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Abstract

Analysis of vibration transmission and reflection in beam-like engineering structures requires
better predictive models to optimise structural behaviour further. Numerous studies have used
flexural and longitudinal structural wave motion to model the vibrational response of angled
junctions in beam-like structures, to better understand the transmission and reflection
properties. This study considers a model of a variable joint angle which joins two semi-infinite
rectangular cross-section beams. In a novel approach, the model allows for the joint to expand
in size as the angle between the two beams is increased. The material, geometric and dynamics
properties were consistently being considered. Thus, making the model a good representation
of a wide range of angles. Predicted results are compared to an existing model of a joint
between two semi-infinite beams where the joint was modelled as a fixed inertia regardless of
the angle between the beams, thus limiting its physical representation, especially at the
extremes of angle (two beams lay next to each other at 180° joint). Results from
experimentation were also compared to the modelling, which is in good agreement for the range
of angles investigated. Optimum angles for minimum vibrational power transmission are
identified in terms of the frequency of the incoming flexural or longitudinal wave. Extended
analysis and effect of adding stiffness and damping (rubber material) at the joint are also

reported.
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Abbreviations

EA

El

FF

LL

FL

LF

Al L24
BLis

Cro4

Dris

Young’s modulus x area of the beam

Young’s modulus x second moment of area (inertia)

cross-sectional area

second moment of area (inertia)

mass of joint

width of joint

thickness of the beam

width of beam

time

resultant force

shear force

moment acted

longitudinal stiffness (for quasi-longitudinal wave)

displacement due to longitudinal in ‘x’ or lateral direction
displacement due to flexural in ‘y’ or vertical direction

Flexural incidence wave, Flexural reflected/transmitted wave
Longitudinal incidence wave, Longitudinal reflected/transmitted wave
Flexural incidence wave, Longitudinal reflected/transmitted wave
Longitudinal incidence wave, Flexural reflected/transmitted wave
wave amplitude in Alpha, section in-between force and joint (transmitted)
wave amplitude in Alpha, section in-between force and joint (reflected)
wave amplitude in Beta, section after the joint

wave amplitude in Gamma, section of the other side after the force

l v
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Poisson’s ratio

density of the material

radius frequency of vibration

180 degree in radian

angle of beam joint

velocity of propagation of the longitudinal displacement
longitudinal wavenumber
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velocity of propagation of the flexural displacement
flexural wavenumber

flexural wavelength
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Chapter 1: Introduction

A fundamental understanding of wave propagations in built-up structures is one of the
key areas in engineering acoustics and vibrations. Any continuous system such as an aircraft
structure, a pipeline or a car chassis has its masses and elastics forces continuously distributed.
The structures comprise coupled cables, rods, beams, plates, shells, etc., all of which are neither
rigid nor mass-less (W.T.Thomson 2002). These systems consist of an infinitely substantial
number of particles and hence require an infinitely considerable number of coordinates, or
degrees of freedom to describe the motion, and hence an infinite number of natural frequencies

and an infinite number of natural modes of vibration are present.

It is observed and understood that any built-up structures need a model of a joint for a
complete assembly, and vibration level study for the damping and transmission coefficient at
the joints are still a great area of unknown. Statistical Energy Analysis (SEA) being dealing
with estimating the coefficient to represent certain built-up structures. However, for beams
joined together, the behaviour of vibration with regards to the different joint types requires
research and understanding. This study will look at a joint model and be comparing results to
real structures and estimate the vibration level for the benefit of understanding the behaviour

of vibration transmission and reflection.

Vibration phenomena involving diverse types of structures and products have been an
expanding area of studies. Vibrations being examined and observed using several behaviours
such as through displacements due to any arbitrary input, its easiness to vibrate and the rate of
change of vibration, those which are known in terminology as receptance, mobility and
accelerance (Cremer 2005). A continuous system should be modelled with distributed mass,
stiffness and damping such that the motion of each point in the system can be specified as a
function of time and displacement. The resulting partial differential equations which describe
the particle motion are also called the wave equations, which describes the propagation of

waves 1in solids.

Generally, on knowing the factors relates to a certain situation by defining the source,

path and receiver of a problem would provide a better approach to deal with vibration




phenomena. Signal and system analysis defines two separate distinctions for solving acoustic
and vibration problems. The process of determining the response of a system, due to some
generally unknown excitation is called signal analysis and the technique for determining the
inherent properties of a system by simulating the system with measurable force and studying
the response/force ratio is called system analysis (Dossing 1988). Hence, this work presented
would be dealing with system analysis by understanding the governing equations, modelling

and validations through experimentations.

As for the problem overview, characteristics of vibration through wave analysis is very
much in advantage especially dealing with structural joints or assembly. The knowledge will
ensure a more reliable behaviour and prediction. Such study was needed to provide a closer
understanding of vibration transmission and reflection to the current literature. Hence, this
encourages a realistic model of mathematical to be established along with the required analysis
and practical verifications. Consideration of damping for the material in the work have
increased the complexity and method to deal with it and all other parameters being elaborated

progressively in this thesis.

1.1 Aims and Objectives

There are three broad aims of this study.

1) Extending knowledge on using wave analysis in vibration reflection and
transmissions.

2)  Extending techniques used in the measurement of vibration power.

3) Improving the knowledge of vibration power in the angled jointed beam with a

comparable mathematical model and measurements.

Accordingly, the objectives of this study are:

1)  Modelling the joint in beam such that estimates of vibration levels give realistic

values.




2)  Analyze the modelling obtained with suitable measurement technique to eventually

conclude a good agreement from the results.

1.2 Motivation

The progress of structure analysis requires closer to realistic prediction towards its
behaviour; hence this work would contribute modelling of joint in beam structures for
vibrational effect. Development of mathematical equation to represent the variable joint was a
motivational challenge which the author believes would provide a significant addition to the
knowledge. Steps from equation development into the modelling using MATLAB, and finally
to ensure validation of result have been a driving effort to achieve a better understanding of

vibration power reflected and transmitted in beams.

1.3 Contributions

The contribution of the research described in this thesis comprises as follows:

1)  Model of an angled joint which varies in mass and inertia with respect to the two
beams connection assembly.
2)  Comparison with measurement result which validates the novel variable joint model.

3)  The enhanced model of joint for variation of beam cross-section and joint material

types.

1.4 Thesis Layout

This thesis is organised into nine chapters from this introduction until the summary and
conclusions. Chapter 2 which is ‘Review of Previous Works’ covers various area of analysis
for vibration transmission and reflections. Consideration of Euler-Bernoulli and its advantage

against Timoshenko beam were part of the highlights.




Chapter 3 of the ‘Modelling of vibration in a uniform beam’ discuss the background of
equation origins and deriving it for the analysis especially on the further chapters by using
wave approach for vibration power. Moving on to the Chapter 4, ‘Analysis of Variable Joint
Modelling” would be the core information on the contribution for a realistic model of joint for
beam were being derived. Analysis of output power against the input power was investigated

to obtain validation of the model and the equations used.

Chapter 5 of ‘Force Application for Beam Joint’ elaborates the actual application with
a complete spectrum of input waves from displacement, force and moments. This will also
derive the equations governing the modelling of involving 12x12 matrix. Comparison to the
measurements would then be done in Chapter 6 ‘Experimental Apparatus and Measurement
Method’. Set-up and equipment used were detailed out and the result captured from the

activities were explained for the validation of work.

Chapter 7 of ‘Comparison of modelling and measurement due to rubber sheet hysteresis
damping effect” would extend further advantages of behaviours in the variable joint model for
added damping material into the beam-joint arrangement. And lastly, the summary and

conclusion of this work, contributions, and future works are provided in Chapter 8.




Chapter 2: Review of previous works

Recent progress and trends in aeronautical and automotive vehicles have shown an
exponential growth of demands for power, speed and reliability. This has also introduced
several risks (R.Whalley 1998) and attempts to reduce those risks require investigation and
research. As an example, aircraft wing structure (R.Martinez-Val n.d.) experience large
variation in the frictional and stiffness parameters as a function of velocity, which these
changes occur in proportion to aircraft velocity and velocity invariant characteristics which is
entirely dependent upon the structural properties of the wing assembly, in terms of such as the
mass-inertia, natural damping and stiffness. This has resulted in the increased interest to predict

these vibration characteristics of built-up structures before the damage occurs.

Several papers involving wave characteristics in terms of transmission and reflection from
a discontinuity have been published to provide further in-depth information and offer solutions
for predicting and/or control of vibration behaviour in structures. Research relating to the
modelling of wave motion through junctions and methods for measuring transmission

properties of vibration is the area of interest for this study.

The vibrational behaviour of beam systems can be expressed in terms of waves of both
propagating and near-field types. A propagating wave incident upon a discontinuity gives rise
to reflected and transmitted waves of both kinds whose amplitudes may be found from well-
known reflection and transmission coefficients. A paper by B.R.Mace (1984) extends to the
case of the incident near-field waves, reflection and transmission matrices which are derived
for the cases of a point support, change in section, reflection at a boundary and the effects of
applied excitations. He also, however, noted that incident near fields can give rise to substantial
propagating components, but this would be dismissed for the case of time-averaged power as

well as an infinite section of both sides of beams or structure.

J.F.Doyle (1987) stated that analysis of the propagation of stress waves through a framed
structure was also complicated by the presence of joints which act as both filters and sources
of new waves. That is, an incident flexural wave can generate new flexural waves as well as
longitudinal and torsional waves. A methodology detailed in the paper was quite successful in

predicting the effects of an arbitrary T-joint, on the propagation of flexural waves. The joint




was modelled as a rigid cylinder with independently specified diameter and density. It was
assumed that the flexural waves have a Bernoulli-Euler beam dispersion relation, longitudinal
waves are non-dispersive, and the joint was a rigid mass was clearly stated to the support result

gained comparing with higher order theories such as Timoshenko beam.

J.L.Horner (1990) & (1991) was concerned with the prediction of vibrational power
transmission through bends or joints in beam-like structures, impinged on by either flexural or
longitudinal waves. Models have been developed which determine the wave type which carries
most power in each section of the system. The research was also successful in predicting
behaviours of vibration transmission at different angles of the joint upon various combinations
of beam arrangement and ratio dimensions. This was used as the main reference to produce the
estimated vibration levels in this work for comparing with the measurement taken in the

laboratory.

Y.P.Guo (1995) studies the interactions between incident flexural waves and a structural
joint that connects two identical elastic beams at an arbitrary angle. The beams are described
by classical beam theory and the joint is modelled with stiffness, dissipation, and mass, all in
three degrees of freedom, namely, in longitudinal and flexural displacement as well as rotation.
Coefficients of flexural wave transmission, reflection, dissipation, and conversion to
longitudinal waves were derived, and are analysed to reveal the functional dependence of these
coefficients on parameters such as frequency, joint angle, and various joint parameters. Some

potential ways of minimizing flexural wave transmission through a joint were also discussed.

With regards to the related input, the statistical energy analysis (SEA) method for two
coupled plates, (R.S.Langley 2010) noted that the fraction of the energy that passes through
the junction of the plates is governed by the power transmission coefficient; therefore, the
power transmitted will be possible to measure. Determination of power transmission behaviour
would not be achievable without knowing the coefficient value and it is vital to further develop
the SEA method. Therefore, an in-depth investigation of this study of vibration power
prediction will further assist next or future works of transmission/reflection at the joint due to
vibration. To find the transmission coefficient, the subsystem of the junction is easier to be
assumed as ‘semi-infinite’ and transmission coefficient is defined as the ratio of the power in

a transmitted wave to the power in the incident wave.




SEA uses energy as the parameter of interest and has always recognized that power is the
key parameter, but with SEA modelling it is very difficult to predict the power transmission
coefficient. Hence a better insight into the modelling of joint parameters from this thesis will

lead to better prediction of power transmission coefficient and better SEA modelling.

T.Y.Li (2001) considered vibrational power flow analysis for damaged beam structures.
The damage was modelled as a joint of a local spring. The damage point transfer matrix and
the beam element transfer matrix are deduced, and then the relation of the vibrational power
flow, the position and the characteristic size of the damage are obtained combined with periodic
structure theory. The damage was modelled as a joint of a local spring and concluded that it
can be analysed by comparing the vibrational power flow of beam structures with and without

damage in further related research works.

Jonas et al (2008) stated, for a wave propagating in a beam, it enters a discontinuity and
will be partly reflected and partly transmitted. Using Euler-Bernoulli theory, the application
investigates a junction of two beams with rectangular cross-section and concludes that non-
reflective junction of the right-side beam can be chosen in such a way that the active force
(force to associate with power summation) and beam configuration always draw power from

the left-side beam.

A paper by J.M.Muggleton (2007) stated that several approaches to estimating the
reflection and transmission coefficients of joint from measured data were developed.
Measurements were made on a beam with a mass/moment of inertia discontinuity and on a pipe
with a right-angled bend, both with flexural excitation, to demonstrate the procedures and to

highlight some of the inherent difficulties.

2.1 Euler Bernoulli application

[n addition to the earlier reference related to Euler-Bernoulli beam theory, it is essential
to further support the simplicity provided by this application in terms of a systematic and

recursive procedure.




An alternative wave-based analysis technique from above beam theory were introduced
for the dynamic response solutions, in terms of the transfer function, of one-dimensional
distributed parameter systems with arbitrary supporting conditions which does not require
Eigensolution as a priori or initial (B.Kang ,April 2007). The spatial amplitude variations of
individual waves were presented by the field transfer matrix and the distortions of the wave
amplitudes at point discontinuities due to constraints or boundaries are described by the wave

reflection and transmission matrices.

Further investigation using Euler-Bernoulli theory was also considered by (C.Mei
2005) & (Hyungmi Oh 2004) for lighter structures and from the wave vibration standpoint.
Wave reflection and transmission matrices were described for wave amplitudes at point
discontinuities. Spectral element method used with the beam theory has also been compared
with finite element solutions for vibration characteristics, wave characteristics and the static

and dynamic stabilities.

Various other papers have also considered the Euler-Bernoulli beam as the
mathematical model despite the neglected shear effects in the deformable solution it provides,
compared to Timoshenko’s shear-deformable model solution. The thin beam definition of
Euler-Bernoulli (B.R.Mace 1987) was also used in an active control of disturbances
propagating along a waveguide regarding the control of flexural vibration. The Euler-Bernoulli
beam application nevertheless would always be easier to be manipulated and hence provide

comparable required results.

2.2 Timoshenko Beam application

Consideration for higher frequencies, typically when the transverse dimensions are not
negligible with respect to the wavelength, have ruled out Euler-Bernoulli beam theory as

secondary after Timoshenko beam applications

C.Mei (Dec 2008) concerns in-plane vibration analysis of coupled bending and
longitudinal vibrations in H- and T-shaped planar frame structures. Exact analytical solutions

were obtained using wave vibration approach using Timoshenko beam theory, which considers

—



the effects of rotary inertia and shear distortion. Reflection and transmission matrices
corresponding to incident waves of flexural vibrations in the planar frame arriving at the “T”

joint from various directions were also obtained.

In another paper by C.Mei (August 2005), concerns wave reflection, transmission and
propagation in Timoshenko beam together with wave analysis of vibrations in Timoshenko
beam structures. These papers have both shown good employment to complex structures and

would be a related comparison to the future research conducted in this report.

Wave reflection and transmission in composite beams containing a semi-infinite
delamination (Wan-Chun Yuan 2008), wave propagation in a split beam (T.N.Farris 1989),
flexural-torsional-coupled vibration analysis of axially loaded closed-section composite beam
using DTM (differential transform method) (M.O.Kaya Sept 2007), and free vibration analysis
of axially loaded cracked beam using dynamic stiffness method (E.Viola 2007), have all
employed the Timoshenko beam structure theory to take into account the coupling effects of
shear deformation exist between the material layers. Such complexities in the solution were
shown to be difficult to be treated in recursive numerical-modelling and experimentation

activities.

2.3 Vibrational energy, velocity and displacement

Wave motion in thin, uniform, curved beams with constant curvature was considered
in a paper by S.K.Lee (2007). The beams are assumed to undergo only in-plane motion, which
is described by the sixth-order coupled differential equations based on Flugge’s theory. The
energy can be transported independently by the propagating waves and by the interaction of a
pair of positive and negative going wave components which are non-propagating, i.e. the wave
numbers are imaginary or complex. It also suggested that a further transformation can be made
to power wave, which can transport energy independently. The first concerns power
transmission and reflection through U-shaped connector between two straight beams, while the

second concerns the free vibration of finite curved beams.

—



Another method for studying the vibrational energy flows through structures based on
receptance theory (K.Shankar 1997), stated that the variation of the recovered internal damping
coefficients as compared to the specified values was used as an indicator of benefit in SEA
work. Vibration energy transfers, impedance approach and energy-based control strategy by
(K.Renji 2006), (L.C.Chow 1987), (F.Fariborzi June (1997)), were further applied as a

technique to various free and forced structural vibration issues.

2.4 Power measurements

Power measurement was applied by S.K.Lee (2004) was used in a vehicle using
isolators to attenuate the vibrational transmission from an engine to a car body. Vibration power
flow through these isolators gives information on the flow of the vibrational energy generated
from an engine or induced from the road. The measurement of vibrational power flow at each
isolator identifies the vibration transmission path in a vehicle. A simple equation was derived
for the calculation of vibration power flow at the isolator of a passenger car. The equation was
used for the measurement of the vibrational power flow at several isolators of the test car. From
these results, the vibrational transmission path of the test car was identified and extended to the

reduction of the structure-borne noise in the compartment of the test car

Vibrational power transmission in curved beams (S.J.Walsh 2000) & (S.J.Walsh 2001),
seating of a vibration isolated motor (R.J.Pinnington 1987), and from a finite source beam to
an infinite receiver beam via a continuous complaint mount (R.J.Pinnington 1990), were also
successfully employed by all the papers above and giving clear comparison with power

measurements formulation in experimentation.

In addition to that, the use of the effective point mobility concepts allows distribution
of power flow and vibration over a contact region to be determined (J.Dai 1999), because
power, force and velocity are easily related to mobility. So, it is convenient and efficient for
handling problems concerning vibration transmission. Various other papers by (Albert.L.Stiehl
1996), (Chun-Chuan Liu 2010), (R.S.Langley 1995), also adapts the power flow analysis

technique for beam members with multiple waves types, power transmission in a one-




dimensional periodic structure subjected to single-point excitation and active control of power

flow transmission in a finite connecting plate.

2.5 Experimentation consideration

An article by T.Eck (2000) which uses a novel method to measure the point mobility
and resulting vibrational energy of a beam subjected to moment excitation were presented with
reliable experimentation rig. Using finite-difference approximation, the rotational motion of
the beam at the point of excitation was calculated. Moment excitation is induced by its specially
designed impact rig which applies two equal and opposite forces on two-moment arms that are
perpendicularly attached to the beam. The technique also showed good agreement over a wide
frequency range between the measured input energy and the measured transmitted flexural

wave energy along the beam.

A paper by R.J.Pinnington and R.G.White (1981) derived the expression for power
input to a structure and comparing the experimentation with theoretical result. It also further
illustrated the experimental condition to simulate an infinite beam where each end of beam
embedded in sandboxes along with rubber foam. In such it’s being designed to be anechoic

termination while suspended by piano wires.

M.Petyt et al, (1977) has further described the experimental measurements using
Perspex model, J.W.Verheij (1980) elaborates for measuring power flow in longitudinal and
torsional waves on beam-like structures, R.S.Langley (1989) added good agreement of result
of beams which rest on multiple simple support and C.J.Wu (1995) also further describe the

expression for vibrational power input to a structure.

In a paper by L.Gaul (October 1983), excitation by incident flexural waves, as well as
longitudinal waves were discussed for characteristics of wave transmission, reflection, and
energy dissipation of jointed beams. The influence of different model of the joint was compared

with a proposed setup for experimental verifications.




Multi-mode transmission at an L-junction of thin rods has been investigated
theoretically and experimentally by B.M.Gibbs et al (Oct 1987). Various driver and
accelerometer configurations for excitation and detection of different modes of vibration which
for compressional, torsional, and bending waves were illustrated for the measurement

techniques.

2.6 Wave measurements

Vibration can be described as a linear combination of the modes of a structure (C.Mei
October 2002). An alternative approach is to describe vibration as propagating waves travelling
in the structure. Papers by M.Meo et al (2005) and R.S.Langley (1990), (1994) & (1996) deals
with the beam, plate, layered structures, pipes, curved panels and sandwich plates for a solution

in wave analysis.

This approach provides a better understanding to predict vibrational behaviour where
each longitudinal, flexural and torsional displacement being derived from wave amplitudes and
its travelling directions (either positive or negative). The application in the frequency domain
by using the wave equation (being of second order) is amenable to both numerical and

analytical solution than the standard fourth order differential equations (R.S.Langley 1991).

This is also advantageous rather than the conventional differential equations of motion,
provided that certain assumptions are made regarding the response of the system in the vicinity
of a structural discontinuity. The wave approach is also a convenient framework for calculating
the coupling loss factors which appear in the SEA, via a combination of wave transmission
analysis and diffuse wave theory. Additionally, wave analysis can yield great physical insight,

particularly when applied to the interactions of fluid and structures (R.S.Langley 2010).

A work (Renno and Mace 2013) for wave approach in vibration reflection and
transmission, presents a hybrid method combining a finite element (FE) and a wave & finite
element (WFE) model to determine the coefficient. It has successfully predicted the simplified
model of the analytical and numerical results, for L-frame beam with the joint modelled using

standard finite element.




2.7 Concluding remarks

Several of the papers stated the advantages of using Timoshenko beam theory as to
account for higher modes, giving better results than Euler-Bernoulli beam theory. The objective
of this study is to better estimate vibration power in structural joint, taking the advantage of
Euler-Bernoulli thin beam theories of its simplicity on modelling the problem into a
mathematical equation. Approaches using wave equations were the most convenient and much
applicable in measuring the vibration transmission and power. Several set-ups for experiment

purposes were also noted as an area to be considered for next step in this work.

The current model is considering flexural and longitudinal (in-plane) without damping
or stiffness in joint. Further development in the model has considered improvements from
lumped mass rigid joint into a variable rigid size joint and measuring the input-output and
transmission-reflections from power or structural intensity. The cross-coupling effect between

longitudinal and flexural was also being investigated in this model.

A more realistic joint will further include the damping and stiffness in the beam,
particularly for in-plane incident waves. The flexural and longitudinal power would be further
considered to gain closer comparison to the experimental work. Measurement method will
include a different combination of transducers and using the model to simulate responses with
error signals expected from experimental work and tabulate error contribution in each
measurement method. This will aid the further definition of the experimental set-up for next

model of joint.

Work Produced in this thesis would be categorised in Euler Bernoulli beam application
with experimental validation. Further expanding the joint types, cross sections and material

changes would contribute to the literature of vibration in jointed beams.




Chapter 3: Modelling of vibration in a uniform beam

3.1 Vibration analysis — wave approach

It is convenient to think of the physics of the response in the low-frequency region when
the response of a system to excitation can be represented in terms of a summation of modes,
but for higher frequency, there are advantages in representing the responses as the sum of waves
(R.S.Langley 2010). The following sections discuss the structural waves considered in this
research work as well as providing a basic understanding of beam-lumped mass joint
configuration used in the literature. Areas for improvements would be noted, and in the end,
chapter to lay the required steps on improving the method used for better prediction of vibration

reflection and transmission.

3.2 Wave Types

There are three main types of waves considered in the previous work related to vibration
transmission of structural connections (W.T.Thomson 2002), which were longitudinal waves,
lateral waves and torsional waves. Only two wave types as Figure 3-1 that will be further
elaborated in terms of mathematical and analysis throughout this thesis for its relationship to
force applications, which are longitudinal and lateral. Furthermore, torsional waves could be
similarly obtained from longitudinal wave steps of derivation for next consideration of research

work.

Lateral direction

Longitudinal direction

Longitudinal wave Lateral/flexural wave

2O\ 4

R\ N AR\ AR
N

Figure 3-1: Wave types for longitudinal and lateral in the beam




3.2.1 Longitudinal wave

Longitudinal or compressive waves are waves in which the direction of the particle
displacements coincides with the direction of wave properties. Quasi-longitudinal waves
should be considered for bars or plates that are having one or more outer surface free from

constraint due to Poisson contraction phenomena.

3.2.2 Lateral waves

Lateral / Bending or Flexural waves occurs due to the existence of both bending
moment and shear force on an element. The behaviour of material with regards to flexural
waves are very common especially in a built-up structure and its joints. This wave type would
be the focus throughout this work where limitations on measurements for longitudinal waves

being considered.

3.3 Development of wave equation

Propagation of acoustic/vibration power is governed by wave equations referring to the
above wave types. Considering a single wave propagates in the structure, the wave equation is
derived to produce solutions in terms of displacement, for both longitudinal and lateral

vibration of the slender beam.

3.3.1 Longitudinal vibration of the beam

From Figure 3-2, an element of length dx on a long, slender and uniform beam with

longitudinal displacement u(x, t) at x will have displacement u + (du/ dx)dx at x + dx.
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Figure 3-2: Forces and displacement along rod element (W.T.Thomson 2002)

Where the unit strain is 6u/ ax- From Hooke’s law (Cremer 2005), the stress-strain

relation is,

P/A =D au/ax

Equation 3-1

where P is the force at x, A the cross-sectional area, and D is the longitudinal stiffness (for
quasi-longitudinal wave) given by,
E E(1—p)
B G-p=2d) S+ -2
1-w

D

Equation 3-2

here u as the Poisson’s ratio defined as the ratio of the magnitude of the lateral strain to the

longitudinal strain, but for pure longitudinal wave (slender and uniform beam), only modulus
Young, E would be significant due to consideration of deformation for single plane and

differentiation with respect to x for Equation 3-1 yields

2
O = AE TV

Equation 3-3

Application of Newton’s law to the element gives

2
padxU/y ., = (P+9P/5. )P
Equation 3-4




Elimination of 9P / ax between (3) and (4) gives,

aZU/atZ — (E/p) aZU/axZ

Equation 3-5

Let, ¢, = /(E/p), then

[[aZU/axz =1/ CLZ)azU/atzﬂ

Equation 3-6

where c; is the velocity of propagation of the longitudinal displacement or stress/compressive
wave in the rod. It is seen that the velocity increases with increasing modulus E, and decreases
with increasing density p.

The longitudinal wave number is defined as

w 27

LTI

Equation 3-7

where w is the radius frequency of vibration, and A, is the wavelength. Since the frequency,
f=®/y. then

CL

AL=:7T

Equation 3-8

3.3.2 Lateral vibration of the beam

Element dx
7 - -7
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g 7 ____ﬁ/
Z S
(Lot
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M v [|Paesessd M+ M/ dx
’éot’td 9
x|
v
v+ b dx 2w
pAdx / at?
Applied forces Effective force

Figure 3-3: Forces and moments along rod element (W.T.Thomson 2002)




The lateral beam deflection in Figure 3-3, is assumed to be due to bending only as in
the classical Euler—Bernoulli beam (W.T.Thomson 2002), which considers an element of the

beam of length dx. Application of Newton’s law to the element of lateral force gives

F=v+0V/ dx-V=pAdxd W/, ,

Equation 3-9

where F, resultant force and V, shear force.

2
or, W/ =A% W/5

Equation 3-10

Summing the moments on the centre of elements gives

v v Yy 2y
2 2 T2 T ox *

Vox ~0

Equation 3-11

where M, moment acted on the element.

With further simplification to the above equation,

oM
Vdx = —dx
0x
. oM
T Ox

Equation 3-12

Differentiation with respect to x gives

av _0*°M
/6x - /axz

Equation 3-13

It follows from Equation 3-10 and Equation 3-13,

2 2
J M/axz = pA9 W/atz

Equation 3-14

It is known from mechanics of materials (H.Tongue 2002) that,




2
M=—-E10W/ ,

Equation 3-15

Where E1 is a constant value of Young’s modulus, £ (material property) and second

moment of area or moment of inertia, / (material size/cross-section).

Differentiate twice with respect to x then gives

°’M o*w

ox2 —El Ox*

Equation 3-16

Finally, from Equation 3-14 and Equation 3-16,
o'W pAI*W

axt T El 9¢2 -

Equation 3-17

Let, Cr = (Vo) (4/EI/pA>, then

[[64W/ax4 =—(1/ CF4) azw/atz]]

Equation 3-18

where ¢ is the velocity of propagation of the flexural displacement or bending wave in the
rod. The flexural wave number is defined as

o = w 2m

e Cr B Ap

Equation 3-19

where w is the radius frequency of vibration, and A is the wavelength. Since the frequency

f = %[y then

Equation 3-20




3.4 Mathematical Model of Joint

Transmitted and reflected power in a slender and uniform beam being considered for a
component of the full solution, which is equivalent motion in a semi-infinite system.
Motions in longitudinal and lateral directions are derived for the relationship between

propagating wave and the power in the wave.

3.4.1 Longitudinal wave motion

Referring to Figure 3-2 and Equation 3-1, longitudinal motion was contributed by the

rate of work done, X;; from stress force P acting along the uniform beam

Y = _py - EAaU au
u= T dx ot
——
P
Equation 3-21

Where U(x, t), is the longitudinal displacement solution to the longitudinal wave

equation above, whereby it is the general solution to Equation 3-6 and can be written as: -

U(x,t) = A;sin(wt — k;x) = A;[sin(wt) cos(k;x) — cos(wt) sin(k;x)]
Equation 3-22

Where A;, k;, are amplitude and wave number for longitudinal direction, which the

equation above represents as a single wave propagating in the positive direction.

Differentiation of U with respect to x and ¢

U Ak (wt — k;x)
o ox = 1K COS(W 11X
Equation 3-23
ov A (wt — k;x)
S = w CoOS(wWt — X
at l l

Equation 3-24
Finally, Equation 3-23 and Equation 3-24 into Equation 3-21 gives

oUu oU
Xy = _EAﬁ'E = —EA(—A;k; cos(wt — k;x)). (A;w cos(wt — k;x))




= EAA? w k;cos? (wt — k;x)

So, time-averaged power for a longitudinal wave is given by,

cos?(wt — k;x) dt

EAA2wk, IT
T

1T
Py, =—| Xdt=
(P), Jo t

0

EAA?wk, |sinQRwt — 2k;x)

=0.5 T
T 2w *
=0
EAA?wk,
=05 —IT
T 17]
Which finally,

1 T
(P), = Tf Xdt = [[0. 5EAk,Alzw]]
0 —_

3.4.2 Flexural wave motion

Equation 3-25

Equation 3-26

Similarly for flexural motion, referring to Figure 3-3 and Equation 3-12 and Equation

3-15, the rate of work done, X}, for the flexural motion were contributed by both, the shear

forces (V) and bending/moment (M), therefore;

Xw= V W Ma W—VaW M62W_E163W6W
RN ox ot oxdt  __ 9x3 ot
~—— ~—
force force from %4
moment

2w a*w

El
0x?2 dxot

M

Equation 3-27

Where W (x, t), is the lateral displacement solution to the flexural wave equation

above and assuming that the near field component has decayed to zero, whereby it is the

general solution to Equation 3-18 and can be written as: -

W(x,t) = Af sin(a)t — kfx) = Af[sin(a)t) cos(kfx) — cos(wt) sin(kfx)]

Equation 3-28




Where Ay, kf, are amplitude and wave number for flexural direction, which the

equation above represents as a single wave propagating in the positive direction.

Differentiation for x,

;—xW = Ay |4 sin(wt) (c’)a_x cos(kfx)) + (c’)a_x sin(a)t)) . cos(kfx)

=0

— < cos(wt) (% sin(kfx)> + (% cos(wt) .sin(kfx)

~0

= —Asks cos(a)t — kfx)
Equation 3-29

So, from,

0
aW = —Afkf cos(a)t — kfx)

2 a a
ﬁw = —Asks |{ sin(wt) (5 sin(kfx)> + (5 sin(wt)) .sin(kyx)

=0

+ < cos(wt) (% cos(kfx)> + (% cos(wt)) . cos(kfx)

=0

= —Afkj%sin(a)t — kfx)
Equation 3-30

Moreover, from,

2

@W = —Afkfsin(a)t — ksx)
63

0 .
ﬁW = a(—Afkfsm(wt — kfx))

= Afk]?cos(wt - kfx)
Equation 3-31

Differentiate W with respect to time, t

d 0 _ a . .
aW = &Af sm(wt — kfx) = §Af [sm(a)t) cos(kfx) — cos(wt) sm(kfx)]




;tW Af [{sm(a)t) (—cos(kpc)) (imn(wt)) cos(kfx)}
— {cos(wt) (a sin(kfx)> + (% cos(wt)) . sin(kfx)}]

=Arw cos(wt — kfx)
Equation 3-32

. ) .
Differentiate P W, with respect to x,

0 0

a ot —W = Af(,l)kf Sln((,l)t — kfX)

Equation 3-33

From equation (30), (31). (32) and (33) into Equation 3-27 gives

X, Ela3waw Elazwazw
0x3 Ot 0x2 0xot
vV M

Xy = EI[{Afk;cos(a)t — kfx) Arw cos(a)t — kfx)]
— {—Askfsin(wt — kpx). Apwky sin(wt — kex)}]

Using basic trigonometry relationship, the equation for Xy, were reduced to, EI k;A%w.

So, time-averaged power for flexural wave,

1 T
- — 3 42
(P = Tfo Xy dt = [EIk}Afw]
Equation 3-34

3.5 Wave motion in a non-collinear beam

A semi-infinite structure is considered which allows for a joint to be included. The
impinging flexural waves will result in reflected and transmitted near field and propagating
flexural waves while impinging compressive waves will result in reflected and transmitted
compressive waves. B.R.Mace (1984), for wave reflection and transmission in beams, provides
the basis for the notation of wave equation and parameters for the joint. Cross-coupling of wave

conversion for flexural to longitudinal, and longitudinal to flexural would also be analysed.




3.5.1 Lumped Mass of Rigid joint

In the analysis of this joint, torsional vibration were ignored and only planar excitations
are considered. The axial force, shear force and bending moments are considered for the

summation of forces and the continuity of the system.

Figure 3-4, shows both longitudinal U(x,t) and flexural W (x,t) motion of the
displacement. Assume a beam is bent through angle 6, and both incident side of the
displacement W_(x,t) and U_(x,t) are denoted by suffix minus symbol. As for the
transmitting side of the bend, W, (x,t) and U, (x,t) were denoted with suffix plus symbol,
with the relationship of x =1 cosf for the relative displacement of the incident and

transmitted side.

w.(, 0

Arm
Arm J\,/'\ B,
As VAN T ‘ AN B,
a, |
U_(x,t)
Incident side Transmit?ejd

Figure 3-4: Wave motion for the lumped mass of rigid joint in a non-collinear beam

The length ‘L’ is the thickness or height, and ‘w;’ is the width of joint characterising its
fixed size for a rigid mass (unit of kg) and inertia (unit of kgm?) of;,

— 2
m; = p;L°w;/4
Equation 3-35
Equation 3-36

Referring to Figure 3-5, this arrangement of joint model illustrates that the joint
represented a rigid quarter of a cylinder which remains unchanged regardless of decrease or

increment of angle 6.




It is for a clear understanding that such fixed size joint could be illustrated as in Figure
3-5 or at a 90° orientation, despite the original diagram analysis (R. J.L.Horner 1991) as shown
together. Such an assumption implies that it is not physically representative of large angles as

the transmitting side of the beam would effectively be “folded into” the incident side.

This analysis would continue to re-generate results from the literature, and the rigid
joint would be examined as of fixed mass for all orientation of angles. Hence, all equation of

continuity, force and moments being considered for this non-collinear beam.

To further illustrate the notation, ‘4’ represents incident side and ‘B’ for the
transmitting side. Each odd number of waves is representing waves travelling to the left and

even numbers of waves travelling to the right side.

Illustrated in literature for rigid joint

despite using quarter cylinder joint size

...................

model structure is

B,
. J\/N assumed to be

— : rigid and in
oo fa[\/\/ L / dimension of a
AV i  U®O 1 quarter of a
" scylinder
‘ ~-9"m.= pwliw,/4 W P
e By A
L =m;1%/8

Incident side Transmitted side

Wave motion in a non-collinear beam for a rigid joint

Figure 3-5: Model of rigid joint orientation and notations for analysis

Here, A3, A4, B, are the flexural travelling wave’s amplitudes, A4, B, are the near field
flexural wave’s amplitudes and 4;, 4;, B, are the longitudinal travelling wave’s amplitudes.
The solution will later consider 4;, A, as input waves (both or either one) to the equations. The

near field waves carry zero-time averaged power, and their function being to assist the initiation




of flexural wave motion. Power is transmitted through the structure by A3, A4, By, A5, Ay, By of

the far field waves only.

On the incident side of the bend for flexural displacement, W_(x, t) and longitudinal
displacement, U_(x, t),

W_(x,t) = {A e*r* + Aze'n* + A e knx} eiot
Equation 3-37

U_(x,t) = {A e*n* + Aje~tkux} elot;
Equation 3-38

For the transmitting side of the bend for flexural W, (1, t) and longitudinal

U, @, t), with i as a reference of translational displacement from x for the various angle 6.

W, (@, t) = {B,e¥r2¥ + B e krz¥} eiwt
Equation 3-39

Uu,(y,t) = {BLe_iklzlll} eiot .
Equation 3-40

Applying boundary condition at x = 0 and 1 = 0, to all equation of continuity, the
summation of bending moments, shear forces and compressive forces, yields 6 governing

equations as below: -

Continuity of displacement in the axial direction

U_ = U,cos8 — W,sin6 + —sin @

L L
A= —A, + B, cosf — B, [sine + (kfz)z sin 9] —B, [i(kfz)E sin @ + sin 9]

s1 S2
Equation 3-41

Continuity of displacement in perpendicular direction




oy

L
w_ = U,sinf + W,cosé - §(1+c059)

L
Ay, = —A; — A3 + B, sinf + B, [cos 0 + [(kfz)E (1 + cos e)”

53

+ B, [cos 0 +i [(kfz)% (1 + cos 9)]]

54

Equation 3-42

Continuity of angular displacement/equal gradient

oW, oW,

dx N o

A B, [k k
l l kfl kfl
S S5 S5
¢ Equation 3-43

Equilibrium of bending moment

1 02W._ LEI 3w
N 1
o 2w, L., 3w, ) d2oW_
22 g2 222 gy3 J 9t20x

A, [— (Bt (k) + i <é Elll(k;1)> —i (Ij(wzkfl))]

56

_— [(Elll(kle)) + <%E111(kf31)> + (If(“’zkfl))]

+ As :(Elll(kle)) +i (%Elllz;;1)> —i (Ij(wzkfl))]

58

+B, i(EZIZ(k}Z)) + (% E,l, (k;2)>] ~B, [(Ezlz(kfzz)) +i <§ E,l, (k;2)>]

59 S9a

Equation 3-44




Equilibrium of compressive force

ou_
E{Aq o

au
E>A, 6_1/J+COS 0 + E,

|lA1 [~i(E1A1 (k1) = (mjw?)]

Si1
= Ay [~i(E1A; (ki) + (mj?)] — By [i(E24,(kyp) cos 6)]

512 513
— B, [E2Ly(k?,) sin 0] + By [i(E2 1, (k?,) sin 9)]”
514 515
Equation 3-45
Equilibrium of shear force
a3w_ au, . 3w,
_Elllm = EZAZ WSIHQ - EZIZ WCOSB
ik [ LGW_]
Moz T 2ox

] (-:0032)) = (my0?) + (1m02)5 1) )|

4, [(Elzl(kfi)) + (myw?) + ((mfw2>§("fl))]

(-8 030) + ) (im0

S1

— By [iE,A;(kiy) sin 0] + B, [Ex1,(k},) cos 6] — By [iE, 1, (k},) cos 6]
S19 520 s2
Equation 3-46




3.5.2 Results and comments

Rearranging all the six equations in the order of A4, 43, A;, B, B,, B, and the required
input from A4;, A, yields the matrix below;

0 0 —1 cos6 -S1 —S2

-1 -1 0 sin@ S3  S4 A1 [An
S 1 0 0 S5  S5a As| |4,
& o0 () -G [laf=]a
000 6D G () |m [
) G 0 - @) @) 4

[x]
Applying the above derivation and matrix to MATLAB, with the given input for
A; and A, , the equation becomes;

[Y] = inv[X].[Z], (Refer appendix A-1 for derivation and appendix A-2 for the MATLAB coding)

Result plotted referring to J.L.Horner (1990) & (1991), of cross-section beam
dimension 50mm x 6mm using material with £= 5.567x10° N/m?. The input frequency of
500Hz (as used in J.L.Horner (1990) & (1991)) was utilised to compare results where both
impinging wave of longitudinal (4;) and flexural (4,) were given input of unity. This allows
a direct matching comparison between this works with literature, for the normalised inputs to

the various ratio of power for transmitted and reflected.

The percentage power normalisation is the ratio of reflected and transmitted power to

the power of the impinging wave.

For the reflected side, cross-coupling wave of (beam 1) was defined as,
e incident flexural wave with reflected flexural wave denoted with FF
e incident longitudinal wave with reflected flexural wave denoted with LF
e incident flexural wave with reflected longitudinal wave denoted with FLL

e incident longitudinal wave with reflected longitudinal wave denoted with LL




For the transmitting side, cross-coupling wave of (beam 2) was defined as,
e incident flexural wave with a transmitted flexural wave denoted with FF’
e incident longitudinal wave with a transmitted flexural wave denoted with LF
e incident flexural wave with a transmitted longitudinal wave denoted with FLL

e incident longitudinal wave with transmitted longitudinal wave denoted with LL

From Figure 3-6 and Figure 3-7, it is observed that the dominant wave type in each arm
is the same type of the impinging wave and other types are related to the bend of the system.
Flexural power was shown better transmitted at joints (of various angles) compared to

longitudinal power.
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Figure 3-6: a) Percentage of power in beam 1 for all four types of wave, b) Comparison to Literature




Figure 3-6 and Figure 3-7 also presenting this chapter analysis compared to literature
and in very good agreement. Both LF and FL for reflected and transmitted were overlaying

each other showing equivalent cross-coupling power from flexural and longitudinal.
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Figure 3-7: a) Percentage of power in beam 2 for all four types of wave, b) Comparison to Literature

Results from the literature were also seen with a power imbalance, for flexural power
reflected & transmitted at 180° angle as well as at the 0° angle for both flexural and longitudinal
power for transmitted. Total power for input wave to output wave can be seen in agreement
from both Figure 3-8 and Figure 3-9 of flexural and longitudinal impinging wave. However,
for FF1 and FF2, it was observed that there is some power reflected, and less than 100%
transmitted at 0° angle. This observation will be further amplified and commented in Figure
3-10.
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Figure 3-8: Total power of flexural impinging wave for beam 1 & 2
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Figure 3-9: Total power of longitudinal impinging wave for beam 1 & 2
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Figure 3-10: Total power of Longitudinal and Flexural in Alpha (beam 1) and Beta (beam 2)

Even that the behaviours obtained are in full agreement with J.L.Horner (1991), but
work in this chapter are in better presentation whereby the flexural wave indicates the weakness
of previous assumptions of the lumped mass joint. It was noted having a constant physical
dimension and orientations of joint, hence causing some reflection during straight beam (0°
degree) orientation for power in flexural as in Figure 3-8. Further analysis being elaborated in

section 3.6.
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3.6 Further analysis

To further relate to the current analysis, the material of Perspex (Plexiglas) used for the
experimental work discussed later in chapter 5 with a dimension of 20mm x 100mm and E=
1.75x10° N/m? were being analysed. The other intention was to highlight the weaknesses
observed in the previous section of using the same joint dimensions regardless of joint angle.
The cross-section ratio used would be 0.2 (20mm thickness / 100mm width) which is thicker

beam compared to result in section 3.5.2 of ratio 0.12 (6mm / 50mm).

Figure 3-11 and Figure 3-12 shows the significant behaviour of flexural waves that
were directly affected due to the fixed joint or lumped mass joint assumed in the model. Hence
at 0° in Figure 3-11, there are reflected wave power observed and reduced transmitted power
at 0° in Figure 3-12. As for fully bent beam joint at 180° (both beams lay next to each other),
transmitted power occurred despite it was assumed there should be 100% reflection and 0%

transmitted previously.
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Figure 3-11: Percentage of power in the beam 1 for all four types of wave (cross section ratio 0.2)
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Figure 3-12: Percentage of power in beam 2 for all four types of wave (cross section ratio 0.2)

A closer observation through total power produced by flexural in Figure 3-13 and
Figure 3-13, further signifies the main contribution was from only flexure-to-flexure (FF)

power which either in reflected or transmitted.
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Figure 3-13: Total power of flexural impinging wave for beam 1 & 2 (cross section ratio 0.2)
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Figure 3-14: Total power of longitudinal impinging wave for beam 1 & 2 (cross section ratio 0.2)

0

Longitudinal power was plotted balanced as it shows from the power reflected and
transmitted in Figure 3-14. The total power from longitudinal and flexural was then equated to
the input power which presented in

Figure 3-15. Comparing to Figure 3-10, the flexural power showing higher values for
reflected at 0° and transmitted at 180°, while reduced power values for transmitted at 0° and
reflected at 180°. Particularly due to the thicker beam dimension, hence a bigger fixed mass of

joint presence throughout the range of beam orientation.

It also shows that the powers were equally distributed for reflected and transmitted at
about 145 degrees of beam angle. This will be further commented with a variable joint in next
chapter. Mainly, the flexural power caused by the fixed mass joint is obviously a concern with

regards to beam cross section ratio and this can be further improved with the introduction of

the variable joint method.
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3.7 Concluding remarks

Extended analysis for the previous method of joint analysis shows area of
improvements that were required. The flexural power was mainly the concern since the nature
of affected wave depends on the cross-sectional area term. Hence, the fixed mass of joint or
lumped mass assumed earlier would always be present even at 0° degree. This allows some

flexural power reflecting and less than 100% would be able to be transmitted.

As for longitudinal power, it was observed that the constant mass joint would not
obstruct the vibrational wave in the 0° degree orientation. The lumped joint mass model
however would correspond differently for the longitudinal power if the assumed joint size to
be in other than the beam cross sectional dimension (smaller or bigger joint in between beam).
This is mainly due to the disagreement of displacement continuity (due to fixed joint mass and

size) as being considered earlier in the equation.

Assumption for lumped mass have shown various area for improvements. Fixed inertia
and absence of moments due to compressive force were noted. Furthermore, a realistic
behaviour would be clearly observed missing in the reflected flexure power at 0° angle (straight
beam) and in the transmitted flexure power at 180° angle. It has been shown significantly when

‘L’ or thickness of beam increased (joint size increased accordingly), in section 3.6.

Lumped mass could not be a solution representation especially at extremes of angles as
this work has shown. The fixed dimensions and weight assumed, has grown significantly
irrelevant when beams oriented at 90° to 180° of angles, and this has primarily affecting the

force and moments equations.

Hence, a better mathematical derivation for the joint is required to eliminate the
weakness mentioned above. This will be beneficial for better estimates of vibration power and
would improve understanding in especially beams connections or structural assembly

configurations.




Chapter 4: Analysis of variable joint modelling

4.1 Variable size of joint

In the previous chapter, it was assumed that the joint between the two beams was the same
dimension regardless of the angle of the beams. In this chapter, the joint considered was of
variable sizes proportional to the angle acted on by the 2 beams. This would represent more
closely a realistic joint, where the mass of the joint increases with the angle of the jointed beam.
The constant mass joint discussed previously, would not represent the physical orientation at
0° (which no joint mathematically exists) and even to the extreme orientation at 180° where the
arm 2 would be physically aligned to arm 1. The comparison between constant mass and
variable joint would further aid the simplification as well as establish whether the parameters

of the joint would affect the wave behaviour in the angled beam.

4.1.1 Mathematical model of variable joint

The variable joint model is a sector of rigid circular cylinder between the angle beams and
rotation of the joint occurs about the centre point of its mid-line as for elements in the beam
theory. The physical growth of the joint would then be possible to include into the equation

considered.

Let both beam with thickness/depth L, and density of material p. Let also the joint
rotate through small angle @ , and have linear displacement Uy,and Wy, of its rotational centre
M. Refer to Figure 4-1.

Similarly, as previous fixed mass joint,

[[aw_ oW, (2)]]
ax Y
Equation 4-1




Arm 2

Arm 1

Figure 4-1: Geometry for variable/wedge size of rigid joint in a non-collinear beam

From the Figure 4-1 above,

in6/, = >

sin/, =
L/2

2s = Lsin9/4
Arm 2 B,

Incident side

Transmitted
side

Figure 4-2: Wave motion for

Equation 4-2

variable/wedge size of rigid joint in a non-collinear beam




Then, referring to notation in Figure 4-2:-

(7]
U_=Uy+ 250 sinZ
(7]
W_= Wy — 2s0 COSZ
(7]
U, = UycosO + Wysin0 + 2s9 sinZ

(7]
W, = —Uysin@ + Wycos0 + 2s0 COSZ

Further Simplified, (refer appendix B-1 for derivation)
) LY
[[U_ =U,cos0 — W, sin6 + > [1 — cos0] ]]

LY
[[W_ =U,sin0 + W cos0 — > sin@ ]]

Equation 4-3

Equation 4-4

Equation 4-5

Equation 4-6

Equation 4-7

Equation 4-8

Checking the limit at 8 = 0, %, n for continuity of displacement for the above

equation 4-7 & 4-8,

9=0 U =U , W =W,
s LY LY
6—5, U_—_W++7 ) W_—U+_7
9 = T[, U_ —_ _U+ + L@ ) W_ = _W+
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Figure 4-3: Equilibrium of force and moment for variable/wedge size of rigid joint in a non-collinear
beam

Using the beam theory where forces act about/ through centre of force, which is point

-ve (negative) and +ve (positive), and rotation occurs about point M as in Figure 4-3.

Let joint have mass m, inertia I, about point M.
Then,
[mUy = F,cos® + V, sind — F_]
Equation 4-9

[mWy = V_+ F,sind —V, cos6]
Equation 4-10

[106=M,—M_-V,e—V_e—F_f+F,f]
Equation 4-11

From the above equation of forces in flexural & longitudinal as well as the moment
around point M, notations U, , Wy, , and @ , are the respective translational and rotational
acceleration experienced by the variable joint dynamically reacted with the change of angle.
To further illustrate the summations of moment, Figure 4-4 defines the distance of both forces

from the reference point M with regards to the angle of the joint.
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Figure 4-4: Defining moment from the Forces for variable/wedge size of rigid joint in a non-collinear

beam
now,
; 9/ - &
sin”/, =
L/2
e=1L/,sin 0/2
Equation 4-12
and,
f= L/Z - L/Z cos 0/2 = L/z (1-cos 0/2)
Equation 4-13
Furthermore,
- 2 — 2 _
m= Zn'”L .w.p =pwl 2

Equation 4-14

L
Iy =f (pwdr.0r).7?
0

L
=pw9f r3dr
0




Equation 4-15
The circular sector considered must acknowledge the change of centroid location as

the angle grow. This requires the exact point of reference for the calculation of joint inertia
with regards to centre rotation M. Hence,

. . 2 6
Distance to centroid, 0C = §L sinc (;) ,

So, distance MC = L sinc (3)) — 3L
but,

2 0.\’
Ip=1.+ m(§L sinc (E)>

Equation 4-16
and,

= 1o+ m(Ce sine )~ 21)

Equation 4-17

W:%+m«;Jm49f_(@me@»_zgj

2

P () em G O i - 22 (9)

— — 2—s5si
4 sinc 2

6

(g 20280) pran ()
T

BCENC

or,

mL? 2 6 2> 0
In=— [0 +m (1 + {ﬁ sin <E)} [{ﬁ sin (E)} - 1])]

Equation 4-18

| 44

——




Continuity of displacement in axial direction

L
U_ = U,cos@ — W,.siné + > (1

L
AI = _AL + BL cos 6 — BZ I:Sine + (kfz)z (1 — COSs B)]

S1B2

L
- B, [i(kfz)f (1 — cos0) + sin 9]

S1B4
Equation 4-19

Continuity of displacement in perpendicular direction

w_ = U,sin0 + W,cosf -

w,
oy

L
Ay = —A; — A3 + B, sinf + B, [cos 0 + [(kfz)E (sin e)]]

S2B2

+ B, [cos 0+i [(kfz)% (sin 9)”

S2B4

Equation 4-20

Continuity of angular displacement/equal gradient

ow_ B ow,
dx a )
A, = A [1]+A v, |92 1 4 g, |2
4= A 3 2 kfl 7 4 ke
5341 S3B2 S3B4
Equilibrium of bending moment
92w L, ., oW
Elll a 2 + E(SIZHE)EIIZLF
0°W, L 0 3w, a°0W.
== Ezlz_alpz E(Sln )Ezlz 01/)3 j at26x




A, [— (Elll(kj?l)) +i <% (sin g)Elll(k;1)> + i(ijZkfl)]

. [L 0
+ AI L I:E(l — COoS 2)] ElAl(kll)

S4b

=—4, [(Elll(kfl)) + <% (siné)Eﬂl(kﬁl)> - (Ij(wzkfl))]
() (S n2) + 1)

(L 0 (L 0
— A, |i E(I_COSE) E{A (k)| — B, |i E(l—cosz) E,A, (k)

L 543 544
L
+ By | (B2l (k) ) + (E (sin &), 1, (k;2)>]
- S4
- 2 . L =0 3
— B, |(ExL(KR)) + l(z (sin E)Jz"zlz(kfz))]
- S46
Equation 4-21
Equilibrium of compressive force
au_ au, 2w,
E1A1W = E)A, WCOSB + LKy, I sin 8
02 o2 0W_
— ij[U_ — L(smg W
4y [i(E, Ay (k1)) — (mjw?)] = Ay [(mjw?)iL(sin®)” (k)|
S5b ) S5a )

S5 552
+ A [—i(E 4y (k) + (mja)z)] — B, [i(E;A, (k) cos )]
553 $54

— B, [Ex1y(k?,) sin 0] + B, [i(Ex1,(k?,) sin 6)]
5§55 556

Equation 4-22

Note:

Equation for bending moment and compressive forces above were having both A; and
A, as the input wave, to further simplify the equation for matrix arrangement, both equation
need to be solve simultaneously.




The equation below being derived to simplify the matrix and being verified by balanced
power: -

55 = (S5a.54b) + (S5b.S4a)

S$41.55a) + (S51.54 S$42.55a) — (5§52.54
ssap o [GHLS5O +($5Ls40) L [(542.550) — ($52.540)]
5 5 S$53.54 5
—(543.5 + .
qeqp  [(543.550) + (553, 54a)]
S5
S44.55a) + (S54.54 S$45.55a) — (§55.54
sy o (4S50 + (54500] L [(545.550) — (555.54a)]
53 5 $56.54a)] 52
—(546.S + .
SSAL=[ ( a?S‘S ( ¢

5441 = =(S4/540) + [5541. (%/54)] . 5443 = (54%/g4) +[$543. (S*0/54)]
S44L = —(S43/¢, ) — [s5AL. (54 /g4, )]

S4BL = ~(5%/54q) + [SSBL.(S0/54q)] . 5482 = (545/545) + [55B2. (54 /54,)] .
54B4 = —(S46/¢, ) — [s5B4.(S40/g4 )]

Equilibrium of shear force

3w ou, 3w,
_EIIIF :EZAwaII’IQ - EZIZa_l/)?’COSQ

02 ow_
- mizs [W_ + L(sin g) (cos g) W]

A, [(—iElll(k]?l)) - (mjw?) - (i(mjwz)L(sin 9)(cos g)(kfl))]

=4 [(E1I1(kf31)) -Ifs(mjwz) - ((mjwz)L(sin 9)(cos g)(kfl))]
+ A5 (=B 1 (k2)) + (myw?) = (i(myw?)L(sin2)(cos ) (ky) )]

— By [iE, A, (kyy) sin 0] + B, [E1,(k},) cos 6] — By [iE, 1, (k},) cos 6]

S6B S6B2 S6B4
Equation 4-23




4.1.2 Results and comments

Rearranging all the 6 equations in the order of A4, A3, A;, By, B,, B, and the required
input from A4;, A, yields the matrix below;

[ 0 0 —1 cos®f —S1B2 —=S2B411A;7 T4,
-1 -1 0 sinf S2B2 S2B4 || A, A,
S3A1 1 0 0 S3B2 S3B4 A, A,

S4A1 S4A3 S4AL S4BL S4B2 S4B4 || | T |4
—S5A1 S543 S5AL —-S5BL  S5B2 S5B4 L *

(o) (=) o () () —(=))ls] Ll
[x] [Y] [Z]

Applying the above derivation and matrix to MATLAB, with the given input for

A; and A, , the equation becomes;

[Y] = inv[X].[Z], (Refer appendix B-2 for derivation and appendix B-3 for the MATLAB coding)

Result plotted with input frequency of 500Hz and similar material type & geometry (for
comparison with results in chapter 3) and both impinging wave A4; and A,, representing input
amplitude of longitudinal and flexural respectively, were given input of unity. It can be seen
from Figure 4-5 of beam 1 that variable joint reflected lower power for FF-flexural waves at
extreme angles and LL-longitudinal power shows similarity with fixed joint until 140° angle,
while the cross-coupling power have taken the remaining power balance compared to rigid
joint results. This shows that the realistic geometry of variable joint has considered angle,
inertia and the mass of joint effectively. Flexural power for both reflected and transmitted has
full agreement at 90° of angle for fixed joint and variable joint where at this point both model

considers the same size, mass and inertia of joint.

As derived earlier for Equation 4-9, Equation 4-10 and Equation 4-11, the variables of
Uy, Wy, F_f,and F, f were the other added improvement to this findings as the displacement
in the joints in both directions being explicitly considered, the moments created by the
compressive force were as well explicitly calculated. This can be significantly seen from the
longitudinal power in both reflected and transmitted power (Figure 4-5 and Figure 4-6) for the

extreme of angles (more than 90° of joint angle) compared to the lumped mass joint result.
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Figure 4-5: % of power in beam 1 for all four types of wave for variable joint (thick lines) comparing to
lumped mass joint (thin lines)
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Figure 4-6: % of power in beam 2 for all four types of wave for variable joint (thick lines) comparing to
lumped mass joint (thin lines)

Figure 4-6 for the transmitted power shows higher power for variable joint of flexural
power after the 90° of angle, but lower power from 140° of angle for longitudinal power

transmitted. Power percentage results for variable joint is clearly behaving proportionally to




the increase of geometry, mass and inertia where less power reflected for beam1 and higher
power transmitted for beam 2, especially from 90° of angle for the flexural power (red lines) in
both Figure 4-5 and Figure 4-6 (due to the variably joint increment). Referring to the same
figure, cross-coupling of FL and LF were higher for variable joint compared to the fixed mass

joint model, where both FL and LF overlay each other for its joint type.

Figure 4-7 and Figure 4-8 shows total power by each flexural and longitudinal of both
joint types. Thick lines indicating the variable joint model while the thin lines referring to the
fixed or rigid mass joint. Dotted lines representing the transmitted side which is beam 2, so as
an example if one need to interpret for transmitted power of FL for variable joint method in
Figure 4-7, it would be FL2 as the legend or the thick dotted line. FL2 and FL1 (thin lines) for
rigid joint method could be seen overlaying with variable joint up until about 145° of angle,
before reducing to 0 percentage of power at 180°. Variable joint cross-coupling for FL1 and

FL2 (thick lines) merges at about 165° of angle and reduced to about 10% power at 180° of

angle.
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Figure 4-7: Total power of flexural impinging wave for beam 1 & 2 for variable joint (thick lines)
comparing to lumped mass joint (thin lines), for reflected (continuous lines) and transmitted (dotted lines)
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Figure 4-8: Total power of longitudinal impinging wave for beam 1 & 2 for variable joint (thick lines)
comparing to lumped mass joint (thin lines), for reflected (continuous lines) and transmitted (dotted lines)

Power for longitudinal can be reviewed in Figure 4-8, where it shows close similarity
until 140° of angle between rigid mass joint and variable joint. Longitudinal power for reflected
in beam 1 were higher as the angle increased from 140° of angle and reduced in transmitted
side of the beam 2. Cross-coupling power were in similar behaviour for LF1 and LF2 of both

rigid and variable joint, comparing to the FLs results in Figure 4-7.

This result also shows that from angle 0° to 140° would be best comparable between
the two types of joint assumption. The experimentation reported on chapter 5 later, would be
taking the angle limitation to ensure measurement result and the modelling appropriately
investigated. Interestingly, as the variable joint increase in angle and approaching about 145°,
cross-couple differences starts to be seen in power of FL and LF. From the derivation earlier
in Equation 4-17, Ic would coincide with In as in Figure 4-3 at a particular angle when at L/2

of joint which is the centre of rotation and force. Solving for Equation 4-17,
2, . 6 1
(;L sinc (E)) - EL =0or,
yield that, (cardinal sin) sinc (g) = 3/4, where 0 =~ £2.5514 or at angle of £146.126°, which

is around the angle of 145° when the cross-couple of variable joint affecting both FF and LL

power compared to fixed mass joint method.
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Figure 4-9: Total power of variable joint (thick lines) and rigid joint (thin lines), in beam 1 (reflected-
continuous lines) and beam 2 (transmitted-dotted lines) for both Flexural (red) and Longitudinal (blue).

Power balance being checked for both flexural and longitudinal as in Figure 4-9. Total
power for each flexural & longitudinal of transmitted & reflected means addition of each power
type to equalize the input power. Both joint model was at 100% throughout angle orientation
of beam as shown in the figure above. Total power reflected and transmitted for flexural were
noted equal at 90° of angle, for both rigid mass joint and variable joint method. Power
percentage behaviour were also seen dissimilarity between both method after the extreme
angles (above 100°), where variable joint added the advantage for its dynamic change in
geometry, mass and inertia. Very interesting to note that at this 500Hz analysis, power of
flexural and longitudinal for reflected and transmitted were equally distributed at 50% each
during 163° of angle. This can be translated to coefficient of reflection and transmission equal

to 1 for each power.
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Figure 4-10: Various frequency input for beam 1, from 250Hz (thickest line) with interval of 250Hz, to
1500Hz (thinnest line)
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Figure 4-11: Various frequency input for beam 2, from 250Hz (thickest line) with interval of 250Hz, to
1500Hz (thinnest line)




Figure 4-10, Figure 4-11 and Figure 4-12 would now examine the various frequency
change to the percentage of power for the variable joint. The increase in frequency will reduce
total travelling power for both waves at each angle measured in the reflected power for beam
1 of Figure 4-10. Higher power in the cross coupling were observed compensating power
reduction in above statement for the increase in frequency. At extreme of angle (170°),
frequency change has minimal effect of power difference for both longitudinal and flexural. It
is also observed in Figure 4-11, at about 90° to 110° and 170° of angle of arm 2, the power
transmitted by ‘flexure to flexure’ (FF - red graphs) of incident flexural wave with flexural
reflected wave, are similar for all frequency range. When the frequency decreases, the power
curve for longitudinal to longitudinal (LL - blue lines) of incident longitudinal wave with
longitudinal reflected wave, were broader or flattened. This shows exponential power reduced
against angle of joint at before 90° and increased at after 100° of angle of arm 2. Cross-coupling
power for transmitted side were higher compared to reflected side and increased with frequency
from angle 40° to 140°. Total power were balanced for all frequency range and having

coefficient ratio of 1 at about 160° angle as in Figure 4-12.
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Figure 4-12: Total power for Flexural and Longitudinal, with each frequency equated to 100%, from
250Hz (thickest line) with interval of 250Hz, to 1500Hz (thinnest line)




4.2 Analysis of wave reflected and transmitted

Further analysis for the variable joint were conducted for the various other frequencies.
In this section, the dimension and material type were fixed to be 20mm x 100mm cross section
with Perspex material as in section 3.6. The variable joint model was tested for power
conservation where the output must be equivalent with given input. Alpha is the input wave
section and the beta is the output wave section (identified with beam/arm 1 and beam/arm 2).

Analysis this time considering frequency at 2500Hz, to further illustrate the behaviour of

variable joint.
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Figure 4-13: Total power of Longitudinal and Flexural for variable joint at 2500Hz

From the Figure 4-13 above, it was agreeable for power conservation of input and
output were in balanced. Further verifications on various frequencies at various angles were
also conducted. It is to determine at what angles and frequencies the models would give similar
power and when do the results start to diverge. Longitudinal power for reflected and transmitted

were equalized at 50% for angle 77° and 167°, while flexural power also equalized at 167°.




In Figure 4-14, the maximum power for longitudinal power (blue lines) reflected (beam
1) were at about 105° of angle with 50% power and the minimum (almost zero) power of
longitudinal in Figure 4-15 observed at beam 2 at this angle position. Reflection of flexural
power (red lines) was only significant after this angle of 105°. Cross couple power of LF & FL
was noted significant for reflection (beam 1) after this angle as well, but at its maximum in

Figure 4-15 during transmitted (beam 2) at orientation of about 75°.
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Figure 4-14: Percentage power in beam 1 (alpha) at 2500Hz
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Figure 4-15: Percentage power in beam 2 (beta) at 2500Hz




Analysis for various frequencies at all angles were within range of 500Hz to 3000Hz as
shown in Figure 4-16 and Figure 4-17 of beam 1 and beam 2. Observation to the various waves
i.e. FF, LL, LF and FL were particularly to understand the characteristics. Reflected power in
Figure 4-16 shows that flexural power reduced with the increase of cross-couple power (pink
& green lines) at about 145° of angle. Longitudinal power in other hand increase in power when

cross-coupling increase with the frequency.
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Figure 4-16: Percentage power in beam 1 (alpha) for 500Hz to 3000Hz with interval of every S00Hz
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Figure 4-17: Percentage power in beam 2 (beta) for 500Hz to 3000Hz with interval of every 500Hz




It is understood to compare the normalised power in both side of the beam with the 3™

axis, hence surf plot was produced at various waves type results as well the total for each

flexural and longitudinal power.
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Figure 4-18: Flexural Power reflected in beam 1




Figure 4-18 clearly agreed that the flexural power reflected in beam 1 were at maximum
during 180° within low range of frequency (100Hz-200Hz). The reflected power reduces with
the increase of frequency at angle 180°. Obviously, the least power (zero) were at orientation

of straight beam (0° angle) for highest frequency.
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Figure 4-19: Flexural Power transmitted in beam 2




The reversed behaviour in Figure 4-19 is the direct agreement that transmitted waves

and power were at maximum during straight beam orientation and impeded at 180° angle.
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Figure 4-20: Longitudinal Power reflected in beam 1
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Figure 4-21: Longitudinal Power transmitted in beam 2

Total longitudinal power reflected in beam 1 as Figure 4-20 particularly indicates the

maximum is at 110° of beam angle for lowest frequency. The minimum power during low




frequency at 180°, while at all range frequency for straight beam (0°) up to around 20° of beam

angle. Similarly, for the transmitted side in Figure 4-21 of beam 2, would behaves oppositely.

Further observation in Figure 4-22 to Figure 4-25, are to trace the waves types and its
cross-coupling effect to the total power discussed in earlier paragraph. Figure 4-22 to Figure
4-23 are looking at all range of FF, FL, LF and LL power in beam 1 (reflected side), while
Figure 4-24 to Figure 4-25 would discussing the pattern in beam 2 (transmitted side).

Total flexural power reflected in beam 1 as in Figure 4-18 could be separated into
Figure 4-22, where ‘flexure to flexure’ and ‘longitudinal to flexure’ power calculated. The
increase in power reflected at higher angles were dominated by cross coupling of LF. At higher
frequency as in the figure discussed, the power increases with the dominant angle skewed from

around 165° for lower frequency to 150° at higher frequency.
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Figure 4-22: FF power (left) and LF power (right) for flexural power in beam 1




Total longitudinal power reflected in beam 1 as in Figure 4-20 were also being
examined form its pure LL and cross coupling FL. LF power in the Figure 4-22 and FL power
in Figure 4-23 were producing similar behaviour. LL power in Figure 4-23 which produces
maximum power at about 105° angle for all frequency would skewed towards 120° angle due

to the FL cross coupling power.
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Figure 4-23: LL power (left) and FL power (right) for longitudinal power in beam 1

Total flexural power transmitted in beam 2 as shown in Figure 4-19 is being examined.
The dominance of power transmitted at lower angles (region near to straight beam) in Figure
4-24 was widened by the LF cross coupling power in the right figure, which produces

maximum power at higher frequency.

Total longitudinal power transmitted in beam 2 as in Figure 4-21 would show the
minimum power in left Figure 4-25 skewed from about 105° angle for all frequency towards

120° angle due to the FL cross coupling power in the right figure.
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Figure 4-24: FF power (left) and LF power (right) for flexural power in beam 2
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Figure 4-25: LL power (left) and FL power (right) for longitudinal power in beam 2




4.3 Concluding remarks

There have been various comparisons being made to demonstrate the advantage of this
variable joint model to the fixed mass joint by Horner. Behaviours were frequency dependent
and several angles were noted contributing the obvious changes. Joint model was initially
analysed for the effect of angular change, have include a detail consideration of geometry,
mass, and rotational inertia of circular sector as it increased in angle. Hence, the result was in

good agreement with literature of using 90° fixed mass joint especially at the lower angles.

Furthermore, the result has shown new observations particularly at the extreme of angle
(more than 90°), as the previous rigid mass joint were unable to relate to the change of angle
that would have increase in joint mass and inertia. Several locations of angle were identified
for power balance of reflected and transmitted either for flexural or longitudinal power. This
would contribute to the additional knowledge on handling vibration power reflected and

transmitted in structural system.

The derivation of variable joint model has particularly introduced added considerations
realistically with displacement in the joint as well as the for the moments, considered especially
due to compressive force and the gradual change of distance to centre of rotation for both shear
force and compressive force. Results discussed have elaborated the behaviours and the variable
model shown were noted reliable throughout angle examined. However, the lumped mass joint
would be said reliable or comparable with the variable angle joint for small range of angles

(less than 90°) and for thinner beam (less influence of joint mass size).

Although it may be argued that various other analyses could be conducted, this work needs
to proceed to next level of verifications through physical analysis by a comparable
experimentation. Formulation of the joint itself being further explored with the consideration
of other cross section such as circular segment of jointed rods, where factors from moment of
inertia would be particularly different. Combinations of material types and various cross

sections could also be suggested for other researcher’s activities.




Chapter 5: Force application for beam joint

5.1 Force input into the beam
Based on the understanding of the amplitude input for the angled beam, a further analysis for

the system with force input (which will later be compared to the data from measurements) is
important to show correlation with real system. Any real system of structural would always be

exposed to various inputs such as the compressive force and flexural force.

To predict a closer behaviour of the beam joint, various fundamental verifications are
essential to proceed into the next level of complex modelling of the joint. In this chapter,
modelling of semi-infinite beam and eventually the novel variable joint will be elaborated and
analysed. This chapter is enhancing the model from previous chapter with the consideration of
damping of material. Such analysis is essential to ensure comparative behaviour of the model

with the real beam with specific material types.

5.1.1 Infinite continuous beam

An initial mathematical model for a continuous beam is required to give a correct
relationship between wave responses due to the force input. Figure 5-1 is considering both

flexural and longitudinal force input according to the force direction illustrated.

Both ends were assumed infinite for the beam and having similar notation as previous
chapter. The beam is subjected to both directional force (U and W displacement), the jointed
part will be modelled as the absence of joint by stating angle equals to zero (0°). This eliminates
the physical joint out from the equations. Waves of B;, Bz and B; in the illustration were as
well to be zero (0) since no reflection should be expected from the analysis. As a better clarity,

the equations prepared for comparison were from the Figure 5-1 as derived in following pages.
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Figure 5-1: Continuous beam with Force input

Assuming force applied at x = —xp = m, and joint at x = 0 = n. On the force input
side of the beam, the flexural displacement was indicated as W, (x,t) & W, (x,t)and
longitudinal displacement as U,(x,t) & U,(x,t). Where a (alpha) ,f (beta) and
y (gamma) are the section named for the ease of reference. Alpha section located from force
(—xg) to point reference (x = 0), which includes waves for 4 and B as in Figure 5-1. Beta
section starts from point of reference (x = 0) to the right infinite, which considers waves for
C. Lastly, gamma section starts from force (—xr) to the left infinite beam, which account for

waves D.

U and W direction displacement at «, § and y section was equated to prepare for

numerical investigation.

Ua(x’ t) = {ALe_ikla*lx_ml + BLeiklaxlx_ml} eiwt;
atx =n; {ALe_ikla*ln_ml + BLeikla*ln_m|};

atx=m; {A,+ B.};

aU

a . — _ . i _
—ax = kla*{ —lALe lkla’*lx m| + lBLelkla'*lx ml} ;
atx =n; kyg.{-id e Fe=ml 4 i, eikialn-mi},

atx =m ; k. {—iA, + iB.};




Wa(x, t) — {Aze—kfalx—ml + A4e—ikfa*|X—m| + Blekfalx—ml + B3eikfa*|x—m|} eiwt;
atx=n ; {Aze_kfaln_ml + Blekfaln_ml} + {A4e_ikf“*|"_m| + B3eikf“*|"_m|};

atx:m, {A2+Bl}+{A4+ B3},

ow,
ox

at x =n; kfa{_Aze_kf“In_ml + Blekfaln—m|}

= kyo{—A e Fra=ml 4 B ekralrmmi}t 4 g {—id e Hrelml 4B elkrailx-mi}

+ kyqu{— iAge” el 4 B pikyanoml Y

atx =m; keo{—Ay + B1} + kpo{— 1Ay +iB3 };

0‘w . .
Wza = kya {Ape el 4 Byelrel T} 4 g H{ —Age Tyl Tl = Byethraiomi}

atx =n; kfaZ{Aze—kfaln—ml + Blekfaln—ml}
+ kfa*z{_ A4e—ikfa*|n—m| _ B3eikf“*|n_m|};

atx =m ; kfaZ{AZ +B1}+ kfa*z{_ A, — Bs};

o*w
ax3a = kfa3{_Aze_kfa|x_ml + Blekfalx_ml}

+ kfa*3{iA4€_ikf“*|x_ml _ iB3eikf“*|x_m|} ;
atx=n; kfa3{—Aze'kf“|"'m| + B,ekraln-ml )
+ kfa*3{iA4€_ikf“*ln_m| _ iB3eikf‘7‘*|n_m|};

atx =m ; kfa3{_A2 + B1 } + kfa*S{iA4 - lB3} ;

Wy(x, t) — {Dlekfylx—ml + D3eikf7|x_m|} eiwt :
atx=m; {D;+ Ds3};

ow .
axy — kfy{Dlekfylx_ml + l-D3ekay|x—m|};

atx =m; kp{D; + iD3};
0w, .
axz]/ — kfyZ{Dlekfy|x—m| _ D3elkfy|x—m|};

atx =m; kp*{D; — D3 };
3w,

Yy _ 3 Keylx—-m| _ ik |lx—m| .
53 = ke (Dre"r iDzetkrylx—miy;




at x =m; kfy3{D1 — iD3 };

Uy(x, t) = {DLeikly|x—m|} ei(ut ;

atx=m; {D.};
U ,
a_xy = ky {iD e™wlx—ml};

atx =m; ky{iD,};

For the transmitting side of the bend for flexural W (x, t) and longitudinal Ug(x, t),

WB(X, t) = {Cze_kfﬁ’lx_n| + C4e—ikf;;|x—n|} elowt :
atx=n; {C;+ C4};

aw, .
a—xﬁ = kfﬁ{_cze_kfﬁlx_nl — iC4e—lkfﬁ|x—n|};

atx =n; kep{—C; —iCy };

22w, .
axzﬁ _ kfﬁZ{Cze—kaIx—nl _ C4e—zkf5|x—n|};
atx =n; kfﬁz{Cz —Cs };
23w, .
ax3ﬁ — kf‘g3{—C2€_ka|x_n| + l-C4e—kal;|x—n|};

atx =n; kf/g3{—C2 +iC, };

Ug(x,t) = {CLe_i zﬁlx—nl} it .

atx =n; {C.};

U .
— = kyg{—iC ek}

atx =n; klﬁ{—iCL};

Applying boundary condition at x = m, and x = n, to all equation of continuity,
summation of bending moments, shear forces and compressive forces, yields 12 governing

equations as below: -

L. Continuity of displacement in axial direction, atx=n




Uo.' = Uﬁ’

[[0 = ALe—ikm*In—mI + BLeikza*In—mI -C ]]
Equation 5-1
I1. Continuity of displacement in axial direction, atx=m
U, = U,
[0 = A +B,-D1]
Equation 5-2
I11. Continuity of displacement in perpendicular direction,
atx =n
Wa = WB

[[0 — Aze—kfaln—ml + Blekfaln—ml +A4e—ikfa*|n—m| + B3eikfa*|n—m| -C, - 64]]

Equation 5-3

Iv. Continuity of displacement in perpendicular direction,
atx =m
W, = W,
[0 = A, + A4+ By + B3 —D; — Ds5]
Equation 5-4

V. Continuity of angular displacement/equal gradient (joint),
atx=n
ow, _ oWp

dx dx
kfa{—Aze"‘f“m'm' + Byekralnmi} 4 kro— iA e~ raln=ml 4 jp. gikra-In-ml }

0 = —Ay kpg e Fram=ml — A, ke, emRralnml 4 g, fo ekraln=ml
- —— —
5a 5b 5d

ar lB3 kfa*eikf“*ln_ml ar CZ kfﬁ ar lC4 kfﬁ*
—— —— —

Se 59 5h
Equation 5-5
VI. Continuity of angular displacement/equal gradient,
atx=m
ow, _ ow,
ox ox




kfa{_Az + Bl} + kfa*{_ lA4_ + lB3} = kfy(Dl + lD3)

0 = —Az kf(l - lA4 kfa* +B1 kfa + lB3 kfa* - Dl kf)/ - lD3 kf]/*
—— —— —— —— - —_—
6a 6b 6d 6e 6] 6k

Equation 5-6

VIIL. Equilibrium of bending moment (joint), atx=n
%W, %W,
Eih—— = Eh——f
d0x? 0x?

(k}%a)( Blekfa|n_m| _ B3eikfa*|n_m| _ A4e_ikfa*|n_m| + Aze_kfaln_m|)
= (kfp)(C, — CW)
0 = Ay (Kf,) e fralm=ml 4 4, (—k7,.) e~ #raln=ml 4 B, (k2,) eFraln=ml
7a 7b 7d

+ B3 (_kfz'a*) eikfa*ln_ml + CZ (_kfz'ﬁ) + C4_ (kfz'ﬂ*)

7e 79 7h
Equation 5-7
VIII. Equilibrium of bending moment, atx =m
0*W, a*w,
E Ly ox?2 = B 9x2
(kfe)(By — By — Ay + A;) = (kf,)(Dy — Ds)
0 = A, (kf,) + Ay (k7o) + By (k7o) + B3 (=k7,.) + Dy (—k3,) + D3 (K7,.)
8a 8b 8d 8e 8j 8k
Equation 5-8
IX. Equilibrium of compressive force (joint), atx=n
B, 2y pa, e
282750 e

(kig)(iCL) + (k) (iByetkiasn=ml — g, e=ikialn=ml) = @

0 = A4, [“ilkig)] e Heln=ml 1 B [i(kyp,)] eMeln=ml 4+ ¢ [i(kyp.)]
9c of T

Equation 5-9

X. Equilibrium of compressive force, atx=m
au au
E A v _ E. A _— = F
14175 1415 l
F

(kly)(iDL) - (kla)(iBL - iAL) = EiA,




F
E1Aq

= Ay [i(k1q)] + By, [—i(kig:)] + Dy, [i(kly*)]

10¢ 10f T T
Equation 5-10
XI. Equilibrium of shear force (joint), atx=n
93W, 03Wp
_Elll _ax3 + Ezlz _ax3 =

_(k;a)(Blekfaln—ml _ iB3eikf“*|n_m| + iA4e_ikfa*|n_m| _ Aze_kfa|n_m|)

+ (/!\zf?'ﬁ)(—c2 +iC,) =0

0 = A4, (k;a) e Kraln-ml Ay [—i(k]?a*)] e tkraxn-ml B, (_kj?a) ekraln-ml
11a T T 11d
b B ik )] %I+ G, (k) + Gy [i(655.)]
11 11 11h

Equation 5-11

XII. Equilibrium of shear force, atx =m
3w, 93w,
ElIlW_E:lIlW = Ff
F
(k2,)(By — iBs +idy — A)) — (k3,)(Dy — iD;) = E_fll
1
F,
L=y (h) + A [1(a)] + By (k) + B [ika)] + Dy (<K3)
1 12 12 12d 12 12j
+ Ds [i(Kfy. )]
12

Equation 5-12

5.1.1.1 Results and comments

Rearranging all the 12 equations above as previous preparation, applying the derivation
and matrix to MATLAB, with the given input for Ff = 1N and F; = 1N , the results can be
obtained as below. This time, the model need to be derived for additional six (6) governing
equation for the force point location of its continuity, force and moments. Hence, justifying the
necessity of detail analysis from continuous straight beam and later for the variable angle beam

method.
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Firstly, the analysis considers zero material damping assumption to equate the output

against the input power. Damping value can be introduced using a complex modulus £, which

results in a complex stiffness for the material.

Figure 5-2 shows balanced power transmitted and no reflection due to its physical

orientation as continuous beam. It was observed that 50% of Normalised power which was

against input of each flexural and longitudinal unit force recorded at both alpha & gamma

section. Continuous 50% power was also transmitted to beta section since no damping included

for this initial analysis.

Total flexural power (pink line) in Figure 5-2 were equated from gamma section with

beta section, to prove output power equalized to input power. Longitudinal power plot would

display the comparable results as all section equally receive the input power. This indicates a

good agreement to proceed into consideration of material damping for straight beam analysis.

Figure 5-3 shows the flexural true power in each section accordingly.
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Figure 5-2: Normalised power for Alpha, Beta and Gamma section of the beam,
(top left) Green line — Total power of 50% in Alpha, Beta and Gamma, Pink line — 100% for Beta +
Gamma; (top right) Blue and red lines — Power transmitted in Alpha with no reflected (due to no finite
section); (bottom left and right) Blue and red lines — Transmitted power for Flexural in Beta and Gamma

section.
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Figure 5-3: Total true flexural power (Nm/s) in all section, Black ‘X’ — Input power (force x velocity),
Green dotted line — flex power in Gamma, Blue line —Beta power (red ‘O’ of Alpha power overlapped
with blue line), Pink line — Total for Gamma + Beta




Figure 5-4 shows the longitudinal true power for all section of alpha, beta and gamma.
These true power results from initial 1N force initiated for both flexural and longitudinal
direction for the unit of Nm/s, as from Equation 3-26 and Equation 3-34, while using material
from section 4.2. Power in flexural were noted in 10-* while longitudinal in the range of 107,

which very insignificant compared to flexural.
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Figure 5-4: Total true longitudinal power (Nm/s) in all section against frequency (with amplified view for
power axis), Black ‘X’ — Input power (force x velocity), Green dotted line — longitudinal power in
Gamma, Blue line —Beta power, Red ‘O’ of Alpha power, Pink line — Total for Gamma + Beta




Secondly referring to Figure 5-5, damping assumes to be in accordance to the Perspex
material chosen which around 0.07 (value obtained from measurement) were included into
the equation. Transmitted power was observed reduced in alpha and gamma, while the total

power would reduce as the frequency increased.
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Figure 5-5: Normalised power for Alpha, Beta and Gamma section of the beam,
(top left) Green line — Total power of 50% in Alpha and Gamma, Pink line — for Beta + Gamma; Blue line
— Power in Beta with reduction due to damping;
(top right) Blue and red lines — Reduced power longitudinal (blue) and flexural (red) transmitted in
Alpha with no reflected;
(bottom left and right) Blue and red lines — Transmitted power longitudinal (blue) and flexural (red) in
Beta (due to alpha finite section) and Gamma section.

Figure 5-5 shows the effect of material damping to reduction of power with increase in
frequency in beta section. This was due to the finite section of alpha which a length specified.
Figure 5-6 indicates the reduced power level for alpha and gamma section (red line overlay
green line of gamma) and exponentially decayed power in beta with increase of frequency due
to material damping from finite section alpha, for total of flexural and longitudinal power.

Damping was agreed affecting flexural power more than the longitudinal power.
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Figure 5-6: Normalised power at Alpha and Gamma (red line overlapped with green line) with reduced
power at Beta (blue line) section due to material damping.

It was agreed that the numerical findings were in good agreement for both damped and
non-damped analysis. The power values obtained for alpha and gamma sections were from
force location of right and left of the beam while beta section considered in a distance away to

the right of the straight beam.

5.1.2 Semi-infinite Jointed beam with various angle (Variable Joints)

Further analysis is required to examine the model with load or force which represents
a real application in engineering as in Figure 5-7. Work in this section would now consider the
variable joint to be included at the point of reference (x = 0). The solution was derived for

12x12 matrixes where 6 additional terms of continuity, forces and moment equations are

considered at the excitation position, Xr.
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Figure 5-7: Force input to non-collinear beam with various angle joint;
for assuming, xy = m, and 0 (joint) =n

Result from the continuous beam in previous section shows plausible relationship
which agreed with the theoretical behaviour of power transmission and vibration

characteristics. This advanced model for non-collinear beam was derived to prepare a closer

behaviour between the model, and the experimentation in chapter 6.

The algorithm in this analysis is ultimately to obtain the numerical relationship of
forced input to non-collinear beam with various angle joint (variable angle). The joint model
form chapter 4 was being included into this derivation to complete the analysis. Finite section

of the beam (alpha section) is governed by the distance from force location, (noted as m and n

which refers to Xrand 0 in Figure 5-7) in the positioning set-up.

Rearranging all the 12 equations above as previous preparation, applying the derivation

and matrix to MATLAB, with again the given input for Ff = 1N and F; = 1N, for unity

values. Yields the matrix obtaining all 12 waves amplitudes,

[Y] = inv[X].[Z],  Refer Appendix C-1 and C-2 for equation derivation and MATLAB coding.
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The results were plotted for the range of angle and frequency. A check need to be made

to ensure the algorithm behaves exactly as previous chapter which earlier only includes

impinging waves as input.

5.2

Analysis of results for variable joints
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Figure 5-8: Normalised power 500 (thicker lines) to 3000Hz (thinnest lines) from forced input for flexural
and longitudinal power (arrows towards increase of frequency).

Similar material properties used as in section 3.6 and 4.2 for the above analysis. Result

in Figure 5-8 shows exact power curve which agrees on the algorithm derived for the 12x12

matrix with power balanced being checked. Thicker lines are the lowest frequency (500Hz)

and thinner lines are the higher frequency (until 3000Hz). Power in reflected side for




longitudinal and flexural were lower as increase of frequency, but the cross-coupling power
were increased with the increment of frequency. Transmitted power in alpha were from the
input force of waves A; and A4 Transmitted power in beta shows the opposite behaviours,
except at 80° to 145° of angle for flexure power (also decreased with increase of frequency),
155° to 180° of angle for longitudinal power (also decreased with increase of frequency), and

50° to 130° for cross-coupling power (increased with higher frequency).

Further analysis of particularly at 2500Hz frequency waves plotted as the following

figures.
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Figure 5-9: Normalised power in Alpha and Beta at 2500Hz from forced input for flexural (red lines),
longitudinal power (blue lines) and cross coupling power (pink lines).
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Figure 5-10: Normalised power in Gamma at 2500Hz from forced input for flexural (red lines),
longitudinal power (blue lines) and cross coupling power (pink lines).
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Figure 5-11: Normalised power at 2500Hz from forced input for flexural (red lines), longitudinal power
(blue lines) and cross coupling power (pink lines and green lines).

Figure 5-9, Figure 5-10 and Figure 5-11 show agreement of results from amplitude
input of joint model in chapter 4 of section 4.2, which was analysed at 2500Hz using the similar
Perspex material and dimensions. It was observed that the results agreed with 6x6 matrixes
from earlier chapter. This concludes that the equation derivation was successful and authentic
results were achieved. The results in this section is with the advantage of examining power in
the gamma section as well as the finite section of alpha that have been carefully introduced.

Percentage Power Total
90 T T T T T T T

80 ~ T

Percentage Power

0 20 40 60 80 100 120 140 160 180
Angle

Figure 5-12: Normalised total power at 2500Hz for flexural (thick lines) and longitudinal (dotted lines) of
alpha (red), beta (blue) & gamma (green)

Figure 5-12 were the total power for each flexural & longitudinal in all three sections
(alpha, beta, gamma) Flexural power in gamma was observed increased at all angle before

settled at 75%, while the opposite was observed in alpha and beta. Longitudinal power achieved




peak level at about 120° and reduced to 70% at 180° angle. Oppositely, the longitudinal power
in alpha and beta reduce to about 5% with regards to beam angle until 120° and regain power

up to 30% at 180°.

Figure 5-13 shows total power trend line by each 3 sections (flexural+longitudinal for
each alpha, beta and gamma) and the power balance (black line at 200%). Both Flexural and

longitudinal power were given input of 1 Newton in the analysis.
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Figure 5-13: Normalised total power at 2500Hz for alpha (red), beta (blue) & gamma (green)

The comparison between the beam with damping and without damping is also essential
to understand the true material behaviour as well as to confirm the output obtained for the
analysis. Transmitted power in alpha in Figure 5-14 refers to straight lines (thin lines - no
damping, and dotted lines -material damping included), shows higher reduction affects for the

flexural waves compared to longitudinal (amplified figure in Figure 5-14).

Longitudinal power at 100° angle were reduced 50% comparing to beam without
material damping. Flexure power were also significantly reduced at extreme angles, and the
cross-couple power being seen separated (was overlaying each other) with the introducing of

material damping.
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Figure 5-14: Normalised total power transmitted & reflected at 2500Hz in alpha section: Comparison of
material with damping (dotted lines) and without damping (thin lines) for flexural (red), longitudinal
(blue), flexural to longitudinal-FL (pink) & longitudinal to flexural-LF (green). Close-up of transmitted
power in alpha (smaller figure on the right)

Figure 5-15 and Figure 5-16 shows the comparison of the effect with and without
damping material considered for beta and gamma section in the numerical analysis. Remaining
of 23% and 12% of power seen at straight beam (0° angle) for longitudinal and flexural in beta
section. Cross coupling of LF and FL were also seen separated compared to without damping

as the damping values suppress each wave types to the respective wavelengths.

In both figures, FL (dotted pink lines) were seen higher than LF (dotted green lines)
where maintaining the maximum peak level at about 150° for reflected side (alpha) and at about
70° for transmitted side (beta). The material damping effects were not being examined from
previous literature, hence this work has paved a much clearer and detail behaviour to be

observed form the reflected and transmitted power.
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Figure 5-15: Normalised total power transmitted at 2500Hz in beta section: Comparison of material with
damping (dotted lines) and without damping (thin lines) for flexural (red), longitudinal (blue), flexural to
longitudinal-FL (pink) & longitudinal to flexural-LF (green)
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Figure 5-16: Normalised total power transmitted at 2500Hz in gamma section: Comparison of material
with damping (dotted lines) and without damping (thin lines) for flexural (red), longitudinal (blue),
flexural to longitudinal-FL (pink) & longitudinal to flexural-LF (green)
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Figure 5-17: Normalised total power reflected & transmitted at 2500Hz in beta & gamma section:
Comparison of material with damping (dotted lines) and without damping (thin lines) for flexural (red),
longitudinal (blue), flexural to longitudinal-FL (pink) & longitudinal to flexural-LF (green)

Figure 5-17 shows separately of flexural power and longitudinal power in respective
section of beta and gamma. Dotted lines represent the beam with material damping and

continuous lines represents the beam without material damping being considered.

Figure 5-18 shows total power of flexural and longitudinal with regards to damping
values. Reduced power transmitted in gamma section as well in beta section, while alpha

section shows higher power (less power reflected) with the effect of damping considered.
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Figure 5-18: Normalised total power transmitted at 2S00Hz for flexural and longitudinal: Comparison of
material with damping (dotted lines) and without damping (thin lines) for alpha (red), beta (blue) &
gamma (green)

Total power was equated for beta+gamma where flexural power obtained about 60%
and longitudinal power at about 72% as in Figure 5-18. This indicates that flexural power

reduces higher compared to longitudinal power with the material damping included.
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Figure 5-19: Normalised total power transmitted at 2500Hz for Alpha, Beta & Gamma: Comparison of
material with damping (dotted lines) and without damping (thin lines) for alpha (red), beta (blue) &
gamma (green)

Figure 5-19 concluded the total power from both flexural and longitudinal which in
agreement of damping value included in the beam analysis. Total power from both wave types
(Figure 5-18 and in Figure 5-19) being equate to the black lines and dotted-black lines

representing balanced power measured from the input.




5.3 Concluding remarks

The study of vibration transmission through structural connections have concluded
several mathematical results and is moving towards considering agreement in modelling
through observation in the experimentation activities. Damping behaviour were observed
corresponds to the value chosen for Perspex material which was around 0.07. The results
obtained were plotted against the damping value and will be used for the other analysis in this

work.

Algorithm for the variable joint have been proven authentic with the initial straight
beam analysis, followed by the power balanced analysis for variable joint included. Material
damping that have been introduced also have shown realistic behaviours with respect to each

wave types for the range of angles examined.

In the finite section Alpha, flexural power (FF) reflected with material damping were
marginally increase after 140° of joint angle, and longitudinal power (LL) reflected were at its
maximum for 100° of joint angle. While higher power transmitted by LF than FL and reaches
maximum at 150° of joint angle. In Beta section for transmitted power, LL would be at 0% for
100° joint angle, while FF reduces 50% at 60° of joint angle and continues to drop as the joint
angle increases. LF power would be transmitted higher than FL, and both reaches maximum at
70° of angle. Those were some observation in examining the behaviour of power reflected and
transmitted with material damping of Perspex beam. With given other specific material
properties and cross-section, behaviours of power reflected and transmitted could be elaborated

for the benefits of design and construction requirements.

It is important to take steps of examining areas to be improved for the lumped mass
joint as in chapter 3, into the derivation of variable joint which considers realistic angle change
for the connected beam in chapter 4, and finally validating beam arrangements of the variable
joint with force applications and the inclusion of material damping value of the beam. This
chapter moved closer to real application in engineering with all the consideration above before

embarking into validation through measurement in following chapter.




Chapter 6: Experimental apparatus and measurement method

6.1 Experiment Set-up

The earlier model of the fixed mass joint which constant parameters of geometry
irrespective of angle was inappropriate to be measured physically, hence the developed variable
joint mass thus making the measurements directly comparable to theory. This chapter looks at
the behaviour of vibration power transmitted and reflected from an angled junction between
two beams and the measured data will be compared in subsequent chapters to the estimates of

power from the mathematical model derived earlier in chapters 4 and 5.

When considering the joint mass modelled in previous chapters, the possibilities and
limitations for the physical model were carefully considered for the measurements. For the
rectangular cross section of the beam, the dimension ratio 1:10 were preferred to adhere with
Euler-Bernoulli limitations. Several pairs of beam (consisting of left and right of the joint) were
prepared. A Perspex type of material was chosen due to the inherent material damping and the

speed of the waves in the material. Angled joints have been fabricated as illustrated below in

Figure 6-1. The 2-beam system will be used for measurement in the vibration lab for each

measurement of angle 0°, 10°, 40°, 60°, 90°, 120°, 140°, 160° and 175°.

Figure 6-1: (from left) sample of an angled joint, 2-beam system for measurement joint at 120°, Close-up
of the angle joint fixed between 2 beams.

Consideration for the support of the structure under test is also an important part of the
test set-up. The support conditions should be well defined and experimentally repeatable if the
results of the dynamic measurements are to reflect the properties of the structure without undue

influence from the support.




Usually either the grounded or free boundary conditions are the two extremes that are
most frequently employed. As the nature of this research requires observation of transmission
and reflection of vibration power, it is understood that the best applied support would be free
boundary condition. It was decided that the two-beam jointed structure of test set-up would be

suspended using rubber bands or flexible strings (example as shown in-Figure 6-2).

Rubber bands

Figure 6-2: Example of rubber band mounting for free boundary condition (McConnell 2008)

However, due to the constraint of work space in the laboratory, test set-up for this work
was simplified to 2 flexible strings from ‘A’ shape metal tube structure. Whole test set-up
would be done on floor level as to account repetition and shifting sand boxes for various angle

beam orientation.

Both ends of the beam system were buried in box contained dried sand to simulate the
measurement assumption of semi-infinite condition, where both end are treated infinite and
only waves around the joint will be considered for analysis. The sand boxes also contained
tapered foam wedges which were sized on the effective wavelength in the beams as shown in

Figure 6-3.




The method of attachment for accelerometer to the test system was using wax as shown
in Figure 6-4 where it is considered as the best option from the frequency response result

compared to other type of attachments.

Cemented Thin layer Hand g 5 " " 5 = £
stud of wax held kHertz

Figure 6-4: Method of attachment and frequency response (McConnell 2008)

6.2 Calibration

The initial condition of all equipment being used for experiments must always be good
to avoid unreliable response data and time waste. Equipment such as amplifier, shaker,
computer and analyser were easily defined for its condition by calibration date or maintenance
schedule. Transducers or any signal sensors’ reliability can only be determined by testing them.
Calibration is required so that the values measured by the equipment which represent electrical

voltage can be correctly translated into units of output interest such as acceleration or force.

Transducer or accelerometer’s quoted sensitivities by manufacturers might not be
reliable since the sensor may have suffered damage, while still working but have lost the
response linearity. Calibration set-up and measurement would be the solution, using a simple
rigid structure, such as the steel block and measurements equipment as shown in the Appendix

F section.




6.3 Measuring input power to a structure, the reflected & transmitted
power

Using Power flow (watts) measurement technique from (J.L.Horner, R.G.White 1990),

the calculation will further define best possible input power and transmitted power for the

experimentation.
1
Power flow (watts) = Im (Gap) X
GDX1 x GDX2 x GS1 x GS2
JmpEI 1 kA
X X P X -
Aw? GCA x GCB sin(kA)
Where, Im (Gap) = Imaginary part of cross-spectral density
GDX/GS/GC = gains for power, display & charge amplifier
k = wavenumber
A = accelerometer spacing
my = pA (mass per length)
EIl = bending stiffness
K2 tion due to finite diff imati
= rrection inite difference approximation
Sin(kd) correction due to e difference approx 0

to obtain true power

To measure the input power, from (R. R.J.Pinnington 1981), (C.J.Wu 1995),

Im{l;}

Py = ~1FP?
2 w

Equation 6-1

Where the point accelerance of an equivalent infinite structure from the following expression,
Lo Vo(1+1i) +|pA
7 4p4 El

Material properties of the beam were as follows: -

Equation 6-2

E=1.75 x 10° N/m?, length = 1.8m, thickness/depth (d) = 0.02m, breadth (b) = 0.1m, p = 1170
kg/m?




Beam set-up for experimentation with 0.03m depth in sand box for both ends, so each
beam was exposed for 1.5m, while force to accelerometer distance and accelerometer distance

to termination were 0.3m.

Lower frequency limit due to termination is then calculated from length of beam in sand
box and due to force to acceleration midpoint (which are 0.3m x 2). Upper frequency limit was

calculated from 5 times of the accelerometer spacing (which is 30mm x 5).

Equation from chapter 3 for flexural wavenumber (Equation 3-19) and wavelength
(Equation 3-20) being utilised for the algorithm. Input of white noise were used in the

experimentation.

6.4 Set-up and measurements for experiment of 10° to 175° angle
beam

The beams, each with 1.8 meters in length were jointed together with various angle
shapes. Both ends were embedded in a sand box to achieve an anechoic termination for infinite

boundary condition as Figure 6-5.

Sets of joints were fabricated ranging from 10° to 175° as to ensure enough comparable
data to the numerical analysis. Joints were then attached using strong glue and left to dry for
every set-up for the measurements. After each measurement, the joints would be cut and clean-
up for the next joint to be tested. This cycle of activity often repeated due to issues such as poor
adhesive, misaligned beams jointed, cracked at the joints and mishandling of beam causing

detachment of the assembly. The work is as summarized in Figure 6-6.




Figure 6-5: Angle beam set-up for infinite boundary condition and free boundary condition at the joint




List of materials: -
1) 4 X 1.8m of 2cmx10cm
2) 2 sets of various angled joints

Work Procedures: -

D

2)

3)

4)

Joint angle 120° were fabricated
initially

Both beam assembled with the joint
above and fixed using strong glue
(fill-up every gap in between)

After measurement completed, both
beam was cut near to the joint and a
new joint angle to be machined from
it.

The cycle above repeats for joint
angle of 10° to 175°.

\ d=0.02m

4 | Set of joints for 10°, 40°, 60°, 90°, 120°, 140°, 160° and 175°

10°

60°

90° 120°

140°

Figure 6-6: Perspex material — joint set-up and dimension
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Measurement activities have an initial data confirmation of mobility values (Figure 6-7)
that correspond fairly with the modelling characteristic. This will be further improved with

consideration of damping and some correction value for the Young modulus and density of the

Perspex material.
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Figure 6-7: Log Mobility-modulus against log frequency

Initially, the wavelength of flexural and longitudinal were calculated for the Perspex beam
chosen, to understand the limitations and set-up range required for the measurements. It can be
seen from Figure 6-8 that the longitudinal measurements were not possible for the set-up and hence
the focus would then be for the flexural wave that ranges from 200Hz to 2000Hz, which having

about 17mm down to 7mm wavelength. Frequency limitations will be described in the

measurements results section.
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Figure 6-8: Flexural wavelength and longitudinal wavelength for the Perspex beam used

Measurements were performed for the various set-ups of the joint described earlier.
Coherence, spectral density and cross spectral were obtained in order to quantify the power
transmitted and reflected in the beam. The shaker was placed in location 1 and an accelerometer
at location 2 which was 600mm from the joint, as in Figure 6-9. All the sections of alpha, beta and
gamma were identified (similar to beam figures in chapter 5) and allocated each for a pair of
accelerometers of 5&6 (alpha), 7&8 (beta) and 3&4 (gamma). Beams and variable joints were

jointed using regular epoxy glue and left to dry, at least a day before measurements takes place.

Accelerometers
(Location 2, 3 & 4, 5&6 and 7&8)

3&4

"

2

v 788

5&6

% AW

Shaker
(Location 1)

Figure 6-9: Measurement set-up for shaker and accelerometer locations




Pairs of accelerometers were located at locations 5 & 6 which is 300mm away from the joint
for alpha section (finite length of reflected section), 7 & 8 for beta section is also 300mm away
from the joint (transmitted section of infinite length) and, 3 & 4 for the gamma section (transmitted
section of infinite length) is located 300mm away from the shaker. Each of these pairs were placed
with 30mm separated distance of accelerometers as shown in Figure 6-10. H; 21 of the frequency
response for input force at 1 and displacement at 2, as well as other parameters such as spectral
density, G21 and coherence, Cohy; were systematically stored for each setup measurements at each

locations of accelerometers

Figure 6-10: Accelerometer spacing for all three pairs in the measurement

6.5 Measurements results

Results from measurements for all the set-up were considered between 250Hz and 2000Hz
which considers the lower limits due to half wave length for the sand box and upper limit of the
pairing accelerometer 30mm spacing. Shaker excitation was using white noise, coherence between
shaker and accelerometers as well as between each pairs of accelerometers, were observed very
well achieved in all arrangements of joints and hence all the other data obtained would be agreeable
to be analysed (sample of display as in Appendix F). The measurements however had gone through
several repetitions and stages of rectifications as well as refinements to achieve the final data

collected.




Data display was provided in the appendix section for verifications as well as the MATLAB
coding for the measurements in appendix C-3. The measurements results were repeated in various
occasions due to issues such as ensuring repeatability, suspected poor calibration initial set-ups,
and poor adhesions of joints as well as adhesion of accelerometers which uses bee wax that’s

affected by ambience temperature and humidity change.

6.6 Comparison with numerical plots

Results from measurements were plotted against the numerical in each display as to compare
directly for every joint angle measured experimentally. Lower limit and upper limit of frequency
explained before were noted as range observed. Unit for power reflected and transmitted is in

N.m/s for all results, or in N.mm/s x 107,
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Figure 6-11: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 0° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)

Comparison of result as in Figure 6-11 were from the straight beam or 2-beam jointed to
behave as a continuous beam. This is also marked as 0° angle joint arrangement in the analysis.

Good agreement observed in the figure for the measurements as well as for the numerical work.




Due to the ‘noise’ in the measurements lines, ratio of power was adopted to monitor a better
characteristic of all flexural waves in the respective sections of alpha, beta and gamma.
Fluctuations in the power flow quantities were observed increased as the angle of beams expanded.
This was due to the finite section of ‘Alpha’ which is in-between the force and the joint. The model
is considering the dimension of Alpha section in the programming as exactly in the experimental

distance of force to the joint, hence produces the fluctuations in the results.

Figure 6-12 shows a log scale for frequency which starts from 250Hz where lower limit
due to half-wavelength for the sand box being removed from the display. Power ratio at alpha and
gamma were at 0.5 while it is around 0.4 for the measured result. Result for beta section (blue line)

were observed corresponds to the power transmitted with effect of the material damping.
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Figure 6-12: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 0° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)

Total power was equated from gamma-+beta of the beam for both measurements and the
modelling algorithm. The straight beam results for measurement also shows significant noises
which suspected from the sandbox anechoic termination. This is noted as weaknesses of this
measurement activity as measurement form a 1.8-meter beam (without jointed section) would

produce the similar data noises.




Joint angle of 10° as in Figure 6-13 and Figure 6-14 also shows similar relationship
especially for transmitted power in beta (blue lines). Transmitted power was reduced to nearly 0.1

ratio at highest frequency compared to the straight beam results.
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Figure 6-13: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 10° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 6-14: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 10° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)




Figure 6-15 and Figure 6-16 for angle of 40° as displayed were in better agreement where
resonance from finite section (between force and joint) of alpha starts to be in effect with the angle
of joint increased. Numerically for alpha and gamma is around 0.5 power ratio, while in beta

section reduces comparing to the 0° angle displayed before.
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Figure 6-15: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 40° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)
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Figure 6-16: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 40° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)




Figure 6-17 and Figure 6-18 and discussed for joint angle of 60°. A close resemblance for
the resonance within the frequency range measured to the numerical results. Beta section power

were seen lower ratio but with increased amplitudes in this 60° angle joint analysis.

Ratio Power over Input

Ratio of Power

400 600 800 1000 1200 1400 1600 1800 2000 2200
Frequency, [Hz]

Figure 6-17: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 60° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)

Ratio Power over Input

Ratio of Power

400 600 800 1000 1200 1400 1600 1800 20002200
Frequency, [Hz]

Figure 6-18: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 60° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)




Figure 6-19 and Figure 6-20 shows result of 90° joint angle analysis. Unit of power is at

Nm/s as stated earlier and result from ratio of power were observed in fair agreement as well for

the interested frequency range.
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Figure 6-19: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 90° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 6-20: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 90° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)




Figure 6-21 and Figure 6-22 displays the result for angle 120°. Amplitudes at lower

frequencies were noted higher and this corresponds to the increased angle of joint for the analysis.
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Figure 6-21: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 120° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 6-22: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 120° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)




Figure 6-23 and Figure 6-24 successfully compare the measured and numerical results for
joint at angle 140°. Power ratio were observed lower than 0.1 at higher frequencies and amplitudes

were noted reduced at this angle of joint.
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Figure 6-23: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 140° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 6-24: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 140° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)




Figure 6-25 and Figure 6-26 also successfully compares results obtained for angle of 160°

of joint in the beam.
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Figure 6-25: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 160° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 6-26: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 160° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)




Figure 6-27 and Figure 6-28 would finally discussed the result obtained for angle 175°,
which was the most extreme angle that could physically being measured. This was due to the
positioning of accelerometer would not be possible for angle closer to 180° as the beam will

collapse to each other and forming a ‘thicker beam” assembly.
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Figure 6-27: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 175° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)
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Figure 6-28: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 175° set-up of beam angle.
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)




It is observed that at this extreme angle power transmitted in beta section were lower in
numerical investigation but much lower for the measurement findings. However, both results were

noted in great comparisons in terms of its power reflected and transmitted.

6.7 Concluding remarks

A procedure for the measurement of vibrational power for two beams connected with an
angle joint for force excitation have been established and shows good agreement in almost all the
results. Angle of interest was based on initial result from the variable joint model which concerning
at 40 and 160 degrees. Results between measurements and numerical results were found to be
corresponding to the expected power level of reflected and transmitted. Comparisons were done
only for flexural power, due to accelerometer set-up distance for wavelength limitations, and above
all due to the beam length limitations. Longitudinal power behaviour could be predicted

numerically with the agreement concluded for flexural power relationship.

Phase matching were seen in acceptable similarity as consideration of phase error which
includes the accelerometer distance as well as the manual adjustment of accelerometer locations
in the experimentation. This model and experimentation validation is important to further analyse
and determine the vibration power characteristic concerning the reflected & transmitted in the
beam. Full spectrum of power for all angles against frequency being elaborated in chapter 7 while
comparing with the effect of added rubber layer as additional stiffness and damping at the joint of
set-up. Results provided in this chapter have successfully concur to the mathematical derivation

and modelling of variable joint which outlined in the earlier objective of this work.

Appendix F would further illustrate the measurement data obtained from the various joint
configurations. This would support the consistency and assurance that the measurement activity

was done with stated limitations and weaknesses declared.




Chapter 7: Comparison of modelling and measurement due to rubber
sheet hysteresis damping effect

7.1 Introduction

As an extended research towards the variable joints achieved in previous chapters, the beam
will now be investigated for its behaviour with rubber layer adhered in-between the joints as in
Figure 7-1. The rubber layer is to add both stiffness and increased damping to the joint. Similar
arrangements were prepared relating to the variable angles of joints but are limited to 0°, 40°, 90°,

140° and 175° angles of joints.
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Figure 7-1: Force input to non-collinear beam with rubber layer at various angle joint;
for assuming, x; = m, and 0 (joint) =n

The simple joint for a straight continuous beam (0° angle) was formed by just using one
rubber sheet, and the remaining four angle orientations with the respective joints are as illustrated

in Figure 7-1. A special mixing of strong glue was used to hold the assembly together (requires




adhesion capability for rubber with Perspex) with a very delicate handling procedure (could easily

be detached due to length of beam and twisting motion).

Theoretically, with the added rubber means additional damping material into the system of
this variable joint angle. The solution was again derived for 12X 12 matrixes where the similar 6
additional terms of continuity, forces and moment equations were considered at the excitation
position, Xr. Section of alpha, beta and gamma will be further investigated with regards to the

additional damping.

7.2 Measurements for rubber layer in-between joints

Similar set-up being arrange for the measurement whereby mainly affecting the joint layer of
the variable angle. Equation from previous matrix in displacement, force and moment application
in beam of chapter 5 being utilized. However only parameters of equation bending moment,
compressive force and shear force being modified to accommodate the presence of rubber layer at

the joint area.
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Figure 7-2: Point mobility for rubber sheet




The rubber material used were measured for its point mobility to obtain the hysteretic

material damping or the complex stiffness value as in Figure 7-2.
It was proven that from the equation of motion,

[-mw? + k*]X = F,
Equation 7-1

And

_F
X = o/[—mwz + k*]

Equation 7-2

Where X is now being refer to the displacement considered in the earlier chapter as U and W

directions with regards to flexural and longitudinal.
Hysteresis (or solid or structural) damping of rubber represented in form of: -

k* = hy(1 + iwh)
Equation 7-3

is called the complex stiffness of the system and /4 is a constant indicating dimensionless
measurement of damping caused by the friction between the internal planes that slip or slide as the
material deforms. It was agreed that the energy loss per cycle due to internal friction is independent

of the frequency but approximately proportional to the square of the amplitude.

Effect of material damping force at the joint by the rubber layer were calculated for both sides
at alpha and beta section. It is then acted to gradually dissipate energy produced and all the results
being collected in the figures for experiment measurements in appendix F, as earlier activity in

chapter 6.




7.3 Numerical parameters

Model of the joint with rubber is then being developed focusing at the 3 contributing
equations of moment and two forces of compressive & shear. Similar numerical coding of
MATLAB was used and forces contributing to the viscoelastic dissipation of energy by the rubber

being included in the equations.
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Figure 7-3: Wave motion for variable/wedge size of rigid joint in a non-collinear beam with rubber layer

Then, referring to notation in Figure 7-3 and deriving similarly from chapter 4,

displacement equation was used and being prepared for the analysis.
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Figure 7-4: Equilibrium of force and moment for variable/wedge size of rigid joint in a non-collinear beam
with rubber layer

Again, using the beam theory where forces act about/ through centre of force, which is

point -ve and +ve, and rotation occurs about point M as in Figure 7-4.

Let joint have mass m, inertia /, about point M, and now all the V, shear force, F,
compressive force and M, moment would include the rubber layer.

Then, from equation of compressible force: -

[mUy = F,cos0 + V, sind — F_]

and include the rubber mass, stiffness and damping, yield: -




[(F2) = (D) (~UL)] = [(F)(cos8) — (D) (U.) (cos)]
+[(V.)(5in6) = (D) (— W) (sin)] — MU

Equation 7-4

From equation of shear force: -

[mWy = V_+ F,sind —V cos6]
and include the rubber mass, stiffness and damping, yield: -

[—(V2) + (D) (W] = [(Fy)(sinB) — (D) (U,) (sin)]
—[(V:)(cos8) — (D) (— W) (cos6)] — MW
Equation 7-5

From equation of moment: -
[10=M,—M_—-V,e—V_e—F_f+F,f]
and include the rubber inertial mass, stiffness and damping, yield: -

[(M-) = (Dry-)(6)] + [(V2)(e) = (Drp) (W) (e)]
= [(M}) = Dru ) (O] = [(V)(&) — (D) (W) (e)] — ;8
= [(F) ) = D) (U O] + [ED ) = (D) (U ()]

Equation 7-6
Where: -

Dy, = (—M,w?) + hgy (1 + iwh;) in unit of kg/s*
Dy = (=M;w?) + hsr(1 + iwhy) in unit of kg/s*
Dyy = (—L.w?) + hgy (1 + iwh,y,) in unit of kgm?/s?
are all the mass, inertia and hysteresis for respective directions of compressive, shear and

moment.

As being derived in earlier chapter, the force of shear and compression as well the moment
with the inclusion of the rubber layer were summarised for the model. Characters used were also
similarly obtained from displacement relationship described in earlier chapter. Equation of
bending moment, compressive force and shear force were further manipulated for the matrix with

the rubber layer in analysis as in appendix D-1.




7.4 Results

Similar approach was used to compare the results obtained which plotted together both
numerical and measurement in the figures below. Figure 7-5 and Figure 7-6 displays the straight
beam of 0° angle jointed beam. Obviously, a layer of rubber used to join the 2-beam system. Due
to the section of the rubber, resonance behaviour was noted and agreed in the power ratio results.

Unit for power reflected and transmitted is in N.m/s for all results, or in N.mm/s x 107>,
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Figure 7-5: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 0° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 7-6: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 0° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)

Figure 7-7 and Figure 7-8 shows results obtained from 40° angle joint with the rubber layer
at both sides of the joint. Numerical and measurement noted in agreement of the vibrational power
reflected and transmitted.
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Figure 7-7: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 40° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 7-8: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 40° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)

Figure 7-9 and Figure 7-10 shows the ratio of power at 90° of joint which also in good
agreement of phase angle and the power result. Power in beta were noted dissipated at high
frequency despite numerical shows gradual change. This were suspected from adhesion of rubber
layer in the measurements due to handling and delicate preparation.
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Figure 7-9: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 90° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)
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Figure 7-10: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 90° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)

Figure 7-11 and Figure 7-12 for the 140° set-up however shows again a good agreement of

results obtained from both numerical and measurements work.
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Figure 7-11: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 140° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)
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Figure 7-12: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 140° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)

Figure 7-13 and Figure 7-14 were finally concurs the numerical and measurement analysis
upon the power input, transmitted and reflected in the 2-beam system with rubber layer. This result
from 175° angle were noted shows the best comparisons as well as from the same angle in analysis
of chapter 6 (without rubber layer). This assembly of joint were the best adhered during preparation
as it is close together and could be clamped neatly hence minimizing the damage at the joint area.
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Figure 7-13: Ratio each power over input power against Frequency (250Hz to 2250Hz) of Measurement (thin dotted
lines) vs. Numerical (bold lines) for 175° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma-+Beta (black)
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Figure 7-14: Ratio each power over input power against Log Frequency (250Hz to 2250Hz) of Measurement (thin
dotted lines) vs. Numerical (bold lines) for 175° set-up of beam angle with rubber
Beta (blue), Alpha (red), Gamma (green) and Total Power=Gamma+Beta (black)

It is fair to declare that the measurement results concurred to the numerical method established
for the analysis of variable joint of 2-beam system with rubber layer. Results obtained were seen
slightly poor on 90° of angle but it agrees fairly at the low frequency from above 200Hz to 600Hz
of frequency before the measurement shows power dissipated. Over all the method and technique
established were concluded plausible within the range of lower limit and upper limit of

measurement frequency of the 2-beam set-up.

Higher power reflected can be seen from the results as the angle increase for this
measurements by comparing results from chapter 6 which was without addition of rubber layer.
Next step is to establish relationship of the rubber layer in between the variable joint system for
the range of 0° to 180° numerically against frequency. Measurement result were noted could be

improved for better preparation of beam joints as well as technique of handling.




7.5 Further analysis with range of angles at 500Hz, frequency

This section considers a further analysis on examining the modelling of the rubber layer in
the joint for 5S00Hz frequency at all range of angles. This is to understand the reflected and
transmitted power with additional damping material added to the system. The numerical coding of

the previous chapter has been used for the estimates of reflected and transmitted power.
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Figure 7-15: Normalised reflected power in Alpha (with rubber) of 500 Hz, original joint (bold lines) and with
rubber (dotted lines) for 0° to 180° beam angle.
Longitudinal (blue), Flexural (red), Long-Flex (green) and Flex-Long (pink)

In Figure 7-15, longitudinal power reflected were dampened to about 3% at 80° of angle
compared to about 27% for without rubber layer. Flexural power reflected at 0° angle from 0% to
about 11% and reduces to around 8% from 40° to the extreme of angle. This shows increase of
power reflected compared to joint without rubber. Cross-coupling power of LF and FL were seen

lower as well except at angle between 80° to about 130° of angle of joint.
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Figure 7-16: Normalised reflected power in Beta (with rubber) of 500 Hz, original joint (bold lines) and with
rubber (dotted lines) for 0° to 180° beam angle.
Longitudinal (blue), Flexural (red), Long-Flex (green) and Flex-Long (pink)

In Figure 7-16, longitudinal power transmitted slightly higher for joint with rubber layer but
minimised at about 100° of angle, the same as joint without rubber layer. Flexural power for 500Hz
frequency averagely at 10% of power throughout all joint angle orientation with rubber layer, and
the lowest at the extreme of angle 180°. Cross-coupling power were 0% at straight beam orientation

and slightly increase to around 4% and 5% at 180° for FL and LF respectively.




7.6 Power in beam 1 and 2 for flexural and longitudinal

Figure 7-17 and Figure 7-18 shows the power distribution for reflected and transmitted beam

without material damping in alpha and beta respectively. This will be compared to the
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Figure 7-17: Reflected power in Alpha of 0 to 3000 Hz for 0° to 180° beam angle.
Longitudinal (blue), Flexural (red), and Flex-Long & Long-Flex (pink)
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Figure 7-18: Transmitted power in Beta of 0 to 3000 Hz for 0° to 180° beam angle.
Longitudinal (blue), Flexural (red), and Flex-Long & Long-Flex (pink)




Figure 7-19 and Figure 7-20, which shows the reduction of power for both impinging wave types
of FF and LL. Generally, it is difficult to review the power behaviour in this presentation especially
with result of rubber layer included. Hence, the following sub-section (contour plot) would present
the changes observed from the sequence of without material damping, adaptation material damping

and finally with the rubber layer included.
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Figure 7-19: Reflected power in Alpha of 0 to 3000 Hz for 0° to 180° beam angle with material damping 0.07
Longitudinal (blue), Flexural (red), and Flex-Long (pink) & Long-Flex (green)
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Figure 7-20: Transmitted power in Beta of 0 to 3000 Hz for 0° to 180° beam angle with material damping 0.07
Longitudinal (blue), Flexural (red), and Flex-Long (pink) & Long-Flex (green)




flexural due to the changes adapted from the beginning of this work. Results plotted in contour

7.6.1 Flexural power-reflected (beamI-alpha) and transmitted (beam2-

beta)

It is essential to understand the overall behaviour of reflected and transmitted power for

of power for all beam variable joint angles vs the frequency range (0 — 3000Hz).
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Figure 7-21: Flexural power reflected in beam 1 (alpha) with and without beam material damping




Figure 7-21 shows the reflected flexural power which in alpha section of the beam.
Maximum power reflected (at 45%) can be observed occurred at just before 180° angle for up to
500Hz of frequency. As the material damping included into the beam joint analysis, the maximum
power reduces to around 37% and squeezed to the corner of plot b) for the lowest frequency at
180° angle joint. This strictly shows flexural power reflected maximum at the extreme angle for
only low frequency. Power of about 15% can be obtained from 30° of angle up to 120°, and from

150° for low frequency to 180° of 750Hz of frequency.
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Figure 7-22: Flexural power reflected in beam 1 (alpha) with beam material damping and rubber layer in-
between beams and joints

With the added rubber layer, as in Figure 7-22, maximum power reflected of about 17%
occurs at all angle orientation of the beam. Power reflected reduced gradually at 180° angle and
rapidly at straight beam, with increase of frequency. For example, to obtain 8% power reflected,

is at about 250Hz of 0° angle, at 750Hz of 120° angle and at 2000Hz of 180° angle of joint.




Flexural power transmitted in Figure 7-23a) shows maximum power during straight beam
(0° angle) for all range frequency and minimum power at lowest frequency during 180° angle of
beam. With material damping included in Figure 7-23b), the maximum power focuses at lowest
frequency for straight beam orientation. The power dissipates with the increase of frequency due

to complex Young’s modulus of the material.
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b) Flexural power transmitted for beam 2 with beam material damping of 0.07

Figure 7-23: Flexural power transmitted in beam 2 (beta) with and without beam material damping




Figure 7-24 shows that with the added rubber layer into the joint arrangement, maximum
power transmitted for flexural can be reduced 50%, from 40% in Figure 7-23b) to around 22%
especially during lowest frequency between 40° to 160° of angle. Gradual reduction of power

transmitted can be obtained following the dotted line marked in the contour, which from 100° to
60° angle with the increase of frequency.
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Figure 7-24: Flexural power transmitted in beam 2 (beta) with beam material damping and rubber layer in-
between beams and joints




7.6.2 Longitudinal power-reflected (beam 1-alpha) and transmitted
(beam2-beta)

Longitudinal power was known to have longer wavelength, for this analysis using Perspex
beam it can be seen in Figure 7-25a) that maximum power reflected occurs at around 100° of angle
for up to 500Hz. With consideration of material damping in Figure 7-25b), the power can be

gradually reduced along 100° angle to 120° joint angle with the increase of frequency.
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b) Longitudinal power reflected for beam 1 with material damping of 0.07

Figure 7-25: Longitudinal power reflected in beam 1 (alpha) with and without beam material damping




Added rubber layer as in Figure 7-26 shows that the maximum power can be reduced to
20%, while minimum power region at 2% for all frequency can be achieved by 20° angle of joint

orientation.
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Figure 7-26: Longitudinal power reflected in beam 1 (alpha) with beam material damping and rubber layer
in-between beams and joints




Figure 7-27 for longitudinal transmitted power shows that minimum power was during
100° to 120° angle for all range frequency. Maximum power could be isolated to low frequency at

low angle joint with the added material damping into the analysis.
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b) Longitudinal power transmitted for beam 2 with material damping of 0.07

Figure 7-27: Longitudinal power transmitted in beam 2 (beta) with and without beam material damping




Figure 7-28 of the added rubber layer into the joint assembly shows minimal action can
be taken to achieve low power transmitted, unless to always be at low frequency (100Hz) during

100° of angle, or at 2500Hz frequency during 120° angle joint.
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Figure 7-28: Longitudinal power transmitted in beam 2 (beta) with beam material damping and rubber layer
in-between beams and joints




7.7 Concluding remarks

Various analysis relating to the development of joint type, consideration of material damping
and finally to include rubber layer at the novel variable joint, have obtained considerable result.
Material examined were mainly on Perspex beam of the particular size and Young’s modulus. The
behaviour observed would definitely able to assist various other area of research pertaining the

reflection and transmission of vibration power in jointed beams.

This chapter have considered additional damping which is the hysteresis damping for the
benefit of analysis with the variable joint. Measurement results were plotted in comparison to the
numerical results which were derived and carefully programmed in the MATLAB code. Rubber
material used were noted to be an effective medium to mitigate and manipulate the vibrational

power of reflection and transmission for flexural and longitudinal.

In the finite section Alpha, total flexural power reflected with consideration of material
damping and rubber layer, were suppressed for lower frequency and only at its maximum for 180°
of angle. Whereas the total reflected longitudinal power at its maximum for 100° of joint angle
during lower frequency, and as the frequency increased, maximum power observed to be at around
125° of joint angle. In Beta section of transmitted power, flexural would be maximum at 100° of
angle and longitudinal power peaks at 180° and 0° for lower frequency range. The results could be
further interpreted for several types of cross-sections or different rubber layer properties for the

purpose of design and configurations.

Overall, analysis of the variable joint was agreed successful in predicting the vibration power
behaviour of reflected and transmitted, as well as elaborating on the contrast between different
sections of alpha, beta, gamma and as well as between flexural and longitudinal power of the

results.




Chapter 8: Conclusion

Vibration power for transmission and reflection have been investigated in this work. Method
of using SEA as well as the WFE elaborated in early chapter, could be assisted by the
understanding of power reflected and transmitted obtained in this thesis work. The knowledge of
vibration in this area could be said have extended onwards. Contributions in terms of precise joint
modelling have been successful and validated with the previous works, numerical validation as

well as measurement outcomes.

Novelty of the said work have been verified through several measurements, checked for power
balanced as well as analysed in particular frequency to ensure its validity. Set-up of measurements
were also reflected successful as results obtained were plausible in terms of corresponding power
at frequency and angle investigated. Method used were following the parameters and technique
suggested in literatures. Free-free boundary condition of the 2-beam set-up have been complied

with the best effort possible.

8.1 Variable joint

Chapter 4 have concluded the effects of variable joints, while Chapter 5 successfully models
the analysis in representation of real systems. Chapter 6 and 7 deals with the experimentations
while comparing with the models and summarises several design rules and design perspectives. It
is important to highlight that the effect of considering material damping has given clearer insight

of how the reflected and transmitted vibration power dominates or suppressed in certain angles.

Starting from consideration of joint increments, mass of joint affecting the centre of mass
location, and to finally equate the continuity, force and moments, the variable joint has successfully
shows the advantages and substantial results. Incorporation of force input in the numerical model

for comparison to experimental work relates real applications to the beam.




The variable joint was derived from a physical mathematical model hence the corresponding
response could be calculated with the Euler Bernoulli theory. Points have been highlighted for the
dynamic changes for the novel variable joint model which at about 145° of angle, the centre of
rotation for beam analysis would coincide with the geometric centre. This have provided a new

highlight for the power reflected and transmitted especially relating to cross-coupling power.

Change in material type for the joint, could as well be an area of further understanding the
power reflected and transmitted. The consideration of other theory such as Timoshenko beam

could also be incorporated into the comparison for the optimum method.

8.2 Numerical Investigations

An analysis at 90° joint angle would be best to be elaborated in the success of this work.
Result plotted from previous analysis in section 7.6.1and section 7.6.2 for reflected and transmitted

of flexural and longitudinal power were further examined.

Figure 8-1 shows the power in beam 1 & beam 2 for flexural reflected and transmitted at
90° of joint angle. Power for beams without material damping would not considers the loss factor
and be equated to 50% (as another 50% of power flexural were transmitted to opposite direction
of beam). Once material damping being considered, the loss factor effect could be clearly observed
especially on transmitted side in beam2. Rubber layer provides additional power loss at beam 2,

but however in beam 1 the reflected power slightly increases in between 0 to 1500Hz.

Figure 8-2 examines the longitudinal power behaviour for its reflection and transmission at
90° angle of joint. Total of 50% power would be equated for beams without material damping due
the same comments as flexure power. With the use of complex Young’s modulus, which
considering the loss factor, the power reflected seen drastically drops especially for reflection in

beam 1, as the increase of frequency. Rubber layer addition into the beam-joint arrangements




causes further drop in power in both sides. This analysis could be expanded to various other joint

angles of particular interest.
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Figure 8-1: Flexural power reflected in beam 1 (alpha) & transmitted in beam 2 (beta) at 90° of joint angle
beam with & without material damping, and rubber layer in-between beams and joints

Longitudinal Power Reflected in Beam 1 at 90 degree joint angle Longitudinal Power Transmitted in Beam 2 at 90 degree joint angle

45 45 —

40 —|

&
&
|

35 —

w
&
1

Without material damping

30 —

8
|

25 —

Without material damping

20 —

=
|

With material damping

Longitudinal Power Reflected in Beam 1
5
|

Longitudinal Power Transmitted in Beam 2

With material damping

10— With rubber layer A
— 5 — .
i With rubber layer
¥ T I \ | T ] . T \ T T T |
500 1000 1500 2000 2500 3000 500 1000 1500 2000 2500 3000
frequency /Hz frequency /Hz

Figure 8-2: Longitudinal power reflected in beam 1 (alpha) & transmitted in beam 2 (beta) at 90° of joint
angle beam with & without material damping, and rubber layer in-between beams and joints

Vast numerical investigation could be performed using the model achieved. Variable angle
joint model was agreed as novel approach to understand the reflection and transmitted vibration

power in the beam. This can be adopted for other types of joint with regards to the physical types




of joint. Effects on range of the joint density change or beam cross section change could also be
analysed using the codes developed. The work done have considered both region of frequency and
angle against vibration power. Limitation of experimentation especially at 180° angle could be

concluded as well from relationship obtained in previous chapters.

8.3 Future works: hybrid of cross sections, beam & joint materials

Further consideration will include the effect of damping and stiffness of other real joint
which using bolts, welding and other types of structural fixtures. Development of a good
relationship between the experiment and model will take this research to further in-depth

knowledge for handling the real and more complicated joints.

Angle change in the joint could be further manipulated mathematically by considering
various other beam cross section. This will extend another area of analysis of the variable joint.
As highlighted earlier, the joint material properties could be further manipulated to consider
material damping as well to obtain vibration power characteristics for reflected and transmitted

vibration in beams.

Cross section of beam from shapes of square, wider rectangular (lower height to width
ratio), or hollow beams could be further analysed and investigated for the vibration transmission
power. These examples of various areas of further works would complement the current work,
acknowledge the past and of course improving the future, on vibration power reflection and

transmission.
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Appendix Section

Appendix: A-I Lumped mass Joint equation derivation: -

On the incident side of the bend for flexural displacement W_(x, t) and longitudinal
displacement U_(x, t),

W_(x,t) = {Ae"r* + Aze™r* + A e thrx} elot
yields

atx:() — {A1+A3+A4}
owW_ , .
o = kpa{Are T + idzetn — identnr}
yields
at x = 0 — kfl{Al + lA3 - lA4_}
9x2 fl{le — Aze — Aye };
yields 2
at x = 0 — kfl {Al - A3 - A4_}
63W_ —_ k 3 A kflx 'A lkflx 'A —lkflx .
ax3_f1{1e — laze + 1A4e },

yields 3 . .
. atx.=0 o kei™{A; — 1Az + (A4}
U_(x,t) = {A etun* + Aje~thux} glot;
yields
U at x =0 — {4+ A}

_ax_ = kll{iALelkllx - iAIe_lkllx} ;

yields
at x = 0 — kll{iAL - lAI}

Differentiates W_and U_with respect to time (t);

yields .
, att=0x=0 — iw{A,+ A}
d0°U_ . . .
oz — —a)z{ALe”‘llx + Ale—Lkllx} elwt ;
yields
att=0x=0 — —w?{A,+ A;}
ow_ . . .
TR iw{Ae*r* + Aze'krn* + A e thnx} elwt,
t

yields
att=0x=0 — iw{d;+ A3+ A}




92W_ . . .
— —wz{Alekf1x+ A3elkf1x+ A4e—1kf1x} elwt;

2
ot yields
att=0x=0 — —w?{4A;+ A3+ A4}
0 oW_ : kfix : ikfix : —ikfix iwt
Frar kafl{Ale 1%+ iAze "t — jAge N } e'“t;
yields
att = O,x = 0 — la)kfl{Al + lA3 - lA4}
62 aW_ 2 kfix : ikrix . —ikeix iwt
32 e - Y kfl{Ale %+ [Aze ™t — [Age } e’
yields
att = O,x = 0 — _wzkfl{Al + lA3 - lA4_}
For the transmitting side of the bend for flexural W, (3, t) and longitudinal U, (¥, t),

ko —ik ) Liot yields
W, t) = {Bye ™ r2¥ + B,e ¥} elot 5 qrahp =0 —— {B, + B,}
aw. . jeld
: w* = kpp{—Bye kr¥ — iBe~r¥);  aty =0 5 kyy{-B, — iBy)
W . jeld
a¢2+ = k" {Be 2% — Bie™" 2%}, aty =0 k(B — By
3W. . jeld
Gur = k2 (=Bae ™ 4 iBye”V); aty =0 =k *{-By + iB)

. . jeld
Us(h,0) = {Bie ™ eV} et ary=0 T (B}

U . jeld

61’; = klz{—iBLe_lklzw}; atl/) =0 JLS klZ{_iBL}

Applying boundary condition at x =0 and ¥ =0, to all equation of continuity,
summation of bending moments, shear forces and compressive forces, yields 6 governing

equations as below: -

I. Continuity of displacement in axial direction

_ L ow,
U_ = Uycos®@ — W,.sinb + Esm@ E
L
AI +AL = BL COSH - (Bz + B4_) Sin9 + E Sln9 (_kfz)(Bz + lB4)

L L
AI = _AL + BL COSH - Bz Sin9 - B4_ Sin9 - (kz)z BzSin 0 - (kfz)z lB4_ Sin9




. L . . L . .
A= —A, +B,cosf — B, [sm@ + (kfz)f sin 0] - B, [l(kfz)z sin @ + sin 6

S1 52

I1. Continuity of relative displacement in perpendicular direction

w_ = Uysin@ + W,cosf -

L ow,
2 Y
L

L
A, = —A; — A3 + B, sinf + B,cosf + B,cos6 + B, [(kfz)f (1 + cos (-))]

+ iB, [(kfz)% (1 + cos 9)]

L
A, = —A; —A; + B, sinf +B, Icos 0 + [(kfz)E (1 + cos e)”

53

+ B, lcos 0+i [(ku)% (1 + cos (-))”

S4

II1. Continuity of angular displacement/equal gradient

ow.  aw,
0x B oY
kfl(Al + iA3 - lA4) = _kfz (Bz + iB4)
_A1 - lA3 + lA4_ = k (BZ + lB4_)
f1
kfz
Ay = Ay +iA3+ B, + B, |i
kfl ksq
A ks
Ag= |22+ 4, +2
* u o [kfll kal

S




IV.Equilibrium of bending moment

o 92W_ L. 23w

L 9x2 + 2711 gy3
_ e 2w, L., 3w, IaZaW_
T2 gy2 2722 gys3 T 9t20x

2 L 3 . .
Elll(kfl)(Al - A3 - A4) + EElll(kfl)(Al - lA3 + lA4_)

L
= Bl (kf2)(B: = B) — S Exly(kf;)(iBy — By)

s (B () + 144 (5B ) - s (1(07k)
= 5, (aa(172)) = 8, (Eaa172)) + 8 (5 o 7)) - 8, (52047 )
- (En02) + (380000 (104,)
vy ((Eal(k%l)) +i(5En00)) - (c-(wzz«fl)))

A, l— CAACAER: (g Elll(k]?l)> —i (Ij(wzkfl))l
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V. Equilibrium of compressive force

U au, W, 92U
ElAlﬁ = E;A;, ——cos 6 + E,I, a—lp?’Slne - mjw

P
ElAl(kll)(iAL - iAI)
= EyAy(kp)(—iBy)cos® + E,l,(—k2,)(B;, —iB,)sin6
— mi(—w?)(4; + Ap)

Ap [=i(E1A1 (k) — (mjw?)]

S1
= Ay [=i(E1A; (k) + (m;w?)] — By [i(E,45(ki2) cos 0)]

s1 51
— B, [Ex1,(k},) sin 0] + By [i(Ez2ly(k3,) sin 9)]N
514 S1
VI. Equilibrium of shear force
a3W_ au, . 3w,
_Elll ax3 EZAZ WS]H@ - E212 WCOSH
02 [ L 6W_]
Moz T 2 ox

—Eq 1y (k},) (A — 43 +i4y)
= EyA;(k;p) (—iBy)sin@ —  E,l,(—k},)(B, — iB,) cos 6
L
iA4 (_Elll(k;]_)) + Al (_Elll(k;]_)) - iA3 (_Elll(k;]_))
= —iB, (E,A; (ki) sin 6) + B, (E,1,(k},) cos 0) — iBy(E,1,(k?,) cos 6)
+A4,(mjw?) +  1(mjw?) + As(mjw?)

ity ((mg02) 5 ) ) + ) 5 k) ) s (G023 )
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Appendix: A-Z MATLAB coding for Lumped Mass Joint: -

$function Coupled joint comparex

%% Coupled and joint - (bending<flex> and compressive<long> waves)
clear all

clf

format long e

%$Given

b=0.1;%0.05; sm
d=0.02;%0.006; $m
E1=1.75e9;%5.567e9;% SN/m"2
Il=(b*(d"3))/12; sm”™4
Al=b*d; sm”2
E2=1.75e9;%5.567e9;% SN/m"2
I2=(b*(d"3))/12; sm”™4
A2=b*d; m” 2
RHO=1170;%1165; $kg/m"3
RHO3=1170;%1165; $kg/m”3
Jw=1*b; sm
L=1*d; $m
%Input

Ad=1;%25e-6; $m
Ai=1;%25e-6; $m

tht=zeros;
fgt=zeros;

nPl=zeros;
nP2=zeros;
nP3=zeros;
nP4=zeros;
nP5=zeros;
nP6=zeros;
nP7=zeros;
nP8=zeros;

Kfl=zeros;
Kflt=zeros;
Kf2=zeros;
Kf2t=zeros;
Kll=zeros;
Kllt=zeros;
Kl2=zeros;
Kl2t=zeros;
Mj=zeros;
Mjt=zeros;
Ij=zeros;
Ijt=zeros;




afFF=zeros;
afFL=zeros;
btFF=zeros;
btFL=zeros;
afLL=zeros;
afLF=zeros;
btLL=zeros;
btLF=zeros;
afLN=zeros;
afFN=zeros;
btLN=zeros;
btFN=zeros;

(o3

%% main looping

fgent=0;

for fg=1500:500:1500; $1/s
fgent=fgcnt+l;

thcent=0;
for thet=0:1:10;
thent=thcnt+1;

theta=pi*thet/180;

Mj=RHOj *pi* (L"2) *Jw/4; %kg
Ij=Mj*(L"2)/8; Skgm” 2
omega=2*pi*fq; %1/s
Kfl=(omega™0.5) * ( ((RHO*Al) / (E1*I1))"0.25); %1/m
Kf2=(omega”~0.5)* ( ( (RHO*A2) / (E2*I2))"0.25); %1/m
Kll=omega*sqrt (RHO/E1) ; %1/m
Kl2=omega*sqrt (RHO/E2) ; %1 /m

Sl=(sin(theta)) * (1+(Kf2* (L/2)));
S2=(sin(theta)) * (1+ (1i*Kf2* (L/2)));

S3=(cos (theta) )+ (Kf2*L/2)+ (Kf2*L/2* (cos (theta)));
S4=(cos (theta) )+ (1i*Kf2*L/2)+ (1li*Kf2*L/2* (cos(theta)));

S5=(Kf2/Kfl)*(1/1i);
S5a=Kf2/Kfl;

S6=—(E1*I1* (Kf1"2))+(1i*(L/2)*E1*I1*(Kf1"3))-(1li*Ij*Kfl);
S7=(E1*I1*(Kf172))+ ((L/2)*E1*I1* (Kf173))+(Ij*Kfl);
S8=(E1*I1* (Kf172) )+ (1i*(L/2)*E1*I1* (Kf1"3)) - (1i*IJ*Kfl);
S9=(E2*I2* (K£2"2) )+ ((L/2) *E2*I2* (Kf2"3)) ;

S9a= (E2*I2* (Kf272) )+ (1i*(L/2) *E2*I2* (Kf2"3));

S11=-(11i*E1*A1*K11l) - (MJj* (omega”2));
S12=-(11i*E1*A1*K1l1l)+ (Mj* (omega™2));
S13=11i*E2*A2*K12* (cos (theta));
S14=E2*I2* (Kf273) * (sin(theta));




S15=11*E2*I2* (Kf2"3) * (sin(theta));

S16=—(1i*E1*I1* (Kf173)) - ((MJ* (omega”2))* (1-(1Li*KEf1* (L/2))));
S17=(E1*I1* (Kf1"3))+ ((Mj* (omega™2))* (1+(Kf1*(L/2))));
S18=—(1i*E1*I1* (Kf173))+ ((MJ* (omega”2))* (1+ (Li*KEf1* (L/2))));
S19=11i*E2*A2*K12* (sin (theta)):;
S20=E2*I2* (Kf2"3) * (cos (theta)) ;
S21=11*E2*I2* (Kf273) * (cos (theta)) ;

=-351;

=-52;
x(2,1)=-1;
xX(2,2)=-1;
x(2,3)=0;
X (2,4)=sin (theta);
X (2,5)=S83;
X (2,6)=S4;
X(3r 1):8;
x(3,2)=1;
X (3,3)=0;
X (3,4)=0;
X (3,5)=S85;
x(3,6)=S5a;
x(4,1)=-(S7/S6) ;
x(4,2)=(S8/S6) ;
x(4,3)=0;
x(4,4)=0;
x(4,5)=(S9/S6) ;
x(4,6)=-(S%9a/S6);
x(5,1)=0;
x(5,2)=0;
x(5,3)=(S12/S811);
x(5,4)=-(S13/811) ;
x(5,5)=-(S14/S11);
x(5,6)=(S15/S11);
x(6,1)=(S17/816) ;
x(6,2)=(518/516) ;
x(6,3)=0;
x(6,4)=-(S19/516) ;
x(6,5)=(520/S816) ;
x(6,6)=-(S21/S16);

zL=[A1;0;0;0;A1i;0];
zF=[0;A4;24;104;0;R4];

yL=x\zL;




yF=x\zF;

tht (thent)=theta;
fgt (fgcnt)=£qg;
Kflt (fgcent)=Kfl;
Kf2t (fgcnt)=Kf2;
K11t (fgcnt)=K1l1;
K12t (fgcnt)=K12;
Mjt (thent)=Mj;
Ijt(thent)=I7;

%Note that for the ma
v (1) %A1 Nm/s
3y (2) %A3 Nm/s
%y (3) %AL Nm/s
sy (4) $BL Nm/s
sy (5) $B2 Nm/s
sy (6) %$B4 Nm/s
afFF (thcnt)=(real (yF(
afLF (thent)=(real (yL(
btFF (thcnt)=(real (yF(
btLF (thcnt)=(real (yL(
afLL (thent)=(real (yL(
afFL (thcnt)=(real (yF(
btLL (thcent)=(real (yL(
btFL (thcent)=(real (yF (
afLN (thent)=(imag (yL (
afFN (thent)=(imag (vF (
btLN (thcent)=(imag (yL(
btFEN (thcnt) = (imag (yF (

Pfl1=E1*I1* (Kf173) *ome
reflected flexural wave
Pf2=E1*I1* (Kf173) *ome
reflected flexural wave
Pf3=E2*I2* (Kf2"3) *ome
transmitted flexural wave
Pf4=E2*I2* (Kf£273) *ome
transmitted flexural wave

P11=0.5*E1*Al*omega*K11* ((yL (3

reflected longitudinal wave

P12=0.5*E1*Al*omega*K11* ( (yF(

reflected longitudinal wave

P13=0.5*E2*A2*omega*K12* ( (yL (4

transmitted longitudinal wave

P14=0.5*E2*A2*omega*K12* ( (yF (

transmitted longitudinal wave

PFlex=E1*I1*Kfl"3*omega* ( (abs (Ad))"2);
PLong=0.5*E1*Al1*Kll*omega* ( (abs (Ai))"2);

trix of X;
XXXX

XXXX

ga* ((yF(2))"2);

yF(2)-> A3
ga* ((yL(2))"2);

yL(2)-> A3
ga* ((yF(6))"2);

yF (6) -> B4
ga* ((yL(6))"2);

yL(6)-> B4
))"2);

yL(3)-> AL
3))"2);

yF (3)-> AL
))"2);

yL(4)-> BL
4))"2);

yF (4) -> BL

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

in

in

in

in

in

in

in

in

due

due

due

due

due

due

due

due

to

to

to

to

to

to

to

to




nP1 (thent, fgent) = (abs (Pf1l) /abs (PFlex)) *100;
flexural incidence wave, flexural reflected wave

nP2 (thent, fgent) = (abs (P£2) /abs (PLong) ) *100;
longitudinal incidence wave, flexural reflected wave

nP3 (thent, fgent) = (abs (P12) /abs (PFlex)) *100;
flexural incidence wave, longitudinal reflected wave

nP4 (thent, fgent) = (abs (P11) /abs (PLong) ) *100;
longitudinal incidence wave, longitudinal reflected wave

o\

o

o

o

o

nP5 (thent, fgent) = (abs (P£3) /abs (PFlex)) *100;
flexural incidence wave, flexural transmitted wave

nP6 (thent, fgent) = (abs (Pf4) /abs (PLong) ) *100;
longitudinal incidence wave, flexural transmitted wave

nP7 (thent, fgent) = (abs (P14) /abs (PFlex)) *100;
flexural incidence wave, longitudinal transmitted wave

nP8 (thent, fgent) = (abs (P13) /abs (PLong) ) *100; %
longitudinal incidence wave, longitudinal transmitted wave

o

oo

A=nP2+nP4;
B=nP6+nP8;
C=B+A;

D=nP1+nP3;
E=nP5+nP7;
F=D+E;

end

end

fqt=1000:1000:5000;
tht=0:1:10;

figure (1)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

grid on

title 'Percentage Power Reflected in Beam 1'
xlabel 'Angle of Arm 2 (Degrees)'

ylabel 'Percentage Power'

legend ('FF','LF','FL','LL', 'Location', 'best');

figure (2)

plot (tht,nP5,'r")
hold on

plot (tht,nP6, 'g'")
hold on

plot (tht,nP7, 'm")

power
Spower
power

power

power
Spower
power

Spower

in

in

in

in

in

in

in

in




hold on

plot (tht,nP8, 'b'")

hold on

grid on

title 'Percentage Power Transmitted to Beam 2'
xlabel 'Angle of Arm 2 (Degrees)'

ylabel 'Percentage Power'

legend ('FEF','LF','FL','LL', 'Location', 'best');

figure (3)

plot (tht,nPl, 'r")

hold on

plot (tht,nP3, 'm")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP7, 'm")

hold on

grid on

title 'Percentage Power Reflected from Flexural'
xlabel 'Angle of Arm 2 (Degrees)'

ylabel 'Percentage Power'

legend ('FF1','FL1','FF2','FL2', 'Location', '"best"') ;

figure (4)

plot (tht,nP2,'g")

hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP6, 'g')

hold on

plot (tht,nP8, 'b'")

hold on

grid on

title 'Percentage Power Reflected from Longitudinal'
xlabel 'Angle of Arm 2 (Degrees)''

ylabel 'Percentage Power'
legend('LF1','LL1','LF2"','LL2"', 'Location', 'best"') ;

figure (5)

plot (tht,A,'r")

hold on

plot (tht,B, 'b")

hold on

plot (tht,C, 'k")

hold on

plot (tht,D,'.r")

hold on

plot (tht,E,"'.b")

hold on

plot (tht,F,'.k")

hold on

grid on

title 'Total Power in Alpha and Beta'
xlabel 'Angle of Arm 2 (Degrees)''
ylabel 'Percentage Power'




legend('Aa','B','c','DnD','e', 'F', 'Location', 'best"') ;

figure (6)

plot (tht,afFF, 'r")

hold on

plot (tht,aflF, 'g')

hold on

plot (tht,afFL, 'm")

hold on

plot (tht,aflL, 'b'")

hold on

grid on

title 'Wave Amplitudes in Alpha'
xlabel 'Angle of Arm 2 (Degrees)''
ylabel 'Wave Amplitudes'

legend ('FE','LE','FL', "LL") ;

figure (7)

plot (tht,btFF, 'r")

hold on

plot (tht,btLF, 'g")

hold on

plot (tht,btFL, 'm")

hold on

plot (tht,btLL, 'b")

hold on

grid on

title 'Wave Amplitudes in Beta'
xlabel 'Angle of Arm 2 (Degrees)''
ylabel 'Wave Amplitudes'

legend ('FF','LEF','FL',"LL");

figure (8)

plot (tht,aflN,
hold on

plot (tht,afFN,
hold on

plot (tht,btlN,
hold on

plot (tht,btFN,
hold on

grid on

title 'Near Field Wave Amplitudes in Alpha and Beta'
xlabel 'Angle of Arm 2 (Degrees)''

ylabel 'NF Wave Amplitudes'

legend ('afLN', "afEN', "DtLN', "DtEN') ;

[} o
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figure (6)

surf (fgt, tht,nPl);

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('FF - NP Reflected in Beam 1'")

title (' (Figure-5)Power vs angle \theta and frequency/Hz')
grid

figure (6)




surf (fgt, tht,nP2);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('LF - NP Reflected in Beam 1'")

title (' (Figure-6)Power vs angle \theta and frequency/Hz')
grid

figure (7)

surf (fgt, tht,nP3);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('FL - NP Reflected in Beam 1'")

title (' (Figure-7)Power vs angle \theta and frequency/Hz')
grid

figure (8)

surf (fgt, tht,nP4) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('LL - NP Reflected in Beam 1'")

title (' (Figure-8)Power vs angle \theta and frequency/Hz')
grid

figure (9)

surf (fgt, tht,nP5) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('FF - NP Transmitted to Beam 2'")

title (' (Figure-9)Power vs angle \theta and frequency/Hz')
grid

figure (10)

surf (fgt, tht,nP6) ;

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('LF - NP Transmitted to Beam 2'")

title (' (Figure-10) Power vs angle \theta and frequency/Hz"')
grid

figure (11)

surf (fgt, tht,nP7) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('FL - NP Transmitted to Beam 2')

title (' (Figure-11)Power vs angle \theta and frequency/Hz"')
grid

figure (12)

surf (fgt, tht,nP8);

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('LL - NP Transmitted to Beam 2'")

title (' (Figure-12)Power vs angle \theta and frequency/Hz")
grid




o° oo

o

o

onejoint.m

clear all

freg=input ('Frequency in
w=2*pi*freq;

bl=50e-3;
dl=6e-3;
b2=bl;
d2=d1;

Al=bl*dl;
A2=b2*d2;

E1=5.0e9;
E2=5.0e9;

I1=(bl*(d1"3))/12;
I2=(b2*(d273))/12;

rhol=1180;
rho2=1180;

rhoj=1180;

J=50e-3;

L=6e-3;

Mj=rhoj*pi* (L"2)*J/4;
I§j=Mj*L*L/8;

one joint in semi-infinite beam Feb 2010
original coding from Dan Baldry
calculates three different angle configurations

Hz = ");

$Frequency (rad/sec)

%$Breadth of beam A (metres)
%Depth of beam A (metres)
$Breadth of beam B (metres)
%Depth of beam B (metres)

%$Youngs Modulus of beam A
%$Youngs Modulus of beam B

%Density of beam A
%$Density of beam B

%Density of joint
$Width of joint
%Radius of joint

kfl=((rhol*bl*dl* (w"2))/(E1*I1))"(0.25)

kf2=kfl;

kll=w* ((rhol/E1)"(0.5))
kl2=k1l1;

for n=1:180
theta=n*2*pi/360;




kfl kf2 i*kfl i*kf2 0 O

-E1*I1*(kf1"3) —w*w*MJ* (1-kfl* (L/2)) -E2*I2*(kf2"3)*cos (theta)
I*E1*I1* (kf173) —wrw*Mj* (1-1i*kfl*(L/2)) 1*E2*I2* (kf2"3)*cos (theta)
1*E2*A2*k12*sin (theta) O

0 (1+kf2*(L/2))*sin(theta) 0 (1+kf2*i*(L/2))*sin(theta) -cos(theta) 1

E1*I1* (kf172) * (1+kfl1*(L/2))-Ij*w*w*kfl -E2*I2* (kf272)* (1+kf2*(L/2)) -

E1*I1* (kf172) * (1+kfl*i*(L/2))-Ij*i*w*w*kfl E2*I2* (kf272)* (1+kf2*1i* (L/2))
0

0

1 -cos(theta)-kf2* (L/2)* (1l+cos (theta)) 1 -cos (theta)-
kf2*i* (L/2)* (1+cos (theta)) -sin(theta) 0

0 E2*I2* (kf273)*sin(theta) 0 -E2*I2*i* (kf273) *sin(theta)
1*E2*A2*kl2*cos (theta) 1*E1*Al1*kl11-Mj*w*w];

C

o
°

D
1

[ 00 -1 0 0 —-i*E1*Al*k11+Mij*w*w]';

or longitudinal incident wave

[-1*kfl —-i*E1*I1*(Kf1"3)+w*w*Mj* (1+kfl*-i*(L/2)) O E1*I1*(kfl"2)* (1-kfl*-
(L/2))-w*w*=-i*kfl1*I3j -1 0]"'; $For flexural incident wave

* 0ol

Along=(inv (B)) *C;
%$Longitudinal amplitudes
Aflex=(inv (B)) *D;
$Flexural amplitudes

Alongl (n
Along2 (n
Along3 (n,
Along4 (n

Along5(n,1l)=Along(5,1);
Along6 (n,1)=Along(6,1);

Aflexl (n
Aflex2 (n,
Aflex3 (n
Aflex4d (n

Aflex5(n,1l)=Aflex(5,1);
Aflex6(n,1l)=Aflex(6,1);

end

Pflexl=E1*I1* (kfl1"3)*w* (Aflex3."2); $Power in beam A due to reflected
flexural wave

Pflex2=E1*I1* (kf1"3)*w* (Along3."2); $Power in beam A due to reflected
flexural wave

Pflex3=E2*I2* (kf2"3) *w* (Aflex4."2); $Power 1in beam B due to
transmitted flexural wave

Pflex4=E2*I2* (kf273) *w* (Along4."2); $Power in beam B due to
transmitted flexural wave

Plongl=0.5*E1*Al*w*kl1l* (Along5."2); %Power in beam A due to reflected
longitudinal wave




Plong2=0.5*E1*Al*w*kll* (Aflex5."2); $Power 1in beam A due to

longitudinal wave

Plong3=0.5*E2*A2*w*k1l2* (Along6."2) ; %Power in beam B due to

transmitted longitudinal wave

Plong4=0.5*E2*A2*w*k12* (Aflex6."2); $Power 1in beam B due to

transmitted longitudinal wave

Pflexref=E1*I1* (kf1"3)*w* (1) ;
Plongref=0.5*E1*Al*w*kl1* (1) ;

Pl=(abs (Pflexl) ./Pflexref)*100; %$Percentage power in
incidence wave, flexural reflected wave

P2=(abs (Pflex2) ./Plongref) *100; %$Percentage power in
longitudinal incidence wave, flexural reflected wave
P3=(abs (Plong2) ./Pflexref) *100; %$Percentage power in
incidence wave, longitudinal reflected wave

P4=(abs (Plongl) ./Plongref) *100; %$Percentage power in

longitudinal incidence wave, longitudinal reflected wave

P5=(abs (Pflex3) ./Pflexref) *100; %$Percentage power in
incidence wave, flexural transmitted wave

P6=(abs (Pflex4) ./Plongref) *100; %$Percentage power in
longitudinal incidence wave, flexural transmitted wave
P7=(abs (Plong4d) ./Pflexref) *100; %$Percentage power in
incidence wave, longitudinal transmitted wave

P8=(abs (Plong3) ./Plongref) *100; %$Percentage power in

longitudinal incidence wave, longitudinal transmitted wave

thetaplot=[1:1:180];

figure (1)

plot (thetaplot,Pl, "k")

grid on

hold on

plot (thetaplot,P2, 'r")

hold on

plot (thetaplot,P3, 'b")

hold on

plot (thetaplot, P4, 'g")

hold on

title 'Percentage Power Reflected in Beam 1'
xlabel 'Angle of Arm 2 (Degrees)'
ylabel 'Percentage Power'

legend ('FE','FL','LE'", "LL") ;

figure (2)

plot (thetaplot,P5, 'k")
grid on

hold on

plot (thetaplot,P6, 'r")
hold on

beam

beam

beam

beam

beam

beam

beam

beam

reflected

flexural

flexural

flexural

flexural




plot (thetaplot,P7, 'b")

hold on

plot (thetaplot, P8, 'g")

hold on

title 'Percentage Power Transmitted to Beam 2'
xlabel 'Angle of Arm 2 (Degrees)'

ylabel 'Percentage Power'

legend ('FE','FL','LE'","LL") ;




Appendix:

B-1

derivation:

U and W displacement for Variable Joint equation

0

0
U,cosO — W, sinf = Uy + 250 [Sinzcose — cosZSinH

0 0
U,sinf + W,cosf = Wy + 2s0 sinZSinH + coszcose]

or

2] 30

U_ =U,cosf — W, sin8 + 2s0 [sinz + sin T]
] 7] 36
W_ = U,sinf + W, cosf — 2s0 [COSZ + cos T]

0 0]

0
U_. =U,cos — W, sin6 + L@sinz [ZSin—cos—

2 4

2 4

6 0 0
W_ = U,sinf + W,cosO — L(Z)sinZ [Zcos—cos —]

0 0
W_ = U,sin0 + W, cost — L@sinzcos—

0
U_. = U,cosf — W,sin + L@sin? >

2




Appendix: B -2 Variable Joint equation derivation: -

Continuity of displacement in axial direction

) L ow,
U_ = U,cosf@ — W,sin6 + E(l—cos@) N
L
AI + AL = BL COoS 0 - (BZ + B4_) Sin9 + E (1 — COS 0)(_kf2)(B2 + lB4)
L
AI = _AL + BL COSB - Bz Sin9 - B4 SirlH - (kfz)z Bz(l_ COSs 9)
(k LB, 6
fz)zl (1 —cos 0)
L
A= —A; + B, cosf — B, [sin 0 + (kfz)E (1 — cos 0)]
S1B2
L
— B, [i(kfz)z (1—cos0) +sin 9]
S1B4
Continuity of relative displacement in perpendicular direction
_ L . ow,
Ww_ = U,sinf + W,cosf - E(sme) Y
L

L
A, = —A; — A3 + B, sinf + B,cosf@ + B,cos6 + B, [(kfz)i (sin 9)]

+ iB, [(kfz) % (sin (-))]




L
Ay, = —A, — A3 + B, sinf + B, [cos 0 + [(kfz) > (sin e)”

S2B2

+ B, [cos 0 +i [(kfz)g (sin 9)”

S2B4

Continuity of angular displacement/equal gradient

oW. o ow,
ox B o
kfl(Al + iA3 - lA4) = _kfz (Bz + iB4)
k
_A1 - lA3 + lA4_ == kfz (Bz + lB4_)
1
k k
iA4:A1+iA3+B2 ﬁ +B4[l£
k1] ks
1 ke2 1] lkfz
A, = A [—] + A, + B, |—.
4 1 MLJ 3 Z_kfl i kfl
5341 $3B2 5384
Equilibrium of bending moment
O2W_ L, o 0W
E111 axz + E(SlnE)Elll a 3
2w, L 3w, d20W.
= EZIZW - E(sm )EZIZ 61/)3 - Ijm

— E1Aj—— P [ (1—cos")] + E,A, aalf; [2 (1—cosg)]

Elll(kle)(Al - A3 - A4) + E(Sing)Elll(k;]_)(Al - lA3 + iA4)
L
= Bl (kf2)(Ba = B) — S(sing)Exl (k) (iBy — B)
5 . . L 0 , ,
— L~ (k1) (A + ids — iAy) — [5(1 - cosE)] E,A, (k) (i) — iA))

L
[i (1 - cos 5)] E;Az(ki2)(—iBy)

+




—Aq (EiL (k) + id, <§ (sin g)Elll(k;’l)> + id4(Lw?ks)
:BA@M%”—m@MM%D+&G@mQMm%»
5, (5 (i DEur(07)
- (B02) + (56102 - (1045)
+&(@ﬂd@ﬂ)+%%@m9&h@%»+i@@&@ﬂn
_ia, [%(1 _ cosg)] E1A,(k;y) + iA, [;(1 ~ cos ;)] Eq1A; (ki)

. L 0
- lBL [E (1 — COS E)] EZAZ (kIZ)

ﬂA4 [— (Elll(kj%l)) + z<% (sing)Elll(k§1)> + i(ijZkfl)l

S4a

[L
+ A [E (1 - cos g)] E A;(k;y)

S4b

-~ [0 (o) - s

{
)

L
— A, |i ( (1 - cos ;’) ElAl(ku)‘ - B, li <E (1—cos g)) E;A, (ki)

+ A Elll(kfl)

N~

@mﬂah@ﬂﬁ+l@@u@g)

544

N T~

(sm Vura (7))

+ B2 2Iz(kfz) + (

) _(Ezlz (k2)) + i <§ (sin})E,1, (@))lM

Equilibrium of compressive force




aU_ 6U+ a3W+ i az . 0 ZaW_
ElAlg = E2A2WCOSQ + EZIZWsmH - mjﬁ[U_—L(st) W

= EyAy(kp)(—iBy)cos® + E,l,(—k2,)(B;, —iB,)sin6
— my (=) [+ 4,) = L(sin2)’ (kp1)(Ay + i — iAy)]

4, [~i(E, Ay (i) = (mya?)] — Ay [(myw?)iL(sin )" (kyy)|

- _ 4, [(mij)L(sinZ)z(kﬂ)] - Zlg [(mjwz)iL(Sing)z(kfl)]

S51 S5
+ Ay [-i(E 4, (k) + (mjw?)] — By [i(E,A; (Ki2) cos 0)]
S53 S54

— B, |Ex1,(k},) sin 0] + By [i(Ez1,(k},) sin 6)]

S§55 556

Note:

Equation for bending moment and compressive forces above were having both A; and A,
as the input wave, to further simplify the equation for matrix arrangement, both equation need to
be solve simultaneously.

The equation below being derived to simplify the matrix: -

55 = (S5a.S4b) + (S5b. S4a)

_ [(541.S5a) + (§51.54a)] _ [(542.55a) — (§52.54a)]

S5A1 S5A3

S5
—(543.55a) + (553.54
ceqy (543550 + (553.540)]
S5
544.55a) + (§54.54 $45.55a) — (5§55.54
gopy = (544550 + ($S54.540)] - [(545.550) — (555.540)]
S5 c c S5
—(546.5 + (556.54
ssar = 046550 + (556 40)

saA1 = —(S41/¢, )+ [55A1_ (54b/54a)] . Saa3=(542/g, )+ [55A3. (54b/54a)] ,
S4AL = —(543/54a) - [55AL' (S4b/54a)]

S48 = (Mg 5501 (g )] 5882 = (95,) 5582 (99,,).
saB4 = —(546/g,,) — |55B4.(S4 /54, )]

Equilibrium of shear force




GW]

)
[W + L(sin )(cos P

- mj== ot2
—Ey 11 (k3,) (A, — 43 + i4,)
= EyA;(k;p) (—iBy)sin@ —  E,l,(—k},)(B, — iB,) cos 6
— myw?[—(A1 + A3 + Ay) + (L(sin?)(cos ) (ks1 ) (A1 + i4; — i4,))]
idy (~E (k) + Ar (—E:L (k) — 14 (—ExL (K,))
= —iB,(E,A; (ki) sin 0) + By (Ea1,(k},) cos 0) — iBy(E,1,(k},) cos 6)
+A4,(mjw?) + 4, (mjw?) + A3(mjw?)
+iA, ((m]-wz)L(sin ?)(cos?) (kfl))
— A ((m]-wz)L(sin ) (cos %)(kfl)) —ids ((m]-wz)L(sin )(cos %)(kfl))

NAL; [(—iElll(k]?l)) — (mjw?) - (i(m]-wz)L(sin ) (cos %)(kfl))]
= Ay |(Exh (k) + (mjw?) — ((mjw?)L(sin2) (cos 2) (ksy) )|

+ As [(—iElll(k;’l)) + (mjw?) if)El;(mjwz)L(sin%)(c:os g)(kfl))]

S6A3

— By, [iE, Ay (ki2) sin 0] + B, [E; 1, (k},) cos 6] — By [iE,1,(k},) cos 6]

S6BL S6B2 S6B4




Appendix: B -3 MATLAB coding for Variable Joint equation: -

o

function Variable Joint.m

%% Coupled and joint - (bending<flex> and compressive<long> waves)
clear all

clf

format long e

$Given

b=0.1;%0.05; $m
d=0.02;%0.006; $m
E1=1.75e9;%5.567e9;% SN/m"2
Il=(b*(d"3))/12; sm”™4
Al=b*d; sm™2
E2=1.75e9;%5.567e9;% SN/m”2
I2=(b*(d"3))/12; sm”™4
A2=b*d; sm”2
R=1170; $kg/m"~3 (rho)
Rj=1170; $kg/m"3
Jw=1*b; $m
L=1*d; $m
Eta=0.00;

Ele=El1* (1+ (1i*Eta));
E2e=E2* (1+ (1i*Eta)) ;

Ql=Ele*I1;

Q2=E2e*12;

S1=Ele*Al;

S2=E2e*A2;

ml=R*Al;

m2=R*A2;

%$Input

Ad=1; $m
Ai=1; $m

tht=zeros;
fgt=zeros;

nPl=zeros;
nP2=zeros;
nP3=zeros;
nP4=zeros;
nP5=zeros;
nP6=zeros;
nP7=zeros;




nP8=zeros;

Kfl=zeros;
Kflt=zeros;
Kf2=zeros;
Kf2t=zeros;
Kll=zeros;
Kllt=zeros;
Kl2=zeros;
Kl2t=zeros;
Mj=zeros;
Mjt=zeros;
Ij=zeros;
Ijt=zeros;

afFF=zeros;
afFL=zeros;
btFF=zeros;
btFL=zeros;
afLL=zeros;
afLF=zeros;
btLL=zeros;
btLF=zeros;
afLN=zeros;
afFN=zeros;
btLN=zeros;
btFN=zeros;

Ioj=zeros;
Imj=zeros;

thcent=0;
for thet=0:1:180;
T=thet*pi/180;

MJj=Rj*T/2* (L"2) *Jw;
$TIoj=((T-sin(T))*(L"4)/8);

$Ici=L* (((4/3)*(sin(T/2)/(T)))-(1/2));
$Ij=Mj* (Ioj-Icj);

I9=Mj* (L"2)/12;

thecnt=thcnt+1;

fgcnt=0;
for £g=000:100:3000;%000:16.667:3000.06;
w=2*pi*fqg;

$Kfl=(w"0.5)* ((ml1/Q1l)"~0.25);
SKEf2=(w”0.5)* ((m2/02)~0.25) ;
$Kll=w*sqrt (R/E1) ;
$K12=w*sqrt (R/E2) ;

Kfl=(w"0.5)*

(((ml)/(
KE2=(w"0.5)* (((ml) /(

Skgm”2

%1/s

%1/m
%1/m
%1/m
%1/m

(omega)

Ele*Il))"0.25);%Kfa* (1-((i*Eta)/4));
E2e*I2))"0.25);$Kfb* (1-((1i*Eta)/4));

%$1/s

%1/m
%1/m




Kll=w*sqrt (R/Ele);3Kla* (1-((i*Eta)/2));
Kl2=w*sqrt (R/E2e) ; 3K1b* (1- ((i*Eta) /2));

o

V1=L/2* (1-cos (T)) ;
S1B2=(sin (T) )+ (Kf2*V1l) ;
S1B4=(sin (T) )+ (1*Kf2*V1l) ;

o)

V2=L/2* (sin (T
S2B2=(cos (T))
S2B4=(cos (T))

))
+(KE2*V2);
+ (1*Kf2*V2) ;

S3Al1=1/1i;
S3B2=(Kf2/Kfl)*1/i;
S3B4=Kf2/Kfl;

V5=L/2* (1-cos (T/2))
V6=L/2* (sin(T/2))

o

°

Sda=((1i*Ij*(w"2) *KEfl) - (Q1* (K£172) )+ (1*Q1* (Kf1"3) *V6)) ;
S4b=-(1*S1*K11*V5);

S41=((IFJ*KEf1l* (w*2))—-(Q1*(Kf1"2))-(QL*(KE1"3)*V6));
S42=((1*IJ*KE1* (w"2))+(Q1* (Kf1"2) )+ (1i*Q1* (KE1"3) *Ve6)) ;
S43=-(1*S1*K11*V5);

S44=-(1*S2*K12*V5) ;

S45=(Q2* (K£272) )+ (Q2* (Kf£2"73) *V6) ;

S46=(-(Q2* (KE272) ) - (1*Q2* (K£2"3) *V6)) ;

o

Sba=(1*Mj* (w"2) *K£1*V)5) ;

S5b= ((Mj*( wh2))+ (1*S1*K11l)) ;
S51=(Mj* (w"2) *K£1*V5) ;

552=(1 *Mj (wh2) *Kf1*V5) ;
S53=—((Mj*(w"2))-(i*S1*K1ll)) ;
S54=1*32*K12* (cos (T)) ;
S55=Q2* (K£273) * (sin (T)) ;
S556=—1*Q2* (Kf273) * (sin(T)) ;

Sox=((S5a*S4b) - (S4a*S5b) ) ;
S4y=((S5b*S4a) - (S4b*sSba));

S4A1=((S51*S4a)-(S41*S5a))/S4y;
S4A3=((S52*S4a) - (S42*S5a)) /S4y;
S4AL=( (S53*S4a) - (S43*S5a)) /S4y;
S4BL=( (S54*S4a) - (S44*S5a)) /S4y;
S4B2=((S55*S4a) - (S45*S5a)) /S4y;
S4B4=((S56*S4a)-(S46*S5a)) /S4y;
S5A1=((S51*S4b) - (S41*S5b) ) /S5x;
S5A3=((552*S4b) - (S42*S5b) ) /S5x;
S5AL=((S53*S4b) - (S43*S5b) ) /S5x;
S5BL=( (S54*S4b) - (S44*S5b) ) /S5x;
S5B2=((S55*S4b) - (S45*S5b) ) /S5x;

%1/m
%1/m




S5B4=( (856*S4b) - (S46*S5b) ) /S5x;

[o)

Se=((M3*(w"2)) - (Mj*(w"2)*1*KE£1*Ve)+ (1*Q1* (K£1"3)));
S6Al=-((MJ* (w"2) )+ (MJ* (w"2) *KEf1*V6)+ (QL* (Kf1"3)));
S6A3=-((Mj* (w"2) )+ (i*Mj* (w"2) *K£1*V6) - (1*Q1* (KEf1"3)));
S6BL=1*S2*K12* (sin(T));

S6B2=-Q2* (K£273) * (cos (T) ) ;
S6B4=1*Q2* (Kf2"3) * (cos (T) ) ;

~

XX X X X X
[RERRRRRERER

zL=[A1;0;0;Ai;0;0];
zF=[0;A4;24;0;74;R4];




fgcnt=fgcnt+1;

yL=x\zL;
yF=x\zF;

tht (thent)=T;

sintht (thcnt)=sin(T) ;
fgt (fgcnt)=£fqg;

Kflt (fgcnt)=Kfl;

Kf2t (fgcnt)=Kf2;

K1llt (fgcnt)=K1l1l;

K12t (fgcnt)=K12;

Mjt (thent)=Mj;
Ijt(thent)=Ij;

%$Note that for the matrix of X;

Sy (1) %A1 Nm/s xxXxXX

Sy (2) $A3 Nm/s

Sy (3) %$AL Nm/s

sy (4) $BL Nm/s

sy (5) $B2 Nm/s XXXX

v (6) $B4 Nm/s

afFF (thent)=(imag (yF(2)))"2;

afFL (thent)=(imag (yL(2)))"2;

afLL (thent)=(imag (yL(3))) "2;

afLF (thent)=(imag (yF(3))) "2;

btFF (thcent)=(imag (yF(6)))"2;

btFL (thcnt)=(imag (yL(6)))"2;

btLL (thcnt)=(imag (yL(4)))"2;

btLF (thcent)=(imag (yF(4)))"2;

afLN (thent)=(imag (yL(1l)))"2;

afFN (thent)=(imag (yF(1l)))"2;

btLN (thcnt)=(imag (yL(5)))"2;

btFN (thcnt)=(imag (yF(5)))"2;

Pf1=E1*I1* (Kf1"3) *w* ((abs(yF(2)))
reflected flexural wave yE(2)-> A

Pf2=E1*I1* (Kf1"3)*w* ((abs(yL(2)))
reflected flexural wave yL(2)-> A

Pf3=E2*I2* (Kf2"3) *w* ( (abs (yF (6)))
transmitted flexural wave yE(6)-> B

Pf4=E2*I2* (Kf2"3) *w* ( (abs (yL(6)))
transmitted flexural wave yL(6)-> B

P11=0.5*E1*Al*w*K11* ( (abs (yL(3)))
reflected longitudinal wave yL(3)-> A

P12=0.5*E1*Al*w*K11* ((abs(yF(3)))
reflected longitudinal wave yE(3)-> A

P13=0.5*E2*A2*w*K12* ( (abs (yL(4)))
transmitted longitudinal wave yL(4)-> B

P14=0.5*E2*A2*w*K12* ( (abs (yF (4)))
transmitted longitudinal wave yEF(4)-> B

(
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3
~2); $Power in due to
3
~2); $Power in due to
4
~2); $Power in due to
4
~2); $Power in due to
L
~2); $Power in due to
L
~2); $Power in due to
L
~2); $Power in due to
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SPE1=E1*I1*(Kf1"3)*w* (((real(yF(2)))"2)+ ((imag (yF (2

(2)

SPower in A due to reflected flexural wave vE(2)-> A

SPE2=E1*I1*(Kf1"3)*w* (((real (yL(2)))"2)+ ((imag(yL(2)
SPower in A due to reflected flexural wave yL(2)-> A

SPE3=E2*I2* (Kf2"3) *w* (((real (yF(6)))"2)+ ((imag (yF (6)
%$Power in B due to transmitted flexural wave yE(6)-> B

SPEfA=E2*I2* (Kf2"3) *w* (((real (yL(6)))"2)+ ((imag (yL(6)
$Power in B due to transmitted flexural wave yL(6)-> B

$P11=0.5*E1*Al*w*K11* (((real (yvL(3)))"2)+ ((imag (yL(3)
%$Power in A due to reflected longitudinal wave yL(3)-> A

$P12=0.5*E1*A1*w*K11* (((real (yF(3)))"2)+ ((imag (yF (3)
%$Power in A due to reflected longitudinal wave yE(3)-> A

$P13=0.5*E2*A2*w*K12* ( ((real (yL(4)))"2)+ ((imag(yL(4)
%$Power in B due to transmitted longitudinal wave yL(4)-> B

$P14=0.5*E2*A2*w*K12* (((real (yF(4)))"2)+ ((imag (yF (4)
%$Power in B due to transmitted longitudinal wave yE(4)-> B

PFlex=E1*I1*Kf1"3*w* ( (abs (Ad))"2);

PLong=0.5*E1*Al1*K11*w* ((abs (Ai))"2);

nP1 (thent, fgent)=( (Pfl) ./ (PFlex)) *100; % Spower
incidence wave, flexural reflected wave

nP2 (thent, fgent)=( (P£f2) ./ (PLong) ) *100; % Spower
longitudinal incidence wave, flexural reflected wave

nP3 (thent, fgent)=( (P12) ./ (PFlex)) *100; % Spower
incidence wave, longitudinal reflected wave

nP4 (thent, fgent)=((P11) ./ (PLong)) *100; % Spower
longitudinal incidence wave, longitudinal reflected wave

nP5 (thent, fgent)=( (P£3) ./ (PFlex)) *100; % Spower
incidence wave, flexural transmitted wave

nP6 (thent, fgent)=( (Pf4) ./ (PLong) ) *100; % Spower
longitudinal incidence wave, flexural transmitted wave

nP7 (thent, fgent)=( (P14) ./ (PFlex)) *100; % Spower
incidence wave, longitudinal transmitted wave

nP8 (thent, fgent)=((P13) ./ (PLong)) *100; % Spower

longitudinal incidence wave, longitudinal transmitted wave
D=nPl1+nP2; $nP1+nP3; $+nP2+nP4;
E=nP5+nP6; $nP5+nP7; $+nP6+nP8;
F=D+E;
A=nP3+nP4; $+nP1+nP3;

B=nP7+nP8; $+nP5+nP7;
C=B+A;

end

end

tht=0:1:180;
fgt=000:100:3000;%000:16.667:3000.06;

in A -

in A -

in A -

in A -

in B -

in B -

in B -

in B -

flexural

flexural

flexural

flexural




figure (1)

contour (fgt, tht, D) ;

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('Flexural Power Reflected in Beam 1')

title('Flexural Power Reflected in Beam 1 vs angle \theta and frequency/Hz')
grid

figure (2)

contour (fgt, tht,E) ;

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Flexural Power Transmitted in Beam 2')

title('Flexural Power Transmitted in Beam 2 vs angle \theta and
frequency/Hz")

grid

figure (3)

contour (fgt, tht,A);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Longitudinal Power Reflected in Beam 1'")
title('Longitudinal Power Reflected in Beam 1 vs angle \theta and
frequency/Hz")

grid

figure (4)

contour (fgt, tht,B) ;

xlabel ('frequency /Hz')

ylabel ("angle \theta')

zlabel ('Longitudinal Power Transmitted in Beam 2')
title('Longitudinal Power Transmitted in Beam 2 vs angle \theta and
frequency/Hz"')

grid

figure (5)

plot (tht,A, 'r'") %Long-Alpha
hold on

plot (tht,B, 'b')%Long-Beta
hold on

plot (tht,C, 'k")

hold on

plot (tht,D,'.r'")%Flex-Alpha
hold on

plot (tht,E, '.b'")%Flex-Beta
hold on
plot (tht, F,
hold on
grid on
title 'Total Power in Alpha and Beta'

xlabel 'Angle of Arm 2 (Degrees)'

ylabel 'Percentage Power'

legend ('Long-Alpha', 'Long-Beta', 'Total Long', 'Flex-Alpha', 'Flex-Beta', 'Total
Flex', 'Location', 'best');

k")




figure (6)

surf (fgt, tht,nPl) ;

xlabel ('frequency /Hz'")
ylabel ('angle \theta')
zlabel ('FF - NP Reflected in
title('FF Power Reflected in
grid

figure (7)

surf (fgt, tht,nP2);

xlabel ('frequency /Hz')
ylabel ('angle \theta')
zlabel ('LF - NP Reflected in
title('LF Power Reflected in
grid

figure (8)

surf (fgt, tht,nP3);

xlabel ('frequency /Hz')
ylabel ('angle \theta')
zlabel ('FL - NP Reflected in
title('FL Power Reflected in
grid

figure (9)

surf (fgt, tht,nP4);

xlabel ('frequency /Hz')
ylabel ('angle \theta')
zlabel ('LL - NP Reflected in
title('LL Power Reflected in
grid

figure (10)

surf (fgt, tht,nP5);

xlabel ('frequency /Hz')
ylabel ("angle \theta')
zlabel ('FF - NP Transmitted
title('FF Power Transmitted
grid

figure (11)

surf (fgt, tht,nP6) ;

xlabel ('frequency /Hz'")
ylabel ("angle \theta')
zlabel ('"LF - NP Transmitted
title('LF Power Transmitted
grid

figure (12)

surf (fgt, tht,nP7);

xlabel ('frequency /Hz'")
ylabel ("angle \theta')
zlabel ('FL - NP Transmitted
title('FL Power Transmitted
grid

Beam
Beam

Beam
Beam

Beam
Beam

Beam
Beam

to
to

to
to

to
to

Beam
Beam

Beam
Beam

Beam
Beam

")
1 vs angle \theta and frequency/Hz')

")
1 vs angle \theta and frequency/Hz')

")
1 vs angle \theta and frequency/Hz')

")
1 vs angle \theta and frequency/Hz')

21)
2 vs angle \theta and frequency/Hz')

21)
2 vs angle \theta and frequency/Hz')

2")
2 vs angle \theta and frequency/Hz')




figure (13)

surf (fgt, tht,nP8);

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('LL - NP Transmitted to Beam 2'")

title('LL Power Transmitted to Beam 2 vs angle \theta and frequency/Hz')
grid

figure (14)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

grid on

title 'Percentage Power Reflected in Beam 1'
xlabel 'Angle of Arm 2 (Degrees)'
ylabel 'Percentage Power'

legend ('FE','LE','FL', "LL") ;

figure (15)

plot (tht,nP5,'r")

hold on

plot (tht,nP6, 'g")

hold on

plot (tht,nP7, 'm")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

title 'Percentage Power Transmitted to Beam 2'
xlabel 'Angle of Arm 2 (Degrees)'
ylabel 'Percentage Power'

legend ('FE','LE','FL', "LL") ;

figure (16)

plot (tht,nPl, 'r")

hold on

plot (tht,nP3, 'm")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP7, 'm")

hold on

grid on

title 'Percentage Power Reflected from Flexural'
xlabel 'Angle of Arm 2 (Degrees)''
ylabel 'Percentage Power'

legend ('FF1','FL1','FF2','FL2");

figure (17)
plot (tht,nP2,'g'")




hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP6, 'g'")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

'Percentage Power Reflected from Longitudinal'
'Angle of Arm 2 (Degrees)'
'Percentage Power'

title
xlabel
ylabel

legend ('LF1','LL1', "LE2','LL2");
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MAIN PROGRAM: Reflection & Transmission - Power Measurements
Rk b b b b b 2 b b b b b b b b b b b b 2 b b b b b b b b b b b b b b ab b b b b b b b d b b b b b b b b b b b b b b b b b b a3

THIS PROGRAM SOLVES FOR VIBRATION POWER IN BEAM WITH VARIABLE ANGLE

INPUT PARAMETER

Young's Modulus
second moment of area
area

density of beam

density of joint
width of joint
height of joint

the
the

DESCRIPTION OF

the
the
the
the
the
the

% Ff & F1 input

E x I
E x A

OTHER VARIABLES

flexural wavenumber in alpha
flexural wavenumber in beta
flexural wavenumber in gamma
longitudinal wavenumber in alpha
longitudinal wavenumber in beta
longitudinal wavenumber in gamma

- (bending<flexural> and compressive<longitudinal> waves)




clear all
clf
format long e

$Given

b=0.1; $m %0.05;%

d=0.02; Fm %0.006;%

El=1.75e9; SN/m”2 %$60e9;%3.5e9;,%5.567e9;%
I1=(b*(d"3))/12; sm”™4

Al=b*d; sm”™2

E2=1.75e9; SN/m”2 %$60e9;%3.5e9;,%5.567e9;%
I2=(1.0*b* ((1.0*d)"3))/12; sm”™4

A2=1.0*b*1.0*d; sm™2

R=1170; $kg/m”3 %$1500;%1190;%2500;
Rj=1170; %kg/m”3 %$1500;%1190;%2500;
Jw=1*b; $m

L=1*d; $m

Eta=0.07;

’

Ele=El* (1+(1i*Eta));
E2e=E2* (1+(1i*Eta))

Ql=E1*I1;
Q2=E2*12;
S1=E1*Al;
S2=E2*A2;

03=0; $1.167e6*I1;

thcent=0;
for thet=0:1:180;
T=thet*pi/180;

thcnt=thcnt+1;
fgcnt=0;
for fg=00:100:3000; $1/s

w=2*pi*fqg; $1/s

$Input

Ff=1;%0.023*sqrt (2
(
(

o\
3

%(1*1);%0.018;0.0038*sgrt
F1=1;%0.0020*sgrt
$(1*1);%0.018;0;%(1);%0;%
m=-0.90;
n=0.0;

) ;
2):;%5(1):%
2);

’

o\
3




Mj=Rj*Jw* (L"2) *T/2;

%$I0j=((T-sin(T))* (L"4)/8);
SIc)=L* (((4/3)*

$Ij=Mj* (Ioj Ici);

Ij=Mj* )/12;

Kfa=(w~0.5)* (((R*Al)/(E1L*I1))"
Kfg=(w?0.5)* ( ((R*Al) / (E
Kfb=(w?0.5)* ( ((R*A2) / (E2*I2))"

Kla=w*sqrt (R/E1) ;
Klg=w*sqrt(R/El),
Klb=w*sqrt (R/E2) ;

E2*I1))"

Kfax=(w
Kfgx=(w
Kfbx=(w

~0.5)*
~0.5)*
~0.5)*

(((R*Al) / (Ele*Il))
(((R*Al) / (Ele*Il))

~0.
~0.
(((R*Al) / (E2e*I2))"0.

Klax=w*sqgrt (R/Ele) ; %Kla* (1- ((

Klgx=w*sqgrt (R/Ele) ; $K1lg*

(1-

((

i*Eta
i*Eta

Klbx=w*sqrt (R/E2e) ; SK1b* (1- ((i*Eta

mn= (m-n)
Lni=(exp (-i*Klax*nm)) ;
Fn=(exp (-Kfa*nm)) ;

Fni=(exp (-i*Kfax*nm)) ;
Lpi=
Fp=
Fpi=

(exp (i*Klax*mn)) ;
(exp (Kfa*mn)) ;
(exp (i*Kfax*mn) ) ;

V1=L/2* (1-cos (T));

$finite length

gl=(sin(T)+ (Kfb*V1l));
hl=(sin(T)+ (1*Kfbx*V1));
il=cos(T);

[o)

V3=L/2* (sin(T)) ;

g3=(cos(T) )+ (Kfb*V3);
h3=(cos (T))+ (1
i3=sin(T) ;

ab=Kfa;
b5=i*Kfax;
d5=Kfa;
eb=i*Kfax;

*Kfbx*V3) ;

(£1)

vvv[\_)[\_)[\_)

o

°

(sin(T/2)/(T)))-(1/2));

kg

%1/m
%1/m
%1/m
%1/m
%1/m
%1/m




(Drm*

g5=Kfb;
h5=i*Kfbx;

ab=Kfa;
bo=i*Kfax;
d6=Kfa;
eo=i*Kfax;
Jj6=Kfg;
k6=1*Kfgx;

V5=L/2* (1-cos (T/2));
V6=L/2* (sin(T/2)) ;

SV5=L* ((sin(T/4))"2); %$—-same as
sVe=L* (sin(T/4)) * (cos(T/4));%-same as

Mr=0.028;
Ir=Mr* (L"2)/12;
hs=1000;
h=0.05;

o

Dr == (- (Mr*w"2)+ (hs* (1+(i*h*w))));0;
Drm=- (- (Ir*w"2)+ (hs* (1+ (i*h*w)))) ;0

o

Iz

a7=((-13)

Kfa -Dr*ve);

b7=((-Ij)*i*Kfax* (w"2))+(

(Drm*1*Kfax-Dr*ve) ;%

+ (Dr*Vb)

+ (Drm*

c7=(S1*i*Klax*V5)
d7=( 1Ij *Kfa *(w™2))+((-Q1)* (Kfa"2)
Kfa -Dr*ve);

e7=( I3 *i*Kfax* (w"2))+(

+ (Drm*i*Kfax-Dr*Vvo) ;

+ (Dr*V)5)

(Drm*

+ (Dr*V)5)

f7=(S1*i*Klax* (-V5))

g7=( Q2 *(Kfb"2)) +(Q2 *(Kfb"3) *V6)

Kfb -Dr*ve) ;

*Kfa *(w?2))+((-Q1) * (Kfa"2))

above
above

+(Q1

) +(Ql

h7=((-Q2) * (Kfbx"2) )+ (Q2*1i* (Kfbx"3) * (-V6))
(Drm*1*Kfbx-Dr*vo) ;

17=(S2*1i*Klbx* (-V5))

a8=(Kfa"2); $*Q1;
b8=(Kfax"2); $*Q1;
d8=(Kfa"2); $*Q1;
e8=(Kfax"2); $*Q1;
j8=(Kfg"2); $*Q1;
k8= (Kfgx"2); $*Q1;

o

* (Kfa"3)

* (Kfa”3)

*V6)

Q01 *(Kfax”2))+(Ql*i* (Kfax”"3)*(-V6))

*(=V6))

Q01 *(Kfax”2))+(Ql*i* (Kfax"3) *V6)




+Dr;

+Dr;

a9=( Mj* (w"2)
b9=( Mj*

c9=( Mj*(w"2))+

d9=(-Mj* (w"2)
£9=( Mj
g9=((-02)*

+Dr*sin (T) ;

ho=(

+Dr*sin (T) ;

19=((-52) *i* Klbx

+Dr*cos (T) ;

+Dr;

+Dr;

+Dr;

+Dr;

o

clO0=(i*Klax);
£f10=(i*Klax) ;
110=(1*K1lgx) ;

°

all=(Mj*(w"2))+

(Kfb"3)

*Kfa *V5);

(Wwh2) *i*Kfax*V5h) ;

( S1 *i*Klax)

* *Kfa *VbH);
e9=(-MJ* (w"2) *1*Kfax*V5) ;
*

((=M3)

(wh2) )+ ((-S1) *i*Klax)
*sin (T))
Q2 *i* (Kfbx”"3)*sin(T))

*cos (T))

*Kfa *V6)+((-Q1)

bll=(Mj* (w"2) )+ ((-MJj) * (w"2) *1*KEfax*Ve6) + (

dll=(Mj*(w"2))+

ell=(Mj*(w"2))+

gll=( Q2 *

+Dr*cos (T) ;
hll=((-Q2)*i* (Kfbx"3) *cos (T))
+Dr*cos (T) ;

( Mj

(M3

(Kfb"3)

*(wWh2)

*Kfa *V6) + (

*(Kfa~3))
Q1 *i*(Kfax"3))

Q1 *(Kfa~3))

*(wh2) *i*Kfax*Ve)+ ((-Ql) *i* (Kfax”"3))

*cos (T))

ill=((-S2)*i* Klbx *sin (T))
+Dr*sin (T) ;

al2=(Kfa"3); $*Q1;

bl2=i* (Kfax"3); %*Q1;

dl2=(Kfa"3); %*Q1;

el2=i* (Kfax"3); %*01;

jl2=(K£g"3); $*Q1;

k12=1i* (Kfgx"3); %*01;

x(1,1)=0;

x(1,2)=0;

x(1,3)=-1*Lni;

x(1,4)=0;

x(1,5)=0;

x(1,6)==-1;

x(1,7)=-gl;

x(1,8)=-hl;

x(1,9)=1il;
(
L

$*Lpi;




x(1,10)
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XxX*Fp;
XxX*Fpi;
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x(10,5)=0;

x(10,6)=£f10* (Lpi+0) ;

x(10,7)=0;

x(10,8)=0;

x(10,9)=0;

x(10,10)=0;

x(10,11)=0;

x(10,12)=-110;

x(11,1)=all*Fn;
x(11,2)=bll*Fni;

x(11,3)=0;

x(11,4)=d11; $*Fp;
x(11,5)=ell; S*Fpi;
x(11,06)=0;

x(11,7)=gll;

x(11,8)=hl1l;

x(11,9)=111;

x(11,10)=0;

x(11,11)=0;

x(11,12)=0;

x(12,1)=al2;

x(12,2)=-b12;

x(12,3)=0;

x(12,4)=-d12* (Fp+0) ;
x(12,5)=el2* (Fpi+0);

x(12,6)=0;

x(12,7)=0;

x(12,8)=0;

x(12,9)=0;

x(12,10)=312;

x(12,11)=-k12;

x(12,12)=0;
zL=[0;0;0;0;0;0;0;0;0; (F1/S1);0;07;
zF=[0;0;0;0;0;0;0;0;0;0;0; ( Ff/Ql )1;
yL=x\zL;

yF=x\zF;

%Note that for the matrix of X;
Sy (1) A2 Nm/s xXxXXX

3y (2) $A4 Nm/s

sy (3) $AL Nm/s

sy (4) %$Bl1 Nm/s xxXxXxX

3y (5) $B3 Nm/s

v (6) %BL Nm/s

sy (7) %C2 Nm/s XXXX

%y (8) %C4 Nm/s

%y (9) %CL Nm/s

%y (10) $D1 Nm/s XXXX

Sy (11) %D3 Nm/s

Sy (12) DL Nm/s

fgcnt=fgcnt+1l;

Sxx*Lpi;

IXX*Fp;
SxXX*Fpi;

$(F1/ (4*E1*Al*Kla))
$—(Ff/ (4*E1*I1*Kfa"3))




Pfl1=1*E1*I1*w* (Kfax”"3) * ((abs (yF(2)))"2);

flexural wave yF(2) -> A4
Pf2=1*E1*I1*w* (Kfax”"3) * ((abs (yL(2)))"2);
flexural wave yL(2) -> A4
Pf3=1*E1*I1l*w* (Kfax"3)* ((abs (yF(5)))"2);
reflected flexural wave yF(5) -> B3
Pf4=1*E1*I1*w* (Kfax”"3) * ((abs (yL(5)))"2);
reflected flexural wave yL(5) -> B3
PE5=1*E2*I2*w* (Kfbx"3) * ((abs (yF(8))) "2);
transmitted flexural wave yE(8) -> C4
Pf6=1*E2*I2*w* (Kfbx"3) * ((abs (yL(8)))"2);
transmitted flexural wave yL(8) -> C4
PEf7=1*E1*I1*w* (Kfgx"3) * ((abs (yF(11)))"2);
flexural wave yF(11)-> D3
Pf8=1*E1*I1*w* (Kfgx"3) * ((abs (yL(11l)))"2);
flexural wave yL(11)-> D3

P11=0.5*El1*Al*w*Klax* ((abs (yL(3)))"2);
longitudinal wave yL(3) -> AL
P12=0.5*E1*Al*w*Klax* ( (abs (yF(3)))"2);
longitudinal wave yF(3) -> AL
P13=0.5*El1*Al*w*Klax* ( (abs (yL(6)))"2);
reflected longitudinal wave yL(6) -> BL
P14=0.5*El1*Al*w*Klax* ( (abs (yF(6)))"2);
reflected longitudinal wave yF(6) -> BL
P15=0.5*E2*A2*w*Klbx* ( (abs (yL(9)))"2);
transmitted longitudinal wave yL(9) -> CL
P16=0.5*E2*A2*w*Klbx* ( (abs (yF(9)))"2);
transmitted longitudinal wave yF(9) -> CL
P17=0.5*E1*Al*w*K1lgx* ((abs (yL(12)))"2);
longitudinal wave yL(12)-> DL
P18=0.5*E1*Al*w*Klgx* ((abs (yF(12)))"2);
longitudinal wave yEF(12)-> DL

PFlex=(O.l25*(((Ff) w))/ (((E

PLong=(0.25* (((F1)" w))/ ((EL*Al) * (Klax));
%PFlexG=(O.125*(((Ff) )y*w) )/ (((E1*I1)* ((Kfqg)
%$PLongG=(0.25* (((F1)" ) *w))/ ((E1*Al) * (K1lg)) ;
$1lmbd=0.5;

$Kfax2=2*pi/lmbd;
$PFlex2=(0.125% ((Ff)~2))/ (ml*w/Kfax2) ;

tht (thent)=T;
wat (fgcnt) =w;
fgt (fgcnt)=£qg;

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

$Power

1*I1) * ((Kfax)"3))):

~3)))

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

in

ndwave (fgcnt) = (Kfa*abs (m-n) )/ (2*pi); % ((2*pi) /Kfa)*0.5;

nP1l (thent, fgent)=(P£fl) ./ (PFlex+0) *100;
incidence wave, flexural reflected wave
nP2 (thent, fgent)=(P£f2) ./ (PLong+0) *100;

longitudinal incidence wave, flexural reflected wave

nP3 (thent, fgent)=(P12) ./ (PFlex+0) *100;
incidence wave, longitudinal reflected wave
nP4 (thent, fgent)=(P11) ./ (PLong+0) *100;

$A%power in

longitudinal incidence wave, longitudinal reflected wave

due

due

due

due

due

due

due

due

due

due

due

due

due

due

due

due

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

to

trans

trans

trans

trans

trans

trans

trans

trans

flexural

flexural




nP5 (thent, fgent)=(P£3) ./ (PFlex+0) *100; %$B%power in a - flexural
incidence wave, flexural reflected wave

nP6 (thent, fgent)=(P£f4) ./ (PLong+0) *100; $B%power in a -
longitudinal incidence wave, flexural reflected wave

nP7 (thent, fgent)=(P14) ./ (PFlex+0) *100; %$B%power in a - flexural
incidence wave, longitudinal reflected wave

nP8 (thent, fgent)=(P13) ./ (PLong+0) *100; %$B%power in a -
longitudinal incidence wave, longitudinal reflected wave

nP9 (thent, fgent)=(P£f5) ./ (PFlex+0) *100; %C%power in b - flexural
incidence wave, flexural transmitted wave

nP10 (thent, fgent)=(P£f6) ./ (PLong+0) *100; %C%power in b -
longitudinal incidence wave, flexural transmitted wave

nP11 (thent, fgent)=(P16) ./ (PFlex+0) *100; %C%power in b - flexural
incidence wave, longitudinal transmitted wave

nP12 (thent, fgent)=(P15) ./ (PLong+0) *100; %C%power in b -
longitudinal incidence wave, longitudinal transmitted wave
% nP13 (thent, fgent)=(P£7) ./ (PFlex+0) *100; $D%power in g -
flexural incidence wave, flexural transmitted wave
% nP1l4 (thent, fgent)=(P£8) ./ (PLong+0) *100; %$D%power in g -
longitudinal incidence wave, flexural transmitted wave
% nP15 (thent, fgent)=(P18) ./ (PFlex+0) *100; $D%power in g -
flexural incidence wave, longitudinal transmitted wave
% nP16 (thent, fgent)=(P17) ./ (PLong+0) *100; %D%power in g -
longitudinal incidence wave, longitudinal transmitted wave

nP13 (thent, fgent)=nP1 (thent, fgent) + (P£3) ./ (PFlex+0) *100; %
$power in g - flexural incidence wave, flexural transmitted wave

nP1l4 (thent, fgent)=nP2 (thcnt, fgent) + (P£f4) ./ (PLong+0) *100; %
%power in g - longitudinal incidence wave, flexural transmitted wave

nP15 (thent, fgent)=nP3 (thcnt, fgent) + (P14) ./ (PFlex+0) *100; %
$power in g - flexural incidence wave, longitudinal transmitted wave

nP16 (thent, fgent)=nP4 (thcnt, fgent) +(P13) ./ (PLong+0) *100; %
%power in g - longitudinal incidence wave, longitudinal transmitted wave

fA=nP1+nP3; %+nP3; $nP1+nP3+nP5+nP7;
fB=nP5+nP7; %+nP7; $nP9+nP11;

fC=nP9%+nP1l1l; $+nP1l1l;%nP13+nP15;
fD=nP13+nP15; $+nP15; %$nP17+nP18+nP19+nP20;

fAl=fA-fB;
fBe=£fC;

fGa=£fD;
ftotl=fAl+fGa;
ftot2=fGa+fBe;
$ftot3=fAl+£fBe;
fAla=fA;
fAlb=£B;




1A=nP4+nP2; %=0
1B=nP8+nP6;

1C=nP12+nP10;
1D=nPl6+nP14;

1A1=1A-1B;
1Be=1C;

1Ga=1D;
ltotl=1Al+1Ga;
ltot2=1Ga+1Be;
$1ltot3=1A1+1Be;

totl=ftotl+ltotl;
tot2=ftot2+1ltot2;
$tot3=ftot3+1tot3;
AlphaT=fAl1+1Al;
BetaT=fBe+1Be;
GammaT=fGa+1Ga;
GammaTt=nP14+nP1l5;

SNEF=nP21+nP22+nP23+nP24;

Tf=fGa+fAl; SfAl+

Tl1=1Ga+1lAl;%1Al+
TOT1=GammaT+BetaT; $+AlphaT; $GammaT+£fB+1B;BetaT+fA+1A;
TOT2=GammaT+AlphaT;

xfcnt=0;
for xf=m;

Wf (thent, fgent) =(yF (1) * (exp (-Kfa* (xf-m) ) ) )+ (yF(2) * (exp (-
li*Kfax* (xf-m))))+(yF (4) * (exp (Kfa* (1* (xf-n)))))+(yF(5) * (exp (Li*Kfax* (1* (xf-
n)))));

Uf (thent, fgent)=(yL(3) * (exp (-1li*Klax* (xf-
m))))+(yL(6)* (exp (1i*Klax* (1* (xf-n)))));

xacnt=0;

for xa=-0.45;

Wa (thent, fgent) = (yF (1) * (exp (-Kfa* (xa-m) ) ) )+ (yF(2) * (exp (-
li*Kfax* (xa-m))))+(yF(4)* (exp (Kfa* (1* (xa-n)))))+(yF(5) * (exp (Li*Kfax* (1* (xa—
n))))):

Ua (thent, fgent)=(yL(3) * (exp (-1li*Klax* (xa-
m))))+(yL(6)* (exp (1i*Klax* (1* (xa-n)))));

xbcnt=0;

for xb=0.45;

Wb (thent, fgent) =(yF (7) * (exp (-Kfb* (xb-n) ) ) ) + (YF(8) * (exp (-
1i*Kfbx* (xb-n))));




Ub (thent, fgent) =(yL(9) * (exp (-11*Klbx* (xb-n))));

xgcent=0;
for xg=-1.35;

Wg (thent, fgent) = (yF (10) * (exp (Kfg* (xg-
m))) )+ (yF (11) * (exp (1i*Kfgx* (xg-m))) ) ; 5+ (yF (4) * (exp (-Kfa* (1* (xg-
n)))))+(yF(5)*(exp(-1li*Kfax* (1* (xg-n)))));

Ug (thent, fgent)=(yL(12) * (exp (1i*Klgx* (xg-
m))));%s+(yL(6)* (exp (-1i*Klax* (1*(xg-n)))));

Va (thcnt, fgent)=1li*w*Wa (thcnt, fgcnt) ;

Vb (thent, fgent)=1i*w*Wb (thcnt, fgcnt) ;

Vg (thent, fgent)=1i*w*Wg (thent, fgent) ;

Aa (thcent, fgent)=-1*w"2*Wa (thcnt, fgcnt) ;

Ab (thcnt, fgent)=-1*w"2*Wb (thcnt, fgcnt) ;

Ag (thcnt, fgent)=-1*w"2*Wg (thcnt, fgcnt) ;

xacnt=xacnt+1;

xWat (xacnt)=Wa (thcnt, fgcnt) ;

xUat (xacnt)=Ua (thcnt, fgcnt) ;

xWbt (xacnt)=Wb (thcnt, fgcnt) ;

xUbt (xacnt)=Ub (thcnt, fgcnt) ;

xWgt (xacnt)=Wg (thcnt, fgcnt) ;

xUgt (xacnt)=Ug (thcnt, fgcnt) ;
InPwrF (thent, fgent)=( (((Ff)"2) *w) / (8*E1*I1*Kfax"3))* (1-Eta/4);

InPwr (thent, fgent) =-
0.5*real (F£* (1i*w* (Wf (thcnt, fgcnt))) ),

ApPwr (thent, fgent)=(( ((1i*w* (Wa (thent, fgent) ) ) ) "2* (E1*I1) * ((Kfa) *3))/(w));
BtPwr (thent, fgent)=( ( ((1i*w* (Wb (thent, fgent)))) "2* (E2*I2) * ((Kfb)*3)) /(w)) ;
GmPwr (thent, fgent)=( (((1i*w* (Wg (thcnt, fgent))) ) "2* (EL*I1) * ((Kfg)"~3))/ (w));

TotPwr=GmPwr+BtPwr;

Imp (fgcnt) =1/ (li*w*Wa (fgcnt) ) ;
Mob (fgcnt) =1/ (Imp (fgcnt) ) ;

ReMob (fgcnt)=w/ (4*E1*I1*Kfa"3);
ImMob (fgent)=(-1*w) / (4*E1*I1*Kfa"3) ;

Acc (fgcnt)=Wa (fgcnt) * (- (w"2)) ;

Ar=(fAl) ./ (InPwr);
Gr=(fGa) ./ (InPwr) ;
Br=(fBe) ./ (InPwr) ;
$Ir=InPwr/fAl;
%$Gr=fGa/fAl;
$Br=fBe/fAl;
tr=(Ar+Br) *1;




end

end

end

end

end

end

fgt=00:100:3000;
tht=0:1:180;

figure (1)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP6, 'g")

hold on

plot (tht,nP7, 'm")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power Transmitted&Reflected in alpha'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('F¥','LF','FL','LL', "FF','LF', '"FL', "LL", 'Location’', 'best"') ;

figure (2)

plot (tht,nP9, 'r")

hold on

plot (tht,nP10, 'g")

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP12,'b")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power Transmitted in beta'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', 'best"') ;




figure (3)

plot (tht,nP13,'r")

hold on

plot (tht,nP1l4, 'g'")

hold on

plot (tht,nP1l5, 'm")

hold on

plot (tht,nPl6, 'b'")

hold on

plot (tht,GammaTt, 'k")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power Transmitted in gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', 'best"') ;

figure (4)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g")

hold on

plot (tht,nP3, 'm")

hold on

plot (tht,nP4, 'b"')

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted in Alpha'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', 'best"') ;

figure (5)

plot (tht,nP9, 'r")

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP13, 'r")

hold on

plot (tht,nP1l5, 'm")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power from Flexural at beta and gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'
%legend('FEFb', 'FLb', 'FFg', 'FLg', 'Location', 'best');

figure (6)

plot (tht,nP10, 'g')
hold on

plot (tht,nP12, 'b'")
hold on

plot (tht,nPl4, 'g'")




hold on

plot (tht,nP1l6, 'b")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power from Longitudinal at beta and gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'
%legend('LEFb', 'LLb', 'LFg', 'LLg', 'Location', 'best"');

figure (7)

plot (tht,AlphaT, 'r'")

hold on

plot (tht,BetaT, 'b') %

hold on

plot (tht, GammaT, 'g')

hold on

$plot (tht,nF, 'k.")

%hold on

plot (tht, TOT2, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'Total2', 'Location', '"best');%'nk"',

figure (8)

plot (tht, fAl, 'r.")

hold on

plot (tht, fBe, 'b.") %

hold on

plot (tht, fGa, 'g.")

hold on

plot (tht,Tf, 'k.")

hold on

plot (tht,1Al, 'r")

hold on

plot (tht,1Be, 'b') %

hold on

plot (tht,1Ga, 'g'")

hold on

plot (tht,T1l, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'nF', 'Total', 'Location', 'best');

figure (9)

contour (fgt, tht, £fAl) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('Power in Alpha')

title('Flexural Alpha Power vs angle \theta and frequency/Hz (with rubber) ")




grid

figure (10)

contour (fgt, tht, £fBe) ;

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Beta')

title('Flexural Beta Power vs angle \theta and frequency/Hz (with rubber)')
grid

figure (11)

contour (fgt, tht, £fGa) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('Power in Gamma')

title('Flexural Gamma Power vs angle \theta and frequency/Hz (with rubber)')
grid

figure (12)

contour (fgt, tht, 1Al) ;

xlabel ('frequency /Hz')

ylabel ('angle \theta')

zlabel ('Power in Alpha')

title('Longitudinal Alpha Power vs angle \theta and frequency/Hz (with
rubber) ")

grid

figure (13)

contour (fgt, tht, 1Be) ;

xlabel ('frequency /Hz')

ylabel ("angle \theta')

zlabel ('Power in Beta')

title('Longitudinal Beta Power vs angle \theta and frequency/Hz (with
rubber) ')

grid

figure (14)

contour (fgt, tht,1Ga) ;

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('Power in Gamma')

title('Longitudinal Gamma Power vs angle \theta and frequency/Hz (with
rubber) ')

grid

figure (15)

contour (fgt, tht,AlphaT) ;

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Alpha')

title('Total Alpha Power vs angle \theta and frequency/Hz (with rubber)"')
grid

figure (16)
contour (fgt, tht,BetaT) ;




xlabel (' frequency /Hz'")

ylabel ("angle \theta')

zlabel ('Power in Beta')

title('Total Beta Power vs angle \theta and frequency/Hz (with rubber) ')
grid




Appendix: C—I Force-Input Joint equation derivation: -

On the incident side of the bend for flexural displacement W, (x, t) & W, (x, t)and
longitudinal displacement U, (x, t) & U, (x,t)

Ua(xr t) = {ALe_ikla*(x_m) + BLeikla*(x—n)} eiwt;

atx =m; {AL + BLeikla*(m—n)};
atx =n; {Ae"*e(-m 4 B 1,

ou . .
axa = kla*{ —iALe_lkl(x*(x_m)} + kla*{iBLelkla*(x_n)};

atx =m; k.{—iA } + kla*{iBLeikl“*(m_n)} ;
atx =n; kyg.{-ide e 4 o {iB,};

Wa(x, t) = {Aze—kfa(x—m) + A4e—ikfa*(X—m) + Blekf“(x_n) + B3eikf“*(x_n)} ei(ut;
atx =m; {AZ + A4_ + Blekfa(m—n) + B3€ikf“*(m_n)};
atx=n; (e tietom 1 g e kreGom) 1 g 4 B,

o, | |
ax[x — kfa{_Aze—kfa(X—m) + Blekf“(x_n)} + kfa*{_iA4_e_lkfa*(x_m) + iBgelkfa*(x_n)} :

(6 Jatx =m; kpa{~A4; +Bie*ra™ ™} 4 kyp {—id, + iByesa(mm}
atx =n; kfa{—Aze_kf“(n_m) + B} + kfa*{— iAse”Hram=m) 4 g, b

0*W, ) .
Wza _ kfaZ{Aze—kfa(x—m) + Blekf“(x_n)} + kfa*z{ —A4e_lkf“*(x_m) _ B3elkf“*(x_n)};

(B Jate = m yo{dy + Brebse™ ) ) + ki 2 Ay — Baesertnm),
atx =n; kpg{Ae™rem ™ 4B Y+ ko A{— AgeTHrem g3,

03w, . .
Wga — kfaS{_Aze—kfa(x—m) + Blekf“(x_n)} + kfa*3{iA4e_lkf“*(x_m) _ iB3elkf“*(x_n)} :

atx =m; kpg*{—Ay + Bie*rem ™} 4 k. 3lid, — iByekra(mm);

1| at x =n; kfag{—Aze"kf“(""m) + Bl} + kfa*3{iA4e‘ikf“*(""m) - iBg};

Differentiates W,and U, with respect to time (t);




0w,

at:t =0, x = n , for

otz ’
Wa(x, t) — {Aze_kf“(x_m) + A4e—ikfa*(x—m) + Blekf“(x_n) + Bgeikf“*(x_n)} eiwt;
ow ) )
at“ = iw{Aze‘kfa(”‘m) + AgeHran-m) 4 p oy B3} elwt .
92w,

— _a)Z{AZe—kfa(n—m) + Bl} _ a)Z{A4e—ikfa*(n—m) + B3} :

ot?

9% oW,
gtWt_O X = forgE T
axa = kfa{—Aze—kfa(x—m) + Blekfa(x—n)} + kfa*{—iA4e—ikfa*(X—m) + l'B3eikfa*(x—n)} ;
0 e ~kra(n=m) Wt 4 ‘A p—ikfa(n-m) 4 iwt
at ox = iwkye{~Aze™ e + By} e't + iwkpq.{—iAse s + Bz} et ;
9% aw,,

R = —a)zkfa{—Aze_kfa(Tl—m) + Bl} _wzkfa*{_iA4e—ikfa*(n—m) + lBg} ;
7001t 9%

2
at:t=0, x=n, foraatuz",
Ua(x, t) = {ALe_ikla*(x_m) + BLeikla*(x—n)} eiwt;
au,
ot
0%U

()

= iw{ALe_ikla*(Tl—m) + BL} eiwt :

@ _ —a)z{ALe_ikla*(n_m) + BL}!

W, (x,t) = {D ekryG=m) L poetkry-(e-m) 4 B ekra(—1) | B o~ikran (- ")} etwt
atx =m; {Dy + D3 + Be~¥ram=m) 4 p.e=ikra.(m= n)}
% kfy{Dle"fy(x m 4 iD5 elrys(x= m)}+kf { B; e kralr-m) 4 (_ B 3)e” ke (x= m)}
atx=m; ke D1} + kpyu{iDs} — kpo{ByJe Kram™m — fop, (iB3}e™ ”‘fa*(m{z]
aaVI:y kaZ{Dlekfy(x—m) —_ Dseikfy*(x—m)}+kfa2{Ble—kfa(x—m) + (—B3)e‘”‘fa*(x‘m)} ;
atx =m; kp*{D1} — kpp2{D3} + kpo{By}e Kralm—m) — kfa*z{gg)}e—ikfa*(m—n)
= kfy3{D1eka(x‘m) _ iDgeikfy*(x_m)}+kfa3{—Ble_kf“(x_m) + iB3e_ikfa*(x‘m)};
atx=m; ke (D} — kg {iD3} — kpo*(ByYe ™M™ 4k 3(iByYe =12 ]

3wy,
dx3

Uy(x, t) = {DLeikly*(X—m) + BLe—i la*(x—n)} eiwt : .
atx =m; {D,} + {BL}e_ikla*(m_n)-

By — | fiDetr-G=m) _ f, (i, e~thiax-m)}

0x
atx=m; Ky LD, } = Ky (iByJe e m{ 10 ]




For the transmitting side of the bend for flexural Wj (1, t) and longitudinal Uz (3, t),

Wﬁ(l/), t) = {Cze_kfﬁ(¢_") + C4e—ikfﬁ*(1l)—n)} eiot .

aty =n; {CG+ G}
TL = kpp{—Coe W — iCyeHrp (Y

atp =n; kep{—Co} + ke {—iCs} ;
T8 = kg {CoeMrV) — Gy thrp WY 13,9

atp =n; ke {Cr} — kg2 {Cu}
a;fs = kg {—Cre R~ i e~ rp PmmIY,

atp =n; kg {—Cy} + kg2 {iCy};

X~
o
—

Ug(p,t) = {CLet W~} glot

at l/J =n,; {CL} )
au . 1,3
Sy = g {miCuem e W),
aty =n; ki {—iCL};
79,1

Again, applying boundary condition at x =m, x =n and 1 = 0, to all equation of
continuity, summation of bending moments, shear forces and compressive forces, yields 12

governing equations as below:-

1.1.1.1 Continuity of displacement in axial direction (joint),

atx =n
. oWp
Uq = Ugcos® — Wpgsind + = (1 — cos 0) _11)
U, 8) {4 e ttn-m) 1 B} ;
Uﬁ(lp' t) {CL};
Wﬂ(’«/}rt) {C,+ C,};
oWy

a0 kep{=Co} + kpp{—iCs} ;

AyeHia=m) 4 g,
= (C,cos8 — (C,+ C,)sinB

L
+ 5 (1= cos O)[kyp{—Co} + kg {—iCy)]




0 = —Ae e _ B4+ Ccos® — Cpsinf — Cysinf
L L
_(hﬁ)zcﬂ1—ﬂm89)—(h¢J§lCdl—cosB)

0 = @Age4hwmﬂﬂ+—BL+(—Q)Fm9+[@ﬂg%(1—ameﬂl

1c

1g

0

COS
—
1i

+(—Cglﬁn9+[0hﬂJ§(1—cosaﬂl+CL

1h

Equation for MATLAB:-

0 [(-AL)(Lni)]

(-BL)

(-C2)[Sin 0 +( kip {V1})]
(-C4)[Sin 0 +(iksp+ {V1})]

(C1)(Cos 0)

+ 4+ + 0

1.1.1.2 Continuity of displacement in axial direction,

atx =m
UV = Ua
Uy(x, t) {D, + BLe—ikla*(m—n)};
Ua(x’t) {AL+ BLeikla*(m—n)} ;
DL + BLe—ikl *(m—n) — AL + BLeikla*(m—n)
[[0 = AL + BL eikla*(m—n) _ DL _ BL e—ikla*(m—n)]]

0 = (Ar)

+ [ (Br) (Lpi)] + [(-Br) (Lni)]

+ (-Dr)
Equation for MATLAB:-
0 = (Ar)

+ [ (BL) (Lpi - Lni)]

+ (-Dr)




1.1.1.3 Continuity of relative displacement in perpendicular direction

(joint), atx =n
W, Uy sin @ Wj cos 6 L (sine) W
= sin + Ccos -  =(Sin@)——
a B B 2 BT,
W o (x, ) {Aye Franmm) 4 g emikratnmm) By B Y.
Ug(,t) .}
Wy, t) G+ G}
W, _
EV kep{—Co} + kep{—iCs};

Aye kra=m) 4 g o=ikfa(n=m) 1 B 4 B,
L
= (C,sinf® + (C,+ Cy)cosf — > (sin @) [k {—C,} + ksp.{—iC,}]
0 = —B; — B3 — Aje Hra(=m) _ g o~kra(m=m) 4 ¢ sin@ + C, cosO + C, cos @
L L
+C, [(kfﬁ)z (sin 6)] +C, [(ikfﬂ*)f (sin 9)]

. L
0 = (_AZ) e_kf“(n_m) (_A4) e_lkfa*(n_m) - Bl - B3 + C2 [COS 9 + I:(kfﬁ)z (Sin 9)”
3a 3b

39

1L
+C, [cos 0 + [(ikfﬁ*) > (sin 9)” + C, sin@
31

3h

Equation for MATLAB:-

0 [(-A2)(Fn)]

[(-A4) (Fni)]

(-B1)

(-B3)

(C2)[Cos 0 +( kip {V3})]
(C4)[Cos 0 +(ikp+ {V3})]
(CL)(Sin 0)

+ 4+ 4+

1.1.1.4 Continuity of relative displacement in perpendicular direction,

atx =m
w, = W,
W, (x,t) {D, + D3 + Bye*f@(m=m) 4 B e-ikfax(m-my,
W (xt) {Az + Ay + Byl *nm) 4 Boetkfartmmy;




{Az + A4_ + Blekfa(m_n) + BSQikfa*(m_n)} = {Dl + D3 + Ble_kfa(m_n) + BSQ_ikfa*(m_n)}

[o = 4, + Ay + Byel " 4 Belkfartm—n) _ p, — Dy — Bje M ax(m=m)
L B3e—ikfa*(m—n)]]

0 = (A2)
+ (A4)
+ [ (B1) (Fp)] + [ (B3) (Fpi)]
+ (-D1)
+ (-D3)
+ [(-B1) (Fn)] + [(-B3) (Fni)]
Equation for MATLAB:-
0 = (A2)
+ (A4)
+ [(B1) (Fp - Fn)]
+ [(B3) (Fpi - Fni)]
+ (-D1)
+ (-D3)
1.1.1.5 Continuity of angular displacement/equal gradient (joint),
atx=n
ow, _ oWp
dx B oY
aal/xl/a kfu{—Aze"kf“(”‘m) + Bi} + kfu*{— iA4e_ikfa*(‘ﬂ_m) +iB; };
Wy kpp{—Co} + kpp{—iCy};
Bl B 2 B+ 45

kfa{_Aze_kfa(n_m) + Bl} + kfa*{_ iA4e_ikfa*(n_m) + lBg} = kfﬁ{_CZ} + kfﬂ*{_lC4}
—Agkpge e 4 Bikey— Agikpgie e M4 Boike, . = —Cokpp —Cyiksp.

0 = (Ay) kpge re"™ 4 (A,) ikpgue *re =™ 4 (=B)) (kq) + (—Bs) (ikras)
5a 5b 5d 5e

+ (=Cy) (kpp) + (—=Cy) (iks.)
59 5h




Equation for MATLAB:-

0 = [(A2) ko (Fn)]
+ [(A4) ikfox (Fni)]
+. (-B1) ki
+. (-B3) ikfo*
+ (-C2) ks
+ (-C4) ikip*
1.1.1.6 Continuity of angular displacement/equal gradient,
atx =m
oW, B aw,
ox N Ox
% kpyADi} + kpy{iDs} + kp{—By}e ™™ 4 ke {—iByJe K/ @r(mm)
66W;a kpo{—A, + B ekfatm-my 4 Kyl 1Ay + iBy gikfas(mn)

kiaf—A; + Bie® (MY 4 ke {— iA, + iBze®@ MY = ko (D} +
kry{iD3} + kpo{—B e /@™ 4 [ {—iB,}e~kfax(m-n)
—Agksq + Bikpge" (M — Aiksq, + Baikpg,e @ mm)
= Dykgy + D3ikgy. — B1kfae_kfa(m_n) — Bk, e~ e mmm)

0 = (A) ko + (A ikpg +(—=By) kpg /9™ 4 (=By) ikeq. glkfax(m-n)
R N—— R N——
6a 6b 6d be

+ D; kfy + D; ikfy* + (-B,) kfa e~ kfa(m-n) 4 (—Bs3) ikfa* p —ikfax(m-n)
-~ —— — ——
6j 6k 6d 6e

(AZ) Kfa

(A4) ikfa*

[(-B1) Kta (Fp)] + [ (-B3) iksa* (Fpi)]
(Dl) kfy

(D3) ikfy*

[(-B1) Kta (Fn)] + [(-B3) ikfex (Fni)]

+ 4+ + + 0

Equation for MATLAB:-
0 (A2) Kfa

(A4) iKfa*

[(-B1) ko (Fp + Fn)]

+ +




+ [(-B3) ikfax (Fpi + Fni)]
(Dl) kfy
+ (D3) ikry

+

1.1.1.7 Equilibrium of bending moment (joint), atx =n
%W, L 23w,
El, — + =(sind)E; I, ——
1 52 ( , ) 111 6 3,3 ,
a°W, 03 Wpg a<ow,
= E,l, —— ——sinEEl — I =
22 61/;2 (sinz)Eat, Y3 7 at2ox
— EA [ 1—cos"]+EA [ 1-— cos"]
EjA—— a 5 ( ) 2A2 50 5 ( )
2
aaZa ko {Aye e 1 B bt ke P{— Age e nmm) — Y
3
aa;'f’ ke {—Aye~Fre®=m 4 B Y+ ke, Bid, e Hre (oM — g Y
aZWﬁ 2 2
a2 kfﬁ {CZ}_kfﬁ* {Ca};
63Wﬁ 3 3¢:
FVE kpp”{=Co} + kpp. {iC4} 5
2
%6:;“ —w?ko{—AeTFre®™ ™ 1 B} —w?kp, f—iAge e 4B}
axa kla*{_iALeiikla*(nim)}"" ko {iBL} ;
Uy, ,
W kw*{—ch}:

Eyly [k {Aze ™ ram=m) 4 By b 4 ke 2= Ay~ Hra(mm) — p 1]
L
+ 35 (sin)Eq L [kpo {—Aze Fre®m 4 B, }
+ kg {iAyemikramm) _ ip.}]
L
— [[-w?kpo{—Ase Fra=m) + B } w kfa*{ iA e ran=m) 4 ip 1]

— [E (1 — cos E)] ElAl[kla*{—iALe—Lkza*(n—m)} + kla*{iBL}]

+ [% (1 - cos g)] E; A, [k (—iCL} |




Ely[kpo*Aze™ e 4 ko 2By — kpo*Age™Hre =M _ k. 2B ]
L .
+ E(sin NE L [—kpo Aze™Frem™™) ko PBy + Ky, iAge ™ Hp e (1mm)
— kg, 1Bs]
2 2 L =0 3 3.
= Eylkep®Co — kpp’Cs] — E(smE)EZIZ[—ka Cy + kpp. iCy]
— I] [(UzkfaAze_kfa(n_m) — a)zkfaBl+(U2kf0(*iA4.e_ikfa*(n_m)—(Uzkfa*iB3 ]
L 0 : —ikjg«(n—m) :
- E(l - COSE) ElAl[_kla*lALe lax + kla*lBL]

+

L
|5 (1= cos?)| Bz [—rep.ic,

0

L
_ 4, {_ (Bl (1)) e 4 (5 (sin g)Elll(kj?a)> eH1eCm (107 (ky,)) e—kfam—m)}

7a
+ A, {(Elll (k,%a*)) e~ Hfar(n=m) _ (g (sin g)Elll(ik;a*)> e~ Hfar(n=m) _ (ijz(ikfa*)) e_ikfa*("_m)}

7b

+ AL {[ (1 — COoS )] E A, (ik;,,) e Hia (n— m)}

7c

(but () = (5 6B 02 ) + (107 (hr))

7d

2
ol

B { (1 (h0)) + (5 (DB (670 ) + (502 ()
&

L 7e
+ B, [i — cos )] ElAl(Lkla*)}
7f
+ G, {EZI (kep?) + —(sm )Ezlz(kaB)}
79
{ Eyl(kpp.”) — —(sm NE, I, (iksp.° )}

7h

n CL{ [ (1 - cos )] EzAz(lle*)}

7i

+ Cy

Equation for MATLAB:-




(A2) [{V6}(Q) ke’ (Fn)  + (-Q1) ke (Fn) + (-Ijw?) Kru(Fn) |
(A4) [ {-V63(Q1) iksex 3 (Fni) + (Q1) kea? (Fni) + (-Ijw?) ika+ (Fni) |
(AL) [ {V5}(S1) ikie* (Lni) |

(B1) [ {-V6}(Q1) kia® + (-Q1) keo®  + (Ijw?) Ko |

(B3) [ {V6H(Q1) ike® + (Q1) Krar? + (Ijw?) ikru* |

(BL) [ {-V5}(S1) ikio+ |

(C2) [{V6}(Q2) kip® +(Q2) kep?* ]

(Co) [ {-V6}(Q2) ik’ + (-Q2) kip’]

(Cu) [{-V53(S2) ik ]

A) [{V6}(QD) ki’  +(-QD) k> + (-Ijw?) ka ] (Fn)
(A9) [ {-V6}(Q1) ik 3 + (Q1) ka2 + (-jw?) ikeor] (Fni)
(AL) [ {V5}(S1) ikier](Lni)

(B1) [ {-V6}(Q1) kic® + (-Q1) kea®  + (Ijw?) Ko |

(B3) [ {V6}(QD) ik + (Q1) kia+” + (iw?) iKra+ |

(BL) [ {-V5}(S1) ikie* |

(C2) [{V6}(Q2) kep® +(Q2) kep? ]

(Co) [ {-V6}(Q2) ikip-* + (-Q2) kip?|

(Co) [ {-V53(S2) ikip- |

1.1.1.8 Equilibrium of bending moment, atx =m
%W, 62Wy
E111_6x2 = E111_ax2
%W, _ 62Wy
ax2  0x?

( 1
l201J



SY)
<
=

kfmz{/lZ + Byelf (mmy 4 kfmz{* A, — Byellfarm—my,

)
~<§ x“’

ke (D1} — kg PADsY + kP {ByYe RO e 2By Yemtkfaxtmmm)

QD
=
N

ko {Ay + Byetfam-m 4 . 2— A, — Byelfarm—m)}
- kf)/z{D1} - kfy*Z{Dg} + kfaz{Bl}e‘kf“(m‘”)
+ Kpq” {—Bs}e~kfax(m=n)

0 = (=4,) {(k)} + A {(kZ2)} + (=B {(kf)} e " + B {(k2,.)} e/ @ (mm

8a 8h 8d =
+ D1 {(kfz']/)} + (_D3) {(kfz'y*)} + (Bl) {(kfz'a)} e—kfa’(m—n)
8j T T

+ (B [(kFa)) o0

8e

0 = (-A2) Kto?

+ (A4) iKfor?

+ [(-B1) keo? (Fp)] + [ (B3) iksa+? (Fpi)]

+ (D]) kfy2

+ (-D3) ikey+?

+ [(B1) ko2 (Fn)] + [(-B3) ikso? (Fni)]
Equation for MATLAB:-
0 = (-A2) Kro?

+ (A4) iKkfor?

+ [(B1) kte? (-Fp + Fn)]

+ [(B3) ikfe+? (Fpi - Fni)]

+ (D]) kfy2

+ (-D3) ikey+?

1.1.1.9 Equilibrium of compressive force (joint), atx =n
U 3 92 ow
B B . Y

E{A; 3 2 = EA, 3 cosf + E,l, e sinf — mjﬁ[Ua — L(sin?) ax“]
aai“ ki {—iALe™ @@} 4 kg {iB,} 5
9Us kg {—iCy);
o 1=l
oWy Kep (=Co} + kpp 2 {iCL3 5
3 B 2 fB* 45




2%U,
at?
9% aw,
at? ox

— w*{A e k- 4 B 1,

—wPksa{—Aye ™ 4 B}~k {—iA e Rra (™ 4B Y

E1A; (kg {—iA e Hia=m} o, {iB,})
- mj(—w?) [(ALe‘ikla*(”‘m) + B,)

— L(sing)2 (kpa{—Aze*ram=™ 4 B dtkry {—idse™ ram) 4 B, })]

0 =4, [(mij)L(sing)Z(kfa)] e kraln-m) 4 A, [(mij)L(Sing)Z(ikfa*)] e~ iKfa:(n—m)

9a ' 5
B AL [(ElAl(lkla*)) + (m]wz)] e_lkla*(n—m)

b [ ()] + 5 [y (sim ) ik )]

9d 9e
+ By [—(E141(ikie)) + (mjw?)] + C; [—Ezlz(k]?ﬁ) sin 6]
9f 99

+ Cy [(E2Lo(ikPp.) sin 0)] + €, [—(E2Az(ikyp.) cos 6))]
9h 9i

Equation for MATLAB:-
0 = (A2) [ { V5}(mjw?) Kra] (Fn)
+ (A9) [ { V5}(mjw?) ik fa+] (Fni)
+ (A1) [ (S1) ikies + (mjw?)] (Lni)
+ (B1) [ { V5}(-mjw?) ko]
+ (B3) [ { V5}(-mjw?) ik fox]
+ (Br) [ (-S1) ikiex + (mjw?)]
+ (C2) [ (-Q2) kip® Sin 0]
+ (C4) [ (Q2) ik Sin 0]

+ (Cr) [(-S2) iki Cos 0]




1.1.1.10 Equilibrium of compressive force, atx =m

E. A aU}’ E A aUa F
_ i A WUy _
1 ox 715y !
au, .

7 kig.{—1A, } + kig.{iB,e™ Y

au |

Txy klyx{ iD,} + kg {—iB, e klax(m-m1,

—E;A;(ky{iDL} + ki {—iB Yo MM 4 B Ay (kigo{—iAL } + kg, {iB Jett ~(m—m)

= F
: : —iklax(m—n) : : iklax(m—-n) Fl
_kly*{ lDL } - kla*{_lBL}e + kla*{_lAL } + kla*{lBL}e = E A
1441
F ; , —iklax(m—n) ;
g o = (A0 [Ghie)] + (B) [(kig )] e + (=Dy) [(ikyy.)]
Lol 10c 10 101
+ (B) [(ikyg)] e”‘“"*(m‘")m
10f
Equation for MATLAB:-
17
& - (-Av) ikio*

E A4

+ [(BL) ikie* (Lpi + Lni)]

+ (-DL) ikly*

1.1.1.11 Equilibrium of shear force (joint), atx =n

3w, aUg 63W3 02 . aw,
—E, I, W;‘ = E,A, Sy S0 0 — E,l, e 0 —m—s [Wa + L(sin?)(cos?) axa]
a;l:za ko {—Ajefram 4 g Y4 ke iAo e ™) — B
% klﬁ*{_iCL} ;
oy
e SR I (AT
aalt/lz/a _ wz{Aze—kfa(n—m) +Bl}_w2{A4e—ikfa*(n—m) + 33} ;




9% aw,
at? ox

—wPksa{—Aye ™ 4 B}~k {—iA e Rra ™ 4B Y

—Eqly (ke {—Aze ra®=m™ 4 By Y 4 kpp 2 {idge™Hre=m) — B, 1Y)
+ mjw? [({Aze"‘fa(”‘m> + By} + { Aye”Hra(t=m) 4 B 1)
+ (L(sin N(cos ) (kpaf—Aze ™ re™™ 4 By} kyq {—iA e~ Hremm

+iBs }))]

= 4, [~ (B (1)) + ((mj0?)) = ((mj?)L(sin2) (cos ) (kre) )| e 7"
+ Ay |(Erh (k) ) + ((my?)) - ((m,-;)lz)L(sing)(cosg)(ikfa*))] ik pa(n=m)
8, (B (45) + () + ()58 co52) o))

+ B (B (i) + (my?)) + ((mye0?) L (sin ) (cos ) kya))]

11
+C; (ExLy(kfg) cos 0) + Co [—(ExLy(ik7g.) cos 0)] +C, [—(E2A,(ikyp,) sin 6)]

11 11h 11

Equation for MATLAB:-
0 = (A2) [ (-Q1) ko’ + (mjw?) +(-miw?){V6}(Kiu) | (Fn)
+ (A9) [ (Q1) ks + (mjw?) +(-mjw?){V6}(iku+) ] (Fni)
+ (B1) [ (Q1) ke’ + (mjw?) +(mjw?){V6} (kia) ]
+ (B3) [ (-Q1) ikso+® + (mjw?) +(-miw?){V6} (ko) |
+ (C2) [ (Q2) ke’ Cos 0]
+ (C4) [ (-Q2) iksp+* Cos 0]

+ (CL) [(-S2) ikig+ Sin 0]

1.1.1.12 Equilibrium of shear force, atx =m




23w, 03w,

a

ElllF-l_ElIlW = Ff
a;::'gx kfa3{—A2 + Biekf (m-n) Y+ kfa*3{i.44 _ L-B3eikfa*(m7n)};
0;::'3{}/ kfy3{D1} - kfy*3{iD3} + kfa3{_Ble*kfa(m—n) Y+ kfa*3{ L-B3e—ikfa;(m7n)};
—EyL (ko {—Az + By 9™} 4 ke idy — iBge @ mmmY)
+ E1I1(kfy3{D1} - kfy*3{iD3} + kfa3{_Ble—kf (m-n) }
_(kfa3{_A2 + By el (mmml 4 kfa*3{iA4 — iBjelkfax(m-m})
* (kfy3{D1} a ka*3{lD3}) + kfa3{_Ble_kf (m—n)}
; F,
+ kfa*3{ l-B3e—kaa*(m—n)} — f
Eily
F,
f ) )
Ei L = A, ((k?a)) + (—A4,) ((lkﬁa*)) + (—B;) ((kf3a)) ekfa(m-n)
12a 12 1-‘_'2
+ By (k) /== 4 Dy (k2,) + (~D) (ikZ,.)
12 12j 12k
()79 + By (@)t
12d s
Fr
_J5 _ A2) kel
Eqly (A2) kfa
+ (-A4) ikgo+?
+ [(-B1) keo® (Fp) + (B3) iksor* (Fpi) |
+ (D1) ke
+ (-D3) ikgy?
+ [(-B1) ko (Fn) + (B3) ikso*® (Fni) |
Equation for MATLAB:-
Ff N \
_J; _ K
Eqly (A2) kfa
+ (-A4) ikfa*3
+ [(-B1) kta® (Fp + Fn) ]
+ [(B3) ikfe+* (Fpi + Fni) |
+ (D1) ke
+ (-D3) ikpy?




Note :
Lni
Lpi
Fn
Fni
Fp
Fpi

e ~iKig«(n-m)
eikla*(m—n)
e kra(n-m)
e~ tkras(n—m)
e kfax(m-n)
e ikfax(m-n)




Appendix:

C-Z MATLAB coding for Force-Input Joint equation: -

% MainCodeJointBeam

o oe

o

PHD THESIS

AUTHOR: SAIDDI

o o° o© o°

o oo

oo

o

o

DESCRIPTION OF

o

% B is the
$ I is the
$ A is the
$ R is the
% RJ
s J
$ L
% Q is the
% S is the

o° oo

DESCRIPTION OF

oo

% Kfa is the
% Kfb is the
% Kfg is the
% Kla is the
% Klb is the

o

Klg is the

o

o\

% Ff & F1 input

clear all
clf
format long e

R R i I I S I I I I I I I I S I b IR b e S b b I S I e b I b b b I b b I I b I I SR b e S S b 2 b I I b b b b S b ah b b a1

LOUGHBOROUGH UNIVERSITY

ALI FIRDAUS BIN MOHAMED ISHAK

SUPERVISORs: DR. JANE L.HORNER & DR.STEPHEN J.WALSH

R R i I I S I I I I I I S S I b I b e S b b I S I e b I b I b I b b R S b I I SR b b S b b I b I e b b I b S b b b b 4 g

MAIN PROGRAM: Reflection & Transmission - Power Measurements
R b b b S e b b b b b b b b b S 2 b b b b b b b b I I b b b b b b b S b I 2 b b b b b b b b I b e b b b b b b b b b 2 2 2 b b b b b 4 4

INPUT PARAMETER

Young's Modulus
second moment of area
area

density of beam

is density of joint
w is width of joint
is height of joint

E x I
E x A

OTHER VARIABLES

flexural wavenumber in alpha
flexural wavenumber in beta
flexural wavenumber in gamma
longitudinal wavenumber in alpha
longitudinal wavenumber in beta
longitudinal wavenumber in gamma

- (bending<flexural> and compressive<longitudinal> waves)

$Given

b=0.1;%0.05;% Sm
d=0.02;%0.006;% Sm
El=1.75e9;%5.567e9;%60e9;%3.5e9;% SN/m”2
I1=(b*(d"3))/12; Sm”4
Al=b*d; Sm”™2
E2=1.75€9;%5.567e9;%60e9;%3.5e9;% SN/m"2
I2=(1.0*b* ((1.0*d)"3))/12; Sm™4




A2=1.0*b*1.0*d;
R=1170;%1500;%1190;%2500;
Rj=1170;%1500;%1190;%2500;
Jw=1*b;

L=1*d;

Eta=0.07;

Mr=0.028;

Ir=Mr* (L"2)/12;

hs=3000;

h=0.2;

Ele=El* (1+(1i*Eta));
E2e=E2* (1+(1i*Eta))

’

Ql=E1*I1;
Q2=E2*12;
S1=E1*Al;
S2=E2*A2;

03=0;%1.167e6*11;

ml=R*Al;
m2=R*A2;

thcent=0;
for thet=0:1:180;
T=thet*pi/180;

thent=thcnt+1;

sm”™2

$kg/m”3
$kg/m"3

o° oo
3 8

for £g=3000:500:3000;%000:16.667:3000.06;

%1/s

%$1/s

250:5:2250;

Ff=1;%*0.021*sqrt (2);%0.021*sqrt (2);%(1*1);%0.018;0.0038*sgrt(2);%

F1=0;%*0.0105*sgrt (2);%0.0021*sqrt (2);%0;%(1*1);%0.018;

fgent=0;
w=2*pi*fqg;
$Input
sm
Tm

m=0.0;
n=0.9;

’

Mj=Rj*JIJw* (L"2)*T/2;
$Ioj=((T-sin(T))*(L"4)/8);

kg

$Tcy=L* (((4/3)* (sin(T/2)/(T)))-(1/2));

$I3=Mj* (Ioj-Icj);
Ij=Mj* (L"2)/12;

Kfa=(w*0.5)* ( ((R*Al
Kfg=(w*0.5)* ( ((R*Al

Skgm”2

~0.25);
~0.25);

%1/m
%1/m




Kfb=(w?0.5)* ( ((R*A2)/ (E2*I2))"~0.25
Kla=w*sqrt (R/E1)

Klg=w*sqrt (R/E1)

Klb=w*sqrt (R/E2)

Kfax=(w"0.5)* (((R*Al)/ (Ele*I1))"0.
Kfgx=(w"0.5)* (((R*Al) /(Ele*I1))"0.
Kfbx=(w*0.5)* (((R*Al) / (E2e*I2))"0.
Klax=w*sqrt (R/Ele);%Kla* (1- ((i*Eta
Klgx=w*sqrt (R/Ele) ; 3K1lg* (1- ((i*Eta
Klbx=w*sqrt (R/E2e) ; SK1b* (1- ((i*Eta

fll=(m-n);

Lni=(exp (-i*Klax*fl));
Fn=(exp (-Kfa*fl));
Fni=(exp (-i*Kfax*fl));

Lpi=
Fp=
Fpi=

(exp (1*Klax*fll)) ;
(exp (Kfa*fll));
(exp (i*Kfax*fll)) ;

Llni=
Ffn=
Ffni=

(exp (1i*1*Klax*fll));
(exp (1*Kfa*fll));
(exp (i*1*Kfax*fll));

V1=L/2* (1-cos(T)) ;

gl=(sin(T)+ (Kfb*V1l)) ;
hl=(sin(T)+ (1*Kfbx*V1)) ;
il=cos(T);

[o)

V3=L/2* (sin(T)) ;

g3=(cos
h3=(cos

(T))+ (Kfb*V3) ;
(T)
i3=sin (T

T
T))+ (1*Kfbx*V3) ;
) r

[o)

ab5=Kfa;
b5=i*Kfax;
d5=Kfa;
eb=i*Kfax;
g5=Kfb;
h5=1i*Kfbx;

o

$finite length

(£1)

) ;

VVVNNN

*Eta)/4));
*Eta)/4));
*Eta)/4));

%1/m
%1/m
%1/m
%1/m
%1/m
%1/m




+0;

+0;

+0;

ab=Kfa;
b6=1i*Kfax;
d6=Kfa;
e6=1*Kfax;
Jj6=Kfg;
k6=1*Kfgx;

V5=L/2* (1-cos (T/2)):

V6=L/2* (sin(T/2)) ;

SV5=L* ((sin(T/4))"2); %$-same as above
SV6=L* (sin(T/4)) * (cos (T/4));%-same as above

a7=((-Ij) *Kfa *(w"2))+((-01)* (Kfa"2)) +(Ql *(Kfa"3) *V6)
b7=((-Ij) *i*Kfax*(w"2))+( Q1 *(Kfax"2))+(Ql*i* (Kfax”"3)* (-V6))
c7=(S1*i*Klax*V5)

d7=(; Ij *Kfa *(w"2))+((-Q1) *(Kfa"2)) +(Q1 *(Kfa"3) *(-V6))
e7=( Ij *i*Kfax*(w"2))+( 01 *(Kfax"2))+(Ql*i* (Kfax"3) *V6)
f7=(S1*i*Klax* (-V5))

g7=(; Q2 *(Kfb"2)) +(Q2 *(Kfb"3) *V6)

h7=((-02)* (Kfbx"2) )+ (Q2*i* (Kfbx"3) * (-V6) )

17=(S2*1i*Klbx* (-V5))

’

oo

a8=(Kfa"2);%*Q1;
b8=(Kfax”"2);%*01;
d8=(Kfa"2);%*Q1;
e8=(Kfax"2);%*01;
18=(Kfg"2) ;5*01;
k8= (Kfgx"2);%*01;

ad9=( Mj*(w"2) *Kfa *V5);
b9=( Mj* (w"2) *1i*Kfax*V)h) ;
c9=( Mj*(w*2))+( Sl *i*Klax)
d9=(-Mj* (w"2) *Kfa *V5);
e9= (-Mj* (w"2) *i*Kfax*V5h) ;
fO=( Mj*(w"2))+((-S1)*i*Klax)
g9=((-Q2)* (Kfb"3) *sin(T))
h9=( Q2 *i* (Kfbx"3)*sin(T))

19=((-S2)*i* Klbx *cos (T))




+0;

+0;

+0;

o

cl0=(i*Klax);%*
£f10=(i*Klax);%* (S1);%-ve
110=(1i*Klgx);%* ;

°

all=(Mj*(w"2) )+ ((-MJ) *(w"2)

bll=(Mj* (w"2) )+ ((-MJj) * (w"2) *1*Kfax*Ve6) + (

dll=(Mi* (w"2))+( Mj *(w’2)

*Kfa *V6)+(

*Kfa *V6)+((-01) *(Kfa"3))

Q1 *i* (Kfax"3))

01 *(Kfa~3))

ell=Mj*(w"2))+( Mj *(wh2)*i*Kfax*Ve)+((-Ql)*i* (Kfax"3))

gll=( Q2 * (Kfb"3) *cos(T))
h1ll=((-Q2)*i* (Kfbx"3) *cos (T))

ill=((-S2)*i* Klbx *sin(T))

o)

al2=(Kfa"3);%*Q1;
bl2=i* (Kfax"3);%*Q1;
dl2=(Kfa"3);%*01;
el2=i* (Kfax"3);%*01;
j12=(K£g"3) ; %*01;
k12=i* (Kfgx"3);%*Q1;

o

x(1,1)=0;
x(1,2)=0;

X (1,3)=-1*Lni;
x(1,4)=0;
x(1,5)=0;
x(1,6)=-1;%*Lpi;
x(1,7)=-gl;
x(1,8)=-hl;
x(1,9)=11;
x(1,10)=0;
x(1,11)=0;
x(1,12)=0;

X (2,1)=0;

X (2,2)=0;
x(2,3)=1;
x(2,4)=0;
x(2,5)=0;
x(2,6)=1* (Lpi-Llni);
x(2,7)=0;
x(2,8)=0;
x(2,9)=0;
x(2,10)=0;

~




$*Lpi;

_1;

~
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Pfl1=1*E1*I1*w* (Kfax”"3) * ((abs (yF(2)))"2);

)i%

Pf2=1*E1*I1*w* (Kfax"3) *

)i%

PE3=1*E1*I1l*w* (Kfax"3) * ((abs(yF(5)))"2);

)%

Pf4=1*E1*Il*w* (Kfax"3) * ((abs (yL(5)))"2);

)%

x(11,6)=0;

x(11,7)=gll;

x(11,8)=hl1;

x(11,9)=111;

x(11,10)=0;

x(11,11)=0;

x(11,12)=0;

x(12,1)=al2;

X(12,2)=-bl2;

x(12,3)=0;

x(12,4)=-d12* (Fp-Ffn) ;
x(12,5)=el2* (Fpi-Ffni);
x(12,06)=0;

x(12,7)=0;

x(12,8)=0;

x(12,9)=0;

x(12,10)=312; %*Fp;
x(12,11)=-k12;%*Fpi;
x(12,12)=0;
zL=[0;0;0;0;0;0;0;0;0; (F1/S1)
zF=[0;0;0;0;0;0;0;0;0;0;0; ( Ff/Ql
yL=x\zL;

yF=x\zF;

%$Note that for the matrix of X;
Sy (1) A2 Nm/s xxXXX
Sy (2) $A4 Nm/s

3y (3) %$AL Nm/s

sy (4) %$Bl Nm/s xxXX
sy (5) %$B3 Nm/s

%y (6) $BL Nm/s

Sy (7) %C2 Nm/s xxXxXX
%y (8) %$C4 Nm/s

%y (9) %$CL Nm/s

%y (10) %$D1 Nm/s xXxXXX
Sy (11) $D3 Nm/s

Sy (12) $DL Nm/s

fgcnt=fgcnt+l;

((abs (yL(2)))"2);

%$Power in a due to trans flexural wave

0l];
] 4

o\O

o\o

(Fl/(4*E1*A1*K1a))
- (Ff/ (4*E1*I1*Kfa"3))

S (((real(yF(2)))"2)+((imag(yF(2)))"2)
%$Power in a due to trans flexural wave

yF(2)

$(((real(yL(2)))"2)+((imag(yL(2)))"2)

yL(2)

S (((real (yF(5)))"2)+((imag(yF(5)))"2)
$Power in a due to reflected flexural wave

yE(5)

S (((real(yL(5)))"2)+ ((imag(yL(5)))"2)
%$Power in a due to reflected flexural wave

yL(5)




PE5=1*E2*I2*w* (Kfbx"3) * ((abs (yF(8)))"2) ;% (((real (yF(8)))"2)+ ((imag (yF(8)))"2)
)% $Power in b due to transmitted flexural wave yE(8) -> C4

Pf6=1*E2*I2*w* (Kfbx"3) * ((abs (yL(8)))"2); % (((real (yL(8)))"2)+ ((imag(yL(8)))"2)
)% $Power in b due to transmitted flexural wave yL(8) -> C4

Pf7=1*E1*I1*w* (Kfgx"3) * ((abs(yF(11)))"2) ;% (((real (yE(11)))"2)+ ((imag(yEF(11)))
"2)): % $Power in g due to trans flexural wave yF(11)-> D3

Pf8=1*E1*I1*w* (Kfgx"3) * ((abs(yL(11)))"2);%(((real (yL(11)))"2)+((imag(yL(11)))
~"2)):% %$Power in g due to trans flexural wave yL(11)-> D3

P11=0.5*E1*Al*w*Klax* ((abs (yL(3)))"2);%(((real(yL(3)))"2)+((imag(yL(3)))"2));

o)

% $Power in a due to trans longitudinal wave yL(3) -> AL

P12=0.5*E1*Al*w*Klax* ((abs (yF(3)))"2);%(((real (yF(3)))"2)+((imag(yE(3)))"2));

[o)

% %$Power in a due to trans longitudinal wave yEF(3) -> AL

P13=0.5*E1*Al*w*Klax* ((abs(yL(6)))"2);%(((real(yL(6)))"2)+((imag(yL(6)))"2));

% $Power in a due to reflected longitudinal wave yL(6) -> BL
P14=0.5*E1*Al*w*Klax* ((abs(yF(6)))"2);%
(((real(yF(6)))"2)+ ((imag(yF(6)))"2));% SPower 1in a due to reflected

longitudinal wave yF(6) -> BL

P15=0.5*E2*A2*w*Klbx* ( (abs (yL(9)))"2);%(((real(yL(9)))"2)+ ((imag(yL(9)))"2));
% %$Power in b due to transmitted longitudinal wave yL(9) -> CL

P16=0.5*E2*A2*w*Klbx* ((abs (yF(9)))"2);%(((real (yE(9)))"2)+ ((imag(yE(9)))"2));

% %$Power in b due to transmitted longitudinal wave yF(9) -> CL
P17=0.5*E1*Al*w*Klgx* ((abs (yL(12)))"2);%(((real (yL(12)))"2)+ ((imag(yL(12)))"2
)) % $Power in g due to trans longitudinal wave yL(12)-> DL
P18=0.5*E1*Al*w*Klgx* ( (abs (yF(12)))"2) ;% (((real(yF(12)))"2)+ ((imag(yEF(12)))"2
)) % $Power in g due to trans longitudinal wave yE(12)-> DL

PFlex=(0.125* (((Ff ) w))/ (((E1*I1)*((Kfax)"3)));

PLong=(0.25* (((F1)" w))/ ((E1*ALl)* (Klax)) ;

PFlexG=(0.125* ( ((F ) w))/(( (E1*I1)* ((Kfg)"3)));

PLongG=(0.25* ( ((F1 )A2 w))/ ((E1*Al) * (K1qg)) ;

%1lmbd=0.5;

$Kfax2=2*pi/lmbd;

$PFlex2=(0.125* ((Ff)"2))/ (ml*w/Kfax2) ;

tht (thent) =

wat (fgcnt) =w;

fgt (fgcnt)=£qg;

ndwave (fgcnt)=(Kfa*0.9) / (2*pi); % ((2*pi) /Kfa)*0.5;

nP1 (thent, fgent)=(Pf1-P£3) / (PFlex+0) *100; % %Spower in a -
flexural incidence wave, flexural reflected wave

nP2 (thent, fgent) = (P£2-P£f4) / (PLong+0) *100; % %power in a -

longitudinal incidence wave, flexural reflected wave




nP3 (thent, fgent)=(P12-P14) / (PFlex+0) *100; % Spower in
flexural incidence wave, longitudinal reflected wave

nP4 (thent, fgent)=(P11-P13) / (PLong+0) *100; % %power in
longitudinal incidence wave, longitudinal reflected wave

nP5 (thent, fgent)=(P£3) / (PFlex+0) *100; % %Spower in a -
incidence wave, flexural reflected wave

nP6 (thent, fgent)=(P£f4) / (PLong+0) *100; % %Spower in a -
longitudinal incidence wave, flexural reflected wave

nP7 (thent, fgent)=(P14) / (PFlex+0) *100; % %Spower in a -
incidence wave, longitudinal reflected wave

nP8 (thent, fgent)=(P13) / (PLong+0) *100; % %Spower in a -

longitudinal incidence wave, longitudinal reflected wave

nP9 (thent, fgent)=(P£5) / (PFlex+0) *100; % %Spower in b -
incidence wave, flexural transmitted wave

nP10 (thent, fgent)=(P£6) / (PLong+0) *100; % %Spower in b -
longitudinal incidence wave, flexural transmitted wave

nP1l1l (thent, fgent)=(P16) / (PFlex+0) *100; % %Spower in b -
incidence wave, longitudinal transmitted wave

nP12 (thent, fgent)=(P15) / (PLong+0) *100; % %Spower in b -

longitudinal incidence wave, longitudinal transmitted wave

o

nP13 (thent, fgent)=(PE£7+P£3) / (PFlex+0) *100;
flexural incidence wave, flexural transmitted wave
nP1l4 (thent, fgent)=(P£8+Pf4) / (PLong+0) *100;
longitudinal incidence wave, flexural transmitted wave
nP15 (thent, fgent)=(P18+P14)/ (PFlex+0)*100;
flexural incidence wave, longitudinal transmitted wave
nP16 (thent, fgent)=(P17+P13)/ (PLong+0) *100; % Spower in
longitudinal incidence wave, longitudinal transmitted wave

Spower in

o

Spower in

o

$power in

$nP13 (thent, fgent) =nP25 (thent, fgent) + (P£3) ; %/ (PFlexG+0) *100;
$power in g - flexural incidence wave, flexural transmitted wave
%$nP1l4 (thent, fgent)=nP26 (thent, fgent) + (P£4) ; %/ (PLongG+0) *100;
%power in g - longitudinal incidence wave, flexural transmitted wave
$nP15 (thent, fgent) =nP27 (thent, fgent) + (P14) ; %/ (PFlexG+0) *100;
$power in g - flexural incidence wave, longitudinal transmitted wave
$nP16 (thent, fgent) =nP28 (thent, fgent) + (P13) ; %/ (PLongG+0) *100;

a -

a -

flexural

flexural

flexural

flexural

o

o\

o

o

%$power in g - longitudinal incidence wave, longitudinal transmitted wave

$nP17 (thent, fgent)=(Pf1-P£3);%/ ( (PFlex+0)) *100;
flexural incidence wave, flexural reflected wave

o\

$power in a

%nP18 (thent, fgent)=(Pf4-P£f2) ;%/ ( (PLong+0)) *100; % %Spower 1in a

longitudinal incidence wave, flexural reflected wave

$nP19 (thent, fgent)=(P14-P12);%/ ( (PFlex+0)) *100; % %power in a

flexural incidence wave, longitudinal reflected wave

$nP20 (thent, fgent)=(P11-P13) ;%/ ( (PLong+0)) *100; % %Spower in a

longitudinal incidence wave, longitudinal reflected wave

fB=nP5+nP7; %+nP7; $nP9+nP1l1;
fA=nP1+nP3; %$+nP3; $nP1+nP3+nP5+nP7;

fC=nP9+nPll; %+nP1l1l;%nP13+nP15;
fD=nP13+nP15; $+nP15; $nP17+nP18+nP19+nP20;




fAl=fA;

fBe=fC;

fGa=£fD;
ftotl=fAl+fGa;
ftot2=fGa+fBe;
$Sftot3=fAl+£fBe;
fAla=fA;
fAlb=£B;

1B=nP8+nP6;
1A=nP4+nP2; %=0

1C=nP12+nP10;
1D=nPl6+nP1l4;

1Al1=1A;

1Be=1C;

1Ga=1D;
ltotl=1A1+1Ga;
ltot2=1Ga+1Be;
$1ltot3=1A1+1Be;

totl=ftotl+ltotl;
tot2=ftot2+1ltot2;
$tot3=ftot3+1tot3;
AlphaT=fAl1+1Al;
BetaT=fBe+1Be;
GammaT=fGa+1Ga;

SnEF=nP21+nP22+nP23+nP24;

Tf=fGa+fAl; SfAl+

Tl=1Ga+1lAl;3S1Al+
TOT2=GammaT+BetaT; $+AlphaT; $GammaT+£fB+1B;BetaT+fA+1A;
TOT1=GammaT+AlphaT;

xfcnt=0;
for xf=0.00;

Wf (thent, fgent) =(yF (1) * (exp (-Kfa*abs (xf-m) ) ) )+ (yEF(2) * (exp (-
li*Kfax*abs (xf-m))))+(yF (4) * (exp (Kfa* (1*abs (xf-
m)))) )+ (yF(5) * (exp (li*Kfax* (1*abs (xf-m)))));
Uf (thent, fgent)=(yL(3) * (exp (-1li*Klax*abs (xf-
m))))+t(yL(6)* (exp(li*Klax* (l*abs (xf-m)))));
xacnt=0;
for xa=0.45;
Wa (thent, fgent) = (yF (1) * (exp (-Kfa*abs (xa-m) ) ) )+ (yF(2) * (exp (-
li*Kfax*abs (xa-m))))+(yF(4) * (exp (Kfa* (1*abs (xa—
m)))) )+ (yF(5) * (exp (li*Kfax* (1*abs(xa-m)))));
Ua (thent, fgent)=(yL(3) * (exp (-1li*Klax*abs (xa-
m))))+(yL(6)* (exp(li*Klax* (l*abs(xa-m)))));
xbcnt=0;

for xb=1.50;%0.25;




Wb (thent, fgent) = (yF (7) * (exp (-Kfb* (xb-n) ) ) ) + (YF(8) * (exp (-

1i*Kfbx* (xb-n))));
Ub (thent, fgent) =(yL(9) * (exp (-11i*Klbx* (xb-n)))) ;
xgcent=0;
for xg=-0.30;%-0.75;
Wg (thent, fgent) =(yF (10) * (exp (Kfg* (xg-
m))))+(yF(11) * (exp (11i*Kfgx* (xg-m)))) ;
Ug (thent, fgent)=(yL(12) * (exp (1i*Klgx* (xg-m)))) ;
Va (thcnt, fgent)=1li*w*Wa (thcnt, fgcnt) ;
Vb (thent, fgent)=1i*w*Wb (thcnt, fgcnt) ;
Vg (thent, fgent)=1i*w*Wg (thent, fgent) ;
Aa (thcent, fgent)=-1*w"2*Wa (thcnt, fgcnt) ;
Ab (thcnt, fgent)=-1*w"2*Wb (thcnt, fgcnt) ;
Ag (thcnt, fgent)=-1*w"2*Wg (thcnt, fgcnt) ;
xacnt=xacnt+1;
xWat (xacnt)=Wa (thcnt, fgcnt) ;
xUat (xacnt)=Ua (thcnt, fgcnt) ;
xWbt (xacnt)=Wb (thcnt, fgcnt) ;
xUbt (xacnt)=Ub (thcnt, fgcnt) ;
xWgt (xacnt)=Wg (thcnt, fgcnt) ;
xUgt (xacnt)=Ug (thcnt, fgcnt) ;
InPwrF (thent, fgent)=1* ((((Ff) "2) *w) / (8*E1*I1*Kfax"3))* (1-Eta/4);
InPwr (thent, fgent) =-
0.5*real (F£* (1i*w* (Wf (thcnt, fgcnt))) ),
ApPwr (thent, fgent)=1* (((real (1i*w* (Wa (thcnt, fgent) ) ) ) "2* (E1*I1) * ((Kfa) ~3) )/ (w
)) i
BtPwr (thent, fgent)=1* ( ((real (1i*w* (Wb (thcnt, fgent)))) "2* (E2*I2) * ((Kfb) *3)) / (w
)) i
GmPwr (thent, fgent)=1* ( ((real (1i*w* (Wg (thcnt, fgent)))) "2* (E1*I1)* ((Kfg)"3)) / (w

)) i
TotPwr=GmPwr+BtPwr;

Imp (fgcnt) =1/ (li*w*Wa (fgcnt)) ;
Mob (fgcnt) =1/ (Imp (fgcnt)) ;

ReMob (fgent) =w/ (4*E1*I1*Kfa”3);
ImMob (fgent)=(-1*w) / (4*E1*I1*Kfa"3);

Acc (fgcnt)=Wa (fgcnt) * (- (w"2)) ;

Ar=1*fAl./ (InPwr.*1);
Gr=1*fGa./ (InPwr.*1);
Br=1*fBe./ (InPwr.*1);
$Ir=InPwr/fAl;
$Gr=fGa/fAl;




$Br=fBe/fAl;
tr=(0+Ar+Gr) *1;

end

end

end

end

end

end

fgt=3000:500:3000;%000:16.667:3000.06;
tht=0:1:180;

figure (1)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP6, 'g'")

hold on

plot (tht,nP7, 'm")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power Transmitted&Reflected in alpha'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('FF','LF','FL','LL',"FF','LF','"FL', '"LL", 'Location', 'best"') ;

figure (2)

plot (tht,nP9, 'r'")
hold on

plot (tht,nP10, 'g')
hold on

plot (tht,nPll, 'm")
hold on

plot (tht,nP1l2, 'b")
hold on

grid on

%axis ([0 180 0 1201])
title 'Percentage Power Transmitted in beta’




xlabel 'Angle'%'Frequency'
ylabel 'Percentage Power'
%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (3)

plot (tht,nP13, 'r")

hold on

plot (tht,nP14, 'g")

hold on

plot (tht,nP1l5, 'm")

hold on

plot (tht,nPl6, 'b'")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted in gamma'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', 'best"') ;

figure (4)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b"')

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted in Alpha'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (5)

plot (tht,nP9, 'r")

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP13, 'r")

hold on

plot (tht,nP1l5, 'm")

hold on

grid on

%axis ([0 180 0 120])

title 'Percentage Power from Flexural at beta and gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'
%$legend('FEFb', 'FLb', 'FFg', 'FLg', 'Location', 'best');

figure (6)

plot (tht,nP10, 'g')
hold on

plot (tht,nP12, 'b")




hold on

plot (tht,nP1l4, 'g")

hold on

plot (tht,nPl6, 'b'")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power from Longitudinal at beta and gamma'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('LFb', 'LLb', 'LFg', 'LLg', 'Location', 'best"');

figure (7)

plot (tht,AlphaT, 'r'")

hold on

plot (tht,BetaT, 'b') %

hold on

plot (tht,GammaT, 'g'")

hold on

%plot (tht,nF, 'k.")

%$hold on

plot (tht, TOT2, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'%'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'Total2', 'Location', '"best');%"'nF"',

figure (8)

plot (tht, fAl, 'r.")

hold on

plot (tht, fBe, 'b.") %

hold on

plot (tht, fGa, 'g.")

hold on

plot (tht,Tf, 'k.")

hold on

plot (tht,1Al, 'r")

hold on

plot (tht,1Be, 'b') %

hold on

plot (tht,1Ga, 'g'")

hold on

plot (tht,T1l, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'%'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'nF', 'Total', "Location', 'best');

figure (9)

surf (fgt,tht,nPl);
xlabel ('frequency /Hz'")
ylabel ('angle \theta')




zlabel ('Power in Alpha')
title (' (Figure-9)Alpha Power vs angle \theta and frequency/Hz")
grid

figure (10)

surf (fgt, tht,nP9);

xlabel ('frequency /Hz')

ylabel ("angle \theta')

zlabel ('Power in Beta')

title (' (Figure-10)Beta Power vs angle \theta and frequency/Hz")
grid

figure (11)

surf (fgt,tht,nP13);

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('Power in Gamma')

title(' (Figure-11)Gamma Power vs angle \theta and frequency/Hz')
grid




Appendix: C—3 MATLAB coding for measurement algorithm: -

$function ExpCode

%% Ff input to jointbeam beam
clear all

clf

format long e

$Given

b=0.1; $m

d=0.02; $m

Eta=0.00;

Eeta=(1+(1i*Eta));

E1=1.75€9;%60e9;%1.759;% SN/m"2
I1=(b*(d"3))/12; sm”™4

Al=b*d; sm”™2
E2=1.75e9;%60e9;%1.75e9;% SN/m"2
I2=(b*(d"3))/12; sm”4

A2=b*d; m” 2

RHO=1170;%1190;%2500; %kg/m”3
RHOJ=1170;%1190;%2500; $kg/m”3
Jw=1*b; $m

$L=1*d; $m

B=E1*I1;

ml=A1*RHO;

Ls=0.30; %depth in sand
Lb=1.50; %$length beam exposed
Lt=Lb+ (1*Ls) ; %$total beam length
La=0.30; $distance force to accelerometer
Lx=0.30; %distance acclr to termination

%% Natural Frequency

fnt=zeros;

fncnt=0;

for n=1:1:20;
fn=pi/2*sqrt (B/ml)* (n"2/Lb"2) ;
fncnt=fncnt+1;
fnt (fncnt)=£fn;

end

o

% Freqg limit

%Lower Freq limit (due to termination)-t
Wavet=2*Ls;

kbt=(2*pi) /Wavet;
omegat=kbt"2* (sqrt ((E1*I1)/ (A1*RHO))) ;
somegat=kbt* (sqrt ((E1)/(RHO))); %
Fglwrt=omegat/ (2*pi)

o\°

Max wavelength W.R.T Ls
wavenumber for above

o\

o

%$Lower Freqg limit (due to force-acc midpoint)-f
Wavef=La*2;




kbf=(2*pi) /Wavef;
omegaf=kbf"2* (sqrt ((E1*I1)/ (A1*RHO))) ;
somegaf=kbf* (sqrt ((E1)/ (RHO))); %
Fglwrf=omegaf/ (2*pi)

o

%Upper Freqg limit (due to acc spacing)-s
s=0.03;

Waves=s/0.2;

kbs=(2*pi) /Waves;

omegas=kbs”2* (sqrt ((E1*I1)/ (A1*RHO))) ; %
somegas=kbs* (sqrt ((E1)/ (RHO))) ; %
FqUprs=omegas/ (2*pi)

%% Theory - mobility
Freg=dlmread ('H1 21.txt',"'', "A34..A1833");%A134..A1833 $AT74..A834 1634

omega=Freq.* (2*pi) ;

kb= (sqgrt (omega) ) * (((ml)/ (B))~0.25);
MobReTheory=omega./ (4*B* (kb."3));
MobImTheory=omega.* (-1i) ./ (4*B* (kb."3));

MobModTh=sqgrt ( ( (MobReTheory."2) +abs (MobImTheory."2)));

%% Read experiment data

H1 21Re=dlmread('Hl 21.txt','','B34..B1833");
MobReal=- (H1 21Re.*1)./(Freq.* (2*pi));
H1 21Im=dlmread('H1 21.txt','',6'C34..C1l833");
MobIm=(H1 21Im.*(1i))./(Freq.* (2*pi));
MobModMea=sqgrt ( ( (MobReal.”2) +abs (MobIm."2))) ;

H1 21=sqgrt(abs(((H1 21Re).”2)+((H1 21Im)."2)));
HdB=-20*log ((H1_21));

HT=sqgrt (abs ( ( (MobReTheory) .”2) + ( (MobImTheory) ."2)));
HTdB=-20*1log ( (HT)) ;

G2lIm=dlmread ('G21.txt',""','C34..C1l833");
G21lRe=dlmread ('G21.txt',""', 'B34..B1833");
G21l=sqrt ((G21Im."2)+ (G21Re."2));

PwrIn=-0.5* (G21Im.* (1)) ./ (Freq.* (2*pi)) *1;

MIm=dlmread ('G6e5.txt','"',"'C34..C1833");

MRe=dlmread ('G65.txt','"',"B34..B1833");

M=sqgrt ( (MIm."2)+ (MRe."2)) ;
Ptransl=2*((sqrt (m1*B))/ (((2*pi)"2)*s))* ((MIm.* (1)) ./Freq."2);
Ptranstruel=-1*Ptransl.* (kb.*s)/ (sin(kb.*s));

RIm=dlmread('G78.txt',"'"','C34..C1l833");

RRe=dlmread ('G78.txt', "', 'B34..B1833");

R=sqgrt ((RIm."2)+ (RRe."2));

Ptrans2=2* ((sqrt (m1*B))/ (((2*pi)*2)*s))* ((RIm.* (1)) ./Freq."2);
Ptranstrue2=1*Ptrans2.* (kb.*s)/ (sin(kb.*s));




LIm=dlmread('G43.txt',"'',"'C34..C1833");

LRe=dlmread ('G43.txt', "', "'B34..B1833");

L=sqgrt ((LIm."2)+(LRe."2));

Ptrans3=2* ((sqrt (m1*B))/ (((2*pi)"2)*s))* ((LIm.* (1)) ./Freq."2);
Ptranstrue3=1*Ptrans3.* (kb.*s)/ (sin(kb.*s));

Ptotal=1* (Ptranstrue3+Ptranstrue?);

Ar=Ptransl./-PwrIn/1;
Br=Ptrans2./PwrIn/1;
Gr=Ptrans3./PwrIn/1l;
tr=(0+Br+Ar) /1;

$Ir=-PwrIn./Ptransl;
%$Gr=Ptrans3./Ptransl;
$Br=Ptrans2./Ptransl;

G33=dlmread ('G33.txt', "', "'B34..B1833");
G44=dlmread ('G44.txt',"'', 'B34..B1833");
G43Re=dlmread ('G43.txt', "', "'B34..B1833");
G34Im=dlmread ('G43.txt',"'"',"'C34..C1833");
G34Re=dlmread ('G34.txt',"'',"'B34..B1833");
G3p4=G33+G44;

Gp=((1/4)+ ((exp(li*kb*s)) .” (-2)
Gm=2* ((1/4)-((exp(li*kb*s))." (-
GA= (Gp.*G3p4) + (Gm.*G34Re) ;
GB=(G34Im.* (11)).*(2/s);
Rcp=abs (sqgrt ( (GA+GB) ./ (GA-GB) ) ) ;

$Tcp=sqgrt (1-((Rcp) ."2));

G4Am3=G44-G33;
argRcp=(atan (1/ (kb.*s) * (G4m3./GA)))+2* (kb.*Lx) ;
%$DegRcp=wrap (argRcp) ;

%DegRcpl=DegRcp.*180/pi;

));
2)));

ejkd=exp (1i*kb.*s) ;% (1+(1i* (k*s)/2))/(1-(11i*(k*s)/2));

Gpnp=2*G43Re.*ejkd; Sexp (1i*k.*s) ;

Gpnm=2*G43Re.* (-ejkd) ; sexp (-1li*k.*s);

Rpn=abs (sqrt ( ( (G3p4-Gpnp) / (G3p4-Gpnm) ) ) ) ;

$Tpn=sqgrt (1- ((Rpn) ."2));

argRpn=(atan ( (G4m3.* (sin(kb.*s))) ./ ((G43Re.*2) -
(G3p4.* (cos(kb.*s))))))+2* (kb.*Lx) ;

DegRpn=wrap (argRpn) ;

DegRpnl=DegRpn.*180/pi;

H1 34Re=dlmread('H1 34.txt','',6 'B34..B1833");
H1 34Im=dlmread('H1 34.txt',"'',6'C34..C1833");
H1 34=sqrt((H1 34Re.”2)+(H1 34Im."2));

R3=(((H1 34)-(exp(-1li*kb.*s)))/ (((exp(li*kb.*s))~-
(H1 34))));%* (exp(2i*kb.* (La+s)));
$T3=sqgrt (1-(R3));

R4=(H1_34.*((1i*kb*s)+2)+(li*kb*s)—2)./(H1_34.*((1i*kb*s)—
2)+ (1i*kb*s)+2);




ndwave=(0.9) ./ ((((2*pi) ./Freq) .”0.5)* ((B/ml) .~0.25));
%% Plot results

figure (1)

loglog (Freq, real (MobReal), 'b")

hold on

loglog (Freqg, real (MobReTheory), 'k'")

hold on

grid on

title 'Point Mobility (Real)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Re [m/s/N]'
legend('Real', '"Theory', 'Location', 'best"');

figure (2)

loglog (Freq, imag (MobIm), 'r")

hold on

loglog (Freq, imag (MobImTheory), 'k")

hold on

grid on

title 'Point Mobility (Imaginary)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Im [m/s/N])"

legend ('Imaginary', 'Theory', 'Location', '"best');

figure (3)

loglog (Freq,MobModMea, 'm")

hold on

loglog (Freq,MobModTh, "k")

hold on

grid on

title 'Point Mobility (Modulus)';

xlabel 'Frequency, [Hz]'

ylabel '[Log] Mobility-Modulus'

legend ('Measured', 'Theory', 'Location', 'best');

figure (7)

plot (Freq, PwrIn, 'k'")

hold on

plot (Freq, Ptotal, 'm")

hold on

plot (Freq, Ptranstruel, 'r')

hold on

plot (Freq, Ptranstrue2, 'b')

hold on

plot (Freq, Ptranstrue3, 'g')

hold on

grid on

axis ([250 2250 0 2.5e-6])

title 'Power Input and transmitted';

xlabel 'Frequency, [Hz]'

ylabel 'Power'

%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');




figure (10)

plot (Freq,Rcp, 'm")

hold on

%plot (Freq, Tcp, 'c')

%hold on

plot (Freq,Rpn, 'r')

hold on

%plot (Freq, Tpn, 'b')

%$hold on

%plot (Freq,R3, 'r")

%hold on

%plot (Freq, T3, 'b")

%$hold on

%plot (Freq,R4, 'h'")

%hold on

grid on

title 'Reflection(red) & Transmission (blue) coefficient';
xlabel 'Frequency, [Hz]'

ylabel 'Magnitude [R]'

%$legend ('R3','T3") ;% ('R1-C&P', 'T1-C&P"', '"R2-P&N"', "T2-P&N") ;

figure (11)

plot (Freq, (DegRpnl), 'r');grid

hold on

$plot (Freq, (DegRcpl), 'b') ;grid

%hold on

grid on

title 'Reflection coefficient phase';

xlabel 'Frequency, [Hz]'

ylabel 'Phase in Degree'

legend ('Method-1 Piaud&Nicholas', 'Method-2 Piaud&Nicholas');

figure (12)

plot (omega,HdB, "k') ;grid
hold on

plot (omega,HTdB, 'k."');grid
hold on

grid minor

title 'Magnitude (dB) plot';
xlabel 'Frequency, [Hz]'
ylabel 'Magnitude (dB)''
%$legend() ;

figure (14)

plot (ndwave, PwrIn, "k")

hold on

plot (ndwave, Ptotal, 'm'")

hold on

plot (ndwave, Ptranstruel, 'r'")
hold on

plot (ndwave, Ptranstrue2, 'b'")
hold on

plot (ndwave, Ptranstrue3, 'g')
hold on

grid on

axis([1 5 0 2.5e-6])




title 'Power Input and transmitted';
xlabel 'Dimensionless wavenumber'
ylabel 'Power'
%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');

figure (16)

plot (Freq,Ar, 'r")

hold on

plot (Freq,Br, 'b'")

hold on

plot (Freq,Gr, 'g')

hold on

plot (Freq, tr, 'k")

hold on

grid on

axis ([0 2250 0 2])

title 'Ratio Power over Input';

xlabel 'Frequency, [Hz]'

ylabel 'Ratio of Power'

%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');

figure (17)

$function ExpCode

%% F1 input to jointbeam beam
clear all

clf

format long e

$Given

b=0.1; $m

d=0.02; $m

Eta=0.00;

Eeta=(1+(1i*Eta)) ;

El1=1.75e9;%60e9;%1.75e9;% SN/m"2
Il=(b*(d"3))/12; sm”™4

Al=b*d; sm”2
E2=1.75e9;%60e9;%1.75e9;% SN/m"2
I2=(b*(d"3))/12; sm”4

A2=b*d; Sm”2

RHO=1170;%1190;%2500; $kg/m”3
RHOJj=1170;%1190;%2500; $kg/m"3
Jw=1*b; $m

$L=1*d; $m

B=E1*I1;

ml=A1*RHO;

Ls=0.30; %depth in sand
Lb=1.50; %length beam exposed
Lt=Lb+ (1*Ls) ; %total beam length
La=0.30; %$distance force to accelerometer
Lx=0.30; %$distance acclr to termination




%% Natural Frequency

fnt=zeros;

fncnt=0;

for n=1:1:20;
fn=pi/2*sqrt (B/ml)* (n"2/Lb"2) ;
fncnt=fncnt+1;
fnt (fncnt)=£fn;

end

o\

% Freqg limit

%Lower Freq limit (due to termination)-t
Wavet=2*Ls;

kbt=(2*pi) /Wavet;
omegat=kbt"2* (sqrt ((E1*I1)/ (A1*RHO))) ;
$omegat=kbt* (sqrt ((E1l) / (RHO))) ; %
FglLwrt=omegat/ (2*pi)

o

Max wavelength W.R.T Ls
wavenumber for above

o\

oo

%$Lower Freqg limit (due to force-acc midpoint)-f
Wavef=La*2;

kbf=(2*pi) /Wavef;

omegaf=kbf"2* (sqrt ((E1*I1)/ (A1*RHO))) ; %
$omegaf=kbf* (sqrt ((E1l)/ (RHO))) ; %
Fglwrf=omegaf/ (2*pi)

%Upper Freq limit (due to acc spacing)-s
s=0.03;

Waves=s/0.2;

kbs=(2*pi) /Waves;
omegas=kbs”2* (sqrt ((E1*I1)/ (A1*RHO))) ;
%omegas=kbs* (sqrt ((E1l) / (RHO))) ; %
FqUprs=omegas/ (2*pi)

o

%% Theory - mobility
Freg=dlmread('Hl 21.txt','',"A34..A1833");%A134..A1833 %A74..A834 1634

omega=Freq.* (2*pi) ;

kb= (sqgrt (omega) ) * (((ml)/ (B))"~0.25);
MobReTheory=omega./ (4*B* (kb."3));
MobImTheory=omega.* (-1) ./ (4*B* (kb."3));

MobModTh=sqgrt ( ( (MobReTheory."2) +abs (MobImTheory."2)));

%% Read experiment data

H1 21Re=dlmread('H1 21.txt','',6 'B34..B1833");
MobReal=- (H1 21Re.*1)./(Freq.* (2*pi));
H1 21Im=dlmread('H1 21.txt',"'','C34..C1833");
MobIm=(H1 21Im.*(11))./(Freq.* (2*pi));
MobModMea=sqgrt ( ( (MobReal."2) +abs (MobIm."2))) ;

H1 21=sqgrt(abs(((H1 21Re)."2)+((H1 21Im)."2)));
HdB=-20*log ((H1 _21));

HT=sqgrt (abs ( ( (MobReTheory) ."2) + ( (MobImTheory) ."2)));
HTdB=-20*1og ( (HT)) ;




G2lIm=dlmread ('G21.txt',""','C34..C1l833");
G21lRe=dlmread ('G21.txt', "', 'B34..B1833");
G21l=sqrt ((G21Im."2)+ (G21Re."2));

PwrIn=-0.5* (G21Im.* (1)) ./ (Freq.* (2*pi)) *1;

MIm=dlmread ('G65.txt',"'',"'C34..C1833");

MRe=dlmread ('Ge5.txt"','"',"'B34..B1833");

M=sqgrt ( (MIm."2)+ (MRe."2));

Ptransl=2* ((sqrt (m1*B))/ (((2*pi)"2)*s))* ((MIm.* (1)) ./Freq."2);
Ptranstruel=-1*Ptransl.* (kb.*s)/ (sin(kb.*s));

RIm=dlmread ('G78.txt', "', 'C34..C1l833");

RRe=dlmread ('G78.txt', "', 'B34..B1833");

R=sqgrt ((RIm."2)+ (RRe."2)) ;

Ptrans2=2* ((sqrt (m1*B))/ (((2*pi)"2)*s))* ((RIm.* (1)) ./Freq."2);
Ptranstrue2=1*Ptrans2.* (kb.*s)/ (sin(kb.*s));

LIm=dlmread ('G43.txt',"'"','C34..C1l833");

LRe=dlmread ('G43.txt',"'"', 'B34..B1833");

L=sqgrt ((LIm."2)+ (LRe."2));

Ptrans3=2* ((sqrt (m1*B))/ (((2*pi)"*2)*s))* ((LIm.* (1)) ./Freq."2);
Ptranstrue3=1*Ptrans3.* (kb.*s)/ (sin(kb.*s));

Ptotal=1* (Ptranstrue3+Ptranstrue?);

Ar=Ptransl./-PwrIn/1;
Br=Ptrans2./PwrIn/1l;
Gr=Ptrans3./PwrIn/1;
tr=(0+Br+Ar) /1;

$Ir=-PwrIn./Ptransl;
%$Gr=Ptrans3./Ptransl;
%$Br=Ptrans2./Ptransl;

G33=dlmread ('G33.txt',"'"', 'B34..B1833");
G44=dlmread ('G44.txt',"'', 'B34..B1833");
G43Re=dlmread ('G43.txt',"'"',"'B34..B1833");
G34Im=dlmread ('G43.txt',"'',"'C34..C1833");
G34Re=dlmread ('G34.txt', "', "'B34..B1833");
G3p4=G33+G44;

Gp=((1/4)+ ((exp(li*kb*s)) .” (-2)
Gm=2* ((1/4)-((exp(li*kb*s))." (-
GA= (Gp.*G3p4) + (Gm.*G34Re) ;
GB=(G34Im.* (11i)).*(2/s);
Rcp=abs (sqrt ( (GA+GB) ./ (GA-GB) ) ) ;

$Tcp=sqgrt (1-((Rcp) ."2));

G4m3=G44-G33;
argRcp=(atan (1/ (kb.*s) * (G4m3./GA)))+2* (kb.*Lx) ;
%$DegRcp=wrap (argRcp) ;

$DegRcpl=DegRcp.*180/pi;

));
2)));

ejkd=exp (1li*kb.*s) ;% (1+ (1i* (k*s)/2))/(1-(1i* (k*s)/2));
Gpnp=2*G43Re.*ejkd; Sexp (1i*k.*s) ;
Gpnm=2*G43Re.* (-ejkd) ; sexp (-1i*k.*s);




Rpn=abs (sgrt ( ( (G3p4-Gpnp) / (G3p4-Gpnm) ) ) ) ;

$Tpn=sqgrt (1- ((Rpn) ."2));

argRpn=(atan ( (G4m3.* (sin(kb.*s))) ./ ((G43Re.*2) -
(G3p4.*(cos(kb.*s))))))+2* (kb.*Lx) ;

DegRpn=wrap (argRpn) ;

DegRpnl=DegRpn.*180/pi;

H1 34Re=dlmread('H1 34.txt','','B34..B1833');
H1 34Tm=dlmread ('H1 34.txt','','C34..C1833");
H1 34=sqrt ((H1_34Re.”2)+(H1 34Im."2));

R3=(((H1 34)-(exp(-1li*kb.*s)))/ (((exp(li*kb.*s))~
(H1 34))));%* (exp(21i*kb.* (Lats)));
$T3=sqrt (1-(R3));

R4=(H1 34.*((li*kb*s)+2)+ (li*kb*s)-2)./(H1 34.* ((li*kb*s)-
2)+ (li*kb*s)+2);

ndwave=(0.9) ./ ((((2*pi)./Freq) .”0.5)*((B/ml) .~0.25));
%% Plot results

figure (1)

loglog (Freqg, real (MobReal), 'b'")

hold on

loglog (Freqg, real (MobReTheory), 'k'")

hold on

grid on

title 'Point Mobility (Real)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Re [m/s/N]'

legend ('Real', '"Theory', 'Location', "best"');

figure (2)

loglog (Freq, imag (MobIm), 'r")

hold on

loglog (Freq, imag (MobImTheory), 'k")

hold on

grid on

title 'Point Mobility (Imaginary)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Im [m/s/N])"'

legend ('Imaginary', 'Theory', 'Location’', 'best');

figure (3)

loglog (Freg,MobModMea, 'm"')

hold on

loglog (Freq,MobModTh, "k")

hold on

grid on

title 'Point Mobility (Modulus)';

xlabel 'Frequency, [Hz]'

ylabel '[Log] Mobility-Modulus'

legend ('Measured', 'Theory', 'Location', 'best');




figure (7)

plot (Freq, PwrIn, 'k'")

hold on

plot (Freqg,Ptotal, 'm")

hold on

plot (Freq, Ptranstruel, 'r'")

hold on

plot (Freq, Ptranstrue2, 'b')

hold on

plot (Freq, Ptranstrue3, 'g')

hold on

grid on

axis ([250 2250 0 2.5e-6])

title 'Power Input and transmitted';

xlabel 'Frequency, [Hz]'

ylabel 'Power'

%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');

figure (10)

plot (Freg,Rcp, 'm")

hold on

%plot (Freq, Tcp, 'c')

$hold on

plot (Freq,Rpn, 'r'")

hold on

$plot (Freq, Tpn, 'b')

$hold on

%plot (Freq,R3,'r")

%$hold on

%plot (Freq,T3, 'b")

%$hold on

%plot (Freq,R4,'h")

%$hold on

grid on

title 'Reflection(red) & Transmission (blue) coefficient';
xlabel 'Frequency, [Hz]'

ylabel 'Magnitude [R]'

%$legend ('R3','T3") ;% ('R1-C&P', 'T1-C&P"', "R2-P&N"', "T2-P&N") ;

figure (11)

plot (Freq, (DegRpnl), 'r');grid

hold on

$plot (Freq, (DegRcpl), 'b') ;grid

%hold on

grid on

title 'Reflection coefficient phase';

xlabel 'Frequency, [Hz]'

ylabel 'Phase in Degree'

legend ('Method-1 Piaud&Nicholas', 'Method-2 Piaud&Nicholas');

figure (12)

plot (omega,HdB, "k') ;grid
hold on

plot (omega,HTdB, 'k."');grid
hold on




grid minor

title 'Magnitude (dB) plot';
xlabel 'Frequency, [Hz]'
ylabel 'Magnitude (dB)''
%legend() ;

figure (14)

plot (ndwave, PwrIn, "k")

hold on

plot (ndwave, Ptotal, 'm")

hold on

plot (ndwave, Ptranstruel, 'r'")

hold on

plot (ndwave, Ptranstrue2, 'b'")

hold on

plot (ndwave, Ptranstrue3, 'g'")

hold on

grid on

axis([1 5 0 2.5e-06])

title 'Power Input and transmitted';

xlabel 'Dimensionless wavenumber'

ylabel 'Power'

%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');

figure (16)

plot (Freq,Ar, 'r")

hold on

plot (Freq,Br, 'b'")

hold on

plot (Freq,Gr, 'g'")

hold on

plot (Freq, tr, "k'")

hold on

grid on

axis ([0 2250 0 2])

title 'Ratio Power over Input';

xlabel 'Frequency, [Hz]'

ylabel 'Ratio of Power'

%legend ('Power In', 'Power Trans
total', 'alpha', 'beta', 'gamma', 'Location', 'best');

figure (17)

Fglwrt =

1.232374869692417e+002

Fglwrf =

1.232374869692417e+002




FgUprs =

1.971799791507868e+003

function[phase] = wrap (phase)

%the wrap function as:

% a wrap function

phase = atan2 (sin (phase), cos (phase));

phase = phase + 2*pi* (phase <= -pi);

end




Appendix: D-I Force-Input Joint (with rubber) equation: -

@ @ Equilibrium of bending moment (joint), atx =n
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+ E(sin NE L [—kpo Aze™Frem™™) ko PBy + Ky, iAge ™ Hp e (1mm)
— kg, 1Bs]
2 2 L =0 3 3.
= Eylkep®Co — kpp’Cs] — E(smE)EZIZ[—ka Cy + kpp. iCy]
— I] [(UzkfaAze_kfa(n_m) — a)zkfaBl+(U2kf0(*iA4.e_ikfa*(n_m)—(Uzkfa*iB3 ]
L 0 : —ikjg«(n—m) :
- E(l - COSE) ElAl[_kla*lALe lax + kla*lBL]

+

L
|5 (1= cos?)| Bz [—rep.ic,

0

L
_ 4, {_ (Bl (1)) e 4 (5 (sin g)Elll(kj?a)> eH1eCm (107 (ky,)) e—kfam—m)}

7a
+ A4, {(15111 (k,%a*)) e~ ra-(n=m) _ (g (sin g)Elll(ik;a*)> e~ Krar(n=m) _ (ijz(ikfa*)) e_ikfa*("_m)}

7b

+ AL {[ (1 — COoS )] E A, (ik;,,) e Hia (n— m)}

7c

(but () = (5 6B 02 ) + (107 (hr))

7d

2
ol

B { (1 (h0)) + (5 (DB (670 ) + (502 ()
&

7e

+ B, [% 1 - cos )] ElAl(Lkla*)}

7f
+C, {EZI (kep®) + —(sm )Ezlz(kaB)}
7g
+Cy {=Ealy(ip.?) - —(sm )E by (ikyp. )]
7h

n CL{ [ (1 - cos )] EzAz(lle*)}

7i




Equation for MATLAB:-
0 = (A2) [{V6}(Q1) ki’ (Fn)  + (-Q1) kea” (Fn) + (-Ijw?) keu(Fn) |
+ (A4) [ {-V63(Q1) iksex 3 (Fni) + (Q1) kea? (Fni) + (-jw?) ik (Fni) |
+ (AL) [ {V5}(S1) ikie (Lni) |
+ (B1) [ {-V6}(Q1) kia® + (-Q1) kea®  + (Ijw?) Ko |
+ (B3) [ {V6}(Q1) ikuw® + (Q1) kea? + (iw?) iKra |
+ (BL) [ {-V5}(S1) ikie* |
+ (C2) [{V6}(Q2) kep® +(Q2) ke ]
+ (Co) [ {-V6}(Q2) ikip-* + (-Q2) kip?|

+ (Co) [ {-V53(S2) ikip+ ]

0 = (A2) [ { V6}(Q1) ks +(-Q1) kta>  + (-Ijw?) kta | (Fn)

+ (Drm* Kfa —Dr*V6)(Fn)

+ (A9 [ {-V6}(Q1) ikfox 3 + (Q1) krar?  + (-Ijw?) iksox] (Fni)

+ (Drm*i*Kfax-Dr*veé) (Fni)

+ (Av) [ {V5}(S1) ikiex] (Lini)
+ (DrL*v5) (Lni)
+ (B1) [ {-V6}(Q1) Kkre® + (-Q1) kra®>  + (Ijw?) Ko |

(-Drm* Kfa -Dr*ve)

+ (B3) [ {V6}(Q1) ikse+® + (Q1) Ko + (Ijw?) iKfar |

(-Drm*i*Kfax-Dr*Vvo)

+ (Bp) [ {-V5}(S1) ikie* | + (DrL*v5)

+ (C2) [ {V6HQ2) kip® +(Q2) kp2] +(-Drm* Kfb +Dr*ve)

+ (Co [ {-V6}(Q2) ikfﬁ*3 + (-Q2) ksp 2] + (-Drm*i*Kfbx+Dr*Veé)

+ (Co) [ {-V5}(S2) ikip* ] + (DrL*v5)

( 1
l238]



Equilibrium of compressive force (joint),

U, U 3
ElAlg = EzAzchS 9 + E2

Which is in the form of: -

B
b0

(E.) = (Fy)cosB + (V,)sinb — M]-U

% kig{=iC,};

3

% kg (=Co} + kpp *iC4}

O;tlia — WA e im) 4 g Y

:—;652“ —w2kp{—Ae TR 4 B} —wPkpy {—iA e i 4B}

E; Ay (kg {—iA e e ®=mY 4 f . {iB,})

. 0° :
sinf — mjﬁ[Ua—L(smg)

atx =n

20W,
dx

- mj(—w?) [(ALe_ikl“*(n_m) + B,)

— L(sing)z(kfa{—Aze—kfa@—m) + By }4ksa.{—iAge™ ™ 4 B, })]

0 =4, [(mij)L(sing)Z(kfa)] e kraln-m) 4 A, [(mij)L(Sing)Z(ikfa*)] e~ iKfa:(n—m)

9a ' 5
B AL [(ElAl(lkla*)) + (m]wz)] e_lkla*(n—m)

5, [ o) (5in) )] + B [ )1(sin) ik )]

9d 9e
+ By [—(E141(ikie) + (mjw?)] + C; [—Ezlz(k]?ﬁ) sin 6]
9f 99

+ Co [(E2Lo(ikPp.) sin 0)] + €, [—(E2Az(ikyp.) cos 6))]
9h 9i

|



Equation for MATLAB:-
0 = (A2) [ { V5}(mjw?) Kra] (Fn)
+ (A9) [ { V5}(mjw?) ik fa+] (Fni)
+ (Av) [ (S1) ikiox + (mjw?)] +DrL (Lni)
+ (B1) [ { VS}(-mjw?) ko]
+ (B3) [ { V5}(-mjw?) iK o]
+ (Br) [ (-81) ikie* + (mjw?)] +DrL
+ (C2) [ (-Q2) ke Sin 0] -Dr*sin (T)
+ (C4) [ (Q2) ikp+3 Sin 0] -pr*sin (T)

+ (Cv) [(-S2) ikip= Cos 0] +DrL*cos (T)




Equilibrium of shear force (joint), atx =n

3w, aUg 63Wﬁ K aw,

—E,I = E,A sin — E,l,——cosf -— m-—[w + L(sin?)(cos? ]
Y ax3 272 9y 22 gys3 5z e+ Lsing)(cosf) 52
Which is in the form of: -
—(V) = (F,)sinf — (V,)cos — M;W

3w, .
ax: ko {—Ajefram 4 g Y4 ko i e Rre ™) — B Y
% kig{=iC.};
63W3 3 3¢:
FE kep {_CZ}+kfﬁ* {iCy};
aZW"‘ 2 —kfq(n-m) 2 —ikfq.(n—m)
Sz — w¥{A e franmm) 4 g} — w2 Ao Hre(mm) 4 B Y
a2 ow .
Frel ax"‘ —wPksa{—Aye ™ 4 B}~k {—iA e Rra (™ 4B Y

—Eqly (kpo {—Aze ra®=m™ 4 By Y 4 kpp 2 {idge™Hre=m) — B, 1Y)
+ myw? [({Aze_kf“(n_m) + By} + { Aye~re(=m) 4 B 1)
+ (L(sin N(cos ) (kpaf—Aze ™ re™™ 4 B Y kyq {—iA e~ Hremm

+iBs }))]

= 1, [~ (Euh(k)) + ((my?)) = ((myw?)L(sin®) (cos &) (kre,) )] e e

+ A, :(Elll(ik;a*)) + ((mij)) _ ((mjilz)l,(sing)(cos %)(ikfa*))] o—ikfas(n-m)
(Bt (ki) + ((mjw?)) + ((myw?)L(sin %) (cos &) (kre) )]

+ By |- (Euh (ikfe.) ) + ((my?)) + ((mjw?)L(sin %) (cos &) (ikse. ) )|

11e
+C; (ExLy(kfg) cos 0) + Co [—(EoLy(ik7g.) cos 0)] +C, [—(E2A,(ikyp.) sin 6)]

11 11h 11i

+ B,




Equation for MATLAB:-
0 = (A2) [ (-QD) ke’ + (mjw?) +(-mjw?*){V6} (ko) | +pr (Fn)
+ (A9) [ (Q1) iko® + (mjw?) +H(-mjw?){V6}(ikro+) | +Dr (Fni)
+ (B1) [ (QD) kea® + (mjw?) +(mjw?){V6}(kto) | +Dx
+ (B3) [ (-QD) iksa® + (mjw?) +(-mjw?){V6}(ikto+) | +Dx
+ (C2) [ (Q2) ke* Cos O]  +Dr*cos (T)

+ (C4) [ (-Q2) iksp+* Cos 0] +Dr*cos (T)

+ (Cvr) [(-S2) ikip= Sin 0]  +DrL*sin (T)
Note :
Lni - e ~Kiax(n-m)
Lpi B eikla*(m—n)
Fn - e Kraln-m)
Fni - e~ Kra-(n-m)
Fp - ekf *(m-n)
Fpi _ eikfa*(m—n)
Where,
Mr=0.028;
Ir=Mr* (L"2)/12;
hss=10000;
hf=0 .0 5,'

Dr = (= (Mc*w"2) + (hse* (1+ (1*hs*w) ) ) )
DrL =(=(M*w"2) + (he1* (14 (1*h1*w))))
Drm = (= (I:*w"2)+ (hsn* (1+ (1*hn*w))))




Appendix: D-Z MATLAB coding for Force-Input Joint (with rubber)
equation: -

% MainCodeJointBeam

R R I e I A b S S I b S Sh b I Sb b S I b b S b b 2 I b db b b 2 S b S db b S S b b Sb b b J Ib b b IR b b I Ib b S I b b I I S I b S I i
LOUGHBOROUGH UNIVERSITY

PHD THESIS

AUTHOR: SAIDDI ALI FIRDAUS BIN MOHAMED ISHAK

SUPERVISORs: DR. JANE L.HORNER & DR.STEPHEN J.WALSH
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MAIN PROGRAM: Reflection & Transmission - Power Measurements
R b b b S e b b b b b b b b b b 2 b b b b b b b i I I b b b b b b b I I I 2 b b b b b b b b I b e b b b b b b b b A 2 2 2 b b b (b b b 4

o

o

oo

o

DESCRIPTION OF INPUT PARAMETER

o oo

E is the Young's Modulus
I is the second moment of area
% A is the area
% R is the density of beam
% Rj is density of joint
% Jw is width of joint
3 L is height of joint
% Q is the E x I
% S is the E x A

oo

oo

DESCRIPTION OF OTHER VARIABLES

o

% Kfa is the flexural wavenumber in alpha

% Kfb is the flexural wavenumber in beta

% Kfg is the flexural wavenumber in gamma

% Kla is the longitudinal wavenumber in alpha

% Klb is the longitudinal wavenumber in beta

% Klg is the longitudinal wavenumber in gamma

%% Ff & Fl input - (bending<flexural> and compressive<longitudinal> waves)

clear all
clf
format long e

$Given

b=0.1;%0.05;% $m
d=0.02;%0.006;% sm
E1=1.75e9;%5.567e¢9;%60e9;%3.5e9;5% SN/m"2
Il=(b*(d"3))/12; sm”™4
Al=b*d; sm”2

E2=1.75€9;%5.567€9;%60e9;%3.5e9;% SN/m"2




I2=(1.0*b* ((1.0*d)"3))/12;
A2=1.0*b*1.0*d;
R=1170;%1500;%1190;%2500;
Rj=1170;%1500;%1190;%2500;
Jw=1*b;

L=1*d;

Eta=0.07;

Mr=0.028;

Ir=Mr* (L"2)/12;

hs=3000;

h=0.2;

Ele=El1* (1+(1i*Eta));
E2e=E2* (1+ (1i*Eta));

Ql=E1*I1;
Q2=E2*12;
S1=E1*Al;
S2=E2*A2;

03=0;%1.167e6*I1;

ml=R*Al;
m2=R*A2;

thent=0;
for thet=0:1:180;
T=thet*pi/180;

thent=thcnt+1;

for £g=3000:500:3000;%000:16.667:3000.06;

Ff=1;%*0.021*sqgrt (2);%0.021*sqgrt (2);%(1*1);%0.018;0.0038*sgrt(2);%

F1=0;%*0.0105*sgrt (2);%0.0021*sgrt (2) ;%0;%(1*1);%0.018;

fgcnt=0;
w=2*pi*fqg;
SInput
sm
sm

m=0.0;
n=0.9;

’

Mj=Rj*JIJw* (L"2)*T/2;
%Ioj=((T-sin(T))* (L"4)/8);

$Tcy=L* (((4/3)* (sin(T/2)/(T)))-(1/2));

$Ij=Mj* (Ioj-Icj);
Ij=Mj* (L"2)/12;

Kfa=(w"0.5) * (((R*Al) /(E1*I1))"0.25);

Skgm”2

%1/m

250:5:2250;



Kfg=(w?0.5)* (((R*Al)/ (E2*I1))"0.25); $1
Kfb=(w?0.5)* ( ((R*A2) / (E2*I2))"0.25); $1
Kla=w*sqrt (R/E1) %1
Klg=w*sqrt(R/El) %1
Klb=w*sqrt (R/E2) %1
Kfax=(w"0.5)* (((R*Al)/ (Ele*I1l))"0.25);%Kfa
Kfgx=(w~0.5)* (((R*Al) /(Ele*I1))"~0.25); %Kfg
Kfbx=(w?0.5)* (((R*Al) / (E2e*I2))"0.25); $Kfb
Klax=w*sqrt (R/Ele) ; %Kla* (1-((i*Eta)/2));

Klgx=w*sqrt (R/Ele) ; 3Klg* (1-((i*Eta)/2)) ;

Klbx=w*sqrt (R/E2e) ; SK1b* (1- ((i*Eta) /2));

fl=( ) %$finite length (£f1l)
fll=(m-n);
Ini=(exp(-i*Klax*fl));

Fn=(exp (-Kfa*fl)) ;
Fni=(exp (-i*Kfax*fl));

Lpi=(exp(i*Klax*fll));
Fp=(exp (Kfa*fll));
Fpi=(exp (i*Kfax*fll));
Llni=(exp (i*1*Klax*fll));

Ffn=(exp (1*Kfa*fll));
Ffni=(exp (i*1*Kfax*fll));

V1=L/2* (1-cos(T)) ;

gl=(sin(T)+ (Kfb*V1l));
hl=(sin (T)+ (1*Kfbx*V1l)) ;
il=cos (T) ;

o

°

V3=L/2* (sin(T));

)+ (Kfb*V3) ;
)+ (1*Kfbx*V3) ;

g3=(cos
h3=(cos

(T)
(T)
i3=sin (T

T
T
) 4

o)

ab=Kfa;
b5=i*Kfax;
d5=Kfa;
eS5=i*Kfax;
g5=Kfb;
h5=i*Kfbx;

*Eta)/4));
*Eta)/4));
*Eta)/4));

%1/m
%1/m
%1/m
%1/m
%1/m
%1/m




o

°

ab=Kfa;

bo=i*Kfax;
d6=Kfa;
eo=i*Kfax;
Jj6=Kfg;
k6=1*Kfgx;

V5=L/2* (1-cos (T/2)):
V6=L/2* (sin(T/2)) ;
(

SV5=L* ((sin(T/4))"2); %$—-same as above
sVe=L* (sin(T/4)) * (cos (T/4));%-same as above
Dr=0;%- (- (Mr*w"2)+ (hs* (1+ (1i*h*w))));
Drm=0;%- (- (Ir*w”2)+ (hs* (1+(i*h*w))));

a7=((-I7j) *Kfa *(w™2))+((-Q1) * (Kfa~2)) + (01
+ (Drm* Kfa -Dr*veo);

* (Kfa”3)

*Vo6)

b7=((-Ij) *i*Kfax* (w"2))+( Q1 *(Kfax"2))+(Ql*i* (Kfax”"3)* (-V6))

+ (Drm*i*Kfax-Dr*vo) ;%

c7=(S1*i*Klax*V5h)
(Dr*V5) ;

d7=( 1Ij *Kfa *(w™2))+((-Q01)* (Kfa”2)) +(0Q1
(Drm* Kfa -Dr*vo);

* (Kfa”~3)

*(-V6))

e7=( Ij *i*Kfax*(w"2))+( Q1 *(Kfax"2))+(Ql*i* (Kfax"3) *V6)

(Drm*1*Kfax-Dr*vo) ;

f7=(S1*i*Klax* (-V5))
(Dr*v5) ;

g7=( Q2 *(Kfb"2)) +(Q2 *(Kfb"3) *V6)
(Drm* Kfb -Dr*vo) ;

h7=((-02) * (Kfbx"2) )+ (Q2*i* (Kfbx"3) * (-V6))
(Drm*1*Kfbx-Dr*Vvo) ;

1i7=(S2*i*Klbx* (-V5))

+ (Dr*V5) ;
a8=(Kfa"2);%*Q1l;
b8=(Kfax"2);%*Ql;
d8=(Kfa"2);%*0Q1;
e8=(Kfax"2);%*01;
38=(Kfg"2) ;5*01;
k8= (Kfgx"2);%*0Q1;
a9%=( Mj*(w"2) *Kfa *V5);
b9=( Mj* (w"2) *1i*Kfax*V)h) ;
c9=( Mj*(w"2))+( S1 *i*Klax)
Dr;
d9=(-Mj* (w"2) *Kfa *V5);
e9=(-Mj* (w"2) *i*Kfax*V5h) ;
f9=( Mj*(w"2))+((-51)*i*Klax)
Dr;




g9=(
+Dr*sin (T) ;

ho=(
+Dr*sin (T) ;

19=(
+Dr*cos (T) ;

(-Q2)* (Kfb"3) *sin(T))

Q2 *i* (Kfbx”"3) *sin (T))

(-S2) *i* Klbx *cos (T))

o

clO0=(i*Klax);%*
f10=(i*Klax);%* (S1);%-ve
110=(1i*Klgx);%* ;

o)

°

all=(Mj*(w"2))+((-Mj)*(w"2)

Dr;

bll=(Mj* (w*2) )+ ((-MJ) * (w"2) *1
Dr;

dll=(Mj* (w"2))+( Mj *(w"2)
Dr;

ell=(Mj* (w"2))+( Mj
Dr;

gll=( Q2 * (Kfb"3) *cos(T))
+Dr*cos (T) ;

hll=((-Q2)*i* (Kfbx"3) *cos (T))
+Dr*cos (T) ;

1i1l=((-S2)*i* Klbx *sin (T))
+Dr*sin (T) ;

al2=(Kfa”3);%*Q1;

bl2=i* (Kfax"3);%*01;

dl2=(Kfa”"3);%*01;

el2=i* (Kfax"3);%*01;

J12=(Kfg"3);%*01;

kl12=i* (Kfgx"3);%*Q1;

x(1,1)=0;

x(1,2)=0;

x(1,3)=-1*Lni;

x(1,4)=0;

x(1,5)=0;

xX(1,6)=-1;%*Lpi;

x(1,7)=-9gl;

x(1,8)=-hl;

x(1,9)=11;

x(1,10)=0;

x(1,11)=0;

x(1,12)=0;

X (2,1)=0;

x(2,2)=0;

x(2,3)=1;

x(2,4)=0;

(
8

*Kfa *V6)+((-01)
*Kfax*Vve) + (

*Kfa *V6)+( 01

*(Kfa"3))

Q1 *i*(Kfax"3))

*(Kfa"3))

*(wh2) *i*Kfax*Ve)+ ((-Ql) *i* (Kfax"3))




(Lpi-Llni);
Lp1i;
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x(11,1)=all*Fn;

X (11,2)=bll*Fni;
x(11,3)=0;
x(11,4)=d11;%*Fp;
x(11,5)=ell;%*Fpi;
x(11,6)=0;

x(11,7)=gll;

x(11,8)=hl1;

x(11,9)=111;

x(11,10)=0;

x(11,11)=0;

x(11,12)=0

x(12,1)=al2;

X (12,2)=-bl2;

x(12,3)=0;

x(12,4)=-d12* (Fp-Ffn) ;
x(12,5)=el2* (Fpi-Ffni);
x(12,6)=0;

x(12,7)=0;

x(12,8)=0;

x(12,9)=0;

x(12,10) =7 ;5 Fp;

x (12, ll)——kl2;%*Fpi;
x(12,12)=0;
zL=[0;0;0;0;0;0;0;0;0; (F1/S1) 0]:;%(F1/ (4*E1*Al1*Kla))
zF=[0;0;0;0;0;0;0;0;0;0;0; Ff/Ql 1;%-(Ff/ (4*E1*I1*Kfa"3))
yL=x\zL;

yF=x\zF;

%$Note that for the matrix of X;
Sy (1) $A2 Nm/s xXXXX
sy (2) $A4 Nm/s

v (3) $AL Nm/s

Sy (4) %$B1 Nm/s xxXxXX
sy (5) %$B3 Nm/s

%y (6) %$BL Nm/s

Sy (7) %$C2 Nm/s xXxXXX
3y (8) $C4 Nm/s

3y (9) $CL Nm/s

%y (10) %$D1 Nm/s xXxXXX
sy (11) %$D3 Nm/s

%y (12) %DL Nm/s

fgcnt=fgcnt+1;

Pfl1=1*E1*I1*w* (Kfax"3) * ((abs(yF(2)))"2) ;% (((real (yF(2)))"2)+((imag(yF(2)))"2)
)% %$Power in a due to trans flexural wave vE(2) -> A4

Pf2=1*E1*I1*w* (Kfax”"3) *((abs(yL(2)))"2) ;% (((real (yvL(2)))"2)+((imag(yL(2)))"2)
)% %$Power in a due to trans flexural wave yL(2) -> A4




Pf3=1*E1*I1*w* (Kfax"3) * ((abs(yF(5)))"2);%(((real (yF(5)))"2)+ ((imag(yF(5)))"2)
)% $Power in a due to reflected flexural wave yF(5) -> B3

Pf4=1*E1*I1*w* (Kfax"3) * ((abs(yL(5)))"2);%(((real (yL(5)))"2)+ ((imag(yL(5)))"2)
)% $Power in a due to reflected flexural wave yL(5) -> B3

Pf5=1*E2*I2*w* (Kfbx"3) * ((abs(yF(8)))"2) ;% (((real (yE(8)))"2)+ ((imag(yE(8)))"2)
)% $Power in b due to transmitted flexural wave yE(8) -> C4

Pf6=1*E2*I2*w* (Kfbx"3) * ((abs (yL(8)))"2); % (((real (yL(8)))"2)+ ((imag(yL(8)))"2)
)% $Power in b due to transmitted flexural wave yL(8) -> C4

Pf7=1*E1*I1*w* (Kfgx"3) * ((abs(yF(11)))"2) ;% (((real (yE(11)))"2)+ ((imag(yEF(11)))
~"2)) % %$Power in g due to trans flexural wave yF(11)-> D3

P£8=1*E1*I1l*w* (Kfgx"3)* ((abs(yL(11)))"2);%(((real(yL(11l)))"2)+((imag(yL(11)))
"2)): % $Power in g due to trans flexural wave yL(11)-> D3

P11=0.5*E1*Al*w*Klax* ((abs (yL(3)))"2);%(((real (yL(3)))"2)+((imag(yL(3)))"2));

o)

% $Power in a due to trans longitudinal wave yL(3) -> AL

P12=0.5*E1*Al*w*Klax* ((abs (yF(3)))"2);%(((real (yF(3)))"2)+((imag(yE(3)))"2));

o)

% $Power in a due to trans longitudinal wave vyE(3) -> AL

P13=0.5*E1*Al*w*Klax* ((abs(yL(6)))"2);%(((real(yL(6)))"2)+((imag(yL(6)))"2));

% %$Power in a due to reflected longitudinal wave yL(6) -> BL
P14=0.5*E1*Al*w*Klax* ((abs (yF(6)))"2);%
(((real(yF(6)))"2)+((imag(yF(6)))"2));% %$Power in a due to reflected

longitudinal wave yF(6) -> BL

P15=0.5*E2*A2*w*Klbx* ( (abs (yL(9)))"2);%(((real (yL(9)))"2)+ ((imag(yL(9)))"2));
% $Power in b due to transmitted longitudinal wave yL(9) -> CL

P16=0.5*E2*A2*w*Klbx* ((abs (yF(9)))"2);%(((real (yE(9)))"2)+ ((imag(yE(9)))"2));

% %$Power in b due to transmitted longitudinal wave yF(9) -> CL
P17=0.5*E1*Al*w*Klgx* ((abs (yL(12)))"2);%(((real (yL(12)))"2)+ ((imag(yL(12)))"2
)) % $Power in g due to trans longitudinal wave yL(12)-> DL
P18=0.5*E1*Al*w*Klgx* ((abs (yF(12)))"2); % (((real (yE'(12)))"2)+ ((imag(yF(12)))"2
)) % $Power in g due to trans longitudinal wave yF(12)-> DL
PFlex=(0.125* (((Ff ) Y*w) )/ (((E1*I1)* ((Kfax)"3)));
PLong=(0.25* ( ((F1)" w))/((El*Al) (Klax));
PFlexG=(0.125% (((F ) 2)*w))/ (((E1*I1)* ((Kfg)"3)));
PLongG=(0.25* (((F1)"2)*w))/ ((E1*ALl) * (K1g));

%1mbd=0.5;
$Kfax2=2*pi/lmbd;
$PFlex2=(0.125% ((Ff)~2))/ (ml*w/Kfax2) ;

tht (thent) =

wgt (fgcnt) =w;

fgt (fgcnt)=£qg;

ndwave (fgcnt)=(Kfa*0.9) / (2*pi); % ((2*pi) /Kfa) *0.5;




nP1l (thent, fgent)=(Pf1-P£3) / (PFlex+0) *100;

o

Spower in

flexural incidence wave, flexural reflected wave

nP2 (thent, fgent)=(Pf2-Pf4) / (PLong+0) *100;

o

$power in

longitudinal incidence wave, flexural reflected wave

nP3 (thent, fgent)=(P12-P14) / (PFlex+0) *100;

o

Spower in

flexural incidence wave, longitudinal reflected wave

nP4 (thent, fgent)=(P11-P13) / (PLong+0) *100; % Spower in

longitudinal incidence wave, longitudinal reflected wave

nP5 (thent, fgent)=(P£3) / (PFlex+0) *100; % %Spower in a -

incidence wave, flexural reflected wave

nP6 (thent, fgent)=(Pf4) / (PLong+0) *100; % %Spower in a -

longitudinal incidence wave, flexural reflected wave

nP7 (thent, fgent)=(P14) / (PFlex+0) *100; % %Spower in a -

incidence wave, longitudinal reflected wave

nP8 (thent, fgent)=(P13) / (PLong+0) *100; % %Spower in a -

longitudinal incidence wave, longitudinal reflected wave

nP9 (thent, fgent)=(P£5) / (PFlex+0) *100; % %power in b -

incidence wave, flexural transmitted wave

nP10 (thent, fgent) = (P£f6) / (PLong+0) *100; % %Spower in b -

longitudinal incidence wave, flexural transmitted wave

nP1l1 (thent, fgent)=(P16) / (PFlex+0) *100; % %Spower in b -

incidence wave, longitudinal transmitted wave

nP12 (thent, fgent)=(P15) / (PLong+0) *100; % %Spower in b -

longitudinal incidence wave, longitudinal transmitted wave

nP13 (thent, fgent) =(P£7+P£3) / (PFlex+0) *100;

o

Spower in

flexural incidence wave, flexural transmitted wave

\o

nP1l4 (thent, fgent)=(P£8+Pf4) / (PLong+0) *100; s Spower in

longitudinal incidence wave, flexural transmitted wave

o

nP15 (thent, fgent)=(P18+P14)/ (PFlex+0)*100; %power in

flexural incidence wave, longitudinal transmitted wave

nP16 (thent, fgent)=(P17+P13)/ (PLong+0)*100; % Spower in

longitudinal incidence wave, longitudinal transmitted wave

%power
spower
Spower

spower

%$nP13 (thcent, fgent)=nP25 (thent, fgent) + (P£3) ; %/ (PFlexG+0) *100;

a -

a -

flexural

flexural

flexural

flexural

in g - flexural incidence wave, flexural transmitted wave

$nP14 (thent, fgent) =nP26 (thent, fgent) + (P£4) ; %/ (PLongG+0) *100;

in g - longitudinal incidence wave, flexural transmitted wave
%nP15 (thent, fgent)=nP27 (thent, fgent) + (P14) ; %/ (PFlexG+0) *100;

in g - flexural incidence wave, longitudinal transmitted wave
%nP1l6 (thent, fgent)=nP28 (thent, fgent) + (P13) ; %/ (PLongG+0) *100;

in g - longitudinal incidence wave, longitudinal transmitted wave

$nP17 (thent, fgent)=(Pf1-P£3) ; %/ ( (PFlex+0)) *100; % Spower in
flexural incidence wave, flexural reflected wave

$nP18 (thent, fgent)=(P£f4-P£2) ;%/ ( (PLong+0)) *100;

o

longitudinal incidence wave, flexural reflected wave

$nP19 (thent, fgent)=(P14-P12);%/ ( (PFlex+0)) *100;

o

flexural incidence wave, longitudinal reflected wave
$nP20 (thent, fgent)=(P11-P13);%/ ( (PLong+0)) *100; % Spower in
longitudinal incidence wave, longitudinal reflected wave

fB=nP5+nP7; %+nP7; $nP9+nP11;
fA=nP1+nP3; %+nP3; $nP1+nP3+nP5+nP7;

Spower in

$power in

o\

oe

o\°




fC=nP9%+nP1l1l; %$+nP1l1l;%nP13+nP15;
fD=nP13+nP15; %+nP15;%$nP17+nP18+nP19+nP20;

fAl=fA;

fBe=fC;

fGa=£fD;
ftotl=fAl+fGa;
ftot2=fGa+fBe;
$ftot3=fAl+£fBe;
fAla=fA;
fAlb=£B;

1B=nP8+nP6;
1A=nP4+nP2; =0

1C=nP12+nP10;
1D=nPl6+nP14;

1A1=1A;

1Be=1C;

1Ga=1D;
ltotl=1Al+1Ga;
ltot2=1Ga+1Be;
$1ltot3=1A1+1Be;

totl=ftotl+ltotl;
tot2=ftot2+1ltot2;
Stot3=ftot3+1tot3;
AlphaT=fAl1+1Al;
BetaT=fBe+1Be;
GammaT=fGa+1Ga;

SnEF=nP21+nP224+nP23+nP24;

Tf=fGa+fAl; SfA1+

Tl=1Ga+1Al;S1A1+
TOT2=GammaT+BetaT; $+AlphaT; $GammaT+fB+1B;BetaT+fA+1A;
TOT1=GammaT+AlphaT;

xfecnt=0;
for xf=0.00;
Wf (thent, fgent) =(yF (1) * (exp (-Kfa*abs (xf-m) ) ) )+ (yEF(2) * (exp (-
li*Kfax*abs (xf-m))))+(yF (4) * (exp (Kfa* (1*abs (xf-
m)))))+(yF(5)* (exp (li*Kfax* (1*abs (xf-m)))));
Uf (thent, fgent) = (yL(3) * (exp (-1li*Klax*abs (xf-
m))))+(yL(6)* (exp(li*Klax* (1l*abs (xf-m)))));
xacnt=0;
for xa=0.45;
Wa (thent, fgent) =(yF (1) * (exp (-Kfa*abs (xa-m) ) ) )+ (yF(2) * (exp (-
li*Kfax*abs(xa-m))))+(yF (4) * (exp (Kfa* (1*abs (xa-
m)))) )+ (yF(5)* (exp(li*Kfax* (1*abs(xa-m)))));
Ua (thent, fgent) =(yL(3) * (exp (-1li*Klax*abs (xa-
m))))+(yL(6)* (exp (1i*Klax* (1*abs(xa-m)))));




xbcnt=0;
for xb=1.50;%0.25;

Wb (thent, fgent) =(yF (7) * (exp (-Kfb* (xb-n) ) ) ) + (YF(8) * (exp (-
1i*Kfbx* (xb-n))));
Ub (thent, fgent) = (yL(9) * (exp (-1i*Klbx* (xb-n)))) ;

xgcent=0;
for xg=-0.30;%-0.75;

Wg (thent, fgent) = (yF (10) * (exp (Kfg* (xg-
m))))+(yF(11)* (exp (1i*Kfgx* (xg-m))));
Ug (thent, fgent)=(yL(12) * (exp (1i*Klgx* (xg-m)))) ;

Va (thent, fgent)=1i*w*Wa (thcnt, fgent) ;
Vb (thent, fgent)=1i*w*Wb (thcnt, fgcnt) ;
Vg (thcent, fgent)=1i*w*Wg (thcnt, fgecnt) ;
Aa (thcent, fgent)=-1*w"2*Wa (thcnt, fgcnt) ;
Ab (thcnt, fgcnt)

Ag (thcnt, fgcnt)

=-1*w"2*Wb (thcnt, fgcnt) ;
=-1*w"2*Wg (thcnt, fgcnt) ;

xacnt=xacnt+1;

xWat (xacnt)=Wa (thcnt, fgcnt)

xUat (xacnt)=Ua (thcnt, £fgcnt) ;

xWbt (xacnt)=Wb (thcnt, fgcnt) ;

xUbt (xacnt)=Ub (thcnt, fgcnt)
( ) =Wg ( )
( ) =Ug ( )

r

’

’

xWgt (xacnt)=Wg (thcnt, fgcnt
xUgt (xacnt)=Ug (thcnt, fgcnt

r

InPwrF (thent, fgent)=1* ((((Ff) "2) *w) / (8*E1*I1*Kfax”3)) * (1-Eta/4);
InPwr (thent, fgent) =-
0.5*real (F£* (1i*w* (Wf (thcnt, fgcnt))) ),

ApPwr (thent, fgent)=1* (((real (1i*w* (Wa (thent, fgent) ) ) ) "2* (E1*I1) * ((Kfa) *3)) /(w
))

BtPwr (thent, fgent)=1* ( ((real (1i*w* (Wb (thcnt, fgecnt)))) "2* (E2*I2) * ((Kfb) *3)) / (w
)) i

GmPwr (thcent, fgent)=1* (((real (1i*w* (Wg (thcnt, fgent) ) ) ) "2* (E1*I1) * ((Kfg) *3)) / (w

)) i
TotPwr=GmPwr+BtPwr;

Imp (fgcnt)=1/(li*w*Wa (fgcnt) ) ;
Mob (fgcnt) =1/ (Imp (fgcnt)) ;

ReMob (fgcnt)=w/ (4*E1*I1*Kfa"3);
ImMob (fgent)=(-1*w) / (4*E1*I1*Kfa"3);

Acc (fgcnt)=Wa (fgcnt) * (- (w"2)) ;




Ar=1*fAl./ (InPwr.*1);
Gr=1*fGa./ (InPwr.*1);
Br=1*fBe./ (InPwr.*1);
$Ir=InPwr/fAl;
$Gr=fGa/fAl;
$Br=fBe/fAl;
tr=(0+Ar+Gr) *1;

end

end

end

end

end

end

fgqt=3000:500:3000;%000:16.667:3000.06;
tht=0:1:180;

figure (1)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm")

hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP6, 'g')

hold on

plot (tht,nP7, 'm")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power Transmitted&Reflected in alpha'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('FF','LF','FL','LL',"FF','LF','"FL', '"LL", 'Location', 'best"') ;

figure (2)

plot (tht,nP9, 'r")
hold on

plot (tht,nP10, 'g')
hold on

plot (tht,nPll, 'm")
hold on




plot (tht,nP12, 'b")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power Transmitted in beta’
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (3)

plot (tht,nP13, 'r")

hold on

plot (tht,nP14, 'g")

hold on

plot (tht,nP1l5, 'm")

hold on

plot (tht,nPl6, 'b'")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power Transmitted in gamma'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', 'best"') ;

figure (4)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm")

hold on

plot (tht,nP4, 'b")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted in Alpha'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', '"Location', 'best"');

figure (5)

plot (tht,nP9, 'r")

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP13, 'r")

hold on

plot (tht,nP1l5, 'm")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power from Flexural at beta and gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'
%legend('FEFb', 'FLb', 'FFg', 'FLg', 'Location', 'best');




figure (6)

plot (tht,nP10, 'g")

hold on

plot (tht,nP12, 'b")

hold on

plot (tht,nPl4, 'g'")

hold on

plot (tht,nP1l6, 'b")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power from Longitudinal at beta and gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'
%legend('LEFb', 'LLb', 'LFg', 'LLg', 'Location', 'best"');

figure (7)

plot (tht,AlphaT, 'r'")

hold on

plot (tht,BetaT, 'b') %

hold on

plot (tht, GammaT, 'g')

hold on

%plot (tht,nF, 'k.")

%hold on

plot (tht, TOT2, 'k'")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'Total2', 'Location', 'best');%'nk"',

figure (8)

plot (tht, fAl, 'r.")

hold on

plot (tht, fBe, 'b.") %

hold on

plot (tht, £fGa, 'g.")

hold on

plot (tht,Tf, 'k.")

hold on

plot (tht,1Al, 'r")

hold on

plot (tht,1Be, 'b') %

hold on

plot (tht,1Ga, 'g'")

hold on

plot (tht,T1l, "k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'nF', 'Total', 'Location', 'best');




figure (9)

surf (fgt,tht,nPl);

xlabel ('frequency /Hz'")

ylabel ("angle \theta')

zlabel ('Power in Alpha')

title(' (Figure-9)Alpha Power vs angle \theta and frequency/Hz')
grid

figure (10)

surf (fgt,tht,nP9);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Beta')

title(' (Figure-10)Beta Power vs angle \theta and frequency/Hz')
grid

figure (11)

surf (fgt,tht,nP13);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Gamma')

title(' (Figure-11)Gamma Power vs angle \theta and frequency/Hz')
grid




Appendix: @ Other MATLAB coding: -

Plot Frequency Domain

figure (1)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

plot (tht,nP5,'r")

hold on

plot (tht,nP6, 'g')

hold on

plot (tht,nP7, 'm")

hold on

plot (tht,nP8, 'b'")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted&Reflected in alpha'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'
%$legend('FF','LF','FL','LL', "FF','LF','"FL', "LL", 'Location', 'best"') ;

figure (2)

plot (tht,nP9, 'r")

hold on

plot (tht,nP10, 'g')

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP12,'b")

hold on

grid on

%axis ([0 180 0 1201)

title 'Percentage Power Transmitted in beta'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FF','LF','FL','LL', "Location', '"best"') ;

figure (3)

plot (tht,nP13,'r")
hold on

plot (tht,nP1l4, 'g'")
hold on

plot (tht,nPl5, 'm")
hold on

plot (tht,nPl6, 'b'")




hold on

plot (tht,GammaTt, 'k")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power Transmitted in gamma'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (4)

plot (tht,nPl, 'r")

hold on

plot (tht,nP2, 'g'")

hold on

plot (tht,nP3, 'm'")

hold on

plot (tht,nP4, 'b")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power Transmitted in Alpha'
xlabel 'Angle'S$'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (5)

plot (tht,nP9, 'r")

hold on

plot (tht,nPll, 'm")

hold on

plot (tht,nP13,'r")

hold on

plot (tht,nPl5, 'm")

hold on

grid on

%axis ([0 180 0 1201])

title 'Percentage Power from Flexural at beta and gamma'
xlabel 'Angle'%'Frequency'

ylabel 'Percentage Power'

%$legend ('FFb', 'FLb', 'FFg', 'FLg', 'Location', 'best');

figure (6)

plot (tht,nP10, 'g")

hold on

plot (tht,nP12,'b")

hold on

plot (tht,nP1l4, 'g')

hold on

plot (tht,nP1l6, 'b")

hold on

grid on

$axis ([0 180 0 1201)

title 'Percentage Power from Longitudinal at beta and gamma'
xlabel 'Angle'S$'Frequency'
ylabel 'Percentage Power'




%$legend ('LFb', 'LLb', 'LFg', 'LLg', 'Location', 'best"');

figure (7)

plot (tht,AlphaT, 'r'")

hold on

plot (tht,BetaT, 'b') %

hold on

plot (tht,GammaT, 'g'")

hold on

$plot (tht,nF, 'k.")

%$hold on

plot (tht, TOT2, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'%'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'Total2', 'Location', '"best');%"'nF"',

figure (8)

plot (tht, fAl, 'r.")

hold on

plot (tht, fBe, 'b.") %

hold on

plot (tht, fGa, 'g.")

hold on

plot (tht,Tf, 'k.")

hold on

plot (tht,1Al, 'r")

hold on

plot (tht,1Be, 'b') %

hold on

plot (tht,1Ga, 'g'")

hold on

plot (tht,T1l, 'k")

hold on

grid on

title 'Percentage Power Total'
xlabel 'Angle'%'Frequency'
ylabel 'Percentage Power'
%$legend('Al', 'Be','Ga', 'nF', 'Total', "Location', 'best');

figure (9)

surf (fgt,tht,nPl);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Alpha')

title (' (Figure-9)Alpha Power vs angle \theta and frequency/Hz')
grid

figure (10)

surf (fgt,tht,nP9);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Beta')

title (' (Figure-10)Beta Power vs angle \theta and frequency/Hz')




grid

figure (11)

surf (fgt,tht,nP13);

xlabel ('frequency /Hz'")

ylabel ('angle \theta')

zlabel ('Power in Gamma')

title (' (Figure-11)Gamma Power vs angle \theta and frequency/Hz')
grid

figure (1)

plot (fgt,nPl, 'r")

hold on

plot (fgt,nP2, 'g'")

hold on

plot (fgt,nP3, 'm")

hold on

plot (fgt,nP4, 'b")

hold on

plot (fgt,nP5, 'r")

hold on

plot (fgt,nP6, 'g'")

hold on

plot (fgt,nP7, 'm")

hold on

plot (fgt,nP8, 'b")

hold on

grid on

title 'Percentage Power Transmitted&Reflected in alpha'
xlabel 'Frequency'

ylabel 'Percentage Power'
%$legend('FF','LF','FL','LL', "FF','LF','"FL', '"LL", 'Location', 'best"') ;

figure (2)

plot (fgt,nP9, 'r")

hold on

plot (fgt,nP10, 'g')

hold on

plot (fgt,nP1ll, 'm")

hold on

plot (fgt,nP1l2, 'b'")

hold on

grid on

title 'Percentage Power Transmitted in beta’
xlabel 'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (3)

plot (fqt,nP13, 'r")
hold on

plot (fgt,nP1l4, 'g")
hold on

plot (fgt,nP1l5, 'm")




hold on

plot (fgt,nPl6, 'b'")

hold on

grid on

title 'Percentage Power Transmitted in gamma'
xlabel 'Frequency'

ylabel 'Percentage Power'

%$legend ('FEF','LF','FL','LL', 'Location', 'best"');

figure (5)

plot (fgt,nP9, 'r")

hold on

plot (fgt,nP1ll, 'm")

hold on

plot (fgt,nP13,'r")

hold on

plot (fgt,nP1l5, 'm")

hold on

grid on

title 'Percentage Power from Flexural at beta and gamma'
xlabel 'Frequency'

ylabel 'Percentage Power'

%$legend ('FFb', 'FLb', 'FFg', 'FLg', 'Location', 'best');

figure (6)

plot (fgt,nP10, 'g'")
hold on

plot (fgt,nP1l2, 'b")
hold on

plot (fgt,nPl4, 'g'")
hold on

plot (fgt,nPlo,
hold on

grid on

title 'Percentage Power from Longitudinal at beta and gamma'
xlabel 'Frequency'

ylabel 'Percentage Power'

%legend ('LEFb', 'LLb', 'LFg', 'LLg', 'Location', '"best');

o

figure (7)

plot (fqt, fAl, 'r")
hold on
splot (fgt, fAla, 'r"')
%hold on

$plot (fgt, fAlb, 'rx"')
%$hold on

plot (fqt, fBe, 'b'")
hold on

plot (fgqt, £fGa, 'g'")
hold on

plot (fqgt, ftot2, 'm")
hold on

plot (fgt, InPwr, 'k')
hold on

$plot (fgt, InPwrf, 'o")
%$hold on




plot (fgt, InPwrF, 'x")

hold on

grid on

title 'Total Flexural Power at Alpha, Beta, Gamma'

xlabel 'Frequency'

ylabel 'Power Reflected & Transmitted'
%$legend('fAl', 'fBe', 'fGa', 'Total', 'Pwr FV', 'PwrForce', 'Location', 'best');
%legend('fAla', 'fAlb', 'fBe', 'fGa', 'Total', 'Pwr

FV', 'PwrForce', 'Location', 'best') ;

figure (8)

plot (fgt,AlphaT, 'r')

hold on

plot (fgt,BetaT, 'b') %Splot (fgt,nPl7,'r")
hold on

grid on

title 'Percentage Power Total'

xlabel 'Frequency'

ylabel 'Percentage Power'
%$legend('Al', 'Be', 'Location', "best"') ;

figure (9)

plot (fqgt,Wa, 'r'")

hold on

plot (fgt,Wb, 'b")

hold on

plot (fgt,Wg, 'g")

hold on

grid on

title 'Disp W at alpha, beta, gamma'
xlabel 'Frequency'

ylabel 'Displacement (W) '
%$legend('Wa', 'Wb', 'Wg', 'Location', 'best');

figure (10)

plot (fqgt,Ua, 'r'")

hold on

plot (fgt,Ub, 'b")

hold on

plot (fqt,Ug, 'g")

hold on

grid on

title 'Disp U at alpha, beta, gamma'
xlabel 'Frequency'

ylabel 'Displacement (U)'
%legend('Ua', 'Ub','Ug', 'Location', 'best');

figure (11)

plot (fgt, InPwr, '0")

hold on

plot (fgt, InPwrF, 'x")

hold on

grid on

title 'InputPower'

xlabel 'Frequency'%'Angle of Arm 2 (Degrees)'
ylabel 'Power'




%$legend ('InPwr', 'InPwrF', 'Location', "best');

figure (12)

plot (fgt,ApPwr, 'r') sndwave

hold on

plot (fgt,BtPwr, 'b')

hold on

plot (fgt,GmPwr, 'g')

hold on

plot (fgt, InPwr, "k")

hold on

plot (fgt, TotPwr, 'm')

grid on

title 'Power at Alpha, Beta, Gamma'
xlabel 'Frequency'

ylabel 'Power'

%$legend ('ApPwr', 'BtPwr', 'GmPwr', 'Pwr (FxV) ', '"TotPwr', 'Location’', 'best');

figure (13)

plot (ndwave, ApPwr, 'r'")

hold on

plot (ndwave,BtPwr, 'b")

hold on

plot (ndwave, GmPwr, 'g")

hold on

plot (ndwave, InPwr, "k")

hold on

plot (ndwave, TotPwr, 'm'")

grid on

title 'Power at Alpha, Beta, Gamma'

xlabel 'Dimensionless wavenumber (*abs (m-n)/(2*pi)’'
ylabel 'Power Reflected & Transmitted'

%$legend ('ApPwr', 'BtPwr', 'GmPwr', 'Pwr (FxV) ', 'TotPwr', 'Location’', 'best');

figure (14)

plot (ndwave, fAl, 'r')
hold on

plot (ndwave, fBe, 'b")
hold on

plot (ndwave, £fGa, 'g'")
hold on

plot (ndwave,1Al, 'r')
hold on

plot (ndwave, 1Be, 'b")
hold on

plot (ndwave,1lGa, 'g')
hold on

plot (ndwave, tot2, 'm")
hold on

plot (ndwave, InPwr, "k")
hold on

%plot (ndwave, InPwrf, 'o')
%$hold on

plot (ndwave, InPwrF, "x")
hold on

%plot (ndwave, AlphaT, 'x'")




%hold on

%plot (ndwave, BetaT, 'o")

%$hold on

grid on

title 'Total Power at Alpha, Beta, Gamma'

xlabel 'Dimensionless wavenumber (*abs (m-n)/ (2*pi)"'

ylabel 'Power Reflected & Transmitted'

%$legend('fAl', 'fBe', 'fGa', '1A1l"','1Be', "1Ga"', 'Total"', 'Pwr (FxV) "', 'Pwr (inFinite)
', 'Location', 'best');

figure (15)

plot (ndwave,1lAl, 'r')

hold on

plot (ndwave, 1Be, 'b'")

hold on

plot (ndwave,1lGa, 'g')

hold on

hold on

grid on

title 'Total Longitudinal Power at Alpha, Beta, Gamma'
xlabel 'Dimensionless wavenumber (*abs (m-n)/ (2*pi)"'
ylabel 'Power Reflected & Transmitted'
%$legend('1Al1','1Be', '1Ga', 'Location', '"best"') ;

figure (16)

plot (fgt,Ar, 'r")

hold on

plot (fqgt,Br, 'b'")

hold on

plot (fqgt,Gr, 'g'")

hold on

plot (fgt,tr, "k")

hold on

plot (fgt, InPwr, "k.")

%$hold on

grid on

%axis ([0 2250 0 2])

title 'Ratio Flexural Power over Input'

xlabel 'Frequency'

ylabel 'Ratio of Power'
%$legend('fAl', 'fBe', 'fGa', 'Total', 'Pwr FV', 'PwrForce', 'Location', 'best');
%$legend('fAla', 'fAlb', 'fBe', 'fGa', 'Total', 'Pwr
$EV', 'PwrForce', 'Location', 'best');

$function rubbermobility

% F1 input to jointbeam beam
clear all

clf

o

%% Theory - mobility

Freg=dlmread ('Hl1 21.txt','',6K "A34..A1833");%Al134..A1833 3A74..A834 1634




omega=Freq.* (2*pi);

%kb=(sqgrt (omega) ) * (((ml)/ (B))"0.25);
$MobReTheory=omega./ (4*B* (kb."3)) ;
$MobImTheory=omega.* (-1) ./ (4*B* (kb."3)) ;

$MobModTh=sqgrt ( ( (MobReTheory."2) +abs (MobImTheory."2)));

%% Read experiment data

H1 21Re=dlmread('H1 21.txt',"'','B34..B1833");
MobReal=-(H1 21Re.*1)./(Freq.*(2*pi))."2;
H1 21Im=dlmread('H1 21.txt',"'',6'C34..C1833");
MobIm=(H1 21Im.*1)./(Freq.* (2*pi)*i)."2;
MobModMea=sqgrt ( ( (MobReal."2) +abs (MobIm."2))) ;

H1 21=sqgrt(abs(((H1 21Re)."2)+((H1 21Im)."2)));
HdB=-20*log ((H1 _21));

$HT=sqgrt (abs ( ( (MobReTheory) ."2) + ( (MobImTheory) ."2)));
$HTdB=-20*1og ( (HT)) ;

%% Plot results

figure (1)

loglog (Freqg, real (MobReal), 'b'")

hold on

%loglog (Freq, real (MobReTheory), 'k")

%hold on

grid on

title 'Point Mobility (Real)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Re [m/s/N]'

legend ('Real', '"Theory', 'Location', '"best"') ;

figure (2)

loglog (Freq, imag (MobIm), 'r")

hold on

%loglog (Freq, imag (MobImTheory), "k")

%$hold on

grid on

title 'Point Mobility (Imaginary)';

xlabel 'Frequency, [Hz]'

ylabel 'Mobility-Im [m/s/N])'

legend ('Imaginary', 'Theory', 'Location', '"best');

figure (3)

loglog (Freq,MobModMea, 'm")

hold on

3loglog (Freqg,MobModTh, 'k'")

%hold on

grid on

title 'Point Mobility (Modulus)';
xlabel 'Frequency, [Hz]'

ylabel '[Log] Mobility-Modulus'




legend ('Measured', 'Theory', 'Location', 'best');

figure (12)

plot (omega,HdB, "k') ;grid
hold on

plot (omega,HTdB, 'k. ') ;grid
hold on

grid minor

title 'Magnitude (dB) plot';
xlabel 'Frequency, [Hz]'
ylabel 'Magnitude (dB)''
$legend() ;




$function Wavelength calculation
%% Wavenumber calculation

clear all

clf

format long e

$Given

b=0.1; $m
d=0.02; sm
El=1.75e9;%5.567e9; SN/m”2
Il=(b*(d"3))/12; sm”™4
Al=b*d; sm”2
RHO=1190; $kg/m"3
L=1*d; $m

%$Input

F1=1;%0.707; sm
Ff=1;%0.707; Sm

LbdLt=zeros;
LbdFt=zeros;
fgt=zeros;

%% Main

fgent=0;
for £g=0:100:10000;
omega=2*pi*fq;

LbdL= (sqrt (E1/RHO)) /fqg;
LbdF=(sqgrt (omega*sqgrt (E1*I1/RHO*ALl))) /fq;

fgcnt=fgcnt+l;

fgt (fgcnt) =£fqg;
LbdLt (fgcnt)=LbdL;
LbdFt (fgcnt)=LbdF;

end

figure (1)

semilogx (fgt, LbdLt, 'b'")

hold on

grid on

title 'Longitudinal Wavelength vs Frequency'
xlabel 'Frequency'

ylabel 'Longitudinal wavelength'
figure (2)

semilogx (fgt, LbdFt, 'r'")

hold on

grid on

title 'Flexural Wavelength vs Frequency'
xlabel 'Frequency'

ylabel 'Flexural wavelength'




Appendix: Z' Miscellaneous

Calibration

Calibration set-up and measurement in vibration laboratory

Calibration block -10
suspension E‘
Exci : / \ )
xciter Sﬁp}l‘l&mn i
Exci £
=
8 l16-
3:1 % o Mean value = -13.93 dB (0.20114)
/ -20 T
Freq. (Hz)
Force transducer Accelernmens: 10 100 _ 1000
Calibration block sm i S VY
(mass = 5.5 kg) Overall sensitivity = 1.1056 m

Example of calibration set-up and expected result (Dossing 1988)

Measurement activity can either be using shaker or impact hammer to the set-up mass as

shown in figure below.




Excitation option (using shaker or hammer) for calibration of transducer (Dossing 1988)

From Newton’s second law;
Force = (m) mass X (¥) acceleration
It is known that accelerance;

X 1
A(a))= f= E

For any frequency the accelerance has amplitude of 1/,,4¢s and a phase of 0 degrees.

Using the shaker and mass of 10kg,
1
A = —= 0.1
(@)= 75
The calibration for transducer above was conducted and giving satisfactory result as

displayed below.
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Result displayed for calibration of accelerometer used in measurement

Amplifiers used in measurement activity




Initial Measurement - mobility

Mobility of a similar material for experimentation later was tested for its linearity against
theoretical value, in attempt to fully understand equipment’s capability and display selection. It is
known that from equation of structure point mobility for infinite beam — flexural wave motion

force excitation,

_ (A-Dk
e 4wpA

From calculation of mobility, at 100Hz and 2000Hz, mobility value was at -34.4dB and -
47.4dB as plotted on the displayed result from laboratory measurement below. This shown close
similarity (poor measurement result after 3000Hz due to material’s imperfection) for measurement

and theoretical beam of infinite length.

Mobility for sample Perspex beam measured compared to theoretical value (linear dotted line)

Another measurement were taken from the angled beam giving a better mobility results as

displayed below
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Measurement set-up using Focus analyser in the lab
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Errors and averaging

Apart from random and bias errors in measurements, the further consideration would also
to include calculation for amplitude error and phase error in mathematical model and provide clear

bridge to the measurement in experiment.

From the ideal displacement equation,
x(t) =A sin(a)t —k(x+ d)),
Where d is distance between two transducers (0.03m).

Consideration for the amplitude error, A, and phase error, @, into the above equation,

x(t) = (A+ A,) sin(wt — k(x+d) +@,)

Measurement display for all variable angles and set-up of
experimentation

Figures shows samples of response data obtained during measurements
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Measurement display for 90° set-up of beam angle
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Measurement display for 10° set-up of beam angle
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Measurement set-up with Focus analyser for 120° angle
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Measurement display for variable angles with rubber layer
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40 degree setup for joint with rubber layer
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