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ABSTRACT 

 

Safety systems are designed to prevent the occurrence of certain conditions and their future 

development into a hazardous situation. The consequence of the failure of a safety system of a 

potentially hazardous industrial system or process varies from minor inconvenience and cost to 

personal injury, significant economic loss and death. To minimise the likelihood of a hazardous 

situation, safety systems must be designed to maximise their availability. Therefore, the purpose 

of this thesis is to propose an effective safety system design optimization scheme. A multi-

objective genetic algorithm has been adopted, where the criteria catered for includes 

unavailability, cost, spurious trip and maintenance down time. 

 

Analyses of individual system designs are carried out using the latest advantages of the fault 

tree analysis technique and the binary decision diagram approach (BDD). The improved 

strength Pareto evolutionary approach (SPEA2) is chosen to perform the system optimization 

resulting in the final design specifications.  

 

The practicality of the developed approach is demonstrated initially through application to a 

High Integrity Protection System (HIPS) and subsequently to test scalability using the more 

complex Firewater Deluge System (FDS). Computer code has been developed to carry out the 

analysis. The results for both systems are compared to those using a single objective 

optimization approach (GASSOP) and exhaustive search. The overall conclusions show a 

number of benefits of the SPEA2 based technique application to the safety system design 

optimization. 

 

It is common for safety systems to feature dependency relationships between its components. 

To enable the use of the fault tree analysis technique and the BDD approach for such systems, 

the Markov method is incorporated into the optimization process. The main types of 

dependency which can exist between the safety system component failures are identified. The 

Markov model generation algorithms are suggested for each type of dependency. The modified 

optimization tool is tested on the HIPS and FDS. Results comparison shows the benefit of using 

the modified technique for safety system optimization. Finally the effectiveness and application 

to general safety systems is discussed. 

 

Key Words: Optimization, Fault Tree Analysis, Binary Decision Diagrams, Genetic 

Algorithms, SPEA2, Markov Analysis. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction to Reliability and Risk Assessment 

 

A safety system is an essential part of any industrial system as it operates to prevent the 

occurrence of certain conditions and their future development into a hazardous situation. 

Failure of such systems may have catastrophic consequences from small injuries to even 

death of members of the workforce and public. History has witnessed a number of 

disastrous accidents due to the failure of such systems, for example, the Chernobyl 

nuclear power plant accident in 1986, the explosion on the Piper Alpha oil platform in 

1988 and the explosion in the Texas City BP Refinery in 2005. Therefore, the 

probability of the safety system failure should be quantified in order to manage its 

reliability. 

 

During the last decades a number of techniques have been developed for the system 

failure assessment. These methods enable the evaluation of a specific hazardous event 

occurrence probability or frequency.  

 

Reliability is an important part of the engineering design process. It is also a necessary 

function in the system life-cycle costing and repair and facility resourcing. Reliability 

determines the inventories and spare part requirements, establishes the preventative 

maintenance programs and influences the cost-benefit analysis. 

 

 

1.2 Terminology 

 

The key definitions used in reliability assessment terminology are [Andrews & Moss, 

2002]: 

• Failure is the termination of the ability of a system or component to perform a 

required function. It is assumed, that the failure of the system or component 

occurs when its ability to perform the required function is altered. 
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• Fault is the inability of a system or component to perform its required function. 

It should be noted, that the fault is always the result of a failure. However, it 

may not be a direct failure of the system or component itself.  

 

• Availability is the fraction of the total time that a system or component is able to 

perform its required function. Regarding a specified time point, t, the 

availability can also be specified as the probability that a system or component is 

working at time t. On the other hand, the Unavailability is the probability that 

that system or component is failed at time t: 

 

Unavailability = 1- Availability.                                     (1.1) 

  

• Reliability is the probability that a system or component will operate without 

failure for a stated period of time under specified conditions. Therefore, this 

characteristic requires identification of the time period needed for the system or 

component to function. 

 

 

1.3 Safety System Design Problem 

 

It is imperative that the safety system design has a high likelihood of functioning on 

demand in order to prevent possible hazards associated with industrial systems and 

minimize the consequences from the hazardous events.  

 

The system design can be chosen by traditional approaches, which combine the 

preliminary design, analysis, appraisal and redesign stages until what is regarded as an 

acceptable design is achieved. For the system whose failure could result in fatality an 

adequate level for the system unavailability is not sufficient. Therefore, an optimal 

design within the constraints and available resources should be produced. 

 

It is highly unlikely that the design parameters can be manually selected due to a large 

number of options. This task becomes even more difficult to complete when the system 
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design is constrained by available resources. Therefore, an optimization algorithm 

integrated within the design process is required. 

   

 

1.4 Safety System Design Optimization Methodology  

 

The safety system design optimization methodology needs to include a number of 

different techniques to achieve the tasks of the system evaluation and optimization. This 

section briefly introduces the main techniques suitable for such system design 

optimization. 

 

 

1.4.1 Fault Tree Analysis 

 

Fault trees are commonly used for the risk and reliability assessment of different 

industrial systems. It is a top-down deductive technique that graphically represents the 

relationship between certain specific events and the undesired event, which is often 

called a top event [Andrews & Moss, 2002]. The casual events in the tree are combined 

by Boolean logic. Various combinations of the events cause the top event to occur. A 

task to identify these combinations is performed by a qualitative analysis. A quantitative 

evaluation can then be performed by assigning failure probabilities to the basic events 

and computing the probability of the safety system top event.  

 

 

1.4.2 Binary Decision Diagrams 

 

The Binary Decision Diagram (BDD) is potentially the most successful approach for the 

safety system fault tree top event probability evaluation. A BDD is a directed acyclic 

graph [Andrews & Moss, 2002]. Each node of the graph corresponds to a basic event in 

the fault tree. A basic event ordering is essential for each BDD construction. A BDD 

performs both the qualitative and the quantitative analysis, and the exact solution can be 

obtained from a BDD without use of any approximations, which when applying the 

additional fault tree approach may be necessary.   
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1.4.3 Markov Analysis 

 

The strong dependency relationships between components may exist in the majority of 

safety systems. In this case, the use of the fault tree analysis and the BDD method is no 

longer appropriate since both techniques are based on the assumption that component 

failures in the system are independent. The Markov method can be used to solve this 

problem. 

 

The Markov analysis is based on a state-space approach [Andrews & Moss, 2002]. It 

looks at the system as being in one of several states. The state transition diagram, i.e. 

Markov model, identifies all the discrete states of the system and the possible transitions 

between those states. In a Markov process the transition frequencies between states 

depends only on the current state probability values and the constant transition rates 

between states. In this way the Markov model does not need to know about the history 

of how the state probabilities have evolved in time in order to calculate future state 

probabilities. 

 

The major disadvantage of this method is that Markov models for large safety systems 

are generally exceedingly large, complicated and difficult to construct. However, 

systems that exhibit strong component dependencies for their isolated dependent 

sections may be analysed using a combination of Markov analysis and simpler 

quantitative models, for example, the BDD method for the remaining non-dependent 

parts.  

 

 

1.4.4 Multi-Objective Genetic Algorithms 

 
A number of mathematical optimization methods are available. However, the features 

offered by most methods make them inappropriate for safety system optimization; for 

example, classical optimization techniques require continuous and differentiable 

objective functions. During the last decade several heuristic techniques have evolved 

and facilitated the solution of optimization problems that were previously difficult or 

impossible to solve. Among all modern optimization methods the multi-objective 

genetic (evolutionary) algorithms (MOGAs) are the most popular for the solution of the 
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multi-objective problem [Everson and Fieldsend, 2006]. MOGAs popularity in recent 

years is explained by the following advantages: they are multi point search methods and 

are particularly suitable to derive the optimal set of solutions. Furthermore, they require 

little knowledge about the problem being solved. Another advantage is that MOGAs are 

easy to implement, robust, and inherently parallel. Due to their universality, these 

methods often take less time to find the optimal solution than other multi-objective 

approaches.  Hence, this group of methods is suitable for safety system optimization 

problems. 

 

 

1.5 Deficiencies in Optimization Techniques 

 

The following possible deficiencies may occur in safety system optimization 

techniques: 

 

• The time to perform a system optimization: most existing classical optimization 

techniques are time-consuming. Though the optimization can be carried out, their 

application is not ideal and can be improved. 

 

• Lack of flexibility: the majority of real safety systems involve objective functions 

and constraints that are too complicated to manipulate with standard approaches (for 

example, classical and linear programming optimization techniques). Therefore, 

most existing optimization techniques can not be applied to such systems since they 

usually require constraints and an objective function to satisfy certain conditions and 

be in a particular form.   

 

• Optimization process complexity: most optimization methods are not equipped to 

deal with the increasing complexity of safety systems, i.e. these techniques can take 

into account only a limited number of objectives and constraints. A technique is 

required to deal with multiple objectives (constraints) and to be applicable to a 

variety of complex systems. 
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• The accuracy of the results produced: The accuracy of the results is limited by some 

techniques potential to locate local minimum (maximum). A technique is required 

with a high likelihood of finding global minimum (maximum). 

 

 

1.6 Research Objectives 

 

The aim of this research is to improve the application of optimization techniques in the 

field of safety system design. The main task is to develop a multi-objective optimization 

tool in order to enable the optimal use of resources in safety system designs and, hence, 

ensure the best performance possible not just an adequate one. The specific research 

objectives are: 

 

1) Develop the optimization scheme based on the chosen reliability and risk 

assessment method and multi-objective optimization technique. 

 

2) Apply the developed optimization scheme to an example safety system:  

• Compare the results to those obtained by the simple genetic algorithm (GA) 

based optimization tool; 

• Improve the developed techniques efficiency.  

 

3) Test the improved technique further by application to a more complex safety system 

and compare the results with those obtained by the simple GA. 

 

4) Incorporate the Markov method into the developed optimization technique in order 

to allow the safety system component dependency modelling: 

• Test the modified optimization tool performance on the example safety systems; 

• Discuss its potential for any safety system application.  

 

 

1.7 Thesis Structure 

 

The thesis has the following structure: 
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• Chapter two discusses the main aspects of the fault tree analysis (FTA) and 

binary decision diagram (BDD) method and suggests the efficient way of their 

application to a safety system multi-objective optimization. 

 

• Chapter three provides an introduction to engineering optimization and 

optimum design. It opens with a statement of an optimization problem and 

follows with an overview of the main classical and some modern groups of 

optimization methods. The chapter finishes with a discussion of the possible 

application of the mentioned methods to the safety system optimization problem. 

 

• Chapter four describes the main features of the genetic algorithms (GAs), 

compares them to more traditional techniques and introduces the algorithm of 

the chosen method for safety system multi-objective optimization. 

 

• Chapter five analyzes the structure of the example high-integrity protection 

system (HIPS), discusses its design options and reviews this systems previous 

optimization by single GA-based technique. 

 

• Chapter six discusses the application of the developed optimization scheme to 

the HIPS. Three main parts of the program are identified and described in detail. 

The developed techniques performance is compared to the simple GA based 

approach. The chapter finishes with a discussion of possible modifications to the 

suggested optimization tool, which may improve its performance further. 

 

• Chapter seven introduces and describes the main features of the more complex 

example firewater deluge system (FDS), provides this system analysis and 

reviews its optimization by the improved version of the developed technique. 

The comparative analysis of the results is represented at the end of the chapter, 

followed by the summary.  

 

• Chapter eight introduces the modified optimization technique, which enables 

optimization of safety systems with dependencies by effective use of the Markov 

modelling tool. Different component dependency types are overviewed and the 
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modified technique application to the HIPS is illustrated in this chapter, 

followed by the discussion of the results and their potential improvement. 

 

• Chapter nine describes the FDS optimization by the modified version of the 

developed optimization tool. The FDS dependency groups are discussed and the 

Markov model generation algorithms for all dependency types are suggested in 

this chapter. This is followed by the discussion of the results and the program 

potential application to any safety system.  

 

• Chapter ten summarizes the research, provides the main conclusions and suggest 

potential areas for future work.  
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CHAPTER 2 

 

FAULT TREE ANALYSIS 

 

 

2.1 Fault Tree Analysis Overview 

 

One of the main goals of reliability and safety analysis can be formulated as identifying 

the causal relationships between events, which results in system failure, and, 

furthermore, finding the ways to improve their impact by system redesigns and 

upgrades. Fault Tree Analysis was first conceived in 1961 by H. A. Watson of Bell 

Telephone Laboratories in connection with a US Air Force contract to study the 

Minuteman Missile Launch Control System [Watson, 1961]. It is one of the most 

powerful and widely used analytical techniques in the field of reliability engineering. It 

provides a well accepted means of predicting the reliability of complex systems. During 

the late 60’s and 70’s fault trees were successfully applied to several studies to obtain 

qualitative reliability information about relatively complex systems [Dhillon, 1978].  

 

The deductive analysis starts with an enumeration of the potential hazards and works 

down through the system to identify the system hardware failures or human errors, 

which could have caused these. Fault tree analysis is a top-down technique, structured 

in terms of events rather than components. Moreover, the perspective is on faults rather 

than reliability. The fault tree has an established form: each fault tree has a top event, a 

root which represents a system failure mode. The top event is the first level of the tree. 

Each level is systematically deduced [Andrews and Moss, 2002]. Once the top event is 

defined branches are extended to intermediate events directly responsible for its 

occurrence. The lowest resolution of the tree are basic events. Hence, branches are 

terminated when basic events are encountered.  

 

The fault tree is not a model representing all possible causes of system failure. 

Therefore, more than one fault tree may be constructed during the analysis of any 

potential system. Moreover, the fault tree acts as a visual tool, a graphical representation 

of the various parallel and sequential combinations of faults that lead to the occurrence 

of the top event. Fault tree construction is usually followed by qualitative and 
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quantitative analysis. Qualitative methods help to understand the logical structure of the 

various failure modes of a system and their relationship. On the other hand, quantitative 

methods assign failure probabilities or unavailabilities to the basic events and predict 

the probability of the top event. All these techniques are briefly discussed in this 

chapter. 

 

 

2.2  Fault Tree Construction 

 

The fault tree logic diagram is constructed from two basic elements: gates and events. 

Gates allow or inhibit the passage of fault logic up the tree and show the relationship 

between the events needed for the occurrence of a higher level event [Andrews and 

Moss, 2002]. Gates may have one or more input events, depending on the gate type, but 

only one output event. The most common gates are OR, AND and NOT. The main 

events are: basic, intermediate, house and transfer. An example of a simple fault tree is 

shown in figure 2.1. 

 

 
Figure 2.1 Fault Tree Example 

 

In figure 2.1 the logic gate just below the top event ‘Fire protection system fails’ is an 

OR gate with inputs ‘Fire detection system fails’ and ‘Water deluge system fails’. The 

top event will occur if at least one of the lower level (input) events occurs. It means that 

the fire protection system will fail if one or more of these systems were to fail. The 



 11

same logic is incorporated in the intermediate event ‘Water deluge system fails’.  In this 

case the intermediate event is terminated with basic events, ‘Pump fails’ and ‘Nozzles 

blocked’. Another type of gate is just below the intermediate event ‘Fire detection 

system fails’. This is the AND gate, which represents some redundancy in the system in 

that both of the basic events ‘Smoke detection fails’ and ‘Heat detection fails’ would 

need to have occurred to result in a total failure of the mentioned detection system to 

operate. 

 

House events are used to model two state events which either occur or do not occur, 

and, therefore, have probabilities 1 or 0 [Andrews and Moss, 2002]. They provide a 

very effective means of turning sections of the fault tree on and off. One of the 

advantages of this is that the same fault tree can be used to model several scenarios. 

Figure 2.2 illustrates how house events can be used to define safety system design.  In 

the example the safety system may consist of one or two pump sub-systems (i.e. A and 

B). Two house events are used to represent the design options. The presence of either 

sub-system can be determined by setting the appropriate house event value to TRUE (or 

ON). Otherwise, the house event value is set to FALSE (or OFF).  

 

 
Figure 2.2 Example with House Events 
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2.3 Qualitative Fault Tree Analysis 

 

2.3.1 Main Concepts 

 

A fault tree represents the casual relationships resulting in an undesired system state. 

Many different combinations of events can cause the occurrence of the undesired state. 

Moreover, each unique combination causes a system failure mode. As a result, it may 

involve single or multiple component failures. The main function of qualitative analysis 

is to identify these causes of the system failure mode. These combinations can be 

clearly defined in the concept of a cut set [Andrews and Moss, 2002]. For most 

engineering systems there are generally a very large number of cut sets. However, the 

main interest for each analyst is to identify combinations of component failure modes 

which are both necessary and sufficient to produce system failure, i. e. to find minimal 

cut sets.  

 

Definition 2.1. Minimal cut set is a smallest combination of component failures, which 

if they all occur will cause the top event to occur. 

 

The minimal cut set expression for the top event T can be written in the form 

 

 nCCCT +++= ...21 ,                                                                                       (2.1) 
 
where  ,iC  ni ,...,1=    are the minimal cut sets, and the ‘+’  symbol represents OR 
logic. 
 
Each minimal cut set consists of a combination of component failures and can be 

expressed as: 

  

 mi XXXC .... 21= ,                                                                                              (2.2) 

 

where  ,iX  mi ,...,1=  are basic component failures on the tree and the ‘.’ symbol 

represents AND logic. 
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2.3.2 Approaches to Obtain Minimal Cut Sets 

 

Monte Carlo simulation techniques were the base for the first minimal cut set 

determination algorithms [Crosetti, 1970].  Later methods are deterministic, i.e. based 

on direct expansion of the top event in terms of the constituent basic events using 

Boolean algebra. For example, an OR gate with two input events A and B and the output 

event  T can be represented by the equivalent Boolean expression 

 

BAT ∪=  or BAT += . 

 

The AND logic for the similar gate structure in Boolean equivalent is 

 

BAT ∩=  or BAT .= . 

 

The NOT gate is equivalent to the Boolean operation of complementation. 

 

The main laws of Boolean algebra used to manipulate the top event structure logic 

expression are: 

 

1) Commutative law:   

ABBA +=+ , ABBA .. =                                                                                (2.3) 

 

2) Associative law: 

)()( CBACBA ++=++ , )..()..( CBACBA =                                                (2.4) 

    

3) Distributive law: 

)).(().( CABACBA ++=+ , CABACBA ..).( +=+                                      (2.5) 

 

4) Identities: 

AA =+ 0 , 11=+A , 00. =A , AA =1.                                                            (2.6) 
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5) Idempotent law: 

AAA =+ , AAA =.                                                                                         (2.7) 

 

6) Absorption law:     

ABAA =+ . , ABAA =+ ).(                                                                            (2.8) 

 

One of the commonly used approaches to determine cut sets using the above 

expressions is a top down method. 

   

Top Down Approach: The top event is the start point of this method. The top event is 

expanded by substituting in the Boolean events appearing lower down in the tree and 

simplifying until the expression remaining has only basic component failures.  

 

 
Figure 2.3 Example Fault Tree for Minimal Cut Sets Calculation 

 

Considering the fault tree example from figure 2.3, this method works as follows:  
 

• Start at Top event: 

Top = G1 + D 

• Substitute in for G1:    G1 = G2.G3 

Top = G2.G3 + D 
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• Substitute in for G2 and G3: 

G2 = A + B 

G3 = A + C 

Top = (A + B).( A + C) + D 

 

• By Distributive Law (equation 2.5): 

Top = A + B.C + D 

 

Hence, there are 3 minimal cut sets A, BC and D. 

  

 

2.4 Top Event Probability 

 

The top event probability is an important quantification parameter of the fault tree. It 

can be calculated when the failure probabilities are assigned to each basic event and the 

minimal cut sets have been obtained. The top event probability (unavailability) usually 

is denoted as sysQ . Depending on the fault tree structure (i.e. the inclusion of multiple 

basic events and, hence, dependence) the inclusion/exclusion formula can be 

implemented for the top event calculation.  

 

   

2.4.1 Inclusion/Exclusion Formula 

 

If a fault tree has n minimal cut sets iC , ni ,...,1=  then the top event Top exists if at 

least one minimal cut set exists: 

 Top = Υ
n

i
in CCCC

1
21 ...

=

=+++  

and 

 







=

=
Υ

n

i
iCPTopP

1

)( . 

Then the Inclusion-exclusion expansion is defined as 

 ( ) ( ) ( )n
n

n

i

i

j
ji

n

i
i CCCPCCPCPTopP ∩∩∩−++∩−= −

=

−

==
∑∑∑ ...)1(...)( 21

1

2

1

11
.      (2.9) 
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Consider the fault tree (Figure 2.4) with three basic events A, B and C. The basic event 

A appears twice. Each basic event probability of occurrence is q = 0.1. 

  

 
Figure 2.4  Example Fault Tree 

 

From figure 2.4 the top event can be written as: 

 

 Top = AB + AC . 

 

The inclusion-exclusion expansion (equation 2.9) gives: 

 

 )()( ACABPTopP +=  

 ABPACPABP ()()( −+=  AND )AC  

 cBACABA qqqqqqq −+=  

 001.001.001.0 −+=  

 019.0= . 

 

When the number of minimal cut sets is small, the inclusion-exclusion expansion can be 

applied easily. However, calculating each higher term is a tedious and time consuming 

task. Most engineering systems have a large number of minimal cut sets, therefore, such 

calculations can be impractical even with modern computers. Hence, the use of 

approximations is required. 
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2.4.2 Approximations 

 

Rare event approximation (Upper bound). This approximation is provided by truncating 

the series at the first odd numbered term in the inclusion-exclusion expansion: 

 

 ( )∑
=

=
n

i
iCPtQ

1
)( .                                                                                             (2.10) 

 

Lower bound. This approximation is provided by truncating the series after the first 

even-numbered term in the inclusion-exclusion expansion: 

 

( ) ( )∑∑∑
=

−

==

∩−=
n

i

i

j
ji

n

i
i CCPCPtQ

2

1

11
)( .                                                               (2.11) 

 

Minimal Cut Set Upper Bound. This approximation is a more accurate upper bound. The 

main principle can be formulated as: the system fails if at least one minimal cut set 

occurs, which is equal to the difference between 1 (whole probability) and the 

probability that no minimal cut set occurs (equation 2.12): 

 ∏
=

−−≤
n

i
iCPtQ

1

))(1(1)( .                                                                               (2.12) 

 

The relation between all mentioned approximations is given below: 

 

 ( ) ( ) ( )∑∏∑∑∑
===

−

==

≤−−≤≤∩−
n

i
i

n

i
isys

n

i

i
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i
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112

1

11
))(1(1 .               (2.13) 

                                      lower bound                             exact            minimal cut set                  rare event 
                                              upper bound                approximation 
 
 

 

2.5 Unconditional System Failure Intensity 

 

Another important quantification measure is the top event unconditional failure 

intensity ( )(twsys ), that is the probability per unit time that the system fails at time t. It 

can be calculated by the equation 2.14: 
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 ∑
=

⋅=
n

i
iisys twqGtw

1
)()()( ,                                                                                (2.14) 

 

where )(twi  is the unconditional failure intensity of event i and )(qGi is the criticality 

function also known as Birnbaum’s measure of importance. The criticality function is 

defined as the probability that the system is in the critical state with respect to 

component i. Failure of component i, therefore, transforms the system from the working 

to the failed state. The criticality function calculation requires determination of the 

probability that the system fails only if component i  fails. This is evaluated by the 

difference between the probability that the system fails with component i failed and the 

probability that the system fails with component i working. Hence, 

 

 ) ,0() ,1()( qQqQqG iii −= ,                                                                            (2.15) 

where 

    ) ,1( qQ i  is the probability of system failure with 1)( =tqi , 

 ) ,0( qQ i  is the probability of system failure with 0)( =tqi . 

 

 

2.6 Binary Decision Diagrams 

 

The fault tree is a powerful visual tool which translates a physical system into a 

structured logic diagram. Therefore, this technique is widely used by engineers for 

safety system optimization (Los Angeles water system [Haimes, 1999], height control 

system for a new tunnel tube crossing river Elbe in Hamburg [Reif, 2003], railroad 

crossing system [Ortmeier et al, 2005]). However, this method has its limitations 

especially when the structure of the fault tree is very large. In such cases analysis of the 

top event probability usually requires the use of alternative methods, since the exact 

technique makes significant use of computer recourses. Among these the Binary 

Decision Diagram (BDD) approach is potentially the most successful [Andersen, 1998]. 

The conversion of the fault tree to the BDD format improves both the efficiency of 

determining the minimal cut sets of the fault tree and also the accuracy of the 

calculation procedure used to determine the top event parameters. The detailed BDD 

structure and construction methods are discussed in section 2.6.1. 
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2.6.1 BDD Structure and Construction 

 

A BDD can be described as a rooted, directed acyclic graph (Figure 2.5). All paths 

through the BDD start at the root vertex (A) and terminate in one of the two states, 

either 1 or 0. State 1 corresponds to the system failure, state 0, conversely, corresponds 

to system success.  

 

 
 

Figure 2.5 Example of the Binary Decision Diagram 

 

 

Each BDD is composed of vertices, connected by branches, which are divided into 

terminal and non-terminal. Non-terminal vertices correspond to the basic events of the 

fault tree (vertices B, C and D). All the paths terminating in a 1 state give the cut sets of 

the fault tree. Therefore, the cut sets are {A, B, C} and {A, D}. 

 

Usually the fault tree structure is converted into a BDD either by the top event logic 

function or by using an If-Then-Else method. 

 

The If-Then-Else Method. This technique was developed by Rauzy [Rauzy, 1993]. The 

approach constructs the BDD from its equivalent fault tree by using a bottom up 

procedure. The variables can be assigned an ordering by use of the top-down, left-right 

approach where the basic events which are placed higher up the tree are listed first. 

Moreover, each basic event X is assigned an ite structure, ite ),,( 21 FFX .  This can be 
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interpreted as if X fails then consider F1, else consider F2.  The following procedures are 

then implemented to compute the BDD. 

 

Consider X = ite ),,( 21 FFx  and Y = ite ),,( 21 GGy , and <op> is a Boolean operation of 

the logic gates in the fault tree. If the gate type is AND <op> is replaced by the ‘.’ 

symbol, in the case of the OR gate <op> is replaced by the ‘+’ symbol. Then the main 

rules are influenced by the ordering of the variables, i.e. x before y ( yx < ) or x equal to 

y ( yx = ): 
 

1) If x < y :     X<op>Y  = ite( YopFYopFx ><>< 21 ,, ), 
 

2) If x = y :     X <op>Y = ite ),,( 2211 GopFGopFx ><>< , 

 

The following identities are used in addition to simplify the ite structure at each stage: 

 

1) If  <op> is an OR gate: 

1 + X = 1, 

0 + X = X. 

 

2) If  <op> is an AND gate:  

1. X = X, 

0. X = 0. 

 

 
Figure 2.6 Example Fault Tree 
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Consider the example fault tree (Figure 2.6). According to the top-down, left-right 

approach, the variables are ordered as A < B < C.,  i. e. A is considered first, then B and  

finally  C.  Then  all  three  basic  events  are  given relevant  ite  structures,   i.e.  A = 

ite(A, 1, 0), B = ite(B, 1, 0), C = ite(C, 1, 0).  Working from the bottom of the top and 

applying the simplification identities as explained the results for the intermediate gates 

are: 

G1  = A.B 

       = ite(A, 1, 0). ite(B, 1, 0) 

       = ite(A, 1. ite(B, 1, 0), 0. ite(B, 1, 0)) 

       = ite(A, ite(B, 1, 0), 0); 

 

G2  = B.C 

       = ite(B, 1, 0). ite(C, 1, 0) 

       = ite(B, 1. ite(C, 1, 0), 0. ite(C, 1, 0)) 

       = ite(B, ite(C, 1, 0), 0). 

 

The top gate is evaluated as: 

 

Top = G1 + G2 

                   = ite(A, ite(B, 1, 0), 0) +  ite(B, ite(C, 1, 0), 0) 

                   = ite(A, ite(B, 1, 0) + ite(B, ite(C, 1, 0), 0), 0 + ite(B, ite(C, 1, 0), 0)) 

                   = ite(A, ite(B, 1 + ite(C, 1, 0) , 0 + 0), ite(B, ite(C, 1, 0), 0)) 

        = ite(A, ite(B, 1, 0), ite(B, ite(C, 1, 0), 0)). 

 

Working from the left to right, each variable is successively broken down into its left 

and right branches. Hence, A is the root variable. The failure branch (left branch) 

outcome is B, which, breaks into 0 on its right branch (meaning system success) and 1 

on its left branch, meaning system failure or the top event occurrence. Considering the 

right branch, B breaks down into 0 on its right branch and C on the left, where C 

represents the terminal ite structure, i.e. C =  ite(C, 1, 0). Figure 2.7 shows the resulting 

BDD structure for the example fault tree in general and simplified forms. The 

highlighted branches of the simplified BDD give the cut sets {A, B} and {B, C}, which 

are minimal. 
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Figure 2.7 BDD Structure for the Example Fault Tree 

 

 

2.6.2 BDD Minimization  

 

The BDD does not always give minimal cut sets. Rauzy [Rauzy, 1993] developed a 

minimising algorithm that generates a BDD defining exactly the minimal cut sets of the 

fault tree. The algorithm states that: 
 

   a)   If the output of the node is represented by the function F : 

                                              F = ite(x, G, H); 

   b)   and  δ is a minimal solution of G and together is not a minimal solution of H; 

         then a minimal solution of F is given by the intersection of δ and x, i.e. 

xF ∩= }{min δ . 

 

The algorithm completes with the conclusion, that the set of all minimal solutions of F 

( )(min Fsol ) includes both these minimal solutions of G which are not contained within 

H, (δ), and the minimal solutions of H.  Hence, 
 

)]([]}[{ minmin HsolxFsol ∪∩= δ . 
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2.6.3 Top Event Quantification using BDD 

 

System Failure Probability. Top event quantification using a BDD avoids the need to 

use approximations and obtains an exact probability of the top event directly from the 

diagram. If the top event ite structure is f(x) = ite( 21,, ffxi ), then the corresponding 

Boolean function is 21)( fxfxxf ii += , where iii qxPxP −=−= 1)(1)( . In this case the 

probability of the top event is obtained by taking the expectation of each term (equation 

2.16): 

 ][)1(][)]([ 21 fEqfEqxfEQ iisys −+== ,                                                        (2.16) 

 

where  ][ ii xEq =  the probability that event  i  has occurred. Each path to a terminal 1 

vertex is, therefore, mutually exclusive or disjoint. The probability of occurrence of the 

top event is calculated by the sum of the probabilities of the disjoint paths through the 

BDD [Shi and Lee, 1997]. The probability of each disjoint path is a product of the 

probabilities of included basic events encountered on route from the root node to the 

terminal vertex. Here the 0 branch infers the use of the component success probabilities 

and the 1 branch component failure. 

 

To illustrate, consider the example BDD from figure 2.8. 

 
Figure 2.8 Example BDD 
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 The disjoint paths of the BDD shown in figure 2.8 are: 
 

1) A.B.C, 

2) ,.. EDA  

3) .... EDBA  

 

Therefore, the system unavailability ( sysQ ) for the example fault tree is the sum of the 

product of each disjoint path, i.e.: 

( )EDBAEDACBAPQsys ....... ++=  

                               EDBAEDACBA qqqqqqqqqq )1()1( −+−+= . 

 

 

System Failure Intensity. The system failure intensity is calculated by equation 2.14. 

The main part of this equation is the evaluation of the criticality function )(qGi  

(Equations 2.15) depending on two terms, ) ,1( qQ i  and ) ,0( qQ i . These two terms can 

be calculated using the BDD approach, which only requires one pass of the BDD 

structure for each component. The fault tree approach, in contrast, requires two passes.  

The formulae used when applying the BDD approach are: 

 ( ) )()()() ,1(
1

1 qZqpoqprqQ
n

i
xxi ii

+⋅=∑
=

,                                                         (2.17) 

 ( ) )()()() ,0(
1

0 qZqpoqprqQ
n

i
xxi ii

+⋅= ∑
=

,                                                        (2.18) 

where 

 )(qpr
ix  is the probability of the path section from the root node to the node ix , 

 )(1 qpo
ix  is the probability of the path section from the 1 branch of the node ix  to  

                          a terminal 1 node (excluding probability of ix ), 

 )(0 qpo
ix  is the probability of the path section from the 0 branch of the node ix  to  

                          a terminal 1 node (excluding probability of ix ), 

 )(qZ      is the probability of the paths from the root node to the terminal 1 node  

                          not passing through the node for variable ix . 
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By substituting equations 2.17 and 2.18 in 2.15, the critically function can be rewritten 

as: 

 [ ]∑
=

−⋅=
n

i
xxxi qpoqpoqprqG

iii
1

01 )()()()(  .                                                        (2.19) 

 

For better understanding of the system failure intensity evaluation consider an example 

BDD (Figure 2.10). The mathematical solution for this BDD is represented by tables 

2.3-2.7.  

 
Figure 2.9 Example BDD for System Failure Intensity Evaluation 

 

Table 2.1 shows the first step of the evaluation approach, i.e. the identification of the 

connections between the nodes (ite table) in the example BDD. 

 
Table 2.1 Connections between the Nodes in Example BDD 

Node Variable 1 branch pointer 0 branch pointer 

F1 A B B 

F2 B C 0 

F3 B 1 0 

F4 C 1 D 

F5 D 1 0 
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Next steps of the evaluation process involve the calculation of all terms from equation 

2.19. Table 2.2 represents the calculation process of the probability of the root vertex to 

node 
i

x , )(qpr
ix . This probability is obtained by summing the probabilities along the 

relevant path, which is summarized in the “Comments” column. 

 

Table 2.2 Calculation of )(qpr
ix  

Node )(qpr
ix  Comments 

F1 1 Root vertex itself 

F2 Aq  Probability of going along 1 branch of node F1 

F3 Aq−1  Probability of going along 0 branch of node F1 

F4 BAqq  Probability of path: 1 branch of F1 and 1 branch of F2 

F5 )1( CBA qqq −  Probability of path:  1 branch of F1, 1 branch of F2 and  
0 branch of F4 

 

 

Table 2.3 summarizes the calculation steps for the probability )(1 qpo
ix , the path from 

the selected node along the 1 branch to any terminal 1 vertex, excluding the probability 

of the selected node. The “Calculation” column shows the intermediate calculation of 

the full probability (where the selected node is included).  Every selected route is 

explained in the column “Comments”.  

 

Table 2.3 Calculation of )(1 qpo
ix  

Node Calculation )(1 qpo
ix  Comments 

F1 DCBACBA qqqqqqq )1( −+  DCBCB qqqqq )1( −+  2 routes:  
 branch 1 of F1, 1 of F2, 1 of F4  

or 
 branch 1 of F1, 1 of F2, 0 of F4 and 1 of  

F5 

F2 DCBCB qqqqq )1( −+  DCC qqq )1( −+  2 routes:  
 branch 1 of F2, 1 of F4  

or 
 branch 1 of F2, 0 of F4 and 1 of  F5 

F3 Bq  1 1 branch 

F4 Cq  1 1 branch 

F5 Dq  1 1 branch 
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The structure of table 2.4 is similar to the structure of table 2.3. It summarizes the 

calculation steps for the probability of )(0 qpo
ix , the path from the selected node along 

the 0 branch to any terminal 1 vertex, excluding the probability of the selected node. 

 

Table 2.4 Calculation of )(0 qpo
ix   

 

Node Calculations )(0 qpo
ix  Comments 

F1 
BA qq )1( −  Bq  0 branch of F1 and 1 of F3 

F2 0 0 0 branch 

F3 0 0 0 branch 

F4 
DC qq )1( −  Dq  0 branch of F4 and 1 of F5 

F5 0 0 0 branch 
 

 

Ultimately, the criticality function )(qGi can be calculated for each variable, by adding 

together contributions from any nodes of the same variable (Table 2.5). For example, 

nodes F2 and F3 refer to the same variable B. Hence, the value of the criticality function 

for the variable B is obtained by summing the relevant terms of each node (Equation 

2.19).  

 

Table 2.5 Calculation of the Criticality Function, )(qGi  

Variable (Nodes) Calculations )(qGi  

A (F1) [ ]BDCBCB qqqqqq −−+⋅ )1(1  BDCBCBA qqqqqqqG −−+= )1()(  

B (F2 and F3) )01)(1()0)1(( −−+−−+ ACCA qqqq  )1())1(()( ACCAB qqqqqG −+−+=

C (F4) )1( DBA qqq −  )1()( DBAC qqqqG −=  

D (F5) )01)(1( −− CBA qqq  )1()( CBAD qqqqG −=  

 

 

The system unconditional failure intensity )(twsys  is calculated by substituting the 

obtained value of  )(qGi  into equation 2.14.  
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2.7 Summary 

 

The fault tree is a powerful tool suitable to represent the system failure and can be used 

to represent safety system design. The house events, incorporated in the fault tree 

structure, enable capability for multiple design options. The Binary Decision Diagram 

approach is an efficient technique for fault tree analysis. The process requires the fault 

tree to be converted into an alternative structure known as a Binary Decision Diagram. 

The main advantage of this method is that it produces the minimal cut sets of the fault 

tree more efficiently and can produce exact quantification measures. However, the 

conversion process from the fault tree to the BDD requires the basic events to be 

ordered. In some cases this ordering can cause complications. 
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CHAPTER 3 

 

OPTIMIZATION TECHNIQUES 

 

3.1 Introduction 

 

There is no doubt today about the importance of optimization problems in various 

industries (aerodynamics, statistics, economics, engineering, etc.). The optimization 

process can be generally defined as getting the best of something under given conditions 

[Pun, 1969]. However, sometimes what is ‘best’ for one person is ‘worst’ for another, 

more often it is difficult to define the meaning of ‘best’. The word optimum meaning 

‘best’, is synonymous with ‘most’ or ‘maximum’ in the former case, and with ‘least’ or 

‘minimum’ in the latter. The technical verb optimize, a stronger word than ‘improve’, 

means to achieve the optimum, and optimization refers to the act of optimizing [Wilde 

and Beightler, 1967]. Therefore, deciding how to design, build, regulate, or operate a 

physical, economic or safety system ideally encompasses the quantitative study of 

optima, methods for finding them, and involves three steps: 

• Identifying accurately and quantitatively, how the system variables interact; 

• Investigation of  a single measure of system effectiveness expressible in terms 

of the system variables; 

• Choosing the values of the system variables yielding optimum effectiveness.  

 

Thus optimization and choice are closely related. Each optimization process requires the 

selection of a mathematical method to solve the optimization problem. Such methods 

are usually called optimization techniques (mathematical programming techniques), or 

algorithms. Many methods of optimization theory have been known for centuries; 

however, the tedious and voluminous computations required prevented their practical 

application. The choice of optimization techniques has developed rapidly since the 

advent of the electronic computer in 1945. Perhaps the most outstanding example of the 

rapid development of optimization techniques occurred with the introduction of 

dynamic programming by Bellman in 1957 [Bellman, 2003] and of the maximum 

principle by Pontryagin in 1958 [Pontryagin, 1990].  
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This chapter provides an introduction to engineering optimization and optimum design. 

The aim is to propose a method or methods appropriate for effective and efficient 

application to the safety system optimization problem under consideration. The chapter 

opens with a statement of an optimization problem and follows with an overview of the 

main classical groups of optimization methods; and finishes with a section of some 

modern optimization techniques. At the end of the chapter the discussion of the possible 

application of the mentioned methods to the safety system optimization problem is 

provided. 

 

 

3.2 The Optimization Problem and Objective Function 

 

An optimization or a mathematical programming problem can be stated as follows [Rao, 

1996]: 

Find 





















=

nx

x
x

X
Μ
2

1

 which minimizes (maximizes) )(Xf  

Subject to the constraints 

mjXg j ,...,2,1   ,0)( =≤ ,                      

                                                    (3.1) 

pjXl j ,...,2,1   ,0)( == , 

 

Where X is an n-dimensional vector called the design vector, )(Xf  is termed the 

objective function, and )(Xg j  and )(Xl j  are known as inequality and equality 

constraints, respectively. The number of variables n and the number of constraints m 

and (or) p need not be related in any way. The problem stated in equation 3.1 is called a 

constrained optimization problem.  

 

Some optimization problems do not involve any constraints and can be stated as: 
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Find 





















=

nx

x
x

X
Μ
2

1

 which minimizes (maximizes) )(Xf .                (3.2) 

Such problems are called unconstrained optimization problems. 

 

In general, for each safety system there is more than one acceptable design, and the 

purpose of optimization is to choose the best one from the many acceptable designs 

available. The criterion with respect to which the design is optimized, when expressed 

as a function of the design variables, is known as an objective function. The choice of 

objective function is governed by the nature of the problem. In some situations, there 

may be more than one criterion to be satisfied simultaneously. An optimization problem 

involving multiple objective functions is known as a multi-objective programming 

problem.  

 

Each optimization problem requires the search for a minimum or maximum value of the 

function. However, minimums and maximums have a classification. An objective 

function of one variable )(xf  may have a local (relative) minimum, a local (relative) 

maximum, a global (absolute) minimum and a global (absolute) maximum at the point x 

= x*.  

 

 

3.3 Classical Groups of Optimization Methods 

 

The classical groups of optimization methods involve classical optimization techniques, 

linear, nonlinear, geometric, dynamic, integer and stochastic programming.  

 
 

Classical Optimization Techniques: The classical methods of optimization are useful 

in finding the optimum solution of continuous and differentiable functions. These 

methods are analytical and make use of the techniques of differential calculations in 

locating the optimum points [Rao, 1996]. The classical optimization problem is stated in 

equation 3.1. It is assumed that the constraints are independent; however, often it is not 

convenient from a practical point of view. The main reason for this is that the constraint 
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equations are nonlinear for most practical problems. Some practical problems involve 

objective functions that are not continuous and (or) differentiable. This also makes most 

classical techniques difficult to apply.    
 

Linear Programming (LP): This is an optimization method applicable for the solution 

of problems in which the objective function and the constraints appear as linear 

functions of the decision variables. The LP type of optimization problem was first 

recognized in the 1930s by economists while developing methods for the optimal 

allocation of resources [Rao, 1996]. Nowadays LP is considered a revolutionary 

development that helps to make optimal decisions in complex situations. At least four 

Nobel Prizes were awarded for contributions related to LP. The main disadvantage of 

LP techniques is that they are very time-consuming for large scale optimization 

problems. 
 

Nonlinear Programming: If the optimization problem involves an objective function 

and /or constraints that are too complicated to manipulate, it can not be solved by using 

the classical analytical methods. In this case nonlinear programming methods are often 

used. These techniques are often called numerical methods and are divided into the 

following groups: elimination, interpolation, direct search, indirect search (descent), 

direct and indirect methods. Most of these techniques can be applied only under certain 

conditions, which is the main disadvantage for practical applications. 
 

Geometric Programming (GP): GP was developed by Duffin, Peterson and Zener 

[Duffin et al., 1967]. This method solves a class of nonlinear programming problems. 

This method differs from other optimization techniques. The main difference is that 

instead of finding optimal values of the design variables first, GP finds the optimal 

value of the objective function. Hence, this method is especially suitable for the 

problems where the optimal value of the objective function is the main subject of 

interest. Another important advantage of GP is that it often reduces a complicated 

optimization problem to one involving a set of simultaneous linear algebraic equations. 

However, the major disadvantage of this method is that it requires the objective function 

and the constraints in the form of posynomials (i.e. the sums of several components, 

each of those can be expressed as a power function of positive variables and 

constraints), which is hard to achieve for the majority of practical problems. A more 
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detailed explanation of the geometrical programming can be found in the reference 

[Rao, 1996]. 
 

Dynamic Programming: The dynamic programming technique represents or 

decomposes a multistage decision problem as a sequence of single-stage decision 

problems. Therefore, an N-variable problem can be represented as a sequence of N 

single-variable problems, which in most cases are easier to solve then the original 

problem. The decomposition to N single-variable problems is done in such a manner 

that the optimal solution of the original N-variable problem can be obtained from the 

optimal solutions of the N one-dimensional problems.  The main disadvantage of the 

dynamic programming technique is a major drawback, known as the curse of 

dimensionality (i.e. exponential increase in volume) [Rao, 1996]. However, this 

technique is suitable for the solution of a wide range of complex problems in several 

areas of decision making. 
 

Integer Programming: In all optimization techniques so far considered the design 

variables are assumed to be continuous, which can take a real value. However, in many 

engineering systems, certain design variables can take only discrete values. Also there 

are practical problems in which the fractional values of the design variables are neither 

practical nor physically meaningful. These difficulties can be avoided by using an 

integer programming techniques for the problem solution. Very little work has been 

done in the field of integer nonlinear programming. There are two popular methods of 

solution: the generalized penalty function method and the sequential linear integer 

(discrete) programming method. The detailed description of these techniques can be 

found in reference [Rao, 1996]. 
 

Stochastic Programming: This group of techniques is applied in situations where some 

or all of the parameters of the optimization problem are described by stochastic 

(random) variables rather that deterministic quantities. The sources of random variables 

may be several. They depend on the nature and type of the problem. For example, in the 

design of aircraft and rockets the actual load acting on the vehicle depends on the 

atmosphere conditions, which cannot be predicted precisely in advance [Rao, 1996]. 

Therefore, the loads should be treated as random variables in the design of such flight 

vehicles. 
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The basic idea of stochastic programming is to convert the stochastic problem into a 

equivalent deterministic problem, which is, therefore, solved by using familiar 

techniques, such as linear, nonlinear, geometric and dynamic programming.  

 

 

3.4 Modern Heuristic Optimization Techniques 

 

During the last decade several heuristic techniques have evolved and facilitated the 

solution of optimization problems that were previously difficult or impossible to solve. 

The most popular of these tools are briefly discussed in this section. They are: genetic 

algorithms, evolutionary programming, random search, simulated annealing, great 

deluge, threshold accepting, tabu search and the particle swarm optimization method.  
 

Genetic Algorithms (GAs): GAs, developed initially by Holland in the 1970s 

[Holland, 1975], are search algorithms based on the principles of natural selection and 

genetics. A GA technique starts with a set of feasible solutions (population). Each 

solution corresponds to a chromosome. Solutions are selected from the population either 

randomly or according to their fitness (objective function value) and are combined to 

form new solutions (offspring). This process repeats until a stop criterion is satisfied, for 

example a maximum number of generations is reached. There are two basic genetic 

operators: crossover and mutation. A crossover operator denotes the place where two 

parents are split, then re-combined to form offspring, allowing beneficial genes on two 

different parents to be combined and, therefore, to produce in theory better solutions. 

Mutation is generally applied in a random manner. It occasionally introduces beneficial 

material into chromosomes [Davis, 1991].  

  

Evolutionary Programming (EP): EP, originally conceived by Lawrence in 1960 

[Lawrence, 1996], is a stochastic optimization strategy similar to GAs. There are three 

important ways in which EP differs from GAs. First, there is no constraint on the 

representation. Second, the mutation operator simply changes aspects of the solution 

according to the statistical distribution, and, the severity of mutations is often reduced as 

the global optimum is approached. Third, EP typically does not use any crossover as a 

genetic operator. 
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Random Search (RS): RS is one of the Monte Carlo methods. It serves as a baseline 

method of scheduling [Bettinger et al, 2002]. The method works through the following 

steps: random assignment of the initial solution and then fitness evaluation. If the 

stopping criterion is met, the best solution found during the search should be reported, 

otherwise the process repeats from the random assignment step. This method is one of 

the simplest of the Monte Carlo methods and is often less than adequate. However, RS 

can be applied with other optimization techniques to generate the initial data for very 

complicated problems. 
 

Simulated Annealing (SA): SA is a search technique that began to be used in a 

widespread manner in the early 1980s [Bettinger et al., 2002]. The algorithm is based on 

a simulation of the cooling of materials in a heat bath. This process is known as 

annealing. Similar to RS, SA is a Monte Carlo approach that uses a local search in 

which a subset of solutions is explored by moving from one solution to a neighbouring 

solution. SA’s major advantage over other methods is an ability to avoid becoming 

trapped at local minima. This optimization technique is very popular and could be 

applied in a wide variety of disciplines. However, the major difficulty in the 

implementation is that there is no obvious analogy for the temperature T (major 

component of the technique) with respect to a free parameter in the optimization 

problem. Furthermore, avoidance of capture in local minima is dependent on the 

"annealing schedule", the choice of initial temperature, how many iterations are 

performed at each temperature, and how much the temperature is decremented at each 

step as cooling proceeds. 
 

Great Deluge Algorithm (GDA): GDA is a recently developed variant on simulated 

annealing. It was introduced by Dueck in 1993 [Dueck, 1993]. The algorithm is similar 

to SA in that only a single change is considered to a “current” solution. The resulting 

temporary solution is evaluated, and a decision is made whether or not to convert the 

temporary solution to the current solution. The form of the GDA consists of using a 

single parameter in the determination of whether or not to convert the temporary 

solution to the current one. The use of one parameter rather than two is advantageous. 

The GDA algorithm is believed to de-sensitize the SA algorithm thus leading to equally 

good results even when parameter estimation and formulation is poor.  

 



 36

Threshold Accepting (TA): TA is similar to both simulated annealing and the great 

deluge process. It was introduced by Dueck and Scheuer in 1990 [Dueck and Scheuer, 

1990]. Similar to SA, TA also examines a single change to a current solution but uses a 

process which has a different set of acceptance rules. TA accepts every new proposed 

solution which is not sufficiently worse than the previous current solution. In contrast, 

in SA there is only a small probability that a worse proposed solution would replace the 

current solution. TA is a popular technique and could be applied to various safety 

problems. 
 

Tabu Search (TS): The basic concept of Tabu Search (TS) is described by Glover in 

1986 [Glover, 1990]. The overall approach is to avoid entrainment in cycles by 

forbidding or penalizing moves which take the solution, in the next iteration, to points 

in the solution space previously visited (hence "tabu") [Pukkala and Kurttila, 2005]. The 

method is still actively researched, and is continuing to evolve and improve. TS 

proceeds according to the supposition that there is no point in accepting a new (poor) 

solution unless it is to avoid a path already investigated. This insures new regions of a 

problems solution space will be investigated with the goal of avoiding local minima and 

ultimately finding the desired solution.  
 

Particle Swarm Optimization (PSO): PSO, developed by Eberhart and Kennedy in 

1995, is an exciting new methodology in evolutionary computation. It is similar to 

genetic algorithms in that the system is initialized with a population of random 

solutions. However, unlike other algorithms, each potential solution (particle) is also 

assigned a randomized velocity and flown through the problem hyperspace [Lee and El-

Sharkawi, 2006]. Compared with genetic algorithms (GAs), the information sharing 

mechanism in PSO is significantly different. In GAs, chromosomes share information 

with each other. So the whole population moves like one group towards an optimal area. 

In PSO, only the best string gives out the information to others. It is a one-way 

information sharing mechanism. The evolution only looks for the best solution. 

Compared with GAs, all particles tend to converge to the best solution quickly even in 

the local version in most cases. The PSO algorithm has been found to be extremely 

effective in solving a wide range of engineering problems [Hu et al, 2004]. 
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3.5 An Overview of Different Multi-Objective GAs 

 

Among all modern optimization methods the multi-objective genetic (evolutionary) 

algorithms (MOGAs) are the most popular for the solution of multi-objective problems. 

Over the last decade a number of techniques from this group have been developed and 

successfully applied to different engineering problems. This section overviews the main 

methods in this category.  
 

The Niched Pareto Genetic Algorithm (NPGA): This algorithm was proposed by 

Horn and Nafpliotis in 1993 [Horn and Nafpliotis, 1993]. It combines tournament 

selection and the concept of Pareto dominance. Firstly, two competing individuals and a 

comparison set of other individuals are picked at random from the initial population.  

Then if one of the competing individuals is dominated by any member of the set, and 

another is not, then the latter is chosen as the winner of the tournament. If both 

individuals are dominated or not dominated, the result of the tournament is decided by 

sharing. In order to reach a nice spread of solutions, most MOGAs employ some kind of 

niching. In most cases, niching is used as a secondary measure of fitness [Jensen, 2003] 

and is selected for reproduction. This procedure is called phenotypic sharing on the 

objective vector and is described in detail in Horn and Nafpliotis’s study [Horn and 

Nafpliotis, 1993]. 
 

The Non-Dominated Sorted Genetic Algorithm (NSGA and NSGAII): This 

approach was developed by Srinivas and Deb in 1994 [Srinivas and Deb, 1994]. It is 

based on Goldberg’s suggestions that fitness assignment must be carried out in several 

steps. Consequently, the main idea of NSGA is the ranking process executed before the 

selection operation [Dias and Vanconcelos, 2002]. The nondominated individuals in the 

population are first identified and then are assumed to constitute the first nondominated 

front with a large dummy fitness value. It must be considered that the same fitness value 

is assigned to all of them. Afterwards, the individuals of the first front are temporarily 

“ignored” and the same procedure is applied to the rest of population. Therefore, the 

individuals for the second nondominated front are identified. The process continues 

until the whole population is classified into nondominated fronts. The population is then 

reproduced according to the dummy fitness values. Over the years, NSGA was 

criticised mainly because of the following factors: high computational complexity of 

non-dominated sorting, lack of elitism, and need for specifying the sharing parameter. 
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In 2000 the NSGA approach was modified by Deb, etal. [Deb et al., 2002] and is known 

as Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II). This new version 

compensates for the disadvantages of the first proposed method. Deb’s work 

demonstrates that the NSGA-II approach has a better spread in its optimized solutions 

than the Pareto Archive Evolutionary Algorithm (PAES). 
 

Pareto Archive Evolutionary Algorithm (PAES): This method was proposed by 

Knowles and Corne [Corne and Knowles, 2000] and modified by Grosan [Grosan et al., 

2002]. In this approach one parent generates by mutation one offspring which is, 

afterwards, compared with the parent. Then there are three possible options: if the 

offspring dominates the parent it is accepted as the next parent and the iteration 

continues; if the parent dominates the offspring the offspring is discarded and a new 

offspring is generated by a new mutation; if the parent and the offspring do not 

dominate each other a comparison set of previously nondominated individuals is used. It 

is important to maintain population diversity among the Pareto front. Consequently, a 

new generated offspring is compared with the archive (a set of selected potentially 

fittest strings) to verify if it dominates any member of the archive: if yes, the new 

generated offspring enters the archive and is accepted as a new parent; if no, both parent 

and offspring are checked for their nearness with the solution of the archive; if the 

offspring resides in the least crowded region in the parameter space among the members 

of the archive, it is accepted as a parent and its copy is added to the archive. 
 

Pareto-frontier Differential Evolution (PDE): The Differential Evolution approach 

was developed by Price and Storn in 1997 [Price and Storn, 1997] and applied by Babu 

and others to several multi-objective problems [Babu and Jehan, 2003]. It is a 

population based search algorithm and is an improved version of simple GAs. Simple 

GAs use binary coding for representing problem parameters. In contrast, PDE uses real 

coding of floating point numbers. Babu in his work indicates the following advantages 

of the PDE approach: simple structure, ease of use, speed and robustness. The PDE 

scheme is adaptive and simple. It ensures that mutation increments are automatically 

scaled to the correct magnitude. Furthermore, PDE uses a non-uniform crossover in that 

the parameter vectors of the offspring vector are inherited in unequal proportions from 

the parent vectors. Tournament selection is a method used for PDE reproduction: the 

offspring vector competes against one of its parents. The overall structure of this 

approach is similar to most other population based methods. 
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Pareto Envelope-based Selection Algorithm (PESA): This algorithm was proposed 

by Corne and Knowles in 2000 [Corne and Knowles, 2000]. This approach is a variant 

of a simple GA. It maintains two populations of chromosomes, with each chromosome 

storing optimization parameter values. The internal population contains a set of 

optimization parameters to be evaluated. The external population contains the partial 

Pareto front found thus far in the computation. The main goal of PESA is to create a 

new set of optimization parameters for evaluation by exploring areas of fitness space 

which are poorly represented in the Pareto front.  
 

Dynamic Multi-objective Evolutionary Algorithm (DMOEA): This method was first 

proposed by Yen and Lu in 2002 in [Yen and Lu, 2002] in order to improve MOGA. In 

this approach, “instead of determining population size heuristically, a dynamic 

population growing  and declining strategy are designed to help the algorithm allocate 

an optimal number of nondominated solutions for the final resulting Pareto set”  [Lu, 

2002]. The key techniques of DMOEA are: cell-based rank and density calculation 

scheme; population growing strategy; population declining strategy; objective space 

compression strategy. 
 

Strength Pareto Evolutionary Approach (SPEA): This technique is one of the most 

popular among all major multi-objective genetic algorithms.  SPEA was developed by 

Zitzler and Thiele in 1998 [Zitzler and Thiele, 1998]. According to Zitzler and Thiele, 

SPEA is similar to other multi-objective GAs as it: stores the Pareto-optimal solutions 

found so far externally; uses the concept of Pareto dominance in order to assign scalar 

fitness values to individuals; performs clustering to reduce the number of nondominated 

solutions stored without destroying the characteristics of the Pareto-optimal front. On 

the other hand, SPEA is unique. Zitzler and Thiele indicate this method’s uniqueness in 

five respects:  

1. It combines the above three techniques in a single algorithm; 

2. The fitness of an individual is determined from the solution stored in the 

external Pareto set only;  

3. Whether members of the population dominate each other is irrelevant;  

4. All solutions in the external Pareto set participate in selection; 

5. A new niching method is provided in order to preserve diversity in the 

population. 
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This method is Pareto-based and does not require any distance parameter. In 2001 

Zitzler, Laumanns and Thiele proposed an improved version of this algorithm and 

named it SPEA2, which compensates the potential weaknesses of its predecessor. Both 

the SPEA and SPEA2 are discussed in detail in chapter 4. 

 

 

3.6 Safety System Optimization 

 

Attempting to optimize the design of engineered safety systems, the analyst is 

frequently faced with the demand of achieving several targets (e.g. low costs, high 

revenues, high reliability, low accident risks), some of which are often in conflict. At 

the same time, several requirements (e.g. maximum allowable cost, weight, volume etc.) 

should also be satisfied. This type of problem is usually solved by focusing the 

optimization on a single objective which may be a weighed combination of some of the 

targets of the design problem. During the last decade a number of engineers have 

applied various methods for different safety system optimizations. Among those 

methods genetic algorithms have been applied most often due to their simplicity and 

universality. In all cases they performed successfully. Details on this safety system 

optimization research are discussed in sections 3.6.1 and 3.6.2. 

 

 

3.6.1 Safety System Optimization by Genetic Algorithms 

 

In 1997 and 1999 Pattison described a design optimization scheme for systems that 

require a high likelihood of functioning on demand. A simple genetic algorithm (GA) 

had been chosen as the optimization method. The technique was applied to two safety 

systems: the simple High Integrity Protection System (HIPS) [Andrews and Pattison, 

1997] and the Firewater Deluge System (FDS) on an offshore platform [Pattison, 1999]. 

For both systems the minimum unavailability has been achieved within one hundred 

generations with computation time of several hours. 

 

In 2000 Cantoni  [Cantoni et al, 2000] produced a simulation for optimal industrial plant 

design (choice of system layout and components) under conflicting safety and economic 

constraints. In this work an engineering analysis aimed at assessing the reliability, 
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availability and safety levels was coupled with an economic analysis, i.e. estimation of 

costs for plant downtime, maintenance and repair. The plant function is a complicated 

multivariate, non-linear function, which cannot be put explicitly in analytical form.  

Therefore, the authors presented an approach which couples the Monte Carlo simulation 

method for the evaluation of plant safety and economic performance, and the genetic 

algorithm for determining the optimal system design. The GA considers a population of 

chromosomes, each one encoding a different alternative design solution. For a given 

design solution, the Monte Carlo simulation evaluates the system performance over a 

specified mission time. This latter constitutes the objective function to be maximized by 

the GA through the evolution of the successive generations of the population. The 

results obtained by the combination of the GA and Monte Carlo simulation confirmed 

the good performance of the methodology implemented for both the system safety and 

economic objectives. 

 

In 2001 Busacca [Busacca et al, 2001] presented an optimization of a safety system by 

GAs in which every target is considered as a separate objective to be optimized. 

Similarly to Cantoni [Cantoni et.al, 2000], Busacca considered the industrial plant. In 

this case the plant has two separate objectives:  
 

1) the net profit drawn from system operation during the mission time, made from 

profit from plant operation, purchase and installation costs, repair costs and 

penalties during downtime due to missed delivery of agreed services;  

2) and the reliability at mission time. 
 

The multi-objective genetic algorithm (MOGA) had been implemented for this safety 

system optimization. The values of the parameters were chosen based on experience and 

trial-and-error tuning, so as to achieve proper convergence. The results show that the 

implemented genetic approach efficiently identifies the Pareto optimal solutions, i.e. the 

nondominated solutions.  

 

The procedure was then applied to the standby system of nuclear power plant (NPP), 

consisting of three pumps and seven valves. The goal was to optimize the effectiveness 

of NPP with respect to three different criteria: mean availability, cost, and workers’ time 

of exposure to radiation. As in the previous examples, these objective functions share 

some common contributions but present conflicting ones as well. The optimization 
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performed with respect to availability, economic and workers’ safety objectives has 

shown the potential of the approach and the benefits which can be derived from a more 

informative multi-objective framework. However, the authors underline the fact, that 

Pareto optimality does not solve the decision problem. The decision maker is just 

provided with the whole spectrum of nondominated alternatives and their performances 

with respect to the objectives, and he must ultimately select the preferred one according 

to the preference values. 

 

Similarly to Cantoni [Cantoni et al, 2000], in 2003 Marseguerra [Marseguerra et al, 

2004] proposed the multi-objective optimization scheme for nuclear safety systems 

based on the effective coupling of genetic algorithms (MOGA) and Monte Carlo 

simulation. This technique was demonstrated on the Reactor Protection Instrumentation 

System (RPIS) of a pressurized water reactor. This safety system consists of analog 

channels, logic trains and trip breakers. Therefore, three decision variables of the 

optimization problem were considered. They are: 
 

1) the surveillance test interval of the analog channels; 

2) the surveillance test interval of the logic trains; 

3) the  allowable  time in  which  a  reduced  safety margin of the protection  

    system is acceptable, selected within (1, 50) hours. 
 

Both test intervals were selected within the range (30, 365) days. The results were found 

to be physically reasonable. The approach was found valuable and provided the 

decision-maker with a useful tool for distinguishing those solutions that, besides being 

optimal with respect to the expected availability behaviour, give a high degree of 

confidence on the actual system performance. 

 

Safety improvement of industrial installations leads to the optimal allocation of designs 

that use more reliable equipment, testing and maintenance activities to assure a high 

level of reliability, availability and maintainability for their safety-related systems. In 

2004 Martorell [Martorell et al, 2004] considered a multiple-optimization problem, 

where the parameters of design, testing and maintenance act as decision variables. The 

authors summarized the problem formulation and fundamentals of two major groups of 

resolution alternatives:  
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• the traditional approach: the multi-objective problem is transformed into several 

single-objective problems, which are therefore solved by simple GAs; 

• the alternative approach: when all objectives are considered and solved by 

MOGA. This approach results in a set of non-dominated solutions to make the 

final decision.  
 

Both alternatives represented extreme options for the decision-making process. 

However, the best results were obtained by the SPEA2-based MOGA, which provides a 

better defined Pareto optimal front. Using this approach the search is performed without 

assigning a preference function and the final decision is taken a posteriori.  

 

In 2006 Everson and Fieldsend [Everson and Fieldsend, 2006] introduced the multi-

objective optimization of safety related and critical systems.  They focused on the 

Short-Term Conflict Alert system (STCA), designed to raise a warning to air traffic 

controllers if there is a developing conflict between aircraft, giving them time to redirect 

the aircraft. For the system optimization the authors implemented a stochastic search 

algorithm MOEA, based on the GAs. The STCA has over 1500 parameters determining 

its behaviour. However, it was decided to optimize only 912 of them. The optimization 

time for this huge system took approximately 12 days. However, the method gave 

effective results, which are expected to be better after some future alterations to the 

traditional technique. 

 

In 2008 Lin [Lin et al., 2008] developed a GA-based methodology for optimization of 

the inspection system for thin film transistor (TFT) liquid crystal display (LCD), which 

ensures high quality in an LCD production line. The proposed method was compared 

with the algorithms that use artificial parameter sets. Results indicated a good 

performance of the developed technique.  

 

In 2009 Huang [Huang et al., 2009] suggested a GA-based method for optimization of 

unmanned crane routes, which would minimize the cycle time by calculating the most 

efficient combination of horizontal and vertical motions of container loading/unloading. 

The optimization criteria involved length, smooth degree and safety distance. The 

computational experiments testified the effectiveness of the algorithm and explored a 

new way to increase the efficiency of container loading/unloading process. 
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Various MOGAs have been proposed and applied since to different engineering system 

optimization problems since 1985. Over the last ten years, such methods are:  

• Multi-Objective Genetic Algorithm (MOGA): Yamachi [Yamachi et al., 2006] 

proposed to use a combination of N-version programming and MOGA for the 

engineering system reliability and total cost optimization and proved that the 

combined technique could slightly remove the roughness of Pareto solutions. 
 

• Non-dominated Sorting Genetic Algorithm 2 (NSGA2): Deb successfully tested 

NSGA2 on five different engineering problems [Deb et al., 2000)]. Dias and 

Vanconcelos [Dias and Vanconcelos (2002)] applied NSGA to two test problems 

and showed that it performs better that MOGA and can be applied to solve multi-

objective problems in electromagnetics.  
 

• Pareto-frontier Differential Evolution (PDE): Babu and Jehan [Babu and Jehan, 

2003] tested PDE on one simple general problem and on the engineering application 

of cantilever design problem.  Results indicated that compared to the simple GA, 

PDE algorithm gives the exact optimum with less number of iterations. 
 

• Niched Pareto Genetic Algorithm 2 (NPGA2): Salazar [Salazar et al., 2006] 

demonstrated the use of NPGA2 to solve three types of reliability optimization 

problems: to find the optimal number of redundant components, find the reliability 

of components, and determine both their redundancy and reliability. The technique 

was successfully tested on four redundancy problems.   
 

• Pareto Envelope-based Selection Algorithm (PESA): Everingham [Everingham et 

al., 2003] successfully applied PESA to six image segmentation algorithms used in 

many practical computer vision systems. 
  

• Pareto Archive Evolutionary Strategy (PAES): Grosan [Grosan et al., 2002] 

proposed an improved version of PAES, which was tested on two engineering 

functions and performed better than the original PAES.  
 

• Strength Pareto Evolutionary Algorithm 2 (SPEA2):  

o Martorell [Martorell et al., 2006] successfully applied SPEA2 to the 

simultaneous optimization of periodic test interval and test planning performed 

on stand-by safety-related equipment.   

o  Sareni [Sareni et al, 2004] applied SPEA2 to a number of test problems and 

proved that it performs as efficiently as NSGA2.  
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o Jensen [Jensen, 2003] compared SPEA2 performance to five other multi-

objective techniques (i.e. NSGA2, DMOEA, PDE, PAES and PESA) by 

application to two example problems. Results showed that SPEA2 and NSGA2 

performed better than other techniques.  

o Zitler [Zitler et al. (1), 2001] and Kamiura [Kamiura et al., 2002] applied SPEA2 

to two or three objectives In 2003 V. Khare [Khare et al., 2003] investigated 

MOGAs for their scalability with respect to the numbers of objectives from 2 to 

8.  

 

 

3.6.2 Safety System Optimization by Other Methods 

 

A Multi-objective Design Optimization framework called Concurrent Subspace Design 

(CSD) had been applied to the design of an aircraft brake assembly in 1999 by Stelmack 

[Stelmack et al, 1999]. CSD is closely related to the Concurrent Subspace optimization 

method proposed by Sobieski [Sobieski, 1988]. The design optimization problem 

contained 14 design variables and 24 states. The initial database generated for this 

design problem contained 38 designs. One of them served as a starting point. Every 

other design was obtained by perturbing one of the 14 design variables away from its 

baseline value. The obtained results were encouraging. They demonstrate the ability of 

CSD framework to identify designs which are improved according to the objectives and 

requirements posed for a particular problem. 

 

During the same time as Stelmack, Haimes [Haimes, 1999] completed his investigation 

of Los Angeles water system complexity and the misuse of modelling and optimization. 

In the maintenance of water distribution systems, different repair /replacement strategies 

for varying subsystems often have unexpected impacts on the overall system; the 

demands for the recourses and their appropriate allocations have a diverse impact on the 

system’s reliability. This system multi-objective optimization was focused on five 

points: cost –benefit analysis (cost, benefit and risk objectives); expected value of risk; 

present value of money; reliability analysis; and the fallacy of optimization. 
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The linear optimization procedure has been applied to all objectives. Finally, the 

theoretical optimum solutions were found for each point. However, the authors stated 

that an optimum solution to a real-life problem depends on decision makers, the 

credibility of the database, etc. Therefore, a mathematical optimum to this model does 

not necessarily correspond to the optimum for the real-life water system. 

 

In 2000 another group of engineers [Seward et al, 2000] presented an account of 

carrying out a hazard analysis to define the safety requirements for an autonomous 

robotic excavator (LUCIE). This particular safety problem differs from most others. 

Previously, hazard analysis was applied mostly to robotic manipulators, where the 

manipulator’s environment is generally structured and can be controlled. However, in 

this case the system was required to interact directly with a natural environment: a 

building site. The safety manager (SM) is a target hardware LUCIE system processor 

which monitors the environment and ensures safe behaviour. Hence, the following three 

principal hazard definitions have been adopted from the SM hazard containment point 

of view: 
 

1) Collision with an object on the surface. 

2) Collision with an underground object. 

3) Toppling of the excavator. 
 

The problem was managed through a safety decision making process, which was 

implemented through a decision network based on the fault tree structures developed 

within the FTA. Furthermore, the decision network provided the method by which the 

excavator is returned to a safe state from an unsafe operating situation. 

 

During the same time period as Seward, Terechine [Terechine, 2000] performed pulsed 

power system optimization for the Neutrino Factory (NF). The main idea of the system 

to use time dependent electrical field of an induction nature to correct 200 MeV muon 

energy spread after energy-time correlation developed in a drift space. The goal of this 

work was to identify the limits of choosing system parameters, and to optimize the 

system. Three system parameters were considered to be optimised: the power level, 

system reliability and operational cost. The author chose a linear optimization technique 

for the system optimization. The obtained results showed that optimization parameters 

are proportional to the length of the system. The increase of the length gives the 
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possibility to gain maximum power, increase system reliability and save in operation 

cost. 

 

In 2003 Reif [Reif, 2003] presented the safety optimization method, based on the 

combination of fault tree analysis and mathematical techniques. The methodology can 

be described as follows: 
 

Step 1. Carry out a fault tree analysis of the system hazards. 

Step 2. Use a statistical distribution for failure probabilities. 

Step 3. Estimate the costs of each hazard with a cost function. 

Step 4. Perform mathematical optimization (usually probabilistic).  
 

This method was illustrated on the height control system of the Elbtunnel in Hamburg.  

Two different hazards, the collision of overhigh vehicles with the tunnel entrance and 

the tripping of the false alarm, had been considered. The safety analysis had shown the 

benefit of the combination of all these methods. Formal verification had shown a design 

flow, which resulted in a safety gap. Safety optimization yielded optimal configuration 

values and made the system safer, led to design improvement and increased overall 

system quality. 

 

In 2005 Acar [Acar and Haftka, 2005] proposed a probabilistic optimization method for 

the industrial safety system, in which the probability of failure calculation is confined to 

stress allowables and the stress distribution is condensed into a representative single 

value by an inverse transformation. The main goal of this method is to base the design 

on stress allowables whose probability distributions are more accurate. This method 

therefore serves as a way to take a first step for probability of failure calculations when 

probabilistic data is not scarce. The method is illustrated with an aircraft wing, 

horizontal tail and vertical tail system weight and safety optimization. Results show that 

probabilistic design renders about 0.77% weight saving for the same level of safety and 

31% safety improvement while keeping the weight unchanged. The method was found 

to predict slightly lower (around 6%) failure probabilities when optimizing for weight 

and slightly higher (around 2%) failure probabilities when optimizing for safety.   

 

At the same time Ortmeier [Ortmeier et al, 2005] reported on the safety analysis of a 

distributed and decentralized control of a railroad crossing: the radio-based level 
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crossing. The main points of optimization were safety and the mean cost. The authors 

decided to implement the mixture of the FTA technique for safety and a linear 

optimization procedure for the cost minimization. The cost function consists of two 

terms: one term for hazard costs and a second term directly dependent on the parameters 

themselves, for example, more reliable sensors are more expensive. The costs associated 

with the hazards were approximated by the sum of hazard probabilities. The results 

showed that the obtained optimum might not be the best solution from the economical 

point of view. However, the obtained optimum choice of parameters (cost and safety) 

not only allowed faster travel but also safer.  

 

 

3.7 Conclusions 

 

When reviewing the classical groups of optimization methods (discussed in section 3.3) 

the following points are noted with regards to their potential application: 
 

1) The classical optimization techniques are analytical and can be applied only to 

objective functions that are continuous and differentiable. Therefore, this group of 

techniques can be hard to apply to safety system optimization problems as most do 

not satisfy these conditions. Another obvious disadvantage of classical optimization 

methods is that they are time-consuming. 
 

2) Linear programming methods can be applied only to systems with linear 

objectives. The main disadvantage of these methods is that they are time-consuming 

for systems with a large number of design variables.  
 

3) The majority of real safety systems involve the objective functions and constraints 

that are too complicated to manipulate. Therefore, the application of LP and Classical 

optimization techniques is difficult. In this case nonlinear programming methods 

(numerical methods) are helpful. However, these methods are efficient only if the 

initial interval of uncertainty is known.  
 

4) Random search methods are not very efficient by themselves. However, they can 

be combined with more efficient techniques at the early stages of optimization to 

detect the region where the global minimum is likely to be found.  
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5) Geometric programming is suitable for safety system optimization, where the 

optimal value of the objective function (not the design variables) is the main subject 

of interest. However, this method is not applicable to the problems where the 

difference between the total number of terms appearing in the design constraints and 

the number of the design variables is less than one.  
 

6) Dynamic programming is easy to implement. It is suitable for the solution of a 

wide range of complex optimization problems and, hence, can be successfully 

applied to any safety system optimization. The main disadvantage of this technique is 

a major drawback, known as the curse of dimensionality or state explosion problem. 
 

7) In many safety systems certain design variables can take only discrete values. In 

this case integer programming should be applied or combined with the above 

techniques. Stochastic programming is applied in situations where some or all of the 

parameters of the optimization problem are described by random variables rather 

than deterministic quantities. For example, the atmosphere condition parameters 

affecting some of safety system’s components cannot be predicted precisely in 

advance and, therefore, should be treated as random variables. 

 

The modern heuristic optimization techniques, discussed in section 3.4, are certainly the 

most efficient and preferable for safety systems optimization. These methods have 

evolved to facilitate solving optimization problems that were previously difficult or 

impossible to solve. In practice all these techniques give good results in a short 

computation time. Nowadays one of the most powerful optimization method groups is 

GAs. Other efficient techniques are Great Deluge, Threshold Accepting and Particle 

Swarm Optimization. 

 

During the last decade the MOGAs group of techniques became very popular and 

widely applicable for engineering problems with several optimization parameters. The 

SPEA technique and its improved version SPEA2 are the leaders in this group in terms 

of overall performance, i.e. the accuracy of the results, the search speed and complexity. 

These techniques are discussed in detail in the next chapter. 
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CHAPTER 4 

 

GENETIC ALGORITHMS 

 

4.1 Introduction 

 

Genetic algorithms (GAs) have arisen from a need to model the biological processes of 

natural selection and population genetics. GAs are founded on Darwinian evolutionary 

principles and are global, parallel, adaptive heuristic search and optimisation methods. 

First described by John Holland in the 60s at the University of Michigan, GAs have 

been widely studied and experimented. The main theme of the research on genetic 

algorithms has been robustness [Holland, 1975]. The necessity is the balance between 

efficiency and efficacy for survival in many different environments. The system can 

perform its functions longer and better if higher levels of adaptations can be achieved. 

During the last few years GAs have been applied in a variety of areas. A significant 

contribution was achieved within safety systems engineering [Buckles and Petry 1992, 

Munoz 1997, Cantony 2000, Marseguerra 2000, Tsai 2001, Lapa 2003, Vinod 2004, 

Chen 2008]. GAs are attractive to problem solvers as they are not conducive to formal, 

rigorous, classical analysis. Moreover, GAs are well suited to solve multiobjective 

optimisation problems. During the past few years MOGAs were successfully applied to 

a number of systems safety and reliability problems [Elegbede 2003, Marseguerra 2004, 

Martorell 2005, Lin 2008]. Recently, some important multiobjective evolutionary 

algorithms (MOEAs) have been developed. Among these the Strength Pareto 

Evolutionary Algorithm (SPEA) and its improved version (SPEA2) seem to be the most 

effective techniques for multiobjective optimization problems.  

 

 

4.2 Genetic Algorithm Differences from Traditional Methods  

 

Improvement is the most important goal of optimisation. Consequently, optimisation 

seeks to improve performance towards some optimal point or points [Goldberg, 1989]. 

GAs surpass more traditional methods in some very fundamental ways. The main four 

differences are: 
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• Traditional methods work with the parameters themselves. On the other hand, 

GAs work with a coding of the parameter set. 

• Traditional approaches start the search from a single point. GAs search from a 

population of points. 

• GAs use objective function information. In contrast, traditional methods use 

derivates or other auxiliary knowledge. 

• Traditional methods use deterministic rules. GAs are based on probabilistic 

rules. 

 

With more traditional methods it is essential to analyse each of the parameters 

separately.  Conversely, GAs require the initial parameter set of the optimisation 

problem to be coded as a finite-length string over some finite alphabet.  Simple GAs use 

either binary or Gray coded strings [Pattison, 1999]. Both of these have a 2-character 

alphabet {0, 1}. The binary coding method is more popular among engineering system 

designers. It works in the following way: the right most bit of a typical 8-bit byte in the 

computer has the value 2 to the power 0, i.e. 02 . The bit directly to the left is 12 , the 

next 22  and so on. For example, for a string 11010:  
  

26020816202120212111010 01234 =++++=×+×+×+×+×= . 

 

In most optimisation methods some transition rules are used and move gingerly from a 

single point in the decision space to the next. This “point-to-point” process is dangerous 

as it is an ideal prescription to locate false peaks in multimodal search spaces. GAs 

avoid this problem by working with a database of points (population of strings) 

simultaneously climbing many peaks in parallel. Hence, the probability of finding a 

false peak is reduced.  

 

In order to work properly many traditional techniques require much auxiliary 

information. As an example, gradient techniques need analytical or numerical 

derivatives to climb the current peak. “GAs are blind” – they only require objective 

function values associated with individual strings to perform an effective search for 

better and better solutions. This makes GAs a more canonical method than many other 

search schemes. However, the refusal to use specific information when it does exist can 

place an upper bound on the performance of the algorithm. The last main difference is 
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that GAs use probabilistic transition rules to complete their search. They use random 

choice as a tool to guide a search towards areas of the search space with likely 

improvement. All of the mentioned differences result in an advantage over the more 

commonly used techniques. 

 

 

4.3 Simple Genetic Algorithms 

 

Each individual within the initial population (gene pool) represents a particular solution 

(chromosome, string, individual) to the problem [Fleming and Purshouse, 2001]. This 

solution generally is expressed in some form of genetic code. A Gene is a variable 

contributing to the solution. The value of a gene is traditionally called an allele. Good 

solutions are selected and manipulated by genetic operators to achieve new, possibly 

better solutions [Chambers, 2001].   

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1 Schematic of the GAs 

 

Figure 4.1 represents a schematic of the simple GA. Each individual within the gene 

pool is assigned a fitness value. This value expresses how “good” the solution is at 

solving the problem. Better solutions are assigned higher values that determine how 

successful the individual will be at propagating its code (its genes) to subsequent 

generations. A simple GA that produces good results in many practical problems is 



 53

composed of three operators: reproduction, crossover and mutation. In its general form, 

GA works through the following steps [Davis, 1991]: 
 

Step 1. Creation of a random initial population of N potential solutions to the 

problem.  

Step 2. Evaluation of each individual (chromosome) in terms of its fitness. 

      Step 3. Creation of a new chromosome by mating current chromosomes (parents). 

Step 4. Applying genetic crossover, mutation and recombination operators to the 

parents to  generate children. 

Step 5. Deleting members of the population to make room for new chromosomes. 

Step 6. Evaluation of the new chromosomes and placing them into the population. 

Step 7. If the maximum number of generations is reached, stop and return the best 

chromosome; if not, go to step 3. 

 

 

4.3.1 Genetic Operators 

 

Reproduction.  It is a process in which individual strings are copied according to their 

objective function values (fitness values). As a result, strings with a larger value have a 

higher probability of contributing one or more offspring in the next generation. This 

operator is an artificial version of natural selection, the Darwian survival of the fittest 

[Goldberg, 1989].  

 

There are a number of ways the reproduction operator may be implemented in 

algorithmic form. As suggested by Goldberg, one of the easiest ways is to use a biased 

roulette wheel selection method. Each current string in the population has a roulette 

wheel slot sized in proportion to its fitness. Each time another offspring is required, a 

simple spin of the weighted roulette wheel yields the reproduction candidate. Hence,  

highly fit strings have a higher probability of being in the succeeding generation. If a 

string has been selected for reproduction, an exact copy of it is made. This string is then 

entered into a gene pool for further genetic operator action. The allocation space on the 

roulette-wheel is adapted for each string i according to the selection function ip , which 

is  calculated  using equation 4.1. 
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where if   is the fitness of  string  i. 

 

For example, given the initial population of four strings 01100, 10001, 11100 and 

00101. The values of objective (fitness) function for each of them is calculated 

according to the binary coding system described in section 4.2. These values give the 

percentage of population total fitness as shown in table 4.1.  

 
Table 4.1 Sample Population of Strings and Fitness Values  

No. String Fitness % of Total 

1 01100 12 19.4 

2 10001 17 27.4 

3 11100 28 45.1 

4 00101 5 8.1 

Total  62 100 
 

 

Therefore, the first string (01100) has a fitness value of 12, which represents 19.4 

percent of the total fitness. Consequently, string 1 is given 19.4 percent of the biased 

roulette wheel. As a result, each spin selects string 1 with probability 0.194. 

 

In some GAs the inverse of the selection function ( 1−
ip ) is used to select chromosomes 

for deletion [Chambers, 2001]. The best chromosome is always preserved in the 

population (elitist selection).  

 

Crossover. Goldberg points out that the mechanics of reproduction and crossover are  

surprisingly simple [Goldberg, 1989]. They involve random number generations, string 

copies, and some partial string exchanges. Crossover is a recombination operator and is 

characterised by the majority of authors as a distinguishing feature of the GA since it is 

the basic operator for producing new chromosomes.   
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Say, the chromosomes are selected in pairs ( wv ss   , ), where ),...,( 1 nv vvs = , 

),...,( 1 nw wws = , }1  ,0{  , ∈ji wv , and n is the number of elements in the chromosome. 

Then if  ]1  ,0[∈r  is a random number (uniform distribution), simple arithmetic 

crossover (one-point crossover) can be defined as follows [Chambers, 2001]: 
  

Chromosomes vs  and ws are crossed over at the k-th position. The resulting 

offsprings are: ),...,,,...,( 11
'

nkkv wwvvs +=  and ),...,,,...,( 11
'

nkkw vvwws += , where k is 

selected at random from {2,…, n - 1}.  

 

Mutation. Karr and Freeman [Karr and Freeman, 1999] describe mutation as an 

operation that provides a random element in the search process. This allows for various 

attributes of the candidate solutions to be occasionally altered. The operation of 

mutation begins by probabilistically selecting an individual from the population on the 

basis of its fitness [Koza, 1994]. A mutation point along the chromosome usually is 

chosen at random and the single character at that point is randomly changed. The altered 

chromosome is then copied into the next generation of the population.  

 

Assuming that the chromosome is ),...,( 1 nv vvs =  and min
kv and max

kv are the lower and 

upper bounds, respectively, on the parameter encoded by element k, } ,...,2 ,1{ nk ∈ , 

mutation operators can be defined as [Chambers, 2001]: 
 

1. Uniform mutation: a randomly selected element kv , is replaced by '
kv , which is a 

random number in the range [ ]maxmin   , kk vv . The resulting chromosome is 

),...,  ,  ,,...,( 1
'

11
'

nkkkv vvvvvs +−= . 
 

2. Multiple uniform mutation: uniform mutation of m randomly selected elements, 

where m is also selected at random from } ,...,2 ,1{ n . 

 

 

4.3.2 Genetic Algorithm Parameters 

 

There are important global program variables that affect the operation of Genetic 

Algorithms. The most common GA parameters are: 
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• the population size, 

• the maximum number of generations, 

• the probability of crossover, 

• the probability of mutation. 
 

Greater population size and number of generations increase potentially the exploration 

of the search space and diversity from the onset. However, this is usually at the expense 

of efficiency and a balance for the particular problem must be attained. 

 

The crossover rate is important as it controls the expected number of chromosomes to 

undergo the crossover operation per generation [Goldberg, 1989]. A higher crossover 

rate allows exploration of the solution space. Furthermore, it reduces the chances of 

settling for a false optimum. However, if this rate is too high a lot of computation time 

is wasted exploring unpromising regions of the solution space. 

 

According to Holland [Holland, 1975], the function of the mutation rate is to control the 

rate at which each bit is changed to its opposing value. It is very important to choose a 

well-balanced  mutation rate. If this rate is too low, it results in the fact that many useful 

genes are never tried out. In contrast, if it is too high, there will be many random 

perturbations, the offspring will start losing their resemblance to the parents. As a result,  

the algorithm will lose the ability to learn from the history of the search [Gen and 

Cheng, 1997]. Establishing the best values for the GA parameter set is the optimisation 

problem in itself. 

 

 
 
4.4 Multiobjective Genetic Algorithms 
 

4.4.1 Introduction 

 

In the real world it is rare for any problem to concern only a single value or objective, 

usually there are several. Hence, multi-objective optimization problems should be 

solved. Computers have made rapid progress in hardware and software. Therefore, 

designers have begun to use computer simulations to aid decision-making for such 

structures as cars, airplanes, electric devices and safety systems. Usually, there is no 
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single optimal solution, but rather a set of alternative solutions. Consequently, one of 

the main goals of multi-objective optimization is to obtain a set of Pareto optimal 

solutions. Multiobjective Genetic Algorithms (MOGAs) have become immensely  

popular in recent years since they are multi point search methods and are particularly 

suitable to derive the Pareto optimal set [Zitler and Thiele, 1998]. Furthermore, they 

require little knowledge about the problem being solved. Another advantage is that 

MOGAs are easy to implement, robust, and inherently parallel. Due to their 

universality, these methods often take less time to find the optimal solution than other 

multiobjective approaches [Sbalzarini et al., 2000].   

 

 

4.4.2 Dominance and Pareto-optimality 

 

The main goal of multiobjective optimization is the search for acceptable solutions to 

problems that incorporate performance criteria. In most cases objectives are in 

competition with one another (trade-off). Improvement in one objective cannot be 

achieved without detriment to another. Figure 4.2 illustrates this situation [Purshouse 

and Fleming, 2001]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.2 A Trade-off Between Two Competing Objectives 

 

In order to treat simultaneously several objective functions, it is necessary to substitute 

the single-fitness based procedure employed in the single-objective GA for comparing 



 58

two proposals of solutions [Busacca et al., 2001]. The comparison of two chromosome-

coded solutions with respect to several objectives may be achieved through the 

introduction of the concepts of Pareto Optimality and Dominance. Ivo Sbalzarini 

[Sbalzarini et al., 2000] defines them as follows: 

 

Definition 4.1. Consider the following multiobjective optimization of the problem with 

m decision variables x (parameters) and n objectives y [Tillman et al., 1980]: 

 

Maximize    ( )),...,(),...,,...,(()( 111 mnm xxfxxfxfy ==                                 (4.2) 

where           Xxxx m ∈= ),...,( 1  

                         Yyyy n ∈= ),...,( 1  

and where  

x – decision (parameter) vector,  

X – parameter  space,  

y – objective  vector, 

Y – objective  space.  

 

A decision vector Xa∈  is said to dominate a decision vector Xb∈  (also written as 

ba φ ) if and only if: 
 

)()(:},...,1{)()(:},...,1{ bfafnjbfafni jjii >∈∃∧≥∈∀ .                               (4.3) 
 

Additionally, it is said that a covers b ( a φ b) if and only if ba φ  or )()( bfaf = . 

 

Based on this convention,  nondominated Pareto-optimal solutions  are: 

 

Definition 4.2. Let Xa∈  be an arbitrary decision (parameter) vector. 

(a) The  decision vector a is said to be nondominated regarding a set XX ⊆'  if and 

only if there is no vector in 'X  which dominates a; formally: 

                             aaXa φ''' :∈¬∃ .                                                                     (4.4) 

(b) The decision (parameter) vector a is called Pareto-optimal  if and only if a is 

nondominated regarding the whole parameter space X. 

It is important to consider that: 
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1) Pareto-optimal parameter vectors cannot be improved in any objective        

without causing a degradation in at least one of the other objectives. 

2) They represent in that sense globally optimal solutions. 

3) The Pareto-optimal set does not necessary contain all Pareto-optimal 

solutions in X. 

 

Definition 4.3. The set of objective vectors ''' ),( Xaaf ∈  is called Pareto-optimal front  

or Pareto-front.  

 

Consider the example shown in figure 4.2, Pareto optimality can be illustrated as Figure 

4.3. The grey area of the left graph represents the entire dominated feasible region. The 

solid black curve on both graphs corresponds to the actual Pareto front. On the right 

graph the possible nondominated solutions from the Pareto front and dominated 

solutions from the feasible region are represented by circles and squares respectively. 

The dotted line shows the deviation between the actual and identified Pareto fronts.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.3 Pareto Optimality 
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4.4.3 MOGA General Structure 

 

Shaffer (1984) proposed genetic algorithms as multiobjective optimisers. However the 

first Pareto-based multiobjective genetic algorithm (MOGA) was developed by Fonsesa 

and Fleming in 1993 [Purshouse and Fleming, 2001]. Figure 4.4 represents one of the 

latest schematics of the MOGA [Chung and Alonso, 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4  MOGA Schematic 

 

As shown in figure 4.4, a random population is generated and their objective values are 

calculated like in the original GA. Then, to ensure all the nondominated individuals 

have the same level of reproductive potential, Goldberg’s nondominated sorting 

procedure is implemented. Hence, the fitness value of each individual is determined 

based on the nondomination criterion rather than the objective function value itself. 

Based on the rank of nondominance, the population goes through the usual operators of  

the simple GA (selection, crossover and mutation) and checks if the nominal 

convergence among the population points is reached. If convergence isn’t met, it returns 

to the function evaluation and nondominance ranking steps for the new generation, 



 61

other wise it goes to the reinitialization step. Two types of elitism are implemented in 

the reinitialization step. The first type is to pass the best solutions from the previous 

nominal convergence stage (the same elitism strategy as in the simple GA). The second 

type involves the storing of nondominated vectors produced from each cycle of the  

simple GA to an external file and inserting some of the best solutions generated so far 

as the reinitialized population for the simple GA. This process is applied at certain 

intervals for the intention of improving the nondominated solutions by getting closer to 

the true Pareto front or by getting a better distribution. 

 

 

4.4.4 Pareto Ranking Procedure 

 
The selection and replacement procedures of the MOGAs are based on Pareto ranking. 

This procedure is [Bussaca et al., 2001]: 
 

1. All nondominated individuals in the current population are identified. These 

solutions are considered the best solutions, and assigned the rank 1. 

2. Rank 1 solutions are virtually removed from the population and the next set of 

nondominated individuals are identified and assigned rank 2. 

3. The process continues until every solution in the population has been ranked. 

 

Figure 4.5 shows the Pareto ranking procedure for the small population with two 

objectives. 

 
Figure 4.5 Population Ranking for a Problem of Maximization of Objective Functions   f1  and  f2 

 



 62

It is important to notice that every solution belonging to the same rank class has to be 

considered equivalent to any other of the class, i. e. it has the same probability of the 

others to be selected as a parent and survive the replacement. 

 

During the optimization search, an archive of a given number of nondominated 

solutions representing the dynamic Pareto optimality surface is recorded and updated.  

 

At the end of each generation, nondominated solutions in the current population are 

compared with those already stored in the archive. Busacca [Busacca et al., 2001] 

suggests the following archival rules: 

 

Rule 1. If the new solution dominates existing members of the archive, those are 

removed and the new solution is added. 

Rule 2. If the new solution is dominated by any member of the archive, it is not           

stored. 

Rule 3. If the new solution neither dominates nor is dominated by any member     

of the archive then: 

• If the archive is not full, the new solution is stored. 

• If the archive is full, the new solution replaces the most similar one in the 

archive. An Euclidian distance based on the values of the fitness of the 

chromosomes can be used for this purpose: 

 

Definition 4.4 If ),...,,( 21 nxxxx =  and ),...,,( 21 nyyyy =  are two n-dimensional vectors, 

their Euclidean distance ),( yxD  is given by the equation: 
 

            ( ) ( ) ( )22
22

2
11 ...),( nn yxyxyxyxyxD −++−+−=−= .                  (4.5) 

 

The setup of an archive of nondominated solutions can also be exploited by introducing 

an elitist parent’s selection procedure such that every solution in the archive is chosen 

once as a parent in each generation. If the population size N is too big, typically N/4 is 

used. The result of the optimization is constituted by the archive itself which gives the 

Pareto optimality region. 
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4.4.5 The Strength Pareto Evolutionary Algorithm (SPEA) 

 

4.4.5.1 SPEA Overview  

 

Among all major multiobjective evolutionary algorithms, the SPEA approach is one of 

the most popular. The algorithm was developed by Zitzler and Thiele in 1998 [Zitzler 

and Thiele, 1998]. The scheme of the algorithm is outlined in Figure 4.6. It can be 

described in the following way: 

• First of all, the external Pareto set is updated: all nondominated individuals in 

the population are copied to the Pareto set.  

• Subsequently, possibly dominated solutions are removed from it.  

• If the number of externally stored Pareto solutions exceeds a given maximum, a 

reduced representation is computed by clustering.  

• After fitness assignment individuals randomly picked out of the union of the 

population and Pareto set hold binary tournaments in order to fill the mating 

pool. 

• Finally, crossover and mutation are applied to the population as usual. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6 The Strength Pareto Genetic Algorithm Scheme 
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4.4.5.2 The Basic Algorithm 

 

There are 10 basic steps of the SPEA algorithm [Zitzler and Thiele, 1998]. They are: 

 

Step 1. Generate random initial population P and create the empty external set of 

nondominated individuals 'P . 

Step 2. Evaluate the objective function for each individual in P in parallel. 

Step 3. Copy nondominated members of P to 'P . 

Step 4. Remove solutions within  'P  which are covered by any other member of 'P . 

Step 5. If the number of externally stored nondominated solutions exceeds a given 

maximum 'N , prune 'P  by means of clustering. Clustering is a statistical method that 

obtains a set of elements and tries to clump similar elements together into “clusters”. In 

hierarchical clustering the data are not portioned into a particular cluster in a single step. 

Instead, a series of partitions takes place, which may run from a single cluster 

containing all objects to n clusters each containing a single object.  The average linkage 

method  (the hierarchical clustering algorithm), which has proven to perform well on 

Pareto optimization, can be chosen: 
 

Average linkage method  [Morse, 1980] uses the average distance between all pairs of 

objects in cluster r and cluster s: 
 

                        ∑∑
= =

=
n

i

n

j
sjri

sr

xxdist
nn

srd
1 1

),(1),( ,                                             (4.6) 

where  rn  and sn  are the sizes of the clusters r and s respectively. 
 

At each stage of hierarchical clustering, the clusters r and s, for which ),( srd  is 

minimum, are merged. 
 

Step 6. Calculate the fitness of each individual in P as well as in 'P . All individuals in 

P and 'P  are assigned a scalar fitness value. First, all members of the nondominated set 
'P  are ranked. Second, the individuals in the population P are assigned their fitness 

value. 

a) Each solution 'Pi∈  is assigned a real value )1,0[∈is , called strength 

(The strength of a Pareto solution is at the same time its fitness), is  is 
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proportional to the number of population members Pj∈  for which 

iφ j:  

ii f
N

ns =
+

=
1

,                                     (4.7) 

 

     Where    n -  the number of individuals in P  that covered by i; 
                    N -  the size of P; 
        if  -  the fitness of i. 
  

b) The fitness of an individual Pj∈  is calculated by summing the 

strengths of all external nondominated solutions 'Pi∈  that cover j. 

Add one to this sum to guarantee that members of 'P  always have 

better fitness than members of P (note that the fitness is to be 

minimized): 

      ),1[  ,1
,

Nfsf ijii ii ∈+= ∑ ≥
.                      (4.8) 

• If all Pareto solutions have equal strengths, the fitness of an individual is completely 

determined by the number of Pareto points that cover it – that is identical to the 

Pareto ranking procedure considered before. 
 

• However, in the case when the population is unbalanced the strengths come into 

play: the stronger a Pareto point the less fit the covered individuals. 
 

Step 7. Select individuals from 'PP +  (multiset union), until the mating pool is filled. 

The selection can be done using the following binary tournament procedure: 
 

a) Randomly (uniformly distributed random numbers) select two 

individuals out of the union 'PP + . 

b) Copy the one with the better (i. e. lower for SPEA) fitness value to the 

mating pool. 

c) If the mating pool is full, then stop, else go to step (a). 
 

Step 8. Adapt step sizes of the members of the mating pool. Adaptation of the step sizes 

can be done using the self-adaptive mutation method  [Hodson, 2001]: 
 

Each element of P and 'P  is assigned an individual step size for every 

parameter, i. e. ( )∑= 2
idiag σ  is a diagonal matrix for each individual. The step 
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sizes of all members of the mating pool are then either increased by 50%, cut to 

half, or kept the same, each having a probability of 1/3. 

Step 9. Apply recombination (crossover) and mutation to members of the mating pool 

in order to create a new population P. 

Step 10. If the maximum number of generations is reached, then stop, else go to Step2. 

 

 

4.4.6  SPEA2: Improved Strength Pareto Algorithm  

 

In 2001 Zitzler, Laumanns and Thiele proposed an improved version of this algorithm 

and named it SPEA2, which compensates for the potential weaknesses of its 

predecessor. 

 

Zitzler, Laumanns and Thiele in their work identify three main differences of SPEA2 in 

comparison to SPEA [Zitzler et al. (2), 2001]. They are: 
 

1. An improved fitness assignment scheme is used, which takes into account for 

each individual how many individuals it dominates and it is dominated by: in 

SPEA individuals that are dominated by the same archive members have 

identical fitness values.  

2. A nearest neighbour density estimation technique is incorporated which allows a 

more precise guidance of the search process: in SPEA if many individuals of the 

current generation are indifferent (do not dominate each other) no or very little 

information can be obtained from the partial order defined by the dominance 

relation. This situation often occurs in the presence of more than two objectives.  

3. A new archive truncation method guarantees the preservation of boundary 

solutions: the clustering technique in SPEA is able to reduce the nondominated 

set without destroying its characteristics. However, it may loose outer solutions, 

those should be kept in the archive in order to obtain a good spread of 

nondominated solutions.  

The suggested overall algorithm is as follows: 
  

Step 1. Initialization: Generate an initial population and create the empty archive 

(external set).  

Step 2. Fitness assignment: Calculate fitness values of individuals in initial population. 
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Step 3. Environmental selection: Copy all nondominated individuals to the archive. If 

its size exceeds the allowable size then reduce the archive by means of the truncation 

operator, otherwise fill the archive with dominated individuals from initial population. 

Important notice: the number of individuals contained in the archive is constant over 

time. 

Step 4. Termination: If the maximum number of generations is reached or another 

stopping criterion is satisfied then set the nondominated set to the set of decision vectors 

represented by the nondominated individuals in the archive. Stop. 

Step 5. Mating selection: Perform binary tournament selection with replacement on the 

archive in order to fill the mating pool.  

Step 6. Variation: Apply recombination and mutation operators to the mating pool and 

set the archive to the resulting population. Increment generation counter and go to 

Step2. 

 

Zitzler and others [Zitzler et al. (2), 2001] points out that in contrast to SPEA, SPEA2: 

• Uses a fine-grained fitness assignment strategy which incorporates density 

information. 

• The archive size is fixed (whenever the number of nondominated individuals is 

less than the predefined archive size, the archive is filled up by dominated 

individuals). With SPEA the archive size may vary over time. 

• The clustering technique, which is invoked when the nondominated front 

exceeds the archive limit, has been replaced by an alternative truncation method 

which has similar features but does not loose boundary points.  

• Only members of the archive participate in the mating selection process.  

 

 

4.5 Summary  
 

The GAs is a powerful group of the modern optimization techniques, which can be 

applied to most engineering optimization problems. In the case when several objectives 

are considered, as in this study, multi-objective genetic algorithms can be used. These 

methods are based on simple GA principles, are easy to apply and find a set of 

nondominated optimal solutions quickly. The SPEA2 technique is the leader of the 

group and, hence, is chosen for the safety system optimization in this study.     
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CHAPTER 5 

 

HIPS SYSTEM ANALYSIS 

 

 

5.1 Introduction 

 

A safety system is an essential part of an industrial system as it operates to prevent the 

occurrence of certain conditions and their future development into a hazardous situation. 

Failure of such safety systems may have catastrophic consequences. Members of the 

workforce or the public could be injured or even killed. To minimise the likelihood of a 

hazardous situation, safety systems must be designed to maximise their availability. In 

this work the aim is to investigate a design optimisation scheme which yields an optimal 

safety system design by fully utilizing available resources. 

   

 

5.2 General Structure of HIPS System 

 

In this work the design optimisation scheme has been applied to a simple High-Integrity 

Protection System (HIPS). The main function of the HIPS is to prevent a high-pressure 

surge passing through it. Protection is provided for processing equipment whose 

pressure rating could be exceeded. The high pressure originates from a production well 

of a not normally manned offshore platform and the pieces of equipment to be protected 

are located downstream on the processing platform. Figure 5.1 represents the main 

features of the HIPS [Andrews and Pattison, 1999]. 

 
Figure 5.1 Structure of High-Integrity Protection System   
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The HIPS is divided into two separate subsystems. Sub-system 1 is the Emergency 

Shutdown or ESD sub-system. This is the first level of protection of the HIPS. The ESD 

system acts to close the Wing and Master valves together with any ESD valves that 

have been fitted when pressure in the pipeline exceeds the permitted value. This value is 

monitored using pressure transmitters (PT). 

 

Sub-system 2 provides an additional level of protection. Inclusion of the high-integrity 

protection system incorporates this second level of redundancy. An important fact is 

that the latter sub-system is completely independent in operation. Its method of 

protection is the same as the ESD system. 

 

 

5.2.1 Description of the Main Design Variables 

 

The HIPS is a relatively simple system, yet there are a huge number of design options 

which can be considered. Ten main design variables describe this particular system. 

These variables, their description and evaluation limits are shown in table 5.1.  

 
Table 5.1 HIPS Variables 

Variable Description Value 

2  ,1 θθ  
 

Inspection intervals for subsystems 1 and 2 1week – 2 

years 

V 
 

Valve type 1 or 2 

P 
 

Pressure transmitter type 1 or 2 

2

  ,1
N

N
 

Number of pressure transmitters fitted in subsystem 1 and 2 respectively 1 – 4 

0 – 4 

2

  ,1
K

K
 

Number of pressure transmitters required to trip (activate) for subsystem 1 

and 2 respectively 
1 – 1N ,  

0 – 2N  

E 
 

Number of ESD valves fitted 0, 1, 2 

H 
 

Number of HIPS valves fitted 0, 1, 2 
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Two points to note are firstly that it is assumed that whatever valve type is selected all 

valves within the system are fitted as this type. This is true of the pressure transmitter 

type also. The second point is that the number of pressure transmitters required to 

activate the closure of valves on subsystem 1 or 2 is a function of the number installed 

( 1N , 2N ).  

 

The number of potential design variations considering just ten design variables is 

45,158,400. It would be impractical to evaluate exhaustively each potential design. 

Furthermore, it is a complex task to understand the interaction between all the design 

variables and is practically impossible for any design engineer to do by hand. A 

technique is required to determine the ‘best’ design option in a more practical manner. 

This is to be achieved using a computerised optimisation algorithm.  

 

 

5.2.2 Failure Data for HIPS Components and Design Limitations 

 

Each hardware component of the HIPS can fail either in a dormant mode or spuriously. 

A dormant failure can be described as the inability of the component to carry out its 

desired task on demand. In contrast, spurious failure results from the component 

carrying out its desired function when its operation is not required. Table 5.2 shows the 

failure rate and mean repair time for each HIPS component in both dormant and 

spurious failure modes. This data will be used subsequently when calculating the 

unavailability and spurious trip probability of the HIPS. 

 

Each combination of HIPS variables gives a new system design with its particular 

features such as cost, maintenance down-time, etc. The choice of system design is not 

unlimited. In this case, there are three limitations on the available resources. The total 

cost of the system must be less than one thousand units. The average time each year that 

the system resides in the down state due to preventative maintenance is a maximum of 

one hundred and thirty hours. If the number of times that a spurious system shutdown 

occurs is more than once per year then it is deemed unacceptable. Hardware costs for 

each component in the system as well as times taken to service each component at each 

maintenance test are shown in table 5.2.  
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Table 5.2 Component Failure Data 

 Dormant Failures Spurious Failures  

Component Failure 
Rate    

(per hour) 

Mean Repair 
Time 

(hours) 

Failure 
Rate    

(per hour) 

Mean Repair 
Time   

(hours) 

Cost Test 
Time  
(hours) 

Wing Valve 1.14× 10-5 36.0 1× 10-6 36.0 100 12 

Master Valve 1.14× 10-5 36.0 1× 10-6 36.0 100 12 

HIPS Valve 1 5.44× 10-6 36.0 5× 10-7 36.0 250 15 

HIPS Valve 2 1× 10-5 36.0 1× 10-5 36.0 200 10 

ESDV Valve 1 5.44× 10-6 36.0 5× 10-7 36.0 250 15 

ESDV Valve2 1× 10-5 36.0 1× 10-5 36.0 200 10 

Solenoid Valve 5× 10-6 36.0 5× 10-7 36.0 20 5 

Relay Contacts 0.23× 10-6 36.0 2× 10-6 36.0 1 2 

Pressure Transmitter 1 1.5× 10-6 36.0 1.5× 10-5 36.0 20 1 

Pressure Transmitter 2 7× 10-6 36.0 7× 10-5 36.0 10 2 

Computer Logic 1× 10-5 36.0 1× 10-5 36.0 20 1 

 

 

 

5.2.3 HIPS Cost Evaluation 

 

There are two main categories of constraints: explicit and implicit. Explicit ones can be 

determined and easily evaluated from an explicit function of the design variables. In 

contrast, implicit constraints can only be evaluated by a full analysis of the system. Cost 

of the HIPS design is an explicit constraint and is represented by the following 

equations: 

Cost = Cost(subsystem1)+Cost(subsystem2) 1000   ≤                                     (5.1) 

Cost(subsystem1)= 261)()( 221112211 +++++ PPsVEVE CPCPNCCVCVE            (5.2) 

Cost(subsystem2)= 21)()( 221122211 +++++ PPsVHVH CPCPNCCVCVH           (5.3) 

where 

  1VC  = 11 VHVE CC =   – cost of the valve type 1,  

2VC  = 22 VHVE CC = – cost of the valve type 2, 

1PC  – cost of the PT type 1, 

2PC  – cost of the PT type 2, 

sC – cost of the solenoid valves. 
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The constant 261 (equation 5.2) for subsystem 1 is the additional cost for the wing and 

master valve, their solenoid valves, the computer  and control relays. Subsystem 2 has a 

fixed cost of 21 units (equation 5.3) for the computer and control relays. 

 

From equations (5.1) - (5.3) the cost of each system design is: 
 

 Cost = 282))(())(( 2211212211 +++++++ PPsVV CPCPNNCCVCVHE            (5.4)       

  

 

5.2.4 HIPS MDT Evaluation 

 

Similarly to the cost for the HIPS, average MDT is calculated as a sum of the 

maintenance down time subsystem 1 and subsystem 2 for each potential design: 

    
   MDT  =  MDT(Subsystem1) + MDT(Subsystem2) 130   ≤ ,                                      (5.5) 
 

   MDT(Subsystem1) = ( ) ( )[ ]4752
221112211

1

+++++ PPSVEVE MPMPNMMVMVE
Q

,     (5.6) 

   MDT(Subsystem2) = ( ) ( )[ ]1352
221122211

2

+++++ PPSVHVH MPMPNMMVMVH
Q

.   (5.7) 

 
Where 
 111 VVHVE MMM ==  – test time of the valve type 1, 

 222 VVHVE MMM ==  – test time of the valve type 2, 

 1PM  – test time of the pressure transmitter 1, 

 2PM – test time of the pressure transmitter 2, 

 SM  – test time of the solenoid valve. 

 

The expression 52/ 2Q  (equations 5.6 - 5.7) gives the number of times the system is 

down in a year. The constant 47 (equation 5.6) is the sum of the test times for the wing 

and master valve, their solenoids, the computer and control relay for subsystem 1. 

Similarly for subsystem 2, the sum of the test time for the computer and control relay is 

13 units (equation 5.7). 

 

From equations (5.5) – (5.7) MDT for each design can be calculated using equation 5.8: 
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 MDT = ( )5423152 hhhhh +⋅+⋅ ,                                                                    (5.8) 

where 

 SVV MMVMVh ++= 22111 , 

 22112 PP MPMPh += , 

 
21

3
Q
H

Q
Eh += , 

 
2

2

1

14
Q
N

Q
Nh += , 

 
21

13475
QQ

h += . 

 

 

5.3 HIPS Analysis 

 

The most important feature of each safety system is its ability to operate when the 

demand arises. Therefore, the objective is to minimise system unavailability, which 

means to minimise the probability of system failure on demand. Ideally, using the 

design alternatives, it is essential to determine which potential system design would 

produce the highest functionality. 

 

In practice, certain factors need to be taken into account, for this application, the 

available resources. In section 5.2.2 the limitations on resources were defined as cost, 

maintenance effort and spurious frequency. The design options should improve the 

HIPS performance without violating the constraints. Consequently, the evaluation of 

each constraint is required in order to assess the overall desirability of each design 

option. 

 

System design performance can be obtained by using the fault tree analysis method. 

Fault trees are used to quantify the system unavailability of each potential design. 

Constructing a fault tree for each design variation would be a time consuming task, 

hence, impractical. One way to solve this problem could be to use automatic fault tree 

construction methods, if they were available. An alternative is to resolve this difficulty 

by using house events. These enable the construction of a single fault tree capable of 

representing the causes of the system failure mode for every possible system design.  
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The top event of the HIPS unavailability fault tree represents the causes of the system 

failing to protect the processing equipment. The top event ‘Safety system fails to 

protect’ will occur if all (Wing, Master, ESD and HIPS) valves along the pipeline fail to 

close. In total the fault tree consists of 154 gates, 38 basic events representing 

component failures, and 40 house events representing design options. The unavailability 

fault tree construction process is discussed in appendix A (section A.1). Appendix C 

(section C.1) represents its detailed structure. 

 

The spurious trip frequency for each design is also an implicit constraint that requires 

the use of fault tree analysis to assess its value. House events are again used to construct 

a fault tree capable of representing each potential design for this failure mode. The 

causal relationship ‘HIPS fails spuriously’ is represented by the sub-events ‘Wing or 

Master Valve Fails Spuriously’, ‘ESD Subsystem Fails Spuriously’ and ‘HIPS 

Subsystem Fails Spuriously’ related by ‘OR’ logic. The fault tree consists of 142 gates, 

38 basic events and 40 house events. This fault tree construction details are shown in 

appendix A (section A.2). The detailed spurious trip fault tree structure is represented in 

appendix C (section C.2). 

 

 

5.4 Review of Previous Work on HIPS 

5.4.1 Introduction 

 

In 1999 Rachel Pattison completed her work on safety systems optimization. In her 

thesis [Pattison, 1999] she analyzed the High Integrity Protection System (HIPS), which 

is described in section 5.2.  

 

Pattison investigated the effectiveness of Genetic Algorithms to optimize HIPS 

availability. In her work she applied the SGA_C algorithm, which is a C-language 

translation and extension of the original Pascal Simple Genetic Algorithm (SGA) code 

developed by Goldberg [Goldberg, 1989]. This package was used as a framework to 

build the GA optimization software called GASSOP (Genetic Algorithm Safety System 

Optimization Procedure).  
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5.4.2 HIPS Data Structure 

  

Each solution is a string of 1’s and 0’s representing a particular system design which 

depends on the values of the ten HIPS parameters (Table 5.1). Each parameter was 

allocated a particular length of the string depending on its maximum value. In total each 

string, representing all design variables, is 32 bits in length. Table 5.3 shows the chosen 

binary representation of each string parameter. The order of parameters in the string is 

as listed. 
Table 5.3 Binary Representation of the HIPS Parameters 

Variable Description Number of bits 
 

2  ,1 θθ  
Inspection intervals for subsystems 1 and 2 7 

 

V, P 
Valve and Pressure transmitter type 1 

 

2  ,1 NN , 

2  ,1 KK  

Number of pressure transmitters fitted  and required in subsystem 

1 and 2 
3 

 

E, H 
 

Number of ESD and HIPS valves fitted 2 

 

 

 

5.4.3 String Fitness Evaluation and Penalty Formulas 

 

The system unavailability is the main optimization criterion. However, resources are not 

inexhaustible. Therefore, the following limits were considered: 
 

• Cost  < 1000 units, 

• Maintenance Down Time: MDT < 130 hours, 

• Spurious system failure: Fsys < 1 per year. 

 

If these three parameters exceed their respective limits, the following penalty equations 

were implemented in the GASSOP: 

 

1. The method utilised tries to form a direct relationship between cost and 

performance. Therefore, if cost exceeds its allocated limit by 100 units, i. e. 10% 

of the total budget (total cost 1000 units), a corresponding increase in 
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performance of at least 10% expected. In this case the assumption was made that 

a typical system cost would have an unavailability of about 0.002. Hence, if the 

cost increases to 1100 units, it is expected that system unavailability will 

decrease to 0.0018. String designs with excessive cost will not be adopted so the 

more the constraint violation the heavier the penalty. This is implemented using 

an exponential relationship of the form 4/5xy = . Therefore, the penalty function 

for excess cost, Cp,  is: 
 

002.0
1000

1000 4
5

×





 −

=
COSTCp .                                                           (5.9) 

 

 

2. If the MDT of a particular design (string) exceeds 130 hours, a contribution is 

made to the unavailability of the system in the term of a penalty. The respective 

penalty is: 
 

8760
)130( −

=
MDTM p ,                                                                          (5.10) 

 

 where 8760 is the number of hours per year. 

 

3. The third constraint, excess spurious trip occurrence, is also related to cost. If a 

spurious trip occurs, production ceases hence a financial loss is incurred. It was 

assumed that the cost per hour for loss of production is 100 units. On average a 

spurious trip requires 36 hours to repair and only one such occurrence a year is 

acceptable. Using the cost penalty formula (5.9) the spurious trip penalty can be 

expressed as: 
 

002.0
1000

cos 4
5

×





=

tExcessS p .                                                            (5.11) 

 

Each penalty is subsequently added to the system unavailability. Hence, penalised 

system unavailability is: 
 

  pppsyssys SMCQQ +++=' .                                                               (5.12) 
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The result is a sole fitness value for each design referred to as its penalised system 

unavailability sysQ ' . 

 

 

5.4.4 GA Operators 

 

Each string enters the selection procedure with an associated fitness value '
sysQ (equation 

5.12). The smaller '
sysQ , the fitter the string and, therefore, the greater should be its 

chance of reproduction. In such cases, a possible approach is to base reproduction 

probability on availability concepts rather than unavailability. This, however, does not 

provide a useful measure of selection potential. The desirable solutions have 

unavailability values in the range 0 to 0.1 and hence availability values in the range 0.9 

to 1.0. Pattison in her work solves this problem by applying a specialized conversion 

method, which allocates each string to one of three categories according to its fitness 

value (Table 5.4). 

  
Table 5.4 Categories Represented in the Fitness Domain 

Fitness value domain 

Upper limit 
Unavailability 

 Category  Lower limit 
Unavailability 

1.0 > 3 > 0.2 

0.2 > 2 > 0.1 

0.1 > 1 > 0 
 

 

Category 3 comprises of poor system designs (those with unavailability in the range 

0.2-1.0). Each string is automatically allocated zero percent on the roulette wheel and, 

consequently, will be eliminated from the succeeding generation. Category 2 contains 

average merit designs (those with unavailability between 0.1 and 0.2). To preserve 

sensitivity each string is subtracted from the upper category limit of 0.2, and 

subsequently allocated some portion of a total of 5% of the roulette wheel. The first 

category strings are of ultimate interest and, therefore, the remaining 95% of the roulette 

wheel is allocated between each string in this category. 
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The standard crossover and mutation operators are used in the GASSOP program. These 

operators may produce an infeasible design. There are two possibilities: either a 

parameter value may be altered such that it lies outside its designated range or 

interactions between parameters may render the design infeasible. Pattison in her work 

implemented a design checking procedure after any parameter manipulation: 

 

 

5.4.5 GASSOP Results 

 

Pattison implemented GASSOP with the following parameter values: 

1. Population of 20 strings. 

2. Maximum number of generations 100. 

3. Mutation rate 0.01. 

4. Crossover rate 0.7. 

 

In total 100 system evaluations were performed and gave the best results in generation 

70 when the fittest string from the entire process arose (Table 5.5). 

 
Table 5.5 Characteristics of the Best Design 

No. of  ESD valves 0 

No. of  PTs 4 

No. of  PTs to trip system 2 

 

Subsystem 1 

MTI 45 

No. of HIPS valves 2 

No. of  PTs 1 

No. of  PTs to trip system 1 

 

Subsystem 2 

MTI 22 

Valve type 2 

PT type 1 

MDT 127.74 

Cost 822 

Spurious trip  0.847 

System unavailability 9.36e-4 
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5.4.6 Determining the Best GA Parameters  

 

In the GASSOP algorithm there are four main GA parameters. They are: population 

size, maximum number of generations, crossover and mutation rates.  Using GASSOP 

an analysis was carried out to investigate the effect of changing these parameter values. 

Regarding De Jong’s test bed of five trial solutions [De Jong (2), 1975] and two criteria 

of goodness defined by Goldberg [Goldberg, 1989] a limited set of values for each 

parameter was chosen as follows: 

 Mutation rate:    0.1 0.01 0.001        

 Crossover rate: 0.5 0.6 0.7 0.8 

 Population size: 10 20 50 
 
 

The results showed that larger populations lead to a better performance, i. e. obtain 

solutions with smaller unavailability. When the population size doubles from 10 to 20 

strings the fitness value improves by 20%. An additional 18% improvement is achieved 

when the initial population is further increased to 50 strings. The mutation rate 

parameter implies that the largest rate, 0.1, leads to the generation of a fitter string. The 

crossover parameter again produced a slight bias toward the highest value. Following 

this investigation modifications were made to the genetic algorithm. 

 

 

5.4.7 GA Modifications 

 

After implementing GASSOP to the HIPS optimization some areas of improvement 

became apparent. The system unavailability plus penalty due to violation of cost, MDT 

and spurious trip frequency are important factors since an inaccurate calculation of any 

one will result in a reproduction probability that does not precisely reflect the fitness of 

the string.  

 

MDT Modification: Three methods to improve the exploration of the range of values 

allowed by the MTI parameters have been explored. The best improvement of the 

results has been achieved with the method 2a: in addition to the MDT the system 

unavailability is evaluated for each MTI combination. Should any pair of test intervals 
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exceed 130 hours MDT the respective penalty is added. The test intervals resulting in 

the lowest penalised system unavailability are retained. 

 

Modified Cost Penalty Formula: The cost penalty in the original GA is derived from 

equation (5.11). A base level in system performance (a system unavailability of 0.002) 

is assumed. 

 

 Cost Penalty = (Excess Cost / 1000)5/4×0.002.                                                

 

An alternative cost penalty, described in Pattison’s work, takes into account both the 

cost violation and the system unavailability. This is achieved using a multiplying factor 

which, rather than being fixed, varies according to the system unavailability of the 

design. Hence, the modified cost penalty formula can be expressed as: 

 

 Cost Penalty = (Excess Cost / 1000)5/4×System Unavailability.              (5.13) 

 

Results comparison show that altering the cost penalty formula enables a more detailed 

exploration around the border of the search space. The lack of final system designs from 

the original GA that portray a slight excess in either the cost or trip constraints implies 

that the penalty exerted is too great. 

 

Modified Conversion Method: Each string receives a measure of its fitness (the 

string’s penalised system unavailability) in the environment. The conversion method 

gives rise to reproduction probabilities in accordance with the fitness value of each 

string. The previously discussed conversion method (section 5.4.4) is rather crude.  Its 

effectiveness is dependent on the range and distribution of fitness values being 

converted. For example, a population of values ranging between 0.009 and 0.4, 

produces a set of roulette wheel percentages with a fairly accurate proportional 

representation. A much fitter population (most systems having a fitness value less than 

0.01) gravitates towards a set of almost equal percentages, although the actual fitness 

values vary quite markedly. The main disadvantage of the previously proposed method 

is that it is insensitive to small yet significant differences between the fitness values of 

the string. Additional problems occur when either a very high (or low) proportion of 

strings fall into a particular category.  
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Pattison investigates an alternative conversion method. It is able to cope with very 

diverse populations and is simultaneously able to show sensitivity to a highly fit set of 

strings. Initially nine categories are depicted. They cover the area of the fitness domain 

of importance (below 0.2). Furthermore, each category is assigned a particular weight. 

As the category gets fitter, its weight increases in size. The fundamental steps of the 

modified method are then as follows: 

 

Step 1.  Firstly each category is designated a particular percentage of the roulette wheel 

depending on: 

1. The number of strings, n, of the total population, N, in the category. 

2. The weight assigned to the category. 

 

Step 2. The percentage allocated to each category is then distributed appropriately 

between the strings within. The method used must ensure that a system in a fitter 

category is given a greater percentage than a poorer design in a less fit category. 

 

The results show that the modified conversion method generally improved the overall 

system performance. The original method is not able to cope adequately with highly fit 

populations of system designs. However, the new method is able to differentiate 

between the strings in the fitter population without loss of essential information during 

the conversion process.   

 

 

5.4.8 Modified GA 

 

In Pattison’s work a modified GA was created with MDT modification method 2a, the 

modified cost penalty and modified fitness conversion method. 10 runs of GA with the 

population size, crossover rate, mutation rate and the number of generations equal to 20, 

0.7, 0.01 and 100 respectively. Table 5.6 represents the characteristics of the best 

overall. 
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Table 5.6 Characteristics of the best Design 

No. of  ESD valves 0 

No. of  PTs 2 

No. of  PTs to trip system 1 

 

Subsystem 1 

MTI 29 

No. of HIPS valves 2 

No. of  PTs 3 

No. of  PTs to trip system 2 

 

Subsystem 2 

MTI 32 

Valve type 2 

PT type 1 

MDT 128.43 

Cost 822 

Spurious trip  0.717 

System unavailability 6.57127e-4 
 

 

The modified GA demonstrates the ability to find and explore the fittest areas of the 

search space by full usage of available MDT resources and through exploration of the 

boundary of the domain. The GA is able to differentiate between highly fit strings as the 

algorithm progresses and retention of the best design over latter generations is achieved.  

 

 

5.5 Summary 

 

The high integrity protection system is a relatively simple safety system. However, it 

has a large number of design options and the optimization tool is required in order to 

find the optimal system design within certain constraints. Previously the simple GA 

based technique and its modified version have been successfully applied to the HIPS 

optimization. However, in reality often more than one optimization criterion should be 

considered, for example, the constraints in this problem could be set as optimization 

objectives; and, therefore, the multi-objective technique should be applied to the 

system. The next chapter describes this research on the HIPS optimization by a 

developed SPEA2 based tool.  
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CHAPTER 6 

 

HIPS OPTIMIZATION BY SPEA2 

 

 

6.1 Program Structure 

 

One of the research objectives was to investigate the effectiveness of the Improved 

Strength Pareto Evolutionary Algorithm (SPEA2), described in section 4.4.6, to 

optimise the High Integrity Protection System (HIPS) with regards to the unavailability, 

cost, MDT and spurious trip frequency.  The C++ package [Deitel (2003), Mcgrath 

(2004)] was used to build the HIPS optimisation software called ISPEASSOP 

(Improved Strength Pareto Evolutionary Algorithm Safety System Optimization 

Procedure) [Borisevic and Bartlett, 2007(1)]. The schematic structure of the program is 

shown in figure 6.1. 

 
Figure 6.1 ISPEASSOP Schematic 

 

There are three main parts of the ISPEASSOP program. In figure 6.1 the program part 

one, two and three components are coloured in white, grey and black respectively. Part 

one is responsible for the HIPS structure and explicit objective evaluation, part two is 

responsible for analysis using the Binary Decision Diagram method which calculates 

the HIPS unavailability and spurious trip frequency, and part three is an implemented 

SPEA2 algorithm for the HIPS optimisation. All these parts are discussed in detail in 

sections 6.2-6.4.   
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6.2 Program Part One Structure 

 

The first part of the program produces the HIPS design architecture. The main steps of 

this part of the program are shown in figure 6.2. They can be also divided in two 

subgroups: the first is responsible for the population and data formation. This subgroup 

steps are: the generation of the initial population, parameter evaluation for each 

population individual and the regeneration of the infeasible region of parameter values, 

MDT and Cost parameter evaluation. The second subgroup is responsible for the HIPS 

structure modification according to each possible design. These steps involve: the 

setting of relevant house events and the HIPS fault tree reduction for each design. All 

mentioned steps are discussed in detail in sections 6.2.1 and 6.2.2. 

 

 
Figure 6.2 Program Part 1 Schematic 
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6.2.1 Coding and Initialisation 

 

The main subroutines of the coding and initialisation part of the program are: 

Generate_population, Formation1, Calc_opt_param, Cost_mdt and Penalties. The 

subroutine Generate_population generates the initial random population. The number of 

strings for the initial population for a problem is not defined, thus, based on work 

carried out by Pattison [Pattison, 1999], initial research has used 20. Each string 

represents a particular system design depending on the values assigned to each of its 10 

parameters (Table 5.1), where each parameter is calculated according to the binary 

coding system described in section 4.2.  A review of these parameters and binary coding 

is given in table 6.1. 
 

Table 6.1 HIPS Design Parameters and Binary Coding 

Parameter Description Value Binary  Coding 

2  ,1 θθ  Inspection intervals for subsystems 1 and 2 1week – 2 years 7 bits each 

V Valve type 1 or 2 1 bit 

P Pressure transmitter type 1 or 2 1 bit 

2  ,1 NN  Number of pressure transmitters fitted in 

subsystem 1 and 2 
0 - 4 3 bits 

2  ,1 KK  Number of pressure transmitters required to 

trip (activate) for subsystem 1 and 2 
0 - 1N , 2N  3 bits each 

E Number of ESD valves fitted 0, 1, 2 2 bits 

H Number of HIPS valves fitted 0, 1, 2 2 bits 
 

 

Each parameter must be allocated a particular length of the string (Table 6.1), i.e. a 

particular number of bits, in order to accommodate the largest possible value in binary 

form. For example, the parameters governing the maintenance test interval for 

subsystems 1 and 2, 1θ  and 2θ  respectively, require 14 bits (7 bits each) of the total 

string to accommodate the maximum time span of 104 weeks each. In total, each string 

representing all design variables is 32 bits in length. It can be interpreted as a set of 

concatenated integers in binary form, as shown in figure 6.3. 
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Figure 6.3 Binary Representation of Solution String  

 

Subroutine Calc_opt_param calculates the numerical values for each of the 10 

parameters from the initialized population. Procedures Calculate, Change0, Change1 

and Change2 are executed during the Calc_opt_param subroutine. The decoding of the 

initialised binary coding system for each parameter is implemented in the procedure 

Calculate.  For ease of computation, the order of parameters on the string was chosen as 

shown in figure 6.3. Each string parameter follows directly from the last, leaving no 

gaps. However, the restricted range of each parameter is not necessarily equivalent to its 

corresponding binary range defined by the allocated bit field length. For example, 1N  is 

the parameter governing the number of pressure transmitters in subsystem 1. It can 

obtain values in the range from 0 to 4, therefore 3 bits are allocated to this parameter. 

However, random initialisation of these 3 bits will decode to a value in the range from 0 

to 7. This can result in three infeasible values of the parameter 1N . The parameters 

affected are: the number of pressure transmitters fitted in subsystem 1 and 2 ( 2  ,1 NN ), 

the number of transmitters required to trip subsystem 1 and 2 ( 2  ,1 KK ), the number of 

ESD valves fitted (E) and the number of HIPS valves fitted (H). 

 

This problem is overcome by implementing procedures Change0, Change1 and 

Change2: 

1) Procedure Change0 changes the value of the parameter which can’t be equal to 

zero or exceeds the allowed maximum. For example, if the parameter values are 

in the range from 1 to 4 then if the generated parameter value is equal to 0, 5, 6 
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or 7 it is changed to 1, 2, 3 and 4 respectively to keep equal probabilities of 

occurrence for each parameter value. The same procedure checks and changes, if 

necessary, the values of any dependent parameters. For example, if the number 

of HIPS valves fitted, H, is equal to 0, the associated parameters: the number of 

pressure transmitters fitted in subsystem 2 ( 2N ), the number of pressure 

transmitters required to trip subsystem 2 ( 2K ) and the inspection interval for 

subsystem 2 ( 2θ ) are modified to zero. 

2) Procedure Change1 regenerates the value of the parameter which can be equal to 

zero, but can not exceed the fixed maximum. For example, the number of ESD 

valves fitted (E) and the number of HIPS valves fitted (H) can both obtain the 

value 0, but can not exceed the maximum value of 2.  

3) Procedure Change2 regenerates the values of parameters E (number of ESD 

valves) and H (number of HIPS valves) in the case when both parameters are 

equal to zero. The situation when both mentioned parameters are equal to zero is 

possible from the technical part of the HIPS design but it provides a trivial 

system design, which is not a subject of research interest. 

 

The subroutine Cost_mdt calculates the cost and maintenance down time (MDT) for 

each potential HIPS design. The calculations are made according to equations 5.4 and 

5.8. The subroutine Formation1 is used only at the initial step of the program. Its main 

purpose is to format the initial population only of strings with cost less than 1000 units 

and MDT less than 130 hours. These limitations can be controlled only in the initial 

population. In the later steps of the optimization process genetic operators can produce 

new strings with parameters exceeding this limitation. In this case, the subroutine 

Penalties implements cost and MDT penalty formulas (equations 5.9 and 5.10). 
 

 

 

6.2.2 HIPS Design Construction 

 

One fault tree has been constructed to represent all system designs for the HIPS 

unavailability and one for spurious trip frequency, where house events have been added 

to allow for different options to be ‘turned on’ or ‘off’ (shown in appendix A). Therefore 

to develop the fault tree structures for each design, the values for each house event need 
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to be established. The main subroutines of the HIPS design construction part are: 

House_event_data, Calc_HE_values, FTU_data, FTS_data and FT_reduction. The 

subroutine House_event_data formats the array of HIPS house event names and uses 

the subroutine calc_HE_values which calculates the values of the relevant house events, 

i.e. 1 or 0, for each string according to the HIPS parameter values. Each HIPS design 

depends on the values of 40 house events. The meanings of the house events and their 

dependence on the parameter values are represented in tables A.1-A.4 (appendix A). 

 

Subroutines FTU-data and FTS-data compose fault tree structures for the HIPS 

unavailability and spurious trip respectively.  These structures are stored in the text files 

“uft.txt” and “sft.txt” (appendix C). Both files have a similar row-column structure. Each 

row represents a gate within the fault tree and the columns are related to: 

• gate name, 

• type of the gate (AND/OR), 

• number of input gates, 

• number of input events, 

• number of house events (0 if there is no house events, otherwise 1), 

• value of the gate (created only for computing purpose, initially considered to be 

equal to 2), 

• array of input gates, 

• array of input events.  

 

Consider the example fault tree shown in figure 6.4.   

 
Figure 6.4 Example Fault Tree 
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Therefore, the initial “example.txt” file structure is: 

 

 

 

 

 

The top event (Top) has gate type ‘and’, two input gates (G1 and G2) and one input 

event (H1), which is a house event. The input gate G1 has gate type ‘or’ and two input 

gates (G3 and G4). The input gate G2 is of ‘and’ type and has two input events (H3 and 

D), where the input event H3 is a house event and D is the basic event. The input gate 

G3 is of ‘and’ type and has two basic input events (A and B). The last input gate, G4, 

has ‘and’ type and two input events: a basic event C and a house event H2.     

 

The same subroutines also compose event data. The information about the events is 

stored in data files “ued.txt” and “sed.txt” for the HIPS unavailability and spurious trip 

respectively. The row-column structure of these files is: 
 

• event name, 
• failure rate (λ), 
• mean time to repair (τ). 
 

Subroutines Change_FTU and Change_FTS change the structure of HIPS unavailability 

and HIPS spurious trip fault trees respectively according to the values of the 

corresponding house events.  A specialized fault tree reducing algorithm has been 

developed and implemented in subroutine FT_Reduction which contains the loop of 

subroutines Reduce1, Reduce2 and Reduce3. It works from the bottom to the top of the 

fault tree. During this algorithm each gate is assigned a value of 0 or 1 depending on the 

gates structure. If the gate is ‘activated’ its value is set to 1, otherwise it is set to 0. As a 

result, all gates with a value of 0 are deleted from the fault tree. To illustrate the 

reducing process consider the general gate with house event structure as shown in figure 

6.5, where ngg ,...,1  are the input gates, h is the house event, mee ,...,1  the input events  

and +∈Zmn, . 

Top and 2 1 1 2 G1 G2 H1 
G1 or 2 0 0 2 G3 G4  
G2 and 0 2 1 2 H3 D 
G3 and 0 2 0 2 A B 
G4 and 0 2 1 2 H2 C 
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Figure 6.5 Gate with House Event Structure 

 

The reducing algorithm was developed for both ‘AND’ and ‘OR’ gate types (Tables 

6.2-6.3). For example, consider the ‘AND’ gate associated with the house event. Then 

the logic of the reducing algorithm can be described as follows: if the value of the house 

event is FALSE, the value of the analysed gate ‘Gate’ is automatically set to zero, hence 

this gate as a part of the fault tree is switched off. If the value of the house event is 

TRUE, then the following reduction depends on the number of input gates. If there are 

no input gates but: 
 

• there is only one input event (different from the house event) then the ‘Gate’ is 

replaced by that event.  

• there are several  input events then the value of the ‘Gate’ is set to one, the 

house event is deleted from the line. 

On the other hand, if there are input gates, the possible combinations are as follows: 
 

• The ‘Gate’ value is set to zero if at least one input gate, ngg ,...,1 , value is equal 

to zero. 

• If all input gates, ngg ,...,1 , values are equal to one then: 

1. if there is only one input gate and no input events, the ‘Gate’ is 

replaced by that input gate; 

2. otherwise, the ‘Gate’ value is set to one, the house event is deleted.  
 

Similar logic has been implemented in the reduction of the ‘OR’ gate. 
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Table 6.2 Fault Tree Reducing Algorithm for AND gate 
 

Gate type is ‘AND’ 

 ‘FALSE’ The house event’s value is ‘TRUE’ 
There are no input gates 

n = 0 
There are input gates 

n > 0 

There is one 
input event 

 
m = 1 

There are 
more than 1 
input events 

m > 1 
 

All input gates values are 
equal to 1 

At least one 
input gate’s 

value is equal 
to 0 

There are no 
input events 

n + m = 1 

There are at 
least one 

input event 
n + m > 1 

 

 
 
 
 
 
 
 
 

Gate value is 
set to 0 

 
 
 

Gate is 
replacing by 

the input event 
(e1) 

 
 

Gate value is 
set to 1 

Gate is 
replacing by 
the input gate 

(g1) 
 

Gate value is 
set to 1 

 
 
 
 

Gate value is 
set to 0 

 

 

 

Table 6.3 Fault Tree Reducing Algorithm for ‘OR’ Gate 

Gate type is ‘OR’ 

The house 
event’s (h) 

value is 
‘TRUE’ 

 

 
The house event’s (h) value is ‘FALSE’ 

There are no input gates 
n = 0 

There are input gates 
n > 0 

There is one 
input event 

 
 

m = 1 

There are 
more than 1 
input events 

 
m > 1 

At least one input gate’s value 
is equal to 1 

All input 
gates values 

are equal to 0 
 

There are no 
input events 

 
n + m = 1 

There are at 
least one 

input event 
 

n + m > 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

Gate value is 
set to 1 

 
 
 
 
 

Gate is 
replacing by 

the input event 
(e1) 

 
 
 
 
 

Gate value is 
set to 1 

Gate is 
replacing by 
the input gate 

(g1) 
 

 
Gate value is 

set to 1 

 
 
 
 
 
 

Gate value is 
set to 0 
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Subroutines Reduce1, Reduce2 and Reduce3 are the main fault tree reduction process 

subroutines. The subroutine Reduce1 evaluates the fault tree gates with the simplest 

structure:  the gate without house events or the gate with the house event whose value is 

‘FALSE’. The subroutine Reduce2 evaluates all other gates, i.e. the gates with house 

event, whose value is ‘TRUE’. The evaluation is similar to the algorithm described in 

tables 6.2 and 6.3. Finally, the subroutine Reduce3 defines and deletes all gates which 

are not involved in the fault tree after reduction. All three reduction subroutines use four 

procedures: Restructure, Restructure1, Restructure2 and Restructure3. The first 

procedure deletes the house event from the relevant information string and rearranges 

event data.  The procedure Restructure is used by all other procedures. The procedure 

Restructure1 is responsible for the fault tree reduction when the gate is replaced by the 

input event.  The procedure Restructure2 is used to replace the gate by the input gate. 

Finally, the procedure Restructure3 deletes from the fault tree gates with the value 0. 

 

Consider the example fault tree from figure 6.5 with the house event values: 

  H1 = “TRUE”, 

  H2 = “FALSE”, 

  H3 = “TRUE”. 

The reducing algorithm works from the bottom (gates G3 and G4) to the top of the fault 

tree (Figure 6.6). The gate G4, highlighted by the dashed circle, has an input house 

event H2. 

 
Figure 6.6 Fault Tree Reduction Example 
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The reduction process starts from the gate G3. The gate G3 is of type ‘AND’. It has 2 

input events (A and B). Since both input events are basic and there are no house events, 

the gate G3 is active and its value changes from 2 to 1. Therefore, the data file at this 

step is: 

 

 

 

 

The gate G4 is also an ‘AND’ gate, which has one input event (C) and a house event 

(H2). The value of H2 is false, therefore, the value of G4 is set to zero and is deleted 

from the fault tree structure. Hence, only one input gate is left in gate G1. According to 

table 6.3, this gate is replaced by the input gate G3. Therefore, the data file after 

reduction is: 
 

 

 

 

 

Considering gate G2 next, it has the house event, which is true, and one input event, D. 

Therefore, G2 is replaced by its input event (Table 6.2). The data file at this step is: 
 

 

 

 

Since the value of the house event H1 is true the obtained fault tree after reduction is as 

shown in figure  6.7. 

 
Figure 6.7  Example Fault Tree after Reduction 

Top and 2 1 1 2 G1 G2 H1 
G1 or 2 0 0 2 G3 G4  
G2 and 0 2 1 2 H3 D 
G3 and 0 2 0 1 A B 
G4 and 0 2 1 2 H2 C 

Top and 2 1 1 2 G3 G2 H1 
G1 or 2 0 0 1 G3 G4 
G2 and 0 2 1 2 H3 D 
G3 and 0 2 0 1 A B 
G4  and 0 2 1 0 H2 C 

Top and 2 1 1 2 G3 D H1 
G2 and 0 2 1 1 H3 D 
G3 and 0 2 0 1 A B 
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Therefore, the final structure  of the data file is: 
 

 

 

 

 

6.3 Program Part Two Structure 

 

The main goal of this part of the program is the fault tree unavailability and the spurious 

trip frequency calculation. For each HIPS design this task is achieved in four main 

steps, as shown in figure 6.8. The main routines within each step are also shown in 

figure 6.8.  All steps are discussed in detail in sections 6.3.1- 6.3.2. 

 
Figure 6.8 Program Part Two Schemata  

 

 

6.3.1 Data File Structures  

 

The program constructs the fault tree data files for both the HIPS unavailability and the 

spurious trip frequency according to each HIPS potential design. Subroutines 

Formate_data_unav and Formate_data_spur construct data files by using the reduced 

fault tree designs obtained in subroutines Change_FTU and Change_FTS  and setting 

Top and 2 1 0 1 G3 D 
G3 and 0 2 0 1 A B 
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the relevant failure data (failure rate and mean time to repair) for each component of the 

fault tree (data files “ued.txt” and “sed.txt” for the HIPS unavailability and spurious trip 

respectively).  

 

The program generates four text data files for each HIPS design. Text file: 

1) unav.gsq contains the general fault tree for the HIPS unavailability, 

2) unav.aqd contains event data for the HIPS unavailability, 

3) spur.gsq contains the general fault tree for the HIPS spurious trip, 

4) spur.aqd contains event data for the HIPS spurious trip. 

To illustrate the data file construction process consider an example reduced fault tree, as 

shown in figure 6.9, where the significant parameters, Q related to the system 

component unavailability and w to spurious failure frequency, are stated beneath each 

basic event. 

 
Figure 6.9 Fault Tree ‘Example’ 

 

The “.gsq” file structure is arranged in rows and columns. Each row represents a gate 

within the tree and the columns relate to: 

• gate name, 

• type of gate (AND/OR), 

• number of input gates, 

• number of input events, 

• array of input gates, 

• array of input events. 
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Therefore, the ‘Example.gsq’ fault tree structure file for the example fault tree (Figure 

6.9) is: 

 

 

 

 

Hence, the top gate ‘TOP’ is of type ‘OR’. It has one input gate (G1) and one input 

event (D). 

 

The “.aqd” file has a row-column structure. Each row represents a particular event and 

the columns relate to the following event data: 

• event name, 

• unavailability of the event 





 +=

2
θτλQ , 

      where λ  is  the  failure rate (Table 5.2), 

 θ is an inspection interval (obtained within the program), 

 τ is the mean time to repair (Table 5.2),  

• unconditional failure intensity ( )Qw −= 1λ . 

The unavailability and unconditional failure intensity calculation methods are chosen 

based on work by Pattison [Pattison, 1999].  Q and w are calculated within the program 

by using λ and τ stored in the data files “ued.txt” and “sed.txt” for the HIPS 

unavailability and spurious trip respectively. Hence, the ‘Example.aqd’ event data file 

for the example fault tree (Figure 6.9) is: 

 

 

 

 

Therefore, the element A has unavailability 0.000006 and unconditional failure intensity 

0.000126.  

 

Subroutines Inputdata and Eventdata read the fault tree data into arrays within the 

program. The structure of these data arrays is similar to the structure of the “.gsq” and 

“.aqd” files. 

TOP or 1 1 G1 D 
G1 and 2 0 G2 G3 
G2 or 0 2 A B 
G3 or 0 2 A C 

A 0.000006 0.000126 
B 0.0000005 0.0000277 
C 0.00001 0.000045 
D 0.000015 0.000037 
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6.3.2 Fault Tree Analysis - BDD Construction 

 

To analyse the fault tree the latest binary decision diagram (BDD) technique has been 

used. Construction and analysis of the BDD is the second step of the program. The 

subroutine Find_BDD is a code for the If-Then-Else (ite) binary decision diagram 

construction method developed by Rauzy [Rauzy, 1993] (section 2.5.1). This subroutine 

is an improved version of the C++ program code developed by Remenyte-Prescott 

[Remenyte-Prescott, 2007]. The BDD structure is then used to obtain the cut sets of the 

fault tree (the subroutine Calc_Cuts). Top event and unconditional system failure 

intensity quantification is implemented in the subroutine Quantify using equations 2.14 

– 2.20.  

                                                              

6.4 Program Part Three Structure  

 

This part of the program is an implemented Improved Strength Pareto Optimization 

Approach (SPEA2), whose structure is shown in figure 6.10. 

 
Figure 6.10 Program Part Three Structure 
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The algorithm (Figure 6.10) works through six steps, using the following inputs: 

 

Input:   N  (population size ) set to 20, 

  N  (archive size) set to 20 (generally this variable can obtain values in the range   

              from 1 to population size), 

   T  (maximum number of generations) set to 100. 

 

Output:  A (resulting population) determined by the best solution strings set after the 

final generation.  

There are six main steps of the optimization algorithm. Each step is described in detail 

after the summary of the whole optimization algorithm. 

 

Step 1. Initialization: Generate an initial population 0P  and create the empty archive 

(external set) θ=0P . Set the generation number 0=t . 

Step 2. Fitness assignment: Calculate fitness values of individuals in tP  and tP .  

Step 3. Environmental selection: Copy all nondominated individuals in tP  and tP  to 

1+tP . If size of 1+tP  exceeds N  then reduce 1+tP  by means of the truncation operator, 

otherwise if size of 1+tP  is less than N  then fill 1+tP  with dominated individuals in tP  

and tP .  

Step 4. Termination: If Tt ≥  or another stopping criterion is satisfied then set A to the 

set of decision vectors represented by the nondominated individuals in 1+tP . Stop. 

Step 5. Mating selection: Perform binary tournament selection with replacement on 1+tP  

in order to fill the mating pool.  

Step 6. Variation: Apply recombination and mutation operators to the mating pool and 

set 1+tP  to the resulting population. Increment generation counter ( 1+= tt ) and go to 

Step 2. 

 

The SPEA2 method requires an external memory (archive or Pareto set) at each 

iteration to keep the best solutions. According to the Environmental selection principle 

(section 4.4.6) the first generation archive 1P  is equal to the initial population 0P . After 
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the initialization step the subroutine formation creates the first generation population by 

applying recombination and mutation operators to the initial population and formats all 

the necessary data arrays (cost, mdt, system spurious trip and system unavailability) for 

both the population and the archive before the first generation.  

 

The fitness assignment is the second step of the optimization algorithm. It is 

implemented in the subroutine fitness_assignment. One of the main goals of this routine 

is to divide the population of strings into dominated and nondominated solution groups 

according to the following rules: since all system parameter values should be minimized 

and the MDT value should be close to the limit of 130, the string a dominates the sting 

b ( ba φ ) if all a parameter values are equal to or smaller than b parameter values and at 

least one of parameter a value is smaller than the respective b parameter value, i.e.: 
 

],1[  )),()(:() ,,...,1   ),()(( nkbfafknibfafba kkii ∈<∃∧=≤=φ . 
 

The string a is nondominated if there is no string in the population which dominates a. 

To avoid the situation that individuals dominated by the same archive members have 

identical fitness values, for each individual both dominating and dominated solutions 

are taken into account (section 4.4.2). In detail, each individual i in the archive  tP  and 

the population tP  is assigned a strength value )(iS , representing the number of solutions 

it dominates (the subroutine strength_values), which is calculated as [Zitzler et al. (2), 

2001] 

{ }jiPPjjiS tt φ∧+∈= |)( , 

 

where | | denotes the cardinality of a set, + stands for multiset union and the symbol φ  

corresponds to the Pareto dominance relation (Definition 4.1). Consider the example 

population and archive at the t-th iteration (Table 6.4): 
 

Table 6.4 Example Population and Archive   

Population,  tP  Archive,  tP  String 

No. Cost MDT Q Fsys 

String 

No. Cost MDT Q Fsys 

1P 890 125.4 3.7e-4 0.819 1A 586 128.8 1e-6 0.418 

2P 520 129.7 1.2e-7 0.112 2A 700 129.6 1.2e-6 0.215 

3P 970 122.8 2.6e-5 0.414 3A 620 129.5 3.5e-6 0.318 
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Therefore, the strength value of the first string in the example population S(1P) is equal 

to zero, since there is not a string in the population or archive which would be 

dominated by this string. The second string of the population (2P) has the lowest cost, 

system unavailability and spurious trip values, and its MDT value is closest to the limit 

of 130 hours. Hence, it dominates all other strings both in the population and archive 

and its strength value S(2P) is set to 5. The third string (3P) dominates the string 2P in 

MDT, system unavailability and spurious trip values, however the total system cost is 

larger, than the other strings, therefore, the strength S(3P) is set to zero. The first string 

in the archive (1A) dominates only the string 1P, hence its strength value is set to 1. 

Strings 2A  and 3A dominate strings 1P and 3P, therefore, S(2A) and S(3A) are equal to 

2 (Table 6.5). 
Table 6.5 Strength Values for Example Problem 

Population, tP  Archive, tP  String 

No. Strength value 

String 

No. Strength value 

1P 0 1A 1 

2P 5 2A 2 

3P 0 3A 2 
 

 

On the basis of the S values, the raw fitness )(iR (the subroutine raw_fitness) of an 

individual i is calculated as: 

∑
+∈

=
ijPPj tt

jSiR
φ,

)()( . 

 

Hence the raw fitness is determined by the strengths of its dominators in both the 

archive and population. It is important to note that fitness is to be minimized, i.e., 

0)( =iR  corresponds to a nondominated individual, while a high )(iR  value means that 

i is dominated by many individuals. Considering the example above, the string 1P is 

dominated by strings 2P, 1A, 2A and 3A. Hence, its raw fitness R(1P) is equal to the 

sum of four strength values:  
   

102215)3()2()1()2()1( =+++=+++= ASASASPSPR . 

The string 2P dominates all other strings, therefore its raw fitness is set to zero. The 

string 3P is dominated by strings 2P, 2A and 3A. Hence, R(3P) is equal to 9. Strings 1A, 
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2A and 3A are all dominated only by 2P, therefore, R(1A) = R(2A) = R(3A) = 5. Table 

6.6 represents the results summary of raw fitness calculations for the example problem. 

Table 6.6 Raw Fitness Results for Example Problem 

Population, tP  Archive,  tP  String 

No. Raw Fitness, iR  

String 

No. Raw Fitness, iR  

1P 10 1A 5 
2P 0 2A 5 
3P 9 3A 5 

 

Although the raw fitness assignment provides a sort of niching mechanism based on the 

concept of Pareto dominance, it may fail when most individuals do not dominate each 

other. Hence, additional information is incorporated to discriminate between individuals 

having identical raw fitness values. The density estimation technique used in SPEA2 is 

an adaptation of the k-th nearest neighbour method [Silverman, 1986], where the 

density at any point is a decreasing function of the distance to the k-th nearest data 

point. In this problem the inverse of the distance to the k-th nearest neighbour is taken 

as a density estimate, i.e. for each individual i the distances to all individuals j in the 

archive and population are calculated as  
 

2222 ))()(())()(())()(())()(( jFsysiFsysjQiQjMDTiMDTjCiCij −+−+−+−=σ , 
 

where  C(i) is the cost of the i-th design, Q(i) is the i-th designs system unavailability, j 

is from the interval [1,.., n], where n is the total number of individuals in the population 

and archive, with the condition that ji ≠ . Obtained distances are stored in a list or 

matrix. For the example problem the distance matrix is shown in table 6.7. It is 

important to notice that the matrix is symmetrical. 

 
Table 6.7 The Distance Matrix for Example Problem  

i Distance values, ijσ  

1P 0 370.0257 80.04326 304.0193 190.0474 270.0316 
2P 370.0257 0 450.053 66.00685 180.0001 100.0004 
3P 80.04326 450.053 0 384.0469 270.0857 350.0641 
1A 304.0193 66.00685 384.0469 0 114.003 34.00735 
2A 190.0474 180.0001 270.0857 114.003 0 80.00013 
3A 270.0316 100.0004 350.0641 34.00735 80.00013 0 
j 1P 2P 3P 1A 2A 3A 
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After sorting the list in increasing order, the k-th element gives the distance sought, 

denoted as k
iσ , where k is equal to the square root of the sample size: 

NNk += , 
 

thus, for the HIPS k is approximately equal to 6, since 20== NN . For the example 

problem k is equal to 2. The distance matrix (Table 6.7) after sorting in increasing order 

and reduction of distances between the same elements is given in table 6.8.  

 
Table 6.8 The Distance Matrix after Sorting and Reduction 

K Distance values, k
iσ  

1 80.04326 66.00685 80.04326 34.00735 80.00013 34.00735 

2 190.0474 100.0004 270.0857 66.00685 114.003 80.00013 

3 270.0316 180.0001 350.0641 114.003 180.0001 100.0004 

4 304.0193 370.0257 384.0469 304.0193 190.0474 270.0316 

5 370.0257 450.053 450.053 384.0469 270.0857 350.0641 

I 1P 2P 3P 1A 2A 3A 
 

Afterwards, the density )(iD  corresponding to i  is defined by 

2
1)(
+

= k
i

iD
σ

. 

Hence, the density values for the example problem are calculated with the distance 

values ( k
iσ ) at 2=k  (Table 6.8). The obtained density results are shown in table 6.9. 

 

Table 6.9 Density Values for Example Problem  

Population, tP  Archive, tP  String 

No. Density, iD  

String 

No. Density, iD  

1P 0.005207 1A 0.014704 
2P 0.009804 2A 0.00862 
3P 0.003675 3A 0.012195 

 

 

Density value calculation is implemented in the subroutine density. In the denominator, 

two is added to ensure that its value is greater than zero. Finally, adding )(iD  to the raw 

fitness value )(iR of an individual i yields its fitness )(iF : 
 

)()()( iDiRiF += . 
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Therefore, the fitness values of the strings in the example problem are shown in table 

6.10. 
Table 6.10 Fitness Value for Example Problem 

Population, tP  Archive, tP  String 

No. Fitness, iF  

String 

No. Fitness, iF  

1P 10.005207 1A 5.014704 
2P 0.009804 2A 5.00862 
3P 9.003675 3A 5.012195 

 

The third step of the optimization algorithm is the environmental selection, which is 

implemented in the subroutine environmental_selection. During this step the first goal is 

to copy all nondominated individuals, i.e., those which have a fitness lower than one, 

from the archive and population to the archive of the next generation. In the example 

problem only the string 2P satisfies this condition and, hence, is a nondominated string. 

Therefore, the next generation archive ( 1+tP ) is: 

}2{1 PPt =+ . 
 

If the total number of nondominated solutions is equal to the next generation archive 

size then the environmental selection step is completed. Otherwise, there can be two 

situations: either the archive is too small (in the example problem the archive size is 

fixed and equal to 3, however there is only one nondominated string, 2P) or too large. In 

the first case, the best dominated individuals in the previous archive and population are 

copied to the new archive. This is implemented by sorting the multiset tt PP + according 

to the fitness values and picking the best individuals from it. The sorted set of tP  and 

tP  without nondominated components for the example problem is shown in table 6.11. 

   

Table 6.11 Sorted Set of tP  and tP   

No. String Fitness, F 

1 2A 5.00862 

2 3A 5.012195 

3 1A 5.014704 

4 3P 9.003675 

5 1P 10.005207 
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Therefore, the next generation archive 1+tP  is extended with the fittest dominated 

strings 2A and 3A. Hence 

}3  ,2  ,2{1 AAPPt =+ . 
 

In the second case, when the size of the current nondominated set exceeds the fixed 

archive size, an archive truncation procedure is invoked which iteratively removes 

individuals from the nondominated set until its size is equal to the archive size. The 

truncation procedure works according to the following rule: the individual which has 

the minimum distance to another individual is chosen at each stage; if there are several 

individuals with minimum distance the tie is broken by considering the second smallest 

distance and so on.  

 

The subroutine termination checks whether the maximum number of generations is 

reached or another stopping criterion is satisfied. If yes, i.e. t = T, the resulting set A is 

equal to the set of nondominated individuals in archive 1+tP  and the optimization 

algorithm stops. For the example problem if t is the last generation, then }2{ PA = . 

 

The mating selection, implemented in the subroutine mating_selection, performs binary 

tournament selection with replacement on 1+tP  in order to fill the mating pool. The 

selection is done by using the following  procedure: 
 

d) Random selection of two individuals of the archive. 

e) Copying the one with the lower fitness value to the mating pool. 

f) If the mating pool is full, then the algorithm stops, else everything 

repeats from step (a). 
 

The final step of the optimization algorithm is the variation step, implemented in the 

subroutine variation. During this step the crossover and mutation operators are applied 

to the mating pool.  

 

Crossover is a genetic operator producing new strings, which have some parts of both 

parent’s genetic material. The SPEA2 uses the simplest form, single-point crossover.  

This process is carried out in the routine crossover.  Crossover considers every other 

individual in the population and archive. Consider string j. A random number between 0 
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and 1 is generated. If this number lies below the crossover rate the mating process 

proceeds and string j is mated with string j+1 about a randomly generated crossover 

point. In the other case, both strings remain unchanged and consideration is given to 

string j+2. As the population and the archive are determined using a probabilistic 

selection method, mating pairs are in effect randomly chosen. 

 

The mutation process is implemented in the routine mutation. This is a random process 

where one allele of a gene is replaced by another to produce a new genetic structure. In 

the SPEA2 mutation is applied with uniform probability to the entire population of 

strings. Therefore, it is possible that a given binary string may be mutated at more than 

one point. Mutation occurs with a probability determined by the mutation rate.  

 

After the variation step the modified mating pool is set to the resulting population 1+tP . 

The generation counter is increased by one. The subroutine memory_free formats all 

necessary data arrays (archive, population arrays and optimization parameters array) for 

the next generation and the process repeats from the second optimization step.  

 

 

6.5 Results 

  

6.5.1 Optimization Schemes 

 

Two different optimization schemes have been implemented to tailor the algorithm 

parameters for the HIPS system in order to evaluate the one that leads faster to the 

global optimal solution. In the first scheme a single population of 20 strings have been 

generated and run through 3000 generations with the crossover and mutation rates equal 

to 0.7 and 0.01 respectively. The second scheme was based on thirty different initial 

populations with only 100 generations for each run of the ISPEASSOP with the same 

crossover and mutation rates. The first scheme resulted in a single Pareto set of 

nondominated HIPS design options, on the other hand the second scheme gave 30 sets. 

A Pareto set obtained from the 20th run in the second scheme consisted of a larger 

number of nondominated solutions by most optimization parameter values and, 

therefore, has been chosen for comparison with the first optimization scheme. Due to a 



 106

large number of optimization parameters the analysis of these results have been carried 

out for each group of two. Figures 6.11a - f show the comparison of resulting Pareto 

fronts in two dimensional space (where scheme 1 points are represented using a × and a 

° for scheme 2).   

0
10
20
30
40
50
60
70
80
90

100
110
120
130

0 200 400 600 800 1000

cost

m
ai

nt
en

an
ce

 d
ow

n 
tim

e

       

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000

cost
sp

ur
io

us
 tr

ip
 fr

eq
ue

nc
y

 

a) Cost and MDT Pareto front   b) Cost and Fsys Pareto front 

-7

-6

-5

-4

-3

-2

-1

0
0 200 400 600 800 1000

cost

lo
g 

(u
na

va
ila

bi
lit

y)

         

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90 100 110 120 130

maintenance down time

sp
ur

io
us

 tr
ip

 fr
eq

ue
nc

y

 

c) Qsys and Cost Pareto front   d) Fsys and MDT Pareto front 

-7

-6

-5

-4

-3

-2

-1

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130

maintenance down time

lo
g 

(u
na

va
ila

bi
lit

y)

            
-7

-6

-5

-4

-3

-2

-1

0
0 0.2 0.4 0.6 0.8 1

spurious trip frequency

lo
g 

(u
na

va
ila

bi
lit

y)

 

e) Qsys and MDT Pareto front   f) Qsys and Fsys Pareto front 

Figure 6.11 Pareto Front in Two Dimensional Space 

 

All figure 6.11 plots show that both optimization schemes produced very similar Pareto 

fronts, however the front obtained by the first scheme produces a larger number of the 
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boundary points (design solutions) due to a larger number of generations. Observation 

of the data itself shows that the 1st scheme produces up to 4 additional non-dominated 

designs.  Figure 6.11a indicates that the maintenance down time values are directly 

proportional to the system cost values. Therefore, a reduction of maintenance hours or 

personnel would result in a lower system cost.  Figure 6.11b illustrates that with an 

increase in cost comes a decrease in spurious trip frequency, however at just below 600 

cost units further increase does not improve the reduction in inappropriate action of the 

system.  Figure 6.11c shows the relationship between cost and unavailability.  A log 

scale has been used to represent the unavailability due to the large deviation in values 

produced.  As cost is increased the effect is to improve the unavailability values. This 

can be explained by the fact that the main cost contributors would be either the 

additional safety equipment or the increased number of maintenance hours, both 

resulting in the system availability improvement. Similar to the higher system cost, 

higher maintenance down time values lead to smaller system unavailability (Figure 

6.11e). Figure 6.11d shows that there is no clear relationship between spurious trip 

frequency and maintenance down time due to the nature of spurious failures.  Figure 

6.11f shows that there is again not a strong relationship between spurious trip and 

unavailability, however values of 0.45 spurious trip occurrences per year produces the 

smallest unavailability. 

 

6.5.2 Exhaustive Search Results 

For a system required to work on demand the system unavailability is one of the most 

important optimization criterion. Therefore in order to check the performance of the 

schemes from section 6.5.1 in terms of system unavailability, an exhaustive search has 

been produced [Riauke and Bartlett, 2009 (1)].  Given the total number of potential 

HIPS designs equals 232257600, the whole exhaustive search required almost 38 hours.  

Evidence showed a difference between the value of the unavailability obtainable with 

constraints removed.  Figure 6.12 represents the comparison of the smallest actual (with 

constraints removed) and feasible (obtained from the design, with optimization 

parameters within their limitations) for system unavailability obtained during the search 

when considering maintenance test intervals for sub-system 1. 

 



 108

2.00E-07

4.00E-07

6.00E-07

8.00E-07

1.00E-06

1.20E-06

1.40E-06

1.60E-06

1.80E-06

2.00E-06

2.20E-06

0 20 40 60 80 100 120

subsys1 maintenance interval 

m
in

im
al

 s
ys

te
m

 u
na

va
ila

bi
lit

y

min feasible

min actual

 
Figure 6.12 Comparison of the Actual and Feasible Minimal Qsys obtained by Exhaustive Search   

 

As it might be seen from figure 6.12, the smallest actual system unavailability (Qsys = 

2.884e-7) has been obtained in the first group (θ1 =  1 week ), however the design 

corresponding to this value is infeasible due to a large value of maintenance down time 

(MDT = 2028 h). The value of the smallest system unavailability has the tendency to 

increase when the maintenance interval θ1 becomes larger. The smallest feasible 

unavailability value is Qsys = 4.051e-7.  The difference between the actual and feasible 

values increases when the maintenance interval becomes larger. 

 

The comparison of the best results obtained during experiments described in section 

6.5.1 to the best HIPS design obtained by exhaustive search is shown in table 6.12. This 

table shows that both optimization schemes produced designs with unavailability values 

close to the one obtained by exhaustive search, however the second scheme resulted in a 

smaller value. Other optimization parameter values are similar in all cases. The first 

scheme produces smaller MDT (128.40 h) and system cost (632 units) values, on the 

other hand the second scheme resulted in smaller spurious trip frequency (0.45027 

times). All three designs are very similar. In all cases the first subsystem has no ESD 

valves (E) and the subsystem 2 consists of only 1 HIPS valve (H). The dominated value 

for pressure transmitters fitted (N1/N2) and required (K1/K2) is 2. All designs are 

constructed of the first type of valve (V) and pressure transmitter (P) type. The 

maintenance interval for subsystem 1 (θ1) is close to 17, and the maintenance interval 
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θ2 varies from 60 to 127. Other optimization parameter values are also very similar for 

all three designs. Since the optimization technique searches for the optimal solutions in 

terms of four objectives, the likelihood of the resulting design with the smallest global 

unavailability is reduced. However, the obtained results prove the good performance of 

the developed tool, which produces a solution close to the global minimum in only 20 

minutes (for 3000 system evaluations). 
 

Table 6.12 Results Comparison 

Subsystem Exhaustive 
Search 

1st  Scheme 2nd Scheme 

No. of  ESD valves,E 0 0 0 
No. of  PTs, N1 2 2 3 
No. of  PTs  to trip, K1 2 2 2 

 
1 

Maintenance test interval, θ1 17 19 18 
No. of HIPS valves, H 1 1 1 
No. of  PTs, N2 2 2 3 
No. of  PTs to trip, K2 2 2 2 

 
 2 

Maintenance test interval, θ2 127 60 93 
Valve type (V) 1 1 1 

PT type (P) 1 1 1 
MDT 129.53 128.40 129.53 
Cost 632 632 652 

Spurious trip occurrence (Fsys) 0.45045 0.45044 0.45027 
System unavailability (Qsys) 

 
4.051e-7 4.235e-7 4.143e-7 

 

Looking at the unavailability values for each of the optimization schemes shows that in 

both experiments the majority of unavailability values are close to the feasible smallest 

value produced by the exhaustive search. The minimal unavailability values concentrate 

in the intervals [4.235e-7, 1e-6) and [4.143e-7, 6e-7) for the first and second schemes 

respectively. Despite the relatively small number of generations, the second 

optimization scheme provided larger diversity between potential HIPS designs and led 

to a smaller system unavailability. 

 

 

6.5.3 Best ISPEASSOP Design 
 

The ISPEASSOP was implemented with a generated population of 20 strings.  A 

maximum of 100 generations was allowed along with a mutation rate of 0.01 and 

crossover rate 0.7. The first run of 100 generations of the ISPEASSOP gave the best 
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string set in generation 8 to 11. The fittest string occurs in the 8th generation (Table 

6.13) 
Table 6.13 The Best Design After the First Run of 100 Generations of the ISPEASSOP 

 
No. of  ESD valves 0 

No. of  PTs 1 
No. of  PTs to trip system 1 

 
Subsystem 1 

MTI 25 
No. of HIPS valves 1 

No. of  PTs 3 
No. of  PTs to trip system 3 

 
Subsystem 2 

MTI 73 
Valve type 1 

PT type 2 
MDT 129.7008 
Cost 592 

Spurious trip 0.45468 
System unavailability 4.503e-7 

 

 
 

6.5.4 ISPEASSOP Accuracy Comparison with FAULTREE+ 

 

To compare the accuracy of the ISPEASSOP program with the conventional Kinetic 

Tree Theory approach of FAULTTREE+, the best design (Table 6.13) and two more 

designs were analysed. Table 6.14 shows the parameter set of each considered design, 

where the final rows state the corresponding system unavailability and spurious trip 

occurrence using both techniques. In addition, the cost and maintenance down time of 

each design are provided. 
 

Table 6.14 Comparison of Quantification Results of Three HIPS designs 

Design Variables Design1 Design2 Best Design 
E 2 0 0 

K1 / N1 2 / 3 4 / 4 1 / 1 
H 0 1 1 

K2 / N2 0 / 0 3 / 4 3 / 3 
V 1 2 1 
P 2 1 2 

θ1 / θ2 108 / 71 29 / 104 25 / 73 
MDT 54.2989 107.4483 129.7008 
Cost 852 662 592 

Fsys (ISPEASSOP) 0.251831 0.531678 0.454681 
Fsys (FAULTTREE+) 0.251850 0.531692 0.454644 
Qsys (ISPEASSOP) 8.260012e-4 1.900385e-6 4.50319e-7 

Qsys (FAULTTREE+) 8.260e-4 1.899e-6 4.503e-7 
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Data comparison (Table 6.14) shows that the ISPEASSOP program produces accurate 

results. The insignificant discrepancy occurs due to programming language difference. 

 

 

6.5.5 Results Comparison and Conclusions 
 

Similar to the Pattison work, in total 10 runs, 100 generations each, of the ISPEASSOP 

were made. Therefore, 1000 system evaluations were performed in determining the best 

design. The running time of the program was an order of minutes. The best designs 

from each run of the program are shown in table 6.15. 
 

Table 6.15 Characteristics of the Best Designs of ISPEASSOP after 10 Runs of 100 Generations 

Run No. Cost MDT Fsys Qsys 

1 592 129.7008 0.455 4.5e-7 

2 512 129.6974 0.332 8.33e-4 

3 582 128.7361 0.324 6.8e-4 

4 922 128.2273 0.718 1e-6 

5 882 129.1590 0.166 1e-6 

6 992 129.2523 0.552 1e-6 

7 852 128.3286 0.245 6.55e-4 

8 542 128.9881 0.324 8.45e-4 

9 872 129.9032 0.377 1e-6 

10 862 129.7309 0.999 1e-6 

Average values 761 129.1724 0.449 3.01e-4 

GASSOP 
Best result 

822 128.43 0.717 7.6e-4 

Design Variables 

Run No. Q1 Q2 V P N1 N2 K1 K2 E H 

1 25 73 1 2 1 3 1 3 0 1 

2 27 105 2 2 1 0 1 0 1 0 

3 64 9 2 1 4 0 3 0 1 0 

4 33 96 1 1 2 3 1 3 1 1 

5 42 53 1 2 4 2 4 1 1 1 

6 34 90 2 2 2 3 2 2 1 2 

7 40 91 1 2 3 0 3 0 2 0 

8 27 118 2 1 2 0 2 0 1 0 

9 26 124 1 2 3 2 3 2 0 2 

10 42 46 1 2 2 2 1 2 1 1 
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Pattison [Pattison, 1999] applied GASSOP program to the HIPS optimization (section 

5.4). The best results were obtained after several modifications of the program routines 

(section 5.4.7). Table 6.15 shows the average values of optimization parameters 

produced by ISPEASSOP after 10 runs of the program are better than the best results 

produced by the simple GA (GASSOP). The comparison of the best designs obtained by 

the modified GASSOP and ISPEASSOP programs with the same parameters (100 

generations, 0.01 mutation rate and 0.7 crossover rate) after 10 runs is represented in 

table 6.16.  
Table 6.16 Results Comparison  

 GASSOP ISPEASSOP 
No. of  ESD valves 0 0 
No. of  PTs 2 1 
No. of  PTs  to trip system 1 1 

Subsystem 
1 

MTI 29 25 
No. of HIPS valves 2 1 
No. of  PTs 3 3 
No. of  PTs to trip system 2 3 

Subsystem 
2 

MTI 32 73 
Valve type 2 1 

PT type 1 2 
MDT 128.43 129.7008 
Cost 822 592 

Spurious trip  0.717 0.455 
System unavailability 7.6e-4 4.5e-7 

 

 

Table 6.16 shows that the SPEA2 optimization algorithm, implemented in the 

ISPEASSOP program, gives better results. All the HIPS optimization parameters were 

improved. The available MDT resources are fully used (MDT is very close to 130 

hours), the total system cost is smaller (price reduction is 230 units) as well as the 

spurious trip occurrence (approximately 1.5 times smaller) and system unavailability 

values (1690 times smaller). The result improvement can be explained by the fact, that 

multi-objective search of SPEA2 algorithm leads to nondominate solutions faster than 

simple GAs when the number of generations is relatively small (i.e. only 100 

generations).  

 

In both programs (GASSOP and ISPEASSOP) the maximum number of generations is 

equal to 100. The fittest design of GASSOP is achieved only in the 70th generation. In 

contrast, in all 10 runs of 100 generations of ISPEASSOP the fittest strings occurred in 

the first 10 generations. Consequently, the ISPEASSOP program requires less computer 
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memory recourses, which is an important advantage for the large safety systems 

optimization. 

 

 

6.6 Program Modification and Results 

 

The obtained results (Table 6.15 and 6.16) show that the SPEA2 optimization algorithm 

with chosen parameter values (100 generation, 0.7 crossover rate and 0.01 mutation 

rate) produces  improved results compared to the modified simple Genetic algorithm. 

However, the modification of some optimization parameter values and some parts of the 

program could possibly improve the method further [Bartlett and Riauke, 2009]. The 

potential list of modifications would be to use: 

• different main program parameter values: 

a) population size, 

b) crossover rate, 

c) mutation rate; 

• different crossover procedure (not a single-point),  

• different methods for changing infeasible parameter parts to the feasible 

ones (regeneration). 

 

All the mentioned modifications have been investigated and are discussed in detail in 

sections 6.6.1-6.6.5. 

 

 

6.6.1 Crossover and Mutation Rates Modification 

 

According to De Jong’s [De Jong (1), 1975] research of effectiveness of these 

parameters towards the GAs, the optimal values for the crossover rate appeared to be in 

the range from 0.5 to 0.9. The interval for the effective mutation rate values is (0, 0.2). 

Hence, investigation was produced with a limited set of values for each parameter (5 

values for crossover rate and 3 values for mutation rate). These values were: 

  Crossover Rate:    0.5     0.6     0.7     0.8     0.9 

 Mutation Rate:      0.1    0.01   0.001 
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In total there are 15 possible combinations of these parameters. Hence, 15 runs of the 

ISPEASSOP program were carried out. Table 6.17 represents the fittest strings obtained 

for each combination of crossover and mutation rates. Table 6.18 shows the system 

designs for each combination from table 6.17 respectively. 
 

Table 6.17 Best Results for Different Combinations of Values of Crossover  
and Mutation Rates 

 

Best Design Experiment 
No. 

Crossover 
Rate 

Mutation 
Rate Cost MDT Fsys Qsys 

1 0.5 0.1 592 121.2343 0.454393 8.17568e-7 
2 0.5 0.01 592 129.9834 0.245132 5.05000e-4 
3 0.5 0.001 582 124.8448 0.327878 5.05000e-4 
4 0.6 0.1 592 125.4809 0.454405 8.00796e-7 
5 0.6 0.01 582 124.8448 0.327878 5.05000e-4 
6 0.6 0.001 572 128.4310 0.375863 5.80712e-4 
7 0.7 0.1 612 127.8400 0.841392 5.53339e-7 
8 0.7 0.01 592 129.7008 0.454681 4.50419e-7 
9 0.7 0.001 582 124.8448 0.327878 5.05000e-4 

10 0.8 0.1 512 124.9472 0.332248 8.49826e-4 
11 0.8 0.01 592 129.9834 0.245132 5.05000e-4 
12 0.8 0.001 592 121.2343 0.454393 8.17568e-7 
13 0.9 0.1 942 129.6209 0.368503 8.87894e-7 
14 0.9 0.01 592 129.9834 0.245132 5.05000e-4 
15 0.9 0.001 592 129.9834 0.245132 5.05000e-4 

 
 
 
 

Table 6.18 Best System Designs for Different Combinations of Values of  
Crossover and Mutation Rates 

No. Q1 Q2 E H N1 / K1 N2 / K2 V P 
1 25 105 0 1 1 / 1 3 / 3 1 2 
2 29 108 1 0 2 / 2 0 / 0 1 1 
3 29 104 1 0 4 / 4 0 / 0 2 1 
4 24 105 0 1 1 / 1 3 / 3 1 2 
5 29 104 1 0 4 / 4 0 / 0 2 1 
6 29 104 1 0 1 / 1 0 / 0 1 1 
7 25 65 0 1 1 / 1 2 / 1 1 1 
8 25 73 0 1 1 / 1 3 / 3 1 2 
9 29 104 1 0 4 / 4 0 / 0 2 1 

10 28 111 1 0 1 / 1 0 / 0 1 2 
11 29 108 1 0 2 / 2 0 / 0 1 1 
12 25 105 0 1 1 / 1 3 / 3 1 2 
13 25 107 0 2 2 / 2 4 / 2 1 1 
14 29 108 1 0 2 / 2 0 / 0 1 1 
15 29 108 1 0 2 / 2 0 / 0 1 1 

 
 

Table 6.17 represents the nondominated set of optimal strings. There are three optimal 

solutions among the obtained possible system designs with parameter values which are 

the best according to the considered limitations. The first one is produced by the 
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combination of 0.7 crossover rate and 0.01 mutation rate (8). Combination 0.8 and 0.1 

gives the second. Finally, the third optimal solution is produced by several 

combinations (2, 11, 14 and 15).  The second design gives the smallest cost (512 units). 

However, the unavailability of the first design is the smallest of all obtained solutions 

(Qsys = 4.504e-7). On the other hand, the third design benefits from the smallest spurious 

system failure (Fsys = 0.245132) and MDT closest to the limit of 130 hours (MDT = 

129.9834). The difference between the values of MDT and system spurious failure and 

cost in all cases is not significant, therefore, the first solution can be assumed to be the 

best, since its unavailability is smaller.  

 
 

6.6.2 Modification of the Population Size 
 
The populations of 5, 10, 20 and 40 strings have been investigated by running the 

ISPEASSOP program with 0.7 crossover rate and 0.01 mutation rate, since this 

combination of rates gives the perceived best solution. The summary of these results is 

given in table 6.19. Table 6.20 shows the average and best design parameter values for 

each population size respectively. 
 

Table 6.19 Average and Best Design Parameter Values for the Different Population Size 

Population of 5 strings  
Cost MDT Fsys Qsys 

Average 604 112.235 0.48179 2.3685e-4 
Best 562 127.881 0.66345 7.6799e-7 

Population of 10 strings  
Cost MDT Fsys Qsys 

Average 748 118.462 0.42898 9.2653e-5 
Best 582 124.845 0.32788 5.0504e-4 

Population of 20 strings  
Cost MDT Fsys Qsys 

Average 597 120.7182 0.37532 6.9379e-5 
Best 592 129.7008 0.45468 4.5042e-7 

Population of 40 strings  
Cost MDT Fsys Qsys 

Average 657 123.5718 0.34232 5.3651e-5 
Best 512 126.8485 0.33222 8.9231e-4 

 
Table 6.20  Best Design Parameter Values for the Different Population Size 

 

Population size Q1 Q2 E H N1 / K1 N2 / K2 V P 

5 strings 27 45 0 1 2 / 2 1 / 1 2 1 
10 strings 29 104 1 0 4 / 4 0 / 0 2 1 
20 strings 25 73 0 1 1 / 1 3 / 3 1 2 
40 strings 33 26 1 0 1 / 1 0 / 0 2 2 
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As it might be expected, the larger population has led to a better performance. Each 

time when the population size doubles, the average values of MDT, system spurious 

failure and unavailability are improved. However, the best design parameters values 

change chaotically. The largest population gives the smallest cost. The smallest spurious 

system failure occurs in the population of 10 strings. The population of 20 strings 

produces the smallest unavailability and fully utilized available recourses by MDT, 

which is closest to the limit of 130 hours. Similar to the results from section 6.6.1, all 

optimal designs are very close to each other. However, only the population of 20 strings 

produces the significantly smaller unavailability. Therefore, the population size equal to 

20 strings can be assumed to be the best. 

 
 

6.6.3 Modification of the Parameter Evaluation Scheme 
 

There are four HIPS design parameters (number of pressure transmitters fitted and 

required for subsystems 1 and 2, i.e. 2121 ,,, KKNN  respectively) which require closer 

consideration during their evaluation. Each of these parameters is represented by three 

string elements. According to the binary calculation system this memory allocation 

gives 8 possible values from the interval [0, 7]. However, only five values (0, 1, 2, 3 and 

4) are feasible for the parameters 2N  and 2K , and only four values (1, 2, 3 and 4) are 

feasible for parameters 1N  and 1K  due to the HIPS structure. In the initial ISPEASSOP 

version these parameters evaluation scheme is shown in figure 6.13. 

 
 
 
 
 
 
 
 
 
 

Figure 6.13 Initial Parameter Evaluation Procedure 
 

The modified parameter evaluation scheme is shown in Figure 6.14. If the parameter 

value is infeasible, the part of the string responsible for this parameter is regenerated 

and the parameter value is recalculated. The process stops only when the new value is 

from the feasible region. 

allowed_max := 4 
allowed_min := 1 
If     ((Parameter_value < allowed_min) or 
                (parameter_value > allowed-maximum))  
Then 
    //start of then         

If  (parameter_value = 0) then  parameter_value := 1; 
If  (parameter_value = 5) then  parameter_value := 2; 
If  (parameter_value = 6) then  parameter_value := 3; 
If  (parameter_value = 7) then  parameter_value := 4; 

    //end of then 
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Figure 6.14 Modified Parameter Evaluation Procedure 
 
 
Different size populations were tested with both parameter evaluation schemes. The 

summary of the results is shown in table 6.21. Table 6.22 represents the best designs 

obtained by both the initial and modified ISPEASSOP program versions. 

 
Table 6.21 Comparison of Average and Best Designs after Modification of Parameter Estimation 

Procedure for Different Population Size 
 

Population 
size 

Estimation 
technique 

Parameter 

Values 

Cost MDT Fsys Qsys 

Average 604 112.235 0.48179 2.3685e-4  
Initial Best 562 127.881 0.66345 7.6799e-7 

Average 644 75.055 0.48311 6.2775e-5 

 
 

5 strings  
Modified Best 866 112.583 0.46344 6.7555e-7 

Average 748 118.462 0.42898 9.2653e-5  
Initial Best 582 124.845 0.32788 5.0504e-4 

Average 627 122.458 0.50899 8.0200e-7 

 
 

10 strings  
Modified Best 782 127.966 0.75463 7.3285e-7 

Average 597 120.718 0.37532 6.9379e-5  
Initial Best 592 129.701 0.45468 4.5042e-7 

Average 587 121.776 0.45439 6.1756e-7 

 
 

20 strings  
Modified Best 842 129.883 0.45059 1.0986e-6 

Average 657 123.572 0.34232 5.3651e-5  
Initial Best 512 126.849 0.33222 8.9231e-4 

Average 600 125.105 0.46006 6.6664e-7 

 
 

40 strings  
Modified Best 552 129.037 0.53719 1.3263e-6 

 
 
 
 
 
 
 
 
 
 

allowed_max := 4 
allowed_min := 1 
 
While ((Parameter_value < allowed_min) or 
                (parameter_value > allowed-maximum))  
 
    //start of while     
     Regenerate (part_of_string); 
 Recalculate (parameter_value); 
    //end of while 
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Table 6.22 Best Designs with Modified Parameter Estimation Technique 
 

Population 
size Best Design Q1 Q2 E H N1 / K1 N2 / K2 V P 

Initial 27 45 0 1 2 / 2 1 / 1 2 1  
5 strings Modified 43 72 1 1 2 / 2 2 / 2 1 2 

Initial 29 104 1 0 4 / 4 0 / 0 2 1  
10 strings Modified 29 104 1 1 2 / 2 1 / 1 2 1 

Initial 25 73 0 1 1 / 1 3 / 3 1 2  
20 strings Modified 24 111 0 2 3 / 2 3 / 3 2 1 

Initial 33 26 1 0 1 / 1 0 / 0 2 2  
40 strings Modified 27 54 0 1 1 / 1 4 / 3 2 2 

 
  
The investigation results (Table 6.21) show that the best designs were obtained for the 

population of 20 strings. The best values of the parameters are coloured. Both optimal 

solutions, called “best”, are very close to each other. However, the average results, 

produced by the modified method are better in terms of three optimization parameter 

values (cost, MDT and unavailability). This method produces significantly smaller 

average unavailability. 

 

 

6.6.4 Modification of the Crossover Procedure 
 
 
There are many different types of the crossover operator (section 4.3.1). Initially the 

single-point crossover was implemented for the HIPS optimization. This procedure 

works through the following scheme:  

 

Step 1. The random number is generated. 
 

Step 2. If the generated number is smaller than the crossover rate, the pair of 

population strings j and j+1 are crossed at the randomly chosen position. If not, 

step one repeats for the pair of strings j+1 and j+2. 
 

Step 3.  If population end is not reached the process repeats from step one for 

the next string in the population. 

 

During the investigation process three additional crossover procedures were created. 

The modified method is similar to the single-point crossover. The main difference 
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appears at the third step, when consideration is given to the second parent string from 

the pair. This string can again participate in crossover as the first parent. Two-point and 

Three-point crossover methods first generate respectively two and three random 

positions of the string. Then parent strings are crossed at those points. All methods were 

applied to the different size populations (5, 10, 20 and 40 strings). Table 6.23 shows the 

summary of the results. The best designs are represented in table 6.24. 

 
 

Table 6.23 Comparison of Average and Best Design Values 
 for Different Crossover Types 

 
Population 

Size 
Parameter 

values 
Crossover Cost MDT Fsys Qsys 

Single 604 112.235 0.48179 2.3685e-4 
Modified 627 66.158 0.31818 5.7704e-4 
2-point 652 67.929 0.41680 3.0968e-4 

 
 

Average 
3-point 787 78.685 0.54929 6.2900e-5 
Single 562 127.881 0.66345 7.6799e-7 

Modified 782 79.166 0.64713 1.2419e-6 
2-point 782 83.288 0.64641 1.1553e-6 

 
 
 
 

5 strings  
 

Best 
3-point 862 83.283 0.46426 1.0299e-6 
Single 748 118.462 0.42898 9.2653e-5 

Modified 632 123.819 0.37788 3.0799e-4 
2-point 787 124.093 0.45118 8.8300e-7 

 
 

Average 
3-point 572 120.795 0.48523 8.7900e-7 
Single 582 124.845 0.32788 5.0504e-4 

Modified 562 129.814 0.24930 8.5832e-4 
2-point 882 125.393 0.44997 9.0974e-7 

 
 
 
 
 

10 strings 
 
 

Best 
3-point 592 121.234 0.45439 8.1757e-7 
Single 597 120.718 0.37532 6.9379e-5 

Modified 606 123.597 0.36355 4.0280e-4 
2-point 589 122.052 0.55891 8.5400e-7 

 
 

Average 
3-point 571 121.445 0.63578 8.3100e-7 
Single 592 129.701 0.45468 4.5042e-7 

Modified 562 129.983 0.24930 8.5832e-4 
2-point 632 126.961 0.58123 7.9337e-7 

 
 
 
 

20 strings  
 

Best 
3-point 542 123.332 0.53717 9.7937e-7 
Single 657 123.572 0.34232 5.3651e-5 

Modified 838 122.165 0.41504 1.2060e-6 
2-point 608 124.891 0.48490 8.7200e-7 

 
 

Average 
3-point 845 123.088 0.38133 1.2870e-6 
Single 512 126.849 0.33222 8.9231e-4 

Modified 622 128.818 0.79354 6.2559e-7 
2-point 582 128.267 0.66326 7.0493e-7 

 
 
 
 

40 strings  
 

Best 
3-point 852 128.245 0.37570 1.4473e-6 
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Table 6.24 Best Designs Comparison for Different Crossover Types 
 

Population 
size 

Best Design 
 

Q1 Q2 E H N1 / K1 N2 / K2 V P 

Single 27 45 0 1 2 / 2 1 / 1 2 1 
Modified 69 63 1 1 4 / 2 2 / 2 2 2 
2-point 64 63 1 1 4 / 2 2 / 2 2 2 

 
 

5 strings 
3-point 70 63 1 1 2 / 2 2 / 2 1  2 
Single 29 104 1 0 4 / 4 0 / 0 2 1 

Modified 29 111 1 0 1 / 1 0 / 0 1 2 
2-point 29 72 0 2 4 / 4 4 / 3 2 1 

 
 

10 strings 
 3-point 25 105 0 1 1 / 1 3 / 3 1 2 

Single 25 73 0 1 1 / 1 3 / 3 1 2 
Modified 29 108 1 0 1 / 1 0 / 0 1 2 
2-point 25 77 0 1 3 / 2 1 / 1 1 1 

 
 

20 strings 
3-point 24 103 0 1 1 / 1 3 / 3 2 2 
Single 33 26 1 0 1 / 1 0 / 0 2 2 

Modified 28 44 0 1 2 / 1 4 / 4 2 1 
2-point 27 45 0 1 1 / 1 3 / 3 2 1 

 
 

40 strings 
 3-point 26 98 0 2 1 / 1 2 / 2 1 2 

 

 

As it was expected the new crossover methods produced poor results for the smallest 

population since it is not diverse. However, each time when the population size doubles 

the produced results are significantly improved. On the other hand, the obtained results 

are quite chaotic. In table 6.24 the best values of the optimization parameters are 

highlighted. For all three populations (10, 20 and 40 strings) the modified crossover 

method worked best since it produced the largest number of the best parameter values. 

In the population of 10 strings this technique resulted in three best values (cost, MDT 

and spurious system failure). However, 3-point crossover benefited from the smallest 

unavailability. In the population of 20 strings the best unavailability is produced by 

single crossover. On the other hand, the modified method gives two best parameter 

values (MDT and spurious system failure). In the population of 40 strings the single and 

modified crossover methods produce an equal number of the best parameter values. 

However, this time the modified method resulted in the smallest system unavailability.  

 
 
 
6.6.5 Chosen Optimization Scheme 

 

According to the investigation results (Tables 6.19 - 6.24) the following modified 

optimization scheme was chosen: 
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• Population of 20 strings; 
• 0.7 crossover rate; 
• 0.01 mutation rate; 
• 100 generations; 
• Modified parameter estimation procedure; 
• Modified crossover operator. 

 

Table 6.25 and 6.26 show the comparison of the best design parameter values obtained 

by the initial and modified ISPEASSOP.  
 

Table 6.25 Best Design Characteristics 
 

Population 
size 

Estimation 
technique 

Parameter 
Values Cost MDT Fsys Qsys 

Average 597 120.718 0.37532 6.9379e-5  

Initial Best 592 129.701 0.45468 4.5042e-7 

Average 570 126.702 0.32278 5.0000e-4 

 

 

20 strings 
 

Modified Best 592 129.983 0.24513 5.0500e-5 
 

 
Table 6.26 Best Designs Comparison 

 

        Best Design Q1 Q2 E H N1 / K1 N2 / K2 V P 

Initial 25 73 0 1 1 / 1 3 / 3 1 2 

Modified 29 108 1 0 2 / 2 0 / 0 1  1 
 

 
All solutions (table 6.25 and 6.26) are nondominated. The initial version of the program 

gives smaller unavailability for both the best and average results. However, the 

modified ISPEASSOP produces better values for the system cost, MDT and spurious 

system failure. The average cost was reduced by 27 units. The average MDT was 

improved and is reasonably closer to the limit of 130 hours. The spurious system failure 

of the new best design is two times smaller. The difference between the initial and 

modified unavailability is 0.00005. If this difference is insignificant for the potential 

decision maker then the modified program results can be assumed to be better. 

Otherwise, the initial version of the ISPEASSOP program produces the best system 

design. 
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6.7 Summary 

 

• This chapter has discussed the application of the developed optimization scheme to 

the high integrity protection system (HIPS). The suggested optimization tool is 

based on the combination and integration of three well known techniques: the fault 

tree analysis, the BDD method and the SPEA2 optimization algorithm. 

 

• The ISPEASSOP program, created for the HIPS optimization, consists of three 

parts. Part one produces the unavailability and spurious trip fault trees for each 

potential HIPS design. Program part two is responsible for analysis using the BDD 

method which calculates the HIPS unavailability and spurious trip frequency. The 

final part of the program incorporates the SPEA2 technique to the optimization 

process, which searches for the fittest potential HIPS designs. 

 

• To test the developed technique performance the following optimization parameter 

values have been chosen: the initial population of 20 strings, 100 generations, 0.7 

and 0.01 for the crossover and mutation rate respectively. 

 

• The ISSPEASSOP results were compared to those produced by the simple GA 

based optimization tool. The SPEA2 based technique performed better for the 

relatively small number of generations and led to the optimal solution quicker.   

 

• The ISPEASSOP programs high speed in comparison to the GA based program can 

be explained by the effective use of the developed fault tree reduction technique, 

which reduces the BBD size for each potential system design and, hence, less time 

is required to run the program. Additional speed reduction is achieved by the 

advanced features of the SPEA2 algorithm. 

 

• The ISSPEASSOP accuracy has been tested with the FaultTree + software. Both 

programs produce similar results. The small discrepancy occurs due to the 

programming language difference. 
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• The HIPS has been optimized by ISPEASSOP with different combinations of 

crossover and mutation rate in order to test the developed technique efficiency. Five 

different mutation rates and three crossover rates have been considered. Results 

showed that the initial combination (i.e. 0.7 crossover rate and 0.01 mutation rate) 

produce the best results.  

 

• The chosen combination of crossover and mutation rate has been tested with four 

different population sizes. Results showed that the population of 20 strings is 

sufficient enough for a good SPEA2 approach performance.  

 

• To enhance the developed optimization tool further several modifications to the 

program structure have been suggested. Two optimization parameter evaluation 

schemes and four different crossover procedures have been investigated. The best 

results were obtained by the modified parameter evaluation scheme, based on the 

regeneration of all infeasible parameter values; and the modified crossover 

procedure similar to the single-point crossover technique. 

 

• The exhaustive search has been performed for the HIPS in order to test if the 

developed optimization tool finds optimal designs with system unavailability values 

close to this parameter global minimum, since this optimization parameter is 

considered to be the most important. Results showed that all optimal solutions 

obtained after 100 generations have the system unavailability value close to its 

global minimum. 

 

• Based on the tests results, the modified safety system optimization scheme has been 

suggested. It has been applied to the HIPS and produced better results than the 

initial optimization tool version. 

 

• The HIPS is a relatively small safety system and application to a larger system 

should be made in order to test the scalability of the method and confirm its 

suitability in this domain. 
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CHAPTER 7 

 

FDS OPTIMIZATION BY SPEA2 

 

 

7.1 Introduction 

 

The Improved Strength Pareto Evolutionary Algorithm (SPEA2) has been applied to the 

High Integrity Protection System (HIPS). However, the HIPS is a relatively simple 

example of a safety system.  Many systems are much more complex and have a much 

larger number of design variables. Therefore, in this chapter the effectiveness of the 

SPEA2 is tested on the larger and more detailed safety system, the Firewater Deluge 

System (FDS) [Borisevic and Bartlett 2007 (2), Riauke and Bartlett 2008]. 

 

Section 7.2 first introduces and describes the main features of the deluge system design 

used on an offshore platform. Section 7.3 provides the safety system analysis. The 

review of this system optimization by the single GA based technique is provided in 

section 7.4. The SPEA2 implementation to the FDS system with results and 

comparative analysis is discussed in section 7.5, followed by the summary (section 7.6). 

 

 

7.2 General Structure of the FDS system  

 

The Firewater Deluge System works to supply, on demand, water and foam at a 

controlled pressure to a specific area on the platform, protected by a deluge system 

[Andrews and Bartlett, 2003]. The main features of the deluge system are shown in 

figure 7.1. The FDS comprises a deluge skid, firewater pumps, with associated 

equipment and ringmains, and aqueous film-forming foam (AFFF) pumps, with 

associated equipment and ringmains. The description of the main parts of the FDS is 

provided in section 7.2.1. Section 7.2.2 represents the system design variables and 

limitations. The FDS failure events and data are discussed in section 7.2.3.  
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Figure 7.1 The Firewater Deluge System 
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7.2.1 Main Parts of the FDS 

 

The Deluge System. The deluge valve set with all associated equipment is mounted on 

a fabricated steel framework called a skid. Skids are situated on the processing platform 

where an incident can occur. In this situation the associated equipment acts to spray 

water onto the affected area. The three main elements of the deluge valve set are the 

main distribution line, a water closing circuit and a control air circuit.  

 

The system can be operated either manually by opening the systems local manual 

release valve on the skid or automatically: the main fire and gas panel (MFGP) gives the 

signal to the solenoid valves to de-energize and open thus releasing air pressure from 

the control air circuit. After the pressure drop the valmatic release valve opens and the 

water from the water closing circuit runs to drain. This process results in the fall of 

pressure on the deluge valve diaphragm. When the pressure on the diaphragm has fallen 

sufficiently, the firewater main pressure, acting on the underside of the deluge valve 

clack, overcomes the load imposed by the diaphragm. This allows water to flow into the 

distribution pipes, through the nozzle and onto the hazard. 

 

The deluge valve set is also fitted with an aqueous film-forming foam (AFFF) supply 

line. Instrument air pressure maintains the valmatic release valve and AFFF valve 

closed. The AFFF valve and valmatic release valve open simultaneously when the air 

pressure drops in the control air circuit. This reaction is caused by the de-energising of 

the solenoid valves. As the water flows through the foam inductor in the main 

distribution line, foam concentrate is induced from the AFFF line via the foam 

proportioner. As a result, the solution of water and approximately 3% foam then feed 

into the distribution network, through the nozzles and onto the hazard. 

 

Firewater Supply and Distribution System. The deluge systems are connected to a 

pressurised ringmain network. The jockey pump maintains the ringmain pressure by 

drawing water from the sea. The pressure transducers detect the falling pressure and 

subsequently send the signal to the MFGP, which activates the firewater pumps to 

supply water direct from the sea at sufficient pressure to meet the deluge requirement. 

In inactive standby the pumps remain not needed. Both pumps can be started manually 

at the fire control panel. 
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There are two sets of fire pumps: one set is powered from the main electric power plant 

and the other from their own dedicated diesel engines. The diesels have a day tank, 

which provides a 24 hour supply. The tank is fitted with a low level alarm, giving a 

signal in the central control room. 

 

 

AFF Supply and Distribution System. The foam concentrate is stored in a stainless 

steel tank and is distributed through a stainless steel ringmain network. Similar to the 

firewater supply and distribution system, the tank has a low level alarm fitted, sounding 

in the central control room. 

 

The foam system is kept at approximately the same pressure as the firewater system by 

a continuously running air driven jockey pump. There are two types of AFFF pumps: 

one supplied from the platform power plant, the other are diesel driven. When any 

firewater pump starts to supply foam at sufficient pressure to meet design requirements, 

the AFFF pumps start automatically.  

 

It should be noted that the pumps not needed remain in standby. The diesel supply to the 

firewater diesel pumps is separate from that of the AFFF diesel pumps. 

 

 

7.2.2 FDS Design Variables and Limitations 

 

The overall FDS system can be represented by 17 design variables.  These variables, 

their value and possible designer options are described in table 7.1.   

 

It is important to notice that similar to the AFFF system pumps all pumps in the 

firewater system are to be of the same capacity. In addition, electric and diesel pumps of 

100% capacity in the firewater system are of one type only, as are both 100% and 50% 

pumps in the AFFF system.  
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Table 7.1 FDS Design Variables 

Variable Description Value 

N Number of pressure transmitters fitted on the ringmain 1, 2, 3, 4 

K Number of pressure transmitters required to trip  1 – N 

P Pressure transmitter type 1, 2 or 3 

FE Number of the electrically powered firewater pumps 0 – 4 

FD Number of the diesel firewater pumps 

(the total number of pumps F = FE + FD : 1≤ F ≤ 8 ) 

0 – 4 

FP The percentage of the capacity of the firewater pumps 100%, 50% or 33.3% 

FT The pump type (for the 50% and 33.3% capacity pumps only)  1 or 2 

AE Number of the electrically powered AFFF pumps 0 – 2 

AD Number of the diesel AFFF pumps  

(the total number of pumps A = AE + AD : 1≤ A ≤ 4 ) 

0 – 2 

AP The percentage of the capacity for the AFFF pumps 100% or 50% 

W Water deluge valve type 1, 2 or 3 

D AFFF deluge valve type 1, 2 or 3 

C Type of the materials for certain purpose 1 or 2 

θP Maintenance test interval for the firewater and AFFF pump system 1 to 28 days 

θR Maintenance test interval for the ringmain 1 to 24 weeks 

θD Maintenance test interval for the deluge skid 

(in 3 monthly intervals only) 

3 to 18 months 

θPM Preventative maintenance on components of wear-out type  

(in 3 monthly intervals only) 

3 to 18 months 

 

 

The FDS system must be tested at regular intervals and any failures found must be 

repaired. Some of the components are of wear-out type. Therefore, the preventative 

maintenance must be carried out at regular intervals. The expected cost of system 

testing, repairs and maintenance effort can be predicted by the knowledge of the 

components comprising the FDS. The life cycle cost is yielded by the initial cost and 

the cost of maintaining. The choice of design is not restricted; however, some 

limitations have been placed on the design. The summary of these limitations is shown 

in table 7.2. The system failure events and data are discussed in detail in appendix B 

(section B.1). 
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Table 7.2 The FDS Design Limitations 

Limitation Maximum Value   
(per year) 

Total life cycle cost (i.e. the sum of the initial cost and total cost of 
maintenance effort) 

< 125 000 units 

Total cost of testing the system < 20 500 units 
Total cost of preventative maintenance effort < 13 500 units 
Total cost of maintenance effort (i.e. the sum of the cost of corrective 
maintenance due to repair of dormant and spurious failure, total cost of testing 
the system and total cost of preventative maintenance) 

< 44 000 units 

Acceptable number of times that a spurious system shutdown occurs < 0.75 times 
 

 

7.3 Safety System Analysis 

 

The main goal of the FDS system is to mitigate the consequences of jet and pool fires. 

Furthermore, the system is designed to reduce overpressures in the event of an 

explosion. Failure in the event of a hydrocarbon release could result in fatalities. 

Therefore, the objective of optimization is to produce a safe, reliable FDS design with 

consideration to the available recourses.  

 

This section provides the FDS life cycle cost evaluation scheme (section 7.3.1). 

Construction of the system unavailability and spurious trip fault trees calculation 

method are discussed in section 7.3.2.  

 

 

7.3.1 FDS Life Cycle Cost Evaluation 

 

The FDS life cycle cost is an important system optimization parameter due to the 

constraints imposed on the FDS. The important component of the life cycle cost is the 

initial cost to build the FDS (section 7.3.1.1). However, the system running costs must 

also be taken into account. These costs include only the maintenance activity, including 

the cost of corrective maintenance to repair any problem highlighted by system testing 

(section 7.3.1.2), the cost of preventative maintenance carried out at regular intervals on 

components that exhibit wear-out (section 7.3.1.3) and the cost of system testing at 

regular intervals (section 7.3.1.4). All these costs are evaluated over a period of 1 year, 
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i.e. 8760 hours.  Data regarding the costs associated with each component is specified in 

appendix B (tables B.3, B.6, B.7, B.8 and B.10). 

 

 

7.3.1.1 Initial Cost 

 

Each component has an initial purchase cost and a storage cost. The storage cost 

depends on the number of spare items stored and the cost to store each item. Therefore, 

the FDS system initial cost (SIC), including the storage cost, is calculated as: 

 

 ICDSICRICAPLICFPLSIC +++= ,                                                           (7.1) 

 

where ICFPL denotes the initial cost of the firewater pumps and lines, ICAPL is the 

initial cost of the AFFF pumps and lines, ICR is the initial cost of the ringmain and, 

finally, ICDS  denotes the initial cost of the diesel supply. 

 

Considering the ICFPL further, it can be expressed as: 

 

( )[ ] ( )[ ] 260054005400 ++++= ISDISE FDFFEFICFPL ,                                (7.2) 

  

where EF  is the number of the electrically powered firewater pumps, 5400 is the sum of 

the initial plus storage cost of each fixed component on an electric pump line, ISFE   and 

ISFD are the initial plus storage cost of the particular electric and diesel pump chosen 

(i.e. 100%, 50% or 33.33%, type 1 or 2) respectively. DF  denotes the number of  diesel 

driven pump lines. 2600 is the sum of the initial cost of the electric and diesel supplies. 

 

The ICALP expression  is similar to ICFPL and is given by: 

   

 ( )[ ] ( )[ ] 360064006400 ++++= ISDISE ADAAEAICAPL ,                               (7.3) 

 

where EA  is the number of the electrically powered AFFF pumps, 6400 is the sum of 

the initial plus storage cost of each fixed component on an electric or diesel pump line 
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(it differs from the firewater pump due to an additional isolation valve), ISAE   and 

ISAD are the initial plus storage cost of the particular electric and diesel pump chosen. 

DA  denotes the number of the diesel driven pumps in the AFFF system. 3600 is the sum 

of the initial cost of the electric supply, diesel supply and AFFF tank isolation valve. 

 

The only fixed component of the ringmain is the fire pump selector unit (FSU), 

Therefore, ICR  is calculated as  

 

 ISPICR += 2200 ,                                                                                             (7.4) 

 

where 2200 is the initial plus storage cost of the FSU and ISP  is the initial plus storage 

cost of the particular pressure sensor chosen. 

 

The final components of the system initial cost is ICDS, given by 

 

 ISISISISIS AVWVINNVRVICDS +++++= 7350 ,                                          (7.5) 

 

where 7350 is the sum of the initial pus storage cost of the fixed component. The latter 

terms (valmatic release valve (VRV), nozzle (N), inductor nozzle (IN), water deluge 

valve (WV) and AFFF deluge valve (AV)) correspond to the initial pus storage cost of 

the particular type of variable components chosen. 

 

Therefore, the initial system cost (SIC) can be expressed as 

 

 ( ) ( )[ ]+++++= 260054005400 ISDISE FDFFEFSIC                                      (7.6) 

( ) ( )[ ]++++++ 360064006400 ISDISE ADAAEA  

  [ ]+++ ISP2200  

  [ ]ISISISISIS AVWVINNVRV ++++++ 7350 . 
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7.3.1.2 Corrective Maintenance Cost 

 

The corrective maintenance cost of each component depends on the expected number of 

failures and the cost to repair each failure. Consider component i. The corrective 

maintenance of this component (CMi) can be calculated as: 

 

 ( )( )SRHRR
S

i
D

ii CCNWWCM +⋅+= ,                                                                 (7.7) 

 

where D
iW  and S

iW  are the expected number of dormant and spurious failures for the 

component i over the one year time period, i.e. 8760 hours. HRR CN  ,  and SRC  denote 

the number of hours of manual work required to test the component, the cost per hour of 

manual work to repair failure and the cost of spares for each repair carried out 

respectively. 

 

The unconditional failure intensity ( iw ) for the non wear-out type component i is given 

by 

 )1( iii qw −= λ .                                                                                                  (7.8) 

 

Hence, the expected number of failures during the one year period time (8760 hours) is 

determined by  

 

 ∫=
8760

0

)()8760,0( duuwW i .                                                                                  (7.9) 

 

The failure rate for the wear-out type component i is time dependent and, therefore, is 

defined by the Weibull distribution. Hence, the expected number of failures per year is: 

 

 dtqtW
PM

i
ii

i
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i ∫ −








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


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


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




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θ
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θ 0

)1(8760)8760,0(  ,                                                (7.10) 

 

where PMθ is converted to hours, and ii ηβ  ,  are Weibull distribution parameters 

(Appendix B, Tables B.8 and B.11). 
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The total FDS corrective maintenance cost (SCMC) is calculated in a similar manner to 

the initial cost. Therefore, 

 

 CMCDSCMCRCMCAPLCMCFPLSCMC +++= ,                                   (7.11) 

 

where CMCFPL is the corrective maintenance cost  of the firewater pumps and lines, 

CMCAPL  denote the corrective maintenance cost of the AFFF system pumps and lines, 

CMCR and CMCDS are the corrective maintenance costs of the ringmain and the deluge 

skid respectively. 

 

CMCFPL is formulated in a similar manner to that of the ICFPL (Equation 7.2). Hence, 

 

 

( )( )[ ]
( )( )[ ]

[ ] ( ) ( )[ ],290W400W290W                 

                 
D
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D
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D
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+⋅++
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                                    (7.12) 

where   

( ) ( ) ( ) ( ) ( )7404101120790840 ⋅+⋅+⋅+⋅+⋅= D
IV

D
FB

D
SV

D
PRV

D
CV WWWWWFix . 

 

The calculation of CMCAPL has the same principles as CMCFPL, i.e.: 
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               (7.13) 

where   

( ) ( ) ( ) ( ) ( )7404101120790840 ⋅+⋅+⋅+⋅+⋅= D
IV

D
FB

D
SV

D
PRV

D
CV WWWWWFix . 

 

The corrective maintenance cost of the ringmain (CMCR) is given by 

 

 ( ) ( )[ ]repPTWWWCMCR CM
S

PT
D

PT
D

FSU ⋅++⋅= 1280 ,                                          (7.14) 
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where DW  and SW are the expected number of dormant and spurious failures 

respectively, since the pressure transmitters fail in two modes (dormant and spurious 

failure). 

 

The corrective maintenance of the deluge skid (CMCDS) involves the summation of the 

corrective maintenance cost of each associated component. Taking into account that the 

solenoid and valmatic valves can fail in two modes (dormant and spurious), the CMCDS 

is expressed as: 
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7.3.1.3 Preventative Maintenance Cost 

 

The preventative maintenance is required only for the wear-out type components. The 

preventative maintenance cost per year of each component depends on the number of 

times preventative maintenance is carried out in the year and the cost per effort. The 

total FDS preventative maintenance cost (SPMC) is, therefore, calculated as the sum of 

the preventative maintenance costs (PMCi) incurred by each component i. PMCi is 

given by 

 

 ( )( )SPHPP
PM

i CCNPMC +⋅







=

θ
8760 ,                                                               (7.16) 

 

where θPM is converted to hours, NP is the number of hours manual work required to 

carry out preventative maintenance, CHP denotes the cost per hour of manual work to 

carry out preventative maintenance, and CSP is the cost of spares each time preventative 

maintenance is undertaken.  

 

Therefore, the SPMC is calculated as: 
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where FE and AE represent the number of electrically powered firewater and AFFF 

pumps respectively, DF  and DA  denote the number of diesel driven firewater and AFFF 

pumps respectively. repFEPM , repFDPM , repAEPM  and repADPM  are the costs of 

preventative maintenance of the particular firewater electric and diesel pump type 

chosen and the AFFF electric and diesel pump type chosen respectively. 

  

 

7.3.1.4 Testing Cost 

 

System tests are carried out on each pump line (θP), the distribution network (θR) and 

deluge skid (θD). The cost of testing must only be considered once per group of 

components, since a pump line test examines the pump and all other elements on that 

line simultaneously, and a single ringmain and deluge skid test examines all associated 

components.  It is assumed that the simultaneously tested components require the same 

specialized labour (CHT) and the same test time ( TH ) as all other elements. Therefore, 

the FDS testing cost (STC) can be evaluated as: 

 

 ,TCDSTCRTCAPLTCFPLSTC +++=                                                       (7.18) 

 

where TCFPL, TCAPL, TCR and TCDS denote the cost of testing the firewater pumps 

and lines, the cost of testing the AFFF pumps and lines, the cost of testing the ringmain 

and the deluge skid respectively. 

 

Each component of the firewater pump lines has a test time of 2 hours (HT = 2) and a 

cost of 30 units per hour ( 30=HTC ). The cost per hour to test the electricity supply is 

45 units. Therefore, the testing cost of the firewater pumps and lines (TCFPL) can be 

calculated as the sum of the cost to test the electricity supply per year and the total cost 

of all pump lines per year, i.e.: 



 136

 
( ) ( )

( ), 90608760             

45287603028760

+⋅⋅=

=







⋅+








⋅=

F

FTCFPL

P

PP

θ

θθ
                                              (7.19) 

 

where F is the total number of the firewater pumps. 

 

Using similar principles, TCAPL is given by 

 

 ( ). 90608760
+⋅⋅= ATCAPL

Pθ
                                                                      (7.20) 

 

The cost of testing the ringmain per year is 

 

 458760
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R
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θ

.                                                                                           (7.21) 

 

The cost of the deluge skid per year is 

 

 608760
⋅=

D
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Therefore,  
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7.3.1.5 Life Cycle Cost 

 

The FDS total life cycle cost is evaluated by summing equations (7.6), (7.11), (7.19) 

and (7.23), i.e.  
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 STCSPMCSCMCSICLCC +++= .                                                           (7.24) 

 

The last three terms of equation 7.24 are time dependent and, therefore, their sum gives 

the cost due to total maintenance effort (TMEC). Hence, the life cycle cost can be 

expressed as: 

 TMECSICLCC += ,                                                                                     (7.25)                          

 

where TMEC = STCSPMCSCMC ++ . 

 

 

7.3.2 FDS Fault Tree Construction 

Unavailability fault tree construction. The top event ‘Firewater Deluge System Fails 

to Protect’ represents the causes of the firewater deluge system unavailability. There are 

three main reasons for the top event to occur. Either the firewater or AFFF pump 

mechanisms are not activated, the AFFF pumps themselves fail or the water or foam 

deluge systems fail. The first reason, i.e. failure to initiate the firewater and AFFF pump 

mechanisms, occurs if both automatic and manual interventions fail. The manual start of 

the system fails if either the push button on the MFGP fails or if the operator fails to 

push the button. An automatic start fails if either the fire pump selector unit fails or the 

low pressure sensing on the firewater ringmain fails. Failure of the low pressure sensing 

depends on the number of pressure transmitters fitted (N) and the number of pressure 

transmitters required to trip the system (K). 

 

Failure of the AFFF or water deluge skid occurs if either events ‘Failure of the water 

deluge skid’ or ‘Failure of the AFFF Deluge Skid’ occur. The possible reasons for the 

event ‘Failure of the water deluge skid’ to occur are:  the water spray isolation valves 

fail, the strainer nozzle becomes blocked or the deluge valve fails to open. Further 

development of the event ‘The water deluge valve fails to open’ involves two scenarios 

connected by OR logic, i.e. events that restrict activation of the deluge valve and failure 

of the deluge valve itself. ‘Failure to activate the water deluge valve’ can be caused by 

the failure of the signal to the solenoids, by the solenoid valves remaining energized or 

by the failure of the valmatic release valve.  In a similar manner the event ‘Failure of the 

AFFF deluge skid’ is developed. The fault tree consists of 618 gates, 50 basic events 
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and 59 house events. The fault tree construction is discussed in appendix B (section 

B.2.1). The detailed fault tree structure is represented in appendix D. 

Spurious trip fault tree construction. According to the FDS system limitations a 

number of spurious system occurrences is permitted, i.e. Fsys < 0.75 (Table 7.2). Hence, 

the spurious activation of the FDS must be established by developing the specific fault 

tree to quantify causes of this failure mode. The top event ‘Firewater deluge system fails 

spuriously’ occurs if the solenoid valves fail spuriously, the valmatic release valve 

opens spuriously or the signal from the main fire and gas panel to the solenoid valves is 

interrupted. The latter event occurs as a result of spurious activation of the ringmain 

pressure sensors. 

 
Constant failure rates are ascribed to all components from the FDS spurious trip fault 

tree. Furthermore, spurious failures are instantaneously revealed and repair initiated, 

hence the probability of failure of each basic event is independent of its associated 

maintenance test interval. Similarly to the unavailability fault tree, a single spurious trip 

fault tree with incorporated house events is formed to analyze each potential FDS 

design. After setting the house events, the resulting fault tree is converted to its BDD 

and the spurious s trip frequency is calculated within SPEA2 source code. The fault tree 

consists of 61 gates, 16 basic events and 13 house events. The fault tree construction is 

discussed in appendix B (section B.2.2). The detailed fault tree structure is shown in 

appendix D. 

 

 

7.4 Review of Previous Work on FSD 

 

In 1999 Pattison [Pattison, 1999] optimized the firewater deluge system by the simple 

genetic algorithm. In her work she applied the SGA_C algorithm, which is a C-language 

translation and extension of the original Pascal Simple Genetic Algorithm (SGA) code 

developed by Goldberg [Goldberg 1989]. This package was used to build the GA 

optimization software called GASSOP (Genetic Algorithm Safety System Optimization 

Procedure). The brief description of this software and its implementation to the high 

integrity protection system optimization are given in section 5.4. GASSOP has been 
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applied to the FDS with some modifications. These modifications and optimization 

results are briefly discussed in this section. 

 

Penalty Derivation and String Fitness Evaluation. One of the main routines of the 

GASSOP software is the routine Fitness, which obtains a fitness value for each possible 

system design. The main components for the fitness evaluation are: spurious trip 

frequency (Fsys), system unavailability (Qsys), penalised system unavailability (Q’
sys). 

 

Two further data structures, associated with each individual, are called lifeparts and 

penparts. The lifeparts data structure is responsible for the system cost of each possible 

design and consists of the following components: life cycle cost per year of the FDS 

(LCC), cost per year due to system testing (STC), cost per year due to preventative 

maintenance (SPMC), cost per year due to corrective maintenance (SCMC), cost per 

year due to total maintenance effort (TMEC). 

 

The FDS available resources are not inexhaustible (limitations are provided in table 

7.2). Data structure penparts consists of the penalties applied to each design if any of 

parameters from table 7.2 exceed their respective limits. The penalty due to excess life 

cycle cost (LCCP) is given by equation 7.26, 

 sysP QexcessLCCLCC ⋅





 ⋅

=
8
9

125000
100 ,                                                              (7.26) 

where the first term expresses the percentage by which the life cycle cost exceeds its 

constraint and the denominator is the life cycle cost maximum allowed value (Table 

7.2). The system unavailability of the considered design is then multiplied by the 

respective percentage excess to establish the appropriate penalty. Penalties due to excess 

system testing cost (STCP), preventative maintenance cost (SPMCP) and total 

maintenance effort (TMECP) are calculated in similar manner to the LCCP (Equations 

7.27 – 7.29). 

 sysP QexcessSTCSTC ⋅





 ⋅
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20500
100 .                                                                (7.27) 

 sysP QexcessSPMCSPMC ⋅
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 sysP QexcessTMECTMEC ⋅





 ⋅

=
8
9

44000
100 .                                                         (7.29) 

It is important to notice, that equations 7.27-7.29 are not independent. Excess life cycle 

cost affects one or more other constraints. Moreover, both system testing and 

preventative maintenance comprise a proportion of total maintenance effort. The 

exponential relationship, i.e. 8
9

xy = , has been chosen to compensate for this interaction 

to a certain extent [Pattison, 1999].  

 

Occurrence of the spurious trip causes financial loss due to the ceasing of production on 

the processing platform. As a result the spurious trip constraint violation is expressed in 

terms of excess cost. Therefore, the spurious trip penalty (SP) is given by 

 sysP QtExcessS ⋅





 ⋅

=
8
9

203000
100cos  .                                                                  (7.30) 

 

Each penalty is subsequently added to the system unavailability to give the total 

penalized system unavailability value for each possible FDS design, i.e. 

 PPPPPsyssys STMECSPMCSTCLCCQQ +++++=' .                                   (7.31) 

 

Modifications of the Genetic Operators. The fitness conversion method used in the 

selection process for the HIPS system (Section 5.4) has been modified due to the 

complexity of the FDS system. The range of fitness values that represent a design is 

larger, hence, an extra category has been incorporated and the bounds of each category 

have been modified. The new method consists of ten categories with values from the 

interval from 0 to 0.4. 
 

Since the search space occupied by the maintenance test interval (MTI) parameters is 

comparatively large, it was decided [Pattison, 1999] to store the MTI parameters on a 

separate binary string (referred to as string 2) and, hence, isolate the action of genetic 

operators (crossover and mutation) on these variables. All other parameters are stored 

on string 1, which is affected by crossover and mutation in the normal manner. After 

each modification, the parameter set of the possible FDS designs is checked for 

feasibility. Each check follows any design modification, leading to the system 
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unavailability, spurious trip frequency calculation and, hence, life cycle costs and 

penalised system unavailability re-evaluation. As a result, the fittest design is selected to 

enter the new population. 

 

Results. The GASSOP has been tested 10 times with a population of 20 strings and 100 

generations. The mutation and crossover rates were selected as 0.01 and 0.7 

respectively. Each run required several hours. The best design arose in the 2nd run and 

produced a system unavailability of 1.263×10-2. Therefore, this design is over 98.73% 

available. Table 7.3 shows the characteristics of this design.  

 
Table 7.3 Characteristics of the Best FDS Designs 

General  Firewater Supply and Distribution System 

K  N P FE F FP FT 

1 3 1 3 6 50% 2 

AFFF Supply and Distribution System Valve and Material Types 

AE A AP W D C 

1 2 100% 3 3 2 

Maintenance Intervals 

θP θR θD θPM 

18 1 3 18 

Optimization Parameter Values 

STC SPMC TMEC LCC Fsys Qsys Q’
sys 

8759.3 11123.8 29640.7 120386 0.403 1.263e-2 1.263e-2 

 

Ten runs of the program resulted in designs with similar parameter values [Pattison, 

1999]. Considering the deluge system, both the water and AFFF deluge valve are 

predominantly of type 3. The pipe work is consistently of type 2, i.e. the non-corrosion 

resistant material. The combination of 3 firewater pumps, 1 electrically driven and 2 

diesel driven is dominating for the firewater supply and distribution system.  

 

Considering the AFFF pump system, two combinations repeatedly arise. They are: two 

100% pumps (1 electric and 1 diesel) and four 50% pumps (2 electric and 2 diesel). It 
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can be noticed, that the balance in the number of electric to diesel pumps leads to the 

fittest designs (particularly regarding those of 50% capacity).  

 

The pressure transmitters are predominantly of type 1, thus, preventing the number of 

spurious trip occurrences from exceeding its limit of 0.75 per year. A strong pattern 

arises in the values assigned to the maintenance test interval parameters and the total life 

cycle cost of the system.  

 

The maintenance test interval for the ringmain is set as 1 week for all but one of the best 

designs. The deluge skid is consistently tested at 3 monthly intervals. The test interval 

between preventative maintenance, conversely, tends to be at the higher end of its range, 

i.e. 15 to 18 months. Greater variation exists regarding θP. 

 

 The total life cycle cost of each of the best designs approaches the limit of 125000 

units. Hence, the majority of the best designs utilise all of the available recourses.  

 

 

7.5 SPEA2 Implementation to FDS 

 

The Improved Strength Pareto Evolutionary Algorithm Safety System Optimization 

Procedure (ISPEASSOP), described in chapter 6, has been applied to the FDS system. 

The framework of the program is predominantly the same as for the HIPS. The main 

differences occur in coding and initialization subroutines Generate_population, 

Calc_opt_param, Cost_mdt and Penalties (section 6.2.1), and in the FDS design 

construction subroutines House_event_data, Calc_HE_values, Formate_data_unav and 

Formate_data_spur (section 6.2.2). All optimization subroutines were slightly modified 

due to the extension of the number of optimization parameters. All differences and 

modifications made to the ISPEASSOP are discussed in sections 7.5.1 – 7.5.3. 
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7.5.1 Modifications for Coding and Initialization 

 

Each potential FDS design is described by 17 parameters (Table 7.1). The subroutine 

Generate_initial_population produces the initial population of 20 strings, 43 bits in 

length. The number of bits allocated to and the order in which each parameter is stored 

is shown in table 7.4. 
 

Table 7.4 The FSD Parameter Set Binary Representation 

Variable Description Values No. of 
bits 

N Number of pressure transmitters fitted on the ringmain 1, 2, 3, 4 3 
K Number of pressure transmitters required to trip  1 - N 3 
P Pressure transmitter type 1, 2 or 3 2 
FE Number of the electrically powered firewater pumps 0 – 4 3 
FD Number of the diesel firewater pumps 0 – 4 3 
FP The percentage of the capacity of the firewater pumps 100, 50, 33.3% 2 
FT The pump type  1 or 2 1 
AE Number of the electrically powered AFFF pumps 0 – 2 2 
AD Number of the diesel AFFF pumps  0 – 2  2 
AP The percentage of the capacity for the AFFF pumps 100% or 50% 1 
W Water deluge valve type 1, 2 or 3 2 
D AFFF deluge valve type 1, 2 or 3 2 
C Type of the materials for certain purpose 1 or 2 1 
θP Maintenance test interval for the firewater and AFFF  1 to 28 days 5 
θR Maintenance test interval for the ringmain 1 to 24 weeks 5 
θD Maintenance test interval for the deluge skid 3 to 18 months 3 
θPM Preventative maintenance on components of wear-out type  3 to 18 months 3 

 

The subroutine Calc_opt_parameters evaluates the values of all 17 design parameters 

and changes the infeasible parts of the string according to the following rules: 

 

1. While N < 1 or N > 4, regenerate N; 

2. While K = 0 or K > N, regenerate K; 

3. If P = 0, regenerate P; 

4. If Fp = 0, regenerate Fp, value 1 refers to 100%, 2 to 50% and 3 to 33.33%; 

5. If FE > 4, regenerate FE; 

6. If FD > 4, regenerate FD; 

7. F is the total number of the firewater pumps: 

If FP = 1 (100%), F values are in the range 1 – 8, 

If FP = 2 (50%), F values are in the range 2 – 8, 

  If FP = 3 (33.33%), F values are in the range 3 – 8. 
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 Hence, 

If FP = 1 and F = FE + FD < 1, while FE + FD < 1 regenerate FE  and FD; 

If FP = 2 and F = FE + FD < 2, while FE + FD < 2 regenerate FE  and FD; 

If FP = 3 and F = FE + FD < 3, while FE + FD < 3 regenerate FE  and FD. 
 

 

 

8. FT  = 0 refers to type 1 and FT  = 1 refers to type 2. 

9. Ap = 0 refers to 100%, Ap = 1 refers to 50%. 

10. If FE = 3, regenerate FE; 

11. If FD = 3, regenerate FD; 

12. A  is the total number of the AFFF pumps: 

If AP = 0 (i.e. 100%), A values are in the range 1 – 4, 

  If AP = 1 (i.e. 50%), A values are in the range 2 – 4. 

 Hence, 

If AP = 0 and A = AE + AD < 1, while AE + AD < 1 regenerate AE  and AD; 

If AP = 1 and A = AE + AD < 2, while AE + AD < 2 regenerate AE  and AD. 
 

13. If W = 0, regenerate W; 

14. If D = 0, regenerate D; 

15. C = 0 and C = 1 refer to the old  and new type of material respectively. 

16. While QP  = 0 or QP  > 28, regenerate QP; 

17. While QR  = 0 or QR  > 24, regenerate QR; 

18. While QD  = 0 or QD  = 7, regenerate QD; 

19. While QPM = 0 or QPM  = 7, regenerate QPM. 

 

It is important to note, that an integer in the range 1 to 6 is generated for parameters QD 

and QPM. The resulting value is subsequently multiplied by 3, so that each parameter is 

assigned a value in accordance with its feasible range, i.e. 3 to 18 months in 3 month 

intervals. 

 

Since the maintenance down time (MDT) is not an optimization parameter of the FDS, 

the subroutine Cost_mdt  from the initial version of the ISPEASSOP was changed by 

the subroutine Cost_calc. The new subroutine evaluates the initial FDS cost, the total 

cost of maintenance effort (SCMC), the total cost of preventative maintenance effort 

(SPMC), the total testing cost (STC) and the total life cycle cost of the system (LCC). 
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The calculation of these costs is explained in detail in section 7.3.1. The subroutine 

Penalties evaluates penalties for each potential system design by using equations 7.24-

7.29. Each penalty is, therefore, added to the system unavailability. 

 

 

7.5.2 Modifications of Design Construction  

 

The total number of house events in the FDS unavailability fault tree is 59. The routine 

House_event_data  formats the  house event array, which contains the values of each 

house event for all population strings. This routine is based on the subroutine 

Calc_HE_values, which calculates house events values for each potential design in 

accordance with the optimization parameter values (Table 7.4). Table 7.5 represents the 

house event values evaluation rules. 
 

Table 7.5 House Event Values Evaluation Rules 

House Event Description Evaluation Rule 

h1s 1 PT is fitted   TRUE if N = 1 
h2s 2 PT are fitted   TRUE if N = 2 
h3s 3 PT are fitted   TRUE if N = 3 
h4s 4 PT are fitted   TRUE if N = 4 
h1ts 1 PT is required to trip TRUE if K = 1 
h2ts 2 PT are required to trip TRUE if K = 2 
h3ts 3 PT are required to trip TRUE if K = 3 
h4ts 4 PT are required to trip TRUE if K = 4 
hpt1 PT type 1 is fitted TRUE if P = 1 
hpt2 PT type 2 is fitted TRUE if P = 2 
hpt3 PT type 3 is fitted TRUE if P = 3 
h1p 1 firewater pump is fitted TRUE if F = FE + FD = 1 
h2p 2 firewater pumps are fitted TRUE if F = FE + FD = 2 
h3p 3 firewater pumps are fitted TRUE if F = FE + FD = 3 
h4p 4 firewater pumps are fitted TRUE if F = FE + FD = 4 
h5p 5 firewater pumps are fitted TRUE if F = FE + FD = 5 
h6p 6 firewater pumps are fitted TRUE if F = FE + FD = 6 
h7p 7 firewater pumps are fitted TRUE if F = FE + FD = 7 
h8p 8 firewater pumps are fitted TRUE if F = FE + FD = 8 
he0 no electric pumps are fitted TRUE if FE = 0 
he1 1 electric pump  is fitted TRUE if FE = 1 
he2 2 electric pumps are fitted TRUE if FE = 2 
he3 3 electric pumps are fitted TRUE if FE = 3 
he4 4 electric pumps are fitted TRUE if FE = 4 

 

 

 

 



 146

 

Table 7.5 …continued 

he_no1 electric pump number 1 is fitted TRUE if FE = 1, 2, 3 or 4 

he_no2 electric pump number 2 is fitted TRUE if FE = 2, 3 or 4 

he_no3 electric pump number 3 is fitted TRUE if FE = 3 or 4 

he_no4 electric pump number 4 is fitted TRUE if FE = 4 

hd_no1 diesel pump number 1 is fitted TRUE if FD = 1, 2, 3 or 4 

hd_no2 diesel pump number 2 is fitted TRUE if FD = 2, 3 or 4 

hd_no3 diesel pump number 3 is fitted TRUE if FD = 3 or 4 

hd_no4 diesel pump number 4 is fitted TRUE if FD = 4 

h501 50% capacity elec. Pump type 1 is fitted TRUE if FP= 2 and FT = 1 

h502 50% capacity elec. Pump type 2 is fitted TRUE if FP= 2 and FT = 2 

h331 33.3% capacity elec. pump type 1 is fitted TRUE if FP= 3 and FT = 1 

h332 33.3% capacity elec. pump type 2 is fitted TRUE if FP= 3 and FT = 2 

ha1p  1 AFFF pump is fitted TRUE if A = AE + AD = 1 

ha2p  2 AFFF pumps are fitted TRUE if A = AE + AD = 2 

ha3p  3 AFFF pumps are fitted TRUE if A = AE + AD = 3 

ha4p  4 AFFF pumps are fitted TRUE if A = AE + AD = 4 

hae0 0 AFFF electric pumps are fitted TRUE if AE = 0 

hae1 1 AFFF electric pumps is fitted TRUE if AE = 1 

hae2 2 AFFF electric pumps are fitted TRUE if AE = 2 

hae_no1 AFFF electric pump number 1 is fitted TRUE if AE = 1 or 2 

hae_no2 AFFF electric pump number 2 is fitted TRUE if AE = 2 

had_no1 AFFF diesel pump number 1 is fitted TRUE if AD = 1 or 2 

had_no2 AFFF diesel pump number 2 is fitted TRUE if AD = 2 

ha100 AFFF 100% capacity pumps are fitted TRUE if AP = 0, i.e. 100% 

ha50 AFFF 50% capacity pumps are fitted TRUE if AP = 1, i.e. 50% 

ha501 50% capacity electric AFFF pump type 1 is 
fitted 

TRUE if AP = 1 and FT = 1 

ha502 50% capacity  electric AFFF pump type 2 is 
fitted 

TRUE if AP = 1 and FT = 2 

hav1 AFFF valve type 1 is fitted TRUE if D = 1 

hav2 AFFF valve type 2 is fitted TRUE if D = 2 

hav3 AFFF valve type 3 is fitted TRUE if D = 3 

h_old old material element is fitted TRUE if C = 1 

h_new new material element is fitted TRUE if C = 2 

hwv1 water spray valve type 1 is fitted TRUE if W = 1 

hwv2 water spray valve type 2 is fitted TRUE if W = 2 

hwv3 water spray valve type 3 is fitted TRUE if W = 3 
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The subroutines Formate_data_unav and Formate_data_spur are responsible for the 

FDS unavailability and spurious trip fault trees construction for each potential design. 

This process involves data file formation for each basic event of the fault tree. Since the 

FDS structure is more complicated compared to the high integrity protection system 

(HIPS), the initial data structure, initially composed for the HIPS elements, has been 

modified. These structures are stored in the text files “ued.txt” and “sed.txt” for the 

unavailability and spurious trip fault trees respectively. Each row represents a basic 

event and the columns are related to:  

 

• event name, 

• type of data (necessary for the BDD construction), 

• failure rate (λ), 

• mean time to repair (τ), 

• unavailability for the events caused by human error (q), 

• β parameter for Weibull distribution, 

• η parameter for Weibull distribution, 

• calculation type (Calctype). This parameter identifies the calculation type for 

each event unavailability (Q) and unconditional failure intensity (w) for later 

optimization steps. Calctype values are integer from the interval [1, 3], i.e.: 

1) if the component is of ‘non-wear-out’ type, the Calctype  = 1. Hence, 

     unavailability of the component 





 +=

2
θτλQ , 

   where θ is an inspection interval (obtained within the program), and 

unconditional failure intensity  )1( Qw −= λ ; 

2) if the event occurrence is caused by human error, the 2=Calctype : 

             qQ = ; 

3) if the component is of ‘wear-out’ type, the Calctype = 3. In this case 

the component  unavailability is calculated by Weibull distribution, i.e.: 

 0,0,exp1)( >>





















−−= βη

η

β
ttQ ,  
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and unconditional failure intensity is 
 

 )1)(()( Qttw −= λ , 
 

where )(tλ is a hazard rate function (equation 7.1), β and η are Weibull 

distribution parameters, and t is equal to 1 year. 
     

• number of hours manual work required to test the component (HT), 

• cost per hour of manual work to test the component (CHT), 

• number of hours manual work required to repair the component (CR), 

• cost per hour of manual work to repair failure (CHR), 

• cost of spares for each repair carried out (CSR), 

• number of hours manual work required for preventative maintenance (HP), 

• cost per hour of manual work for preventative maintenance (CSP), 

• number of spares stored (NS), 

• storage cost per component (CS), 

• initial cost (C1), 

 

The data for each basic event is taken from tables B.3, B.7, B.8, B.9 and B.11 

(Appendix B). 

 

 

7.5.3 Simple GAs and SPEA2 Results Comparison 

 

Similar to GASSOP [Pattison, 1999], the modified ISPEASSOP program was 

implemented to the FDS optimization with a generated population of 20 strings. In 

order to compare results, in total 10 runs, 100 generations each, of the modified 

ISPEASSOP were made. A maximum of 100 generations was allowed along with a 

mutation rate of 0.01 and crossover rate 0.7. The running time of the program was an 

order of minutes. Table 7.6 represents the best 10 designs of the FDS obtained after 

each run and table 7.7 shows the optimization parameter values for each of these 

designs. 
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Table 7.6 Best Designs of the FDS after 10 Runs of the ISPEASSOP 

ISPEASSOP Run Number Design 
Variables 1 2 3 4 5 6 7 8 9 10 

K / N 1 / 3 1 / 1 1 / 1 3 / 3 1 / 1 2 / 3 2 / 3 1 / 3 2 / 2 2 / 2 
P 2 2 1 3 1 2 2 2 3 3 

 

Firewater Supply and Distribution System 
FE / F 3 / 4 0 / 1 1 / 4 3 / 4 3 / 4 2 / 3 2 / 3 3 / 4 1 / 3 1 / 4 

FP 33.3% 100% 33.3% 33.3% 33.3% 50% 50% 33.3% 33.3% 33.3% 
FT 2 2 2 2 2 2 2 2 1 1 

 
AFFF Supply and Distribution System 

AE / A 1 / 1 1 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 2 / 2 0 / 2 
AP 100% 100% 100% 100% 100% 100% 100% 100% 50% 50% 

 
Valve and Material Types 

W 3 3 2 3 3 2 2 3 1 2 
D 3 3 2 3 3 2 2 3 3 2 
C 0 0 0 0 0 0 0 0 0 0 

 
Maintenance Intervals 

θP 23 15 28 23 16 28 28 23 13 21 
θR 18 4 5 18 6 4 20 18 14 6 
θD 15 15 18 15 18 15 15 15 6 9 
θPM 18 9 15 18 12 9 9 18 9 15 

 
Table 7.7 Optimization Parameter Values for Designs from Table 7.6  

 STC SPMC SCMC LCC Fsys Qsys Q’
sys Q’

sys -Qsys 

1 7796.4 5813.0 27606.2 102966 0.5593 9.321E-03 9.321E-03 0 

2 7935.3 6434.8 34240.6 85561 0.3220 1.012E-02 1.012E-02 0 

3 6767.0 6922.8 29052.2 103342 0.2602 1.078E-02 1.078E-02 0 

4 7796.4 5813.0 27606.3 102666 0.2002 9.321E-03 9.321E-03 0 

5 11381.6 8719.4 18403.5 99755 0.2613 9.436E-03 9.436E-03 0 

6 6892.4 12862.9 33277.8 117533 0.2033 1.081E-02 1.081E-02 0 

7 6423.1 12862.9 33277.8 117064 0.2033 1.078E-02 1.078E-02 0 

8 7796.4 5813.0 7606.2 102966 0.5593 9.321E-03 9.321E-03 0 

9 13766.2 10368.7 9396.6 93582 0.2020 1.360E-02 1.360E-02 0 

10 9857.9 7470.3 18265.2 103643 0.2022 1.284E-02 1.284E-02 0 
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There are three main FDS optimization parameters. They are the total life cycle cost 

(LCC), the spurious trip frequency (Fsys) and the penalized system unavailability (Q’
sys). 

Results (Table 7.7) show that all best designs satisfy the limitations from table 7.2, since 

the difference between the original system unavailability (Qsys) and the penalized 

system unavailability is equal to zero for all obtained designs. The lowest life cycle cost 

(LCC = 85561) was produced by run 2. The smallest spurious trip frequency appears in 

run 4. The smallest system unavailability was obtained in runs 1, 4 and 8. Therefore, the 

fourth design can be considered as the best after 10 runs, since it dominated other 

designs in terms of the system unavailability and the spurious trip frequency.   

 

Figures 7.2, 7.3 and 7.4 represent the graphical comparison of the firewater deluge 

system LCC, Fsys and Q’
sys obtained by the simple GAs [Pattison, 1999] and SPEA2 

optimization algorithms respectively (Table 7.7). The circles on each graph correspond 

to the fittest design parameter values obtained by SPEA2. The dotted and solid lines 

indicate the maximum and minimum parameter values obtained by simple GAs 

respectively. 
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Figure 7.2 Comparison of the LCC obtained by GAs and SPEA2 
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Figure 7.3 Comparison of the Fsys obtained by GAs and SPEA2 
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Figure 7.4 Comparison of the Q’

sys obtained by GAs and SPEA2 

 

Figures 7.2-7.4 show that, similar to the HIPS system optimization, the SPEA2 

algorithm, implemented to the FDS system, finds nondominated solutions faster than 

the simple GAs for a relatively small number of generations. The life cycle cost (Figure 

7.2) is in the same range of values as for simple GAs for all designs. Five runs resulted 
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in a 10% smaller spurious trip frequency compared to the simple GAs results (Figure 

7.3), however, two designs have 25% higher spurious trip frequency. The penalized 

system unavailability obtained by the SPEA2 method is 15% smaller for the majority of 

designs. Since the smallest value of this parameter has been a goal for the simple GA, 

such difference indicates that the SPEA2 based technique is more suitable for the 

complex safety system optimization with a relatively small number of generations.  

 

 

7.6 Summary 

 

• The modified SPEA2 based optimization tool, discussed in previous chapter, has 

been modified further for the application to the firewater deluge system (FDS). The 

following modifications have been done: 
 

a) the new routine for the house event logic interpretation has been 

incorporated into the program structure; 
 

b) the Weibul distribution has been used to represent failures of the wear out 

type components in the system unavailability and spurious trip frequency 

evaluation routines; 
 

c) the SPEA2 search has been amended to reflect the new number of 

optimization parameters; 
 

d) additional limitations to the system design have been incorporated for all 

maintenance costs (i.e. life cycle cost per year, cost per year due to system 

testing, cost per year due to preventative maintenance, cost per year due to 

corrective maintenance, cost per year due to total maintenance effort); 
 

e) the life cycle cost and maintenance down time calculation procedures have 

been changed in order to match the FDS features. 

 

• The modified tool has been successfully applied to the FDS and, similar to the HIPS 

optimization case, found optimal designs faster than the simple GA. 
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• Another important advantage of the SPEA2 method is that it is much faster and 

requires less computer resources comparing to the simple GA. One run of the 

GASSOP program takes several hours. On the other hand, one run of the modified 

ISPEASSOP takes only 12 minutes. Such a difference can be explained by the 

advanced features of the SPEA2 method and the developed fault tree reduction 

technique which reduces the BBD size for each potential system design and, hence, 

results in a shorter program running time. 

 

• It is not envisaged that increasing number of constraints or design options will 

restrict the method and, hence, the developed technique has a potential for 

application to any safety system optimization. Further program improvements are 

discussed in chapter 8. 
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CHAPTER 8 

 

OPTIMIZATION OF HIPS WITH DEPENDENCIES 

 

 

8.1 Introduction 

 

Previous chapters illustrate two examples of offshore safety system optimization by the 

developed algorithm. This algorithm comprises such well-known techniques as fault 

tree analysis and the binary decision diagram method. The use of these methods is 

adequate only if all basic events occur independently, since the techniques are not able 

to take into account the dependencies. It is rare that real safety systems consist of just 

independent components in terms of failure or (and) repair. Failure to identify the 

dependency in the system would result in an incorrect system unavailability and failure 

frequency prediction. Therefore, an appropriate modelling technique is required to 

overcome the problems caused by dependency between components during the system 

unavailability and failure intensity evaluation process. 

 

This chapter introduces the modified optimization technique. The new methodology 

enables optimization of safety systems with dependencies by effective use of the 

Markov modelling tool [Andrews and Moss, 2002]. Different component dependency 

types are overviewed in section 8.2. Section 8.3 discusses the system dependency 

modelling technique and also details the code produced to carry out the optimization 

method. The technique application to the HIPS is illustrated in section 8.4 [Riauke and 

Bartlett, 2009 (2)]. The discussion of the results and their potential improvement is 

provided at the end of the chapter. 

 

 

8.2 Dependency Types 

 

Prior to the optimization process, the safety system dependency groups should be 

identified and numbered. The group number is important since it plays an identity tag 

role in the initial stage of analysis. This section overviews the main types of dependency 

which are frequently encountered in many safety systems [Sun, 2006]. 
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Maintenance Dependency: This type of dependency is common for all safety systems. 

It arises from the situation where one maintenance engineer or a team of engineers has 

to take responsibility for a group of components usually of the same or similar type. If 

several components from the same maintenance group fail subsequently, only one of 

them goes through the repair process. Others wait in a queue for repair until the 

engineer has restored the first component. The queue may be random or prioritized if 

some failures are more critical than others. In both cases the queuing affects repair times 

and, hence, the probability of failure of other components. Therefore, the maintenance 

dependency affects the whole system and influences the system unavailability and 

failure intensity. 

 

Standby Dependency: Redundancy or diversity is commonly used in most safety 

system designs in order to reduce the chance of system failure. It can be achieved by use 

of standby systems. These systems are activated by the primary system failure and take 

over its duty. The likelihood of the standby component failure increases as it 

experiences the operational load due to the failure of the primary operating component. 

Therefore, it is important to take into account the standby dependency for the correct 

system unavailability and failure intensity prediction.  

 

Secondary-failure Dependency: This dependency exists in systems designed of 

components whose failures may be caused by their primary or secondary sources. If the 

component fails under expected operating conditions its failure is classified as primary. 

On the other hand, the secondary failure is caused by failures of other system 

components. Frequently, the secondary failure results in a change of the working 

environment of the primary component and this change causes the primary component 

to fail. 

 

Initiator-enabler Dependency: The initiating event is the event which every safety 

system is designed to mitigate. Hence, the occurrence of such an event activates the 

safety system. The failure of the safety system is a general enabling event. The 

occurrence of the enabling event produces conditions under which the initiating event 

causes a hazard. For a complex system, it is a difficult task to define initiator-enabler 

dependency between system components. 
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Test Dependency: Regular inspection is essential for every safety system in order to 

reveal dormant failures of its components. Some safety systems may be divided into 

relatively independent sub-systems. In this case the inspection is carried out not only for 

individual components but for the whole sub-system. The inspection interval can be the 

same or different for the sub-system and its components.  The difference in these 

intervals results in the test dependency between sub-system components, since for some 

components dormant failures may be revealed during the sub-system inspection. 

Therefore, this affects the components actual downtime. The test dependency influences 

only the individual component failure probability and has no impact on the rise of 

statistical dependency between component failures. However, it is still important to 

identify and specify this dependency for accurate system unavailability and failure 

intensity prediction. 

 

 

8.3 System Dependency Modelling Technique 

 

In 2006 Huiling Sun [Sun, 2006] proposed a new system dependency modelling 

technique. The method includes two main steps. The first is fault tree simplification and 

modularization in order to obtain independent modules containing specific dependency 

groups. Then these modules go through Markov analysis [Andrews and Moss, 2002]. 

As a result, the conventional fault tree structure is maintained. This methodology has 

been integrated into the optimization algorithm for safety systems with dependencies in 

order to enable the use of fault tree analysis and binary decision diagrams, since these 

techniques are the major parts of the developed optimization tool. This section provides 

an overview of the main aspects of this method with accent on the fault tree 

modularization technique (section 8.3.1) and Markov modelling (section 8.3.2). 

 

 

 8.3.1 Fault Tree Modularization 

 

One of the main parts of the dependency modelling technique is Markov analysis of the 

dependent parts of the fault tree. However, one of the weaknesses of the Markov 

method is that the model size grows exponentially with the number of components. 

Therefore, it is essential to simplify the fault tree structure and divide it into the smallest 
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independent parts containing separated dependency groups. The whole process can be 

broken into the following steps [Sun, 2006]: 

 

Step 1.  Reorganization of the dependency information: This step is essential since the 

overlap between different dependencies may exist in the systems containing more than 

one dependency group. In this case, the same event may appear in more than one record 

in the dependency file. Therefore, it is important to ensure that all events which share a 

dependency relationship with the event, repeated in several dependency categories, will 

be included in the same serial. The resulting record no longer represents a single 

dependency relationship and the original dependency group number is no longer an 

appropriate identity tag. Consequently, a dependency serial number is allocated to 

distinguish the group of dependent events. 

 

Step 2. Fault tree simplification: This step is based on the reduction technique used in 

the Faunet code [Platz and Olsen, 1976]. It provides a good framework to reduce the 

fault tree to its minimal form. Three main stages of the fault tree simplification method 

are contraction, extraction and factorisation. During the contraction stage gates of the 

same type (i.e. OR or AND) are contracted to form a single gate. The extraction stage is 

used to identify and extract the common event (factor) from the gate structure. During 

the factorisation stage pairs of independent events that always occur together in the 

same gate type are identified and combined to form a single complex event. 

 

Step 3.  Dependency information formation: This step allocates the dependency serial 

numbers for each gate in the fault tree structure. The dependency of each gate is defined 

by a list of all dependency serial numbers the gate basic events belong to. 

 

Step 4.  Combination of dependent events: The purpose of this step is to restructure the 

fault tree in order to separate the events from the same serial into separate branches. 

Using the information generated in the previous step, each gate is examined in turn. The 

combined new gates lead to a fault tree structure with the smallest independent sub-trees 

for each dependency. 

 

Step 5.  Fault tree modularization: This step is based on the algorithm developed by 

Rauzy [Rauzy and Dutuit, 1996]. The algorithm performs a step-by-step traversal 
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recording each gate and event of the fault tree. It fixes the step number at which the 

first, second, and final visits to each node were made. Each fault tree part is traversed 

only once. Therefore, when the gates appear more than once in the tree, only its first 

appearance is traversed completely. All other appearances of these gates are treated like 

basic events. In order to ensure that dependent basic events featuring the same 

dependency serial will end up in the same module, they are treated as a single basic 

event with the same label during the first traversal. All events from the same 

dependency group will then be replaced with a symbol characterising the particular 

dependency group.  

 

The principle of the modularization algorithm is that if the first visit step number to any 

of the gate descendants is smaller than the first visit step number to this gate, then such 

a descendant must also occur beneath another gate in the fault tree structure. Similarly, 

if the last visit to any of the gate descendants is greater than the second visit number to 

the gate, then again it must occur elsewhere in the tree. Therefore, the gate can be 

classified as a module only if it satisfied two conditions: 

• the first visit to each descendant is after the first visit to the gate; 

• the last visit to each descendant is before the second visit to the gate. 

 

The second pass through the fault tree structure is needed in order to assess these 

conditions. The maximum (Max) of the last visits and the minimum (Min) of the first 

visits of all the descendants for each gate will be obtained based on the result of the first 

traversal. After this search all modules are identified and tagged for future analysis. 

 

Step 6.  Dependency information update: By this step all independent sub-trees 

(modules) are identified and tagged. However, not all of them can go through the 

Markov analysis. It is essential that each module has a mutual dependency, i.e. all its 

dependant descendants should belong to the same dependency serial. This step is 

designed to collect and store such information.  

 

Step 7. Re-modularization of each dependency relationship: The previous step identifies 

all modules with mutual dependency. This step checks if the module is minimal and, 

hence, satisfies the final condition to be analyzed by the Markov method. Firstly, it has 
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to be determined whether a certain module is already the smallest one for the given 

dependency. This is accomplished by using the dependency information provided by the 

preceding step. If any module contains a given dependency serial number and its mutual 

dependency includes the given dependency serial, it can be concluded that this module 

is already the smallest module and does not need further processing.  If the module does 

not satisfy this condition, the search for the smallest independent sub-tree of the given 

dependency serial continues within this module. The search process is divided into three 

stages. To illustrate this technique consider the example module in figure 8.1. The 

module (Gate1) has two dependency serials: the serial one is represented by events A 

and B coloured in grey, the serial two consists of events D and E with a striped pattern. 

 
  Figure 8.1 Example Module 

 

Stage 1. Traverse the module from its top event until the descendant gate with the 

same mutual dependency number is found. Regarding the example module Gate1 

from figure 8.1, the path for the dependency serial one is: Gate1, Gate3. The Gate3 

is a minimal module (labelled as Mod1), since all its descendants occur only under 

this gate in the module Gate1. Therefore, the algorithm stops for the dependency 

serial one at this point. The path for the dependency serial two will be: Gate1, 
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Gate2, Gate5 and Gate6. The gate Gate6 is the first gate in this path which mutual 

dependency includes dependency serial two. 

 

Stage 2. The gate, found in stage 1, would lead to the smallest independent sub-tree 

for the given dependency serial if this gate has been identified as module. If the gate 

is not a module, some of its descendants occur elsewhere in the initial module and, 

therefore, prevent it from being a module. Hence, at this stage all those preventing 

components should be identified. For example, the event C (coloured in black) is the 

preventing element under the Gate6, since it occurs only once under the Gate6 but 

occurs twice in module Gate1.  

 

Stage 3. After all preventing elements have been detected, it is essential to identify a 

new module which includes those preventing components.  If the new potential 

module contains any preventing elements, the procedure repeats until the 

independent module is found. Considering the example from figure 8.1, the path 

upwards the preventing component C is: C, Gate4 and Gate2. The search stops at 

the Gate2, since it is the first gate which also appears in the descending path for the 

Gate6. It indicates that Gate4 and Gate5 are both immediate descendants of Gate2 

and that Gate4 contains the preventing component C. Hence, the potential module is 

now updated to include the combination of Gate5 and Gate4. In the new potential 

module no preventing elements have been identified. Therefore, the combination of 

Gate4 and Gate5 is a new module, labelled as Mod2, and is a smallest for 

dependency serial two. The resulting example module structure is shown in figure 

8.2.

 
Figure 8.2 Resulting Example Module Structure 
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When the fault tree modularization into independent sections is finished, the analysis of 

these independent sub-trees will be carried out by the Markov method, if the section 

contains dependent components; or by the binary decision diagram, if all sub-tree 

components are independent. If the dependent component groups could not be separated 

even after the use of the suggested technique, the whole fault tree is treated as a module 

and goes through the Markov analysis. 

 

 

8.3.2 Markov Model Generation 

 

Incorporation of the Markov method into conventional fault tree analysis is an 

alternative solution to the assessment of systems which contain a dependency 

relationship. The application of the Markov method is realized through the generation of 

the Markov model. It represents the characteristics of the particular dependency 

relationship included in the independent fault tree module. 

 

A complete Markov model is composed of three elements: a list of system states, the 

transition between these states and corresponding transition rate. Consider the example 

from figure 8.3. 

 
Figure 8.3 Example Markov Model 

 

Figure 8.3 represents a Markov model for the module which contains only two 

dependent system components defined as (x, y). Each component may be in one of four 
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possible states, i.e. 0, 1, 2, or 3. State 0 corresponds to the element working condition. 

State 1 means that the component is failed, however, its failure has been revealed and 

the component is currently under repair. Similarly to state 1, state 2 means that the 

component has failed and this failure is already revealed, however the component waits 

in the queue for repair. State 3 corresponds to an unrevealed element failure. Four 

individual component states result in ten possible system states for the Markov model. 

The transitions between these states are represented by arrows. Solid arrows indicate 

failure/repair of one of the basic system components. The corresponding transition rate 

is the failure rate or repair rate of the relevant component. A basic assumption of the 

analysis method is that only one transition is possible in a small time interval. For 

example, the system transits from state (0, 0), when both components are in the working 

condition, to the state (3, 0), when the first component is in failure condition, with 

transition rate λ1 corresponding to the first basic event failure rate.  

 

The dotted arrows represent the interval between the actual component failure time and 

the time this failure is revealed. Unlike other state transitions which are caused by 

component failure or repair, the occurrence of these inspection transitions are 

mandatory and instantaneous at the specific points of time. The transitions represented 

by the dotted arrows will not occur until the inspection is performed.  

 

The manual development of the Markov model, due to their size, can be error-prone. 

Therefore, it should be generated automatically. In order to represent the correct 

dependency relationship, the unique Markov model should be developed for each 

dependency type [Sun, 2006]. This section provides an example of Markov model 

generation for the module with maintenance dependency between components. 

 

Markov model generation for the maintenance dependency: Consider the example 

module from figure 8.4.  Assume that there is only maintenance dependency between 

basic events A and B.  
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Figure 8.4 Example Module 

 

The development of the Markov model requires an initial system state. In most cases, 

this state is configured with each component working normally, i.e. (0. 0). It means that 

in the initial system state no basic events have occurred. With the initial state 

established, the Markov model can be gradually developed by systematically 

considering the transitions that make each component state change. The Markov model 

is complete when all possible transitions from the generated system states result in 

states which are already included in the module. Figure 8.3 represents the general 

Markov module scheme for the example module. Depending on the maintenance time 

interval values for the components A and B, i.e. θA and θB, this general scheme may 

produce three different Markov models for the example module. The main difference 

occurs in the transitions from the system state (3, 3), when both components are in the 

unrevealed failure condition: 

  

Case 1. If θA is smaller than  θB, component A failure will be revealed first and it will go 

through the repair process. Therefore, the system transition path will be: 

 (3, 3) → (1, 3) → (1, 2).  

 

Case 2. If θA is greater than θB, component B failure will be revealed first and the 

system transition path will be: 

 (3, 3) → (3, 1) → (2, 1).  

 

Case 3. If θA is equal to θB, both component failures will be revealed at the same time. 

In this case, the safety system maintenance engineer will choose the more important 

component to be repaired first. If components have no clear repair priority, it is assumed 

that they will be repaired in the same order as they appear in the module, i.e. from left to 
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right. Hence, the transition sequence will be similar to case 1 or case 2 depending on 

that order. 

 

When the number of the module components is greater than two, the complexity of this 

scheme grows rapidly. Therefore, a systematic approach is needed. Sun [Sun, 2006] 

suggested the following algorithm to ensure that each possible state transition is taken 

into consideration when two or more dormant (unrevealed) failures exist in the system: 
 

 Step1. Calculate the common multiple θcom for the inspection interval of the 

basic events which in the current state are tagged with unrevealed failure code 

‘3’. 

 Step2. Consider the first basic event with the current state ‘3’. Start with its 

inspection interval θi. Establish the possible state transitions when time point T = 

θi,  2θi,  3θi, …,  θi. At each of these points of time, make the new state of the 

basic event to be revealed, i.e. change from ‘3’ to ‘1’. Meantime record the time 

condition for each transition. 

 Step 3. Consider the next basic event with state ‘3’. Repeat step 2 until every 

basic event with state ‘3’ has been examined. Points of time which have been 

considered with the previous basic events will be skipped.  
 

The generation algorithms for other dependency types are discussed in chapter 9. 

 

 

8.3.3 Quantitative Analysis for Safety Systems with Dependencies 

 

This section discusses how the quantitative analysis is carried out in the identified 

modules using different techniques and how each module results are interpreted within 

the overall fault tree structure in order to obtain the final system unavailability and 

failure intensity.   
 

After the fault tree modularization and Markov model generation for each independent 

module, all Markov models should be quantified in order to obtain the relevant 

reliability parameters. The Markov model provides the exhaustive list of all possible 

system states. The module can experience different system states at different times 

during its working period. The total probability of the system residing in all of these 
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states is equal to 1. The system states can be split in two groups: those states in which 

the system functions normally; and states which lead to the top event occurrence due to 

specific failure. Hence, the module failure probability can be obtained by summing up 

the probabilities of all system states belonging to the second category.  Alternatively, 

the probability of the module functioning is equal to the sum of the first category states 

probabilities.  
 

Consider a general Markov model consisting of n system states, of which states 1, 2,…, 

k are working system states and states k + 1, k +2, …, n are failed system states. 

Therefore, the module failure probability, QM(t), can be expressed by equation 8.1 

[Andrews and Moss, 2002]: 
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where Qi(t) is the probability of system residing in state i at time t. Considering the 

probability that the module is residing in state i at time t+dt, two situations should be 

taken into account: first, the module could be in state j at time t and, hence, transit to 

state i during time interval dt; second, the module could be in state i at time t and it 

remains in the same state during the interval dt. Therefore: 
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Since 0→dt , equation 8.2 can be simplified. Its matrix form is shown in equation 8.3. 
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where matrix [A] is the state transition matrix with elements ija  corresponding to 

transition rate from state i to state j, and ∑
≠
=

−=
n

ji
i

ijii aa
1

. This matrix is formulated directly 

from the Markov model using the following rules: 
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 Rule 1. [A] is a square matrix with the number of components equal to the 

number of states in the model. 
 

 Rule 2. All rows summate to zero. 
 

 Rule 3. Component aij represents the transition rate from state i to state j. 
 

 Rule 4. A diagonal element aii is the transition rate out of state i (always a 

negative value). 

 

The Markov model has two types of solution: the steady-state and the transient. When 

the system is in the steady-state condition, the probability of being in any other state 

will not change with time. These probabilities are independent from the initial system 

state. Hence, the steady-state solution for each state in the Markov model can be 

obtained by equation 8.4: 
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The module failure probability, )(∞MQ , therefore, can be given by equation 8.5: 
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The transient solution provides the probability of the system residing in any of the states 

at any specific point of time t by progressing from the initial system state in 

insignificant time steps, dt. In this case, starting from time t = 0 and using equation 8.3, 

the state probabilities at discrete time points with constant interval dt can be obtained 

as: 
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where [P] is a square transition probability matrix with components dtap ijij ⋅= , for 
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The states with dormant failures require additional assumptions. Consider the transition 

from state i to state j that occurs after the regular inspection interval θ. Then if 

,θ=dt ,...,2θ  θm : 
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where )(/ dtQ represents the updated state probability at the point in time immediately 

following the inspection. 

 

The module unconditional failure intensity, )(twM , for the general Markov model can 

be expressed as: 
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where state i corresponds to the working module state and )(taij is the transition rate 

from state i to state j in which the module is failed.           

 

 

8.4 HIPS with Dependency Optimization 

 

The dependency overcoming techniques (FT modularization and Markov Analysis), 

discussed in section 8.3, have been incorporated into the developed ISPEASSOP 

optimization tool. The ISPEASSOP modified version has been applied to the HIPS 

optimization. This section provides the details of this application. The schematic 

structure of the modified ISPEASSOP program is shown in figure 8.5.   

 

 
Figure 8.5 Modified ISPEASSOP Program Schematic Structure 
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In figure 8.5 program parts one, two and three refer to the ISPEASSOP program parts 

previously discussed in chapter 6 and shown in figures 6.2, 6.2 and 6.10 respectively.  

Sections 8.4.1 and 8.4.2 describe the new part of the program. 

 

 

8.4.1 HIPS Dependency Groups 
 

In the HIPS the only dependency type present is the maintenance dependency. In total 

eight dependency groups have been identified for the general HIPS structure, four for 

each fault tree (i.e. unavailability and spurious trip). These groups are summarised in 

table 8.1. It is assumed that each group is maintained by one engineer. 

 
Table 8.1 HIPS Dependency Groups 

Group 
No Event Name Component Description Fault Tree 

Type 

1 pt11, pt12, pt13, pt14, pt15, 
pt16, pt17, pt18 

 
Pressure transmitters of type 1 

2 pt21, pt22, pt23, pt24, pt25, 
pt26, pt27, pt28 

 
Pressure transmitters of type 2 

3 

wv,  
mv, 
esd11, esd12, 
hips11, hips12  

Subsystem 1:  wing valve, 
                       master valve, 
                       ESD valves of type 1. 
Subsystem 2:  HIPS valves of type 1 

4 

wv,  
mv, 
esd21, esd22, 
hips21, hips22 

Subsystem 1:  wing valve, 
                       master valve, 
                       ESD valves of type 2. 
Subsystem 2:  HIPS valves of type 2 

Unavailability

5 spt11, spt12, spt13, 
spt14, spt15, spt16, spt17, spt18 

 
Pressure transmitters of type 1 

6 spt21, spt22, spt23, spt24, spt25, 
spt26, spt27, spt28 

 
Pressure transmitters of type 2 

7 

wvs,  
mvs, 
sesd11, sesd12, 
ships11, ships12  

Subsystem 1:  wing valve, 
                       master valve, 
                       ESD valves of type 1. 
Subsystem 2:  HIPS valves of type 1 

8 

wvs,  
mvs, 
sesd21, sesd22, 
ships21, ships22 

Subsystem 1:  wing valve, 
                       master valve, 
                       ESD valves of type 2. 
Subsystem 2:  HIPS valves of type 2 

Spurious Trip 

 

The dependency data from table 8.1 is stored in the text file “HIPSdept.txt”. This file 

has a row-column structure. Each row represents a dependency group and the columns 

are related to: 
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• dependency group name, 

• group dependency type (mt  for maintenance dependency type), 

• number of dependent components, 

• number of maintenance engineers for this group, 

• array of dependent components. 

 

The dependency information from table 8.1 is formed in the Initial_dependency routine. 

The program reads the data from the file “HIPSdep.txt” into the data array DP, which 

structure is similar to the initial data file. 

 

 

8.4.2 Technique Application to HIPS Optimization 

 

To demonstrate the application of the modified optimization tool to the HIPS, consider 

an example possible HIPS design, shown in figure 8.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8.6 Example HIPS Design 
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Step 1. Dependency Information Formation: The subroutines HIPS_dependency_U 

and HIPS_Dependency_S identify the dependency groups and number of dependent 

components for each potential HIPS design by comparing the design fault tree events to 

the information stored in the dependency array DP. The example HIPS design contains 

only two dependency groups from table 8.1. These groups are: 
 

 Group 2:   pt21, pt22, pt23.  

 Group 3:   wv, mv, esd12. 

 

In figure 8.3 the second and third dependency groups components are coloured in black 

and grey respectively. In this example there are only two dependency serials: serial one 

and two are equal to the dependency group 2 and 3 respectively. 

 

 

Step 2. Fault Tree Simplification: The first step of the fault tree simplification process 

starts with the contraction technique, implemented in the subroutine Contraction. In the 

example HIPS design fault tree, shown in figure 8.6, all gates except for G34, G35 and 

G36 have the same type as the Top gate and, hence, should be eliminated from the fault 

tree structure. The resulting fault tree is shown in figure 8.7.  

 

 

 

 

 

 

 

 

 
Figure 8.7 Example HIPS Design FT after Contraction 

 

The algorithm for the contraction step is shown in figure 8.8. 
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Contraction  
{ 
       go through all gates in the FT structure: 
      { 
              IF (the gate has input gates) 
                  FOR (the first to the last input gate) 
                           check the input gate type; 
         
              IF (all input gate types are equal to the gate type) 
               { 
                   replace the gate with its input gates; 
                   remove the gate from the FT structure; 
                } 
                            
              check the FT structure for repeated gates and events; 
              delete repeated components if necessary. 
       } 
} 
 

Figure 8.8 The Algorithm for the Contraction Step 
 

The contraction step is followed by the extraction step, implemented in the routine 

Extraction, which includes the subroutines ExtractionAND and ExtractionOR for AND 

and OR gate types respectively.  In this step the common events are extracted from the 

same type gates. The program analyses the fault tree structure from left to right, hence, 

the first two gates to be considered are G34 and G35. These gates are of the same type 

(AND) and have a common event pt21. Hence, the subroutine ExtractionAND, will 

transform the example fault tree structure as shown in figure 8.9. The extraction 

procedure stops at this point, since there are no more input gates from the same gate 

with common events. 
 

 

 

 

 

 

 

 

 

 
 

Figure 8.9 Example HIPS Design FT after Extraction 

 

The algorithm for the extraction step is shown in figure 8.10. 
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ExtractionOR/AND 
{ 
          go through all gates in the the FT structure: 
                   IF (the gate type is “OR”/ “AND”) 
                         IF (the gate has two or more input gates) 
                              FOR (i from the first to the last input gate)  
                                       FOR (j from the first to the last input gate) 
                                                IF (i and j are of the same type) 
                                               { 
                                                     IF (gates have identical input components) 
                                                          create a new gate for these components; 
                                                          IF (the new gate has only two input events) 
                                                               IF (the gate i / j  have only two input events) 
                                                                    replace the gate i / j by the newly created gate; 
                                                                    delete the gate i / j from the FT structure; 
                                                               ELSE  amend the gate i / j structure; 
                                               } 
         check the logic of the amended FT; 
} 

 

Figure 8.10 The Algorithm for the Extraction Step 

 

Factorization is the third and final step of the fault tree simplification algorithm and is 

implemented in the subroutine Factorisation. The program searches for the independent 

fault tree events, which appear once in its structure or several times but only as the 

descendants of the same gate. In the example FT such events are: sve2, r11, r12, plc1, 

swv and smv. Each pair of the independent events, found first, is changed by a new 

event. The new event names are generated in the subroutine Array. The search 

continues till all independent events are grouped where appropriate. Therefore, in the 

example HIPS fault tree the following structural amendments should be done: 

 

 sve2 and r11 are changed by Fact1, 

 r12 and plc1 are changed by Fact2, 

 swv  and smv are changed by Fact3, 

 Fact1 and Fact2 are changed by Fact4, 

 and Fact3 and Fact4 are changed by Fact5. 

 
 

Every time the events are grouped their reliability data (unavailability and failure 

frequency) is combined according to the gate type within the subroutine Array. The 

overall algorithm for the factorisation procedure is shown in figure 8.11. 
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Factorisation 
{ 
       go through all gates in the FT structure: 
 
             IF (the gate has two or more input events) 
             { 
                  FOR (each pair of input events) 
                   { 
                           IF (events are independent) 
                           { 
                                IF (events occur together everywhere else in the FT structure) 
                                { 
                                     create a new event; // (fact1, …, factn) 
                                     evaluate reliability data for the new event; 
                                     amend FT structure; 
                                } 
                            } 
                   } 
              } 
} 

 

Figure 8.11 The Algorithm for the Factorisation Step  

 

The resulting example HIPS design fault tree after this step is shown in figure 8.12. 

 

 
Figure 8.12 Example HIPS Design FT after Factorization 

 

The discussed FT simplification subroutines (contraction, extraction and factorization) 

are incorporated to the routine ModifyFT, which is applied to each potential HIPS 

design in both the unavailability and spurious trip fault trees.  
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Step 3. Dependency Information Formation: After the fault tree simplification the 

next important step is the allocation of each gate dependency serial numbers. The 

subroutines Form_dep_unav and Form_dep_spur go through unavailability and 

spurious trip fault tree structures and form the dependency information for each gate. 

Table 8.2 shows the results for the example HIPS design. 
 

Table 8.2 Example HIPS Design FT Gate Dependency Serials  

Gate Name Serial Number 

Top 1, 2 
G34 1 
G35 1 
G36 1 

 

 

Step 4. Combination of Dependent Events: The final fault tree restructure step before 

modularization is the combination step, implemented in subroutines Comb_dep_unav 

and Comb_dep_spur for unavailability and spurious trip fault trees respectively. The 

program examines the fault tree structure and groups the same dependency serial events 

into separate branches. During this process additional gates are added to the fault tree 

structure. These gates do not affect the logic of the fault tree, since they have the same 

type as the gates which contain the dependent events.  

 

For the example HIPS design, two gates (Comb1 and Comb2) should be added to 

separate the dependency serial 1 and 2 components from other fault tree components 

(Figure 8.14). Figure 8.13 shows the general algorithm for the combination technique. 

 
Combination 
{ 
         go through all gates in the FT structure: 
               IF (gate has several dependency serials) 
               { 
                     group its dependent input gates and/or events by the dependency serial; 
                     create a new gate for each dependency group; 
                     amend the gate structure; 
                     add new gates to the FT structure;                      
                } 
         check the logic of the FT structure; 
} 

 

Figure 8.13 The Algorithm for the Combination Technique 
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Figure 8.14 Example HIPS Design FT after Combination 

 
 

Step 5. Fault Tree Modularization: The modularization algorithm is implemented in 

the program routine Modularization. The search starts from the top of the fault tree and 

goes to the bottom in the left to right direction. During the search the first, second and 

last visit numbers to all components are fixed in a new array. Then for each gate the first 

minimal and the last maximum visit number to any of its descendant is calculated from 

the search results.  

 

If the gate is a module (i.e. satisfies both conditions discussed in section 8.3.1) the first 

indicator (indicator1) is set to 1, otherwise its value is set to zero. If the gate is a 

module, the subroutine Update_dep checks if this module contains only one 

dependency serial and is minimal. If these two conditions are satisfied the second 

indicator (indicator2) is set to 1, otherwise, its value is equal to zero. If indicator 2 is 

equal to one, it is assumed that the gate is the independent module and can go through 

Markov analysis. Figure 8.15 shows the generalized algorithm for the modularization 

step. 
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Modularization 
{ 
       FOR (the top gate to the bottom gate): 
                            Fix the first, second and last visit numbers to all gates and events; 
              IF (the gate satisfies both conditions discussed in section 8.3.1) 
                          set indicator 1 to 1; 
                     ELSE set indicator 1 to 0; 
       Go through all gates in the FT structure: 
                           IF (the gate is a module, i.e. indicator1 = 1)AND(the module is minimal) 
                          AND(the module has only one dependency type) 
                                    set indicator2 to 1; 
                     ELSE set indicator2 to 0; 
                     IF (indicator2 = 1) module is independent and will go through the Markov analysis; 
                     ELSE apply the algorithm from section 8.3.1 (step 7); 
 } 

Figure 8.15 The Algorithm for the Modularization Step 

 

Table 8.3 shows the modularization results for the example HIPS design fault tree from 

figure 8.10. 
Table 8.3 Example HIPS Design FT Modularization Results 

Gate 
Name 

1st Visit 
Number 

2nd Visit 
Number 

Last 
Visit 

Number 

Total 
No of 
Visits 

First 
Min 
Visit 
No 

Last 
Max 
Visit 
No 

Indicator 
1 

Indicator 
2 

Top 1 21 21 2 2 20 1 0 
Comb1 2 14 14 2 3 13 1 1 

G34 3 9 9 2 4 12 0 0 
G35 4 7 7 2 5 12 0 0 
G36 10 13 13 2 5 12 0 0 

Comb2 15 19 19 2 26 28 1 1 
Event 
Name  

spt22 5 12 12 2 - - - - 
spt23 6 11 11 2 - - - - 
spt21 8 8 8 1 - - - - 
esd12 16 16 16 1 - - - - 
Mv 17 17 17 1 - - - - 
Wv 18 18 18 1 - - - - 

Fact5 20 20 20 1 - - - - 
 

It can be seen from table 8.3 that only gates Top, Comb1 and Comb2 satisfy the module 

conditions (Indicator 1 is equal to 1). However, only gates Comb1 and Comb2 are 

minimal and have only one dependency serial each. Therefore, the indicator 2 value is 

equal to 1 for both gates and they are assumed to be the final independent modules, 

which will go through Markov analysis.  
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Markov Analysis: The subroutine Apply_Markov identifies the independent modules in 

the fault tree and applies the Markov models to them (Figure 8.17). The Markov models 

are generated by the subroutine Markov for each module separately. The quantification 

of the model is performed by the subroutine Determinant. When the Markov modelling 

for the independent module is complete (i.e. the module unavailability and spurious 

failure frequency are evaluated), the module is replaced by a new event, generated in the 

subroutine Array. Hence, in the example HIPS design fault tree the gates Comb1 and 

Comb2 will be replaced by the events Mark1 and Mark2. The reliability data from 

Markov analysis for these new events will be added to the common HIPS event data 

array. The final structure of the example HIPS design fault tree is shown in figure 8.16. 

This final structure is dependency free and, therefore, can be analysed by conventional 

FT and BDD techniques.  

 
Figure 8.16 Example HIPS Design FT after Markov Analysis 

 
Apply_Markov (maintenance dependency type) 
{     FOR (the top gate to the bottom gate) 
          { 
                   IF (the gate is an independent module) 
                   { 
                        evaluate the number of components for the Markov model; //i.e. n 
                        establish the initial state; // i.e. (01, …,0n); 
                        generate all other states by using the algorithm from section 8.3.2; 
                        FOR (the first  to the last model state)  
                        { 
                                  evaluate the module (system) state in this model state; 
                                  IF (the module fails in this model state) set the state indicator to 1; 
                                  ELSE set the state indicator to 0; 
                         } 
                         FOR (the first to the last state indicator) 
                                  IF (the state indicator = 1)//state corresponds to the module failure 
                                        Include the state to the list of states corresponding to the module failure; 
                         
                         Evaluate the module unavailability (Qm) and frequency (wm); // equation 8.4-8.8 
                         create a new event and record the Qm and wm in the event data array; 
                         replace the independent module by the newly created event in the FT; 
                        }                   
           } 
      check the logic of the FT structure; 
} 

Figure 8.17 The Algorithm for the Markov Model Generation  
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8.4.3 Results 

 

To test the difference between the results from the optimization of the HIPS with and 

without dependencies, the best ten designs obtained after ten runs of the original 

ISPEASSOP (chapter 6) have been tested with the modified version of the program. 

Table 8.4 shows the comparison of the results. The corresponding design parameter 

values are provided in table 8.5. 
 

Table 8.4 Comparison of the Results for Original ISPEASSOP and ISPEASSOP with Dependencies 

Cost MDT Fsys Qsys Run 
No. Original With 

Depend. 
Original With 

Depend. 
Original With 

Depend. 
Original With 

Depend. 
1 592 129.7008 0.455 0.476 4.50e-7 5.32e-7 

2 512 129.6974 0.332 0.389 8.33e-4 9.26e-4 

3 582 128.7361 0.324 0.350 6.80e-4 7.25e-4 

4 922 128.2273 0.718 0.766 1.00e-6 8.20e-6 

5 882 129.1590 0.166 0.235 1.00e-6 1.60e-6 

6 992 129.2523 0.552 0.612 1.00e-6 8.04e-6 

7 852 128.3286 0.245 0.295 6.55e-4 1.06e-3 

8 542 128.9881 0.324 0.387 8.45e-4 9.01e-4 

9 872 129.9032 0.377 0.437 1.00e-6 5.93e-6 

10 862 129.7309 0.999 0.999 1.00e-6 8.88e-6 

 

Table 8.5 Design Parameter Values for Table 8.4 

Run No. Q1 Q2 V P N1 N2 K1 K2 E H 
1 25 73 1 2 1 3 1 3 0 1 
2 27 105 2 2 1 0 1 0 1 0 
3 64 9 2 1 4 0 3 0 1 0 
4 33 96 1 1 2 3 1 3 1 1 
5 42 53 1 2 4 2 4 1 1 1 
6 34 90 2 2 2 3 2 2 1 2 
7 40 91 1 2 3 0 3 0 2 0 
8 27 118 2 1 2 0 2 0 1 0 
9 26 124 1 2 3 2 3 2 0 2 

10 42 46 1 2 2 2 1 2 1 1 
 

 

It can be seen from table 8.4 that implementation of maintenance dependency for the 

HIPS components resulted on average in 19% higher system unavailability and 15% 

higher spurious trip frequency values for all designs. These changes can be explained by 
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the increase of repair times for individual components due to the implemented 

dependency. 

 

 

 8.5 Summary 

 

• This chapter has suggested and discussed the main dependency types, which may 

exist between the safety system component failures. These types are: maintenance, 

standby, secondary-failure, initiator-enabler and test dependency. 

 

• One dependency type with eight dependency groups have been identified for the 

example HIPS system. The  following modifications have been done to the 

developed optimization tool, discussed in chapter 6, in order to allow the use of fault 

trees and binary decision diagrams for analysis: 
 

a) Dependency information have been formed for the HIPS system; 
 

b) The fault tree simplification and modularization methods have been 

incorporated into the program structure in order to allocate the smallest 

independent sections in the fault tree. 
 

c) The Markov model generation algorithm for the maintenance dependency 

type has been developed and applied to the identified smallest independent 

modules with dependent components.  

 

• The new technique has been applied to the HIPS system. Comparison of the results, 

obtained by the original optimization tool with the assumption that the system 

components are all independent and those, obtained by the suggested optimization 

technique for the system with dependencies, shows that for all potential original 

HIPS designs the system unavailability and spurious failure frequency have been 

underestimated. Therefore, it is important to identify all system dependencies for 

more accurate system unavailability and spurious failure frequency prediction.  

 

• The main weakness of the optimization tool for systems with dependencies is its 

running time. One run of the original program for independent system components 
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is in order of minutes, however, the modified version requires several hours, due to 

the complexity of Markov analysis for a large number of system components even 

after the fault tree modularization.  

 

• Potentially the Markov model size for maintenance dependency type could be 

reduced by increasing the number of maintenance engineers. This change would 

result in the dependent component elimination from the model for each additional 

engineer. This factor could be easily implemented into the optimization code.  

 

• The HIPS is a small safety system with a single dependency type existing between 

its components failures, hence, the developed optimization scheme should be tested 

on a larger safety system with a wider range of dependencies. 
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CHAPTER 9 

 

OPTIMIZATION OF FDS WITH DEPENDENCIES 

 

 

9.1 Introduction 

 

The previous chapter describes the optimization of the high integrity protection system 

with dependencies existing between its components. The HIPS is a relatively simple 

safety system and includes only maintenance dependency. In more complex systems 

two or more dependency types may exist. Therefore, a generalized technique should be 

developed in order to analyse different combinations of dependencies in the system. 

This chapter describes the firewater deluge system (FDS) optimization by the developed 

optimization tool. Section 9.2 discusses the FDS dependency groups. Section 9.3 

introduces the Markov model generation algorithms for all dependency types. Results 

comparison is shown in section 9.4. The discussion of the results and the program 

potential application to any safety system is represented in section 9.5. The chapter 

finishes with the summary (section 9.6). 

 

 

9.2 FDS Dependency Groups 

 

Three main dependency types have been identified for the FDS components. The 

maintenance and test dependencies are relevant to the static system phase and exist due 

to the system maintenance features and the inspection carried out on each pump stream. 

The standby dependency exists in the dynamic system phase between the electric and 

diesel firewater and AFFF pumps. In total 26 dependency groups have been formed. 

Tables 9.1, 9.2 and 9.3 show the structure of maintenance, stand-by and test dependency 

groups respectively. The groups represented in these tables consist of all possible 

dependent events. However, each design will have a particular combination of events 

based on the equipment type and the design configuration. 
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Table 9.1 Maintenance Dependency Groups for FDS System 

Dependency 
Group No 

Events Description 

1 PT11/2/3/4 or PT21/2/3/4 or PT31/2/3/4 
 

Pressure sensors 1-4  (type 1-3) 
 

2 FB01, IVB 011, IVB 012 
 

Firewater jockey pump with filter and 
associated isolation valves  
 

3 E_100_1/2/3/4,  E1_50 1/2/3/4,  E2_50 1/2/3/4, 
E1_33 1/2/3/4, E2_33 1/2/3/4, D_100 1/2/3/4, 
D1_50 1/2/3/4, D2_50 1/2/3/4, D1_33 1/2/3/4, 
D2_33 1/2/3/4 
 

All electric and diesel firewater pumps 

4 IVB 1/2/3/4, CVB 1/2/3/4 
 

All electric firewater valves 

5 IVB 5/6/7/8 and CVB 5/6/7/8 
 

All diesel firewater valves 

6 APT11/2/3 or APT21/2/3 or APT31/2/3 
 

AFFF ringmain components 

7 FB 02, IVB 021 and IVB 022 
 

AFFF jockey pump with filter and 
associated valves  
 

8 AE_100 1/2, AE_50 1/2, AD_100 1/2, 
AD_50 1/2 
 

All electric and diesel AFFF pumps 

9 IVB 9/10, CVB 9/10 
 

All electric AFFF valves 

10 IVB 11/12, CVB 11/12 
 

All diesel AFFF valves 

11 WBS, WBN or WBO, WIVB or AIVB,  
AV1/2/3, ACVB, WV1/2/3 
 

Deluge skid components: 
strainer, inductor nozzle, butterfly 
valve, AFFF deluge valve, AFFF check 
valve, water deluge valve 
 

12 SV1, SV2 Solenoid valve 1  and 2 
 

 

Table 9.2 Standby Dependency Groups for FDS System 

Dependency 
Group No 

Events Description 

13 E_100_1/2/3/4,  E1_50 1/2/3/4,  E2_50 1/2/3/4, 
E1_33 1/2/3/4, E2_33 1/2/3/4 
 
D_100 1/2/3/4, D1_50 1/2/3/4, D2_50 1/2/3/4,  
D1_33 1/2/3/4, D2_33 1/2/3/4 
 

Electric firewater pump 1-4 fails when 
functioning 
 

14 AE_100 1/2, AE_50 1/2,  
 
AD_100 1/2, AD_50 1/2 
 

Electric AFFF pump fails when 
functioning 
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Table 9.3 Test Dependency Groups for FDS System 

Dependency 
Group No 

 

Events Description 

15 FB1, IVC11, IVC12, PRVO1, 
SVO1, DVO, ESF 
 

Elect pump1 with filter and associated equipment: isolation 
valves 11-12, press relief valve 1, test valve 1, test line and 
power supply 
 

16 FB2, IVC21, IVC22, PRVO2, 
SVO2, DVO, ESF 
 

Elect pump2 with filter and associated equipment: isolation 
valves 21-22, press relief valve 2, test valve 2, test line and 
power supply 
 

17 FB3, IVC31, IVC32, PRVO3, 
SVO3, DVO, ESF 
 

Elect pump3 with filter and associated equipment: isolation 
valves 31-32, press relief valve 3, test valve 3, test line and 
power supply 
 

18 FB4, IVC41, IVC42, PRVO4, 
SVO4, DVO, ESF 
 
 

Elect pump4 with filter and associated equipment: isolation 
valves 41-42, press relief valve 4, test valve 4, test line and 
power supply 

19 FB5, IVC51, IVC52, PRVO5, 
SVO5, DVO, DIVC 
 
 

Diesel pump 1 with filter and associated equipment: 
isolation valves 51-52, press relief valve 5, test valve 5, test 
line, diesel supply 
 

20 FB6, IVC61, IVC62, PRVO6, 
SVO6, DVO, DIVC 
 
 

Diesel pump 2 with filter and associated equipment: 
isolation valves 61-62, press relief valve 6, test valve 6, test 
line, diesel supply 
 

21 FB7, IVC71, IVC72, PRVO7, 
SVO7, DVO, DIVC 
 
 

Diesel pump 3 with filter and associated equipment: 
isolation valves 71-72, press relief valve 7, test valve 7, test 
line, diesel supply 
 

22 FB8, IVC81, IVC82, PRVO8, 
SVO8, DVO, DIVC 
 
 
 

Diesel pump 4 with filter and associated equipment: 
isolation valves 81-82, press relief valve 8, test valve 8, test 
line, diesel supply 
 

23 FB9, IVC91, IVC92, PRVO9, 
SVO9, ATIVC 
 

Electric AFFF pump1with filter and associated equipment: 
isolation valves 91-92, press relief valve 9, test valve 9, 
electric supply to AFFF 
 

24 FB10, IVC101, IVC102, 
PRVO10, SVO10, ATIVC 
 

Electric AFFF pump2with filter and associated equipment: 
isolation valves 101-102, press relief valve 10, test valve 
10, electric supply to AFFF 
 

 
25 

FB11, IVC111, IVC112, 
PRVO11, SVO11, ADIVC 

Diesel AFFF pump1 with filter and associated equipment: 
isolation valves 111-112, press relief valve11, test valve11 
 

26 FB12, IVC121, IVC122, 
PRVO12, SVO12, ADIVC 

Diesel AFFF pump2 with filter and associated equipment: 
isolation valves 121-122, press relief valve12, test valve12 
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The dependency groups from tables 9.1 – 9.3 are stored in the “FDSdep.txt” file, which 

has identical structure to the “HIPSdep.txt” file (section 8.4.1). The initial dependency 

arrays are formed in the Initial_dependency routine.  

 

 

9.3 Markov Analysis for FDS 

 

The Markov model generation for the maintenance dependency type has been described 

in chapter 8 (section 8.3.2). In order to perform the Markov analysis for dependent 

components of the FDS system, additional routines have been added to the program 

structure for the test and standby dependency types. Sections 9.3.1 and 9.3.2 discuss the 

Markov model generation for the test and standby dependency types respectively.  

 

 

9.3.1 Markov Model Generation for Test Dependency Type 

 

The test dependency exists in the FDS system due to the discrepancy between a 

common inspection interval for a group of components and the inspection interval for 

individual components. This particular type of dependency has no effect on the 

interaction between component failures and does not change the way component 

failures contribute to the system failure. Hence, this dependency existence does not 

require the Markov method. The numerical solution shown in equation 9.1 can be used 

instead. However, the Markov model should account for the existence of this 

dependency type. 

 

                                               ( )( )mi nnt
i etq θθλ 21 ,max1)( −−−= ,                                           (9.1) 

where:  

          t  is an actual time; 

         iθ  is the individual inspection interval for component i; 

         mθ  is the common inspection interval for the groups of components; 

          ,max( 1 in θ )2 mn θ means that  the component failure probability is considered after 

the most recent inspection (either the individual or common). 
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All groups containing the test dependency (Table 9.3) consist of six or seven 

components. The representing Markov model for each of these groups would exceed 

500 states. It would be an impractical task to illustrate the model of this size as an 

example. Hence, consider a simple module consisting of only two components: FB 

(corresponding to the firewater pump with filter) and IV (corresponding to isolation 

valve on this pump line). Each component may be in one of three states: the working 

state ‘0’, the unrevealed failure state ‘3’ and the revealed failure state ‘1’.  The resulting 

Markov model is shown in figure 9.1. 

 

 
Figure 9.1 Markov Model for Example Module with Test Dependency 

 

In figure 9.1 the time condition for the state with unrevealed failures to transit to the 

state with revealed failures can be expressed by equation 9.2: 

  

                                                             systemkT θ= ,                                                     (9.2) 

 

where k is an integer number and θsystem corresponds to the system common test interval. 

Each time condition represents the discovery of the dormant failure and, therefore, 

causes the transition between states. Table 9.4 summarises the time conditions for the 

example Markov model from figure 9.1. 
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Table 9.4 Time Conditions for Markov Model from Figure 9.1 

Transition from  Transition to Time Condition 

State 2 State 5 2 θ 
State 3 State 6 3 θ 
State 4 State 7 6 θ or 5 θ 
State 4 State 8 2 θ 
State 4 State 9 3 θ 
State 8 State 7 3 θ or 5 θ 
State 9 State 7 2 θ or 5 θ 

 

The time conditions from table 9.4 have been established by using the algorithm 

discussed in chapter 8 (section 8.3.2). It can be noticed from table 9.4 that for the time 

condition T = 5θ transitions from states 4, 8 and 9 to state 7 can take place. This 

situation is possible only for the systems with test dependency between components. 

Since states 4, 8 and 9 correspond to the top event occurrence, at the test time equal to 

5θ both dormant failures will be revealed. Therefore, by adding this time interval to the 

initial list of time conditions the Markov model will include the test dependency. The 

general algorithm for the Markov model generation for the test dependency is shown in 

figure 9.2. This algorithm is implemented in the subroutine Markov_test_dep. 

 

 
Figure 9.2 Markov Model Generation Algorithm for Test Dependency Type 

 

 

 

 

Markov_test_dep  
{ 
       establish the initial state; // (0, 0, …, 0) 
       go through all existing states: 
            go through all individual component states 
                 IF  (individual component state is equal to 0) 
                           set the new state to 1 or 3; //depending on failure type                                                   
                 ELSE 
                       IF (individual component state is equal to 1) 
                               set the new state to 0; 
                       ELSE  
                              evaluate system time conditions; 
                              IF (the top event occurs in the current system state)  
                                   add the time condition T=kθ 
                      IF (newly created state does not exist in the state list) 
                           add new state to the state list; 
                           record the transition rate: 
} 
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9.3.2 Markov Model Generation for Standby Dependency Type 

 

The standby approach is commonly used in most safety systems structure to enhance the 

system ability to tolerate some key component failures and to ensure its continuous 

operation. In the FDS the standby dependency type exists between electric and diesel 

driven pumps, in both the firewater and the AFFF subsystems (Table 9.2). To illustrate 

the Markov model generation for this dependency type, assume that  the AFFF 

subsystems consists of 1 electric and 1 diesel AFFF pump both of type 1 with a 100% 

capacity. Hence, the fourteenth dependency group (Table 9.2) will be represented by 

two components: AE_100 1 and AD_100 1. The electric pump (AE_100 1) is a duty 

pump. When it fails the standby diesel driven pump (AD_100 1) takes its duty. It is 

assumed that the failure of the duty pump (electric or diesel driven) is revealed at once. 

The standby pump will be checked for possible failures immediately after the duty 

pump failure. Therefore, the electric duty pump may be in one of two states: ‘0’ 

corresponding to the pump working state and ‘1’ corresponding to the pump revealed 

failure. On other hand, the diesel driven standby pump may be in one of three possible 

states: ‘0’, ‘1’ and ‘3’ corresponding to the ‘failed unrevealed’ state.  

 

 
Figure 9.3 Markov Model for Example Module form Figure 9.4 

 

It can be noticed from figure 9.3 that all states in the Markov model consist of three 

components. The additional component (Logic) is incorporated in the model structure to 
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represent the function of the standby diesel driven pump. The state ‘-1’ corresponds to 

the standby state. On the other hand, the state ‘-2’ corresponds to the duty function and 

indicates the failure of the electric pump.  

 

The Markov model generation for the standby dependency type was incorporated in the 

program structure in the subroutine Markov_standby_dep. The general algorithm 

structure is shown in figure 9.4. 

 

 
Figure 9.4 Markov Model Generation Algorithm for Standby Dependency Type 

 

 

9.4 Results 

 

To test the difference between the results from the optimization of the FDS with and 

without dependencies, the best ten designs obtained after ten runs of the original 

program (chapter 7) have been tested with the modified version of the program. Table 
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9.5 shows the comparison of the results. The corresponding design parameter values are 

provided in table 9.6. 
 

Table 9.5 Comparison of the Results for Original ISPEASSOP and ISPEASSOP with Dependencies 

Run Program 
Version 

STC SPMC SCMC LCC Fsys Qsys = Q’
sys 

Original 0.5593 9.321E-03 1 
Modified 

7796.4 5813.0 27606.2 102966 
0.6001 1.234E-02 

Original 0.3220 1.012E-02 2 
Modified 

7935.3 6434.8 34240.6 85561 
0.3340 1.300E-02 

Original 0.2602 1.078E-02 3 
Modified 

6767.0 6922.8 29052.2 103342 
0.4010 1.124E-02 

Original 0.2002 9.321E-03 4 
Modified 

7796.4 5813.0 27606.3 102666 
0.2320 1.234E-02 

Original 0.2613 9.436E-03 5 
Modified 

11381.6 8719.4 18403.5 99755 
0.3000 1.151E-02 

Original 0.2033 1.081E-02 6 
Modified 

6892.4 12862.9 33277.8 117533 
0.2400 1.133E-02 

Original 0.2033 1.078E-02 7 
Modified 

6423.1 12862.9 33277.8 117064 
0.2400 1.523E-02 

Original 0.5593 9.321E-03 8 
Modified 

7796.4 5813.0 7606.2 102966 
0.6001 1.234E-02 

Original 0.2020 1.360E-02 9 
Modified 

13766.2 10368.7 9396.6 93582 
0.2305 1.472E-02 

Original 0.2022 1.284E-02 10 
Modified 

9857.9 7470.3 18265.2 103643 
0.2235 1.441E-02 

 

Table 9.6 Design Parameter Values for Table 9.5 

Run Number Design 
Variables 1 2 3 4 5 6 7 8 9 10 

K / N 1 / 3 1 / 1 1 / 1 3 / 3 1 / 1 2 / 3 2 / 3 1 / 3 2 / 2 2 / 2 
P 2 2 1 3 1 2 2 2 3 3 

Firewater Supply and Distribution System 
FE / F 3 / 4 0 / 1 1 / 4 3 / 4 3 / 4 2 / 3 2 / 3 3 / 4 1 / 3 1 / 4 

FP 33.3% 100% 33.3% 33.3% 33.3% 50% 50% 33.3% 33.3% 33.3% 
FT 2 2 2 2 2 2 2 2 1 1 

AFFF Supply and Distribution System 
AE / A 1 / 1 1 / 1 0 / 1 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1 2 / 2 0 / 2 

AP 100% 100% 100% 100% 100% 100% 100% 100% 50% 50% 
Valve and Material Types 

W 3 3 2 3 3 2 2 3 1 2 
D 3 3 2 3 3 2 2 3 3 2 
C 0 0 0 0 0 0 0 0 0 0 

Maintenance Intervals 
θP 23 15 28 23 16 28 28 23 13 21 
θR 18 4 5 18 6 4 20 18 14 6 
θD 15 15 18 15 18 15 15 15 6 9 
θPM 18 9 15 18 12 9 9 18 9 15 
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It can be seen from table 9.5 that the main difference appears in the spurious trip 

frequency and the system unavailability values. Figures 9.5 and 9.6 show the 

comparison of these parameter values for designs obtained by the initial and the 

modified ISSPEASSOP program versions respectively.   
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Figure 9.5 Comparison of the FDS Spurious Trip Frequency 
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Figure 9.6 Comparison of the FDS Unavailability  

 



 192

Figures 9.5 and 9.6 show that, similarly to the HIPS (Chapter 8), the system 

unavailability and spurious trip frequency values have increased on average by 20% and 

15% respectively for the potential designs of the FDS with dependencies mainly due to 

increased repair time for dependent components. However, the penalised system 

unavailability is equal to the system unavailability for all designs, i.e. all optimization 

parameter values are within their limits. The running time of the program increased 

from 12 minutes to 52 hours for the system with dependencies due to the complexity of 

the Markov analysis.  

 

 

9.5 Discussion 
 

The generation of the Markov models for the maintenance, standby and test dependency 

types has already been discussed. In addition to these types, the secondary_failure and 

initiator_enabler dependencies may exist among the safety system components (Chapter 

8). The Markov model generation for these dependency types can be easily incorporated 

into the developed optimization tool.  

 

Secondary_failure Dependency: Consider the example module from figure 9.7. 

Assume that the secondary-failure dependency relationship exists between basic events: 

b and d, coloured in grey. In this example, the basic event d represents a primary failure, 

while basic event b corresponds to the secondary failure. 

 
Figure 9.7 Example Module for Secondary_failure Dependency Type 
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Assuming that basic events d and b represent a revealed (i.e. 1) and dormant failure (i.e. 

3) respectively, the resulting Markov model of the example module is shown in figure 

9.8. The model structure is based on the assumption that no component failures will 

occur after the primary failure is revealed.  

 

 
 

Figure 9.8 Example Markov Model for the Secondary_failure Dependency Type 

 

The rules for the model construction can be described as follows [Sun, 2005]: 

• The occurrence of the secondary failure in the system results in the failure of the 

primary component. Under this circumstance, the primary failure event should 

be considered as “occurred” and its repair process should start immediately. In 

figure 9.8, transitions from state 3 to state 5 and from state 4 to state 5 both 

reflect such a feature.  

 

• The repair process involving the secondary_failure dependency type needs extra 

attention. When the failure of the primary component occurs and gets revealed, 

the secondary components will be inspected immediately for any potential 

failures. Therefore, the dormant failures of the secondary events will be revealed 

at this stage. Transition from state 3 to state 5 represents this process. All 

components with revealed failures will go through the repair process 

simultaneously and the system will be restored to the initial state when the repair 

of all its components is completed. In this case, the corresponding transition rate 

is the inverse of the maximum of the mean time to repair (τ ) of all the failed 
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components. For example, the rate of the transition from state 5 to state 1 can be 

expressed as: 

),max(
1

15
bd ττ

τ =− ,                                              (9.3) 

            where dτ  and bτ are the mean time to repair component d and b respectively. 

 

The overall algorithm for the Markov model generation for the secondary_failure 

dependency type is suggested in figure 9.9. 

 
Figure 9.9 The Algorithm for the Markov Model Generation for the Secondary_failure  

Dependency Type 

 

Initiator_enabler Dependency: To illustrate the Markov model generation for this 

dependency type, consider the example module from figure 9.10. The fault tree 

structure represents the potential damage of the compressor due to the failure of the 

Markov Model Generation (secondary_failure dependency type) 
{ 
       establish the initial state; // (0, 0, …, 0) 
 
       go through all existing states: 
            IF  (the primary failure is revealed (i.e. state is equal to 1)) 
                 IF (the secondary failure event has occurred) 
                { 
                      record the transition from the current state to the initial state; 
                      evaluate the transition rate accordingly; 
                 } 
                 ELSE 
                { 
                       set the new state for the primary failure event to 0; 
                       set the state for the secondary failure event to 1; //initially is equal to 3 
                       IF (newly generated state doesn't exist in the state list) 
                       { 
                             add this state to the state list; 
                             record the transition rate: 
                        } 
                  } 
           ELSE (go through all existing states) 
                      IF (current state is equal to 0) 
                           set new state to 1 or 3; //depending on failure  
                      IF (secondary failure occurs in the resulting system state)  
                           set new primary failure event state to ‘1’ or ‘3’                           
                      ELSE 
                              IF (current state is equal to 1) 
                               set new state to 0; 
                      IF (newly created state does not exist in the state list) 
                           add new state to the state list; 
                           record the transition rate: 
} 
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solenoid valves S1 and S2 to close on demand and, hence, cut the liquid supply to the 

compressor. Assuming that the abnormally high level of liquid can occur in the system 

(event A), such failure of the solenoid valves and the failure of the compressor to 

shutdown on demand (event C) will result in the compressor damage. 

 

 
Figure 9.10 Example Module for Initiator_enabler Dependency Type  

 
 
In the system shown in figure 9.10, the initiator is the abnormal liquid carry over event 

A. Events C, S1 and S2 are three enabling events featuring different reliability 

characteristics. The resulting Markov model for this example module consists of 54 

states. Since the diagrammatic form of the model could not be represented clearly due to 

its size, the model structure is represented in table 9.7.  

 
Table 9.7 Resulting Markov Model for Example Module from Figure 9.10 

State A C S1 S2 
Mod. 

State 
State A C S1 S2 

Mod. 

State 

1 0 0 0 0 0 28 0 3 1 0 -2 

2 1 0 0 0 -1 29 0 0 1 3 0 

3 0 3 0 0 0 30 0 0 1 1 0 

4 0 0 3 0 0 31 0 3 0 1 -2 

5 0 0 0 3 0 32 0 0 3 1 0 

6 1 0 3 0 -1 33 1 0 1 3 -1 

7 1 0 0 3 -1 34 1 0 1 3 -1 

8 1 3 0 0 -1 35 1 0 3 1 -1 
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Table 9.7 Continued 

State A C S1 S2 
Mod. 

State 
State A C S1 S2 

Mod. 

State 

9 0 1 0 0 0 36 1 1 3 0 -1 

10 0 3 3 0 -2 37 1 1 0 3 -1 

11 0 3 0 3 -2 38 1 1 1 0 -1 

12 0 0 1 0 0 39 1 3 3 3 -1 

13 0 0 3 3 0 40 1 1 0 1 -1 

14 0 0 0 1 0 41 0 1 3 3 -2 

15 1 0 0 0 -1 42 1 1 1 3 1 

16 1 0 3 3 -1 43 0 1 1 3 -2 

17 1 0 0 1 -1 44 1 1 1 1 1 

18 1 1 0 0 -1 45 0 1 1 1 -2 

19 1 3 3 0 -1 46 1 1 3 1 1 

20 1 3 0 3 -1 47 0 1 3 1 -2 

21 0 1 3 0 -2 48 0 3 1 3 -2 

22 0 1 0 3 -2 49 0 3 1 1 -2 

23 1 1 1 0 1 50 0 3 3 1 -2 

24 0 1 1 0 -2 51 1 1 3 3 -1 

25 0 3 3 3 -2 52 1 1 1 3 -1 

26 1 1 0 1 1 53 1 1 1 1 -1 

27 0 1 0 1 -2 54 1 1 3 1 -1 

 

 

In the example Markov model (Table 9.7) values ‘-1’ and ‘-2’ are used along with ‘0’ 

and ‘1’ to represent the module state. Both new values indicate that the top event has 

not occurred yet, however, they both have more implication than the working state ‘0’. 

These states indicate a different order of occurrence between the initiating and enabling 

event [Sun, 2005]. The state ‘-1’ refers to the situation where the initiating event occurs 

prior to the general enabling event (for example, the transition from the state 3 to the 

state 8 in Table 9.7). On the other hand, the module state ‘-2’ corresponds to the 

situation where the enabling event occurs prior to the initiating event. For example, in 

the state 10 (Table 9.7), the occurrence of the basic events C and S1 result in the 

occurrence of the enabling event A. Since the initiating event has not occurred in this 

state, the module state of the state 10 is set to ‘-2’. The overall algorithm for the Markov 
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model generation for the initiator_enabler dependency type among the system 

components is shown in figure 9.11 [Sun, 2005]. 

 

 
Figure 9.11 Markov Model Generation for Initiator_Enabler Dependency Type 

 

 

Combination of Secondary_failure and Initiator_enabler Dependency Types 

 

The initiator-enabler dependency can occur in a system together with a secondary-

failure dependency. This can happen when component failures corresponding to the 

initiator-enabler dependency contribute to the causes of the secondary failure.  In this 

case, all relevant component failures will have to be investigated in the same model in 

order to obtain the accurate system reliability parameters. Figure 9.12 shows the general 

possible algorithm for the Markov model generations for the situation when the 
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secondary failure dependency should be solved together with the initiator-enabler 

dependency [Sun, 2005]. 

 

 
Figure 9.12 Markov Model Generation Algorithm for the Mixture of the Initiator-Enabler and 

Secondary-Failure Dependency Types 

 

 

9.6 Summary 

 

• Three dependency types have been identified for the FDS component failures. They 

are: maintenance, test and standby dependencies. The Markov model generation 

algorithms have been developed for the additional dependency types and 

incorporated into the program structure.  
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• The modified developed tool has been successfully applied to the FDS with 

dependencies optimization. Results show that, similar to the HIPS, the FDS system 

unavailability and the spurious trip frequency increased for all potential system 

designs. Therefore, it is imperative to incorporate the analysis of the dependent 

components in every safety system optimization process.  

 

• The Markov model generation algorithms have been suggested for all other main 

dependency types, i.e. secondary-failure and initiator-enabler dependencies. This 

gives the developed technique the potential to be applicable to any type of the safety 

system. The program is flexible, additional dependency types and related Markov 

models can be easily incorporated in its structure.  

 

• The main disadvantage of the developed tool is the running time of the program 

which increases rapidly for larger systems due to the complexity of the Markov 

analysis. Compared to the HIPS, the program running time for the FDS system 

optimization is ten times greater. 

 

• For the majority of safety systems several dependency relationships may exist in the 

system at the same time. Ignorance of any dependency type would result in an 

incorrect Markov model. Hence, all dependency types, existing between the system 

components failures, should be integrated into the model structure.  

 

• Each combination of different dependency types requires a unique Markov model 

generation algorithm.  It is impossible to go through every possible combination of 

different dependency relationships. Therefore, another disadvantage of the 

developed technique is that the program should be amended for each safety system 

in accordance with its dependency information. 

 

• The developed optimization tool is based on assumption that all system components 

are repairable. No credit is given to the safety systems with non-repairable structure. 

Therefore, further modifications to the program code should be considered to 

consider systems with these characteristics. 
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CHAPTER 10 

 

CONCLUSIONS AND FUTURE WORK 

 

 

10.1 Introduction 

 

The performed research has achieved the aims discussed in the objectives section of 

chapter one: 

 

1) The developed optimization scheme: the developed safety system design 

optimization scheme combines the advantages of fault tree analysis (FT) for system 

failure logic representation, binary decision diagrams (BDD) for system design 

quantification and the Improved Strength Pareto Evolutionary Algorithm (SPEA2) 

for system design optimization. These have been integrated into an automated tool. 

House events are incorporated into the fault tree structure to allow the use of a 

single FT for all possible system designs.   

 

The conversion of the general system FT to the BDD for each design would be a 

time-consuming task. To overcome this problem, the fault tree reduction technique 

has been developed and implemented into the program structure. It minimises the 

FT structure for each possible design in accordance with the house events logic and, 

hence, reduces the corresponding BDD size. This results in the reduction of the 

overall analysis time.  

 

To find an optimal design a process is required which considers a number of design 

variables. Multi-Objective Genetic Algorithms (MOGAs) are a group of techniques 

which allow this type of parallel processing. The developed optimization tool 

incorporates the SPEA2 method. It is a relatively recent evolutionary technique for 

finding or approximating the optimal solution set for multi-objective optimization 

problems and has shown very good performance in comparison to other multi-

objective genetic algorithms.  This addition to the developed methodology permits 

the consideration of not only a primary objective, i.e. availability of the system, but 
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caters for all critical factors imperative to obtain an optimal system design and, 

hence, performance.  

 

2) High Integrity Protection System (HIPS) optimization: the performance of the 

developed optimization tool has been tested on the example HIPS. There are three 

main parts of the developed ISPEASSOP program. Part one is responsible for the 

HIPS structure, part two is responsible for analysis using the Binary Decision 

Diagram method which calculates the HIPS unavailability and spurious trip 

frequency, and part three is an implemented SPEA2 algorithm for the HIPS 

optimisation. 

 

• The results produced by the ISPEASSOP were compared to those obtained by 

the simple GA based techniques. The SPEA2 based optimization tool finds the 

optimal solution quicker. 

 

• This application highlighted potential areas of improvement. The following 

modifications have been made to the program structure:  
 

o Modification of the Design Parameter Evaluation Scheme: the modified 

scheme ensures that all design parameters are from feasible regions. This 

made the feasible solution search faster. 
 

o Modification of the Crossover Procedure: the modified method is similar to 

the single-point crossover. The main difference appears when consideration 

is given to the second parent string from the pair. This string can again 

participate in crossover as the first parent. This amendment resulted in a 

larger variety of the potential designs and, hence, improved the overall 

technique performance. 

 

3) Firewater Deluge System (FDS) optimization: the modified optimization tool has 

been tested on a more complex system (FDS) in order to explore its potential. The 

system has more design variables and increased complexity with additional 

resources. The following modifications have been done to the ISPEASSOP 

program: 
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o The new routine for the house event logic interpretation has been developed in 

order to represents the FDS features. 
 

o The Weibull distribution has been used to represent failures of the wear out 

type components in the system unavailability and spurious trip frequency 

evaluation routines. 
 

o The SPEA2 search has been amended to reflect the new number of 

optimization parameters. 
 

o Additional limitations to the system design have been incorporated for all 

maintenance costs (i.e. life cycle cost per year, cost per year due to system 

testing, cost per year due to preventative maintenance, cost per year due to 

corrective maintenance, cost per year due to total maintenance effort). 
 

o The life cycle cost and maintenance down time calculation procedures have 

been changed in accordance to the FDS operation features. 

 

The results have been compared to those obtained by the simple GA. Similar to the 

HIPS, the SPEA2 based technique led to the optimal solution quicker. In addition, 

the running time of the program has been reduced from several hours to twelve 

minutes due to the discussed advanced features present in the developed technique. 

 

4) Optimization of safety systems with dependencies: A further attempt on improving 

the applicability of the developed optimization technique has been carried out by 

investigating the dependency relationships among the safety system components. 

The Markov method allows the analysis of systems with dependencies. However, 

the applicability of this method is restricted for large systems by the state-space 

explosion problem. This problem has been solved by identifying the smallest 

independent sections (modules) in the fault tree structure. Therefore, the BDD and 

the Markov analysis are applied in a combined way to improve the analysis 

efficiency.  The BDD method is applied to modules which contain no dependency. 

On the other hand, the Markov analysis is applied to modules which contain 

dependent components.  
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Different types of dependency have been identified for general safety system 

components. The algorithms for the Markov model generation have been established 

for all these dependency types.  

 

• In order to test the modified technique performance on the HIPS and FDS, the 

following modifications have been made to the program: 
  

o Dependency information has been formed for the HIPS and FDS system 

component failures; 
 

o The fault tree simplification and modularization methods have been 

incorporated into the program structure in order to allocate the smallest 

independent sections in the fault tree. 
 

o The Markov model generation algorithms for relevant dependency types 

have been developed and applied to the identified smallest independent 

modules with dependent component failures.  

 

Results showed that the previously obtained optimization parameter values were 

underestimated for both systems. Hence, in order to obtain accurate results it is 

imperative to take into account all dependency relationships existing between 

the safety system component failures. On the other hand, the program running 

time has increased for both systems from several minutes to several hours due to 

the complexity of the Markov analysis. 

  

 

10.2 Conclusions 

 

The research has led to the following conclusions: 
 

1) The developed automated fault tree reduction technique proved to be effective for 

obtaining the fault tree structures for each potential system design and, hence, 

reducing the BDD size. This results in the reduction of the program running time.  
 

2) In the case when several objectives are considered, as in this research, multi-

objective genetic algorithms (MOGAs) can be used. These methods are based on 
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simple GAs principles, are easy to apply and find a set of nondominated optimal 

solutions quickly. The Improved Strength Pareto Evolutionary Algorithm (SPEA2) 

has been incorporated in the optimization tool and was successfully tested on the 

High Integrity Protection System (HIPS). 
 

• Results showed that the SPEA2-based optimization technique performs better 

than the simple GA-based tool for the relatively small number of generations 

and leads to the optimal solution quicker. 
 

• Constraints on the available resources do not prohibit application of the SPEA2 

method. Any implicit or explicit constraints can be incorporated in the program 

structure. Standard SPEA2 can find results quickly, but modifications to GA 

parameters can improve the efficiency of the search procedure. 
 

3) The modified technique was successfully tested on a Firewater Deluge System 

(FDS). The use of a Weibull distribution to model the relevant FDS components 

within the modified SPEA2-based approach enabled consideration of the 

components of wear-out type. Similar to the HIPS, the developed technique 

performed better than the simple GA based optimization tool. 
 

4) The Markov method can be used for analysis of the independent modules, identified 

for each dependency group, in the fault tree structure. The integration of this method 

into the developed optimization tool enhances the range of systems in which 

optimization can occur. 
 

• Results comparison showed that the modified optimization tool with 

incorporated dependency analysis provided on average 19% higher safety 

system unavailability and 15% higher spurious trip frequency values compared 

to those obtained by the initial program version. Hence, the dependency 

information incorporation in the optimization process is essential for the 

optimization tool performance quality and accuracy.   
 

• The developed optimization tool has been applied to two example safety 

systems; however, the procedure could equally be applied to optimise the 

performance of any repairable safety system, whose failure causes can be 
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represented by a fault tree. The Markov model generation for other dependency 

types has been suggested and can be incorporated in the program structure. 

 

 

10.3 Future Work 

 

The research has led to the following potential areas of investigation:  
 

• Automated Markov model generation algorithm: to develop an automated algorithm 

for the Markov model generation for any combination of dependencies in the safety 

system in order to enhance the developed tool application. 
 

• Markov model size reduction: to find additional ways of dealing with the Markov 

model size or replace this method with an alternative technique (for example, the 

Bayesian Belief Networks since this method can be applied to systems with 

dependent component failures and potentially might reduce the analysis time); test 

and compare the new technique performance with the original tool. 
 

• Automated house event logic interpretation algorithm: to develop an automated 

algorithm for the house event logic interpretation in order to simplify the tool 

application to safety system optimization. This could be possibly achieved by 

creating a data file representing the system component dependency on the house 

event values. 
 

• Developed tool efficiency and accuracy further improvement: to apply the 

developed optimization technique to a variety of different safety systems (i.e. in a 

different industrial domain) to test its performance and develop, if necessary, 

modifications in order to improve the tool efficiency and accuracy.  
 

• Application to non-repairable and phase mission safety systems: to modify the 

developed tool for non-repairable and phase mission system optimization, in order 

to explore the scope for its application. 
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APPENDIX A  

 

A.1 HIPS Unavailability Fault Tree Structure  

 

The top event of the HIPS unavailability fault tree represents the causes of the system 

failing to protect the processing equipment. The top event ‘Safety system fails to 

protect’ will occur if all (Wing, Master, ESD and HIPS) valves along the pipeline fail to 

close. Consequently, sub-events ‘Wing and Master valves fail to protect’ (G1), ‘ESD 

valves fail to protect’ (G2) and ‘HIPS valves fail to protect’ (G3) related by AND logic 

are immediate, necessary and sufficient. The structure of the top gate is shown below in 

figure A.1.  

 
Figure A.1 TOP Event of HIPS Unavailability Fault Tree 

 

Each valve is a fail safe type which can be defined as ‘air to open’.  The principle of 

each valve working can be described as follows: when the pressure in the pipeline is at 

an appropriate level, the solenoid of the valve is maintained by computer logic in an 

energised state, the pneumatic line remains pressurised and the associated actuator 

retains the valve in the open state. When pressure in the pipeline increases, pressure 

transmitters detecting that fact transmit a signal to the computer. In the case when the 

pressure increase exceeds the acceptable level the function of the computer is to cause 

the circuit of the output channel to the solenoid to open. This circuit can be broken by 

two relay contacts which introduce a level of redundancy. As a result, the solenoid is 
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de-energised and a vent valve activated. Consequently, pressure drops to the actuator, 

causing the valve to close. 

 

 A.1.1 Main Sub-events Structure 

 

In this section the principle structure of each of the HIPS unavailability fault tree sub-

events is described. These are: ‘Wing and Master Valves Fail to Protect’, ‘ESD System 

Fails to Protect’ and ‘HIPS System Fails to Protect’. 

 

Sub-event 1.  ‘Wing and Master Valves Fail to Protect’ 

The Wing and Master valves, their solenoids, the relay contacts and the computer logic 

are fixed components of subsystem 1 and, consequently, they constitute part of each 

potential design variation. 

 

If either the Wing or Master valves close, it will protect against a high-pressure surge in 

the pipeline. However, the sub-event ‘Wing and Master valves fail to protect’ will occur 

only if both mentioned valves fail.  

  

Failure of the Wing valve can be defined as: the Wing valve fails to protect if either the 

Wing valve fails itself to protect, or the pneumatic line to the actuator of the Wing valve 

remains pressurised. Basic event ‘WV’ is used in the fault tree (Figure A.2) to describe 

the situation when the Wing valve itself fails. The pneumatic line remains pressurised 

due to failure of the solenoid valve (basic event ‘SWV’) or is a result of the solenoid 

staying energised. 

 

The alternative fault tree branch ‘Master valve fails to protect’ is developed in similar 

manner to the Wing valve. Figure A.2 shows the intermediate fault tree structure of the 

‘Wing valve Fails to Protect’. 
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Figure A.2 Structure of the Branch ‘Wing Valve Fails to Protect’ 

 

Each of the Wing and Master valves has solenoids. Therefore, the event ‘Solenoid stays 

energised’ is common to branches developed for both valves. In figure A.2 this event is 

shown as gate 5 (G5). It represents a failure in the flow of fault logic from detection of 

increased pressure by the pressure transmitters to de-energising of the solenoids of the 

Wing and Master valves. Therefore, the solenoid stays energised if both relay contacts 

fail to break the circuit from the computer. Basic event ‘R1/1’ defines the failure of 

relay contact 1, analogically, basic event ‘R1/2’ defines the failure of relay contact 2. 

Also the solenoid stays energised if the computer fails to send the trip. The latter 

happens if the computer does not receive input to signify an increase of pressure, i.e. if 

the trip signal to subsystem 1 is not received or if the computer logic fails (basic event 

‘PLC1’). Figure A.3 shows the causal relationship from gate 5 (G5) to ‘Subsystem 1 

fails to indicate trip’. 
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Figure A.3  Structure of the Branch ‘Solenoid Valve Stays Energised’ 

 

The pressure transmitters are used to monitor the system pressure level, hence, are very 

important for the safety system. Failure of the pressure transmitters of subsystem 1 to 

detect a pressure beyond the acceptable limit prevents action of the computer logic 

associated with subsystem 1 and, as a result, any subsequent events. 

 

The number of pressure transmitters for subsystem 1 is 1N . It is a design variable with 

range 1 to 4. According to the value of this parameter the structure of the fault tree will 

alter. Therefore, ‘Subsystem 1 Trip Signal Not Received’ is dependent upon whether 1 

pressure transmitter is installed, or 2, or 3, or 4. Associated with each option is a House 

Event. Table A.1 introduces the house events used to model these structural changes. 

 

The house event obtains a ‘TRUE’ value, if the condition holds. Therefore, the event is 

assigned a probability of 1. Otherwise, the probability is 0. As an example, if the design 

is such that subsystem 1 has 2 pressure transmitters fitted, house events EN2, NEN1, 

NEN3 and NEN4 would be assigned a probability of 1 and the rest set to 0. 
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Table A.1 House Events for Pressure Transmitters in Subsystem1 

House Event Description for Subsystem 1 

EN1 1 pressure transmitter is fitted 

EN2 2 pressure transmitters fitted 

EN3 3 pressure transmitters fitted 

EN4 4 pressure transmitters fitted 

NEN1 Number of fitted pressure transmitters is not 1 

NEN2 Number of fitted pressure transmitters is not 1 

NEN3 Number of fitted pressure transmitters is not 1 

NEN4 Number of fitted pressure transmitters is not 1 
 

 

To help to reduce the number of branches within the fault tree the use of ‘No Pressure 

Transmitters fitted’ options are included, as shown in figure A.4. Hence, the sub-event 

‘Subsystem 1 Fails to Indicate Trip’ has four inputs connected with an AND gate: 

inputs are either activated as failure of that branch or not a number of pressure 

transmitters fitted.  

 

Consider the design such that subsystem 1 has 2 pressure transmitters fitted. House 

events NEN1, NEN3  and NEN4  would be set to TRUE with probability of 1, hence,   

NEN2 would be set to zero, thus activation of channel 2 would be dependent on the sub-

event ‘Fail to indicate trip 2 PT fitted’.  
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Figure A.4 Structure of the Branch ‘Subsystem 1 Fails to Indicate Trip’ 

 

The number of pressure transmitters in subsystem 1 is only one of the variables that 

must be considered. Another important variable is the number of pressure transmitters 

required to trip the system ( 1K ).  This variable can obtain a value in the range 1 to 1N . 

Furthermore, consideration must be given to the type of pressure transmitter ( 1P  or 2P ). 

These parameters give new possible variations, and must be modelled in each channel. 

Additional house events to model further structural changes are defined in table A.2:  

 
Table A.2 Additional House Events for Pressure Transmitters in Subsystem1 

House Event Description 
EK1 1 pressure transmitter is required to trip subsystem 1 
EK2 2 pressure transmitter is required to trip subsystem 1 
EK3 3 pressure transmitter is required to trip subsystem 1 
EK4 4 pressure transmitter is required to trip subsystem 1 
P11 Pressure transmitter type is 1 
P12 Pressure transmitter type is 2 
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To illustrate how the fault tree for each dormant failure channel is constructed, channel 

1 is explained. As only one PT is fitted there must be the same number to trip.  

Therefore, the 1K  value must be 1. A house event is included to account for this option. 

For the other channels, this section would include options of 1 PT to trip or 2 PT to trip, 

or 3 or 4 with corresponding house events. The development of channel 1 is shown 

below in figure A.5. 

 
Figure A.5 Structure of the Branch ‘Dormant Failure of Channel 1’     

                                                                                                   

To analyse ‘Pressure transmitter No1 fails’ it is dependent on the type of PT fitted. The 

options are that type 1 is fitted or type 2. For each ‘Type’ failure, it is due to both the 

house event being set to TRUE and the pressure transmitter itself failing. For type 1 

failure this is house event ‘P11’ (‘Pressure transmitter type 1 is fitted’) AND basic 

event ‘PT11’ which means the failure of pressure transmitter number 1 type 1 occurs. 

Type 2 has the same format. It is assumed, that if more that one pressure transmitter is 

fitted in the system, their type is the same.  
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Similarly, channel 2 models the system design with 2 pressure transmitters. Therefore, 

1K  can be either 1 or 2. One pressure transmitter acts as a redundant component. Hence, 

to fail to trigger channel 2 both PT must fail (hence the AND gate, G22). When 1K = 1 

one pressure transmitter is required to trip the system. The failure when 21 =K , means 

that  either PT can fail (hence the OR gate, G26). Further development of channel 2 is 

shown in figure 5.6. 

 

Likewise, channel 3 must model the system design with three pressure transmitters. 

Hence, 1K  can be equal to 1, 2 or 3. Possible combinations are either 3 from 3, any 

combination of 2 from 3, or failure of 1 pressure transmitter alone. They will trigger 

dormant failure of channel 3, where 11 =K , 21 =K  or 31 =K respectively. In a similar 

manner, additional basic events ‘PT31’ and ‘PT32’ are introduced. They represent 

failure of pressure transmitter number 3 either type 1 or 2. Analogically, channel 4 must 

account for 1 through to 4 pressure transmitters being able to trip the system. The 

development of this section is similar to the ones already discussed. 

 

 

 

 

 



 222

 
 

Figure A.6 Structure of the Branch ‘Dormant failure of channel 2’ 

 

 

Sub-event 2.  ‘ESD Subsystem Fails to Protect’ 
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This sub-event heads the second branch of the HIPS fault tree in figure A.1. The event 

‘ESD valves fail to protect’ is developed in a very similar manner to the Wing and 

Master valves. However, ESD valves are not a fixed part of the system design.  That is 

why some structural differences arise.  The number of ESD valves (E) is a variable 

ranging from 1 to 2. House events are included to switch on and off relevant options 

(Table A.3). 

 
Table A.3  House events for ESD valves in Subsystem1 

House Event Description 

E1 Subsystem 1 has 1 ESD valve fitted 

E2 Subsystem 1 has 2 ESD valve fitted 

NE1 The number of ESD valves for subsystem 1 is not 1 

NE2 The number of ESD valves for subsystem 1 is not 2 

V1 ESD valve type 1 is fitted 

V2 ESD valve type 2 is fitted 

 

 

The ESD subsystem fails to protect if both ESD valve 1 and ESD valve 2 fail to protect. 

Failure of each ESD valve can occur in two cases: if the ESD valve is not fitted or the 

ESD valve is fitted and fails (shown in figure A.7).  

 

The ‘ESD valve fails to close’ if either the ESD valve itself fails stuck or the pneumatic 

line to the valve remains pressurised. Pressurisation of the pneumatic line occurs due to 

failure of the solenoid of the ESD valve or the solenoid staying energised. Furthermore, 

failure of the ESD valve depends directly on the valve type fitted which can be either 1V  

or 2V .  The casual relationship, including the representation with house events, is shown 

in figure A.8. 
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Figure A.7 Structure of the Branch ‘ESD System Fails to Protect’ 

 

 

Computer logic, relay contacts and any pressure transmitters fitted is utilised by the 

passage of fault tree logic from detection of increased pressure to de-energising the 

solenoid. 

 

These basic events are similar to those which transmit fault logic and trigger the wing 

and master valve to close.  The event ‘Solenoid stays energised’ is, therefore, identical 

to that described in the previous section. Its branching structure is merely replicated 

within the ESD structure of the tree. The fault tree structure representing the failure of 

ESD valve 1 to close is shown in figure A.8. 
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Figure A.8 Structure of the Branch ‘ESD Valve 1 Fails to protect’ 

 

 
 

Sub-event 3. ‘HIPS Fails to Protect’ 

 

The HIPS and ESD subsystems are identical in their working manner. Similarly to the 

ESD subsystem, the HIPS subsystem fails if all fitted HIPS valves fail. However, the 

HIPS system is completely independent in its operation to the ESD, Wing or Master 

valves. Variable H identifies the number of HIPS valves ranges from 1 to 2. Table A.4 

represents the house events, which are included to switch on and off relevant parts of 

the tree:  
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Table A.4 House Events for HIPS Valves in Subsystem 1 
 

House Event Description 

H1 Subsystem 1 has 1 HIPS valve fitted 

H2 Subsystem 1 has 2 HIPS valve fitted 

NH1 The number of HIPS valves for subsystem 1 is not 1 

NH2 The number of HIPS valves for subsystem 1 is not 2 

HV1 Fitted HIPS valve type is 1  

HV2 Fitted HIPS valve type is 2 

 

 

Failure logic for the HIPS system completes the fault tree development. It is developed 

in an identical manner to that described for the ESD subsystem, with all components 

and computer logic and pressure transmitters being distinct. Calculations of the 

unavailability are then achieved by setting the corresponding house events and using the 

dormant failure and repair data (Table 5.2). The calculation procedure is the standard 

quantification approach used for fault trees. 

 

 

A.2 HIPS Spurious Frequency 

 

A.2.1 HIPS Spurious Trip Fault Tree Structure 

 

Consideration is given to a second system failure mode, spurious activation of the HIPS, 

due to the constraint limiting the number of spurious system trips permitted. This 

culminating event requires a specific fault tree to be developed. If any one of the valves 

included along the pipeline closes the top event will occur. 

 

Each valve is an ‘air to open’ safety type. The casual relationship ‘HIPS fails 

spuriously’ is shown in figure A.9. The immediate, necessary, and sufficient sub-events 

to the top event are ‘Wing or Master Valve Fails Spuriously’ (G1), ‘ESD Subsystem 

Fails Spuriously’ (G2) and ‘HIPS Subsystem Fails Spuriously’ (G3). They all are 

related by OR logic. 
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Figure A.9 Structure of the Top Event of HIPS Spurious Trip Fault Tree 

 

Obviously, the main difference between the HIPS spurious trip fault tree (Figure A.9) 

and the HIPS unavailability fault tree (Figure A.1) is the lack of redundancy in the first 

level of the tree structure. It is important to notice that house events incorporated in the 

HIPS spurious trip fault tree structure and the house events from the first level of the 

HIPS unavailability fault tree are consistent with each other. Furthermore, the structural 

characteristics of the design remain the same in each case. However, the failure modes 

of the sub-events are different. 

 

 

A.2.2 HIPS Spurious Trip Fault Tree Main Sub-events Structure 

 

Sub-event 1. ‘Wing or Master Valve Fails Spuriously’ 

 

Spurious system failure occurs if either wing or master valve fails spuriously. 

Therefore, these are the next level intermediate events. Consider the sub-event ‘Wing 

Valve Closes Spuriously’. It closely resembles the event of wing valve failing stuck in 

the system unavailability fault tree. The components and their relationship in the branch 

are almost the same, with the only difference being the failure mode, that of spurious 

activation. Moreover, spurious action of either relay contact instigates the flow logic 

and trips the system (Figure A.10). 
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Figure A.10 Structure of the Branch ‘Wing Valve Fails Spuriously’ 

 

Structural differences arise in fault tree gate G8. Sub-events are again portioned into 4 

separate channel failures. Channel 1 indicates inclusion of 1 pressure transmitter and so 

on. OR logic associates the channels and spurious channel failure occurs if the relevant 

number of pressure transmitters are fitted, as defined by house events EN1, EN2, EN3 or 

EN4,  and the relevant trip combinations occurs, i.e. house events EK1, EK2, EK3 or 

EK4. From figure A.11 it is clear that the mutually exclusive house event pairings, e.g. 

NEN1 and EN1, are not required. 
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Figure A.11 Structure of the Branch ‘Subsystem 1 Receives a Trip Signal’ 

 

Further structural differences can be found within each channel. Consider channel 2, 

which can have 1 or two fitted pressure transmitters.  Consequently, the number of 

required pressure transmitters 1K  in this case can be either 1 or 2. Spurious failure of 

each transmitter will initiate spurious system action, if only 1 pressure transmitter is 

required to trip the system. In contrast, if 2 pressure transmitters must register an 

increase in pressure, spurious failure of both is required to cause spurious system 

failure. The development of other channels is similar to those discussed before.  

 

 

Sub-events 2 and 3. ‘ESD and HIPS Subsystem Fail Spuriously’ 

 

The ESD subsystem will fail spuriously if any of the included ESD valves fail. The 

development of the resulting intermediate events such as ‘ESD Valve 1 Closes 

Spuriously’ or ‘ESD Valve 2 Closes Spuriously’ is similar to the structure in the system 

unavailability fault tree. Furthermore, the failure of the HIPS in its structure mimics the 

relative one from the unavailability fault tree as well. 
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APPENDIX B  

 

B.1 The FDS Failure Events and Data 

 

There are two main types of the FDS events. The type ‘HE’ states that the event is a 

human error. On the other hand, type ‘CO’ denotes that the event is a component 

failure. The ‘wear-out’ components are denoted by ‘W’. In contrast, ‘NW’ states that 

the component is of ‘non-wear-out’ type. It is important to notice, that preventative 

maintenance is only carried out on components of wear-out type.  

 

The system is checked for corrosion build-up. Consequently, the corrosion resistant 

components are introduced, where ‘n’ and ‘o’ correspond to the non-corrosion resistant 

and corrosion resistant materials respectively. The notation key to the FDS data is 

expressed in table B.1. 
 

Table B.1 The FDS Data Notation 

Notation Description 

λD Dormant failure rate 

λS Spurious failure rate 

τD Dormant mean time to repair 

τS Spurious mean time to repair 

HT Number of hours manual work required to test the component 

CHT Cost per hour of manual work to test the component 

CR Number of hours manual work required to repair the component 

CHR Cost per hour of manual work to repair failure (dormant or spurious) 

CSR Cost of spares for each repair carried out (dormant or spurious) 

HP Number of hours manual work required to carry out preventative maintenance 

CSP Cost of spares each time preventative maintenance is undertaken 

CHP Cost per hour of manual work to carry out preventative maintenance 

NS Number of spares stored 

CS Storage cost per component 

C1 Initial cost  
 

Failure Events and Data of the Deluge System. Events considered in the reliability 

assessment of the deluge skid are specified in table B.2.  
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Table B.2 Failure Events of the Deluge Skid 

Event 
Name 

Event Description Event 
Type 

Rates 

SI Failure of MFGP to correctly select and send a close signal to the 
solenoid valve. 

CO NW 

WBS Strainer, located upstream of the water deluge valve, blocked. CO NW 

WBN 
(old) 

Deluge nozzle on the waterspray system blocked, old type material. CO NW 

WBN 
(new) 

Deluge nozzle on the waterspray system blocked, new type material. CO NW 

WIVB Blockage of the locked open butterfly valve, one upstream and one 
downstream of the water deluge valve. 

CO NW 

WIVO Operator leaves the normally locked open butterfly valve in the shut 
position (one upstream and one downstream of the water deluge 
valve). 

HE - 

WV1 Water deluge valve type 1 fails to open CO NW 
WV2 Water deluge valve type 2 fails to open CO NW 
WV3 Water deluge valve type 3 fails to open CO NW 
MRM Manual release mechanism fails to dump instrument air. CO NW 
SV1 
SV2 

Solenoid activated valve fails to dump instrument air on receipt of the 
signal form the MFGP.  

CO NW 

WVR 
(old) 

Valmatic relief valve sticks closed on activation, old type material. CO NW 

WVR 
(new) 

Valmatic relief valve sticks closed on activation, new type material. CO NW 

AIVB Normally locked open butterfly valve on AFFF distribution line 
blocked (only one isolation valve on the AFFF line). 

CO NW 

AIVC Operator leaves the normally locked open butterfly valve on the AFFF 
distribution line in the shut position. 

HE - 

AINB 
(old) 

The foam supply into the firewater distribution line is blocked by 
inductor nozzle, old type material. 

CO NW 

AINB 
(new) 

The foam supply into the firewater distribution line is blocked by 
inductor nozzle, new type material. 

CO NW 

ACVB The check valve in the AFFF injection line is blocked CO NW 
AV1 AFFF deluge valve type 1 fails to open on demand CO NW 
AV2 AFFF deluge valve type 2 fails to open on demand CO NW 
AV3 AFFF deluge valve type 3 fails to open on demand CO NW 

 

 

Table B.3 provides the failure and repair data, maintenance effort and costs associated 

with each component. It can be noticed from this table, that human error events only 

require specification of the probability of occurrence. In addition, SV1, SV2 and WVRF 

are the only components that fail spuriously. 
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Table B.3 Data Associated with Events from Table B.2 

Event λD τD λS τS HT CHT CR CHR CSR NS CS C1 

SI 2e-7 6e-6 - - - - - - - - - - 

WBS 2.8e-5 1.2e-5 - - 2 30 12 30 50 4 75 100 

WBN (o) 3e-5 1.2e-5 - - 2 30 12 30 100 3 300 1000 

WBN (n) 5e-6 1.2e-5 - - 2 30 12 30 300 3 300 3000 

WIVB 1.8e-6 1.8e-6 - - 2 30 18 30 200 2 300 400 

WIVO Q = 0.01 

WV1 4.0e-5 1.8e-5 - - 2 30 18 30 200 2 200 400 

WV2 3.5e-5 1.8e-5 - - 2 30 18 30 250 2 200 500 

WV3 2.8e-5 1.8e-5 - - 2 30 18 30 300 2 200 600 

MRM 1e-5 1.2e-5 - - 2 30 12 30 300 1 300 600 

SV1 3e-6 1.2e-5 3e-6 1.2e-5 2  30 12 30 200 2 300 400 

SV2 2e-5 1.2e-5 2e-5 1.2e-5 2 30 12 30 125 2 300 250 

WVR (o) 5e-6 1.2e-5 5e-6 1.2e-5 2 30 12 30 300 1 300 600 

WVR (n) 2e-6 1.2e-5 2e-6 1.2e-5 2 30 12 30 450 1 300 900 

AIVB 1.8e-5 1.8e-5 - - 2 30 18 30 200 2 300 400 

AIVC Q = 0.01 

AINB (o) 3e-5 1.2e-5 - - 2 30 12 30 100 3 300 1000 

AINB (n) 5e-6 1.2e-5 - - 2 30 12 30 300 3 300 3000 

ACVB 2.5e-5 1.8e-5 - - 2 30 18 30 300 2 300 600 

AV1 4e-5 1.8e-5 - - 2 30 18 30 150 2 150 300 

AV2 3.5e-5 1.8e-5 - - 2 30 18 30 150 2 150 300 

AV3 2.8e-5 1.8e-5 - - 2 30 18 30 250 2 150 500 

   

Failure Events and Data of the Firewater Supply and Distribution System. Failure 

events considered in the reliability assessment of the firewater supply and distribution 

are specified in tables B.4, B.5 and B.6. Table B.4 provides a list of the events 

associated with each fire pump and, therefore, constitute a single pump line (Chapter 7, 

Figure 7.1).  



 233

Table B.4 Events of Each Firewater Pump 

Event 
Name 

Description Event 
Type 

Rates 

FB The pump, including seawater filter, is blocked by debris. CO NW 
IVB Firewater pump isolation valve being blocked. The butterfly isolation 

valve operates on the header from pump to ringmain. 
CO NW 

IVC The firewater pump isolation valve is left closed after pump test. HE - 
PRVO Pressure relief valve on header from pump to ringmain fails open. CO NW 
SVO The flow control valve fails open on demand (used to dump excess 

flow from the pump to ringmain). 
CO NW 

DVO Test line, used to dump flow from firewater pumps overboard during 
test, is left open after completion. 

HE - 

CVB Check valve on header between the pump and ringmain blocked. CO NW 
 

 

It is important to notice, that the electricity supply (ESF) is global to all electric pumps. 

In addition, a single diesel tank supplies all fitted firewater diesel pumps. Table B.5 

specifies the events associated with the electric and diesel supply and the different 

available pump types. Failure events associated with the distribution network are 

considered in table B.6.   
 

Table B.5 Failure Events Associated with the Firewater Pumps 

Event 
Name 

Description Event 
Type 

Rates 

ESF Failure of electricity supply to electric driven firewater pumps. CO NW 
DIVB Diesel engine supply is blocked. CO NW 
DIVC Diesel supply is inadvertently left isolated after maintenance. HE - 
LAF Diesel tank level switch fails to signal flow level to control room. CO NW 
OAF Operator fails to notice or misinterprets the low level tank alarm. HE - 

E_100 Failure of electric pump with 100% capacity. CO W 
D_100 Failure of diesel pump with 100% capacity. CO W 
E1_50 Failure of electric pump type 1 with 50% capacity. CO W 
E2_50 Failure of electric pump type 2 with 50% capacity. CO W 
D1_50 Failure of diesel pump type 1 with 50% capacity CO W 
D2_50 Failure of diesel pump type 2 with 50% capacity. CO W 
E1_33 Failure of the electric pump type 1 with 33.33% capacity. CO W 
E2_33 Failure of the electric pump type 2 with 33.33% capacity. CO W 
D1_33 Failure of the diesel pump type 1 with 33.33% capacity. CO W 
D2_33 Failure of the diesel pump type 2 with 33.33% capacity. CO W 
E/DM Probability of maintenance being carried out on a pump. - - 
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Table B.6 Failure Events Associated with the Distribution Network 

Event 
Name 

Description Event 
Type 

Rates 

FSU Failure of fire pump selector unit to initiate start of the standby pump 
in sequence, on detection of failure of duty pump/pumps to restore 
ringmain pressure. 

CO NW 

OE Designated duty pump/pumps inadvertently left in a mode other than 
auto start at the end of the test. 

HE - 

PBF Manual push button in the control room failing to initiate pump start 
when pressed. 

CO NW 

PT1 Failure of ringmain low pressure sensor type 1 to indicate low 
ringmain pressure. 

CO NW 

PT2 Failure of ringmain low pressure sensor type 2 to indicate low 
ringmain pressure. 

CO NW 

PT3 Failure of ringmain low pressure sensor type 3 to indicate low 
ringmain pressure.  

CO NW 

 

 

Tables B.7, B.8 and B.9 give the associated component data for the events specified in 

tables B.4, B.5 and B.6 respectively. The notation key for these tables is supplied in 

table B.1.  
 

Table B.7 Data Associated with the Events of Each Firewater Pump 

Event λD τD HT CHT CR CHR CSR NS CS C1 

FB 2.8e-5 1.2e-5 2 30 12 30 50 4 150 100 

IVB 1.8e-5 1.8e-5 2 30 18 30 400 2 300 400 

IVC Q = 0.01 

PRVO 1.2e-5 1.8e-5 2 30 18 30 250 2 300 500 

SVO 1.8e-5 2.4e-5 2 30 24 30 400 2 300 800 

DVO Q = 0.01 

CVB 2.5e-5 1.8e-5 2 30 18 30 300 2 300 500 
 

 

The pumps are of wear-out type, therefore, the Weibull distribution is used. This 

distribution is chosen because in contrast to the exponential distribution Weibull is able 

to model increasing and decreasing failure rates. Thus, lending itself to the first (wear-

in) and last (wear-out) phases of the bathtub curve in addition to the useful life period 

[Pattison, 1999].  It is characterised by a hazard rate function of the form given in 

equation B.1, 
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where β is referred to as the shape parameter and η is the scale parameter (or 

characteristic life), which influences both the mean and spread of the distribution. 

Modifying the value of β has a dramatic effect on the probability density function )(tf  
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When β < 1, the hazard rate applies to the burn-in phase. On the other hand, for β  = 1 

the  hazard  rate  is  constant  and  the distribution is identical to the exponential. When 

β > 1, the hazard rate applies to the wear-out phase. For β  ≥ 3, the probability density 

function tends toward a normal distribution, thus portraying symmetry. The value of the 

Weibull parameters (β and η) are specified in table B.8. In addition, PBF is a 

component failure with its probability of occurrence specified directly. 

 
Table B.8 Failure Events Data for the Firewater Pumps 

Event λD τD HT CHT CR CHR CSR HP CHP CSP NS CS C1 

ESF 5e-5 2e-6 2 45 2 45 200 - - - - - 1000 

DIVB 3e-5 8e-6 2 30 8 30 200 - - - 2 300 400 

DIVC Q = 0.01 

LAF 3e-5 6e-6 2 30 6 30 100 - - - 2 200 200 

OAF Q = 0.01 

 

Event  β η HT CHT CR CHR CSR HP CHP CSP NS CS C1 

E_100 2 16667 2 30 72 30 1500 72 30 300 1 1000 3000 

D_100 2 14035 2 30 72 30 1450 72 30 290 1 1000 2900 

E1_50 3/2 22857 2 30 48 30 900 48 30 180 2 900 1800 

E2_50 3/2 26667 2 30 48 30 1000 48 30 200 2 900 2000 

D1_50 3/2 20000 2 30 48 30 750 48 30 150 2 900 1500 

D2_50 3/2 22857 2 30 48 30 900 48 30 180 2 900 1800 

E1_33 3/2 32000 2 30 36 30 600 48 30 120 2 800 1200 

E2_33 3/2 40000 2 30 36 30 700 48 30 140 2 800 1400 

D1_33 3/2 28571 2 30 48 30 500 48 30 100 2 800 1000 

D2_33 3/2 33333 2 30 48 30 550 48 30 110 2 800 1100 

E/DM Q = 0.04 
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Table B.9 Failure Events Data for the Distribution Network 

Event λD τD λS τS HT CHT CR CHR CSR NS CS C1 

FSU 8e-6 2.4e-5   1 45 24 45 200 1 200 2000 

OE Q = 0.01 

PBF Q = 0.01 

PT1 7e-6 4e-6 7e-6 4e-6 1 45 4 45 50 2 100 500 

PT2 1.4e-5 4e-6 1.4e-5 4e-6 1 45 4 45 20 2 100 200 

PT3 2.1e-5 4e-6 2.1e-5 4e-6 1 45 4 45 10 2 100 100 

 

Failure Events and Data of the AFFF Supply and Distribution System. Failure 

events of each AFFF pump line are identical to those described in table B.3, where the 

associated component data is supplied in table B.6. Table B.9 provides further events 

involved in the AFFF supply and distribution system. 

 
Table B.10 Failure Events Associated with AFFF Supply and Distribution 

Event 
Name 

Description Event 
Type 

Rates 

ATIVB Normally locked open ball valve on AFFF tank outlet blocked. CO NW 

ATIVC AFFF supply left isolated after maintenance. HE - 

AESF Failure of electric supply to the electric driven AFFF pumps. CO NW 

ADIVB Normally locked open ball valve on diesel tank outlet blocked. CO NW 

ADIVC Diesel supply to AFFF pumps left isolated after maintenance. CO NW 

ALAF Diesel tank level switch fails to signal low level to control room. CO NW 

AOAF Operator fails to notice AFFF diesel tank low level alarm. HE - 

AE_100 Failure of AFFF electric pump with 100% capacity. CO W 

AD_100 Failure of AFFF diesel pump with 100% capacity. CO W 

AE_50 Failure of AFFF electric pump with 50% capacity. CO W 

AD_50 Failure of AFFF diesel pump with 50% capacity. CO W 

AE/DM Probability of maintenance being carried out on an AFFF pump. CO W 
 

 

Table B.11 describes the data associated with each of the events from table B.10. 

Similar to the firewater pumps, the AFFF pumps are of wear-out type. Hence, the 

Weibull distribution is used and Weibull parameters (β and η) are specified.  
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Table B.11 Failure Event Data for the AFFF Supply and Distribution System  

Event λD τD HT CHT CR CHR CSR HP CHP CSP NS CS C1 

ADIVC Q = 0.01 
ATIVC Q = 0.01 
ALAF 3e-5 6e-6 2 30 6 30 100 - - - 2 200 200 
ATIVB 1.8e-5 1.8e-5 2 30 18 30 200 - - - 2 300 400 
AESF 5e-5 2e-6 2 45 2 45 200 - - - - - 1000 

ADIVB 3e-5 8e-6 2 30 8 30 200 - - - 2 300 400 
AOAF Q = 0.01 

Event β η HT CHT CR CHR CSR HP CHP CSP NS CS C1 

AE_100 2 16667 2 30 72 30 750 72 30 150 1 800 1500 
AD_100 2 14035 2 30 72 30 725 72 30 145 1 800 1450 
AE_50 3/2 22857 2 30 48 30 450 48 30 90 2 600 900 
AD_50 3/2 20000 2 30 48 30 375 48 30 75 2 600 750 
AE/DM Q = 0.04 

 

 
 

B.2 FDS Fault Tree Construction 

B.2.1 FDS Unavailability Fault Tree Construction 

 

The top event ‘Firewater Deluge System Fails to Protect’ represents the causes of the 

firewater deluge system unavailability. There are three main reasons for the top event to 

occur. The first reason, i.e. failure to initiate the firewater and AFFF pump mechanisms, 

occurs if both automatic and manual interventions fail. The manual start of the system 

fails if either the push button on the MFGP fails or if the operator fails to push the 

button. An automatic start fails if either the fire pump selector unit fails or the low 

pressure sensing on the firewater ringmain fails. Failure of the low pressure sensing 

depends on the number of pressure transmitters fitted (N) and the number of pressure 

transmitters required to trip the system (K). House events are included in the fault tree 

to model each possible design alternative in a similar manner to the high integrity 

pressure system (Appendix A). Figure B.1 represents the initial steps of the FDS system 

unavailability fault tree construction.   
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Failure of the firewater pumps and lines means that the FDS system fails to supply sufficient 

water to the ringmain due to the failure of the firewater pump mechanisms or lines to supply 

100% pressure. As it is seen from figure B.1, the event ‘Failure of the firewater pumps and lines’ 

will occur if either the firewater pumps are of 100% capacity and fail, if the firewater pumps are 

of 50% capacity and fail or if the firewater pumps are of 33.33% capacity and fail. 

 

The system may have 1 to 8 firewater pumps of 100% capacity. Therefore, the gate ‘Gb1’ has 8 

sub-events, where the left most branch considers that ‘One 100% pump only is fitted and fails’, 

the next that ‘Two 100% pumps are fitted and fail’, and so on. Each of these 8 sub-events is 

further developed. For example, consider the event “Two 100% pumps are fitted and fail”. Two 

fitted pumps give three possible combinations of the electric and diesel pumps. Each of these 

combinations is further developed to specify the events that will lead to the future system failure. 

Figure B.2 represents this casual relationship.  

 

The house event H2P (Figure B.2) is set to true if two pumps are fitted. The house events HE0, 

HE1 and HE2 indicate the number of electric pumps fitted, i.e. HE0 is true if there are no electric 

pumps, HE1 and HE2 are true if 1 and 2 electric pumps are fitted respectively.  

 

Pump failure occurs if the pump itself fails or if components of the pump line fail. Therefore, the 

gate ‘Gb126’, i.e. ‘Electric Pump No. 1 Fails’, can be depicted as shown in figure B.3. ‘E1’, 

appended to the failure events, specifies that the component occurs in electric pump line number 

1 alone. 
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Figure B.2 Development of the Branch ‘Two 100% Pumps are Fitted’ 

 

 
Figure B.3 Development of the Branch ‘Electric Pump No. 1 Fails’ 

 

 The event ‘50% Pumps are Fitted and Fail’, i.e. gate ‘Gb2’, is developed in a similar manner to 

the gate ‘Gb1’. The main difference is that for the gate ‘Gb2’ at least 2 pumps must be fitted to 

ensure 100% pressure attained. Therefore, the sub-event ‘One 50% pump is fitted and fails’ is 
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infeasible. The 50% pumps branch is a little more complex than 100% due to the complexity of 

the combinations of pumps resulting in overall pump failure. For example, consider the next two 

levels in the tree structure below the event ‘Three 50% Pumps Fail’ (Figure B.4). 

 

 
 

Figure B.4 Development of the Branch ‘Three 50% Pumps Fail’ 

 

The development of the event ‘33.33% pumps are fitted and fail’ is still more complex. 

However, the construction process follows a similar pattern. The 33.33% pumps branch requires 

at least 3 pumps to be fitted in the system to ensure 100% pressure, thus, only 6 sub-events 

constitute the level immediately below the gate ‘Gb3’. 

  

Consider now the AFFF pumps and lines. Failure of the AFFF pump system fails to supply 

sufficient foam to the ringmain as a result of failure to the AFFF pump mechanisms or lines or 

isolation of the AFFF tank (Chapter 7, Figure 7.1). Development of the gate ‘Gc1’ is similar to 

that of the firewater pump system. However, the pumps of 33.33% capacity are not considered 

for this part of the FDS system.  

 

Failure of the AFFF or water deluge skid occurs if either events ‘Failure of the water deluge 

skid’ or ‘Failure of the AFFF Deluge Skid’ occur. The possible reasons for the event ‘Failure of 

the water deluge skid’ to occur are:  the water spray isolation valves fail, the strainer nozzle 

becomes blocked or the deluge valve fails to open. Further development of the event ‘The water 
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deluge valve fails to open’ involves two scenarios connected by OR logic, i.e. events that restrict 

activation of the deluge valve and failure of the deluge valve itself. ‘Failure to activate the water 

deluge valve’ can be caused by the failure of the signal to the solenoids, by the solenoid valves 

remaining energized or by the failure of the valmatic release valve.  In a similar manner the 

event ‘Failure of the AFFF deluge skid’ is developed. The main difference is that the blocked 

nozzle is replaced by blockage of the inductor nozzle and the strainer by a blocked AFFF check 

valve in the sequence of previously discussed events. The full version of the FDS Unavailability 

fault tree is described in appendix. 

 

  

B.2.2 FDS Spurious Trip Fault Tree Construction 

 

According to the FDS system limitations a number of spurious system occurrences is permitted, 

i.e. Fsys < 0.75 (Table 7.2). Hence, the spurious activation of the FDS must be established by 

developing the specific fault tree to quantify causes of this failure mode. 

 

The top event ‘Firewater deluge system fails spuriously’ occurs if the solenoid valves fail 

spuriously, the valmatic release valve opens spuriously or the signal from the main fire and gas 

panel (MFGP) to the solenoid valves is interrupted. The latter event occurs as a result of spurious 

activation of the ringmain pressure sensors. Figure B.5 shows the casual relationship of the 

events directly causing the top event. The full fault tree structure is represented in appendix D.  
  

 
Figure B.5 Development of the Spurious Trip Fault Tree 
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APPENDIX C 

 

Table C.1 HIPS Unavailability Fault Tree Structure 

Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 

Number

Input 
Event 

Number

House 
Event 

Number

Input Gate         
List Input Event List 

1 top and 3 0 0 g1, g2, g3  
2 g1 and 2 0 0 g1a, g1b  
3 g1a or 1 1 0 g4 Wv 
4 g1b or 1 1 0 g4a Mv 
5 g2 and 2 0 0 g61, g62  
6 g3 and 2 0 0 g90, g91  
7 g4 or 1 1 0 g5 Svw 
8 g4a or 1 1 0 g5 Svm 
9 g5 or 2 0 0 g6, g7  

10 g6 and 0 2 0  r1/1, r1/2 
11 g7 or 1 1 0 g8 plc1 
12 g8 and 4 0 0 g9, g10, g11, g12  
13 g9 or 1 1 1 g13 nen1 
14 g10 or 1 1 1 g18 nen2 
15 g11 or 1 1 1 g27 nen3 
16 g12 or 1 1 1 g41 nen4 
17 g13 and 1 1 1 g14 en1 
18 g14 and 1 1 1 g15 ek1 
19 g15 or 2 0 0 g16, g17  
20 g16 and 0 2 1  p11, pt11 
21 g17 and 0 2 1  p12, pt21 
22 g18 and 1 1 1 g19 en2 
23 g19 or 2 0 0 g20, g21  
24 g20 and 1 1 1 g22 ek1 
25 g21 and 1 1 1 g26 ek2 
26 g22 and 2 0 0 g15, g23  
27 g23 or 2 0 0 g24, g25  
28 g24 and 0 2 1  p11, pt12 
29 g25 and 0 2 1  p12, pt22 
30 g26 or 2 0 0 g15, g23  
31 g27 and 1 1 1 g28 en3 
32 g28 or 3 0 0 g29, g30, g31  
33 g29 and 1 1 1 g32 ek1 
34 g30 and 1 1 1 g36 ek2 
35 g31 and 1 1 1 g40 ek3 
36 g32 and 3 0 0 g15, g23, g33  
37 g33 or 2 0 0 g34, g35  
38 g34 and 0 2 1  p11, pt13 
39 g35 and 0 2 1  p12, pt23 
40 g36 or 3 0 0 g37, g38, g39  
41 g37 and 2 0 0 g15, g23  
42 g38 and 2 0 0 g15, g33  
43 g39 and 2 0 0 g23, g33  
44 g40 or 3 0 0 g15, g23, g33  
45 g41 and 1 1 1 g42  en4 
46 g42 or 4 0 0 g43, g44, g45, g46  
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Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 

Number

Input 
Event 

Number

House 
Event 

Number

Input Gate         
List Input Event List 

47 g43 and 1 1 1 g47 ek1 
48 g44 and 1 1 1 g52 ek2 
49 g45 and 1 1 1 g58 ek3 
50 g46 and 1 1 1 g59 ek4 
51 g47 and 4 0 0 g15, g23, g33, g48  
52 g48 or 2 0 0 g49, g50  
53 g49 and 0 2 1  p11, pt14 
54 g50 and 0 2 1  p12, pt24 
55 g52 or 4 0 0 g53, g54, g56, g57  
56 g53 and 3 0 0 g15, g23, g33  
57 g54 and 3 0 0 g15, g23, g48  
58 g56 and 3 0 0 g23, g33, g48  
59 g57 and 3 0 0 g15, g33, g48  

60 g58 or 6 0 0 g58a, g58b, g58c, 
g58d, g58e, g58f  

61 g58a and 2 0 0 g15, g23  
62 g58b and 2 0 0 g15, g33  
63 g58c and 2 0 0 g15, g48  
64 g58d and 2 0 0 g23, g33  
65 g58e and 2 0 0 g23, g48  
66 g58f and 2 0 0 g33, g48  
67 g59 or 4 0 0 g15, g23, g33, g48  
68 g61 or 1 1 1 g63 ne1 
69 g62 or 1 1 1 g69 ne2 
70 g63 and 1 1 1 g64 e1 
71 g64 or 2 0 0 g65, g66  
72 g65 or 2 0 0 g67, g68  
73 g66 or 1 1 0 g5 sve1 
74 g67 and 0 2 1 v1 esd11 
75 g68 and 0 2 1 v2 esd21 
76 g69 and 1 1 1 g70 e2 
77 g70 or 2 0 0 g71, g72  
78 g71 or 2 0 0 g73, g74  
79 g72 or 1 1 0 g5 sve2 
80 g73 and 0 2 1  v1, esd12 
81 g74 and 0 2 1  v2, esd22 
82 g90 or 1 1 1 g92 nh1 
83 g91 or 1 1 1 g102 nh2 
84 g92 and 1 1 1 g93 h1 
85 g93 or 2 0 0 g94, g95  
86 g94 or 2 0 0 g96, g97  
87 g95 or 1 1 0 g98 svh1 
88 g96 and 0 2 1  hv1, hips11 
89 g97 and 0 2 1  hv2, hips21 
90 g98 or 2 0 0 g99, g100  
91 g99 or 1 1 0 g101 plc2 
92 g100 and 0 2 0  r2/1, r2/2 

93 g101 and 4 0 0 g301, g302, g303, 
g304  

94 g102 and 1 1 1 g103 h2 
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Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 

Number

Input 
Event 

Number

House 
Event 

Number

Input Gate         
List Input Event List 

95 g103 or 2 0 0 g104, g105  
96 g104 or 2 0 0 g106, g107  
97 g105 or 1 1 0 g98 svh2 
98 g106 and 0 2 1  hv1, hips12 
99 g107 and 0 2 1  hv2, hips22 

100 g114 or 6 0 0 g348, g349, g350, 
g351, g352, g353  

101 g301 or 1 1 1 g305 nhn1 
102 g302 or 1 1 1 g310 nhn2 
103 g303 or 1 1 1 g319 nhn3 
104 g304 or 1 1 1 g333 nhn4 
105 g305 and 1 1 1 g306 hn1 
106 g306 and 1 1 1 g307 hk1 
107 g307 or 2 0 0 g308, g309  
108 g308 and 0 2 1  p21, pt15 
109 g309 and 0 2 1  p22, pt25 
110 g310 and 1 1 1 g311 hn2 
111 g311 or 2 0 0 g312, g317  
112 g312 and 1 1 1 g313 hk1 
113 g313 and 2 0 0 g307, g314  
114 g314 or 2 0 0 g315, g316  
115 g315 and 0 2 1  p21, pt16 
116 g316 and 0 2 1  p22, pt26 
117 g317 and 1 1 1 g318 hk2 
118 g318 or 2 0 0 g307, g314  
119 g319 and 1 1 1 g320 hn3 
120 g320 or 3 0 0 g321, g322, g323  
121 g321 and 1 1 1 g324 hk1 
122 g322 and 1 1 1 g328 hk2 
123 g323 and 1 1 1 g332 hk3 
124 g324 and 3 0 0 g307, g314, g325  
125 g325 or 2 0 0 g326, g327  
126 g326 and 0 2 1  p21, pt17 
127 g327 and 0 2 1  p22, pt27 
128 g328 or 3 0 0 g329, g330, g331  
129 g329 and 2 0 0 g307, g314  
130 g330 and 2 0 0 g307, g325  
131 g331 and 2 0 0 g314, g325  
132 g332 or 3 0 0 g307, g314, g325  
133 g333 and 1 1 1 g334 hn4 

134 g334 or 4 0 0 g335, g336, g337,  
g338  

135 g335 and 1 1 1 g339 hk1 
136 g336 and 1 1 1 g340 hk2 
137 g337 and 1 1 1 g114 hk3 
138 g338 and 1 1 1 g354 hk4 

139 g339 and 4 0 0 g307, g314, g325, 
g345  

140 g340 or 4 0 0 g341, g342, g343, 
g344  

141 g341 and 3 0 0 g307, g314, g325  
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142 g342 and 3 0 0 g307, g314, g345  
143 g343 and 3 0 0 g307, g325, g345  
144 g344 and 3 0 0 g314, g325, g345  
145 g345 or 2 0 0 g346, g347  
146 g346 and 0 2 1  p21, pt18 
147 g347 and 0 2 1  p22, pt28 
148 g348 and 2 0 0 g307, g314  
149 g349 and 2 0 0 g307, g325  
150 g350 and 2 0 0 g307, g345  
151 g351 and 2 0 0 g314, g325  
152 g352 and 2 0 0 g314, g345  
153 g353 and 2 0 0 g325, g345  

154 g354 or 4 0 0 g307, g314, g325, 
g345  

 

 

 

Table C.2 HIPS Spurious Trip Fault Tree Structure  

 

Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 

Number

Input 
Event 

Number

House 
Event 

Number

Input Gate         
List Input Event List 

1 top or 3 0 0 g1,  g2, g3  
2 g1 or 2 0 0 g1a, g1b  
3 g1a or 1 1 0 g4 wvs 
4 g1b or 1 1 0 g4b mvs 
5 g2 or 2 0 0 g60, g61  
6 g3 or 2 0 0 g80, g81  
7 g4 or 1 1 0 g5 ssvw 
8 g4b or 1 1 0 g5 ssvm 
9 g5 or 2 0 0 g6, g7  

10 g6 or 0 2 0  sr1/1, sr1/2 
11 g7 or 1 1 0 g8 splc1 
12 g8 or 4 0 0 g9, g10, g11, g12  
13 g9 and 1 1 1 g13 en1 
14 g10 and 1 1 1 g17 en2 
15 g11 and 1 1 1 g25 en3 
16 g12 and 1 1 1 g38 en4 
17 g13 and 1 1 1 g14 ek1 
18 g14 or 2 0 0 g15, g16  
19 g15 and 0 2 1  p11, spt11 
20 g16 and 0 2 1  p12, spt21 
21 g17 or 2 0 0 g18, g19  
22 g18 and 1 1 1 g20 ek1 
23 g19 and 1 1 1 g24 ek2 
24 g20 or 2 0 0 g14, g21  
25 g21 or 2 0 0 g22, g23  
26 g22 and 0 2 1  p11, spt12 
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27 g23 and 0 2 1  p12, spt22 
28 g24 and 2 0 0 g14, g21  
29 g25 or 3 0 0 g26, g27, g28  
30 g26 and 1 1 1 g29 ek1 
31 g27 and 1 1 1 g33 ek2 
32 g28 and 1 1 1 g37 ek3 
33 g29 or 3 0 0 g14, g21, g30  
34 g30 or 2 0 0 g31, g32  
35 g31 and 0 2 1  p11, spt13 
36 g32 and 0 2 1  p12, spt23 
37 g33 or 3 0 0 g34, g35, g36  
38 g34 and 2 0 0 g14, g21  
39 g35 and 2 0 0 g14, g30  
40 g36 and 2 0 0 g21, g30  
41 g37 and 3 0 0 g14, g21, g30  
42 g38 or 4 0 0 g39, g40, g41, g42  
43 g39 and 1 1 1 g43 ek1 
44 g40 and 1 1 1 g47 ek2 
45 g41 and 1 1 1 g54 ek3 
46 g42 and 1 1 1 g59 ek4 
47 g43 or 4 0 0 g14, g21, g30, g44  
48 g44 or 2 0 0 g45, g46  
49 g45 and 0 2 1  p11, spt14 
50 g46 and 0 2 1  p12, spt24 

51 g47 or 6 0 0 g48, g49, g50, g51,  
g52, g53  

52 g48 and 2 0 0 g14, g21  
53 g49 and 2 0 0 g14, g30  
54 g50 and 2 0 0 g14, g44  
55 g51 and 2 0 0 g21, g30  
56 g52 and 2 0 0 g21, g44  
57 g53 and 2 0 0 g30, g44  
58 g54 or 4 0 0 g55, g56, g57, g58  
59 g55 and 3 0 0 g14, g21, g30  
60 g56 and 3 0 0 g14, g21, g44  
61 g57 and 3 0 0 g14, g30, g44  
62 g58 and 3 0 0 g21, g30, g44  
63 g59 and 4 0 0 g14, g21, g30, g44  
64 g60 and 1 1 1 g62 e1 
65 g61 and 1 1 1 g67 e2 
66 g62 or 2 0 0 g63, g64  
67 g63 or 2 0 0 g65, g66  
68 g64 or 1 1 0 g5 ssve1 
69 g65 and 0 2 1  v1, sesd11 
70 g66 and 0 2 1  v2, sesd21 
71 g67 or 2 0 0 g68, g69  
72 g68 or 2 0 0 g70, g71  
73 g69 or 1 1 0 g5 ssve2 
74 g70 and 0 2 1  v1, sesd12 
75 g71 and 0 2 1  v2, sesd22 
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76 g80 and 1 1 1 g82 h1 
77 g81 and 1 1 1 g145 h2 
78 g82 or 2 0 0 g83, g84  
79 g83 or 2 0 0 g86, g85  
80 g84 or 1 1 0 g87 ssvh1 
81 g85 and 0 2 1  hv2, ships21 
82 g86 and 0 2 1  hv1, ships11 
83 g87 or 2 0 0 g88, g89  
84 g88 or 1 1 0 g90 splc2 
85 g89 or 0 2 0  sr2/1, sr2/2 
86 g90 or 4 0 0 g91, g92, g93, g94  
87 g91 and 1 1 1 g95 hn1 
88 g92 and 1 1 1 g99 hn2 
89 g93 and 1 1 1 g107 hn3 
90 g94 and 1 1 1 g103a hn4 
91 g95 and 1 1 1 g96 hk1 
92 g96 or 2 0 0 g97, g98  
93 g97 and 0 2 1  p21, spt15 
94 g98 and 0 2 1  p22, spt25 
95 g99 or 2 0 0 g100, g101  
96 g100 and 1 1 1 g102 hk1 
97 g101 and 1 1 1 g106 hk2 
98 g102 or 2 0 0 g96, g103  
99 g103 or 2 0 0 g104, g105  

100 g103a or 4 0 0 g123, g124, g125, 
g126  

101 g104 and 0 2 1  p21, spt16 
102 g105 and 0 2 1  p22, spt26 
103 g106 and 2 0 0 g96, g103  
104 g107 or 3 0 0 g108, g109, g110  
105 g108 and 1 1 1 g111 hk1 
106 g109 and 1 1 1 g118 hk2 
107 g110 and 1 1 1 g122 hk3 
108 g111 or 3 0 0 g96, g103, g112  
109 g112 or 2 0 0 g113, g114  
110 g113 and 0 2 1  p21, spt17 
111 g114 and 0 2 1  p22, spt27 
112 g118 or 3 0 0 g119, g120, g121  
113 g119 and 2 0 0 g96, g103  
114 g120 and 2 0 0 g96, g112  
115 g121 and 2 0 0 g103, g112  
116 g122 and 3 0 0 g96, g103, g112  
117 g123 and 1 1 1 g127 hk1 
118 g124 and 1 1 1 g131 hk2 
119 g125 and 1 1 1 g138 hk3 
120 g126 and 1 1 1 g143 hk4 

121 g127 or 4 0 0 g96, g103, g112, 
g128  

122 g128 or 2 0 0 g129, g130  
123 g129 and 0 2 1  p21, spt18 
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124 g130 and 0 2 1  p22, spt28 

125 g131 or 6 0 0 g132, g133, g134, 
g135, g136, g137  

126 g132 and 2 0 0 g96, g103  
127 g133 and 2 0 0 g96, g112  
128 g134 and 2 0 0 g96, g128  
129 g135 and 2 0 0 g103, g112  
130 g136 and 2 0 0 g103, g128  
131 g137 and 2 0 0 g112, g128  

132 g138 or 4 0 0 g139, g140, g141, 
g142  

133 g139 and 3 0 0 g96, g103, g112  
134 g140 and 3 0 0 g96, g103, g128  
135 g141 and 3 0 0 g96, g112, g128  
136 g142 and 3 0 0 g103, g112, g128  

137 g143 and 4 0 0 g96, g103, g112, 
g128  

138 g145 or 2 0 0 g146, g147  
139 g146 or 2 0 0 g148, g149  
140 g147 or 1 1 0 g87 ssvh2 
141 g148 and 0 2 1  hv1, ships12 
142 g149 and 0 2 1  hv2, ships22 
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APPENDIX D 

 

Table D.1 FDS Unavailability Fault Tree Structure  

Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 
No 

Input 
Event 

No 

House 
Event 

No 
Input Gate List Input Event List 

1 top or 4 0 0 ga, gb, gc, gd  
2 ga and 2 0 0 ga1, ga2  
3 ga1 or 1 1 0 ga3 fsu 
4 ga2 or 0 2 0  oe, pbf 
5 ga3 or 4 0 0 gin6, gin7, gin8, gin9  
6 gin6 and 1 1 1 gin10 h1s 
7 gin7 and 1 1 1 gin15 h2s 
8 gin8 and 1 1 1 gin24 h3s 
9 gin9 and 1 1 1 gin38 h4s 
10 gin10 and 1 1 1 gin11 h1ts 
11 gin11 or 3 0 0 gin12, gin13, gin14  
12 gin12 and 0 2 1  hpt1, pt11 
13 gin13 and 0 2 1  hpt2, pt12 
14 gin14 and 0 2 1  hpt3, pt13 
15 gin15 or 2 0 0 gin16, gin17  
16 gin16 and 1 1 1 gin18 h1ts 
17 gin17 and 1 1 1 gin23 h2ts 
18 gin18 and 2 0 0 gin11, gin19  
19 gin19 or 3 0 0 gin20, gin21, gin22  
20 gin20 and 0 2 1  hpt1, pt21 
21 gin21 and 0 2 1  hpt2, pt22 
22 gin22 and 0 2 1  hpt3, pt23 
23 gin23 or 2 0 0 gin11, gin19  
24 gin24 or 3 0 0 gin25, gin26, gin27  
25 gin25 and 1 1 1 gin28 h1ts 
26 gin26 and 1 1 1 gin33 h2ts 
27 gin27 and 1 1 1 gin37 h3ts 
28 gin28 and 3 0 0 gin11, gin19, gin29  
29 gin29 or 3 0 0 gin30, gin31, gin32  
30 gin30 and 0 2 1  hpt1, pt31 
31 gin31 and 0 2 1  hpt2, pt32 
32 gin32 and 0 2 1  hpt3, pt33 
33 gin33 or 3 0 0 gin34, gin35, gin36  
34 gin34 and 2 0 0 gin11, gin19  
35 gin35 and 2 0 0 gin11, gin29  
36 gin36 and 2 0 0 gin19, gin29  
37 gin37 or 3 0 0 gin11, gin19, gin29  
38 gin38 or 4 0 0 gin39, gin40, gin41, gin42  
39 gin39 and 1 1 1 gin43 h1ts 
40 gin40 and 1 1 1 gin48 h3ts 
41 gin41 and 1 1 1 gin54 h2ts 
42 gin42 and 1 1 1 gin58 h4ts 
43 gin43 and 4 0 0 gin11, gin19, gin29, gin44  
44 gin44 or 3 0 0 gin45, gin46, gin47  
45 gin45 and 0 2 1  hpt1, pt14 
46 gin46 and 0 2 1  hpt2, pt24 
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47 gin47 and 0 2 1  hpt3, pt34 

48 gin48 or 6 0 0 gin49, gin50, gin51, 
gin52, gin53, lg0  

49 gin49 and 2 0 0 gin11, gin19  
50 gin50 and 2 0 0 gin11, gin29  
51 gin51 and 2 0 0 gin11, gin44  
52 gin52 and 2 0 0 gin19, gin29  
53 gin53 and 2 0 0 gin19, gin44  
54 gin54 or 4 0 0 gin55, gin56, gin57, lg01  
55 gin55 and 3 0 0 gin11, gin19, gin29  
56 gin56 and 3 0 0 gin11, gin19, gin44  
57 gin57 and 3 0 0 gin19, gin29, gin44  
58 gin58 or 4 0 0 gin11, gin19, gin29, gin44  
59 lg0 and 2 0 0 gin29, gin44  
60 lg01 and 3 0 0 gin11, gin29, gin44  
61 gb or 3 0 0 gb1, gb2, gb3  

62 gb1 or 8 0 0 gb11, gb12, gb13, gb14, 
gb15, gb16, gb17, gb18  

63 gb2 or 7 0 0 gb22, gb23, gb24, gb25, 
gb26, gb27, gb28  

64 gb3 or 6 0 0 b3tg1, b4tg1, b5tg1, 
b6tg1, b7tg1, b8tg1  

65 gb11 and 1 1 1 gb111 h1p 
66 gb12 and 1 1 1 gb121 h2p 
67 gb13 and 1 1 1 gb131 h3p 
68 gb14 and 1 1 1 gb141 h4p 
69 gb15 and 1 1 1 gb151 h5p 
70 gb16 and 1 1 1 gb161 h6p 
71 gb17 and 1 1 1 gb171 h7p 
72 gb18 and 1 1 1 gb181 h8p 
73 gb22 and 1 1 1 gb221 h2p 
74 gb23 and 1 1 1 gb231 h3p 
75 gb24 and 1 1 1 gb241 h4p 
76 gb25 and 1 1 1 gb251 h5p 
77 gb26 and 1 1 1 gb261 h6p 
78 gb27 and 1 1 1 gb271 h7p 
79 gb28 and 1 1 1 gb281 h8p 
80 gb111 or 2 0 0 gb112, gb113  
81 gb112 and 1 1 1 gb126 he1 
82 gb113 and 1 1 1 gb1213 he0 

83 gb121 or 3 0 0 gb122, gb123 
gb124  

84 gb122 and 1 1 1 gb125 he2 
85 gb123 and 1 1 1 gb1212 he1 
86 gb124 and 1 1 1 gb1216 he0 
87 gb125 and 2 0 0 gb126, gb127  
88 gb126 or 2 0 0 gb128, gb129  
89 gb127 or 2 0 0 gb1210, gb1211  
90 gb128 and 1 1 1 b1g7 heno1 

91 gb129 or 0 9 0  cvb1, prvo1, dvo, 
svo1, fb01, ivb021, 
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ivc11, ef, m 

92 gb131 or 4 0 0 gb132, gb133, gb134, 
gb135  

93 gb132 and 1 1 1 gb136 he3 
94 gb133 and 1 1 1 gb1311 he2 
95 gb134 and 1 1 1 gb1312 he1 
96 gb135 and 1 1 1 gb1313 he0 
97 gb136 and 3 0 0 gb126, gb127, gb137  
98 gb137 or 2 0 0 gb138, gb1310  
99 gb138 and 1 1 1 b1g7 heno3 

100 gb141 or 5 0 0 gb142, gb143, gb144,  
gb145, gb146  

101 gb142 and 1 1 1 gb147 he4 
102 gb143 and 1 1 1 gb1411 he3 
103 gb144 and 1 1 1 gb1412 he2 
104 gb145 and 1 1 1 gb1413 he1 
105 gb146 and 1 1 1 gb1414 he0 

106 gb147 and 4 0 0 gb126, gb127, gb137, 
gb148  

107 gb148 or 2 0 0 gb149, gb1410  
108 gb149 and 1 1 1 b1g7 heno4 

109 gb151 or 4 0 0 gb152, gb153, b5hg5, 
gb154  

110 gb152 and 1 1 1 gb155 he4 
111 gb153 and 1 1 1 gb156 he3 
112 b5hg5 and 1 1 1 gb157 he2 
113 gb154 and 1 1 1 gb159 he1 

114 gb155 and 5 0 0 gb126, gb127, gb137, 
gb148, gb1213  

115 gb156 and 5 0 0 gb126, gb127, gb137, 
gb1213, gb1217  

116 gb157 and 5 0 0 gb126, gb127, gb1213, 
gb1217, gb1314  

117 gb159 and 5 0 0 gb126, gb1213, gb1217, 
gb1314, gb1415  

118 gb161 or 3 0 0 gb162, gb163, gb164  
119 gb162 and 1 1 1 gb165 he4 
120 gb163 and 1 1 1 gb166 he3 
121 gb164 and 1 1 1 gb167 he2 

122 gb165 and 6 0 0 gb126, gb127, gb137, 
gb148, gb1213, gb1217  

123 gb166 and 6 0 0 gb126, gb127, gb137, 
gb1213, gb1217, gb1314  

124 gb167 and 6 0 0 gb126, gb127, gb1213, 
gb1217, gb1314, gb1415  

125 gb171 or 2 0 0 gb172, gb175  
126 gb172 and 1 1 1 gb174 he4 

127 gb174 and 7 0 0 
gb126, gb127, gb137, 
gb148, gb1213, gb1217, 
gb1314 

 

128 gb175 and 1 1 1 gb176 he3 
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129 gb176 and 7 0 0 
gb126, gb127, gb137, 
gb1213, gb1217, gb1314, 
gb1415 

 

130 gb181 and 8 0 0 
gb126, gb127, gb137, 
gb148, gb1213, gb1217, 
gb1314, gb1415 

 

131 gb1210 and 1 1 1 b1g7 heno2 

132 gb1211 or 0 9 0  
cvb1, prvo1, dvo, 
svo1, fb1, ivb1, ivc12, 
ef, m 

133 gb1212 and 2 0 0 gb126, gb1213  
134 gb1213 or 2 0 0 gb1214, gb1215  
135 gb1214 and 1 1 1 b1g10 hdno1 

136 gb1215 or 1 7 0 gdfsr1 
cvb2, prvo2, dvo, 
svo2, fb02, ivb022, 
ivc21 

137 gb1216 and 2 0 0 gb1213, gb1217  
138 gb1217 or 2 0 0 gb1218, gb1219  
139 gb1218 and 1 1 1 b1g10 hdno2 

140 gb1219 or 1 7 0 gdfsr1 cvb2, prvo2, dvo, 
svo2, fb2, ivb2, ivc22 

141 gb1310 or 0 9 0  
cvb3, prvo3, dvo, 
svo3, fb3, ivb3, ivc31, 
ef, m 

142 gb1311 and 3 0 0 gb126, gb127, gb1213  
143 gb1312 and 3 0 0 gb126, gb1213, gb1217  
144 gb1313 and 3 0 0 gb1213, gb1217, gb1314  
145 gb1314 or 2 0 0 gb1315, gb1316  
146 gb1315 and 1 1 1 b1g10 hdno3 

147 gb1316 or 1 7 0 gdfsr1 
cvb3, prvo3, dvo, 
svo3, 
fb3, ivb3, ivc32 

148 gb1410 or 0 9 0  
cvb4, prvo4, dvo, 
svo4, fb4, ivb4, ivc41, 
ef, m 

149 gb1411 and 4 0 0 gb126, gb127, gb137, 
gb1213  

150 gb1412 and 4 0 0 gb126, gb127, gb1213, 
gb1217  

151 gb1413 and 4 0 0 gb126, gb1213, gb1217, 
gb1314  

152 gb1414 and 4 0 0 gb1213, gb1217, gb1314, 
gb1415  

153 gb1415 or 2 0 0 gb1416, gb1417  
154 gb1416 and 1 1 1 b1g10 hdno4 

155 gb1417 or 1 7 0 gdfsr1 cvb4, prvo4, dvo, 
svo4, fb4, ivb4, ivc42 

156 b1g7 or 0 2 0  pfe100, m 
157 b1g10 or 0 2 0  pfd100, m 
158 gdfsr1 or 1 1 0 gdfsr2 ef 
159 gdfsr2 or 0 4 0  tivc, tivb, laf, oaf 
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160 gb221 or 3 0 0 gate1, gate2, gate3  
161 gb226 or 2 0 0 gb228, gb229  
162 gb227 or 2 0 0 gb2215, gb2216  
163 gb228 and 1 1 1 gb2210 heno1 

164 gb229 or 0 9 0  
cvb5, prvo5, dvo, 
svo5, fb5, ivb5, ivc51, 
ef, m 

165 gb231 or 4 0 0 gate7, gate8, gate9, 
gate10  

166 gb237 or 2 0 0 gb238, gb239  
167 gb238 and 1 1 1 gb2210 heno3 

168 gb239 or 0 9 0  
cvb5, prvo5, dvo, 
svo5, fb5, ivb5, ivc52, 
ef, m 

169 gb241 or 5 0 0 gate27, gate28, gate29, 
gate30, gate31  

170 gb248 or 2 0 0 gb249, gb2410  
171 gb249 and 1 1 1 gb2210 heno4 

172 gb251 or 4 0 0 gate53, gate54, gate55, 
gate56  

173 gb261 or 3 0 0 gate61, gate62, gate63  
174 gb271 or 2 0 0 gate100, gate101  

175 gb281 or 8 0 0 

gate117, gate118, 
gate119, gate120, 
gate121, gate122 
gate123, gate124 

 

176 gb2210 or 2 0 0 gb2211, gb2212  
177 gb2211 and 1 1 1 gb2213 h501 
178 gb2212 and 1 1 1 gb2214 h502 
179 gb2213 or 0 2 0  pfe501, m 
180 gb2214 or 0 2 0  pfe502, m 
181 gb2215 and 1 1 1 gb2210 heno2 

182 gb2216 or 0 9 0  
cvb6, prvo6, dvo, 
svo6, fb6, ivb6, ivc61, 
ef, m 

183 gb2218 or 2 0 0 gb2219, gb2220  
184 gb2219 and 1 1 1 gb2221 hdno1 

185 gb2220 or 1 7 0 gdfsr1 cvb6, prvo6, dvo, 
svo6, fb6, ivb6, ivc62 

186 gb2221 or 2 0 0 gb2222, gb2223  
187 gb2222 and 1 1 1 gb2224 h501 
188 gb2223 and 1 1 1 gb2225 h502 
189 gb2224 or 0 2 0  pfd501, m 

190 gb2225 or 0 2 0  pfd502 
m 

191 gb2227 or 2 0 0 gb2228, gb2229  
192 gb2228 and 1 1 1 gb2221 hdno2 

193 gb2229 or 1 7 0 gdfsr1 cvb7, prvo7, dvo, 
svo7, fb7, ivb, ivc71 

194 gb2317 or 2 0 0 gb2318, gb2319  
195 gb2318 and 1 1 1 gb2221 hdno3 
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196 gb2319 or 1 7 0 gdfsr1 cvb7, prvo7, dvo, 
svo7, fb7, ivb7, ivc72 

197 gb2410 or 0 9 0  
cvb8, prvo8, dvo, 
svo8, fb8, ivb8, ivc81, 
ef, m 

198 gb2421 or 2 0 0 gb2422, gb2423  
199 gb2422 and 1 1 1 gb2221 hdno4 

200 gb2423 or 1 7 0 gdfsr1 cvb8, prvo8, dvo, 
svo8, fb8, ivb8, ivc82 

201 b3tg1 and 1 1 1 b3tg2 h3p 
202 b4tg1 and 1 1 1 b4tg2 h4p 
203 b5tg1 and 1 1 1 b5tg2 h5p 
204 b6tg1 and 1 1 1 b6tg2 h6p 
205 b7tg1 and 1 1 1 b7tg2 h7p 
206 b8tg1 and 1 1 1 b8tg2 h8p 

207 b3tg2 or 4 0 0 b3tg4, b3tg5, b3tg6, 
b3tg7  

208 b3tg4 and 1 1 1 b3tg8 he3 
209 b3tg5 and 1 1 1 b3tg20 he2 
210 b3tg6 and 1 1 1 b3tg29 he1 
211 b3tg7 and 1 1 1 b3tg31 he0 
212 b3tg8 or 3 0 0 b3tg9, b3tg10, b3tg11  
213 b3tg9 or 2 0 0 b3tg12, gb229  
214 b3tg10 or 2 0 0 b3tg18, gb2216  
215 b3tg11 or 2 0 0 b3tg19, gb239  
216 b3tg12 and 1 1 1 b3tg13 heno1 
217 b3tg13 or 2 0 0 b3tg14, b3tg15  
218 b3tg14 and 1 1 1 b3tg16 h331 
219 b3tg15 and 1 1 1 b3tg17 h332 
220 b3tg16 or 0 2 0  pfe331, m 
221 b3tg17 or 0 2 0  pfe332, m 
222 b3tg18 and 1 1 1 b3tg13 heno2 
223 b3tg19 and 1 1 1 b3tg13 heno3 
224 b3tg20 or 2 0 0 b3tg21, b3tg22  
225 b3tg21 or 2 0 0 b3tg9, b3tg10  
226 b3tg22 or 2 0 0 b3tg23, gld1  
227 b3tg23 and 1 1 1 b3tg24 hdno1 
228 b3tg24 or 2 0 0 b3tg25, b3tg26  
229 b3tg25 and 1 1 1 b3tg27 h331 
230 b3tg26 and 1 1 1 b3tg28 h332 
231 b3tg27 or 0 2 0  pfd331, m 
232 b3tg28 or 0 2 0  pfd332, m 
233 b3tg29 or 2 0 0 b3tg9, b3tg30  
234 b3tg30 or 2 0 0 b3tg22, b3tg32  
235 b3tg31 or 3 0 0 b3tg22, b3tg32, b3tg34  
236 b3tg32 or 2 0 0 b3tg33, gld2  
237 b3tg33 and 1 1 1 b3tg24 hdno2 
238 b3tg34 or 2 0 0 b3tg35, gld3  
239 b3tg35 and 1 1 1 b3tg24 hdno4 

240 b4tg2 or 5 0 0 b4tg3, b4tg4, b4tg5, 
b4tg6, b4tg7  



 256

Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 
No 

Input 
Event 

No 

House 
Event 

No 
Input Gate List Input Event List 

241 b4tg3 and 1 1 1 b4tg8 he4 
242 b4tg4 and 1 1 1 b4tg11 he3 
243 b4tg5 and 1 1 1 b4tg14 he2 
244 b4tg6 and 1 1 1 b4tg18 he1 
245 b4tg7 and 1 1 1 b4tg21 he0 
246 b4tg8 or 6 0 0 lg1, lg2, lg3, lg4, lg5, lg6  
247 b4tg9 or 2 0 0 b4tg10, gb2410  
248 b4tg10 and 1 1 1 b3tg13 heno4 
249 b4tg11 or 2 0 0 b4tg12, b4tg13  
250 b4tg12 or 3 0 0 lg13, lg14, lg15  
251 b4tg13 and 2 0 0 b3tg8, b3tg22  
252 b4tg14 or 3 0 0 b4tg15, b4tg16, b4tg17  
253 b4tg15 and 2 0 0 b3tg9, b3tg10  
254 b4tg16 and 2 0 0 b3tg21, b3tg30  
255 b4tg17 and 2 0 0 b3tg22, b3tg32  
256 b4tg18 or 2 0 0 b4tg19, b4tg20  
257 b4tg19 and 2 0 0 b3tg9, b3tg31  
258 b4tg20 or 3 0 0 lg16, lg17, lg18  

259 b4tg21 or 6 0 0 lg7, lg8, lg9, lg10, lg11, 
lg12  

260 b4tg22 or 2 0 0 b4tg23, gld4  
261 b4tg23 and 1 1 1 b3tg24 hd_no4 

262 b5tg2 or 4 0 0 b5tg3, b5tg4, b5tg5, 
b5tg6  

263 b5tg3 and 1 1 1 b5tg7 he4 
264 b5tg4 and 1 1 1 b5tg10 he3 
265 b5tg5 and 1 1 1 b5tg14 he2 
266 b5tg6 and 1 1 1 b5tg18 he1 
267 b5tg7 or 2 0 0 b5tg8, b5tg9  
268 b5tg8 or 4 0 0 lg19, lg20, lg21, lg22  
269 b5tg9 and 2 0 0 b4tg8, b3tg22  
270 b5tg10 or 3 0 0 b5tg11, b5tg12, b5tg13  
271 b5tg11 and 3 0 0 b3tg9, b3tg10, b3tg11  
272 b5tg12 and 2 0 0 b4tg12, b3tg30  
273 b5tg13 and 2 0 0 b3tg8, b4tg17  
274 b5tg14 or 3 0 0 b5tg15, b5tg16, b5tg17  
275 b5tg15 and 2 0 0 b4tg15, b3tg31  
276 b5tg16 and 2 0 0 b3tg21, b4tg20  
277 b5tg17 and 3 0 0 b3tg22, b3tg32, b3tg34  
278 b5tg18 or 2 0 0 b5tg19, b5tg20  
279 b5tg19 and 2 0 0 b3tg9, b4tg21  
280 b5tg20 or 4 0 0 lg23, lg24, lg25, lg26  
281 b6tg2 or 3 0 0 b6tg3, b6tg4, b6tg5  
282 b6tg3 and 1 1 1 b6tg6 he4 
283 b6tg4 and 1 1 1 b6tg10 he3 
284 b6tg5 and 1 1 1 lb1 he2 
285 b6tg6 or 3 0 0 b6tg7, b6tg8, b6tg9  

286 b6tg7 and 4 0 0 b3tg9, b3tg10, b3tg11, 
b4tg9  

287 b6tg8 and 2 0 0 b5tg8, b3tg30  
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288 b6tg9 and 2 0 0 b4tg8, b4tg17  
289 b6tg10 or 3 0 0 b6tg11, b6tg12, b6tg13  
290 b6tg11 and 2 0 0 b5tg11, b3tg31  
291 b6tg12 and 2 0 0 b4tg12, b4tg20  
292 b6tg13 and 2 0 0 b3tg8, b5tg17  
293 b7tg2 or 2 0 0 b7tg3, b7tg4  
294 b7tg3 and 1 1 1 b7tg5 he4 
295 b7tg4 and 1 1 1 lb19 he3 
296 b7tg5 or 3 0 0 b7tg6, b7tg7, b7tg8  

297 b7tg6 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b4tg9, b3tg31  

298 b7tg7 and 2 0 0 b5tg8, b4tg20  
299 b7tg8 and 2 0 0 b4tg8, b5tg17  
300 b8tg2 and 1 1 1 b8tg3 he4 
301 b8tg3 or 3 0 0 b8tg4, b8tg5, b8tg6  

302 b8tg4 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b4tg9, b4tg21  

303 b8tg5 and 2 0 0 b5tg8, b5tg20  

304 b8tg6 and 5 0 0 b4tg8, b3tg22, b3tg32, 
b3tg34, b4tg22  

305 gld1 or 1 7 0 b3tg24 cvb9, prvo9, dvo, 
svo9, fb9, ivb9, ivc91 

306 gld2 or 1 7 0 b3tg24 cvb9, prvo9, dvo, 
svo9, fb9, ivb9, ivc92 

307 gld3 or 1 7 0 b3tg24 
cvb10, prvo10, dvo, 
svo10, fb10, ivb10, 
ivc101 

308 gld4 or 1 7 0 b3tg24 
cvb10, prvo10, dvo, 
svo10, fb10, ivb10, 
ivc102 

309 lg1 and 2 0 0 b3tg9, b3tg10  
310 lg2 and 2 0 0 b3tg9, b3tg11  
311 lg3 and 2 0 0 b3tg9, b4tg9  
312 lg4 and 2 0 0 b3tg10, b3tg11  
313 lg5 and 2 0 0 b3tg10, b4tg9  
314 lg6 and 2 0 0 b3tg11, b4tg9  
315 lg7 and 2 0 0 b3tg22, b3tg32  
316 lg8 and 2 0 0 b3tg22, b3tg34  
317 lg9 and 2 0 0 b3tg22, b4tg22  
318 lg10 and 2 0 0 b3tg32, b3tg34  
319 lg11 and 2 0 0 b3tg32, b4tg22  
320 lg12 and 2 0 0 b3tg34, b4tg22  
321 lg13 and 2 0 0 b3tg9, b3tg10  
322 lg14 and 2 0 0 b3tg9, b3tg11  
323 lg15 and 2 0 0 b3tg10, b3tg11  
324 lg16 and 2 0 0 b3tg22, b3tg32  
325 lg17 and 2 0 0 b3tg22, b3tg34  
326 lg18 and 2 0 0 b3tg32, b3tg34  
327 lg19 and 3 0 0 b3tg9, b3tg10, b3tg11  
328 lg20 and 3 0 0 b3tg9, b3tg10, b4tg9  
329 lg21 and 3 0 0 b3tg9, b3tg11, b4tg9  



 258

Gate 
No 

Gate 
Name 

Gate 
Type 

Input 
Gate 
No 

Input 
Event 

No 

House 
Event 

No 
Input Gate List Input Event List 

330 lg22 and 3 0 0 b3tg10, b3tg11, b4tg9  
331 lg23 and 3 0 0 b3tg22, b3tg32, b3tg34  
332 lg24 and 3 0 0 b3tg22, b3tg32, b4tg22  
333 lg25 and 3 0 0 b3tg22, b3tg34, b4tg22  
334 lg26 and 3 0 0 b3tg32, b3tg34, b4tg22  
335 lb1 or 3 0 0 lb2, lb3, lb4  
336 lb2 or 6 0 0 lb5, lb6, lb7, lb8, lb9, lb10  

337 lb3 or 8 0 0 lb11, lb12, lb13, lb14, 
lb15, lb16, lb17, lb18  

338 lb4 and 4 0 0 b3tg22, b3tg32, b3tg34, 
b4tg22  

339 lb5 and 4 0 0 b3tg9, b3tg10, b3tg22, 
b3tg32  

340 lb6 and 4 0 0 b3tg9, b3tg10, b3tg22, 
b3tg34  

341 lb7 and 4 0 0 b3tg9, b3tg10, b3tg22, 
b4tg22  

342 lb8 and 4 0 0 b3tg9, b3tg10, b3tg32, 
b3tg34  

343 lb9 and 4 0 0 b3tg9, b3tg10, b3tg32, 
b4tg22  

344 lb10 and 4 0 0 b3tg9, b3tg10, b3tg34, 
b4tg22  

345 lb11 and 4 0 0 b3tg9, b3tg22, b3tg32, 
b3tg34  

346 lb12 and 4 0 0 b3tg9, b3tg22, b3tg32, 
b4tg22  

347 lb13 and 4 0 0 b3tg9, b3tg22, b3tg34, 
b4tg22  

348 lb14 and 4 0 0 b3tg9, b3tg32, b3tg34, 
b4tg22  

349 lb15 and 4 0 0 b3tg10, b3tg22, b3tg32, 
b3tg34  

350 lb16 and 4 0 0 b3tg10, b3tg22, b3tg32, 
b4tg22  

351 lb17 and 4 0 0 b3tg10, b3tg22, b3tg34, 
b4tg22  

352 lb18 and 4 0 0 b3tg10, b3tg32, b3tg34, 
b4tg22  

353 lb19 or 3 0 0 lb20, lb21, lb22  

354 lb20 or 6 0 0 lb23, lb24, lb25, lb26, 
lb27, lb28  

355 lb21 and 2 0 0 lb29, lb30  
356 lb22 or 3 0 0 lb38, lb39, lb40  

357 lb23 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b3tg22, b3tg32  

358 lb24 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b3tg22, b3tg34  

359 lb25 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b3tg22, b4tg22  

360 lb26 and 5 0 0 b3tg9, b3tg10, b3tg11,  
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b3tg32, b3tg34 

361 lb27 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b3tg32, b4tg22  

362 lb28 and 5 0 0 b3tg9, b3tg10, b3tg11, 
b3tg34, b4tg22  

363 lb29 or 3 0 0 lb31, lb32, lb33  

364 lb30 or 4 0 0 lb34, lb35, lb36, 
lb37  

365 lb31 and 2 0 0 b3tg9, b3tg10  
366 lb32 and 2 0 0 b3tg9, b3tg11  
367 lb33 and 2 0 0 b3tg10, b3tg11  
368 lb34 and 3 0 0 b3tg22, b3tg32, b3tg34  
369 lb35 and 3 0 0 b3tg22, b3tg32, b4tg22  
370 lb36 and 3 0 0 b3tg22, b3tg34, b4tg22  
371 lb37 and 3 0 0 b3tg32, b3tg34, b4tg22  

372 lb38 and 5 0 0 b3tg9, b3tg22, b3tg32, 
b3tg34, b4tg22  

373 lb39 and 5 0 0 b3tg10, b3tg22, b3tg32, 
b3tg34, b4tg22  

374 lb40 and 5 0 0 b3tg11, b3tg22, b3tg32, 
b3tg34, b4tg22  

375 gate1 and 1 1 1 gate4 he2 
376 gate2 and 1 1 1 gate5 he1 
377 gate3 and 1 1 1 gate6 he0 
378 gate4 or 2 0 0 gb226, gb227  
379 gate5 or 2 0 0 gb226, gb2218  
380 gate6 or 2 0 0 gb2218, gb2227  
381 gate7 and 1 1 1 gate11 he3 
382 gate8 and 1 1 1 gate12 he2 
383 gate9 and 1 1 1 gate13 he1 
384 gate10 and 1 1 1 gate14 he0 
385 gate11 or 3 0 0 gate15, gate16, gate17  
386 gate12 or 3 0 0 gate21, gate22, gate23  
387 gate13 or 3 0 0 gate24, gate25, gate26  
388 gate14 or 3 0 0 gate18, gate19, gate20  
389 gate15 and 2 0 0 gb226, gb227  
390 gate16 and 2 0 0 gb226, gb237  
391 gate17 and 2 0 0 gb227, gb237  
392 gate18 and 2 0 0 gb2218, gb2227  
393 gate19 and 2 0 0 gb2218, gb2317  
394 gate20 and 2 0 0 gb2227, gb2317  
395 gate21 and 2 0 0 gb226, gb227  
396 gate22 and 2 0 0 gb226, gb2218  
397 gate23 and 2 0 0 gb227, gb2218  
398 gate24 and 2 0 0 gb226, gb2218  

399 gate25 and 2 0 0 gb226 
gb2227  

400 gate26 and 2 0 0 gb2218 
gb2227  

401 gate27 and 1 1 1 gate32 he4 
402 gate28 and 1 1 1 gate33 he3 
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403 gate29 and 1 1 1 gate34 he2 
404 gate30 and 1 1 1 gate35 he1 
405 gate31 and 1 1 1 gate36 he0 

406 gate32 or 4 0 0 gate37, gate38, gate39, 
gate40  

407 gate33 or 4 0 0 gate37, gate41, gate42, 
gate43  

408 gate34 or 4 0 0 gate41, gate44, gate45, 
gate46  

409 gate35 or 4 0 0 gate45, gate47, gate48, 
gate49  

410 gate36 or 4 0 0 gate49, gate50, gate51, 
gate52  

411 gate37 and 3 0 0 gb226, gb227, gb237  
412 gate38 and 3 0 0 gb226, gb227, gb248  
413 gate39 and 3 0 0 gb226, gb237, gb248  
414 gate40 and 3 0 0 gb227, gb237, gb248  
415 gate41 and 3 0 0 gb226, gb227, gb2218  
416 gate42 and 3 0 0 gb226, gb237, gb2218  
417 gate43 and 3 0 0 gb227, gb237, gb2218  
418 gate44 and 3 0 0 gb226, gb227, gb2227  
419 gate45 and 3 0 0 gb226, gb2218, gb2227  
420 gate46 and 3 0 0 gb227, gb2218, gb2227  
421 gate47 and 3 0 0 gb226, gb2218, gb2317  
422 gate48 and 3 0 0 gb226, gb2227, gb2317  
423 gate49 and 3 0 0 gb2218, gb2227, gb2317  
424 gate50 and 3 0 0 gb2218, gb2227, gb2421  
425 gate51 and 3 0 0 gb2218, gb2317, gb2421  
426 gate52 and 3 0 0 gb2227, gb2317, gb2421  
427 gate53 and 1 1 1 gate57 he4 
428 gate54 and 1 1 1 gate58 he3 
429 gate55 and 1 1 1 gate59 he2 
430 gate56 and 1 1 1 gate60 he1 

431 gate57 or 5 0 0 gate65, gate66, gate67, 
gate68, gate69  

432 gate58 or 5 0 0 gate67, gate70, gate71, 
gate72, gate73  

433 gate59 or 5 0 0 gate71, gate74, gate75, 
gate76, gate77  

434 gate60 or 5 0 0 gate76, gate78, gate79, 
gate80, gate81  

435 gate61 and 1 1 1 gate64 he4 
436 gate62 and 1 1 1 gate82 he3 
437 gate63 and 1 1 1 gate83 he2 

438 gate64 or 6 0 0 gate84, gate85, gate86, 
gate87, gate88, gate89  

439 gate65 and 4 0 0 gb226, gb227, gb237, 
gb248  

440 gate66 and 4 0 0 gb227, gb237, gb248, 
gb2218  

441 gate67 and 4 0 0 gb226, gb227, gb237,  
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gb2218 

442 gate68 and 4 0 0 gb226, gb237, gb248, 
gb2218  

443 gate69 and 4 0 0 gb226, gb227, gb248, 
gb2218  

444 gate70 and 4 0 0 gb226, gb227, gb237, 
gb2227  

445 gate71 and 4 0 0 gb226, gb227, gb2218, 
gb2227  

446 gate72 and 4 0 0 gb226, gb237, gb2218, 
gb2227  

447 gate73 and 4 0 0 gb227, gb237, gb2218, 
gb2227  

448 gate74 and 4 0 0 gb226, gb227, gb2218, 
gb2317  

449 gate75 and 4 0 0 gb226, gb227, gb2227, 
gb2317  

450 gate76 and 4 0 0 gb226, gb2218, gb2227, 
gb2317  

451 gate77 and 4 0 0 gb227, gb2218, gb2227, 
gb2317  

452 gate78 and 4 0 0 gb2218, gb2227, gb2317, 
gb2421  

453 gate79 and 4 0 0 gb226, gb2227, gb2317, 
gb2421  

454 gate80 and 4 0 0 gb226, gb2218, gb2227, 
gb2421  

455 gate81 and 4 0 0 gb226, gb2218, gb2317, 
gb2421  

456 gate82 or 6 0 0 gate86, gate90, gate91,  
gate92, gate93, gate94  

457 gate83 or 6 0 0 gate92, gate95, gate96, 
gate97, gate98, gate99  

458 gate84 and 5 0 0 gb226, gb227, gb237,  
gb248, gb2218  

459 gate85 and 5 0 0 gb226, gb227, gb237, 
gb248, gb2227  

460 gate86 and 5 0 0 gb226, gb227, gb237, 
gb2218, gb2227  

461 gate87 and 5 0 0 gb226, gb227, gb248, 
gb2218, gb2227  

462 gate88 and 5 0 0 gb227, gb237, gb248, 
gb2218, gb2227  

463 gate89 and 5 0 0 gb226, gb237, gb248, 
gb2218, gb2227  

464 gate90 and 5 0 0 gb226, gb227, gb248, 
gb2218, gb2317  

465 gate91 and 5 0 0 gb226, gb227, gb248, 
gb2227, gb2317  

466 gate92 and 5 0 0 gb226, gb227, gb2218, 
gb2227, gb2317  
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467 gate93 and 5 0 0 gb226, gb248, gb2218, 
gb2227, gb2317  

468 gate94 and 5 0 0 gb227, gb237, gb2218, 
gb2227, gb2317  

469 gate95 and 5 0 0 gb226, gb227, gb2218, 
gb2227, gb2421  

470 gate96 and 5 0 0 gb226, gb227, gb2218, 
gb2317, gb2421  

471 gate97 and 5 0 0 gb226, gb227, gb2227, 
gb2317, gb2421  

472 gate98 and 5 0 0 gb226, gb2218, gb2227, 
gb2317, gb2421  

473 gate99 and 5 0 0 gb227, gb2218, gb2227, 
gb2317, gb2421  

474 gate100 and 1 1 1 gate102 he4 
475 gate101 and 1 1 1 gate103 he3 

476 gate102 or 7 0 0 

gate104, gate105, 
gate106, gate107, 
gate108, gate109, 
gate110 

 

477 gate103 or 7 0 0 

gate107, gate111, 
gate112, gate113, 
gate114, gate115, 
gate116 

 

478 gate104 and 6 0 0 gb226, gb227, gb237, 
gb248, gb2218, gb2227  

479 gate105 and 6 0 0 gb226, gb227, gb237, 
gb248, gb2218, gb2317  

480 gate106 and 6 0 0 gb226, gb227, gb237, 
gb248, gb2227, gb2317  

481 gate107 and 6 0 0 gb226, gb227, gb237, 
gb2218, gb2227, gb2317  

482 gate108 and 6 0 0 gb226, gb227, gb248, 
gb2218, gb2227, gb2317  

483 gate109 and 6 0 0 gb226, gb237, gb248, 
gb2218, gb2227, gb2317  

484 gate110 and 6 0 0 gb227, gb237, gb248, 
gb2218, gb2227, gb2317  

485 gate111 and 6 0 0 gb226, gb227, gb237, 
gb2218, gb2227, gb2421  

486 gate112 and 6 0 0 gb226, gb227, gb237, 
gb2218, gb2317, gb2421  

487 gate113 and 6 0 0 gb226, gb227, gb2317, 
gb2227, gb2317, gb2421  

488 gate114 and 6 0 0 gb226, gb227, gb2218, 
gb2227, gb2317, gb2421  

489 gate115 and 6 0 0 gb226, gb237, gb2218, 
gb2227, gb2317, gb2421  

490 gate116 and 6 0 0 gb227, gb237, gb2218, 
gb2227, gb2317, gb2421  

491 gate117 and 7 0 0 gb226, gb227, gb237,  
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gb248, gb2218, gb2227, 
gb2317 

492 gate118 and 7 0 0 
gb226, gb227, gb237, 
gb248, gb2218, gb2227, 
gb2421 

 

493 gate119 and 7 0 0 
gb226, gb227, gb237, 
gb248, gb2218, gb2317, 
gb2421 

 

494 gate120 and 7 0 0 
gb226, gb227, gb237,  
gb248, gb2227, gb2317, 
gb2421 

 

495 gate121 and 7 0 0 
gb226, gb227, gb237, 
gb2218, gb2227, gb2317, 
gb2421 

 

496 gate122  and 7 0 0 
gb226, gb227, gb248, 
gb2218, gb2227, gb2317, 
gb2421 

 

497 gate123 and 7 0 0 
gb226, gb237, gb248, 
gb2218, gb2227, gb2317, 
gb2421 

 

498 gate124 and 7 0 0 
gb227, gb237, gb248, 
gb2218, gb2227, gb2317, 
gb2421 

 

499 gc or 2 0 0 gc1, gc2  

500 gc1 or 4 0 0 gapb1, gapb2, gapb3, 
gapb4  

501 gc2 or 0 2 0  tivb, tivc 
502 gapb1 and 1 1 1 ab1g1 ha1p 
503 gapb2 and 1 1 1 ab2g1 ha2p 
504 gapb3 and 1 1 1 ab3g1 ha3p 
505 gapb4 and 1 1 1 ab4g1 ha4p 
506 ab1g1 and 1 1 1 ab1g2 ha100 
507 ab1g2 or 2 0 0 ab1g3, ab1g4  
508 ab1g3 and 1 1 1 ab1g5 hae1 
509 ab1g4 and 1 1 1 ab1g8 hae0 
510 ab1g5 or 2 0 0 ab1g6, age1l  
511 ab1g6 and 1 1 1 ab1g7 haeno1 
512 ab1g7 or 0 2 0  apfe100, m 
513 ab1g8 or 2 0 0 ab1g9, agd1  
514 ab1g9 and 1 1 1 ab1g10 hadno1 
515 ab1g10 or 0 2 0  apfd100, m 
516 ab2g1 or 2 0 0 ab2hg1, ab2fg1  
517 ab3g1 or 2 0 0 ab3hg1, ab3fg1  
518 ab4g1 or 2 0 0 ab4hg1, ab4fg1  
519 ab2hg1 and 1 1 1 ab2hg2 ha100 
520 ab2hg2 or 3 0 0 ab2hg3, ab2hg4, ab2hg5  
521 ab2hg3 and 1 1 1 ab2hg6 hae2 
522 ab2hg4 and 1 1 1 ab2hg9 hae1 
523 ab2hg5 and 1 1 1 ab2hg10 hae0 
524 ab2hg6 and 2 0 0 ab1g5, ab2hg7  
525 ab2hg7 or 2 0 0 ab2hg8, age2l  
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526 ab2hg8 and 1 1 1 ab1g7 haeno2 
527 ab2hg9 and 2 0 0 ab1g5, ab1g8  
528 ab2hg10 and 2 0 0 ab1g8, ab2hg11  
529 ab2hg11 or 2 0 0 ab2hg12, agd2  
530 ab2hg12 and 1 1 1 ab1g10 had_no2 
531 ab2fg1 or 3 0 0 ab2fg3, ab2fg4, ab2fg5  
532 ab2fg3 and 1 1 1 ab2fg6 hae2 
533 ab2fg4 and 1 1 1 ab2fg12 hae1 
534 ab2fg5 and 1 1 1 ab2fg16 hae0 
535 ab2fg6 or 2 0 0 ab2fg7, ab2fg8  
536 ab2fg7 or 2 0 0 zx1, age1l  
537 ab2fg8 or 2 0 0 zx14, age2l  
538 ab2fg12 or 2 0 0 ab2fg7, ab2fg13  
539 ab2fg13 or 2 0 0 zx7, agd1  
540 ab2fg16 or 2 0 0 ab2fg13, ab2fg17  
541 ab2fg17 or 2 0 0 zx13, agd2  
542 ab3hg1 and 1 1 1 ab3hg2 ha100 
543 ab3hg2 or 2 0 0 ab3hg3, ab3hg4  
544 ab3hg3 and 1 1 1 ab3hg5 hae2 
545 ab3hg4 and 1 1 1 ab3hg6 hae1 
546 ab3hg5 and 3 0 0 ab1g5, ab2hg7, ab1g8  
547 ab3hg6 and 3 0 0 ab1g5, ab1g8, ab2hg11  
548 ab3fg1 and 1 1 1 ab3fg2 ha50 
549 ab3fg2 or 2 0 0 ab3fg3, ab3fg4  
550 ab3fg3 and 1 1 1 ab3fg5 hae2 
551 ab3fg4 and 1 1 1 ab3fg8 hae1 
552 ab3fg5 or 2 0 0 ab3fg6, ab3fg7  
553 ab3fg6 and 2 0 0 ab2fg7, ab2fg8  
554 ab3fg7 and 2 0 0 ab2fg6, ab2fg13  
555 ab3fg8 or 2 0 0 ab3fg9, ab3fg10  
556 ab3fg9 and 2 0 0 ab2fg7, ab2fg16  
557 ab3fg10 and 2 0 0 ab2fg13, ab2fg17  
558 ab4hg1 and 1 1 1 ab4hg2 ha100 
559 ab4hg2 and 1 1 1 ab4hg3 hae2 

560 ab4hg3 and 4 0 0 ab1g5, ab2hg7, ab1g8, 
ab2hg11  

561 ab4fg1 and 1 1 1 ab4fg2 ha50 
562 ab4fg2 and 1 1 1 ab4fg3 hae1 
563 ab4fg3 or 2 0 0 ab4fg4, ab4fg5  
564 ab4fg4 or 2 0 0 ab3fg6, ab2fg16  
565 ab4fg5 or 2 0 0 ab2fg6, ab3fg10  

566 age1l or 0 9 0  
ef, cvb11, prvo11, 
svo11, fb11, tivb, tivc, 
ivc111, ivb011 

567 age2l or 0 9 0  
ef, cvb11, prvo11, 
svo11, fb11, tivb, tivc, 
ivc112, ivb11 

568 agd1 or 1 9 0 agdfsr1 
ef, cvb12, prvo12, 
svo12, fb12, tivb, tivc, 
ivc122, ivb12 

569 agd2 or 1 9 0 agdfsr1 ef, cvb12, prvo12, 
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svo12, fb12, tivb, tivc, 
ivc121, ivb012 

570 agdfsr1 or 1 1 0 agdfsr2 ef 
571 agdfsr2 or 0 4 0  tivc, tivb, laf, oaf 
572 zx1 and 1 1 1 zx2 haeno1 
573 zx2 or 2 0 0 zx3, zx4  
574 zx3 and 1 1 1 zx5 ha501 
575 zx4 and 1 1 1 zx6 ha502 
576 zx5 or 0 2 0  apfe501, m 
577 zx6 or 0 2 0  apfe502, m 
578 zx7 and 1 1 1 zx8 hadno1 
579 zx8 or 2 0 0 zx9, zx10  
580 zx9 and 1 1 1 zx11 ha501 
581 zx10 and 1 1 1 zx12 ha502 
582 zx11 or 0 2 0  apfd501, m 
583 zx12 or 0 2 0  apfd502, m 
584 zx13 and 1 1 1 zx8 hadno2 
585 zx14 and 1 1 1 zx2 haeno2 
586 gd or 2 0 0 gd1, gd2  
587 gd1 or 2 0 0 ag1, ag2  
588 gd2 or 2 0 0 wg1, wg2  
589 ag1 or 2 1 0 ag3, ag4 cvb 
590 ag2 or 2 0 0 ag13, ag14  
591 ag3 or 0 2 0  ivb, ahe4 
592 ag4 or 2 0 0 ag5, ag6  
593 ag5 and 1 1 0 ag7 mrm 
594 ag6 or 3 0 0 ag10, ag11, ag12  
595 ag7 or 0 3 0  si, sv1, sv2 
596 ag10 and 0 2 1  hav1, av1 
597 ag11 and 0 2 1  hav2, av2 
598 ag12 and 0 2 1  hav3, av3 
599 ag13 and 0 2 1  hold, nbo 
600 ag14 and 0 2 1  hnew, nbn 
601 wg1 or 2 1 0 wg3, wg4 wbs 
602 wg2 or 2 0 0 wg18, wg19  
603 wg3 or 2 0 0 wg5, wg6  
604 wg4 or 2 0 0 wg7, wg8  
605 wg5 or 0 2 0  tivb, whe 
606 wg6 or 0 2 0  tivb, whe 
607 wg7 and 2 0 0 wg9, wg10  
608 wg8 or 3 0 0 wg15, wg16, wg17  
609 wg9 or 1 3 0 wg11 si, sv1, sv2 
610 wg10 or 1 1 0 wg11 mrm 
611 wg11 and 2 0 0 wg12, wg13  
612 wg12 and 0 2 1  hold, wvrfo 
613 wg13 and 0 2 1  hnew, wvrfn 
614 wg15 and 0 2 1  hwv1, wv1 
615 wg16 and 0 2 1  hwv2, wv2 
616 wg17 and 0 2 1  hwv3, wv3 
617 wg18 and 0 2 1  hold, nbo 
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618 wg19 and 0 2 1  hnew, nbn 
 

Table D.2 FDS Spurious Trip Fault Tree Structure 

Gate No Gate 
Name 

Gate 
Type 

Input 
Gate 

Number 

Input 
Event 

Number 

House 
Event 

Number 

Input Gate         
List 

Input Event 
List 

1 top or 3 0 0 g1, sg1, sg2  
2 g1 or 4 0 0 g2, g3, g4, g5  
3 g2 and 1 1 1 g6 h1s 
4 g3 and 1 1 1 g11 h2s 
5 g4 and 1 1 1 g18 h3s 
6 g5 and 1 1 1 g29 h4s 
7 g6 and 1 1 1 g7 h1ts 
8 g7 or 3 0 0 g8, g9, g10  
9 g8 and 0 2 1  hpt1, s1pt1 

10 g9 and 0 2 1  hpt2, s1pt2 
11 g10 and 0 2 1  hpt3, s1pt3 
12 g11 or 2 0 0 g12, g13  
13 g12 and 1 1 1 g12a h1ts 
14 g12a or 2 0 0 g7, g14  
15 g13 and 1 1 1 g13a h2ts 
16 g13a and 2 0 0 g7, g14  
17 g14 or 3 0 0 g15, g16, g17  
18 g15 and 0 2 1  hpt1, s2pt1 
19 g16 and 0 2 1  hpt2, s2pt2 
20 g17 and 0 2 1  hpt3, s2pt3 
21 g18 or 3 0 0 g19a, g20a, g21a  
22 g19a and 1 1 1 g19 h1ts 
23 g19 or 3 0 0 g7, g14, g22  
24 g20a and 1 1 1 g20 h2ts 
25 g20 or 3 0 0 g26, g27, g28  
26 g21a and 1 1 1 g21 h3ts 
27 g21 and 3 0 0 g7, g14, g22  
28 g22 or 3 0 0 g23, g24, g25  
29 g23 and 0 2 1  hpt1, s3pt1 
30 g24 and 0 2 1  hpt2, s3pt2 
31 g25 and 0 2 1  hpt3, s3pt3 
32 g26 and 2 0 0 g7, g14  
33 g27 and 2 0 0 g7, g22  
34 g28 and 2 0 0 g14, g22  

35 g29 or 4 0 0 g30a, g31a, g32a, 
g33a  

36 g30a and 1 1 1 g30 h1ts 
37 g30 or 4 0 0 g7, g14, g22, g34  
38 g31a and 1 1 1 g31 h2ts 

39 g31 or 6 0 0 g38, g39, g40, g41, 
g42, g43  

40 g32a and 1 1 1 g32 h3ts 
41 g32 or 4 0 0 g44, g45, g46, g47  
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42 g33a and 1 1 1 g33 h4ts 
43 g33 and 4 0 0 g7, g14, g22, g34  
44 g34 or 3 0 0 g35, g36, g37  
45 g35 and 0 2 1  hpt1, s4pt1 
46 g36 and 0 2 1  hpt2, s4pt2 
47 g37 and 0 2 1  hpt3, s4pt3 
48 g38 and 2 0 0 g7, g14  
49 g39 and 2 0 0 g7, g22  
50 g40 and 2 0 0 g7, g34  
51 g41 and 2 0 0 g14, g22  
52 g42 and 2 0 0 g14, g34  
53 g43 and 2 0 0 g22, g34  
54 g44 and 3 0 0 g7, g14, g22  
55 g45 and 3 0 0 g7, g14, g34  
56 g46 and 3 0 0 g7, g22, g34  
57 g47 and 3 0 0 g14, g22, g34  
58 sg1 or 0 2 0  ssv1, ssv2 
59 sg2 or 2 0 0  sg3, sg4 
60 sg3 and 0 2 1  h_old, swov 
61 sg4 and 0 2 1  h_new, swnv 
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