUSMD ELRACBUSOV
EGATE101 1 0 4 ELSBACBUSNO ELSBACBUSLOW ELSBACBUSMD ELSBACBUSOV
ACSTBY 220 LAC_XTRBUS EGATE109

EGATE103230 L_LGEN L_RGEN L_APUGEN

EGATE104230 R_LGEN R_RGEN R_APUGEN

EGATE109 1 20 EGATE110 BATTERYBUSAC

EGATE110 104 ELINVERNO ELINVERMD ELINVERWR ELINVEROV
BATTERYBUSAC 13 0 MAINBATT EGATE64 BATTBUS

EGATE11222 0 RAC_XTRBUS GEN_RAT

CPU 230 EGATE117 EGATE118 EGATE119

EGATE117 102 ELCPUINO ELCPU1WR

EGATE118 1 02 ELCPU2NO ELCPU2WR

EGATE1191 02 ELCPU3NO ELCPU3WR

EGATE12024 0 L_LGEN L_APUGEN L_RGEN L_BKUPGEN

GATE1220 L_PWRS_HIGH GATE56

GATE2220 C_PWRS_HIGH GATES57

GATE3220 R_PWRS_HIGH GATE58

L_PWRS_HIGH 122 LVDCBUSHI CPWRSHI ELLPMGHI ELMBATTHI
LVDCBUSHI 120 R_TRU GATE11

CPWRSHI 102 ELLPMGHI ELRPMGHI

GATE11 111 LACXTRBUSHI ELRATHI

LACXTRBUSHI 111 GATE14 ELACLXTRUWR

GATE14 150 L_LMAINGENHI L_APUHI L_RMAINGENHI L_BKUPGENHI RACXTRBUSHI2

272

L_LMAINGENHI 211 GATE20 ELLMGENHI

L_APUHI 221 GATE22 GATE23 ELAPUGENHI
L_RMAINGENHI 2 31 GATE24 GATE22 GATE59 ELRMGENHI
L_BKUPGENHI 220 GATE26 GATEG61

RACXTRBUSHI2 23 0 GATE60 GATE26 GATE41
GATE20121 EL_AVIONIC CPU ELLGCBCLOSE

GATE22 121 EL_AVIONIC CPU ELLBTBCLOSE
GATE23121 EL_AVIONIC CPU ELAPBCLOSE

GATE24 121 EL_AVIONIC CPU ELRBTBCLOSE

GATE26 121 EL_AVIONIC CPU ELLDCBUSCC
R_LMAINGENHI 2 31 GATE20 GATE22 GATE24 ELLMGENHI
R_LAPUGENHI 22 1 GATE23 GATE24 ELAPUGENHI
R_BKUPGENH1 220 GATE41 GATE61

GATE33 102 ELLBUPGENHI ELRBUPGENHI

GATE41 121 EL_AVIONIC CPU ELRDCBUSCC

R_TRU 111 GATE43 ELTRUWR

GATE43 111 RACXTRBUSHI ELRATHI

RACXTRBUSHI 1 11 GATE45 ELACRXTRUWR

GATE45150 R_APUHI R_RMAINGENHI R_BKUPGENH1 LACXTRBUSHI2 R_LMAINGENHI
R_APUHI 221 GATE23 GATE24 ELAPUGENHI
R_RMAINGENHI 2 1 1 GATE59 ELRMGENHI

C_PWRS_HIGH 113 GATE54 ELRPMGHI ELLPMGHI ELMBATTHI
R_PWRS_HIGH 111 RVDCBUSHI ELRPMGHI

GATES54 111 LVDCBUSHI ELLPMGHI

RVDCBUSHI 120 R_TRU GATE11

GATES56 111 EL_AVIONIC ELLCBCLOSE

GATE57 111 EL_AVIONIC ELCCBCLOSE

GATE58 111 EL_AVIONIC ELRCBCLOSE

GATE59121 EL_AVIONIC CPU ELRGCBCLOSE
GATE60 14 1 R_LMAINGENHI R_LAPUGENHI R_BKUPGENH1 R_RMAINGENHI ELACRXTRUWR
GATE61 111 GATE33 ELVSCFWR

LACXTRBUSHI2 230 GATE62 GATE26 GATE41
GATE62 14 1 L_LMAINGENHI L_APUHI L_RMAINGENHI L_BKUPGENHI ELACLXTRUWR
GATE201 130 L_LMAINGENHI L_APUHI L_RMAINGENHI
GATE202 130 R_APUHI R_RMAINGENHI R_LMAINGENHI
GATE203 111 LACXTRBUSHI ELMBATTHI

GATE204 220 GATE201 GATE207

GATE2052 20 GATE202 GATE208

GATE206 22 0 GATE203 GATE209

GATE207 111 EL_AVIONIC EVENT1

GATE208 111 EL_AVIONIC ELRCBACCLOSE

GATE2091 11 EL_AVIONIC ELSCBACCLOSE

273

Appendix C: Results for search lookup technique on Method 3

Mission | Configuration | Standard Map No Number Number Number
Set search search search of Of finds of
Line Line
Created created
For no
search
1 1,2,4 0.53s 1.03s 0.09s 15692 224 15411
(1.19s) | (4.14s) | (1.08s) | 1162 5 1157
1 2,1,5 0.84s 1.55s 0.23s 17477 0 17419
(1.19s) | (6.5s) | (1.17s) | 2372 5 2367
1 1,4,5 1.02s 1.40s 0.13s 21817 4 21762
(1.83s) | (4.28s) | (1.28s) | 1298 5 1293
1 1,2,7 1.05s 1.98s 0.16s 22284 264 21907
(1.30s) | (17.41s) | (1.28s) | 1865 5 1860
1 1,2,3 1.97s 2.03s 0.17s 30264 0 29693
(1.31s0 | (4.63s) | (1.45s) | 2368 149 2219
1 4,31 2.23s 2.55s 0.16s 35832 80 32083
(1.41s) | (4.72s) | (1.38s) | 1770 53 1717
1 2,46 3.52s 2.88s 0.27s 42382 36 42046
(2.03s) | (4.70s) | (2.06s) | 1409 0 1409
1 2,3,5 29.61s | 16.11s 3.11s 379223 | 250609 | 94520
(2.53s) | (7.84s) | (6.28s) | 3863 144 3719
1 2,3,5,1 33.13s | 17.16s 3.14s 389120 | 250609 | 102320
(2.52s) | (7.81s) | (6.42s) | 4003 149 3854
1 1,2,4,6 35.51s 9.38s 0.72s 135711 152 133895
(3.38s) | (5.94s) | (3.02s) | 1921 5 1916
1 5,6,1,2 Tmin 37.19s | 15.94s | 206310 1340 200663
35.85s | (6.99s) | (4.26s) | 3070 5 3065
(7.88s)
1 6,2,3 Tmin 19.54s 1.75s 228640 305 223907
50.29s | (7.27s) | (4.47s) | 2894 176 2718
(4.44s)
1 2,3,41 4min 32.27s 2.73s 384174 2592 352279
16.04s | (9.25s) | (6.39s) | 3038 149 2889
(7.86s)
1 1,2,3,4 5min 34.13s 3.22s 422471 2624 390599
13.8s | (10.27s) | (7.11s) | 3038 149 2889
(9.38s)
1 2,3,51,4 13min Tmin Tmin | 3383800 | 253461 | 626151
55.62s | 33.55s | 50.29s 4702 149 4553
(12.91s) | (1min (50.6s)
28.99s)
1 3,4,8 19min Tmin 6.31s 807787 96 721423
45.63s | 19.31s | (16.19s) 1790 32 1758
(14.49s) | (17.5s)

274

2,3,6,1 24min | 1min | 7.79s | 826404 | 11628 | 807757
17.06s | 33.0s |(15.49s)| 3294 185 3109
(15.62s) | (16.28s)

12,73 | 29min | 1min | 8.00s | 940304 | 1560 | 906290
31.61s | 41.71s | (16.14s)| 3481 149 3323
(17.17s) | (19.47s)

2,465 | 42min | 1min | 11.89s | 1126521 | 1512 | 1122339
56.05s | 48.76s | (26.20s)| 3531 0 3531
(20.27s) | (20.79s)

2,46,51 | 1hour | 2min | 18.23s | 1377530 | 5564 | 1367647
14min | 21.09s | (26.11s)| 3832 5 3827
10.45s | (24.9s)

(24.09s)

12,345 | 1hour | 9min M M | 3701500 | 1214248
19 min | 20.42s 149 4553
56.24s | (22.11s)

(63.71s)

316,42 | 3hour | 4min | 36.26s | 2332759 | 39496 | 2204664
1min | 31.87s | (34.54s)| 3979 185 3794
45.49s | (39.36s)

(37.08s)

514,26 | 1hour | 3min | 29.84s | 1793590 | 894 | 1791414
53min | 52.5s |(32.29s)| 3832 5 3827
26.2s | (31.36s)

(31.64s)

12,465 | 1hour | 2min | 32.75s | 1468707 | 1592 | 1462482
14min | 46.48s | (25.14s)| 3832 5 3827
50s | (26.01s)

(25.84s)

275

Mission | Configuration | Standard Map No Number | Number | Number
Set search search search Of Of finds Of
Line Line
Created created
For no
search
2 1,2,5 0.44s 0.81s 0.11s 12560 0 12560
(2.56s) | (2.52s) | (2.41s) | 1158 0 1158
2 1,2,3 0.86s 1.25s 0.16s 18446 72 18374
(2.58s) | (2.58s) | (2.55s) | 1415 0 1415
2 1,2,5,6 8.55s 5.03s 0.50s 63799 1296 62503
(3.69s) | (4.61s) | (3.47s) | 1363 0 1363
2 1,4,5,6 16.69s 6.61s 0.67s 92920 0 92920
(3.95s) | (3.64s) | (3.91s) | (991) 0 991
2 3,2,5,6 Tmin 16.97s 8.48s | 428579 | 24208 | 175843
8.47s | (4.81s) | (8.75s) | 1826 0 1826
(4.88s)
2 3,4,6,1 Tmin 24.55s | 10.64s | 233949 20 199723
28.56s | (5.20s) | (5.74s) 1615 16 1501
(5.17s)
2 1,2,3,4 2min 21.97s 2.06s | 314609 900 268475
31.73s | (6.58s) | (6.98s) | 1962 16 1848
(6.48s)
2 3,4,5,6 2min 29.09s | 34.17s | 713595 | 28380 | 276505
50.59s | (6.50s) | (1 min | 1493 8 1443
(6.52s) 0.03s)
2 1,2,3,4,5 M M M M M M
2 1,2,5,6,3 23min 1min 10.08s | 860170 | 56256 | 784714
21.74s | 29.07s | (16.33s) | 2356 0 2356
(15.45s) | (14.34s)

276

Mission Configuration Standard Map No Number Number | Number
Set search search search of Of finds of
Line Line
Created created
For no
search
3 1,2,3 0.01s 0.09s 0.02s 1460 0 1428
(1.51s) | (1.50s) | (1.97s) 488 7 480
3 1,2,3,4 0.03s 0.22s 0.03s 2714 28 2590
(1.52s) | (1.52s) | (1.97s) 666 16 643
3 1,2,3,4,5 0.11s 0.44s 0.08s 6898 748 5797
(1.86s) | (1.63s) | (2.05s) | 918 18 893
3 1,2,3,4,5,6 1.92s 1.97s 0.28s 33729 748 27215
(1.89s) | (1.87s) | (2.38s) | 1103 32 1062
3 1,2,3,4,5,6 2.40s 2.38s 0.36s 44499 1872 32533
1,2 (1.94s) | (1.94s) | (2.48s) | 1103 32 1062
3 1,2,3,4,5,6 6.63s 4.61s 1.58s 80596 6876 50871
1,2,3 (2.16s) | (2.14s) | (3.01s) | 1103 32 1062
3 1,2,3,4,5,6 18.44 10.97s 5.13s 288219 | 83376 | 89821
1,2,3,4 (2.61s) | (2.59s) | (5.53s) | 1103 32 1062
3 1,2,3,4,5,6 33.05s | 17.52s | 46.19s | 777157 | 163521 | 115378
1,2,3,4,5 (2.95s) | (3.00s) | (11.47s)| 1103 32 1062

3 1,2,3,4,5,6 48.31s | 23.91s M M 242630 | 136698
12,3456 | (3.22s) | (3.22s) 32 1062

3 1,2,3,4,5,6 2min 50.16s M M 484512 | 246181
1,2,3,456 | 29.75s | (4.52s) 32 1062
12,3456 | (4.48s)

3 1,2,3,4,5,6 4min 4min M M 484512 | 246181
1,2,3,4,5,6 50.89s | 56.78s 32 1062
12,3456 | (5.73s) | (5.95s)
1,2,3,4,5,6

4 1,2,3 0.17s 0.64s 0.08s 8212 918 6670

(1.73s) | (1.73s) | (1.75s) | 1042 46 977
4 1,2,3,4 2.03s 2.13s 0.44s 44450 6652 27751
(2.00s) | (1.97s) | (2.20s) | 1374 51 1303
4 1,2,3,4,5 32.31s | 13.47s 2.63s 324259 73857 | 125694
(3.17s) | (3.16s) | (5.58s) | 1673 65 1549
4 1,2,3,4,5 3min 49.0s 3min | 2828124 | 447064 | 307983
1,2,3 23.43s (5.4s) 29.7s 1673 65 1549
(5.38s) (37.8s)
4 1,2,3,4,5 8min Tmin M M 877622 | 468030
1,2,3,4,5 0.94s 26.59s 65 1549
(7.89s) | (7.28s)
4 1,2,3,4,5 23min 2min M M 1681387 | 810366
1,2,3,4,5 54s 39.12s 65 1549

277

12,345 | (11.41s) | (11.44s)
12,3456 | 003s | 0.13s | 0.02s | 1941 129 1466
(1.66s) | (1.66s) | (1.66s) | 239 4 237
143235 | 005s | 0.16s | 0.03s | 2776 183 1993
6,1 (1.66s) | (1.66s) | (1.67s) | 239 4 237
12,3456 | 0.13s | 055s | 0.22s | 16987 493 5116
1,2,3,4,56 | (1.72s) | (1.72s) | (1.88s) | 239 4 237
1,2,3,4,5,6
1,5,4,6,2,1 0.17s | 0.63s | 0.34s | 26931 656 6507
3,2,34,53 | (1.75s) | (1.73s) | (2.03s) | 239 4 237
1,3,5,6,3,3
2,1,2,3,
1,5,4,6,2,1 0.22s | 0.58s | 0.52s | 43093 825 7765
3,2,34,53 | (1.75s) | (1.77s) | (2.2s) 239 4 237
1,3,5,6,3,3
2,1,2,3,1,2
3,4
1,5,4,6,2,1 029s | 1.00s | 1.09s | 75787 | 1015 | 10225
3,2,3453 | (1.76s) | (1.78s) | (2.63s) | 239 4 237
1,3,5,6,3,3
2,1,2,3,1,2
3,4,2,3,4,5
3,5,6,3
1.2 0.001s | 0.06s | 0.02s 867 1 866
(4.33s) | (4.36s) | (4.27s) | 433 83 433
17 0.02s | 0.09s | 0.02s | 1504 143 1281
(4.28s) | (4.36s) | (4.28s) | 927 163 847
3,5 0.001s | 0.08s | 0.02s | 1153 4 1149
(4.31s) | (4.31s) | (4.28s) | 595 83 595
3,4 0.016s | 0.08s | 0.001s | 1227 32 1193
(4.27s) | (4.34s) | (4.25s) | 651 83 651
3,7 0.016s | 0.16s | 0.001s | 1789 9 1698
(4.28s) | (4.36s) | (4.31s) | 1084 163 1004
54 0.001s | 0.08s | 0.02s | 1175 8 1163
(4.28s) | (4.31s) | (4.26s) | 613 84 611
6,7 0.01s | 0.14s | 0.001s | 1691 3 1606
(4.25s) | (4.36s) | (4.23s) | 1002 163 922
47 0.01s | 0.19s | 0.02s | 1886 3 1801
(4.28s) | (4.33s) | (4.28s) | 1129 163 1049
12,8 0.02s | 0.08s | 0.01s | 1301 2 1299
(4.31s) | (4.33s) | (4.26s) | 433 83 433
12,3 0.02s | 0.08s | 0.01s | 1413 28 1385
(4.27s) | (4.27s) | (4.26s) | 517 83 517
1,36 0.01s | 0.09s | 0.01s | 1653 30 1623
(5.06s) | (4.41s) | (4.25s) | 613 83 613
1,354 0.02s | 0.13s | 0.01s | 2343 41 2296
(4.33s) | (4.33s) | (4.29s) | 669 84 667
3,6,4.7 0.03s | 0.16s | 0.02s | 3234 26 3104
(4.33s) | (4.34s) | (4.36s) | 1112 169 1030

278

3,5,6,4,7 0.03s | 0.28s | 0.03s | 4000 39 3836
(4.50s) | (4.39s) | (4.38s) | 1129 164 1047
12,3456 | 005s | 0.31s | 0.05s | 4901 67 4709
7 (4.47s) | (4.48s) | (4.36s) | 1130 164 1048
12,3456 | 006s | 0.39s | 0.05s | 7601 93 7126
7,8,9 (4.48s) | (4.59s) | (4.45s) | 1130 164 1048
12,3456 | 0.31s | 156s | 0.14s | 21104 409 | 18117
7,8,9,12,3,4, | (4.97s) | (4.95s) | (4.91s) | 1130 164 1048
5,67,8,9
12,3456 | 0.73s | 2.59s | 0.29s | 39968 725 | 29108
7,8,9,1,2,3,4, | (5.50s) | (6.13s) | (5.59s) | 1130 164 1048
5,67,8,9,1,2
3,4,5,67,8,9
1,2,3456,7 | 0.09s | 055s | 0.06s | 11586 93 10169
8,9 (5.56s) | (5.68s) | (5.68s) | 1741 663 1382
1,2,34,56,7 | 045s | 161s | 017s | 31271 524 | 24481
8,9,1,2,3,4,5, | (6.92s) | (6.69s) | (7.24s) | 1741 663 1382
6,7,8,9
1,2,34,56,7 | 1.09s | 3.39s | 0.41s | 57851 955 | 38793
8,91,2,3,4,5 | (7.61s) | (7.72s) | (10.59s) | 1741 663 1382
6,7,8,91,2,3
4,5,6,7,8,9
1,2,34,56,7 | 011s | 0.64s | 0.08s | 13390 94 11429
8,9 (7.44s) | (7.80s) | (7.48s) | 1956 1569 | 1491
1,2,34,56,7 | 027s | 092s | 0.14s | 24684 128 | 19738
8,9,1,2,34,5 | (8.17s) | (8.04s) | (8.11s) | 1956 1569 | 1491
1,2,34,56,7 | 048s | 1.70s | 0.23s | 36994 471 | 26545
8,9,1,2,3,4,5, | (8.77s) | (8.79s) | (9.31s) | 1956 1569 | 1491
6,7,8,9
12,345,067 | 0.77s | 3.83s | 0.44s | 53286 505 | 34854
8,9,1,2,3,4,5, | (9.29s) | (9.49s) | (12.58s) | 1956 1569 | 1491
6,7,8,9,1,2,3,
4,5
1,2,34,56,7 | 1.08s | 2.86s | 0.64s | 75595 848 | 42661
8,9,1,2,3,4,5, | (9.50s) | (9.77s) | (11.28s) | 1956 1569 | 1491
6,7,8,9,1,2,3,4,
5,6,7,8,9

279

Appendix D: Results for search lookup technique on Method 2

Mission Configuration Standard Map No Number Number Number
Set search search search of Of finds of
Line Line
Created created
For no
search
1 1,2,4 0.29s 0.61s 0.05s 11280 116 11107
(0.27s) | (0.22s) | (0.20s) | 1501 5 1496
1 2,1,5 0.08s 0.34s 0.03s 5858 0 5800
(0.17s) | (0.14s) | (0.19s) | 2440 5 2435
1 1,4,5 8.45s 4.66s 0.44s 65648 4 65593
(0.85s) | (0.88s) | (0.83s) | 2849 5 2844
1 1,2,7 0.86s 1.16s 0.39s 20051 264 19674
(0.29s) | (0.31s) | (8.73s) | 1943 5 1938
1 1,2,3 1.75s 1.72s 0.16s 28331 0 28042
(0.41s) | (0.41s) | (0.41s) | 2340 149 2191
1 4,31 9.63s 4.81s 0.61s 78765 40 67664
(0.88s) | (0.88s) | (1.21s) | 2750 149 2601
1 2,4,6 12.64s 5.23s 0.38s 80415 108 78071
(0.98s) | (0.98s) | (1.00s) 2443 54 2384
1 2,3,5 12.42s 9.19s 2.02s 227977 | 153221 61724
(0.78s) | (0.78s) | (2.66s) | 3910 144 3766
1 2,3,5,1 14.5s 9.56s 2.13s 237914 | 153221 69564
(0.88s) | (0.92s) | (2.86s) | 4043 149 3894
1 1,2,4,6 33.82s 9.52s 0.73s 132815 152 130113
(1.55s) | (1.66s) | (1.64s) | 2576 59 2512
1 5,6,1,2 Tmin 18.95s 1.50s 251418 59 233275
52.24s | (2.78s) | (2.92s) | 3515 1340 3451
(2.88s)
1 6,2,3 4min 39.16s | 3.81s 380924 525 372684
57.53s | (4.34s) | (4.64s) | 3282 198 3079
(4.39s)
1 2,341 2min 23.43s 2.94s 309042 2592 291549
56.2s | (3.45s) | (3.58s) | 3104 149 2955
(3.45s)
1 1,2,3,4 4min 28.00s 2.72s 347197 2624 329727
2.15s | (3.86s) | (4.02s) | 3104 149 2955
(3.89s)
1 2,3,5,1,4 3min 32.29s 44.5s | 1877198 | 154813 | 319389
34.94s | (3.69s) | (21.7s) | 4806 149 4657
(3.70s)
1 3,4,8 M M M M M M
1 2,3,6,1 24min 1min 8.56s 826538 11628 807845
56.84s | 38.69s | (9.63s) 3415 203 3207
(9.61s) | (9.58s)

280

1 1,2,7,3 20min 1min 8.59s 757060 1032 732934
33.37s | 21.69s | (8.79s) 3546 149 3397
(8.63s) | (8.59s)

1 2,465 1 hour 2min 20.47s | 1562870 324 1462239
13min | 27.47s | (18.08s)| 4145 54 4086
4.15s | (17.08s)

(17.12s)

1 2,4,6,51 1 hour 2min 21.79s | 1588174 | 4340 1483079
15min | 30.68s | (18.33s)| 4278 59 4214
9.51s | (17.13s)

(17.13s)

1 1,2,3,4,5 35min 5min 2min | 3732159 | 2404560 | 813546
52.69s | 17.22s | 49.24s 4806 149 4657
(9.36s) | (9.27s) | (42.75s)

1 3,1,6,4,2 3hour 5min 37.75s | 2333394 | 39496 | 2205206
9min 14.33s | (26.24s) | 4179 203 3971
0.27s | (26.66s)

(9.61s)

1 51,4,2,6 1 hour 4min 15.47s | 1706491 474 1601383
32 min 29.9s |(20.27s)| 4278 59 4214
47.43s | (19.38s)

(19.36s)

1 1,2,4,6,5 1 hour 2min 36.25s | 1678822 368 1577444
25min 56.7s | (19.94s) | 4278 59 4214
6.99s (3min

(20.94s) | 1.11s)

2 1,2,5 0.03s 0.14s 0.03s 2630 0 2630
(0.09s) | (0.11s) | (0.08s) 1105 0 1105

2 1,2,3 0.06s 0.22s 0.03s 4084 12 3974
(0.11s) | (0.11s) | (0.11s) 1309 98 1211

2 1,2,5,6 1.23s 1.34s 0.11s 22880 360 22520
(0.38s) | (0.34s) | (0.31s) 1269 0 1269

2 1,4,5,6 6min 48.95s 8.79s 427868 0 427868
(4.89s) | (4.89s) | (4.88s) 1834 0 1934

2 3,2,5,6 23.37s 8.03s 7.44s 389487 | 25660 99975
(1.19s) | (1.19s) | (4.42s) 2115 98 2075

2 3,4,6,1 9min 1min 22.52s | 612629 100 517637
33.1s 0.13s (6.92s) 2039 98 1941
(5.89s) | (5.89s)

2 1,2,3,4 14.14s 5.72s 0.53s 93442 444 81978
(1.03s) | (0.98s) | (1.19s) 2002 98 1904

2 3,4,5,6 M M M M M M

2 1,2,3,4,5 9min 2min 46.45s | 1832482 | 1034824 | 430516
43.54s | 20.51s | (20.7s) 2712 98 2614
(4.94s) | (4.98s)

2 1,2,5,6,3 1min 17.5s 2.16s 240516 12576 | 210994
35.6s (2.44s) | (2.86s) 2184 98 2086
(2.42s)

3 1,2,3 0.01s 0.06s 0.02s 1439 0 1407

281

(0.08s) | (0.06s) | (0.06s) | 485 7 477
12,34 0.03s | 0.13s | 0.01s | 2591 28 2476
(0.09s) | (0.08s) | (0.08s) | 625 16 649
12,345 0.09s | 0.30s | 0.05s | 6828 748 5736
(0.13s) | (0.14s) | (0.13s) | 971 18 946
1,2,3,4,5,6 164s | 166s | 023s | 33558 748 27053
(0.36s) | (0.38s) | (0.44s) | 1100 32 1059
123456 | 230s | 1.94s | 028s | 44322 | 1872 | 32365
1,2 (0.44s) | (0.42s) | (0.56s) | 110 32 1059
12,3456 | 3.36s | 248s | 0.75s | 68473 | 6876 | 39113
1,2,3 (0.55s) | (0.5s) | (0.83s) | 110 32 1059
12,3456 | 892s | 556s | 3.06s | 196353 | 46566 | 63336
1,2,3,4 (0.78s) | (0.78s) | (2.30s) | 1100 32 1059
12,3456 | 19.63s | 10.95s | 43.1s | 685288 | 126711 | 88890
1,2,34,5 (1.06s) | (1.08s) | (7.92s) | 1100 32 1059
12,3456 | 32.36s | 17.09s M M 205820 | 110207
1,2,3,456 | (1.50s) | (1.41s) 32 1059
1,2,3,4,5,6 1min | 35.08s M M 410892 | 193361
1,2,3,456 | 31.41s | (2.30s) 32 1059
1,2,3,456 | (2.28s)
1,2,3,4,5,6 2min | 54.49s M M 615964 | 276515
12,3456 | 589s | (3.20s) 32 1059
12,3456 | (3.23s)
1,2,3,4,5,6
12,3 0.14s | 0.39s | 0.05s | 8203 918 6661
(0.13s) | (0.14s) | (0.16s) | 1039 46 974
1,2,3,4 179s | 1.83s | 022s | 44439 | 6652 | 27740
(0.38s) | (0.38s) | (0.55s) | 1372 51 1301
12,345 29.14s | 10.83s | 2.83s | 295627 | 64113 | 119206
(1.39s) | (1.41s) | (3.41s) | 1655 65 1529
1,2,3,45 4min | 59.45s M M 525733 | 361605
1,2,3 38.23s | (4.11s) 65 1529
(4.09s)
1,2,3,45 10min | 1min M M | 1014887 | 538299
1,2,3,4,5 46.51s | 34.33s 65 1529
(6.16s) | (6.09s)
1,2,3,45 33min | 3min M M | 1695661 | 957392
1,2,3,4,5 41s | 14.08s 65 1529
1,2,3,45 | (11.27s) | (11.36s)
12,3456 | 003s | 0.08s | 0.03s | 1735 139 1277
(0.06s) | (0.06s) | (0.08s) | 208 2 206
143,235 | 005s | 0.09s | 0.03s | 2528 203 1730
6,1 (0.08s) | (0.06s) | (0.08s) | 208 2 206
12,3456 | 013s | 0.31s | 022s | 16472 509 4547
1,2,3,4,56 | (0.09s) | (0.08s) | (0.23s) | 208 2 206
1,2,3,4,5,6

282

1,5,4,6,2,1 0.16s | 041s | 0.45s | 26322 674 5803
3,2,3,453 | (0.11s) | (0.11s) | (0.36s) | 208 2 206
1,3,5,6,3,3
2,1,2,3,
1,5,4,6,2,1 0.19s | 0.66s | 0.61s | 42587 846 6930
3,2,34,53 | (0.14s) | (0.14s) | (0.53s) | 208 2 206
1,3,5,6,3,3
21,2,3,1,2
3,4
1,5,4,6,2,1 0.30s | 0.66s | 0.80s | 75034 | 1040 9153
3,2,34,53 | (0.16s) | (0.16s) | (0.90s) | 208 2 206
1,3,5,6,3,3
21,2,3,1,2
3,4,2,3,4,5
3,5,6,3
1.2 0.02s | 0.05s |0.0001s | 756 14 738
(0.09s) | (0.14s) | (0.11s) | 369 0 369
17 0.01s | 0.09s | 0.02s | 1405 15 1351
(0.11s) | (0.13s) | (0.11s) | 1017 35 982
3,5 0.01s | 0.11s | 0.02s | 1709 12 1677
(0.13s) | (0.19s) | (0.13s) | 973 6 967
3,4 0.02s | 0.11s | 0.02s | 1760 81 1649
(0.14s) | (0.19s) | (0.05s) | 1004 6 998
3,7 0.01s | 0.13s | 0.02s | 1932 17 1858
(0.13s) | (0.13s) | (0.13s) | 1189 41 1148
54 0.03s | 0.13s | 0.02s | 2080 63 1951
(0.11s) | (0.14s) | (0.11s) | 1047 6 1041
6,7 0.01s | 0.14s | 0.02s | 2253 16 2196
(0.14s) | (0.13s) | (0.11s) | 1334 35 1299
47 0.02s | 0.16s | 0.01s | 2478 15 2406
(0.13s) | (0.53s) | (0.13s) | 1431 41 1390
12,8 0.01s | 0.08s | 0.01s | 1156 0 1107
(0.34s) | (0.13s) | (0.11s) | 369 28 369
12,3 0.01s | 0.09s | 0.02s | 1427 29 1371
(0.13s) | (0.11s) | (0.13s) | 639 6 633
1,36 0.03s | 0.13s | 0.01s | 2157 27 2092
(0.13s) | (0.14s) | (0.19s) | 977 6 971
1,3,5,4 0.03s | 0.19s | 0.03s | 3616 101 3363
(0.14s) | (0.14s) | (0.20s) | 1173 6 1167
3,6,4,7 0.06s | 0.25s | 0.03s | 5266 112 4825
(0.14s) | (0.16s) | (0.23s) | 1693 41 1652
3,5,6,4,7 0.06s | 0.31s | 0.05s | 7233 229 6192
(0.16s) | (0.19s) | (0.20s) | 1782 41 1741
12,3456 | 0.08s | 0.34s | 0.05s | 8171 258 6940
7 (0.17s) | (0.20s) | (0.19s) | 1783 41 1742
12,3456 | 0.11s | 045s | 0.08s | 12179 353 10448
7,8,9 (0.22s) | (0.22s) | (0.25s) | 1783 41 1742
12,3456 | 0.36s | 4.14s | 0.31s | 36749 41 26875
7,8,9,1,2,3,4, | (0.41s) | (0.41s) | (0.50s) | 1783 737 1742

283

5,67,8,9

12,3456 | 0.73s | 4.97s | 097s | 73133 | 1121 | 43302
7,89,1,2,3.4, | (0.58s) | (0.56s) | (0.94s) | 1783 41 1742
5,67,8,9,1,2
3,4,5,67,8,9
12,3456,7 | 244s | 516s | 0.94s | 152184 | 3532 | 96138
8,9 (1.25s) | (1.27s) | (1.84s) | 21219 727 19462
1,2,34,56,7 | 930s | 18.67s | 3min | 1676007 | 7959 | 274343
8,9,1,2,3,4,5, | (3.27s) | (3.28s) | 19.9s | 21219 727 19462
6,7,8,9 (19.66s)
1,2,34,56,7 | 11.48s | 25.32s | 10min | 2805918 | 9109 | 333288
8,9,1,2,3,4,5, | (3.88s) | (4.50s) | 54.8s | 21219 727 19462
6,7,8,9,1,2,3 (32.8s)
1,2,3,4,56,7 | 20.92s | 35.39s M M 12386 | 452548
8,91,2,3,4,5 | (5.28s) | (5.30s) 727 19462
6,7,8,91,2,3
4,5,6,7,8,9
1,2,34,56,7 | 27.91s | 30.83s | 2min |2170625| 31016 | 378924
8,9 (4.48s) | (4.48s) | 54.12s | 99206 | 3169 | 80739
(24.66s)
1,2,34,56,7 | 34.35s | 43.83s | 2min |2370747 | 31084 | 540602
8,9,1,2 (6.66s) | (6.28s) | 50.35s | 99206 | 3169 | 80739
(26.95s)
1,2,34,56,7 | 43.87s | 44.19s M M 80739 | 623239
8,9,1,2,3 (7.22s) | (7.49s) 3109 | 80739
1,2,3,456,7 | 1min | 56.42s M M 53545 | 788520
8,9,1,2,34,5 | 153s | (9.11s) 3169 | 80739
(9.08s)
1,2,34,56,7 | 1min | 1min M M 80739 | 1115531
8,9,1,2,3,4,5, | 39.02s | 17.44s 3169 | 80739
6,7,8,9 (13.00s) | (12.79s)
1,2,34,56,7 | 2min | 1min M M 97973 | 1525127
8,9,1,2,3,4,5, | 46.73s | 42.36s 3169 | 80739
6,7,8,9,1,2,3, | (17.66s) | (17.63s)
4,5
1,2,34,56,7 | 3min | 2min M M 119872 | 1852138
8,9,1,2,3,4,5, | 53.99s | 10.63s 3169 | 80739
6,7,8,9,1,2,3,4, | (21.36s) | (21.54s)
5,6,7,8,9

284

Appendix E: Fault trees data for mission task phases ASW, ASUW and SAR

The fault trees data below is for the missions task phases ASW (Aircraft surface
war),ASW_ATT (Aircraft surface war attack),ASUW (Aircraft submarine war),
ASUW_ATT (Aircraft submarine war attack) and SAR (search and recue).
These are used in chapter 7.

M_STARTUP 1 11 0 DASS FMS TCS ESM RADAR_IFF STORES MAD EOSDS PGATES539 PGATES540 ICE
ASW 18 0 DASSFMS TCS ESM RADAR_IFF PGATES524 PGATE540 PGATES26

ASW_ATT 19 0 DASSFMS TCS ESM RADAR_IFF STORES PGATES524 PGATES540 PGATES26

ASUW 1 7 0 DASS FMS TCS MAD PGATES524 PGATE540 PGATES26
ASUW_ATT 1 8 0 DASS FMS TCS MAD STORES PGATES524 PGATES540 PGATES26

SAR 1 8 0 DASS FMS TCS EOSDS RADAR_IFF PGATE524 PGATES540 PGATES526

EOSDS 146 EOSDSCP DCPOWER ACPOWER DATA_BUS TUR1 SCU1 PDU1 HGP1 TLU1 PWP1

EOSDSCP 102 DPS1 RTS1

MAD 1 3 5 DCPOWER ACPOWER DATA_BUS MADCOMPAMP DETECTHEAD VECTMAGNET MADBASE MADCB
RADAR_IFF 1 6 6 NAVINFO DCPOWER ACPOWER DATA_BUS IFFINTGTR RADCOOLING DATAPROC SIGPROC
REC_EXC RFTRANS RFCTRL RFSCAN

IFFINTGTR 10 3 IFFUNIT CRYPTOFILL IFFCB

RADCOOLING 2 0 2 DRADTDCR PRADTDCR

STORES 150 SMGMTSYS SONORELSYS DCPOWER ACPOWER DATA_BUS

SMGMTSYS 122 STNCTRLU WEAPRELSW SMGMTPROC BBAYDR

STNCTRLU 205 STNCTRLU1 STNCTRLU2 STNCTRLU3 STNCTRLU4 STNCTRLUS

WEAPRELSW 204 WRELSWA1 WRELSW2 WRELSW3 WRELSW4

SONORELSYS 2 2 0 SINGLAUNCH TENSHOT

SINGLAUNCH 2 0 2 SINGSHOT1 SINGSHOT2

TENSHOT 204 TENSHOT1 TENSHOT2 TENSHOT3 TENSHOT4

ESM 14 1 GSIGPROC DCPOWER ACPOWER DATA_BUS MSU
GSIGPROC 111 SIGDEL ESMPRO

SIGDEL 120 SPINCHAN MAINCHAN

SPINCHAN 111 PROCFAIL SAU

PROCFAIL102 SRXSFE

MAINCHAN 111 ANTCLUST MRX

ANTCLUST 240 ACLUST1 ACLUST2 ACLUST3 ACLUST4
ACLUST1 221 LBA1 HBA1 FR1
LBA1 111 LSPIANT1 LB1

LSPIANT1202 LS11 LS1-2

HBA1 111 HSPIANT1 HB1
HSPIANT1202 HS1-1 HS1-2

ACLUST2 221 LBA2 HBA2 FR2
LBA21 11LSPIANT2 LB2
LSPIANT2202 LS21 LS2-2

HBA2 1 1 1 HSPIANT2 HB2

HSPIANT2202 HS2-1 HS2-2

ACLUST3 221 LBA3 HBA3 FR3
LBA31 11 LSPIANT3 LB3
LSPIANT3202 LS3-1 LS3-2

HBA31 11 HSPIANT3 HB3
HSPIANT3202 HS3-1 HS3-2

ACLUST4 221 LBA4 HBA4 FR4

LBA4 111 LSPIANT4 LB4
LSPIANT4202 LS4-1LS4-2
HBA4 1 1 1 HSPIANT4 HB4
HSPIANT4 2 0 2 HS4-1 HS4-2

285

TCS 16 0 TCSPROC TCSOPTCSREC DCPOWER ACPOWER DATA_BUS

TCSPROC 111 TCSOS IOPIFU

TCSOS 112 I0PS TCSOSMD TCSOSSCSI

I0PS 203 TAC1PWRSW IOP1 10P2

TCSOP 240 NORMSWKSTN PILOTWKSTN ACO2WKSTN ORDN2WKSTN
NORM5WKSTN 2 5 0 WKSTN1 WKSTN2 WKSTN3 WKSTN4 WKSTNS
WKSTN1 123 WK1PEP WK1INPUTS WK1DP WK1PSU WK1CHRD
WK1PEP 20 2 WK1PEP1 WK1PEP2

WK1INPUTS 2 0 4 WK1KEYP WK1KEYB WK1KEYPL WK1ROLBAL
WKSTN2 123 WK2PEP WK2INPUTS WK2DP WK2PSU WK2CHRD
WK2PEP 20 2 WK2PEP1 WK2PEP2

WK2INPUTS 2 0 4 WK2KEYP WK2KEYB WK2KEYPL WK2ROLBAL
WKSTN3 123 WK3PEP WK3INPUTS WK3DP WK3PSU WK3CHRD
WK3PEP 20 2 WK3PEP1 WK3PEP2

WKS3INPUTS 2 0 4 WK3KEYP WK3KEYB WK3KEYPL WK3ROLBAL
WKSTN4 123 WK4PEP WK4INPUTS WK4DP WK4PSU WK4CHRD
WK4PEP 20 2 WK4PEP1 WK4PEP2

WK4INPUTS 2 04 WK4KEYP WK4KEYB WK4KEYPL WK4ROLBAL
WKSTN5 123 WK5PEP WK5INPUTS WK5DP WK5PSU WK5CHRD
WK5PEP 20 2 WK5PEP1 WK5PEP2

WKS5INPUTS 2 0 4 WKS5KEYP WKS5KEYB WKS5KEYPL WK5ROLBAL
PILOTWKSTN 104 PILOTTCP PILOTDP PILOTTCPIFU PILOTCHRD
ACO2WKSTN 220 ACOWKSTN1 ACOWKSTN2

ACOWKSTN1 131 ACO1PEPS ACO1CHRDS ACO1INPUTS ACO1PSU
ACO1PEPS 202 ACO1PEP1 ACO1PEP2

ACO1CHRDS 211 SPARECHRD ACO1CHRD

SPARECHRD 202 SPARECHRD1 SPARECHRD2

ACO1INPUTS 204 ACO1KEYP ACO1KEYB ACO1KEYPL ACO1ROLBAL
ACOWKSTN2 131 ACO2PEPS ACO2CHRDS ACO2INPUTS

ACO2PEPS 202 ACO2PEP1 ACO2PEP2

ACO2CHRDS 211 SPARECHRD ACO2CHRD

ACO2INPUTS 204 ACO2KEYP ACO2KEYB ACO2KEYPL ACO2ROLBAL
ORDN2WKSTN 220 ORDWKSTN1 ORDWKSTN2

ORDWKSTN1 103 ORD1PEP ORD1PSU ORD1SONRS
ORDWKSTN2 103 ORD2PEP ORD2PSU ORD2SONRS
TCSREC 206 VIDINTU HDDR MAGDISK1 MAGDISK2 CBS TXTPRINT

DASS 1 51 DASSDET DASSPROT DCPOWER ACPOWER DATA_BUS DSM

DASSDET

12 0 RADWARNR MISWARNR

ACO2PSU

RADWARNR 12 1 SUPERHET SIGNALREC APR
SUPERHET 102 SUC SUR

SIGNALREC 130 CDBAND MIDHIBAND SIGCONV
CDBAND 102 CBR CBA

MIDHIBAND 111 DASSANT DRR

DASSANT 12 0 DASSFANT DASSRANT
DASSFANT 202 HA1HA2

DASSRANT 202 HA3 HA4

SIGCONV 202DC1DC2

MISWARNR 111 MISSENS ECU

MISSENS 122 MISLSENS MISRSENS STP STB
MISLSENS 202 SLN SLB

MISRSENS 202 SRN SRB

DASSPROT 120 TRDS CFD

TRDS 1 12 DASSLNCH DEC TQG
DASSLNCH102 LRAPLC

CFD 1 12 CFDFMISS SDU DCU
CFDFMISS 2 12 0 DoR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12
DoR1 104 FMG1M CMG1 TOP1Mm BOT1

DR210 4 FMG2MCMG2 TOP2Mm BOT2
DR310 4 FMG3MCMG3 TOP3Mm BOT3
DR410 4 FMG4MCMG4 TOP4Mm BOT4
DR510 4 FMG5MCMG5 TOP5Mm BOT5
DR610 4 FMG6MCMG6 TOP6Mm BOT6
DR710 4 FMG7TMCMG7 TOP7Mm BOT7
DR810 4 FMG8BMCMG8 TOP8Mm BOT8
DR910 4 FMGOMCMGY9 TOP9Mm BOT9

DR10 104 FMG10M CMG10 TOP10Mm BOT10
DR11 104 FMG11M CMG11 TOP11Mm BOT11
DR12 104 FMG12M CMG12 TOP12Mm BOT12

286

Below is the fault trees data of the mission tasks phases with dependents. These
are used in chapter 8.

M_STARTUP 1 11 0 DASS_START FMS TCS ESM_START RADAR_IFF STORES MAD EOSDS PGATE539 PGATE540

ICE

ASW 18 0 DASS_ASW FMS NORM5WKSTN2 ESM_ASW RADAR_IFF PGATE524 PGATE540 PGATES526
ASW_ATT 19 0 DASS_ASW FMS NORM5WKSTN2 ESM_ASW RADAR_IFF STORES PGATE524 PGATES540

PGATEbS26

ASUW 1 7 0 DASS_ASUW FMS NORM5WKSTN2 MAD PGATE524 PGATES540 PGATES26
ASUW_ATT 1 7 0 DASS_ASUW FMS MAD STORES PGATE524 PGATE540 PGATES26

SAR 17 0 DASS_SARFMS TCS RADAR_IFF PGATE524 PGATE540 PGATE526
ESM_ASW 2 4 0 ESM_ASWg1 ESM_ASWg2 ESM_ASWg3 ESM_ASWg4

ESM_ASWg1 1 2 0 ESM_ASWg5 ESM_ASWg6
ESM_ASWg5 2 2 0 ESM_ASWg13 ESM_ASWg14
ESM_ASWg13 13 0 ESMPRO SRX MSU
ESM_ASWg14 1 3 0 MRX SFE SAU
ESM_ASWg6 2 2 0 ESM_ASWg15 ESM_ASWg16
ESM_ASWg15 1 2 0 LSPIANT1 HSPIANT1
ESM_ASWg16 1 3 0 FR1 LB1 HB1

ESM_ASWg2 1 2 0 ESM_ASWg7 ESM_ASWg8
ESM_ASWg7 2 2 0 ESM_ASWg17 ESM_ASWg18
ESM_ASWg17 130 SRX MSU SFE
ESM_ASWg18 130 ESMPRO MRX SAU
ESM_ASWg8 2 2 0 ESM_ASWg19 ESM_ASWg20
ESM_ASWg19 1 2 0 LSPIANT2 HSPIANT2
ESM_ASWg20 1 3 0 FR2 LB2 HB2

ESM_ASWg3 1 2 0 ESM_ASWg9 ESM_ASWg10
ESM_ASWg9 2 2 0 ESM_ASWg21 ESM_ASWg22
ESM_ASWg21 1 3 0 SRX SFE ESMPRO
ESM_ASWg22 1 3 0 MSU MRX SAU
ESM_ASWg10 2 2 0 ESM_ASWg23 ESM_ASWg24
ESM_ASWg23 1 2 0 LSPIANT3 HSPIANT3
ESM_ASWg24 1 3 0 FR3 LB3 HB3

ESM_ASWg4 12 0 ESM_ASWg11 ESM_ASWg12
ESM_ASWg112 2 0 ESM_ASWg25 ESM_ASWg26
ESM_ASWg25 1 3 0 SFE MRX MSU
ESM_ASWg26 1 3 0 SAU SRX ESMPRO
ESM_ASWg12 2 2 0 ESM_ASWg27 ESM_ASWg28
ESM_ASWg27 1 2 0 LSPIANT4 HSPIANT4
ESM_ASWg28 1 3 0 FR4 LB4 HB4

ESM_START 2 2 0 GSIGPROC MSU

GSIGPROC 120 SIGDEL ESMPRO

SIGDEL 120 SPINCHAN MAINCHAN

SPINCHAN 120 PROCFAIL SAU

PROCFAIL120 SRXSFE

MAINCHAN 120 ANTCLUST MRX

ANTCLUST 240 ACLUST1 ACLUST2 ACLUST3 ACLUST4

ACLUST1 230 LBA1 HBA1 FR1
LBA1 120 LSPIANT1 LB1

LSPIANT1202 LS11 LS1-2

HBA1 120 HSPIANT1 HB1

HSPIANT1202 HS1-1 HS1-2

ACLUST2 230 LBA2 HBA2 FR2
LBA21 02LSPIANT2 LB2
LSPIANT2202 LS21 LS2-2

HBA2 1 2 0 HSPIANT2 HB2

287

HSPIANT2202 HS2-1 HS2-2

ACLUST3 230 LBA3 HBA3 FR3
LBA31 20 LSPIANT3 LB3
LSPIANT3202 LS3-1 LS3-2
HBA31 20 HSPIANT3 HB3

HSPIANT3202 HS3-1 HS3-2

ACLUST4 230 LBA4 HBA4 FR4
LBA4 120 LSPIANT4 LB4

LSPIANT4202 LS4-1LS4-2

HBA4 1 2 0 HSPIANT4 HB4

HSPIANT4 2 0 2 HS4-1 HS4-2

MSU 1 0 2 MSUevent1 MSUevent2
ESMPRO 10 2 ESMPROe1 ESMPROe2
SAU 1 0 2 SAUe1 SAUe2

SRX 1 02 SRXe1 SRXe2

SFE 10 2 SFEe1 SFEe2

MRX 1 0 2 MRXe1 MRXe2
FR1102FR1e1FR1e2

FR2 1 0 2 FR2e1 FR2e2

FR3 1 0 2 FR3e1 FR3e2

FR4 1 0 2 FR4e1 FR4e2
LB1102LB1e1LB1e2
HB1102HB1e1 HB1e2

LB2 102 LB2e1LB2e2

HB2 1 0 2 HB2e1 HB2e2

LB3 102 LB3e1LB3e2

HB3 1 0 2 HB3e1 HB3e2

LB4 1 0 2 LB4e1 LB4e2

HB4 1 0 2 HB4e1 HB4e2

TCS 230 TCSPROC TCSOPTCSREC

TCSPROC 120 TCSOS IOPIFU
TCSOS 130 I0PS TCSOSMD TCSOSSCSI
I0PS 203 TAC1PWRSW IOP1 10P2

TCSOP 240 NORMSWKSTN PILOTWKSTN ACO2WKSTN ORDN2WKSTN

NORM5WKSTN2 2 2 0 4TCSOPg1 4TCSOPg6
4TCSOPg1 12 04TCSOPg4 4TCSOPg5
4TCSOPg4 22 04TCSOPg10 4TCSOPg11
4TCSOPg10 13 0WK1DP WK1PSU WK1CHRD
4TCSOPg11 120 WK1PEP WK1INPUTS
4TCSOPg5 22 04TCSOPg12 4TCSOPg13
4TCSOPg12 1 2 0 WK2PEP WK2INPUTS
4TCSOPg13 1 2 0 WK2DP WK2PSU
4TCSOPg6 2 2 0 4TCSOPg14 4TCSOPg15
4TCSOPg14 1 2 0 WK3PEP WKSINPUTS
4TCSOPg1512 0 WK3DP WK3PSU

NORMSWKSTN 2 3 0 WKSTN1 WKSTN2 WKSTN3

WKSTN1 150 WK1PEP WK1INPUTS WK1DP WK1PSU WK1CHRD
WK1PEP 20 2 WK1PEP1 WK1PEP2

WK1INPUTS 2 04 WK1KEYP WK1KEYB WK1KEYPL WK1ROLBAL

WK1DP 10 2 WK1DPe1 WK1DPe2
WK1PSU 1 0 2 WK1PSUe1 WK1PSUe2

WK1CHRD 102 WK1CHRDe1 WK1CHRDe2

WKSTN2 150 WK2PEP WK2INPUTS WK2DP WK2PSU WK2CHRD
WK2PEP 20 2 WK2PEP1 WK2PEP2

WK2INPUTS 2 0 4 WK2KEYP WK2KEYB WK2KEYPL WK2ROLBAL

WK2DP 1 0 2 WK2DPe1 WK2DPe2
WK2PSU 1 0 2 WK2PSUe1 WK2PSUe2
WK2CHRD 1 0 2 WK2CHRDe1 WK2CHRDe2

WKSTN3 150 WK3PEP WK3INPUTS WK3DP WK3PSU WK3CHRD
WK3PEP 20 2 WK3PEP1 WK3PEP2
WKS3INPUTS 2 0 4 WK3KEYP WK3KEYB WK3KEYPL WK3ROLBAL

288

WK3DP 10 2 WK3DPe1 WK3DPe2
WK3PSU 1 0 2 WK3DPe1 WK3DPe2
WK3CHRD 102 WK3DPe1 WK3DPe2

DASS_START 2 2 0 DASSDET DASSPROT
DASSDET 12 0 RADWARNR MISWARNR
RADWARNR 12 0 SUPERHET SIGNALREC
SUPERHET 102 SUC SUR

SIGNALREC 130 CDBAND MIDHIBAND SIGCONV
CDBAND 102 CBR CBA

MIDHIBAND 111 DASSANT DRR

DASSANT 12 0 DASSFANT DASSRANT

DASSFANT 202 HA1HA2
DASSRANT 202 HA3 HA4

SIGCONV 202DC1DC2
MISWARNR 111 MISSENS ECU
MISSENS 122 MISLSENS MISRSENS STP STB

MISLSENS 202 SLN SLB
MISRSENS 202 SRN SRB

DASSPROT 120 TRDS CFD

TRDS 1 12 DASSLNCH DEC TQG

DASSLNCH102 LRAPLC

CFD 1 12 CFDFMISS SDU DCU

CFDFMISS 2 12 0 DoR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12
DoR1 104 FMG1M CMG1 TOP1Mm BOT1

DR210 4 FMG2MCMG2 TOP2Mm BOT2
DR310 4 FMG3MCMG3 TOP3Mm BOT3
DR410 4 FMG4MCMG4 TOP4Mm BOT4
DR510 4 FMG5MCMG5 TOP5Mm BOT5
DR610 4 FMG6MCMG6 TOP6Mm BOT6
DR710 4 FMG7TMCMG7 TOP7Mm BOT7
DR810 4 FMG8BMCMG8 TOP8Mm BOT8

DR910 4 FMGOMCMG9 TOP9Mm BOT9

DR10 104 FMG10M CMG10 TOP10Mm BOT10
DR11 104 FMG11M CMG11 TOP11Mm BOT11
DR12 10 4 FMG12M CMG12 TOP12Mm BOT12

DASS_ASW 2 3 0 DASS_G1 DASS_G2 DASS_G3
DASS_G1120 CFD TRDS

DASS_G2 1 2 0 MISWARNR SIGCONV

DASS_G3 1 3 0 MIDHIBAND CDBAND SUPERHET

DASS_ASUW 2 3 0 DASS_G4 DASS_G5 DASS_G6
DASS_G4 1 3 0 CFD MISWARNR CDBAND
DASS_G5 120 SIGCONV TRDS

DASS_G6 1 2 0 MIDHIBAND SUPERHET

DASS_SAR 22 0 DASS_G7 DASS_G8
DASS_G7 140 CFD TRDS MISWARNR SIGCONV
DASS_G8 1 30 MIDHIBAND CDBAND SUPERHET

289

Appendix F: Mission Fault tree structure

F.1 Introduction

Many Systems such as a UAV aircraft are broken down into sub functions, these
are further broken down into subsystems then to particular components. This
chapter collects UAV system structure information and with this fault trees for a
UAV mission are built.

Up to now in this project only general phase fault trees have been considered.
This information of UAV mission fault tree structure will be very important, since
the aim of this project is to reduce time calculation of PMS unreliability. Therefore
simplify a specific case of PMS will give more options of methods compared to a
general case. This chapter will be organized as follows: Deception of the phases of
the mission, Sub-systems deception and diagrams, how functions of the UAV are

broken down into sub-system.

F.2 Phases of the mission

The UAV mission phases are shown in figure F.1 and described as follows:

Start up — Ground base preparing of the UAV before the flight.
Taxiout — Travailing to the runaway on the ground.

Takeoff — Getting speed high an enough for UAV to be airborne.
Climb — Increasing UAV to the right altitude.

Cruise- Travailing in the air at the same altitude.

Descent- Decreasing UAV to landing altitude.

Landing- Landing the UAV on the runaway safely.

Taxiin -Travailing to the shut-down base

Shut-down — Switching off the UAV.

290

Start Taxi Take Climb
up Out off

Cruise

Taxi
Descent Land axi

Figure F.1 Phase mission

There are two top events for consideration for phase failure which are mission and
catastrophic failure. The top levels of the trees have been catarisesed into three
sections external, internal and external effects which can be protected by an
internal system shown in figure F.2. The majority of the tree will be internal effects.
The internal effects are majority functions and sub-systems not working properly.
The requirements for the functions will vary depending on the phase and if it
mission failure or catastrophic failure. Two table (table F.1 and F.1) have been
construed which listed the functions of the UAV and what is required by them in

each phases, table F.1 for mission to be successful and table F.2 for a catastrophic

failure not to happen.

Phase
Failure
[|
External Internal External effects
Effects Effects which can be

protected by
internal systems

Figure F.2: Top level of the tree

291

Shut
Down

Mission start-up taxi-out takeoff climb cruise descent Landing taxi-in shut-down
Movability Actuators (Func): | Actuators (Func): | Actuators (Func); | Actuators Actuators Actuators Actuators N/A N/A
(control Elevators Flaps and Slats Elevators (Func): (Func): (Func): (Func):
surface) Rudder Rudder Elevator Elevator Elevator Elevator
Ailerons Ailerons Ailerons Ailerons Ailerons Ailerons
Flaps and Slats Flaps and Slats Rudder Rudder Rudder Rudder
Spoiler Flaps and Flaps and Flaps and Flaps and
Slats Slats Slats Slats
Spoiler Spoiler Spoiler Spoiler
Thrust Engine 1 & 2 Engine 1 & 2 Engine 1 & 2 Engine 1or2 | Engine 1 or2 | Engine 1or2 | Engine 1or2 | Engine 1 or | Engine 1 & 2
(primary (Func) (Func) (Func) (Func) (Func) (Func) (Func) 2 (Func) (Not fire)
power) Not fire Not fire Not fire Not fire Not fire Not fire Not fire Not fire
reverse (Not Func) (Not Func) (Not Func) (Not Func) (Not Func) (Not Func) (Func) N/A N/A
Thrust
Landing (Not Func) (Not Func) (Func) (Not Func) (Not Func) (Not Func) (Func) (Not Func) | (Not Func)
gear
Braking (Func) (Func) Function in N/A N/A N/A (Func) (Func)

emergences case

Table F.1: Mission success criteria

292

Catastrophic start-up taxi-out takeoff climb cruise descent Landing taxi-in shut-down
Movability (control | N/A N/A Actuators (Func); | Actuators Actuators Actuators Actuators N/A N/A
surface) Elevators (Func): (Func): (Func): (Func):
Rudder Elevator Elevator Elevator Elevator
Ailerons Ailerons Ailerons Ailerons Ailerons
Flaps and Slats Rudder Rudder Rudder Rudder
Flaps and
Slats
Spoiler
Thrust (primary Engine 1 & 2 | Engine 1 & 2 Engine 1 & 2 Engine 1 or2 | Engine 1 or 2 | Engine 1 or 2 | Engine 1 or Engine 1 &2 | Engine 1 & 2 (Not
power) (Func) (Func) (Func) (Func) (Func) (Func) 2 (Func) (Not fire) fire)
Not fire Not fire Not fire Not fire Not fire Not fire Not fire
reverse Thrust N/A N/A (Not Func) (Not Func) (Not Func) (Not Func) (Func) N/A N/A
Landing gear N/A N/A N/A (Not Func) (Not Func) (Not Func) (Func) N/A N/A
Braking N/A N/ Function in N/A N/A N/A (Func) N/A N/A
emergences
case

Table F.2: Not catastrophic criteria

293

F.3Sub-Systems

Aircraft Functions are broken down into different subsystems which supply power,
information to other control subsystem. This section gives a review of several

subsystems which consist of a diagram and a description.

F.3.1 Hydraulic system

Hydraulic system provides a high hydraulic power for many aircraft functions such as
flight control surfaces and landing gear. Hydraulic power is produced by using
principles of fluid mechanics and is based on the physical characteristics of liquids.

In figure F.3 shown a single hydraulic system .Two pumps provide pressure
in the system, which are power by different power sources, AC power and
mechanical. This gives redundancy to the system. Two pressure sensors detected if
the pressure is to low, if so a signal is send to the 3 hydraulic units (for redundancy).
The units do so computations and send a signal to the pumps. Similar loop is made
for temperature control which consists of a temperature sensors, header and
hydraulic unit process.

Filter is fitted to clean hydraulic fluid from any small foreign bodies and
particles. In the case if the filter get block then there is a bypass way. There are
sensors which detected if the filter get blocked and then sends a signal to the
hydraulic units which send a signal to the bypass valve for it to open. Reservoir is
fitted for storing hydraulic liquid in the system. Non-return valve NRV is fitted to make
sure the liquid travel in the right direction. In the case if the pressure is too high in the
system a pressure relief valve PRV will open and allow liquid to be put back into the
reservoir.

Three of these Systems will be place in the UAV for redundancy. The only
different between the systems is that one of them will have both pressure pumps
power by AC Power. The Mechanical pumps of the other two systems are drive by
gearboxes. The first gearbox will be driven by the left engine and the second one by
the right engine.

Figure F.4 shows the connection of the three hydraulic systems to the user.

294

Hydraulic System

e Temperature :
) Hydraulic __-__________-___-___________-________________"_____E?ns_o_rs_ :
Unit i [!
; Reservoir : i v
! < : [—— Heater
: E 7Y
i = frmmim e

Filter

Filter
Blocked

A 4

A 4

Mechanical AC Pump 2
Pump 1

NRV

Pressure
Sensors

A 4

PRV

Figure F.3: Hydraulic System

295

User
System

Res

A

Heater

A

Res

A

\ 4

Res

A

A 4

Heater
I_:I

A

NRV

Heater

A

A 4

Figure F.4: Hydraulic Systems connection to users

User
System

F.3.2 Flight Control system

Flight Control system consists of the flight control surface, connecting linkage and

necessary operating mechanisms to control aircraft in flight.

Figure F.5 shows how a flight control surface works. A Signal from the Avionic of the
aircraft is send to the three actuator drive computers, which send a signal to the servos
of the particular control surface. The servos let in pressure hydraulic liquid into the
actuators which moves the surface. The movement is detected by the two position
sensors which make a closed control loop by sending the position information back to

the actuator drive computers.

297

Flight Control System

DC Power to all
Servos

Hydraulic subsystem
1

Actuator1 [

Control Surface

Hydraulic subsystem

2 Servo2 | Actuator2 [

Position sensor 1
Servo 3 | Actuator3 [

. A Position sensor 2
Hydraulic subsystem i
3 ! 4 .
é DC power :
Actuator ... I
Drive
DC power » Computer

Figure F.5: Flight control system

298

F.3.3 Avionic System

The Avionic System includes all electronic devices installed in an aircraft. It receives
and process information, then output commands by sending signals thought the data
bus to the particular components. The Avionic system consists of sensors, computers,
process and the data bus. The data bus connects all the components together so that
they can communicate with each other. Figure F.6 shows the network of communication
of the different components. Figure F.7 shows the structure of the avionic which has
three of everything being interconnect for redundancy. The heart of the system is the
flight management computer FMC. It process received data, control the execution of it
and send the instruction to the control unit. The two main inputs for the FMC is
Navigation and air data information. The Navigational system consist of Global
Positioning system GPS, Internal references System IRS, VHF Omni-Range (VOR),
Distance Measuring Equipment DME, Instrument Landing System ILS and Microwave
Landing System MLS. ILS and MLS navigated the aircraft for the landing phase. The air
data system consists of Air Data Computer and three type of sensors static air pressure,
total air pressure and temperature. The FMC will output command to, Flight control Unit
FCU to control the position of the control surfaces, Thrust Management Control Unit
TMS to control the right thrust needed and The Landing & Braking unit to control the
undercarriage of the aircraft, reverse thrust and the braking of the aircraft. The Avionic
also monitor different power system such has the Electric, Hydraulic and Fuel system.
The computers which perform is task is Utility Management System UMS, FMC,

Hydraulic unit, Electric and fuel unit.

299

Avionic System

(FCU)
Flight
Control
Unit

Actuator
Drive

A

GPS
IRS
VOR
Air
Data
DMO Computer
ILS Y
Flight
Management
MLS Computer
A
A 4
uUmMs
Utility
Management
System
Hydraulic Electric Fuel
Unit Unit Unit

Figure F.6: Avionic functional roots

300

A

A 4

(TMS)
Thrust
Management
Control Unit

Computer

A

A 4

Landing
&
Braking
Unit

\ 4

FADEC
Full Authority
Digital Engine

Control

Data bus structure

[1 O Y |

LN

LIAAC

[1 o A I LN |

Flight Air (FCU) UMS Hydraulic Electric Fuel
Management Data Flight Utility Unit Unit Unit
Computer Computer Control Management
Unit System
A A 4 l l A A 4 A 4
Y 4 v 4 v 4 v 4 v 4 v v
A v A v A v 4 v AA \ 4 4
y A y'y y
LTAAC) LTAAC) I CANNCA |
LTRAAC I LTRAAC I A A A AN |
(TMS) (TMS) Landing Actuator FADEC
Thrust Thrust & Drive Full Authority
Management Management Braking Computer Digital
Control Unit Control Unit Unit Engine
Control
A A A A A 7Y
A A A y Y A
y'y y yy Y yy
ILS L GPS MLS L IRS VOR DMO

Figure F.7: Avionic System

301

F.3.4 Fuel system

The Fuel system store, provides and distributes the proper amount of fuel at the
correct pressure to the aircraft engines. The Fuel System is shown in figure F.8 and
the description on how it works follows. Fuel is stored in two tanks Left and right. Fuel
must be at the right pressure and temperature. The right pressure is maintained by
monitoring air pressure by air sensors. The measures are sends to the fuel units to
process this information. Depending on if the air pressure is too high or too low then
the In or out vent valve will open or close, this is a control loop. Similar maintaining
the fuel temperature follows the same procedure. Temperature sensors measure the
temperature of fuel, sends this information to the fuel unit, then depending on the
measurements send a signal to the heater. The Fuel is supply for two engines from
two tanks. Focusing on the left hand sized fuel is pumped from the left tank to the left
engine by the left AC power pump. The fuel passes a Non returnable valve NRV so
that runs the right ways. Pressure sensors are fitted to the pip, then measurement are
sends to the fuel units. If the pressure this too low then a signal is send to the
crossover valve for it to open, this improves redundancy. If the pressure is dangerous
high then the cut off valve is close. The Same action is taken for the right hand sized
of the system.

302

Fuel system

Right
Engine

= Cut off Crossover
ut o
valve Valve Cut off =

valve Fuel

e § Unit

E Temp and Temp and E

! Pressure Pressure :

! Sensors Sensors !

: NRV ; NRV ;

| 7\ yy E

: L AC Pump i I R AC Pump

v 5 , v

Heater Left ---Air-senso;'s E Air sensors---- nght Heater
Tank Vent valve In i Vent valve In Tank
Vent valve Out E Vent valve Out

Figure F.8: Fuel System

303

F.3.5 Landing gear system

The main function of the Landing gear system is to enable aircraft manoeuvres on ground after
(prior) its flight. The two functions of the Landing gear bring the undercarriage up after takeoff
and down just before landing. These functions require a sequence of sub functions to happen to
order. There are six sub functions which all are control by there own three Actuators and

selector valves, they all have to positions. The description of the six sub-functions and there

positions are given in the table F.3.

Name of component Description of function Position 1 Position 2
Lock 1 To lock undercarriage door close. | Lock Unlock
Undercarriage door Door to open the entrance where | Close Open
Movement the undercarriage comes out of the

aircraft.
Lock 2 To lock undercarriage door open. | Lock Unlock
Lock 3 To lock undercarriage door up. Lock Unlock
Undercarriage To move the undercarriage up and| Up Down
Movement down.
Lock 4 To lock undercarriage door down. | Lock Unlock

Table F.3: Description of sub-functions and there positions of Landing gear system

304

The Landing gear system is shown in figure F.9. The selector valves of the sub function
are power by DC power and send signal for command from the Landing and Braking
units. Hydraulic Liquid is entered into the selector valves from the Hydraulic system.
The Two main functions of the Landing gear system are performed by activating
the sub functions in order by a sequence valve (two are fitted for redundancy), they are
also control by signals from the landing and braking units and power by Dc power. The
order, sequence and position of the sub functions for the undercarriage to go up and

down are has follows:

Undercarriage to go down:

1) Lock 1 to unlock

2) Undercarriage door to open
3) Lock 2 to lock

4) Lock 3 to unlock

5) Undercarriage to come down

6) Lock 4 to lock

Undercarriage to go up:

1) Lock 4 to unlock

2) Undercarriage go

3) Lock 3 to lock

4) Lock 2 to unlock

5) Undercarriage door to close
6) Lock 1 to lock

Two position Sensors are fitted to sense the position of the sub functions. Therefore
when one function has competed its tasks the position sensors can send a signal to the
landing and braking unit which process this signal and send a new signal to the

sequence valve to start the next sub-function in the sequence.

305

Landing gear system

DC power

Landing
&
Braking
Unit

DC power ---»

Hydraulic liquid
at pressure

Hydraulic liquid
at pressure

y

Figure F.9: Landing gear system

306

........... -eimmi=—-.-.-1 Sequence Valve 1 Sequence Valve 2 ------- DC power
A

A 4 A A\ 4 A\ 4 \ 4 A\ 4 A\ 4 A
Selector Selector Selector
valve 1 valve 2 valve 3

Actuator 1 Actuator 2 Actuator 3 | | 11 L1 [l L1 I I L1 L1 I L1 11 Il 11

]] T Door Lock 2 Lock 3 Wheel Lock 4

Lock 1
Position Sensors 1 Position Sensors 2 € DC power

F.3.6 Braking system

Braking and antiskid system operates during ‘on ground’ phases. It includes all those
devices that slow or stop the aircraft and prevent aircraft wheels from skidding.

The system provides pressure for the two wheels as shown in figure F.10.
Brake panels are push against the wheel. A hydraulic pip is connected to the brake
panels therefore hydraulic pressure can be apply to the panels. There are two channel
of control valve system for redundancy. They consist of a Antiskid Servo valve and
Brake Control Valve. The Antiskid servo valves provide appropriate brake pressure to
prevent stoppage of the wheel rotation. The Anti-skid Control unit sends Signal to
Antiskid servo valve to control its operating, receives and processes information send
by the transducers sensors. The Transducers sensors detect the wheel speed. The
Brake Control valve enables hydraulic liquid flow, which produces hydraulic pressure
to the system. Brake Control valve are sends signal from the Landing and braking
units to activate the system operation. Has can been see from the diagram that a lots

of the components of the system are power by DC power.

307

Braking and Antiskid

system

DC power and

\ 4

Hydraulic liquid
at pressure

Brake Control

Hydraulic liquid at

l pressure

Brake Control

DC power and

signal from ~""7777" g Valve 1 Valve 2 D signal from
DCpowerand » AntiskidServo | ______ . _____ »| Antiskid Servo | _________ DC power
signal from Valve 1 : Valve 2 and signal
i A
| :
Anti-skid -- DC power
Control
Unit
4
Left E_g _i Right
—{ ||| [}« Brake | | Brake —{ ||| [_J
I:I 1&2 i i 1&2
D_ Transducers Transducers ﬂ III‘_
Sensors 1 Sensors 2
Left . e * Right
Wheel be ! Wheel
power

Figure F.10: Braking and Antiskid system

308

F.3.7 Engine Turbo-fan

The Engine provides thrust for the aircraft and rotational energy, there will be two engines
one on each wing. The Engine consists of 8 main components which are shown in figure

F.11 and described below:

Fan- The Fan intake air mass into the engine.

Compressor- The Compressor compress air from the fan intake which increase the overall

pressure ratio of the mass airflow.

Combustion Chamber- Fuel is added into the chamber with the air and ignited. Therefore

results in a high temperature of the mass flow which thermal energy.

Turbine: - The Turbine Conversion the thermal to kinetic energy making the shaft to rotate.

Shaft- The Shaft is rotated by the turbines which therefore rotated power devices on the

shaft, such as electrical power generator and gearboxes.

Exhaust- The exhaust releases air flow into the atmosphere in a way which maximum the
thrust.

The fuel input system- Fuel is spray into the combustion chamber by the spray nozzle. The
quantity of fuel which needed to be lets in to the engine with varies depending on the
aircraft modes of operating. Therefore a Engine control valve is control by a process call
Full Authority digital engine control FADEC which does all the computations to know what
positions the valve should be and sends is information to the valve. In case if the fuel is at
too higher pressure then FADEC with send a signal to the High Pressure HP cock to closes
to isolated the engine to prevent a fire.

A AC pump is added to the system to get the fuel at the right pressure.

Sensors- FADEC mush have performances feedback from the engines, therefore sensors are

fitted to the engine which measures temperature, pressure and speed.

309

Engine Turbo-fan

Sensors

Temperature

Pressure

Speed

C

HP Cock
valve

Spray
Nozzle

AR

FADEC

Full Authority

Digital
Engine
Control

AC Pump

Combustion
chamber

Engine Control valve

Fan E—

_—/

Compressor

Turbine

Figure F.11: Engine Turbo-fan

/

Shaft

e

<— Exhaust

310

F.3.8 Reverse Thrust

The Reverse thrust provides thrust to the opposite’s direction of flight. It is used in the
braking phase to help bring the aircraft to a stop.

The system consists of the two clamshell Doors in to engine and the engine which was
described above. The system is shown in figure F.12.
The Clamshell Doors are supply focus from three actuators which three selector valves are
connected to them. The Selector valve lets in hydraulic liquid at pressure from the hydraulic
system and is power by the Dc power.

The selector valves are activated by a signal send by the Landing & Braking unit.

311

Reverse Thrust

Hydraulic liquid

DC power at nrassiira
l l g Landing
| Actuator 1 Selector valve 1 |q---- - - - - 5 &
i Braking
! Unit
| Actuator 2 Selector valve 2 [q-- - oo . i
] Actuator 3 Selectorvalve 3 ¢ - - - oo !

Clamshell Door

Figure F.12: Reverse Thrust

312

F.3.9 Electrical system

Electrical system generate, regulate and supply the UAV Aircraft with DC
and AC power, this is shown in figure F.13. The primary AC system has two
main generators driven by the accessory gearbox of the respective engine.
The system has a third generator called the Auxiliary Power Unit APU.
There are also two back up generators. There are two main power channels
left and right. The left generator supply power to the left AC main bus and
Xtr bus and similar the right generator distributed to the right buses. The
system is monitor by the control protection unit CPU. The CPU controls the
Generator control breakers GCB for the three generators. For example if the
generator is producing too much power then the GCB is close to isolate the
generator. Also if the generator is not producing a enough power then a
contactor can be open to being another sources of power on line, for
example the Bus Tie Breaker BTB and Bus tie contactors can be open to
distributed power to the other sized of the system. The system distributed
power to the left and right AC main bus and to ac Xtr bus. The AC main
buses distributed power the AC load of the aircraft. The Xtr bus distributed
power for the second part of the system which supply DC power. AC power
is converted to DC Power by a Transformer Rectifier unit TRU To the Dc
bus of each channel. It the case of a emergence DC power can be
generated by the Ram Air Turbine RAT. The essential DC power loads such
as FCS servos are supply power from three channels of FCDC buses. The
left bus is connected to the central FCDC bus. The FCDC buses are supply
power from the DC buses, PMRs and the Main Battery which the power run
though a hot battery bus. It the case of a overload of power from any of the
FCDCs there a circuit breaker for each FCDCs. There is a standby power
for the AC Power load which is connect to the left AC Xtr bus and Inverter,
converted DC to AC power, the inverter is supply Dc power from the Battery

bus.

313

Left Left Right
GCB BTB APB Bt B
i i
4' Left AC Main Bus | | Riaht AC Main Rus |—
L Backup R Backup
Gen Gen
CPU))
D Left VSCF Right
’ Bustie CNVTR Bustie
Contactor Contactor
A 4 A 4
Left AC Xtr Bus <—® ®—> Right AC Xtr Bus
! i
A A
TRU [« » TRU
| Left 28 DC Bus I4 #I Right 28 DC Bus

AC Sthv Bus |

A

A 4

Main
| Hot Battery Bus |<—V Battery

L Eng R Eng
PMG PMG
\ 4 \ 4 \ 4

| Left Power supply |<7—>| CentralPower supply | | Right Power supply

v v v

| Left FCDC Bus | | Central FCDC Bus | | Right FCDC Bus
Circuit (X)F--- - Circuit (X)f----- - Circuit (X)}F---
Breaker Breaker Breaker

Figure F.13: Electrical system

314

F.4 Method of building fault trees

The fault trees have been made by the structure shown in figure F.14. The top level
of the tree considers the external, internal and external protected by internal
system. The majority of the tree will be the internal effects since that is where the
complex aircraft is. The second level of the tree is the functions require, this
information is given from table F.1 and F.2. Each function has different failure
modes, for example does not work, operating when not meant to. These failure
modes will dependent on the function. The functions are in term of the subsystems.
Each function failure mode has been traces backwards though the aircraft system

considering the unit, power supply and the signal information given to the unit. This

has be broken down into the component and component failure modes.

Phase
Failure

—

External
Effects

Internal
Effects

External effects which can be
protected by internal systems

Function requirement
For particular phase

Subsystems

—

Power

Signal

Unit

Component

Component
Failure
Modes

315

Figure F.14: General fault tree structure

