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Abstract 

Tins thes1s considers the optinusatwn of vehicle suspension systems via a 

reinforcement learning technique The aim is to assess the potential of learnmg 

automata to learn 'optimum' control of suspensiOn systems, wh1ch contain some active 

element under electronic control, w1thout recourse to system models. Control 

optimisation tasks on full-active and senu-active suspension systems are used for the 

feasibility assessment and subsequent development of the learning automata techmque. 

The quarter-vehicle simulation model, with ideal full-active suspension actuatiOn, 

provides a well-known environment for 1mtial studies applymg class1cal discrete 

learnmg automata to learn the controller gams of a linear state-feedback controller. 

Learnmg automata are shown to be capable of acquiring near optimal controllers 

w1thout any explicit knowledge of the suspensiOn environment. However, the 

methodology has to be developed to allow safe on-line application. A moderator IS 

mtroduced to prevent excessive suspension deviations as a result of possible unstable 

control actions applied during learnmg. A hardware trial is successfully implemented 

on a test vehicle fitted with semi-active suspensiOn, exc1ted by a hydraulic road 

Simulation ng. 

During these initial studies some mherent weaknesses of the discrete automata are 

noted A discrete action set provides insufficient coverage of a continuous controller 

space so optima may be overlooked. Subsequent methods to mcrease the resolutiOn of 

search lead to a forced convergence and hence an increased likelihood of local optima 

locatwn. Th1s motivates the development of a new formulatiOn of learning automaton, 

the CARLA, which exhibits a continuous actwn space and a reinforcement 

generalisatiOn. 

The new method is compared w1th discrete automata on vanous stochastic function 

optimisatwn case stud1es, demonstrating that the new functionality of CARLA 

overcomes many of the identified shortconungs of discrete automata. Furthermore, 

CARLA shows a potential capability to learn in non-statwnary environments. 

Repeatmg the earlier suspensiOn tasks with CARLA applied, mcludmg an on-hne 

hardware study, further demonstrates a performance gain over discrete automata 

Finally, a complex multi-goal learning task is considered A dynanuc roll-control 

strategy IS formulated based on the senu-active suspension hardware of the test 

vehicle. The CARLA IS applied to the free parameters of this strategy and is seen to 

successfully synthesise improved roll-control over passive suspenswn. 
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Chapter 1 - Introduction 

This thests considers the apphcatwn of remforcement learning techniques, and in 

particular the learning automaton, to the synthesis of control laws for advanced vehicle 

suspenston systems. The maJOr emphasis is placed on developing the learnmg 

automaton methodology as a tool for on-line parameter optnnisation of complex 

systems in practical apphcatwn. Vehicle suspension control presents a naturally 

complex task, with a stochastic dnvmg input from the road and inherent non-lmeartty 

from component characteristics, multi-component mteractions and geometry effects. 

In thts chapter, the nature of vehtcle suspensiOn systems IS first dtscussed, outlining 

the advances made m thts area that make posstble stgmficant Improvement in vehtcle 

nde and handling charactenstics. Remforcement learning is identified as a pnme 

method by whtch the performance Improvements may be more raptdly accomplished 

dunng the vehtcle destgn optimisatwn process. The general methodology and 

termmology of one smtable reinforcement learnmg techmque, the learnmg automaton, 

is mtroduced with a dtscusswn of tts htstory and limited practical application to date 

A statement of the objective of thts thests ts then gtven. 

1.1 Overview 

The maJonty of modern motor vehicles are fitted with a 'passtve' suspensiOn system, 

consisting of a spnng and damper to control verttcal forces, and lmkages to control 

wheel angle and translllit cornenng and braking forces as well as steering mputs from 

the dnver. However, advances m transducers, microprocessors and force actuators 

have provided new opportumties m suspension destgn. Stgmficant improvements in 

nde and handhng performance are posstble when the spnng and damper arrangement 

of a conventiOnal system is completely replaced by a hydraulic actuator, where the 

actuator is under full control of a microprocessor taking measurements from sensors to 

ascertam the current state of the vehtcle Such a system is termed 'active'. 

Alternatively a 'sellli-active' approach could be used, replacing the fixed charactenstic 

damper m a passive system wtth a continuously variable damper The semi-acttve 

system also offers some potential for Improved ride and handling performance, but 

reqmres no source of mechamcal power, and ts thus cheaper and simpler to tmplement 

than the corresponding active system; see for example Karnopp (1983) and Sharp & 

Crolla ( 1987). 

The conventional approach to the development of suspensiOn control systems involves 

extensive modelling, ranging from simple lmear quarter car models, up to 
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sophisticated multibody simulation models based on computer codes such as ADAMS 

(see for example Kortum & Sharp, 1993). Even the Simplest system will contam 

enough design parameters to make any model difficult to match accurately to hardware 

performance. Applymg any form of active system will mtroduce even more vanables 

and the design issues will now include synthesis of suitable control laws. Inevitably, 

more vanables lead to more complexity and hence to longer development times 

Despite this design development time, an extensive penod IS also spent on prototype 

vehicles where suspensiOn characteristics are subjectively tuned by a process of 

iterative development with expenenced test dnvers 

Clearly It IS attractive to consider techniques whereby the resources expended in domg 

such detailed modelling and subJective tuning could be reduced. Machme learmng is 

one such techmque that offers a capability of 'learnmg' how to achieve a pre-defined 

obJective on-line with little, 1f any, prior knowledge of the system concerned. In 

conJunction with computer controlled active suspensiOn systems, there is therefore the 

potential for a learning agent to acqmre a control law on-lme. This IS in contrast to 

tradlt!onal methods of control law design that require system models for their synthesis 

off-line. As noted above, any model Is an inevitable simplification of the real system, 

which then leads to the subjective tuning of the on-lme system. 

Current machme learnmg paradigms can be classified mto three areas accordmg to the 

form of feedback they receive from the world in response to their previous actions· 

• Learning by observatiOn - unsupervised learning!learmng by dzscovery - Here there 

IS no direct input available concernmg the focus of the learnmg system The learner 

has no knowledge of positive/negative instances or wh1ch directions to follow in 

search of better descnptions. Instead the learner IS only able to collect observatiOns 

and denve generalised concepts accordmg to its own mternal rules. With no 

external gmdance and no feedback unsupervised learning is mefficient and often 

only useful m specialised applicatiOns One example of unsupervised learning is a 

Kohonen net, ongmatmg from the Image processmg research field, which self­

orgamses Its mtemal state, in response to mput observations alone, such the 'net' 

forms a representation of the shape descnbed by the input values - see Kohonen 

(1984) 

• Learnmg from examples - supervised learning/learning wzth a teacher - The 

learnmg algorithm IS tramed on a set of matched mput/output data. The aim of the 

learner IS to generate a data descnption that matches inputs from the training set 

With the correct output whilst also generalising the information effectively to 
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produce acceptable outputs for future unseen inputs. Thts method requires a very 

large amount of external gmdance and the trammg depends upon a well-mformed 

teacher wtth comprehensive and good quality data. Neural networks are a classtc 

form of supervtsed learnmg techmque, where data is mput to the network. Reqmred 

outputs for the given mputs are known and the error between those outputs and the 

network outputs is used in feedback trammg, smtably adJustmg the weights of the 

network to reduce future error. 

• Remforcement learning - leammg with a critzc - Here the learner only receives a 

scalar signal as feedback. This remforcement signal provtdes evaluatiOn of 

performance with respect to pre-set goals No direct error mformation on the 

internal representation of the learnmg algorithm ts gtven. Only the evaluattve 

respon~e to an action ts provided as feedback on tts performance. 

It is this last learnmg category whtch ts most appltcable in a vehtcle suspenswn 

settmg. 

The abthty for a reinforcement learnmg algonthm to learn from only evaluative 

feedback removes any reqmrement for a pnon knowledge of the agent's working 

envtronment Complex and noisy envtronments in which analyttcal study becomes 

excessively slow or mtractable can be tackled by reinforcement learning techmques 

where an evaluative stgnal is available. 

Early work m the area of remforcement learning developed a stochastlc automaton, 

able to work m an envtronment to 'learn' the best action from a set of posstble actwns 

tt could apply. The stochastic automaton would imtially randomly choose actwns to 

test in the envtronment. For each test, the automaton would recetve back from the 

environment a performance mdex, indtcatmg how successful that action had been The 

automaton would update tts internal state to increase the chance that successful actions 

would be tested agmn, while unsuccessful actions would be penalised. Successive 

tnal!reward tteratwns lead to the automaton predominantly choosmg only successful 

actwns, and hence the overall performance of the system had been improved 

In applymg such an automaton to a vehtcle suspensiOn system, the envtronment can be 

identtfied as the whole vehtcle hardware system mcludmg any mteractwns between 

vehtcle, road and dnver. The actiOn an automaton may apply to a suspension system ts 

a control law. An automaton can have a set of control laws from which the 'best' law 

in the gtven envtronment ts to be tdentified. The evaluative feedback can be formed 

from sensor measurements Smtable chmce of a cost function can gtve a relattve 

measure of the performance of any action m companson wtth prevwus actiOn tnals. 
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1.2 Advanced Vehicle Suspensions 

Use of active and seiTil-actlve systems, under microprocessor control, considerably 

increases the control posstb!ltties above those offered by passive systems. In this 

dissertatiOn, attention will be restncted to opllmisatwn of the nde function via such 

suspension systems, whereby road megulanties are filtered out and a comfortable 

environment is provided for the vehtcle occupants 

The stochastic nature of the road input suggests the applicatiOn of linear optimal 

control theory for findmg good control laws for active systems, and this method has 

been Widely used (Wtlson et al. 1986, Thompson 1984) However, the theory IS based 

upon the assumptions that the suspension system is hnear, and the stochastic input IS 

white noise. Although such assumptiOns are reasonable to mvestlgate the possibilities 

offered by active systems, any real system will be inherently non-lmear because of 

practical consideratiOns in component design, component mteractwns and suspension 

geometry. Also, mvestigatwn of the nature of road mput has shown that white noise IS 

a poor approximation (Robson 1979). 

Semi-active suspension systems have been mvestlgated as economical alternatives to 

full active systems. By replacing the fixed charactenstic damper in a passive system 

with a variable characteristic actuator, many of the beneficial control aspects of full 

active systems can be maintained Without the expense of providing an energy source 

(Karnopp et al., 1974); usmg a variable damper the semi-acl!ve system IS purely 

disstpal!ve with only small energy reqmrements for valve control wllhin such an 

actuator. For these reasons semi-active suspension systems are attractmg particular 

attentiOn as an affordable improvement to passenger vehicle suspensiOn refinement 

Control law design for the semi-active system generally follows on from that of the 

full acl!ve system, With special consideration given to the constraints Imposed 

(Karnopp, 1983). Synthesis of non-lmear controllers has been undertaken by Gordon 

& Best (1994), but thts rehes on off-hne optiiTilsatwn techmques usmg a system 

model 

On-hne 'optiiTilsatlon' of any suspensiOn system has generally been hiTilted to 

subJective development of passive systems in the final track testing of new vehicle 

designs, and is not reported m the literature beyond its principles (Sharp & Hassan, 

1984) 
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1.3 Reinforcement Learning - Learning Automata 

Early work m the area of automata models of learning ongmated m mathematical 

psychology. Consideration of the way in which animals appear to condition theu 

response to various sumult, and therefore 'learn' an Improved response, led to a 

mathematical framework for the study of learning problems - (Bush & Mosteller 1958, 

Atkinson et al 1965, Iosifescu & Theodorescu 1969, Norman 1972) 

Tsetlm (1961) mtroduced the concept of usmg determimstlc automata operatmg m 

random environments as models of Iearnmg. Further work in the Soviet Umon 

followed his Ideas. An mtroductwn to the Russian literature can be found m Tsetlin 

(1973). 

Varshavskii & Vorontsova (1963) observed that the use of stochasuc automata with 

updating actwn probabiittles could reduce the number of states m comparison With 

determimstic automata. This idea was readily adopted and later research then focused 

on stochastic automata. 

The general framework on which much of the learning automata development IS based, 

IS now given. 

' ENVIRONMENT 
fJ = [0,1] 

.., 

a(n) STOCHASTIC .... 
AUTOMATON 

..... 

Figure 1.1 - Learnmg automaton 

1.3.1 Stochastic automata 

Accordmg to Narendra & Thathachar (1974), 'A learning automaton is a stochasuc 

automaton that operates m a random environment and updates Its action probabilities 

in accordance with the mputs received from the environment so as to improve Its 

performance m some specified sense.' Figure 1.1 represents a learning automaton as 

defined above, with feedback connection of a stochastic automaton and a random 

environment The actions of the automaton form the inputs to the envuonment. The 
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responses of the environment m turn are the mput to the automaton, which mfluence 

the mternal state of the automaton. 

A distinction between several models of Ieammg automata, based on the nature of the 

mput to the automaton, should be noted A model with a bmary input set, e.g. {0,1}, is 

termed a P-model, whilst a model with an input set consisting of a finite number of 

values is called a Q-model. An automaton IS of the S-model form if the input set lies 

m an mterval [0,1]. Each of these models IS seen as more or less appropnate for 

different applications. 

The environment IS assumed to exhibit random response characteristics. It has mputs 

(actions) a(n) = {a1 , ... ,a,} and outputs (responses) belongmg to a set f3. The 

simplest response set to consider is binary, P = { 0,1}, With zero s1gnifymg a reward 

response, one sigmfying a penalty response. The probability of selectmg a penalty 

output response depends on the mput and IS denoted by c, (i=l, .. -,r). The c, are 

called the penalty probabilities If the c, do not depend on n, the discrete-time 

variable, the environment IS satd to be statiOnary, otherwise It is nonstaiionary. It is 

assumed that the c, are unknown initially, as the problem would be tnvia!If they are 

known a priori. 

A stochastic automaton IS a sextuple {/3, ~.a, p, A, G} where f3 IS the input set, 

~ = {~ 1 .~ 2 , ... ,~,} IS the set of mternal states, a= {a1 ,a 2 , ,a,}, with r:::; s, is the 

output or actiOn set, p IS the state probability vector governing the choice of state at 

each stage (i.e. at each stage n, p(n)=(p1(n),p2 (n), ... ,p,(n))'), A IS an algorithm 

(also called an updatmg scheme or remforcement scheme) which generates p(n + 1) 
from p(n), and G tjJ ~a IS the output functiOn. As the environment response IS 

random, so the actiOn probability vector is also random. G could be any functiOn, but 

the maJonty of stochastic automata work assumes G to be deterministic and one-to- 1 
one (i e r = s , states and actions are regarded as synonymous) 

The automaton models used throughout this thesis are based on the above stochasiic 

automaton model, with r=s, and are referred to as Ieammg automata from hereon. 

1.3.2 Learning schemes 

The basic operatiOn earned out by a learning automaton is the updatmg of the actiOn 

probabilities on the basis of the responses from the environment. The reinforcement 

scheme is thus central to the successful operatiOn of a Ieammg automaton. Much 

research in the late 1960s/early 1970s focused on the behaviOur of leammg automata 
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utilising vanous remforcement schemes, and defined a number of terms relatmg to 

this: 

The average penalty recetved by the automaton, conditiOnal on the probability vector, 

IS gtven by 

M(n)= E{J3(n)lp(n)} 

r 

= LP1(n) C1 

(1.1) 

1=1 

where n IS the dtscrete time vanable If no a priori mformat10n is available, and the 

act10ns are chosen w1th equal probability (1 e. at random) the value of the average 

penalty 1s denoted by M0 

M 
_ c1 +c2 + .... +c, 

0-
r 

(1.2) 

The use of the term Jearmng automata can be JUStified 1f the average penalty is made 

less than M 0 • 

A learning automaton is called expedient 1f 

lim E[M(n)]< M0 
n..;~ 

(1.3) 

It would be more desirable, however, 1f proper selectiOn of actions could lead to 

mmnnisation of the average penalty. From (1.1) it can be seen that the Illlmmum value 

of M(n) IS mm{c.}. 
I 

A Jearnmg automaton IS called opttmal1f 

where 

limE[M(n)]=cm 
n..;~ 

cm= ffiln{c,} 
I 

(1.4) 

Although optimality appears a very demable property, implying that the actiOn 

associated w1th the Illlnimum penalty probability IS chosen, asymptotically, w1th 

probability one, a slightly weaker condition IS more beneficial m practice. 

A learnmg automaton IS called l -optzmal1f 
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limE[M(n)]<cm +e 
n->~ 

(1 5) 

can be obtained for any arbitrary e > 0 by smtable choice of parameters of the 

reinforcement scheme. e -optimahty 1mphes that the performance of the automaton 

can be made as close to optimal as desired. 

A learning automaton is called absolutely expedzent 1f 

E[M(n + I)Jp(n)] < M(n) (1.6) 

for all n, all p/n)E(O,I) (J =I, .. ,r) and all possible values of c, (i=l, ... ,r). It is 

usually assumed the set {c,} has unique max1mum and/or mmimum elements 

U smg th1s framework of defimtions to relate and compare d1fferent remforcement 

schemes, a number of schemes have been proposed. If p(n +I) 1s a linear function of 

the components of p(n), the reinforcement scheme IS said to be linear, otherwise 1t IS 

non-hnear. In general, when the action at d1screte-time n is a,, the remforcement 

schemes take the form 

p,(n+l)= p,(n)+ I,.t;(p(n)) ) 
'*' for reward 

p/n+l)=p
1
(n)-J;(p(n)), (j*i) 

(1.7) 

p,(n+l)= p,(n)- I,g,(p(n)) ) 
'*' for penalty 

p
1
(n+l)=p

1
(n)+g

1
(p(n)), U*z) 

where f, () and g
1 
() are nonnegative continuous functwns such that 

Pk(n+l)E(O,l),forall k=l, ... r. 

The first scheme proposed, from the mathematical psychology background, is known 

as the linear reward-penalty (LR_p) scheme where f/) and g
1
() are both 

nonnegative Imear functiOns. Bush & Mosteller (1958) and Varshavskii & Vorontsova 

(1963) stud1ed the LR-P for a two state case, usmg the scheme 

p,(n+I)=p,(n)+a[1-p,(n)] }c d 
( ) ( ) ( ) . .or rewar 

p1 n +I = 1-a P, n , (J * z) 
(1 8) 

~~+1)=(1-~~w } 
p,(n+l)=b/(r-1)+(1-b).p/n), U*z) forpenalty 
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where 0 <a < 1 and b =a . Th1s work was extended to the multi-state case by 

McLaren (1966) and contmued by Chandrasekaran & Shen (1968) 

Another common scheme studied m the literature IS the hnear reward-maction ( LR-l) 

scheme in which f
1 
() is a nonnegative lmear functiOn and g

1 
() = 0 The 

charactenstic of this scheme is therefore that it Ignores penalty inputs from the 

envuonment so that the action probabilities remam unchanged under these mputs. One 

such example of a LR-I scheme IS simply deduced from (1.8), hence 

p,(n+l)= p,(n)+a[l- p,(n)] } f d 
p

1
(n+ I)= (l-a).p/n), (j i' i) orrewar 

(1.9) 

p,(n+ 1) = p,(n) } 
p/n+ I)= p/n), (; i' z) for penalty 

Many other Imear and non-linear schemes were conceived and mvestigated m the early 

1970s Development of the theory and convergence proofs for these schemes are 

widespread throughout the literature, and many of these results are summarised and 

covered by Narendra & Thathachar (1974 and 1989), Lakshm1varahan (1981), Baba 

(1984) and NaJim & Poznyak (1994). 

In particular, expedient and optimal remforcement schemes were compared by 

V1swanathan & Narendra (1972) m trymg to ascertam wh1ch type of schemes are to be 

preferred m practical applicatwns Three prominent schemes from the literature were 

compared: an expedient linear reward-penalty ( LR-P) scheme, an E -optimal hnear 

reward-inaction ( LR-I) scheme, and a "square law non-lmearity" non-linear reward­

penalty ( N R-P ) scheme shown to be optimal under certam conditions and expedient 

otherwi ~e. The schemes were compared on the basiS of degree of expedience, speed of 

convergence, and variance associated with the convergence process. Extensive 

computer simulation of a ten-state problem (ten possible automaton actions, each with 

a pre-defined penalty probability) demonstrated that although the N R-P scheme 

1mtially converged towards a solution faster than the other schemes, the maximum and 

final vanance was greater, yielding a poorer final solutiOn. The LR-I scheme, as a 

special case of the considered LR-P scheme, demonstrated the best quality of solution 

throughout, w1th faster convergence than the LR-P scheme, and smaller measures of 

vanance than either LR-P or N R-P schemes 

1.3.3 Hierarchical automata 

A hierarchical learning automata utilises a tree structure of s1mple learning automata, 

each w1th a small action set, to replace a smgle automaton that would reqmre a much 
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larger action set. For example, Figure I 2 shows a 3-level structure of automata, each 

with only three actiOns, that exhibits a 27 actiOn set at the base level The automata m 

higher levels act only to activate an automata at the next lower level. The probability 

updating scheme for this hierarchical learning system needs only apply to 3 automata 

after each learnmg IteratiOn; 9 probability values are updated, as opposed to 27 values 

in the equivalent single automaton. Thathachar & Ramaknshnan (1981) reported on a 

simulatiOn study of a 7-level hierarchical system, with 2 actions per automata, and 128 

output actions. Actmg on an artificial random environment with pre-set penalty 

probabilities, a savmg m convergence time compared to a smgle automaton system 

was demonstrated 

a; a, a, a, a, a, a, a, a, "io a;, a;, a;, a;, a;, a;, a;, a;, a;, a,. a,, lXa lZn a,, lZn a,. a,, 

Figure 1.2 - Hierarchical learning automata 

1.3.4 Interconnected automata 

Thathachar & Ramakrishnan (1982) introduced an mterconnected learning automata 

system. This uses a team of automata, and is best suited to high dimension problems 

caused by learnmg w1th a number of interactmg action subsets, e.g. a multi-parameter 

optnrusatwn problem Simultaneous actiOns from the mdividual automata form a 

single actiOn applied to the envrronment. The environment replies with a single 

response, fed to all learnmg automata m the team. In this structure the automata are 

only linked together through the common environmental response - see Figure 1.3 -

and otherwise have no knowledge of each other. A simple simulatiOn study with two 

automata actmg m an artificml random environment w1th pre-set penalty probabilities 

resulted m the convergence of an mterconnected learnmg automata system. 
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... 
' 

ENVIRONMENT ... , 

,8 = [0.1] 

a,(n) STOCHASTIC 
AUTOMATON / .... 

1 

aj(n) STOCHASTIC 
AUTOMATON / .... 

2 

Figure 1.3 - Interconnected learnmg automata 

1.3.5 Applications 

The first non-tnvial application of Iearnmg automata was in the optimisatwn field. 

McMurtry & Fu (1966) took a functwn of a smgle variable over a range contammg a 

number of local mmtma With the a1m of using a learning automaton to locate the 

global mimma to wtthin a subset of the 1mt1al range. D1scretismg the functwn mto 10 

d1stmct regions, 1t was shown that the Iearnmg automaton could d1stingmsh the region 

contaimng the global nunima, mcluding cases where noise was added to all function 

evaluations carried out dunng the search 

Shapiro & Narendra (1969) carried out sinular experiments w1th P-model learnmg 

automata. Functions of a smgle vanable, w1th local nunima and add1tive noise (chosen 

to preclude the use of gradient type techmques such as stochastic approximatwn) were 

evaluated by the learnmg automaton at 10 d1screte pomts w1thm a pre-specified range. 

The rum of 1dent1fying the minimum functwn evaluatwn pomt, from the I 0 points, was 

successfully demonstrated, mcludmg a case where the evaluated functwn was 'flat' m 

comparison to large-scale add1tive noise 

Shap1ro & Narendra also cons1dered the problem of locatmg the optimal values for two 

parameters m an adaptive filter. The parameter space was d1scretised to 25 pomts, 

mcluding the pre-known optimal pomt. Convergence to the optimal parameter values 

was demonstrated, but rrused the questwn of how to deal w1th h1gher dimenswnal 

problems Two parameters, each discretised to just 5 values, g1ves a 25 pomt actwn 

set. One extra parameter, also d1scret1sed to 5 values, rmses the actwn set to 125 

pomts (5\ Larger action sets, formed from high dimension problems or fine 
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d!scret1satwn of parameters, were noted as increasing convergence times in locating 

optimal actions. Hierarchical learning automata and interconnected learning automata 

were later proposed by Thathachar & Ramakrishnan (1981 and 1982) as possible mds 

to handlmg this dimensionality problem 

Many early s1mulatwn studies run during development of the leammg automata theory 

demonstrated the1r optunisation capabilities m stochastic environments, and yet little 

m the way of real world applicaton of this technique has smce been reported. The 

earliest documented use of th1s techmque, by Narendra & Mars (1983) considered a 

telephone traffic routmg methodology, demonstratmg likely efficiency gams to be had 

m employmg leammg automata as dynanuc routers at nodes of a commumcatwns 

network. 

NaJ!m et al. (1990) applied learnmg automata to locate the optima and near-optima of 

a multi-modal function w1th constraints 1mposed. The techmque was applied to find 

the optimal settings for a chenucal process based on a pnon determmistic knowledge 

of the cost per year of each possible settmg. 

Tang & Mars (1991 and 1993) used smgle automaton and interconnected automata 

strategies to learn multiple parameters of an adaptive IIR filter. Effectively an on-line 

optlm!satwn problem, prevwus stud1es had shown multi-modal error surfaces would 

be present 1f the IIR filter was under or over parameterised m relation to the unknown 

system 1t was aiming to match. The global numma of the error surfaces was shown to 

be attamable through use of the learning automata methodology, as opposed to 

gradient search techmques which were prone to falling mto local optima 

Several authors have mvestlgated applymg a learnmg automata techmque as a single 

parameter self-adjustmg controller for a phys1cal process. Naj1m (1991) considered 

the control of concentratiOn of C02 m a chenucal absorption column. A learnmg 

automaton was applied to adjust the absorbent flow rate mto the column, thus 

controlling the C02 concentratiOn to track a set-pomt concentratiOn profile. The 

behaviour of the absorptiOn column 1s mfluenced by random vanatlon of vanous 

system parameters. A simulatwn study illustrated improved performance compared to 

a Z1egler-N!chols tuned PID controller. Valenzuela (1993) applied a hierarchical 

automata system to optlmise the ore feed rate input to an autogenous gnndmg circmt 

m a mmeral process. A dynanuc s1mulator modelled the detenrumstic and stochastlc 

behavwur of the gnndmg process The learnmg system was shown to converge to an 

optimal state with probability one, w1th output mass flow rate withm the operatmg 

envelope requued. Ch1dambaram (1994) used a smgle automaton m a similar manner 
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to learn the optimal dilution rate of a contmuous stirred tank reactor. A deterministic 

model returned a bmary response to the learning automata dependent on the 

relatiOnship of output to a set-point. The automaton converged to a final value for the 

manipulated vanable With probability one, exhibiting Improved settling time 

charactenstlcs during the learning process m companson with a PI controller. 

In all the above simulatiOn studies, learning automata have dealt with optnmsatwn of 

only one parameter, avmdmg problems of high dimensionaiity. Discretisatwn of the 

parameter to only a small number of values leaves the possibility of the actual optima 

for any of the processes Simulated lymg m an mterval between discrete points Also 

the processes all exhibit long time constants, so time reqmred for computation of the 

learnmg automata is insignificant compared to response characteristics of the process. 

Wu (1993) developed an extensiOn to the learning automata methodology to enable 

automata to locate an optimum over a continuous area of the actiOn space, even If that 

optima does not coincide with an actwn from the imt!al discrete actiOn set, as may well 

be the case in many realistic applications. Wu proposed that automata may 'home in' 

to a smaller area of the action space once an actiOn probability begins to dollllnate. 

Smce the automaton should locate the Illlnima of the discrete action set, it is 

reasonable to assume the action lies in a region of the action space close to an actual 

mimmum of the contmuous space. By smtable selectiOn of a smaller area of the action 

space, centred on the previously located Illlmma, a requantlsed action set with a reset 

automaton may be applied to search for a better defined Illlmma - see Figure 1.4 

Repeated reduction of the area of actiOn space considered should lead, ultimately, to 

locatiOn of the optimum pomt, or somethmg very close. 
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Figure 1.4 - Discrete actiOn space reduction to locate global rrumma 
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Wu & Pugh (1993) applied the same technique to optimise a simulated turbogenerator 

power system controller. A smgle automaton was employed to learn three parameters 

of the pre-defined control function. Three stages of learning reduced the action space 

search area to 16% of the mitial area Analysis of the average performance index 

shows the Jearnmg automata Improvmg its performance at each stage. The final 

control values provided good control performance. Although only a SimulatiOn study, 

this work showed the potential for real-time on-line tumng of complex mdustrial 

systems in stochastic environments, Without the need for system modelling. The 

action set requantisatwn methodology allows a more complete search of the parameter 

space, but in so domg also forces convergence. A poor actiOn chmce at an early stage 

may force the automaton away from the optimum m subsequent stages The 

reductiomst nature of the quantisatwn scheme means recovery of the situation is not 

always possible and the methodology becomes inherently non-adaptive to any 

subsequent environmental variatiOn. 

One study, by Santharam et a! (1994) has attempted to overcome problems caused in 

considenng discretisation of an action space by using a continuous action set. It was 

proposed that the probability vector associated with a discrete action set could be 

replaced with a smgle distnbutwn function, charactensed by a small number of 

parameters, thus encompassmg a continuous actiOn set. Analysis of a learning 

algonthm usmg a Gaussian function as the distnbutwn functiOn was carried out. A 

reward or penalty response would yield an update to the distnbutwn v.a vanation of 
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the two descnptive parameters of a Gaussian d1stnbution, the mean and vanance. A 

smgle parameter optunisatwn problem, on a multi-modal function, Illustrated the 

effectiveness of the algonthm in findmg exact mmima points. Unfortunately the 

algorithm often converged on a local nummum of the test functiOn and a rerun would 

be required for the automaton to have a chance of findmg the global nunima. It was 

suggested that multi-parameter optimisation problems could be dealt with by applymg 

the contmuous action set learnmg automaton m an mterconnected fashion, utilising a 

team of such automata, one per parameter. Although the Simulated tasks showed up 

inherent weaknesses in the formulatw~as reported, the underlymg philosophy 

proposed IS s1gmficant The pnnc1ple/ Idea, to adapt the learning automata 
y 

methodology to consider a contmuous action space, is of particular note, and is picked 

up agam in later chapters. 

1.4 Objective of this Thesis 

Many studies m the literature have viewed a learnmg automaton methodology as a 

possible optilrusatwn techmque, especmlly beneficial in random environments where 

traditiOnal gradient type techmques would either not work, or at best generally fall into 

local optima Simulation studies have illustrated the effectiveness of employmg 

learning automata for optinusmg single and multi-parameter functiOns includmg 

additive nOise. Little real-world applicatiOn of the techmque has been reported 

however. The objective of this thesis may therefore be summarised as: 

To mvestigate the applzcatwn of a learning automaton methodology m 

the context of an on-line parameter optlmtsatwn m complex dynamic and 

stochasttc environments, as exemplzfied by advanced vehtcle suspenswn 

systems 

1.5 Outline of Thesis 

Chapter 2 det:uls the suspension system models used in the simulation studies of later 

chapters, mtroducing basic concepts and tenrunology The s1gmficant portiOn of this 

thesis IS then broadly spht into two m:un areas investigating two particular forms of 

learning automaton. 

Chapters 3, 4 and 5 descnbe studies usmg classic discrete learning automata. The 

VIability of applymg a learnmg automaton technique to suspension systems is first 

investigated in Chapter 3, where two forms of automaton are tested on simple quarter­

vehicle suspension tasks. However, a number of practical limitations are noted that 

X 
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prevent safe on-hne apphcat10n. Chapter 4 addresses these concerns, developing the 

methodology to md practical apphcation. The culminatiOn of th1s work IS an 

expenment m hardware, presented m Chapter 5, in wh1ch the extended d1screte 

learnmg automata methodology is apphed directly on a test vehicle to perform a nde 

optnrusation task 

The remainder of this thesis mtroduces and investigates a new form of learnmg 

automaton, the Contmuous Actwn-set Remforcement Learning Automaton (CARLA) 

Although the discrete automata studies produce some prorrusmg results, the 

simplification of an essentially continuous actwn space to a d1screte set of actions 1s 

also seen to mtroduce a number of hrrutatwns 1tself. The CARLA IS developed to 

overcome these 1ssues Chapter 6 descnbes the concept behind the operation of 

CARLA and outlines Its method of implementation The performance of th1s new 

automaton 1s investigated in Chapter 7 via analys1s on basic tasks and companson w1th 

discrete automata. 

Chapter 8 returns to the vehicle suspensiOn apphcatwn, to repeat a number of tasks 

encountered dunng the discrete learning automata studies, but applymg CARLA in 

theu place for companson. Approaches adopted earher are seen to be equally 

applicable to aid on-line apphcatlon of CARLA. The chapter concludes with a 

hardware expenment w1th CARLA apphed to optlrmse the nde charactenst1c of a test 

vehicle. 

A multi-goal learning task is presented in Chapter 9. A dynarruc roll control algonthm 

IS developed to rrumrruse the roll response of a full-vehicle simulatwn mcluding a 

reahst!c serru-active suspenswn model. The algonthm presents five free parameters 

avmlable for learning Two teams of CARLA are configured to learn 'opt1mal' values 

for these parameters in simulation 

Dunng the development of CARLA some 1deas for possible extensions to the 

methodology presented in Chapter 6 have arisen. Prehrrunary stud1es of two such 

extenswns to the CARLA methodology are presented in Chapter 10 

Chapter 11 concludes the thesis with a discussion of the work presented and poss1ble 

areas of future research. 
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Chapter 2 - Suspension System Models 

Th1s chapter describes the suspension systems considered w1thm this thes1s, mcludmg 

both s1mulatwn models and vehicle hardware Simulation studies are implemented 

with application of 5'h order Runge-Kutta integratiOn routines, includmg vanable step­

size techmques to overcome discontinmties and non-lmearities of the mtegrands. 

D1gital control is implemented in simulation to match the control application m 

hardware considered later. 

2.1 Quarter-vehicle Ride Model 

suspension 
x, = deflection 

body mass 
m, 

' body 
x. = veloc1ty 

., 
wheel 

x, = velocity 

v(t) = 

Figure 2.1 - Quarter vehicle model 
' road input 
veloc1ty 

Figure 2.1 shows a simple model relevant to the vert1cal motwn at a smgle wheel­

station of a vehicle. It cons1sts of two masses, the sprung and unsprung masses, which 

represent the body and wheel masses respectively The wheel mass IS ISolated from 

the road by a tyre. The vertical dynamic load on a tyre, F, , has been shown to be 

approximately proportional to the vert1cal tyre deformatwn (Sharp & Hassan 1986) 

and therefore a simple model of the tyre as a spnng 1s sufficient in cons1denng vertical 

motion alone. A suspension force, F,, IS applied between sprung and unsprung 

masses to provide Vibration !Solation for the sprung mass, maintammg a satisfactory 
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separatiOn of the two masses and providing control of the dynamic tyre loads. F, can 

be achieved in a number of ways, outlined later m this sectiOn. 

The quarter vehicle model1s widely used m the literature as it contams the most basic 

features of a vehicle for consideratiOn of ride comfort. It includes a representation of 

the problem of controllmg wheel load variations, and hence road-holding properties, 

and contains suspension system forces that are properly applied between the unsprung 

and sprung masses 

U smg the state vanables shown m Figure 2.1, the equations of motiOn are. 

x, =x3 -x4 

. F,-F, 
x3 = 

mw 

. F, 
x.=-

m, 

(2 1) 

Here v(t) is the vertical velocity of the tyre contact patch and the tyre force F, (t) IS 

given by F, = k, .x1 

F, may be defined in a number of ways to represent different suspensiOn 

arrangements. Two particular arrangements are considered w1thm this thesis in 

relatiOn to quarter vehicle simulation, both providing reference for performance 

companson with other systems 

2.1.1 Passive suspension 

In the passive suspension F, (t) IS provided by a spnng, of stiffness k,, m parallel with 

a damper, so 

F, = k,x, + Fd 

where the damping force 

Fd =b,(x3 -x4 ) 

(2.2) 

(2 3) 

and b, IS the dampmg rate. Although identification of the charactenstics of an actual 

passive damper umt shows that some non-hneantles and hysteresis are present, 

mtroduced by the physical charactenstlcs of its components, the Simple model in 

equatiOn 2.2 g1ves a sufficient first approximatiOn for modelling- see Best (1995) A 

passive system may be seen as the Simplest form of suspensiOn available to control the 



19 

sprung and unsprung masses to a satisfactory degree. No power is consumed by the 

system other than that denved from the vehicle's kinetic energy of forward motion 

The lmear passive quarter veh1cle model exh1bits two modes of vibration, commonly 

referred to as the wheel-hop and body bounce modes. Rearranging equations (2 1 ), 

(2.2) and (2 3) into the matnx form· 

x=Ax+Bv (2 4) 

and applymg the followmg model parameter values, representative of a medium s1zed 

saloon car 

k, = 20000Nm·' 

k, = 200000Nm·' 

mw = 40kg 

m• = 300kg 

(2.5) 

the modes of the model are characterised by the e1genvalues of A : 

A,. =-254±675 i 

..1,=-29±75i 
(2 6) 

From complex constants o +M, the undamped natural frequency and 98% settlmg 

time for each mode are then: 

(tJ 
llJ =­

n 27! 
4 

T=­, 0 

Wheelhop - A,. 

108Hz 

0.16s 

Body Bounce - ..1, 

1.2 Hz 

14s 

The natural frequencies of each mode can be seen in the power spectral dens1ty 

response to white nmse of the wheel and body veloc1ty respectively - F1gure 2.2 The 

lower plot shows the body motiOn IS entirely dolTilnated by the body bounce mode 

The upper plot, however, shows wheel motiOn as covenng a much broader bandwidth, 

exc1ted at both modes of the system, although the maJonty of the mput power IS 

translTiltted at higher frequencies 
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~L_------~4--------~8~-------1~2--------~16~------~20 

Frequency (Hz) 

4 
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Frequency (Hz) 

20 

Figure 2.2 -Wheel velocity (upper) and body velocity (lower) power spectral densities 

2.1.2 LQG active suspension 

The second reference system IS provided by cons1denng an Ideal actuator actmg 

between sprung and unsprung mass, assumed to operate without error or time delay, so 

providing any requested force mstantaneously. The suspensiOn force IS thus seen as 

the control variable. 

F, = u(t) (2.7) 

Assummg such an actuator, and applymg a white nmse signal as the road velocity 

mput to a lmear quarter vehicle model, there exists a theoretical technique to 

synthesise an optimal controller subject to a quadratic cost function. 

The linear quadratic Gaussian (LQG) optimal control techmque (Kwakemaak & Si van, 

1972) defines, for a hnear system, a hnear state feedback controller 

u(t) = K.x (2.8) 

that optmuses a quadratic performance mdex where the mput to the system is defined 

in terms of zero mean Gauss1an white nmse processes. The gam vector K IS found 

via solutiOn of the algebraic Riccati equatiOn. 
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For the quarter-vehicle model of F1gure 2 I, an appropriate performance mdex to 

employ LQG optimal contro!Js 

J 2 b 2 ·2 =a.x1 + .x2 +x4 
(2.9) 

The body acceleration term costs passenger discomfort, and road holdmg IS mamtamed 

by suitably costing tyre deflectiOn. The weightmgs, a and b are selected to tune the 

controller to return acceptable values for the three terms w1thm the constraints of 

avaJlable workspace for suspenswn travel. Here, the we1ghts have been set according 

to a study by Marsh et al. (1995) 

a= 64000, b = 750 (2.10) 

Using these values withm the discrete-time LQG formulation, assuming a 500Hz 

sampling frequency (as used in later practical applicatwn) y1elds the feedback 

controller 

u(t) = [ -10406 8079 1029 -2258 ] x (2 11) 

with associated performance mdex: 

]opt= 26621 (2.12) 

2.1.3 Semi-active suspension 

A third suspenswn arrangement 1s available by ul!lising semi-aclive actuators. A 

vehicle fitted w1th a senu-aclive suspension system has been used in practical 

apphcatwn of the leammg methods developed m this thesis The test vehicle 1s a Ford 

Granada fitted with continuously vanable damper umts and mstrumented with sensors 

at each wheel-station. Representalive models of the particular hardware actuators used 

were developed by Best (1995), and the denvalion of the semi-aclive quarter-veh1cle 

model is presented here as a precursor to developmg a full vehicle model, descnbed 

later. 
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v(t) = 
road input 
veloc1ty 

Figure 2.3 - Semi-acllve quarter vehicle model 

The first four states m F1gure 2.3 are the same as in the general layout of F1gure 2.1, 

and the state equatwns m (2.1) apply. To derive state equations describmg the 

applicatwn of control, and model the mherent actuator trans1ents of the real semi­

acllve damper, additional states are reqmred Three extra states are defined to include 

such an actuator in the quarter vehicle model. x5 is the mstantaneous expansiOn 

veloc1ty of the damper umt. x6 and x7 are state vanables for a second-order transfer 

functiOn which represents the transient behaviour of the damper actuator valve. 

In the semi-active scheme, suspension force may still be described by equatiOn (2 3), 

as in the passive system, but now Fd IS the dampmg force of the contmuously variable 

damper, wh1ch 1s a non-linear function of veloc1ty x5 and the dimensionless control 

valve posltlon variable x6 

(2.13) 

x6 IS the actuator control vanable, defined to have an operatmg range (0-1 00), w1th 0 

implymg rmnimum (0%) dampmg, and 100 thus implymg max1mum (100%) dampmg 

from the actuator. The non-hnear maps of actuator force are denved from system 

Jdenllficallon on actual hardware (Best 1995). F1gures 2.4 and 2.5 show damper maps 

from front and rear actuators. For simulation, only the outer two hnes on these maps, 
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0% and 100%, are identified. Value between these boundaries are found by 

interpolation. 

~----.---~----r---.---~----r---.---~----r---~ 

2500 
- 0% 

- 25% 

-0.4 -0.3 -0.2 -0.1 0 0.1 0 .2 0.3 0.4 0.5 
Velocity (ms- 1) 

Figure 2.4 - Force velocity map of front actuator 

~ 
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2000 - 25% 
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1500 
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1000 
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~ 
Q) 500 ~ 
0 
u. 

0 

-2000~--~--~----~--~--~----~--~--~----~--~ 

- 0.5 -0.4 - 0.3 - 0.2 - 0.1 0 0.1 0.2 0.3 0.4 0 .5 
Velocity (ms- 1) 

Figure 2.5 - Force/velocity map of rear actuator 
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The actuator filter equations, descnbmg the transients in hardware, are then 

x6 =x1 

x1 =-2(m,x1+m;(u(t)-x6) 
(2.14) 

To denve the state equatiOn for x5 , let k, be the stiffness of the compliant bush' in 

senes with the damper, this represents both the rubber mounting of the damper and Its 

mtemal compliance. If d (t) is the dynarmc displacement of the bush, then equatmg 

forces at the damper and cons1denng basic kinematics 

k.d(t)= p(x5,x6) 

d(t)= x2 -x5 
(2 15) 

Differentiating the first of these with respect to time yields the fifth state equatiOn 

(2 16) 

which is clearly non-linear. 

2.2 Rigid Body Model 

F'.,2 
Figure 2.6 - SuspensiOn force and moments actmg upon the vehicle body labelhng 

and sign conventions 

A full-vehicle dynamic model, based on the test vehicle, IS used m simulation studies 

of a roll control learning task in Chapter 9 This model assumes a ngid vehicle body 

fitted with a semi-active suspension unit, of the form descnbed in SectiOn 2 1.3, at 

each corner 
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To develop the set of state equatiOns for the full veh1cle model, Newton's second law 1s 

applied to deduce the vehicle body dynamics as follows, With reference to F1gure 2.6 

for sign convention: 

Bounce accel.= ~ F,,, jmb 

Roll accel.= (p.(F,.2 + F, 3 )-q.(F,.1 + F, 4 ))ji, 
Pitch accel = (r.(F,.3 + F,_. )- s.(F, 1 + F,,,))/I P 

(2.17) 

where p,q,r and s are lateral and longitudinal distances from the wheels to the 

vehicle's centre of grav1ty. I, and I P are the roll and pitch moments of inertm of the 

veh1cle body, respectively. 

Smularly, the dynanucs of the unsprung mass at each corner are g1ven by 

Unsprung corner mass accel.= {F,,- F,Jjmw.• (2.18) 

These dynanuc equations produce 14 state equatwns, and a further 12 are added to 

include realistic trans1ents and compliance modelling for the senu-ac!Ive actuator 

umts. A comprehens1ve derivation and hstmg of the full veh1cle dynanuc and state 

equatwns are g1ven in Appendix A. 

The following parameter values have been used m Simulation of the full-veh1cle 

system 

k = 22500Nm·' s,front 

k,,,.., = 21000Nm·' 

kb = 1200Nm·' 

k, = 160000Nm·' 

mw,fro"' = 28kg 

m = 32kg 
Wrea<' 

mb = 1400kg 

I,= 380Nms2.rad·' 

JP = 2400Nms2.rad·' 

; = 07 

m, = 1257rad s·' 

2.3 Stochastic Road Inputs 

(2 19) 

The only mput to the vehicle model1s the vertical road veloc1ty considered to act at a 

pomt at the base of the tyre spring. All models in this thesis are simulated over 
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stochastlc processes representing the random road veloc1t1es mduced on a vehicle tyre 

as it traverses a road. Three types of smgle track 'road' have been employed w1th the 

quarter vehicle model, wh1te nmse, Robson road and measured road A dual track 

mput is synthesised for the full veh1cle model to include a realistic roll inducmg 

component across the tracks. 

2.3.1 White noise 

The use of wh1te nmse allows the applicatiOn of optimal control theory to synthes1se a 

linear state feedback control law - see Section 2.1.2. Th1s means that v( t) 1s supplied 

as a Gauss1an wh1te nmse process, and although this IS not entirely realistic, 1t has been 

w1dely used m the literature (e g. Karnopp, 1983.) In companson w1th real road 

spectra a wh1te noise mput spectra provides msufficient power at low frequencies. 

Where white noise 1s applied m simulation studies in this thesis, independent samples 

of zero-mean wh1te noise are taken. Using a zero-order hold penod of T = 001 

seconds, the s1gnal RMS IS set to a = 05 m/ s 

2.3.2 Robson road 

A more realistic road s1gnal can be derived from a frequency shaped wh1te nmse 

process A widely used model is that suggested by Robson (1979). The vert1cal 

displacement power spectral density, S, of the surface 1s g1ven by 

s(t) = kU (w-1) f -w (2 20) 

where f is the frequency m Hz, k IS a roughness coeffic1ent, and U IS the forward 

speed of the car in rnfs. Robson estimated the roughness coefficwnt of roads to 

typically he between 3x 10-8 for smooth motorway, and 3x 10-5 for a rough mmor 

road 

This road model1s used in practical stud1es to prov1de a reference mput for hydraulic 

actuators acting on each wheel of a test vehicle The pnme concern of a road 

description for such a ng IS that the peak deflections stay w1thin the workmg range of 

the actuators. For this reason, and assummg a 20 m/ s forward vehicle velocity, a 

roughness coefficient of k = 2.4 x 10-6 IS applied Also, to prevent large deflectwns 

from low frequency 'dnft', all frequenc1es below 0 2Hz are removed by filtenng in the 

frequency domam via fast Founer transforms (FFT). 
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2.3.3 Measured road 

A better approximation to real road spectra is achieved from taking mea urements of 

different types of actual road. A number of roads around Loughborough 

(Leice ter hire, UK) have been examined, with road height mea urements of both left 

and right wheel tracks taken at lOcm intervals. Differenti ation by FFT allows road 

velocity spectra to be produced for varying vehicle speeds. Al l simulation has 

assumed a forward vehicle velocity of 20m/s. 

Two sections of measured road are used principally throughout thi s thesis: Breakback 

Road and Copt Oak Road. Figure 2.7 shows how the power spectral densities for these 

two road are similar in shape, varying mai nly in amplitude. Breakback Road is an 

undulating road with pronounced low frequency features and, as a C class road, also 

ha a rough urface finish. Copt Oak Road pre ent a les evere re pon e acro the 

frequency pectrum; it is a B class road with a higher quality surface fini h and 

generally less prominent features compared to Breakback road. 

- Copt Oak Road 
- Breakback Road 

10 ... 

10-7 '--'-~......_--~~~~ ........... ._-~--~---'-----' 
10-1 10° 101 

Frequency (Hz) 

Figure 2.7 - Power spectra density of Breakback Road and Copt Oak Road 

2.3.4 Dual track input for full body model 

Input to the fu ll vehicle model is an artificial road created to mimic the roll/bounce 

power spectral density relationship of a measured road surface profi le. A 3000m 

continuous road is created as le ft and right tracks with vertical displacement of each 

track defined a a height component, plus or minu a roll component: 

ZL = z + 6 
z = z-8 R 

(2.2 1) 



where 

i = nJt) 

B=-~B+n2 (t) 

and n1 (t) and n2 (t} are Gauss1an white nmse processes. 
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(2.22) 

Figure 2.8 shows the roll/bounce PSD ratio relationship of a measured road profile. At 

low frequencies It IS seen that left and nght tracks have siiTillar profiles, as expected as 

these long waves are defined by the he of the land over which the road is passmg. For 

higher frequencies the left and nght tracks become increasmgly unrelated. This 

phenomenon is simply modelled m the artificial road by high pass filtenng the roll 

component in equatiOn 2.22 to remove low frequency displacement differences 

between the two tracks of the road. A value for ; of 12 6 results in a roll/bounce PSD 

ratio which closely matches that of the measured road, as shown m Figure 2 8 

An amplitude for n1 (t) and n2 (t) of 3 was used. The resultant power content of the 

artificial road IS sigmficantly higher than the comparable Breakback Road at higher 

frequencies - see Figure 2 9. This 'rougher' road model will tend to induce a larger 

wheel hop response on the vehicle. Applymg the artificial road, much more 

Importance IS then placed on any learmng algorithm bemg able to learn adequate 

control in this harsher environment. 
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Figure 2.8 - Ratio of roll to bounce content of artificial road and Breakback Road 
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Figure 2.9 - PSD velocity content comparison of artificial road with Breakback Road 
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Chapter 3 - Discrete Learning Automata 

This chapter takes the general mathematical framework of learning automata outlined 

in Section 1.2, and introduce fu rther details of their implementation. A preliminary 

study of the possible application of a clas ic discrete automaton to learn a vehicle 

suspension controller is described, and, in so doing, two learn ing schemes are 

compared. This study was originally presented at the IUTAM Symposium, 1994 

(Frost et al., 1994). 

3.1 Introduction 

A learning automaton may be termed 'discrete' when the action set of the automaton 

consi ts of a finite number of distinct actions, as is the case for the learning automata 

as first defined. This is we11 illu trated by con idering an early application of the 

technique in the optimisation field (Shapiro & Narendra 1969). A discrete learning 

automaton was uti lised to maximise a function of a single variable - Figure 3.1 . 

Although the function is continuous acros the considered range, the learning 

automaton has an action set of 10 distinct point at which the function is evaluated for 

the purpose of learning the action that return maximum reward, ! (a). 

7 
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10 

Figure 3.1 -Continuous function , di screte evaluation point 
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A natural extension of this approach maps the acuon set to discrete values of 

parameters in an environment Figure 3.2 shows an adapuve identificatiOn scheme, 

also from the study of Shap1ro & Narendra (1969). A discrete learnmg automaton was 

utilised to learn the optimal values of the parameters A and B. Each parameter was 

d1scretised to 5 values, including the optimal values. The actwn set is then defined as 

the set of (A, B) value pairs covering all combmatwns of discrete parameter values, 52 

= 25 m total for this case. Many subsequent studies employed similar 

parameter/actiOn set mappings to cover a parameter space of the environment under 

consideration. 

' z' 
z'-Oiz2 +02z-025 

w hila + I! Not se 
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Whtte 
_..., 

Notse EvaluatiOn 

+, 
z' 

+o-z'+Al+Bz-025 

I' 

A.B Dtscrete 
/ leammg ..., 

Automaton 

Figure 3.2 - Adaptive identification scheme 

The further extension to this methodology (Wu 1993) allowed an automaton to 'home 

in' to a smaller area of the action space once a parlicular action begms to dollllnate. 

Upon achieving a level of convergence to any one particular action from Its set, the 

proposed method allows the learnmg automata to re-start learnmg on an acuon set that 

covers a reduced area of the initial actiOn space, centred on the successful actiOn from 

the prevwus stage. 

A preliminary study by Gordon et al. (1993) mvestigated the feasibility of a learning 

automata technique With regard to vehicle suspensiOn control The suspensiOn system 

under consideration was a quarter vehicle model, as defined m SectiOn 2.1, with full 

bandwidth suspension force actuation and a white nmse road velocity input. A 

theoretical optimal control law IS readily available for such a system, from applymg 

LQG optimal control theory, giVIng the control force as a function of the system states 

- Section 2.1.2. This provided a solution from which the relative performance of the 

learnmg automaton could be gauged. Without s1gmficant degradation in performance, 

the control law may be Simplified to· 
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(3.1) 

A discrete learmng automata was apphed, by Gordon et al., to learn values for the 

three gains, {k2 ,k3,k4 }, of(3 1). SimulatiOn studies suggested that learnmg automata 

could indeed optnmse such a control law, successfully learning capable controllers, 

on-hne, With no explicit knowledge of the suspension system itself. 

Section 3 2 extends the description of learnmg automata of Section 1.2.1 to form an 

algonthm descnbing their operatiOn in general terms IndJvJdual parts of the general 

algorithm that describe a discrete Iearnmg automaton are then outlined m Section 3.3. 

In Sectwn 3 4 the P-model learning scheme, adopted by Gordon et al. m their 

feasJbd!ly study, 1s introduced, including spec1fic details pertaming to such a scheme. 

Section 3 4 then descnbes, in similar form, an S-model learning scheme. SimulatiOn 

studies of both P-model and S-model schemes m Section 3.5 leads to a number of 

suggestions of possible improvements that would enable application m a real-world 

environment, and these are summarised in Sectwn 3 6. 

3.2 General Algorithm 

U smg the notatiOn mtroduced in Sectwn 1.2.1, a general algonthm for a learning 

automaton may be descnbed by the followmg pseudocode 

Initialise action set a(n) 

Initialise probability vector p(n) 

n=l 

Repeat 

Select action a, (n) stochastically according to probability vector 

p(n) 

Trial action a, (n) in the environment 

Rece1ve reward/penalty response, fJ , from environment 

Apply reinforcement scheme to produce p(n + 1) 

n=n+l 

Until convergence criterion attamed 

Figure 3.3 - Generallearnmg automaton algorithm 

Th1s algonthm constitutes a single stage of learning, w1th the automaton repeatedly 

selecting, executing and reinforcmg actions until one action donunates and 

convergence to the 'best' action IS deemed to have occurred. 
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The development of the learning automata methodology in this thesis is based upon the 

general descnpt10n of the algonthm outlined in F1gure 3 3. For this reason the maJor 

aspects of the algonthm which distingmsh particular formulatiOns of learnmg automata 

have been highlighted in bold 

3.3 Discrete Learning Automata Algorithm 

With reference to F1gure 3.3, the major aspects of a discrete learning automaton 

algorithm are outlined here. In addition the extension to the methodology introduced 

by Wu (1993) IS descnbed. 

3.3.1 Initialising the action set 

A discrete learnmg automaton requires that the actwn space under consideratiOn be 

d1scret1sed to a fimte number of possible actwns. Suppose the action space 

corresponds to a discretJsatwn of a multi-dimensional parameter space If the 

environment has N parameters, each discretlsed to r equally spaced action values, 

the complete action set is formed from all possible combinations, s = rN, of those 

actwns, so the action set can be written as a={~ ,a,, .. ,a,}. 

3.3.2 Initialising the probability vector 

Each action IS associated w1th a probability of selection by the automaton. The 

probability vector 1s 

(3.2) 

No pnor knowledge of the performance is assumed and so each action 1s ass1gned an 

equal probability of selection. SubJect to the natural constramt 

' 2,p, = 1 
!=I 

the Jmtlal probability is thus 

I 
pi=-, 

s 

3.3.3 Action selection 

(3 3) 

1 = l,2, ... ,s (3.4) 

The probability vector may be thought of as a discrete probability distnbution across 

the action space, w1th a corresponding cumulative distribution functwn. For example, 
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consider the Imtiahsatwn for an automaton covenng the parameter range 0 to 10 with 

six actions. Each action is assigned a selectiOn probability of 1/6 forming a discrete 

d1stnbution as shown in Figure 3 4 The corresponding cumulative d1stnbut10n 

function (c d f.) then consists of a senes of discrete steps, shown m F1gure 3.5. 
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Figure 3.5 - Example of action selection on a discrete distnbutwn function 
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At each Iteration of the automaton a umformly distributed pseudo-random number 

between 0 and 1 IS taken, p E U(0,1). Usmg this value, an actiOn IS then selected 

based on the current actiOn probability vector. The cumulative distribution function 

formed from the probability vector IS used m the selectiOn process. Tracmg p across 

to the point of mtersectwn with the c.d.f , the action value at that point is taken as the 

chosen action For example, in Figure 3.5, p = 0 629 gives a(n) = 6. 

3.3.4 Convergence criterion 

Repeated remforcement of an actiOn through successful responses from trials in the 

environment will lead to the probability of selectiOn of that action becoming dommant 

In the Innit the Ieammg automaton should converge towards a single action choice 

with probability 1. It IS hkely, however, that in a noisy environment where a number 

of actions return similar responses, the automaton will p1ck out these actions but be 

unable to d1stingmsh between them sufficiently to converge to a smgle actiOn choice. 

An automaton IS thus deemed to have converged, in a practical sense, to an action 

chmce 1f 

max 
{p,(n)}> 17, i = 1,2, ... ,s 

I 
(3.5) 

where the convergence threshold 17 satisfies Ys < 17 < 1. This leads to a natural trade­

off m learning between exploration and explOitation. A large value for 17 will lead to 

the automaton exploring the actions extensively to gather enough expenence to 

converge to one action, with the possibility, as pomted out above, that no chmce is 

made Too small a value for 17 and the automaton qmckly 'exploits' an actiOn through 

fast convergence, which may then be erroneous from 'Jumpmg to conclusions'. 

3.3.5 Extension to search action space 

Use of a discrete action set naturally 1mphes that areas of the parameter space are not 

explored - those that lie between action points. To effectively cover a parameter space 

and enable a full search of the region may require many finely spaced discrete actions. 

However, increased action set size invanably leads to mcreased learning times smce 

more actions are avmlable for trial and initial probability levels per actiOn are also less. 

Wu (1993) suggested the following method to enable the use of a small action set 

automaton to effectively search a large parameter space. A stage of leammg as 

descnbed in Section 3.2 takes place. Once the convergence cnterion IS met the action 

set is redefined about the successful parameter vector with a scale factor A applied to 
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reduce the s1ze of the search reg10n and refine the ch01ce of parameters. The learmng 

automaton is then repeated, rem1tialismg the probability vector, to learn over the 

smaller action space 

The smgle stage of learnmg from the general algonthm 1s now enclosed m an outer 

loop to mclude the above modification 

n=l 

m=l 

Initialise action set a(n) 

Repeat 

Initialise probability vector p(n) 

Repeat 

Select and Trial action a, (n) 

Receive reward/penalty response, 

Apply reinforcement scheme 

n=n+l 

Until automaton convergence criterion attamed 

m=m+l 

Reinitialise action set about successful action 

applying scale factor A. to range of parameters 

Until action space convergence criterion attained 

Figure 3.6 - Discrete learnmg automata algorithm with convergence 

The learnmg automaton IS deemed to have reached completion when the act10n space 

convergence cntenon is achieved 

(3 6) 

where m IS the number of learning stages completed; th1s corresponds to a reductiOn 

m the search region to 1% of the 1mtial s1ze. 

3.4 Scheme 1: P-model Learning Automaton 

The study by Gordon et al. (1993) employed a P-model learnmg automaton to 

mvestigate the feasibility of applymg the method to learn a three parameter linear 

feedback controller applied to a Simulated full-active veh1cle suspension system -

equation (3 1). Here, w1th reference to the pseudocode of Section 3.2, the defimng 

sections of th1s automaton are descnbed as applied m the earlier study. 
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3.4.1 Reinforcement scheme 

A P-model reinforcement scheme works with a binary response, p E { 0,1}, from the 

environment, where f3 = 0 denotes a 'favourable' response, f3 = I an 'unfavourable' 

response. The particular P-model remforcement scheme used by Gordon et al was a 

non-hnear reward-penalty scheme ( N R-P) of the form· 

p,(n+l)= p,(n)+£P,(n)(1-p,(n)) } 
1f j1(n)=0 

p,(n+l)= p,(n)-tp,(n)(1- p,(n))j(s-!) 

p,(n+!)= p,(n)-tp,(n)(!-p,(n)) } 
if p(n) = 1 

p,(n+1)= p,(n)+£P,(n)(!- p,(n))j(s-1) 

(3.7) 

where 1 = 1,2, ... , s 1 * i, s is the number of actions compnsmg the actwn set and 6 IS 

a user-defined Ieammg rate parameter, 0 < 6 <I. It IS easily venfied that this scheme 

maintains the constramt of (3.3) at each iteratwn. 

3.4.2 Reward/penalty response from the environment 

In many cases where Ieammg automata are applied the environment alone IS not 

capable of g1vmg a cnucal performance response of the type required by the 

automaton. More readily a cost function 1s used to provide some measure of 

performance and then a performance evaluatiOn rouune is formulated to map the 

resulting cost, J , to the cntical response, f3 . 

This formulatlon utilises the followmg performance evaluatiOn routine. The 

environmental response J(n) is compared with a reference value of acceptable 

performance: 

l"r =(!+o)J (3.8) 

where J IS the average measured performance index based on the prevwus 

H favourable responses The cntical response, f3 , is then attained from 

J(n) :5. J rer j1=0 - favourable 

J(n) > lrer P=l - unfavourable 
(3.9) 

3.5 Scheme 2: S-model Learning Automaton 

Whereas the P-model Ieammg automaton acted on a binary environmental response, 

simply representing 'good' or 'bad', the S-model leammg automaton takes values 
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within a contmuous range as a response mput. This type of automaton can be regarded 

as more applicable for problems of a contmuous nature where It IS not appropnate to 

simplify an action response to merely successful or unsuccessful. Instead a 

measurement of the 'degree of success' is more often available, m the form of a cost 

function The continuous range of automaton inputs allows an actiOn to be rated m 

performance and gives more scope for evaluation of environmental responses than the 

binary ratmg used m Scheme I. 

3.5.1 Reinforcement scheme 

The reinforcement scheme presented here IS of the linear 'reward-inaction' form, 

demonstrated to exhibit good learning properties by V1swanathan & Narendra (1972). 

Such a scheme Will reward a 'good' action, but the probability vector is left unchanged 

in response to a 'bad' action. Application of constramt (3.3) acts to penalise all other 

actions m response to a successful actiOn. The cntical response from the environment 

IS now f3 e [ 0,1], With fJ = I bemg the most favourable response The particular 

scheme employed here to update the action probability distnbution, in response to 

action a, is: 

p,(k+l)= p,(k)+Bf3(k)(l- p,(k)) 

p
1
(k+l)= p/k)-Bf3(k)p/k) 

where 6 IS a learning rate parameter, 0 < 6 < I . 

3.5.2 Reward/penalty response from the environment 

(3.10) 

The environmental response from a cost function, J(n), IS compared against previOus 

values to gauge the level of success of the current action· 

]mm= mm{J(I),J(2), ... ,J(n)} 

Jmro = median{J(l),J(2), .. ,J(n)} 

/3( ) {0 
1 mro - J(n)} n=max, 
Jmed- Jrrun 

(3.11) 

(3.12) 

Hence fJ = 1 results from the latest action returning the lowest cost expenenced dunng 

the current leammg run, and fJ = 0 occurs If J(n) exceeds the median cost of the 

available data The median of the cost history IS used here m preference to the more 

obvious maximum statistic, as was used m a number of other studies, e.g. Viswanathan 

& Narendra (1973), Thathachar (1990), and Wu & Pugh (1993). The use of the 



39 

median value IS motivated by the robustness of the median as a measure of central 

tendency. It allows the automaton to Ignore any 'outlandish' values of J that would 

adversely skew the environmental response if the maxtmum statistic had been used. 

3.6 Comparison of Learning Schemes 

The descnption of the respecttve learning automata formulations m the precedmg 

sectwns include all but one of the highlighted parts from the pseudocode of Ftgure 3 3, 

namely 'trial action in the environment'. Here, the particular environment of a vehicle 

suspension system is considered and the 'tnal action' activity ts discussed. The P­

model and S-model schemes are compared in the context of this suspensiOn 

environment. 

3.6.1 Trial action in the environment 

The 'environment' under consideratiOn is the quarter-vehicle suspension system and 

Its mteraction with the road The road mput supplied IS Gausstan white nmse velocity 

m put to the base of the tyre. 

The 'actwn' is a combmation of parameter values, {k"k2 ,k3 ,k4 }, fanning a lmear 

feedback controller. 

whtch is then apphed to the environment for a penod of time d Inittal conditiOns at 

each Iteration are set to zero so that no transients from 'prevwus' actwns could mteract 

with the effects of the 'current' action 

An environment response, in the form of a cost function result J , is recorded for each 

selected action. This takes the form: 

(3.14) 

where the three terms cost tyre deformatwns, suspenswn deflectiOns and body 

accelerations respectively. Values for the cost are set at 

w1 = 64000, w2 = 750 (3.15) 

The goal of the above envuonment/actwn pair is therefore to learn optimal values of 

the four controller gams for the given cost functiOn. The environment has been 
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defined as for the formulation for LQG optimal control theory application seen m 

Sectwn 2 1 2 The 'solution' to th1s task IS therefore already known and the values 

wh1ch the automata would ultimately be expected to learn are as g1ven m equation 

(2 11) Performance of a learnt controller can also be gauged with companson between 

the optimal cost of (2.12) and the theoretical cost obtained for the learnt controller. 

The time period L1 has been selected at 16 seconds to enable the performance index to 

mclude low frequency effects of road surface unevenness. Th1s time period IS quite 

arb1trary, but 1ts choice 1s justified from considenng the variation of mean cost, J, 

w1th respect to L1, for a set suspensiOn controller. Here, the optimal controller g1ven 

in Section 2.1.2 is applied in simulation, with vanous lengths of independent wh1te 

noise samples as input Figure 3 7 shows how the coefficient of vanat10n (a simple 

measure of noise to signal ratio defined as the ratiO of standard deviatiOn to mean) of 

the SimulatiOn cost J, averaged over lOO s1mulations, vanes w1th simulation time. As 

would be expected for a random process, the smaller sample of the process offered by 

shorter Simulation leads to a high level of variation As the simulation time IS 

mcreased so the random process 1s more effectively averaged and the estimate of mean 

cost improves. Figure 3.7 suggests that a 16 second Simulation time offers a 

reasonable comprorruse between h1gh levels of cost variation and excessive learnmg 

times as the coefficient of variatiOn falls below 10%. 
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3.6.2 Details of the learning schemes 

At the start of the first learning stage the gams, k, , were discretised withm the ranges 

k1 E [- 20000,0] 

k2 E [0,15000] 

k3 E [ 0,2000] 

k4 E [-4000,0] 

(3 16) 

These ranges then surround the known LQG optimal values, although It should be 

noted that similar ranges could be chosen from applicatiOn of basic engmeenng 

knowledge of the system. In particular, the sign of the gams can be simply chosen 

from considenng whether positive or negative feedback of each state moves the system 

to a more stable situation, I.e. positive 'spnng stiffness' and 'damping' terms 

Each parameter was discretised to three equally spaced values spanning the given 

range. Therefore, with N = 4 and r = 3, 81 possible actions are available. A stage of 

learning was deemed complete from (3.5) with TJ = 05 for both schemes. The scale 

factor A = 0.4 was applied after each stage of learnmg to home m on a smaller regwn 

of the parameter space around the successful action from the previous stage. Fmal 

convergence, from (3.6), is then completed after SIX stages of learnmg. 

The followmg parameter values, specific to the respective schemes, were used, 

Scheme 1 - Automaton A: 6=0.3, <'i=0075, H=IO 

A smtable choice for (j depends on the disturbances bemg considered, larger values 

being required for less predictable environments A positive value for Ci is essential in 

this scheme, to avmd the Situation m which actwns are remforced only when the 

disturbance mput IS favourable simply by chance. The value of (j used was found to 

g1ve best learning results from companson with learning sets for Ci = 0 050, and 

Ci = 0 I 

Scheme 2 -Automaton B: 6 =0.1 

3.6.3 Performance analysis 

Ten mdependent examples of learnmg were Simulated for each scheme to gather a 

sample of automata results. It was seen, for both schemes, that the four-parameter 

controllers finally learnt from each simulatiOn were close to the optimal values. 
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Figure 3.8 compares the results for Scheme 1, referred to as Automaton A, With the 

LQG optimal values. This shows both parameter values (mean ± one standard 

deviation) and theoretical expected costs evaluated via the system's RiccatJ equation. 

Although parameters vary quite markedly about the optimal values, the learnmg 

automaton achieves costs that are very close to optimal, confirrmng the results of 

Gordon et al. (1993) Table 3 1 summarises the cost results for Scheme 1, where the 

mean cost IS seen to be 2.6990, only a 1 4 percent increase over the optimal value of 

2 6621. 

Maximum Mimmum Mean Std dev. 

Cost 2.7531 2.6793 2 6990 0.0266 

Increase (%) 34 0.6 1.4 

Table 3.1 - Automaton A cost performance 

Maximum Mm1mum Mean Std. dev. 

Cost 2.7024 26664 2.6837 0 0126 

Increase (%) 1.5 0.2 08 

Table 3.2 - Automaton B cost performance 

Figure 3.9 and Table 3.2 record results of the same form taken for Scheme 2, referred 

to as Automaton B. The overall mean cost for Scheme 2 is JUSt 0 8% above the 

optimal value and the cost vanatwn for the 10 tnals is half that of Scheme I. One 

would expect that reduced cost variatiOn IS a result of reduced vanation in the 

parameter values learnt. This IS mdeed the case for k2 , k3 , and k4 , but k, still shows a 

large vanat10n about the mean. However, th1s IS of little concern as a large variability 

of k1 was anticipated, th1s bemg a relatively insensitive parameter for suspensiOn 

control (Sharp & Crolla, 1987). 

Though not apparent from Figure 3 9, the results show a correlation between the k2 

and k4 parameters, with high values of k2 bemg associated with low values of k4 

This anomaly is investigated further in Chapter 4. 
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3.7 Discussion 

As also noted by Wu (1993), Scheme 2 performs better than Scheme I Not only is 

improved control achieved, but also the lime to final convergence is cons1derably 

reduced under Scheme 2. Average 'real-lime' learning for Scheme 1 was 11.5 hours 

compared to 8.3 hours for Scheme 2. 

Scheme 1 also suffers from the number of free parameters in its defimtion - two more 

than for Scheme 2. In particular, parameter (j m equatiOn (3.10) has to be set very 

carefully for successful learning under Scheme 1, whereas Scheme 2 has no such 

sensitive parameters. 

As the action set 1s defined 1! is poss1ble for either scheme to enter unstable regions of 

the control space. Each parameter bemg learnt IS given an imt1al range of spec1fic 

s1gn, with one extremum on a stab1lity boundary at zero. It is then possible for the first 

stage of learning to 'choose' an action on the edge of the stable regwn, that action 

having at least one zero parameter value. The next stage of learning w1ll centre 1ts 

actwns around this actiOn, and hence some actwns lie beyond the stability boundary 

Such a scenano could be avmded through reducing the learnmg rate parameter, 6, of 

e1ther scheme so the automata spend a longer period assessmg actwns and thus have 

more chance of selecting an action away from stability boundary worries for the next 

learnmg stage. For general application, however, turung of parameters alone to try and 

avmd stability concerns IS not an optwn; the best action in a set could be one close to a 

stability bound. Another techmque IS required to handle such a situatiOn satisfactonly, 

preferably w1thout requmng any iterative parameter tuning 

There is also scope for a poss1ble reduction m the free parameters used to define the 

spec1fic learning task considered here. A successful LQG formulation of optimal nde 

control reqmres additiOnal terms in the performance index to constram tyre deflection 

and suspensiOn workspace usage. The relative weights applied to these terms dec1de 

the degree to wh1ch each aspect is controlled, and are generally attamed through an 

Iterative tnal and error process, with the des1gner tunmg the values subject to resultant 

system charactenstlcs. Without recourse to the LQG techmque, vanation of the 

we1ghts based on the results of iteratwns of learning runs would be a lengthy and 

unwieldy process. It would be more natural 1f the workspace usage terms could be 

removed from the cost function, incorporatmg a demed workspace usage as part of a 

spec1ficat1on of an acceptable controller. The cost function could then concentrate the 

learnmg task to improve ride performance as initially des1red. 
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Chapter 4 - Development for On-line Implementation 

The previous chapter has shown that the learnmg automata methodology is capable of 

learnmg good controllers from optimising for a given cost functiOn As a consequence 

of these preliminary studies, two maJOr revisiOns to the learnmg automata 

methodology are mtroduced in this chapter The first revision deals with the 

possibility of unstable actiOns being selected during learnmg. A second revlSlon then 

allows the removal of 'constraint' terms from the origmal cost function so learning can 

concentrate on the pnmary optiffilsation for nde performance. These revlSlons, first 

presented m a paper by Frost et a! (1996), take the learnmg automaton methodology 

from bemg pnmanly a simulatiOn tool, to bemg suitable for applicatiOn on a hardware 

task. 

4.1 A Moderator 

In the previous chapter It was suggested that if the learnmg automaton selects an action 

close to stability bounds as the best' actiOn at the end of one learnmg stage, then the 

quantisation of a new actiOn set for the next stage may result m unstable actions being 

available to the automaton. This Situation has been avOided thus far through careful 

selection of the learning parameters A moderated learning scheme ts now introduced 

which addresses thts problem 

For a general phystcal system, a basic engineering knowledge of the system affords 

some tdea of the normal operatiOnal hffilts expected when the system is under stable 

control. In the case of a suspensiOn system, for mstance, the destgner will know the 

ltmits of acceptable suspensiOn deflection. If an apphed control action results in the 

acceptable range being exceeded then the controller IS clearly fatling to meet its 

specification. In particular, if an unstable action were applied then tt ts likely that 

extreme limits Will be exceeded very rapidly. 

Cons1denng the four states of the quarter-vehicle model used previously, an 

operational envelope can be Identified as 

tyre deflection· 

suspensiOn deflectiOn: 

wheel hub velocity· 

body velocity: 

• I' 
\ ' 
\ I 

lx,l<25mm 
lx,l < IOOmm 
lx,l < 25rnfs 
lx.l < 125rnfs 

--

QcR4 (4.1) 
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These values are based on physical measurements from a typical car and define wide, 

yet reasonable, hrmts on the state variables. Any excursiOn beyond these lirmts can be 

considered as an mstant failure of the controller, especially where an unstable 

controller is being applied, and this failure needs to be signalled to the learnmg 

automaton. This can be achieved by returnmg fJ = 0 to the automaton directly 

Effectively a further cost has been added to the environmental response functiOn, J 

1'= J+L (4.2) 

where L could be any additional costing functiOn. Here however, any action that 

causes (4.1) to be violated is considered to be an 'unstable' actiOn and should 

automatically 'fail', hence 

L={~ (4 3) 

A limit viOlatiOn may occur at any time withm the action trial penod and the 

suspensiOn is deemed to be m a potentially unstable state. In the practical case when 

this occurs, the system must be returned to a stable state quickly. To achieve this a 

moderating control action is needed. For the suspensiOn control problem, a suitable 

control actiOn IS easily supplied by usmg a conventional passive suspensiOn Jaw as 

descnbed m Section 2.1.1. The particular stabilising control employed here is: 

u0(t)=[ 0 k, b, -b,lx (4 4) 

with spnng stiffness, k, = 20000N/m and dampmg rate, b, = 2000N/ms. 

The moderator is thus defined as the overseeing control that, upon observing a possible 

unstable SituatiOn during Jearnmg, will signal a 'fail' of the offendmg actiOn to the 

automaton and apply a moderating control actiOn to re-stabilise the system. It can be 

thought of as a 'panic button' hit by an overseemg supervisor to recover from very 

poor chmce of actions, especmlly during the early stages of learning when unstable 

actions are most hkely. Physically the moderator could be activated from transducer 

measurements of the state of the system. In the real world, activation could also result 

from an actual pamc button supplied to a test engineer! 
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Figure 4.1 - Effect of the moderating control 

An example of the effect of the moderator is shown in Figure 4 I. The upper plot 

shows the first five seconds of an unmoderated learning mterval. The wheel 

displacement quickly becomes highly oscillatory. Contmued testing of this controller 

is of little use, as It is obviously highly sub-optimal. In practical terms, contmued 

testing of the controller would also lead to hardware failure as physical lirruts of the 

suspensiOn are encountered. The lower plot m Figure 4.1 shows the same controller, 

but with the moderator takmg over at around 2.4 seconds, where the pre-defined hmit 

of tyre deflection is reached. The vehicle is returned to a more stable conditiOn before 

the commencement of the next testing interval, and so there IS httle effect, if any, on 

subsequent learnmg. The effect of the moderator on the learning merely allows the 

automaton to ignore such unstable actions, and thus these actions are indirectly 

avOided at later stages of learnmg as they are never remforced m the learning 

automaton. 

Ten mdependent examples of learning are Simulated to ensure the additiOn of a 

moderator does not disturb the learning process. This set of example~. referred to as 

Automaton C, include the use of the moderating control as defined m equation ( 4.1) 

and a companson is made with Automaton B from Chapter 3 The learning automaton 

and learning task are kept the same as for Automaton B with two minor changes to test 

the moderator notiOn. 
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Pnmarily the initial gam ranges are shifted to mclude unstable control actwns, c.f. 

equatiOn (3.18): 

k1 E [ -18000,2000] 

k2 E [-1500,13500] 

k3 E [- 200,1800] 

k4 E [-3600,400] 

(4.5) 

However, the learning environment IS also made more challengmg in a second respect. 

For Automaton B, each 16 second SimulatiOn was mdependent, with mitial conditiOns 

set to zero on each Iteration Automaton C mtroduces contmuous simulatiOn across 

iteration bounds, whilst still usmg a 16 second mterval to test each action. Each action 

then 'inhents' a certain amount of dynarruc response from the previous actiOn via the 

imtial conditions, which tends to mcrease the environmental nmse. 

Companng the results of Automata B and C m Figures 3 6 and 4.2, It IS seen that they 

perform very similarly; the mean cost for C IS 2.6827, an mcrease of 0.77% over }opt' 

Although there appear to be minor systematic changes in the parameter range ob tamed, 

the inclusion of unstable actions in the mitial set has not led to any degradation in the 

learnt control system performance. Movmg to the more realistic and challenging 

conditions offered by continuous simulatiOn from one 16 second iteration to the next, 

has also had little, If any, effect on the learnmg process. 
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4.2 Parameter Correlation 

Closer inspectiOn of the gains from Automaton C controllers agam reveals an apparent 

correlatiOn between the k
2 

and k
4 

parameters, as noticed previously m the results of 

Automaton B. Figure 4.3 clearly shows this correlation with high values of k2 bemg 

associated with high negative values of k4 • 

Figure 4 4 shows a contour plot of expected costs against k
2 

and k
4

, holding k1 and k3 

constant at their LQG optimal values. The plot mcludes 5 contour lines at each of I%, 

2%, 3%, 4% and 5% above the minimum optimal pomt that IS pin-pomted with a 

marker. Here it is seen that, with white nmse m put the k2 , k4 cost surface shows a 

sizeable 'flat valley' around the optimal point. Both Automata B and C generally 

manage to locate a controller within this valley, without being sensitive enough to 

locate a cost minimum especially close to the theoretical optimum 

2 

1 8 

1 6 

1 4 
2 

1 2 

08 * 

-2000 

"' 
-1500 

Figure 4.4 - Contour plot of cost vs ( k2 , k4 ) for white noise input 

A high k2 value m the controller IS analogous to a stiff spnng being applied in the 

suspension. A large negative k4 value applies strong skyhook dampmg These terms 

evidently can act together for a wide range of values to return similar costs, although 

controllers from around a cost contour may produce significantly different system 

charactenshcs. For example, the sprung and unsprung mass PSD responses for two 

controllers from opposmg ends of a 2.67 cost contour !me are shown m Figures 4 5 

and 4.6 respectively. The controller of Figure 4.5 is very 'stiff and so exhibits no body 



51 

bounce resonance. F1gure 4.6 Illustrates, conversely, a 'soft' controller that allows a 

clear body resonance and a larger response around the wheel hop resonance. 

However, it also filters out higher frequency response, seen m the lower plot of Figure 

4.6 as the body response drops off sharply beyond the resonant frequency. As both 

controllers result in the same cost, it is this avrulable balance between resonant and 

h1gh frequency response that accounts for the parameter correlation, with white noise 

input. 

If real roads were 'white', the choice of controller one could employ would therefore be 

just one of taste m terms of the favoured body response. As mentwned earher 

however, white nmse IS only a simple approximation to real road spectra, not 

possessing as much power at low frequencies. The suspension system has an mherent 

low frequency resonance of body bounce on which any nde opturusation should have 

most effect. By usmg leammg automata for optinusation of suspensiOn control, there 

is no longer a restnction lunitmg the dnvmg input to a white nmse process, as was the 

case to enable application of the LQG optimal control technique. Instead, there IS the 

opportunity to apply a more realistic road spectra that could sigmficantly alter the 

parameter relationships. Figure 4 7 confirms this, showmg a cost contour plot, 

produced sunilarly to Figure 4 4, but usmg a measured Breakback Road spectra input 

m the place of white noise. It is seen that a parameter correlatiOn IS still evident, but to 

a much smaller degree. A cost nummum IS now more clearly evident. 
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Figure 4.5 - PSD wheel velocity (upper) and body velocity (lower) re ponses with 

fullactive controller: k2 = 18342, k4 = -4521 
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fullacti ve controller: k2 = 4045, k4 = - 1368 
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Figure 4.7 - Contour plot of cost vs ( k2 , k4 ) for Breakback road input 

4.3 Learning on 'Real' Roads 
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A set of ten independent learnmg examples is taken on Breakback Road, referred to as 

Automaton D. The parameter results are summansed in Figure 4.8 A definite change 

in characteristic of the learnt parameters can be seen in comparison With the earlier 

results from white nmse learning. k1 and k3 are snrular to before, with k1 showing wide 

vanation as an insensitive gam for control purposes whilst Js has least vanat10n Now, 

however, the prev10us relatiOnship between kz and k4 has been altered and Automaton 

D has learnt values for these parameters with reduced variation, as expected from the 

observatiOn made on Figure 4.7. 
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Figure 4.8 · Automaton D results - road spectra learmng 

To assess system performance for road spectra learnt controllers, it is no longer a 

s1mple matter to provide a theoretically optimal cost, cost evaluations over 

asymptotically large times are also very expensive to obtam. Instead the suspensiOn 

systems from Automaton D are evaluated v1a the1r dynarmc costs obtamed from a 

single complete run along an independent section of road - Copt Oak Road from 

Section 2 2.2 A silrular set of simulations over Copt Oak Road was also taken for 

Automaton C and comparison of the results IS shown m Figure 4 9. Controllers 

obtamed under Automaton D learnmg are seen to perform significantly better than 

those of Automaton C. Th1s would seem quite natural; Automaton D, havmg 

experienced real road spectra during its learnmg phase, performs well on a snnilar 

input spectrum. Conversely, Automaton C, tramed on a qmte different mput spectrum, 

namely white nmse, then struggles to perform on the unfamiliar road spectrum 
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Analysis of the relative proportions of terms makmg up the dynamic cost reveals 

another Side to this story. Automaton D has achieved the Improved cost primanly 

through reduced suspensiOn workspace usage - see Table 4.1 below. Automaton C 

actually gives better ride performance than Automaton D, as measured by r m s body 

acceleratwns. 

RMS Response SystemS! System S2 AutomatonC AutomatonD 

x, (mm) 1.7 1.9 1.9 1.9 

x2 (mm) 6.0 18.9 21.1 13.4 

x4 (m/s2) 0.78 0.52 052 056 

SI: Nommal passive: "' = 0, k, = 20000, k3 = 2000, k4 = -2000. 

S2: LQG optimal full-active: k1 = -10406, k, = 8079, Js = 1029, k4 = -2258. 

Table 4.1 - Controller evaluation on Copt Oak Road - RMS responses. 

4.4 Reduced Cost Functions 

A beneficial Side-effect of the moderator is that lmuts of workspace usage are now 

restricted by somethmg other than the cost function during 1earnmg. Costmg 
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suspenswn and tyre deflections to md1rectly constram workspace usage IS no longer 

required If deflectiOns under the influence of any particular action become excess1ve 

then that actwn IS 'fa1led' by the moderator and 1t is unhkely that any such action w1ll 

achieve success w1th the automaton. Moderated learning thus allows a s1mphfication 

in the cost function origmally acquired through formulatwn of the optimal control 

problem. The cost function terms used for constraining workspace can be simply 

Olllltted, and the supervision and lilllltatwn of the system deflectiOns is safely left to 

the moderator. Workspace can be utilised freely unless the unacceptable lillllts are 

exceeded The performance index is now s1mply 

1 r 

J(k)= ~ I(.x;) 
r-A 

(4 6) 

Note that the LQG methodology cannot be applied w1th such a cost function smce the 

constraints cannot be 1mposed separately and formal optillllsatwn would yield the null 

controller 

u(t) = [0 0 0 0] X (4 7) 

Zero force to the sprung mass w1ll mdeed produce zero body acceleratlons, but this 

results in absurd unconstrained motions m the suspension and tyre. It is not a 

phys1cally reahsable or meaningful controller. 

Once agam, ten independent examples of Ieammg were undertaken, w1th the 

performance index ( 4.6) apphed, and usmg Breakback Road as input, referred to as 

Automaton E. F1gure 4.10 summanses the parameter results, where a d1fferent 

characteristic is observed; k, is significantly removed from the LQG value 

Dyn=c performance results are shown m Table 4.2 alongs1de the results from 

Automata C and D for companson. 
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Figure 4.10- Automaton E results- reduced cost functwn 

RMS Response Automaton C Automaton D Automaton E 

x1 (mm) 1.9 1.9 2.8 

x2 (mm) 21.1 13.4 29 1 

x4 (mfs2) 0.52 0.56 0.45 

Table 4.2 Controller evaluatiOn on Copt Oak Road- RMS responses. 
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The move to a reduced cost function IS clearly beneficial. Body acceleration m 

simulation With Automaton E controllers IS markedly reduced Both tyre deflectiOn 

and suspension deflectiOn usage has mcreased, a s1gmficant part of which may be 

explamed by the reduced k3 values correspondmg to decreased damping between 

sprung and unsprung mass. The moderator has freed learnmg from the concern of 

workspace usage and hence a different form of result has been discovered. Meanwhile 

the workspace usage is supervised by the moderator to keep this usage well within the 

extreme lnmts It imposes 
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4.5 Discussion 

The learnmg automaton methodology as onginally applied to vehicle suspension 

control proved Its viability as an optimisatiOn technique m such a stochastic 

environment, but was flawed If the technique was to be considered beyond Simulation 

studies for on-line application. The possibility of directly applymg unstable actiOns to 

the environment without constraint was of particular note Imtial formulatiOn of the 

learning task around a cost functiOn derived from LQG theory also meant that iterative 

adjustment of this function would still be reqmred to tune the system to attam a 

specified characteristic. 

AdditiOn of a moderator has overcome both of these drawbacks and really moves the 

methodology towards being a useful practical tool. The moderator allows the 

automaton to concentrate on its learnmg task m the safe knowledge that an overseer IS 

dealing with any bad situatiOns before they get out of hand 'Concentrating on the 

learnmg task' for the task considered here means that workspace usage terms from the 

cost function can be removed and left to the moderator to keep m check. The 

simulation studies clearly show the learning automaton is then able to acqmre 

controllers which perform admirably m comparison with passive and 'optimal' LQG 

controllers. Body acceleration and hence nde performance is reduced significantly 

whilst suspensiOn and tyre deflections are less constrained but kept at reasonable levels 

by the moderator 

Some m1tial engineenng knowledge of the system has been applied to set the state 

lirruts for the moderator. These lirruts are easily found from physical limits imposed 

by hardware geometry and by measurement of peak values dunng normal operatmg 

conditions w1th a known stable passive controller. Acquisition of a smtable moderator 

for applicatiOn of the technique to other systems would be possible m a s1rmlar 

manner. In this way, a certam amount of human knowledge and mtultlon can be 

directly bmlt into the learnmg task and thus time spent tuning the terms m a cost 

function to produce controllers that return the required characteristics can be reduced. 
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Chapter 5 - Initial Vehicle Experiment 

The development of the learning automaton methodology in the previous chapter 

paves the way for the fust on-line application to a suspension ystem in hardware. The 

initial experiments described here made use of a vehicle fitted with emi-active 

suspension mounted on a four-post hydraulic shake rig. With a hydraulic post at each 

wheel station to provide vertical excitation to the suspension, experiments were run to 

test discrete learning automata on the physical system. This chapter documents these 

tests. 

I 

r 

5.1 Vehicle and Rig Hardware 

The test vehicle is a Ford Granada. It is essentially standard except that it i fitted with 

prototype continuously variable dampers, and instrumented with sensors at each 

wheel-station to provide a semi-active suspension system. The controllable damper 

provide variable damping rate via actuation of an internal solenoid valve. This valve 

effectively varies the size of an orifice through which oi l passe during 

extension/compress ion of the damper, thus varying the damping rate provided by the 

unit. 

A tandard method of controller implementation for such a semi-active system i to 

apply a 'clipped ' active control law (Tseng & Hedrik, 1994.) The emi-active 

suspension is only capable of supplying a control force to oppose the relative velocity 

acro s the actuator, and then only within the actuator's operating envelope imposed 

through hardware effects. 'Clipping' the active control law refers to attempting to 
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apply the active control request w1thin the constraints of the semi-active system. To 

apply the active control law the spnng force is first subtracted to give a des1red damper 

force, Fd If F, hes w1thm the damping force envelope, then the reqmred damping 

rate lies between the softest and hardest settings, and IS deduced from hnear 

interpolation. Where F, lies outs1de the damper velocity-force envelope the control1s 

'clipped' to 0% or 100% damping rate, as appropriate, as the nearest achievable value. 

A PC fitted w1th a TMS320C30 digital s1gnal processing (DSP) board enables control 

of the damper units. The PC and DSP access a shared dynamic memory area vm 

which the PC interacts w1th the controllmg program, runmng on the DSP, for on-lme 

variatiOn of control parameters and data acquisition The control action for each 

damper IS applied by the DSP process via a damper dnve module Th1s module 

converts control voltage s1gnals from the DSP board to pulse-width modulated (PWM) 

current s1gnals supplymg the solenmd valve in each damper. Th1s signal modulates 

the damping rate, whilst, additwnally, the high frequency osc1llation of the PWM dnve 

s1gnal acts to v1brate the solenmd sufficiently to prevent stlckmg of the valve. 

Figure 5.1 - Front corner of vehicle: sensor location 
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The sensor set at each corner of the car comprises two piezo-resistive type 

accelerometers. These accelerometers are rigidly mounted in the vertical plane at the 

wheel hub and top of each damper pmchbolt respectively - see Figure 5.1 The study 

by Best (1995) documents the mstrumentatwn of this veh1cle more thoroughly. 

Details of system Identification earned out on the vehicle to ascertain veh1cle 

parameters and characteristics of the vanable dampers are also given there. 

Furthermore, development of Kalman filters to provide on-line state estimation IS 

described. 

The vehicle is mounted on a four-post hydraulic shake rig to excite the suspension 

systems. Freedom of movement IS maintained by liberally greasing the tyre contact 

patch. This rrunimises lateral tyre forces that may restnct freedom of vertical wheel 

movement mtroduced from the geometry of the suspension throughout 1ts stroke A 

rrunimal constramt arrangement is applied to prevent the vehicle from falling off the 

rig. 

The dnve signals for the hydraulic rig are shaped as a Robson road as descnbed m 

Sectwn 2 3.2. Storage constramts of the ng's computer control system limited the 

length of the dnve signals that could be stored to 200 seconds at 204 8Hz. Prior to ng 

operatiOn, dnve files are prepared descnbmg signals with the above charactens!lcs 

Each dnve signal Is shaped With a ramp functwn at each end, to steadily bring the rig 

up from, and back down to, zero displacement after each dnve segment. In this way a 

dnve signal can be used repeatedly to g1ve a contmuous 'test track' for leammg. Each 

rig actuator IS dnven by an mdependent drive signal to maximise mdependence of 

leammg at each corner. 

5.2 Learning System 

A smgle discrete Ieammg automata, as developed m the preceding chapters, is applied 

at each corner of the vehicle to learn the parameters of the three term vanant of the 

familiar linear feedback control law 

(5.1) 

where u(t) is the required control force. k1 is set to zero as 1t has been shown from 

theory to have little effect on control performance, for a full-active system (Sharp & 

Crolla, 1987). Also feedback of tyre deflectiOn IS a high frequency effect in rela!lon to 

the bandwidth of the actuators, so little IS lost m discarding th1s term. 
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Each automaton acts independently of the others to learn its own control gains, so 

maxnnising the available ng time with four learnmg automata runmng concurrently. 

A level of interaction will occur between wheel-stations via the body dynamics, but 

th1s mteractwn IS small enough for each corner to be considered as independent of the 

others. 

The m1tial range of the learnt parameters is as for the earlier full-active SimulatiOn 

studies 

k2 e[0,15000] 

k3 E [0,2000] 

k4 E [-4000,0] 

(5.2) 

with each gain quantised to 3 values, givmg 27 actions per corner learnmg automaton. 

The learnmg automaton parameters are also as before, 6 = 0.1, TJ = 05, ll = 0 4 . 

A moderator IS applied, w1th limit values set as before (see equatiOn 4 1), although 1t IS 

unlikely that it will come into effect A serm-active suspension is stable by Its very 

nature, with any control setting of the actuator still resulting in diss1pative vibratiOn 

reduction, therefore the moderator, onginally developed to catch potentially unstable 

situatwns, would only be activated at the most vwlent suspensiOn excitation with the 

softest damper settmgs. Prudent choice of the driving ng input, primarily to protect 

the rig itself from excessive actuation, tends to remove the possibility of moderator 

involvement in the learning process. 

The system architecture for a smgle corner of the vehicle is shown m Figure 5.2. Two 

tnmng loops are present: the control loop operating at 500Hz and the learning loop 

operatmg on the 16 second learnmg Iteration over which any action is trialled. 
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Figure 5.2 - System architecture 

5.3 Controller Performance 

Three tnals were run for approximately 1000 Iterations each, representing less than 

five hours of ng time per trial. A different randonused Robson road was generated for 

each tnal. All the automata achieved two stages of convergence and would probably 

have converged further had more ng time been allocated. 

Figure 5.3 shows a typical reductiOn m the cost that IS achieved dunng learning, the 

occasiOnal nse comc1dmg with the re-quantising of the learning automaton The 

penodiC nature of the cost plot is explamed by the wrapping of the rig m put every 200 

seconds 
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Figure 5.3 - Typical mean cost reductwn over time 

Corner A CornerB CornerC CornerD 

Firm -49 2 -39.8 -466 -32.9 

Soft 2.1 -5.2 -10.5 -0.4 

Automaton 1 7.8 60 2.5 86 

Automaton 2 7.6 62 4.8 82 

Automaton 3 6.6 4.7 4.9 6.5 

Table 5.1 -Percentage improvement m RMS body acceleration over nominal pass1ve 

damper setting (- sign for degraded performance) 

To ascertam the relative performance of each learnt controller, the body acceleration 

was measured during a complete pass of the veh1cle over an independent sectwn of 

road, with the same controller gains applied at all four corners. Three tests for 

companson were also carried out with the suspensiOn control set to passive damper 

settmgs: norrunal, equ1valent to the vehicle being fitted w1th standard production 

dampers, firm, w1th the maximum damping rate set; and soft, w1th the mimmum 

dampmg rate set. Table 5.1 gives the percentage improvements in r.m s. body 

acceleratiOn compared to the norrunal paSSive settmg. A typical power spectral dens1ty 
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(PSD) of body acceleration for a learnt controller is compared w1th that of the nommal 

passive settmg in F1gure 5.4 where it is apparent that the learning automaton has 

identified a controller which significantly reduces the body bounce response at around 

lHz. 

103 .---~---------,--------------~-------------. ,, 
, 1 - Passrve Settmg 

102 

1 o-' c_ ____________ _,_ ______________ J-._ ____________ ----' 

0 5 10 15 
Frequency 

Figure 5.4 - A comparison of body acceleration PSDs 

5.4 Discussion 

This practical study has confirmed the pronuse of the previOus SimulatiOn studies. 

From Table 5 I it 1s seen that the learnt controllers consistently provide reduced r m s 

response compared w1th the nominal pass1ve controller. Also an improved control was 

attained in comparison with setting the dampmg rate to soft. If the rig input had been 

of msuffic1ent power to exc1te the body modes of the veh1cle then the best level of 

control would result from Simply settmg the dampmg rate to soft at all times. 

The discrete learning automaton has been shown to be capable of learning despite the 

high level of noise inherent m the hardware implementatiOn. Even w1th only two 

stages of learning complete, the automata have identified regwns of the actiOn space 

that produce controllers able to Significantly reduce the body bounce response m 

comparison with the pass1ve control. 
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Chapter 6 - Development of the CARLA 

Studies in the previous chapters have all made use of traditional learning automata 

with actiOn sets consisting of a fimte number of discrete actiOns These studies have 

shown that the learning automata methodology can be successfully applied as an 

optimisation technique m the presence of high levels of uncertamty and nmse. Its 

success has been demonstrated on-lme m learning nde optimismg controllers for a 

semi-active suspensiOn system on a road-gomg vehicle. However, a number of 

limitatiOns of the discrete learning automaton have been noted. In particular the 

discrete actiOn set limits the thoroughness of search over an actiOn space. Using the 

discrete learnmg automaton as an optimisatwn tool, It is qmte possible that optima 

may be miSsed as they he between actiOn points. Also, by mcreasmg the number of 

actlons to more densely cover the parameter space, or by considenng higher dimensiOn 

learning tasks, the action set size qmckly becomes large enough to sigmficantly slow 

the learnmg process, possibly to the point of learning becoming inconclusive. 

Interconnected or hierarchical automata may be used to ease this problem, but these 

still suffer from the mherent limitauons of the discrete nature of the methodology 

The techmque of muluple stage learning with action space reductiOn at each stage (Wu 

1993), implemented m the studies of prevwus chapters, has enabled mcreased 

thoroughness of parameter space search, but has Itself mtroduced other limitations. At 

completiOn of each stage of learning a new acuon set is formed around the 'successful' 

actiOn of the last stage, covering a reduced area of the parameter space. In this manner 

a more thorough search of a region IS made, however this has also forced a 

convergence. This formulation of learning automata can be shown to suffer for this; 

should the automaton hastily converge on an action away from the global opumum, 

possibly towards a local optimum, then it is unlikely, if not unable, to correct Its early 

error and find the global optimum Enforcmg convergence also reduces the 

effectiveness of application in non-stauonary environments. Were the environment to 

vary between stages of learnmg then the automaton IS again unlikely to adapt to the 

change and locate a shifted optimum. 

Santharam et al. (1994) proposed an alternatlve learning automaton formulation, which 

went some way to overcoming a number of the mherent limitatiOns of discrete learning 

automata outlmed above. The automaton they proposed employs a contmuous actiOn 

probability distribuuon m place of the discrete action probability vector of discrete 

automata The continuous distribution maps to a continuous region of the actiOn 

space Random actiOn selection based on such a distribution then gives, in discrete 
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automaton terms, an actwn set with an mfimte number of members, immediately 

mfemng a complete search capability. The particular formulation used by Santharam 

et a! described the whole probability distnbution function via just two descnptive 

vanables, the mean and variance of a Gaussian distributiOn. Although this learning 

automata was shown as capable of locating rrumma m a stochastic optimisation 

application It was prone to locating local minima. 

This chapter introduces the Continuous Action Remforcement Learnmg Automaton 

(CARLA), a new formulatiOn of a contmuous action probability learning automata 

with a generalised representatiOn of the probability distnbution designed without prior 

knowledge of the work of Santharam et al.. The benefits of this algonthm over 

discrete automata enable 

• a complete search of a parameter space for the global optimum, within a pre­

defined range 

• an actwn set size which increases proportiOnately with parameter space 

dimenswn 

• full adaptability m non-statiOnary environments. 

This chapter explains the concept of CARLA more thoroughly and descnbes the 

Implementation methodology adopted to maintain efficient coding and subsequent 

executiOn of the algonthm. Chapters 7 and 8 will subsequently demonstrate the 

capabilities of this new automaton formulation, including compari~on with the CALA 

devised by Santharam et al. 

6.1 The CARLA Concept 

The key variation between traditional discrete learning automata and CARLA lies m 

the representatiOn of the actwn selection probability distribution, replacing the discrete 

probability vector descnbmg the state of the tradlt!onal automaton with a contmuous 

probability d1stnbutwn. The motivatwn for this can be mformally described with 

reference to Figure 6.1. Recalling the general algonthm of a learnmg automaton -

Figure 3 3 - the automaton output, an action a , IS selected based on a probability 

distnbution. In the discrete case the automaton has a finite number of actions from 

which to choose and so the probability d1stnbutwn is discretised over those actions 

(Section 3.3). Through reinforcement the 'best' action IS chosen as its associated 

probability of selection tends to one. Efficient learning IS expenenced when there IS a 

small number of actions available to the automaton. For example in Figure 6.1 (a) six 

actwns cover a parameter range of 0 to 10. However, a small actwn set does not 

7 
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provide a thorough search across the range; optima may easily he at values between 

those selected as actwn values. By increasmg the number of actions to cover the range 

more thoroughly, as in Figure 6 l(b), it is found that a discrete automaton has an 

mcreasmgly d1fficult task to d1stmguish between actwns sufficiently to converge to 

any single action; for a typical stochastic environment a number of actions around any 

optima may g1ve very snnilar responses. 
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Figure 6.1 - MotivatiOn for contmuous probability dens1ty function 

As action space coverage is improved by increasing the number of actions, so, m the 

hrrut, complete coverage IS ach1eved by an mfinite number of actwns. Th1s can m fact 

be easily implemented, for the smgle dimension case, by applying a contmuous 

probability distnbution as the automaton state. In so doing, the 'stepped' nature of the 
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discrete cumulative probability function will be replaced by a contmuous 

monotomcally increasing curve Now action selection on umform random numbers 

between 0 and 1 will result m an actiOn set w1tb effectively an mfimte number of 

members withm tbe lumts of the action space defined 

The discrete automaton rewarded a single action to tbe penalty of all otbers. The 

reward of a single action m a sunilar way for a continuous actiOn space becomes 

mtractable for implementatiOn Instead a generalisatiOn can be applied which aids 

Implementation whilst also seermng mtmtively 'correct' It would seem reasonable to 

assume tbat in a region of tbe actiOn space around any action tested in tbe environment 

a snnilar level of performance could be expected, and so similar reward may be given. 

Less confidence m tb1s assumption will be had for actions lymg furtber away from tbat 

tnalled, and so less reward should be applied. This can be Implemented by applymg a 

reward function which applies the most significant level of reward for the tnal action 

witb monotonically decreasing levels of reward for more remote actions. The reward 

function used in a CARLA is a Gaussian dJstnbutwn reward functiOn, of tbe standard 

form 

1 (x-p)' 

a.flii e 2a' (6.1) 

descnbing a 'bell' shaped functiOn With mean f1 and vanance o Addition of such a 

curve to a continuous probability functiOn, with Its mean centred on the trial action, 

Implements the generalisation of reward outlined above, w1tb maximum reward at tbe 

trial action and reward falling away for more distant actions. 

Figure 6.1 (c) tben shows tbe culminatiOn of tbe above pomts with a continuous 

function representmg tbe mtemal state of tbe automaton, a continuous probability 

distribution. A parameter range defines tbe limit of a contmuous action set mapping 

one-to-one to the probability distribution. Any tnal response of a smgle action IS 

generalised to an area of tbe action space around it. Figure 6.1 (b) shows a strong 

region of performance around a = 1.75 but the discrete automaton struggles to 

converge to a smgle action in preference to tbe near neighbours In contrast, Figure 

6 I (c) also shows such a strong regwn, but IS not required to converge to any smgle 

action; the CARLA has generalised the learning process to locate an area of the actiOn 

space which performs well. 
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6.2 CARLA Algorithm 

A CARLA follows the same basic algorithm given for a leammg automaton m Figure 

3 3, and IS snrular m many aspects to the discrete automata descnbed m previous 

chapters. The differences lie in the application of a continuous functiOn to descnbe the 

automaton state vector; the actiOn selectiOn probability distnbutwn. 

Applying a contmuous probability dJstnbutwn leads to difficulties when considering 

higher dimensiOn (N> I) actiOn spaces where a smtable mapping between the two is 

required. For the discrete automaton the actiOn set is formed from all combinatiOns of 

discrete action values and then the probability d1stnbutwn IS Simply generated by 

assigmng each discrete actiOn a probability of selection. The action set could easily 

consist of higher dimensiOn actiOns, but the discretisauon process reduces these to an 

actiOn vector, easily mapped one-to-one with a probability dJstnbution vector. 

Trying to achieve a smular implementatiOn for a continuous case IS not vmble, as It 

would require a mapping of anN-dimensional action space to a probability distributiOn 

of a single dimensiOn. An alternative is a one to one mappmg of the N-d1mension 

action space to an N-d1mension probability d1stnbution This IS also not a viable 

solution however, as It would require a representation of a contmuous probability 

distribution that can satisfy equatiOn (6.2) after applying an N-d1menswnal reward to 

this functiOn at any iteration. 

Jff p.da=l (6.2) 
N 

The approach adopted overcomes this difficulty by only implementing CARLA for the 

1-D case, i.e. only takmg an action set of a single vmable Learning tasks of a higher 

dimensiOn are easily accommodated by utilismg the interconnected arrangement of 

multiple automata, descnbed in Chapter 1. 

The formulatiOn of a CARLA is now descnbed, With reference to the maJor aspects of 

the general learning automaton algonthm of Figure 3.3 

6.2.1 Initialisation 

As the CARLA IS to operate on only a single parameter in an actiOn space It only 

reqmres the maximum and ffilmmum values, am'" and anux , to define its action set, the 

contmuous parameter range over which It will operate. Initialisation consists of 

generating the contmuous probability density function between these values. In 

satisfymg ( 6 2) the specific case IS 
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a~ 

J p dx= 1 (6.3) 

As for the discrete case, no a prwn knowledge of the action space IS to be assumed, so 

the imtial probability of selectwn is to be equal for any actwn. From (6.3) It follows 

that the initial probability magnitude across the range IS therefore 

I 
(6.4) 

An example of CARLA mitialisation IS shown m Figure 6.2. A parameter range IS 

defined over the range am,. = 0, a .. ., = 1 0. Satisfying ( 6 3), p,." = 1/10 = 0 1 and so a 

umform probability d1stribut10n functiOn IS defined, with associated cumulative 

probability function shown in the lower plot. 
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Figure 6.2 - Imtial continuous probability density functwn and associated cumulative 

probability function 

6.2.2 Action selection 

Action selection is achieved via the cumulative probability function in much the same 

manner as for discrete automata. A umformly d1stnbuted pseudo-random number 

between 0 and 1 is taken and the actwn corresponding to this value of cumulative 

probability IS selected as the action for trial at iteration n, I.e. for random probability 

p, action a(n) is found v1a 
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a(n) 

p= I p dx (6 5) 

Figure 6.2 shows an example action selection for p = 0 4. 

6.2.3 Reinforcement scheme 

The remforcement scheme implements a generalisation of the environment response to 

apply reward across a regiOn of the actiOn space, centred on the last tnal action and 

dmunishmg with distance from the actiOn 

The remforcement IS applied via additiOn of a reward functiOn to the probability 

distributiOn. The CARLA reward function is defined as the Gaussmn function 

(6.6) 

and hence the reward IS centred on the action tested at Iteration n . f3 is the 

performance mdex received from the environment. gw and g. are dimensionless 

parameters that determme the relative width and height of the reward functiOn. They 

are user-defined, and kept constant throughout a learning run. 

A reward-mactwn scheme IS used by the CARLA following the success of such a 

scheme for discrete automata. No penalty is therefore apphed for actions retummg a 

poor environment response. 

Learning generalisation, g w 

g. defines the 'spread' of any remforcement that the automaton can apply to the 

probability distributiOn around an action to effect a reward. Companng (6.6) and (6.1) 

It IS Seen that 0;;; gw (am.,.- llmm), and SO gw is a dJmensiOnJess parameter that 

describes the standard deviation of the reinforcement Gauss1an distnbution function as 

a fraction of the parameter range, (am .. - amm). 

A small value for this parameter will give a thin 'spike' of remforcement, very local to 

the tested actiOn. In this case the automaton will act much hke a discrete automaton 

with a large action set; many reinforcements will be reqmred in a successful regiOn of 

the action space for the rewards to conglomerate sufficiently for that regiOn to 

dominate. 
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A large value for th1s parameter w1ll over-generalise any reward to apply reward 

across a w1de area of the actwn space, the automaton w1ll continue to explore the 

action space extensively as any remforcement will give little differentiation between 

the relative performance of neighbouring actions. 

Empincal tuning of this parameter has found that a value of gw = 0.02 gives a good 

balance in the above trade-off. Th1s value IS not cntlcal to learning performance, or 

particularly senSitive, and so the above value IS used m all CARLA stud1es from 

hereon. 

Learning rate, g • 

g. acts as a learning rate parameter, defining the basic magmtude of reinforcement 

that can be applied at each 1terat10n Th1s parameter is comparable to 6 from d1screte 

automata, and selection of a suitable value for g. follows similar guidelmes, i e. it is 

somewhat dependent on the task being considered, and IS chosen to control the 

learning rate such the automaton IS not 'Jumpmg to concluswns' and erroneous 

deciSIOns through rapid learning, nor taking too long so Iearnmg becomes meffectlve 

because of mdecision. The stochastlc charactenstics of the performance index will 

also have some beanng on the Iearnmg rate chosen. 

A typ1cal value of g. = 0 3 has been found from empincal tumng to perform 

sat1sfactonly m the majonty of situations, including most of the CARLA stud1es in this 

document. A demonstration of the effect of an excess1ve value of g• will be seen in 

Chapter? 

6.2.4 Reward/penalty response from the environment 

The envuonmentaJ response from a cost functiOn, J(n), is compared against previous 

values to return a performance index f3 as before. The cntlc used here to produce the 

performance index is as defined for the S-model discrete learnmg automata of previous 

chapters, so, for a nummisatlon task 

J """ = min{J(l), !(2), .. ,J(n)} 

Jm,. = med~an{J(I),J(2), ... ,J(n)} 

/3( ) {0 J m"' - J(n)} n =max , 
J med- Jrrun 

(6.7) 

(6.8) 
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6.3 Convergence 

The discrete automaton of earlier chapters included a convergence property to 

facilitate a more thorough search of the actiOn space. Thts techmque reqmred multiple 

stages of learning to converge to a successively smaller actiOn space, concludmg a 

1earnt' actwn when a convergence Innit was attained. For the CARLA, the whole 

actiOn space ts constdered from the outset of learnmg; explictt convergence in an 

attempt to refine learning IS not reqmred. Instead, the learning process can progress 

towards a more 'natural' convergence as successtve application of the reward functiOn 

around any regiOn allows that regwn to dotntnate. For example, Ftgure 6.3 shows an 

automaton in which two regions of the parameter space are begmning to dotntnate, 

around a = 25 and a = 6, gtvmg mcreased probability of action selection in that 

regwn Ultimately, as the automaton learns the optimal action regwn the probability 

dtstributwn will be dotntnated by a smgle peak in density. 
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Figure 6.3 -Active CARLA probabtlity density function and assoctated cumulative 

probability function 

6.3.1 Convergence measures 

Under ideal reinforcement, applying full reward at the optimal actwn on each tteratwn, 

the probabtlity dtstnbution wtll change as shown in Figure 6 4. Each curve exhtbtts a 

dotntnant region around the rewarded action, so it would now be useful to have some 

measure of convergence to distinguish the degree to whtch a CARLA has 'learnt'. The 

Simplest measure of thts IS the peak value of probability denstty. As more rewards are 
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applied in a given region the peak probability density will rise. However, that statistic 

is dependent on the parameter range, and so a more general statistic is provided by its 

normalised version 

max{p} c = ..,--___,;_"--:-
m ( amnx - amin ) 

(6.9) 

In Figure 6.4 each distribution line is separated by an equal number of reinforcement 

applications, and yet it is seen that the difference between successive peak values is 

becoming smaller. Plotting Cm against iteration for ideal reinforcement - Figure 6.5 -

reveals that the CARLA convergence is self-limiting. In the Limit , the probability 

distribution becomes the same shape as the reward function and imposing the 

constraint of equation (6.3) after a reward at each iteration acts to give no change 

overall. The limit value of C
111 

is dependent on the particular parameters gw and gh 

used, which define the shape of the reward function and hence the limiting form of the 

probability distribution. 
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6.3.2 Assessing the learnt action 
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In practical situations, where a stochastic task is considered, it is unlikely that maximal 

C, will be reached within a reasonable time scale, if at all. 'Convergence' could be 

deemed to have taken place well before a near maximal value of Cm is achieved when 

the probability distribution shows a strong trend in one region of the action space. 

Consider Figure 6.6 that shows an iteration history of the probability di tribution 

during one learning run. It is evident that two regions of the x parameter action space 

are exhibiting strong reward responses from the environment. Initially the automaton 

has applied reward around x =-IS before later moving its attention to around x = l S . 

Figure 6.7(a) shows that throughout the learning run maximal C, was not approached 

despite the evident trends. It is therefore useful to define the 'learnt action' for a given 

tate of the CARLA; what is the action that the CARLA has deterrrtined as the mo t 

likely to return a reward from the environment? 
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Expected value 

One statistic to cons1der in determinmg the learnt value from a CARLA probability 

d1stnbution is the expected value From standard random variable theory, for any 

random variable x with assocmted probability distnbution p(x) , the expected (or 

mean) value is defined as 

~ 

E[x]= J x.p(x}.dx (6.10) 

The action a is the random variable in the CARLA, w1th assoc1ated probability 

distnbution p(a) defined in the range [am,. ,am,.] Therefore the expected actwn is 

a~ 

E[a]= J a.p(a).da (6 11) 

However, the probability distribution development shown m Figure 6 6 is one mstance 

where th1s statistic gives seemingly non-intuitive values. The expected action value 

for this example 1s shown in Figure 6.7(b). Although two regwns of good performance 

were clearly evident in F1gure 6.6, the expected value wanders between these two 

regwns as the favour of the CARLA alters. When probability IS comparatively evenly 

d1stnbuted between two regwns of the action space, it IS often seen that the expected 

value Will he somewhere m-between, and therefore likely to lie m a region of low 

performance in terms of environment response 

Modal value 

An altemati ve statistiC is to simply take the action value corresponding to the h1ghest 

peak in probability dens1ty as the 'learnt value' of the automaton, 1 e. the modal value 

of the d1stnbutwn 

Figure 6.7(b) plots the modal value alongs1de the expected value for the learnmg 

results of F1gure 6 6. It IS seen that the modal value clearly picks out the learning 

trend m the two strong performance regions as the automaton switches its favour 

between -1.5 and 1.5. 

However, the modal value only returns a smgle value at any Iteration, and in examples 

where more than one strong regwn IS evident, as above, other 'optima' are overlooked 

by this statistic alone. 
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6.3.3 CARLA results 

Defimng a dimensionless statistic Cm as a measure of progress of a CARLA, it has 

been shown that the Implementation is self-limiting, although m practice such a 

conclusiOn to learning is unlikely to be achieved. The CARLA has no defined 

stopping/convergence criterion and it is therefore left to the user to decide when 

learnmg is 'complete'. In practice thiS Will mvolve a combmation of observation of cm 
and visual inspectiOn of probability distribution time-history plots to ascertain when 

strong learning trends are present. Two statistics, the expected value and modal value, 

have been identified as candidates for defining the 1earnt actiOn' upon cessatiOn of a 

learning run. It has been found that the expected value can give a false result where 

more than one strong regiOn of performance has been located by the CARLA, and so 

from hereon the modal value IS taken as the 1earnt actiOn' result from a CARLA 

investigatiOn. However, a visual mspection of probability distribution time-history 

plots should not be overlooked m identifying If other high performance regwns are 

present that may reqmre further investigation, e g. both regmns Identified m Figure 6 6 

may be worthy of further investigation. 

6.4 Implementation 

Implementation of the above CARLA algonthm is straightforward apart from 

representatiOn of the probability density functiOn that defines the state of the 

automaton It IS reqmred that the density functiOn representation will be a smooth, 

complete description of a continuous curve between am'" and ama, that IS able to 

satisfy the constramt of equation (6.3) easily. Throughout development of the 

algorithms, particular thought has been given to maintainmg an efficient 

implementation which will take up little computmg resources for Its storage and 

mampulation in an on-line scenario where memory and processmg power may be 

constramed. 

6.4.1 Probability density function representation 

The probability density functiOn is represented by a piece-wise linear approximation. 

The whole curve is simply descnbed by a vector of (action, probabzl!ty denszty) pairs 

A basic representation is shown m Figure 6 8(a). Equally spaced action values have 

been selected at which the probability density function is recorded It can be seen that 

resolutiOn of the representation at higher values of probability density IS deficient. In 

thts example the representation has acted to distribute reward away from the expected 

peak value at a = 5 to values around 1!. 



80 

A 'smoother' representatiOn with Improved resolution at peak values JS shown m 

Figure 6.8(b ). Here, action values at wh1ch a corresponding density value JS recorded 

are separated such that each 'segment' defines an equal fraction of the total area. At 

h1gher density values the curve is then defined by more closely packed segments. In 

lower regwns, of lesser Importance, and where the density functiOn tends to be more 

'flat', the curve only reqmres a few w1dely spaced values for its definitwn 

Of course, improved curve definition could Simply be mamtamed throughout by 

defining the curve at a larger number of eqm-spaced points from the outset. However, 

the application of the above refinement allows a htgh level of definition of the curve 

around the Important points, peak areas of probab1hty density, whilst mamtammg a 

much smaller number of pomts to define the curve overall; memory resources are 

conserved The additional processing required to implement the refinement can be 

offset agamst the processing that would be requued to process an equi-spaced 

definition of h1gh resolutiOn. 
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Figure 6.8 - Refinement of probab1hty density function representation 

The CARLA employs this method of curve representation for maintammg the 

probab1hty density function. After any apphcatwn of remforcement the new curve is 

re-defined to maintain the resolutiOn of representation. This ts demonstrated further m 

Section 6 4 2. 
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The refinement algorithm is not descnbed here, as it IS largely mdependent from the 

successful operation of a CARLA. Appendix B outlmes the implementation of the 

curve refinement algorithm. 

6.4.2 Application of reinforcement 
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Figure 6.9 - Stages of remforcement application 

The reinforcement IS applied via additiOn of the reward function of equatiOn (6 6) to 

the probability density functJon. Using the piece-wise linear representatJon, equatJon 

( 6 6) is applied at each acuon value used m defining the density functiOn. For 

example, Figure 6.9(a) shows the effect on the density function of a reward at a= 8. 

The imtJal probability density function is shown in red, onto which the remforcement 

is applied, shown m blue. 

Of course, the density function now does not satisfy the constraint of equation (6 3), 

and so the curve is normalised - Figure 6 9(b ). 

The final step is to redefine the curve, with the method outlined m AppendiX B, to 

maintam a high resolutiOn at peak values. The outcome of redefimtwn of the curve 

from Figure 6.9(b) is shown m Figure 6.9(c). Note that more action values now define 

the curve around a = 8 where the new peak m the d1stnbution IS present. 
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6.5 Summary 

A formulation of a learning automaton exh1b1tmg a continuous actiOn set has been 

introduced. The contmuous actiOn set is fac1htated by maintammg the internal state 

representation of the automaton, a probability distributiOn, as a contmuous functwn. 

The probability distribution IS stored as a vector of (action, probabzlity denszty) pairs 

defimng the function m piece-w1se linear fashion between user-defined linuts. The 

underlymg one-to-one mappmg of probability distnbution to action value linuts the 

CARLA to smgle dimension actwn spaces. However, via an interconnected 

architecture of multiple CARLA 1t is possible to cons1der learning tasks of higher 

d1menswn. 

The definitiOn of the CARLA to consider a continuous action space immediately 

allows a complete search of the whole actwn space. Th1s overcomes one of the major 

linutations of discrete automata, m an optimisation settmg, where optima could eas1ly 

he between actwns and not be identified by the automaton 

The 'curse of dimensionality' is another maJOr area of concern when usmg discrete 

automata; higher dimension tasks and/or h1gh defimtlon of actions qmckly leads to 

large actwn sets resultmg m slow or inconclusive learnmg. The CARLA formulatiOn 

gives an effectively mfimte action set covenng the contmuous action space, but the 

s1mple state representation and generalisation of remforcement has made the learnmg 

process completely independent of action set s1ze. The only d1menswnality concern 

now arises where multiple CARLA are reqmred for high dimension tasks, and 

mteractwn between automata is reqmred to affect successfullearnmg. 

Another benefit of CARLA has been stated as full-adaptability m non-stationary 

environments The CARLA implementation and effective continuous learnmg allows 

the CARLA to respond to non-stationary environments. This phenomenon 1s 

mvestigated further in the following chapters where the CARLA is applied to various 

learning tasks to compare its performance w1th both discrete automata and the 

contmuous actwn set automaton proposed by Santharam et a! 
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Chapter 7 - CARLA Performance 

Previous chapters have shown the classic discrete automaton to be a useful 

optnnisatwn tool, especially in stochastic environments where many traditiOnal 

optimisation techmques will fail. However, a number of hnutatwns of discrete 

automata have also been noted. A new formulatiOn of a learnmg automaton offering a 

continuous action set, the CARLA as descnbed in the previous chapter, IS able to 

overcome many of those hnutatwns. 

This chapter now mvestigates these claimS via a comparison between CARLA and 

discrete automata on a Simple stochastic optinusatwn task, seeking the global 

maximum of a nOise-corrupted functiOn. The optimisatwn task particularly tests the 

abihty of the automata to d1stmguish between global and local optima. 

An advantage of the CARLA previously only alluded to is its ability to adapt m non­

stationary environments A demonstratiOn of this feature with an environment 

exhibJtmg an abrupt change of response during learning IS given. 

A companson is also made between CARLA and the contmuous actiOn set learnmg 

automaton (CALA) proposed by Santharam et a! (1993). Their study used a penalised 

Shubert functiOn to analyse the CALA performance and that functiOn is thus applied 

here for the companson. 

7.1 Comparison with Discrete Learning Automata 

A pnmary concern with applying a discrete learning automaton to an optimisation task 

has been in Its ab1hty to locate the optima accurately. A small actiOn set giving 

efficient learning can easily miss optima that lie between actiOns. Talang a better 

defined, and hence larger action set may overcome this but is then hkely to slow 

learning considerably. The automaton can even become mconclus1ve for very large 

actiOn sets. 

Here, a function of two variables is identified which exhibits two similar optima. A 

discrete automaton and CARLA are apphed to identify values of the functiOn variables 

that max1nuse the function. The addition of noise to this functiOn forms a difficult 

stochastic optirmsation task for comparison of the performance of the two types of 

automaton. 
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7.1.1 Optimisation task 

The function of two variables g1ven m equatiOn (7.1) defines the underlymg 

environment response for the automata 

( ) 30(1 2 )e{-x'-(y+Il') 100(x 3 ') (-x'-l) g X, y = . -X - S- X -X e (7.1) 

where -3::;;x::;;3, -3::;;y::;;3. Equation (7.1) is denved from the 'peaks' functiOn 

used m surface plot demonstratiOns With the application package, MATLAB. Th1s 

functiOn exh1b1ts three max1ma: A at (1.5,0), Bat (-1.53,0.06), and Cat (-0 48,-1 02)­

see Figures 7 .I and 7.2 It is seen that the optima at A and B are of very similar 

magnitude, with the global optimum found at A. The optlmisatlon task IS made 

stochastic by corrupting g(x, y) with zero mean, umformly distnbuted nmse in the 

range [ -5, 5]. Th1s noise signal overwhelms the difference between A and B, 

presenting the automata with a difficult task to distingmsh between them. 

7.1.2 Discrete automaton configuration 

A single discrete S-model automaton, of the form introduced m Chapter 3, IS applied 

w1th learmng parameters 1}=05,11=04 as before. The act10n set 1s defined to g1ve 

an equally spaced square matnx of act10ns across the actiOn space, e g. choosing a 

quantisation level of 4 for each parameter g1ves an action set of 42
, 16 actions- see 

Figure 7.3. It IS seen that the near symmetry of the two mam optima, at A and B, and 

the definition of a symrnetnca1 act10n set g1ves no smgle action wh1ch could bms 

leammg in favour of e1ther optima m the pnmary stage of learning 
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Figure 7.2- g(x,y) viewed along y-axis 
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7.1.3 CARLA configuration 
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The implementation of CARLA neces itates that multiple automata are linked in 

interconnected fashion for multi-parameter optimi ation tasks. Therefore, on the 

optimisation task defined above, one CARLA ts assigned to each of 

x and y respecti vely. Figure 7.4 illustrates the configuration of CARLA for thi task. 

Both automata define their action et between amin = -3, a max = 3. The learning 

generalisation parameter, gw, is maintained throughout this study at 0.02. The 

learning rate, gh, is altered between 0.3 and 0.6 to analyse its effect on the automata 

resul ts. 
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Figure 7.4- Interconnected configuration 

7.1.4 Performance index 

As thts task requires maxumsatwn, the performance index calculatton, 

descnbed by equatiOns (6.7) and (6.8) for minmnsatwn, is amended to 

Jm,. =max{J(l),J(2), .. ,J(n)} 

1 mod = medtan{I(l), 1(2), ... , J(n)} 

p(n)=max{o, J(n)-Jm,•} 
Jmax -Jmed 
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previOusly 

(7.2) 

(7.3) 

for both automata configurations. p = I , maximum reward, is now returned for a 

'maximum encountered so far' environment response. p = 0 IS returned for any 

response of J mod or below. 

7.1.5 Optimisation results 

Each analysts of a particular automaton configuration underwent a set of 100 tnals to 

give an estimatiOn of the average automaton performance and provtde a measure of the 

frequency wtth whtch the global optimum is located. As this ts a stochastic 

optmnsation it IS unlikely that the automata wtll exactly locate any optimum, so 

'locate' is taken here to mean a result that hes acceptably close to an observed 

optimum. 

A summary of the results for the discrete automaton, for various quantisation levels 

and leammg rates are shown m Table 7.1. The initialleammg run of DAl Implements 
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a learmng automata similar to that used in the studies of previous chapters, w1th 

learning rate 6 = 0.1. 

Discrete Quantisation 
Automaton per parameter 

DAI 4 

DA2 7 

DA3 10 

DA4 4 

DA5 4 

6 

0.1 

0.1 

0.1 

0.05 

0025 

Convergence 
to peak A 

(%) 

52 

56 

49 

73 

74 

Convergence 
to peak 8 

(%) 

48 

44 

51 

27 

26 

Table 7.1 - Discrete automaton results 

Iterations to 
convergence 
( +- std. dev ) 

825 (143) 

1007 (189) 

1017 (201) 

2954 (685) 

9464 (2062) 

It 1s seen that th1s automaton IS unable to d1stmgmsh between the max1ma at A and 8, 

convergmg to each with similar frequency. This may have occurred because the 

learning rate is too high, or because greater action set defimtion is required to enable a 

distinctiOn. However, mcreasmg the quantisat10n level to 7 (49 actions, DA2) and 

then 10 (100 actions, DA3) has little effect. As would be expected for larger action 

sets, the average number of iterations to convergence mcreases as the automaton takes 

longer to decide between the increased number of opt10ns available to 1t, and yet the 

frequency of correct convergence remains around 50%. Therefore, it can be assumed 

that the learning rate is too h1gh for th1s task, so the automaton IS not gathenng enough 

information m the first learnmg stage to make a valid decision on the area of the action 

space it should converge towards. 

Returning to a quantlsation level of 4, and halvmg the learning rate has an immediate 

effect - DA4. Now the automaton converges to the global optimum at A around 75% 

of the time The number of Iterations to convergence has nsen to a similar level where 

effective learnmg has been observed before, 3000 1terat10ns. The automaton 1s seen to 

take longer for stage one learning (330 iterations on average for DA4 m comparison to 

130 JteratJOns for DAl) and is thus far more hkely to make a correct decisiOn at this 

early stage 

However, considering any slower learning rate has httle beneficial effect. Analys1s 

With 6 = 0 025 - DA5 - reveals a sirmlar convergence result, around 75% success rate, 

but the Iterations to convergence has nsen sigmficantly. The learnmg rate 1s now too 

slow, so mdecJsJOn between actions begms to dominate with no improvement in 
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quality of learning; stage one Iearnmg takes 950 Iterations on average. A 75% success 

rate appears to be the best performance a discrete automaton will provide on this task. 

CARLA Learning rate, Convergence Convergence lteratwns to 
g, to peak A(%) to peak B (%) learning halt 

Cl 03 100 0 3000 

C2 06 98 2 3000 

Table 7.2- CARLA results 

No stoppmg cntenon JS defined for CARLA, so it is chosen here to simply stop the 

CARLA after 3000 iterations for the learning to be comparable With DA4, the discrete 

automata observed to take a similar number of iterations m Its optimum configuration. 

Results for the CARLA configuration on th1s task are given in Table 7.2. A learnmg 

rate of g, = 0.3 has been found to provide capable performance in other stochastlc 

scenanos, such as those presented in later chapters, so this value is applied m the 'first 

try' of the CARLA- Cl. It JS observed that Cl1s a complete success; all tnals result 

in A bemg located. 

A typical result for the CARLA pair is shown in Figures 7.5 and 7.6. The x CARLA 

typically Identifies strong performance around both maJor optima early in a learnmg 

run- F1gure 7.5(a) and (c). A penod IS then apparent where Cm nses steadily as more 

information IS gathered. There appears to be a point at which the CARLA 'decides' 

between the strong performance regions Jt has located, to converge such that Its 

mterest becomes concentrated on a single regwn. Figure 7.5 shows th1s happening 

between 1500 and 2000 1teratwn as Cm nses sharply dunng the shift of mterest They 

CARLA 1s seen m Figure 7 6 to quickly identify its optimum around y = 0, where 

both maJor optima he close by; withm 500 Iterations the CARLA identifies the optimal 

regwn and the sharp nse m Cm 1s agam ev1dent from thereon. 
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As the CARLA has faultlessly located the global optimum m Cl, It IS now interestmg 

to try to instigate a 'failure'. Discrete automata have been seen to mcreasingly make 

nustakes if the learmng rate IS set too lugh so that 'hasty' decisions are made during 

learning. Raising the CARLA learning rate g, to 0.6, two 'fru.lures' from the set of 

100 are observed - C2 in Table 7 .2. The x CARLA results for one of these IS shown m 

Figure 7 7 Again Cm exhibits a steady nse dunng a period of exploration where both 

regwns of strong performance for x are Identified. However, this penod IS now much 

shorter, in this case only around 500 Iterations, before the CARLA opts for one regwn 

alone Once the CARLA is concentratmg on the single region almost all chance of 

further exploratiOn away from this region IS removed The increased learnmg rate has 

indeed forced the CARLA mto a 'hasty', erroneous decision 
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Figure 7.7- Increased gh leads to 'ha ty' decision making on x: (a) probability 

distribution, (b) convergence measure, (c) 'learnt' value, modal 
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A compari on of the variability of automaton results i shown in Figure 7.8. The 

' learnt' action values from both the discrete automaton (DA4) and CARLA (C l ) 

around the global optimum are plotted. It is seen that the CARLA also locates the 

optimum more accurately, with les variability than the discrete automaton on this 

ta k. 
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Figure 7.8 -Scatter plot of results around global optimum 

7.2 Adaptive Nature of CARLA 

Another major concern with discrete automata is their inability to operate succe fully 

in non-stationary environments. Any automaton must maintain exploration of a 

sufficiently large area of the action pace if it is to notice any shift in the environment 

response. Discrete automata would require a large action set to be able to maintain an 

adequate exploration of the whole action space throughout a learning run. A trade-off 

ha to be made between enough actions to cover the action pace, but not providing 

accurate location of optima, and too many actions which may improve optima location 

accuracy but which then lead to much longer learning times. The extension to the 

methodology proposed by Wu (1993) allows improved optima location without the 

requirement for a large action set. The drawback is that the technique relie upon a 

forced convergence of the automaton to a sma ller action space in multiple learning 

stage . This removes continual coverage of the total action space throughout a 

learning run and hence any variation of an environment during th is time can confuse 

the automaton, e .g. if the automaton is converging towards an optimum and then the 
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optimum moves to he outside the current automaton action space, the prospect of the 

automaton recovenng to relocate the optimum is limited Tumng of the convergence 

parameters may give the automaton more scope for recovery but this in turn mcreases 

the time taken to complete convergence. 

It has already been demonstrated that a contmuous actiOn set allows a complete search 

of the actwn space it encloses throughout a learnmg process. This may allow the 

CARLA to be able to react to vanations in a non-statiOnary environment, adapting Its 

state m response to the change A test case IS descnbed below in which the CARLA IS 

presented with an envuonment that exhibits an abrupt change of characteristic during 

learnmg 

7.2.1 Optimisation task 

The envuonment used here is agam descnbed by equation (7 .I), but after 1000 

Iterations of learnmg the transfonnation x ~ y and y ~ x IS made, giving 

The two major optima are of course then located at (0,1.5) and (0.06,-1.53) of which 

the global optimum IS found at the fonner. Function evaluatwns of equatiOn (7 .2) are 

corrupted as before to Implement a highly stochastic environment. 

7.2.2 The CARLA configuration 

Two CARLA are configured as in the previous study, with one assigned to x, and one 

to y. The learning rate is maintained throughout at g, = 0.3. The CARLA stoppmg 

criterion was raised here to 5000 iterations to capture the entire automata response to 

the change in the environment response at 1000 IteratiOns 

7 .2.3 Adaptive results 

A set of I 00 independent trials was taken on this task. In every case the CARLA 

locates the shifted optimum successfully. The success of this trial can first be 

observed with reference to a plot of the mean (rolling average of 100 values) 

environment response to the CARLA actions during a typical learning run - shown m 

Figure 7.9. Strong learnmg IS evident up to 1000 iteratwns as the observed cost nses 

sharply, indicatmg that the CARLA are already locating the optima well. At 1000 

iteratiOns the average environment response drops as the CARLA imtially continues to 
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explore around the former optima which now exhibit the low response However, a 

recovery IS apparent, although slow at first. 
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Figure 7.9- Mean environment response lime h1story 

Typ1cal CARLA results for this run are g1ven in Figures 7.10 and 7.11, clearly 

showmg the CARLA adaptmg to relocate the new max1mum, although, as suggested 

by the mean cost plot of Figure 7.9, the shift in emphasis of the automata IS seen to 

take some time to materialise. Figure 7.11 shows th1s most clearly. As seen in 

prevwus y CARLA results, Cm rises sharply early on as y = 0 1s quickly identified as 

the oplimum, such that by 1000 1terat10ns the CARLA has established a strong 

preference for that regwn. Now, on the env1ronment translation, the CARLA 

undergoes a long period of 'unlearmng' that preference before any other can emerge. 

Cm drops accordmgly between 1000 and 3000 iteratiOnS. 

In contrast the x CARLA - Figure 7.10 - is still m an exploratiOn phase when the 

sw1tch occurs; two strong regwns are identified but no declSlon has been made 

between them so the CARLA still has 1ts attentiOn spread over a wide area of its action 

space Between 1000 and 3000 IteratiOns the x CARLA has little to 'unlearn' but is 

lied to some extent by the y CARLA performance, and hence has to wait for that to 

spread 1ts attention agam before both automata can co-operate in locating new optima. 

This state occurs around 3000 iteratwns when learnmg clearly proceeds apace to locate 

the new global optimum at (0, 1 5). 
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Figure 7.11 - Adaptive y CARLA time hi tory: (a) probability distribution, 

(b) convergence measure, (c) ' learnt' value, modal 



99 

7.3 Comparison with Santharam's CALA 

Santharam et al. (1994) also proposed a learning automaton formulatiOn with a 

contmuous action set, formed by recording the probability dJstnbutJon as a contmuous 

function. They descnbed the whole probability distributiOn as a Gaussian curve, with 

the mean f1 and standard deviation o as parameters under control of the learnmg 

automaton via remforcement. The probability distribution IS mapped one-to-one with 

an action value and hence the CALA IS also lnruted to an action space of a smgle 

dimension, so requiring an interconnected configuration of multiple automata to 

consider higher dimensiOn tasks. 

The CALA operatiOn can be summarised as follows An action remforcement acts to 

move the dJstnbutJon mean towards that action. If the rewarded actiOn lies close to f1 

already, then o IS reduced so the automaton converges around that regwn Otherwise, 

o IS increased in an attempt to encompass the rewarded action and hence broaden Its 

scope to contmue exploratiOn across a wtder area. 

The behaviour of the CALA was examined on a stochastJc optnrusatwn task, locating 

the nnmmum of a penalised Shubert functiOn defined as 

' 
j(x) = "L,i.cos((i + 1)x + 1)+ u(x,I0,100,2) (7 3) 

1=1 

where 

j 
k(x-at 1fx>a 

u(x,a,k,m)= 0 if lxl ~a 
k(-x-at If x <a 

(7.4) 

This function IS shown m Figure 7 12. It has 19 mimma m the regiOn [- 10,10] of 

which three are global minima, located close to -5.86, 0.43 and 6 71 respectively A 

stochastic element was added by corruptmg function evaluations of f (x) with zero 

mean, umformly d1stnbuted noise m the range [-0.5, 0.5]. 

The CALA was used to find a minimum of this functiOn with various different imtJal 

values of f1 and o . The sJmulatJons were run for 8000 IteratiOns each 

It was found that the mean value, f1 , of the CALA always converged close to a 

nnmmum of the functiOn. It was seen that the mina! values of f1 and o had the 

greatest beanng on which nnnimum was located. However, the overall success rate of 

the CALA was not made clear, and only a small number of simulatiOn results were 
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presented - See Table 7.3. It IS evident that the CALA was found susceptible to 

locating local mimma. 
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Figure 7,12 - The penalised Shubert function 

Initial Values After 8000 Iterations FunctiOn Value 

f.lo Oo f.4ooo 

4 6 2.534 -3 578 

4 10 04038 -12 87 

8 5 5.36 -8 5 

8 3 6.72 -12.87 

12 6 1.454 -3.58 

-10 5 -7.1 -8.5 

-10 6 -5.8 -12 87 

Table 7.3- CALA results (from Santharam et a!, 1994) 

A companson between CALA and CARLA is made here by applying a CARLA to the 

above task. To this end the performance index IS defined m the rmnnmsation form of 

equations (3.11) and (3.12). The CARLA is defined with an Imtial action set of 

Qmm =-12, amu =12 and leanung parameters of gh =03 and gw =002 are agam 

applied. 
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A set of lOO results of CARLA is obtained with learning halted after 1000 iterations. 

Despite running the CARLA for significantly less iterations than the CALA, it is found 

that the CARLA are able to locate a global minimum on every occasion, with an even 

spread of results between the three minima. A typical result is shown in Figure 7.13, 

where the CARLA is seen to have identified the regions of all three optima, evident in 

the distribution peak trends of Figure 7.13(a) and (c). 
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Figure 7.13- CARLA time history on Shubert function: (a) probabil ity distribution, 

(b) convergence measure, (c) ' learnt' value, modal 
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7.4 Summary 

Throughout this chapter the CARLA has repeatedly demonstrated many benefits m 

comparison With discrete automata and CALA in stochastlc optmusatwn Simulation 

studies, mcluding 

• global optimum Iocatwn/local optima avoidance 

• accurate optimum location 

• faster learmng 

• a capability in non-stationary environments 

• msensitlve learning parameters, g. and gw 

The next chapter returns to the vehicle suspension applicatiOn to analyse the CARLA 

performance further. 
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Chapter 8 - CARLA on Vehicle Suspension 
Applications 

The CARLA has thus far demonstrated some prolllising characteristics. Comparison 

between the CARLA and discrete automata on optimisatwn tasks w1th known optima 

has highlighted add1tional capabilities and increased performance offered by CARLA 

This chapter now returns to the veh1cle suspension application to analyse the 

performance of the CARLA further. Learning tasks based on the quarter-vehicle 

suspension model are revisited to venfy the CARLA capabilities in a practical 

application. The 'moderator' of Chapter 4 is used again to enable safe on-line learnmg, 

controlling excessive workspace usage, so allowing hardware testing of the CARLA 

on the test vehicle used in Chapter 5. 

8.1 Learning with White Noise Road Spectra 

Cons1denng a linear quarter-vehicle model exh1bJtmg ideal full-active suspenswn 

force actuation between sprung and unsprung masses, exc1ted by white nmse road 

veloc1ty mput, LQG theory provides an optimal linear state feedback controller for a 

pre-defined quadratic cost function. Th1s has been derived in SectiOn 2.1 for a 

representative vehicle model and is of the form 

(8.1) 

Prevwusly a smgle discrete automaton has been applied to learn these four gain values, 

and IS found to learn controllers w1th performance costs close to the optimal value for 

th1s system, J"P' = 2.6621 - see Chapter 3 

Here the CARLA is employed on the same task, optllllismg the four gains subject to 

the LQG quadratic cost function of equatwns (3 14) and (3.15). A single CARLA 1s 

ass1gned to learn each k, respectively (g. =03, gw =002), the automata mteractmg 

and co-operatmg on the overall task via their interconnected configuratiOn. The range 

for each mdividual parameter, and hence each CARLA, IS chosen as m the comparable 

discrete automaton 1mplementat10n of th1s task m SectiOn 3.6 

k1 E[-20000,0] 

k2 E [0,15000] 

k3 E [0,2000] 

k4 E [- 4000,0] 

(8 2) 
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These ranges border on unstable regwns of !be actwn space, but !be CARLA 

implementatiOn assures Jbese regions are not encroached upon during learning. As a 

mimnusation task !be performance index IS calculated w1Jb equations ( 6 7) and ( 6 8). 

A set of ten learnmg sesswns IS taken, referred to as Automaton F, w1Jb !be stoppmg 

cntenon set at 3000 Iterations, comparable to !be observed 1teratwns to convergence 

average (2780 Iterations) of !be equivalent set of discrete automaton results, 

Automaton B. Figure 8.1 summanses !be learnt parameter results of Automaton F 

where It IS seen !bat !be CARLA produces far more consistent values (cf. Figure 3.6) 
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Figure 8.1 - Automaton F. learnt parameter results (mean± one standard deviation) 

Discrete automata were seen to learn more variable, but distinctly correlated, k2 , k, 

values Automaton F exhibits no such correlation at first glance. However, companng 

!be d1stnbutions of !be resultant pairs, Figure 8.2, wi!b those from a discrete set of 

results, Figure 4 3 (from !be moderated Automaton C results, but w1Jb essentially 

s1nular learnmg characteristics as unmoderated Automaton B) It IS seen !bat the 

CARLA results are grouped closely such that any correlation is not as evident. 

The denved Jbeoretlcal costs of Automaton F controllers are outlmed in Table 8.1. 

Companson w1Jb discrete results on Ibis task, Table 3.2, again shows performance and 

consistency gains from CARLA learnmg. 
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Maximum Mm1mum Mean Std. Dev. 

Cost 

Increase over 
]opt (%) 

2.6971 

1.3 

2.6664 26774 

02 06 

Table 8.1 -Automaton F cost performance 
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In contrast to the discrete automata application on this task, one CARLA has been 

applied per parameter. Each CARLA IS free to learn at Its own rate, but any 

assnrulated correlatiOn It sees between the actions chosen and the environment 

response will be somewhat dependent upon the interactiOn between all four automata 

overall in selecting successful actions It can be expected that fast learnmg should be 

evident when an automaton detects a strong correlation between Its own actiOns and 

the environment response; a weak correlatiOn should result in little or no apparent 

learning occumng. The relative learnmg rates of the automata applied to the task then 

implies the relative impact of the respective parameters m producmg an action with 

favourable response from the environment. Strong learnmg in an mdividual automaton 

from an mterconnected team indicates that the parameter controlled by that automaton 
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has most effect in producing a successful action. Such effects are seen in studying the 

convergence measures of Automaton F. 
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Figure 8.3 - Automaton F: average convergence measure evolution 

Figure 8.3 shows the convergence measure for each parameter averaged over the ten 

learning runs of Automaton F. Js is evidently identified as central to controller 

performance on this task, showing the fastest learning rate. The evolution of the 

CARLA states during a learning run, Figures 8.4 and 8.5, show this clearly as modal 

values for Is appear around fs = 1000 very early on, and a single definite peak in the 

probability distribution is seen from thereon. 

Conversely, the k1 CARLA returns a weak response, with slow learning rates. The 

probability distribution for the k1 CARLA appears comparatively 'flat', as no strong 

trends emerge, and the modal value varies widely throughout the learning period. The 

performance of such a controller has been noted earlier as being largely independent of 

k1 and so the weak CARLA performance on this parameter can be appreciated. 

The k2 and k4 CARLA return slower responses than that for fs , similar to k1 , although 

they do tend to show steady trends in their probability distribution time-histories. For 

example, the particular learning run in Figure 8.4 shows a case where the k2 and k4 

CARLA have each identified two values, seen as two peak trends, corresponding to 

two separate (k2 ,k4) pairs. Indecision between these correlated values is seen to 

continue throughout much of the learning period - see Figure 8.5. 
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8.2 Learning with Realistic Road Spectra 

Now that the CARLA has demonstrated Its effectiveness in a known suspension 

system environment, It can be developed further With the aim of applymg It as an on­

line tool This route has already been traced for discrete automata, resulting in some 

useful modifications to the technique along the way. The pnmary modificatiOn there 

was mclusion of a 'moderator' that guards learning against excessive state 

perturbatwns such that any actions producing such deviant behavwur are rejected 

Immediately. There is no reason to suppose that the moderator will not prove similarly 

useful when applied alongside CARLA. Consideration of a road spectra mput, which 

can excite the modes of the suspension system more fully, Will test this clmm. 

A suspension system and CARLA configuratiOn, as used m the previOus sectwn, is 

now excited by a Breakback road profile mput (Section 2.2). A moderator IS applied 

with the acceptable state limits defined as in equatiOn ( 4.1 ), and hence the 

environmental cost function is reduced to that of equatiOn ( 4.4 ), removmg terms to 

control workspace usage which the moderator now controls indirectly. Ten such 

learning runs are recorded, each concludmg at 3000 iterations, referred to as 

Automaton G. The parameter results are summarised m Figure 8.6. Agam, 

comparison with discrete automaton results on a similar task - Automaton E, Figure 

4. 8 - shows the CARLA return more consistent parameter results. This is seen most 

clearly when comparing the (k2,k4 ) paus from Automata E and G- see Figure 8 7 

Automata E and G return sunilar low vanance k3 d1stnbutions, and k1 has been seen 

earlier as being comparatively unimportant to controller performance This suggests 

that the vanance difference m ( k2 , k4 ) results may account for the marked difference in 

average RMS response seen in simulation - Table 8 2. The controllers of Automaton 

G are found to make less demand on suspension workspace usage, on average, whilst 

still ach1evmg a reduced body acceleratiOn over Automaton E. 

RMS Response Automaton E Automaton G 

x1 (mm) 3 0 3.0 

x2 (mm) 28 6 22.2 

x4 (mfs2) 0.45 0.43 

Table 8.2- Controller evaluation on Copt Oak road- Average RMS responses. 
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Figure 8.6 - Automaton G: learnt parameter results (mean ± one standard deviation) 

Analysis of the convergence measures for Automaton G CARLA- Figure 8.7- again 

shows k, to be learnt the fastest, Implying this parameter IS most Important to 

controller performance, although not as prorrunent as for Automaton F However, 

k2 and k4 now seem to make a greater contribution to performance than before as their 

convergence measure levels have mcreased 
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8.3 On-line Application of CARLA 

The previous study has illustrated that CARLA can perform at least as well as discrete 

automata on a realistic suspension task and, more Importantly, is more likely to 

produce consistent results. This can be tested further in an on-hne application. A 

hardware expenment, based on the system descnbed m Chapter 5, IS detailed here. 

This expenment is previOusly presented by Howell et al. (1997). 

Usmg Identical vehicle settings and input type as used m Chapter 5, three 

Interconnected CARLA are apphed at each corner of the test vehicle to learn the three 

free parameters of equation (5.1) The Imtial action space of each CARLA cover the 

parameter ranges 

k2 e[O,l5000] 

k3 E [ 0,2000] 

k4 e[-6000,0] 

with the CARLA learnmg parameters set at g.= 0.3 and gw = 0.02. 

(8.3) 

Three mdependent examples of the learnmg system are run on the ng with each 

example using a different Robson road random driving mput. No explicit stoppmg 

critenon is applied with maximal use of available rig time being the pnme objective. 

This resulted m two tests run for around 2900 Iterations, about 13 hours of rig time, 

with the thud test able to be extended to 3300 Iterations. 

Ftgure 8.9 shows a typical probability evolutiOn through a learning test where, in 

conJunctiOn with the convergence measure analysis and modal value evolutiOn, shown 

m Figures 8.10 and 8.11, It IS seen that all automata respond similarly. Each automata 

IS able to identify a strong region of its respective action space despite the non­

lineanties and sensor noise that are inherently present m a hardware environment. 

The relative performance of each learnt controller is assessed by measuring body 

acceleration dunng a complete pass of the vehicle over an independent section of road 

with the same controller gmns apphed at all four corners. The test road applied for this 

purpose in Chapter 5 is used here Table 8.3 gives the percentage improvement in 

r.m s body acceleratiOn compared to the norrunal passive setting - c.f Table 5.1 

Generally the CARLA learnt controllers perform Sirrularly to those learnt by discrete 

automata However, the controllers of Automaton 3, after the longer learnmg period of 

3300 iterations, show a sigmficant advantage. A comparison between the power 

spectral density body acceleration response of a vehicle With passive suspensiOn and 



113 

that of a vehicle w1th a learnt controller applied IS shown m Figure 8.12, where the 

learnt controller 1s seen to yield a reduced response across a wide frequency band 

Corner A Corner B Corner C Corner D 

Automaton I 6.5 56 3.2 60 

Automaton 2 6.0 56 0.8 7.0 

Automaton 3 101 9.4 87 13.8 

Table 8.3 -Percentage improvement in RMS body acceleration over nommal pass1ve 

damper setting 
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Figure 8.12- A companson of the power spectral density functiOn for the best pass1ve 

damper settmg and a learnt controller, 

8.4 Discussion 

Many of the suspensiOn tasks set for d1screte automata have been reassessed in this 

chapter w1th CARLA applied, The CARLA has repeatedly shown itself to return more 

consistent learning with the resultant learnt controllers md1catmg 1mproved 

performance, 

Practical differences between discrete automata and CARLA were particularly 

highlighted in the on-hne experiment Discrete automata, with the add!l!on of Wu's 

actiOn set requantisation techmque, profit from their small number of actwns to 

qmckly locate, and requantise m, a strong regwn of the actiOn space, However, they 

then struggle to progress any further w1th learning after the action set has been re­

defined two or three times; the automata IS unable to distmgmsh the relative responses 

of actions located so close in the overall env1ronment actiOn space, CARLA does not 

suffer from this as it can mamtam an overv1ew of a much larger action space 

throughout learnmg, Where d1screte automata 'homes m' on a smaller regwn of the 

actiOn space, and then attempts to distmgmsh between spec1fic actwns in that region 

by repeated tnal, the CARLA mamtams a full action space view and uses the 

generalisatiOn of remforcement such that the cumulative effect of trials around a 

region identifies an optimum pomt One effect of th1s IS apparent slower learnmg by 

CARLA; 1t suffers from Its much larger actwn space by 1mtially being unable to locate 
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strong action space regions as quickly as discrete automata, but profits later on w1tb Its 

ab1hty to continue learmng witb 1ts cumulative reinforcement generalisation to 

produce much improved and consistent results. 

It was noted tbat, in multi-CARLA applications, comparison of tbe convergence 

measures of each CARLA could mdicate tbe relative 1mport of the respective 

parameters to the particular learning task. Strong learning of an automaton mdicates 

tbat 1ts assoc1ated parameter has a large impact on tbe success of any action 

Conversely, weak learning suggests tbat a parameter is having little effect, whatever 

value is chosen for tnal by 1ts automaton. 
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Chapter 9 - Dynamic Vehicle Roll Control 

This chapter presents a simulated multi-goal learning task and mvestlgates the ability 

of CARLA m such a scenano. Learnmg tasks of previous chapters have each had a 

smgle rum, defined via a single performance mdex feedback from the environment to 

all automata applied to the task 

Here a roll control learnmg strategy is derived, based on an engmeenng analysis of 

actual vehicle hardware, as a precursor to hardware ImplementatiOn. The strategy splits 

into two learning tasks with independent but complementary aims: learning a simple 

ideal feedback roll control law, and learning how the vehicle hardware, with Its 

inherent limitations, can best attempt to achieve the demands of that roll control law. 

Two interconnected CARLA learnmg umts are implemented on a full vehicle 

simulation to learn the free parameters Identified in the denved control strategy, and 

mvestigate the efficacy of CARLA application. Frost et al. ( 1996) first presented this 

study 

SectiOn 9 1 detruls the denvation of a roll control strategy, based on the rmmmisat10n 

of a dynamic cost function, aiming to maximise the performance of a semi-active 

suspension system m attempting to achieve a full-active control law response. The 

derived control strategy has five free parameters, and Section 9 2 then descnbes how 

CARLA are applied, in two teams with independent aims, to learn values for these. 

The results of simulatiOn studies are presented in Section 9 3, with a discussion of the 

conclusions that can be drawn from these in SectiOn 9.4 

9.1 Roll Control Strategy Derivation 

A simple control law for the deszred roll moment to stabilise a veh1cle IS 

(9.1) 

where ~ is roll angle. To achieve such a roll control law, in practical application, 

would reqmre ideal force acruation. The available serm-actlve suspensiOn hardware 

fitted to the test vehicle is able to achieve some degree of roll moment vta vanatlon of 

dampmg rates, and thus suspension force actuation, at each wheel statiOn 

independently. This supplied roll moment 1s 



M= (p;q) (- F, I+ F, + F,,,- F, .• ) 

)p;q)( ~o;F,,). 0"=[-l,i,l,-1] 
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(9.2) 

where p and q are the lateral distances between the wheels and the vehicle's centre of 

gravity, and F,, IS the suspension force at a vehicle corner produced by a spnng in 

parallel with a continuously vanable damping rate actuator 

F,,, = K,X, + .u(v,,c.) (9 3) 

Here, X is the suspension deflectiOn, v IS the relative velocily across the actuator, and 

c is the percentage dampmg request control signal ( 0 ~ c, ~ I 00) - see Section 2 I .3 

for further details. 

The natural a1m of this control strategy IS to mimmise the difference between M and 

M at any pomt in time A further rum, related to consideration of the actual hardware 

operatiOn, IS to achieve M via a smooth application of control, I.e. prevent the 

actuator valves from extensive operatiOn at theu hrmts, and avmd harsh bang-bang' 

control by limiting the rate of change of control current 

These rums are encapsulated m a dynamic 'cost function' L as 

L(t)=;(M(t)-M(t))' + ~a,'¥(c,) (9 4) 

where the second term costs deviation of the control signal from the central band 

25 < c, < 75 with a quadratic cost outside these hrmts 

lo 
'¥(c,)= 1 

2(c, -so)' -3125 
(9.5) 

otherwise 

To avoid rapid switching between upper and lower hrmts of the actuator valve, a hrmt 

is imposed on the magmtude of the change m control during the zero-order hold 

interval of the controller 

&, =c,(t)-c,(t-&) 

l&.l~b 
(9.6) 
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Then the control vector IS chosen to mmiiiiise an estimate of L(t) at each time step 

f(t)= argmm i(t) (9.7) 

Subject to the constraint, (9.6), the change in L during the time interval (t-<'it,t) IS 

given by 

(9.8) 

and, from (9.2) and (9 3) 

oM= (p+q)~ &:: 
2 £..iCY, S,l 

' 
(p + q) ~ ( dj.l, dj.l, ) 

= 2 L..tU. K,8X, + Jv IN,+ a- &, 
' ' ' 

(9.9) 

Here l!X, and .5v, are only weakly mfluenced by any (bounded and small) change m 

control; hence the first two terms can be ignored. Similarly 

(9 10) 

Therefore, from equations (9 8), (9.9) and (9.1 0) 

( - )(p+q)~ dj.l, ~ d'¥( ) 
OL=M-M L..,CY,-,_&,+L..ta,-d c,&, (9.11) 

2 1 0[;1 I C1 

where 

d'¥ (c)= { o if Jc, -sq :s; 25 
de, ' c, -50 otherwise 

(9 12) 

For reasonably SIIIIIlar actuators it can be assumed that a, = a 2 = a 3 = a 4 =a, and so 

(9 11) becomes 

liL=(M- M)(p+q)~ a dJ.L.& 
2Lt·a-· 

' ' 
+ L,a(c,}(c, -so}&, 

' 
"'LG,&, 

(9.13) 
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where a is defined as 

a(c,)={~ 1f le, -sol :o; 25 
o!herw1se 

(9 14) 

and G, is !he effective gradient of L w.r t c, 

G =(M-M)(p+q)u JJ.L, 
' 2 'a-

' 
(9.15) 

+a(c,) (c, -50) 

The required change m control at each time step, to minuruse equation (9.4), can be 

deduced from inspection of equatiOns (9.4) and (9 13), whilst recalling !he constramt 

of (9 .6). L(t) is defined as a positive quadratic function, which for minurusation 

implies !hat ~L should be a maximum negative value to head towards !he nunimum of 

L(t) whenever possible 

Equation (9.6) hnuts the change m control to ±b, so L(t) can be best numnused with 

&, = -b sgn( G,) (9 16) 

givmg 

(9 17) 

Thus c, always changes by ±b (maximum change) unless G, = 0. More realistically, 

for 'small' G, there will be uncertainty in Its s1gn and a deadband in G, ±a, will be 

included. 

The above equations iherefore represent a non-linear control law, whose structure has 

been defined by conventional engmeering analysis. The free parameters in this 

structure are ~, W, ,a,b, and a. 
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9.2 Multi-goal Learning Implementation 
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Figure 9.1 - Leammg roll control structure 

Figure 9.1Illustrates a control structure, mcludmg two learnmg control modules (LCI 

and LC2) devised to Implement on-hne optnrusatwn of the control strategy defined 

above, v1a CARLA learnmg. 

LC 1 is set to learn H-; and ~ of equation (9 1) The performance measure for LC 1 IS 

taken from the sum of squared roll angle over a test penod of 8 seconds 

(9.18) 

This IS denved from vehicle sensor mformatlon and is passed to the Performance 

Evaluation I (PE1) module PE1 provides the learnmg cntlc, defined for rrumrrusation 

by equatiOns (6 7) and (6.8) to return a performance mdex, f3t E [0,1], to LCl. 

LC2 then takes on the task of learning how best to achieve the deSired roll moment of 

LC I, i e. learn operational values of a, b and a . Its aim, to minimise the difference 

between M and M , leads to the performance measure 

(9.19) 

passed to Performance Evaluation 2 (PE2) PE2 IS defined sirrularly to PE! to provide 

a rrummisat10n cntlc, and hence A , for LC2. 

LC 1 and LC2 are thus separate learnmg umts with independent aims, co-operating 

only via the interaction of their respective actiOns. Each unit consists of 
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mterconnected CARLA ( g, = 0.3, gw = 0.02) w1th a single CARLA for each free 

parameter to be learnt by the unit An imt!al range is identified for each parameter, 

within which the respective CARLA may search 

w; E [-1000000,0] 

~ e[-40000,0] 

a e [0,5000] 

bE [0,50] 

ae[O,IOO] 

(9.20) 

These values are somewhat arb1trary m chmce, although the s1gn, and general s1ze of 

the range, has been deduced from considerations of the effect of each parameter 

md1vidually. 

Input to the vehicle model is an art1fiC1al dual-track road as descnbed m SectiOn 2.3. 

A contmuous track is formed from 150 seconds of such a road, assurrung a vehicle 

forward velocity of 20m/s. 

9.3 Results 

Ten mdependent trials of the above learnmg strategy are Simulated, and the parameter 

results summansed in Table 9.1. A coeffic1ent of variatiOn 1s defined as the standard 

devmtion of the ten results for a parameter d1V1ded by the parameter's mitial range, and 

hence gives some measure of the variation of the learnt parameters across the ten 

results, w1th a low value s1gmfymg a consistent learnt value. 

Parameter Mean Std. Dev1at10n Coeff. of Variation 

w; -303072 9091 0.9% 

~ -12075 1093 2.7% 

a 1793 899 18.0% 

b 44.1 1.70 3.4% 

a 66.4 15 3 15.3% 

Table 9.1 - Parameter results 
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Figures 9.2 and 9 3 show the mean cost (a rolling average of 100 values) returned to 

LCl and LC2 respectively during one typical learning run. It IS seen that the average 

cost seen by both units decreases significantly over time. Evaluation of a nommal 

passive suspension over a typical iteration of the road input ( c, = constant) returns a 

11 value of 14.7x10-s. By applying the derived control structure, with learnmg of the 

free parameters, the system easily surpasses this passive suspensiOn performance 

straightaway, and continues to Improve for some time. 

After around eight hours of learnmg (eqmvalent to 3600 iterations) no further 

Improvement in the mean cost curves is apparent. Takmg the parameter values 

correspondmg to the modal value of the respective CARLA probability distnbutiOn as 

the learnt values from one typical learnmg run gives 

~ =-315300 

w, =-11457 

a= 11102 

b=43 

a=48 

(9.21) 

Relative performance of the roll control system with the above parameter values IS 

assessed by companson with a passive suspensiOn system m simulation over a 1000 

metre section of the road on which learnmg took place. The roll performance of each 

system IS g1ven m Table 9 2. The vertical body displacement has changed httle with 

application of the roll control, but the r.m s. roll angle has Improved significantly. 

Figure 9.4 shows a short time history of the roll angle for the two controllers, and It IS 

clearly seen that the learnt controller consistently returns a roll angle below that of the 

norrunal passive system. 

Learnt Controller 

Nominal Passive 

r m.s. roll angle 
(rad) 

0.0105 

0.0193 

r.m s. vertical body 
displacement (mm) 

12 6 

12.6 

Table 9.2 - Companson of controller performance 
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Considering a brief ti me history of the control signals to left and right actuators -

Figure 9.5 - it is also seen that the control often opposes left to right, as would be 

expected, to counteract roll velocity in one direction. 

The above simulation analysis has shown the roll control strategy, with learnt values of 

the free parameters, has successfully outperformed a passive suspension system, but 

how has the learning strategy itself performed? Chapter 7 introduced Cm, a 

convergence measure statistic which can indicate comparative importance of 

parameters to a learning task; the CARLA associated with parameters that have greater 

effect on sy tern performance are likely to show stronger convergence. 

Cm is measured throughout the learning periods of all ten simulation runs and the 

parameter averages are presented in Figure 9.6. Clearly LCI is able to learn strong 

values for w; and W2 • This is supported by the low coefficients of variation identified 

in Table 9.1 for these parameters, signifying consistent learning of distinct values for 

w; and ~ . LC2, however, is seemingly somewhat less successful. The Cm plots for 

a and a barely rise at all, indicative of very weak learning of these parameters; the 

coefficients of variation are also considerably larger. A high value of b is consistently 

learnt, however, and the mean cost shown in Figure 9.3 fell considerably so LC2 has 

achieved its ai m in some form. 
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Figure 9.6 - Average Cm from ten experiments 
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9.4 Discussion 

A complex non-hnear control problem has been introduced where formal control 

theory is not well suited to obtaining an optimal design. Although numencal 

optiffilsatwn might be used m simulation, the CARLA methodology can be applied on­

lme using vehicle hardware and with no explicit detailed modelling. Here, prior 

engineering knowledge of the basic mechanics of the vehicle system have been 

combmed with the capabilities of CARLA to learn parameters for a full vehicle roll 

control law. 

Analysis of the convergence measure for each parameter highlights a number of 

pomts. ~ and W, are qmckly and consistently attained for a control law for desired 

roll moment. As the suspension system IS semi-active 1t is unable to produce the high 

forces demanded m trying to match the demed roll moment. In trymg to do th1s the 

system (LC2) has learnt that a bang-bang' control is the best compromise; b is learnt 

at the upper end of Its range so the control switches rapidly between 1ts upper and 

lower hmits The parameter a in the control structure employed to avmd th1s is 

consequently ineffective, and no sharp value is obtamed. 

The results presented illustrate that the applicatiOn of CARLA has been successful in 

reducmg roll angles over a quite severe mput Th1s SimulatiOn study thus md1cates 

that apphcatwn in hardware IS both feas1ble and worthwhile. 
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Chapter 10 - Speculative CARLA Extensions 

Two poss1ble modifications to CARLA have been Identified dunng the development 

of the methodology, namely adaptive actlon space sizmg and non-linear funcuon 

learmng. This chapter documents the prelirmnary studies of these extensions that 

demonstrate the1r viability m simulatlon. However, m both cases a number of issues 

remain which will reqmre further research to turn them mto truly useful techmques for 

practical application. 

10.1 Adaptive Action Space 

The CARLA methodology allows the applicatlon of one CARLA per free parameter of 

any learning task. As 1t has been defined thus far, the user IS reqmred to define a 

parameter range in wh1ch the CARLA can operate; a fixed size actiOn space. The 

successful operation of the CARLA thus depends upon the user specifying an 

appropriate actlon space for each parameter. Normally a pnor analysis of the task to 

wh1ch CARLA is being applied should indicate such parameter ranges, although there 

w1ll always be some cases where a task may be too complex to analyse thoroughly. In 

those cases IS would be preferable 1f CARLA could be given some freedom to adapt 1ts 

own action space, effectively introducmg an exploration of the infimte actiOn space. 

An example from the roll control task of Chapter 9 ra1ses the mot1vat10n for such 

ability 

Simple analysis of the vehicle system to deduce a smtable range for the parameter w; 
of the feedback roll control law of (9.1) md1cates a negative value IS reqmred to 

oppose an mduced roll angle. However, an appropnate magmtude IS not obv10us as 1t 

is dependent upon numerous other factors such as the physical charactenstics and 

geometry of the veh1cle and the non-lmear characteristics of the suspension actuators 

for instance In fact, the range of [ -1000000,0] for w; was selected after two 

iterations of CARLA applicatiOn. Ranges of [-100000,0] and [-200000,0] were tned 

prevwusly with the resultant probability distnbutwn for w; heavily skewed showmg a 

preference for larger negative values for w; Figure 10.1 shows a similar result for the 

b parameter of the roll control task where large values of b are repeatedly preferred for 

the most rap1d rate of change of the control s1gnal to be available. Clearly s1gmficant 

time expend1ture could have been saved if an automata could have noticed such a 

heavy skew and acted upon 1t to search further for a more favourable actwn space 

1tself, rather than requinng IteratiOns by the user to find such an actiOn space range by 

mformed trial and error. 
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The aim of this study is then to investigate addition of an adaptive action space 

capability to the CARLA methodology, whereby the CARLA is able to vary its own 

action space where learning shows clear trends. 

10.1.1 Concept and implementation 

The action space of a CARLA, as described in Chapter 6, is defined between two fixed 

limit values, amin and a max . Adaptive action sizing allows these values to vary during 

learning, taking reference to a measure of skewness of the probability distribution in 

deciding in what manner they should be shifted. 

Skewness is ascertained by observing the position of two percentile points of the 

probability distribution, at 25% and 75% respectively. As the 25th percentile tends 

lower in the range then the probability distribution is skewing left and amin should be 

lowered (shifted left) to compensate and allow the CARLA to search more widely into 

this preferred area of the action space. Similarly, motion of the 751
h percentile to the 

right should raise amax. Such expansion of the action set then allows the CARLA to 

explore new regions of the action space. 

Conversely, there is no reason why amin and amax should not have the capabil ity of 

moving in such a way as to reduce the action space size. This will be particularly 

applicable where the probability distribution continuously skews to one side for a 

prolonged period. Consider a skew to the right where amax is repeatedly increased. 
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Evidently there is little or no reward for low a and hence no benefit in maintaining 

amin at a low value. Allowing a min to also move to the right, and thereby reducing the 

action size away from low a , enables the whole automaton action space to track up 

the real line; vice-versa for askew to the left. 

Motion of an action space boundary is controlled by comparison of a percentile point 

from the probability distribution against two user-defined limits - see Figure 10.2. A 

contraction limit (con_lim) and an expansion limit (exp_lim) are defined in terms of 

percentages of the current parameter range. If the percentile remains between these 

limits then the local boundary remains unchanged. However, if the skew of the 

probability di stribution becomes such that the percentile exceeds the expansion limit 

then the local boundary is moved to expand the action space of the CARLA. 

Similarly, if the percentile falls within the contract limit then the local boundary is 

moved to contract the action space. Any expansion or contraction therefore acts to 

move the percentile back within the limits. The 25th and 75th percentiles are referenced 

for control of the local boundary. The expansion and contraction limits are simi larly 

defined, symmetrically about the mid-point of the current parameter range. 

For example, in Figure 10.2, the probability distribution skewness is such that the 75th 

percentile lies inside the contraction limit and the right boundary of the action space 

should therefore be moved to the left. 
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Figure 10.2- Percentile limits for deducing distribution skewness 
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When the percentile exceeds one of the limits then the appropriate expansiOn or 

contraction of the probability distribution is achieved with 

(10.1) 

for expansion and 

~imil (k + 1) = ~imi1 (k) ± Bcon · (amax (k)- a min (k)) ( 10.2) 

for contraction In expansion the boundary point on the probability distribution curve 

definition is stretched out to a new boundary value, whil st in contraction the 

probability distribution is truncated back to the new boundary value. Figure 10.3 

shows an example of this. 
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Figure 10.3 - Expansion and contraction of the action space, (a) original distribution , 

(b) after an expansion, (c) after a contraction 

Any such movement of a boundary point will violate the constraint of J p(a) = 1, but 

in practice simply normalising the curve after any boundary motion enforces the 

constraint. 
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10.1.2 Demonstration task 

The feasibility of the above algonthm is demonstrated here on a functiOn maximisation 

learning task. This task is constructed so the modified CARLA has to recognise, and 

adapt to accurately locate sigmficant changes in the environment response. 

An envuonment response is modelled as the function of two variables 

3 o(1 )2 _,2-(y+l)2 
z= -x .e 

-10 { ~ - x 3 
- x5

) e _,, -y' - x2 - y' + n 
(10.3) 

where n IS unifonnly distributed white noise signal, band-limited to ± 5. This function 

is denved from equation (7.1) used in the comparison of discrete automata with 

CARLA, with the addition of two quadratic terms that shape the overall surface - see 

Figure 10.3(a). To model a change m environment response dunng learnmg, two 

vanants of (10.3) are taken, denved from the two linear transformations 

and 

x~y-3 

y~x-3 

x~x+3 

y~y+3 

(10 4) 

(10.5) 

These surfaces (mean value) are shown m Figure 10 4, (b) and (c) respectively. For 

the imtial 5000 CARLA iteratiOns the environment response conforms to (10.4), and 

thereafter (I 0.5) is applied. 

Two modified CARLA are applied in an interconnected format to learn maximismg 

values of x and y respectively. The parameters of these CARLA are g. = 0.3 and 

g w = 0 02 as before, with the additional parameters for actiOn space boundary control 

defined as, z.,. =0018, 1,0 " =0.01775, and 6.,• =600" =0.001. 

The mitial action space for each CARLA is taken as [-10,0] This choice simulates an 

erroneous selectiOn of initial action space by the user as the maxima of the first 

environment response function, (10.4), he outside these linuts. 

The CARLA are applied for a total of 10000 iterations, and the probability distributiOn 

time histones are shown in Figures 10.5 and 10.6. These show the CARLA 

successfully altenng their action spaces and locating maxima. They both manage to 
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• alter the initial action space to contain the global maximum of ( 10.4) 

• locate the global maximum accurately, concentrating attention around the 

maximum upon repeated reinforcement in that area 

• react to the change m environment after 5000 iterations by 'unleaming' the 

prior knowledge 

• relocate the actiOn space to contam the new global maximum of 

environmental response, the maximum of (1 0.5) 

• locate and concentrate attentiOn around that maximum 
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10.1.3 Discussion 

The above apphcatwn of the modified CARLA w1th adaptive actiOn space control 

clearly demonstrates the technique 1s v1able and could be developed mto a useful tool. 

However, the current methodology suffers from a few weaknesses resultmg m the 

adaptive actiOn space CARLA performance being very sensitive to small vanations of 

the boundary control parameters for a given task; an mappropnate number of tnal runs 

were required to set working boundary control parameters for the demonstratiOn task. 

These parameters are seen, m practice, to define a fine balance between the exploratiOn 

and explOitation properties of the automata 

Over-exploration IS seen to occur as the CARLA excess1vely extends its action space; 

the rate of mcrease of the CARLA actiOn space s1ze overwhelms any reinforcement 

process and hence recovery to a vmble actiOn space JS unlikely. If applied in a control 

optnnisation settmg, such expansive behaviour could eas1Iy encroach on unstable 

reg10ns of the control space. 

Conversely, excess1ve explmtatJon can occur 1f the CARLA reduces 1ts action space 

around a strong actiOn to such an extent that, should the env1ronment response change, 

the CARLA is unable to extract 1tself from th1s regiOn of the total act10n space w1thm a 

reasonable time scale. 

The extra quadratic terms of equation (10 3) over (7.1) have been added as an aid to 

the boundary control on th1s task These additiOnal terms mtroduce a s1gmficant 

gradient to the environment response away from the maxima. If the current CARLA 

actiOn space is focussed away from the maxima th1s gradient helps to mtroduce a skew 

in actiOn remforcements such that the boundary control w1ll move the action space 

towards the area of max1mum remforcement. W1thout these terms, the environment 

response is 'flat' away from the maxima and the CARLA tends to over-explore w1thout 

lmut 

The introductiOn of adaptive action space sizing also raises a concern regardmg local 

optima W1th the fixed actiOn space CARLA, 1t has been seen that the CARLA 

frequently locates the global optimum. Considenng an adaptive actiOn space CARLA, 

locatiOn of a global optimum w1thin the initial action set can be reasonably expected 

and the CARLA w1ll reduce its actiOn space around the region of that optimum If, 

say, the global optimum then shifted suddenly away from that region, the CARLA IS 

reqmred to expand its action space agam. In th1s case Jt IS possible that the CARLA 

will locate and subsequently settle around the first optimum 1t finds, which 1s not 

necessanly the global optimum 
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10.2 Non-linear Control 

Up until now only linear controllers have been considered in the application of 

CARLA to optmusmg vehicle suspension characteristics. Linear controllers were 

mitially chosen as they provided, for some spec1fic cases, a theoretical solution agamst 

which the ability of various learning automata could be judged dunng their 

development. However, where non-linear systems are considered, especially practical 

studies m hardware, it is likely that improved system performance can be found from 

applymg non-linear control. This section mvestigates the application of CARLA to 

learn a non-linear ride controller for an ideal fullactive vehicle suspensiOn where some 

s1gmficant non-lmeanties are present, in the form of bump-stops applied for 

suspensiOn deflectiOn above a pre-defined limit. The implemented technique IS based 

on s1mple functiOn approx1mators, where mterconnected CARLA are applied to learn 

values for the free parameters of the approx1mators. 

10.2.1 Concept and implementation 

Prevwus lmear feedback control laws for the quarter-vehicle suspensiOn model have 

been of the form 

(10.6) 

The approach adopted here is to replace each static gain value of (1 0 6) w1th a gam 

functiOn, so that the control law becomes non-linear in its parameters thus 

(10.7) 

Note that to reduce the leammg task slightly, the relatively ineffective feedback of k1 

is agam dropped 

Each gam function can now be learnt by applying a farmly of mterconnected CARLA 

to learn the free parameters, w
1

, of a piecew1se-linear function approximator construct 

of the form 

5 

k,(x,)= L,r
1
(x,) w,_

1 
(10 8) 

j=l 

where r
1 

are 'roof basis functions. Figure 10.7 illustrates r
1 

for the feedback gam 

functwn on x2 • Here the nodal pomts of the r
1 

are distributed evenly between the 

state limits of x2 defined for the moderator. 1j and r5 are shaped beyond these lirmts 

for a reasonable continuity of the gam functions, should these limits be exceeded. 
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Function approximators are similarly defined for k3 (x3 ) and k 4 (x4 ) with roof 

functions distributed between the respective moderator state limits imposed on x3 and 

x4 • Fifteen CARLA are thus required on this task to learn the w i.j and define three 

gain function for state-feedback controller of ( l0.7). 

r, 

0.8 

Cl) 
c 
0 0.6 u 
c 
2 
0 
0 
!;L 

0.4 

0.2 

0 

-0.2 
-0.1 -0.05 0 0.05 0.1 

Xz 

Figure 10.7- Piece-wise linear function approximator, k2(x2 ) 

10.2.2 Demonstration task 

An active quarter-vehicle suspension system is considered, of the form described in 

Section 2.l.2. The state feedback control law of (10.7) is to be optimised by learning 

to minimise vertical body acceleration. A significant non-linearity is introduced into 

the system, in the form of bump-stops that the CARLA will need to make allowances 

for; a smooth ride response is best achieved by avoidance of any interactions with 

bump-stops. In hardware a bump-stop is often comprised of rubber cones which are 

used to limit excessive suspension deflections and protect surrounding hardware from 

the impacts caused by such deflections. In simulation they are effectively an 

additional strong spring force applied between the sprung and unsprung mass on 

excessive suspension deflections. Here bump-stops are applied for suspension 

deflections of lx21 > 50mm with a spring rate of 60kN/m. 

The fifteen CARLA are defmed in standard fixed action space form, with learning 

parameters g,.. = 0.02 and gh = 0.3, and minimisation performance evaluation defined 

by equations (6.7) and (6.8). Reasonable action space ranges for the respective gain 
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functions can be taken as for single gain learning of previOus studies. Each set of five 

CARLA are defined over the common action space 

W 21 E [0,15000] 

w3,
1 

E [ 0,2000] j = 1,2, ... ,5 (10.9) 

W 4 1 
E [-4000,0] 

A contmuous track IS formed from the Breakback road profile traversed at 20m/s. This 

provides a harsh input to the system that can excite the system modes significantly and 

will bnng the bump-stops into use dunng learning. 

A moderator with the limits of ( 4.1) IS apphed, and the performance mdex IS defined as 

the squared body acceleration over 16 second iterations, (4.4), for all CARLA. 
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Figure 10.8 - Mean cost time history 

The mean cost result of a typicallearnmg run is shown in Figure 10.8. The CARLA 

are seen to exhibit 1mprovmg performance to around 15000 Iterations, considerably 

longer than the three thousand iterations reqmred on the four gam learning task of 

linear feedback control. The mean cost is also 'nOisier' than seen before. Both effects 

can be attnbuted to the mcreased d1mensionahty of the task, fifteen CARLA are 

reqmred to co-operate m producmg successful control here, where only four were used 

previously. The probability of selecting a successful actwn for trial is reduced as the 

dimension of the task increases, and hence the possibility for wide variations m action 

performance is mcreased. 
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A set of ten automata are simulated, with the stopping criterion set at 15000 Iterations, 

referred to as Automaton H The average convergence measures at the end of each run 

for the fifteen automata are g1ven m Table 10 1, showing a reasonable level of learning 

has taken place on all automata. In particular, k3(x3 ) has shown the strongest 

learning. A similar result has been noted in previous studies where k3 learnmg was 

often dominant as this parameter IS found to be most important to achievmg a 

favourable envuonmental response. 

i=1 i= 2 i=3 i=4 !=5 

w,,2 27 3 1 3.1 3.5 2.4 

w,,3 22 36 55 4.0 2.5 

w,,4 2.2 3.0 3.2 2.9 24 

Table 10.1 - Convergence measures of Automaton H 

The average resultant gain functiOns are Illustrated in Figure 10 9 There JS a clear 

charactenstlc apparent in these plots. It is evident that the CARLA has learnt 'soft' 

suspension settings - low gam values - for small state deflectwns, whereas, for more 

excessive deflections, a larger magmtude control IS preferred. Such settmgs seem 

entirely reasonable m attempting to avoid the harsh effects of impactmg on the bump­

stops. 

Compar~son simu1ations of an Automaton H controller against a controller from 

Automaton G confirms the above observation - Automaton G 1s SJffillar to the task 

considered here, except that a four gam linear state feedback controller is optimised 

without bump-stops. The two Automata are each simulated over a 3000 metre section 

of the Breakback road, with bump-stops applied in both cases. In the first simulation 

the mput magnitude is scaled up by 50% to produce a severe input which w1ll cause 

the bump-stops to be apphed. The magmtude IS reduced by 50% in the second 

simulation to analyse the system response on a smoother m put. Tables 10.2 and 10.3 

record the RMS responses. Over the harsh version of Breakback Road the Automata 

are seen to respond Siffillarly. However, across the reduced road profile Automata H 

profits slightly from applymg reduced control force, resultmg in marginally reduced 

body accelerat10ns as greater use IS made of the available tyre and suspension 

works pace. 
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Figure 10.9 -Learnt controller gain functions 

RMS Response Automaton G Automaton H 

x1 (mm) 6.7 6 8 

x2 (mm) 40.5 40.7 

x4 (mfs2) 1.45 1.46 
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Table 10.2- Controller evaluation on a barsh' Breakback road- RMS responses 
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RMS Response Automaton G Automaton H 

x1 (mm) 2.3 2 7 

x2 (mm) 19.3 23.1 

x4 (rnfs2) 0.35 0.33 

Table 10.3- Controller evaluation on a 'soft' Breakback road- RMS responses 

10.2.3 Discussion 

The synthesis of a non-linear control law by reinforcement has been successfully 

demonstrated, m pnnciple, even though there was only a margmal improvement m 

results on the particular task chosen in companson with Iearnmg a linear control law. 

The major drawback seen m th1s CARLA apphcatwn is plainly related to the increased 

dimension of the task; by introducmg many more free parameters in the controller 

structure then sigmficantly longer learning times are apparent. However, it should be 

noted that, had discrete automata been applied to th1s task with each free parameter 

quantised to JUSt three values, say, then the action set, 315 = 14,348,907 actions, would 

inev1tably have resulted m no effective learnmg whatsoever. The generahsatwn of 

CARLA, and its application in an interconnected structure, has at least allowed such a 

task to be attempted w1th some success. 
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Chapter 11 - Summary and Conclusions 

Th1s dissertatiOn has considered the application of a learnmg automaton techmque to 

perform on-line parameter optiffilsation tasks m complex dynamic and stochastic 

environments Liffi!tations of classical Iearnmg automata encountered in imtial 

feasibility studieS have led to the development of a new automaton formulation, the 

Contmuous Action-set Reinforcement Learnmg Automata (CARLA). Subsequent 

study of the CARLA's properties, predoffi!nantly m the form of empmcal 

investigations m Slmulatwn, has demonstrated that CARLA exhib1ts many benefic1al 

properties. Successful on-lme application of CARLA on vehicle hardware supports 

these findmgs. A discussiOn of the mam points of interest ansmg during this study is 

now given, along with suggestions for further research. 

The optimisation of a vehicle suspension system, w1th 1ts complex dynamics and 

naturally stochastic driving input, presents a difficult task. Suspension tumng 

traditionally involves considerable modelling effort to facilitate standard optimisatwn 

techmques, and even then lengthy subJective tuning is often used to overcome the 

shortcoffilngs of the modelling process when compared w1th real hardware 

characteristiCS. Classical discrete learning automata have been identified as an 

approach to such an optimisation task that does not reqmre detailed system modellmg. 

Learnmg automata apply a reinforcement learning method to learn an 'optimal' actwn 

v1a d1rect unsupervised mteraction between the automaton and the target environment. 

Feasibility studies with linear, reward-mactwn, discrete learning automata m 

simulatiOn support this; a nde optiffilsation of a quarter vehicle full-active suspension 

controller, where a solution can be found a priori from LQG theory, demonstrates the 

ability of a learnmg automaton to locate near-optimaJ solutwns. 

It was noted, however, that learning automata m their standard form would not be 

smtable for Immediate on-line application, as it IS possible that unstable control actions 

can be selected for trial during learning To overcome th1s the concept of a moderator 

has been introduced. The moderator acts as an overseer to the learning process, 

monitoring the environment state for excess1ve, possibly unstable deviations. The 

learnmg automaton operates normally, still able to select unstable actwns. However, 1f 

the moderator perce1ves an excessive deviation m the env1ronment then the learmng 

automata is flagged to Immediately fail the current action under tnaJ To return the 

environment to an acceptable state a known stable action is applied for the remamder 

of the tnal penod. Fa1lure of any actwn makes the automaton treat that actwn as 1f it 

had returned a ffilnimum performance mdex and hence rece1ve no reinforcement. In 
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the long term, actwns which are repeatedly 'failed' by the moderator become less likely 

because of m creased probabilities elsewhere in the action space. 

The moderator allows a learning optunisatwn task to be cons1dered m two parts; hard 

lirmts can be monitored by a moderator wh1lst the automaton can concentrate 1ts effort 

on the mam optunisation task For mstance, on the quarter veh1cle nde optlrmsation, 

two terms of the original cost functiOn were used to cost suspenswn workspace usage, 

which is not inherently part of a ride optlrmsatwn but 1s reqmred to constrain learnmg 

to locate 'sensible' control levels w1thin the phys1cal limits of the system W1th a 

moderator in place to watch for excess1ve workspace devmtwns the workspace costing 

terms can be removed from the environment response. The learning automaton can 

thus optimise vertical body acceleratiOn alone and the moderator lim1ts the success of 

control actions to only those which can mamtam reasonable workspace usage dunng 

their tnal. 

Applying the moderator in conjunction with the learnmg automaton now perrmts the 

usage of the methodology on-line, removmg concerns ansing from possible unstable 

actiOn selection. A first hardware tnal of discrete learning automata was subsequently 

implemented on a test velucle, exc1ted on a four-post hydraulic road simulator. 

D1screte leammg automata were applied mdependently at each veh1cle corner to learn 

the four gams of a lmear state-feedback controller, as prevwusly analysed m 

SimulatiOn. However, the veh1cle suspenswn consisted of limited bandwidth semi­

active suspension, unable to prov1de the control level of a fullactlve system, and so 

included much more dynarmc complexity than experienced by the automaton in 

simulation Despite this 1t was seen that d1screte learnmg automata could learn a level 

of control wh1ch surpasses the nde performance of standard pass1ve suspenswn 

without any modelling of the complex system being considered. 

Two shortcomings of discrete learning automata had become evident m these studies, 

both related to the discretisation of the action space itself. Fustly, by quantlsmg an 

action space into a finite number of actwns, the automaton cannot mvestigate 

performance at intermediate actions. It may therefore easily rmss features of the actwn 

space m those regions. Of course the likelihood of missmg optima may be reduced 

with finer quantismg of the action space, but th1s quickly leads to a large actiOn set 

resulting in very slow or inconclusive learnmg. This effect is especially magmfied in 

higher dimension tasks. Secondly, an effective method implemented to attend to the 

above weakness IS seen to mtroduce another lirmtatwn. A multi-stage learning method 

that enabled mcreased resolutiOn of search as learmng progressed, excessively forces 

convergence; at each learning stage the action set is shrunk around the successful 
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actwn of the previous stage. By forcmg a convergence the automaton is unlikely to 

recover 1f a rrusgmded 'successful' actiOn selectiOn is made m an early stage of 

learning, leadmg to an increased likelihood of local optima location It is sirrularly 

unlikely to recover If there IS a shift in environment response during learning 

The CARLA has been developed as motivated by the above pomts. Its concept arises 

from replacing the discrete action set of traditional learning automata formulatiOns 

With a contmuous action region. Instead of quantlSlng an actiOn space mto a discrete 

actwn set and then assignmg a discrete probability distribution to the set, a continuous 

probability distnbutiOn functiOn can be descnbed across the region that gives a 

contmuous action set with an infimte chmce of possible actions. Point applicatiOn of 

reinforcement m an infimte action set is not VIable so a reasonable assumption IS made, 

that actions in the Immediate vicm1ty of a tested actwn will return sirrular results, thus 

allowing a 'spread' of reinforcement to be applied around an actwn subject to Its 

performance. 

The contmuous probability distributiOn function is defined, for CARLA, by recordmg 

the function magmtude at a fimte set of pomts across the action space and then 

assurrung linear interpolatiOn between those pomts in subsequent computatiOn. An 

algonthm has been defined to mamtain a high function definition resolutiOn around 

areas of high probability density. In effect the function points are spaced to give an 

equal probability between them. A Gauss1an distnbutwn functiOn IS applied as the 

continuous remforcement function with Its shape defined by two parameters; g. 

represents a learning rate parameter, g w defines the width of the reward functiOn for 

generalisation of remforcement around the tested actwn. 

The CARLA has been defined for a single d1menswn action space only, because of the 

problems of representing an N-d1mens10n probability distribution functiOn m the 

general case. This IS hardly of any consequence, however, as CARLA are shown to 

co-operate successfully in interconnected formatiOn on higher dimensiOn tasks. 

The formulatiOn of CARLA now gives complete coverage of an actwn space 

throughout a learnmg period. As repeated reinforcement occurs m some areas, so the 

probability of action selection m those areas grows to the natural detriment of 

surrounding areas. However, there always remains some non-zero probability of 

selectiOn of any actwn This gives the CARLA the opportumty to reassess and adapt 

Its response in light of any non-stationary environmental response. 

Simulation studies on basic learnmg tasks demonstrate these beneficial properties of 

CARLA over discrete learning automata. One task was posed to test the ability of 
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automata to d1stmguish the global optimum from a very similar local optimum. Where 

the discrete automata can at best manage around a 75% success rate, the CARLA 

almost always locates the global optimum ObservatiOn of the convergence measure 

on this task shows the CARLA assesses both optima initially. At some pomt the 

CARLA chooses in favour of one optima alone and IS seen to accelerate Its 

convergence towards that. To make the CARLA fml its learnmg rate, g., had to be 

increased considerably, so forcmg the CARLA to rush Its decision. 

CARLA was also analysed on a non-stationary environment that abruptly changes Its 

response after 1000 iterations. Discrete automata were unable to handle th1s case at 

all. CARLA, m maintaining its complete action space, can respond to the change and 

relocate the new optimum, although It was seen to take a considerable time to 'unlearn' 

the original optimum. 

Returning to the vehicle suspensiOn application, CARLA was agam seen to outperform 

discrete automata. It was noticed m these multi-automata tasks that the individual 

CARLA learn at differing rates; the more important a parameter is to producmg a 

'successful' action, so the faster the related automaton is able to distinguish this and 

learn a precise value. 

To test the CARLA further a multi-goal task was devised from formulation of a 

vehicle roll control strategy. The strategy assumes sellll-active suspensiOn as fitted to 

the test vehicle and the simulation study then forms a feasibility study pnor to a 

hardware tnal Two teams of mterconnected CARLA with independent aims were 

reqmred to co-operate to optimise the roll control strategy One aim of the strategy is 

to mmntam reqmred roll moments via smooth control application. The CARLA 

actually found this to be unachievable yet returned a solution of bang-bang' control 

which Significantly improves upon the roll control afforded by a passive suspension 

system. This also highlights the capability of a CARLA based study to provide 

information and msight to the human investigators. 

Recommendations for Further Research 

This study has been very much an empirical mvestigation into the possibilities 

afforded by applymg learning automata to parameter optimisatwn tasks m a highly 

complex stochastic environment. The investigatiOn has led to the formulation of 

CARLA as a new form of learnmg automata. The properties of CARLA have only 

been mvestigated here with experimental studies. It has been shown that CARLA 

exhibits many beneficial properties m practice and is a prollllsmg optimisation 
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techmque that requires further mvestigatwn. In part1cular 1t should be compared w1th 

other optimisatwn techniques to properly assess 1ts potential 

In invesugatmg the CARLA 1tself 1t IS hkely that the convergence properties may be 

better defined v1a an analytical study Here the convergence measure, Cm, has shown 

the convergence history of an automaton and it is apparent that a CARLA can opt for a 

strong regwn of the actwn space to the exclusion of all other regions. Pnor to 

reachmg this state an automaton may have a better v1ew of the overall action space 

wh1lst still locating the global optimum. After optmg for a smgle regwn the CARLA 

IS able to recover 1f the environment response changes, but there is an mcreased penod 

of 'unlearning' reqmred for the CARLA to spread its view before any effective 

relearnmg occurs. How might a balance of CARLA convergence be better achieved? 

The remforcement scheme for CARLA is of reward-inaction form w1th a Gaussian 

distribution used as the remforcement functiOn, defined with the parameters g w and 

g.. Values for these parameters have been set at constant yet fauly arbitrary values 

throughout the various applications of CARLA in this report. Learnmg appears 

relatively msens1Uve to these values, but further research 1s required to ascertam how 

they affect learning performance. It IS possible that these parameters could be varied m 

some manner during learmng, and could help control the convergent nature of the 

CARLA descnbed above. 

The CARLA reqmres the user to define the action space prior to learning; the user 

needs enough knowledge of the action-environment mteractlon to be able to set a 

useful workmg range for the CARLA For complex tasks th1s may not be the case. 

For example, m the roll control study, the imtial range of one parameter required three 

Iterations to enlarge 1t to a range with which the CARLA did not s1mply respond by 

learning a value at the lnrut of the defined actwn space. One possible extenswn to the 

CARLA methodology to tackle this problem has been suggested m Chapter 10. 

Implementing an adaptive action space may enable CARLA to search further afield if 

necessary. The preliminary study demonstrates such a techmque, varymg its action set 

to explore in a non-stationary environment However, the technique as implemented is 

particularly sensitive to its definmg parameters, the learnmg task, and initial conditions 

of the actwn space. 

Throughout th1s study the CARLA has been applied to learn one overall action for all 

situations. It may be worthwhile to cons1der how the CARLA could be mcluded m an 

associative learnmg setting, enabling different actions to be learnt dependent upon 

vanous states of the environment For mstance, to opumise ride performance it is 
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clear that a vehicle will benefit from a different control regime for a rough undulating 

road m comparison with a smoother one A tentative step towards this has been 

suggested by attemptmg to apply CARLA to learn a non-linear controller in Chapter 

10 

From the vehicle suspension perspective, nde and roll control has been attempted m 

mdependent studies It has clearly been demonstrated that CARLA could be applied 

on-line to reduce the time spent in optmusing a productiOn suspensiOn system, 

especially as no accurate system modelling is reqmred by the technique. Further 

studies are now reqmred to mvestlgate the feasibility of Iearnmg a more complete 

suspensiOn control system combining ride and roll control strategies, together with 

other suspension control strategies, to learn the complete nde and handling 

charactenstlcs required of a modem production vehicle. 
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Appendix A - Full Vehicle Model 

A ngid body veh1cle fitted with semi-active suspension actuation 1s simulated in 

Chapter 9. An outline of the model applied was g1ven m Chapter 2. The full 

derivation of the state-space model is detailed here 

Ftgure A 1 defines some layout nomenclature for the veh1cle body. Suspension 

actuation is applied at each corner of the body rectangle, and each corner 1s numbered 

for later reference 

1 Front of vehicle 2 

s 

~ ----q 

Centre of Gravity 

' 

r 

it 

4 3 

Figure A.l -Plan view of vehicle 

The dynanucs of the unsprung mass at each corner, defined by equation (2.18), lead to 

the following state equations for vertical wheel displacement ( x1 to x4 ) and veloc1ty 

(x5 to x8 ) 

x1 =x5 

x2 = x6 

x3 = x1 

x4 =xs 

x5 = (F,,1 - F,,,)/mw,t 
X6 = (F, 2- F,,2)/mw2 
x, = (F, 3- F,Jjmw,3 
X8 = ( F,,4- F,,4 )/mw,4 

(A 1) 



160 

where F, ·' and F,, are the forces mduced by the tyre and suspenswn components 

respectively, and mw.• IS the unsprung corner mass. Tyre force, F,, is modelled as a 

Simple linear spnng of stiffness k,, so 

F,,, = k,.(hroad.< -x,) (A.2) 

where h,,.,, IS the vertical displacement of the road at corner i 

The dynamics of the sprung mass at each corner, defined by the equations of (2.17), 

lead to the followmg state equations for vehicle body displacement ( x9 ), roll angle 

( x10 ) and pitch angle ( x11 ) 

x9 =x12 

X10 = x13 

iu = X14 

x12 = (F,,1 + F,,2 + F,,, + F, 4 )/m, 
X 13 = (p.(F,,2 + F,,,)-q.(F,,1 + F. .• ))ji, 
x14 =(r.(F,.3 +F,.4 )-s.(F,,1 +F,,2 ))/IP 

(A.3) 

The suspenswn force, F,_, is calculated based on apphcatwn of a semi-active actuator 

m parallel With a linear spring of stiffness k,,, at each corner 

F,, =k,,,.(x, -b,)+Fd.• (A.4) 

where b, is the vertical corner displacement of the vehicle body, and Fd, is the 

actuator dampmg force. 

DerivatiOn of the state equations descnbmg the transient operatiOn of a realistic smgle 

actuator was given m Section 2.1.3. Generalising these equations to apply an actuator 

at each corner of the vehicle gives the additional states 



x,, = { tJ'{k.ix, -b,-x,,)-x,3 t.} 
x16 = { t.} _, { k.,,(x6 -b, -x,6)-x24 :,J 
x,7 = {::, r { kb,3(x7 -63 -x,7 )-x,, :,, } 

i 18 = { tJ' { k •• (x, -b4 -x18 )-x,6 :,, } 

x19 = x23 

Xzo = Xz4 

X 21 = X 25 

Xzz = Xz6 

x,3 =-2s;m. ,x,3 +m.',,(u(t)-x,.) 
i 24 =-2s;m •. 2x24 +m.',,(u(t)-x20 ) 

x25 = -zs:;m •. 3x25 +m.'.3(u(t)-x21 ) 

x26 = -2~m •. 4x26 +m.' .• (u(t )-x,) 
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(A.5) 

The vehicle corner height displacements, b, , and velocities, 6, , are found from 

superpositlon of the body bounce, roll and pitch charactenstlcs. The displacements 

and velocities mduced by roll motion of the vehicle body are defined with reference to 

Figure A.2. Snrularly, pitch mduced displacements and velocities are defined with 

reference to Figure A.3. 

Figure A.2 - Roll induced corner displacements and velocities 

3,4 r .~h3 
14~ s 1,2 

Figure A.3 - Pitch induced corner displacements and velocities 

The height displacements are then 

and velocities are 

~ = p.tan6 

h, = -q.tanB 

h, = -s. tan 9 
h4 = r. tant; 

(A.6) 



v, =p.B 
v2 =-q.() 

v3 =-s ~ 

v4 = r.~ 
Applying superposition to deduce vertical corner displacements gives 

b, = x. +h., +h., 

b2 =x9 +h1+h, 

b3 = x. +h, +h. 

b.= x. +h., +h. 

and sinularly for vertical corner velocities 

b1 = x12 +v2 +v3 

b2 = x 12 +v1 +v3 

b3 = x12 +v1 +v4 

b4 = x12 +v2 +v4 
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(A.2) 

(A 3) 

(A4) 
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Appendix B - Probability Distribution Representation 
Refinement 

The CARLA represents its internal state via a piece-wise linear approximation of a 

probabi lity distribution. In implementation on a microproce or, a refinement 

a lgorithm is applied to efficiently use available memory resources whi ls t maintaining 

resolution of curve representation in regions of high probability density. This 

appendix explains the operation of this algorithm by way of an example. 

The refinement algorithm is based around maintaining each ucce ive pair of curve 

vertices at a distance apart such that the probability area swept out between each pair 

of vertices is roughly constant across the whole representation. For in tance, in Figure 

B.l, the probability distribution i heavily skewed towards low values of a. 

Representing this curve with just 6 vertices, there are 5 segments to the probability 

distribution, each of an area close to 0.2. The reason for each area not being exactly 

0.2 will be explained below. 

Suppo e there is now a large reinforcement to a high action value. Applying the 

reinforcement alone, the resultant normalised curve may be of the form seen in Figure 

B. I (b). A indicated on thi plot, the areas between curve vertices are now far from 

equal. 

0.3 018 

014 

0333 

0385 

8 10 
a a 

Figure B.l - Probability distribution before (left) and immediately after (right) a 

reinforcement application 
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The steps taken to move the inner vertices are shown in Figure B.2. It i known that 

the ideal area between vertices should be 1/(number of vertices - 1 ), 0.2 in this 

example. Starting from amin, an action value is calculated whereby the integral of the 

old curve between llmin and this point is 0.2. The first inner vertex is placed here, with 

it's height taken from the old curve - see Figure B.2(a). This process i repeated, 

integrating along the old curve in steps of 0.2, placing new vertices at the e boundary 

point until the whole of the old curve is traversed- see Figure B.2(b),(c),(d). 
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Figure B.2 - Step-by-step realignment of curve vertices 
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Note that, by taking vertex height from the old curve, the area between each pair of 

vertices on the new curve description will not necessarily be the target value. 

Normalising the new curve to a total area of 1, the areas between each vertex on the 

new curve are shown in Figure B.3. It is not a major concern that the areas are not all 

equal , only that the total is consistently 1 to meet the total probability constraint. It 

hould be noted that attempts by the author to formulate an algorithm that maintain 

equal areas between vertices all led to a numerical unstable solution! 
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Figure B.3- Redefined curve representation 




