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Abstract

The research in this thesis is undertaken by observing that modern systems are

becoming more and more complex and safety-critical due to the increasing require-

ments on system smartness and autonomy, and as a result health monitoring system

needs to be developed to meet the requirements on system safety and reliability.

The state-of-the-art approaches to monitoring system status are model based

Fault Diagnosis (FD) systems, which can fuse the advantages of system physical

modelling and sensors’ characteristics. A number of model based FD approaches

have been proposed. The conventional residual based approaches by monitoring

system output estimation errors, however, may have certain limitations such as

complex diagnosis logic for fault isolation, less sensitiveness to system faults and

high computation load. More importantly, little attention has been paid to the

problem of fault diagnosis system verification which answers the question that under

what condition (i.e., level of uncertainties) a fault diagnosis system is valid.

To this end, this thesis investigates the design and verification of fault diagnosis

algorithms. It first highlights the differences between two popular FD approaches

(i.e., residual based and fault estimation based) through a case study. On this basis,

a set of uncertainty estimation algorithms are proposed to generate fault estimates

according to different specifications after interpreting the FD problem as an uncer-

tainty estimation problem. Then FD algorithm verification and threshold selection

are investigated considering that there are always some mismatches between the

real plant and the mathematical model used for FD observer design. Reachability

analysis is drawn to evaluate the effect of uncertainties and faults such that it can

be quantitatively verified under what condition a FD algorithm is valid.

First the proposed fault estimation algorithms in this thesis, on the one hand,

extend the existing approaches by pooling the available prior information such that

performance can be enhanced, and on the other hand relax the existence condition

and reduce the computation load by exploiting the reduced order observer structure.

Second, the proposed framework for fault diagnosis system verification bridges the

gap between academia and industry since on the one hand a given FD algorithm

can be verified under what condition it is effective, and on the other hand different

FD algorithms can be compared and selected for different application scenarios.

It should be highlighted that although the algorithm design and verification

are for fault diagnosis systems, they can also be applied for other systems such as

disturbance rejection control system among many others.
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Chapter 1

INTRODUCTION

1.1 Overview

Safety and reliability is attracting more and more attention in practical engineer-

ing, especially for safety-critical systems such as aeronautical systems, automotive

engineering among many others. In such areas, a minor fault regardless of actua-

tor, sensor or system plant fault, if not being detected and handled in due time,

may result in unpredictable consequences–the loss of properties or even personnels.

Consequently, much effort has been paid to fault diagnosis1; the basic philosophy of

which is redundancy including hardware redundancy and analytical redundancy [5].

Hardware redundancy is a commonly used approach in industry (especially in

aerospace systems, such as fly-by-wire and hydraulic systems in aircraft). However,

this approach may result in additional cost and extra weight. With the rapid de-

velopment of control theory and constant improvement of computation power in

conjunction with the new requirements on fault diagnosis system (such as fault iso-

lation, fault severity information), analytical redundancy (especially, model based

fault diagnosis approaches) is drawing increasing attention in both academia and

industry since its first appearance in 1970s [5]. The classical model based fault diag-

nosis approaches perform fault diagnosis through monitoring the output estimation

errors or their functions (also termed residuals and consequently this approach is

termed residual based fault diagnosis hereafter). This approach, however, requires

multiple observers to achieve fault isolation and can not easily/directly obtain fault

amplitude information (see, [6] and the references therein).

To this end, a lot of attention has been paid to fault estimation based diagno-

sis approach, where the system faults are treated as system unknown inputs and

input estimation algorithms can be used to estimate the unknown inputs and con-

sequently system faults. The research in this thesis falls into this category. To this

1Alternative names are available for fault diagnosis such as “fault detection and isola-
tion”, “health monitoring” among others. But they mainly denote a mechanism that can
detect the presence of faults and isolate what types of faults have occurred.

1



Section 1.1. Overview 2

end, a comparison analysis between residual based and fault estimation based fault

diagnosis approaches is first made in terms of fault diagnosis logic and computation

complexity.

Then a number of uncertainty estimation algorithms are proposed for the pur-

pose of fault estimation according to different system specifications and require-

ments. Specifically, for discrete-time systems, according to whether the full state

information is required (directly or indirectly) in derivation of disturbance esti-

mates, full order disturbance observer and reduced-order disturbance observer are

proposed respectively. In full order disturbance observer design, all the system

states are needed directly or indirectly to derive the disturbance estimate; whereas

in reduced-order disturbance observer design, only partial system states are required

consequently leading to lower observer order. In the aforementioned approaches,

different types of prior information on disturbances can be pooled into disturbance

observer design, thus improving the system estimation performance. Following this

line of thought, attention is turned to continuous-time domain. The relationship be-

tween time-domain disturbance observer and frequency-domain disturbance observer

is rigorously established, based on which a new reduced-order disturbance observer

in time-domain is proposed using the technique of state functional observer.

In model based fault diagnosis, the first step is fault diagnosis observer de-

sign to generate fault indicating signals (e.g., residuals in the residual based ap-

proaches, fault estimates in the fault estimation based approaches); the next step is

threshold selection to evaluate the fault indicating signals. In practical engineering,

however, uncertainties (e.g., parameter uncertainties, external disturbance, noises

among many others) are inevitable. As a result, there are always some mismatches

between the actual plant and the mathematical model used for fault diagnosis ob-

server design. This phenomenon will pose two challenges for model based fault

diagnosis. On the one hand, it is challenging to verify a fault diagnosis algorithm,

i.e., answering the question that under what condition (e.g., level of uncertainties) a

given fault diagnosis algorithm is valid. On the other hand, it is hard to choose an

appropriate threshold to evaluate the fault indicating signals such that false alarm

rate and missed detection rate are kept at a low level.

The rest of the thesis therefore focuses on these two challenges. They are formu-

lated as the reachability analysis problem for uncertain systems. The basic philoso-

phy of the proposed approach is to quantitatively evaluate the effect of uncertainties

and faults on fault indicating signals. Two practical illustrating examples includ-

ing actuator and sensor fault diagnosis for a direct motor system, and sensor fault

diagnosis for vehicle lateral dynamics are presented to demonstrate the main idea



Section 1.2. Outlines 3

of the proposed approach. Particularly, a quantitative comparison between residual

based and fault estimation based fault diagnosis approaches is further drawn based

on the newly proposed approach.

1.2 Outlines

This thesis aims at: (i) comparing residual based and fault estimation based fault

diagnosis approaches both qualitatively and quantitatively; (ii) proposing a set of

uncertainty estimation algorithms for the purpose of fault estimation according to

different requirements; (iii) providing a new perspective to the problem of fault

diagnosis system verification and robust threshold selection.

The outlines of the remaining thesis and their relationships are shown in Fig.

1.1, where detailed descriptions are also given as follows:

Chap 3 (part 2): 

FODOB 

Chap 3 (part 1): 

properties of 

unified linear 

filtering 

Chap 2: 

DOB and 

fault 

diagnosis 

Chap 4: 

RODOB with 

slow 

disturbance 

Chap 4: RODOB 

without disturbance 

model 

Chap 6: 

time/frequency 

domain DOs 

Chap 7: FD 

verification and 

robust threshold 

Chap 8: quantitative 

comparison analysis of 

FD algorithms 

Discrete-time DO 

Actuator  

fault 

Actuator and 

sensor fault 

Actuator  

fault 

Continuous-time DO 

Actuator and 

sensor fault 

Verification 

Figure 1.1. Illustration of the thesis’s outline.

• Chapter 2 provides a literature review on the topics related to this thesis and

presents the research motivations. The fault diagnosis algorithms are fist re-

viewed [6]. The existing disturbance observer algorithms are then reviewed

and categorized in terms of the levels of state information used in derivation

of disturbance estimate [7]. Finally, a comparison analysis between the resid-

ual based and fault estimation based fault diagnosis approaches is made to

partially present the motivations of the research in this thesis.
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• In Chapter 3, the properties of a unified Kalman filter (accommodating the

classical Kalman filter and Unknown Input Observer as its special cases) are

investigated including existence, optimality and asymptotic stability [8]. The

results in this Chapter provide a unified result on linear filtering. The results

are then applied to the problem of simultaneous state and input estimation,

resulting in Full Order Disturbance OBserver (FODOB) design [9].

• In Chapter 4, a Reduced-Order Disturbance OBserver (RODOB) is designed

for discrete-time linear systems where a slowly time-varying disturbance model

is assumed using the technique of state functional observer. The results can

unify the existing full order disturbance observers and reduced order distur-

bance observers for linear systems with certain particular disturbance assump-

tion. More importantly, an easy-to-verify existence condition is proposed.

• In Chapter 5, a RODOB algorithm is designed for discrete-time linear stochas-

tic systems where no explicit disturbance model is assumed [9]. In comparison

with the results in Chapter 4, the results in this Chapter provide a better dis-

turbance estimation performance when poor prior disturbance information is

available.

• In Chapter 6, the relationship between time-domain DOB and frequency-

domain DOB is systematically established. On this basis, a new type of

reduced-order disturbance observer in time-domain is proposed, resulting in

Functional Disturbance OBserver (FDOB) [10].

• In Chapter 7, the problem of fault diagnosis system verification and robust

threshold selection is investigated using the technique of reachability analysis.

The actuator and sensor fault diagnosis for a direct current motor is chosen

as a case study to demonstrate the main idea of the proposed approach.

• In Chapter 8, the proposed system verification and robust threshold selection

approach is applied to the sensor fault diagnosis problem for vehicle lateral

dynamics [11]. Particularly, a quantitative comparison analysis between con-

ventional residual based and fault estimation based fault diagnosis approach

is made using the newly proposed approach in Chapter 7.

• Chapter 9 concludes the thesis with some discussions and future perspectives.



Chapter 2

LITERATURE REVIEW AND

MOTIVATIONS

In this Chapter, literature reviews are conducted on fault diagnosis algorithms and

disturbance estimation algorithms. Then a comparison study is made between resid-

ual based and fault estimation based fault diagnosis algorithms. Some of the motiva-

tions of the thesis are also highlighted through the comparison analysis results. The

layout of this Chapter is illustrated in Fig. 2.1.

Literature review on  

fault diagnosis 

Literature review on 

disturbance estimation 

A comparison between 

residual based and 

fault estimation 

based fault diagnosis 

Research motivations  

Figure 2.1. Illustration of the structure of this Chapter: literature review
and motivations.

2.1 Fault diagnosis

In this section, a literature review is undertaken on fault diagnosis systems including

their necessity, categories, evaluation and related challenges.

5
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2.1.1 Necessity of FD algorithms

Safety and reliability is an important issue in practical engineering. It has been

reported in [12] that the petrochemical industry alone incurs an estimated 20 billion

in losses every year due to process failures. Moreover, safety and reliability appears

especially vital beyond monetary losses in safety-critical systems such as aeronautical

systems, automotive systems among many others [13,14]. In such areas a minor fault

regardless of actuator, sensor or plant component fault, if not being detected and

handled in time, may result in unpredictable consequences–the loss of properties

or even personnels. It has also been reported in [15] which focused on the study

of Unmanned Aerial Vehicles (UAV) reliability that about 80 percentage of flight

incidents regarding UAV are due to the faults which have an adverse effect on

propulsion, flight control surfaces or sensors. Interested readers can refer to recent

review papers [13,14,16] for further information.

2.1.2 Existing FD algorithms

Hardware redundancy VS Analytical redundancy

To this end, a wide range of fault diagnosis methodologies have been proposed in

the past more than four decades, whose goal is to identify the presence of faults

(i.e., fault detection) and then isolate what type of fault has occurred when a fault

is detected (i.e., fault isolation). The existing FD methods can be generally catego-

rized into hardware redundancy and analytical redundancy [13]. The basic idea of

hardware redundancy is to produce duplicative signals generated by various addi-

tional hardware, such as measurements of a signal by multiple sensors with the same

function and then detect the presence of fault by cross checks, consistency checks,

voting mechanisms, and built-in test technique of varying sophistication [17]. Al-

though this method is almost the standard industrial practice and provides high

level of robustness and good performance in the aerospace industry, it is sometimes

criticized that this method may result in additional cost and extra weight. As a

result, it may not be an appropriate solution for small autonomous systems due to

the additional weight brought by redundant hardware [13], [14].

The analytical redundancy approach has received increasing attention since its

first appearance in the late 1970s [5]. This approach does not require additional

hardware but relies on the mathematical models of the concerned system in con-

junction with observer design (or artificial intelligence techniques for data driven

fault diagnosis). The basic idea of analytical redundancy approach is to generate

a residual signal based on the system model and observer techniques, which under
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ideal condition is sensitive to system faults but insensitive to uncertainties, dis-

turbances and faults of no interest. The principles of hardware redundancy and

analytical redundancy are shown in Fig. 2.2,

Plant  Sensors

Redundant 
Sensors

Diagnostic 
Logic

Diagnostic 
Logic

Inputs

Hardware Redundancy

Alarm

Alarm

Quantitative Analytical 
Redundancy

Pattern by 
AI

Outputs of 
Observers

Diagnostic 
Logic

Alarm

Qualitative Analytical 
Redundancy

Figure 2.2. Conceptual comparisons between hardware redundancy and an-
alytical redundancy based fault diagnosis approaches.

The analytical redundancy approach can be further categorised into qualitative

methods and quantitative methods. In qualitative methods, the normal behaviour

and faulty behaviours of the system under consideration are first learned using large

amount of history data and represented using feature vectors. Then the fault detec-

tion and isolation problem can be transformed into classification problem, as such

different artificial intelligence (AI) techniques [14] such as Support Vector Machine

(SVM) [18], artificial neural network techniques [19] can be drawn to achieve the

classification task. The quantitative methods such as observer based methods gener-

ate a residual signal based on the explicitly mathematical models of the plant under

consideration. Quantitative FD method includes state observer (fault detection

filters [5], [20], unknown input observer [21]), disturbance observer [6], parameter

estimation [22] based approaches. While the observer/filter based approaches can be

further divided into deterministic approaches and stochastic approaches according to

different physical models that are used to describe the systems under consideration.

It is simple and convenient to generate a residual signal by comparing the esti-

mated system outputs with the measured system outputs. For deterministic linear

systems, Luenberger observer [23] can be applied for state estimation and conse-

quently residual generation. In the presence of weak non-linearities, Extended Lu-

enberger Observer [24] by linearising the non-linear model around the operating

point can be applied. However, this approach can lead to the loss of estimation

accuracy due to the neglect of high-order non-linear terms, especially for highly



Section 2.1. Fault diagnosis 8

non-linear systems. As a result, non-linear state estimation methods such as adap-

tive observers [25], [26], high-gain observers [27], [28], sliding mode observer [29], [30]

can be applied for certain types of non-linear systems for the purpose of residual

generation.

It is well known that Kalman Filter (KF) is an optimal state filter for discrete-

time linear systems with process and sensor uncertainties/noises following Gaussian

distributions [31]. As a result, if the linear systems are modelled in a stochastic way,

KF can be applied for fault detection. In this approach, the innovation (i.e., the

difference between measured output and predicted output) should be white noise

with zero mean and known covariance in fault-free conditions. As a result, one can

detect the presence of faults by a simple statistical testing of the mean and variance

of the innovation signal.

It should be noted that in KF, some conservative assumptions are made on the

systems, for example the process is linear, input noise and measurement noise must

be Gaussian distributions, and the distribution parameters are also known as a prior.

When these assumptions are violated in practical engineering, the state estimation

performance may degrade. To handle fault diagnosis for nonlinear systems, the

variants of KF have also been applied such as Extended Kalman Filter (EKF) [32],

Unscented Kalman Filter (UKF) [33]. In addition, sequential Monte Carlo also

known as particle filter (PF) [32, 34] has also been applied for the fault detection

when the system is highly non-linear and non-Gaussian.

2.1.3 Evaluation of FD algorithms

The evaluation of FD algorithms can be determined by the following metrics: 1.

detection time–detect the presence of faults as early as possible; 2. fault isolation–

determine what type of fault has occurred and its location; 3. fault information–the

severity of the fault; 4. robustness–work effectively in the presence of uncertainties

and disturbances (keep the missed detection rate and false alarm rate at a low level);

5. complexity and computation load–the FD method should be easy to implement

and require relatively low computation load.

2.1.4 Threshold generation

In fault diagnosis system, after residuals are generated, a residual evaluation process

is needed to transform the meanings of residuals into a Boolean decision function–

normal or faulty. When choosing the threshold, a compromise is usually made

between minimizing missed detection rate and false alarm rate. The simplest ap-
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proach is to set a constant threshold, which can decide whether a fault has occurred

or not by detecting whether a residual exceeds the threshold. Generally speaking, a

fixed threshold can be designed which should ensure a good trade-off between false

alarm rate and missed detection rate. However, how to select the constant threshold

is quite a challenging issue and may result in poor performance (high false alarm

rate or high missed detection rate) if not being chosen properly due to the presence

of uncertainties and noises.

To this end, much effort has been paid to threshold selection, which can achieve

a so-called passive robustness in comparison with active robustness obtained by

uncertainties elimination and decoupling techniques [35,36]. The principle of passive

robustness is to propagate the effect of uncertainties on residuals and threshold

simultaneously. However, an appropriate threshold is never an easy task due to the

presence of uncertainties [37]. The basic principle of the existing threshold selection

approaches is to calculate the states’ envelop in the presence of uncertainties and

perform consistency checking between measurement output and predicted output

envelop for the purpose of fault detection.

According to the different methods used for state envelop calculation, they can

be further divided into three categories. The first category is referred to simulation

based approach [37], in which the envelope of states or outputs can be obtained based

on a finite (possibly large) number of different linear models selected from a contin-

uum of models corresponding to each possible value of the parameters. Although

large numbers of different models are performed on fairly fine grids for uncertain

parameters or Monte Carlo parameter sampling, it is still possible to miss the model

corresponding to the most critical parameter combination. In addition, the parame-

ter space girding method is highly computationally demanding, especially in face of

parametric uncertainties with high dimension. The second category is optimization

based approach [35,38], in which the upper bound and lower bound of state envelop

in each time step can be obtained by solving a constrained optimization problem

where the constraint can accommodate parameter uncertainties, initial state un-

certainties, input and output uncertainties. However, due to the complexity of the

optimisation at each step, this method may be subject to high computation problem

especially for multiple parameter uncertainties [38,39]. Besides, few algorithms can

guarantee global optimization for generic optimization problems. These limitations

constrain its application.

The third category is set-membership based approaches [40], which calculate

the possible state or output intervals by taking system uncertainties into account.

In [40], the effect of parameter uncertainties and input uncertainties are lumped as
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additive uncertainties represented by bounded variables. Then system outputs are

explicitly computed based on interval arithmetic. However, the bounded variables

have to be pre-determined empirically or numerically, which is not an easy task since

the effect of parameter uncertainties is related to the amplitude of unmeasurable and

time-varying state variables. In [41] and [42], for one kind of Single Input Single

Output (SISO) linear system in observer canonical form, the effect of parameter

uncertainties on residuals is amplified through triangle inequality. This method

may result in conservative result (i.e., larger residual interval or even useless results)

when multiple parameter uncertainties exist.

As one kind of set-membership based approach, interval observer is receiving

more and more attention recently [43–47]. In [43], a non-linear continuous-time sys-

tem is first approximated by an interval quasi-Linear Parameter Varying (qLPV)

system using interval analysis. Then based on cooperativity theory, two point ob-

servers are obtained to estimate the lower and upper bound of state vector. As

a result, a set containing the actual value of the residual can be obtained. This

method has much potential since the system matrix uncertainties, input and sensor

uncertainties are represented by intervals which have been taken into account in

point observer design. In addition, the existence of interval observer is discussed

in [45–47]. [45] shows that for linear time-invariant systems with bounded additive

disturbances, the existence of an exponentially stable interval observer is that the

linear systems are exponentially stable. It is further shown in [46] that for non-linear

system with measurement uncertainties one can design an interval observer by par-

tial exact linearisation and another linear change of coordinates. Later, this result

has been extended to nonlinear time-varying systems in [47]. The method in [45]

has been used for fault detection of an electrical drive. However, it has been pointed

out in [46] that the issue of existence of observer gain for the two point observer is

not yet clearly established even for linear systems, since the observer gain should

not only guarantee the error system matrix is Hurwitz, but also cooperative (all the

off-diagonal term is non-negative). Another problem is that in the presence of sys-

tem parameter uncertainties, two bounded function should be available to cover the

effect of parameter uncertainties, which is not an easy task due to the time-varying

and unknown property of state variables.

To this end, part of the thesis is devoted to designing an appropriate threshold

for model based fault diagnosis systems in the presence of uncertainties.
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2.1.5 Necessity of FD verification

Observer based fault diagnosis system is a kind of model based FD approaches, which

produces fault-indicating signals using system models, inputs and outputs. As one

kind of model based FD algorithm, observer-based FD system has a relatively high

demand on the accuracy of system models.

Large numbers of observer based FD algorithms have been proposed in the past

more than four decades. However, these algorithms from the academic community

have not been fully accepted by the industry end-users [14]. That is because not

enough attention has been paid to the verification and validation of those methods.

Since in real applications, the mathematical model used for observer based fault

diagnosis algorithm design may not be consistent with the real plant due to as-

sumptions made for simplified representations of the dynamic systems, the presence

of system uncertainties, input noise, sensor noise, external disturbances among many

others. As a result, to bridge the ever-widening gap between the academic commu-

nity and industry application it becomes more and more urgent to demonstrate

whether the proposed FD algorithms can still work effectively in real applications

when multiple uncertainties appear.

Consequently, part of the thesis is devoted to the verification problem of model

based fault diagnosis algorithms. The problem of threshold selection and system

verification is transformed into reachable set calculation for uncertain systems. And

reachability analysis tool is applied, which is detailed in Chapter 7.

2.2 Disturbance estimation algorithms

In this section, disturbance estimation algorithms are reviewed and categorized,

which can be applied for the purpose of fault estimation.

Since 1970s, due to the increasing requirements on control accuracy and ro-

bustness, many effective disturbance estimation techniques have been developed,

such as Unknown Input Observer (UIO) [48], Extended State Observer (ESO) [49],

and Disturbance OBserver (DOB) [1,50]. Among these approaches, DOB and ESO

are most extensively investigated. Consequently, these algorithms will be briefly re-

viewed. Frequency-domain DOB is first introduced, followed by time-domain DOBs.

2.2.1 Frequency-domain algorithms

The frequency-domain DOB [1, 51] was originally motivated by the unmeasurable

disturbance estimation and rejection to achieve a better control performance. And

it usually handles linear systems in transfer function form. Suppose that the transfer
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function of the system under consideration isG(s) withGn(s) being its nominal part.

The basic idea of frequency-domain DOB in [1] is to obtain disturbance estimate by

filtering (through a low pass filter Q(s)) the difference between control input and the

calculated input using the inverse model of nominal plant Gn(s). The basic diagram

in [52] with some modification from [53] is given in Fig. 2.3, where Q(s) is designed
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Figure 2.3. The diagram of Q-filter based DOB in [1].

as a low-pass filter with unity gain (for the purpose of nearly constant disturbance

estimate) and the relative degree of Q(s) is no less than that of the nominal plant

Gn(s) such that Q(s)G−1
n (s) is implementable (see, [1, 52] among many others).

The frequency-domain DOB has multiple merits including being concept-simple

and suitable with standard transfer function analysis tools. The disadvantages, as

highlighted in [4], are that they can only be applied to a class of linear systems

and not easy to deal with transient performance. To this end, a large number of

state-space based time-domain algorithms have also been proposed.

2.2.2 Time-domain algorithms

A lot of time-domain disturbance estimation algorithms have been proposed (see

recent books [51, 54] and survey papers [55, 56] for a relatively complete list). It is

not the objective to give a complete review of the existing results, but some typical

DOBs (or related to the research in this thesis) are presented.

A new perspective to categorize the existing DOBs in time-domain is provided.

Based on the availability of the state information in derivation of disturbance esti-

mates, the existing time-domain algorithms can be broadly classified into three cate-

gories: (a) full measurable state based approaches [50,57] (termed FSDOB); (b) full

state estimation based algorithms [2, 49, 58, 59] (termed FODOB) and (c) reduced-

order state function estimation based algorithms [4, 60,61] (termed RODOB).

FSDOB: In FSDOB algorithms, the disturbance estimate is obtained under the

assumption that all the system states are directly measurable. The FSDOBs mainly

concern disturbance estimation for nonlinear systems. The original idea of Nonlinear
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Disturbance OBserver (NDOB) is proposed in [50] for the purpose of slowly time-

varying disturbance estimation (in the case of fast time-varying disturbance, the

disturbance estimation performance will degrade and further development should

be done).

Consider a nonlinear system with disturbance,

ẋ = f(x) + g1(x)u+ g2(x)d, (2.2.1)

where x ∈ Rn, u ∈ Rm, d ∈ Rq, f(x), g1(x), g2(x) are known nonlinear functions, u is

the control input and d denotes the lumped system disturbance, which may include

parameter uncertainties, external disturbances and system faults.

Then a NDOB was proposed in [50], given by{
ż = −l(x)g2(x)z − l(x)[g2(x)p(x) + f(x) + g1(x)u],

d̂ = z + p(x),
(2.2.2)

where z ∈ Rq is the internal state of the nonlinear observer, and p(x) is the nonlinear

function to be designed. The nonlinear disturbance observer gain l(x) is determined

by

l(x) =
∂p(x)

∂x
(2.2.3)

It has been shown in [50] that the NDOB asymptotically estimates the disturbance

if the observer gain l(x) is chosen such that

ėd = −l(x)g2(x)ed, (2.2.4)

is asymptotically stable regardless of x, where ed = d− d̂ is the disturbance estima-

tion error. The detailed selection of p(x) and consequently l(x) is referred to [50].

To relax the assumption of slowly time-varying disturbance, NDOB is further

extended to the case of exogenous disturbance in [62]. Suppose the disturbances are

generated by a linear model 1

ξ̇ = Wξ, d = V ξ, (2.2.5)

then a NDOB for estimating exogenous disturbance (2.2.5) is proposed in [62] and

1This linear model can accommodate several common disturbances in practical engineer-
ing such as constant, ramp, sinusoidal disturbances (see, [10] for further details.)
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depicted by{
ż = [W − l(x)g2(x)V ]z +Wp(x)− l(x)[g2(x)V p(x) + f(x) + g1(x)u],

ξ̂ = z + p(x), d̂ = V ξ̂.
(2.2.6)

It has been shown in [62] that the NDOB (2.2.6) can exponentially estimate the

disturbance if the nonlinear observer gain l(x) is designed such that ėξ = [W −
l(x)g2(x)V ]eξ is asymptotically stable.

Recently, a NDOB estimating disturbances in polynomial form d(t) = d0 +d1t+

· · · + dqt
q has been proposed in [57], which can estimate high order disturbances

with lower observer order.

FODOB: In FODOB, the disturbance estimates are obtained by simultaneously

estimating both the system states and disturbances. The classical extended state

observer (ESO) [49], unknown input observer (UIO) [48,63] are typical examples of

FODOB for continuous time linear systems. Proportional Integral Observer (PIO)

based disturbance observer [58], Simultaneous Input and State Estimation (SISE)

based on Minimum Variance Unbiased Estimation (MVUE) technique [2] are typical

examples of FODOB for discrete-time linear systems. While the Extended High-

Gain State Observer (EHGSO) in [64] is a typical example of FODOB for nonlinear

systems. The UIO proposed in [63] is taken as an example. Consider a linear system,

given by {
ẋ = Ax+Bu+Dd,

y = Cx,
(2.2.7)

where the disturbances d are of multiple dimension and each element is supposed

to satisfy (2.2.5). An extended system including the state dynamics (2.2.7) and

disturbance dynamic (2.2.5) can be obtained as follows:

[
ẋ

ξ̇

]
=

[
A DV

O W

][
x

ξ

]
+

[
B

0

]
u,

y =
[
C O

] [ x

ξ

]
.

Then the classical state observer technique can be used to estimate the extended

states and consequently disturbance estimates can be obtained.

RODOB: In RODOB design, not all the states are needed in derivation of dis-

turbance estimate. The results in [4] and [61] are typical examples of RODOB for

continuous time linear systems and discrete-time linear systems respectively. The

RODOB structure of [61] is shown as an example. Consider the linear system (2.2.7),
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two types of RODOB are discussed in [61], given by{
ż = Fz + Ly + TBu+ TDd̂,

d̂ = γ(Wy −Nz).
(2.2.8)

and {
ż = Fz + Ly + TBu+ TDd̂,
˙̂
d = ρ(Wy −Nz).

(2.2.9)

Under some existence condition in [61], the RODOs (2.2.8) and (2.2.9) can estimate

the disturbance d where only a state linear function Tx rather than all the state

x is estimated. As a result, as long as the matrix T has a full row rank under the

existence condition, the existence condition of RODOB will be relaxed compared

with that of FODOB where all the states are estimated in derivation of disturbance

estimate.

2.3 Motivations: residual VS fault estimation

In this section, a simulation comparison analysis between the conventional residual

based and fault estimation based fault diagnosis approaches is drawn, which par-

tially presents the motivations of the research in this thesis, i.e., fault estimation

algorithms: design and verification.

To this end, a motor system in state space model (see, Appendix A.1) serves as

a case study for the simulation comparison analysis. The linear system with both

actuator and sensor faults (the position sensor fault is not taken into account since

it is not detectable through theoretical analysis) can be represented by the following

system (2.3.1): {
ẋ = Ax+Bu+Dyd + ΓΓd + Efa,

y = Cx+ Sfs
(2.3.1)

where yd is the reference signal, Γd is the external unknown load, fa and E = B

denote actuator fault and its distribution matrix, while fs and S denote sensor fault

and its distribution matrix, where S is given by

S =

[
0 1 0 0

0 0 1 0

]T
.

It should be noted that system (2.3.1) is not the motor model but the model for

the purpose of observer design, where yd is deliberately modelled into Eq. (2.3.1)

to ease controller design.
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2.3.1 Residual based approach

In residual based fault diagnosis, a bank of observers are usually designed to achieve

fault isolation. There are generally two types of a bank of observers, i.e. the

dedicated observer scheme (DOS) and the generalized observer scheme (GOS) [14,

65]. The high-level philosophy of them are the same. A DOS is a bank of observers

driven by only one sensor output and consequently only sensitive to one sensor fault.

While in the GOS scheme, the bank of observers are driven by all outputs but one

and consequently sensitive to all faults except one. The mathematical description

of the DOS is as follows: a bank of observers are firstly designed for system (2.3.1)

as follows: {
˙̂xi = Ax̂i +Bu+Dyd + ΓΓd +Koi(yi − ŷi),
ŷi = Cix̂

(2.3.2)

where Koi is the observer gain matrix to be designed and yi is the measurement for

ith observer with its corresponding distribution matrix Ci; Ci is the combinations

of the rows of C depending on different measurements used in ith observer.

Combing (2.3.1) and (2.3.2), one can obtain the output estimation error eyi =

yi − Cix̂i, given by

eyi = Sifs + Ciexi

where exi denotes the state estimation error exi = x− x̂i, which is governed by

ėxi = (A−KoiCi)exi + Efa −KoiSifs

Then residuals ris are usually defined as the function of output estimation error eyi,

such as the 2-norm of eyi, i.e., ri = ||eyi|| =
√
eTyieyi.

The structure of the DOS and GOS for fault diagnosis is illustrated in Fig. 2.4.
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Figure 2.4. The diagram of residual based fault diagnosis.
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2.3.2 Fault estimation based approach

In fault estimation based approach, the fault diagnosis is achieved by directly ap-

proximating faults. Its diagnosis logic is as follows: when the faults are approxi-

mately obtained, one can directly tell whether a fault has occurred or not and where

the faults come from (which actuator, sensor) by checking the non-zero component

of fault estimates. The diagram of fault estimation based approach is shown in Fig.

2.5.

Actuator plant Sensor
Output

Observer

Fault estimate 1

Sensor 
faults

Fault estimate m

y

Actutor 
faults



Controllerd

Figure 2.5. The diagram of fault estimation based approach.

To obtain fault estimates for the linear systems (2.3.1), the extended state ob-

server [66] is used, which estimates the faults by augmenting the faults as additional

states. Let x̄ = (x, fs, fa) and suppose the faults are slowly time-varying, then

system (2.3.1) can be equivalently represented by the following extended system

equation, {
˙̄x = Āx̄+ B̄u+ D̄yd + Γ̄Γd,

ȳ = C̄x̄
(2.3.3)

where Ā =

[
A 0 E

0 0 0

]
, B̄ =

[
B

0

]
, D̄ =

[
D

0

]
, Γ̄ =

[
Γ

0

]
and C̄ =

[
C S 0

]
.

Then for system (2.3.3), a state observer can be designed as{
˙̄̂x = Āˆ̄x+ B̄u+ D̄yd + Γ̄Γd + K̄o(ȳ − ˆ̄y),

ˆ̄y = C̄ ˆ̄x
(2.3.4)

where the gain matrix K̄o is the observer gain matrix to be designed. When the

extended state x̄ is obtained, one can approximately obtain fs and fa, which will

serve as the fault indicating signals.
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2.3.3 Simulation comparison study

Simulation studies are performed to compare the performance of the aforementioned

approaches. The control parameters in Eq. (A.1.3) are designed as kθ = 2.5, ke =

0.35, kω = 3.6, ki = 5.8. The observer gains Koi in Eq. (2.3.2) and K̄o in Eq.

(2.3.4) are designed based on pole assignment technique (i.e., “place” in Matlab),

where the poles for Koi are −10 ± 4i,−20 ± 4i and the poles for K̄o are −10 ±
4i,−20± 4i,−4,−5. The position, velocity and current sensor noises are supposed

to be Gaussian distributions with zero mean and variance amplitude of 0.01, 0.02

and 0.01. The reference output θd and load Γd are shown in Fig. 2.6 (a).
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Figure 2.6. The simulation profiles: (a) reference output and load; (b) sensor
faults.

Case 1: Both velocity sensor fault fsv and current sensor fault fsc occur. The

profile for simulation study is shown in Fig. (b) of Fig. 2.6.

For the residual based approach, the concept of GOS is used for the purpose of

sensor fault isolation. The residual is defined as the 2-norm of output estimation

error, where the residual r1 is designed to be only sensitive to velocity sensor fault

and residual r2 is only sensitive to current sensor fault. The dynamics of residuals

r1 and r2 of the residual based approach are depicted in Fig. 2.7, while the fault

estimates of fault estimation based approach are shown in Fig. 2.8.

Comparing the results of residual based approach Fig. 2.7 and fault estimation

based approach Fig. 2.8, one can see that both methods can effectively detect

the presence of current sensor fault, since in the presence of current sensor fault

there exists a substantial change in the residual r2 and current fault estimation.

However, regarding the velocity sensor fault, only fault estimation based approach

can effectively detect the presence of fault and residual based approach fails to

achieve this goal, since a threshold is not easy to be chosen to tell the residual under

normal case and faulty case apart. The reason in detail is shown as follows.

Self-correction: One can see from Fig. 2.7 that in the presence of velocity
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Figure 2.7. Residuals of residual based approach: residual r1 sensitive to
velocity sensor fault (left); residual r2 sensitive to current sensor fault (right).
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Figure 2.8. The results of fault estimation based approach: velocity sensor
fault estimation (left); the current sensor fault estimation (right).

sensor fault at 3rd second, the residual 1 suddenly increases but then quickly reduces

and even disappears in the effect of noise. This is due to self-correction feature in

state observer which forces the estimated output close to the measurement output

as much as possible. As a result, certain kind of faults may be missed by the residual

based approach, especially when the fault amplitude is small.

Case 2: Secondly, the robustness issue of the aforementioned approaches is

tested, since robustness is a critical metric to evaluate model based fault diagnosis

approaches and there exist many uncertainties in motor driving system, such as

resistance R, reluctance L, among many others. To this end, suppose there exists

5% parameter uncertainty in resistance R. Simulation results for the same system

as that of case 1 are shown in Figs. 2.9 and 2.10.

Robustness Issue: One can see from Figs. 2.9 and 2.10 that the residual

based approach is more sensitive to parameter uncertainties and will result in false

fault diagnosis information. Since one can see from Fig. 2.9 (a) that the residual r1

substantially deviates from zero under normal case. In addition, although one can

detect the presence of current sensor fault from Fig. 2.9 (b), the threshold has to

be re-determined carefully. From Fig. 2.10, one can see that fault estimation based
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Figure 2.9. Residual based approach under resistance uncertainties.
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Figure 2.10. Fault estimation based approach under resistance uncertainties.

diagnosis approach is more robust to parameter uncertainties and can still obtain

a relatively accurate estimation of faults and consequently better fault diagnosis

performance.

Complex Diagnosis Logic: Another possible drawback of residual based ap-

proach is its complex diagnosis logic, since in residual based approach there need to

be a bank of observers to isolate a set of faults. And this issue is severe especially

when there exist large number of faults. Supposing there are k components to be

monitored, there needs to be C1
k + · · ·+ Ck−1

k observers to isolate all combinations

of possible faults, where Cik is defined as Cik = k!
i!(k−i)! , k! = 1×2×· · ·×k. However,

in the context of fault estimation based approach only one observer is needed for

the purpose of all fault estimation as long as the extended system is observable and

one can isolate the fault based on the estimated faults.

Observability Condition: Another possible drawback of residual based ap-

proach is poor observability in sensor fault isolation, although this condition is

satisfied in the simulation example of [65], which firstly proposed the concept of

fault isolation based on a bank of observers. The reason is that the observability

condition may not be satisfied any more in the stage of fault isolation since (A,Ci)
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may not satisfy the observability condition although the original (A,C) is observ-

able. Again, take the aforementioned motor system as an example, by checking the

observability condition one can easily obtain that it is not possible to estimate the

whole states of the motor system without position measurement information.

Since fault estimation based fault diagnosis algorithms possess some advantages

over the conventional residual based one under certain circumstances. Attention is

paid to fault estimation based fault diagnosis in this thesis. In the following few

Chapters, several disturbance estimation algorithms are proposed for the purpose of

fault estimation under different design requirements and specifications.



Chapter 3

UNIFIED LINEAR FILTER

3.1 Introduction

In this Chapter, a Unified Linear Filter (ULF) is introduced for stochastic linear

systems, which can accommodate the Kalman Filter and Unknown Input Observer

as its special cases. Then it is applied to the problem of simultaneous input and state

filter. The structure of this Chapter and how it expands the knowledge boundaries

are illustrated in Fig. 3.1.

Stochastic linear systems with 

known inputs: 

Kalman filter (Kalman, 1960) 

• State filter 

Stochastic linear systems with 

unknown inputs: 

(Gillijns&De Moor, 2007) 

• Simultaneous input and 

state filter 

+Unknown 

inputs 

Unified linear systems with partially 

observed inputs. 

State filter with existence condition 

Unified linear systems with partially 

observed inputs. 

• Simultaneous input and state filter 

Is it possible to unify 

these two results? 

(existence condition) 

Figure 3.1. Illustration of this Chapter’s structure and its relationship with
the existing results.
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3.1.1 Properties of ULF

State estimation for discrete-time linear stochastic systems with unknown inputs

(also termed unknown input filtering (UIF) problem) has received considerable at-

tention since the original work of [67] first appeared. Various filters were developed

under different assumptions for the systems with unknown inputs (see, e.g., [2,67–72]

among many others). Most of these researches used the technique of minimum vari-

ance unbiased estimation (MVUE), hence leading to an unbiased minimum-variance

filter (UMVF). In addition, various properties for these developed filters have been

investigated, including the existence condition [69], asymptotic stability [72] and

global optimality of the UMVF [71].

In some applications such as population estimation, traffic management [3], and

chemical engineering [73], however, the information on the input variables is not

completely unknown; rather, it is available at an aggregate level. Recently, [3] has

developed a Kalman filter (KF) for linear systems with partially observed inputs,

where the inputs are observed not at the level of interest but rather the input

information is available at an aggregate level. It has been shown that the developed

filter provides a unified approach to state estimation for linear systems with Gaussian

noise (consequently termed Unified Linear Filter (ULF)). In particular, it includes

two important extreme scenarios as its special cases: (a) the filter where all the

inputs are completely available (i.e. the classical KF [74]); and (b) the filter where

all inputs are unknown (i.e. the filter investigated in [67] and many others for

the UIF problem). Potentially the proposed filter can be applied to a variety of

practical problems in many different areas such as population estimation and traffic

control [3].

So far there is not any study discussing the properties of this newly proposed

unified filter including existence and asymptotic stability issues. So the first part of

the Chapter discusses the properties of the ULF developed in [3]. For linear stochas-

tic time-varying systems with partially observed inputs, the existence condition for

a general linear filter is established. Then it is shown that the developed filter is

optimal in the sense of minimum error covariance matrix. Finally, the asymptotic

stability of the filter for the corresponding time-invariant systems is considered based

on the established existence condition and optimality result.

The results in this Chapter can provide a unified approach to accommodating

existence and asymptotic stability conditions in a variety of filtering scenarios: it

includes the results on existence and asymptotic stability for some important filters

as its special cases, e.g., the filters developed for the problems where the inputs

are completely available and where all the inputs are unknown. Note that the
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former is the classical Kalman filtering problem and the corresponding existence

and asymptotic stability conditions are well established in the literature. For the

latter case with unknown inputs, there has been a continuing research interest in

existence and asymptotic stability conditions for various discrete-time systems (e.g.,

[67, 69,71,72]) and continuous-time systems (e.g., [75–77]).

3.1.2 Extension: SISE

However, the aforementioned filter developed in [3] only considered the problem of

sole state estimation; the problem of simultaneous input and state estimation (SISE)

with partial information on the inputs has not been investigated. In the second part

of this Chapter, based on the resulted existence condition, the problem of SISE is

further considered for the case where the unknown inputs are partially observed.

To obtain simultaneous estimates of the state variables and unknown inputs,

Bayesian inference (see, e.g. [3, 78]) is drawn on both state and input on the basis

of [3]. According to the Bayesian theory, the obtained estimates are optimal in the

sense of minimum mean square estimation under the assumption of Gaussian noise

terms [3]. Then, the estimates of the original unknown inputs can be worked out

by pooling together all the available information on the unknown inputs.

Compared with the filter in [3] where only state estimate is of interest, the

proposed method obtains simultaneous input and state estimates, and hence the

estimated inputs can be used in fault detection and other applications. Compared

to the results in [2, 59], the results in the Chapter take into account the additional

information on the unknown inputs, and hence it results in a better estimate of

the state and input vectors. In addition, it is shown that the Bayesian approach

to SISE provides an alternative derivation for the filter in [2]. The relationships of

the proposed filter with some existing estimation methods are further investigated.

In particular, it is shown in this Chapter that: (a) when the inputs are completely

available, the proposed filter reduces to the classical Kalman filter [74]; (b) when no

information on the unknown inputs is available, it reduces to the results of [2] where

both state and input estimation are concerned; and (c) if only state estimation is of

interest, it is equivalent to the filter for partially available inputs developed in [3].
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3.2 Problem statement

Consider a discrete-time linear stochastic system{
xk+1 = Akxk +Gkdk + ωk

yk = Ckxk + υk
(3.2.1)

where xk ∈ Rn is the state vector, dk ∈ Rm is the input vector, and yk ∈ Rp is

the measurement vector at each time step k with p ≥ m and n ≥ m. The process

noise ωk ∈ Rn and the measurement noise υk ∈ Rp are assumed to be mutually

uncorrelated with zero-mean and a known covariance matrix, Qk = E[ωkω
T
k ] ≥ 0

and Rk = E[υkυ
T
k ] > 0, respectively. Ak, Gk and Ck are known matrices. Without

loss of generality, following [2] and [67], it is assumed that Gk has a full column-

rank. The initial state x0 is independent of ωk and υk with a mean x̂0 and covariance

matrix P0 > 0.

The scenario is considered where the input vector dk is not fully observed at the

level of interest but rather it is available only at an aggregate level. Specifically, let

Dk be a qk ×m known matrix with 0 ≤ qk ≤ m and F0k an orthogonal complement

of DT
k such that DkF0k = Oqk×(m−qk) and F T0kF0k = Im−qk , where O and I represent

the zero matrix and identity matrix of appropriate dimensions. It is supposed that

the input data is available only on some linear combinations:

rk = Dkdk, (3.2.2)

where rk is available at each time step k. Dk is assumed to have a full row-rank;

otherwise the redundant rows can be removed.

As pointed out in [3], the matrix Dk characterizes the availability of input in-

formation at each time step k. It includes two extreme scenarios that are usually

considered: (a) qk = m and Dk is an identity matrix, i.e. the complete input infor-

mation is available; this is case that the classical KF can be applied; (b) qk = 0, i.e.

no information on the input variables is available; this is the problem investigated

in [2, 67,69]. Define Ωk = [Gk, G
⊥
k ] and

Πk =

(
Dk−1

CkGk−1

)
. (3.2.3)

The objectives is twofold: firstly the properties of ULF (for state estimation)

proposed in [3] for system (3.2.1) and (3.2.2) will be exploited; secondly, a SISE

filter is proposed for system (3.2.1) and (3.2.2).
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3.3 Existence condition of ULF

The existence condition of ULF is first considered. To establish the existence con-

dition of a general linear filter for system (3.2.1) with (3.2.2), an invertible linear

transformation is first introduced.

3.3.1 Transformation

Consider the following invertible matrix:

Mk =


Dk Oqk×(n−m)

O(n−m)×m In−m

F T0k O(m−qk)×(n−m)

Ω−1
k .

It is straightforward to verify that MkGkdk can be expressed as:

MkGkdk = [DT
k , Om×(n−m), F0k]

Tdk

= [(Dkdk)
T , (O(n−m)×mdk)

T , (F T0kdk)
T ]T

= [rTk , O1×(n−m), (F
T
0kdk)

T ]T

= r̃k + G̃kδk,

(3.3.1)

where r̃k = [rTk , O1×(n−m), O1×(m−qk)]
T , δk = F T0kdk and

G̃k = [O(m−qk)×qk , O(m−qk)×(n−m), Im−qk ]T . One notes that r̃k is completely avail-

able due to (3.2.2).

Left-multiplying both sides of (3.3.1) by M−1
k , Gkdk can be decoupled into two

parts:

Gkdk = M−1
k r̃k +M−1

k G̃kδk. (3.3.2)

From (3.3.2), the dynamics of xk+1 can be rewritten as:

xk+1 = Akxk +M−1
k r̃k +M−1

k G̃kδk + ωk = Akxk + uk + Fkδk + ωk,

where uk = M−1
k r̃k is a known term, and Fk is given by

Fk = M−1
k G̃k = [Gk, G

⊥
k ]

[
F0k

O

]
= GkF0k. (3.3.3)

Consequently, linear system (3.2.1) with the partially observed inputs rk = Dkdk
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can be equivalently represented by the following system:{
xk+1 = Akxk + uk + Fkδk + ωk

yk = Ckxk + υk
(3.3.4)

The above manipulation shows that a linear stochastic system with partially

observed inputs (3.2.2) can be transformed into a linear system with both known

inputs and unknown inputs.

3.3.2 Existence condition

In this subsection, the existence condition is established for a general, asymptoti-

cally stable and unbiased linear filter for system (3.3.4) and hence for its equivalent

system, (3.2.1) and (3.2.2).

Motivated by the linear filter structure in the literature (e.g. [68]), a general

linear filter for discrete-time linear system (3.3.4) is considered with the form

x̂k+1 = Ekx̂k + Jkuk +Kk+1yk+1, (3.3.5)

where the gain matrices Ek, Jk and Kk+1 are to be designed. Based on (3.3.4) and

(3.3.5), one can obtain the error dynamics ek+1 = xk+1 − x̂k+1:

ek+1 = (Akxk + uk + Fkδk + ωk)− (Ekx̂k + Jkuk +Kk+1yk+1)

= Ekek − (Jk − I +Kk+1Ck+1)uk + (Ak −Kk+1Ck+1Ak − Ek)xk
− (Kk+1Ck+1Fk − Fk)δk + (I −Kk+1Ck+1)ωk −Kk+1vk+1.

To ensure the filter is unbiased, it is required that the filtering error is indepen-

dent of uk, xk and δk. In addition, it is expected that the error approaches to zero

as time k increases. Hence the existence condition for filter (3.3.5) is given by:

(i) Ek is stable (i.e., any eigenvalue of Ek satisfies |λ(Ek)| < 1);

(ii) Ek = Ak −Kk+1Ck+1Ak;

(iii) Kk+1Ck+1Fk = Fk;

(iv) Jk = I −Kk+1Ck+1.

For system (3.2.1) and (3.2.2), however, the existence condition for system (3.3.4)

should be expressed in terms of matrices Ak, Gk, Ck and Dk. To this end, a lemma

is first given.
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Lemma 1. For system (3.2.1) and (3.2.2), one has

rank(


zIn −Ak −Gk
Ck+1 O

O Dk

) = rank(

[
zIn −Ak −Fk
Ck+1 O

]
) + rank(DkD

T
k ).

See the Appendix A.2 for proof. A condition for the existence of a general linear

filter for a dynamic system with partially observed inputs is provided.

Theorem 1. Suppose that both matrices DT
k and Gk have a full column-rank. Then

a sufficient condition for the existence of a general linear filter (3.3.5) for system

(3.2.1) and (3.2.2) is given by:

rank(Πk+1) = m (3.3.6)

and for all z ∈ C (C is the field of complex numbers) such that |z| ≥ 1:

rank(


zIn −Ak −Gk
Ck+1 O

O Dk

) = n+m. (3.3.7)

Proof: It is noted that one can select matrices Ek = Ak −Kk+1Ck+1Ak and Jk =

I −Kk+1Ck+1 to ensure that condition parts (ii) and (iv) are satisfied. Hence, the

focus is on condition parts (i) and (iii). It is first shown that (3.3.6) guarantees

there exists a matrix Kk+1 such that condition part (iii) holds. It is noted[
Dk

Ck+1Gk

] [
F0k DT

k

]
=

[
Oqk×(m−qk) DkD

T
k

Ck+1GkF0k Ck+1GkD
T
k

]
. (3.3.8)

Since [F0k, D
T
k ] is invertible and Πk+1 has a full column-rank, one can obtain that

Ck+1GkF0k = Ck+1Fk (see, Eq. (3.3.3)) is also of full column-rank, i.e.

rank(Ck+1Fk) = m− qk. (3.3.9)

Eq. (3.3.9) guarantees there exists a matrix Kk+1 such that condition part (iii)

holds.

Next, since Ck+1Fk has a full column-rank, there exists an invertible matrix
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Nk ∈ Rp×p such that

NkCk+1Fk =

[
O(p−m+qk)×(m−qk)

Im−qk

]
.

The general solution Kk+1 of Kk+1Ck+1Fk = Fk is given by Kk+1 = [Γk, Fk]Nk,

where Γk can be any matrix of suitable dimensions and is to be designed for the

gain matrix Kk+1.

Now define S1k and S2k such that[
S1k

S2k

]
= NkCk+1Ak, (3.3.10)

Then from condition part (ii), one can obtain

Ek = Ak −Kk+1Ck+1Ak

= Ak − [Γk, Fk]NkCk+1Ak = Ak − [Γk, Fk]

[
S1k

S2k

]
= Ak − FkS2k − ΓkS1k.

(3.3.11)

According to [79] (see, pp. 342), the existence condition part (i) holds if and

only if the following equivalent conditions holds:

(a) Ak − FkS2k − ΓkS1k is stable for a matrix Γk;

(b) S1kη = 0 and (Ak − FkS2k)η = λη for some constant λ and vector η implies

|λ| < 1 or η = 0.

The condition (b) can be expressed in the following equivalent form for all z ∈ C
and |z| ≥ 1:

rank(

[
zIn −Ak + FkS2k

S1k

]
) = n. (3.3.12)
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The following identity, in conjunction with Lemma 1, shows that (3.3.12) is satisfied:

rank(

[
zIn −Ak −Fk
Ck+1 O

]
) = rank(

[
In O

−Ck+1 zI

][
zIn −Ak −Fk
Ck+1 O

]
)

= rank(

[
zIn −Ak −Fk
Ck+1Ak Ck+1Fk

]
) = rank(

[
In O

O Nk

][
zIn −Ak −Fk
Ck+1Ak Ck+1Fk

]
)

= rank(


zIn −Ak −Fk
S1k O

S2k Im−qk

) = rank(


zIn −Ak + FkS2k −Fk

S1k O

O Im−qk

)

= rank(


zIn −Ak + FkS2k O

S1k O

O Im−qk

) = rank(

[
zIn −Ak + FkS2k

S1k

]
) +m− qk.

Hence, Eqs. (3.3.6) and (3.3.7) guarantee there exists a gain Kk+1 such that: (a)

Kk+1Ck+1Fk = Fk; and (b) Ek = Ak −Kk+1Ck+1Ak is stable.

Remarks:

(i) Eq. (3.3.6) is the estimability condition for the filter developed in [3] for system

(3.2.1) with partially observed inputs (3.2.2). From the proof of Theorem 1, it

also guarantees the unbiasedness of a general linear filter. In addition, Theorem 1

shows that to ensure the estimation error of a general linear filter is stable as time

k increases, a detectability condition (3.3.7) needs to be met.

(ii) When condition (i)-(iv) is satisfied, the general linear filter (3.3.5) is given by

x̂k+1 = (Ak −Kk+1Ck+1Ak)x̂k + (I −Kk+1Ck+1)uk +Kk+1yk+1. (3.3.13)

(iii) The error dynamics of the above filter (3.3.13) that satisfy condition (i)-(iv)

become

ek+1 = (Ak −Kk+1Ck+1Ak)ek + [I −Kk+1Ck+1,−Kk+1][ωk, υk+1]T . (3.3.14)

3.3.3 Relationships with the existing filters

As mentioned earlier, system (3.2.1) with partially observed inputs (3.2.2) includes

two important scenarios as its special cases: (a) the complete input information

is available; and (b) no information on the input variables is available. In this

subsection, the developed existence condition in the previous subsection for partially

observed inputs is compared to the condition derived for the classical KF with

complete information on the inputs, and to that of the filter with unknown inputs.
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Theorem 2. The proposed existence condition for filter (3.3.5) in Theorem 1 re-

duces to: (a): the existence condition of the classical KF when the complete informa-

tion on the inputs is available, i.e., Dk is invertible; and (b) the existence condition

of the filter with unknown inputs, i.e. Dk is an empty matrix.

Proof: First, the case that matrix Dk is invertible is considered. It is clear that

(3.3.6) is satisfied due to the non-singularity of Dk. In addition,

rank(


zIn −Ak −Gk
Ck+1 O

O Dk

) = rank(


zIn −Ak O

Ck+1 O

O Dk

)

= rank(

[
zIn −Ak
Ck+1

]
) + rank(DkD

T
k ).

Since rank(DkD
T
k ) = m, the existence condition (3.3.7) reduces to

rank(

[
zIn −Ak
Ck+1

]
) = n, ∀z ∈ C, |z| ≥ 1

which is the detectability condition of the classical KF (see, e.g. [74, 79]).

Next, the scenario where no information on the inputs dk is available is con-

sidered. Since matrix Dk reduces to a zero-by-zero empty matrix in this case, Eq.

(3.3.6) becomes

rank (Ck+1Gk) = m. (3.3.15)

In addition, Eq. (3.3.7) reduces to

rank(

[
zIn −Ak Gk

Ck+1 O

]
) = n+m,∀z ∈ C, |z| ≥ 1. (3.3.16)

Eqs. (3.3.15)-(3.3.16) are identical to the results for the filter with unknown inputs

[69]. This completes the proof.

Theorem 2 shows that the obtained existence condition is a more generic condi-

tion. In addition, comparing the existence condition (3.3.6) and (3.3.7) of the general

linear filter (3.3.5) for systems with partially available inputs to the existence condi-

tion (3.3.15)-(3.3.16), it can be seen that partial information on the unknown inputs

has relaxed the existence condition of a general linear filter. In other words, with

the information on the unknown inputs at an aggregate level (3.2.2), it is more likely

that the general linear filter (3.3.5) exists.
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3.4 The filter with partially observed inputs

Now attention is paid on the filter proposed in [3] for linear stochastic systems

when the inputs are partially observed. Note that this filter was derived under

the Bayesian framework with the assumption that ωk and υk follow a Gaussian

distribution, and δk has a noninformative prior distribution. The results of the filter

is summarized as below. Define

D̃k =

(
Dk Oqk×(n−m)

O(n−m)×m In−m

)
.

Let M̃k = D̃kΩ
−1
k . It is shown in [3] that for system (3.2.1) with the input data

available at an aggregate level (3.2.2), if matrix Πk has a full column-rank, then

the posterior distribution for xk at any time step k is a Gaussian distribution with

posterior mean x̂k|k and posterior covariance matrix Pk|k given by:

x̂k|k = Ak−1x̂k−1|k−1 + Pk|kM̃
T
k−1(M̃k−1Pk|k−1M

T
k−1)−1

× r̄k−1 +Kk(yk − CkAk−1x̂k−1|k−1),
(3.4.1)

and
Pk|k = Pk|k−1 − Pk|k−1C

T
k H

−1
k CkPk|k−1 + [Fk−1

− Pk|k−1C
T
k H

−1
k CkFk−1][F Tk−1C

T
k H

−1
k CkFk−1]−1

× [Fk−1 − Pk|k−1C
T
k H

−1
k CkFk−1]T ,

(3.4.2)

with
Kk = Pk|k−1C

T
k H

−1
k + [Fk−1 − Pk|k−1C

T
k H

−1
k CkFk−1]

× [F Tk−1C
T
k H

−1
k CkFk−1]−1F Tk−1C

T
k H

−1
k ,

(3.4.3)

where r̄k = [rTk , O
T ]T , Pk|k−1 = Ak−1Pk−1|k−1A

T
k−1 +Qk−1 and Hk = CkPk|k−1C

T
k +

Rk > 0. Note that (3.3.6) guarantees (3.3.9) holds, and hence F Tk−1C
T
k H

−1
k CkFk−1

is invertible in the above equations.

Under the Bayesian framework, x̂k|k was shown to be a minimum mean square

error (MMSE) estimate in [3]. However, no further properties of the filter were

explored. The dynamics of the state estimation error ek = xk− x̂k|k will be derived.

Lemma 2. The estimation error ek = xk − x̂k|k of the filter (3.4.1)-(3.4.3) follows

the recursive equation

ek = (Ak−1 −KkCkAk−1)ek−1 + [I −KkCk,−Kk][ωk−1, υk]
T , (3.4.4)

where Kk is given by (3.4.2)-(3.4.3).
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Proof: Let Wk−1 = Pk|kM̃
T
k−1(M̃k−1Pk|k−1M̃

T
k−1)−1. The error dynamics of the

filter (3.4.1)-(3.4.3) are given by

ek = Ak−1xk−1 +Gk−1dk−1 + ωk−1 −Ak−1x̂k−1|k−1

−Wk−1r̄k−1 −Kk(yk − CkAk−1x̂k−1|k−1)

= (Ak−1 −KkCkAk−1)ek−1 + (Gk−1 −KkCkGk−1)dk−1

−Wk−1r̄k−1 + (I −KkCk)wk−1 −Kkvk.

Noting that r̄k−1 = M̃k−1Gk−1dk−1, one can obtain

(Gk−1 −KkCkGk−1)dk−1 −Wk−1r̄k−1

= [I −KkCk −Wk−1M̃k−1]Gk−1dk−1.
(3.4.5)

Inserting (3.4.2) and (3.4.3) into (3.4.5), one can obtain (3.4.4) by noting that I −
KkCk −Wk−1M̃k−1 = O. This completes the proof.

Lemma 2 shows that, for the gain Kk given in Eqs. (3.4.2)-(3.4.3), if Ak−1 −
KkCkAk−1 is stable, the error of the developed filter in [3] will be stable as time k

increases. In addition, the estimation error (3.4.4) shares the same structure as that

of (3.3.14), upon which one can conclude that the filter (3.4.1)-(3.4.3) falls into the

filter family with the generic linear structure (3.3.5).

Now the error covariance matrix Pk|k is considered.

Theorem 3. Let P̃k|k denote the error covariance matrix of any filter x̂k(Yk) based

on the sequence of measurements Yk = {y0, y1, · · · , yk}. Then for linear system

(3.2.1) with partially observed inputs (3.2.2), one has P̃k|k ≥ Pk|k, where Pk|k is

given by (3.4.2).

Proof: By definition, the conditional covariance matrix of the estimate x̂k(Yk) for

given Yk is

P̃k|k = E{[xk − x̂k(Yk)][xk − x̂k(Yk)]T |Yk}.

It is easy to verify the following identity:

P̃k|k = E{[xk − x̂k|k + x̂k|k − x̂k(Yk)][xk − x̂k|k + x̂k|k − x̂k(Yk)]T |Yk}
= Pk|k + E{[x̂k|k − x̂(Yk)][x̂k|k − x̂k(Yk)]T |Yk}

+ E{[xk − x̂k|k][x̂k|k − x̂k(Yk)]T |Yk}+ E{[x̂k|k − x̂k(Yk)][xk − x̂k|k]T |Yk}.

Li [3] shows that the estimated state vector x̂k|k in (3.4.1) is the posterior mean

conditional on the sequence of measurements Yk = {y0, y1, · · · , yk}. Hence, one has

E{xk|Yk} = x̂k|k and the last two terms on the right-hand side of the above equation
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vanish, i.e.

P̃k|k = Pk|k + E{[x̂k|k − x̂(Yk)][x̂k|k − x̂k(Yk)]T |Yk}.

It is thus concluded that P̃k|k attains the minimum if and only if the second term

of the right-hand side is equal to zero, i.e. x̂k(Yk) = x̂k|k. This completes the proof.

Theorem 3 shows that the filter given by Eqs. (3.4.1)-(3.4.3) is optimal in the

sense of both MMSE and minimum covariance matrix. This result is not only

important in its own right but also useful in the subsequent asymptotic stability

analysis.

3.5 Asymptotic stability

In this section, the asymptotic stability of the filter developed in [3] for time-invariant

system (3.2.1) and (3.2.2) is discussed. Hence the subscript k of matrices Ak, Gk,

Ck, Dk, Qk and Rk is suppressed.

Noting from Lemma 2 that the covariance matrix in (3.4.2) can be re-written as

Pk|k = (A −KkCA)Pk−1|k−1(A −KkCA)T

+ (I −KkC)Q(I −KkC)T +KkRK
T
k .

(3.5.1)

Under the condition given in Theorem 1 and in conjunction with Theorem 3 that

the covariance matrix of the filter given by (3.4.1)-(3.4.3) is optimal, it can be shown

that the covariance matrix Pk|k in (3.5.1) is bounded for all k and for an arbitrary

bounded initial covariance P0|0. On the basis of boundedness of Pk|k and inspired

by the approaches in [72,79], one can further show the following result.

Theorem 4. If the condition in Theorem 1 is satisfied and (A,Q
1
2 ) is stabilizable,

then the covariance matrix Pk|k of the filter filter (3.4.1)-(3.4.3) will converge to

a unique fixed positive semi-definite matrix P̄ for any given initial condition P0|0.

Moreover, with the associated limiting gain matrices K̄, the time-invariant filter is

also stable, i.e. all the eigenvalues of A− K̄CA satisfy |λ(A− K̄CA)| < 1.

The proof is given in Appendix A.2.

It is of interest to compare the asymptotic stability condition obtained with

partially observed inputs to the asymptotic stability conditions when the complete

information on the inputs is available and when the inputs are completely unknown.

This is investigated in the following theorem. It shows that Theorem 4 provides a
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unified approach to accommodating asymptotic stability conditions in a variety of

filtering scenarios.

Theorem 5. The asymptotic stability condition for the filter (3.4.1)-(3.4.3) in The-

orem 4 reduces to: (a): the asymptotic stability condition of the classical Kalman

filter when the complete information on the inputs is available, i.e. D is invertible;

and (b) the asymptotic stability condition of the filter with unknown inputs, i.e. D

is an empty matrix.

Proof: First, one notes that when matrix D is invertible, the asymptotic stability

condition reduces to: (a) (A,C) is detectable; and (b) (A,Q
1
2 ) is stabilizable. These

are the asymptotic stability condition of the classical KF (see, e.g. [79]).

Next, when no information on the inputs is available, one knows from Theorem

2 that (3.3.7) in Theorem 1 reduces to (3.3.16). In addition, condition (A,Q
1
2 ) along

with R > 0 (and hence R
1
2 > 0) can guarantee that the matrix below has a full

row-rank, i.e.,

rank(

[
A− ejwI G Q

1
2 O

ejwC O O R
1
2

]
)

= n+ p, ∀w ∈ [0, 2π].

(3.5.2)

Eqs. (3.3.16) and (3.5.2) are identical to the asymptotic stability condition for the

filter with unknown inputs [69]. This completes the proof.

3.6 Extension to SISE

The problem of SISE for system (3.2.1) and (3.2.2) is then considered. Bayesian

inference is drawn to obtain recursive estimates of both state variables xk and un-

known inputs δk for system (3.3.4), upon which the estimate of the original input

vector dk is obtained. The relationships between the proposed method and the rel-

evant existing filters are discussed. The diagram of the system and the proposed

filter structure is shown in Fig. 3.2.

3.6.1 Filter design

It can be seen from Eq. (3.3.4) that yk is a function of xk, and xk is related to

the unknown inputs δk−1. Hence the unknown input estimate of δk is delayed by

one time unit [2]. The objective of filter design is to obtain the estimate of xk and

δk−1 based on the available measurement sequence Yk = {y1, y2, . . . , yk}. For the

new system (3.3.4), one can either solve the filtering problem based on the approach
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Figure 3.2. Diagram of the system and filter structure.

of minimum variance unbiased estimation (MVUE) (e.g. [2]) or Bayesian inference

(e.g. [3, 59, 78]). The Bayesian method is used which can be seen as an alternative

approach to that of [2].

In the context of Bayesian inference, the first step is to predict the dynamics of

xk and δk−1 based on the available measurement sequence Yk−1 = {y1, y2, . . . , yk−1}.
Since it is not assumed that the unknown input vector δk satisfies any transi-

tion dynamics, prediction is only performed to determine the dynamics of xk, i.e.

p(xk|Yk−1). The likelihood function can be determined based on the observation

equation of system (3.3.4). The second step is to obtain the posterior distribution

of the concerned variables after the measurement vector yk is received based on

Bayes’ chain rule:

p(xk, δk−1|Yk) ∝ p(yk|xk)p(xk, δk−1|Yk−1). (3.6.1)

The main results on filtering design are summarised in Theorem 6.

Theorem 6. For state space model (3.3.4), suppose the matrix CkFk−1 has a full

column-rank, then the prior and posterior distribution for xk and δk−1 at any time

step k can be obtained sequentially as follows:

(i) Posterior of xk−1 for given Yk−1: xk−1 ∼ N(x̂k−1|k−1, P
x
k−1|k−1).

(ii) Prediction for xk:

N(x̂k|k−1, P
x
k|k−1), with x̂k|k−1 = Ak−1x̂k−1|k−1 +M−1

k−1r̃k−1,

P xk|k−1 = Ak−1P
x
k−1|k−1A

T
k−1 +Qk−1. (3.6.2)

(iii) Posterior of δk−1 for given Yk: δk−1 ∼ N(δ̂k−1, P
δ
k|k).
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where the posterior mean is given by

δ̂k−1 = P δk|k(CkFk−1)T R̃−1
k (yk − Ckx̂k|k−1), (3.6.3)

and the posterior covariance matrix is given by

P δk|k = (F Tk−1C
T
k R̃
−1
k CkFk−1)−1, (3.6.4)

while posterior of xk for given Yk is: xk ∼ N(x̂k|k, P
x
k|k),

where the posterior mean is given by

x̂k|k = x̂k|k−1 + P xk|k−1C
T
k R̃
−1
k (yk − Ckx̂k|k−1)

+ (Fk − P xk|k−1C
T
k R̃
−1
k CkFk)δ̂k−1,

(3.6.5)

and the posterior covariance matrix is given by

P xk|k = P xk|k−1 − P
x
k|k−1C

T
k R̃
−1
k CkP

x
k|k−1

+(Fk−1 − P xk|k−1C
T
k R̃
−1
k CkFk−1)(P δk|k)

−1(Fk−1 − P xk|k−1C
T
k R̃
−1
k CkFk−1)T ,

(3.6.6)

where R̃k = CkP
x
k|k−1C

T
k +Rk, ()T in (∗)A()T stands for the transpose of ∗.

Proof From Eq. (3.6.1), the posterior distribution p(xk, δk−1|Yk) is governed by:

p(xk, δk−1|Yk) ∝ exp{−(yk − Ckxk)TR−1
k (yk − Ckxk)

−(xk − x̂k|k−1 − Fk−1δk−1)T (P xk|k−1)−1(xk − x̂k|k−1 − Fk−1δk−1)}.

By completing the square on [xTk , δ
T
k−1]T , the exponent can be rewritten as−([xTk , δ

T
k−1]−

[x̂Tk|k, δ̂
T
k−1])P−1

k|k ()T , where

[
x̂k|k

δ̂k−1

]
= Pk|k

 CTk R
−1
k yk + (P xk|k−1)−1x̂k|k−1

−F Tk−1(P xk|k−1)−1xk|k−1


and

Pk|k =

 CTk R
−1
k Ck + (P xk|k−1)−1 −(P xk|k−1)−1Fk−1

−F Tk−1(P xk|k−1)−1 F Tk−1(P xk|k−1)−1Fk−1

−1

.

This indicates that the posterior distribution is a Gaussian distribution with mean

[x̂Tk|k, δ̂
T
k−1]T and covariance matrix Pk|k. When CkFk−1 is of full row-rank, based on

the inverse of partitioned matrix, one can obtain the recursive estimation of both

xk and δk−1 as shown in Eqs. (3.6.2) to (3.6.6).

So far, the state estimate x̂k|k and estimate δ̂k−1 for the transformed system

have been obtained. When F T0k−1dk−1 = δ̂k−1 is obtained, based on Eq. (3.3.2) one
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can further obtain the estimate of the original unknown inputs dk−1 as follows:

d̂k = (GTkGk)
−1GTk (M−1

k r̃k +M−1
k G̃kδ̂k) .

It can be verified that the obtained unknown input estimate satisfies the un-

known input information Eq. (3.2.2), i.e.,

Dkd̂k = rk. (3.6.7)

The proof is given in the Appendix A.2.

Remark: The proposed SISE filter can be seen as a Full Order Disturbance OB-

server (FODOB) since all the state information is required in derivation of the

disturbance estimates. Besides, from the results of ULF in [3] and the proposed

SISE filter, one can find that the existence of ULF can guarantee the existence of

SISE, consequently the existence results on ULF established in the first part of this

Chapter can guarantee the existence of SISE filter proposed in the second part of

this Chapter.

3.6.2 Relationships with the existing results

In this subsection, the relationships between the proposed approach and the rele-

vant results in the existing literature are investigated, which is summarized in the

Theorem 7.

Theorem 7. The set of recursive formulas (3.6.2) to (3.6.6) reduces to:

1. the classical Kalman filter when all entries of the input vector dk are available;

2. the filter in [2] when no information on the unknown inputs dk is available;

3. the filter in [3]when only state estimation is concerned.

Proof: For the case where all the input variables are available at the level of

interest, Dk becomes an m ×m identity matrix, and F T0k becomes an zero-by-zero

empty matrix. Consequently the last term on the right-hand-side of (3.6.5) and

(3.6.6) vanishes, and (3.6.5) and (3.6.6) reduces to

P xk|k = P xk|k−1 − P
x
k|k−1C

T
k H

−1
k CkP

x
k|k−1.
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Since M−1
k−1r̂k−1 = Gk−1dk−1, Eq. (3.6.5) becomes

x̂k|k = Ak−1x̂k−1|k−1 +Gk−1dk−1

+ P xk|k−1C
T
k H

−1
k (yk − Ck(Ak−1x̂k−1|k−1 +Gk−1dk−1)).

Clearly, these recursive formulas are identical to the classical Kalman filter [74].

Next, consider the case where no input information is available. Clearly r̃k is an

empty vector, Fk becomes Gk, and δk = dk. Hence, Eq. (3.6.6) reduces to

P xk|k = P xk|k−1 − P
x
k|k−1C

T
k R̃
−1
k CkP

x
k|k−1

+ [Gk − P xk|k−1C
T
k H

−1
k CkGk−1]P δk|k[Gk − P

x
k|k−1C

T
k H

−1
k CkGk−1]T

and the unknown input covariance matrix (3.6.4) becomes

P δk|k = (GTk−1C
T
k R̃
−1
k CkGk−1)−1.

In addition, Eq. (3.6.5) becomes

x̂k|k = x̂k|k−1 + P xk|k−1C
T
k R̃
−1
k (yk − Ckx̂k|k−1) + (Gk − P xk|k−1C

T
k R̃
−1
k CkGk)δ̂k−1

and the unknown input estimation Eq. (3.6.3) becomes

δ̂k−1 = P δk|k(CkGk−1)T R̃−1
k (yk − Ckx̂k|k−1).

These recursive formulas are identical to: (a) the results in [67] when only state

filtering is of interest; and (b) the results in [2] for both unknown input and state

estimation obtained using the approach of minimum variance unbiased estimation.

Finally, if only state estimation is concerned, the proposed method leads to the

same results as those in [3]. To show this, it is noted that the state estimation error

covariance matrix Eq. (3.6.6) is the same as the one in [3]. In addition, inserting

Eqs. (3.6.3) and (3.6.4) into Eq. (3.6.5), Eq. (3.6.5) can be rewritten in the following

form:

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1)

where the gain matrix Kk is defined as

Kk = P xk|k−1C
T
k R̃
−1
k + +[Fk−1 − P xk|k−1C

T
k R̃
−1
k CkFk−1](P δk|k)

−1F Tk−1C
T
k R̃
−1
k .



Section 3.7. Simulation study 40

It can be further shown that (see Appendix A.2 for details)

M−1
k−1r̃k−1 −KkCkM

−1
k−1r̃k−1 = Pk|kM̄

T
k−1(M̄k−1Pk|k−1M̄

T
k−1)−1r̄k−1 (3.6.8)

where the left hand side of Eq. (3.6.8) is the term associated with the prior infor-

mation of the proposed filter, whereas the right hand side of Eq. (3.6.8) is the term

associated with the prior information of the filter in [3]. This completes the proof.

3.7 Simulation study

In this section, a numerical example is given to illustrate the developed filter. First,

it will be shown that, when only state estimation is of interest, the proposed filter

can obtain the same result as that of [3]. Next it is further demonstrated that incor-

porating the partially available information on the unknown inputs can effectively

improve on both state estimation and unknown input estimation in comparison with

the one without using the unknown input knowledge [2].

The system for the simulation is chosen the same as that of [80] that has been

widely used in many previous studies (see, e.g., [71]). However, to better assess the

performance of the proposed filter under uncertainties, a system subject to larger

random variation is considered: the covariance matrices Qk and Rk of the system

and measurement noises were taken 10 times as those of [71]. The detailed matrices

are given as follows.

Ak =



0.5 2 0 0 0

0 0.2 1 0 1

0 0 0.3 0 1

0 0 0 0.7 1

0 0 0 0 0.1


, Gk =



1 0 0

0 0 0

0 1 0

0 0 0

0 0 0.1


,

Qk = 10−2 ×



1 0 0 0 0

0 1 0.5 0 0

0 0.5 1 0 0

0 0 0 1 0

0 0 0 0 1


, Rk = 10−1 ×



1 0 0 0.5 0

0 1 0 0 0.3

0 0 1 0 0

0.5 0 0 1 0

0 0.3 0 0 1


,

and Ck = I5 is a 5 × 5 identity matrix. Qk and Rk are the input and sensor noise

covariance matrices respectively.

To investigate the effect of partial information of unknown inputs on state fil-

tering performance, it is further assumed that the unknown input variables are
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observed at an aggregate level with

Dk =

[
1 0 1

0 1 1

]
.

For the input vector dk = [d1k, d2k, d3k]
T , this means that the information on d1k +

d3k and d2k + d3k is available at each time step although each individual input is

unknown.

The recursive formulas are applied to estimate the state and unknown input

vectors at each time step. To evaluate the quality of the state estimate and unknown

input estimate obtained using the developed filter, one can calculate the trace of

the error covariance matrix P xk|k and the trace of the error covariance matrix P δk|k

at each time step, as displayed in Fig. 3.3 (a) and Fig. 3.3 (b) (real red line),

respectively. For comparison, the state estimation algorithms using the filter in [3]

(only state estimation is concerned) and [2] (assuming the inputs were completely

unknown) are also considered. The traces of P xk|k are superimposed in Fig. 3.3 (a)

(dotted line for [3] and dashed line for [2]), and the trace of P δk|k is superimposed in

Fig. 3.3 (b) (dashed line for [2]).
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Figure 3.3. (a) Traces of the covariance matrix P x
k|k for three different filters;

(b) Traces of the covariance matrix P δ
k|k for the proposed approach and the

filter in [2].

It can be seen from Fig. 3.3 (a) that the trace of state estimation error covariance

using the proposed filter is the same as that of [3]. Both the method in [3] and the

proposed method have a smaller trace of the covariance matrix than that of [2].

In addition, Fig. 3.3 (b) shows that the trace of the error covariance matrix

of the unknown input estimate using the proposed filter is smaller in comparison

with that of [2]. This is because more information on the unknown inputs was used

by the filter developed. This demonstrates that when the unknown inputs are of

practical interest, the proposed method will have a better performance than [2] if
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there is additional information available on the unknown inputs for filtering.

The state estimates obtained using the three filters are also compared, i.e., the

filter in [3] (Fig. 3.4), the proposed filter (Fig. 3.5) and the filter in [2] (Fig. 3.6).

The upper graphs of Figs. 3.4-3.6 display the simulated true values of the fifth state

variable (real line) and the estimated state using the filters (dotted line), while the

lower graphs plot the corresponding state estimation error for each filter.

It can be seen from Figs. 3.4-3.6 that the three methods can provide a reasonably

good estimate of the state vector. However, overall the state estimation errors using

the proposed filter and the filter in [3] are smaller compared with that of [2] because

the additional unknown input information was incorporated into the proposed filter

and that of [3].
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Figure 3.4. State estimation of the filter in [3] and its estimation error.
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Figure 3.5. State estimation of the proposed filter and its estimation error.



Section 3.8. Summary 43

0 100 200 300 400 500
-1

0

1

time

st
at

e 
5

 

 

Actual state
Gillijns-De Moor (2007)

0 100 200 300 400 500
-1

0

1

time

st
at

e 
es

tim
at

io
n 

er
ro

r 
5

Figure 3.6. State estimation of the filter in [2] and its estimation error.

Finally, the proposed method is further compared with the results in [2] for the

purpose of unknown inputs estimation. The comparison results are shown in Fig.

3.7 (the proposed method) and Fig. 3.8 (the method in [2]), where real unknown

inputs are depicted by real lines, and the unknown input estimations are depicted

by the dotted lines.
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Figure 3.7. Unknown input estimation based on the proposed filter.

One can see from Figs. 3.7 and 3.8 that, by incorporating the information on

the unknown inputs, the proposed method can obtain a much better performance

for the unknown input estimation.

3.8 Summary

This Chapter first established existence and asymptotic stability conditions for the

recently developed filter with partially observed inputs in [3]. The obtained existence
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Figure 3.8. Unknown input estimation based on the filter in [2].

and asymptotic stability conditions provide a unified approach to accommodating

a variety of filtering scenarios as its special cases, including the important Kalman

filter and the unknown input filtering problems. On this basis, Bayesian inference is

drawn to obtain simultaneous input and state estimation. The relationships of the

proposed approach with the existing results are also discussed. Numerical example

shows that, in comparison with the filter without using any input information, the

proposed filter that makes use of the input information available at an aggregate

level can substantially improve on the quality of both the state and input estimation.



Chapter 4

RODOB: WITH DISTURBANCE

MODEL

4.1 Introduction

In Chapter 3, the problem of state filter in the presence of unknown inputs was

considered. On this basis, the problem of simultaneous input and state filter was

further considered, where no explicit assumption is made on the unknown inputs. In

this Chapter the unknown input estimation problem is considered, where a slowly

time-varying disturbance assumption is assumed. The contribution of this Chapter

is illustrated in Fig. 4.1.

Discrete-time linear systems 

with unknown inputs: 

(Chang, 2006) 

• Input and state filter 

Discrete-time linear systems 

with unknown inputs: 

(Kim&Rew, 2013) 

• input and state filter 

Reduced order 

Reduced order disturbance observer: 

with disturbance model. 

Easy-to-check existence condition. 

Is it possible to unify 

these two results with 

easy-to-check 

existence condition? 

With disturbance model 

Figure 4.1. Illustration of the relationship between this Chapter with the
existing results.

Different from the second part of Chapter 3, in this Chapter the focus is on

reduced order disturbance observer (RODOB) design. Practically, there are three

major reasons why a RODOB is needed. Firstly, in areas such as fault diagnosis, an

45
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estimate of the entire states may not be necessary for the purpose of fault estimation

[61]. Secondly, there are some practical scenarios where disturbance estimation

is required even if the states are not fully estimable [81]. Finally, when a fast

disturbance estimate is required, DOBs with a smaller order are more desirable [1].

The conventional DOBs assume that all the system states are estimable or even

directly measurable, and consequently the disturbance estimation is dependent on

the estimated system states. For example, the researchers in [1] proposed a DOB by

treating the disturbances as additional states and estimating them using a deadbeat

function observer [82] under the assumption that the augmented systems are com-

pletely observable and the disturbances can be approximated by known transition

dynamics. A proportional integral observer was used in [58] for simultaneous esti-

mation of system states and unknown disturbances under the slowly time-varying

disturbances and state observability assumptions. On the other hand, to relax the

assumption on disturbances and incorporate noise information for stochastic sys-

tems, the authors in [2] proposed a simultaneous state and disturbance observer on

the basis of [69] using the minimum-variance-unbiased-estimation (MVUE) method.

The assumption that the states are fully estimable inevitably restricts the applica-

tions of the FODOs. An important earlier work of RODOB can be traced back

to [61] where the concept of state function observer based on the Lyapunov ap-

proach was investigated for continuous-time systems. Recently, a RODOB has been

proposed in [57] by combining a state function estimator of minimal order and a full

measurable state based DOB [4]. The existence condition in [4], however, involves a

static output feedback problem, for which the general solvability is not known yet.

It also depends on an assumption that the disturbances are slowly time-varying.

Consequently, the RODOB design is further improved by being formulated as

a state functional observer problem. By carefully designing the state functional

matrix L in the functional observer theory, a generic RODOB is resulted with an

easily-checked existence condition. It is also shown that both the RODOB in [4]

and the full order disturbance observer (FODOB) in [58] are special cases of the

new RODOB.

4.2 Existing results

Motivated by the applications in disturbance rejection control and fault diagnosis,

a discrete-time FODOB was proposed in [58]. To reduce the observer order and

relax the existence condition, a RODOB was proposed in [57] to reconstruct dis-

turbances/faults with a minimal observer order for continuous-time linear systems.
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Recently, this work has been extended to the case of discrete-time linear systems

in [4]. The discrete-time linear system under consideration (the matrix notations

are directly borrowed from [4]) is{
xk+1 = Φxk + Γuk +Gdk,

yk = Cxk,
(4.2.1)

where xk ∈ Rn, uk ∈ Rm, dk ∈ Rq and yk ∈ Rl are the states, control inputs,

disturbances and measurements at kth step, respectively. G is supposed to have

a full column-rank, i.e., rank(G) = q. The disturbances dk are assumed to be

unknown but slowly time-varying, i.e., the following assumption is assumed:

dik+1 = dik + ∆dik+1, (4.2.2)

with dk := [d1
k, · · · , d

q
k]
T , |∆dik+1| = |dik+1−dik| ≤ Tµi where T is the sampling time,

µi is a small positive value. In practical application, if µi is not small enough, the

disturbance estimate performance may not satisfy the specification.

Define Nc := (In − C+C) with C+ being the Moore-Penrose pseudo-inverse of

C and define He as

He :=

[
KNc

K(Φ− In)Nc

]
=

[
H1

H2

]
V T ,

with K being a deigned gain matrix, H1 ∈ Rq×h, H2 ∈ Rq×h, V T ∈ Rh×n with

h = rank(He).

Defining ηk := V Txk ∈ Rh, the RODOB constructed in [4] is given by
ξk+1 = Rξk + Syk +Wuuk +Wdd̂k,

η̂k = ξk +Qyk,

zk+1 = zk +K{(Φ− In)C+yk + Γuk}+KGd̂k +H2η̂k,

d̂k = KC+yk − zk +H1η̂k,

(4.2.3)

where zk ∈ Rq and ξk ∈ Rh, Wu = (V T −QC)Γ , Wd = (V T −QC)G for the matrices

S,Q,R satisfying

(V T −QC)Φ−R(V T −QC)− SC = 0. (4.2.4)

Denoting the disturbance estimation error and the state function estimation error as

ek = dk − d̂k and εk = ηk − η̂k respectively, the composite error dynamic consisting
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of both state function ηk and disturbance dk estimation errors is given by [4][
ek+1

εk+1

]
= Ae

[
ek

εk

]
+

[
∆dk+1

Oh×1

]
,

where the composite error matrix Ae is defined as

Ae =

[
Iq −KG+H1(V T −QC)G H1R−H1 −H2

(V T −QC)G R

]
. (4.2.5)

As pointed out by [4], the existence of a stable RODOB in (4.2.3) depends on

whether there exists a gain K and other design parameters such that: (i). the

Sylvester equation (4.2.4) holds; (ii). matrix Ae in (4.2.5) is asymptotically stable

(i.e., the amplitudes of its eigenvalues are less than 1). Condition (i) is implied by

the matrix rank equality

rank(

[
Z1

V TΦ

]
) = rank(Z1) , Z1 := rank(


C

CΦ

V T

). (4.2.6)

However, condition (ii) is not easy to check directly. The existence problem is

related to a static output feedback problem. As pointed out in [57] and [4], although

numerical solutions are available, the general solvability of the static output feedback

is not known.

To further develop this promising approach, this note improves the results in [4]

by presenting a generic RODOB with an easily-checked existence condition.The dis-

turbance observer design is transformed into a problem of state functional observer

(SFO) design (see, [83, 84], etc.). This is achieved by first augmenting the distur-

bances with the state and then carefully designing the state functional matrix L.

Consequently a generic RODOB is resulted with the necessary and sufficient exis-

tence condition. A promising feature of the new RODOB is that the corresponding

existence condition is easy to check. On this basis, the relationship between the new

RODOB with the RODOB in [4] and the FODOB in [58] is investigated in terms of

the observer structure and existence condition.

4.3 RODOB design with SFO techniques

SFO firstly introduced in [23] received much attention in the field of control (see,

[83, 84]) due to its properties such as lower observer order. Its existence condition
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has been rigorously established in [83]. However, less attention has been paid on its

applications in disturbance or fault estimation.

4.3.1 Observer design

Combining systems (4.2.1) and (4.2.2), and defining x̄k = [xTk , d
T
k ]T , an augmented

system can be obtained as{
x̄k+1 = Āx̄k + Γ̄ uk + ∆d̄k,

yk = C̄x̄k,
(4.3.1)

where the gain matrices and ∆d̄k are given as follows:

Ā =

[
Φ G

On×q Iq

]
, Γ̄ =

[
Γ

On×q

]
,

C̄ =
[
C Ol×q

]
,∆d̄k =

[
On×1

∆dk

]
.

Remark 1: For the case where the measurement outputs are also subjected to

disturbances, i.e., yk = Cxk + G2dk, this approach is also applicable by choosing

C̄ =
[
C G2

]
.

To obtain the disturbance estimate, the state function matrix L in [83] is chosen

with a special structure:

L =

[
L0 Oh̄×q

Oq×n Iq

]
. (4.3.2)

The design of L0 ∈ Rh̄×n with full row-rank will be discussed in Section 4.3.3.

Define

vk = Lx̄k, with dk = [Oq×n, Iq]vk, (4.3.3)

which is the state function to be estimated.

The problem of disturbance observer design is now transformed into the problem

of state functional observer design for system (4.3.1) with state function vk in (4.3.3)

to be estimated.

According to [83] and [84], the disturbance observer d̂k along with the state

functional observer v̂k takes the following form
wk+1 = Nwk + Jyk +Huk,

v̂k = Bwk + Eyk,

d̂k = [Oq×n Iq]v̂k.

(4.3.4)
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Define an intermediate error χk = P̄ x̄k − wk with P̄ being an intermediate

matrix, its dynamics is given by

χk+1 = Nχk + (P̄ Ā−NP̄ − JC̄)x̄k + (P̄ Γ̄ −H)uk + P̄∆d̄k. (4.3.5)

The state function estimation error ek = vk − v̂k can be written as

ek = Bχk + (L− EC̄ −BP̄ )x̄k, (4.3.6)

from which one can obtain ek → 0 as k →∞ for any x̄k if and only if the following

two conditions hold:

(i) χk → 0 as k →∞ ;

(ii) L− EC̄ −BP̄ = O.

For any invertible B, the aforementioned condition (ii) is implied by choosing P̄ as

P̄ = B−1L−B−1EC̄. (4.3.7)

Ignoring the term P̄∆d̄k as it does not affect the analysis, (4.3.5) implies that

χk → 0 as k →∞ if and only if the following condition holds

(a) P̄ Ā−NP̄ − JC̄ = O (Sylvester equation);

(b) P̄ Γ̄ −H = O;

(c) N is asymptotically stable.

Choosing P̄ according to (4.3.7) with any invertible B and H according to Con-

dition (b), then the existence condition reduces to condition (c) N being asymptot-

ically stable under the constraint Sylvester equation condition (a). The existence

condition in the form of easily-checked matrix rank equalities has been rigorously

established in [83] with B = I and later in [84] with B being any invertible matrix,

summarized in Theorem 8.

Theorem 8. There exists a stable generic RODOB given by (4.3.4) for system

(4.2.1) if and only if the following condition holds:

i) the matrix rank equality holds:

rank(


L0Φ

CΦ

C

L0

) = rank(


CΦ

C

L0

), (4.3.8)
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ii) ∀s ∈ C with Re(s) ≥ 1,

rank(


sL0 − L0Φ −L0G

Oq×n sIq − Iq
CΦ CG

C Ol×q

) = rank(


CΦ

C

L0

) + q. (4.3.9)

Proof: The existence condition is established by substituting the chosen state

function gain matrix (4.3.2) and the definition of the variables to be estimated as

in (4.3.3) into the existence conditions in Lemmas 1 and 2 of [83] and Theorem 3

of [84]. After a number of manipulations, (4.3.8) and (4.3.9) are resulted.

4.3.2 Relationships with the existing results

In this section, the relationship of the RODOB designed with the SFO technique with

the existing disturbance observers is investigated including the RODOB proposed

in [4] and FODOB proposed in [58].

Relationship with RODOB [4]

Inserting η̂k of (4.2.3) into d̂k yields

d̂k = KC+yk − zk +H1(ξk +Qyk). (4.3.10)

Combing η̂k of (4.2.3) with (4.3.10), one can obtain[
η̂k

d̂k

]
︸ ︷︷ ︸

v̂k

=

[
I Oh×q

H1 −I

]
︸ ︷︷ ︸

B

[
ξk

zk

]
︸ ︷︷ ︸

wk

+

[
Q

KC+ +H1Q

]
︸ ︷︷ ︸

E

yk.
(4.3.11)

Substituting the dynamics of η̂k and d̂k in (4.3.11) into that of ξk and zk in

(4.2.3), a compatible form with SFO based RODOB (4.3.4) for ξk and zk is given

by [
ξk+1

zk+1

]
︸ ︷︷ ︸

wk+1

=

[
R+WdH1 −Wd

KGH1 +H2 I −KG

]
︸ ︷︷ ︸

N

[
ξk

zk

]
︸ ︷︷ ︸

wk

+

[
S +Wd(KC

+ +H1Q)

KG(KC+ +H1Q) +K(Φ− In)C+ +H2Q

]
︸ ︷︷ ︸

J

yk +

[
Wu

KΓ

]
︸ ︷︷ ︸

H

uk,

(4.3.12)
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which means the RODOB (4.2.3) proposed in [4] is a special case of the proposed

RODOB (4.3.4) with L0 = V T in (4.3.2) and B in a special form as in (4.3.11). All

the other corresponding matrices are defined in (4.3.11) and (4.3.12).

It shall be noticed that the existence condition (4.3.8) in Theorem 8 is actually

the same as condition (i) (4.2.6) of [4] with L0 = V T . However, condition (4.3.9)

with L0 = V T in Theorem 8 is a matrix rank equality, which is much easier to

check than that of [4] (i.e., no general solvability for the existence of a static output

feedback).

Relationship with FODOB [58]

An observer simultaneously estimating full states and disturbances was proposed

in [58] for system (4.2.1), given by{
x̂k+1 = Φx̂k + Γuk + L1(yk − Cx̂k) +Gd̂k,

d̂k+1 = dk + L2(yk − Cx̂k).
(4.3.13)

One can put (4.3.13) into an equivalent form to have a compatible structure with

the generic RODOB (4.3.4).

[
x̂k+1

d̂k+1

]
︸ ︷︷ ︸

wk+1

=

[
Φ− L1C G

−L2C I

]
︸ ︷︷ ︸

N

[
x̂k

d̂k

]
︸ ︷︷ ︸

wk

+

[
L1

L2

]
︸ ︷︷ ︸

J

yk +

[
Γ

Oq×m

]
︸ ︷︷ ︸

H

uk,

v̂k = In+q︸︷︷︸
B

wk +O(n+q)×l︸ ︷︷ ︸
E

yk, d̂k = [Oq×n, Iq]v̂k.

which means the FODOB proposed in [58] is a special case of the proposed RODOB

with L0 = In and so L = In+q.

In addition, with L0 = In the existence condition (4.3.8) in Theorem 1 always

holds and the condition (4.3.9) reduces to ∀s ∈ C with Re(s) ≥ 1,

rank(


sIn − Φ −G
Oq×n sIq − Iq
C Ol×q

) = n+ q,

which is equivalent to that of [58].

4.3.3 Design process of the generic RODOB

The design of the generic RODOB using the SFO technique starts from choosing L0

to satisfy the existence conditions in Theorem 8. In practice, an observer with small
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order may be more desirable. So the selection of L0 could start with a low order and

then increase the order until the conditions in Theorem 1 are satisfied. This could

make sure a disturbance observer with a minimal order is designed. Then a similar

design procedure as [83] (except B = I in [83]) can be followed as summarized below

for the sake of completeness:

Form the state functional matrix L according to (4.3.2) and choose an invertible

matrix B. Then define matrices F and M as

F = B−1LĀL+B −B−1LĀNLΣ
+

[
C̄ĀL+B

C̄L+B

]
,

M = [I −ΣΣ+]

[
C̄ĀL+B

C̄L+B

]
,

where Σ =

[
C̄ĀNL

C̄NL

]
, L+ is the Moore-Pensrose pseudo-inverse inverse of the

matrix L, given by L+ = LT (LTL)−1 due to L being of full-row rank, NL = (I −
L+L). Then the matrix N can be calculated by any pole placement procedure for

the pair (F,M) as

N = F − ZM, (4.3.14)

where Z is the matrix obtained from the pole placement of the pair (F,M). The

observability of the pair (F,M) is guaranteed by the condition (4.3.9).

Then one can further obtain gain matrices J and E based on the following

relationship

[B−1E J −NB−1E] = B−1LĀNLΣ
+ + Z [I −ΣΣ+] .

Finally the matrix H is obtained by

H = (B−1L−B−1EC̄)Γ̄ .

Remark 2: From (4.3.5) and (4.3.6), one can obtain ek+1 = BNB−1ek +BP̄∆d̄k,

which means the convergence rate of disturbance observer is determined by the

eigenvalues of N . From (4.3.14), the relationship between convergence rate with

gain matrices has been established in the proposed approach.
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4.4 Simulation study

In this section, a numerical example in [4] and [58] with two different types of

disturbances will be used to verify the effectiveness of the proposed disturbance

observer in estimating slowly time-varying disturbances and also its limitation in

estimating fast time-varying disturbances.

The system matrices in (4.2.1) are given by

Φ =


0.9630 0.0181 0.0187

0.1808 0.8195 −0.0514

−0.1116 0.0344 0.9586

, G =


0.0996 0.0213

0.0050 0.1277

0.1510 0.0406

,

C =

[
1 0 −1

−1 1 1

]
, Γ = O.

L0 is chosen as L0 = [0 0 1] such that the existence condition of RODOB

is satisfied, which means the third state is required to be estimated to obtain

disturbance estimate. The eigenvalues for matrix N in (4.3.4) are designed as

p1 = 0.5; p2 = 0.55; p3 = 0.6, based on which the rest matrices can be calcu-

lated. The initial states for system dynamics and observer dynamics are selected as

x0 = [0; 1; 0] and ω0 = [0; 0; 0] respectively. The slowly time-varying disturbances

and fast time-varying disturbances are considered respectively as follows.

Case 1: slowly time-varying disturbances First consider slowly time-varying

disturbance estimation. The disturbances under consideration are given by

d1(k) = 0.3 ∗ sin(0.05k) + 2; d2(k) = 0.2 ∗ cos(0.05k) + 2.

The simulation results for d1, d2 and x3 estimates are shown in Figs. 4.2 and 4.3,
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Figure 4.2. Slowly time-varying disturbance estimation: left figure (d1); right
figure (d2).

One can see from Figs. 4.2 and 4.3, that the proposed reduced order disturbance

observer can effectively estimate slow-varying disturbance with very small estimation
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Figure 4.3. State x3 estimate under slowly time-varying disturbances (left)
and fast time-varying disturbance (right).

errors.

Case 2: fast time-varying disturbances The fast time-varying disturbance es-

timation is then considered. The disturbances under consideration are given by

d1(k) = 0.3 ∗ sin(0.5k) + 2; d2(k) = 0.2 ∗ cos(0.5k) + 2.

The simulation results for d1, d2 and x3 estimates are shown in Figs. 4.4 and 4.3

(the right hand figure)
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Figure 4.4. fast time-varying disturbance estimation: d1 (left); d2 (right).

One can see from Figs. 4.4 and 4.3 that the proposed RODOB may result in large

estimation error for disturbance with fast time-varying dynamic. And this motivates

the research in Chapter 5, i.e., RODOB design with no disturbance model.
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4.5 Summary

In this Chapter, the state functional observer technique is applied to reduced-order

disturbance observer design by augmenting the disturbances as additional states and

carefully selecting the state function matrix L. As a result, the existence condition

of a fixed order disturbance observer is represented in the forms of two easily-checked

matrix rank equalities. It is also shown that both the RODOB in [4] and FODOB

in [58] are special cases of the generic RODOB discussed in this Chapter.



Chapter 5

RODOB: WITHOUT

DISTURBANCE MODEL

5.1 Introduction

In Chapter 4, RODOB algorithm was designed for discrete-time linear systems where

the disturbances are assumed to be slowly time-varying. In the simulation study (see,

Section 4.4), one can observe that the RODOB with slowly time-varying disturbance

assumption may result in poor disturbance estimation performance for systems with

fast time-varying disturbances such as periodic disturbances among many others.

In this Chapter, another RODOB is designed, which can remove the slowly time-

varying disturbance assumption and consequently can obtain a better disturbance

estimation performance for fast time-varying disturbance. The motivations and the

relationship with the existing results are illustrated in Fig. 5.1.

RODOB with  

disturbance model 

(Chapter 4) 

RODOB: without  

disturbance model. 

FODOB without  

disturbance model 

(Gillijns&De Moor, 2007) 

Reduced 

order 

Improve performance 

for generic disturbances 

Figure 5.1. Illustration of the motivations and the relationship with the
existing results.

The RODOB design for discrete-time linear stochastic systems is investigated

without imposing any assumption on the disturbance dynamics. Compared with

the existing FODOs, a simpler criterion for the existence of RODOB is developed

and the full state estimability condition is removed. Compared with the existing

57
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RODOB (e.g., the RODOB in Chapter 4), the RODOB in the Chapter does not

make any assumption on disturbance dynamics. Hence it extends the applicability

of the existing results in [2, 3, 8, 69] to a much wider application area.

5.2 Problem statement

Consider a discrete-time linear stochastic system in the presence of disturbances

[2, 3, 69] as follows: {
xk+1 = Axk +Gdk + ωk

yk = Cxk + υk
, (5.2.1)

where xk = [xk,1, ..., xk,n]T ∈ Rn is the state vector, dk = [dk,1, ..., dk,m]T ∈ Rm is

a vector of the lumped unknown disturbances, and yk ∈ Rp is the measurement

vector at each time step k with p ≥ m and n ≥ m. The process noise ωk ∈ Rn

and measurement noise υk ∈ Rp are assumed to be mutually independent, and

each follows a Gaussian distribution with a zero-mean vector and known covariance

matrix, Qk = E[ωkω
T
k ] > 0 and Rk = E[υkυ

T
k ] > 0 respectively. In addition, A, G

and C are known matrices, where G is supposed to have a full column-rank [69], [8].

In general, the objective of a DO is to estimate the disturbance vector dk based

on the measurement output yk and model (5.2.1). This Chapter, however, focuses

on the design of RODOB, aiming to: (a) remove the assumptions of the full state es-

timability and assumption on the disturbance dynamics; (b) increase the estimation

speed with a lower observer order.

5.3 Reduced-order disturbance observer

In this section, an existence condition of a general RODOB for system (5.2.1) is

first established when the full state vector is not estimable. This is undertaken

based on the fact that one can still estimate the disturbances using the information

of the estimable part of the state vector [4], [81]. To this end, a reduced-order

state function observer is used for disturbance estimation. Then on the basis of the

existence condition, a set of recursive formulae are derived for the RODOB.

5.3.1 Existence condition

Define L = {l|Al = λl and Cl = 0, with l ∈ Rn and λ is a scalar} to be a set

of eigenvectors of A that are orthogonal to CT . Suppose there are in total n1

linearly independent vectors in L . Now, let l1, l2, · · · , ln1 denote any of n1 linearly

independent vectors in L and let LT = [l1, l2, · · · , ln1 ] be an n × n1 matrix. In
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addition, define T to be an (n− n1)× n matrix such that T T is an orthogonal

compliment of matrix LT satisfying TLT = O.

Let zk = Txk. Then the dynamics of zk are

zk+1 = Txk+1 = TAxk + TGdk + Tωk

= TAT+zk + TA(I − T+T )xk + TGdk + Tωk

= TAT+zk + TA(L+L)xk + TGdk + Tωk.

Noting that L+ = LT (LLT )−1 and each column of matrix LT is an eigenvector of A

that is orthogonal to T , one has TAL+L = TALT (LLT )−1L = O. Hence, one can

obtain

zk+1 = TAT+zk + TGdk + Tωk. (5.3.1)

In addition, noting that CLT = O, a similar argument can be applied to the

measurement equation of (5.2.1), yielding

yk = CAT+zk−1 + CGdk−1 + Cωk−1 + υk. (5.3.2)

For the scenario that xk is not fully estimable. dk will be estimated based on

(5.3.1) and (5.3.2).

First, motivated by the linear filter structure in [2], a general DO structure for

system (5.3.1) and (5.3.2) is designed as{
ẑk+1 = Ekẑk +Kk+1yk+1

d̂k = Jk+1(yk+1 −Nẑk)
, (5.3.3)

where the matrices Ek, Kk+1, Jk+1 and N are to be designed (and as it will be shown

later, the matrix N is time-invariant).

Based on (5.3.1)-(5.3.3), one can obtain the dynamics of the state function esti-

mation error, ek+1 = zk+1 − ẑk+1, as

ek+1 = TAT+zk + TGdk + Tωk − (Ekẑk +Kk+1yk+1)

= Ekek + (TAT+ −Kk+1CAT
+ − Ek)zk + (TG

−Kk+1CG)dk + (T −Kk+1C)ωk −Kk+1υk+1.

(5.3.4)

The disturbance estimation is governed by

d̂k = Jk+1(CAT+zk + CGdk + Cωk + υk −Nẑk)
= Jk+1Nek + Jk+1(CAT+ −N)zk

+ Jk+1CGdk + Jk+1(Cωk + υk+1).

(5.3.5)



Section 5.3. Reduced-order disturbance observer 60

First focus on (5.3.5). To ensure an unbiased disturbance estimate, d̂k must be

independent of the term zk, and matrix Jk+1 has to satisfy Jk+1CG = I. In addition,

for (5.3.4), it is noted that the effect of ek on d̂k should disappear as k increases, and

hence it is required that the filtering error ek in (5.3.4) is independent of zk and dk.

Moreover, the error ek should also approach to zero as time k increases, i.e., Ek is a

stable matrix. Therefore the existence condition for RODOB (5.3.3) is summarized

as follows:

(i) Ek is stable (i.e., all the eigenvalues of Ek satisfy |λ(Ek)| < 1);

(ii) Ek = TAT+ −Kk+1CAT
+;

(iii) Kk+1CG = TG;

(iv) N = CAT+;

(v) Jk+1CG = I.

For system (5.2.1) with disturbance observer (5.3.3), however, the existence

condition should be expressed in terms of matrices A,G,C and T . A condition for

the existence of a general linear DOB is provided (5.3.3).

Theorem 9. Suppose G has a full column-rank. A sufficient condition for the

existence of a general RODOB (5.3.3) for system (5.2.1) is that

rank(CG) = m, (5.3.6)

and the matrix

P =

[
zIn1 − TAT+ −TG

CAT+ CG

]
(5.3.7)

has a full column-rank for all z ∈ C such that |z| ≥ 1.

Proof: First, one can select Ek based on condition part (ii) as

Ek = TAT+ −Kk+1CAT
+ (5.3.8)

and N = CAT+ based on condition part (iv). Jk+1 can be further chosen such that

Jk+1CG = I since CG has a full column rank. In addition, one can obtain from [67]

that condition (5.3.6) guarantees there exists a matrix Kk+1 such that condition part

(iii) holds. Hence, one only has to focus on condition part (i) with the constraint on
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Kk+1 given by condition part (iii). Since CG has a full column-rank, there exists

an invertible matrix M ∈ Rp×p [8] such that

MCG =

[
O(p−m)×m

Im

]
.

From (iii), the general solution Kk+1 can be expressed as:

Kk+1 = [Γk, TG]M, (5.3.9)

where Γk can be any matrix with suitable dimension and is to be designed for the

gain matrix Kk+1. Define S1 and S2 as[
S1

S2

]
= MCAT+.

Inserting (5.3.9) into (5.3.8) gives

Ek = TAT+ −Kk+1CAT
+ = TAT+ − [Γk, TG]MCAT+

= TAT+ − [Γk, TG]

[
S1

S2

]
= TAT+ − TGS2 − ΓkS1.

According to [79] (pp. 342), existence condition part (i) holds if and only if either

one of the equivalent conditions holds:

(a) TAT+ − TGS2 − ΓkS1 is stable for a matrix Γk;

(b) S1η = 0 and (TAT+ − TGS2)η = λη for some constant λ and vector η implies

|λ| < 1 or η = 0.

Condition (b) can equivalently be expressed as:

rank(

[
zIn1 − TAT+ + TGS2

S1

]
) = n1,

∀z ∈ C, |z| ≥ 1.

(5.3.10)

The following identity shows that (5.3.10) is satisfied if condition (5.3.7) holds:
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rank(

[
zIn1 − TAT+ −TG

CAT+ CG

]
)

= rank(

[
In1 On1×p

Om×n1 M

][
zIn1 − TAT+ −TG

CAT+ CG

]
)

= rank(

[
zIn1 − TAT+ −TG
MCAT+ MCG

]
) = rank(


zIn1 − TAT+ −TG

S1 O(p−m)×m

S2 Im

)

= rank(


zIn1 − TAT+ + TGS2 On1×m

S1 O(p−m)×m

On1×m Im

)

= rank(

[
zIn1 − TAT+ + TGS2

S1

]
) +m.

Therefore, Eqs. (5.3.6) and (5.3.7) guarantee there exists a gain matrix Kk+1 such

that: (a) Kk+1CG = TG; and (b) Ek = TAT+ −Kk+1CAT
+ is stable. 2

5.3.2 Condition relaxation

It is of particular interest to compare the proposed RODOB with the conventional

FODOs. Apart from the fact that the proposed RODOB is a lower-order filter, The

existence condition of RODOB can be more easily satisfied than that of FODOs, as

shown in Theorem 10.

Theorem 10. If the existence condition of FODOs (see, [69], [8]) holds for a system

given by (5.2.1), then the existence condition (5.3.7) of RODOs is also satisfied.

Proof: First, it is noted that the following identity holds for any non-singular

matrix PT :[
PT O

O Ip

][
In O

−C zI

][
zIn −A −G

C O

][
P−1
T O

O Ip

]

=

[
zIn − PTAP−1

T −PTG
CAP−1

T CG

]
.

(5.3.11)

Let PF denote the matrix on the right-hand-side of (5.3.11). Then (5.3.11) indicates

that rank(

[
zIn −A −G

C O

]
) = rank(PF ). The full rank condition of left hand

matrix for |z| ≥ 1 is the part of the existence condition for FODO [8,69].

Now choose PT = [T T , LT ]T and let P+
T = [T+ L+] denote the Moore-Penrose
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Pseudo inverse of matrix PT . Substituting PT and P+
T into PF gives

PF =


zIn−n1 − TAT+ −TAL+ −TG
−LAT+ zIn1 − LAL+ −LG
CAT+ CAL+ CG


=


zIn−n1 − TAT+ O −TG
−LAT+ zIn1 − LAL+ −LG
CAT+ O CG

 .
(5.3.12)

From (5.3.7) and (5.3.12), it can be seen that matrix P in (5.3.7) is a sub-matrix of

PF . This indicates that matrix P is of full column-rank if PF has a full column-rank.

5.3.3 Disturbance observer design

In this subsection, the two gain matrices of the RODOB in (5.3.3) will be investigated

using the MVUE method. Under the existence condition given in Section 5.3.1, one

can obtain the dynamics of exk+1 = Txk+1 − ẑk+1 from (5.3.4) and (5.3.5):

exk+1 = Eke
x
k + (T −Kk+1C)ωk −Kk+1υk+1. (5.3.13)

In addition, the dynamics edk = dk − d̂k are governed by

edk = −Jk+1Ne
x
k − Jk+1(Cωk + υk+1). (5.3.14)

State function observer

The estimation error covariance matrix P xk|k = E(exke
xT
k ) can be calculated from

(5.3.13):

P xk+1|k+1 = EkP
x
k|kE

T
k + (T −Kk+1C)Qk(T −Kk+1C)T +Kk+1Rk+1K

T
k+1

= (TAT+ −Kk+1CAT
+)P xk|k(TAT

+ −Kk+1CAT
+)T

+ TQkT
T − TQkCTKT

k+1 −Kk+1CQkT
T

+Kk+1CQkC
TKT

k+1 +Kk+1Rk+1K
T
k+1.

(5.3.15)

Let Ā = TAT+, C̄ = CAT+, Φ = C̄P xk|kC̄
T + CQkC

T + Rk+1, Ψ = CQkT
T +

C̄P xk|kĀ
T and P ∗ = ĀP xk|kĀ

T + TQkT
T . Eq. (5.3.15) can be simplified to be:

P xk+1|k+1 = Kk+1ΦK
T
k+1 −Kk+1Ψ − ΨTKT

k+1 + P ∗. (5.3.16)
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In addition, the unbiasedness condition of state estimation imposes a constraint on

the gain matrix Kk+1 (see [85]), i.e.

Kk+1CG = TG. (5.3.17)

One can solve the MVUE problem by finding Kk+1 which minimizes the trace

of (5.3.16), subject to the constraint (5.3.17). The Lagrangian for the problem of

constraint optimization is

Tr[Kk+1ΦK
T
k+1 − 2ΨTKT

k+1 + P ∗]− 2Tr[(Kk+1CG− TG)ΛTk+1], (5.3.18)

where Λk+1 is the Lagrange multiplier. Setting the derivative of (5.3.18) with respect

to Kk+1 equal to zero yields:

2ΦKT
k+1 − 2Ψ − 2CGΛTk+1 = 0. (5.3.19)

Combining (5.3.17) and (5.3.19), one can obtain the following equation:[
Φ −CG

GTCT O

][
KT
k+1

ΛTk+1

]
=

[
Ψ

GTT T

]
. (5.3.20)

Then using the approach in [67] and [85] (see, pp. 68), one can obtain Kk+1 as

follows:

Kk+1 = ΨTΦ−1 + (TG− ΨTΦ−1CG)(GTCTΦ−1CG)−1GTCTΦ−1. (5.3.21)

Inserting Kk+1 in (5.3.21) into (5.3.16), one can obtain:

P xk+1|k+1 = P ∗ − ΨTΦ−1Ψ + (TG− ΨTΦ−1CG)

× (GTCTΦ−1CG)−1(TG− ΨTΦ−1CG)T .
(5.3.22)

Disturbance observer

One can work out Jk+1 in (5.3.3) in a similar manner. First, from (5.3.14) one can

obtain the disturbance estimation error covariance matrix P dk|k = E(edke
dT
k ):

P dk|k = Jk+1NP
x
k|kN

TJTk+1 + Jk+1(CQkC
T +Rk+1)JTk+1. (5.3.23)

Noting N = CAT+ and by the definition of Φ, Eq. (5.3.23) can be re-arranged as

P dk|k = Jk+1ΦJ
T
k+1. (5.3.24)
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In addition, the unbiased estimation of dk also imposes a constraint on gain matrix

Jk+1, i.e. Jk+1CG = I. One can obtain the optimal Jk+1 below via minimizing the

trace of (5.3.24), subject to this constraint:

Jk+1 = (GTCTΦ−1CG)−1GTCTΦ−1. (5.3.25)

Inserting (5.3.25) into (5.3.24), one can obtain an explicit expression of the

disturbance estimation error covariance matrix:

P dk|k = (GTCTΦ−1CG)−1. (5.3.26)

The obtained RODOB is summarized in Theorem 11.

Theorem 11. Under the existence condition given in Theorem 9, there exists a

minimum-variance unbiased estimator of the disturbances dk given by{
ẑk+1 = TAT+ẑk +Kk+1(yk+1 − CAT+x̂k)

d̂k = Jk+1(yk+1 − CAT+ẑk)
,

where the gain matrices Kk+1 and Jk+1 are given by (5.3.21) and (5.3.25) respec-

tively, and the corresponding state function estimation error covariance matrix and

disturbance estimation error covariance matrix are given by (5.3.22) and (5.3.26)

respectively.

5.3.4 Relationships with the existing results

The relationships between these FODOs and the proposed RODOB are summarized

in Theorem 12.

Theorem 12. When the states are fully estimable in the presence of disturbances,

the proposed RODOB is equivalent to the FODO in [67] for sole state estimation,

and to the one in [2] for the estimation of both states and disturbances.

Proof: When the states are fully estimable, T can be chosen as the identity

matrix and hence the RODOB reduces to:{
x̂k+1 = Ax̂k +Kk+1(yk+1 − CAx̂k)
d̂k = Jk+1(yk+1 − CAx̂k)

, (5.3.27)
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where Jk+1 = (P dk|k)
−1GTCTH−1

k+1, and

Kk+1 = Pk+1|kC
TH−1

k+1 + (G− Pk+1|kC
TH−1

k+1CG)

× (GTCTH−1
k+1CG)−1CGH−1

k+1

with Pk+1|k = APk|kA
T +Qk, Hk+1 = CPk+1|kC

T +Rk+1.

In addition, Eq. (5.3.22) reduces to

P xk+1|k+1 = P xk+1|k − P
x
k+1|kC

TH−1
k+1CP

x
k+1|k +B(GTCT R̃−1

k CG)−1BT ,

withB = G−P xk+1|kC
TH−1

k+1CG and Eq. (5.3.26) reduces to P dk|k = (GTCTH−1
k CG)−1.

These recursive formulae are identical to the results in [67] for sole state estimation,

and the same as the results in [2] for the estimation of states and disturbances. 2

Next, the proposed RODOB is briefly compared with the recently developed

RODOB for deterministic discrete-time systems in [4]. It is first pointed out that

the existence condition in [4] requires the existence of a gain matrix such that the

corresponding composite matrix is asymptotically stable. This gain matrix also

involves a static output feedback problem, for which the general solvability is not

known yet (see [4] for details). In contrast, the existence condition of the proposed

RODOB without disturbance model is easy to check and it collapses to that of the

conventional FODOs for fully estimable states. In addition, unlike the RODOB in [4]

that assumes the disturbances are slowly time-varying, no particular assumption on

the disturbance dynamics is imposed in the proposed method, hence extending its

applicability.

5.4 Case studies

5.4.1 Simulation study 1: performance comparison

First of all a simple numerical example is used to compare the proposed algo-

rithm with the RODO in [4]. Consider systems (5.2.1) with A =


1.1 0.5 0

0 0.9 0

0 0.5 2

,

G =


1

0

1

, C =

[
1 0 0

0 1 0

]
, Qk = 0.02 × I3, and Rk = 0.01 × I2. The distur-

bance profile in simulation study as shown in the upper plot of Fig. 5.2 was used

to represent a generic disturbance which included a slowly time-varying disturbance

(i.e., step-type disturbance) and a fast time-varying disturbance (i.e., sinusoidal
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disturbance). The step amplitudes at 0 and 70th step were taken as 7 and -7 respec-

tively, whereas the sinusoidal function between 30th step and 70th step was chosen

as 4sin(40πt/180) + 2 with t being each step index. The disturbance profile was

designed to verify the effectiveness of different disturbance observer algorithms and

therefore was assumed to be completely unknown to the observer design.

It can be easily verified that this system does not satisfy the existence condition

of the FODO in [2] and [83], and hence no FODO exists.

In the proposed RODO, we chose T =

[
1 0 0

0 1 0

]
which satisfies the existence

condition in Theorem 9. The initial states of the system and observer are taken

as x0 = [1, 2, 1]T and z0 = [0, 0]T respectively. The RODO in [4] for discrete-

time system with slowly time-varying disturbance assumption is also applied for the

purpose of comparison, where the matrix K therein is chosen as K = [0.9, 0, 0]. The

comparison results are shown in Fig. 5.2, where upper figure depicts the disturbance

estimates and the lower figure displays the disturbance estimation errors.

Figure 5.2. Disturbance estimation based on the proposed RODO and the
algorithm in [4]: real line (actual disturbance), dashed line (the proposed
RODO) and dotted line (the result in [4]).

We can see from Fig. 5.2 that in the presence of unknown disturbance consisting

of step-type and sinusoidal-type, the proposed RODO can obtain unbiased estima-

tion. For the algorithm in [4], on the other hand, it can be seen that it works well and

obtains unbiased estimate for constant disturbance. However, the disturbance esti-

mation error is quite large in the presence of sinusoidal-type disturbance; this is due

to the fact that the RODO proposed in [4] requires that the disturbance is slowly
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time-varying and will result in disturbance estimation error for fast time-varying

disturbances. This example demonstrates the advantages of the proposed RODO

in generic disturbance estimation that includes both slowly and fast time-varying

disturbances over the traditional algorithms.

In some applications in practice, the covariance matrices of input noises and

measurement noises may not be exactly known. It is therefore of practical interest

to investigate the performance of the proposed algorithm in such scenarios. For

this end, we tested the robustness of the proposed RODO by choosing different

covariance matrices for data generation. Specifically, we first considered the effect of

input noises. In this scenario, the measurement covariance matrix was fixed as Rk =

0.01× I2 but a different input noise covariance matrix was used, i.e. Qk = 0.04× I3

and Qk = 0.06 × I3 respectively. Next, we considered the effect of measurement

noises. In this scenario, the input covariance matrix was fixed as Qk = 0.02× I3 but

a different measurement noise covariance matrix was used, i.e. Rk = 0.03× I2 and

Rk = 0.05× I2 respectively.

During the estimation stage, however, we supposed that the true covariance

matrices used to simulate the system states and measurements were not perfectly

known; rather, it was the covariance matrices Qk = 0.02×I3, and Rk = 0.01×I2 that

were used to estimate the states and the unknown disturbances. The mean squared

error (MSE) was used as the criterion in the performance comparison between the

proposed RODO with the one in [4].

Simulations were run for 50 times for each scenario and the average MSEs were

calculated and summarized in Table 5.1.

Table 5.1. Average MSE comparison under different noises
Method/Noise × I Qk = 0.04 Qk = 0.06 Rk = 0.03 Rk = 0.05

Proposed 0.3475 0.3637 0.3668 0.4135

Kim and Rew (2013) 2.7946 2.8351 2.8301 2.8461

One can see from Table 5.1 that both methods were still valid in terms of conver-

gences when the true covariance matrices were not perfectly known in the state and

disturbance estimation. In addition, the performances for both methods became

worse when the true covariance matrices deviated more substantially from the ones

used in the estimation. Overall, the proposed RODO still outperformed the one

in [4].
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5.4.2 Simulation study 2: double-effect pilot plant evaporator

Next, we apply the proposed RODO to the disturbance estimation problem for a

double-effect pilot plant evaporator represented by a fifth-order linear model inves-

tigated in [4, 61, 86]. The problem is briefly outlined as follows. The feed solution

(flow F0 and concentration C0) is pumped into the first effect, where the first effect

solution (hold-up W1) is heated by saturated steam (temperature Ts) and the boil-

off travels into the second effect steam jacket. The concentrated solution from the

first effect (flow F1 and concentration C1) enters the second effect which operates

under vacuum. The hold-up in the second effect is W2. The concentrated prod-

uct (flow F2 and concentration C2) is pumped to storage. Based on the physical

properties, the evaporator can be modelled by a fifth-order linear state-space model

with unobservable states, where the system variables and disturbance variables are

x = [W1, C1, T1,W2, C2] (T1 denotes the temperature of the first effect solution)

and d = [C0, F0] respectively. A schematic diagram of the pilot plant double effect

evaporator system is available in [86].

In our case study, we chose the system matrix in continuous time domain used

in [61], and then we discretized the continuous-time model with a sampling time of

30s (see, [86]). This resulted in the following discrete-time system

A =



1 0 −0.0030 0 0

0 0.2923 0.0003 0 0

0 0 0 0 0

0 0 −0.0031 1 0

0 0.7121 0.0019 0 0.2165


, G =



0 30.6207

1.0702 −2.4170

0 −6.2671

0 0.6572

1.1068 −3.0385


,

C =

[
1 0 0 0 0

0 1 0 0 0

]
.

In the simulation, the parameters are given as follows: Qk = 0.1 × I5, Rk =

0.05× I2, and dk,1 = −dk,2. The initial values of system (5.2.1) and observer (5.3.3)

were taken as x0 = [1, 2, 5, 1, 1]T and z0 = [0, 0, 0]T respectively.

It can be easily verified that this system does not satisfy the existence condition

of the FODOs in [2], [69], [8]. Hence the system state variables xk,i (i = 1, ..., 5)

are not fully estimable and no FODOs exist. Now the proposed RODOB is applied.

T = [I3, O3×2] is chosen, which satisfies the existence condition in Theorem 9. The

simulation results for disturbance dk,1 and state xk,3 are shown in Fig. 5.3, where

the left (or right) two graphs display the estimated disturbance (or state) and the

corresponding estimation error where the simulated (estimated) values are plotted

using a real (dotted) line.

One can see from Fig. 5.3 that the proposed RODOB can obtain a reasonably



Section 5.5. Summary 70

0 30 60 90
0

2.5

5

7.5

10

Time (step)

C
0: C

on
ce

nt
ra

tio
n 

(g
/K

g)

Estimation
Disturbance

0 30 60 90
-4

-2

0

2

4

Time (step)

E
rro

r (
g/

K
g)

0 30 60 90
0

10

20

30

Time (step)

T 1: T
em

pe
ra

tu
re

 (
C

)

Estimation
State

0 30 60 90
-4

-2

0

2

4

Time (step)
E

rro
r (

C
)

Figure 5.3. Disturbance estimation based on the proposed RODOB.

good (by taking the larger noises into account) unbiased disturbance estimate even

if no FODOs exist.

5.5 Summary

This Chapter investigates reduced-order disturbance observer (RODOB) design for

discrete-time linear stochastic systems when the states are not fully estimable. An

existence condition of a general form of RODOB is established. It shows that under

some mild condition, the disturbances can still be estimated even if the full state

vector is not estimable. The existing FODOs in the literature are shown to be

a special case of the proposed RODOB when the states are fully estimable. In

comparison with the recently developed RODOB in [4], the proposed RODOB does

not impose any particular assumption on the disturbance dynamics. Hence, this

research extends the applicability of the disturbance observer techniques to a wider

application area.



Chapter 6

TIME/FREQUENCY DOMAIN

DOBS

6.1 Introduction

In the previous Chapters, disturbance observer (full order or reduced order) design

for discrete-time systems (deterministic or stochastic) was considered, which can

be applied for fault estimation in fault diagnosis design. In this Chapter, however,

attention is moved to continuous-time domain, particularly emphasis is put on the

relationship between time-domain DOB and frequency-domain DOB, and its appli-

cation. The motivations and contribution of this Chapter is illustrated in Fig. 6.1.

DOB in frequency domain: 

(Ohishi, et al, 1987) 

DOB in time-domain: 

UIDO (Johnson, 1968),  

ESO (Han 2009) 

The relationship between 

time/frequency DOBs. 

Are these two 

approaches essentially 

the same?  

Functional DOB (FDOB) 

in time-domain: 

Reduced 

order 

Motivations 

Figure 6.1. Illustration of the motivations and the relationship of the results
in this Chapter with the existing ones.

There are two distinct approaches for linear system disturbance observer de-

sign including time-domain DOBs [8, 48, 49, 63, 87] and frequency-domain DOBs

[1, 52, 88, 89]. The time-domain DOB firstly appeared in the late 1960s when [48]

first developed the Disturbance Accommodation Control by proposing Unknown In-

71
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put Disturbance Observer (UIDO). Recently, from different prospects, Han [49, 87]

developed Active Disturbance Rejection Control (ADRC) through the technique of

Extended State Observer (ESO). The key idea behind the above state space ap-

proaches is to firstly augment the plant with the disturbances/uncertainties and

then construct an observer estimating the augmented states including the distur-

bances. On the other hand, the frequency-domain DOBs were originally proposed

by [1] (see also recent work [90] for detailed design guidance). The original idea is

to obtain the disturbance estimate by filtering the difference between control input

and the calculated input using the inverse model of nominal plant. This approach

has recently been further developed to achieve robust stability in [91] and handle

system with unknown relative degree in [89].

The aforementioned two types of DOBs were developed from different prospects

with different design principles and tools. So far, little literature is available to

investigate the relationship between them except the work in [52]. [52] pioneered

the study of the relationship between frequency domain and time domain DOBs

by analysing their structure and transfer functions. It is concluded in [52] that the

frequency domain DOB is a generalization of the time domain DOB. This is because

that there is less freedom in time domain DOB of choosing the order and the relative

degree of the transfer function from control to disturbance estimate, and the time

domain DOB generates an observer with a higher order compared with frequency

domain DOB. However, as pointed out in [92], the frequency domain DOB structure

in [52] mainly focused on minimum phase system due to the involvement of the

inverse of the normal plant. It shall be highlighted that both the system model and

disturbance model are supposed to be in an observable canonical forms in the time

domain DOB design discussed in [52]. Therefore it may not be easy to see how

the disturbance model is incorporated in the corresponding transfer functions of the

time domain DOB. Consequently, as pointed out in [52], it becomes hard to select

the equivalent low pass filter in corresponding frequency domain DOB to handle

generic disturbances for non-minimum phase systems.

This Chapter first presents more generic analysis of the relationship between

time-domain and frequency-domain DOB design methods, which extends the work

of [52] from a frequency domain DOB structure mainly for minimum phase systems

to a more general DOB structure. Furthermore, the system model and disturbance

model of the time domain DOB discussed in this Chapter are in a generic form. As a

result, it is explicitly pointed out how the system model and disturbance model are

incorporated in the equivalent transfer functions realisation of the DOB designed in

the state space approach. It is also discovered that the traditional frequency domain
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DOB employing a low pass filter with unity gain is only able to effectively handle a

specific class of disturbance that satisfies the matching condition.

As pointed out in [52], compared with the frequency domain DOB, the exist-

ing time domain DOB generates an observer of a high order. This Chapter then

further addresses this issue by proposing a new type of time domain DOB (termed

as Functional Observer based DOB (FDOB)). This new state space DOB design

method reduces the observer order by combining the idea of augmenting the system

states with disturbance states and the functional observer design method proposed

in [4,83,84]. Detailed discussion on FDOB is given including the observer structure,

transfer function implementation of the time domain DOB, geometric interpretation,

and its existence condition. Compared with frequency domain DOB, the proposed

FDOB can directly handle more classes of disturbances (matched or mismatched

disturbances, harmonic disturbance, etc.), while compared with the traditional time

domain DOB, the proposed FDOB can generate an observer with a lower order.

6.2 Preliminaries

In this section, preliminary results on the frequency-domain DOBs in [1] and time

domain DOBs in [48,52,63] are briefly reviewed.

6.2.1 Frequency-domain DOBs

The frequency-domain DOBs were originally proposed in [1]. Suppose that the

transfer function of the considered system is G(s). The basic idea in [1] is to obtain

disturbance estimate by filtering (through a low pass filter Q(s)) the difference

between control input and the calculated input using the inverse model of nominal

plant Gn(s). The basic diagram in [52] with some modification from [53] is given in

Fig. 6.2, where Q(s) is designed as a low-pass filter with unity gain and the relative
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Figure 6.2. The diagram of classic Q-filter based DOB in [1]

degree of Q(s) is no less than that of the nominal plant Gn(s) such that Q(s)G−1
n (s)

is implementable (see, [1, 52] among many others).
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However, as pointed out in [92], the original structure in [1] can not effectively

handle the non-minimum phase systems since the direct inverse of the nominal

plant Gn(s) brings unstable poles in Q(s)G−1
n (s). To this end, an improved and

more generic version of DOB in frequency domain is given in [53], which can be

equivalently represented in Fig. 6.3, where M(s) and N(s) take the following form
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Figure 6.3. The diagram of a generic DOB structure.

ng

M(s) =
Mn(s)

L1(s)
, N(s) =

Nn(s)

L1(s)
, (6.2.1)

where the nominal plant Gn(s) = Mn(s)/Nn(s), L1(s) is a stable polynomial,

K(s) = Kn(s)/L2(s) is designed as a low pass filter such that M(s)K(s) is a low-pass

filter with unity gain.

6.2.2 Time-domain DOBs

The time domain DOB was originally proposed in [48, 63] to remove the effect of

unmeasurable disturbances on control system performance. Its basic philosophy is

that the disturbance estimate can be obtained by simultaneously estimating the

augmented states consisting of state dynamics and the disturbance dynamics. The

mathematical interpretation is given as follows. Without loss of generality, con-

sider a single-input-single-output (SISO) linear system (it should be noted that

this approach can directly handle multiple-input-multiple-output (MIMO) systems)

subjected to unknown disturbances, given by{
ẋ = Ax+Bu+Dd,

y = Cx,
(6.2.2)

where x ∈ Rn, u ∈ R, d ∈ R and y ∈ R are the system states, control input,

disturbance and measurement, respectively. A,B,C,D are the corresponding system

matrices, which can be considered as a state space realization of the nominal plant

Gn(s) in Fig. 6.2. If there does not exist a D̄ of appropriate dimension such that

D = BD̄, then d becomes a mismatched disturbance [66,93].
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The disturbance is supposed to be generated by the following linear exogenous

system [63]

ω̇ = Sω, d = Hω, (6.2.3)

where ω ∈ Rq and the pair (S,L) is known and observable.

To facilitate the discussion, a definition is given here to category the different

disturbance models.

Definition: If the matrix S in (6.2.3) satisfies det(S) = 0, the disturbance is defined

as Type I disturbance; otherwise, the disturbance is defined as Type II disturbance

for det(S) 6= 0.

Remark 1: It should be noted that the widely investigated high order disturbance

is a special case of Type I disturbance, e.g., constant disturbance when S = 0 and

H = 1, which is the case investigated by DAC in [48] and Extended State Observer

(ESO) in [49] and r-th polynomial disturbance when S =

[
O(r−1)×1 Ir−1

0 O1×(r−1)

]
and H =

[
1 O1×(r−1)

]
, which is the case investigated by high order disturbance

observer in [94], generalized ESO in [95], Generalized Proportional Integral (GPI)

observer in [96], etc. While harmonic disturbance represented by S =

[
0 λ

−λ 0

]
with λ 6= 0 and H =

[
1 0

]
(e.g. [62]) is a special case of Type II disturbance.

Combing the system dynamics (6.2.2) and disturbance dynamics (6.2.3), a com-

posite system can be obtained: {
˙̄x = Āx̄+ B̄u,

y = C̄x̄,
(6.2.4)

where x̄ = [xT , ωT ]T , the system matrices are given by

Ā =

[
A DH

Oq×n S

]
, B̄ =

[
B

Oq×1

]
, C̄ =

[
C O1×q

]
.

Under the detectability condition of the matrix pair (Ā, C̄), an observer esti-

mating the augmented states x̄ of (6.2.4) and consequently the disturbance can be

designed as {
˙̄̂x = Āˆ̄x+ B̄u+K(y − C̄ ˆ̄x),

ω̂ = C̃ ˆ̄x, d̂ = Hω̂,
(6.2.5)

where K is the observer gain matrix to be designed (e.g. pole assignment of the

matrix pair (Ā, C̄)) and C̃ = [On, I]. Similar technique has also been used for

stochastic systems in Chapter 5.
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6.3 Relationship between DOBs in time/frequency domain

In this section, frequency-domain analysis is performed on the time domain DOB

(6.2.5) to derive a set of transfer functions such that comparison can be made be-

tween the time and frequency domain DOB design methods. It should be noted that

the frequency-domain analysis of time domain DOB has been investigated in [52]

with both the system model and disturbance model (6.2.2) and (6.2.3) in observ-

able canonical forms. A generic system model and a generic disturbance model

are considered in this Chapter which explicitly shows how the system model and

disturbance model are incorporated in the transfer functions.

From (6.2.5), one can obtain the transfer functions from control input u(s) and

measurement y(s) to disturbance estimate d̂(s) using Laplace transformation, given

by

d̂(s) = −Gud̂(s)u(s) +Gyd̂(s)y(s), (6.3.1)

where

Gud̂(s) = −HC̃[sI − (Ā−KC̄)]−1B̄, (6.3.2)

Gyd̂(s) = HC̃[sI − (Ā−KC̄)]−1K. (6.3.3)

The transfer function realisation of the time domain DOB (6.2.5) is represented

in Fig. 6.4
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Figure 6.4. Frequency-domain interpretation of time-domain DOBs.

To explicitly find out the relationship between the transfer functions Gud̂(s),

Gyd̂(s) and the system/disturbance models (6.2.2), (6.2.3), rigorously theoretical

analysis is performed on (6.3.2) and (6.3.3), and the results are summarized in

Theorem 13.

Theorem 13. For linear system (6.2.2) with disturbance model (6.2.3), if the time

domain DOB is designed by (6.2.5), then the transfer function realisation (6.3.1) is

given by

Gud̂(s) =
Hadj(sI − S)K2Mn(s)

det(sI − (Ā−KC̄))
, (6.3.4)
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Gyd̂(s) =
Hadj(sI − S)K2Nn(s)

det(sI − (Ā−KC̄))
, (6.3.5)

where Mn(s) and Nn(s) are the numerator and denominator of the nominal

plant Gn(s).

The proof is given in Appendix A.3.

Remark 2: Different from the results of [52], it can be explicitly seen from Eqs.

(6.3.4) and (6.3.5) that how the system model (i.e., the system matrices (A,B,D,C))

and disturbance model (i.e., the pair (S,H)) of the DOB (6.2.5) are incorporated

into the transfer functions.

6.3.1 Similarities of time/frequency-domain DOBs

The relationship between frequency domain DOB and frequency domain DOB given

in Fig. 6.2 was first investigated in [52]. However, as pointed out in [92], the classic

frequency-domain DOB structure in [52] can not effectively handle non-minimum

phase system. To this end, much generic relationship is established in the compari-

son analysis. Specifically, generic system dynamics (6.2.2) with generic disturbance

dynamics (6.2.3) are directly handled, and the frequency domain DOB in Fig. 6.3

proposed in [53] can effectively handle non-minimum phase system. The result

in [52] is shown to be a special case of the results in this work.

Equivalence between time domain and frequency domain DOBs

The comparison results between the time domain DOB (6.2.5) and the frequency

domain DOB with generic structure given in Fig. 6.3 are summarized in the following

points.

i. The denominator of (6.3.4) (i.e., a stable polynomial of degree n+q) can be

factored into det(sI− (Ā−KC̄)) = L1(s)L2(s). Consequently, Eqs. (6.3.4) and

(6.3.5) can be reformulated into the same format of M(s)K(s) and N(s)K(s)

in Fig. 6.3 by treating Kn(s) := Hadj(sI − S)K2;

ii. Comparing the structures of frequency domain DOB in Fig. 6.3 and time do-

main DOB in Fig. 6.4, one can obtain that they share a same structure in

transfer function form by treating M(s)K(s) as Gud̂ and N(s)K(s) as Gyd̂.

iii. For Type I disturbance (see, Definition 1, i.e., det(S) = 0) under disturbance

satisfying matching condition (i.e., D=B), one can prove that

Gud̂(0) = 1, (6.3.6)
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which means Gud̂ is a low-pass filter with unity gain. The proof is given in

Appendix A.3.

iv. One can also obtain the following identity

1

1−Gud̂
=

det(sI − (Ā−KC̄))

det(sI −A+K1C)det(sI − S)
. (6.3.7)

The proof is given in Appendix A.3. One can see from (6.3.7) that 1/1 − Gud̂
includes the disturbance model information 1/det(sI−S). The need of 1/1−Gud̂
including the disturbance model has been identified in [52] but it is hard to

choose Q(s) to implement it.

Relationship with the results in [52]

The results in this work significantly extend the celebrated work in [52]. First, the

aforementioned Points i and ii reduce to the results in [52] when the system dynam-

ics (6.2.2) and disturbance dynamics (6.2.3) take the special observable canonical

structure, and the frequency domain DOB in Fig. 6.3 reduces to the traditional one

in Fig. 6.2. This can be obtained by selecting

L1(s) = Mn(s), K(s) = Q(s).

In Point iii, it is rigorously proved that Gud̂ = 1 holds only for Type I disturbance

satisfying matching condition. Specifically, the high order disturbance 1/sn dis-

cussed in [52] is a special case of matched Type I disturbance. Based on the results,

the traditional frequency domain DOBs using low pass filter Q(s) with unity gain in

Fig. 6.2 can only handle matched Type I disturbance and fail to handle mismatched

disturbance or Type II disturbance such as harmonic disturbance, etc.

It has been pointed out in [52] that it is not trivial to select Gud̂ to handle generic

disturbance model for non-minimum phase system, but the Theorem 1 and Point

iv explicitly point out how the Gud̂ contains the unstable zeros of the plant Mn and

1/(1−Gud̂) includes the disturbance model information 1/det(sI − S). This result

can help us propose a frequency domain DOB which can handle generic disturbances

for non-minimum phase systems, which is discussed in Section 6.5.

6.3.2 Motivations: gaps of time/frequency-domain DOBs

Although the frequency domain DOB is equivalent to the frequency domain in terms

of structure, there still exist some gaps summarized in the following points.
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Observer order and minimum relative degree

Firstly, the observer order of time domain DOB is larger than that of frequency-

domain DOB for plants with stable zeros (see, P 546 of [52]). This can be explained

as follows. One can first obtain from the denominator of (6.3.4) and (6.3.5) that

the order of time domain DOB is n + q. Suppose the relative degree of normal

plant Gn(s) is nr. One can obtain from [52] (see, p. 541) that the minimum

degree of the denominator of equivalent Gud̂ is q + nr − 1 and consequently the

minimum order of the frequency domain DOB is determined by the equivalent Gyd̂,

i.e., q+ nr − 1 + n− nr = n+ q− 1, which is smaller than the order of time domain

DOB.

Secondly, the minimum relative degree of Gud̂ of time domain DOB is larger

than that of frequency domain DOB. As pointed out in [52] the relative degree of

equivalent Gud̂ is larger than or equal to the relative degree of the nominal plant,

so the minimum relative degree of Gud̂ in frequency domain DOB as given in Fig.

6.3 can be chosen to equal to that of Gn(s), i.e., nr. However, this observation does

not hold in the time-domain DOB results. One can obtain from (6.3.4) that

deg(Hadj(sI − S)K2) ≤ q − 1;

deg(Mn(s)) = n− nr;
deg(det(sI − (Ā−KC̄))) = n+ q,

(6.3.8)

where q and n are the dimension of system matrix S and A of disturbance model

(6.2.3) and system model (6.2.2) respectively. The minimum relative degree of

Gud̂(s) happens when deg(Hadj(sI − S)K2) = q − 1, and equals to

n+ q − (q − 1 + n− nr) = nr + 1, (6.3.9)

which is larger than that of frequency domain DOB by 1.

Disturbance types

In addition, from the proof of (6.3.6) (see Appendix A.3), one can see that Gud̂(0) =

1 holds only when the following two conditions hold simultaneously

D = B, det(S) = 0, (6.3.10)

which means the frequency domain DOB using a low-pass filter Q(s) with unity

DC gain in Fig. 6.2 can only effectively handle matched Type I disturbances rather

than generic disturbance or mismatched disturbances.
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To avoid the aforementioned drawbacks of the current DOB design methods (i.e.,

higher observer order in existing time domain DOB and hard to handle generic and

mismatched disturbances in existing frequency domain DOB), a new type of time

domain DOB (termed as functional observer based DOB (FDOB)) is proposed to

reduce the observer order by combing the idea of augmenting the system states with

disturbance states and the functional observer design method proposed in [4,83,84].

The frequency-domain DOBs can also be designed to handle more types of distur-

bances (mismatched disturbance and Type II disturbance) using FDOB techniques

and its frequency domain counterpart through transfer function realization.

6.4 Functional observer based DOB

The basic philosophy of functional observer based DOB is that since part of the

states are directly available by the measurement y = C̄x̄, there is no need estimating

that part of the states and sometimes even part of the unmeasurable states do not

need to be estimated for the purpose of disturbance estimation. So only estimating

Lx̄ rather than x̄ is needed, where L is designed in the special structure

L =

[
L0 O

O Iq

]
, (6.4.1)

where the gain matrix L0 in L lies in the orthogonal complement space of measure-

ment matrix C and so

[
L

C̄

]
has a full row-rank. When Lx̄ is obtained, one can

obtain the disturbance estimate d̂ = C̃Lx̄ with C̃ = [O, Iq]. In the following part,

the FDOB is introduced in terms of observer structure, transfer function realization,

geometric interpretation, existence condition and design procedure respectively.

6.4.1 Observer structure

To develop a FDOB, the idea of augmenting the system state with disturbance

state and the functional observer design method proposed in [83, 84] are combined

together. After choosing L in the special form as in (6.4.1), the FDOB for linear

system (6.2.4) has the form, 
ż = Fz +Gy + Tu,

ξ̂ = z + Jy,

ω̂ = C̃ξ̂, d̂ = Hω̂.

(6.4.2)
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where the gain matrices are designed such that the following matrix identities hold:
WĀ = FW +GC̄, (Sylvester equation)

W = L− JC̄,
T = WB̄,

F is stable.

(6.4.3)

Under condition (6.4.3), one can prove that the estimation error e = Lx̄−ξ̂ converges

to zero and consequently ξ̂ is the estimate of the state function Lx̄ (e.g., [83]).

6.4.2 Geometric interpretation

Inspired by the approach in [97], a geometric interpretation of the FDOB is given.

This geometric interpretation is not only important in understanding the observer

structure but also plays a key role in frequency-domain analysis for the purpose of

transfer function implementation.

Define an intermediate variable zi = Lx̄, from which one can obtain

x̄ = L+zi + (I − L+L)xd, (6.4.4)

where xd is an arbitrary vector and may contain unobservable states if the original

x̄ system is not fully observable. This is also a division of the state space into a

space of dimension corresponding to the functional zi = Lx̄ and its complement in

terms of projection operators, L+L and I−L+L. Then one can obtain the following

model regarding the variable zi,{
żi = LĀL+zi + LÂxd + LB̄u,

y = C̄L+zi + Ĉxd,
(6.4.5)

where Â = Ā(I − L+L) and Ĉ = C(I − L+L).

In addition, one can obtain from (6.4.2) that

˙̂
ξ = ż + Jẏ,

which means in the observer (6.4.2), the information of ẏ has actually been used in

derivation of ξ̂. In addition, one can obtain from (6.2.4) and (6.4.4) that

ẏ = C̄ ˙̄x = C̄Āx̄+ C̄B̄u = C̄ĀL+zi + C̄Âxd + C̄B̄u. (6.4.6)
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Putting (6.4.5) and (6.4.6) together, one can obtain
żi = LĀL+zi + LÂxd + LB̄u,[

ẏ

y

]
=

[
C̄ĀL+

C̄L+

]
zi +

[
C̄Â

Ĉ

]
xd +

[
C̄B̄

O

]
u.

(6.4.7)

Define Ψ =

[
C̄ĀL+

C̄L+

]
, Σ =

[
C̄Â

Ĉ

]
, y∗ =

[
ẏ

y

]
and U∗ =

[
C̄B̄

O

]
, (6.4.7) can

be put into a compact form: żi = LĀL+zi + LÂxd + LB̄u,

y∗ = Ψzi + Σxd + U∗u.
(6.4.8)

For system (6.4.8), a Luenberger-type state observer can be designed as

˙̂zi = LĀL+ẑi + LB̄u+ [J,K](y∗ −Ψẑi − U∗u)

= (LĀL+ − [J,K]Ψ)ẑi + [J,K]y∗ + Tu,
(6.4.9)

where gain matrix K is defined as K := G − FJ , and the identity T = WB̄ =

(L− JC̄) of (6.4.3) has been used in derivation of the second equality of (6.4.9).

Define ei = zi − ẑi, then its dynamic is given by

ėi = LĀL+ẑi + LB̄u+ [J,K](y∗ −Ψẑi − U∗u)

= (LĀL+ − [J,K]Ψ)ei + (LÂ− [J,K]Ψ)xd︸ ︷︷ ︸
unknown

= Fei,

(6.4.10)

if the following matrix equalities hold simultaneously,

F = LĀL+ − [J,K]Ψ, LÂ− [J,K]Ψ = O.

The observer structure in (6.4.9) gives another explanation of the original ob-

server (6.4.2). One can obtain from (6.4.2) that

˙̂
ξ = ż + Jẏ = Fz +Gy + Tu+ Jẏ

= F (ξ̂ − Jy) + Jẏ + Tu

= F ξ̂ + [J,G− FJ︸ ︷︷ ︸
K

]

[
ẏ

y

]
+ Tu,

which is the same as (6.4.9).

one can see from (6.4.9) that different from the traditional Luenberger observer,
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the gain matrix [J,K] with K = G − FJ should satisfy the following two criteria

simultaneously, i.e.,

LÂ− [J,K]Ψ = O, (6.4.11)

F = (LĀL+ − [J,K]Ψ) is Hurwitz matrix. (6.4.12)

Remark 3: Through the geometric interpretation, one knows from zi dynamic

(6.4.5) and FDOB (6.4.9) that the observer error (6.4.10) converges to zero regard-

less of xd in (6.4.5). That means the FDOB can still work due to the decoupling

principle even if the original systems are not completely observable and xd contains

the unobservable states,

6.4.3 Transfer function realisation

In this subsection, frequency-domain analysis is performed on the FDOB (6.4.2)

such that the relationship between the proposed FDOB and frequency domain DOB

can be investigated, upon which the FDOB in time domain can be implemented in

frequency domain using the derived transfer functions. One can obtain the transfer

functions Gud̂(s) and Gyd̂(s) based on Laplace transformation of (6.4.2), given by

d̂(s) = −Gud̂(s)u(s) +Gyd̂(s)y(s),

where

Gud̂(s) = −HC̃[sI − F ]−1T, (6.4.13)

Gyd̂(s) = HC̃[(sI − F )−1G+ J ]. (6.4.14)

To explicitly find out the relationship between the transfer functions Gud̂(s),

Gyd̂(s) and the system/disturbance model (6.2.2), (6.2.3), theoretical analysis is

performed on (6.4.13) and (6.4.14) and the results are summarized in Theorem 14.

Theorem 14. For linear system (6.2.2) with disturbance model (6.2.3), if the DOB

is designed using FDOB (6.4.2), then the transfer functions from input u(s) and

measurement y(s) to disturbance estimate d̂(s) are given by

Gud̂(s) =
Hadj(sI − S)J2Mn(s)

det(sI − F )
, (6.4.15)

Gyd̂(s) =
Hadj(sI − S)J2Nn(s)

det(sI − F )
. (6.4.16)

The proof is given in Appendix A.3. Similar to Theorem 13, the disturbance

model (i.e., the pair (S,H)) is also explicitly reflected in the transfer functions
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(6.4.15) and (6.4.16).

The comparison analysis of the newly proposed FDOB with the frequency do-

main DOB in Fig. 6.3 are performed in the following ways.

i. Firstly, similar to the case of the time domain DOB, the denominator of (6.4.15)

(i.e., a stable polynomial) can also be factored into det(sI − F ) = L1(s)L2(s),

then (6.4.15) and (6.4.16) can be put into the same format as M(s)K(s) and

N(s)K(s) in Fig. 6.3 by treating Kn(s) := Hadj(sI − S)K2.

ii. Secondly, the frequency-domain structure of the FDOB is the same as that of

the time domain DOB in Fig. 6.4 and consequently the same as that of the

frequency-domain DOB in Fig. 6.3.

iii. Thirdly, one can also prove that

Gud̂(0) = 1, (6.4.17)

under the conditions D = B and det(S) = 0, the proof is given in Appendix

A.3.

iv. Fourthly, one can also obtain the following identity

1

1−Gud̂
=

det(sI − F )

det(sI −A4 + J1A4)det(sI − S)
. (6.4.18)

The proof is similar to that of (6.3.7) and so omitted here. One can see from

(6.4.18) that 1/1 − Gud̂ includes the generic disturbance model information

1/det(sI −S), which is consistent with the conclusion of [52] for the purpose of

generic disturbance estimation through frequency domain DOB.

Remark 4: Compared the Gud̂ of the time domain DOB in (6.3.4) with that of

FDOB in (6.4.15), one can see that the numerators of them are the same, however,

the denominator has been changed from det(sI − (Ā − KC̄)) to det(sI − F ). On

the one hand, the dimension of F equals to the row rank of L =

[
L0 O

O I

]
and

L0 has a full row-rank and so the relative degree of Gud̂ of the FDOB in (6.4.15)

is less than that of the time domain DOB in (6.3.4). More importantly, one can

also see that the observer order of FDOB, i.e., the row number of L is smaller than

that of the traditional time domain DOB, i.e., the order of Ā. Consequently, the

proposed FDOB can substantially reduce the DOB order, especially when multiple

measurements are available. However, to reduce the observer order of FDOB, one

can not choose an L with an arbitrarily small row number, the L should be selected
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such that the existence condition of the FDOB is satisfied, which is summarized in

the following section.

6.4.4 Existence condition

As the disturbance observer design problem has been transformed into the functional

observer design, the existing results in [83] can be applied as summarized as follows.

First, the solvability of (6.4.11) is guaranteed by

rank(


LĀ

C̄Ā

C̄

L

) = rank(


C̄Ā

C̄

L

), (6.4.19)

and the solution [J,K] in the constraint equation LÂ− [J,K]Ψ = O is given by

[J,K] = LÂΣ+ + Z(I − ΣΣ+), (6.4.20)

with Z being any compatible matrix.

Using (6.4.20), one can obtain that the matrix F in can be represented in the

following form

F = U − ZV, (6.4.21)

with

U = LĀL+ − LÂΣ+Ψ, (6.4.22)

V = (I − ΣΣ+)Ψ. (6.4.23)

From [83], one can obtain the condition , i.e., F being Hurwitz (or the pair (U,V)

is detectable) is equivalent to

rank(


sL− LĀ
C̄Ā

C̄

) = rank(


C̄Ā

C̄

L

), ∀s ∈ C,Re(s) ≥ 0. (6.4.24)

To summarize, the existence conditions for the FDOB are (6.4.19) and (6.4.24).

6.4.5 Design procedure

The design procedure of FDOB is based on the functional observer design procedure

in [83]. For the sake of completeness for the FDOB, the design procedure is also
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given. With the aforementioned geometric interpretation and existence condition

results, the design procedure of the FDOB is summarized as follows:

i. Matrices U and V are firstly obtained from (6.4.22) and (6.4.23);

ii. Z and F can be obtained from (6.4.21) based on pole assignment of U and V ;

iii. The matrices J and K can be obtained from (6.4.20) and G can thus be obtained

from K = G− FJ ;

iv. Matrix T can be obtained from T = (L− JC̄)B̄.

6.5 Applications of the results

One can see from the proof of (6.3.6) and (6.4.17) (see Appendix A.3) that, Gud̂(0) =

1 holds only when condition (6.3.10), i.e., D = B and det(S) = 0 hold simul-

taneously. This two conditions may restrict the application scope of the existing

frequency domain DOBs. Firstly, the existing frequency domain DOBs can only

handle Type I disturbance under disturbance satisfying matching condition [98].

In classic frequency domain DOBs, the transfer function Gud̂ is designed as a low-

pass filter with unity gain. However, for generic disturbances (harmonic distur-

bance, etc.), the filter Gud̂ actually relies on the disturbance model information, i.e.,

the pair (S,H) and may not always generate a unity gain. Secondly, the classic

frequency-domain DOBs can only handle matched disturbance. For mismatched

disturbance estimate [99], one can see from both Theorem 13 and Theorem 14) that

the disturbance distribution matrix D should also be taken into account (see, the

denominators of the transfer functions).

However, based on the frequency-domain analysis results (see, Theorem 13

and Theorem 14) of the time-domain filters (the traditional time domain filter

and the newly proposed FDOB), one can actually extend the application scope

of the frequency-domain DOBs based on their frequency domain counterparts. The

method is summarized in the following steps:

Step 1: One can design the DOBs in time-domain, since the time-domain DOBs

can directly handle matched, mismatched and generic disturbances.

Step 2: One can calculate two transfer functions Gud̂ and Gyd̂ based on the

results of Theorem 13 and 14.

Step 3: Implement the DOBs using the diagram in Fig. 6.4 based on the

obtained two transfer functions.
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6.6 Examples

In this section, two examples are given to illustrate the main findings. In the first

example, a non-minimum phase system with three different kinds of disturbances are

considered including matched step disturbance, mismatched step disturbance and

matched harmonic disturbance with unknown amplitude and phase. This example

is to illustrate the results in Sections 6.4 and 6.5. Then the proposed FDOB is

applied to the disturbance estimation and rejection problem for a practical rotary

mechanical system of non-minimum phase.

6.6.1 Numerical example

Consider a unstable non-minimum phase system with transfer function given by

G(s) =
5(s− 9)

s(s− 25)
. (6.6.1)

The state space model of it in the presence of matched disturbance d is given by

[
ẋ1

ẋ2

]
=

[
0 1

0 25

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

[
5

80

]
︸ ︷︷ ︸

B

u+

[
5

80

]
︸ ︷︷ ︸

D

d,

y =
[

1 0
]

︸ ︷︷ ︸
C

x.

Without loss of generality, suppose a state feedback controller u =
[

20.67 −2.37
]
x

has been pre-designed. The initial state for simulation study is chosen as x0 =

[0, 5]T .

Matched disturbance

Fist consider the matched unknown step disturbance estimation based on the pro-

posed FDOB, i.e., S = 0, H = 1 in disturbance model (6.2.3). The L0 in functional

matrix (6.4.1) as L0 =
[

0 1
]
, based on which one can check that the conditions

(6.4.19) and (6.4.24) are satisfied. Then following the design procedure in Section

6.4.5, one can calculate U, V as

U =

[
25 80

0 0

]
, V =

[
1 5

0 0

]
.

By choosing the poles of F as p1 = −30, p2 = −40, one can calculate the correspond-

ing Z,F and then the rest of the matrices J,G, T . The initial states of the FDOB
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(6.4.2) are chosen as a zero vector. Simulation result of the disturbance estimate is

shown in Fig. 6.5.
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Figure 6.5. Matched step disturbance: upper plots (disturbance estimate),
lower plot (estimation error).

One can see from Fig. 6.5 that the proposed FDOB can exponentially asymptot-

ically estimate the step disturbance, where the initial disturbance estimation error

is due to the mismatch between the initial states of original system and observer

system.

Besides, one can calculate the transfer functions from the disturbance estimate

to the control input and output, given by

Gud̂(s) =
−400(s− 9)

3(s+ 30)(s+ 40)
,

Gyd̂(s) =
−80(s− 25)

3(s+ 30)(s+ 40)
.

One can verify that Gud̂(s)/Gyd̂(s) = G(s) and Gud̂(0) = 1. Besides, the relative

degree of Gud̂(s) is 1, which is equal to that of the original system (6.6.1). And,

the observer order of FDOB equals to the dimension of original plant. That means

there exists a disturbance observer in state-space, where the relative degree of Gud̂

and the order of the observer are equal to those of the frequency domain DOB.

Mismatched disturbance

Then consider the case of mismatched unknown step disturbance estimation. The

disturbance distribution matrix is selected as D =
[

0 80
]T

and the matrices

S,H,L0 are selected the same as that of Section 6.6.1. One can calculate the U, V

as

U =

[
25 80

0 0

]
, V =

[
1 0

0 0

]
.



Section 6.6. Examples 89

The rest of the design procedure and parameter selection is the same as that in

Section 6.6.1 and the simulation result of the disturbance estimate is shown in Fig.

6.6
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Figure 6.6. Mismatched step disturbance estimate: upper plots (disturbance
estimate), lower plot (estimation error).

One can see from Fig. 6.6 that the proposed FDOB can exponentially asymp-

totically estimate the mismatched step disturbance. Besides, one can also calculate

the transfer functions, given by

Gud̂(s) =
75(s− 9)

(s+ 30)(s+ 40)
,

Gyd̂(s) =
15s(s− 25)

(s+ 30)(s+ 40)
.

One can verify that Gud̂(s)/Gyd̂(s) = G(s). However Gud̂(0) = −675/1200 6= 1,

which verifies the observation in Section 6.5. For the case of mismatched disturbance

estimate, the traditional frequency-domain DOBs can not be applies and so one can

implement the FDOB in frequency-domain using the procedure given in Section 6.5.

Harmonic disturbance

In this part, the matched harmonic disturbance is considered. The harmonic dis-

turbance with unknown amplitude and phase is supposed to act on the system at 1

sec,
d = 2sin(10t),

which can be put into the state space model (6.2.3) with S =

[
0 10

−10 0

]
, and

H =
[

1 0
]
. The initial value is selected as ω0 =

[
2 0

]
for simulation but is

unknown for observer design.
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The matrix L0 is chosen as L0 =
[

0 1
]
, one can check the existing condition

for FDOB is satisfied, then one can calculate U, V as

U =


25 80 0

0 0 10

0 −10 0

 , V =

[
1 5 0

0 0 0

]
.

Choosing the poles of F as p1 = −30, p2 = −40, p3 = −50 and the rest of the

design procedure is the same as that of Section 6.6.1 and the simulation result of

the disturbance estimate is shown in Fig. 6.7
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Figure 6.7. Mismatched step disturbance estimate: upper plots (disturbance
estimate), lower plot (estimation error).

One can see from Fig. 6.7 that the proposed FDOB can exponentially asymp-

totically estimate the harmonic disturbance with unknown amplitude and initial

phase. The transfer functions Gud̂(s) and Gyd̂(s) can also be calculated. One can

verify that Gud̂(s)/Gyd̂(s) = G(s). However Gud̂(0) = −0.0232 6= 1, which verifies

the observation in Section 6.5. For the case of Type II disturbance, the traditional

frequency-domain DOBs can not be applied and so one can implement the FDOB in

frequency-domain using the procedure given in Section 6.5, if the frequency domain

DOB is preferred in applications.

6.6.2 Practical example

In this section, the proposed FDOB is applied to the disturbance estimation and

rejection problem of a rotary mechanical system of non-minimum phase from [100].

The system can be represented using a transfer function

G(s) =
1.202(4− s)

s(s+ 9)(s2 + 12s+ 56.25)
.
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A normal controller has been pre-designed in state space such that the closed-

loop poles are−3, −2+1.5i, −2−1.5i, −4. A step reference position with amplitude

5 is supposed to act on the system at 2 sec. At 10 sec, a harmonic disturbance with

unknown amplitude, phase and bias is supposed to act on the system , which can

be given by

d = 5 + 5sin(10t).

One can also put it into the state space model (6.2.3) with S =


0 10 0

−10 0 0

0 0 0

, and

H =
[

1 0 1
]
. The initial value is selected as ω0 =

[
5 0 5

]
for simulation

but is unknown for observer design.

Then the proposed FDOB is used to estimate the disturbance, where the poles

of matrix F is selected as −5,−10,−15,−20,−25,−30. When the disturbance is

estimated, its effect can be rejected by direct feedforward the disturbance estimate

based on the principle of disturbance observer based control (DOBC) (see, [50,51]).

The initial values of the plant and FDOB is selected to be zeros. The disturbance

estimation performance is shown in Fig. 6.8, where the upper plots give the dis-

turbance estimate and the lower plot shows the disturbance estimation error. The

position control results with and without disturbance compensation are given in Fig.

6.9 where the upper plots depict the position control and the lower plots depict the

control error.
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Figure 6.8. Biased harmonic disturbance estimate using FDOB: upper plots
(disturbance estimate), lower plot (estimation error).

One can see from Fig. 6.8 that the proposed FDOB can asymptotically estimate

the harmonic disturbance with unknown amplitude, phase and bias. One can see

from Fig. 6.9 that the controller with direct feedforward the disturbance estimate
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Figure 6.9. Position control performance with and without disturbance com-
pensation: upper plots (position control), lower plots (control errors).

of the FDOB can effectively remove the effect of unknown disturbances, while the

nominal controller results in control error in the presence of disturbances.

6.7 Summary

This Chapter provides a generic analysis of the relationship between time-domain

and frequency-domain DOBs, which extends the work of [52] from minimum phase

frequency-domain DOB structure to more general form DOB structure. The tra-

ditional frequency-domain DOB structure using a low pass filter with unity gain

can only effectively handle a specific class of disturbances satisfying the so-called

matching condition, while the existing time-domain DOB always generates a higher

order observer. A functional observer based time-domain DOB (FDOB) is proposed

to improve the existing time-domain DOB together with its existence condition,

design guideline and transfer function implementation. Compared with frequency-

domain DOBs, the proposed FDOB can handle more types of disturbances, while

compared with the existing time-domain DOBs the proposed FDOB generates a

lower-order observer. Numerical examples including a rotary mechanical system of

non-minimum phase are given to verify the proposed algorithms. The proposed

FDOB has the potential in the fields of both disturbance rejection control and fault

diagnosis.



Chapter 7

SYSTEM VERIFICATION AND

THRESHOLD SELECTION

7.1 Introduction

In the previous Chapters, the focus was mainly on observer design to generate fault

estimate for the purpose of fault diagnosis. In this Chapter and the following one,

attention is turned to the fault diagnosis system verification and robust threshold

selection. The motivations of this research are illustrated in Fig. 7.1.

Fault diagnosis observer 

design: abundant literature 

Under what condition (level 

of uncertainties) the fault 

diagnosis system is valid? 

Robust threshold selection: 

limited results. 

Fault diagnosis 

system verification: 

almost no result.  

Figure 7.1. The status of fault diagnosis: observer design, threshold selection
and system verification.

With the ever-increasing requirements on system safety and reliability in con-

junction with the rapidly growing computation power, model-based fault diagnosis

approaches are attracting more and more attentions in both academia and industry

(see, [6, 101–103] and recent survey papers [13, 104] among many others). Observer

based fault diagnosis, as one type of model-based diagnosis approaches, performs

fault diagnosis by consistency-checking between the observed behaviour and pre-

dicted behaviour using observer techniques based on the mathematical model of

93
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concerned plant [13]. There are generally two steps involved including observer de-

sign to produce a fault indicating signal (FIS) [105] and a threshold generation to

evaluate the FIS such that a Boolean decision can be made–normal or faulty [6].

For example, in residual based diagnosis approach [13], a fault is alarmed when a

residual (serves as the FIS, which is defined as the function of output estimation

error) is larger than a given threshold (being zero in the ideal fault-free case). While

in fault estimation based diagnosis approach [6], a fault is indicated when the fault

estimates (serves as the FIS) deviate from a pre-defined threshold (also being zero

in the ideal fault-free case).

The most important and challenging issue in model based fault diagnosis ap-

proaches is the robustness [13, 106]. Since in real applications, there are always

some mismatches between the real plant and the mathematical model used for fault

diagnosis observer design [8,50,93], such as system parameter uncertainties, external

disturbances, sensor noises, etc. As a result, it brings many challenges to the prob-

lem of fault diagnosis algorithm verification, i.e., verifying whether a fault diagnosis

algorithm is still valid in the presence of all kinds of system uncertainties, since any

algorithms should go through verification and validation before being applied in real

engineering to see whether certain performance criteria/specifications are satisfied.

Besides, the FIS under normal cases are also inevitably corrupted by all kinds of

system uncertainties, i.e., being non-zero even under normal cases [6,107,108], which

brings challenges to the problem of robust threshold selection, since if the threshold

is selected too small the false alarm rate will be high and if the threshold is selected

too large the missing detection rate will be high.

To this end, many algorithms have been proposed to handle the robustness

issue. According to at what stage the uncertainties are considered, they can be

categorised into the active approach and the passive approach [109]. The active

approaches reduce or even decouple the effect of the uncertainties on FIS in the stage

of observer design based on unknown input observer [8,110], robust filter (e.g., H∞

observer) [104,111,112]. While the passive approaches solve the robustness issue at

the stage of threshold selection (or residual evaluation, decision-making, etc.) by

taking the uncertainties into account [35,36,109].

Although fault diagnosis observer design, algorithm verification and threshold

selection are equally important for a successful fault diagnosis system in real appli-

cation, less attention has been paid to algorithm verification and threshold selection

in the existing literature. The commonly used approach for algorithm verification

is stochastic simulation. Stochastic simulation based approach [37] obtains the en-

velope of states or outputs based on a finite (possibly large) number of different
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linear models selected from a continuum of models corresponding to each possible

value of the system parameters. However, as pointed out in [113], the number of

required simulations grows exponentially with the number of state, input, and para-

metric variables due to a necessary gridding of the multidimensional set bounding

all variables. Besides, although large numbers of different models are performed

on fairly fine grids for uncertain parameters or Monte Carlo parameter sampling,

it is still possible to miss the model corresponding to the most critical parameter

combination.

The threshold should be selected such that the fault diagnosis system is ro-

bust to all possible model uncertainties, unknown inputs and faults of no inter-

est (see pp. 8 of [114]). The existing robust threshold selection methods can

be categorised into three groups including uncertainties amplification based [114]

(see, pp. 289), [42, 115, 116], optimality based [35, 38], set-membership based ap-

proaches [35–37]. In amplification based approach, a traditional observer is firstly

designed, then in the stage of FIS evaluation the system uncertainties are modelled

(or approximated) as unknown input vector with limited bound or bounded by a

known function and their effect on FIS is amplified based on norm inequality [114],

triangular inequality [42], integral inequality [115, 116]. This method may result

in conservative or even useless threshold, especially when multiple parameter un-

certainties exist (see, pp. 251 of [114]). While, in the latter two approaches, the

traditional fault diagnosis observer for FIS generation is replaced by new observers

which can potentially capture the possible upper and lower bounds of system states,

and consequently a fault is alarmed when the measured states deviate from the

calculated state interval. Specifically, optimization based approach [35, 38] obtains

the upper bound and lower bound of state envelop in each time step by solving a

constrained optimization problem where the constraints may include the parameter

uncertainties interval, initial state interval, input and output uncertainties interval,

etc. However, due to the complexity of the non-linear optimisation in each time

step, this method can not guarantee a globe optimum and is subjected to high com-

putation problem especially for multiple parameter uncertainties and over a large

time interval, which constrains its application [38, 39]. Set-membership based ap-

proaches [40, 43, 45] calculate the possible state or output interval by taking the

system uncertainties into account. This method is promising and has been used for

fault detection of an electrical drive in [45]. However, it has been pointed out in [46]

that the existence issue of observer gains for interval observer is not yet clearly es-

tablished even for linear system, since the observer gains should not only guarantee

the error system matrix is Hurwitz, but also cooperative (all the off-diagonal term
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are non-negative). Besides in the presence of system parameter uncertainties, two

bounded functions are needed to cover the effect of parameter uncertainties, which is

not an easy task due to the time-varying and unknown property of states. It should

also be highlighted that the later two interval observer approaches provide new fault

diagnosis solution by proposing new fault diagnosis observer, however, they do not

actually evaluate the FIS for existing fault diagnosis observer since the system state

interval rather than fault diagnosis observer state interval are calculated and conse-

quently the problem of algorithm verification and threshold selection is not handled

by them.

Rather than providing a new fault diagnosis observer, a solution to the problem

of algorithm verification and threshold selection is proposed by evaluating the FIS of

the existing fault diagnosis observer using the technique of reachable set computa-

tion. Its basic philosophy is to calculate the effect of all types of system uncertainties

on the FIS. Specifically, the effect of parameter uncertainties on the FIS under the

normal case is first analysed such that a normal reachable set can be obtained.

Then, the same effect of system uncertainties on the FIS under a selected set of

faults is further analysed such that a set of faulty reachable set is obtained. Based

on the aforementioned two reachable sets, several objectives can be achieved. First,

it can be qualitatively verified that whether a candidate fault diagnosis algorithm

with a chosen threshold is still valid in the presence of system uncertainties. Second,

an appropriate threshold can be quantitatively selected such that it is robust to all

kinds of system uncertainties. Third, the level of fault that can be detected by a

given algorithm can also be determined by checking the intersection of those two

sets. Finally, the proposed approach is evaluated through the actuator and sensor

fault diagnosis problem of a motor system using fault estimation based diagnosis

approach.

7.2 Problem formulation and preliminaries

In this section, the problem will be first formulated including model based fault

diagnosis, fault estimation based fault diagnosis approach and two challenging issues

therein. Then the reachable set computation tool for linear system with system

parameter uncertainties and uncertain inputs will be introduced, which plays a key

role in fault diagnosis algorithm verification and robust threshold selection.
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7.2.1 Problem formulation

Model based fault diagnosis system

Consider an uncertain linear system subjected to unknown load, actuator and sensor

faults, given by {
ẋ = (A+4A)x+B(u+ fa) + ΓΓd

ym = Cmx+ Sfs +Nn
, (7.2.1)

where x, u, fa,Γd are the system state, control input, actuator fault, unknown dis-

turbance respectively, and A,B,D,Γ are the corresponding distribution matrices.

ym, fs, n are the measurements, sensor faults, sensor noises and Cm, S,N are the

corresponding distribution matrices respectively. 4A is the system matrix pertur-

bation to account for effect of system parameter uncertainties and each element of

4A lies in a bounded interval.

To facilitate the design of integral control in state space modelling such that the

steady state tracking error can be removed, the error integral (e.g., position error

integral
∫

(θ−θd)dt in the following case study) is also modelled into system (7.2.1),

resulting in {
ẋ = (A+4A)x+B(u+ fa) +Dyd + ΓΓd

ym = Cmx+ Sfs +Nn
. (7.2.2)

From system (7.2.2), the commonly used feedback control law u = −Kcym + Kdyd

can be designed to achieve position tracking. It should be noted that although the

same notations (e.g., x) have been used in (7.2.1) and (7.2.2), the variables in (7.2.2)

accommodate the new state (i.e., the controlled output error integral).

The objective of model based fault diagnosis system is to detect the presence of

fault fa and fs (i.e., fault detection) and determine what kind of fault has occurred

when faults are detected (i.e., fault isolation) based on the system model (7.2.2).

The fault diagnosis system should be designed to be robust to the system parameter

uncertainties 4A, external disturbance Γd such that the false alarm rate is kept at

a low level. To this end, without loss of generality the following fault estimation

based fault diagnosis algorithm is introduced to detect and isolate the faults.

Fault estimation based diagnosis system

Fault estimation based diagnosis approaches perform fault diagnosis by directly

estimating faults based on observer theory, such as Kalman filter type observers

[107], disturbance observers [6], etc. So the diagnosis logic of fault estimation based

approach is as follows: when faults are estimated by observers, one can directly tell

whether a fault has occurred or not (i.e., fault detection) and where the faults come
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from such as which actuator, sensor (i.e., fault isolation) by checking whether the

fault estimate deviates from a pre-defined interval (i.e., threshold) centred at zero.

To obtain fault estimates for the linear system (7.2.2), the concept of state

augmentation is used [66], which obtains the fault estimate by augmenting the faults

as additional states. Since in real applications the external disturbance (for example,

unknown load in a motor system) Γd has an enormous effect on the state estimation

performance and consequently the FIS, its effect is reduced through estimating it

by augmenting it as an additional state as well.

Let x̄ = (x, fa, fs,Γd), then the system (7.2.2) can be equivalently represented

by the following extended system equation:{
˙̄x = (Ā+4Ā)x̄+ B̄u+ D̄yd

y = C̄x̄+Nn
, (7.2.3)

where Ā =

[
A B O Γ

O O O O

]
, B̄ =

[
B

O

]
, D̄ =

[
D

O

]
and C̄ =

[
C O S O

]
.

Then a state observer can be designed for extended system (7.2.3) under the

observability of the pair (Ā, C̄):{
˙̄̂x = Āˆ̄x+ B̄u+ D̄yd + K̄o(y − ŷ)

ŷ = C̄ ˆ̄x
, (7.2.4)

where the gain matrix K̄o is the observer gain matrix to be designed (e.g., pole

assignment of the pair (Ā, C̄)). Combing (7.2.3) and (7.2.4), the error dynamic

e = x̄− ˆ̄x can thus be obtained as follows:

ė = (Ā− K̄C̄)e+4Āx̄− K̄oNn. (7.2.5)

When the extended state x̄ is obtained, one can approximately obtain the ac-

tuator fault fa and sensor fault fs, which will serve as the FIS. After the FIS are

obtained, one should choose an appropriate threshold to evaluate the FIS such that

a Boolean decision can be made–normal or faulty. The overall diagram for fault

estimation based diagnosis approach is shown in Fig. 7.2,

Challenging issues

The fault diagnosis observer (7.2.4) is usually designed based on the normal model

of real system (7.2.3). As a result, one can see from (7.2.5) that the state esti-

mation error and consequently the fault estimates are inevitably corrupted by the
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Figure 7.2. The diagram of fault estimation based FD approach including
three elements: closed-loop system, FIS generator and FIS evaluation.

system uncertainties 4Āx̄ and measurement noises. It should be noted that this

phenomenon is inevitable in all kinds of model based fault diagnosis algorithms such

as residual based [112], parameter estimation based [13] and parity space based ap-

proach [110], etc. and there is the reason why the robustness is seen as the most

important and challenging issue of model based fault diagnosis algorithm [13]) in

practice.

This phenomenon results in two challenging problems to the application of fault

diagnosis algorithm in real engineering. Firstly, how to verify whether a fault diag-

nosis algorithm with a given threshold is still valid in the presence of all kinds of

system uncertainties, since verification is an essential and inevitable step if a fault

diagnosis algorithm is to be applied in real engineering. Secondly, how to quanti-

tatively choose the threshold evaluating the FIS such that the false alarm rate of a

given fault diagnosis algorithm satisfies the given specifications. A solution is pro-

posed to the aforementioned two challenging problems. To achieve this goal, the

following reachable set computing tool is introduced.

7.2.2 Reachable set computation

The reachable set computation plays a key role in fault diagnosis algorithm veri-

fication and robust threshold selection. Consequently, its principle will be briefly

introduced in this section. The tool for reachable set computation of a linear sys-

tem with uncertain initial states, system matrices and inputs is based on known

techniques given in [113, 117, 118]. As discussed in [113] the reachable set compu-

tations are typically performed iteratively for short time intervals τk := [tk, tk+1]

with tk := ki where k ∈ N is the time step and i ∈ R+ denotes the step-size. The

reachable set iterative computation requires set-based addition and multiplication,
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which are defined as follows.

Definition 1: (Set-based addition/multiplication) The rule for set-based ad-

dition and multiplication are defined as X ⊕ Y := {x + y|x ∈ X , y ∈ Y} and

X ⊗ Y := {xy|x ∈ X , y ∈ Y} respectively.

Besides, there are multiple ways to represent a set including polytopes, zono-

topes, ellipsoids, support function, etc [113]. The zonotopes are preferred to rep-

resent a reachable set of states since they can efficiently represent reachable sets

in high-dimensional spaces while operations required for reachability analysis can

efficiently be applied to them [113]. The definition of a zonotope is given as follows.

Definition 2: (Zonotope) Given a centre c ∈ Rn and so-called generators g(i) ∈
Rn, a zonotope is defined as

Z := {x ∈ Rn|x = c+
∑p

i=1 βig
(i), βi ∈ [−1, 1]},

which can be written in a short form as Z = (c, g(1), · · · , g(p)). The order of a

zonotope is defined as ρ := p
n , where p is the number of generators. The zonotope

can also be seen as the set-based addition of line segments [−1, 1]g(i).

The multiplication of a zonotope with a matrix M ∈ Ro×m and the addition of

two zonotopes Z1 = (c, g(1), · · · , g(p1)) and Z2 = (d, h(1), · · · , h(p2)) are also zono-

topes, defined as

Z1 ⊕Z2 = (c+ d, g(1), · · · , g(p1), h(1), · · · , h(p2)),

M ⊗Z2 = (Mc,Mg(1), · · · ,Mg(p1)).

Besides, other functions (such as the convex hull, Cartesian product, etc.) of two

zonotopes are referred to [113].

Computation tool

Consider an uncertain linear system, which can be described by a differential inclu-

sion,

ẋ = Ax+ uc ⊕ u(t), (7.2.6)

where the uncertain system matrix A ⊂ In×n, initial state x(0) ∈ X0 ⊂ Rn, uc ∈ Rn

is the known input and u(t) ∈ V ⊂ Rn is the uncertain input. The reachable set

computation can over-approximately obtain the reachable set R([0, r]) of system

(7.2.6) in a time interval t ∈ [0, r] denoted as Rd([0, r]), where Rd([0, r]) ⊇ Rde([0, r])
with Rde([0, r]) = {x|x(t) is a solution of(7.2.6), t = r, x(0) ∈ X0}, which can be seen
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as the exact reachable set 1.

The detailed algorithm and its implementation can be found in [113, 117, 118].

However, for the completeness, its basic algorithm structure for a time interval τk

is given as follows. Suppose the reachable set of the affine dynamics ẋ = Ax+ uc is

Rda(t), the reachable set of the particular solution due to the uncertain input u(t)

is Rdp(u(t), t), and the partial reachable set correcting the initial assumption that

trajectories are straight lines between tk and tk+1 is Rdε . According to [113,117,118],

the reachable set for a time interval τk is computed as shown in Fig. 7.32

Figure 7.3. Steps for reachable set computation of uncertain linear systems.

i Starting from Rd(tk), compute the reachable set Rda(tk+1)

ii Obtain the convex hull of Rd(tk) and Rd(tk+1) to approximate the reachable

set for the time interval τk

iii Compute Rd(τk) by considering uncertain inputs by adding Rdp(u(t), τk) and

accounting for the curvature of trajectories by adding Rdε .

Numerical example

A numerical example in [118] is given to show the effectiveness of the reachable

set computation algorithm. Suppose the uncertain matrix A in (7.2.6) is given by

A = A0 + [−0.1, 0.1]∗4A, where the normal matrix and uncertain matrix are given

by

A0 =



−1 −4 0 0 0

4 −1 1 0 0

0 0 −3 1 0

0 0 −1 −3 0

0 0 0 0 −2


,4A =



1 1 0 0 0

1 1 1 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 1


.

1The computation of exact reachable set is an open problem [117] and consequently
over-approximation is usually preferred.

2This illustrating figure is from [113].



Section 7.3. Main results 102

The known control input uc is a step input with amplitude 1 (the initial value is

chosen as 0) at 3 sec and the amplitude is changed to 2 at 6 sec. Each element of

the uncertain input u(t) lies in the interval [−0.05, 0.05]. The step-size is chosen as

0.001 and the order of zonotope ρ is 600. The state reachable set of x3 (red, green

and yellow interval) and 200 stochastic trajectories (blue lines) are shown in Fig.

7.4

0 1 2 3 4 5 6 7 8 9
-0.5
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0.5
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1.5
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S
ta

te

control 1

control 2
zero control

Figure 7.4. The state reachable set of x3 and its stochastic trajectories under
different control amplitudes: area in read: without control; area in green:
control with amplitude 1; area in blue: control with amplitude 2.

One can see from Fig. 7.4 that: (i) all the stochastic simulation trajectories

of state x3 lie in the calculated reachable set, which verifies the effectiveness of

state reachable set computation tool; (ii) when the input amplitude is increased, the

corresponding width of reachable sets will get larger. This is due to the fact that when

the input amplitude is increased, the state amplitude and consequently the effect of

system parameters on the states also get larger.

7.3 Main results

In this section, the main results will be provided including the qualitative verification

of a candidate fault diagnosis algorithm with a given threshold and the quantitatively

robust threshold selection for a given fault diagnosis system. Besides, based on the

robust threshold, the fault amplitude that can be detected by a given fault diagnosis

algorithm can also be determined.
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7.3.1 Fault diagnosis algorithm verification

Algorithm verification can answer the question that whether a given algorithm is still

valid in realistic environment (i.e., in the presence of all kinds of system uncertain-

ties, such as parameter uncertainties, external disturbances, sensor noises, etc.). It

can be seen as a bridge between academia and industry, since any algorithm should

go through verification and validation to see whether certain performance criteria

are satisfied before being applied in industry. Although in the past few decades

there are a lot of model based fault diagnosis algorithms proposed in academia, lit-

tle attention has been paid to fault diagnosis algorithm verification and as a result

the model based fault algorithms have not been extensively applied in industry. The

commonly used algorithm verification tool in engineering is stochastic simulation,

i.e., simulating the real system by choosing a large number of system models with

different parameter combinations. However, as pointed out in [113], the number

of required simulations grows exponentially with the number of state, input, and

parametric variables and more importantly, it is still possible to miss the model

corresponding to the most critical parameter combination. Consequently, efforts

should be made to bridge this gap, i.e., proposing a systematic approach for fault

diagnosis algorithm verification.

The philosophy of fault diagnosis algorithm verification is that, different intervals

are used to capture the uncertainties in system parameters and sensor noises, such

that an uncertain model (e.g., (7.2.2)) is obtained to represent the real system.

Then for a candidate fault diagnosis system (e.g., (7.2.4)), the FIS reachable set

under normal case is first obtained, i.e., with only system uncertainties and sensor

noises; then the FIS reachable set under faulty case is further obtained, i.e., with

all kinds of system uncertainties and a selected set of faults of interest. Then it

can be qualitatively determined whether the candidate fault diagnosis system is still

valid or not under uncertainties by comparing the normal FIS reachable set and

faulty FIS reachable set. The rule is that if the normal FIS reachable set is close to

zero, and the faulty FIS reachable set substantially deviates from the normal FIS

reachable set then one can qualitatively conclude that the fault diagnosis system is

valid under this level of system uncertainties. The calculation of FIS reachable sets

under normal and faulty cases are discussed in section 7.3.3.

7.3.2 Robust threshold selection

The threshold is selected to evaluate the FIS and consequently a Boolean decision–

normal or faulty is produced. In the absence of system uncertainties, the threshold
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can be easily set to be zero since the state estimation error and consequently FIS

approaches to zero in the steady-state under normal case. However, one can see from

(7.2.5) that the state estimate error and consequently fault estimates are subjected

to the effect of system uncertainties 4Ãx̃ and sensor noise Nn, which means the

fault estimates are not zero even under normal conditions. So a threshold should be

carefully designed such that it is robust against the system uncertainties.

The commonly used robust threshold selection approach is approximating all the

uncertainties using unknown input with limited bounds or a bounding function [114].

There are two problems within this approach. Firstly, it is not an easy task to find

an appropriate unknown input to cover the uncertainties due to the time-varying

and unknown nature of state x. Secondly, it is pointed out in [114] (see, pp. 251)

this approach will lead to a conservative threshold, since valuable information about

the structure of the model uncertainties has not been taken into account.

To this end, the robust threshold is chosen by analysing the FIS reachable sets

under normal case and a selected of faulty cases as discussed in Section. 7.3.1.

Based on these two reachable sets, two objectives can be achieved. Firstly, a robust

threshold can be chosen based on the calculated normal reachable set, which means

if the fault estimate lies in the normal reachable set, it is concluded that no fault

appears, while if the fault estimate deviates from the normal reachable set then it can

be concluded that the corresponding fault has occurred. Secondly, by comparing the

normal reachable set and faulty reachable set, the level of fault that can be detected

by the observer based fault diagnosis system can also be determined. When the

intersection of these two sets is empty, it can be concluded that the fault diagnosis

algorithm can effectively detect the presence of fault, while if the intersection of

these two sets is not empty (e.g., the amplitude of fault is too small), then the fault

diagnosis algorithm fails to detect that particular type of fault. The principle of the

proposed robust threshold selection for fault estimate based diagnosis approach is

shown in Fig. 7.5.
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Figure 7.5. Overall diagram of fault diagnosis system with robust threshold.
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7.3.3 FIS reachable set computation

In this section, the FIS reachable set computation is discussed under normal case

and a selected of faulty cases. The aforementioned FIS reachable set computation

problem is transformed into the problem of two state reachable set computation

such that the existing tool on reachability analysis introduced in Section. 7.2.2 can

be applied.

To facilitate analysing the effect of4Āx̄ and sensor noises Nn on the augmented

state ˆ̄x and consequently fault estimates, the dynamic of ˆ̄x is derived and put into

the format of (7.2.6) such that the technique of reachable set computation can be

used.

On the one hand, from e = x̄− ˆ̄x, the state estimation error dynamic (7.2.5) can

be put into the following form

ė = (Ā− K̄oC̄)e+4Ā(e+ ˆ̄x)− K̄oNn. (7.3.1)

On the other hand, one can see from (7.2.4) that the time-varying input u =

−Kcym+Kdyd and ym are involved in derivation of ˆ̄x, which will make the reachable

set computation complicated. To simplify the problem, the control input u and

measurement ym are substituted into (7.2.4), such that the ˆ̄x dynamics are given by

˙̄̂x = Āˆ̄x+ B̄[−Kc(C̄x̄+Nn) +Kdyd] + D̄yd + K̄o(C̄x̄+Nn− C ˆ̄x)

= (Ā− B̄KcC̄)ˆ̄x+ (K̄oC̄ − B̄KcC̄)e+ (D̄ + B̄Kd)yd + (K̄o − B̄Kc)Nn.

(7.3.2)

Combing (7.3.1) and (7.3.2), one can obtain the following composite dynamics

including extended state estimate error e and extended state estimate ˆ̄x,[
ė
˙̄̂x

]
︸ ︷︷ ︸
χ̇

=

[
Ā− K̄oC̄ +4Ā 4Ā
K̄oC̄ − B̄KcC̄ Ā− B̄KcC̄

]
︸ ︷︷ ︸

A

[
e

ˆ̄x

]
︸ ︷︷ ︸
χ

+

[
O

D̄ + B̄Kd

]
yd︸ ︷︷ ︸

uc

+

[
−K̄o

K̄o − B̄Kc

]
Nn︸ ︷︷ ︸

u(t)

.

(7.3.3)

Using the under-brace notations in (7.3.3), the composite dynamic (7.3.3) can

be put into a compact form, given by

χ̇ = Aχ+ uc ⊕ u(t), (7.3.4)

where χ = [eT , ˆ̄xT ]T , A is the uncertain system matrix, uc is the known input and
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u(t) is the uncertain input. One can see that (7.3.4) falls into the same format as

that of the uncertain system (7.2.6) in Section. 7.2.2, which means the standard

reachable set computation tool in Section. 7.2.2 can be applied. Then one can

obtain the reachable set of χ and consequently FIS reachable sets under normal

case and a selected of faulty cases, since the FIS are chosen as the fault estimates

in fault estimation based diagnosis approach which are the elements of χ.

Remark: One can see from (7.3.3) that the distribution matrices of known input

yd and uncertain input n are different. To make the reachable set computation

problem of system (7.3.3) solvable based on the existing tool (i.e., putting (7.3.3)

into (7.3.4)), the original uncertain input n has been transformed into u(t). This

process will result in conservativeness in reachable set computation due to the fact

that the dimension of uncertain input has been increased and consequently the

single-use-expressions [118] of interval computation can not be achieved. However,

future work can be done to handle this problem and consequently attenuate the

conservativeness.

7.4 Simulations

In this section, the actuator and sensor fault diagnosis problem of a motor system

using fault estimation based approach will be used to illustrate the principle of the

proposed approach. The overall diagram of motor fault diagnosis system is shown

in Fig. 7.6 where the closed-loop control system using state space feedback with
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Figure 7.6. Overall diagram of motor fault diagnosis system.

integral action is introduced in Section. 7.4.1, the actuator fault estimator and

sensor fault estimator and their corresponding robust threshold selection are given

in Section. 7.4.2 and 7.4.3 respectively.
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7.4.1 Motor system

A linear model of the motor system with actuator and sensor faults can be repre-

sented in the state-space model (7.2.2) where x = [x1, x2, x3, x4]T = [θ, ω, I,
∫

(θ −
θd)dt]

T are the system states (the state x4 =
∫

(θ− θd)dt is introduced such that an

integral control can be designed to remove the steady state tracking error), u is the

control voltage, which is designed as

u = −kθ(θm − θd)− keix4 − kωωm − kiim
= −Kcym +Kdθd

(7.4.1)

where θm, ωm and im are the measurement value of position, velocity and current,

respectively. The parameters Kc = [kθ, kω, ki, kei] are the control parameters to

be designed (see Appendix A.4) and Kd := kθ. yd = θd is the desired output po-

sition, Γd the unknown load, ym the measurement output, fa the actuator fault,

fs =

[
fsv

fsc

]
, where fsv is the velocity sensor fault, fsc is the current sensor fault,

respectively. System matrix A, control input matrix B, desired output matrix D,

load matrix Γ, measurement matrix Cm are given as follows:

A =


0 1 0 0

0 −kd
J

kT
J 0

0 −ke
L −

R
L 0

1 0 0 0

, B =


0

0
1
L

0

, D =


0

0

0

−1

 Γ =


0

− 1
J

0

0

, S =


0 0

1 0

0 1

0 0

,

N =

[
I3

zeros(3, 1)

]
, Cm = I4×4.

The meaning of the aforementioned parameters and their corresponding normal

values are referred to Appendix A.4. 4A denotes the system parameter uncertainties

and suppose that there are four key parameters with uncertainties, i.e., kd, kT , ke and

resistance R. The uncertainty levels are given as follows: kd ∈ [kdn − 4%kdn, kdn +

4%kdn], kT ∈ [kTn − 2%kTn, kTn + 2%kTn], ke ∈ [ken − 2%ken, ken + 2%ken] and

R ∈ [Rn−5%Rn, Rn+ 5%Rn], where kdn, kTn, ken, Rn denote the normal parameter

values. Without loss of generality, suppose that the sensor noises np, nv, ni lie in a

bounded interval ∈ [−0.01, 0.01].

7.4.2 Actuator fault diagnosis

In this section, the fault estimation based diagnosis approach is applied to the

problem of actuator fault diagnosis. In this scenario, suppose that no sensor fault

occurs to satisfy the observer observability and consequently only the actuator fault
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and unknown load are treated as the additional states when designing the generalized

state observer, i.e., x̄1 = (x, fa,Γd). The fault diagnosis observer is designed as{
˙̄̂x1 = Ā1 ˆ̄x1 + B̄1u+ D̄1yd + K̄o1(y − ŷ),

ŷ = C̄1 ˆ̄x1

where the system matrices are given by Ā1 =

[
A B Γ

O O O

]
, B̄1 =

[
B

O

]
, D̄1 =

[
D

O

]
and C̄1 =

[
C O O

]
. The observer gain K̄o1 can be found in Appendix A.4.

The reference position is chosen as a step signal at 0 sec with amplitude of 1rad,

while the unknown load Γd is given by the following function,

Γd =

1 Nm, t ∈ [0, 3]

0.5 Nm, t ∈ (3, 10]

The initial state of both the control system and observer system are supposed to be

zero vector of appropriate dimension. The actuator fault with different amplitude

fa = 1V and fa = 0.1V are supposed to occur at 6 sec respectively. The reachable

set computation results for both normal case and actuator faulty cases are shown in

Fig. 7.7 and 7.8, where the black lines are the stochastic simulations of the actuator

fault estimate.
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Figure 7.7. Reachable set of actuator fault estimate under normal case and
actuator fault fa = 1: green area (no fault under Γd = 1), yellow area (no
fault under Γd = 0.5), red area (with and without fault under Γd = 0.5).

One can see from Figs. 7.7 and 7.8 that reachable set computation can effectively

capture the dynamic of the fault estimates, since all the stochastic simulated fault

estimates lie in the computed reachable set for both normal case and faulty case.
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Figure 7.8. Reachable set of actuator fault estimate under normal case and
actuator fault fa = 0.1: green area (no fault under Γd = 1), yellow area (no
fault under Γd = 0.5), red area (no fault under Γd = 0.5); pink area (with fault
under Γd = 0.5). There are some overlaps between pink area and red area due
to the effect of uncertainties.

When the unknown load is changed from 1 to 0.5 at 3 sec, the amplitude of reachable

set reduces accordingly. This is due to the fact that when the load amplitude is

reduced the state amplitude and also the effect of parameter uncertainties 4Ax on

the fault estimate will also be reduced.

Firstly, based on the two reachable sets in Fig. 7.7, one can qualitatively verify

that the fault estimation based diagnosis algorithm is valid in the presence of given

system uncertainties and sensor noises, since the FIS reachable set under normal

case is close to zero and FIS reachable set under faulty case is substantially different

from the one under normal case. Besides, based on the principle of the proposed

threshold selection approach, the threshold can be chosen as the upper and lower

bounds of the normal reachable set.

Secondly, one can see from Fig. 7.7 that in case of actuator fault fa = 1, the fault

reachable set (after 6 sec) does not intersect with the normal reachable set (after 6

sec) and so the fault diagnosis algorithm can effectively detect the presence of fault.

While in case of actuator fault with a smaller amplitude fa = 0.1, the fault reachable

set intersect with the normal reachable set and so the fault diagnosis algorithm fails

to detect the presence of the actuator fault with this particular amplitude. This

phenomenon is reasonable since when the fault amplitude is too small, its effect on

the fault estimate is limited and can not be distinguished from the effect of system

uncertainties. So based on the proposed approach, one can determine the minimal

fault amplitude that can be detected by a given fault diagnosis algorithm under a

given scenario.
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Remark: The reachable set computation is achieved in Matlab using the algorithm

in Section. 7.2.2 in conjunction with the existing toolboxes including “INTerval

LABoratory ” 3 and Multi-Parametric Toolbox 4. The step-size of reachable set

computation is chosen as i = 0.0015 and the order of zonotope ρ is 600. To further

improve the computation precision, one can reduce the step-size or increase the

order of zonotope, however, it will result in longer computation time.

7.4.3 Sensor fault diagnosis

In this section, the problem of sensor fault diagnosis is further considered, where

both velocity sensor fault and current sensor fault are considered. To satisfy the

observability, it is supposed that no actuator fault occurs and so only the speed

velocity fault, current sensor fault and unknown load are treated as the additional

states when designing the extended state observer, i.e., x̄2 = (x, fs,Γd). The fault

diagnosis observer is given as follows:{
˙̄̂x2 = Ā2 ˆ̄x2 + B̄2u+ D̄2yd + K̄o2(y − ŷ),

ŷ = C̄2 ˆ̄x

where the system matrices are given by Ā2 =

[
A O Γ

O O O

]
, B̄2 =

[
B

O

]
, D̄2 =

[
D

O

]
and C̄2 =

[
C S O

]
and the observer gain matrix K̄o2 is referred to Appendix A.4.

The fault profile is given by the following function,

fsv =

0 rad/s, t ∈ [0, 5]

0.5 rad/s, t ∈ (5, 10]
fsc =

0 A, t ∈ [0, 7]

0.5 A, t ∈ (7, 10]

The rest of simulation scenario is the same as that of Section 7.4.2. The reachable

set computation results for speed sensor fault estimate and current sensor fault

estimate are shown in Fig. 7.9 and 7.10 respectively, where the black lines are the

stochastic simulations of the sensor fault estimate.

Similar to the case of actuator fault diagnosis, one can see from Figs. 7.9 and 7.10

that all the stochastic simulations lie the calculated FIS reachable sets, which verifies

the effectiveness of reachable set computation algorithm. Besides, at 3 sec, the load

amplitude is reduced and consequently the effect of uncertainties on FIS is reduced,

i.e., the width of reachable set becomes smaller. Due to the presence of current

3i.e., Intlab, see the software via http://www.ti3.tu-harburg.de/rump/intlab/
4i.e., MPT, see the software via http://people.ee.ethz.ch/ mpt/3/
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Figure 7.9. Reachable set of speed sensor fault estimate and stochastic simu-
lations: green area (load with amplitude 1); yellow area (load with amplitude
0.5); red area (the presence of speed sensor fault); pink area (the presence of
both speed and current sensor faults).

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

Time, sec

C
ur

re
nt

 fa
ul

t

Load 1 to 0.5

Current fault

Figure 7.10. Reachable set of current sensor fault estimate and stochastic
simulations: green area (load with amplitude 1); yellow area (load with ampli-
tude 0.5); red area (the presence of speed sensor fault); pink area (the presence
of both speed and current sensor faults).

sensor fault at 7 sec, there is a jump in the reachable set of speed fault estimate,

this is due to the fact that the fault estimates for velocity sensor fault and current

sensor fault are coupled with each other. Based on the calculated FIS reachable

sets under normal case and faulty case, one can easily choose the threshold similar

to the case of actuator fault diagnosis. Besides, one can also roughly determine the

minimum detectable fault as that of actuator fault diagnosis.
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7.5 Summary

In this Chapter, the problem of fault diagnosis system verification and robust thresh-

old selection is considered for a typical model based fault diagnosis algorithm, i.e.,

fault estimation based approach. Due to the presence of system uncertainties and

sensor noises, the fault indicating signals deviate from zero even under normal con-

dition. To this end, the reachable set computation tool is drawn to calculate the

fault indicating signal reachable set under normal case and a selected of faulty cases.

Based on the calculated two reachable sets, a candidate fault diagnosis system can

be qualitatively determined where it is still valid under all kinds of uncertainties.

Besides, a robust threshold can be quantitatively selected which is robust to system

uncertainties and consequently false alarm rate can be substantially reduced. In

addition, by comparing those two reachable set, one can also determine what level

of fault that can be detected by a given fault estimate algorithm. Actuator and

sensor fault diagnosis of a motor system is given to illustrate the principle of the

proposed approach.

This Chapter mainly focuses on the idea of fault diagnosis algorithm verification

and robust threshold selection. The reachable set computation tool used may not

be the latest one and the results may not be perfect now. But with more advanced

reachable set computation tool and increasing computation power, the results in this

Chapter can be substantially improved. Besides, the method in this Chapter can

also be applied to the case of algorithm verification and robust threshold selection

for other model based approach such as residual based and parameter estimation

based fault diagnosis approach.



Chapter 8

COMPARISON VERIFICATION

8.1 Introduction

In Chapter 7, the framework of fault diagnosis system verification and robust thresh-

old selection was proposed. In Chapter 2, a comparison analysis between the residual

based and fault estimation based fault diagnosis approach was made in a qualitative

way along with simple simulation comparison study. In this Chapter, however, the

framework proposed in Chapter 7 is applied to the quantitative comparison analysis

between the residual based and fault estimation based diagnosis approaches, which

can shed light on the application scope of different fault diagnosis approaches. The

sensor fault diagnosis problem of vehicle lateral dynamics is chosen as a case study.

The relationship of this Chapter with previous Chapters is illustrated in Fig. 8.1.

Qualitative comparisons of 

fault diagnosis approaches: 

Chapter 2 

Fault diagnosis system 

verification: 

Chapter 7 

Quantitative 

comparisons of fault 

diagnosis approaches   

Figure 8.1. The relationship between this Chapter and previous Chapters.

8.2 Vehicle lateral dynamics

In model based fault diagnosis system design, the first step is to derive an appropri-

ate model describing the system dynamics under consideration. To this end, in this

section, vehicle lateral dynamics are introduced, where the standard one-track model

is utilized, since it is one of the most widely used models for the purpose of vehicle

lateral control and fault diagnosis system design [119–122] due to its availability for

113
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on-line application (i.e., with low system order) and ability to well describe vehicle

behaviour with lateral acceleration under 0.4 g (g denotes the acceleration of grav-

ity) on normal dry asphalt roads [119–121]. The diagram of one-track model for

vehicle lateral dynamics is shown in Fig. 8.2, where
∫
rc denotes the yaw angle and

the rest of notations are explained whenever needed.

𝐹𝑦𝐻 
𝐹𝑦𝑉 

𝛿𝐿 

𝑙𝐻 𝑙𝑉 

𝛽 
𝐶𝐺 

𝑉 

𝑥 

𝑦 

𝑥0 

𝑦0 

 𝑟𝑐 

Figure 8.2. The diagram of a one-track model for vehicle lateral dynamics.

Assuming a constant vehicle velocity (see, Chapter 2 of [119] or pp. 79 of [121] for

other assumptions), taking vehicle side slip angle β and yaw rate rc as state variables,

and the front wheel steering angle δL as input signal, vehicle lateral dynamics can

be described by differential equations [119]{
mv(β̇ + ṙc) = FyV + FyH

Iz ṙc = lV FyV − lHFyH
, (8.2.1)

where m, v are the vehicle mass and longitudinal velocity, FyV , FyH are front and

rear tire forces, Iz is the yaw moment of inertia, and lV , lH denote the distances

from Centre of Gravity (CG) to front and rear tires, respectively.

Moreover, for small tire slip angles, lateral tire forces are usually approximated

as a linear function of tire slip angles, which are defined by{
FyV = cαV (δc − β − lV rc/v)

FyH = cαH (−β + lHrc/v)
, (8.2.2)

where cαV and cαH are cornering stiffness of front and rear tires. The values of all

the parameters are given in Appendix A.5.

Define vehicle state x = [β; rc] and control input u = δL, substituting (8.2.2)

into (8.2.1), one can obtain the state-space model of vehicle lateral dynamics, given
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by

ẋ =

 −
cαV + cαH

mv

lHcαH − lV cαV
mv2

−1

lHcαH − lV cαV
Iz

−
l2V cαV + l2HcαH

Izv


︸ ︷︷ ︸

Aun

x+


cαV
mv
lV cαV
Iz


︸ ︷︷ ︸

Bun

u.
(8.2.3)

The variables that can be directly measured are the lateral acceleration signal αy

through accelerometer and the yaw rate signal rc through gyrometer, i.e., y = [αy; rc]

and consequently the measurement model is given by

y =

[
−
cαV + cαH

m

lHcαH − lV cαV
mv

0 1

]
︸ ︷︷ ︸

Cun

x+

 cαV
m
0


︸ ︷︷ ︸

Dun

u.
(8.2.4)

In practical applications, the system parameters in system model (8.2.3) and

measurement model (8.2.4) inevitably have certain variations. As a result, rather

than being a point, the elements of system matrices will fall into different intervals.

That means the system matrices Aun, Bun, Cun, Dun also fall into interval matrices

(note: interval matrix denotes a matrix whose elements take values within intervals)

according to the range of each parameters. For example, Aun ∈ A, where A = [A, Ā]

is a interval matrix with A and Ā being the lower and upper bound matrices element-

wisely. The interval matrix A can also be equivalently represented by A = A+ ∆A,

where A is the normal matrix and ∆A can be seen as the radius matrix element-

wisely. As a result, the vehicle lateral dynamics with uncertainties and sensor faults

can be represented by the following generic systems{
ẋ = (A+ ∆A)x+ (B + ∆B)u

y = (C + ∆C)x+ (D + ∆D)u+ Ff
. (8.2.5)

In this model, the effect of sensor faults is also modelled through introducing

fault variables f = [fa; fy] (i.e., accelerometer fault fa and gyrometer fault fy) and

their distribution matrix F (i.e., identity matrix for simultaneous accelerometer and

gyrometer fault detection).

The objective of FD is to detect the presence of faults fa and fy (i.e., fault de-

tection) and isolate which fault has occurred when a fault is detected (i.e., fault iso-

lation). The comparison between two different types of model-based FD approaches

are considered including residual based and fault estimate based approaches. Each

approach contains a fault diagnosis observer for residual generation and a robust

threshold for residual evaluation. The diagram of the overall fault diagnosis system
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is shown in Fig. 8.3.

Vehicle Lateral 
dynamic 

sensors 

Faults 

𝑦 

Fault 
diagnosis 
observer 

Robust 
Threshold 

Accelerometer fault 

Gyrometer fault  

Residual generation Residual evaluation 

𝛿𝐿 

Uncertainties 

Figure 8.3. The diagram of fault diagnosis system for vehicle lateral dynamics
including fault diagnosis observer and robust threshold selection.

8.3 Main results

In this section, the main results are presented. Specifically, the model-based FD

observer design for residuals (fault estimates) generation is firstly discussed including

conventional residual based and recent fault estimation based approaches, whose role

in the overall FD system is shown in Fig. 8.3. The residual is chosen to indicate the

presence of fault, and consequently it is expected to be close to zero in fault-free case

and deviate from zero in the presence of faults [13]. However, due to the presence

of inevitable uncertainties in practice, the residuals (or fault estimates) are not zero

under normal condition. Then the problem of verification and robust threshold

selection for the aforementioned model-based FD systems are further investigated,

where both of them are transformed into the problem of reachable set computation

for uncertain systems.

8.3.1 Residual based approach

In residual based FD, a set of FD observers are usually needed to isolate different

faults, where each observer is designed to be only sensitive to one particular fault

[6, 21]. The diagram of the residual based FD for vehicle lateral dynamics is shown

in Fig. 8.4.

The ith residual based FD observer for system (8.2.5), which is only sensitive to

ith sensor fault, takes the following form{
˙̂xi = Ax̂i +Bu+Kr

i (yi − ŷi)
ŷi = Cix̂i +Diu

, (8.3.1)
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Figure 8.4. The diagram of residual based FD system for vehicle lateral
dynamics including two FD observers and robust threshold.

where the subscript i means the ith observer. yi, the sub-vector of the original mea-

surement vector y, is chosen in such a way that the ith observer is only sensitive to

ith sensor fault (see, [5,6] for details). Ci, Di are the normal matrices corresponding

to yi. K
r
i is the observer gain matrix, which can be designed based on H∞ theory or

simply pole assignment technique under the observability of the matrix pair (A,Ci).

The output estimation errors ri = yi− ŷi or their functions in the case of yi with

high dimension are usually chosen as the residual signal. The residual ri can be put

into the following form

ri = yi − ŷi = Ciei + ∆Cix+ ∆Diu+ Fif, (8.3.2)

where ei = x − x̂i. One can further obtain from Eqs. (8.2.5) and (8.3.1) that

the error dynamics satisfy

ėi = (A−Kr
i Ci)ei + (∆A−Kr

i ∆Ci)x

+ (∆B −Kr
i ∆Di)u−Kr

i Fif
(8.3.3)

Substituting Eq. (8.3.2) into Eq. (8.3.1), the state estimate can be put into an

equivalent form, given by

˙̂xi = Ax̂i +Bu+Kr
i Ciei +Kr

i ∆Cx+ ∆Diu+Kr
i Ff. (8.3.4)

From Eqs. (8.3.2) and (8.3.3), one can see that the residuals ri is sensitive to fault

Fif . However, it is also subject to the effect of system uncertainties ∆A,∆B,∆C,∆D,

and state x and control input u. This will bring many challenges to the FD verifi-

cation and threshold selection, since the uncertainties take values in intervals and

result in infinite combinations.
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Verification and threshold

The verification and threshold selection results in Chapter (7) is directly applied.

From ei = xi− x̂i, one can obtain xi = ei + x̂i. Substituting it into Eqs. (8.3.3) and

(8.3.4), one can obtain the following composite system[
ėi
˙̂xi

]
︸︷︷︸
χ̇

=

[
A−Kr

i Ci + ∆A−Kr
i ∆Ci ∆A−Kr

i ∆Ci

Kr
i Ci +Kr

i ∆Ci A+Kr
i ∆Ci

]
︸ ︷︷ ︸

A

[
ei

x̂i

]
︸︷︷︸
χ

+

[
∆B −Kr

i ∆Di

B + ∆Di

]
u+

[
−Kr

i Fi

Kr
i Fi

]
f︸ ︷︷ ︸

BU

. (8.3.5)

Using the under-brace notation, system (8.3.5) can be put into the following

compact format

χ̇ = Aχ+ BU . (8.3.6)

where χ,A,B and U are all interval variables.

Following the same procedure, the residual Eq. (8.3.2) can be put into the

following form,

ri = [Ci + ∆Ci, ∆Ci]

[
ei

x̂i

]
+ ∆Diu+ Fif (8.3.7)

As a result, after the reachable set of system (8.3.6) or equivalently (8.3.5) is

calculated, the reachable set of ri in (8.3.7) can be further calculated through set

transformation.

8.3.2 Fault estimation based approach

The fault estimation based approach [6, 122] is further considered; different from

residual based approach, the fault estimates directly serve as the residuals for fault

detection and isolation, which can simplify the fault detection and isolation logic [6].

Considering that the common sensor faults are bias, drift, scaling with unknown

amplitude and occurring time, a linear model can effectively describe their dynamics

[122]. Without loss of generality, the state augmentation approach is used for fault

estimate, where a first-order model is chosen (see [122] for second-order models

and [7] for high order models). In this approach, faults are augmented as additional

states and can be estimated along with the original system states [6]. Taking x̄ =

(x, f), system (8.2.5) can be equivalently represented by the following extended
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system {
˙̄x = (Ā+ ∆Ā)x̄+ (B̄ + ∆B̄)u

y = (C̄ + ∆C̄)x̄+ (D + ∆D)u
, (8.3.8)

where Ā =

[
A O

O O

]
, B̄ =

[
B

O

]
and C̄ =

[
C F

]
.

Then a FD observer can be designed for system (8.3.8) using the normal matrices

under the observability of the pair (Ā, C̄), as follows
˙̄̂x = Āˆ̄x+ B̄u+ K̄o(y − ŷ)

ŷ = C̄ ˆ̄x+Du

f̂ = P ˆ̄x

, (8.3.9)

where the gain matrix K̄o is the observer gain matrix to be designed (e.g., pole

assignment of the pair (Ā, C̄)) and P is the projection matrix to obtain fault estimate

from the augmented state estimate. Then fault estimates f̂ directly indicate the

status of the sensors.

Verification and threshold

Similar to the case of residual based approach, the verification and threshold se-

lection problem is formulated into the sate reachable set computation problem for

uncertain systems.

Combing (8.3.8) and (8.3.9), the error dynamic e = x̄− ˆ̄x can be obtained

ė = (Ā− K̄oC̄)e+ (∆Ā− K̄o∆C̄)x̄+ (∆B̄ − K̄o∆D)u. (8.3.10)

In addition, substituting measurement y = (C̄ + ∆C̄)x̄+ (D+ ∆D)u of (8.3.8) into

system (8.3.9), one can obtain

˙̄̂x = Āˆ̄x+ B̄u+ K̄o(y − ŷ)

= Āˆ̄x+ B̄u+ K̄o(C̄e+ ∆C̄x̄+ ∆Du)
. (8.3.11)

Both system (8.3.10) and (8.3.11) involve unknown state variables x̄, to make

the reachability analysis feasible, it is eliminated through the relationship x̄ = e+ ˆ̄x.

Substituting x̄ = e + ˆ̄x into (8.3.10) and (8.3.11) and putting them together, one



Section 8.4. Application study 120

can obtain[
ė
˙̄̂x

]
︸︷︷︸
χ̇

=

[
Ā− K̄oC̄ + ∆Ā− K̄o∆C̄ ∆Ā− K̄o∆C̄

K̄oC̄ + K̄o∆C̄ Ā+ K̄o∆C̄

]
︸ ︷︷ ︸

A

[
e

ˆ̄x

]
︸︷︷︸
χ

+

[
∆B̄ − K̄o∆D

B̄ + K̄o∆D

]
u︸ ︷︷ ︸

BU

. (8.3.12)

Similar to the case of residual based approach, using the under-brace notations

in (8.3.12), Eq. (8.3.12) can be put into a compact form similar to Eq. (8.3.6).

Consequently, if the reachable set of the system (8.3.12) can be calculated, then the

reachable set of the fault estimates f̂ can thus be obtained.

Now the problem of residuals (or fault estimates) reachable set calculation under

normal case and a selected faulty cases has been transformed into the state reach-

ability analysis of uncertain system (8.3.6), the implementation issue of which has

been discussed in Chapter 7.

8.4 Application study

In this section, the results will be demonstrated through the case study of sensor

fault diagnosis problem for vehicle lateral dynamics given in Section. 8.2. Both the

verification and threshold selection problem for residual based and fault estimation

based FD approaches discussed in Section. 8.3 are considered. The accelerometer

fault and gyrometer fault of vehicle lateral dynamics are considered simultaneously.

The simulation scenario including initial state interval, uncertain parameter intervals

and steering control input is given as follows.

Without loss of generality, assume that the uncertainty appears in the vehicle

velocity v, since it is the main uncertainty source [123] due to sensor measurement

errors (other parameter uncertainties can be similarly considered). The vehicle

velocity is assumed to be within a bounded interval v ∈ [19, 21] m/sec, then following

the procedure of [123], system matrices Aun and Bun in can be calculated as interval

matrices Aun ∈ A+ [−1, 1]×∆A,Bun ∈ B + [−1, 1]×∆B, with A,∆A,B and ∆B

given by

A =

[
−4.2832 −0.9275

23.6162 −5.8513

]
,∆A =

[
−0.2142 −0.0073

0 −0.2926

]
,

B =
[

1.7662 33.2580
]
,∆B =

[
0.0883 0

]
.
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where A is a stable matrix with complex poles.

The initial values of slip angle and yaw rate are within a bounded interval vector

([−0.02, 0.02]; [0.03, 0.07]). The known steering angle input uc(t) is a step input with

amplitude 0.05 rad at 1 sec (in this case, the lateral acceleration is guaranteed to

be less than 0.4 g such that the one-track mode can well describe the vehicle lateral

dynamics). The accelerometer sensor fault fa and gyrometer fault fy will given

where needed and will be plotted in the following figures directly. The sensor faults

with different amplitudes are considered to evaluate the FD algorithms.

8.4.1 Residual based approach

The residual based approach in Section. 8.3.1 is first considered. The observer gain

matrices Kr
i , i = 1, 2 in (8.3.1) are designed using pole assignment of the normal

system matrix pair (A,Ci) such that the poles of matrix A−Kr
i Ci are [−8;−7]; the

results are Kr
1 = [−0.0607,−0.2256] and Kr

2 = [−0.4999, 4.8655]. Since the initial

system states x(0) = [0; 0.05] can not be known exactly due to measurement errors,

the initial states of the FD observer are supposed to lie in a bounded interval, given

by x̂i(0) =
[

(−0.02, 0.02), (0.03, 0.07)
]
.

Given the uncertain parameters, the interval matrices in Eq. (8.3.6) can be

calculated using INTerval LABoratory (INTLAB) software. Now the initial state

uncertainties, system matrix uncertainties in (8.3.6) are all available, the reachability

analysis tool can be applied to calculate the reachable sets of the residuals. The

step-size for reachability analysis is chosen as 0.01 and the order of zonotope ρ

is 800 (the calculation accuracy can be further increased by reducing step-size and

increasing zonotope order, which will require longer computation time), under which

configuration the computation time for each observer is about 1.5 sec using Matlab

2012 with Intel Core i5-3570 CUP @ 3.40 GHz. The reachable sets of the residuals

(grey areas) and 200 exemplary trajectories (blacks lines) using stochastic Monte

Carlo Simulations are shown Figs. 8.5 and 8.6 respectively.

It can be observed from Figs. 8.5 and 8.6 that all the exemplary trajectories fall

into the calculated reachable sets and the reachable sets are not conservative, i.e.,

the trajectories are not far away from the boundaries of the reachable sets, which

again verifies the effectiveness of the reachability analysis tool.

During 0 to 1 sec where no steering control input is given, one can see that

the effect of initial state uncertainties and parameter uncertainties on residuals will

gradually decrease. This is because in the absence of control input, the system states

of vehicle lateral dynamics and consequently the effect of uncertainties will converge

to zero in steady-state due to the system convergence (i.e., the real parts of the
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Figure 8.5. Accelerometer fault profile (red lines); the reachable set of resid-
ual 1 sensitive to accelerometer fault (grey areas) with its zoom-in plot from
1.6 sec–1.8 sec and their stochastic simulated trajectories (black lines).

Figure 8.6. Gyrometer fault profile (red lines); the reachable set of resid-
ual 2 sensitive to gyrometer fault (grey areas) and their stochastic simulated
trajectories (black lines).

eigenvalues of Aun are negative). After 1 sec, steering control input u = 0.05 rad is

executed on the system, as a result, the system states of the vehicle lateral dynamics

and consequently the effect of system uncertainties on residuals will no long be zero.

One can see from Figs. 8.5 and 8.6, that in the presence of accelerometer fault

at 2 sec (or gyrometer fault at 3 sec), the residual 1 sensitive to accelerometer fault

(or residual 2 sensitive to gyrometer fault) substantially deviates from its normal

reachable set before 2 sec (or 3 sec), which verifies the effectiveness of the residual

based FD algorithm.

After the FD observer converges, one can choose the upper and lower bound of the

residual reachable set as the interval threshold, which is [−0.2, 0.2] for accelerometer
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fault detection and [−0.01, 0.01] for gyrometer fault detection. Residuals that deviate

from the interval threshold indicate the presence of fault. By iteratively decreasing

the fault amplitude and performing reachable set calculation such that the upper

bound of residual under normal case and lower bound of residual under faulty case

are equal, one can find the minimum fault amplitude that can be detected by the

residual based FD algorithm under described uncertainties; that is 0.55 m/s2 for

accelerometer fault and 0.05 rad for gyrometer fault.

8.4.2 Fault estimation based approach

The fault estimation based approach in Section. 8.3.2 is then considered. The ob-

server gain matrix K̄o in (8.3.9) is designed using pole assignment of the normal sys-

tem matrix pair (Ā, C̄) such that the poles of matrix Ā−K̄oC̄ are [−10;−9;−4;−3].

Similarly, the initial states are supposed to be lie in a bounded interval ˆ̄x0 =[
(−0.02, 0.02), (0.03, 0.07), 0, 0

]
.

Similar to the case of residual based approach in Section. 8.4.1, the interval

matrices A and B in (8.3.12) can be calculated. Consequently, the reachability

analysis tool can be applied to calculate the reachable sets of the accelerometer and

gyrometer fault estimates. The setting for the reachable set computation tool is

the same as that in Section. 8.4.1, and the computation time is about 3 sec. The

reachable sets of accelerometer and gyrometer fault estimates (grey areas) and 200

exemplary trajectories (black lines) using stochastic Monte Carlo Simulations are

shown Figs. 8.7 and 8.8 respectively.

Figure 8.7. Accelerometer fault profile (red lines); the reachable set of the
accelerometer fault estimate (grey areas) with its zoom-in plot from 1.7 sec to
1.72 sec and stochastic simulated trajectories (black lines).

From Figs. 8.7 and 8.8, similar conclusion (to the case of residual based ap-
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Figure 8.8. Gyrometer fault profile (red lines); the reachable set of the
gyrometer fault estimate (grey areas) and stochastic simulated trajectories
(black lines).

proach) can be drawn about the effect of initial state uncertainties and control

input on fault estimates. One can see from Figs. 8.7 and 8.8, that in the presence of

accelerometer fault at 2 sec (or gyrometer sensor fault at 3 sec), the reachable set of

the accelerometer fault estimate (or gyrometer fault estimate) substantially deviates

from its normal reachable set before 2 sec (before 3 sec for gyrometer fault), which

verifies the effectiveness of fault estimation based FD algorithm. One can also see

the effect of gyrometer fault on accelerometer fault reachable set at 3 sec (or the

effect of accelerometer fault on reachable set of gyrometer fault estimate at 2 sec);

this is due to the fact that they are coupled with each other in the FD observer

design.

Based on the threshold selection principle, the interval threshold is chosen

[−0.16, 0.16] for accelerometer fault detection and [−0.012, 0.012] for gyrometer fault

detection. One can also find the minimum fault amplitude that can be detected by

fault estimation based FD algorithm under described uncertainties; that is 0.4 m/s2

for accelerometer fault and 0.02 rad for gyrometer fault.

8.4.3 Comparisons

Although both residual based and fault estimation based FD approaches have been

verified to be effective for sensor fault diagnosis (for fault with large enough am-

plitude) using the case study of accelerometer and gyrometer fault diagnosis for

vehicle lateral dynamics. There exist many differences in terms of fault diagnosis

logic, sources of false alarm, application scope. A comparison between them has

been made and summarized in Table. 8.1
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Table 8.1. Parameters in longitudinal dynamics of the missile
Approach Residual Fault estimation

Observer number Multiple Single
Fault decoupled Yes No

Source of false alarm initial uncertainties fault coupling
Detectable accelerometer fault 0.55 m/s2 0.4 m/s2

Detectable gyrometer fault 0.05 rad 0.02 rad

Some observations from Table. 8.1 are given as follows:

• Residual based FD requires multiple observer to achieve fault isolation, while

fault estimation based one only requires one observer;

• Residual based approach can achieve fault decoupling, while fault estimation

based approach fails to decouple different faults;

• The initial uncertainties have more effect on the performance of residual based

approach than fault estimation based one;

• Fault estimation based approach can detect sensor faults (accelerometer and

gyrometer sensor faults) with smaller amplitude than residual based one.

8.5 Summary

In this Chapter, the quantitative comparison analysis between residual based and

fault estimation based diagnosis approach is made using the fault diagnosis verifi-

cation and robust threshold selection tool proposed in Chapter 7. The sensor fault

diagnosis problem of vehicle lateral dynamics is chosen as the case study. The ef-

fectiveness of residual based and fault estimation based diagnosis approaches are

summarized and compared in an quantitative way.



Chapter 9

SUMMARY AND FUTURE

WORK

In this Chapter, the contributions of this thesis are summarized. Furthermore, a

discussion on possible future work is also included.

9.1 Summary

This thesis is mainly on practically-motivated theoretical research on fault estima-

tion algorithms: design and verification. The overall objectives are threefold:

• Compare residual based and fault estimation based fault diagnosis approaches

both qualitatively and quantitatively;

• Propose a set of disturbance estimation algorithms for the purpose of fault

estimate according to different specifications;

• Provide a new perspective to the problem of fault diagnosis system verification

and robust threshold selection.

To this end, the fault diagnosis algorithms are first reviewed, where emphasis

is put on model based fault diagnosis algorithms (e.g., the residual based and fault

estimation based approaches). The disturbance estimation algorithms are also re-

viewed and categorized according to the different state information used for the

derivation of disturbance estimate. On this basis, a comparison analysis between

the traditional residual based and fault estimation based fault diagnosis approaches

is made, from which it is discovered that the fault estimation based approach pro-

vides a simple fault diagnosis logic (especially for fault isolation) and also the fault

severity information.

Then a set of disturbance observer algorithms (for the purpose of fault estima-

tion) are proposed. Specifically, the properties of a unified Kalman filter are first

126
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investigated including existence, optimality and asymptotic stability. The results

can provide a unified existence condition accommodating the classical Kalman filter

and Unknown input observer as its special cases. On this basis, the results are ap-

plied to the problem of simultaneous state and disturbance estimation, termed full

order disturbance observer design since all the state information is needed in the

derivation of disturbance estimate.

Noting that not all the state information is needed to derive the disturbance

estimate, reduced-order disturbance observer design is then considered. A reduced

disturbance observer is first proposed for discrete-time linear systems where a slowly

time-varying disturbance model is assumed, which can unify both the full order

and reduced order disturbance observer on this topic (i.e., disturbance observer

design with a slowly time-varying disturbance model). And more importantly, an

easily verified existence condition is provided thorough two matrix rank equality

conditions.

To improve the disturbance estimate performance for the case where poor prior

disturbance model information is available, another reduced-order disturbance ob-

server is designed for discrete-time linear stochastic system with easily-checked ex-

istence condition. This is achieved by using a functional observer structure in con-

junction with minimum-variance-unbiased-estimation technique.

Following this line of thought, attention is then turned to the relationship

between time-domain disturbance observer and frequency-domain disturbance ob-

server. It is rigorously shown that these two complete different disturbance observer

design principles share the same structure in transfer function format. The main dif-

ferences between them are also identified such as disturbance observer order. Then

a time-domain disturbance observer is proposed based on the functional observer

design to reduce the disturbance observer order.

In practical applications, however, there are always some mismatches between

the real pant and the mathematical model used to describe it. This phenomenon

will bring two challenging issues for model based fault diagnosis. On the one hand, it

is challenging to verify a fault diagnosis algorithm, i.e., answering the question that

under what condition (e.g., level of uncertainties) a given fault diagnosis algorithm

is valid. On the other hand, it is hard to choose an appropriate threshold to evaluate

the fault indicating signals.

To this end, the rest of the thesis focuses on these two challenging issues. They

are formulated as the reachability analysis problem for uncertain systems. The

basic philosophy of the proposed approach is to quantitatively evaluate the effect

of uncertainties and faults on fault indicating signals. Two practical illustrating
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examples including actuator and sensor fault diagnosis for a direct motor system,

and sensor fault diagnosis for vehicle lateral dynamics are presented to demonstrate

the main idea of the proposed approach. Particularly, a quantitative comparison

between the residual based and fault estimation based fault diagnosis approaches

are further made based on the newly proposed approach.

9.2 Future Work

Based on the research outcome in this thesis, the future work (or research challenges

to be more exact) involved are provided below in conjunction with the possible

solutions. They are categorized in terms of algorithm design (see, Section. 9.2.1)

and application verification (see, Section. 9.2.2).

9.2.1 Algorithm design

The future work on algorithm design can mainly be categorised into algorithm design

for disturbance observer and algorithm design for system verification and robust

threshold generation.

Disturbance observer design

Disturbance observer design for linear systems is relatively mature and in the stage

of practical application. However, the disturbance observer for nonlinear systems

(see, [50,62,124] among many others) assumes that the full states are directly mea-

surable or the system nonlinear terms satisfy some assumptions (e.g., Lipschitz).

Consequently, the disturbance observer design for generic nonlinear systems should

be further developed. A Bayesian inference approach (particle filter for discrete-

time stochastic system to be more exact) may provide a solution. Two examples

are taken as follows:

The first example is about unknown input estimation in input channel (i.e., for

actuator fault estimation). Consider the following generic nonlinear system in the

presence of fault (or disturbance) in input channel:{
ẋ = f(x) + g1(x)u+ g2(x)d

y = h(x)
, (9.2.1)

The fault d can be modelled (or approximately represented) by a linear system with

unknown initial values

ẇ = Ww, d = V w . (9.2.2)
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Then systems (9.2.1) and (9.2.2) can be combined to obtain a composite system,

given by 
[
ẋ

ẇ

]
=

[
f(x) + g2(x)V w

Ww

]
+

[
g1(x)

0

]
u

y = h(x)

, (9.2.3)

Putting the aforementioned system into the corresponding discrete-time counter-

part, the particle filtering can be drawn to solve the problem of augmented state

estimation problem, considering that particle filter can handle generic nonlinear

system.

The second example is about unknown input estimation in measurement channel

(for sensor fault estimation). Consider the following generic nonlinear system in the

presence of fault (or disturbance) in measurement channel:{
ẋ = f(x) + g1(x)u

y = h(x) +Dd
, (9.2.4)

Combing systems (9.2.4) and (9.2.2) results in a composite system, given by
[
ẋ

ẇ

]
=

[
f(x)

Ww

]
+

[
g1(x)

0

]
u

y = h(x) +DV w

, (9.2.5)

Similar to the case of example 1, after transforming the systems into the discrete-

time counterpart, the particle filtering can be drawn to solve the problem of aug-

mented state estimation problem. Particularly, given system states x, the remaining

systems are conditionally linear system and marginalized particle filtering can be used

to derive the state and fault estimation in a more efficient way.

The disturbance observer design should also accommodate some practical issues,

which may lead to new research challenges. Some examples are given as follows:

• How to design a disturbance observer based control for uncertain systems

using saturated actuator, since in practical applications input saturation is

prevalent due to the limited capabilities of actuator. The mechanism of anti-

windup control can be integrated with disturbance observer based control.

• How to design a disturbance observer accommodating the effects of sensor

noises, since they are inevitable in practical applications and may degrade

performance if not being handled properly. The classical Kalman filter and

disturbance observer can be fused together to reduce the effect of noises.
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It is demonstrated in Chapter. 3 that by incorporating certain prior information

on disturbances, both state estimation and disturbance estimation performance can

be enhanced. The prior information in Chapter. 3 is still limited, more types of

prior information should be exploited, particularly the prior information learned

from history data. Machine learning algorithms can be drawn to learn and build

the prior information in large amount of history data.

Verification and robust threshold generation

In Chapters 7 and 8, the problem of fault diagnosis system verification and robust

threshold generation is formulated into reachability analysis for uncertain systems.

The effectiveness of the algorithm is also verified using different examples.

However, the examples therein are linear systems. Although there is no such

assumption in the proposed approach, the fault diagnosis system verification and

robust threshold selection for uncertain nonlinear systems have not been considered

and is more challenging in comparison with the linear one. For the verification prob-

lem of nonlinear system fault diagnosis, more advanced reachable set computation

algorithms should be drawn to compute the reachable set. Besides, in practical ap-

plications, the reference inputs may be time-varying. Consequently, effective reach-

ability analysis algorithms for uncertain systems with time-varying inputs should

also be developed.

Exact reachability analysis is only possible for a limited type of linear systems.

For generic linear systems and nonlinear systems, approximation is usually used

to obtain an over-approximation of the true reachable set. How to obtain a tight

approximation for true reachable set is also an open and challenging question to be

answered.

9.2.2 Experimental validation

Most of the results in this thesis are verified using numerical examples, experimental

verification and validation is necessary and may pose new research challenges. The

future work on experimental validation will mainly be focused on the following

three aspects including application validation of the comparison analysis between

the residual based and fault estimation based fault diagnosis approaches in Chapter

2, different kinds of disturbance estimation algorithms proposed in Chapters 3–6 and

the validation of verification and threshold generation algorithm based reachable set

computation in Chapter 7.



Appendix A

SUPPLEMENTARY MATERIALS

A.1 Appendix for Chapter 2

In this section, the motor driver system for electric A/C is introduced, which serves

as the case study in Section. 2.3 of Chapter 2.

A.1.1 Principe of motor systems

The whole model of a motor system can be divided into two subsystems including

an electrical model and a mechanical model.

Electrical subsystem: According to Kirchhoff’s law, one can obtain the equation

of the electrical model as

Lİ +RI = V − keω (A.1.1)

Mechanical subsystem: The equation for the mechanical subsystem can be de-

rived based on the torque balance as follows:

Jω̇ = kT I − kdω − Γd (A.1.2)

The meanings of all the aforementioned notations and their corresponding values

for simulation study are referred to [125], which are summarized in Table A.1.

A.1.2 Controller design

To eliminate steady-state position control error under external load and system

uncertainties, an integral action is usually introduced when designing a controller.

To this end, the integral of the output error is augmented as an extra state, i.e.,

x4 =
∫

(yo − yd)dt, where yo is the system output and yd = θd is the reference

position. Since all of the state variables are very easy to measure (a potentiometer

for position, a tachometer for speed and an ammeter for current), one can design

a full-state feedback controller without a state observer. In this paper, the control

131
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Table A.1. Meanings of Notations
Notation Significance Value

L Armature inductance 170E-3 (H)
I Armature current A
ke Back-EMF constant 14.7E-3
R Armature resistance 4.67 Ohms
V Input voltage V
J Motor inertia 42.6E-6 Kg·m2

ω Rotor rotation speed rad/s
kT Motor electrical constant 14.7E-3
kd Mechanical dumping constant 47.3E-6
Γd Load torque N·m

scheme is designed as

u = −kθ(θm − θd)− kex4 − kωωm − kiim (A.1.3)

where θm, ωm and im are the measurement value of position, velocity and current,

respectively. The parameters kθ, ke, kω and ki are the control parameters to be

designed. The aforementioned systems can be put into state space model, which is

discussed in the following section.

A.1.3 State space model

Based on the aforementioned two subsystems (A.1.1) and (A.1.2), a linear model of

the motor system can be obtained as follows:
ẋ = Ax+Bu+Dyd + ΓΓd,

ym = Cmx,

yo = cox

(A.1.4)

where x = [x1, x2, x3, x4]T = [θ, ω, I,
∫

(θ − θd)dt]T is the system state, u = V the

control voltage, yd = θd the desired output position, Γd the load, ym the measure-

ment output and yo the controlled output. System matrix A, control input matrix

B, desired output matrix D, load matrix Γ, measurement matrix Cm and output

matrix co are given as follows:

A =


0 1 0 0

0 −kd
J

kT
J 0

0 −ke
L −

R
L 0

1 0 0 0

, B =


0

0
1
L

0

, D =


0

0

0

−1

 Γ =


0

− 1
J

0

0

, Cm = I4×4,
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co =
[

1 0 0 0
]
.

A.2 Appendix for Chapter 3

A.2.1 Proof of Lemma 1

rank(


zIn −Ak −Gk
Ck+1 O

O Dk

) = rank(


zIn −Ak −Gk
Ck+1 O

O Dk


[
In O

O [F0k D
T
k ]

]
)

= rank(


zIn −Ak −GkF0k −GkDT

k

Ck+1 O O

O DkF0k DkD
T
k

) = rank(

[
zIn −Ak −Fk
Ck+1 O

]
)+rank(DkD

T
k ).

A.2.2 Proof of Theorem 4

Inspired by the approaches in [72,79], the proof of Theorem 4 is organized as follows.

First, it will be shown that Pk|k is monotonically increasing and converges to a fixed

point P̄ for the zero initial covariance matrix P0|0 = 0. Next, the asymptotic stability

of the proposed filter is proved. Finally, one can demonstrate that the convergence

of Pk|k and the asymptotic stability of the filter still hold for any arbitrary initial

covariance P0|0 ≥ 0.

Monotonicity

First, one can show by induction that Pk|k is monotonically increasing for initial

covariance P0|0 = 0. Define a matrix function

φ(K,X) = (A−KCA)X(A−KCA)T

+(I −KC)Q(I −KC)T +KRKT ,

and define f(X) = φ(K∗, X), where K∗ is the gain matrix (3.4.3) of the filter that

corresponds to the covariance matrix X. Note that for any 0 ≤ X ≤ Y , one has

f(X) = φ(K∗X , X) ≤ φ(K∗Y , X) ≤ φ(K∗Y , Y ) = f(Y ), (A.2.1)

where the first inequality can be obtained from Theorem 3 and the second inequality

is immediate from the definition of φ(K,X).

Clearly one has P0|0 ≤ P1|1 for P0|0 = 0. Now suppose Pk−1|k−1 ≤ Pk|k holds
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for step k. Then noting that Pk|k = f(Pk−1|k−1) and Pk+1|k+1 = f(Pk|k), one can

obtain Pk|k ≤ Pk+1|k+1 based on Eq. (A.2.1). By induction, Pk|k is monotonically

increasing for all k when initial covariance P0|0 = 0.

From the monotonicity of Pk|k and in conjunction with the boundedness of Pk|k

shown in Lemma 3, one can conclude that Pk|k converges to a unique fixed point for

zero initial covariance P0|0.

Asymptotic stability

Let P̄ be a solution of the steady-state version of the error covariance equation in

Eq. (3.5.1), i.e. P̄ = φ(K̄, P̄ ), where K̄ is the corresponding gain matrix. Note that

the fixed point obtained previously also satisfies this equation.

Suppose the asymptotic stability of the time-invariant filter does not hold, i.e.

there exist some |λ| > 1 and the corresponding eigenvector ω 6= 0 such that

(A− K̄CA)Tω = λω. (A.2.2)

From P̄ = φ(K̄, P̄ ), one can have

(1− |λ|2)ω∗P̄ω = ω∗(I − K̄C)Q(I − K̄C)Tω + ω∗K̄RK̄Tω,

where the superscript ∗ denotes the complex conjugation. Since |λ| > 1, the above

equation indicates that both sides of the equation are equal to zero since the right-

hand side is nonnegative. Hence one has

[(I − K̄C)Q
1
2 ]Tω = 0 and K̄Tω = 0. (A.2.3)

Then one can obtain from Eq. (A.2.3) that

(Q
1
2 )Tω = 0. (A.2.4)

In addition, from the second equality of (A.2.3) and Eq. (A.2.2), one can obtain

ATw = λw. (A.2.5)

Eqs. (A.2.4) and (A.2.5) implies that (A,Q
1
2 ) is not stabilizable. This contradiction

disproves the assumption that the time-invariant filter is unstable.
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Non-zero initial covariance

It is now demonstrated that Pk|k approaches to P̄ for any non-negative initial co-

variance P0|0. First, note that

Pk|k − P̄ = φ(Kk, Pk−1|k−1)− φ(K̄, P̄ )

≤ φ(K̄, Pk−1|k−1)− φ(K̄, P̄ )

= (A− K̄CA)(Pk−1|k−1 − P̄ )(A− K̄CA)T ,

where the inequality holds due to Theorem 3, and K̄ and P̄ are a solution of P =

φ(K̄, P̄ ).Since (A− K̄CA) is stable, the right-hand side of the above equation will

approaches to 0 as k tends to +∞. Hence one can obtain Pk|k ≤ P̄ for large k.

Now let P 0
k|k denote the covariance matrix corresponding to the initial covari-

ance P0|0 = 0. Then from 0 = P 0
0|0 ≤ P0|0 and applying (A.2.1), one can obtain

P 0
1|1 ≤ P1|1. By induction, it can be easily verified that the inequality in the initial

covariance matrixes propagates for all k, i.e. P 0
k|k ≤ Pk|k for all k. Since

P̄ = lim
k→∞

P 0
k|k ≤ lim

k→∞
Pk|k ≤ P̄ ,

One can conclude that Pk|k will converge to a unique P̄ . This completes the proof

of Theorem 4.

A.2.3 Proof of Eq. (3.6.7)

First, one can obtain the inverse of Mk as follows

M−1
k = [Gk, G

⊥
k ]

[
(I − F0kF

T
0k)D

T
k (DkD

T
k )−1 O F0k

O I O

]
.

Then Eq. (3.6.7) can be obtained:

Dkd̂k = Dk(G
T
kGk)

−1GTkM
−1
k


rk

O

O

+Dk(G
T
kGk)

−1GTkM
−1
k


O

O

I

 δ̂k
= Dk(G

T
kGk)

−1GTkGk(I − F0kF
T
0k)D

T
k (DkD

T
k )−1rk

+Dk(G
T
kGk)

−1GTkGkF0kδ̂k = rk.
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A.2.4 Proof of Eq. (3.6.8)

Define MP
k−1 = Pk|kM̄

T
k−1(M̄k−1Pk|k−1M̄

T
k−1)−1. Then one has

M−1
k−1r̃k−1 −KkCkM

−1
k−1r̃k−1

= (I −KkCk)M
−1
k−1r̃k−1

= MP
k−1M̄k−1M

−1
k−1r̃k−1

= MP
k−1M̄k−1Gk−1D

T
k−1(Dk−1D

T
k−1)−1Dk−1dk−1

= MP
k−1

[
Dk−1 O

O I

]
[Gk−1, G

⊥
k−1]−1 ×Gk−1D

T
k−1(Dk−1D

T
k−1)−1Dk−1dk−1

= MP
k−1

[
rk−1

O

]
= MP

k−1M̄k−1Gk−1dk−1

= Pk|kM̄
T
k−1(M̄k−1Pk|k−1M̄

T
k−1)−1r̄k−1,

where in the above derivation, the following identities have been used:

M−1
k−1r̃k−1 = Gk−1D

T
k−1(Dk−1D

T
k−1)−1Dk−1dk−1, (A.2.6)

I −KkCk = MP
k−1M̄k−1. (A.2.7)

Now one can show Eq. (A.2.7):

I −KkCk −Mp
k−1M̄k−1

= I −KkCk − Pk|kM̄T
k−1(M̄k−1Pk|k−1M̄

T
k−1)−1M̄k−1

= I − Pk|kCTk R
−1
k Ck − Pk|k[M̄T

k−1(M̄k−1Pk|k−1M̄
T
k−1)−1

× M̄k−1 + CTk R
−1
k Ck − CTk R

−1
k Ck]

= I − Pk|kCTk R
−1
k Ck − [I − Pk|kCTk R

−1
k Ck]

= O,

where M̄k =

[
Dk O

O I

]
[Gk, G

⊥
k ]−1.

A.3 Appendix for Chapter 6

A.3.1 Proof of Theorem 13

First consider transfer function Gud̂. From the identity A−1 = adj(A)/det(A), one

can obtain:
Gud̂ = −HC̃[sI − (Ā−KC̄)]−1B̄

=
−[O,H]adj(sI − (Ā−KC̄))B̄

det(sI − (Ā−KC̄))
.

(A.3.1)
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In addition, for SISO system (A,B,C), the following property holds,

Cadj(sI −A)B =

∣∣∣∣∣ sI −A B

−C 0

∣∣∣∣∣ . (A.3.2)

Partitioning the gain matrix K into K = [KT
1 ,K

T
2 ]T in conjunction with (A.3.2),

the numerator of (A.3.1) is

−[O,H]adj[sI − (Ā−KC̄)]B̄

= −

∣∣∣∣∣∣∣∣
sI −A+K1C −DH B

K2C sI − S O

O −H 0

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
I −DH −K1

O sI − S −K2

O −H 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sI −A O B

O I O

−C O 0

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣ sI − S −K2

−H 0

∣∣∣∣∣
∣∣∣∣∣ sI −A B

−C 0

∣∣∣∣∣ = Hadj(sI − S)K2Cadj(sI −A)B.

(A.3.3)

Then consider transfer function Gyd̂. Similar to (A.3.1) and (A.3.3), one can

obtain the following two identities,

Gyd̂ = HC̃[sI − (Ā−KC̄)]−1K

=
[O,H]adj[sI − (Ā−KC̄)]K

det(sI − (Ā−KC̄))
.

(A.3.4)

and

[O,H]adj[sI − (Ā−KC̄)]K

=

∣∣∣∣∣∣∣∣
sI −A+K1C −DH K1

K2C sI − S K2

O −H 0

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
I −DH −K1

O sI − S −K2

O −H 0

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sI −A O O

O I O

−C O 1

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣ sI − S −K2

−H 0

∣∣∣∣∣ det(sI −A) = Hadj(sI − S)K2det(sI −A).

(A.3.5)

Substituting (A.3.3) into (A.3.1) and (A.3.5) into (A.3.4) ends the proof.

A.3.2 Proof of Eq. (6.3.6)

To prove Gud̂(0) = 1, one only needs to prove the subtraction of the denominator

and numerator of (A.3.1) is zero at s = 0, which is given as follows:∣∣∣∣∣∣∣∣
−A+K1C −DH B

K2C −S O

O −H 0

∣∣∣∣∣∣∣∣+

∣∣∣∣∣ −A+K1C −DH
K2C −S

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−A+K1C −DH B

K2C −S O

O −H 0

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
−A+K1C −DH O

K2C −S O

O −H 1

∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣
−A+K1C −DH B

K2C −S O

O −H 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
−A+K1C −DH D

K2C −S O

O −H 1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−A+K1C O D

K2C −S O

O O 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ −A+K1C O

K2C −S

∣∣∣∣∣
= det(−A+K1C)det(−S),

where the identity D = B has been used in the third equality. The proof ends since

det(S) = 0.

A.3.3 Proof of Eq. (6.3.7)

From (A.3.1), one can obtain the denominator of 1/(1−Gud̂), given by

det(sI − (Ā−KC̄)) + [O,H]adj(sI − (Ā−KC̄))B̄

=

∣∣∣∣∣∣∣∣
sI −A+K1C −DH O

K2C sI − S O

O −H 1

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
sI −A+K1C −DH B

K2C sI − S O

O −H 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
sI −A+K1C −DH B

K2C sI − S O

O −H 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
sI −A+K1C O B

K2C sI − S O

O O 1

∣∣∣∣∣∣∣∣
= det(sI −A+K1C)det(sI − S),

where in the third equality D = B has been used.

A.3.4 Proof of Theorem 14

Without loss of generality, suppose C = [1, O1×n−1] (this assumption can always be

satisfied for SISO system (6.2.2) through some non-singular linear transformation).

Partitioning
[
J K

]
into

[
J1 K1

J2 K2

]
and taking the specific structure of L into

account, the matrix F can be put into the following form:

F = LĀL+ − [J,K]

[
C̄ĀL+

C̄L+

]

=

[
L0 O

O I

][
A DH

O S

][
L+

0 O

O I

]
−

[
J1 K1

J2 K2

][
CAL+

0 CDH

CL+
0 O

]

=

[
L0AL

+
0 − J1CAL

+
0 −K1CL

+
0 L0DH − J1CDH

−J2CAL
+
0 −K2CL

+
0 S − J2CDH

]
.

(A.3.6)

Noticing that L0 = [O, I] has a full-row rank and so L+
0 = LT0 and matrix
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A,B can be partitioned into

[
A1 A1

A3 A4

]
and

[
B1

B2

]
, respectively, one can obtain

the following matrix equalities:

L0AL
+
0 = A4, CAL

+
0 = A2,

CL+
0 = 0, L0B = B2, CB = B1.

(A.3.7)

First consider Gud̂. Similar to the proof of Theorem 13, one can obtain the

following identity.

Gud̂ = −HC̃(sI − F )−1T =
−HC̃adj(sI − F )T

det(sI − F )
. (A.3.8)

Based on (A.3.7) in conjunction with the definition of F in (A.3.6), the numer-

ator of (A.3.8) is governed by

HC̃adj(sI − F )T

= −

∣∣∣∣∣∣∣∣
sI −A4 + J1A2 −L0DH + J1CDH B2 − J1B1

J2A2 sI − S + J2CDH −J2B1

O −H O

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
sI −A4 + J1A2 O B2 − J1B1

J2A2 sI − S −J2B1

O −H O

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣
I −J1 O

O −J2 −(sI − S)

O O H

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sI −A4 O B2

−A2 O B1

O −I O

∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣ −J2 −(sI − S)

O H

∣∣∣∣∣
∣∣∣∣∣∣∣∣
O −A2 B1

O sI −A4 B2

−I O O

∣∣∣∣∣∣∣∣
= −(−1)q

∣∣∣∣∣ −(sI − S) −J2

H O

∣∣∣∣∣
∣∣∣∣∣∣∣∣
O −A2 B1

−A3 sI −A4 B2

−I O O

∣∣∣∣∣∣∣∣
= (−1)2q

∣∣∣∣∣ (sI − S) J2

−H O

∣∣∣∣∣
∣∣∣∣∣∣∣∣
sI −A1 −A2 B1

−A3 sI −A4 B2

−I O O

∣∣∣∣∣∣∣∣
= Hadj(sI − S)J2Cadj(sI −A)B.

(A.3.9)

Secondly, consider Gyd̂. Similar to the proof of Theorem 13, one can obtain the

following identity,

Gyd̂ = HC̃[(sI − F )−1G+ J ]

=
HC̃adj(sI − F )G

det(sI − F )
+
HC̃Jdet(sI − F )

det(sI − F )
,

(A.3.10)
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the numerator of which is as follows:

HC̃adj(sI − F )G+HC̃Jdet(sI − F )

=

∣∣∣∣∣ sI − F G

−HC̃ O

∣∣∣∣∣+

∣∣∣∣∣ sI − F O

−HC̃ HC̃J

∣∣∣∣∣ =

∣∣∣∣∣ sI − F G

−HC̃ HC̃J

∣∣∣∣∣
=

∣∣∣∣∣ sI − F sJ − FJ +G

−HC̃ O

∣∣∣∣∣ =

∣∣∣∣∣ sI − F sJ +K

−HC̃ O

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
sI −A4 + J1A2 −L0DH + J1CDH sJ1 +K1

J2A2 sI − S + J2CDH sJ2 +K2

O −H O

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
sI −A4 + J1A2 O sJ1 +K1

J2A2 sI − S sJ2 +K2

O −H O

∣∣∣∣∣∣∣∣ .

(A.3.11)

At this stage, suppose the following identities hold (its proof will be given later):{
K1 = −J1A1 +A3,

K2 = −J2A1.
(A.3.12)

Substituting (A.3.12) into (A.3.11) gives

HC̃adj(sI − F )G+HC̃Jdet(sI − F )

=

∣∣∣∣∣∣∣∣
sI −A4 + J1A2 O sJ1 − J1A1 +A3

J2A2 sI − S sJ2 +−J2A1

O −H O

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
I O −J1

O sI − S −J2

O −H O

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
sI −A4 O A3

O I O

−A2 O −sI +A1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ sI − S −J2

−H O

∣∣∣∣∣
∣∣∣∣∣ sI −A4 A3

−A2 −sI +A1

∣∣∣∣∣
= Hadj(sI − S)J2det(sI −A).

(A.3.13)

Substituting (A.3.9) into (A.3.8), and (A.3.13) into (A.3.10) ends the proof.

Then the proof of (A.3.12) is given, which is based on the Sylvester equation in

(6.4.3). From the Sylvester equation, one can obtain

GC̄ = WĀ− FW. (A.3.14)

Taking the structure of C̄ and W into consideration, (A.3.14) is equivalent to[
G1 O O

G2 O O

]
=

[
(L0 − J1C)A (L0 − J1C)DH

−J2CA S − J2CDH

]

−

[
A4 − J1A2 (L0 − J1C)DH

−J2A2 S − J2CDH

][
L0 − J1C O

−J2C I

]
,
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based on which in conjunction with [L0 − J1C] = [−J1, I], one can obtain
G1 = A3 −A1J1 + (A4 − J1A2)J1

+ (L0DH − J1CDH)J2,

G2 = −J2A1 − J2A2J1 + (S − J2CDH)J2

From K = G− FG, one can obtain{
K1 = G1 − F1J1 − F2J2 = A3 −A1J1,

K2 = G2 − F3J1 − F4J2 = −J2A1.

This ends the proof.

A.3.5 Proof of Eq. (6.4.17)

To prove Gud̂(0) = 1, one only needs to prove the subtraction of the numerator and

denominator of (A.3.8) is zero at s = 0, which is given as follows:

From (A.3.9), the denominator minus the numerator is∣∣∣∣∣∣∣∣
−A4 + J1A2 O B2 − J1B1

J2A2 −S −J2B1

O −H O

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
−A4 + J1A2 −L0DH + J1CDH O

J2A2 −S + J2CDH O

O −H I

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
−A4 + J1A2 O B2 − J1B1

J2A2 −S −J2B1

O −H O

∣∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣
−A4 + J1A2 O −L0D + J1CD

J2A2 −S J2CD

O −H I

∣∣∣∣∣∣∣∣ .
WhenD = B and consequently J2CD = J2B1 and−L0D+J1CD = −B2+J1B1,

the above equation can be further calculated as∣∣∣∣∣∣∣∣
−A4 + J1A2 O O

J2A2 −S O

O −H I

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣ −A4 + J1A2 O

J2A2 −S

∣∣∣∣∣
= det(−A4 + J1A2)det(−S).

The proof ends since det(S) = 0.

A.4 Appendix for Chapter 7

The meanings of the motor system parameters and its corresponding normal values

for simulation study are summarized in Table A.2.

The controller gain matrix is designed as Kc = [8, 1.3, 0.2, 12.6] and kθ = 8.

The observer gain K̄o1 for actuator fault diagnosis is based on pole assignment,

where the poles are selected as [−8,−7,−6,−5,−2,−2.2]. Similarly, the observer

gain K̄o2 for sensor fault diagnosis is also based on pole assignment with poles

[−8,−7,−6,−5,−2,−2.2,−2.4].
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Table A.2. The normal values of motor parameters
Notation Significance Value

L Armature inductance 0.046 H
ke Back-EMF constant 0.57
R Armature resistance 1 Ohms
J Motor inertia 0.093 Kg·m2

kT Motor electrical constant 0.57
kd Mechanical dumping constant 0.008

A.5 Appendix for Chapter 8

Table A.3. Parameters of vehicle lateral dynamics.
Notation Value Significance

m 1621 kg vehicle total mass
lV 1.15 m distance from CG to front axle
lH 1.38 m distance from CG to rear axle
Iz 1975 Kg ·m2 moment of inertia about the z-axis
cαV 57117 N/rad front axle tire cornering stiffness
cαH 81396 N/rad rear axle tire cornering stiffness
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