B Loughborough
University

This item was submitted to Loughborough University as a PhD thesis by the
author and is made available in the Institutional Repository
(https://dspace.lboro.ac.uk/) under the following Creative Commons Licence
conditions.

@creative
ommon

COMMONS D EE D

Attribution-NonCommercial-NoDerivs 2.5
You are free:
» to copy, distribute, display, and perform the worl

Under the following conditions:

Attribution. vou must attribute the work in the manner specified by
the authar or licensar,

Noncommercial. vou may not use this work for commmercial purposes.

Mo Derivative Works. vYou rnay not alter, transform, or build upon
this work,

« For any reuse or distribution, vou must make clear to others the license terms of
this work.

o Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license).

Disclaimer £

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

BLDSC N - DX 223 X,

DI DAC - DX TG

c Loughborough

University

Pilkington Library

Author/Filing Title F@E 3 T

Please note that fines are charged on ALL
overdue items.

LoAn Cgf’*{

e

STOCHASTIC OPTIMISATION OF
VEHICLE SUSPENSION CONTROL SYSTEMS
VIA LEARNING AUTOMATA

Geoff Frost

A Doctoral Thesis

Submitted in partial fulfilment of the requirements
for the award of

Doctor of Philosophy of Loughborough University

October 1998

© by G.P Frost 1998

"

mA_na..u

oy
e

e

e s T o i

.
e ! Sf‘.’ﬁ,y

n e s UG P

NCLTR

ke

P
ST e
¥ Clows

%

|

SR P W
Y
&

3611

K ol 2276

No. OMp10

Acc

Abstract

This thesis considers the optimisation of vehicle suspension systems wia a
reinforcement learning technique The aim is to assess the potential of learnmng
automata to learn ‘optimum’ control of suspension systems, which contain some active
¢lement under electronic control, without recourse to system models. Control
optimisation tasks on full-active and semi-active suspension systems are used for the
feasibility assessment and subsequent development of the leaming automata techmque.

The quarter-vehicle simulation model, with ideal full-active suspension actuation,
provides a well-known environment for mutial studies applying classical discrete
learning automata to learn the controller gains of a linear state-feedback controller.
Learming automata are shown to be capable of acquiring near optimal controllers
without any explicit knowledge of the suspension environment. However, the
methodology has to be developed to allow safe on-line application. A moderator 1
mtroduced to prevent excessive suspension deviations as a result of possible unstable
control actions apphed during learning. A hardware trial is successfully implemented
on a test vehicle fitted with semi-active suspension, excited by a hydraulic road
simulation ng.

During these initial studies some mherent weaknesses of the discrete automata are
noted A discrete action set provides insufficient coverage of a continuous controller
space so optima may be overlooked. Subsequent methods to increase the resolution of
search lead to a forced convergence and hence an increased likelihood of local optima
location. This motivates the development of a new formulation of learning automaton,
the CARLA, which exhibits a continuous action space and a reinforcement
generalisation.

The new method is compared with discrete automata on various stochastic function
optimisation case stucies, demonstrating that the new functionality of CARLA
overcomes many of the 1dentified shortcomings of discrete automata. Furthermore,
CARLA shows a potential capability to learn in non-stationary environments.
Repeating the earlier suspension tasks with CARLA applied, including an on-line
hardware study, further demonstrates a performance gain over discrete automata

Finally, a complex multi-goal learning task is considered A dynamic roll-control
strategy 1s formulated based on the semi-active suspension hardware of the test
vehicle. The CARLA 1s applied to the free parameters of this strategy and is seen to
successfully synthesise improved roll-control over passive suspension.

Acknowledgements

This work was conducted in the Department of Aeronautical and Automotive
Engineering and Transport Studies (AAETS) at Loughborough University. It is based
on research carned out as part of an EPSRC funded project (GR/I82652).

The author gratefully acknowledges the support of the EPSRC and also wishes to
thank the Ford Motor Company for the financial support throughout this project, and
for the provision of a research vehicle and testing facilities.

The research was supervised by Prof. Tim Gordon and I would like to extend my

thanks to him for his supervision, gurdance and patience.

Finally I would like to thank my colleagues in the AAETS department, and in
particular Dr., Mark Howell and Dr. Matt Best, for their assistance and support
throughout my time there.

L

Contents

1 Introduction

1.1 Overview
1 2 Advanced Vehicle Suspensions
1 3 Reinforcement Learning - Learnmng Automata
1 3 1 Stochastic automata
1 3 2 Learning schemes
1 3 3 Hierarchical autornata
1 3 4 Interconnected automata
1 3 5 Applications
1 4 Objective of this Thesis
1 5 Outline of Thesis

2 Suspension System Models

2 1 Quarter-vehicle Ride Model
2.1 1 Passive suspension
212 LQG active suspension
2 1 3 Semu-active suspension
2 2 Rugid Body Model
2 3 Stochastic Road Inputs
2.3 1 White noise
2 3 2 Robson road
2 3 3 Measured road
2 3 4 Dual track mput for full body model

3 Discrete Learning Automata

3 1 Introduction
3 2 General Algonthm
3 3 Discrete Learmng Automata Algonthm
3 3 1 Imtialising the action set
3 3 2 Imtialising the probability vector
3 3 3 Action selection
3 3 4 Convergence criterion
3 3 5 Extension to search action space
34 Scheme 1 P-model Learning Automaton
3 4 1 Reinforcement scheme
3 4 2 Reward/penalty response from the environment
3 5 Scheme 2 S-model Learning Automaton
3 5 1 Remnforcement scheme
3 5 2 Reward/penalty response from the environment
3 6 Companson of Learning Schemes
3 6 1 Trial action 1n the environment
3 6.2 Detauls of the learning schemes
3 6 3 Performance analysis
3.7 Discussion

4 Development for On-line Implementation

4 1 A Moderator

4 2 Parameter Correlation

4 3 Learning on Real’ Roads
4 4 Reduced Cost Function
4 5 Discussion

45

45
50
53
55
58

§ Initial Vehicle Experiment

5 1 Vehicle and Rig Hardware
5 2 Learning System

5 3 Controller Performance

5 4 Discussion

6 Development of the CARLA

6 1 The CARLA Concept
62 CARLA Algorithm
62 1 Imtialisation
6 22 Action selection
6 2 3 Remforcement scheme
6 2 4 Reward/penalty response from the environment
6 3 Convergence
6 3 1 Convergence measures
6 3 2 Assessing the learnt action
63 3 CARLA results
6 4 Implementation
6 4 1 Probability density function representation
6 4 2 Application of reinforcement
6 5 Summary

7T CARLA Performance

7.1 Comparison with Discrete Learning Automata
7 11 Optimisation task
7 1 2 Duscrete automaton configuration
713 CARLA configuration
7 1 4 Performance index
71 5 Optimusation results
7 2 Adaptive Nature of CARLA
7 2 1 Optimasation task
7 2 2 The CARLA configuration
7 2 3 Adaptive results
7 3 Companison with Santharam’s CALA
7 4 Summary

8 CARLA on Vchicle Suspension Applications

8 1 Learning with White Noise Road Spectra
8 2 Learning with Realistic Road Spectra

8 3 On-line Application of CARLA

8 4 Duscusston

9 Dynamic Vehicle Roll Contrel

9 1 Roll Control Strategy Derivation

9 2 Mulu-goal Learning Implementation
9 3 Results

9 4 Discussion

59

59
61
63
65

66

67
70
70
71
72
73
74
74
76
79
79
79
81
82

83

83
84
84
86
87
87
94
95
95
95
99
102

103

103
109
112
116

118

118
122
123
128

10 Speculative CARLA Extensions

10 1 Adaptive Action Space
10 1 1 Concept and implementation
10 1 2 Demonstration task
10 1 3 Discussion

10 2 Non-linear Control
10 2 1 Concept and implementation
10 2 2 Demonstration task
10 2 3 Dascussion

11 Summary and Conclusions

References
Appendix A Full Vehicle Model
Appendix B Probability Distribution Representation Refinement

129

129
129
132
138
139
139
140
144

145

151
159
163

Chapter 1 - Introduction

This thesis considers the application of reinforcement learning techniques, and in
particular the learning automaton, to the synthesis of control laws for advanced vehicle
suspension systems. The major emphasis is placed on developing the learning
automaton methodology as a tool for on-line parameter optimisation of complex
systems in practical application. Vehicle suspension control presents a naturally
complex task, with a stochastic driving input from the road and inherent non-lineanty

from component characteristics, multi-component interactions and geometry effects.

In this chapter, the nature of vehicle suspension systems 1s first discussed, outlining
the advances made 1n this area that make possible significant improvement in vehicle
nde and handling charactenistics. Reinforcement learning is identified as a prime
method by which the performance improvements may be more rapidly accomplished
during the vehicle design optimisation process. The general methodology and
termunology of one suitable reinforcement learning techmique, the learmng automaton,
is introduced with a discussion of 1its history and limited practical application to date
A statement of the objective of this thesis 1s then given.

1.1 Overview

The majonty of modern motor vehicles are fitted with a ‘passive’ suspension system,
consisting of a spring and damper to control vertical forces, and linkages to control
wheel angle and transmut cornering and braking forces as well as steering inputs from
the dnver. However, advances 1n transducers, microprocessors and force actuators
have provided new opportunities 1n suspension design. Significant improvements in
nde and handling performance are possible when the spring and damper arrangement
of a conventional system is completely replaced by a hydraulic actuator, where the
actuator is under full control of a microprocessor taking measurements from sensors to
ascertain the current state of the vehicle Such a system is termed ‘active’.
Alternatively a ‘semi-active’ approach could be used, replacing the fixed charactenistic
damper 1n a passive system with a continuously variable damper The semi-active
system also offers some potential for improved ride and handling performance, but
requires no source of mechanical power, and 1s thus cheaper and simpler to implement
than the corresponding active system; see for example Karnopp (1983) and Sharp &
Crolla (1987).

The conventional approach to the development of suspension control systems involves
extensive modelling, ranging from simple linear quarter car models, up to

sophusticated multibody simulation models based on computer codes such as ADAMS
(see for example Kortum & Sharp, 1993). Even the simplest system will contain
enough design parameters to make any model difficult to match accurately to hardware
performance. Applymg any form of active system will introduce even more vanables
and the design issues will now include synthesis of suitable control laws. Inevitably,
more variables lead to more complexity and hence to longer development times
Despite this design development time, an extensive period 1s also spent on prototype
vehicles where suspension characteristics are subjectively tuned by a process of

iterative development with experienced test dnivers

Clearly 1t 15 attractive to consider techniques whereby the resources expended in doing
such detailed modelling and subjective tuning could be reduced. Machine learning is
one such technmque that offers a capability of 'learning’ how to achieve a pre-defined
objective on-line with Iittle, 1f any, prior knowledge of the system concerned. In
conjunction with computer controlled active suspenston systems, there is therefore the
potential for a learning agent to acquire a control law on-line. This 1s in contrast to
traditional methods of control law design that require system models for their synthesis
off-line. As noted above, any model 1s an inevitable simplhification of the real system,

which then leads to the subjective tuning of the on-line system.

Current machine learning paradigms can be classified into three areas according to the
form of feedback they receive from the world in response to their previous actions:

o Learning by observation - unsupervised learning/learming by discovery - Here there
1s no direct input available concerning the focus of the learning system The learner
has no knowledge of positive/negative instances or which directions to follow in
search of better descriptions. Instead the learner is only able to collect observations
and denve generalised concepts according to its own internal rules. With no
external guidance and no feedback unsupervised learning is nefficient and often
only useful 1n specialised applications One example of unsupervised learning s a
Kohonen net, onginating from the image processing research field, which self-
organises 1ts internal state, in response to put observations alone, such the ‘net’
forms a representation of the shape described by the input values — see Kohonen
(1984)

o Learning from examples - supervised learning/flearning with a teacher - The
learning algorithm 1s trained on a set of matched mput/output data. The aim of the
learner 1s to generate a data description that matches inputs from the training set
with the correct output whilst also generalising the information effectively to

produce acceptable outputs for future unseen inputs. This method requires a very
large amount of external gmdance and the traiming depends upon a well-informed
teacher with comprehensive and good quality data. Neural networks are a classic
form of supervised learning technique, where data is input to the network. Required
outputs for the given mputs are known and the error between those outputs and the
network outputs is used in feedback training, suitably adjusting the weights of the
network to reduce future error.

¢ Remnforcement learning - learning with a critic - Here the learner only receives a
scalar signal as feedback. This reinforcement signal provides evaluation of
performance with respect to pre-set goals No direct error information on the
internal representation of the learning algorithm 1s given. Only the evaluative
response to an action 1s provided as feedback on its performance,

It is this last learming category which 1s most applicable in a vehicle suspension
setting.

The ability for a reinforcement learning algorithm to learn from only evaluative
feedback removes any requirement for a prior: knowledge of the agent’s working
environment Complex and noisy environments in which analytical study becomes
excessively slow or intractable can be tackled by reinforcement learning techmques

where an evaluative signal is available.

Early work 1n the area of reinforcement learning developed a stochastic automaton,
able to work 1n an environment to ‘learn’ the best action from a set of possible actions
it could apply. The stochastic automaton would imtially randomly choose actions to
test in the environment. For each test, the automaton would receive back from the
environment a performance ndex, indicating how successful that action had been The
automaton would update 1ts internal state to increase the chance that successful actions
would be tested agam, while unsuccessful actions would be penalised. Successive
trial/reward 1iterations lead to the automaton predominantly choosing only successful
actions, and hence the overall performance of the system had been improved

In applying such an automaton to a vehicle suspension system, the environment can be
identified as the whole vehicle hardware system mcluding any interactions between
vehicle, road and driver. The action an automaton may apply to a suspension system 1s
a control law. An automaton can have a set of control laws from which the ‘best’ law
in the given environment 1s to be identified. The evaluative feedback can be formed
from sensor measurements Suitable choice of a cost function can give a relative
measure of the performance of any action 1n comparison with previous action trials.

7

1.2 Advanced Vehicle Suspensions

Use of active and semi-active systems, under microprocessor control, considerably
increases the contro! possibilities above those offered by passive systems. In this
dissertation, attention will be restricted to optimisation of the nde function via such
suspension systems, whereby road mregulanties are filtered out and a comfortable
environment is provided for the vehicle occupants

The stochastic nature of the road input suggests the application of linear optimal
control theory for finding good control laws for active systems, and this method has
been widely used (Wilson et al. 1986, Thompson 1984) However, the theory 1s based
upon the assumptions that the suspension system is linear, and the stochastic input 1s
white noise. Although such assumptions are reasonable to mvestigate the possibilities
offered by active systems, any real system will be inherently non-linear because of
practical considerations in component design, component interactions and suspension
geometry. Also, investigation of the nature of road input has shown that white noise 1s
a poor approximation {(Robson 1979).

Semi-active suspension systems have been investigated as economical alternatives to
full active systems. By replacing the fixed characteristic damper in a passive system
with a variable characteristic actuator, many of the beneficial control aspects of full
active systems can be maintained without the expense of providing an energy source
(Karnopp et al., 1974); using a variable damper the semi-active system 1s purely
dissipative with only small energy requrements for valve control within such an
actuator. For these reasons semi-active suspension systems are attracting particular

attention as an affordable improvement to passenger vehicle suspension refinement

Control law design for the semi-active system generally follows on from that of the
full active system, with special consideration given to the constraints 1mposed
(Karnopp, 1983). Synthesis of non-linear controllers has been undertaken by Gordon
& Best (1994), but this relies on off-line optimisation techmiques using a system
model

On-line ‘optimusation’ of any suspension system has generally been limted to
subjective development of passive systems in the final track testing of new vehicle

designs, and is not reported in the Iiterature beyond its principles (Sharp & Hassan,
1984)

1.3 Reinforcement Learning - Learning Automata

Early work n the area of automata models of learning onginated in mathematical
psychology. Consideration of the way in which amimals appear to condition their
response to various stimuli, and therefore ‘learn’ an improved response, led to a
mathematical framework for the study of learning problems - (Bush & Mosteller 1958,
Atkinson et al 1965, Iosifescu & Theodorescu 1969, Norman 1972)

Tsethn (1961) mtroduced the concept of using determimstic automata operating 1in
random environments as models of learming. Further work in the Soviet Unton
followed his 1deas. An introduction to the Russian literature can be found in Tsetlin
(1973).

Varshavskil & Vorontsova (1963) observed that the use of stochastic automata with
updating action probabilities could reduce the number of states in comparison with
deterministic automata. This idea was readily adopted and later research then focused

on stochastic automata.

The general framework on which much of the learning automata development 1s based,

1S NOW g1ven.

p=[o1)
ENVIRONMENT

o(n) STOCHASTIC
AUTOMATON

Figure 1.1 - Learning automaton

1.3.1 Stochastic automata

According to Narendra & Thathachar (1974), ‘A learning automaton is a stochastic
automaton that operates 1n a random environment and updates 1ts action probabilities
in accordance with the inputs received from the environment so as to improve its
performance 1n some specified sense.” Figure 1.1 represents a learning automaton as
defined above, with feedback connection of a stochastic automaton and a random

environment The actions of the antomaton form the inputs to the environment. The

responses of the environment n turn are the input to the automaton, which influence
the internal state of the autornaton,

A distinction between several models of learming automata, based on the nature of the
mnput to the automaton, should be noted A model with a binary input set, e.g. {0,1}, is
termed a P-model, whilst a model with an input set consisting of a finite number of
values is called a Q-model. An automaton 1s of the S-model form if the input set lies
in an interval [0,1]. Each of these models 1s seen as more or less approprate for

different applications.

The environment 1s assumed to exhibit random response characteristics. It has inputs
(actions) a(n)={a,,...,a,} and outputs (responses) belonging to a set S. The
simplest response set to consider is binary, = {O,l}, with zero signifying a reward
response, one signifying a penalty response. The probability of selecting a penalty
output response depends on the mput and 1s denoted by ¢, (i =1,...,r). The ¢, are
called the penalty probabilities If the ¢, do not depend on #, the discrete-time
variable, the environment 1s said to be stationary, otherwise 1t is nonstationary. It is
assumed that the ¢, are unknown initially, as the problem would be trivial if they are

known a priori.

A stochastic automaton 15 a sextuple {f,¢,a,p,A,G} where f 1s the input set,
¢g= {¢1,¢2,...,¢s} 1s the set of internal states, a = {al,az, ,a,}, with r <y, is the
output or action set, p 1s the state probability vector governing the choice of state at
each stage (i.e. at each stage n, p(n)=(p,(n), py(n).....p;(n))), A 1s an algorithm
(also called an updating scheme or reinforcement scheme) which generates p(n+1)
from p(n), and G ¢ — @ 1s the output function. As the environment response 1s
random, so the action probability vector is also random. G could be any function, but
the majonty of stochastic automata work assumes G to be deterministic and one-to-

one (ie r =y, states and actions are regarded as synonymous)

The automaton models used throughout this thesis are based on the above stochastic
automaton model, with r=s, and are referred to as learming automata from hereon.

1.3.2 Learning schemes

The basic operation carried out by a learning automaton is the updating of the action
probabilities on the basis of the responses from the environment. The reinforcement

scheme is thus central to the successful operation of a learming automaton. Much

research in the late 1960s/early 1970s focused on the behaviour of learning automata

utilising various reinforcement schemes, and defined a number of terms relating to
this:

The average penalty received by the automaton, conditional on the probabulity vector,
1s given by

M(n)= E{f(n)|p(n)}

r 1.1
=S n) e D
=1

where n 1s the discrete time variable If no a priori information is available, and the
actions are chosen with equal probability (1e. at random) the value of the average
penalty 1s denoted by M,

_G ot

M, (1.2)

r

The use of the term learning automata can be justified 1if the average penalty is made
less than M.

A learning automaton is called expedient 1f
lim E[M(n)]< M, (1.3)
n—yoo
It would be more desirable, however, 1f proper selection of actions could lead to

minmimisation of the average penalty. From (1.1) it can be seen that the minimum value
of M(n) 1s mn{c, }.

A learming automaton 1s called optimal 1f
lm E[M(n)]=c,, (1.4)
H—yoo

where

¢,, =min{c, }
I

Although optimality appears a very desirable property, implying that the action
associated with the minimum penalty probability 1s chosen, asymptotically, with
probabulity one, a shghtly weaker condition 1s more beneficial 1n practice.

A learming automaton 1s called & -optimal 1f

lim E[M(n)]<c, +£ (15)

n—yoo
can be obtained for any arbitrary £>0 by swtable choice of parameters of the
reinforcement scheme. &-optimality implies that the performance of the automaton
can be made as close to optimal as desired.

A learning automaton is called absolutely expedient 1f

E[M(n+1)|p(n)] < M(n) (1.6)

for all n, all p, (n)e(0,1) (=1, ..,r) and all possible values of ¢, (i =1,....r). Itis
usually assumed the set {c, } has unique maximum and/or mmimum elements

Using this framework of defimtions to relate and compare different reinforcement
schemes, a number of schemes have been proposed. If p(n+1) 1s a linear function of
the components of p(n), the reinforcement scheme 1s said to be linear, otherwise 1t 15
non-linear. In general, when the action at discrete-ime n is a,, the reinforcement
schemes take the form

pn+)=pm)+ Y f,(p(n)) |

1 + for reward
p,(n+1)=p,(n)= f,{p(n)), (j#0)
.7
p(n+1)=p,(n)- Y g,(p(n)

1 > for penalty
p,(n+1)=p,(n)+g,(p(n), (=)

where f,() and g,() are nomnegative continuous functions such that
pi(n+1)e(01), forall k=1,...r.

The first scheme proposed, from the mathematical psychology background, is known
as the linear reward-penalty (Ly_p) scheme where f,() and g,() are both
nonnegative lmear functions. Bush & Mosteller (1958) and Varshavskii & Vorontsova
(1963) studied the L;_, for a two state case, using the scheme

(n+1)=p,(n)+a|1- p,(n)
gj(n+ 1)=?1—n a) g,[(n)jv (’; ;]*i)} for reward
(18)

(1= (1-5).p, ()
= B by, o, () orpenay

where O0<a<] and b=a. This work was extended to the mult-state case by
McLaren (1966) and continued by Chandrasekaran & Shen (1968)

Another common scheme studied 1n the hiterature 1s the linear reward-naction (Lg_;)
scheme in which fJ() is a nonnegative linecar function and g J()=0 The
characteristic of this scheme is therefore that it ignores penalty inputs from the
environment so that the action probabilities remain unchanged under these mputs. One
such example of a Ly _; scheme 1s simply deduced from (1.8), hence

pn+1)= p,(n)+af1-p,(n)]

7, (n+1D=(-a) p, (n), (j # i)} for reward

(1.9)

Px(n+ 1)= P,(n)
p,(n+)=p,(n), = :)} for penalty

Many other hinear and non-linear schemes were conceived and investigated 1n the early
1970s Development of the theory and convergence proofs for these schemes are
widespread throughout the Iiterature, and many of these results are summarised and
covered by Narendra & Thathachar (1974 and 1989), Lakshmivarahan (1981), Baba
(1984) and Najm & Poznyak (1994).

In particular, expedient and optimal reinforcement schemes were compared by
Viswanathan & Narendra (1972) mn trying to ascertain which type of schemes are to be
preferred 1n practical applications Three prominent schemes from the hiterature were
compared: an expedient linear reward-penalty (L;) scheme, an & -optimal linear
reward-inaction (L,) scheme, and a “square law non-linearity” non-hnear reward-
penalty (N, ,) scheme shown to be optimal under certain conditions and expedient
otherwise. The schemes were compared on the basis of degree of expedience, speed of
convergence, and variance associated with the convergence process. Extensive
computer simulation of a ten-state problem (ten possible automaton actions, each with
a pre-defined penalty probability) demonstrated that although the N, scheme
mitially converged towards a solution faster than the other schemes, the maximum and
final vanance was greater, yielding a poorer final solution. The L., scheme, as a
special case of the considered L, scheme, demonstrated the best quality of solution
throughout, with faster convergence than the L, scheme, and smaller measures of

variance than esther L, , or N, , schemes

1.3.3 Hierarchical automata

A hierarchical learning automata utilises a tree structure of simple learning automata,

each with a small action set, to replace a single automaton that would require a much

10

larger action set. For example, Figure 1 2 shows a 3-level structure of automata, each
with only three actions, that exhibits a 27 action set at the base level The automata 1n
higher levels act only to activate an automata at the next lower level. The probability
updating scheme for this hierarchical learning system needs only apply to 3 automata
after each learnming iteration; 9 probability values are updated, as opposed to 27 values
in the equivalent single automaton. Thathachar & Ramaknishnan (1981) reported on a
simulation study of a 7-level huerarchical system, with 2 actions per automata, and 128
output actions. Acting on an artificial random environment with pre-set penalty
probabilities, a saving 1n convergence time compared to a single automaton system

e

was demonstrated

Leaming
Automaton
Learming Learmning Leaming
Automaton Automaten Automaten
Leaming Leaming Learming Learning Leaming Learning Learning Leaming Leaming
Automaton Automaton Autornaten Automaton Automaton Automaton Automaton Automaton Autornaton

e rrrr1rr1rorrirrrrTorTT oTrrrt ool
O 0 0 O O O 05 0y Oy (qo 04 (4 4y 04y 05 Ojg Qg Qg (o (g Oy Oy Oy Gy 5 O Oy

Figure 1.2 - Hierarchical learning automata

1.3.4 Interconnected automata

Thathachar & Ramakrishnan (1982) introduced an interconnected learning automata
system. This uses a team of automata, and is best suited to high dimension problems
caused by learning with a number of interacting action subsets, e.g. a multi-parameter
optimisation problem Simultaneous actrons from the individual automata form a
single action applied to the envuronment. The environment replies with a single
response, fed to all learning automata 1n the team. In this structure the automata are
only linked together through the common environmental response - see Figure 1.3 -
and otherwise have no knowledge of each other. A simple simulation study with two
automata acting n an artificial random environment with pre-set penalty probabilities
resulted 1n the convergence of an interconnected learming automata system.

11

ENVIRONMENT

p=[o1]

(1) STOCHASTIC
AUTOMATON
1

a(n) | STOCHASTIC
AUTOMATON
2

Figure 1.3 - Interconnected learming automata

1.3.5 Applications

The first non-tnivial application of learming automata was in the optimisation field.
McMurtry & Fu (1966) took a function of a single variable over a range containing a
number of local munima with the aim of using a learning automaton to locate the
global mimma to within a subset of the imtial range. Discretising the function into 10
distinct regions, 1t was shown that the learming automaton could distinguish the region
containing the global minima, mncluding cases where noise was added to all function
evaluations carried out duning the search

Shapiro & Narendra (1969) carried out similar experiments with P-model learning
automata. Functions of a single vaniable, with local minima and additive noise (chosen
to preclude the use of gradient type techniques such as stochastic approximation) were
evaluated by the learning automaton at 10 discrete points within a pre-specified range.
The aim of 1dentifying the minimum function evaluation point, from the 10 points, was
successfully demonstrated, mcluding a case where the evaluated function was ‘flat’ in
comparison to large-scale additive noise

Shapire & Narendra also considered the problem of locating the optimal values for two
parameters 1n an adaptive filter. The parameter space was discretised to 25 points,
including the pre-known optimal point. Convergence to the optimal parameter values
was demonstrated, but raised the question of how to deal with migher dimensional
problems Two parameters, each discretised to just 5 values, gives a 25 point action
set. One extra parameter, also discretised to S5 values, raises the action set to 125

pomnts (5%). Larger action sets, formed from high dimension problems or fine

12

discretisation of parameters, were noted as increasing convergence times in locating
optimal actions. Hierarchical learning automata and interconnected learning automata
were later proposed by Thathachar & Ramakrishnan (1981 and 1982) as possible aids
to handling this dimensionality problem

Many early simulation studies run during development of the learning automata theory
demonstrated their optimisation capabilities in stochastic environments, and yet little
in the way of real world applicaton of this technique has since been reported. The
earliest documented use of this technique, by Narendra & Mars (1983) considered a
telephone traffic routing methodology, demonstrating likely efficiency gains to be had
in employing learning automata as dynamic routers at nodes of a communications
network.

Najim et al. (1990) applied learning automata to locate the optima and near-optima of
a multi-modal function with constraints imposed. The technique was applied to find
the optimal settings for a chemical process based on a priort deterministic knowledge
of the cost per year of each possible setting.

Tang & Mars (1991 and 1993) used single automaton and interconnected automata
strategies to learn multiple parameters of an adaptive IR filter. Effectively an on-line
optimisation problem, previous studies had shown multi-modal error surfaces would
be present 1if the IIR filter was under or over parameterised 1n relation to the unknown
system 1t was aiming to match. The global mumima of the error surfaces was shown to
be attainable through use of the learning automata methodology, as opposed to

gradient search techniques which were prone to falling into local optima

Several authors have investigated applying a learming automata technique as a single
parameter self-adjusting controller for a physical process. Najum (1991) considered
the control of concentration of CO; 1n a chemical absorption column. A learmng
automaton was applied to adjust the absorbent flow rate into the column, thus
controlling the CO; concentration to track a set-point concentration profile. The
behaviour of the absorption column 1s mnfluenced by random vanation of varnous
system parameters. A simulation study 1llustrated improved performance compared to
a Ziegler-Nichols tuned PID controller, Valenzuela (1993) applied a hierarchical
automata system to optimise the ore feed rate input to an autogenous grinding circuit
in a mineral process. A dynamic simulator modelled the determimstic and stochastic
behaviour of the gnnding process The learning system was shown to converge to an
optimal state with probability one, with output mass flow rate within the operating

envelope required. Chidambaram (1994) used a single automaton 1n a similar manner

13

to learn the optimal dilution rate of a continuous stirred tank reactor. A deterministic
mode! returned a binary response to the learning automata dependent on the
relationship of output to a set-point. The automaton converged to a final value for the
manipulated variable with probability one, exhibiting improved settling time

characteristics during the learning process in comparison with a PI controller.

In all the above simulation studies, learning automata have dealt with optimusatton of
only one parameter, avoiding problems of high dimensionality, Discretisation of the
parameter to only a small number of values leaves the possibility of the actual optima
for any of the processes simulated lying 1 an interval between discrete points Also
the processes all exhibit long time constants, so time required for computation of the

learming automata is insignificant compared to response characteristics of the process.

Wu (1993) developed an extension to the learning automata methodology to enable
automata to locate an optimum over a continuous area of the action space, even 1if that
optima does not coincide with an action from the initial discrete action set, as may well
be the case in many realistic applications. Wu proposed that automata may ‘home in’
to a smaller area of the action space once an action probability begins to domnate.
Since the automaton should locate the munima of the discrete action set, it is
reasonable to assume the action lies in a region of the action space close to an actual
mimmum of the continuous space. By suitable selection of a smaller area of the action
space, centred on the previously located minima, a requantised action set with a reset
automaton may be applied to search for a better defined mimima - see Figure 1.4
Repeated reduction of the area of action space considered should lead, ultimately, to
location of the optimum point, or something very close.

14

— Contour ines
+ Stage 1 action set
* Stage 2 action set

Figure 1.4 - Discrete action space reduction to locate global minima

Wu & Pugh (1993) applied the same technique to optimise a simulated turbogenerator
power system controller. A single automaton was employed to learn three parameters
of the pre-defined control function. Three stages of learning reduced the action space
search area to 16% of the initial area Analysis of the average performance index
shows the learming automata improving its performance at each stage. The final
control values provided good control performance. Although only a simulation study,
this work showed the potential for real-ime on-line tuning of complex industrial
systems in stochastic environments, without the need for system modelling. The
action set requantisation methodology allows a more complete search of the parameter
space, but in so doing also forces convergence. A poor action choice at an early stage
may force the automaton away from the optimum in subsequent stages The
reductionist nature of the quantisation scheme means recovery of the situation is not
always possible and the methodology becomes inherently non-adaptive to any
subsequent environmental variation.

One study, by Santharam et al (1994) has attempted to overcome problems caused in
considening discretisation of an action space by using a continuous action set. It was
proposed that the probability vector associated with a discrete action set could be
replaced with a single distribution function, charactensed by a small number of
parameters, thus encompassing a continuous action set. Analysis of a learning
algorithm using a Gaussian function as the distribution function was carried out. A

reward or penalty response would yield an update to the distribution via vanation of

15

the two descriptive parameters of a Gaussian distribution, the mean and varniance. A
single parameter optimisation problem, on a multi-modal function, 1illustrated the
effectiveness of the algonthm in finding exact minima points. Unfortunately the
algorithm often converged on a local mintmum of the test function and a rerun would
be required for the automaton to have a chance of finding the global minima. It was
suggested that multi-parameter optimisation problems could be dealt with by applying
the continuous action set learnmng automaton n an mterconnected fashion, utilising a
team of such automata, one per parameter. Although the simulated tasks showed up
inherent weaknesses in the formu]atlogias reported, the underlying philosophy
proposed 1s sigmficant The prmmgle/ idea, to adapt the learning automata
methodology to consider a continuous action space, is of particular note, and is picked

up again in later chapters.

1.4 Objective of this Thesis

Many studies 1n the literature have viewed a learning automaton methodology as a
possible optimisation techmque, especially beneficial in random environments where
traditronal gradient type techmques would either not work, or at best generally fall into
local optima Simulation studies have illustrated the effectiveness of employing
learning automata for optimusing single and multi-parameter functions including
additive noise. Little real-world application of the techmque has been reported
however. The objective of this thesis may therefore be summarised as:

To mvestigate the application of a learning automaton methodology in
the context of an on-line parameter optinusation in complex dynamic and
stochastic environments, as exemplified by advanced vehicle suspension

systems

1.5 Outline of Thesis

Chapter 2 details the suspension system models used in the simulation studies of later
chapters, introducing basic concepts and terrunology The significant portion of this
thesis 1s then broadly split into two marn areas investigating two particular forms of
learning automaton.

Chapters 3, 4 and 5 describe studies using classic discrete learning automata. The
viability of applying a learming automaton technique to suspension systems is first
investigated in Chapter 3, where two forms of antomaton are tested on simple quarter-

vehicle suspension tasks. However, a number of practical limitations are noted that

16

prevent safe on-line application. Chapter 4 addresses these concerns, developing the
methodology to aid practical application. The culmination of this work 1s an
expenment 1n hardware, presented in Chapter 5, in which the extended discrete
learming automata methodology is applied directly on a test vehicle to perform a nde

optirmusation task

The remainder of this thesis introduces and investigates a new form of learning
automaton, the Continuous Action-set Reinforcement Learning Automaton (CARLA)

Although the discrete automata studies produce some promusing results, the
simplification of an essentially continuous action space to a discrete set of actions 18
also seen to introduce a number of hmtations itself. The CARLA 1s developed to
overcome these 1ssues Chapter 6 descrnibes the concept behind the operation of
CARLA and outlines 1ts method of implementation The performance of this new
automaton 1s investigated in Chapter 7 via analysis on basic tasks and comparison with
discrete automata.

Chapter 8 returns to the vehicle suspension application, to repeat a number of tasks
encountered dunng the discrete learning automata studies, but applying CARLA in
their place for comparison. Approaches adopted earlier are seen to be equally
applicable to aid on-line application of CARLA. The chapter concludes with a
hardware experiment with CARLA applied to optimuse the ride charactenstic of a test
vehicle.

A multi-goal learning task is presented in Chapter 9. A dynamuc roll control algorithm
15 developed to mummuse the roll response of a full-vehicle simulation including a
realistic semi-active suspension model. The algonthm presents five free parameters
available for learning Two teams of CARLA are configured to learn ‘optimal’ values

for these parameters in simulation

During the development of CARLA some 1deas for possible extensions to the
methodology presented in Chapter 6 have arisen. Preliminary studies of two such
extensions to the CARLA methodology are presented in Chapter 10

Chapter 11 concludes the thesis with a discussion of the work presented and possible

areas of future research.

17

Chapter 2 - Suspension System Models

This chapter describes the suspension systems considered within this thesis, including
both simulation models and vehicle hardware Simulation studies are implemented
with apphication of 5 order Runge-Kutta integration routines, including vanable step-
size techniques to overcome discontinuities and non-linearities of the integrands.
Digital control is implemented in simulation to match the control application 1n

hardware considered later.

2.1 Quarter-vehicle Ride Model

body mass
A m,
_ body
%4 = velocity
_suspension
%2 = deflection
wheel mass
mw
_ tyre T—__ _ wheel
*1 = deflection K tyre ™ T velocity
! spring
V road
A 1(

Pt SR AL wa i
[~ 2 e

road input
V() = velocity

Figure 2.1 - Quarter vehicle model

Figure 2.1 shows a simple model relevant to the vertical motion at a single wheel-
station of a vehicle. It consists of two masses, the sprung and unsprung masses, which
represent the body and wheel masses respectively The wheel mass 1s 1solated from
the road by a tyre. The vertical dynamic load on a tyre, F,, has been shown to be
approximately proportional to the vertical tyre deformation (Sharp & Hassan 1986)
and therefore a simple model of the tyre as a spring 1s sufficient in considering vertical
motion alone. A suspension force, F,, 1s applied between sprung and unsprung
masses to provide vibration 1solation for the sprung mass, maintaming a satisfactory

18

separation of the two masses and providing control of the dynamic tyre loads. F, can

be achieved in a number of ways, outlined later 1n this section.

The quarter vehicle model 1s widely used 1n the literature as it contains the most basic
features of a vehicle for consideration of ride comfort. It includes a representation of
the problem of controlling wheel load variations, and hence road-holding properties,
and contains suspension system forces that are properly applied between the unsprung
and sprung masses

Using the state variables shown in Figure 2.1, the equations of motion are.

% =vlt)-x,

X, =X;— X,

g =t @D
mw

. _F

x4—mb

Here v(z) is the vertical velocity of the tyre contact patch and the tyre force F,{r) 1s
givenby F, =k, .x,

F. may be defined in a number of ways to represent different suspension
arrangements. Two particular arrangements are considered within this thesis in
relation to quarter vehicle simulation, both providing reference for performance
companson with other systems

2.1.1 Passive suspension

In the passive suspension F.(t) 1s provided by a spring, of stiffness k_, 1n parallel with
a damper, so

Fy=kox, + F, (2.2)
where the damping force
F,=b(x,-x,) 23)

and b, 1s the damping rate. Although identification of the charactenstics of an actual
passive damper umt shows that some non-linearities and hysteresis are present,
mtroduced by the physical charactenstics of its components, the simple model in
equation 2.2 gives a sufficient first approximation for modelling - see Best (1995) A
passive system may be seen as the simplest form of suspension available to control the

19

sprung and unsprung masses to a satisfactory degree. No power is consumed by the
system other than that derived from the vehicle’s kinetic energy of forward motion

The linear passive quarter vehicle model exhibits two modes of vibration, commonly
referred to as the wheel-hop and body bounce modes. Rearranging equations (2 1),
(2.2) and (2 3) into the matnx form-

x = Ax + Bv 24)

and applying the following model parameter values, representative of a medium sized

saloon car
k, = 20000Nm"
k, = 200000Nm" 25)
m, = 40kg '
m, = 300kg

the modes of the model are characterised by the eigenvalues of A:

A,=-25426751

. 26)
A =-29%75i

From complex constants o + a1, the undamped natural frequency and 98% settling
time for each mode are then:

Wheelhop - 4, Body Bounce - 4,
v, =— 108 Hz 1.2 Hz
2n
4
T =— 0.16 s 145
o

The natural frequencies of each mode can be seen in the power spectral density
response to white noise of the wheel and body velocity respectively - Figure 2.2 The
lower plot shows the body motion 1s entirely domunated by the body bounce mode
The upper plot, however, shows wheel motion as covering a much broader bandwidth,
excited at both modes of the system, although the majonty of the input power 1s
transmatted at higher frequencies

20

25F
2 -
257
W
E. 1
Bsr
a
0 L 1 1 1 1
0 4 8 12 16 20
Frequency (Hz)
4 —
3 -
T
£2r
w
E
ol
72
a
0 I 1 1 |
0 4 8 12 16 20
Frequency (Hz)

Figure 2.2 - Wheel velocity (upper) and body velocity (lower) power spectral densities

2.1.2 LQG active suspension

The second reference system 1s provided by considering an 1deal actuator acting
between sprung and unsprung mass, assumed to operate without error or time delay, so
providing any requested force instantaneously. The suspension force 1s thus seen as
the control variable.

F = u(t) 2.7

Assuming such an actuator, and applying a white noise signal as the road velocity
mput to a linear quarter vehicle model, there exists a theoretical technique to
synthesise an optimal controller subject to a quadratic cost function.

The linear quadratic Gaussian (LQG) optimal control techmque (Kwakemaak & Sivan,
1972) defines, for a linear system, a linear state feedback controller

u(t)=K.x (2.8)
that optimises a quadratic performance index where the input to the system is defined

in terms of zero mean Gaussian white noise processes. The gamn vector K 1s found

via solution of the algebraic Riccati equation.

21

For the quarter-vehicle model of Figure 2 1, an appropriate performance index to
employ LQG optimal control 1s

J=a.xl+b.x; + %] (2.9)

The body acceleration term costs passenger discomfort, and road holding 1s maintamed
by suitably costing tyre deflection. The weightings, a and b are selected to tune the
controller to return acceptable values for the three terms within the constraints of
available workspace for suspension travel. Here, the weights have been set according
to a study by Marsh et al. (1995)

a=64000, b=750 (2.10)

Using these values within the discrete-time LQG formulation, assuming a S00Hz
sampling frequency (as used in later practical application) yields the feedback
controller

u(z)=[—10406 8079 1029 -2258] x 211

with associated performance index:

Jo =26621 (2.12)

2.1.3 Semi-active suspension

A third suspension arrangement 1s available by utilising semi-active actuators. A
vehicle fitted with a semu-active suspension system has been used in practical
application of the learning methods developed 1n this thesis The test vehicle 1s a Ford
Granada fitted with continuously variable damper units and instrumented with sensors
at each wheel-station. Representative models of the particular hardware actuators used
were developed by Best (1995), and the denivation of the semi-active quarter-vehicle
model is presented here as a precursor to developing a full vehicle model, described

later.

22

body mass L
A M, +
_ body
k, 7T velocity
v = suspension |
2 = deflection s ! /
actuator
/ *s = deflection
P
tyre wheel
X, = y . Xa =
1 = deflection tyre 3 velocity

road input
v(t) = velocity

Figure 2.3 - Semi-active quarter vehicle model

The first four states 1n Figure 2.3 are the same as in the general layout of Figure 2.1,
and the state equations 1n (2.1) apply. To derive state equations describing the
application of control, and model the nherent actuator transients of the real semi-
active damper, additional states are required Three extra states are defined to include
such an actuator in the quarter vehicle model. x; is the instantaneous expansion
velocity of the damper unit. x, and x, are state vaniables for a second-order transfer
function which represents the transient behaviour of the damper actuator valve.

In the semi-active scheme, suspension force may still be described by equation (2 3),
as in the passive system, but now F, 1s the damping force of the continuously variable
damper, which 1s a non-linear function of velocity x, and the dimensionless control
valve position variable x,

F, = p(x,,x) (2.13)

x, 18 the actuator control vanable, defined to have an operating range (0-100), with 0
implying mnimum (0%) damping, and 100 thus implying maximum (100%) damping
from the actuator. The non-linear maps of actuator force are denved from system
identification on actual hardware (Best 1995). Figures 2.4 and 2.5 show damper maps
from front and rear actuators. For simulation, only the outer two lines on these maps,

23

0% and 100%, are identified. Values between these boundaries are found by

interpolation.

Force (N)

Force (N)

2500

0%
25%

2000

1500

1000

-500
-1000

=1500

- |

I i

0.1 0.2

i L

0.3 0.4

-02 -0.1 0.5
Velocity (ms~")

5 -04 -03

Figure 2.4 - Force velocity map of front actuator

2500

2000

1500

1000

~-1000

I

0

A 1 i

-0?2 -011
Velocity (ms~')

-04 -03 0.2 0.3 0.4 0.5

Figure 2.5 - Force/velocity map of rear actuator

24

The actuator filter equations, describing the transients in hardware, are then

Xg =X,
2.14
i, = =20 x, + o (ult) - x,) @19

To denve the state equation for x, let k, be the stiffness of the compliant bush’ in
series with the damper, this represents both the rubber mounting of the damper and 1ts
nternal compliance. If d(t) is the dynamic displacement of the bush, then equating
forces at the damper and considering basic kinematics

kbd(t)zﬂ(xs’xa)

215
d(t)=x, - x, @15

Dafferentiating the first of these with respect to time yields the fifth state equation

ou)”)
% ={g“} {kb(xs—x4~x5)—x., b—i—:} 2 16)
5

which is clearly non-linear.

2.2 Rigid Body Model

Sense of Positive
Roll Moment

Figure 2.6 - Suspension force and moments acting upon the vehicle body labelling

and sign conventions

A full-vehicle dynamic model, based on the test vehicle, 18 used mm simulation studies
of a roll control learning task in Chapter 9 This model assumes a rnigid vehicle body
fitted with a semi-active suspension unit, of the form described in Section 2 1.3, at

each corner

25

To develop the set of state equations for the full vehicle model, Newton’s second law 1s
applied to deduce the vehicle body dynamics as follows, with reference to Figure 2.6
for sign convention:

Bounce accel.= Z F /m,,

Rollaccel.=(p.(F, + B,)-a.(Fu+)T, @17)
Pitch accel = (r.(Fs.3 + Em)" s.(Fs +F, 2))/Ip

where p,q,rands are lateral and longitudinal distances from the wheels to the
vehicle’s centre of gravity. I, and I, are the roll and pitch moments of inertia of the
vehicle body, respectively.

Simularly, the dynamucs of the unsprung mass at each comer are given by

Unsprung corner mass accel.= (F; ,—F v,) m,, (2.18)

These dynamic equations produce 14 state equations, and a further 12 are added to
include realistic transients and compliance modelling for the semi-active actuator
units. A comprehensive derivation and Listing of the full vehicle dynamic and state

equations are given in Appendix A.

The following parameter values have been used in simulation of the full-vehicle

system
Ky son = 22500Nm™
e = 21000Nm’
k, = 1200Nm™
k, = 160000Nm™
M, oo = 28KE
m, .. = 32kg (2 19)
m, = 1400kg
I = 380Nms’.rad”
I, = 2400Nms’.rad"
{ =07
@, = 1257rad s

2.3 Stochastic Road Inputs

The only 1nput to the vehicle model 1s the vertical road velocity considered to act at a

poimnt at the base of the tyre spring. All models in this thesis are simulated over

26

stochastic processes representing the random road velocities induced on a vehicle tyre
as it traverses a road. Three types of single track road’ have been employed with the
quarter vehicle model, white notse, Robson road and measured road A dual track
mput is synthesised for the full vehicle model to include a realistic roll inducing
component across the tracks.

2.3.1 White noise

The use of white noise allows the application of optimal control theory to synthesise a
linear state feedback control law - see Section 2.1.2. This means that v(z) 1s supplied
as a Gaussian white noise process, and although this 1s not entirely realistic, 1t has been
widely used in the literature (e g. Karnopp, 1983.) In comparison with real road

spectra a white noise 1nput spectra provides insufficient power at low frequencies.

Where white noise 1s applied 1n simulation studies in this thesis, independent samples
of zero-mean white noise are taken. Using a zero-order hold period of T=001
seconds, the signal RMS 15 set to 0 =05m/s

2.3.2 Robson road

A more realistic road signal can be derived from a frequency shaped white noise
process A widely used model is that suggested by Robson (1979). The verucal
displacement power spectral density, S, of the surface 15 given by

S(f)=kuepv (220)

where f is the frequency in Hz, k 1s a roughness coefficient, and U 1s the forward
speed of the car in m/s. Robson estimated the roughness coefficient of roads to
typically lie between 3x10™* for smooth motorway, and 3x10~ for a rough minor

road

This road model 1s used in practical studies to provide a reference mput for hydraulic
actuators acting on each wheel of a test vehicle The prime concern of a road
description for such a rig 1s that the peak deflections stay within the working range of
the actuators. For this reason, and assurung a 20m/s forward vehicle velocity, a
roughness coefficient of k =24x10° 15 applied Also, to prevent large deflections
from low frequency ‘dnft’, all frequencies below 0 2Hz are removed by filtering in the
frequency domain via fast Founer transforms (FFT).

27

2.3.3 Measured road

A better approximation to real road spectra is achieved from taking measurements of
different types of actual road. @A number of roads around Loughborough
(Leicestershire, UK) have been examined, with road height measurements of both left
and right wheel tracks taken at 10cm intervals. Differentiation by FFT allows road
velocity spectra to be produced for varying vehicle speeds. All simulation has
assumed a forward vehicle velocity of 20m/s.

Two sections of measured road are used principally throughout this thesis: Breakback
Road and Copt Oak Road. Figure 2.7 shows how the power spectral densities for these
two roads are similar in shape, varying mainly in amplitude. Breakback Road is an
undulating road with pronounced low frequency features and, as a C class road, also
has a rough surface finish. Copt Oak Road presents a less severe response across the
frequency spectrum; it is a B class road with a higher quality surface finish and
generally less prominent features compared to Breakback road.

—— Copt Oak Road
—— Breakback Road

PSD ((m/s?)/Hz)
&

-
o

10‘ a7 I
10° 10
Frequency (Hz)

Figure 2.7 - Power spectra density of Breakback Road and Copt Oak Road

2.3.4 Dual track input for full body model

Input to the full vehicle model is an artificial road created to mimic the roll/bounce
power spectral density relationship of a measured road surface profile. A 3000m
continuous road is created as left and right tracks with vertical displacement of each

track defined as a height component, plus or minus a roll component:

7, =z+6

g (2.21)
R

28

where

t=m) 2.22)
6=—£0+n,{t) '

and n,(¢) and n, (¢} are Gaussian white noise processes.

Figure 2.8 shows the roll/bounce PSD ratio relationship of a measured road profile. At
low frequencies 1t 1s seen that left and nght tracks have simular profiles, as expected as
these long waves are defined by the lie of the land over which the road is passing. For
higher frequencies the left and nght tracks become increasingly unrelated. This
phenomenon is simply modelled 1n the artificial road by high pass filtering the roll
component in equation 2.22 to remove low frequency displacement differences
between the two tracks of the road. A value for & of 12 6 results in a roll/bounce PSD
ratio which closely matches that of the measured road, as shown 1n Figure 2 8

An amplitude for n,(¢) and n,(r) of 3 was used. The resultant power content of the
artificial road 1s significantly higher than the comparable Breakback Road at higher
frequencies - see Figure 2 9. This rougher’ road model will tend to induce a larger
wheel hop response on the vehicle. Applying the artificial road, much more
importance 1s then placed on any learming algorithm being able to learmn adequate

control in this harsher environment,

29

10 x T B3 T
I ~——— Artificial Road
~—— Measured Road

210’
T
[a s
(=]
)
B
[}
(&}
=
= §
[=]
g
g10

10_2 1 1 s i

107 10° 10' 10°

Frequency (Hz)

Figure 2.8 - Ratio of roll to bounce content of artificial road and Breakback Road

Artificial Road
— Measured Road

g

%“’\MWWWW -

PSD m?/Hz
>

é. rrT

I 1 1

0 2 4 6 8 10 12 14 16 18 20
Frequency (Hz)

Figure 2.9 - PSD velocity content comparison of artificial road with Breakback Road

30

Chapter 3 - Discrete Learning Automata

This chapter takes the general mathematical framework of learning automata outlined
in Section 1.2, and introduces further details of their implementation. A preliminary
study of the possible application of a classic discrete automaton to learn a vehicle
suspension controller is described, and, in so doing, two learning schemes are
compared. This study was originally presented at the [IUTAM Symposium, 1994
(Frost et al., 1994).

3.1 Introduction

A learning automaton may be termed ‘discrete’ when the action set of the automaton
consists of a finite number of distinct actions, as is the case for the learning automata
as first defined. This is well illustrated by considering an early application of the
technique in the optimisation field (Shapiro & Narendra 1969). A discrete learning
automaton was utilised to maximise a function of a single variable - Figure 3.1.
Although the function is continuous across the considered range, the learning
automaton has an action set of 10 distinct points at which the function is evaluated for

the purpose of learning the action that returns maximum reward, /(a).

I(cx)
=

- - -

1 2 3 4 5 6 y 4 8 9 10
Action o,

Figure 3.1 - Continuous function, discrete evaluation points

31

A natural extension of this approach maps the action set to discrete values of
parameters in an environment Figure 3.2 shows an adaptive identification scheme,
also from the study of Shapiro & Narendra (1969). A discrete learning automaton was
utilised to learn the optimal values of the parameters A and B. Each parameter was
discretised to S values, including the optimal values. The action set is then defined as
the set of (4, B) value pairs covering all combinations of discrete parameter values, 5
= 25 1 total for this case. Many subsequent studies employed similar

parameter/action set mappings to cover a parameter space of the environment under

consideration.
z\
7 -012' +022-025
White
Noise =
Perdormance | ¥=¢€
> Evaluation

z]

2" +Az? +Bz-025

AB Discrets
Learning
Automaton

Figure 3.2 - Adaptive identification scheme

The further extension to this methodology (Wu 1993) allowed an automaton to ‘home
in’ to a smaller area of the action space once a particular action begins to dominate.
Upon achieving a level of convergence to any one particular action from 1ts set, the
proposed method allows the learming automata to re-start learning on an action set that
covers a reduced area of the initial action space, centred on the successful action from
the previous stage.

A preliminary study by Gordon et al. (1993) investigated the feasibility of a learning
automnata technique with regard to vehicle suspension control The suspension system
under consideration was a quarter vehicle model, as defined 1n Section 2.1, with full
bandwidth suspension force actuation and a white noise road velocity input. A
theoretical optimal control law 1s readily available for such a system, from applying
LQG optimal control theory, giving the control force as a function of the system states
- Section 2.1.2. This provided a solution from which the relative performance of the
learmng automaton could be gauged. Without significant degradation in performance,
the control law may be simplified to-

32

ut)=[0 k, k, k, |x (3.1)

A discrete learning automata was applied, by Gordon et al., to learn values for the
three gains, {kz,k3,k4}, of (3 1). Simulation studies suggested that learming automata
could indeed optimise such a control law, successfully learning capable controllers,
on-line, with no explicit knowledge of the suspension system itself.

Section 3 2 extends the description of learning automata of Section 1.2.1 to form an
algonthm descnibing their operation in general terms Individual parts of the general
algorithm that describe a discrete learning automaton are then outlined 1n Section 3.3.
In Section 34 the P-model learning scheme, adopted by Gordon et al. in their
feasibility study, 1s introduced, including specific details pertaining to such a scheme.
Section 3 4 then describes, in similar form, an S-model learning scheme. Simulation
studies of both P-model and S-model schemes 1n Section 3.5 leads to a number of
suggestions of possible improvements that would enable application 1n a real-world

environment, and these are summarised in Section 3 6.

3.2 General Algorithm

Using the notation introduced in Section 1.2.1, a general algonthm for a learning
automaton may be described by the following pseudocode

Initialise action set a(n)
Initialise probability vector p(n)
n=1
Repeat
Select action a,(n) stochastically according to probability vector
pn)
Trial action ¢,(n) in the environment
Receive reward/penalty response, [, from environment
Apply reinforcement scheme to produce p(n+1)
n=n+l

Until convergence criterion attained

Figure 3.3 - General learning automaton algorithm

This algorithm constitutes a single stage of learning, with the automaton repeatedly

selecting, executing and reinforcing actions until one action domnates and

convergence to the ‘best’ action 1s deemed to have occurred.

33

The development of the learning automata methodology in this thesis is based upon the
general description of the algonithm outlined in Figure 3 3. For this reason the major
aspects of the algorithm which distinguish particular formulations of learning automata
have been highlighted in bold

3.3 Discrete Learning Automata Algorithm

With reference to Figure 3.3, the major aspects of a discrete learning automaton
algorithm are outhned here, In addition the extension to the methodology introduced
by Wu (1993) 1s described.

3.3.1 Initialising the action set

A discrete learming automaton requires that the action space under consideration be
discretised to a fimte number of possible actions. Suppose the action space
corresponds to a discretisation of a multi-dimensional parameter space If the
environment has N parameters, each discretised to r equally spaced action values,
the complete action set is formed from all possible combinations, s=r", of those
actions, so the action set can be written as o= {al,az, ..,as}.

3.3.2 Initialising the probability vector

Each action 1s associated with a probability of selection by the automaton. The
probability vector 1s

p=1{p.psrerp.} 3.2)

No prior knowledge of the performance is assumed and so each action 1s assigned an

equal probability of selection. Subject to the natural constraint
2p =1 (33)
1=1

the imtial probability is thus

p="y 1=12,.,8 (3.4)

3.3.3 Action selection

The probability vector may be thought of as a discrete probahility distribution across
the action space, with a corresponding cumulative distribution function. For example,

34

consider the imtiahisation for an automaton covering the parameter range 0 to 10 with
six actions. Each action is assigned a selection probability of 1/6 forming a discrete
distribution as shown in Figure 34 The corresponding cumulative distribution
function (c d f.) then consists of a series of discrete steps, shown 1n Figure 3.5.

04r
035r
03r

025

Probability distribution, p,
=)
)
T

015F
o1f
005F
0
0 2 4 6 8 10
Learming automaton action set values
Figure 3.4 - Discrete probability distribution
1 - .
08r
£
5 p=0629
B e e P T e e e e e - oo
2o6F
j+%
b
2
k| .
3
g t
3041 t
Lamy=a,=60
]
]
02r 1
1
|
i
o 1 1 I 1 1
0 2 4 6 8 10

Learning automaton action set values

Figure 3.5 - Example of action selection on a discrete distribution function

35

At each iteration of the automaton a uniformly distributed pseudo-random number
between 0 and 1 1s taken, pe U(O, 1). Using this value, an action 1s then selected
based on the current action probability vector. The cumulative distribution function
formed from the probability vector 1s used 1n the selection process. Tracing p across
to the point of intersection with the c.d.f, the action value at that point is taken as the
chosen action For example, in Figure 3.5, p=0629 gives a(n)=6.

3.3.4 Convergence criterion

Repeated reinforcement of an action through successful responses from tnals in the
environment will lead to the probability of selection of that action becoming dominant
In the limit the learning automaton should converge towards a single action choice
with probabihty 1. It 1s likely, however, that in a noisy environment where a number
of actions return simular responses, the automaton will pick out these actions but be
unable to distinguish between them sufficiently to converge to a single action choice.
An automaton 1s thus deemed to have converged, in a practical sense, to an action
choice 1f

mfx {p}>n i=12,..s (3.5)

where the convergence threshold 77 satisfies %g <n<1. This leads to a natural trade-
off 1n learning between exploration and exploitation. A large value for 1 will lead to
the automaton exploring the actions extensively to gather enough expenence to
converge to one action, with the possibility, as pointed out above, that no choice is
made Too small a value for 77 and the automaton quickly ‘exploits” an action through
fast convergence, which may then be erroncous from ‘jumping to conclusions’.

3.3.5 Extension to search action space

Use of a discrete action set naturally implies that areas of the parameter space are not
explored - those that lie between action points. To effectively cover a parameter space
and enable a full search of the region may require many finely spaced discrete actions.
However, increased action set size invaniably leads to increased learning times since

more actions are available for trial and initial probability levels per action are also less.

Wu (1993) suggested the following method to enable the use of a small action set
automaton to effectively search a large parameter space. A stage of learming as
described in Section 3.2 takes place. Once the convergence criterion 1s met the action

set is redefined about the successful parameter vector with a scale factor A4 applied to

36

reduce the size of the search region and refine the choice of parameters. The learming
automaton is then repeated, reimtialising the probability vector, to learn over the

smaller action space

The single stage of learming from the general algorithm 1s now enclosed 1n an outer
loop to include the above modification

n=1
m=1
Initialise action set a(n)
Repeat
Initialise probability vector p{n)
Repeat
Select and Trial action & ()
Receive reward/penalty response,
Apply reinforcement scheme
n=n+l
Until automaton convergence criterion attained
m=m+1
Reinitialise action set about successful action
applying scale factor A to range of parameters

Untl action space convergence criterion attained

Figure 3.6 - Discrete learning automata algorithm with convergence

The learming automaton 1s deemed to have reached completion when the action space
convergence criterion is achieved

A" <001 36)

where m 1s the number of learning stages completed; this corresponds to a reduction
m the search region to 1% of the imtial size.

3.4 Scheme 1: P-model Learning Automaton

The study by Gordon et al. (1993) employed a P-model learning automaton to
investigate the feasibility of applying the method to learn a three parameter linear
feedback controller applied to a simulated full-active vehicle suspension system -
equation (3 1). Here, with reference to the pseudocode of Section 3.2, the defining
sections of this automaton are described as applied 1n the earlier study.

37

3.4.1 Reinforcement scheme

A P-model reinforcement scheme works with a binary response, {01}, from the
environment, where =0 denotes a ‘favourable’ response, =1 an ‘unfavourable’
response. The particular P-model reinforcement scheme used by Gordon et al was a

non-linear reward-penalty scheme (N ;) of the form-

p,(n+1) = p(n)+&p,(0)(1-p,(n))
p,(n+1)= p, ()= b, ()1~ p,(n))/(s-1)
p,(n+1)= p,(n) - 6p,())(1- p,(n))
p,(n+1)=p, (n)+6p, (m)(1-p, (n))/(s— 1)

} if B(n)=0
3.D

} if Bln)=1

where j=1.2,...,s j#i, s is the number of actions compnsing the action set and 6 1s
a user-defined learning rate parameter, 0< 6 <1. It1s easily venfied that this scheme
maintains the constraint of (3.3) at each iteration.

3.4.2 Reward/penalty response from the environment

In many cases where learming automata are applied the environment alone 1s not
capable of giving a cntical performance response of the type required by the
automaton. More readily a cost function 1s used to provide some measure of
performance and then a performance evaluation routine is formulated to map the
resulting cost, J, to the cntical response, .

This formulation utilises the following performance evaluation routine. The
environmental response J(n)} is compared with a reference value of acceptable
performance:

J,=01+8)J (3.8)

where J 1s the average measured performance index based on the previous

H favourable responses The cntical response, f, is then attained from

J(n)<J, p=0 - favourable

39
J(n)>J , p=1 - unfavourable (3.9)

3.5 Scheme 2: S-model Learning Automaton

Whereas the P-model learming automaton acted on a binary environmental response,

simply representing ‘good’ or ‘bad’, the S-model learning automaton takes values

38

within a continuous range as a response input. This type of automaton can be regarded
as more applicable for problems of a continuous nature where 1t 15 not appropnate to
simplify an action response to merely successful or unsuccessful. Instead a
measurement of the ‘degree of success’ is more often available, 1n the form of a cost
function The continuous range of automaton inputs allows an action to be rated 1n
performance and gives more scope for evaluation of environmental responses than the
binary rating used 1n Scheme 1.

3.5.1 Reinforcement scheme

The reinforcement scheme presented here 1s of the linear ‘reward-inaction’ form,
demonstrated to exhibit good learning properties by Viswanathan & Narendra (1972).
Such a scheme will reward a ‘good’ action, but the probability vector is left unchanged
in response to a ‘bad’ action. Application of constraint (3.3) acts to penalise all other
actions 1n response to a successful action. The critical response from the environment
18 now 3 e[O,l], with =1 bemg the most favourable response The particular
scheme employed here to update the action probability distnbution, in response to

action @, is:

p(k+1)= p,(k)+ 65k)1- p,(k)) } (j=1) (3.10)

p,(k+1)=p (k)-6B(k)p, (k)
where 6 1s a learning rate parameter, 0 <6 <1,

3.5.2 Reward/penalty response from the environment

The environmental response from a cost function, J (n), 1s compared against previous
values to gauge the level of success of the current action

J__=mn{J(Q),72),...,J(n)}

J_.o =median{J(1),J(2), ..,J(n)} (3.11)
Bln)= max{o,—';:: :-"; E:)} 612

Hence f =1 results from the latest action returning the lowest cost expernienced dunng
the current learning run, and fi=0 occurs if J(n) exceeds the median cost of the
available data The median of the cost history 1s used here 1n preference to the more
obvious maximum statistic, as was used in a2 number of other studies, e.g. Viswanathan
& Narendra (1973), Thathachar (1990), and Wu & Pugh (1993). The use of the

39

median value 1s motivated by the robustness of the median as a measure of central
tendency. It allows the automaton to 1gnore any ‘outlandish’ values of J that would

adversely skew the environmental response if the maximum statistic had been used.

3.6 Comparison of Learning Schemes

The description of the respective learning automata formulations 1n the preceding
sections include all but one of the highlighted parts from the pseudocode of Figure 3 3,
namely ‘trial action in the environment’. Here, the particular environment of a vehicle
suspension system is considered and the ‘tmal action’ activity 1s discussed. The P-
model and S-model schemes are compared in the context of this suspension
environment.

3.6.1 Trial action in the environment

The ‘environment’ under consideration is the quarter-vehicle suspension system and
1ts interaction with the road The road input supplied 1s Gaussian white noise velocity
input to the base of the tyre.

The ‘action’ is a combination of parameter values, {kl,kz,k3,k4}, forming a linear
feedback controller.

We)=[&, &, ks k, |x (3.13)

which is then applied to the environment for a penod of time A Initial conditions at
each 1teration are set to zero so that no transients from ‘previous’ actions could interact

with the effects of the ‘current’ action

An environment response, in the form of a cost function result J, is recorded for each
selected action. This takes the form:

J(n)= %i(wle +w,xl +12) (3.14)

-4a

where the three terms cost tyre deformations, suspension deflections and body
accelerations respectively. Values for the cost are set at
w, = 64000, w, = 750 (3.15)

The goal of the above environment/action pair is therefore to learn optimal values of
the four controller gamns for the given cost function. The environment has been

40

defined as for the formulation for LQG optimal control theory application seen in
Section 212 The solution’ to this task 1s therefore already known and the values
which the automata would ultimately be expected to learn are as given in equation
(2 11) Performance of a learnt controller can also be gauged with companson between
the optimal cost of (2.12) and the theoretical cost obtained for the learnt controller.

The time period A has been selected at 16 seconds to enable the performance index to
include low frequency effects of road surface unevenness. This time period 1s quite
arbitrary, but 1its choice 1s justified from considering the variation of mean cost, J,
with respect to A, for a set suspension controller. Here, the optimal controller given
in Section 2.1.2 is applied in simulation, with various lengths of independent white
noise samples as input Figure 3 7 shows how the coefficient of vanation (a simple
measure of noise to signal ratio defined as the ratio of standard deviation to mean) of
the stmulation cost J, averaged over 100 simulations, varies with simulation time. As
would be expected for a random process, the smaller sample of the process offered by
shorter simulation leads to a high level of variation As the simulation time 18
increased so the random process 1s more effectively averaged and the estimate of mean
cost improves. Figure 3.7 suggests that a 16 second simulation time offers a
reasonable compromise between high levels of cost variation and excessive learning
times as the coefficient of variation falls below 10%.

03 T T T T T T

025 1

o2r b

015

Coefficient of Vanation

005+ .

0 1 I 1] 1 1
0 10 20 30 40 50 60 70

Learning period A (s)

Figure 3.7 - Vanation of simulation cost vs. simulation time A

41

3.6.2 Details of the learning schemes

At the start of the first learning stage the gains, k, , were discretised within the ranges

k, e [-20000,0]
k, €[0,15000]
k, €[0,2000]

k, [-4000,0]

(3 16)

These ranges then surround the known LQG optimal values, although 1t should be
noted that similar ranges could be chosen from applicatuon of basic engineering
knowledge of the system. In particular, the sign of the gains can be simply chosen
from constdening whether positive or negative feedback of each state moves the system
to a more stable situation, 1.e. positive ‘spring stiffness’ and ‘damping’ terms

Each parameter was discretised to three equally spaced values spanning the given
range. Therefore, with N =4 and r =3, 81 possible actions are available. A stage of
learning was deemed complete from (3.5) with =05 for both schemes. The scale
factor A =04 was applied after each stage of learning to home 1n on a smaller region
of the parameter space around the successful action from the previous stage. Fnal
convergence, from (3.6), is then completed after six stages of learning.

The following parameter values, specific to the respective schemes, were used,
Scheme 1 - Automaton A: 6=03, 6=0075 H=10

A suitable choice for é depends on the disturbances being considered, larger values
being required for less predictable environments A positive value for & is essential in
this scheme, to avoid the situation 1 which actions are reinforced only when the
disturbance 1nput 1s favourable simply by chance. The value of ¢ used was found to
give best leaming results from comparison with learning sets for 6 =0050, and
d=01

™
1l

Scheme 2 - Automaton B: 0.1

3.6.3 Performance analysis

Ten 1ndependent examples of learning were simulated for each scheme to gather a
sample of automata results. It was seen, for both schemes, that the four-parameter

controllers finally learnt from each simulation were close to the optimal values.

42

Figure 3.8 compares the results for Scheme 1, referred to as Automaton A, with the
LQG optimal values. This shows both parameter values (mean + one standard
deviation) and theoretical expected costs evaluated via the system’s Riccat1 equation.
Although parameters vary quite markedly about the optimal values, the learning
automaton achieves costs that are very close to optimal, confirming the results of
Gordon et al. (1993) Table 3 1 summarises the cost results for Scheme 1, where the
mean cost 18 seen to be 2.6990, only a 1 4 percent increase over the optimal value of
2 6621.

Maximum Mimmmum — Mean Std dev,

Cost 2.7531 2.6793 26990 0.0266

Increase (%) 34 0.6 1.4 -

Table 3.1 - Automaton A cost performance

Maximum Mimmmum Mean Std. dev.

Cost 2.7024 2 6664 26837 00126

Increase (%) 1.5 0.2 08 -

Table 3.2 - Automaton B cost performance

Figure 3.9 and Table 3.2 record results of the same form taken for Scheme 2, referred
to as Automaton B. The overall mean cost for Scheme 2 is just 0 8% above the
optimal value and the cost vanation for the 10 trials is half that of Scheme 1. One
would expect that reduced cost variation 1s a result of reduced vanation in the
parameter values learnt. This 1s indeed the case for k,, k;, and k,, but k, still shows a
large variation about the mean. However, this 1s of little concern as a large variability
of k, was anticipated, this bemng a relatively insensitive parameter for suspension
control (Sharp & Crolla, 1987).

Though not apparent from Figure 3 9, the results show a correlation between the k,
and k, parameters, with high values of k, bemg associated with low values of k,

This anomaly is investigated further in Chapter 4.

Cost and gains relative to LQG optimal system

Cost and gains relative to LQG optimal system

1 [l

Ky

Figure 3.8 - Automaton A results relative to LQG values

k

ks K

Cost

1

Figure 3.9 - Automaton B results relative to LQG values

Cost

3.7 Discussion

As also noted by Wu (1993), Scheme 2 performs better than Scheme 1 Not only is
improved control achieved, but also the time to final convergence is considerably
reduced under Scheme 2. Average ‘real-ime’ learning for Scheme 1 was 11.5 hours
compared to 8.3 hours for Scheme 2.

Scheme 1 also suffers from the number of free parameters in its definition - two more
than for Scheme 2. In particular, parameter & in equation (3.10) has to be set very
carefully for successful learning under Scheme 1, whereas Scheme 2 has no such
sensitive parameters.

As the action set 1s defined 1t is possible for either scheme to enter unstable regions of
the control space. Each parameter being learnt 1s given an imtial range of specific
sign, with one extremum on a stability boundary at zero. It is then possible for the first
stage of learning to ‘choose’ an action on the edge of the stable region, that action
having at least one zero parameter value. The next stage of learning will centre 1ts
actions around this action, and hence some actions lie beyond the stability boundary
Such a scenano could be avoided through reducing the learming rate parameter, 6, of
either scheme so the automata spend a longer period assessing actions and thus have
more chance of selecting an action away from stability boundary worries for the next
learning stage. For general application, however, tuning of parameters alone to try and
avord stability concerns 1s not an option; the best action in a set could be one close to a
stability bound. Another technique 1s required to handle such a situation satisfactorly,
preferably without requinng any iterative parameter tuning

There is also scope for a possible reduction 1n the free parameters used to define the
specific learning task considered here. A successful LQG formulation of optimal nde
control requires addrtional terms in the performance index to constrain tyre deflection
and suspension workspace usage. The relative weights applied to these terms decide
the degree to which each aspect is controlled, and are generally attained through an
iterative trial and error process, with the designer tuning the values subject to resultant
system charactenstics. Without recourse to the LQG techmgque, vanation of the
weights based on the results of iterations of learning runs would be a lengthy and
unwieldy process. It would be more natural if the workspace usage terms could be
removed from the cost function, incorporating a desired workspace usage as part of a
specification of an acceptable controller. The cost function could then concentrate the

learning task to improve ride performance as initially desired.

45

Chapter 4 - Development for On-line Implementation

The previous chapter has shown that the learning automata methodology is capable of
learming good controllers from optimising for a given cost function As a consequence
of these preliminary studies, two major revisions to the learming automata
methodology are ntroduced in this chapter The first revision deals with the
possibility of unstable actions being selected during learning. A second revision then
allows the removal of ‘constraint’ terms from the original cost function so learning can
concentrate on the pnmary optirmsation for ride performance. These revisions, first
presented 1n a paper by Frost et al (1996), take the learning automaton methodology
from being primanly a simulation tool, to being suitable for application on a hardware
task.

4.1 A Moderator

In the previous chapter 1t was suggested that if the learning automaton selects an action
close to stability bounds as the best’ action at the end of one learmng stage, then the
quantisation of a new action set for the next stage may result in unstable actions being
available to the automaton. This situation has been avoided thus far through careful
selection of the learning parameters A moderated learning scheme 1s now introduced
which addresses this problem

For a general physical system, a basic engineering knowledge of the system affords
some 1dea of the normal operational hmuts expected when the system is under stable
control. In the case of a suspension system, for instance, the designer will know the
limits of acceptable suspension deflection. If an applied control action results in the
acceptable range being exceeded then the controller 1s clearly failing to meet its
specification. In particular, if an unstable action were applied then 1t 1s likely that
extreme limits will be exceeded very rapidly.

Considening the four states of the quarter-vehicle model used previously, an
operational envelope can be 1dentified as

tyre deflection- |x,l < 25mm
suspension deflection: x,| < 100mm
P = QcR* (@4.1)
wheel hub velocity* |x3| <25m/s
body velocity: |x4| <125m/s
LN

46

These values are based on physical measurements from a typical car and define wide,
yet reasonable, hmts on the state variables. Any excursion beyond these limits can be
considered as an instant failure of the controller, especially where an unstable
controller is being applied, and this failure needs to be signalled to the learning
automaton. This can be achieved by returning f=0 to the automaton directly

Effectively a further cost has been added to the environmental response function, J

J=J+L 4.2)

where L could be any additional costing function. Here however, any action that
causes (4.1) to be violated is considered to be an 'unstable’ action and should
automatically ’fail’, hence

{0 xef2
43)

so xgQ

A limit violation may occur at any time within the action trial period and the
suspension is deemed to be 1n a potentially unstable state. In the practical case when
this occurs, the system must be returned to a stable state quickly. To achieve this a
moderating control action is needed. For the suspension control problem, a suitable
control action 1s easily supplied by using a conventional passive suspension law as
described 1n Section 2.1.1. The particular stabilising control employed here is:

w()=[0k, b -blx (4 4)

with spring stiffness, k, = 20000N/m and damping rate, b, = 2000N/ms.

The moderator is thus defined as the overseeing control that, upon observing a possible
unstable situation during learning, will signal a ‘fail’ of the offending action to the
automaton and apply a moderating control action to re-stabilise the system. It can be
thought of as a ‘panic button’ hit by an overseeing supervisor to recover from very
poor choice of actions, especially during the early stages of learning when unstable
actions are most hikely. Physically the moderator could be activated from transducer
measurements of the state of the system. In the real world, activation could also result
from an actual panic button supplied to a test engineer!

47

005 T T T T T T T
E
c
e
3 0 4
Q
©
[+1]
=
'_

-0 05 L 1 1 1 L 1 1

0 05 1 158 2 25 3 35 4
Time (s)

005 T T T T T T T
E
c
g
g o
@
=
o
oy

_005 1 1 1 L 1 1 1

0 05 1 15 2 25 3 as 4
Time (s)

Figure 4.1 - Effect of the moderating control

An example of the effect of the moderator is shown in Figure 4 1. The upper plot
shows the first five seconds of an unmoderated learning interval. The wheel
displacement quickly becomes highly oscillatory. Continued testing of this controller
is of little use, as 1t is obviously highly sub-optimal. In practical terms, continued
testing of the controller would also lead to hardware failure as physical limuts of the
suspension are encountered, The lower plot in Figure 4.1 shows the same controller,
but with the moderator taking over at around 2.4 seconds, where the pre-defined hmit
of tyre deflection is reached. The vehicle is returned to a more stable condition before
the commencement of the next testing interval, and so there 1s httle effect, if any, on
subsequent learning. The effect of the moderator on the learning merely allows the
automaton to ignore such unstable actions, and thus these actions are indirectly
avoided at later stages of learning as they are never remnforced in the leaming
automaton.

Ten independent examples of learning are simulated to ensure the addition of a
moderator does not disturb the learning process. This set of examples, referred to as
Automaton C, include the use of the moderating control as defined in equation (4.1)
and a comparison is made with Automaton B from Chapter 3 The learning automaton
and learning task are kept the same as for Automaton B with two minor changes to test
the moderator notion,

48

Primarily the initial gain ranges are shifted to include unstable control actions, c.f.
equation (3.18):

k, e[-18000,2000]
k, €{-1500,13500]
k, &[-200,1800]
k, € [-3600,400]

(4.5)

However, the learning environment 1s also made more challenging in a second respect.
For Automaton B, each 16 second simulation was independent, with imtial conditions
set to zero on each iteration Automaton C mtroduces continuous stmulation across
iteration bounds, whilst still using a 16 second interval to test each action. Each action
then inhenits’ a certain amount of dynamc response from the previous action via the
imtial conditions, which tends to increase the environmental noise.

Comparing the results of Automata B and C 1 Figures 3 6 and 4.2, 1t 1s seen that they
perform very similarly; the mean cost for C 1s 2.6827, an increase of 0.77% over J .
Although there appear to be minor systematic changes in the parameter range obtamed,
the inclusion of unstable actions in the 1nitial set has not led to any degradation in the
learnt control system performance. Moving to the more realistic and challenging
conditions offered by continuous simulation from one 16 second iteration to the next,
has also had little, if any, effect on the learning process.

49

5 _
-— 2 -
a3 _
= S
E
a
=
[0}
S ® ¢ ®
2
D
=
=
: | | - -—
E I ——
]
o
o
=
©
k7]
Q
o
0 1 [1 L 1
k, Ko ks Ks Cost
Figure 4.2 - Results for Automaton C
4
2 x 10 T T T T T T T
18f * i
16f x :
: 14F -
\
E 3
ter * % i
& *
1+ _
*
08 .
06} " |
04 N :
0% —as00 4000 —3500 -3000 72500 <2000 1500 ~1000

Figure 4.3 - k, vs k, from Automaton C

50

4.2 Parameter Correlation

Closer inspection of the gains from Automaton C controllers again reveals an apparent
correlation between the k, and k, parameters, as noticed previously 1n the results of
Automaton B. Figure 4.3 clearly shows this correlation with high values of k, being
associated with lmgh negative values of k,.

Figure 4 4 shows a contour plot of expected costs against &, and k,, holding k, and &,
constant at their LQG optimal values. The plot includes 5 contour lines at each of 1%,
2%, 3%, 4% and 5% above the minimum optimal pomt that 1s pin-pointed with a
marker. Here it is seen that, with white noise input the k,,k, cost surface shows a
sizeable ‘flat valley’ around the optimal point. Both Automata B and C generally
manage to locate a controller within this valley, without being sensitive enough to

locate a cost minimum espectially close to the theoretical optimum

2 2 T T T 1 T
\ - &9)
2+)‘fe 6\%‘ =
<
2 .
275, U
18f .
16 \ % T 1
) .
S, S @
14f > 3 %9% i
ey \\
12F —
)
A @
@ D%
1+ 6;90) e); % E
L)
=}
-
o8t * ‘%t\; i
"
?6‘887 \
06 \\v\ 4
1 .Y 1 1
=3000 —2500 —2000 -1500 -1000

Figure 4.4 - Contour plot of cost vs (k2 ,k4) for white noise input

A high k&, value 1n the controller 1s analogous to a stiff spring being applied in the
suspension. A large negative k, value applies strong skyhook damping These terms
evidently can act together for a wide range of values to return similar costs, although
controllers from around a cost contour may produce significantly different system
charactenstics. For example, the sprung and unsprung mass PSD responses for two
controllers from opposing ends of a 2.67 cost contour line are shown i Figures 4 5
and 4.6 respectively. The controller of Figure 4.5 is very 'stiff’ and so exhibits no body

51

bounce resonance. Figure 4.6 illustrates, conversely, a 'soft’ controller that allows a
clear body resonance and a larger response around the wheel hop resonance.
However, it also filters out higher frequency response, seen in the lower plot of Figure
4.6 as the body response drops off sharply beyond the resonant frequency. As both
controllers result in the same cost, it is this available balance between resonant and
high frequency response that accounts for the parameter correlation, with white noise
input.

If real roads were ‘white’, the choice of controller one could employ would therefore be
just one of taste in terms of the favoured body response. As mentioned earher
however, white noise 1s only a simple approximation to real road spectra, not
possessing as much power at low frequencies. The suspension system has an inherent
low frequency resonance of body bounce on which any nde optimsation should have
most effect. By using learming automata for optimisation of suspension control, there
is no longer a restriction limiting the driving input to a white noise process, as was the
case to enable application of the LQG optimal control technique. Instead, there 1s the
opportunity to apply a more realistic road spectra that could sigmificantly alter the
parameter relationships. Figure 4 7 confirms this, showing a cost contour plot,
produced similarly to Figure 4 4, but using a measured Breakback Road spectra input
in the place of white noise. It is seen that a parameter correlation 1s still evident, but to

a much smaller degree. A cost minimum 1s now more clearly evident.

52

N B 22} @

PSD (m/s)?/Hz

o

1 1 1 1

0 4 8 12 16 20

1.5

-

PSD (m/s)?/Hz
o
w

Figure 4.5

N R (2] @

PSD (m/s)?/Hz

o
(=]
r-N
[=2]

1.5

—

PSD (m/s)3/Hz
o
(4]

Figure 4.6

Frequency (Hz)

1 1 1

0 1 2 3 4

Frequency (Hz)
- PSD wheel velocity (upper) and body velocity (lower) responses with
fullactive controller: k, = 18342, k, =—4521

| 1 L 1

12 16 20
Frequency (Hz)

0 1 2 3 4

Frequency (Hz)
- PSD wheel velocity (upper) and body velocity (lower) responses with

fullactive controller: k, = 4045, k, = —1368

53

x 10
22 T T T T T
2f]
18F 7
4
>
161 < .
14 .
Iy
12 .
1+ _
o8l .
o6f 1
1] 1 1 i
~3000 -2500 ~2000 -1500 -1000

Figure 4.7 - Contour plot of cost vs (k2 , k4) for Breakback road input

4.3 Learning on ’Real’ Roads

A set of ten independent learning examples is taken on Breakback Road, referred to as
Automaton D. The parameter results are summansed in Figure 4.8 A definite change
in characteristic of the learnt parameters can be seen in comparison with the earlier
results from white noise learning. k, and k, are similar to before, with &, showing wide
variation as an insensitive gain for control purposes whilst k, has least variation Now,
however, the previous relationship between &, and k&, has been altered and Automaton
D has learnt values for these parameters with reduced variation, as expected from the
observation made on Figure 4.7.

54

Gains relative to LQG optimal system

0 1 1 1 1
k, Ky ks K

Figure 4.8 - Automaton D results - road spectra learntng

To assess system performance for road spectra learnt controllers, it is no longer a
simple matter to provide a theoretically optimal cost, cost evaluations over
asymptotically large times are also very expensive to obtain. Instead the suspension
systems from Automaton D are evaluated via their dynamic costs obtained from a
single complete run along an independent section of road - Copt Oak Road from
Section 22.2 A simular set of simulations over Copt Oak Road was also taken for
Automaton C and comparison of the results 1s shown n Figure 49. Controllers
obtained under Automaton D learning are seen to perform significantly better than
those of Automaton C. This would seem quite natural; Automaton D, having
experienced real road spectra during its learning phase, performs well on a similar

input spectrum. Conversely, Automaton C, trained on a quite different input spectrum,

namely white noise, then struggles to perform on the unfamiliar road spectrum

55

e12p

2

g

w

E

g @

Q

(O]

9

£ 4

[+4]

>

s ———

o

b

0

o

2 _ @

£

O

| =

)

Qpgl
1 1

Automaton Automaton

C D

Figure 4.9 - Performance of learnt controllers on Copt Oak road

Analysis of the relative proportions of terms making up the dynamic cost reveals
another side to thus story. Automaton D has achieved the improved cost primanly
through reduced suspension workspace usage - see Table 4.1 below. Automaton C
actually gives better ride performance than Automaton D, as measured by r ms body
accelerations,

RMS Response SystemS1 SystemS2 Automaton C Automaton D

x, (mm) 1.7 1.9 1.9 1.9
x, (mm) 6.0 18.9 21.1 134
X, (m/s?) 0.78 0.52 052 056

S1: Nomunal passive: &k, =0, k, = 20000, k, = 2000, k, = -2000.
S2: LQG optimal full-active: k, = -10406, k, = 8079, k, = 1029, k, =-2258.

Table 4.1 - Controller evaluation on Copt Oak Road - RMS responses.

4.4 Reduced Cost Functions

A beneficial side-effect of the moderator is that limits of workspace usage are now
restricted by something other than the cost function during learming. Costing

56

suspension and tyre deflections to indirectly constrain workspace usage 1s no longer
required If deflections under the influence of any particular action become excessive
then that action 1s ‘failed’ by the moderator and 1t is unlikely that any such action will
achieve success with the automaton. Moderated learning thus allows a sumplification
in the cost function originally acquired through formulation of the optimal control
problem. The cost function terms used for constraining workspace can be simply
omutted, and the supervision and limitation of the system deflections is safely left to
the moderator. Workspace can be utilised freely unless the unacceptable limits are

exceeded The performance index is now simply

L1

J(k)=%§(:’c§) “6)

Note that the LQG methodology cannot be applied with such a cost function since the
constraints cannot be imposed separately and formal optimusation would yield the null
controller

ur)=[o 0 0 o]x “47)

Zero force to the sprung mass will indeed produce zero body accelerations, but this
results in absurd unconstrained motions in the suspension and tyre. It is not a
physically realisable or meaningful controller.

Once again, ten independent examples of learning were undertaken, with the
performance index (4.6) applied, and using Breakback Road as input, referred to as
Automaton E. Figure 4.10 summarises the parameter results, where a different
characteristic is observed; k, is significantly removed from the LQG value

Dynamuc performance results are shown in Table 4.2 alongside the results from
Automata C and D for companison.

57

Gans relative to LQG optimal system

Figure 4.10 - Automaton E results - reduced cost function

RMS Response Automaton C Automaton D Automaton E

x, (mm) 1.9 1.9 2.8
x, (mm) 21.1 13.4 291
x, (m/s2) 0.52 0.56 0.45

Table 4.2 Controller evaluation on Copt Oak Road - RMS responses.

The move to a reduced cost function 1s clearly beneficial. Body acceleration 1n
simulation with Automaton E controllers 1s markedly reduced Both tyre deflection
and suspension deflection usage has increased, a significant part of which may be
explained by the reduced %, values corresponding to decreased damping between
sprung and unsprung mass. The moderator has freed learming from the concern of
workspace usage and hence a different form of result has been discovered. Meanwhile
the workspace usage is supervised by the moderator to keep this usage well within the

extreme limuts 1t imposes

58

4.5 Discussion

The learning automaton methodology as ornginally applied to vehicle suspension
control proved its viability as an optimisation technique in such a stochastic
environment, but was flawed 1if the technique was to be considered beyond simulation
studies for on-line application. The possibility of directly applying unstable actions to
the environment without constraint was of particular note Imtial formulation of the
learning task around a cost function derived from LQG theory also meant that iterative
adjustment of this function would still be required to tune the system to attain a
specified characteristic.

Addition of a moderator has overcome both of these drawbacks and really moves the
methodology towards being a useful practical tool. The moderator allows the
automaton to concentrate on its learning task 1n the safe knowledge that an overseer 1s
dealing with any bad situations before they get out of hand ‘Concentrating on the
learning task’ for the task considered here means that workspace usage terms from the
cost function can be removed and left to the moderator to keep in check. The
simulation studies clearly show the learning automaton is then able to acquire
controllers which perform admirably in comparison with passive and ‘optimal’ LQG
controllers. Body acceleration and hence nde performance is reduced significantly
whilst suspension and tyre deflections are less constrained but kept at reasonable levels
by the moderator

Some mutial engineering knowledge of the system has been applied to set the state
limits for the moderator. These limuts are easily found from physical limits imposed
by hardware geometry and by measurement of peak values during normal operating
conditions with a known stable passive controller. Acquisition of a smtable moderator
for application of the technique to other systems would be possible m a simlar
manner. In this way, a certain amount of human knowledge and mtuition can be
directly bult into the learning task and thus time spent tuning the terms 1n a cost

function to produce controllers that return the required characteristics can be reduced.

Chapter 5 - Initial Vehicle Experiment

The development of the learning automaton methodology in the previous chapter
paves the way for the first on-line application to a suspension system in hardware. The
initial experiments described here made use of a vehicle fitted with semi-active
suspension mounted on a four-post hydraulic shake rig. With a hydraulic post at each
wheel station to provide vertical excitation to the suspension, experiments were run to
test discrete learning automata on the physical system. This chapter documents these

tests.

5.1 Vehicle and Rig Hardware

The test vehicle is a Ford Granada. It is essentially standard except that it is fitted with
prototype continuously variable dampers, and instrumented with sensors at each
wheel-station to provide a semi-active suspension system. The controllable dampers
provide variable damping rate via actuation of an internal solenoid valve. This valve
effectively varies the size of an orifice through which oil passes during
extension/compression of the damper, thus varying the damping rate provided by the
unit.

A standard method of controller implementation for such a semi-active system is to
apply a ‘clipped’ active control law (Tseng & Hedrik, 1994.) The semi-active
suspension is only capable of supplying a control force to oppose the relative velocity
across the actuator, and then only within the actuator’s operating envelope imposed
through hardware effects. ‘Clipping’ the active control law refers to attempting to

60

apply the active control request within the constraints of the semi-active system. To
apply the active control law the spring force is first subtracted to give a desired damper
force, F, If F, lies within the damping force envelope, then the required damping
rate lies between the softest and hardest settings, and 1s deduced from linear
interpolation. Where F, lies outside the damper velocity-force envelope the control 1s
‘clipped’ to 0% or 100% damping rate, as appropriate, as the nearest achievable value.

A PC fitted with a TMS320C30 digital signal processing (DSP) board enables control
of the damper units. The PC and DSP access a shared dynamic memory area via
which the PC interacts with the controlling program, running on the DSP, for on-line
variation of control parameters and data acquisition The control action for each
damper 1s applied by the DSP process via a damper drive module This module
converts control voltage signals from the DSP board to pulse-width modulated (PWM)
current signals supplying the solenoid valve in each damper. This signal modulates
the damping rate, whilst, additionally, the high frequency oscillation of the PWM drive
signal acts to vibrate the solenoid sufficiently to prevent sticking of the valve.

Figure 5.1 - Front corner of vehicle: sensor location

61

The sensor set at each cormer of the car comprises two piezo-resistive type
accelerometers. These accelerometers are rigidly mounted in the vertical plane at the
wheel hub and top of each damper pinchbolt respectively - see Figure 5.1 The study
by Best (1995) documents the nstrumentation of this vehicle more thoroughly.
Details of system 1identification carried out on the vehicle to ascertain vehicle
parameters and characteristics of the varnable dampers are also given there.
Furthermore, development of Kalman filters to provide on-line state estimation 1s
described.

The vehicle is mounted on a four-post hydraulic shake rig to excite the suspension
systems. Freedom of movement 1s maintained by hberally greasing the tyre contact
patch. This minimises lateral tyre forces that may restrict freedom of vertical wheel
movement ntroduced from the geometry of the suspension throughout its stroke A
minimal constraint arrangement is applied to prevent the vehicle from falling off the

rig.

The drive signals for the hydraulic rig are shaped as a Robson road as descnibed 1n
Section 23.2. Storage constramts of the rig’s computer control system limited the
length of the drive signals that could be stored to 200 seconds at 204 8Hz. Prior to ng
operation, dnve files are prepared describing signals with the above charactenstics
Each dnive signal 1s shaped with a ramp function at each end, to steadily bring the rig
up from, and back down to, zero displacement after each drive segment. In this way a
drive signal can be used repeatedly to give a continuous ‘test track’ for learning. Each
rig actuator 1s drniven by an mdependent drive signal to maximise independence of
learming at each corner.

5.2 Learning System

A single discrete learning automata, as developed 1n the preceding chapters, is applied
at each corner of the vehicle to learn the parameters of the three term vanant of the
familiar linear feedback control law

un)=[0k, k, &, |x (5.1)

where u(t) is the required control force. k, is set to zero as 1t has been shown from
theory to have little effect on control performance, for a full-active system (Sharp &
Crolla, 1987). Also feedback of tyre deflection 1s a high frequency effect in relation to
the bandwidth of the actuators, so little 1s lost 1n discarding this term.

62

Each automaton acts independently of the others to learn its own control gains, so
maximising the available rig time with four learning automata running concurrently.
A level of interaction will occur between wheel-stations via the body dynamics, but
this interaction 1s small enough for each corner to be considered as independent of the
others.

The 1nitial range of the learnt parameters is as for the earlier full-active simulation
studies

k, €[0,15000]
k, €[0,2000] (5.2)
k, e [-4000,0]

with each gain quantised to 3 values, giving 27 actions per corner learning automaton.
The learning automaton parameters are also as before, 6 =01, 7=05, 1 =04.

A moderator 1s applied, with limit values set as before (see equation 4 1), although it 1s
unlikely that it will come into effect A semu-active suspension is stable by 1ts very
nature, with any control setting of the actuator still resulting in dissipative vibration
reduction, therefore the moderator, onginally developed to catch potentially unstable
situations, would only be activated at the most violent suspension excitation with the
softest damper settings. Prudent choice of the driving nig input, primarily to protect
the rig itself from excessive actuation, tends to remove the possibility of moderator
involvement in the learning process.

The system architecture for a single comer of the vehicle is shown 1n Figure 5.2. Two
timung loops are present: the control loop operating at S00Hz and the learning loop
operating on the 16 second learning 1teration over which any action is trialled.

63

State Estimation

ke
zoH}-] Leamning Performance \ 2 xf <
Automaton Evaluation =
t=16s
Semi-Active
> Cgr:lrr?sller Dﬁmper ZOH[—P» Suspension —] Sensors
aps
\ System
Kalman Filter \ <

t=0002s

Figure 5.2 - System architecture

5.3 Controller Performance

Three trials were run for approximately 1000 iterations each, representing less than

five hours of ng time per trial. A different randomised Robson road was generated for

each trial. All the automata achieved two stages of convergence and would probably

have converged further had more rig time been allocated.

Figure 5.3 shows a typical reduction 1n the cost that 1s achieved durning learning, the

occasional nise comciding with the re-quantising of the learning automaton

The

periodic nature of the cost plot is explained by the wrapping of the rig input every 200

seconds

1 1 T 7 T T T T T T T

105+ A

Mean Cost

0 100 200 300 400 500 600 700 800 g00 1000
lteration

Figure 5.3 - Typical mean cost reduction over time

Corner A ComerB ComerC CornerD

Firm -49 2 -39.8 -46 6 -329

Soft 2.1 -5.2 -10.5 -0.4
Automaton 1 7.8 60 2.5 86
Automaton 2 7.6 62 4.8 82
Automaton 3 6.6 4.7 4.9 6.5

Table 5.1 - Percentage improvement in RMS body acceleration over nominal passive

damper setting (- sign for degraded performance)

To ascertain the relative performance of each learnt controller, the body acceleration
was measured during a complete pass of the vehicle over an independent section of
road, with the same controller gains applied at all four corners. Three tests for
comparnison were also carried out with the suspension control set to passive damper
settings: nomunal, equivalent to the vehicle being fitted with standard production
dampers, firm, with the maximum damping rate set; and soft, with the mimimum
damping rate set. Table 5.1 gives the percentage improvements in r.ms. body
acceleration compared to the nomunal passive setting. A typical power spectral density

65

(PSD) of body acceleration for a learnt controller is compared with that of the nominal
passive setting in Figure 5.4 where it is apparent that the learning automaton has
1identified a controller which significantly reduces the body bounce response at around
1Hz.

p
, \— Passive Setting

'

-1

10

Frequency

Figure 5.4 - A comparison of body acceleration PSDs

5.4 Discussion

This practical study has confirmed the promuse of the previous simulation studies.
From Table 5 1 it 1s seen that the learnt controllers consistently provide reduced rm s
response compared with the nominal passive controller. Also an improved control was
attained in comparison with setting the damping rate to soft. If the rig input had been
of nsufficient power to excite the body modes of the vehicle then the best level of
control would result from simply setting the damping rate to soft at all times.

The discrete learning automaton has been shown to be capable of learning despite the
high level of noise inherent mn the hardware implementation. Even with only two
stages of learning complete, the automata have identified regions of the action space
that produce controllers able to significantly reduce the body bounce response m
comparison with the passive control.

66

Chapter 6 - Development of the CARLA

Studies in the previous chapters have 21l made use of traditional learning automata
with action sets consisting of a finite number of discrete actions These studies have
shown that the learning automata methodology can be successfully apphied as an
optimisation technique in the presence of high levels of uncertainty and noise. Its
success has been demonstrated on-line 1n learning nde optimising controllers for a
semi-active suspension system on a road-gomg vehicle. However, a number of
limitations of the discrete learning automaton have been noted. In particular the
discrete action set linuts the thoroughness of search over an action space. Using the
discrete learning automaton as an optimisation tool, 1t is quite possible that optima
may be missed as they lie between action points. Also, by increasing the number of
actions to more densely cover the parameter space, or by considering higher dimension
learning tasks, the action set size quickly becomes large enough to significantly slow
the learning process, possibly to the point of learning becoming inconclusive.
Interconnected or hierarchical automata may be used to ease this problem, but these
still suffer from the inherent limitations of the discrete nature of the methodology

The technmique of multiple stage learning with action space reduction at each stage (Wu
1993), implemented in the studies of previous chapters, has enabled increased
thoroughness of parameter space search, but has itself introduced other limitations. At
completion of each stage of learning a new action set is formed around the ‘successful’
action of the last stage, covering a reduced area of the parameter space. In this manner
a more thorough search of a region 1s made, however this has also forced a
convergence. This formulation of learning automata can be shown to suffer for this;
should the automaton hastily converge on an action away from the global optimum,
possibly towards a local optimum, then it is unlikely, if not unable, to correct 1ts early
error and find the global optimum Enforcing convergence also reduces the
effecttveness of application in non-stationary environments. Were the environment to
vary between stages of learning then the automaton 1s again unlikely to adapt to the
change and locate a shifted optimum.

Santharam et al. (1994) proposed an alternative learning automaton formulation, which
went some way to overcoming a number of the inherent limitations of discrete learning
automata outlined above. The automaton they proposed employs a continuous action
probability distnibution 1n place of the discrete action probability vector of discrete
automata The continuous distribution maps to a continuous region of the action
space Random action selection based on such a distribution then gives, in discrete

67

automaton terms, an action set with an infinite number of members, immediately
inferring a complete search capability. The particular formulation used by Santharam
et al described the whole probability distribution function via just two descriptive
vanables, the mean and variance of a Gaussian distribution. Although this learning
automata was shown as capable of locating minima in a stochastic optimisation
application 1t was prone to locating local minima.

This chapter introduces the Continuous Action Renforcement Learming Automaton
(CARLA), a new formulation of a continuous actton probability learning automata
with a generalised representation of the probability distribution designed without prior
knowledge of the work of Santharam et al.. The benefits of this algonthm over
discrete automata enable

¢ a complete search of a parameter space for the global optimum, within a pre-
defined range

e an action set size which increases proportionately with parameter space
dimension

e full adaptability 1n non-stationary environments.

This chapter explains the concept of CARLA more thoroughly and describes the
mplementation methodology adopted to maintain efficient coding and subsequent
execution of the algorithm. Chapters 7 and 8 will subsequently demonstrate the
capabilities of this new automaton formulation, including comparison with the CALA
devised by Santharam et al.

6.1 The CARLA Concept

The key variation between traditional discrete learning automata and CARLA lies 1n
the representation of the action selection probability distribution, replacing the discrete
probability vector describing the state of the traditional automaton with a continuous
probability distnbution. The motivation for this can be informally described with
reference to Figure 6.1. Recalling the general algonithm of a learning automaton -
Figure 33 - the automaton output, an action a, 1s selected based on a probability
distribution. In the discrete case the automaton has a finite number of actions from
which to choose and so the probabulity distribution is discretised over those actions
(Section 3.3). Through reinforcement the ‘best’ action 1s chosen as its associated
probability of selection tends to one. Efficient learning 1s expenienced when there 1s a
small number of actions available to the automaton. For example in Figure 6.1(a) six

actions cover a parameter range of 0 to 10. However, a small action set does not

68

provide a thorough search across the range; optima may easily lie at values between
those selected as action values, By increasing the number of actions to cover the range
more thoroughly, as in Figure 6 1(b), it is found that a discrete automaton has an
mcreasingly difficult task to distinguish between actions sufficiently to converge to
any single action; for a typical stochastic environment a number of actions around any

optima may give very similar responses.

04r

j=)
w
T

Probability
o
n

o
o -y
T
o ——

(a)

o o

o o ©

& ® 4
T T Ll

Probability
(=}
(]
P

oo2r

. (I)HIIIIHIH‘

Il!llIIH|lIIl||||||1|II||||l[illll!“hn|||nl||||lllllliih|l[

2 4 6 8 10
(b)

Probability density
o o (=] o
o N L o o] -

1 1 1 1 l

0 2 4 6 8 10
(c)

Figure 6.1 - Motivation for continuous probability density function

As action space coverage is improved by increasing the number of actions, so, 1n the
himut, complete coverage 1s achieved by an infinite number of actions. This can 1n fact
be easily implemented, for the single dimension case, by applying a contmnuous
probability distribution as the automaton state. In so doing, the ‘stepped’ nature of the

69

discrete cumulative probability function will be replaced by a continuous
monotonically increasing curve Now action selection on uniform random numbers
between 0 and 1 will result 1n an action set with effectively an infinite number of
members within the limts of the action space defined

The discrete automaton rewarded a single action to the penalty of all others. The
reward of a single action in a similar way for a continuous action space becomes
intractable for implementation Instead a generalisation can be applied which aids
implementation whilst also seeming intuitively ‘correct” It would seem reasonable to
assume that in a region of the action space around any action tested in the environment
a similar level of performance could be expected, and so similar reward may be given.
Less confidence 1n this assumption will be had for actions lying further away from that
trialled, and so less reward should be applied. This can be implemented by applying a
reward function which applies the most significant level of reward for the tnal action
with monotonically decreasing levels of reward for more remote actions. The reward
function used in a CARLA is a Gaussian distnbution reward function, of the standard
form

1 (x-ﬂ)2

20° (6.1)

e
O~\2rm

describing a ‘bell” shaped function with mean # and vanance o Addition of such a
curve to a continuous probability function, with its mean centred on the trial action,
implements the generalisation of reward outlined above, with maximum reward at the

trial action and reward falling away for more distant actions.

Figure 6.1(c) then shows the culmination of the above points with a continuous
function representing the mnternal state of the automaton, a continuous probability
distribution. A parameter range defines the limit of a continuous action set mapping
one-to-one to the probability distribution. Any trnial response of a single action 1s
generalised to an area of the action space around it. Figure 6.1(b) shows a strong
region of performance around a =175 but the discrete automaton struggles to
converge to a single action in preference to the near neighbours In contrast, Figure
6 1(c) also shows such a strong region, but 1s not required to converge to any single
action; the CARLA has generalised the leaming process to locate an area of the action
space which performs well.

70

6.2 CARLA Algorithm

A CARLA follows the same basic algorithm given for a learning automaton in Figure
33, and 1s simular in many aspects to the discrete automata described 1n previous
chapters. The differences lie in the application of a continuous function to describe the

automaton state vector; the action selection probability distribution.

Applying a continuous probability distribution leads to difficulties when considering
higher dimension (N>1) action spaces where a suitable mapping between the two is
required, For the discrete automaton the action set is formed from all combinations of
discrete action values and then the probability distribution 1s simply generated by
assigming each discrete action a probability of selection. The action set could easily
consist of higher dimension actions, but the discretisation process reduces these to an

action vector, easily mapped one-to-one with a probability distribution vector.

Trying to achieve a similar implementation for a continuous case 1s not viable, as 1t
would require a mapping of an N-dimensional action space to a probability distribution
of a single dimension. An alternative is a one to one mapping of the N-dimension
action space to an N-dimension probability distribution This 1s also not a viable
solution however, as 1t would require a representation of a continuous probability
distribution that can satisfy equation (6.2) after applying an N-dimensional reward to

this function at any iteration.

[[f p.der=1 6.2)

The approach adopted overcomes this difficulty by only implementing CARLA for the
1-D case, i.e. only taking an action set of a single vanable Learning tasks of a higher
dimension are easily accommodated by utilising the interconnected arrangement of

multiple automata, described in Chapter 1.

The formulation of a CARLA is now described, with reference to the major aspects of
the general learning automaton algorithm of Figure 3.3

6.2.1 Initialisation

As the CARLA 1s to operate on only a single parameter in an action space 1t only

requires the maximum and mimmum values, a_, and a,,, , to define its action set, the

max *
continuous parameter range over which 1t will operate. Initialisation consists of
generating the continuous probability density function between these values. In

satisfying (6 2) the specific case 1s

71

Tp dr=1 (6.3)

Prn

As for the discrete case, no a priort knowledge of the action space 1s to be assumed, so
the imitial probability of selection is to be equal for any action. From (6.3) 1t follows
that the initial probability magnitude across the range 1s therefore

1
Pun = (6.4)
(

o, . — amm)

An example of CARLA 1nitialisation 1s shown 1n Figure 6.2. A parameter range 1s
defined over the range a_, =0, e, =10. Satsfying (6 3), p,, =1/10=01 andso a
uniform probability distribution function 1s defined, with associated cumulative
probabihity function shown in the lower plot.

en:

o

o

w
T

b

o

[]

5
T

—
T

Cumulative probability

(x_n=4 -

I
!
I

0 2 4 6 8 10

Figure 6.2 - Initial continuous probability density function and associated cumulative

probability function

6.2.2 Action selection

Action selection is achieved via the cumulative probability function in much the same
manner as for discrete automata. A umiformly distnbuted pseudo-random number
between 0 and 1 is taken and the action corresponding to this value of cumulative
probabulity 1s selected as the action for trial at iteration n, 1.e. for random probability

P, action a(n) is found via

72

aln)
p=[pax 65)

Pun

Figure 6.2 shows an example action selection for p=04.

6.2.3 Reinforcement scheme

The reinforcement scheme implements a generalisation of the environment response to
apply reward across a region of the action space, centred on the last trial action and

diminishing with distance from the action

The reinforcement 1s applied via addition of a reward function to the probability
distribution. The CARLA reward function is defined as the Gaussian function

_1[a-atx)]
ﬂ"—_e 2[20 (Cmas ~Crnm) (6.6)

(amax -a,.,
and hence the reward 1s centred on the action tested at iteration n. f is the
performance index received from the environment. g, and g, are dimensionless
parameters that determine the relative width and height of the reward function. They

are user-defined, and kept constant throughout a learning run.

A reward-inaction scheme 1s used by the CARLA following the success of such a
scheme for discrete automata. No penalty is therefore applied for actions returming a
poor environment response.

Learning generalisation, g

g, defines the ‘spread’ of any reinforcement that the automaton can apply to the
probability distribution around an action to effect a reward. Comparing (6.6) and (6.1)
1t 15 seen that o=g, (am —amm), and so g, is a dimensionless parameter that
describes the standard deviation of the reinforcement Gaussian distribution function as

a fraction of the parameter range, (afmx - afmm).

A small value for this parameter will give a thin ‘spike’ of reinforcement, very local to
the tested action. In this case the automaton will act much like a discrete automaton
with a large action set; many reinforcements will be required in a successful region of
the action space for the rewards to conglomerate sufficiently for that region to
dominate.

73

A large value for this parameter will over-generalise any reward to apply reward
across a wide area of the action space, the automaton will continue to explore the
action space extensively as any reinforcement will give little differentiation between
the relative performance of neighbouring actions.

Empincal tuning of this parameter has found that a value of g, =0.02 gives a good
balance in the above trade-off. This value 1s not cntical to learning performance, or
particularly sensitive, and so the above value 1s used 1in all CARLA studies from
hereon.

Learning rate, g,

8, acts as a learning rate parameter, defining the basic magnmtude of reinforcement
that can be applied at each iteration This parameter is comparable to & from discrete
automata, and selection of a suitable value for g, follows similar guidelines, ie. it is
somewhat dependent on the task being considered, and 1s chosen to control the
learning rate such the automaton 1s not ‘jumping to conclusions’ and erroneous
decisions through rapid learning, nor taking too long so learming becomes 1neffective
because of indecision. The stochastic charactenstics of the performance index will
also have some bearing on the learming rate chosen.

A typical value of g, =03 has been found from empincal tuning to perform
satisfactonly 1n the majonty of situations, including most of the CARLA studies in this
document. A demonstration of the effect of an excessive value of g, will be seen in
Chapter 7

6.2.4 Reward/penalty response from the environment

The environmental response from a cost function, J(n), is compared against previous
values to return a performance index [as before. The cnitic used here to produce the
performance index is as defined for the S-model discrete learning automata of previous

chapters, so, for a minimisation task

7. =min{J(1), J(2), .., J(n)}

J e = median{J (1), J2),..., J ()} 6.7)
Bln) = max{o,———';‘:z :jﬁ)} 65)

74

6.3 Convergence

The discrete automaton of earlier chapters included a convergence property to
facilitate a more thorough search of the action space. Thts technique required multiple
stages of learning to converge to a successively smaller action space, concluding a
learnt” action when a convergence limit was attamed. For the CARLA, the whole
action space 1s considered from the outset of learning; explicit convergence in an
attempt to refine learning 1s not required. Instead, the learning process can progress
towards a more ‘natural’ convergence as successive application of the reward function
around any region allows that region to domunate. For example, Figure 6.3 shows an
automaton in which two regions of the parameter space are beginning to dominate,
around a=25and a =6, giving mcreased probability of action selection in that
region Ultimately, as the automaton learns the optimal action region the probability
distribution will be dominated by a single peak in density.

ty
o o
o o
T 1

—
T

08

(2
T

|
g, =2993 :
|

1 1 1 1

0 2 4 6 8 10

Cumulative probability
o o O

N B

T

o

Figure 6.3 - Active CARLA probability density function and associated cumulative
probability function

6.3.1 Convergence measures

Under ideal reinforcement, applying full reward at the optimal action on each iteration,
the probability distribution will change as shown in Figure 6 4. Each curve exlibits a
domunant region around the rewarded action, so it would now be useful to have some
measure of convergence to distinguish the degree to which a CARLA has ‘learnt’. The
simplest measure of this 1s the peak value of probability density. As more rewards are

75

applied in a given region the peak probability density will rise. However, that statistic
is dependent on the parameter range, and so a more general statistic is provided by its

normalised version

c - maxip} 055
i (amax - crmin)

In Figure 6.4 each distribution line is separated by an equal number of reinforcement
applications, and yet it is seen that the difference between successive peak values is
becoming smaller. Plotting C, against iteration for ideal reinforcement - Figure 6.5 -
reveals that the CARLA convergence is self-limiting. In the limit, the probability
distribution becomes the same shape as the reward function and imposing the
constraint of equation (6.3) after a reward at each iteration acts to give no change
overall. The limit value of C

m

is dependent on the particular parameters g, and g,
used, which define the shape of the reward function and hence the limiting form of the
probability distribution.

O.B T T T T T T T T T

0.7r

o °
(4] [o)]
T T

Probability density
o
H

0.3+]
0.2} _
0.1

e !

lteration

Figure 6.4 - Probability density function under ideal reinforcement

76

- —_ - —_ [\%]
n & =] o o

Normalised convergence measure
—
o

0 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
iteration

Figure 6.5 - Self-limiting convergence of the CARLA

6.3.2 Assessing the learnt action

In practical situations, where a stochastic task is considered, it is unlikely that maximal
C,, will be reached within a reasonable time scale, if at all. ‘Convergence’ could be
deemed to have taken place well before a near maximal value of C,, is achieved when
the probability distribution shows a strong trend in one region of the action space.
Consider Figure 6.6 that shows an iteration history of the probability distribution
during one learning run. It is evident that two regions of the x parameter action space
are exhibiting strong reward responses from the environment. Initially the automaton
has applied reward around x = —1.5 before later moving its attention to around x=15.
Figure 6.7(a) shows that throughout the learning run maximal C, was not approached
despite the evident trends. It is therefore useful to define the ‘learnt action’ for a given
state of the CARLA; what is the action that the CARLA has determined as the most
likely to return a reward from the environment?

77

iteration

Figure 6.7 - Learning measures (a) C,, (b) learnt values:

expected (red) and modal (green)

8 2 8
m = m T T T T o
o c (=] (] ™
[=} o =
w = =]
(o] L)
3 o
- @
o 2 B 13
2 . 23| |
—
=
- —
=) +_
£
c g 18
o ~ N
35
DAA ¥
o o
e 3 w 18
5 v~ -
Y
0 W +
S Q & M 8
2 8 18
o=
=
=
3}
= 18
1 ﬂmu wn
g i
=]
@
= W
g L 1 1 1 1 1 o 1 _+
N e] ﬁ N O O © T N O 2104

ainsesaw aouabiiaAuoo pasieulon an[eA julesn]

S o
Ausuap Aujigeqold

78

Expected value

One statistic to consider in determining the learnt value from a CARLA probability
distribution is the expected value From standard random variable theory, for any
random variable x with associated probability distribution p(x), the expected (or
mean) value is defined as

E[x]= T x. p(x).dx (6.10)

The action @ is the random variable in the CARLA, with associated probability

distribution p(a) defined in the range [a'm am] Therefore the expected action is

n?

Elal= | a.pla)da 61D

amm

However, the probability distribution development shown 1n Figure 6 6 is one mstance
where this statistic gives seemingly non-intuvitive values. The expected action value
for this example 1s shown in Figure 6.7(b). Although two regions of good performance
were clearly evident in Figure 6.6, the expected value wanders between these two
regions as the favour of the CARLA alters. When probability 1s comparatively evenly
distnbuted between two regions of the action space, it 1s often seen that the expected
value will lie somewhere n-between, and therefore likely to lie 1n a region of low

performance in terms of environment response

Modal value

An alternative statistic is to simply take the action value corresponding to the lghest
peak in probability density as the ‘learnt value’ of the automaton, 1 €. the modal value
of the distribution

Figure 6.7(b) plots the modal value alongside the expected value for the learning
results of Figure 6 6. It 1s seen that the modal value clearly picks out the learning
trend 1n the two strong performance regions as the automaton switches its favour
between -1.5and 1.5.

However, the modal value only returns a single value at any iteration, and in examples
where more than one strong region 1s evident, as above, other 'optima’ are overlooked

by this statistic alone.

79

6.3.3 CARLA results

Defining a dimensionless statistic C,, as a measure of progress of a CARLA, it has
been shown that the implementation is self-limiting, although in practice such a
conclusion to learning is unlikely to be achieved. The CARLA has no defined
stopping/convergence criterion and it is therefore left to the user to decide when
learning is ‘complete’. In practice this will involve a combination of observation of C,
and visual inspection of probability distribution time-history plots to ascertain when
strong learning trends are present. Two statistics, the expected value and modal value,
have been identified as candidates for defining the learnt action’ upon cessation of a
learning run. It has been found that the expected value can give a false result where
more than one strong region of performance has been located by the CARLA, and so
from hereon the modal value 1s taken as the Jlearnt action’ result from a CARLA
investigation. However, a visual mspection of probability distribution time-history
plots should not be overlooked 1n identifying if other high performance regions are
present that may require further investigation, e g. both regions 1dentified in Figure 6 6
may be worthy of further investigation.

6.4 Implementation

Implementation of the above CARLA algonthm is straightforward apart from
representation of the probability density function that defines the state of the
automaton It 1s required that the density function representation will be a smooth,
complete description of a continuous curve between «, and o, that 1s able to
satisfy the constraint of equation (6.3) easily. Throughout development of the
algorithms, particular thought has been given to maintaining an efficient
implementation which will take up little computing resources for its storage and
manipulation in an on-line scenario where memory and processing power may be
constrained.

6.4.1 Probability density function representation

The probability density function is represented by a piece-wise linear approximation.
The whole curve is simply described by a vector of (action, probability density) pairs

A basic representation is shown 1n Figure 6 8(a). Equally spaced action values have
been selected at which the probability density function is recorded It can be seen that
resolution of the representation at higher values of probability density 1s deficient. In
thus example the representation has acted to distribute reward away from the expected

peak value at & =5 to values around 1t.

80

A ‘smoother’ representation with improved resolution at peak values 1s shown 1n
Figure 6.8(b). Here, action values at which a corresponding density value 1s recorded
are separated such that each ‘segment’ defines an equal fraction of the total area. At
higher density values the curve is then defined by more closely packed segments. In
lower regions, of lesser importance, and where the density function tends to be more

‘flat’, the curve only requires a few widely spaced values for its definition

Of course, improved curve definition could simply be maintained throughout by
defining the curve at a larger number of equi-spaced points from the outset. However,
the application of the above refinement allows a high level of definition of the curve
around the important points, peak areas of probability density, whilst maintaiming a
much smaller number of points to define the curve overall; memory resources are
conserved The additional processing required to implement the refinement can be
offset agamst the processing that would be required to process an equi-spaced
definition of high resolution.

025 T T T T I T T L T

o
n
T
1

==

jury

o
T
I

(=]
-
T
1

Probability density

=
[}
[4,]

0 1 1 1 L
0 1 2 3 4 5 6 7 8 9 10

Action o (a)

025 T T T T T T T T T

Probability density

0 1 1 1 1
0 1 2 3 4 5 6 7 8 9 10

Action o {b)

Figure 6.8 - Refinement of probability density function representation

The CARLA employs this method of curve representation for maintaining the
probability density function. After any application of reinforcement the new curve is
re-defined to maintain the resolution of representation. This 1s demonstrated further in
Section 6 4 2.

81

The refinement algorithm is not described here, as it 1s largely independent from the
successful operation of a CARLA. Appendix B outlines the implementation of the
curve refinement algorithm,

6.4.2 Application of reinforcement

o 2 T T T 1] T H T T T

L=
-
n
T
L

Probability density
o
T

o

o

o
T
1

(=]

Probability density
=}
T

Probability density
o
T

0 ! 1 | I
0 1 2 3 4 5 6 7 8 9 10

Action o (&)

Figure 6.9 - Stages of reinforcement application

The reinforcement 1s applied via addition of the reward function of equation (6 6) to
the probability density function. Using the ptece-wise linear representation, equation
(6 6) is applied at each action value used in defining the density function. For
example, Figure 6.9(a) shows the effect on the density function of a reward at a=8.
The initial probability density function is shown in red, onto which the reinforcement
is applied, shown 1n blue.

Of course, the density function now does not satisfy the constraint of equation (6 3),
and so the curve is normalised - Figure 6 9(b).

The final step is to redefine the curve, with the method outlined in Appendix B, to
maintain a high resolution at peak values. The outcome of redefinition of the curve
from Figure 6.9(b) is shown in Figure 6.9(c). Note that more action values now define
the curve around & =8 where the new peak 1 the distribution 1s present.

82

6.5 Summary

A formulation of a learning automaton exhibiting a continuous action set has been
introduced. The continuous action set is facihitated by maintaining the internal state
representation of the automaton, a probability distribution, as a continuous function.
The probability distribution 1s stored as a vector of (action, probability density) pairs
defining the function mn piece-wise hnear fashion between user-defined limuts. The
underlying one-to-one mapping of probability distribution to action value limts the
CARLA to single dimension action spaces. However, via an interconnected
architecture of multiple CARLA 1t is possible to consider learning tasks of higher

dimension.

The definition of the CARLA to consider a continuous action space immediately
allows a complete search of the whole action space. This overcomes one of the major
limutations of discrete automata, in an optimisation setting, where optima could easily
lie between actions and not be 1dentified by the automaton

The ‘curse of dimensionality’ is another major area of concern when using discrete
automata; higher dimension tasks and/or high defimtion of actions quickly leads to
large action sets resulting 1n slow or inconclusive learming. The CARLA formulation
gives an effectively infinite action set covening the continuous action space, but the
sumple state representation and generalisation of reinforcement has made the learning
process completely independent of action set size. The only dimensionality concern
now arises where multiple CARLA are required for high dimension tasks, and
interaction between automata is required to affect successful learning.

Another benefit of CARLA has been stated as full-adaptability in non-stationary
environments The CARLA mmplementation and effective continuous learning allows
the CARLA to respond to non-stationary environments. This phenomenon 1s
mvestigated further in the following chapters where the CARLA is applied to various
learning tasks to compare its performance with both discrete automata and the

continuous action set automaton proposed by Santharam et al

83

Chapter 7 - CARLA Performance

Previous chapters have shown the classic discrete automaton to be a useful
optimisation tool, especially in stochastic environments where many traditional
optimisation techniques will fall. However, a number of limutations of discrete
automata have also been noted. A new formulation of a leaming automaton offering a
continuous action set, the CARLA as described in the previous chapter, 1s able to
overcome many of those limitations.

This chapter now mvestigates these claims via a comparison between CARLA and
discrete automata on a simple stochastic optimisation task, seeking the global
maximum of a noise-corrupted function. The optimisation task particularly tests the
ability of the automata to distinguish between global and local optima.

An advantage of the CARLA previously only alluded to is its ability to adapt in non-
stationary environments A demonstration of this feature with an environment
exhibiting an abrupt change of response during learning 1s given.

A comparison is also made between CARLA and the continuous action set learning
automaton (CALA) proposed by Santharam et al (1993). Their study used a penahised
Shubert function to analyse the CALA performance and that function is thus applied
here for the comparison.

7.1 Comparison with Discrete Learning Automata

A pnimary concern with applying a discrete learning automaton to an optimisation task
has been in 1ts ability to locate the optima accurately. A small action set giving
efficient learning can easily miss optima that lie between actions. Taking a better
defined, and hence larger action set may overcome this but is then likely to slow
learning considerably. The automaton can even become inconclusive for very large
action sets.

Here, a function of two variables is identified which exhibits two similar optima. A
discrete automaton and CARLA are apphed to identify values of the function variables
that maximise the function. The addition of noise to this function forms a difficult
stochastic optirmsation task for comparison of the performance of the two types of
automaton.

84

7.1.1 Optimisation task

The function of two variables given in equation (7.1) defines the underlying
environment response for the automata

where —3<x<3, ~3<y<3. Equation (7.1) is denved from the ‘peaks’ function
used m surface plot demonstrations with the application package, MATLAB. This
function exhibits three maxima: A at (1.5,0), B at (-1.53,0.06), and C at (-0 48,-1 02) -
see Figures 7.1 and 7.2 It is seen that the optima at A and B are of very similar
magnitude, with the global optimum found at A. The optimisation task 1s made
stochastic by corrupting g(x,y) with zero mean, uniformly distributed noise in the
range [-5, 5]. This noise signal overwhelms the difference between A and B,
presenting the automata with a difficult task to distinguish between them.

7.1.2 Discrete automaton configuration

A single discrete S-model automaton, of the form introduced 1n Chapter 3, 1s applied
with learning parameters 77=05,4 =04 as before. The action set 1s defined to give
an equally spaced square matrix of actions across the action space, e g. choosing a
quantisation level of 4 for each parameter gives an action set of 4>, 16 actions - see
Figure 7.3. Itis seen that the near symmetry of the two main optima, at A and B, and
the definition of a symmetrical action set gives no single action which could bias

learming in favour of either optima 1n the pnimary stage of learning

85

Mean cost

Mean cost

Figure 7.1 - g(x,_v)

-2 -1 0 1 2 3

Figure 7.2 - g(.r, _\') viewed along y-axis

86

4 e T T T T T T
3r + + + + .
2r 4
1l n 4 i
> OF 4
-1r + + -
2t §
-3F + + ¥ - .

-4 L L L L L L L
-4 -3 -2 -1 0 1 2 3 <

Figure 7.3 - Discrete automaton action set for initial learning stage

7.1.3 CARLA configuration

The implementation of CARLA necessitates that multiple automata are linked in
interconnected fashion for multi-parameter optimisation tasks. Therefore, on the
optimisation task defined above, one CARLA is assigned to each of
x and y respectively. Figure 7.4 illustrates the configuration of CARLA for this task.
Both automata define their action sets between a,, =-3, ,,, =3. The learning

generalisation parameter, g, is maintained throughout this study at 0.02. The

w?

learning rate, g,, is altered between 0.3 and 0.6 to analyse its effect on the automata
results.

87

g(x,y) + noise

p=pi]

[24
() x CARLA

y CARLA

Figure 7.4 - Interconnected configuration

7.1.4 Performance index

As this task requires maximusation, the performance index calculation, previously
described by equations (6.7) and (6.8) for minimusation, is amended to

J .= max{J M, J0),..,J (n)}

J__, =medan{J(1),J (2),..., J(n)} 72
_ J (") = J e
p(n)= max{O,—Jm - } (7.3)

for both automata configurations. f=1, maximum reward, is now returned for a
‘maximum encountered so far’ environment response. fi=0 1s returned for any
response of J_,, or below.

7.1.5 Optimisation results

Each analysis of a particular automaton configuration underwent a set of 100 tnals to
give an estimation of the average automaton performance and provide a measure of the
frequency with which the global optimum is located. As this 1s a stochastic
optimusation it 1s unlikely that the automata will exactly locate any optimum, so
‘locate’ is taken here to mean a result that hes acceptably close to an observed
optimum.

A summary of the results for the discrete automaton, for various quantisation levels

and learning rates are shown in Table 7.1. The initial learning run of DA1 implements

88

a learning automata similar to that used in the studies of previous chapters, with
learning rate 6 =0.1.

Discrete Quantisation 6 Convergence Convergence Iterations to
Automaton per parameter to peak A to peak B convergence
(%) (%) (+- std. dev)
DAl 4 0.1 52 48 825 (143)
DA2 7 0.1 56 44 1007 (189)
DA3 10 0.1 49 51 1017 (201)
DA4 4 0.05 73 27 2954 (685)
DAS 4 0025 74 26 9464 (2062)

Table 7.1 - Discrete automaton results

It 1s seen that this automaton 1s unable to distinguish between the maxima at A and B,
converging to each with similar frequency. This may have occurred because the
learning rate is too high, or because greater action set definition is required to enable a
distinction. However, increasing the quantisation level to 7 (49 actions, DA2) and
then 10 (100 actions, DA3) has little effect. As would be expected for larger action
sets, the average number of iterations to convergence increases as the automaton takes
longer to decide between the increased number of options available to 1t, and yet the
frequency of correct convergence remains around 50%. Therefore, it can be assumed
that the learning rate is too high for this task, so the automaton 1s not gathering enough
information 1n the first learning stage to make a valid decision on the area of the action
space it should converge towards.

Returning to a quantisation level of 4, and halving the learning rate has an immediate
effect - DA4. Now the automaton converges to the global optimum at A around 75%
of the time The number of 1iterations to convergence has nisen to a similar level where
effective learming has been observed before, 3000 iterations. The automaton 1s seen to
take longer for stage one learning (330 iterations on average for DA4 1n comparison to
130 1terations for DA1) and is thus far more likely to make a correct decision at this
early stage

However, considering any slower learning rate has little beneficial effect. Analysis
with 6 =0025 - DAS - reveals a similar convergence result, around 75% success rate,
but the iterations to convergence has risen significantly. The learning rate 1s now too

slow, so mdecision between actions begins to dominate with no improvement in

89

quality of learning; stage one learning takes 950 iterations on average. A 75% success
rate appears to be the best performance a discrete automaton will provide on this task.

CARLA Learning rate, = Convergence Convergence Iterations to
g, to peak A (%) topeak B (%) learning halt
Cl 03 100 0 3000
C2 06 98 2 3000
Table 7.2 - CARLA results

No stopping critenion 1s defined for CARLA, so it is chosen here to simply stop the
CARLA after 3000 iterations for the learning to be comparable with DA4, the discrete
automata observed to take a similar number of iterations 1n 1ts optimum configuration.
Results for the CARLA configuration on this task are given in Table 7.2. A learning
rate of g, =0.3 has been found to provide capable performance in other stochastic
scenarios, such as those presented in later chapters, so this value is applied 1n the “first
try’ of the CARLA - Cl1. It1s observed that Cl 1s a complete success; all trials result
in A being located.

A typical result for the CARLA pair is shown in Figures 7.5 and 7.6. The x CARLA
typically 1dentifies strong performance around both major optima early in a learning
run - Figure 7.5(a) and (c). A perod 1s then apparent where C nises steadily as more
information 1s gathered. There appears to be a point at which the CARLA ‘decides’
between the strong performance regions it has located, to converge such that its
interest becomes concentrated on a single region. Figure 7.5 shows this happening
between 1500 and 2000 iteration as C_ rises sharply during the shift of interest The y
CARLA 1s seen 1n Figure 7 6 to quickly identify its optimum around y =0, where
both major optima lie close by; within 500 1terations the CARLA identifies the optimal
region and the sharp nise in C,, 1s again evident from thereon.

90

3
z

2

g2

z 7" 3000
ﬁ’ 7 2500

2

a

&b o

Iteration
3 0
(@)
151
./’N\/\
101
E
(6]
5r A/\/JN
—
0 1 1l ' I 1 1
0 500 1000 1500 2000 2500 3000
(0)
T T T T T
2r -
& R e
1+ 4
® Or 1
3
3-1f .
e R e
=0 n 4
_3 Il 1 /| Il 1
0 500 1000 1500 2000 2500 3000

Iteration (c)
Figure 7.5 - Typical x CARLA time history: (a) probability distribution,

(b) convergence measure, (c¢) ‘learnt’ value, modal

91

(=] 8 g

f = = 2 5

,.\\\\«\\ ____. / \W] m i | m
: \\\\M\\‘W‘\W\M\\W%\\\\\\\\\\\\ \\\\\ nnva

’ n.\\u\mwwm\.&\\\\\\\\&\ ¥ o s JMM " lm

18 | WW 18

++++
o Lt 0

1 1
=% Y
anjea |epol

12r

10F
8+
6k
4+
ol
0

N 0w =~ 1 O

- = ?
Aususp Ajjiqeqoid

E

(]

tory: (a) probability distribution,

()

al y CARLA time his

Iteration
(b) convergence measure, (c) ‘learnt’ value, modal

Figure 7.6 - Typic

92

As the CARLA has faultlessly located the global optimum in C1, 1t 1s now interesting
to try to instigate a ‘failure’. Discrete automata have been seen to increasingly make
mustakes if the learning rate 1s set too high so that ‘hasty’ decisions are made during
learning. Raising the CARLA learning rate g, to 0.6, two ‘failures’ from the set of
100 are observed - C2 in Table 7.2. The x CARLA results for one of these 1s shown
Figure 77 Again C, exhibits a steady nise duning a period of exploration where both
regions of strong performance for x are 1dentified. However, this period 1s now much
shorter, in this case only around 500 iterations, before the CARLA opts for one region
alone Once the CARLA is concentrating on the single region almost all chance of
further exploration away from this region 1s removed The increased learning rate has
indeed forced the CARLA 1nto a ‘hasty’, erroneous decision

93

3
2

2

§2 t

2 > 3000
21 2500

2

o

b o

Iteration

3 0
(@)
*r W
10F
E
(6]
5+
0 1 1 1 1 1 J
0 500 1000 1500 2000 2500 3000
(b)
2F 1
2 1 .
©
>
il ’
- 1
HH ettt
-2 B
+
_3 - Il i 1 1
0 500 1000 1500 2000 2500 3000

Iteration (c)

Figure 7.7 - Increased g, leads to ‘hasty’ decision making on x: (a) probability

distribution, (b) convergence measure, (c) ‘learnt’ value, modal

94

A comparison of the variability of automaton results is shown in Figure 7.8. The
‘learnt’ action values from both the discrete automaton (DA4) and CARLA (Cl)
around the global optimum are plotted. It is seen that the CARLA also locates the
optimum more accurately, with less variability than the discrete automaton on this

task.
0-2 T T T T T T T T T
Q
0151 O Discrete 1
" " x CARLA
0.1 = o
L1 O .
Q o
Ox 0
0.05 s o, ° 0 & x
0o~ 0 % -
o O 2 g "c;‘ o, o o o ©
o X % X"K d)::p x® o
X CEGw " %0 (o}
> or X% o e @ 2% & % 7
00 x N uxx Xx o
. % % x % 0
x o Ky
-0.05 |.© % %™ 2 x 8 -‘
e} o
o8 o
o]
-0.1} .
(o]
-0.15} o |
(]
-0.2 L (1T =l - L i i 1 1
14 142 1.44 1.46 1.48 15 1.52 1.54 1.56 1.58 16

X

Figure 7.8 - Scatter plot of results around global optimum

7.2 Adaptive Nature of CARLA

Another major concern with discrete automata is their inability to operate successfully
in non-stationary environments. Any automaton must maintain exploration of a
sufficiently large area of the action space if it is to notice any shift in the environment
response. Discrete automata would require a large action set to be able to maintain an
adequate exploration of the whole action space throughout a learning run. A trade-off
has to be made between enough actions to cover the action space, but not providing
accurate location of optima, and too many actions which may improve optima location
accuracy but which then lead to much longer learning times. The extension to the
methodology proposed by Wu (1993) allows improved optima location without the
requirement for a large action set. The drawback is that the technique relies upon a
forced convergence of the automaton to a smaller action space in multiple learning
stages. This removes continual coverage of the total action space throughout a
learning run and hence any variation of an environment during this time can confuse

the automaton, e.g. if the automaton is converging towards an optimum and then the

95

optimum moves to he outside the current automaton action space, the prospect of the
automaton recovering to relocate the optimum is limited Tuming of the convergence
parameters may give the automaton more scope for recovery but this in turn increases

the time taken to complete convergence.

It has already been demonstrated that a continuous action set allows a complete search
of the action space it encloses throughout a learming process. This may allow the
CARLA to be able to react to variations in a non-stationary environment, adapting 1ts
state 1n response to the change A test case 1s described below in which the CARLA 1s
presented with an environment that exhibits an abrupt change of characteristic during
learning

7.2.1 Optimisation task

The environment used here is agamn described by equation (7.1), but after 1000
iterations of learning the transformation x — y and y — x 1s made, giving

g(x;)’)= 3 0(1— yz)g(_yz‘(‘“)z) - 10‘0[%_ y3 _ys)e(—zz—yz)

(7.2)

The two major optima are of course then located at (0,1.5) and (0.06,-1.53) of which
the global optimum 1s found at the former. Function evaluations of equation (7.2) are
corrupted as before to implement a highly stochastic environment.

7.2.2 The CARLA configuration

Two CARLA are configured as in the previous study, with one assigned to x, and one
to y. The learning rate is maintained throughout at g, =0.3. The CARLA stopping
criterion was raised here to 5000 iterations to capture the entire automata response to
the change in the environment response at 1000 iterations

7.2.3 Adaptive results

A set of 100 independent trials was taken on this task. In every case the CARLA
locates the shifted optimum successfully. The success of this trial can first be
observed with reference to a plot of the mean (rolling average of 100 values)
environment response to the CARLA actions during a typical learning run - shown n
Figure 7.9. Strong learming 1s evident up to 1000 iterations as the observed cost nses
sharply, indicating that the CARLA are already locating the optima well. At 1000
iterations the average environment response drops as the CARLA imtially continues to

96

explore around the former optima which now exhibit the low response However, a
recovery 1s apparent, although slow at first.

s [41] (2]

w

Mean environment response

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration

Figure 7.9- Mean environment response time history

Typical CARLA results for this run are given in Figures 7.10 and 7.11, clearly
showing the CARLA adapting to relocate the new maxunum, although, as suggested
by the mean cost plot of Figure 7.9, the shift in emphasis of the automata 1s seen to
take some time to materialise. Figure 7.11 shows this most clearly. As seen in
previous y CARLA results, C,, rises sharply early on as y =0 1s quickly 1dentified as
the optimum, such that by 1000 iterations the CARLA has established a strong
preference for that region. Now, on the environment translation, the CARLA
undergoes a long period of unlearming’ that preference before any other can emerge.
C,, drops accordingly between 1000 and 3000 iterations.

In contrast the x CARLA - Figure 7.10 - is still in an exploration phase when the
switch occurs; two strong regions are identified but no decision has been made
between them so the CARLA still has 1ts attention spread over a wide area of its action
space Between 1000 and 3000 iterations the x CARLA has little to ‘unlearn’ but is
tied to some extent by the y CARLA performance, and hence has to wait for that to
spread 1ts attention again before both automata can co-operate in locating new optima.
This state occurs around 3000 iterations when learming clearly proceeds apace to locate
the new global optimum at (0,1 5).

bl
- n

Probability density
o
n

|
w

Iteration

10
B_
6_
3
O
4_
2
0 1 1 1 s I i 1 1 1 B |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(b)
2r 4
P -
2 1 1
g
% O s R
3 S
= -1 1
N T
—2f 1
‘_3 1 1 1 1 1 1 1 i 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration (c)

Figure 7.10 - Adaptive x CARLA time history: (a) probability distribution,

(b) convergence measure, (c) ‘learnt” value, modal

98

Probability density

Iteration

8 s
6 L
o 4r \\'\'L\J
2 -
0 1 1 1 1 ! ' 'l A 1 J
] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(b)
2r 4
waﬂmmmwﬂmw
El]
T 4»
% 0 lfw' bt -t R 4
e
“ob 4
_3 1 1 L L 1 L ' 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Figure 7.11 - Adaptive y CARLA time history: (a) probability distribution,

Iteration (c)

(b) convergence measure, (c) ‘learnt” value, modal

7.3 Comparison with Santharam’s CALA

Santharam et al. (1994) also proposed a learning automaton formulation with a
continuous action set, formed by recording the probability distribution as a continucus
function. They described the whole probability distribution as a Gaussian curve, with
the mean z and standard deviation ¢ as parameters under control of the leaming
automaton via reinforcement. The probability distribution 1s mapped one-to-one with
an action value and hence the CALA 1s also limited to an action space of a single
dimension, so requiring an interconnected configuration of multiple automata to

constder higher dimension tasks.

The CALA operation can be summarised as follows An action reinforcement acts to
move the distribution mean towards that action. If the rewarded action lies close to u
already, then ¢ 1s reduced so the automaton converges around that region Otherwise,
o 1s increased in an attermnpt to encompass the rewarded action and hence broaden 1ts
scope to continue exploration across a wider area.

The behaviour of the CALA was examined on a stochastic optimisation task, locating

the mimmum of a penalised Shubert function defined as

flx)= 2 i.cos((7 + 1)x +1)+2(x,10,100,2) (73)

where

k(x—a)" 1fx>a
u(x,a,k,m)= 0 if |x| < a (7.4}
k(—-x—-a)" ifx<a

This function 1s shown m Figure 7 12. It has 19 mimma 1 the region [-10,10] of
which three are global minima, located close to -5.86, 0.43 and 6 71 respectively A
stochastic element was added by corrupting function evaluations of f(x) with zero
mean, uniformly distributed noise 1n the range [-0.5, 0.5].

The CALA was used to find a minimum of this function with vartous different imtial
values of ¢ and o . The stmulations were run for 8000 1terations each

It was found that the mean value, g, of the CALA always converged close to a
mimimum of the function. It was seen that the nitial values of # and o had the
greatest bearing on which munimum was located. However, the overall success rate of
the CALA was not made clear, and only a small number of simulation results were

100

presented - See Table 7.3. It 1s evident that the CALA was found susceptible to
locating local mimma.

20 T T T T T

10 .

f(x)

BT, = 0 5 10
X
Figure 7.12 - The penalised Shubert function
Initial Values After 8000 Iterations Function Value

H Oy Haooo

4 6 2.534 -3 578
4 10 04038 -12 87

8 5 5.36 -85

8 3 6.72 -12.87
12 6 1.454 -3.58
-10 5 -7.1 -8.5
-10 6 -5.8 -12 87

Table 7.3 - CALA results (from Santharam et al , 1994)
A comparison between CALA and CARLA is made here by applying a CARLA to the

above task. To this end the performance index 1s defined 1n the minimusation form of
equations (3.11) and (3.12). The CARLA is defined with an mtial action set of
a,.=-12, a,. =12 and learning parameters of g, =03 and g, =002 are again
applied.

101

A set of 100 results of CARLA is obtained with learning halted after 1000 iterations.
Despite running the CARLA for significantly less iterations than the CALA, it is found
that the CARLA are able to locate a global minimum on every occasion, with an even

spread of results between the three minima. A typical result is shown in Figure 7.13,
where the CARLA is seen to have identified the regions of all three optima, evident in
the distribution peak trends of Figure 7.13(a) and (c).

e o
) w

Probability density
e

Modal value

Iteration

0 100 200 300 400 500 600 700 800 900 1000

(b)

- H A e ¥ -

+ ++ A

0 100 200 300 400 500 600 700 800 900 1000
Iteration (c)

Figure 7.13 - CARLA time history on Shubert function: (a) probability distribution,

(b) convergence measure, (¢) ‘learnt’ value, modal

7.4 Summary

Throughout this chapter the CARLA has repeatedly demonstrated many benefits n
comparison with discrete automata and CALA in stochastic optimusation simulation
studies, including

e global optimum location/ local optima avoidance
¢ accurate optimum location

o faster learming

® 2 capability in non-stationary environments

e 1nsensitive learning parameters, g, and g

The next chapter returns to the vehicle suspension application to analyse the CARLA
performance further.

103

Chapter 8 - CARLA on Vehicle Suspension
Applications

The CARLA has thus far demonstrated some promising characteristics. Comparison
between the CARLA and discrete automata on optimisation tasks with known optima
has highlighted additional capabilities and increased performance offered by CARLA
This chapter now returns to the vehicle suspension application to analyse the
performance of the CARLA further. Learning tasks based on the quarter-vehicle
suspension model are revisited to venfy the CARLA capabilities in a practical
application. The 'moderator’ of Chapter 4 is used again to enable safe on-line learmng,
controlling excessive workspace usage, so allowing hardware testing of the CARLA
on the test vehicle used in Chapter 5.

8.1 Learning with White Noise Road Spectra

Considering a linear quarter-vehicle model exhibiting ideal full-active suspension
force actuation between sprung and unsprung masses, excited by white noise road
veloaity mput, LQG theory provides an optimal linear state feedback controller for a
pre-defined quadratic cost function. This has been derived in Section 2.1 for a

representative vehicle model and is of the form
ut)=[k, k, k, k,]x (8.1)

Previously a single discrete automaton has been applied to learn these four gain values,
and 1s found to learn controllers with performance costs close to the optimal value for

this system, J,, =2.6621 - see Chapter 3

opt

Here the CARLA is employed on the same task, optimising the four gains subject to
the LQG quadratic cost function of equations (3 14) and (3.15). A single CARLA 1s
assigned to learn each k, respectively (g, =03, g, =002), the automata 1nteracting
and co-operating on the overall task via their interconnected configuration. The range
for each individual parameter, and hence each CARLA, 1s chosen as 1n the comparable
discrete automaton 1mplementation of this task in Section 3.6

k, € [-20000,0]
k, < [0,15000]
k, €[0,2000]

k, € [-4000,0]

82)

104

These ranges border on unstable regions of the action space, but the CARLA
implementation assures these regions are not encroached upon during learning. As a
minimisation task the performance index 1s calculated with equations (6 7) and (6 8).

A set of ten learning sessions 1s taken, referred to as Automaton F, with the stopping
cnterion set at 3000 iterations, comparable to the observed iterations to convergence
average (2780 iterations) of the equivalent set of discrete automaton results,
Automaton B. Figure 8.1 summanses the learnt parameter results of Automaton F
where 1t 1s seen that the CARLA produces far more consistent values (c f. Figure 3.6)

Cost and gains relative to LQG optimal system

0 1 1 1 8 1
K, K, ks ks Cost

Figure 8.1 - Automaton F. learnt parameter results (mean + one standard deviation)

Discrete automata were seen to learn more variable, but distinctly correlated, k,, &,
values Automaton F exhibits no such correlation at first glance. However, comparing
the distnbutions of the resultant pairs, Figure 8.2, with those from a discrete set of
results, Figure 4 3 (from the moderated Automaton C results, but with essentially
sitmilar learning characteristics as unmoderated Automaton B) 1t 18 seen that the

CARLA results are grouped closely such that any correlatton is not as evident.

The denived theoretical costs of Automaton F controllers are outlined in Table 8.1.
Companson with discrete results on this task, Table 3.2, again shows performance and
consistency gains from CARLA learming.

105

x10

18F -

16F .

14¢ .

12 .

08

T
+
1

0 2 1 1 1 1 1 L 1
-5000 4500 -4000 -3500 -3000 -2500 2000 -1500 -1000
kq

Figure 8.2 - Automaton F. k, vs. k,

Maximum Mmmum Mean Std. Dev.

Cost 2.6971 2.6664 26774 0.0097
Increase over 1.3 02 06 -
Jop (%)

Table 8.1 - Automaton F cost performance

In contrast to the discrete automata application on this task, one CARLA has been
applied per parameter. Each CARLA 1s free to learn at 1ts own rate, but any
assimulated correlation 1t sees between the actions chosen and the environment
response will be somewhat dependent upon the interaction between all four automata
overall in selecting successful actions It can be expected that fast learming should be
evident when an automaton detects a strong correlation between 1ts own actions and
the environment response; a weak correlation should result in little or no apparent
learning occurning. The relative learning rates of the automata applied to the task then
implies the relative impact of the respective parameters m producing an action with
favourable response from the environment. Strong learning in an individual automaton
from an 1nterconnected team indicates that the parameter controlled by that automaton

106

has most effect in producing a successful action. Such effects are seen in studying the
convergence measures of Automaton F.

7 T T T T i)
9 = . /S
—l " ’
—ky 5 =
L —— ~/ J
5 4 -)
il
£ :
(&) //
S J=H
g4r / ’
o ~S
z P

]
N i T

/_/_k’
2 ’/,W

1 1 L 1 1 1
0 500 1000 1500 2000 2500 3000
Iteration

Figure 8.3 - Automaton F: average convergence measure evolution

Figure 8.3 shows the convergence measure for each parameter averaged over the ten
learning runs of Automaton F. £k, is evidently identified as central to controller
performance on this task, showing the fastest learning rate. The evolution of the
CARLA states during a learning run, Figures 8.4 and 8.5, show this clearly as modal
values for k, appear around k, =1000 very early on, and a single definite peak in the
probability distribution is seen from thereon.

Conversely, the k, CARLA returns a weak response, with slow learning rates. The
probability distribution for the k, CARLA appears comparatively 'flat’, as no strong
trends emerge, and the modal value varies widely throughout the learning period. The
performance of such a controller has been noted earlier as being largely independent of
k, and so the weak CARLA performance on this parameter can be appreciated.

The k, and k, CARLA return slower responses than that for k,, similar to &, , although
they do tend to show steady trends in their probability distribution time-histories. For
example, the particular learning run in Figure 8.4 shows a case where the &, and k,
CARLA have each identified two values, seen as two peak trends, corresponding to
two separate (kz,k4) pairs. Indecision between these correlated values is seen to
continue throughout much of the learning period - see Figure 8.5.

107

Probability density
(=]

=

noe o

x 10 K, ' 0o 0 Iteration

n

oo

Probability density

1000

Ko 15000 O Iteration

E

3000

Probability density
no

(= Y=}

1000

2000 O Iteration

ty density

e
wn

3000

Ptobabili
o
So

1000

-1000
Ky o 0 Iteration

Figure 8.4 - Automaton F: typical probability distribution evolution

108 |

x 10
0 ¥ T T T T
HH-
+
-0.5¢ .
+ + &
~=1r ¥ S + # + 1
-1.5¢ H
- + b it Hr
2 AR H) £
0 500 1000 1500 2000 2500 3000
15000 . : -
+ + 4
HHH A
10000f ™ i
& it -
5000 - 1
0 1 1 L 1 1
0 500 1000 1500 2000 2500 3000
2000 . : - . .
t
1500+ 1
Higt
R R R
21000 M bt
500+ .
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
0 T T T T T
-1000F .
- L W i
~—2000 '.M* e *#W +a4 4 o4
S R A L
-3000 1 1
-4000 . : L . .
0 500 1000 1500 2000 2500 3000
Iteration

Figure 8.5 - Automaton F: modal value evolution

109

8.2 Learning with Realistic Road Spectra

Now that the CARLA has demonstrated 1ts effectiveness in a known suspension
system environment, it can be developed further with the aim of applying 1t as an on-
line tool This route has already been traced for discrete automata, resvlting in some
useful modifications to the technique along the way. The primary modification there
was inclusion of a ‘moderator’ that guards learning against excessive state
perturbations such that any actions producing such deviant behaviour are rejected
immediately. There is no reason to suppose that the moderator will not prove simlarly
useful when applied alongside CARLA. Consideration of a road spectra input, which
can excite the modes of the suspension system more fully, will test this claim.

A suspension system and CARLA configuration, as used mn the previous section, is
now excited by a Breakback road profile input (Section 2.2). A moderator 1s applied
with the acceptable state limits defined as in equation (4.1), and hence the
environmental cost function is reduced to that of equation (4.4), removing terms to
control workspace usage which the moderator now controls indirectly. Ten such
learning runs are recorded, each concluding at 3000 iterations, referred to as
Automaton G. The parameter results are summarised in Figure 8.6. Agam,
comparison with discrete automaton results on a similar task - Automaton E, Figure
4.8 - shows the CARLA return more consistent parameter results. This is seen most
clearly when comparing the (kz,kd) pairs from Automata E and G - see Figure 8 7

Automata E and G return ssmilar low vanance k&, distributions, and %, has been seen
earlier as being comparatively unimportant to controller performance This suggests
that the vanance difference in (kz, k4) results may account for the marked difference in
average RMS response seen in simulation - Table 8 2. The controllers of Automaton
G are found to make less demand on suspenston workspace usage, on average, whilst
still achieving a reduced body acceleration over Automaton E.

RMS Response Automaton E Automaton G

x, (mm) 30 3.0
x, (mm) 286 22.2
x, (m/s?) 0.45 0.43

Table 8.2 - Controller evaluation on Copt Oak road - Average RMS responses.

110

Leamt gains relative to LQG optimal system

@

0 1) 1 t
ky kz ks ky

Figure 8.6 - Automaton G: learnt parameter results (mean * one standard deviation)

Analysis of the convergence measures for Automaton G CARLA - Figure 8.7 - again
shows k, to be learnt the fastest, implying this parameter 15 most mmportant to
controller performance, although not as prominent as for Automaton F However,
k, and k, now seem to make a greater contribution to performance than before as their

convergence measure levels have increased

111

-500 © Automaton G

X Automaton E

-1000 .

-1500 .

T

~'-2000 1

=-2500

T

-3000 7

T

-3500 .

_4000 1 1 1 1 L 1 1 1
0 2000 4000 6000 8000 10000 12000 14000 16000

kz

Figure 8.7 - Comparnison of (kz,k4) values from Automata E and G

Average C,,

1 1

0 500 1000 1500 2000 2500 3000
lteration

Figure 8.8 - Automaton G: average convergence measure evolution

112

8.3 On-line Application of CARLA

The previous study has illustrated that CARLA can perform at least as well as discrete
automata on a realistic suspension task and, more importantly, is more hkely to
produce consistent results. This can be tested further in an on-line application. A
hardware experiment, based on the system described 1n Chapter 5, 1s detailed here.
This experiment is previously presented by Howell et al. (1997).

Using 1dentical vehicle settings and input type as used in Chapter 5, three
interconnected CARLA are applied at each corner of the test vehicle to learn the three
free parameters of equation (5.1) The initial action space of each CARLA cover the
parameter ranges

k, &[0,15000]
k, €[0,2000] (8.3)
k, €[-6000,0]

with the CARLA learning parameters set at g, =03 and g, =0.02.

Three independent examples of the learning system are run on the ng with each
example using a different Robson road random driving nput. No explicit stopping
criterion is applied with maximal use of available rig time being the pnime objective.
This resulted 1n two tests run for around 2900 iterations, about 13 hours of rig time,
with the third test able to be extended to 3300 iterations.

Figure 8.9 shows a typical probability evolution through a learning test where, in
comjunction with the convergence measure analysis and modal value evolution, shown
i Figures 8.10 and 8.11, 1t 1s seen that all automata respond similarly. Each automata
1s able to identify a strong region of its respective action space despite the non-

linearities and sensor noise that are inherently present in a hardware environment.

The relative performance of each learnt controller is assessed by measuring body
acceleration during a complete pass of the vehicle over an independent section of road
with the same controller gains applied at all four corners. The test road applied for this
purpose in Chapter 5 is used here Table 8.3 gives the percentage improvement in
r.ms body acceleration compared to the nominal passive setting - c.f Table 5.1

Generally the CARLA learnt controllers perform similarly to those learnt by discrete
automata However, the controllers of Automaton 3, after the longer learning period of
3300 iterations, show a significant advantage. A comparison between the power
spectral density body acceleration response of a vehicle with passive suspension and

113

that of a vehicle with a learnt controller applied 1s shown 1n Figure 8.12, where the
learnt controller 1s seen to yield a reduced response across a wide frequency band

Comer A ComerB ComerC CornerD

Automaton 1 6.5 56 3.2 60
Automaton 2 6.0 56 0.8 7.0
Automaton 3 101 94 87 13.8

Table 8.3 - Percentage improvement in RMS body acceleration over nominal passive

damper setting

114

2

22

[

o
21

8

20

2o

4 ’
x 10 2 0 Iteration
-3

> x10 S s

£2 -.-v.;'//mf-s-w 7

8 ; S

214 md 3000

T

8 5\ N

0 N s 2000
@ 0 Ul
o
2000 © Iteration

=2

2 1

(]
o
205
5 gy

oy

(L

T

-1000 o 0 Iteration

Figure 8.9 - On-line probability distribution evolution (typical)

115

4 T T T T T
3.5f / -
—
k3
sk — kK)

J25F \/ \ .
A

2r |
1.5F .
1 1 1 1 1 L
0 500 1000 1500 2000 2500 3000
Iteration
Figure 8.10 - Convergence measure evolution
4
10
2x T T T T T
+ 4 "
S5 4
+++Jr'}'*'++++"’‘r+++++*f+++++++"r
G 1 1 1 L 1
0 500 1000 1500 2000 2500 3000
2000 . : .
* +
10001 faadFedtdpFbdbrdsrr e sy anl
e + & + + | L 1 1
0 500 1000 1500 2000 2500 3000
0 - : : ; :
~2000F -
< + + +
4000 RPN EPRp SR g
PR B S I S I TSR T S
_6000 L 1 1 1 d
0 500 1000 1500 2000 2500 3000

Iteration

Figure 8.11 - Modal value evolution

116

Body Acceleraton

10 T T T ¥ T T T T

PSD

2 1 i 1 ! i

1 1 1 A
1] 2 4] 8 10 12 14 16 18 20
Frequency (Hz}

10

Figure 8.12 - A companson of the power spectral density function for the best passive

damper setting and a learnt controller.

8.4 Discussion

Many of the suspension tasks set for discrete automata have been reassessed in this
chapter with CARLA applied. The CARLA has repeatedly shown itself to return more
consistent learning with the resultant learnt controllers indicating improved
performance,

Practical differences between discrete automata and CARLA were particularly
highlighted in the on-line experiment Discrete automata, with the addition of Wu’s
action set requantisation technique, profit from their small number of actions to
quickly locate, and requantise 1n, a strong region of the action space. However, they
then struggle to progress any further with learning after the action set has been re-
defined two or three times; the automata 1s unable to distinguish the relative responses
of actions located so close in the overall environment action space. CARLA does not
suffer from this as it can mamntain an overview of a much larger action space
throughout learmng. Where discrete automata homes 1n’ on a smaller region of the
action space, and then attempts to distinguish between specific actions in that region
by repeated tnal, the CARLA maintains a full action space view and uses the
generalisation of remnforcement such that the cumulative effect of trials around a
region 1dentifies an optimum pomnt. One effect of this 1s apparent slower learming by
CARLA,; 1t suffers from 1ts much larger action space by imtiatly being unable to locate

117

strong action space regions as quickly as discrete automata, but profits later on with its
ability to continue learming with 1ts cumulative reinforcement generalisation to
produce much improved and consistent results.

It was noted that, in multi-CARLA applications, comparison of the convergence
measures of each CARLA could indicate the relative import of the respective
parameters to the particular learning task. Strong learning of an automaton indicates
that 1ts associated parameter has a large impact on the success of any action
Conversely, weak learning suggests that a parameter is having little effect, whatever

value is chosen for trial by 1ts automaton.

118

Chapter 9 - Dynamic Vehicle Roll Control

This chapter presents a simulated multi-goal learning task and investigates the ability
of CARLA 1n such a scenario. Learmng tasks of previous chapters have each had a
single aim, defined via a single performance 1ndex feedback from the environment to
all automata applied to the task

Here a roll control learming strategy is derived, based on an engineenng analysis of
actual vehicle hardware, as a precursor to hardware implementation. The strategy splits
into two learning tasks with independent but complementary aims: learning a simple
ideal feedback roll control law, and learning how the vehicle hardware, with its
inherent Limitations, can best attempt to achieve the demands of that roll control law.
Two interconnected CARLA learming umits are implemented on a full vehicle
simulation to learn the free parameters 1dentified in the derived control strategy, and
investigate the efficacy of CARLA application. Frost et al. (1996) first presented this
study

Section 9 1 details the derivation of a roll control strategy, based on the minimisation
of a dynamic cost function, aiming to maximise the performance of a semi-active
suspenston system 1n attempting to achieve a full-active control law response. The
derived control strategy has five free parameters, and Section 9 2 then describes how
CARLA are applied, in two teams with independent aims, to learn values for these.
The results of simulation studies are presented in Section 9 3, with a discussion of the
conclusions that can be drawn from these in Section 9.4

9.1 Roll Control Strategy Derivation

A simple control law for the destred roll moment to stabilise a vehicle 1s
M(e)=Wg(e) + Wo(e) o)

where ¢ is roll angle. To achieve such a roll control law, in practical application,
would require ideal force actuation. The available semi-active suspension hardware
fitted to the test vehicle is able to achieve some degree of roll moment via vanation of

damping rates, and thus suspension force actuation, at each wheel station

independently. This supplied roll moment 1s

119

oo

(p+q
2

(p;LCI)[Z‘ - F] o=[-1,11-1]

M

(_F;1+E52+F;,3_Et.4)
9.2)

where p and g are the lateral distances between the wheels and the vehicle’s centre of
gravity, and F,, 1s the suspension force at a vehicle corner produced by a spring in

parallel with a continuously variable damping rate actuator

F, =K,X,+,u(v,,c‘) 93)

Here, X is the suspension deflection, v 1s the relative velocity across the actuator, and
¢ 1is the percentage damping request control signal (0<¢, £100) - see Section 2 1.3
for further details.

The natural aim of this control strategy 1s to minimise the difference between M and
M at any pomnt in ime A further aim, related to consideration of the actual hardware
operation, 1s to achieve M via a smooth application of control, 1e. prevent the
actuator valves from extensive operation at theirr limits, and avoid harsh bang-bang’

control by limiting the rate of change of control current

These aims are encapsulated 1n a dynamic ‘cost function” L as
L(t)=_;-(ﬂ(t)— M(r))2 +Y a¥(c,) (9 4)

where the second term costs deviation of the control signal from the central band
25 < ¢, <75 with a quadratic cost outside these limts

0 if ¢, -50(< 25
1 2 ©-5)
—2-(c, ——50) —3125 otherwise

To avoid rapid switching between upper and lower limuts of the actuator valve, a limut
is imposed on the magmtude of the change m control during the zero-order hold
interval of the controller

&, =c(t)—c(t—&)

9.6
160 <b G0

120

Then the control vector 1s chosen to minimise an estimate of L(t) at each time step

¢(t)= argmmn L(r) 6.7

Subject to the constraint, (9.6), the change in L during the time interval (z—dr,1) 18

given by
oL~ (1 - M)81 - M)
9.8
Yo oY
. dc,
and, from (9.2) and (9 3)
51 = (P;'Q) 20_‘&3
! 9.9)

_{p+a) A . W
=" ZO: K&{:"'ISV:'I'E&J

Here X, and év, are only weakly influenced by any (bounded and small) change 1n
control; hence the first two terms can be ignored. Similarly

oM = k,6+k,80 =0 (9 10)

Therefore, from equations (9 8), (9.9) and (9.10)

&=(ﬂ—M)(p+q)Zq a‘*&,+2q§“§’—(c.)& 9.11)

where

a¥,\ | 0 if|e-50<25
d—q(c,)_{q) 912)

otherwise

For reasonably sirmlar actuators it can be assumed that o, =a,=a, =a, =, and so
(9 11) becomes

= (-)220y o P,

+ ¥ a@(c) (e, -50)&, (9.13)
=26,

121

where @ is defined as

9 14)

a(c)={° if |c, 50| <25
"/ |la otherwise

and G, is the effective gradientof L w.rt

G =(ﬂ—M)——(p+q)0' 22
! 2 & (9.15)

I

+a(c,) (¢, -50)

The required change 1n control at each time step, to mimmuse equation (9.4), can be
deduced from inspection of equations (9.4) and (9 13), whilst recalling the constraint
of (9.6). L(z) is defined as a positive quadratic function, which for minimusation
implies that L should be a maximum negative value to head towards the minimum of
L(¢) whenever possible

Equation (9.6) limuts the change in control to +b, s0 L(t) can be best munimised with

&, =—b sgn(G,) (9 16)

giving
L =—b(2|G,|J ©17)

Thus ¢, always changes by +b (maximum change) unless G, =0. More realistically,
for ’small’ G, there will be uncertainty in 1ts sign and a deadband in G, ta, will be
included.

The above equations therefore represent a non-linear control law, whose structure has
been defined by conventional engineering analysis. The free parameters in this
structure are W,W,,a,b, and & .

122

9.2 Multi-goal Learning Implementation

Vehicle Vehicle
Sensors Sensors
Supplied
Performance
Evaluation 1 < VEHICLE > Suspenston
r Force
t [31 Control Supphed
Signals M Roll
E e Moment
|)
|
Learning Learning - _rP_Z | Performance
Control 1 Control 2 Evaluation 2
M M

Desired Roll Moment
Figure 9.1 - Learning roll control structure
Figure 9.1 1illustrates a control structure, including two learning control modules (LC1

and LC2) devised to implement on-line optimusation of the control strategy defined
above, via CARLA learning.

LC1 is set to learn W, and W, of equation (9 1) The performance measure for LC1 1s
taken from the sum of squared roll angle over a test period of 8 seconds

J =Y oty (9.18)

This 1s derived from vehicle sensor information and is passed to the Performance
Evaluation 1 (PE1) module PEIl provides the learning cntic, defined for minimisation
by equations (6 7) and (6.8) to return a performance index, f € [0,1], to LCI.

LC?2 then takes on the task of learning how best to achieve the desired roll moment of
LCl, i e. learn operational values of g, band a. Its aim, to minimise the difference
between M and M , leads to the performance measure

J,= Zé(ﬂ - M) 9.19)

passed to Performance Evaluation 2 (PE2) PE2 1s defined simularly to PE1 to provide
a mmimisation critic, and hence f4 , for LC2.

LC1 and ILC2 are thus separate learning umts with independent aims, co-operating
only via the interaction of their respective actions. Each unit consists of

123

interconnected CARLA (g, =03, g, =002) with a single CARLA for each free
parameter to be learnt by the unit An initial range is identified for each parameter,
within which the respective CARLA may search

W, € [-1000000,0]

W, e [-40000,0]
a €[0,5000] (9.20)
be[0,50]
o €[0,100]

These values are somewhat arbitrary in choice, although the sign, and general size of
the range, has been deduced from considerations of the effect of each parameter
indwvidually.

Input to the vehicle model is an artificial dual-track road as described in Section 2.3.
A continuous track is formed from 150 seconds of such a road, assuming a vehicle

forward velocity of 20m/s,

9.3 Results

Ten independent trials of the above learming strategy are simulated, and the parameter
results summarnised in Table 9.1. A coefficient of variation 1s defined as the standard
dewviation of the ten results for a parameter divided by the parameter’s 1nitial range, and
hence gives some measure of the variation of the learnt parameters across the ten

results, with a low value signifying a consistent learnt value.

Parameter Mean Std. Deviation ~ Coeff. of Variation
W -303072 9091 0.9%
W, -12075 1093 2.7%
a 1793 899 18.0%
b 44.1 1.70 3.4%
a 66.4 153 15.3%

Table 9,1 - Parameter results

124

Mean Cost, Sum of Squared Roll Angle

Mean Cost, Sum of Squared Roil Moment Error

0o 500

1000 1500 2000 2500 3000 3500
teration

Figure 9.2 - Mean cost seen by LC1

4000

4500

14

—_
N

—_
(=]

=]

o

i

N
T

0 1
o 500

1 Il L 1 L 1
1000 1600 2000 2500 3000 3500

lteration

Figure 9.3 - Mean cost seen by LC2

4000

4500

125

Figures 9.2 and 9 3 show the mean cost (a rolling average of 100 values) returned to
LC1 and LC2 respectively during one typical learning run. It 1s seen that the average
cost seen by both units decreases significantly over time. Evaluation of a nominal
passive suspension over a typical iteration of the road input (¢, = constant) returns a
J, value of 14.7x10°°. By applying the derived control structure, with learning of the
free parameters, the system easily surpasses this passive suspension performance

straightaway, and continues to improve for some time.

After around eight hours of learning (equivalent to 3600 iterations) no further
improvement in the mean cost curves is apparent. Taking the parameter values
corresponding to the modal value of the respective CARLA probability distribution as
the learnt values from one typical learning run gives

W, =-315300
W, =-11457

a=11102 (9.21)
b=43

a=48

Relative performance of the roll control system with the above parameter values 1s
assessed by comparison with a passive suspension system 1n simulation over a 1000
metre section of the road on which learning took place. The roll performance of each
system 1s given 1n Table 9 2. The vertical body displacement has changed little with
application of the roll control, but the r.ms. roll angle has improved significantly.
Figure 9.4 shows a short time history of the roll angle for the two controllers, and 1t 1s
clearly seen that the learnt controller consistently returns a roll angle below that of the

nominal passive system.

rm.s. roll angle r.ms. vertical body

(rad) displacement (mm)}
Learnt Controller 0.0105 126
Nominal Passive 0.0193 12.6

Table 9.2 - Companison of controller performance

126

Roll angle (rad)

-0.02

-0.04

-0.06

Control signal (c,)

Control signal (c,)

100

0.06

0.04

0.02

~———— passive
roll control

1 1 1 1 1 1

20

22 24 26 28 30 32 34 36

Time (s)

Figure 9.4 - Improvement in roll angle

100 |—

N & O ©
o O O O
1 L] T i

o
T
—

] N 1T

L It LIl 1

1 — 1 1 1

20

20.2

204 206 208 21 212 214 218 218 22

[AC @
== g o
T T T T

o

LU ILJU UL

i = == 1 1

20

20.2

1 1 1 1
204 206 208 21 212 214 216 218 22
Time (s)

Figure 9.5 - Sample control signal

127

Considering a brief time history of the control signals to left and right actuators -

Figure 9.5 - it is also seen that the control often opposes left to right, as would be

expected, to counteract roll velocity in one direction.

The above simulation analysis has shown the roll control strategy, with learnt values of

the free parameters, has successfully outperformed a passive suspension system, but

how has

convergen

the learning strategy itself performed? Chapter 7 introduced C,, a

m?*

ce measure statistic which can indicate comparative importance of

parameters to a learning task; the CARLA associated with parameters that have greater

effect on s

ystem performance are likely to show stronger convergence.

C,, is measured throughout the learning periods of all ten simulation runs and the

parameter
values for

averages are presented in Figure 9.6. Clearly LCI is able to learn strong
W, and W,. This is supported by the low coefficients of variation identified

in Table 9.1 for these parameters, signifying consistent learning of distinct values for

W, and W,

. LC2, however, is seemingly somewhat less successful. The C, plots for

a and & barely rise at all, indicative of very weak learning of these parameters; the

coefficients of variation are also considerably larger. A high value of & is consistently

learnt, however, and the mean cost shown in Figure 9.3 fell considerably so LC2 has

achieved its aim in some form.

Average C_,

8 : ; . . ; , .

7+ — W, N

6f U

i /\/’ .
| SN —]

3r .

ot e W — s i

! : e . ; ; J . :

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Iteration

Figure 9.6 - Average C, from ten experiments

128

9.4 Discussion

A complex non-lmear control problem has been introduced where formal control
theory is not well suited to obtaining an optimal design. Although numencal
optimisation might be used 1n stmulation, the CARLA methodology can be applied on-
line using vehicle hardware and with no explicit detailed modelling. Here, prior
engineering knowledge of the basic mechanics of the vehicle system have been
combined with the capabilities of CARLA to learn parameters for a full vehicle roll
control law.

Analysis of the convergence measure for each parameter highlights a number of
points. W, and W, are quickly and consistently attained for a control law for desired
roll moment. As the suspension system 1s semi-active 1t is unable to produce the high
forces demanded 1n trying to match the desired roll moment. In trying to do this the
system (LC2) has learnt that a ‘bang-bang’ control is the best compromuse; b is learnt
at the upper end of 1its range so the control switches rapidly between 1ts upper and
lower limits The parameter a in the control structure employed to avoid this is
consequently ineffective, and no sharp value is obtained.

The results presented illustrate that the application of CARLA has been successful in
reducing roll angles over a quite severe input This sumulatton study thus indicates
that application in hardware 1s both feasible and worthwhile.

129

Chapter 10 - Speculative CARLA Extensions

Two possible modifications to CARLA have been 1dentified dunng the development
of the methodology, namely adaptive action space sizing and non-linear function
learming. This chapter documents the preliminary studies of these extensions that
demonstrate their viability 1n simulation. However, 1n both cases a number of issues
remain which will require further research to turn them 1nto truly useful techmques for
practical application.

10.1 Adaptive Action Space

The CARLA methodology allows the application of one CARLA per free parameter of
any learning task. As it has been defined thus far, the user 1s required to define a
parameter range in which the CARLA can operate; a fixed size action space. The
successful operation of the CARLA thus depends upon the user specifying an
appropriate action space for each parameter. Normally a prior analysis of the task to
which CARLA is being applied should indicate such parameter ranges, although there
will always be some cases where a task may be too complex to analyse thoroughly. In
those cases 1s would be preferable 1f CARLA could be given some freedom to adapt 1ts
own action space, effectively introducing an exploration of the infinite action space.
An example from the roll control task of Chapter 9 raises the motivation for such
ability

Simple analysis of the vehicle system to deduce a suitable range for the parameter W,
of the feedback roll control law of (9.1) indicates a negative value is required to
oppose an induced roll angle. However, an appropriate magnitude 1s not obvious as 1t
is dependent upon numerous other factors such as the physical characteristics and
geometry of the vehicle and the non-linear characteristics of the suspension actuators
for instance In fact, the range of [—1000000,0] for W, was selected after two
iterations of CARLA application. Ranges of {-100000,0] and [-200000,0] were tried
previously with the resultant probability distribution for W, heavily skewed showing a
preference for larger negative values for W, Figure 10.1 shows a similar result for the
b parameter of the roll control task where large values of b are repeatedly preferred for
the most rapid rate of change of the control signal to be available. Clearly significant
time expenditure could have been saved if an automata could have noticed such a
heavy skew and acted upon 1t to search further for a more favourable action space
itself, rather than requining 1terations by the user to find such an action space range by
informed trial and error.

Probability Density

Iteration

Figure 10.1 - Heavily skewed probability distribution of parameter b

The aim of this study is then to investigate addition of an adaptive action space
capability to the CARLA methodology, whereby the CARLA is able to vary its own

action space where learning shows clear trends.

10.1.1 Concept and implementation

The action space of a CARLA, as described in Chapter 6, is defined between two fixed
limit values, a,,, and &, . Adaptive action sizing allows these values to vary during
learning, taking reference to a measure of skewness of the probability distribution in
deciding in what manner they should be shifted.

Skewness is ascertained by observing the position of two percentile points of the
probability distribution, at 25% and 75% respectively. As the 25" percentile tends
lower in the range then the probability distribution is skewing left and a,,, should be
lowered (shifted left) to compensate and allow the CARLA to search more widely into
this preferred area of the action space. Similarly, motion of the 75" percentile to the
right should raise @, . Such expansion of the action set then allows the CARLA to

explore new regions of the action space.

Conversely, there is no reason why . and @, should not have the capability of

X

moving in such a way as to reduce the action space size. This will be particularly
applicable where the probability distribution continuously skews to one side for a

prolonged period. Consider a skew to the right where a, is repeatedly increased.

X

131

Evidently there is little or no reward for low @ and hence no benefit in maintaining
0., atalow value. Allowing @, . to also move to the right, and thereby reducing the

action size away from low @ . enables the whole automaton action space to track up

the real line; vice-versa for a skew to the left.

Motion of an action space boundary is controlled by comparison of a percentile point
from the probability distribution against two user-defined limits - see Figure 10.2. A
contraction limit (con_lim) and an expansion limit (exp_lim) are defined in terms of
percentages of the current parameter range. If the percentile remains between these
limits then the local boundary remains unchanged. However, if the skew of the
probability distribution becomes such that the percentile exceeds the expansion limit
then the local boundary is moved to expand the action space of the CARLA.
Similarly, if the percentile falls within the contract limit then the local boundary is
moved to contract the action space. Any expansion or contraction therefore acts to
move the percentile back within the limits. The 25 and 75" percentiles are referenced
for control of the local boundary. The expansion and contraction limits are similarly

defined, symmetrically about the mid-point of the current parameter range.

For example, in Figure 10.2, the probability distribution skewness is such that the i
percentile lies inside the contraction limit and the right boundary of the action space

should therefore be moved to the left.

25% 75%

0.251
02t

0.15f

o
=
T

Probability density

:
\

1 1 1 1 1 1 1 i 1 J

0 L 2 3 4 5 6 74 8 9 10

Figure 10.2 - Percentile limits for deducing distribution skewness

132

When the percentile exceeds one of the limits then the appropriate expansion or
contraction of the probability distribution is achieved with

C’zlimi! (k + l) = (xﬁmil(k) + Bexp ¥ (amax (k) . amin (k)) (10])
for expansion and

i (k F 1) = Qi (k) * Q:on '(amnx (k) = Ohin (k)) (10.2)

for contraction In expansion the boundary point on the probability distribution curve
definition is stretched out to a new boundary value, whilst in contraction the
probability distribution is truncated back to the new boundary value. Figure 10.3

shows an example of this.

o
o
T

o

o

o
T

Probability density

o

=)}

e
—_
T

Probability density
=}
o
(61}

o
<™

(b)

o
—
T

o

o

a
T

Probability density

i 1 ']
9 10 1 12
(c)

mo
~ F
(o+]

Figure 10.3 - Expansion and contraction of the action space, (a) original distribution,

(b) after an expansion, (c) after a contraction
Any such movement of a boundary point will violate the constraint of _[pla)=1, but

in practice simply normalising the curve after any boundary motion enforces the

constraint.

133

10.1.2 Demonstration task

The feasibility of the above algonthm is demonstrated here on a function maximisation
learning task. Thus task is constructed so the modified CARLA has to recognise, and
adapt to accurately locate significant changes in the environment response.

An environment response is modelled as the function of two variables
2 2
2=30(1—x) e 1)

. (10.3)
—100(§—x3—x5) e" Y —x*—y'+n

where n 1s uniformly distributed white noise signal, band-limited to 5. This function
is derived from equation (7.1) used in the comparison of discrete automata with
CARLA, with the addition of two quadratic terms that shape the overall surface - see
Figure 10.3(a). To model a change 1n environment response duning learning, two
vanants of (10.3) are taken, derived from the two linear transformations

x> y-3

Y x—3 (104)
and

X x+3

Yy y+3 (105

These surfaces (mean value) are shown in Figure 10 4, (b) and (c) respectively. For
the imtial 5000 CARLA iterations the environment response conforms to (10.4), and
thereafter (10.5) is applied.

Two modified CARLA are applied in an interconnected format to learn maximising
values of x and y respectively. The parameters of these CARLA are g, =03 and
g, =002 as before, with the additional parameters for action space boundary control
defined as, 1, =0018, [, =001775, and 6, =6, =0.001.

exp con

The 1nitial action space for each CARLA is taken as [-10,0] This choice simulates an
erroneous selection of initial action space by the user as the maxima of the first

environment response function, (10.4), lie outside these limuts.

The CARLA are applied for a total of 10000 iterations, and the probability distributton
time histones are shown in Figures 10.5 and 10.6. These show the CARLA
successfully altering their action spaces and locating maxima. They both manage to

134

alter the initial action space to contain the global maximum of (10.4)

locate the global maximum accurately, concentrating attention around the

maximum upon repeated reinforcement in that area

react to the change 1n environment after 5000 iterations by unlearning’ the
prior knowledge

relocate the action space to contamn the new global maximum of

environmental response, the maximum of (10.5)

locate and concentrate attention around that maximum

v
o

1S00) ues|y

(b)

()

{ _...%o
AN
AR ,
AN
XA)
AN
s.._ﬁ_....,%se..&é&
)
XK en sss..#

ﬁ,
%
%

)
b,
(X0
(7
X0
DS
KX
G
0,

()
‘%
oty
000
() Ly Y,
g“..%ee.&aw
(AN)
(5 sﬁ Qs sﬁ s, 5
elete
G0
OON
"

es
i onse surfac
0.4 - Mean value environmental resp

Figure 10.4 -

136

n

v
o

10000

Probability Density
|
26 b o

Iteration

10000

1

9000}

8000

7000}

6000+

5000+

Iteration

4000

3000

2000

=15 -10 =5 0 5 10 15

Figure 10.5 - Probability distribution time history for x with adaptive action space

137

robability Density
- n w

1. P
i
o ©

10000

9000

8000

7000

6000

5000

Iteration

4000

3000

2000

1000

/" 10000

8000

Iteration

Figure 10.6 - Probability distribution time history for y with adaptive action space

138

10.1.3 Discusston

The above application of the modified CARLA with adaptive action space control
clearly demonstrates the technique 1s viable and could be developed 1nto a useful tool.
However, the current methodology suffers from a few weaknesses resulting in the
adaptive action space CARLA performance being very sensitive to small varations of
the boundary control parameters for a given task; an inappropriate number of tral runs
were required to set working boundary control parameters for the demonstration task.
These parameters are seen, 1n practice, to define a fine balance between the exploration
and explortation properties of the automata

Over-exploration 1s seen to occur as the CARLA excessively extends its action space;
the rate of increase of the CARLA action space size overwhelms any reinforcement
process and hence recovery to a viable action space 1s unlikely. If applied in a control
optimisation setting, such expansive behaviour could easily encroach on unstable
regions of the control space.

Conversely, excessive exploitation can occur if the CARLA reduces 1ts action space
around a strong action to such an extent that, should the environment response change,
the CARLA is unable to extract itself from this region of the total action space within a
reasonable time scale.

The extra quadratic terms of equation (10 3) over (7.1) have been added as an aid to
the boundary control on this task These additional terms introduce a sigmificant
gradient to the environment response away from the maxima. If the current CARLA
action space is focussed away from the maxima this gradient helps to introduce a skew
in action reinforcements such that the boundary control wiil move the action space
towards the area of maximum reinforcement. Without these terms, the environment
response is ‘flat’ away from the maxima and the CARLA tends to over-explore without
it

The introduction of adaptive action space sizing also raises a concern regarding local
optima With the fixed action space CARLA, it has been seen that the CARLA
frequently locates the global optimum. Considering an adaptive action space CARLA,
location of a global optimum within the initial action set can be reasonably expected
and the CARLA will reduce its action space around the region of that optimum If,
say, the global optimum then shifted suddenly away from that region, the CARLA 1s
required to expand its action space again. In this case it 1s possible that the CARLA
will locate and subsequently settle around the first optimum 1t finds, which 1s not

necessanly the global optimum

139

10.2 Non-linear Control

Up until now only linear controllers have been considered in the application of
CARLA to optimusing vehicle suspension characteristics. Linear controllers were
nitially chosen as they provided, for some specific cases, a theoretical solution against
which the ability of various learning automata could be judged during their
development. However, where non-linear systems are considered, especially practical
studies 1n hardware, it is likely that improved system performance can be found from
applying non-linear control. This section investigates the application of CARLA to
learn a non-linear ride controller for an ideal fullactive vehicle suspension where some
significant non-linearities are present, in the form of bump-stops applied for
suspension deflection above a pre-defined limit. The implemented technique 1s based
on simple function approximators, where interconnected CARLA are applied to learn

values for the free parameters of the approximators.

10.2.1 Concept and implementation

Previous lmear feedback control laws for the quarter-vehicle suspension model have
been of the form

u@)=[k, k, k, k, }x (10.6)

The approach adopted here is to replace each static gain value of (10 6) with a gamn

function, so that the control law becomes non-linear in its parameters thus
u(t)=[0 k(x,) k() k,(x)] * (10.7)

Note that to reduce the learming task slightly, the relatively ineffective feedback of k,
is agan dropped

Each gain function can now be learnt by applying a farmly of interconnected CARLA
to learn the free parameters, w,, of a piecewise-linear function approximator construct
of the form

k()=

rj(x,) W, (10 8)

5
J=1

where r, are roof” basis functions. Figure 10.7 illustrates r, for the feedback gain
function on x,. Here the nodal pomts of the r, are distributed evenly between the
state limits of x, defined for the moderator. r, and r; are shaped beyond these limits

for a reasonable continuity of the gain functions, should these limits be exceeded.

140

Function approximators are similarly defined for &, (x3) and k 4(x4) with roof
functions distributed between the respective moderator state limits imposed on x; and
x,. Fifteen CARLA are thus required on this task to learn the w, ; and define three
gain functions for state-feedback controller of (10.7).

M3 Ty fs
.’I_
i)
\ /

ry P

'Roof’ functions

!

L 1
-0.1 -0.05 0 0.05 0.1
X2

Figure 10.7 - Piece-wise linear function approximator, k, (xz)

10.2.2 Demonstration task

An active quarter-vehicle suspension system is considered, of the form described in
Section 2.1.2. The state feedback control law of (10.7) is to be optimised by learning
to minimise vertical body acceleration. A significant non-linearity is introduced into
the system, in the form of bump-stops that the CARLA will need to make allowances
for; a smooth ride response is best achieved by avoidance of any interactions with
bump-stops. In hardware a bump-stop is often comprised of rubber cones which are
used to limit excessive suspension deflections and protect surrounding hardware from
the impacts caused by such deflections. In simulation they are effectively an
additional strong spring force applied between the sprung and unsprung mass on
excessive suspension deflections. Here bump-stops are applied for suspension

deflections of |x2| >50mm with a spring rate of 60kN/m.

The fifteen CARLA are defined in standard fixed action space form, with learning
parameters g, =0.02 and g, =03, and minimisation performance evaluation defined

by equations (6.7) and (6.8). Reasonable action space ranges for the respective gain

141

functions can be taken as for single gain learning of previous studies. Each set of five

CARLA are defined over the common action space

w,, € [0,15000]
w;, €[0,2000] j=12,.5 (10.9)
w, , €[-4000,0]

A continuous track 1s formed from the Breakback road profile traversed at 20m/s. This
provides a harsh input to the system that can excite the system modes significantly and
will bring the bump-stops into use during learning.

A moderator with the limits of (4.1) 1s applied, and the performance mdex 1s defined as
the squared body acceleration over 16 second iterations, (4.4), for all CARLA.

085 T T

o8 1
075 7
07 .

065 7

06 -
055

05

045 1
04+ .
038 50'00

10000 15000

Mean Cost

Iteration

Figure 10.8 - Mean cost time history

The mean cost result of a typical learning run is shown in Figure 10.8. The CARLA
are seen to exhibit improving performance to around 15000 iterations, considerably
longer than the three thousand iterations required on the four gan learning task of
linear feedback control. The mean cost is also ‘noisier’ than seen before. Both effects
can be attnbuted to the increased dimensionality of the task, fifteen CARLA are
required to co-operate 1n producing successful control here, where only four were used
previously. The probability of selecting a successful action for trial is reduced as the
dimension of the task increases, and hence the possibility for wide variations 1n action

performance is increased.

142

A set of ten automata are simulated, with the stopping criterion set at 15000 1iterations,
referred to as Automaton H The average convergence measures at the end of each run
for the fifteen automata are given 1n Table 10 1, showing a reasonable level of learning
has taken place on all automata. In particular, k, (xg) has shown the strongest
learning. A similar result has been noted in previous studies where k, learming was
often dominant as this parameter 18 found to be most important to achieving a
favourable environmental response.

i=1 i=2 i=3 i=4 1=5
W, 27 31 3.1 3.5 24
W, s 22 36 55 4.0 2.5
W, . 2.2 3.0 32 2.9 24

Table 10.1 - Convergence measures of Automaton H

The average resultant gain functions are 1illustrated in Figure 109 There 1s a clear
charactenistic apparent in these plots. It is evident that the CARLA has learnt soft’
suspension settings - low gan values - for small state deflections, whereas, for more
excessive deflections, a larger magnitude control 1s preferred. Such settings seem
entirely reasonable 1n attempting to avoid the harsh effects of impacting on the bump-
stops.

Comparison simulations of an Automaton H controller against a controller from
Automaton G confirms the above observation - Automaton G 1s sumlar to the task
considered here, except that a four gain linear state feedback controller is optimised
without bump-stops. The two Automata are each simulated over a 3000 metre section
of the Breakback road, with bump-stops applied in both cases. In the first simulation
the input magnitude is scaled up by 50% to produce a severe input which will cause
the bump-stops to be applied. The magmtude 1s reduced by 50% in the second
simulation to analyse the system response on a smoother input. Tables 10.2 and 10.3
record the RMS responses. Over the harsh version of Breakback Road the Automata
are seen to respond simularly. However, across the reduced road profile Automata H
profits slightly from applying reduced control force, resulting in marginally reduced
body accelerations as greater use 1s made of the available tyre and suspension

workspace.

143

15000

10000

Ka(Xz)

5000

0 1 L
-015 -01 -0 05

1500

1000

Kx{Xs)

500

-1000

-1500

kelxq)

-2000

—2500 1 1 1 1 1
-4

T

005 o1

x ol

015

Figure 10.9 - Learnt controller gain functions

RMS Response Automaton G = Automaton H
x, (mm) 6.7 68
x, (mm) 40.5 40.7
x, (m/s?) 1.45 1.46

Table 10.2 - Controller evaluation on a harsh’ Breakback road - RMS responses

RMS Response Automaton G Automaton H

x, (mm) 2.3 27
x, (mm) 19.3 23.1
%, (m/s?) 0.35 0.33

Table 10.3 - Controller evaluation on a soft’ Breakback road - RMS responses

10.2.3 Discussion

| The synthesis of a non-linear control law by reinforcement has been successfully
demonstrated, 1n principle, even though there was only a marginal improvement m
results on the particular task chosen in companson with learning a linear control law.
| The major drawback seen 1n this CARLA apphication is plainly related to the increased
dimension of the task; by introducing many more free parameters in the controller
structure then significantly longer learming times are apparent. However, it should be
| noted that, had discrete automata been apphed to this task with each free parameter
| quantised to just three values, say, then the action set, 3 = 14,348,907 actions, would
inevitably have resulted m no effective learning whatsoever., The generalisation of
CARLA, and its application in an interconnected structure, has at least allowed such a

task to be attempted with some success.

145

Chapter 11 - Summary and Conclusions

This dissertation has considered the application of a learning automaton techmque to
perform on-line parameter optimisation tasks in complex dynamic and stochastic
environments Limutations of classical learming automata encountered in initial
feasibihity studies have led to the development of a new automaton formulation, the
Continuous Action-set Reinforcement Learning Automata (CARLA). Subsequent
study of the CARLA’s properties, predominantly in the form of empircal
investigations 1n simulation, has demonstrated that CARLA exhibits many beneficial
properties. Successful on-line application of CARLA on vehicle hardware supports
these findings. A discussion of the main points of interest arising during this study is
now given, along with suggestions for further research.

The optimisation of a vehicle suspension system, with its complex dynamics and
naturally stochastic driving input, presents a difficult task. Suspension tumng
traditionally involves considerable modelling effort to facilitate standard optimisation
techmques, and even then lengthy subjective tuning is often used to overcome the
shortcomings of the modelling process when compared with real hardware
characteristics. Classical discrete learming automata have been identified as an
approach to such an optimisation task that does not require detailed system modelling.
Learning automata apply a reinforcement learning method to learn an ‘optimal’ action
via direct unsupervised interaction between the automaton and the target environment.
Feasibility studies with linear, reward-inaction, discrete learning automata 1n
simulation support this; a nde optimisation of a quarter vehicle full-active suspension
controller, where a solution can be found a priori from LQG theory, demonstrates the
ability of a learning automaton to locate near-optimal solutions.

It was noted, however, that learning automata 1n their standard form would not be
suitable for immediate on-line application, as it 1s possible that unstable control actions
can be selected for trial during learning To overcome this the concept of a moderator
has been introduced. The moderator acts as an overseer to the learning process,
monitoring the environment state for excessive, possibly unstable deviations. The
learning automaton operates normally, still able to select unstable actions. However, 1f
the moderator perceives an excessive deviation 1n the environment then the learmng
automata is flagged to immediately fail the current action under trial To return the
environment to an acceptable state a known stable action is applied for the remainder
of the trial pertod. Failure of any action makes the automaton treat that action as 1if it
had returned a minimum performance index and hence receive no reinforcement. In

146

the long term, actions which are repeatedly failed’ by the moderator become less likely
because of increased probabilities elsewhere in the action space.

The moderator allows a learning optimisation task to be considered 1n two parts; hard
limits can be monitored by a moderator whilst the automaton can concentrate 1ts effort
on the main optimisation task For 1nstance, on the quarter vehicle ride optimisation,
two terms of the original cost function were used to cost suspension workspace usage,
which is not inherently part of a ride optimisation but 1s required to constrain learning
to locate ’sensible’ control levels within the physical limits of the system With a
moderator in place to watch for excessive workspace deviations the workspace costing
terms can be removed from the environment response. The learning automaton can
thus optimise vertical body acceleration alone and the moderator limuts the success of
control actions to only those which can maintain reasonable workspace usage during
their trial.

Applying the moderator in conjunction with the learning automaton now permits the
usage of the methodology on-line, removing concerns arising from possible unstable
action selection. A first hardware trial of discrete learning automata was subsequently
implemented on a test vehicle, excited on a four-post hydraulic road simulator.
Discrete learning automata were applied independently at each vehicle comer to learn
the four gains of a linear state-feedback controller, as previously analysed i
simulation. However, the vehicle suspension consisted of limited bandwidth semi-
active suspension, unable to provide the control level of a fullactive system, and so
included much more dynamic complexity than experienced by the automaton in
simulation Despite this 1t was seen that discrete learning automata could learn a level
of control which surpasses the nde performance of standard passive suspension
without any modelling of the complex system being considered.

Two shortcomings of discrete learning automata had become evident 1n these studies,
both related to the discretisation of the action space itself. Firstly, by quantising an
action space into a finite number of actions, the automaton cannot investigate
performance at intermediate actions. It may therefore easily miss features of the action
space 1n those regions. Of course the likelihood of missing optima may be reduced
with finer quantising of the action space, but this quickly leads to a large action set
resulting in very slow or inconclusive learming. This effect is especially magmfied in
higher dimension tasks. Secondly, an effective method implemented to attend to the
above weakness 1s seen to introduce another limitation. A multi-stage learning method
that enabled increased resolution of search as learming progressed, excessively forces
convergence; at each learning stage the action set is shrunk around the successful

147

action of the previous stage. By forcing a convergence. the automaton is unlikely to
recover 1f a misgwded ‘successful’ action selection is made 1n an early stage of
learning, leading to an increased likelihood of local optima location It is simularly
unlikely to recover if there 1s a shift in environment response during learning

The CARLA has been developed as motivated by the above points. Its concept anses
from replacing the discrete action set of traditional learning automata formulations
with a continuous action region. Instead of quantising an action space 1nto a discrete
action set and then assigning a discrete probability distribution to the set, a continuous
probability distribution function can be described across the region that gives a
continuous action set with an infinite choice of possible actions. Point application of
reinforcement 1n an infinite action set is not viable so a reasonable assumption 15 made,
that actions in the immediate vicimty of a tested action will return simular results, thus
allowing a ’‘spread’ of reinforcement to be applied around an action subject to 1ts
performance.

The continuous probability distribution function is defined, for CARLA, by recording
the function magnitude at a fimte set of points across the action space and then
assumung linear interpolation between those points in subsequent computation. An
algorithm has been defined to maintain a high function definition resolution around
areas of high probability density. In effect the function points are spaced to give an
equal probability between them. A Gaussian distribution function 1s applied as the
continuous reinforcement function with 1ts shape defined by two parameters; g,
represents a learning rate parameter, g, defines the width of the reward function for
generalisation of reinforcement around the tested action.

The CARLA has been defined for a single dimension action space only, because of the
problems of representing an N-dimension probability distribution function n the
general case. This 1s hardly of any consequence, however, as CARLA are shown to
co-operate successfully in interconnected formation on higher dimension tasks.

The formulation of CARLA now gives complete coverage of an action space
throughout a learning period. As repeated reinforcement occurs 1n some areas, so the
probability of action selection mn those areas grows to the natural detriment of
surrounding areas. However, there always remains some non-zero probability of
selection of any action This gives the CARLA the opportunity to reassess and adapt
1ts response in light of any non-stationary environmental response.

Simulation studies on basic learning tasks demonstrate these beneficial properties of
CARLA over discrete learning automata. One task was posed to test the ability of

148

automata to distinguish the global optimum from a very similar local optimum. Where
the discrete automata can at best manage around a 75% success rate, the CARLA
almost always locates the global optimum Observation of the convergence measure
on this task shows the CARLA assesses both optrma initially. At some pomnt the
CARLA chooses in favour of one optima alone and 1s seen to accelerate its
convergence towards that. To make the CARLA fail its learning rate, g,, had to be
increased considerably, so forcing the CARLA to rush its decision.

CARLA was also analysed on a non-stationary environment that abruptly changes 1ts
response after 1000 iterations. Discrete automata were unable to handle this case at
all. CARLA, 1n maintaining its complete action space, can respond to the change and
relocate the new optimum, although 1t was seen to take a considerable time to unlearn’
the original optimum.

Returning to the vehicle suspension apphication, CARLA was again seen to outperform
discrete automata. It was noticed in these multi-automata tasks that the individual
CARLA learn at differing rates; the more important a parameter is to producing a
'successful” action, so the faster the related automaton is able to distinguish this and
learn a precise value.

To test the CARLA further a multi-goal task was devised from formulation of a
vehicle roll control strategy. The strategy assumes semi-active suspension as fitted to
the test vehicle and the simulation study then forms a feasibility study prior to a
hardware tnal Two teams of interconnected CARLA with independent aims were
required to co-operate to optimise the roll control strategy One aim of the strategy is
to maintain required roll moments via smooth control application. The CARLA
actually found this to be unachievable yet returned a solution of bang-bang’ control
which significantly improves upon the roll control afforded by a passive suspension
system. This also highlights the capability of a CARLA based study to provide
information and 1nsight to the human investigators.

Recommendations for Further Research

This study has been very much an empirical investigation into the possibilities
afforded by applying learning automata to parameter optimisation tasks 1n a hghly
complex stochastic environment. The investigation has led to the formulation of
CARLA as a new form of learning automata. The properties of CARLA have only
been investigated here with experimental studies. It has been shown that CARLA
exhibits many beneficial properties in practice and is a promising optimisation

149

techmque that requires further investigation. In particular 1t should be compared with
other optimisation techniques to properly assess 1ts potential

In investigating the CARLA 1tself 1t 1s likely that the convergence properties may be
better defined via an analytical study Here the convergence measure, C,, has shown
the convergence history of an automaton and it is apparent that a CARLA can opt for a
strong region of the action space to the exclusion of all other regions. Prior to
reaching this state an automaton may have a better view of the overall action space
whilst still locating the global optimum. After opting for a single region the CARLA
15 able to recover if the environment response changes, but there is an increased period
of ’unlearning’ required for the CARLA to spread its view before any effective
relearmng occurs. How might a balance of CARLA convergence be better achieved?

The reinforcement scheme for CARLA is of reward-inaction form with a Gaussian
distribution used as the remforcement function, defined with the parameters g, and
g,- Values for these parameters have been set at constant yet faurly arbitrary values
throughout the various applications of CARLA in this report. Learning appears
relatively 1nsensitive to these values, but further research 1s required to ascertain how
they affect learning performance. It 1s possible that these parameters could be varied mn
some manner during learning, and could help control the convergent nature of the
CARLA described above.

The CARLA requires the user to define the action space prior to learning; the user
needs enough knowledge of the action-environment interaction to be able to set a
useful working range for the CARLA For complex tasks this may not be the case.
For example, m the roll control study, the imitial range of one parameter required three
iterations to enlarge 1t to a range with which the CARLA did not sumply respond by
learning a value at the limt of the defined action space. One possible extension to the
CARLA methodology to tackle this problem has been suggested in Chapter 10.
Implementing an adaptive action space may enable CARLA to scarch further afield if
necessary. The preliminary study demonstrates such a technique, varying its action set
to explore in a non-stationary environment However, the technique as implemented is
particularly sensitive to its defining parameters, the learming task, and initial conditions
of the action space.

Throughout this study the CARLA has been applied to learn one overall action for all
situations. It may be worthwhile to consider how the CARLA could be included 1n an
assoclative learning setting, enabling different actions to be learnt dependent upon
various states of the environment For instance, to opumise ride performance it is

150

clear that a vehicle will benefit from a different control regime for a rough undulating
road 1n comparison with a smoother one A tentative step towards this has been
suggested by attempting to apply CARLA to learn a non-linear controller in Chapter
10

From the vehicle suspension perspective, ride and roll control has been attempted in
independent studies It has clearly been demonstrated that CARLA could be applied
on-line to reduce the time spent in optimusing a production suspension system,
especially as no accurate system modelling is required by the technique. Further
studies are now required to investigate the feasibility of learning a more complete
suspension control system combining ride and roll control strategies, together with

other suspension control strategies, to learn the complete nde and handling

characternistics required of 2 modern production vehicle.

151

References

Atkinson, R.C. Bower, G.H. and Crothers, E.J., 1965
An Introduction to Mathematical Learming Theory
Wiley, NY, 1965

Baba, N., 1984
New Topics in Learning Automata Theory and Applications Lecture Notes in

Control and Information Sciences
Springer-Verlag, NY, 1984

Barto, A.G. and Anandan, P., 1985
Pattern Recognizing Stochastic Learning Automata
IEEE Trans. Syst. Man. Cybern., vol 15, no. 3, May/Jun. 1985

Barto, A.G. Sutton, R.S. and Anderson, C.W.,, 1983
Neuronlike Adaptive Elements that can Solve Difficult Learning Control
Problems

IEEE Trans. Syst. Man Cybern., vol. 13, no. 5, pp834-846, Sept/Oct 1983

Best, M.C., 1995

On the Modelling Requirements for the Practical Implementation of Advanced
Vehicle Suspension Control

Ph D Duissertation, Dept. AAE&TS, Loughborough Umversity

Best, M.C. Gordon, T.J. Crawford, L.L. and Hand, P., 1994
Real-time Estimation of Vehicle Suspension Characteristics using Kalman

Filtering
Proc FISITA Congress {paper 945063), Beying, China, Oct. 1994

Bush, R.R. and Mosteller, F., 1958
Stochastic Models for Learning
Wiley, NY, 1958

Chandrasekaran, B. and Shen, D.W.C., 1968
On Expediency and Convergence in Variable-Structure Automata
IEEE Trans. Syst Sci Cybern., vol. 4, no. 1, Mar. 1968

152

Chidambaram, M., 1994
Control of a Non-Minimum Phase, Non-Linear System by Learning Automata
Hungarian J. Industrial Chemustry, vol. 22, no. 4, pp261-265, 1994

Franklin, G.F. Powell, J.D. and Workman, M.L., 1990
Digital Control of Dynamic Systems
Addison-Wesley, NY, 1990

Frost, G.P. Gordon, T.J. Howell, M.N. and Wu, Q.H., 1996

Moderated Rewnforcement Learning of Active and Semi-active Vehicle
Suspension Control Laws

Proc I Mech.E. Part I, vol 210, pp249-257, 1996

Frost, G.P. Gordon, T.J. and Wu, Q.H., 1994

The Application of Learning Automata to Advanced Vehicle Suspension Control
Proc of IUTAM Symposium, The Active Control of Vibration, Bath, ppl1353-
159, 1994

Frost, G.P. Howell, M.N. Gordon, T.J. and Wu, Q.H., 1996
Dynamic Vehicle Roll Control using Reinforcement Learning
Proc. UKACC Int. Conf. Control ‘96, vol 2, ppl1107-1112, 1996

Garcia, H.E. Ray, A. and Edwards, R.M., 1991
Reconfigurable Control of Power Plants using Learning Automata
IEEE Cont Syst. Magazine, pp85-92, Jan 1991

Gillespie, T.D., 1992
Fundamentals of Vehicle Dynamics
SAE Inc, 1992

Gordon, T.J. and Best M.C., 1994
Dynarmic Optimization of Nonlinear Semi-active Suspension Controllers
Proc. IEE Control '94 Conf., pp332 - 337, 1994

Gordon, T.J. Marsh, C, and Wu, Q.H., 1993

Stochastic Optimal Control of Active Vehicle Suspensions using Learning
Automata

Proc. I Mech E. Part I, vol. 207, pp143-152, 1993

153

Howell, M.N. Frost, G.P. Gordon, T.J. and Wu, Q.H., 1997
The Application of Interconnected Stochastic Learning Automata to Controller

Design for Semi-Active Automobile Suspensions
Int. Symp. on Advanced Vehicle Control, AVEC-96, 1996

Howell, M.N. Frost, G.P. Gordon, T.]J. and Wu, Q.H., 1997
Continuous Action Reinforcement Learning Applied Vehicle Suspension Control
J. of Mechatronics, vol 7, no. 3, pp263--276, 1997

Howell, M.N. Frost, G.P. Gordon, T.J. and Wu, Q.H., 1997
Real-ttime Learning of Vehicle Suspension Control Laws

Workshop on Modelling in Reinforcement Learming’, Fourteenth Int Conf. on
Machine Learming, ICML-97, 1997

lIosifescu, M. and Theodorescu, R., 1969
Random Processes and Learning
Springer, NY, 1969

Adaptive Global Search in a Time-Varant Environment
IEEE Trans Syst. Sci. Cybern., vol. 6, no. 3, Jul. 1970

Karnopp, D.C., 1983
Active Damping in Road Vehicle Suspension Systems
Veh. Syst. Dynamics, vol. 12, pp317-330, 1983

Karnopp, D.C., 1990

Design Principles for Vibration Control Systems using Semi-Active Dampers
Journal of Dynamic Systems, Measurement, and Control, vol. 112, pp448-455,
Sept 1990

Karnopp, D.C. Crosby, M.J. and Harwood, R.A., 1974
Vibration Control using Semi-active Force Generators
Trans. ASME J. Eng. for Ind , vol. 92, no. 2, pp 619-626, 1974

Kohonen. T., 1982
Self-organized Formation of Topologically Correct Feature Maps
Biological Cybernetics, vol. 69, pp43-59, 1982

154

Kokar, M.M. and Reveliotis, S.A., 1993
Reinforcement Learming: Architectures and Algorithms
Int. J. Intelligent Systems, vol. 8, no. 8, pp875-894, 1993

Kwakernaak, H. and Sivan, R., 1972
Linear Optimal Control Systems
Wiley, NY, 1972

Lakshmivarahan, S., 1981
Learming Algorithms Theory and Applications
Sprninger-Verlag NY, 1981

Lakshmivarahan, S. and Thathachar, M.A.L., 1973
Absolutely Expedient Learming Algorithms for Stochastic Automata
IEEE Trans. Syst. Man Cybern., vol. 3, pp281-286, May 1973

McLaren, R.W., 1966
A Stochastic Automaton Model for the Synthesis of Learning Systems
IEEE Trans. Syst. Sc1. Cybern., vol. 2, no. 2, pp109-114, Dec. 1966

McMurtry, G.J. and Fu, K.S,, 1966
A Varwable Structure Automaton used as a Multi-modal Search Technique
IEEE Trans. Aut. Cont , vol 11, no. 3, pp379-387, July 1966

Marsh, C. Gordon, T.J. and Wu, Q.H., 1995
The Application of Learning Automata to Controller Design in Slow-Actve

Automobile Suspensions
Veh Syst Dynamics, vol. 24, pp597-616, 1995

Mitchell, B.T. and Kountanis, D.I., 1984
A Reorganisation Scheme for a Hierarchical System of Learming Automata
IEEE Trans. Syst. Man Cybern., vol. 14, no. 2, pp328-334, Mar/Apr 1984

Najim, K., 1991
Modelling and Self-Adjusting Control of an Absorption Column
Int. J. Adaptive Control and Signal Processing, vol. 5, pp335-345, 1991

155

Najim, K. Pibouleau, L. and LeLann, M.V., 1990
Optimisation Technique based on Learning Automata
J. Optimisation Theory and Apphcations, vol. 64, no. 2, pp331-347, Feb 1990

Najim, K. and Poznyak, A.S., 1994
Learning Automata: Theory and Applications
Pergamon, 1994

Narendra, K.S. and Lakshmivarahan, S., 1977
Learning Automata - A Critique
J Cybern. and Info. Sci, vol 1, pp53-65, 1977

Narendra, K.S. and Mars, P., 1983
The Use of Learming Algorithms in Telephone Traffic Routing - A Methodology
Automatica, vol 19, no 5, pp495-502, 1983

Narendra, K.S. and Thathachar, M.A.L., 1974
Learning Automata - A Survey
IEEE Trans. Syst Man Cybern, vol. 4, no. 4, pp323-334, July 1974

Narendra, K.S. and Thathachar, M.A.L., 1989
Learming Automata: an Introduction
Prentice-Hall, London, 1989

Narendra, K.S. and Viswanathan, R,, 1972
A Two-Level System of Stochastic Automata for Periodic Random Environments
IEEE Trans. Syst. Man Cybern , vol 2, pp285-289, Apr. 1972

Norman, M.F., 1972
Markov Processes and Learning Models
Academic Press, NY, 1972

Phansalkar, V.V. and Thathachar, M.A.L., 1996
Learning Automata in Feedforward Connectionist Systems
Int. J. Syst. Sci, vol. 27, no. 2, pp145-150, 1996

156

Press, W.H. Teukolsky, S.A. Vetterling, W.T. and Flannery, B.P., 1988
Numerical Recipes in C- The Art of Scientific Computing
Cambndge University Press, 1988

Robson, J.D., 1979
Road Surface Description and Vehicle Response
Int. §. of Vehicle Design, vol. 1, pp25-35, 1979

Santharam, G. Sastry, P.S. and Thathachar, M.A.L., 1994
Continuous Action-set Learning Automata for Stochastic Optimisation
Journal of the Franklin Institute, vol. 331B, no. 5, pp607-628, 1994

Shapiro, L.J., and Narendra, K.S., 1969

Use of Stochastic Automata for Parameter Self-Optimization with Multi-Modal
Performance Criteria

IEEE Trans. Syst Sci. Cybern., vol. 5, no 4, pp352-360, Oct. 1969

Sharp, R.S. and Crolla, D.A., 1987
Road Vehicle Suspension System Design - A Review
Veh. Syst. Dynamucs, vol. 16, pp164-192, 1987

Sharp, R.S. and Hassan, S.A., 1984

The Fundamentals of Passive Automotive Suspension System Design

Society of Environmental Engineers Conf. ‘Dynamics in Automotive
Engineering’, pp 104-115, 1984

Sharp, R.S. and Hassan, S.A., 1986

The Relative Performance Capabilities of Passive, Active and Semi-Active Car
Suspension Systems

Proc I.Mech E., vol. 200, no. D3, pp219-228, 1986

Tang, C.K.K. and Mars, P., 1991
Stochastic Learning Automata and Adaptive IIR Filters
IEE Proc.-F, vol. 138, no 4, Aug. 1991

Tang, C.K.K. and Mars, P., 1993
Games of Stochastic Learning Automata and Adaptive Stgnal Processing
IEEE Trans. Syst. Man Cybern., vol. 23, no 3, pp851-856, May/Jun. 1993

157

Thathachar, M.A.L. and Ramakrishnan, K.R., 1981
A Hierarchical System of Learming Automata
IEEE Trans, Syst. Man Cybern., vol. 11, no. 3, Mar. 1981

Thathachar, M.A.L. and Ramakrishnan, K.R., 1982
On-line Optimisation with a Team of Learning Automata
IFAC Theory and Application of Digital Control, pp297-302, 1982

Thompson, A.G., 1984
Optimal and Sub-optimal Linear Active Suspensions for Road Vehicles
Vehicle System Dynamucs, vol. 13, pp61-72, 1984

Tseng, H.E. and Hedrick, J.K., 1994
Semi-Active Control Laws - Optimal and Sub-Optimal
Vehicle System Dynamics, vol. 23, pp545-569, 1994

Tsetlin, M.L., 1961
On the Behaviour of Finite Automata in Random Media
Automat. Telemekh., vol. 22, pp1345-1354, Oct. 1961

Tsetlin, M.L., 1973
Automaton Theory and Modelling of Biological Systems
Academuc Press, NY, 1973

Unsal, C. Bay, J.S. and Kachroo, P., 1995

Intelligent Control of Vehicles: Preliminary Results on the Application of
Learming Automata Techniques to Automated Highway System

IEEE Proc Int. Cont. on Tools with Al, pp216-223, 1995

Valenzuela, J. Najim, K. Villar, R. and Bourassa, M., 1993
Learming Control of an Autogeneous Grinding Circuit
Int. J. of Mineral Processing, vol. 40, pp45-56, 1993

Varshavskii, V.I. and Vorontsova, L.P., 1963
On the Behaviour of Stochastic Automata with Variable Structure
Automat. Telemekh, vol 24, pp353-360, 1963

158

Viswanathan, R. and Narendra, K.S., 1972
Comparison of Expedient and Optimal Reinforcement Schemes for Learning

Systems
J. of Cybernetics, vol. 2, no. 1, pp21-37, 1972

Viswanathan, R. and Narendra, K.S., 1973
Stochastic Automata Models with Applications to Learning Systems
IEEE Trans. Syst. Man Cybern., vol. 3, ppl107-111, Jan. 1973

Wilson, D.A. Sharp, R.S, and Hassan, S.A., 1986
Application of Linear Optimal Control Theory to the Design of Automobile

Suspensions
Vehicle System Dynamics, vol. 15, pp103-118, 1986

Wu, Q.H., 1993

Learning Co-ordinated Control of Synchronous Machines in Multi-Machine
Power Systems

Proc IEEE Syst. Man Cybern. Conf., vol. 3, pp728-733, France, 1993

Wu, Q.H. and Pugh, A.C., 1993
Rewnforcement Learning Control of Unknown Dynamic Systems
Proc. IEE Part D, vol. 140, no 5, pp313-322, 1993

o

159

Appendix A - Full Vehicle Model

A ngid body vehicle fitted with semi-active suspension actuation 1s simulated in
Chapter 9. An outline of the model applied was given in Chapter 2. The full
derivation of the state-space model is detailed here

Figure A 1 defines some layout nomenclature for the vehicle body. Suspension
actuation is applied at each corner of the body rectangle, and each corner 1s numbered

for later reference

1 Front of vehicle 5
A

Centre of Gravity

Y
4 3

Figure A.1 - Plan view of vehicle

The dynamucs of the unsprung mass at each corner, defined by equation (2.18), lead to
the following state equations for vertical wheel displacement (x, to x,) and velocity

(x5 to x3)
X =X
Xy = Xg
X3 = Xq
Xy =X
X5 = (F;l .)m., Al
Xe = (F; 2~ Fa)/m,,

160

where F,, and F,, are the forces mduced by the tyre and suspension components

respectively, and m,,, 1s the unsprung corner mass. Tyre force, F,, is modelled as a
simple linear spring of stiffness k,, so

F, =k (o, - %) (A2)

where h_,, ,1s the vertical displacement of the road at corner {

road .z

The dynamucs of the sprung mass at each corner, defined by the equations of (2.17),
lead to the following state equations for vehicle body displacement (x,), roll angle
(x,,) and pitch angle (x,,)

Xy =Xpp
Xip = X3
Xy = Xy
12 = (Fsl +F,+F s+ Fs4)/mb (A.3)

x13=(p.(F,_2+Fs.3) q. (F,;I+I?s4) 1,
5o =(r(Fs+ F)-s(F, +F,)L

X

The suspension force, F,

LS

is calculated based on application of a sermi-active actuator
1n parallel with a linear spring of stiffness k,, at each corner

= k.r,r'(‘x: _b:)+Fr'i,r (A°4)
where b, is the vertical corner displacement of the vehicle body, and F,, is the
actuator damping force.

Derivation of the state equations describing the transient operation of a realistic single
actuator was given 1n Section 2.1.3. Generalising these equations to apply an actuator
at each corner of the vehicle gives the additional states

161

Xig =
18
Xjg = X
Xoo = X4 (A.5)
Xy = Xos
X = Xy

Xy ==26,00, 1 X5 + w’i] (u(t) - Ilg)
Ky = =250, %5 + 0, ()~ x,0)
Kps = =280, %55 + O 4 (u(t) - le)
Xog ==26,0), Yo + Or4 (u(t)- xzz)

The vehicle corner height displacements, &,

1

and velocities, b,, are found from
superposttion of the body bounce, roll and pitch charactenstics. The displacements
and velocities induced by roll motion of the vehicle body are defined with reference to
Figure A.2. Similarly, pitch induced displacements and velocities are defined with
reference to Figure A.3.

Figure A.3 - Pitch induced comer displacements and velocities

The height displacements are then

h = p.tan6

h, =—g.tan 8 (A6)
h,=—s.tang

h,=r.tang

and velocities are

162
v, = p.8
v, =—q.8
2 =4 . (A.2)
V;==5 ¢
Vv, =r.¢
Applying superposition to deduce vertical corner displacements gives
b =xy+h +h,
b, =xy+h +
y = Xo+ Iy +h (A3)
by=x,+h +h,
b =x,+h +h,
and simularly for vertical comer velocities
b, = xp, +v, +V,
b, =x,+v,+v, (A4)

by=x,+v, +v,

by=x,+v,+v,

163

Appendix B - Probability Distribution Representation
Refinement

The CARLA represents its internal state via a piece-wise linear approximation of a
probability distribution. In implementation on a microprocessor, a refinement
algorithm is applied to efficiently use available memory resources whilst maintaining
resolution of curve representation in regions of high probability density. This
appendix explains the operation of this algorithm by way of an example.

The refinement algorithm is based around maintaining each successive pair of curve
vertices at a distance apart such that the probability area swept out between each pair
of vertices is roughly constant across the whole representation. For instance, in Figure
B.1, the probability distribution is heavily skewed towards low values of a.
Representing this curve with just 6 vertices, there are 5 segments to the probability
distribution, each of an area close to 0.2. The reason for each area not being exactly
0.2 will be explained below.

Suppose there is now a large reinforcement to a high action value. Applying the
reinforcement alone, the resultant normalised curve may be of the form seen in Figure
B.1(b). As indicated on this plot, the areas between curve vertices are now far from
equal.

0.3 0.181

0.14F

015 / \ 0.08 \
\ / | o333

/ N e / 0.125 \

01} | N / | 0.082 N\
\ ook f | 0.385
0.05 o ——
oo 0027 o075
0 0

Figure B.1 - Probability distribution before (left) and immediately after (right) a

reinforcement application

164

The steps taken to move the inner vertices are shown in Figure B.2. It is known that
the ideal area between vertices should be 1/(number of vertices - 1), 0.2 in this

example. Starting from @_. ., an action value is calculated whereby the integral of the

old curve between @, and this point is 0.2. The first inner vertex is placed here, with
it’s height taken from the old curve - see Figure B.2(a). This process is repeated,
integrating along the old curve in steps of 0.2, placing new vertices at these boundary

points until the whole of the old curve is traversed - see Figure B.2(b),(c),(d).

0.16 0.16
o
0141 Wi o 0.14 -
- Y .
o1zh 2 .'f! i i . aiinl ";! i
i ‘. i
0.4 A b . 041 - .
009 0.08 2 !
i f A
] A Il]
0.06 ! of !
y i i i 1 0.06 i i i
| ' . of |
0.04 ! if | ;
Y ! ; 004t) :)
)) y ')
0.02 ! ! \ f sl
i i v o.02 .
! ' i i i
0) 8 J o J
0 [2 3 4 5 6 T 8 [] 10 0 1 2 3 4 5 8 7] 9 10
« o
(a) (b)
0.18 0.16,
AR 0
/'/ [
0.14 i 0.14 A E
- b, i § \“
ora 7 i P it
i i i 0 f ,
0.1 ,",‘": : ' v 0.1} w4
T s /
0.08 S ! ! L u.oa[/
'y ! ! | W
/! \ pf
/]] i /
L e ; i , 006
of { i i | Y if
0.04 Y i | i | b} 0.04 4] '
[' ! X i)
4 ' fl 1l 1 \ ! i A
i | v | ' N oa2y ' I
a i i i | cl |
(] 1 2 a 4 5 6 7 8 8 10] 1 2 3 ‘ 5 [7 8 9 10
[:3 o
(c) (d)

Figure B.2 - Step-by-step realignment of curve vertices

165

Note that, by taking vertex height from the old curve, the area between each pair of
vertices on the new curve description will not necessarily be the target value.
Normalising the new curve to a total area of 1, the areas between each vertex on the
new curve are shown in Figure B.3. It is not a major concern that the areas are not all
equal, only that the total is consistently 1 to meet the total probability constraint. It
should be noted that attempts by the author to formulate an algorithm that maintain
equal areas between vertices all led to a numerical unstable solution!

|

1

0.16

0.14f
/

0.12
0.1

0.08

0.205

0.06 0.206 0.202

0.04
0.204

0.02

Figure B.3 - Redefined curve representation

