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Abstract 

The successful application of Computational Aeroacoustics (CAA) requires high accu­

racy numerical schemes with good dissipation and dispersion characteristics. Unstruc­

tured meshes have a greater geometrical flexibility than existing high order structured 

mesh methods. This work investigates the suitability of unstructured mesh techniques 

by computing a two-dimensionallinearised Euler problem with various discretisation 

schemes and different mesh types. The goal of the present work is the development of 

an unstructured numerical method with the high accuracy, low dissipation and low dis­

persion required to be an effective tool in the study of aeroacoustics. The suitability of 

the unstructured method is investigated using aeroacoustic test cases taken from CAA 

Benchmark Workshop proceedings. Comparisons are made with exact solutions and a 

high order structured method. 

The higher order structured method was based upon a standard central differencing 

spatial discretisation. For the unstructured method a vertex-based data structure is 

employed. A median-dual control volume is used for the finite volume approximation 

with the option of using a Green-Gauss gradient approximation technique or a Least 

Squares approximation. The temporal discretisation used for both the structured and 

unstructured numerical methods is an explicit Runge-Kutta method with local time­

stepping. 

For the unstructured method, the gradient approximation technique is used to com­

pute gradients at each vertex, these are then used to reconstruct the fluxes at the control 

volume faces. The unstructured mesh types used to evaluate the numerical method in­

clude semi-structured and purely unstructured triangular meshes. The semi-structured 

meshes were created directly from the associated structured mesh. The purely unstruc­

tured meshes were created using a commercial paving algorithm. The Least Squares 

method has the potential to allow high order reconstruction. Results show that a 

Weighted Least gradient approximation gives better solutions than unweighted and 

Green-Gauss gradient computation. The solutions are of acceptable accuracy on these 

problems with the absolute error of the unstructured method approaching that of a high 

order structured solution on an equivalent mesh for specific aeroacoustic scenarios. 

Keywords: Computational Aeroacoustics, Unstructured Grids, Linearised Euler 

Equations, Finite-Volume Method, Weighted Least Squares, Green-Gauss, Benchmark 

Workshop Proceedings 



The connection [between evolution and computers] lies in the counterintuitive 

observation that complex results arise from simple causes, iterated many times over. 

It's terribly simple to see this happening in a computer. Whatever complexities a 

computer produces - modeling wind turbulence, modeling economies or the way light 

dances in the eye of an imaginary dinosaur - it all grows out of simple lines of code 

that start with adding one and one, testing the result, and then doing it again. Being 

able to watch complexity blossom out of this primitive simplicity is one of the great 

marvels of our age, greater even than watching man walk on the moon. 

Douglas Adams - October 2000 
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Chapter 1 

Introd uction 

The aerospace industry grows with each passing year. As it grows, the effect it has 

on the population, the economy and the environment grows as well. In the majority of 

industrialized countries there is a continual increase in airline traffic, air transport cargo 

and personal aircraft use. This increase has created the need for stricter guidelines on 

airport use as well as a more stringent design criteria for new aircraft. Current trends 

are forcing aircraft manufacturers to provide aircraft that have a longer range and a 

higher cruise speed, as well as aircraft that can carry greater numbers of people to more 

destinations in greater comfort. This trend has brought on the arrival of larger aircraft 

with engines that have increased power and fuel-efficiency. However the increase in 

power and efficiency of modern engines must be attained without an increased impact 

on the environment. 

As the aircraft manufacturers work towards new designs to meet modern require­

ments the organisations in charge of regulating the industry constantly ensure that the 

criteria determined for the safety of passengers and the protection of the environment 

are met. The requirement of all aircraft to have certification from the industry reg­

ulators creates a situation where the demands of the aircraft operator are tempered 

with the demands of the safety agencies. This situation has created the need for a 

complex set of design tools and methods that can be used to evaluate current aircraft 

and develop new aircraft that fulfill the demands of performance while remaining within 

the design constraints set by both industry operators and regulators. One of the most 

important design constraints is that of noise associated with aircraft. Aircraft noise and 

engine pollution are the two factors that have the greatest impact on the environment 

and of the two, noise has been chosen as the purpose of this research. Noise emission 



1.1 The Structure of the Aerospace Industry 

from aircraft is a closely studied topic in the aerospace industry. It is closely monitored 

by regulatory agencies and governmental departments and is a determining factor in 

whether or not an aircraft can enter service, or as noise regulations change whether an 

aircraft can continue service. The development of design tools to examine the generation 

and transmission of noise from aircraft is an important part of aircraft development. 

These design tools will have an important part in helping industry manufacturers meet 

the requirements of industry regulators. 

1.1 The Structure of the Aerospace Industry 

There are numerous regulatory agencies that have direct control over the use and re­

quired performance of aircraft and impact the entire aerospace industry. To better 

understand how the regulatory organisations work an explanation of how the aerospace 

industry is structured is required. The aerospace industry can be divided into two main 

sectors. The first is the aviation sector which deals solely with the operation of air­

craft, and the second is the aeronautics sector which encompasses the study, design and 

manufacture of flight capable machines. 

The aviation sector deals with two major categories of aircraft operation, the first for 

military aircraft and a second for civil aircraft. The civil aircraft category encompasses 

all scheduled air transport as well as all general aviation. Scheduled air transport 

refers to both passenger and cargo flights. General aviation refers to all non-scheduled 

passenger and cargo traffic, as well as business, hobby and personal air traffic. The 

largest sector of this industry is the scheduled air transport classification of civil aviation. 

This sector deals with the largest amount of traffic and therefore has the largest impact 

on the population and the environment. In more recent times, the general aviation 

field has also grown. As of the end of 2004, the United States alone has over 200,000 

aircraft registered for use in general aviation as opposed to the 8000 aircraft registered 

for air carriers [54]. While the number of passengers is much greater with scheduled 

air transport the large number of aircraft associated with general aviation must also 

be considered when looking at the effect this industry has on the population and the 

environment. Since both scheduled air transport and general aviation are considered 

civil aviation, they are both regulated by the same industry standards. 

2 



1.2 The Regulation of the Aerospace Industry 

1.2 The Regulation of the Aerospace Industry 

The split of the aerospace industry into aeronautics research and aircraft operation is 

mirrored in the structure of industry regulators and it is important to understand how 

the operation of aircraft is regulated. Civil aviation has the greatest impact on popu­

lation and the environment and therefore has the highest amount of certification and 

regulation. The International Civil Aviation Organization (ICAO), a specialised agency 

of the United Nations is concerned with maintaining the safety and regularity of inter­

national air transport for all countries associated with ICAO and deal with topics such 

as recognition and response to environmental concerns and the emergence of new tech­

nology [56]. Each nation also has its own Civil Aviation Authority that directly governs 

internal civil aviation and interacts with the ICAO. In the United Kingdom the Civil 

Aviation Authority is concerned with the regulation of all civil aviation within British 

borders. In the United States the Federal Aviation Administration (FAA) is responsi­

ble for regulation of civil aviation within American borders. In Europe, the European 

Aviation Safety Administration (EASA) is responsible for the certification of aircraft 

for use anywhere within the EU and determines the standards for design, manufacture, 

operation and maintenance of all civil aircraft as well as definition and application of 

technical requirements in regards to environmental impact for all aircraft [1]. 
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These agencies have several concerns but one of the most important is that of the 

environmental impact of aviation, more specifically noise and pollution. The EASA 

states one of its main purposes as reducing environmental pollution and noise through 

the production of common rules for airworthiness within the EU [1]. In Great Britain 

the Department for Transport (DfT) also states that it plans to apply increasingly 

demanding technical standards to limit emissions and noise associated with aviation 

and wherever possible to see that aircraft emissions and noise are not only limited but 

decreased over time [25]. The ACARE has set a research target that by the year 2020 the 

perceived noise from aircraft should be reduced to half of what it is today [25]. Technical 

standards to limit civil aviation noise and engine emissions are also recommended by 

the ICAO. The ICAO noise standards are referred to by Chapter number. As of 2006, 

ICAO noise standard Chapter 4 has come into effect and will apply to all new aircraft) 

types. It has an increased level of noise suppression as it requires new aircraft to be 

10dB quieter than the previous Chapter 3 standard [53]. With the harsher guidelines 

set by agencies such as ICAO and ACARE require the use of design tools that focus on 

aircraft noise to ensure that the industry continues to grow in a controlled manner. 
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1.3 Industry Growth 

Every year both the United Kingdom and the United States show an increase in airline 

passenger traffic and general aviation. National statistics from Great Britain show that 

in 2005, 228 million passengers went through UK airports as well as 2.4 million tonnes 

of air freight [26]. In the United States, 745 million passengers traveled through US 

airports and approximately 22,500 million Ibs (10.3 million tonnes) offreight [55]. These 

statistics are reported as an increase over the previous year, and further investigation 

shows that there has been a steady increase in aviation traffic for decades. This trend 

is also predicted to continue. The Department for Transport predicts that by 2020 

between 350 and 460 million passengers will use UK airports [25] and are planning 

accordingly. The DfT also predicts that freight loaded and unloaded at UK airports 

will double to over 5 million tonnes in the next 5 years [25]. Simply stated more people 

travel and transport goods on more planes each and every year. This increased traffic 

has a corresponding increase in environmental impact, for both noise and pollution. 

1.4 Current Methods of Managing Aircraft Noise 

Regulatory agencies such as ICAO and ACARE already have methods in place to deal 

with the Department for Transport and UK airports concerning the issue of managing 

aircraft noise. All of the leAO member have already agreed to a four element approach 

that consists of reducing noise at the source (through aircraft certification), using noise 

abatement procedures for determination of flight path and taxi-way location, land use 

planning for the development of regions surrounding airports and operating restric­

tions that control the time of day certain aircraft are allowed operate within airport 

boundaries [53]. The Department for Transport is also supporting the ACARE research 

initiative into promoting development of low noise engine and airframe technologies [25]. 

The DfT has also required the removal of the noisiest and dirtiest aircraft from regular 

use and has adopted the use of economic incentives to encourage airport operators and 

airlines to use the best available technology to limit noise and engine emissions [25]. 

The most important approach of managing aircraft noise is the reduction of noise at 

the source, typically seen as developing and designing quieter aircraft. Most of the other 

management approaches are just dealing with the existing problem instead of examining 

the cause of it. The location of flight paths and control of takeoff and landing times are 
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useful attempts in dealing with the current situation, but as stated earlier, every year 

sees more planes completing more flights and creating more noise. The Department for 

Transport concedes that "today's aircraft are typically 75 percent quieter than jets in 

the 1960s" [25], but it also states that "action is needed to prevent a deterioration in the 

noise climate as growth in air traffic overtakes the rate of technological advance" [25]. 

There is no doubt as to the increase in air traffic. The requires that the aerospace 

industry must work to increase the level of technology when it comes to reduction of 

aircraft noise. In order to control the levels of noise created by aircraft, the sources and 

behaviour of the noise must first be understood. This means that perhaps the most 

important factor in reducing noise from aircraft is the determination of noise sources 

and the development of noise reduction techniques specific to particular noise sources. 

1.5 Sources Of Noise 

There are numerous sources of aircraft noise currently being studied in the development 

of acoustic technology. The work presented here is primarily interested in the noise 

sources of fixed-wing aircraft operating with turbofan engines. For fixed-wing aircraft 

noise-generating mechanisms can be separated into two general categories, mechanisms 

associated with the airframe and mechanisms associated with the engine. The engine 

noise sources are also separated into two subcategories, turbomachinery noise and jet 

noise. 

The noise from the airframe is defined as "the noise generated by the aerodynamic 

flow interacting with the aircraft surfaces during flight" [59]. Possible sources of noise 

associated with the airframe include the main landing gear, the nose gear, the interaction 

between the gear and the flaps, the interaction between the jet and the flaps, the leading 

edge slats, the trailing edges and side edges of the flaps and the interaction between 

the wing and the flap [24, 59, 60]. The location of some noise source examples can be 

seen in Figure 1.1. Other sources of airframe noise include the wakes from the wing 

and the vertical and horizontal tail components [59]. The relative strength of airframe 

noise compared to engine noise is determined by flight speed, the aircraft geometry and 

the relative position of the aircraft components [60]. The airframe noise dominates the 

engine noise greatest during approach as the propulsion noise levels are lowest at this 

stage. 

Examples of engine noise sources that can be classified as turbomachinery noise 

5 
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Leading Edge Slats v 

Gear/Flap Interaction 

Figure 1.1: Examples of Airframe Noise Sources [60] 

include turbine noise, combustion noise, and fan inlet noise. Similar to airframe noise, 

there are various noise generating mechanisms that have to do with the interaction of 

different components of turbomachinery. Engine noise sources include fan/outlet guide 

vane interaction, strut and pylon/fan interaction, booster/fan interaction and inflow Ifan 

interaction. Noise is also generated from the fan and the outlet guide vanes, as well 

as the struts and pylons. Examples of noise sources that can be classified as jet noise 

include fan jet mixing, fan exhaust and the core jet [24, 59, 60]. The locations of the 

engines noise sources listed here can be seen in Figure 1.2. The relative dominance of 

the different components of engine noise are determined by engine bypass ratio. As the 

bypass ratio increases, the turbomachinery noise dominates over the jet noise [60]. 

There are noise sources, other than the standard airframe and aircraft engine com­

ponents, that can have a significant contribution to the overall level of noise created. 

One such source is an auxiliary power unit (APU). APU systems have specific inlet and 

exhaust configurations due to the unit size and location on the aircraft that can create 

significant noise [31]. The fact that APU systems are often used on the ground near 

the terminal or hanger for extended periods of time without the plane in motion make 

them particularly noticeable to the public. Looking at different types of aircraft such as 

propeller or rotary-wing aircraft there are different noise creating mechanisms that may 

become more dominant that those with fixed-wing aircraft. With propeller aircraft, the 

important sources are free propeller noise and propeller/engine/airframe interaction in 

addition to the already present engine noise. 

All of the examples of noise sources listed above can be separated into two different 

sound types. These two sound types are broadband noise and tone noise. Broadband 
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Figure 1.2: Examples of Engine Noise Sources [60J 

noise has components over a wide range of frequencies. Tone noise has a discrete 

frequency or a very narrow range of frequency [19J. Sound sources that create broadband 

noise include the combustor and the jet as well as the interaction of the jet with the fan. 

The sources that can be listed as tone sources include those from the fan, compressor 

and turbine. Tone noise sources also include the stators, the pylons and the outlet guide 

vanes [24, 60J. The separation of noise sources due to frequency associated with the 

noise type creates the need for different approaches in noise reduction. Determining 

whether a noise source is mainly a tone noise or a broadband noise will also establish 

the best way to design some form of noise reduction. 

1.6 Current Methods of Noise Reduction 

Along with separation of noise types into broadband noise and tone noise, in order to 

develop methods of noise reduction it is also important to specify whether the noise is 

from an internal or an external source when determining a method of noise reduction. 

As stated previously, airframe noise sources such as fiap/wing interaction, jet/fiap inter­

action and gear, tail or other wing components are highly dependent upon two factors; 

the geometry of the airframe component and the relative position of the components 
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involved. The design of these two factors is therefore the best way to reduce noise. By 

designing airframe components specifically as noise sources instead of just aerodynamic 

or structural components, a great deal of external noise generation can be removed. This 

method has already been adopted in both experimental and computational research into 

new aircraft as well as evaluation of existing aircraft [23, 31, 59, 70J. 

Internal noise can generally be taken to mean engine noise. There are two approaches 

to suppressing internal engine noise. The first approach is to use basic design to min­

imise the amount of noise created and the second approach is to line interior surfaces of 

the engine with acoustically absorbent material [61J. Without any further investigation 

into exactly how engine noise is generated and behaves in a particular situation, there 

are a couple of design methods of dealing with noise sources that have been determined 

through past research and design modification. To minimize the amount of noise created 

a modification must "reduce the airflow disruption that causes the greatest amount of 

turbulence" [61J. There are several techniques used in engine design that accomplish 

this [61, 60J. The compressor wake intensity can be decreased by adjusting the spacing 

between the compressor blades and vanes. Also the ratio between rotating and station­

ary blades can be modified to contain noise within the engine. The noise created by the 

exhaust jet can be decreased as well by inducing a rapid or shorter mixing region. The 

introduction of deep corrugations or lobes into the the shape of the engine nozzle gives 

the greatest reductions in noise of these methods [61J. 

The use of acoustic liners in aircraft engines has proven extremely effective in reduc­

ing the amount of noise created by the engine without introducing large aerodynamic 

losses [19J. The acoustic liner is most often made up of a honeycomb-shaped material 

that is used to separate a perforated lining from a wall or other internal surface of the 

engine [19, 60, 61J. The combination of the porous material and the honeycomb layer 

creates a buffer that attenuates noise by capturing it before it impacts the wall of the 

engine and converting the acoustic energy into heat. The effectiveness of the honey­

comb material that is used as an acoustic liner can be tailored to deal with specific noise 

sources. The specific depth of the honeycomb material is related to the frequency of the 

noise that is most absorbed by the acoustic lining, and the varying size and pattern of 

holes in the covering plate is related to the range of frequencies over which the acoustic 

lining absorbs sound [19J. 

The use of acoustic liners as well as the optimization of how engine components 

interact with each other and how airframe components interact with each other have 
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certainly reduced the noise levels associated with aircraft. Nevertheless, with future 

industry guidelines concerning aircraft noise promising to be more strict there is a 

definite need for better noise reduction methods and a better understanding of both how 

the methods work and how noise behaves overall. Designers of modern aircraft are using 

computational aeroacoustics to gain this understanding. Aeroacoustics is the study of 

noise generated by aerodynamic forces interacting with surfaces and by turbulent fluid 

motion. Computational fluid dynamics (CFD) is a branch of fluid mechanics that 

deals with the numerical simulation of fluid flows. Computational aeroacoustics (CAA) 

is where CFD and aeroacoustics meet, it is the application of computer algorithms 

to numerically model aeroacoustic problems. The addition of CAA methods to the 

aeronautical design process is one of the main factors in how industry keeps up with 

international regulations when it comes to aviation noise. 

1. 7 Computational Aeroacoustics 

The shift from experimental design and analysis of aircraft to computational design and 

analysis is a modern phenomenon. As computers have gotten faster and more powerful, 

the aeronautical industry has relied on them more and more as "key element[sJ of de­

sign" [72J. Along with the increase in computing power, there has also been advances in 

numerical modeling. The ability to create a virtual model of an aircraft design (instead 

of a physical one) and accurately determine its aerodynamic and aeroacoustic charac­

teristics has allowed for a greater understanding of not only how to design aircraft for 

specific purposes but of aerodynamics and aeroacoustics as well. Fabricating and testing 

scale models is expensive and the trial and error method of creating a single test model 

and running it through a series of tests doesn't always give the expected results [72J. 

CAA allows the "ability to assess change in noise due to change in geometry" [70J and 

give an important opportunity to "gain incites to the physics" [70J of aeroacoustics. 

The use of CAA allows for numerous configurations to be evaluated and for designs to 

be tailored to exactly match design requirements, such as aerodynamic performance, 

while staying within design constraints, such as noise generation. 

The aeroacoustics branch of computational design is a relatively new addition to 

numerical modeling. A CAA model can be narrowly defined as the computation of the 

unsteady pressure at every location in the simulated field [49J and was generally a series 

of aeroacoustic calculations performed after the completion of an aerodynamic analysis. 

Previously there was a process to determine the aeroacoustic characteristics of a design. 
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First the component geometry was analyzed using CFD to determine the aerodynamic 

properties and then a noise model was applied to the CFD solution to ascertain the 

noise created from the component. With current CAA methods the aerodynamics and 

aeroacoustics are modeled together allowing for the change from CAA being a diagnostic 

tool to a design tool. Instead of needing a complete CFD solution to determine the 

aeroacoustic properties of a design, current CAA methods allow for the computation 

of acoustic waves directly. The direct computation of the acoustic properties allows 

the designer to observe how the acoustics and the aerodynamics develop together in a 

time-dependant simulation. There are however inherent difficulties in the simulation 

of acoustics. The acoustic phenomena studied with CAA can generally be categorized 

as pressure or velocity disturbances that have low magnitude and high frequency [62J, 

characteristics that create difficulty with ordinary numerical modeling. Tam states that 

"the small magnitude of the acoustic disturbances ... [areJ usually smaller than the error 

incurred in the computation of the mean flow" [62J. This difficulty requires a specialized 

branch of computational methods specifically designed to deal with acoustic scenarios, 

namely computational aeroacoustics. 

CAA numerical methods require high accuracy, low numerical dissipation and low 

numerical dispersion error in order to maintain the structure and resolution of the acous­

tic phenomena being modeled. The use of a higher-order accurate method allows for the 

approximation of more complex problems. The small magnitude and high frequency of 

acoustic disturbances can be easily lost in numerical simulations with low order accu­

racy. Dissipation error is vitally important in CAA because it damp ens the already low 

magnitude of the acoustic disturbances. An example of the effect of dissipative error on 

a simple wave form can be seen in Figure 1.3. The velocity wave in plot (a) of Figure 1.3 

has lost its well-defined shape in plot (b). A numerical method that is subject to a large 

amount of dissipation error may lose any trace of the acoustic phenomena it is modeling 

and be left with only a uniform velocity or pressure field. Sources of dispersive error are 

also of paramount concern. Dispersion is a phenomenon that causes the separation of 

a wave into components of varying frequency. Waves of different frequencies propagate 

at different phase velocities allowing oscillations to be superimposed on the previously 

smooth wave. The effect dispersion has on a simple waveform can be seen in Figure 1.4. 

The high frequency oscillations displayed in plot (b) of Figure 1.4 can easily overcome 

the acoustic disturbances being modeled allowing for the dispersive error to overshadow 

the acoustic phenomena. Any numerical method that is to be used effectively for CAA 

simulations must have the following specifications: high accuracy, low dissipation error 
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Figure 1.3: Effect of Numerical Dissipation [2] 
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Figure 1.4: Effect of Numerical Dispersion [2] 

and low dispersion error. 

1.8 Current Numerical Methods Used For CAA 

There are numerous methods currently being used for the investigation of computational 

aeroacoustics. For the most part researchers employ structured methods in order to 

have high enough accuracy to complete useful simulations. There are numerous types 

of spatial and temporal discretisations employed with these methods. Few researchers 

use unstructured methods because these methods often lack the high levels of accuracy 

required for CAA problems. There are fewer types of discretisations either spatial 

or temporal in use for unstructured methods. The unstructured portion of this field 

has been left comparatively unexplored due to the lack of high order methods. The 

structured methods often lack the ability to deal with complex geometries, and the 

unstructured methods are often complex and computationally expensive. It is with 

these facts in mind that the development of a new unstructured method is proposed. 
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1.8.1 Current Structured Methods Used For CAA 

As stated previously, the majority of numerical methods used in Computational Aeroa­

coustics are developed for structured methods. Structured methods are used to maintain 

the high order of accuracy and low dispersion and dissipation characteristics needed to 

resolve acoustic phenomena. One of the best benefits of structured methods is the fact 

that the order of accuracy can often be raised merely by increasing the size of the stencil 

used by the discretisation approximation. This simple process of adding more neigh­

bouring points to the calculation of derivatives and other terms is not as easily achieved 

with unstructured methods. 

Spatial Discretisations 

There are numerous types of spatial discretisation used by researchers in the field of 

acoustics, from simple low order methods to much more complex and higher order for­

mulations. In some cases the use of a simple 2nd order accurate scheme, such as that 

employed by Djambazov and Peric1eous [22] as well as Radvogin and Zaitsev [58] can be 

used with limited results. More often, however, a higher order approximation is required 

such as the 4th order accurate central-difference discretisation used by Nark [52]. Re­

searchers typically opt for sixth-order accuracy or better and this high order accuracy is 

generally achieved by increasing the stencil size, such as with Tam's DRP method [68]. 

Another way to achieve high order accuracy, but without increasing the stencil is to 

use a compact scheme. Compact schemes use implicit factoring to increase the order 

of accuracy without increasing the stencil size. One example of a compact scheme is 

the 7-point Pade-type scheme used by Kim and Lee [46]. Another example is the 4th­

order accurate compact scheme of Fung [27, 28]. Hayder et al. [36] use a 6th-order 

accurate compact scheme in far-field noise applications as well. Hixon [37] uses a 8th­

order accurate compact scheme for his research which was formulated with inherent 

damping to deal with common errors associated with acoustic phenomena. This is an 

important addition to a compact scheme, as "compact difference schemes in general lack 

adequate numerical damping and filtering is often required to eliminate high frequency 

errors in the computational domain" [35]. Compact schemes have been shown to be 

quite useful in structured numerical methods, but the extension of the compact scheme 

onto unstructured meshes has it limitations. The work of Zingg and Lomax [74] as well 

as Thistanto [69] show that the compact schemes adapted for unstructured methods 
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suffer from a strong sensitivity to dispersion error and require equidistant neighbouring 

nodes as well as radial symmetry to guarantee accuracy. This makes the choice of 

compact schemes for aeroacoustics an unlikely one. The importance of having a low­

dispersion numerical method in aeroacoustics has already been discussed and for this 

reason compact schemes are unsuitable. 

Perhaps the most widely used higher order method is the Dispersion-Relation­

Preserving (DRP) discretisation developed by Tam and Webb [68]. The DRP discreti­

sation used a 7-point stencil to achieve sixth order accuracy and has been specifically 

tuned to have low dispersion error. The DRP method has been proven as an effective 

tool and numerous researchers have adopted it for the basis of their own aeroacoustic 

research, such as Zhuang and Chen [73], Chung and Morris [16], Hu et al. [44], Baysal 

et al. [10] and others. Other researchers have taken the DRP method as a starting 

point and adapted it for further applications. Cheong and Lee [14] have adapted the 

DRP scheme which was originally developed for uniform grids to the Grid-Optimized 

(GODRP) method which is designed for non-uniform and curvilinear meshes. Hixon et 

al. [38] also started with the DRP formulation but developed it into a MacCormack­

type upwinding scheme maintaining a 4th-order accurate spatial discretisation. There 

is no doubt that the DRP method is a useful numerical method for aeroacoustics, but 

it is limited to use only on structured meshes and performs best on uniform unstruc­

tured meshes. It is not possible to take the structured DRP method and adapt it to 

unstructured meshes. 

Taking the idea of increasing accuracy with an increased stencil size even further are 

spectral methods, a type of finite element method, some of which encompass 15 mesh 

points along each direction in the discretisation. These methods have been applied to 

CAA with success by researchers such as Bismuti and Kopriva [13], Hayder et al. [35] 

and Lin [47]. Bismuti and Kopriva use a Chebyshev spectral element approximation 

for the solution of CAA problems and Lin uses a Least Squares spectral element for­

mulation. Hayder et al. use a spectral method to approximate derivatives normal to 

boundaries to improve dissipation characteristics. These spectral methods require very 

large stencils, but have extremely high-order accuracy. The spectral element methods 

are computationally expensive and numerically complex. 

There is a gap in the research field between high-order structured methods and 

complex finite element methods and the investigation of this gap is the purpose of 

this present work, namely the development of a simple unstructured method that can 
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combine the functionality of unstructured meshes and the accuracy of the high-order 

structured methods. 

Temporal Discretisations 

There are not as many temporal discretisations being used for structured acoustic meth­

ods as the few that are used are quite effective. Many researchers use a standard 

Runge-Kutta time-stepping method. The Runge-Kutta method can be expanded sim­

ilar to a Taylor series allowing for 3rd order (RK3) or even 4th order (RK4) accuracy. 

The increase in accuracy is accomplished with additional pseudo-timesteps and coef­

ficient tuning. The RK3 temporal discretisation is employed by researchers such as 

Atkins [4], Radvogin and Zaitsev [58] and Lin [47]. The standard fourth-order RK4 

temporal discretisation is used by many researchers, such as Morris et al. [50], Rayder 

et al. [36], Nark [52] and many others [13, 14,46]. Tam and Webb [68] also developed 

a time-stepping algorithm to work directly with their DRP spatial discretisation. The 

low-dispersion, low-dissipation Runge-Kutta (LDDRK) temporal discretisation has op­

timized coefficients, transforming a standard Runge-Kutta scheme into one specifically 

designed to deal with acoustic phenomena. The combination of the DRP and LDDRK 

techniques creates a potent tool when dealing with aeroacoustics and are often utilized 

by other researchers. The LDDRK time-stepping algorithm is used by researchers such 

as Ru [44], Baysal et al. [10] and many others [37, 38, 63]. 

The standard and adapted RK timestepping methods are not the only temporal 

discretisations used in CAA. The compact scheme used by Fung [27, 28] employs an 

implicit time stepping algorithm. Djambazov and Pericleous use a semi-implicit 2nd­

order accurate temporal discretisation as well. 

Additional Treatments 

For numerous applications the use of spatial and temporal discretisation methods is 

accompanied by some other treatment such as damping or a boundary treatment. Tam 

and Shen [63] use both the DRP /LDDRK formulation along with artificial selective 

damping (ASD) to deal with nonlinear acoustic pulses. The artificial damping terms 

are added to damp out short wave components while leaving the long wave components 

unaffected. Tam and Webb [68] also employ a damping of the physical waves to increase 

stability and allow for a larger time step when computing solutions to aeroacoustic 
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problems. Zhuang and Chen [73] use the DRP scheme with the addition of artificial 

viscosity terms to deal with spurious waveforms that are not controlled by the optimized 

discretisations. Chung and Morris [16] used the DRP /LDDRK method along with a 

special solid boundary treatment. Their Impedance-Mismatch Method (IMM) simulates 

a solid wall with a characteristic impedance that is set to a different value than the 

true wall, reflecting acoustic waves in-phase and acting like a true wall. As a general 

note, Colon ius and Lele [17] state that "artificial dissipation that may be tolerable for 

hydrodynamic fluctuations can lead to unacceptable attenuation of acoustic waves" and 

since "acoustic radiation efficiency is invariably very low" numerical errors can upset 

the balance that is physically occurring within the acoustic field. One. such example 

is mentioned is the acoustic cancellation process that accompanies the use of dipole 

or quadrupole sources [17]. The use of additional treatments, such as ASD or special 

boundary treatments must be carefully considered in aeroacoustic research as they may 

have unforeseen consequences in these specific situations. 

One the most popular boundary treatments used for CAA problems is the Perfectly 

Matching Layer (PML) first developed by Berenger [11]. Berenger's PML technique 

was first developed for electro-magnetics, but was soon adapted for use with acoustic 

phenomena. Ru [40] was the first to apply the PML technique to aeroacoustics with 

success, and has since extended the use of PML methods from linear to nonlinear 

applications. One of the early requirements of the PML technique was that the variables 

needed to be split according to the spatial derivatives of the governing equations of the 

specified problem. Recently, Ru [41] has developed a new PML treatment where the 

splitting of the state variables is no longer necessary. The PML boundary treatment 

calls for the computational domain to be surrounded in an absorbing boundary layer. 

It is within this layer that the acoustic waves are damped out. One of the main benefits 

of the PML technique is that the interface between the internal domain and the PML 

domain does not reflect any waveforms, no matter what the frequency or angle of 

incidence. 

Because of the complex nature of acoustic problems, there are many other numerical 

treatments that are used for CAA calculations. Examples include a domain decomposi­

tion strategy employed by Morris et al. [50] as part of the parallelization of their CAA 

algorithm. Hixon et al. [38] employ smoothing techniques to avoid problems with forcing 

functions and source terms. Kim and Lee [45] have developed an adaptive non-linear 

artificial dissipation model for dealing with complex acoustic phenomena. Nark [52] 

has developed a staggered mesh approach which allows for the tailoring of the flux cal-
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culations at different grid points in the computational domain to better approximate 

how flow fields truly interact. There are other methods, both explicit and implicit that 

are used in CAA scenarios but the fact remains that these methods are all developed 

for structured meshes. The purpose of this present work is the investigation of un­

structured methods. Further discussion of the various merits and consequences of using 

the discretisation and additional numerical treatments listed above can be found in the 

references, but these techniques remain unsuitable for unstructured applications. 

1.8.2 The DRP jLDDRK Method 

As stated previously one of the most popular and effective structured methods used for 

CAA approximations is the DRP /LDDRK method developed by Tarn and Webb [63, 68]. 

For the simple reason that so many researchers choose the DRP /LDDRK method it was 

felt that a better explanation of what the algorithm entails was required. Since it is so 

widely used it is a useful reference in CAA research 

To approximate the first derivative of a variable f at the kth node of a structured 

mesh a 7-point central differencing approximation can be written as defined by Tarn 

and Webb as 

(Of) 1 3 - ~- ~ a-jk+' ox b..x ~ 3 3 
k j=-3 

(1.1) 

where b..x is the spacing of the mesh. If x is a continuous variable, the previous equation 

is a special case of the finite difference equation written as 

of 1 3 
-(x) ~ - L a-j(x + jb..x) 
ox b..x , 3 

3=-3 

(1.2) 

To determine the Fourier wave number of the finite difference scheme, the Fourier 

transform of the previous equation is 

(1.3) 

where rv refers to the Fourier transform and 0: is the Fourier wave number. Comparison 
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of the two sides of Equation 1.3 gives 

(1.4) 

where a is effectively the wave number of the finite difference scheme. Tarn and Webb 

chose coefficients aj so that the original derivative approximation of Equation 1.1 is 

accurate to (box)4 when expanded in a Taylor series. The coefficients that remain are 

chosen according to the error defined by 

(1.5) 

By choosing "l so that a is a close approximation of et over a wide band of wave numbers, 

the error E can be minimized. Tarn and Shen [66] recommended "l=1.1 giving the 

following coefficients: 

aO =0 al = -a-l = 0.770882380518 

a2 = -a-2 = -0.166705904415 

a3 = -a-3 = 0.208431427703 

(1.6) 

which can be used along with Equation 1.1 as the DRP first derivative approximation. 

Tarn and Webb state the time discretisation of a variable j can be approximated 

using four levels as 

3 (a j ) (n-j) 
j(n+1) - j(n) = bot L bj -

j=O at 
(1.7) 

where the superscripts (n + 1), (n) etc. refer to the time level. The Laplace transform 

of Equation 1.7 with zero initial condition gives 

. i (e-iw~t - 1) _ dj 
-z bot"~ b ·eijw~t j = dt 

L.J3=O 3 

(1.8) 

where f"V refers to the Laplace transform and w is the angular frequency. Tarn and 

Webb state that the Laplace transform of the time derivative becomes -iwj. By 

comparing the two sides of the previous equation the effective angular frequency of the 
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time marching scheme w is defined by Tarn and Webb as 

_ i (e- iwbot - 1) 
W=--'--"....---"'--

I:lt ,,~ b 'eijwbot 
L.JJ=o J 
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(1.9) 

The coefficients bj were determined by Tarn and Webb by requiring Equation 1.7 to be 

2nd order accurate giving 

bo 2.302558088838 

-2.491007599848 (1.10) 

b2 = 1.574340933182 

b3 -0.385891422172 

which can be used along with Equation 1.7 as the LDDRK time discretisation. 

1.8.3 Current Unstructured Methods Used for CAA 

Unstructured numerical methods are often overlooked when dealing with Computational 

Aeroacoustics as they often lack the required accuracy as well as the dispersion and 

dissipation characteristics needed to effectively deal with acoustic phenomena. There 

are numerous ways to adapt a structured method for aeroacoustics but there are few 

unstructured techniques that are available. 

Spatial Discretisations 

The most common spatial discretisation of an unstructured CAA method is the Dis­

continuous Galerkin (DG) method developed by Atkins and Shu [8]. The discontinuous 

Galerkin method has also been employed by Hu [43]. The DG method is similar to a 

standard finite element method in that instead of numerous nodes being employed to 

increase accuracy, fewer nodes are used with each node being described by a high-order 

polynomial. The DG method differs in that it is able to deal with basis functions that 

are discontinuous at cell interfaces. This allows for the application of the DG method 

in complex flows where shocks and other nonlinear flow phenomena are present. These 

methods are numerically complex in 2D and computationally expensive. The Atkins 

and Shu method contains a quadrature-free formulation that uses 5th order polynomials 
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to describe each of the elements within the domain. 

One example of the few non-Galerkin unstructured methods is that of Wang [71]. 

The term non-Galerkin is used here to described a finite element method that does not 

require continuous basis functions. Wang developed a spectral volume (SV) method, 

which is related to the DG method and unstructured spectral method. Wang's SV 

method avoids the volume integral required in the DG method by introducing more 

interfaces where Riemann problems are solved. This is another example of the high 

level of complexity involved in the unstructured methods currently in use with CAA 

research. 

All of these methods are numerically complex and computationally expensive. In 

the case of the DG method, for the simple benchmark test cases being investigated 

as part of this research the algorithm is too complex and computationally expensive -

particularly in three dimensions. DG methods show great promise for CAA problems 

but as yet the computational cost is overly expensive for 2D and prohibitively expensive 

for possible 3D applications. 

Temporal Discretisations 

As with the structured numerical methods there are not very many different temporal 

discretisation techniques employed for CAA methods. The Atkins and Shu method 

contains a 3 stage TVD Runge-Kutta time stepping formulation [8]. The discontinuous 

method has also be employed by Atkins and Lockard [7] with a LDDRK time stepping 

algorithm in place of the TVD Runge-Kutta scheme. 

Additional Treatments 

Work done by Atkins [6] allows for a PML boundary treatment to be applied to deal 

with the acoustic waves. Hu and Atkins [42] employ a similar strategy to that of Hu 

except that instead of using a PML treatment Hu and Atkins use an exact characteris­

tics split flux formula to separate the numerical wave modes into two forms. These two 

forms are the physically accurate mode and the spurious mode. The use of the split flux 

formula allows the spurious mode to become non-existent and allows for an accurate 

prediction of aeroacoustic flows. The application of unstructured methods to aeroacous­

tics is a difficult task. The requirements of high accuracy and control of dispersive and 
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dissipative error causes many researchers to remain using structured methods. Some re­

searchers opt to use a commercial finite-element package [39] instead of developing their 

own method in an attempt to profit from the adaptability of an unstructured approach 

without having to deal with the common lower accuracy of a standard unstructured 

method. 

1.8.4 The Discontinuous Galerkin Method 

As discussed in the previous section, the discontinuous Galerkin method developed by 

Atkins and Shu is the most common unstructured method used for CAA applications. 

Since it is the most common approach for unstructured CAA problems further expla­

nation of how it is implemented was warranted. This method is defined by Atkins and 

Shu [8] as being applicable to systems of first-order equations of the form 

aU -- + \7 . F(U) = 0 at (1.11) 

defined on some domain 0 with a boundary 00, where U refers to the velocity field made 

up of u, v components and P refers to fluxes f:, f:. The 0 domain can be expressed 

as a set of nonoverlapping elements Oi. Within each element Atkins and Shu solve the 

following equations: 

and 

N 

U ~ Vi = LVi,jbj 

j=l 

(1.12) 

(1.13) 

for k = 1,2, ... , N,bk is defined as a set of basis functions, and N refers to the total 

number of nonoverlapping elements. Equations 1.12 and 1.13 are obtained by projecting 

Equation 1.11 onto each member of the basis set and then integrating by parts. Atkins 

and Shu define the basis set as the set of polynomials that are defined local to the 

element. The solution U is approximated as an expansion in terms of the basis functions; 

thus both V and F are discontinuous at the boundary between adjacent elements. The 

discontinuity is treated by Atkins and Shu with an approximate Riemann flux, which 

is denoted pR in the above equation. The Jacobian of the transformation from global 

coordinates to elemental coordinates is defined as J i. In the usual implementation of the 
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DG method, the integrals are evaluated using quadrature formulas. In the quadrature 

free formulation of Atkins and Shu the integrals are reduced to a summation over the 

coefficients of the solution expansion. For the quadrature free approach, Atkins and 

Shu define the flux F to also be written as an expansion in terms of basis functions 

N 

F(U) ~ G(Vi) = LYj(Vi)bj (1.14) 
j=l 

A similar expansion is required for the Riemann flux approximation. There are numer­

ous other requirements involving the Jacobian and boundary integral terms which can 

be seen in [8]. 

1.8.5 Summary of Current CAA Methods 

Computational Aeroacoustic problems are typically solved using numerical methods de­

veloped on structured Cartesian meshes. The most common of these methods is the 

DRP scheme of Tarn and Webb [68]. The DRP scheme, along with the LDDRK time 

stepping formulation, is used time and again as the basis of CAA algorithms. Whether 

as the lone treatment for dealing with acoustic phenomena or as the discretisation 

method backed up by boundary treatments or numerical damping, the DRP /LDDRK 

combination has been used by many different researchers investigating aeroacoustics. 

The application of Berenger's electra-magnetic PML boundary treatments [11] onto 

aeroacoustic problems by Hu [40] is also a popular and effective choice. These methods, 

as well as the compact schemes and spectral element schemes, all have been employed 

successfully for CAA research but all have the same inherent flaw. They all require 

structured meshes and are therefore limited to simple geometries. The study of aeroa­

coustics has numerous applications in real life, almost all of them requiring the ability to 

deal with complex domains. The discontinuous Galerkin method of Atkins and Shu [8], 

the.most prevalent unstructured CAA method, has the ability to deal with complex ge­

ometries but is numerically complex and computationally expensive. The DG method 

is used most frequently in these applications because it is the one exception to the 

typically low accuracy of unstructured methods. 

Colonius and Lele [17] state that when solving problems of sound generation and 

propagation the numerical methods that are employed must be high-accuracy methods 

and suggest high-order accurate compact (Pade) and optimized finite difference and 

Runge-Kutta time marching schemes. They state that the particular care must be taken 
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when dealing with other known sources or error such as how the boundary conditions 

are imposed. Specifically they list that "careful attention must be accorded to issues of 

accuracy, artificial dissipation, non-reflecting and inflow/outflow BC and validation of 

results" [17]. Colonius and Lele stress that high fidelity methods, specifically DNS and 

LES schemes, should be chosen for roles in modeling the "flow physics and mechanisms 

of sound generation" citing "the importance of the resolving power of the discretisation 

as well as the computational efficiency of the overall scheme" [17]. 

In general, spectral and pseudo-spectral methods are very accurate and efficient for 

simple geometries and boundary conditions but lose effectiveness in complex geometries. 

The finite element and spectral element methods (such as DG methods) have been used 

by numerous researchers and show high accuracy as with high-order FD schemes but 

are more easily adapted to complex geometries with the use of complex unstructured 

meshes. The finite difference methods are most often used in CAA because they are 

easily extended to high-order accuracy but their greatest weakne~s is their reliance on 

structured grids. Each of the types of numerical methods have their strengths and weak­

nesses, but the basic trend is that greater accuracy can achieved at the cost of geometric 

complexity on one end of the spectrum, while at the other end solutions on a problem 

with an increasingly complex geometry are obtained with numerical methods that ei­

ther have lower accuracy (as with standard unstructured methods) or are exceptionally 

complex and computationally expensive (as with the DG and FE methods). 

The purpose of this research is to develop an unstructured numerical method that 

exists in the middle of these two extremes, a method that can handle complex geometries 

with an acceptable high order of accuracy high and low dispersion and dissipation error 

characteristics to be useful in the investigation of computational aeroacoustics. 

1.9 Benchmark Workshops for CAA 

As can be seen in the previous sections there are numerous methods currently employed 

by researchers in the field of aeroacoustics. When CAA was a relatively new branch of 

investigation a group of researchers devised a collection of benchmark problems to "ad­

dress issues relevant to the acoustic propagation of sound generated by fluid flow" [33]. 

It was recognized that a collection of test cases focusing on the fundamentals of model­

ing aeroacoustics would allow for the validation of models that had been developed for 

CAA scenarios as well as the further development of better models for more complex 
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flows. The original Benchmark proceedings [33J were published in 1995 and included 

problems dealing with determining the numerical dispersion and dissipation properties 

of a computation scheme modeling linear waves. Other benchmark problems in the first 

proceedings included the propagation of a pressure pulse and vortex within an infinite 

domain as well as the simulation of a nonuniform mean flow within a semi-infinite duct. 

The primary focus of the original Benchmark Workshop was on numerical accuracy, 

especially relating to dissipation and dispersion. The Second Benchmark Workshop [64J 

was completed in 1997 and contained a series of more realistic benchmark problems 

such as the acoustic scattering from a cylinder or a sphere, sound propagation through 

and radiation from a finite length duct, gust interaction with a turbine cascade, and 

sound generation by a cylinder in uniform flow. 

The Third CAA Workshop [20J was devised with the same emphasis in the second 

Workshop of computing acoustic problems that dealt with realistic scenarios. The 

main focus of the third Workshop was fan noise. The proceedings of the third CAA 

Workshop were published in 2000. For this series of test cases it was recognized that 

the complexity had increased so much as to warrant the comparison of the numerical 

approximations with well-documented experimental results. The benchmark problems 

from the third Workshop included modeling the propagation of sound through a narrow 

passage, the numerical approximation of the sound field generated by a rotor, the sound 

generation by the interaction of an airfoil with a vortical gust, modeling of rotor-stator 

interaction, the generation and radiation of acoustic waves from a 2-d shear layer, and 

an investigation into modeling automobile noise. 

The proceedings of the Fourth 'Computational Aeroacoustics Workshop on Bench­

mark Problems [21 J were published in 2004. The problems selected to be part of the 

fourth Workshop were also chosen to reflect realistic scenarios currently facing CAA 

researchers. These main focus of the Workshop included topics such as the issue of 

aliasing where spatial resolution errors affect the computation of sound, the interface 

condition problem, long-term stability and the accuracy of boundary treatments. Other 

test cases were chosen to highlight the ability of numerical methods to compute the 

sound interaction with surfaces which are geometrically complex, the approximation of 

sound generated by the interaction of airfoils and turbine cascades with vortical gusts, 

the simulation of sound transmitted through a turbulent shear layer, and the sound 

generated by viscous flows passing an object or cavity. 

The main purpose of the research present within this dissertation is the development 
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of a simple unstructured numerical method to be used for aeroacoustics. The focus is 

on determining how this unstructured method deals with modeling basic acoustic phe­

nomena. The numerical characteristics of the unstructured method are evaluated using 

benchmark problems taken from the first and second Benchmark Workshop proceed­

ings. These less complex test cases were chosen as they provide a simple but direct 

test for determining how a numerical method deals with the accuracy required by an 

aeroacoustic approximation as well as the opportunity for dissipation and dispersion 

errors to render a method ineffective. The exact description of the benchmark problems 

chosen for the evaluation of the unstructured method are presented in the following 

chapters. 

1.10 Objectives of Present Work 

The aim of the current work is to develop a simple (i.e. non-Galerkin) unstructured 

numerical method that is accurate and adaptable enough to be used in place of a 

high-order structured method when solving CAA problems. It is required that the 

unstructured method has low dispersion and dissipation errors, and that the method 

does not show any mesh sensitivity 

The objectives of the present work are: 

1. To develop a 2-D linearised Euler structured method for the computation of so­

lutions to CAA benchmark problems to provide baseline solution comparisons 

2. To develop a basic unstructured method for the computation of solutions to CAA 

benchmark problems 

3. To determine the best characteristics of the unstructured method by looking at 

the effects of: 

(a) gradient calculation methods 

(b) gradient reconstruction methods 

(c) mesh types 

(d) boundary conditions 

4. To determine the best combination of the options listed above 

5. To establish an approximate accuracy of the unstructured method 
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1.11 Outline of Thesis 

The research presented here is contained within the following four chapters. 

The general description of both the structured and unstructured numerical methods 

is contained within Chapter 2. The governing equations as well as the discretisations 

used in this research are described there as well. Also the various techniques (such as 

gradient calculation and reconstruction method) used to test the basic unstructured 

algorithm are included. 

Chapter 3 includes the description of the first CAA Benchmark Workshop problem 

chosen to evaluate the unstructured method as well as the specified mesh requirements, 

initial conditions and boundary conditions. This chapter also contains a discussion of 

the results achieved by both the structured and unstructured methods for the speci­

fied problem. The various characteristics of the unstructured method are tested and 

compared to the structured method solution as well as the analytical one. 

Chapter 4 contains the full description of the second CAA Benchmark Workshop 

test case as well as the results of the second series of calculations completed for this test 

case. The best combination of gradient approximation and reconstruction technique 

are taken from the previous chapter and used to test mesh dependency. The results are 

compared with both the structured calculation and solution taken from literature, as 

with the uniform mean flow problem. 

The final chapter contains a summary of the results discovered in the previous chap­

ters. These results are used to make conclusions about the objectives stated previously 

as well as generalisations about the effectiveness of the unstructured method. Chapter 

5 also contains possible recommendations for future work. 



Chapter 2 

Numerical Method 

2.1 Introduction 

In the process of designing the unstructured method presented in this research, two sep­

arate sets of calculations were completed to ensure that an accurate and robust method 

was developed. Two different aeroacoustic benchmark problems have been chosen from 

literature [33, 64]. These problems are specifically devised to include aeroacoustic phe­

nomena that an unstructured method must be able to simulate with a high level of 

accuracy. These phenomena include the expansion and convection of pressure waves, 

the convection of vortices and the interaction of pressure waves on solid surfaces. The 

aeroacoustic problems involve the approximation of a solution to the two-dimensional 

linearised Euler equations of the general form 

aW aF aG_
8 at + ax + ay -

2.2 The Linearised Euler Equations 

(2.1) 

The Euler equations describe the inviscid compressible flow of a fluid. They are used 

when neglecting the effects of viscosity as well as mass diffusion and thermal conductiv­

ity [2]. In two dimensions the Euler equations can be written as a group of four separate 

equations representing the conservation of mass, momentum (in each of the two dimen­

sions) and energy. When written in Cartesian coordinates and in partial differential 
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for,~, the conservation of mass equation, also known as the continuity equation, is 

op -- + V' . (pV) = 0 ot (2.2) 

where p represents the density of the fluid and V represents the velocity field. 

The conservation of momentum in the x direction is written as 

o(pu) (-) -oP ----at + V'. puV = ---a;- + plx (2.3) 

where u is the component of the velocity field V in the x direction, P represents the 

pressure field of the fluid and Ix represents body forces on the fluid in the x direction. 

The conservation of momentum in the y direction is written as 

o(pv) (-) -oP --+V'. pvV =--+pf at oy y 
(2.4) 

where Iy represents body forces on the fluid in the y direction. The Ix and Iy vector 

components of the body forces in the previous two equations can also be written in a 

combined form of f 

The conservation of energy equation can be written as 

(2.5) 

where e is the internal energy of the fluid, ~2 is the kinetic energy of the fluid, and q 
represents the volumetric heat transfer. 

The total energy E of the fluid can be expressed as the combination of the internal 

as well as the kinetic energy, or 

V2 

E=e+-
2 

(2.6) 

By neglecting any volumetric heat transfer and all external body forces, the 2-D 

Euler equations can be written in conservation vector form as 

(2.7) 



2.2 The Linearised Euler Equations 

with 

W= 

P 
pu 

pv 

E 

,F= 

pu 

P+pu2 

puv 

u(E +~) 

,c= 

pv 

puv 

P+pv2 

v(E +~) 
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(2.8) 

The equations can be modified to describe small amplitude disturbances superim­

posed on a uniform mean flow [68]. The energy of the fluid can be expressed as a 

function of pressure and density, or e = e(P,p), so that the linearised Euler equations 

which describe the disturbance are written as 

(2.9) 

with 

p Pou + PUo Pov + PVo 

u u u+ P vou 
W= F= o Po ,C= , P -v uov -+vov po 

(2.10) 

P uoP+,Pou voP+,Pov 

where Po is the magnitude of the initial density field, Po is the magnitude of the initial 

pressure field and Uo is the magnitude of the uniform mean flow. The ,-, superscript 

describes the small amplitude disturbances in each of the state variables. The state vari­

ables can be constructed with the initial mean flow component and the small amplitude 

perturbation component in the form 

P=Po+P (2.11) 

for density but similarly for u and v velocities and pressure P. The '0' subscript and 

,-, refer to the mean flow component and the disturbance component, respectively. The 

equations in 2.10 can be non-dimensionalised using a velocity scale of ao, a density scale 

of Po, and a pressure scale of poa6 to become 

aw' aF' ac' -+-+-=0 at ax ay (2.12) 
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where 

p' u' + Mxp' Myp' +v' 

W'= 
u' 

F'-
Myu' +P' 

,G'= 
Myu' 

v' ' -
Mxv' Myv' +P' 

(2.13) 

p' MxP' +u' MyP' +v' 

where Mx = :!!Jl, My = 1&, and ao = 1. The 'prime' notation refers to the variables as 
po Po 

being dimensionless variables. For simplicity the 'prime' superscripts are dropped and 

the governing equations are defined as describing the non-dimensional perturbations of 

the state variables for the remainder of the discussion. 

These governing equations represent a two-dimensional flow field, i.e. one that is 

not parallel to the x-axis. The two-dimensional velocity field can be represented by the 

terms Mx and My which refer to the x and y components respectively. The simplified 

form of the linearised Euler equations used as the basis of this research can be written 

as 

p u+Mxp Myp+v 

u Mxu+P 
,G= 

Myu 
(2.14) W= ,F= 

v Mxv Myv+P 

P MxP+u MyP+v 

This form of the linearised Euler equations provide the basis of the two types of test 

case problems investigated as part of this research. 

For each of the specified problems, a structured numerical method is used to com­

plete a calculation that will later be compared with unstructured calculations to deter­

mine how accurate the unstructured method is. The structured methods use standard 

central-differencing spatial approximations, and a basic Runge-Kutta time discretisa­

tion. The structured methods also have simple boundary conditions. 

Once the structured calculation was completed, the unstructured method was tested 

with different gradient approximation techniques and different quadrature formulations. 

The unstructured method also used three different meshes to complete a series of cal­

culations. Once all of the unstructured calculations were completed, all of the different 

combinations were compared against analytical or published solutions as well as the 

structured calculation. This process allowed the most accurate choice of gradient ap­

proximation technique, quadrature formulation and mesh type to be chosen to make 
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the unstructured numerical method. The completion of a structured calculation, which 

has a specific order of accuracy, allows for the determination of the approximate order 

of accuracy of the unstructured method. 

2.3 Structured Numerical Method 

The structured numerical method developed for the two different benchmark problems 

both use a finite-difference approximation to solve the governing partial differential 

equation with the option to use either a sixth-order accurate central-difference for­

mulation or a fourth-order accurate central-difference formulation. The two different 

problems investigated also use two different structured meshes, the uniform mean flow 

problem uses an H-type mesh while the scattering problem uses an O-type mesh. The 

two problems use similar adaptive stencils to maintain accuracy near boundaries as well. 

The adaptive stencils change from a standard central-differencing formulation to one 

with more interior points as the calculation point nears a boundary. 

2.3.1 Spatial Discretisation 

The standard sixth-order central-difference approximation used to solve the governing 

PDE was derived from Taylor series expansion [2] for use on uniform meshes. The 

partial derivative ¥X of the governing equation at any point on the numerical grid 

(i,j) is represented by a finite difference approximation that is sixth-order accurate by 

employing data from six neighbouring grid points in the following form: 

OFI R+3 . - 9R+2 . + 45R . - 45R_ I . + 9R_2 . - R-3 . _ t ,) t ,) t,) t ,) t ,) t ,) 

ox .. - 60~x 
t,) 

(2.15) 

where i + 1,2,3 refers to the mesh points to the right of the calculation point (i,j) and 

i-I, 2, 3 refers to the mesh points to the left of (i, j). 

The standard fourth-order central-difference approximation employs four mesh 

points in the following form 

of I FL2 . - 8ELI . + 8R+I . - R+2 . __ t,) t,) t,) t,) 

ox . . 12~x 
t,) 

(2.16) 

Although the derivative approximations described above are all expressed with the 
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variable F changing in the x direction (Le. the stencil encompasses various i locations 

for a particular j) the same stencils can be used to calculate the derivative of variable 

G in the y direction by using various j locations for a particular i. 

2.3.2 Temporal Discretisation 

The time discretisation used in the structured method involves a basic Runge-Kutta 

four stage method (RK4). The standard RK4 scheme, which uses the current time step 

(WN) to calculate the next time step (WN+1), is written as: 

w(O) = WN 

W(1) = W(O) + a1 . jj.t . Res(W(O)) 

W(2) = W(O) + a2 . jj.t . Res(W(1)) (2.17) 

W(3) = W(O) + a3 . jj.t . Res(W(2)) 

W(4) W(O) + a4 . jj.t . Res(W(3)) 

WN+1 = W(4) 

where the superscripts (0),(1), ... refer to pseudo-time steps, the ai terms refer to the 

Runge-Kutta coefficients, jj.t refers to the computational time step and Res(W(i)) refers 

to the residuals calculated at each pseudo-time step. The residuals are the finite differ­

ence approximations of the flux terms of the governing equations, Le. the ~~ and ~~ 

terms. The RK-4 coefficients are tuned to give fourth order temporal accuracy and are 

specified as 

(2.18) 

2.3.3 Mesh Specification 

Uniform Mean Flow Problem 

For the first Benchmark problem, the specified problem domain encompasses a region 

from x = -100 to x = 100 and from y = -100 to y = 100. The grid spacing throughout 

the entire domain has jj.x and jj.y equal to one, creating a uniform grid of 40,000 

cells. The specified domain is extended a further ten grid cells in all directions to 
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Y=110 

Y 

X=-110 X=110 
x 

Y=-110 

Figure 2.1: Specifications of Structured Mesh for Uniform Mean Flow Problem 

ensure that neither the pressure pulse nor the vortex have any interaction with the 

boundary treatments. The new computational domain ranges from x = [-110,110] and 

y = [-110,110], although only the specified domain will be examined. A schematic 

of the mesh used to calculate solutions using the structured numerical method can be 

seen in Figure 2.1. The addition of an extended computational domain increased the 

number of cells in the structured mesh from 40,000 to 48,400 cells. The mesh is also 

defined as being NX by NY nodes (221x221), where the i and j indices begin at the 

lower left (x, y)=(-110,-110) corner. The NX and NY terms refer to the number of 

computational nodes in the x and y directions respectively. 
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Scattering Problem 

The specified domain of the second Benchmark problem, the scattering problem, is de­

scribed by a circular mesh with a diameter of 30 units (30 cylinder diameters). The 

entire cylinder is surrounded by continuous mesh which is divided into 600 equal cir­

cumferential segments and 290 equal radial segments. This creates a basic mesh with 

174,000 cells. A schematic of the mesh used for the structured calculations can be seen 

in Figure 2.2. 

y 

Figure 2.2: Specifications of Structured Mesh for Scattering Problem 

The structured mesh also contains a cut along the line x = 0 from y = -0.5 to 

y = -15, or along () = 2700
• Along this cut, the continuity of the method is enforced 

with a periodic boundary condition using two phantom cells on each boundary to match 

the fourth-order accurate spatial discretisation. Phantom cells are non-physical cells 

that are added to the numerical mesh as a location to hold data that occurs across 

a periodic boundary but is required as part of the spatial discretisation. The specific 

location and use of phantom cells for this application is discussed below with the rest 

of the boundary treatments. For the application of the outflow boundary condition no 

phantom cell is included at the outer boundary, instead the condition is enforced on the 
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boundary vertex directly. Similarly, for the application of the solid boundary condition 

the no-flow condition is also enforced directly on the cylinder surface. The inclusion of 

the four periodic boundary cells creates a computational mesh of 175,160 cells (290 cells 

by 604 cells). The scattering problem mesh is also defined as being NR by NT nodes 

(291x605), where the i index begins at r = 0.5 and the j index begins at the left most 

boundary of the two phantom cells at B = 2700
• The NR and NT terms refer to the 

number of computational nodes in the radial and circumferential directions respectively. 

2.3.4 Boundary Condition Implementation 

Uniform Mean Flow Problem 

The uniform mean flow problem has very simple outflow boundary conditions requiring 

a zero gradient for all of the state variables at the boundary. These conditions are 

applied directly on the external boundaries of the computational domain using a simple 

first-order gradient approximation. These boundary conditions can also be applied in 

a similar fashion for the upper and lower outflow boundaries using the same first order 

approximation. 

Scattering Problem 

The Benchmark Proceedings specifies only two boundary conditions for the scattering 

problem but because of the use of an O-type mesh, a third boundary condition is 

required. The two specified BCs are for the outflow boundary and the solid cylinder at 

the cent er of the mesh. The third boundary condition required is a periodic boundary 

condition to deal with the cut in the mesh below the cylinder. 

Solid Boundary Condition The outflow boundary conditions for the scattering problem 

require that the pressure gradient normal to the cylinder is equal to zero and that there 

is no radial component of the velocity field. As with the outflow boundary conditions of 

the uniform mean flow problem, these conditions are applied directly on the boundary 

vertex of the computational mesh. The pressure gradient is approximated using a 

simple first-order formulation and the radial velocity boundary condition is applied by 

explicitly setting the variable equal to zero at the boundary. 
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Outflow Boundary Condition The outflow boundary condition for the scattering prob­

lem requires the gradient of all three of the state variables to be equal to zero at the 

outer boundary. This boundary condition is applied in the same way as all the previ­

ous treatments, with a first-order approximation formulated using the last two vertices 

along each radial mesh line. 

Periodic Boundary Condition The periodic boundary condition is used to maintain 

continuity in the mesh where an overlap exists. Two phantom cells are used on each 

end of the mesh for the entire radius, creating a seamless link and allowing information 

to pass through without any errors. The two cells are used to ensure that the fourth 

order accurate spatial discretisation is able to be used from one edge of the mesh to the 

other, without effecting the accuracy of the approximation. A schematic of the periodic 

boundary condition can be seen in Figure 2.3. where J refers to the vertex index and 

J=5 

J=4 

J=.3 

J=2 

J=I 

/ / 

I ~ I / 
----+-,f-..,/I-----H--I/~---+---Ist Bdy 
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................... , .............................................................. ... L ................. Phantom 

J=NT, ..................................................... , ................................. , .................. Cells 
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I I ; J=NT-2 ---.;-----+--+--i-----+-+-i--- 2nd Bdy 
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1
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1
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J=NT-4----f-------+------t---

Figure 2.3: Schematic of Periodic Boundary Condition 

NT refers to the total number of vertices along the circumference of the mesh. The first 

and second boundaries shown in Figure 2.3 actually lie one on top of the other, so that 

every time step the information from the cells bordering the first boundary are placed 

into the corresponding phantom cells bordering the second boundary, and vice versa. 

2.3.5 Maintaining Accuracy of the Spatial Discretisation 

As the location where the residual component is calculated nears the boundary, the 

number of mesh points available away from the center of the domain decreases and 

the approximation stencil needs to be adjusted. To maintain the accuracy used for 
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the calculation, seven mesh points are continually needed for sixth-order accuracy and 

five mesh points are needed for fourth-order accuracy. As the calculation point nears 

the boundary the stencil no longer has the correct number of mesh points available to 

use central-differencing. To maintain accuracy, the central-differencing approximation 

is replaced with an equivalent approximation that has more mesh points towards the 

interior of the domain. In this manner, the correct number of data points can always be 

used to determine the approximation of the gradients and the different combinations of 

coefficients allow for the calculation point to progress towards the boundary normally. 

A diagram of the different boundary treatments used for the structured method can 

be seen in Figures 2.4 and 2.5. For these figures the successive lines represent different 

stencil locations. The solid line represents the boundary of the computational domain, 

and the dashed lines represent the interior cells. The circular dots represent mesh point 

used to determine the residual terms around the calculation point, which is represented 

with the square. 

In Figure 2.6, it can be seen that the periodic boundary treatment allows the fourth­

order central-difference stencil to be used without adjustment up to the boundary. In 

this figure, the dotted line represents the phantom or boundary cells and the other lines 

represent the same mesh cells as with Figures 2.4 and 2.5. Since two phantom cells exist 

outside the boundary, the stencil does not need to be adjusted. The periodic boundary 

treatment can be used to determine the value of the data stored at the phantom cells. 

Figures 2.4 and 2.5 show how different stencils are required to maintain accuracy 

as the calculation point nears the boundary, a treatment that is used on all of the 

boundaries in the uniform mean flow problem, and the inner and outer boundaries of 

the scattering problem. 

Uniform Mean Flow Problem 

In Figure 2.4 the impact of the calculation point nearing the boundary can be seen 

and its effect on the arrangement of the surrounding six data points used to maintain 

accuracy. The sixth-order stencil needs to be adjusted from a three-ahead three-behind 

format, to a six-behind format. The three-ahead three-behind stencil can be seen on 

the top line in Figure 2.4. The different stencils required as the calculation point nears 

the boundary can be seen on the successive mesh lines of Figure 2.4, ending with the 

calculation point on the boundary, and the stencil requiring the six preceding (six­

behind) mesh points for accuracy. 
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The three different sixth-order stencils used as the calculation point nears the right 

and upper (maximum value of i) boundaries are determined from further expansion of 

the Taylor series used for the central-difference approximation [2]. These. stencils are 

written as 

8F I F'c-4 ·-8F'<-3 +30F'<-2 '-80F'<-1 +35R +24F'c+1 ·-2F-+2 . _ = 1 ,1 1,1 1. ,J t ,1 1,1 1 ,1 t ,1 

8x .. 60llx 
t,J 

(2.19) 

8F I = -2Fi-5,j+15Fi-4,j-50Fi-3,j+lOOFi_2,j-150Fi_1,j+77Fi,j+10FH1,j 
8x .. 60llx 

t,J 

(2.20) 

8F I = 10Fi_6,j-72Fi_5,j+225Fi_4,j-400Fi_3,j+450Fi_2,j-360Fi_1,j+147Fi,j 
8x .. 60llx 

t,J 

(2.21) 

The equivalent process is used at the left and lower boundaries. The three different 

sixth-order stencils used to approximate the flux as the calculation point neared the left 

and lower (minimum value of i) boundaries are 

8F I 2R_2 '-24R_1 '-35R +80R+1 ·-30R+2 '+8R+3 '-R+4 ' _ t,1 t,1 1,1 t)1 t ,1 t,1 t ,1 

8x .. - 60llx 
t,J 

(2.22) 

8F I - -lOFi-1,j-77Fi,j+150FH1,j-lOOFH2,j+50FH3,j-15FiH,j+2FH5,j 
- - 60llx 8x .. 

t,J 

(2.23) 

8F I = -147Fi,j+360FH1,j-450FH2,j+400FH3,j-225Fi+4.j+72Fi+5,j-lOFH6,j 
8x .. 60llx 

t,J . 

(2.24) 

Scattering Problem 

As with the uniform mean flow problem, the scattering problem also uses an adaptive 

stencil as the calculation point nears a mesh boundary. The two different fourth-order 

stencils used to approximate the residual term as the calculation point nears the maxi­

mum i boundary are 

8F I = -Fi- 3,j + 6Fi-2,j - 18Fi-l,j + 10Fi,j + 3Fi+l,j 
8x .. 12Llx 

t,J 

(2.25) 

8F I - 3Fi-4,j - 16Fi-3,j + 36Fi-2,j - 48Fi-l,j + 25Fi,j 
8x .. 12Llx 

t,J 

(2.26) 

As the flux point nears the minimum i boundary, the two fourth-order stencils used 
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to calculate the first derivative approximation are 

~~I .. 
~,J 

-3Fi-l,j - 10Fi,j + 18FH1,j - 6FH2 ,j + FH 3,j 

12.D.x 

of I -25Fi ,j + 48FH1 ,j - 36FH2,j + 16FH3,j - 3FH4 ,j 
ox .. = 12.D.x 

~,J 
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(2.27) 

(2.28) 

Although the derivatives approximations described above are all expressed with the 

variable F changing in the x direction the same stencils can be used to calculate the 

derivative of variable G in the y direction by using various j locations for a particular 

i, just as with the central-difference approximations used in Section 2.3.1. 
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2.4 Unstructured Numerical Method 

The unstructured method developed for this research employs a finite volume formu­

lation with the ability to use a combination of three different gradient reconstruction 

techniques and two different Gaussian quadrature approximations. The method was 

developed with a vertex-based data structure and a median dual control volume formu­

lation. The three different gradient reconstruction techniques include a Green-Gauss ap­

proximation method, as well as a Least Squares reconstruction approach and a weighted 

Least Squares approach. The gradient reconstruction approximations are coupled with 

the option of using either single or dual point quadrature formulations. This combi­

nation of reconstruction techniques and quadrature options is also combined with a 

collection of three different calculation meshes to fully test the unstructured method for 

possible sources of error, possible mesh type dependency and any other characteristic 

behaviour when dealing with the CAA test cases. 

2.4.1 Spatial Discretisation 

As stated previously, the unstructured method used for this research is based upon a 

vertex-based median dual finite volume approximation of the linearised Euler equations. 

The vertex-based data structure was chosen because it most closely mirrored the data 

structure of the structured numerical method used for accuracy comparison. The vertex­

based data structure also allowed for the application of the simple boundary conditions 

stipulated in the Benchmark test cases. Although all of the unstructured meshes used 

in this research contain triangular cells only, the use of a median dual control volume 

allows for the mesh cells to be any shape. The dual cell is constructed using cell centroids 

and edge midpoints. A median dual of five cells, such as those that are found in the 

meshes used here, is shown in Figure 2.7. The dual cell constructed from the five cells is 

associated with the vertex that the five cells share. The fact that each dual is associated 

with a single vertex agrees with the vertex-based data structure. 

As stated previously the unstructured method developed for this research uses a 

finite volume approximation to solve the linearised Euler equations. With this in mind, 

the generic conservation equation [34] for any arbitrary volume no can be stated by 

: ( WodA + 1 f(W) . nds = 1 g(W, V'W) . nds + { s(W, V'W)dA (2.29) 
t } no !ano !ano } no 
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Figure 2.7: Median Dual Control Volume 

where W refers to the state variable of the equation, no refers to the control volume, 

ano refers to the surface of the control volume, and f, 9 and s refer to the terms in the 

general conservation equation. 

Using the above equation as a base, the governing equations used for the unstruc­

tured method can be written as 

1 awo i -7)dA+ f(W)· nds = 0 
no t 8no 

(2.30) 

In this particular case, W refers to the state vector which contains all of the state 

variables and W refers to the gradient vector defined for the general governing equation 

as 

f(W) = aF + aG 
ax ay (2.31) 

For this particular unstructured method, the value of the state variables in the 

control volume is taken as a constant across the entire volume at any time so that 

1 awo dA = A dWo 
at no dt no 

(2.32) 

where Aoo refers to the area of the control volume. The finite volume formulation of 

the general governing equation can then be rewritten as 

dWo i -Ano -
d 

+ f(W)· nds = 0 
t 800 

(2.33) 

For a generic polygonal control volume such as the median dual control volume used 

in this method, the surface integrals computed along the polygonal surface of a control 
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volume with n f sides become 

nf 

awo "in -A no -
d
- + L.J f(W}· nds = 0 
t i=l anOi 

(2.34) 

where anOi is the control volume face separating the current control volume no and any 

neighbouring control volume ni . 

The fluxes are evaluated using Gaussian quadrature with na points and the source 

control volume is assumed constant to give 

(2.35) 

where ~SOi is the length of the control volume face between control volumes no and ni, 
s is a parameterised coordinate along the control volume face and Wj is the quadrature 

weight. The inviscid flux is calculated along the edge extending from the center of 

control volume no to its neighbour ni. Along this edge the inviscid flux is approximated 

by 

(2.36) 

where Land R refer to the left and right points of edge Oi respectively, 1> refers to the 

function used to resolve the flux approximation, WOi,L and WOi,R refer to the gradient 

vectors reconstructed at the left and right points of edge Oi respectively, and nOi refers 

to the normal vector describing edge Oi. For second order accurate Gaussian quadrature 

the midpoint rule is used giving 

nf 

awo "[ - ] An0at + L.J f(W}· n Oi~SOi = 0 
i=l 

(2.37) 

Second order accuracy of the finite volume formulation is obtained by using 

(- - ) 1[- -] 1> WOi,L, WOi,R; n = 2" WOi,L + WOi,R . nOi (2.38) 

where nOi is the unit vector that describe the edge Oi. With this flux approximation the 

general governing equation of the unstructured method becomes 

nf 
awo ,,1 [- -] Ano at + L.J 2" W Oi,L + WOi,R . nOi ~SOi = 0 

i=l 

(2.39) 
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The reconstructed left and right state variables, WOi,L and WOi,R are computed using 

one of two different techniques depending on the choice of the number of quadrature 

points used. This formulation is only for a single control volume however. For the entire 

computational domain this calculation must be repeated for every vertex, taking into 

account every cell edge that is attached to each particular vertex. 

Reconstruction Techniques 

Two reconstruction techniques are used with the finite volume calculation methods. 

The first technique. uses a single quadrature point located at the midpoint of each 

edge connecting the calculation vertex (0) with its neighbour (i). The W terms are 

determined using the two cell centroids (Cl and C2) of the primary cells adjacent to 

the calculation edge to reconstruct the state variable located at point Q, as shown in 

Figure 2.8(a). The variables are reconstructed as follows: 

- 1 
W Oi,L = Wo + "2 (\7W)o . TOi (2.40) 

- 1 
Wo· R = w,. - -(\7W)·· fo· ~, ~ 2 ~ ~ (2.41) 

where Wo is the value of the W state variable at the 0 vertex and (\7W)o is the calculated 

gradient of W at the 0 vertex. The terms Wi and (\7W)i are similarly defined, but for 

the i vertex. The TOi term refers to the vector from vertex 0 to vertex i. 

Instead of calculating the reconstructed values of W by using the entire Oi edge, the 

quadrature point Q can be referenced directly as in 

W Oi,L = Wo + (\7W)o . TOQ (2.42) 

and 

(2.43) 

where TOQ refers to the vector from the 0 vertex to the quadrature point and GQ refers to 

the vector from the i vertex to the quadrature point. By calculating the reconstructed 

values in this way, it is easier to extend the same formulation to the use of two quadrature 

points. 

The second reconstruction technique uses two quadrature points for each cell edge. 
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Figure 2.8: Quadrature Point Specification 
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The two quadrature points Ql and Q2 are situated halfway between the midpoint of 

the calculation edge (M) and the corresponding primary cell centroids (Cl and C2, 

respectively). The locations of the quadrature points can be seen in Figure 2.8 (b). The 

o vertex variables are reconstructed at each of the two quadrature points using 

W Oi,L = W Oi,LI + W Oi,L2 (2.44) 

where WOi,LI refers to the term calculated using the Ql quadrature point and the 0 

vertex, and W Oi,L2 refers to the term calculated using the Q2 quadrature point and the 

o vertex. The i vertex term is reconstructed using 

WOi,R = W Oi,RI + W Oi ,R2 (2.45) 

where W Oi RI and WOi R2 refer to the terms calculated with the i vertex and the Ql and , , 

Q2 quadrature points, respectively. The WOi,LI quadrature component is calculated 

using 

WOi,LI = Wo + (V'W)o . ToQI (2.46) 

where ToQI is the vector from the 0 vertex to Ql. The WOi,L2 quadrature component is 

calculated using 

WOi,L2 = Wo + (V'W)o . ToQ2 (2.47) 

where rQQ2 is the vector from the 0 vertex to Q2. The right-hand (WOi,Rl and WOi,R2) 

variables are reconstructed similarly. 

Green Gauss Gradient Approximations 

The first technique used in approximating the gradient of the state variables in the 

unstructured method uses the Green Gauss formulation. The Green Gauss theorem [9] 

can be written 

r V'W dA = J Wiids 
Jnol fanol 

(2.48) 
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where ri is the unit normal vector along surface aoo'. The derivative can be approxi­

mated as 

(\i'W)O = A 
1 1 W rids 
no' !ano' 

(2.49) 

where 0 0, is the area of all triangular cells surrounding vertex O. 

At ·interior vertices, the trapezoidal rule can be used to give 

(2.50) 

where ni+1 is a scaled normal vector and vo is the number of cells neighbouring vertex 
2 

O. The sum is cyclic so the indices can be shifted to give 

(2.51) 

the sum of the normal is always equal to zero, so a constant was added giving 

(2.52) 

The identities 

(2.53) 

1 
n· 1 = 3no' 2 + -no' t- 2 t, 2 t (2.54) 

can be used to give 

(2.55) 

Using the fact that each dual edge consists of two segments, complexity is reduced 

by replacing the two segments nOi,l and nOi,2 with a single term nOi where 

n
' nOi,l~sOi,l + nOi,2~sOi,2 

Oi = 
~SOi 

(2.56) 
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which allows the gradient of W to be approximated as 

(2.57) 

Also, the area of the median dual is equal to one third of the area of the surrounding 

triangles or 

AnOI _ A --- no 
3 

giving 

(2.58) 

(2.59) 

The above equation is used to calculated the gradient of any control volume centered 

at vertex 0 using values of W at its adjacent neighbours, the control volumes associated 

with vertices i. Since the gradients are calculated on an edge by edge basis, the contri­

bution of each adjacent i vertex is added to the total gradient stored at vertex O. Once 

all of the edges have been passed over with this formulation, every median dual control 

volume has a gradient stored at its corresponding vertex. 

Least Squares Approximations 

The second and third techniques used in approximating the gradient of the state vari­

ables in the unstructured method both use the same formulation. The Least Squares 

gradient approximation technique is derived using the same equations as the weighted 

Least Squares formulation [3]. The difference between the linear Least Squares approx­

imation method and the weighted Least Squares reconstruction method is controlled 

by the weighting variable P. For weighted Least Square gradient approximation, the 

neighbours of vertex 0 can be used to approximate gradients \7W with 

~Ol (Xl - XO) ~01 (YI - YO) ~01(WI - Wo) 

~02(X2 - xo) ~02(Y2 - YO) { aw 

L 
~02(W2 - Wo) ex (2.60) aw ay 

~Odo (XdO - xo) ~Odo (YdO - YO) ~Odo(WdO - Wo) 
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where do refers to the total number of neighbours of vertex 0 and where 

(2.61) 

and the use of ~ determines whether the Least Square approximation is linear (P = 0) or 

weighted (P > 0). In the calculations completed as part of this research, weighted Least 

Squares was always used with P = 1 to give an approximation that contains a weighting 

factor that is inversely proportional to the distance between mesh vertices. The standard 

Least Squares gradient approximation method is calculated using a weighting factor 

that is directly proportional to the distance between mesh vertices. This change in 

the dependence of the method on the distance between vertices is the only factor that 

separates the two Least Squares methods. 

Equation 2.61 can be written in the form ofAx = b but with this particular for­

mulation the A matrix is of the form AT A = I and is therefore ill-conditioned. A 

Gram-Schmidt method [32] can be employed by substituting A = QR to improve the 

solution. In this formulation Q is a matrix do rows by 2 columns and R is a matrix of 

size 2 by 2. This gives the new form of 

QRx=b (2.62) 

which can be rewritten using QT Q = I to give 

(2.63) 

This new formulation allows the approximation method greater accuracy without 

the effects of the ill conditioned matrix. The decomposed approximation technique can 

be further derived [34] with the a, q and r components of A, Q and R (respectively) 

using 

(2.64) 

or 

al = rn,oql (2.65) 

(2.66) 
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The previous two equations can be inverted to give 

(2.67) 

(2.68) 

then the ql term can be rewritten as 

al al 
ql =--=--lIalll TU,D 

(2.69) 

where the TU,D coefficient can be stated as 

(2.70) 

In addition, a new term a~ can be used with 

(2.71) 

and the q2 term can be rewritten as 

(2.72) 

Rewriting Equation 2.71 gives 

(2.73) 

which can then be rewritten as 

(2.74) 

The Tl2 term can be defined as 

1 '" 2 Tl2 = -- L.J ~Di(Xi - XO)(Yi - YO) 
TU,D O. 

tEEo 

(2.75) 
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and Equation 2.74 can then be written as 

(2.76) 

to give 

(2.77) 

which can then be written as 

Ila~112 = L ~5i(Yi - YO)2 - rr2 (2.78) 
Oi€E:o 

The r22,O term can be defined as 

r22,O = L ~5i(Yi - YO)2 - rr2 (2.79) 
OifEO 

Going back to the matrix formulation of x = R-1QTb (Equation 2.63), the gradients 

can be approximated using 

(\7W)O = L WOi(Wi - Wo) (2.80) 
OifEO 

where the WOi terms come from the Gram-Schmidt decomposition and are expressed as 

{ 
Wx,Oi } 

WOi = 
Wy,Oi 

(2.81) 

where 

~5i ( . ) ~5ir12,o [( ) ( ) r12,O] Wx,Oi = -2- xi - Xo - 2 Yi - Yo - Xi - Xo --
rll,O rll,Or22 ,O rll,O 

(2.82) 

~5i [( ) ( ) r 12,O] Wy,Oi = -2- Yi - Yo - Xi - Xo --
r 22 ,O r11,O 

(2.83) 

The weighted Least Squares gradients are calculated by looping over all edges of a 

polygonal control volume, and can be stored on a nodal basis, as with the Green-Gauss 

gradients. The formulation described above seems complex but computing the constant 
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rij coefficients during preprocessing allows for simplification. 

2.4.2 Temporal Discretisation 

The time discretisation for the unstructured method involves the same standard Runge­

Kutta four stage method (RK4) as used for the structured calculations. The derivation 

of the RK4 scheme can be found in Section 2.3.2. 

2.4.3 Mesh Specification 

The different meshes tested with the unstructured method include two semi-structured 

meshes created using the structured mesh and a purely unstructured mesh created using 

a commercial mesh generation package. The two semi-structured meshes have a regular 

repeating pattern due to their construction. The meshes are created by cutting the 

structured mesh cells diagonally in half. A section of the original structured mesh used 

to create the triangular meshes can be seen in Figure 2.9. The two meshes, NEG and 

UK, are created by either cutting every cell in the structured mesh using a line with a 

negative slope (NEG mesh) or an alternating slope pattern creating a triangular mesh 

resembling a Union Jack flag (UK mesh), as can be seen in Figures 2.10 and 2.11. 

The purely unstructured mesh is created by specifying the boundaries of the structured 

mesh (for example ~x = ~y = 1.0 along x = [-110,110] and y = [-110,110] for 

the uniform mean flow problem) and using a paving algorithm to fill the interior. The 

purely unstructured meshes were created using a commercial program using a Delaunay 

formulation. A section of the TRI mesh can be seen in Figure 2.12). Test calculations 

on the semi-structured meshes are used to determine the influence of the orientation 

of the dominant diagonal edge on the numerical method. The NEG mesh has all the 

long edges aligned, which could cause distortion of the acoustic structures, and the UK 

mesh has an alternating pattern which mayor may not have the same effect. In both 

the NEG and UK meshes, there exists an regular repeated pattern which also may have 

some effect. Test calculations on the TRI mesh are used to determine the influence of 

the random orientation of the cells on the numerical scheme. 

In addition to the NEG and UK meshes, a third semi-structured mesh, POS, can 

be created by cutting the structured mesh cell diagonally in half using a line with a 

positive slope. This creates a mesh identical to the NEG mesh, merely rotated 90°. 

After completing preliminary calculations using both the POS and NEG meshes, it was 
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Figure 2.9: Section of Structured Mesh for Uniform Mean Flow Problem 
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Figure 2.10: Section of NEG Mesh and NEG Dual for Uniform Mean Flow Problem 
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Figure 2.11: Section of UK Mesh and UK Duals for Uniform Mean Flow Problem 
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Figure 2.12: Section of TRl Mesh and TRI Duals for Uniform Mean Flow Problem 
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determined that any possible mesh dependencies could be demonstrated using only the 

NEG mesh and the POS mesh would be reserved for confirming any possible mesh 

sensitivity characteristics that arise with the use of the NEG mesh. This decision was 

made based on the fact that both meshes had the same uniform orientation of long 

edges and neither had the alternating pattern of the UK mesh. For that reason, only 

the calculations completed on the NEG and UK mesh are used to demonstrate the effect 

of the semi-structured meshes. 

Uniform Mean Flow Problem 

As stated previously, the meshes used for the calculations were all enlarged beyond the 

domain specified in the Benchmark Proceedings to ensure that the boundaries were 

not encountered. The two semi-structured test meshes used for the uniform mean flow 

problem, UK and NEG, both have 48,841 vertices and 96,800 primary cells. Primary 

cells are cells that are defined by the mesh nodes and are not used as control volumes. 

For this unstructured method the median dual control volumes are constructed using 

mesh points and primary cell edges, not the primary cells themselves. The cells are all 

identical in area, and only differ in their orientation. The TRI mesh has 54,949 vertices 

and 109,016 primary cells. For data and error comparisons only vertices contained 

within the original domain were used. This created a region of 40,401 vertices for the 

UK and NEG meshes, and 44,858 vertices for the TRI mesh. The mesh specifications 

are summarised in Table 2.1. 
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Mesh Total Total No. of 
Type No. of No. of Vertices 

Vertices Pri. Cells Compared 

Structured 48841 48400 40401 
NEG 48841 96800 40401 
UK 48841 96800 40401 
TRl 54949 109016 44858 

Table 2.1: Statistics of Uniform Mean Flow Problem Meshes 

Scattering Problem 

Three unstructured meshes were created from the structured scattering problem mesh 

using the same method as described in Section 2.4.3. For the two semi-structured 

meshes, the quadrilateral cells of the structured mesh are cut into triangular cells to 

create the NEG and UK meshes. Each of these meshes have the same number of vertices 

and primary cells, 174,600 and 348,000 respectively, although with slightly different 

layouts. For the purely unstructured TRl mesh the inner and outer circular boundaries 

of the scattering problem structured mesh are used with the same paving algorithm 

employed with the uniform mean flow problem mesh, creating a computational area that 

encloses 960,863 vertices and 1,920,526 triangular primary cells. The mesh specifications 

are summarised in Table 2.2. Unlike the structured method used for the scattering 

problem, all three of the meshes used with the unstructured method only have two 

boundaries, the inner and outer circular boundaries and therefore only two boundary 

conditions. 

Mesh No. of No. of 
Type Vertices Pri. Cells 

Structured 176055 175160 
NEG 174600 348000 
UK 174600 348000 
TRl 960863 1920526 

Table 2.2: Statistics of Scattering Problem Meshes 

2.4.4 Boundary Conditions 

The calculations completed on the unstructured meshes all have boundary conditions 

that take advantage of certain mesh characteristics, simplifying the development. The 
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two types of boundary conditions used in the unstructured method are the outflow 

boundary condition and the solid boundary condition. The outflow condition is used 

for both the uniform mean flow problem and the scattering problem, but the solid 

condition is only used with the scattering problem. 

Semi-structured Meshes 

For the semi-structured meshes, the underlying structured mesh is still present and the 

existence of a mesh vertex lying directly normal to each boundary vertex is exploited. 

In Figure 2.13 it can be seen that each boundary vertex (VBc) of the NEG mesh has 

a corresponding interior vertex (VINT) that can be used to apply a simple boundary 

condition. The extra edges do not interfere with this formulation, as the data structure 

employs vertex-based storage of the state variables. The same scenario is used with the 

UK mesh, as seen in Figure 2.14. The interior vertex still lies directly normal to the 

boundary surface, one edge away from the corresponding boundary vertex. 

Figure 2.13: Schematic of NEG Mesh Boundary 

Since the mesh was uniformly created, the boundary/interior vertex formulation 

can be used on both the outer and inner boundaries. The indices of the interior points 

are determined during preprocessing and are stored with their corresponding boundary 

vertices. 
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Figure 2.14: Schematic of UK Mesh Boundary 

Outflow Boundary Condition The outflow boundary conditions applied on to the semi­

structured meshes are the same ones used for the structured method. For the uniform 

mean flow problem the boundary conditions require that the gradients normal to the 

boundary of all of the state variables are set equal to zero at the outer boundaries. 

These two separate boundary conditions can both be approximated using the same first 

order derivation as the one applied with the structured test case. 

Solid Boundary Condition The scattering problem solid boundary condition used with 

the semi-structured meshes is also identical to the one that is applied on the structured 

mesh. The pressure gradient normal to the cylinder is set equal to zero. This BC 

is applied in the same fashion as the other conditions, with the use of a first-order 

approximation. The radial velocity component boundary condition is explicitly applied 

by setting the variable to zero at the boundary vertex. 

Purely Unstructured Mesh 

A mesh characteristic that exists in the purely unstructured meshes can also be used 

to formulate simple boundary conditions, as with the semi-structured meshes. In the 

TRI mesh, the paving algorithm that was used determined the mesh by starting at the 

boundaries and working toward the middle of the mesh. This method created layers 

of isosceles triangular cells that are present at both the inner and outer edges of the 

mesh. These symmetric, triangular cells are no doubt caused by the fact that all of the 
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boundary edges that were specified from the structured mesh are of equal length. 

For the TRI mesh boundary conditions, a virtual interior vertex is created directly 

normal to the boundary using two interior vertices from adjacent cells. The virtual 

vertex, labeled V* in Figure 2.15, is created using two interior points, VINT and VINT2. 

Figure 2.15: Schematic of TRIMesh Boundary 

In Figure 2.15 the actual vertices are shown with circular symbols and the virtual 

vertices are denoted with square markers. The value of the state variable at the virtual 

vertex is determined by averaging the variables at each of the interior vertices, or 

Wv* = WVINT + WVINT2 
2 

(2.84) 

The layers of isosceles triangular cells occur at both the inner and outer boundaries, 

and the virtual boundary vertices are created near both edges of the mesh. The interior 

cells used to create each virtual point are determined during preprocessing, and the 

indices of each are stored for use in applying the boundary condition. The value of the 

variables at each virtual vertex is not stored during calculation, instead the averaging 

of the existing data at the corresponding interior points is completed each time the 

boundary condition is applied. 
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Outflow Boundary Condition The outflow boundary condition for the purely unstruc­

tured mesh calculations remains the same as for the semi-structured and structured 

calculations as well. The gradients of all of the state variables normal to the boundary 

are set equal to zero at the boundary. The single difference is that for the interior 

vertex used in the first-order approximation of the boundary condition, the constructed 

variable from Equation 2.84 is used instead of one pertaining to a physical vertex. 

Solid Boundary Condition The solid boundary condition applied on the purely un­

structured mesh is the same as the one applied on both the structured and semi­

structured meshes. The gradient of the pressure normal to the surface of the cylinder 

is set equal to zero. Also, the value of the radial velocity component is also set equal to 

zero at the cylinder surface. The solid boundary condition for pressure is applied using 

the same formulation as the outflow boundary condition for the unstructured mesh as 

stated above, and the radial velocity boundary condition is the same as specified for 

the semi-structured meshes and structured meshes. 

2.4.5 Barth-Jespersen Limiter 

Upon the completion of a few preliminary calculations using the unstructured method 

on the scattering problem, it was determined that a limiting function was required. 

Errors began to appear near the cylinder wall as the pressure pulse approached and by 

the time the end of the prescribed run had been reached these errors had polluted the 

entire domain. As a result a Barth-Jespersen limiting function [9] was employed for all 

unstructured calculations, removing the error and allowing the completion of a solution. 

The two single-quadrature point reconstruction equations, Equations 2.40 and 2.41 

can be rewritten with the limiting factor '\(W) as 

WOi,L = Wo + ~'\O(W)(\1W)O' rQi (2.85) 

and 

(2.86) 

where the 0 and i subscripts on '\(W) refer to the vertex used to calculate the limiter. 
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The limiting coefficient for vertex 0 has the condition that 

o ~ A(W)O ~ 1 (2.87) 

Taking the approximation limit er equation for vertex 0, two terms can be defined 

and 

The coefficients that are used to determine the limit er are defined as 

D.l,max = Wmax - Wo 

D.l,min = Wmin - Wo 

.6.2 = WOi - Wo 

with the conditions that 

(2.88) 

(2.89) 

(2.90) 

(2.91) 

(2.92) 

(2.93) 

The value of the limiter function at vertex 0 is defined as the minimum of the limiter 

function calculated using all of the edges connected to vertex 0, or 

AO (W) = rp.in AOi (W) 
OtEt'o 

where 

min (1 ~l,max) 
, ~2 

min 1 ~l,min) 
, ~2 

1 

if.6.2 > 0 

if .6.2 < 0 

if D.2 = 0 

(2.94) 

(2.95) 

The Barth-Jespersen limiter function is used for all of the unstructured calculations 

completed for the scattering problem discussed as part of this research. The inclusion of 

a limiter may have negative effects on the formal accuracy of the unstructured method. 
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The limiting of the calculated gradient approximations may be powerful enough to 

remove the already low-magnitude disturbances which define the pressure pulse being 

scattered. 

2.5 Calculation of Experimental Error Between Test Case 

Solutions 

To compare the results of calculations numerically, a metric can be calculated relating 

the different calculated solutions to the analytical solution on the corresponding grid. 

The RMS error can be calculated for the density fields using Equation 2.96. 

RMS= 
1 nv - L [p(i) - p*(i)f 

nv i=l 
(2.96) 

where nv is the total number of vertices compared, p is the density field of the calculated 

solution , and p* is the density field of the analytical solution on the corresponding 

mesh. The exclusive use of density in determining RMS error for the uniform mean 

flow problem is due to the fact that the density field is the only state variable with 

an accurate depiction of both the pressure pulse and the vortex at any given time. 

For the second series of calculations, the pressure profiles were used for the graphical 

comparison as specified by the Benchmark Proceedings, and are therefore used for the 

numerical comparison as well. The formulation of the pressure Rl\,fS error is similar to 

that of Equation 2.96 but uses the three separate pressure profiles instead of the density 

field. 

Along with the absolute error calculated using the Rl\,fS error equation a normalized 

RMS (NRMS) error was also calculated to give a percentage error between the test 

cases and the problem solutions. The NRMS is calculated using the RMS error and the 

maximum and minimum values of the solution data using 

NRMS= RMS 
p:nax - P~in 

(2.97) 

for the uniform mean flow problem, where P':nax and P~in refer to the maximum and 

minimum value of the density field of the analytical solution. The NRMS error of the 

scattering problem was calculated in a similar way using P~ax and P~in instead. The 

use of the NRMS error allows for a percentage error to be obtained which can be easier 
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to relate to the data rather than an absolute error value. 

2.6 Summary 

This chapter has dealt with the explanation of the numerical methods used to perform 

the calculations that make up the basis of the research being presented. The were two 

methods developed for this work, the first is a standard structured method that was 

created as a reference point for the second method. The second method developed was 

a basic unstructured method with the option of three different gradient approximation 

techniques and the choice of how the quadrature was completed for reconstruction in 

the finite volume approach. The unstructured method was used to complete a range 

of test calculations on different meshes. The purpose of the different meshes as well as 

the different gradient approximations and reconstruction methods is to determine the 

numerical characteristics and accuracy of the unstructured method in different aeroa­

coustic scenarios. The full battery of tests is completed on the first Benchmark problem 

only, with the best combination of gradient approximation and reconstruction used for 

the second more difficult Benchmark problem. The results of the test cases are com­

pared both graphically and numerically to determine sources of error such as numerical 

dispersion or dissipation caused by the formulation of the unstructured method. 

The second Benchmark problem calculations are all performed using the same 

method, but on the different types of meshes discussed above. This second, limited 

battery of calculations is used to further investigate the behaviour of the unstructured 

method. The different mesh types will create different problems for the method and 

will show how effective it can be in the field of CAA. 



Chapter 3 

Uniform Mean Flow Problem 

3.1 Introduction 

The main purpose of the research presented is the development of a simple unstructured 

numerical method for use within the field of Computational Aeroacoustics. Along with 

the development of the numerical method was the requirement that it be tested on its 

ability to model different acoustic phenomena in order to determine if it was an accu­

rate enough method to be used in place of high-order structured methods when needed. 

This method was designed to have the option of using different gradient reconstruction 

methods as well as the ability to be used on any type of unstructured mesh, giving it 

the advantage dealing with geometries too complex for structured methods. The testing 

procedure was to be used to determine which of the different gradient reconstruction 

methods included were the most effective for different scenarios. With this in mind, 

two standardized test cases were taken from NASA Benchmark Workshops for Aeroa­

coustics. These two problems were a uniform mean flow test case and a scattering test 

case. The uniform mean flow problem is a basic first-step scenario testing the ability of 

the numerical method to model the convection of a vortex and a pressure pulse with a 

uniform velocity field within an open domain. The scattering problem is more complex 

requiring the approximation of how a pressure pulse is scattered by traveling past a 

solid cylinder. These two problem represent fundamental aeroacoustic phenomena and 

provide an excellent opportunity to determine the merit of the unstructured numerical 

method developed. 

The purpose of the uniform mean flow problem is to determine the ability of the 
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numerical method to simulate accurately the convection of a vortex as well as the 

convection and expansion of a pressure pulse within an open domain. The uniform mean 

flow problem description is taken from the Workshop on CAA Benchmark Problems [33] 

and is listed as Category 3, Problem 1. Numerical characteristics such as distortion, 

dispersion, mesh dependency and overall accuracy are used to evaluate the effectiveness 

of the method developed. The method is tested on different meshes with different 

gradient calculation techniques to ascertain the best combination for this aeroacoustic 

situation. 

3.1.1 Test Case Description 

The purpose of the uniform mean flow problem is to determine the ability of the numer­

ical method to simulate accurately the convection of a vortex as well as the convection 

and expansion of a pressure pulse within an open domain. This benchmark test case 

was chosen because it deals with the very basic and important problem of simulating 

fundamental acoustic phenomena. If a numerical method in unable to accurately model 

a simple vortex and pressure pulse it will be unable to deal with any other more com­

plex scenarios. This test case can be seen as the first step in the development of a 

more complex numerical method to deal with more diverse computational aeroacoustic 

situations. The uniform mean flow problem description is taken from the Workshop on 

CAA Benchmark Problems [33]. The description is listed as Category 3, Problem 1. A 

schematic of the problem can be seen in Figure 3.1. 
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Figure 3.1: Schematic of Uniform Mean Flow Problem 
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3.1.2 Governing Equations 

The governing equations are used to solve for the variables of density, pressure and 

velocity in two-dimensional Cartesian coordinates. The linearised Euler equations used 

for this specific problem previously seen as Equation 2.1, are written as: 

where 

aw aF aG_ 8 at + ax + ay -

p 

u 
W= F-, -

v 

P 

Mxp+u 

Mxu+P 

Mxv 

MxP+u 

Myp+v 0 

,G= 
Myu 0 

,8= 
Myv+P 0 

(3.1) 

MyP+v 0 

The variables p,U,V, and P refer to the density, the x- and y-components of velocity 

and the pressure, respectively. The terms Mx and My refer to the x- and y-components 

of the mean velocity field. The variable t refers to time. 

3.1.3 Test Case Domain 

The specified problem domain encompasses a region from x = -100 to x = 100 and from 

y = -100 to Y = 100. The grid spacing throughout the entire domain has ~x and ~y 

equal to one, creating a uniform Cartesian grid of 40,000 cells. The outer boundaries of 

the problem are devised to represent an infinite domain, with no solid walls or objects. 

Since the effect of a boundary condition is not being investigated with this calculation, 

the domain is extended a further ten grid cells in all directions to ensure that neither 

, the pressure pulse nor the vortex have any interaction with it. The new computational 

domain ranges from x = [-110,110] and y = [-110,110], although only the specified 

domain will be examined. The addition of an extended computational domain increased 

the number of cells in the specified mesh from 40,000 to 48,400 cells. 
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3.1.4 Initial Conditions 

The initial condition describes both a pressure pulse and a vortex which are to be 

convected through the domain. The pressure pulse is situated at the origin of the 

domain (x = y = 0). The vortex is initially set at a point downstream of the pulse at 

Xvi = 67 and Yvi = O. The initial conditions are calculated using 

[ (1 2) (
X2 + y2)] + 01 [(x - XVi)2 + (y - YVi)2] 

P = exp - n 9 . exp 25 (3.2) 

O 04 [ (1 2) (x - XVi)2 + (y - YVi)2] 
U = . yexp - n 25 (3.3) 

O 04( · ) [(1 2) (x - XVi)2 + (y - YVi)2] 
V=- x-x·exp-n 

• Vt 25 (3.4) 

[ (x2 + y2)] 
P = exp - (ln2) 9 (3.5) 

where Xvi and Yvi refer to the center of the vortex at the start of the calculation (t = 0). 

The specification of this test case sets the mean velocity components as Mx = 0.5 

and My = o. The time step used for all of the uniform mean flow problem calculations is 

defined as b..t = 0.1. This time step was taken directly from the Workshop manual [33]. 

Since the equations are non-dimensionalised with the length scale and time scale defined 

as the mesh spacing and speed of sound, respectively, the Courant-Ftiedrichs-Lewy 

condition collapses to an expression involving only time step. The standard definition 

of the Courant number in one dimension is er = ~; and with the reference length 

scale and velocity scale used in these equations the time step tl.t is equal to the Courant 

number. With the time step specified in the literature the Courant number is sufficiently 

low to satisfy the CFL number conditions for decreasing dispersion error and increasing 

accuracy. The initial condition of density used for this calculation can be seen in Figure 

3.2. This single state variable is shown because it displays the initial condition of both 

the pressure pulse and the vortex. 
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3.1.5 Boundary Conditions 

For this problem the boundary conditions are specified to be an inflow condition along 

the left hand side of the grid and simple outflow boundary condition along the other 

three sides. Since the purpose of this test case is to model the expansion arid convection 

of the acoustic structures in free space there are no other boundary conditions applied. 

Along the left and right edges of the domain the boundary conditions can be written as 

aWl -0 
ox x=±110 

(3.6) 

Similarly, along the top and bottom edges of the domain the boundary conditions 

can be written as 

aWl -0 
ay y=±110 -

(3.7) 

3.1.6 Test Case Solution 

The analytical solution of the uniform mean flow problem [33] is given by 

(3.8) 

where Xvi refers to the center of the vortex at the start of the calculation and where 

ln2 
Ctl=-

9 

Ct2 = ln2 5 
2 

1 

'T} = [(X - Mx t )2 + y2r 

(3.9) 

(3.10) 

(3.11) 

and Jo represents the Bessel function equation of order zero (0). This solution is de­

scribed in the CAA Workshop [33]. The analytical solutions of the remaining three 

variables are given by 

(3.12) 

(3.13) 
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Figure 3.3: Density Contours of Uniform Mean Flow Solution 

1 100 .=..e p = - e 401 cos (t;t) JO (/;1]) /; d/; 
2a1 0 

(3.14) 

where J1 represents the Bessel function of order one (1). 

The analytical solution of the uniform mean flow problem at thirty computational 

time units (t = 30) can be seen in Figure 3.3. This is the solution that all test cases will 

be compared against to determine accuracy of both the structured and unstructured 

numerical methods. 

3.2 'Structured Method Solution 

As stated previously, for both of the problems investigated as part of this research a 

structured numerical method is used as a reference in determining relative accuracy 

and sources of numerical error in the unstructured method. For the uniform mean 

flow problem, a sixth-order accurate formulation is used to approximate the first-order 

derivatives of the linearised Euler Equation. A contour plot of the structured method 
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solution to the test problem can be seen in Figure 3.4(a). The pressure pulse shows 

no dispersion or dissipation, and appears to have maintained the correct shape. The 

vortex also shows a lack of dispersion and dissipation errors and has also maintained 

the correct shape and dimensions. This result, while expected, shows the high accuracy 

of the standard central-differencing and time-stepping methods chosen. As a second 

form of visual comparison, a slice of the density solution is taken along the y = 0 line, 

and the calculated structured solution is compared with the analytical density field at 

the same t = 30 simulation time. The comparison, shown in Figure 3.4(b) has the 

solid line of the calculated density profile lying perfectly atop the dashed line of the 

analytical density profile for the entire length of the domain. In Figure 3.4(b) it can be 

seen that there is no discernable phase difference between the computed and analytical 

results, and no change in either the amplitude or the shape of the waves defining the 

pressure pulse or the vortex. These results show a lack of numerical dissipation in how 

the amplitudes all of the waves along the cut are correctly computed and a lack of 

numerical dispersion in the accurate prediction of the leading and trailing edges of the 

waveform. As a reference for later calculations, the RMS error calculated using the 

sixth-order accurate structured solution is 0.1826E-03 which gives a NRMS of 0.11 % 

error. 
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For a more direct comparison between the calculated structured solution and the 

analytical solution, a second contour plot can be seen in Figure 3.5. For this comparison, 

the contour plot has been split along the y = 0 line. The top half contains the solution 

calculated using the structured method, and the bottom half of contains the analytical 

solution. Both halves are plotted using the same contour lines and the same scale. For 

this comparison the extents of the contour plot have been shortened, allowing for a 

closer view of the convected density field. 

From Figure 3.5 it can been seen that the computed result closely resembles the 

analytical one. The sixth-order scheme has not caused any local time warping for 

either the pressure pulse or the vortex. The method has also correctly calculated the 

convection speed and the expansion of the pressure pulse. This is demonstrated by how 

closely all of the density contours line up across the y = 0 division and how closely the 

upper and lower regions mirror each other. The uniform grid appears to have had little 

effect on the shape of both the pressure pulse and the vortex, as expected. For this 

calculation the length of every cell edge of the mesh is identical, so there should not be 

any distortion caused by grid non-uniformity. 

3.3 Unstructured Method Solutions 

To determine accurately the effectiveness of the unstructured method that has been 

developed, it was tested with three different approximation methods and two different 

quadrature formulations on three different unstructured meshes. The purpose of this 

number of tests was to determine the best combination of gradient approximation, 

quadrature and mesh type for use in completing computational aeroacoustic calculations 

using the linearised Euler equations. For the sake of brevity, only the best combination 

of gradient approximation and quadrature is shown on each of the three meshes, and 

the worst case overall as a comparison. The solutions are compared visually as well as 

with an error metric calculated using an analytical solution. Results from all the test 

cases can be seen in Appendix B. 

3.3.1 Summary of Uniform Mean Flow Test Case Error Calculations 

Examination of the RMS and NRMS error was used to determine the accuracy of the 

calculations and choose the best combination of gradient approximation and quadrature 
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Figure 3.5: Density Contours At t=30 Using Structured Method 
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reconstruction. One early observation is that the use of two quadrature points instead 

of just one appears to have little benefit. The RMS errors calculated for the different 

gradient approximations on the different meshes are summarised in Tables 3.1 and 3.2. 

The normalized RMS error values for the test calculations can be seen in Tables 3.3 and 

3.4. With these tables it can be seen that the accuracy of the gradient approximation 

is the key factor in these calculations rather than the addition of a second quadrature 

. point. The use of two quadrature points would only be beneficial if if a higher order , 

gradient approximation was used. In almost all cases, the TRI grid has the lowest error. 

Also, the weighted form of the Least Squares method has a great benefit, almost halving 

the error as compared to linear Least Squares and Green-Gauss gradient evaluations. It 

should be again noted that the spatially sixth-order structured method has an RMS error 

of 0.1826E-03, or 0.11% NRMS error, a tenfold reduction in error compared to the best 

unstructured calculation. Overall, the weighted Least Squares gradient approximation 

gives the lowest error when compared to the structured calculation. According to error 

calculations, the best combination of gradient approximation and mesh type is the use of 

a weighted Least Squares technique on the TRI mesh, with nearly identical error values 

with either a single or double quadrature points. The worst combination of gradient 

approximation method and mesh type is when a Least Squares technique is used on the 

NEG mesh. Again, the error values calculated with the use of one or two quadrature 

points is nearly identical. 

Mesh Gradient Approximation Method 
Type GG LS WLS 

NEG 0.3870 E-02 0.7317 E-02 0.4646 E-02 
UK 0.3518 E-02 0.3403 E-02 0.1844 E-02 
TRI 0.3135 E-02 0.3315 E-02 0.1830 E-02 

Table 3.1: RMS Error of Single Quadrature Calculations At t=30 

Mesh Gradient Approximation Method 
Type GG LS WLS 

NEG 0.3886 E-02 0.7317 E-02 0.4646 E-02 
UK 0.3523 E-02 0.3396 E-02 0.1833 E-02 
TRI 0.3138 E-02 0.3318 E-02 0.1830 E-02 

Table 3.2: RMS Error of Dual Quadrature Calculations At t=30 
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Mesh Gradient Approximation Method 
Type GG LS WLS 

NEG 2.37 4.48 2.84 
UK 2.15 2.08 1.13 
TRI 1.92 2.03 1.12 

Table 3.3: NRMS Error of Single Quadrature Calculations At t=30 

Mesh 11 Gradient Approximation Method 
Type GG LS WLS 

NEG 2.38 4.48 2.84 
UK 2.16 2.08 1.12 
TRI 1.92 2.03 1.12 

Table 3.4: NRMS Error of Dual Quadrature Calculations At t=30 

3.3.2 Most Accurate NEG Mesh Calculation 

The Green-Gauss approximation method used with one quadrature point is the most 

accurate calculation on the NEG mesh. The density contours of Figure 3.6(a) show 

that the pressure pulse and the vortex have both maintained the correct shape and size, 

and appear to have been calculated correctly. There are dispersion errors indicated by 

oscillations in the upper right and lower left quadrants of the pressure pulse at this 

stage, but the amplitude of the oscillations are quite small. This may be a result of the 

type of mesh used. The NEG mesh has a dominant edge that runs from upper left to 

lower right for each cell. This characteristic matches the small dispersion oscillations 

shown in Figure 3.6(a). The fact that these oscillations only occur in these locations 

seems to support the fact there might be some dependency on distance between nodes 

for the unstructured method. Looking at other tests completed using the NEG mesh 

(see Section B.2 in Appendix B) it can be seen that all have characteristic errors in the 

density contours that correspond to the mesh edge dominance. This error is present 

in different forms for all three reconstruction methods and with either single or dual 

quadrature points. The nature of the characteristic errors change with different gradi­

ent reconstruction techniques and always seem to have a greater impact on the pressure 

pulse than the vortex. The calculated density profile shows high accuracy when com­

pared with the analytical solution as seen in Figure 3.6(b). There is a small oscillation 

and over-prediction of the leading edge of the right hand side of the pressure pulse 

and a dampening of the trailing edge. These indicate both dispersive and dissipative 
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effects that were not present in the structured calculation. The use of a Green-Gauss 

approximation method with one quadrature point on the NEG mesh has an RMS error 

of 0.3870 E-02 or 2.37% error, more than twenty times larger than that of the structured 

method. 

As with the structured method in Figure 3.5, the unstructured method solution 

for this test case was also compared with the analytical solution as seen in Figure 3.7. 

Possible numerical errors created by the unstructured method are more apparent with 

the pressure pulse than with the vortex. There seems to be a slight acceleration of 

the interior of the pressure pulse. The outer density contour of the calculated pressure 

pulse almost perfectly mirrors that of the analytical pulse, but the interior density 

contour is slightly shifted outward. There is a greater discrepancy with the right hand 

interior contour than with the left hand contour. There are variations in the location 

and spacing of all of the interior density contours of the pressure pulse along the y = 0 

cut, but as stated above all of the errors seem greater in the right hand section. This 

phenomenon does not appear to be directly related to the inflow condition because not 

all of the wave components are shifted in the positive x direction, as would be expected 

if the unstructured method was over-predicting the effect of the inflow velocity field. 

Since the positions of both the pressure pulse and vortex are correctly simulated by 

the unstructured method and the fact that the calculated vortex so closely mirrors the 

analytical one, it can be assumed that the method can accurately model the convection 

terms of the linearised Euler Equations. 
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Figure 3.7: Density Contours At t=30 - Most Accurate Test Case on NEG Mesh (2) 
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3.3.3 Most Accurate UK Mesh Calculation 

The most accurate gradient calculation method used with the UK mesh is the weighted 

Least Squares technique used with two quadrature points. As seen in Figure 3.8{a) 

the contour plot of the density field after thirty computational time units displays low 

amplitude oscillations on both the pressure pulse and vortex. The size and shape of 

both the pulse and vortex appear correct, but the UK mesh has caused dispersion 

errors. The presence of the alternating dominant cell-edge in the repeating pattern of 

the UK mesh has apparently caused a decoupling effect resulting in these small scale 

oscillations, however the effect is not strong enough to overpower the correct simulation 

of the convection of both the pulse and vortex or the expansion of the pressure pulse. 

The dispersive effect also seems to be non-uniform. There is a greater effect on the 

interior contours of the density pulse than on the exterior contours, and the vortex 

shows pockets of increased sensitivity to the errors. When compared to the rest of the 

UK test cases, it becomes apparent that the de coupling dispersive error is caused by the 

combination of the UK mesh and the weighted Least Squares reconstruction technique. 

For both the Green-Gauss and Least Squares gradient reconstruction techniques the 

error is much less visible, seen only as a very slight oscillation in the interior density 

contours of the pressure pulse, and not present at all on the vortex, therefore the 

dispersion is not directly associated with the use of the UK mesh on its own. The 

Green-Gauss and Least Squares results can be seen in Section B.3 of Appendix B. 

The density profile shown in Figure 3.8{b) displays the dispersion errors present in 

the calculated solution. Although there are numerous areas of dispersive oscillations, 

they are all shallow and have not affected the general profile of either the vortex or the 

pulse. The vertical portions of the majority of the density profile perfectly correspond 

to the analytical solution, except for the oscillations on the trailing edge of the vortex. 

The amplitude of the wave is correctly predicted using the unstructured method. The 

only errors present in this test case are those small perturbations, there appears to be 

no dissipation and little dispersion associated with the combination of weighted Least 

Squares gradient reconstruction and two quadrature points. The dispersion errors that 

are present effect neither the slope of the faces of the waveforms nor the location and 

amplitudes. The error calculated for this test case is 0.1833 E-02 (1.12%), roughly half 

that of the best NEG mesh test case, but still an order of magnitude greater than the 

error values of the structured test case. 

From Figure 3.9 it can be seen that location of the calculated density contours of 
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both the pressure pulse and the vortex almost perfectly mirror those of the analytical 

solution. Even with the dispersion errors present in the interior of the pressure pulse, 

this test case appears to not to have the pulse expansion error that was present with 

the NEG meshes. When the other UK mesh test cases are compared to this one using 

the same 'split' plotting technique, it can be seen that the dispersion error is greatly 

reduced but the expansion error present in the NEG mesh test cases returns. When 

the Green-Gauss and Least Squares gradient reconstruction test cases are compared 

with the analytical solution in plots similar to Figure 3.9, the same outward shift of 

the interior density contours of the pressure pulse is observed. As with the NEG mesh 

test cases the outer density contours mirror the analytical solution perfectly, and there 

is a greater effect on the right hand section than the left. Since these errors span 

the different mesh types, they cannot be instantly identified as an indication of the 

unstructured method having a sensitivity to the type of mesh used. As this effect was 

removed with the use of weighted Least Squares, it appears to be related to the gradient 

reconstruction method. 



3.3 Unstructured Method Solutions 82 

100 
x 
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3.3.4 Most Accurate TRI Mesh Calculation 

The most accurate gradient approximation method used with the TRI mesh is the 

weighted Least Squares method with the use of two quadrature points. The contour plot 

seen in Figure 3.10(a) shows some error in the downstream portion of the pressure pulse. 

Overall, the pressure pulse show little distortion or dispersion errors, and other than the 

slight error introduced in the leading portion both the convection and the expansion 

of the pulse appear to be modeled accurately. The vortex is accurately convected, 

with little or no dispersion or dissipation. The shape and size of the vortex has been 

maintained for the duration of the calculation. The dispersion errors of the pressure 

pulse are contained within the waveform as the errors do not appear present on the most 

exterior or interior density contours. The interior density contours that are broken in the 

downstream portion of the pressure pulse appear to be relatively symmetrical about the 

x-axis. When the results of the weighted Least Squares gradient reconstruction method 

are compared with the Green-Gauss and Least Squares reconstruction methods, the 

dispersion errors disappear. The density contours for both the Green-Gauss and Least 

Squares techniques more closely resemble the concentric circles of the analytical solution. 

This means that the dispersion error of this TRI mesh test case (as with the UK mesh) 

appears to be dependent on the weighted Least Squares reconstruction method not the 

mesh type. The results of other test cases using the TRI mesh can be found in Section 

B.4 of Appendix B. 

Looking at the comparison of the density profiles, as seen in Figure 3.10(b), a slight 

error in the leading edge of the pulse can be seen as the calculated profile shows dis­

persion error with a small oscillation just behind the front of the pulse. There appears 

to be a slight phase lag in the downstream portion of the pressure pulse. The vortex 

is accurately calculated and the small leading edge error has decreased at the following 

edge. The vortex seems to be perfectly convected downstream, and the only errors are 

associated with the pressure pulse. When compared to the TRI mesh test cases using 

the other two reconstruction techniques, the density profiles show different regions of 

error. The weighted Least Squares technique shows dispersion error and a slight phase 

lag in the right hand portion of the pressure pulse. The Green-Gauss and Least Squares 

techniques show a lower dispersion error and a slight phase shift ahead of the analytical 

solution. Since the mesh does not change for these tests, the errors mush be caused 

by the reconstruction technique, not the mesh type. As with the NEG and UK mesh 

expansion error, there is a greater error present with the right hand or downstream 
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portion of the pulse. 

The lowest RMS error calculated on a TRI mesh was completed using the weighted 

Least Squares approximation and has an error of 0.1830 E-02 (1.12%), very similar to 

that of the weighted Least Squares calculation completed on the UK mesh. It is impor­

tant to note that the error values when using the weighted Least Squares reconstruction 

technique for both the UK and TRI meshes are lower by a factor of two than with either 

of the other gradient methods, even though the contour plots show a closer resemblance 

between the other techniques used and the analytical solution. 

By referring to Figure 3.11 it can be seen that for the first time there is a slight 

widening of the pressure pulse. The density contours of the pressure pulse calculated 

using the weighted Least Squares reconstruction method appear more widely spaced 

than the corresponding analytical contours. This error appears on both the downstream 

and the upstream sections of the pressure pulse. The dispersion error that was noticed 

with the UK mesh is still present, but only effects the pressure pulse. The vortex has 

been perfectly convected downstream and the density contours of the calculated solution 

mirror those of the analytical one. By comparing the result of this test case with all 

other calculations completed on the TRI mesh, it can be seen that in every case the 

vortex shows no dispersive or dissipative errors whatsoever. It can also be seen that 

there is a similar trend to how the gradient reconstruction method effects the pressure 

pulse. As with the UK meshes the use of the weighted Least Squares reconstruction 

technique changes the nature of the numerical errors in the calculated solution. When 

both the Green-Gauss and Least Squares techniques are used the density contour plot 

resemble each other and the error values calculated with both are similar as well. When 

the reconstruction technique changes to the weighted Least Squares method the contour 

plot changes, and the error is decreased by a factor of 2. For the test cases completed 

using the TRI mesh the same phenomenon seen with the UK meshes reappears namely 

the dispersion error is greatly reduced but the expansion error present in the NEG mesh 

test cases returns when the Green-Gauss and Least Squares gradient reconstruction 

techniques are used. As with the previous mesh types the solutions of all of the test 

cases completed on the TRI mesh can be seen in Appendix B, specifically in Section 

B.4. 
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Figure 3.11: Density Contours At t=30 - Most Accurate Test Case on TRI Mesh (2) 
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3.3.5 Least Accurate Calculation 

This calculation shows that a poor selection of gradient approximation, quadrature and 

mesh type can combine to severely decrease the accuracy of the unstructured method. 

The least accurate combination of mesh type and gradient approximation used to cal­

culate a solution for the uniform mean flow problem is the Least Squares method using 

two quadrature points on the NEG mesh. Looking at the contour plot of the calculated 

solution, as in Figure 3.12(a), it can be seen that the pulse has become elongated along 

the long-edge direction of the mesh. This error was present in the earlier NEG mesh 

calculations, but the combination of this mesh and the Least Squares reconstruction 

technique has amplified the effect. The peak of the pulse has been affected as well, and 

a leading edge error caused an oscillation in the lower left quadrant of the pulse. This 

error also lies along the same direction of the dominant edge of the NEG mesh. The 

vortex has also been affected, appearing slightly out of round at this point in the calcu­

lation. The pressure profile plot shown in Figure 3.12(b) confirms what was shown with 

the contour plot. There is a definite error in the pressure pulse, with both the leading 

edge and trailing edge of the pulse showing a slight phase error and oscillations. There 

is also evidence of the errors in the downstream section of the pressure pulse being more 

pronounced. The vortex also appears to be slightly out of phase,with the calculated 

peak in the profile just in front of the analytical peak. The Least Squares calculation 

on the NEG mesh has an RMS error of 0.7317 E-02 (4.48%) the largest error of the 

unstructured calculations completed and 40 times that of the structured test case. 

The direct comparison of the density contours from this test calculation and those of 

the analytical solution can be seen in Figure 3.13. As stated previously the combination 

of the NEG mesh and the Least Squares gradient approximation appear to be the most 

vulnerable to error. Both the pressure pulse and the vortex show the effects albeit to 

different extents. The vortex appears to be less effected by the error with the density 

contours of the unstructured calculation slightly advanced compared to those of the 

analytical solution. It appears as though the location of the center of the vortex has 

been predicted ahead of where it should truly lie. The pressure pulse also shows a time 

warping effect as the pulse is slightly larger than it should be and shifted downstream. 

This expansion error, seen in previous test cases to a lesser degree, appears to be caused 

by the numerical method accelerating the expansion and convection of the pressure 

pulse. 

To determine whether or not the strong error of the test case with a Least Squares 



3.3 Unstructured Method Solutions 

100 

80 

60 

40 

20 

> 0 © 
-20 

-40 

-60 

-80 

-10~100 -80 -60 -40 -20 0 20 40 60 80 100 

0.2 
0.15 

> 0.1 
!:: 0.05 
en 0 z 
W -0.05 
C -0.1 

-0.15 

X 
Ca) Density Contours At t=30 

-0·~100 -80 -60 -40 -20 0 20 40 60 80 100 
X 

Cb) Density Profile Comparison At t=30 C - Computed, - - - Exact) 

Figure 3.12: Least Accurate Unstructured Case 

88 



3.3 Unstructured Method Solutions 89 

25 

> O~~------------------~M------4~--+#~ 

-25 

100 
x 

Figure 3.13: Density Contours At t=30 - Least Accurate Unstructured Case (2) 
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gradient approximation on the NEG mesh was directly dependant on the NEG mesh, 

an extra calculation was run. This test case involved the saIne specifications for the 

numerical method options, namely 2 quadrature reconstruction points and the Least 

Squares gradient approximation, but the NEG mesh was replaced with the similarly 

constructed POS mesh mentioned previously in Section 2.4.3 of Chapter 2. The POS 

mesh has the same repeating dominant primal cell edge as the NEG mesh, but instead 

of having negative slope, the dominant edges have a positive slope. The results of the 

POS mesh calculation can be seen in Figures 3.14(a) and 3.14(b). The density contours 

of Figure 3.14(a) confirm that the distortion and dispersion errors of the NEG mesh 

Least Squares approximation test case were caused by the NEG mesh. By changing the 

slope of the dominant edge the same pressure pulse/vortex distortion and dispersion 

error was recreated in a different location. The density contours of the POS mesh test 

case appear identical to those of the corresponding NEG mesh test case when flipped 

about the x-axis. The density profile of the POS mesh, seen in Figure 3.14(b), appears 

identical to that of the NEG test case. This was to be expected as the density profile 

is taken along the x-axis, the line of symmetry between the two cases. Along with this 

graphical comparison, the RMS error of the POS test case with 2 quadrature points and 

the Least Squares gradient approximation was 0.7315 E-02, an NRMS error of 4.48%, 

nearly identical to that of the corresponding NEG test case. 

The comparison of the POS test case density contours and those of the analytical 

solution can be seen in Figure 3.15. The same pressure pulse acceleration error present 

in the corresponding NEG calculation can be seen along the comparison line as well 

as the dispersion error. The greatest effect of the dispersion error for this test case 

is the low-magnitude wave that has been cast off of the upper right quadrant of the 

pressure pulse. This dispersive wave was also present in the NEG calculation, but in 

the lower right quadrant corresponding to the orientation of the dominant cell edge. 

These results, especially taken with those seen in Figure 3.13, confirm the effect of the 

specific formulation of the NEG semi-structured mesh. 



3.3 Unstructured Method Solutions 

100 

80 

60 

40 

20 

>- 0 © 
-20 

-40 

-60 

-80 

-10~100 -80 -60 -40 -20 0 20 40 60 80 100 
X 

(a) Density Contours At t=30 

0.2 ....,..,...,...,....,...,...,....,..,...,...,...,....,..,..,...,...,...,..,...,...,...,....,..,...,..,..,...,..,...,..,..,...,..,..T""I"'"r""I'""l""'I""!"'"r""I'""l""'I""!"'"~ 

0.15 
>- 0.1 
t: 0.05 
Cl) 0 ~ _______ -J 

Z 
W -0.05 
C -0.1 

-0.15 

-O.~ 100 -80 -60 -40 -20 0 20 40 60 80 100 
X 

(b) Density Profile Comparison At t=30 ( - Computed, - - - Exact) 

Figure 3.14: POS Mesh Unstructured Case 

91 



3.3 Unstructured Method Solutions 92 

25 

> o~~~----------------~~------~~-+~~ 

-25 

o 25 50 75 100 
x 

Figure 3.15: Density Contours At t=30 - POS Mesh Unstructured Case (2) 
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3.4 Comparison of Test Case Solutions with Published Re­

sults 

In the CAA Benchmark Workshop [33], there are six different researchers that also 

completed calculations for the uniform mean flow problem. All six of the papers included 

in the proceedings that completed these calculations used high-order accurate structured 

methods. Of the six sets of results discussed, most were completed using a spatial 

discretisation of fourth-order accurate or better. Only one paper of the six, that of 

Nark [51] used anything less than a fourth order accurate spatial discretisation and in 

this case Nark used a staggered scheme incorporating both a 2nd and 4th order accurate 

method. The results published by Nark confirmed that the 2nd order accurate spatial 

discretisation experienced dispersion errors and the method used lost resolution of the 

leading edge of the pressure pulse [51]. The remaining researchers all presented results 

with little or no discernible error, results which appear very similar to the calculations 

completed with the structured method developed as part of this research. The work 

presented by Tarn et al. [67] was completed using Tarn's DRP method. This method 

used a 7-point stencil to give an approximately 6th-order accurate spatial discretisation. 

The DRP stencil is coupled with Tarn's LDDRK method, a modified 4th-order Runge­

Kutta temporal discretisation specifically tuned for use with aeroacoustic problems. The 

results of Tarn et al. mirror those of the structured calculation completed as part of this 

research and have been reproduced from the Benchmark Proceedings in Figures 3.16 and 

3.17. The density contours displayed in Figure 3.16 refer to density levels different from 

the ones used to display previous results, but the overall shape and resolution of the 

pressure pulse and vortex can be observed. The density profile of Figure 3.17 is plotted 

in a similar fashion to previous density profiles. The calculated result is displayed as a 

solid line along with the analytical result, which is displayed as a dashed line. In this 

particular case, the two profiles lie directly on top of one other for the entire domain 

The same DRP /LDDRK method was employed by Chung and Morris [15], along 

with selective artificial dampening, with similar results. Another method presented in 

the Benchmark Workshop is that of Fung et al. [30]. This method used a compact 

finite-difference method with implicit time discretisation to get calculations that were 

4th order accurate in space and 2nd order accurate in time. The results published by 

Fung et al. in the CAA Benchmark Proceedings have been reproduced in Figure 3.18. 

As with the Tarn et al. results reproduced above, the density contours depicted in Figure 

3.18 are not the same contours specified with previous results. However, this does not 
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alter the observation that the results of Fung et al. show smooth and concentric density 

contours which give no indication of dispersion error. In this case, both the pressure 

pulse and the vortex appear to have been modeled accurately, indicating a numerical 

method with high accuracy and little or no dispersion or dissipation. Although the 

experimental results contained within the Benchmark Proceedings all seem to reflect 

the ability of numerous methods to accurately model this problem, they show no proof 

of being any more accurate than the very basic standard 6th-order accurate structured 

method completed as part of this research. What is important to note is that none of 

the methods described attempted to develop an unstructured approach for this problem. 
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3.5 Summary of Results 

Upon completion of the series of uniform mean flow test cases the results were com­

pared both numerically and graphically. The numerical comparison was completed by 

calculating the difference between the calculated density field and that of the analyti­

cal solution using RMS and NRMS error calculations. The graphical comparison was 

completed by visually inspecting contour plots of the density fields of the solutions as 

well as density profiles along the x-axis and comparing calculated results with the ana­

lytical solution. Using these two comparison methods the best combination of gradient 

approximation and quadrature reconstruction technique was determined. The effect of 

the different mesh types was also investigated. 

When comparing the error values of the different test cases the NEG mesh had the 

highest error and the TRI mesh almost always had the lowest error. The dominant edge 

of the semi-structured NEG mesh and the fact that it is always in the same orientation 

for every cell appears to have an overpowering effect on the unstructured method. The 

use of the weighted Least Squares gradient approximation consistently created the lowest 

RMS error for different mesh types. It was therefore no surprise that according to RMS 

comparisons the best overall combination of mesh type and gradient approximation 

used to calculate solutions to the uniform mean flow problem included using a weighted 

Least Squares approximation on a TRI mesh. For this combination of gradient and 

reconstruction method, there was no discernable difference between the use of a single 

or dual quadrature points. In fact for all of the calculations the change between one 

and two quadrature points had little or no effect. This is believed to be due to the 

use of low order gradient approximations. If higher order gradient approximations were 

used it is believed that there would be a appreciable effect with the use of higher order 

quadrature reconstruction. 

When comparing the test case solutions graphically the conclusions drawn were 

similar to those associated with the error calculations. The change from a single to dual 

quadrature reconstruction points has no discernable effect in the density contour plots 

or the density profile comparisons. The NEG mesh had the greatest effect on the test 

case results as well, causing warping of the pressure pulse and vortex. The pressure 

pulse was stretched in a direction corresponding to the dominant edge of the NEG 

mesh, a result of the repeating cell shape as confirmed by the POS mesh calculation. 

There also appeared to be an acceleration or compression of the pressure pulse when 

the Green-Gauss and Least Squares gradient approximation methods were used. This 
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acceleration error was present with all three unstructured mesh types and had a greater 

effect on the downstream portion of the pressure pulse than the upstream portion. 

Both the Green-Gauss and Least Squares formulations contain terms which make the 

approximated gradients directly proportional to the distance between calculation nodes 

(in this case the nodes correspond to cell vertices). In the weighted Least Squares 

formulation, similar terms make the approximated gradients inversely proportional to 

the distance between nodes. This proportionality is believed to be the cause of the 

acceleration error. This is supported by the fact that the test case completed with the 

weighted Least Squares gradient approximation on the UK mesh does not show this 

acceleration error at all, and on the TRI mesh the pulse seems to have been effected in 

the opposite way, with a deceleration or flattening of the pressure pulse. 

Although the use of the weighted Least Squares gradient approximation was least 

effected by the acceleration error it appeared to be the only method with dispersion 

errors. These errors, though small, were visible on all three mesh types. The test 

case which showed the largest dispersion error was completed using the UK mesh. The 

combination of the dispersion error caused by the weighted Least Squares method and 

the alternating dominant edge of the UK mesh created a decoupling effect resulting 

in high frequency errors visible in both the contour plot and density profile. This 

dispersive error was also present in the TRI mesh test case, but to such a small degree 

that the error values were still the lowest of all the unstructured calculations. With these 

results in mind, the decision was made to use only the weighted Least Squares gradient 

approximation technique with a single quadrature P?int to complete calculations for the 

scattering problem. The method was still used with the three different mesh types to see 

if the same error characteristics remained with the more complex acoustic simulation. 



Chapter 4 

Scattering Problem 

4.1 Introduction 

The purpose of the scattering problem is to determine the ability of the unstructured 

method to simulate accurately the interaction of a pressure pulse and a solid cylinder. 

This problem mirrors the real-world scenario of the effect the fuselage has on the noise 

created by an engine on the wing of an aircraft. The scattering problem description is 

taken from the Workshop on CAA Benchmark Problems [64] and is listed as Category 

1, Problem 2. As with the uniform mean flow problem, numerical characteristics such 

as dissipation, dispersion, mesh dependency and overall accuracy are used to evaluate 

the effectiveness of the method developed. 

4.1.1 Test Case Description 

The general layout of the scattering problem can be seen in Figure 4.1. To determine 

the effect the cylinder has on the flow field the pressure at three different locations in the 

domain is recorded throughout the simulation. The three pressure locations labeled A, 

B, and C are indicated along with their proximity to the cylinder. The cylinder used for 

the scattering problem has a diameter of one non-dimensional unit and is located at the 

origin. The three pressure locations are all located at 5 cylinder diameters away from 

the origin in the positions shown in Figure 4.1, (}A = 90°, (}B = 135° and (}a = 180°. 

The point labeled as S is the location of the initial pressure pulse, 4 diameters away 

from the origin at (}s = 0°. 
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4.1.2 Governing Equations 

The governing equations for this problem are used to solve for the variables of density, 

pressure and velocity. The linearised Euler equations used for this specific problem, 

previously seen as Equation 2.1, are written as: 

aw aF aG _ 0 
at + ax + ay -

where, 

W= [; ] , F= [ ~] , G= [ : ] 
(4.1) 

These equations differ slightly from those of the uniform mean flow problem. This 

is due to the fact that there in no uniform velocity field interacting with the pressure 

pulse, or Afx = My = O. This creates a special condition where the continuity and energy 

equations collapse and become equivalent, so only one is needed. In this particular case 

the pressure is maintained and both the conservation of energy and conservation of mass 

equations are satisfied. 

In order to ease the development of the structured code, the governing equations 
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Figure 4.1: Schematic of Scattering Problem 
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for this problem are rewritten into cylindrical coordinates. The change from Cartesian 

coordinates to cylindrical coordinates is prompted by the boundary conditions. For 

this particular problem, the use of cylindrical coordinates makes the determination of 

boundary conditions along the curved surfaces and mesh edges far simpler than with 

the use of a Cartesian formulation. The governing equations, written in cylindrical 

coordinates, become 

(4.2) 

aUo ~aP =0 
at + r aB (4.3) 

aP + oUr + ~ aUo + Ur = 0 
at or r aB r 

(4.4) 

where the variables Ur and Uo refer to the radial and circumferential velocities, respec­

tively. In this Benchmark problem the freestream is at rest and Mx = My = O. 

4.1.3 Test Case Domain 

The computational domain of the scattering problem is described by a circular mesh 

with a diameter of 30 units (30 cylinder diameters). The entire cylinder is surrounded 

by continuous mesh which is divided into 600 equal circumferential segments and 290 

equal radial segments. This creates a basic mesh with 174,000 cells. There are only two 

boundaries for this problem, the first represented by the cylinder at the origin and the 

second external boundary 15 diameters from the center of the domain. 

4.1.4 Initial Conditions 

The initial condition specified for the scattering problem states that at t = 0 a pressure 

pulse located at (4,0) is created using 

[ (
(x - 4)2 + y2)] 

P = exp -(ln2) (0.2)2 (4.5) 

and all other variables are equal to zero, or u = v = O. When written in cylindrical 

coordinates, this initial condition becomes 

P = [-(1) (r2 - 8rcosB + 16)] 
exp n 2 (0.2)2 (4.6) 
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with Ur = Uo = O. The time step is set to 6.t = 0.01 as defined in the Workshop 

manual [64] and the value of the pressure field at points A,B and C are recorded for the 

time t = [6,10]. 

4.1.5 Boundary Conditions 

There are two boundary conditions specified for the scattering problem. There is an 

outflow boundary condition imposed at the outer circular boundary (r = 15) and a solid 

boundary condition imposed at the inner circular boundary (r = 0.5) 

Solid Boundary Condition 

The solid boundary condition used at the inner boundary is applied to only the pressure 

and radial velocity. To simulate accurately the solid wall of the cylinder, a condition is 

applied wherein the pressure gradient normal to the cylinder is equal to zero, and there 

is no radial component of the velocity field. That is 

OPI -0 
or r=O.5 -

(4.7) 

and 

Ur !r=O.5 = 0 (4.8) 

Outflow Boundary Condition 

The outflow boundary condition used at the outer boundary is applied on all three of 

the state variables. The condition applied is used to force the normal gradient of both 

the velocity and pressure fields to be equal to zero at the outer edge of the domain. The 

condition is applied directly onto the last mesh vertices at r = 15 and can be written as 

OWl -0 
or r=15-

(4.9) 
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4.1.6 Test Case Solution 

The pressure profiles of the solution to the scattering problem can be seen in Figure 

4.2. These pressure profiles were recreated from data published in the Second CAA 

Benchmark Workshop Proceedings [64]. These are the solutions that all test cases 

will be compared with to determine accuracy of both the structured and unstructured 

numerical methods. 
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Figure 4.2: Pressure History for Reference Points - Reference Solution 

4.2 Scattering Problem Solution on Structured Mesh 

Before the unstructured calculations were completed, a structured method was used to 

determine a solution to the scattering problem to use as a comparison. The structured 

method used for this calculation has a fourth-order accurate central-difference spatial 

\ 



4.2 Scattering Problem Solution on Structured Mesh 105 

discretisation. The pressure contours at ten time units of the structured method cal­

culation can be seen in Figure 4.3. The pressure contours are symmetric about the 

x-axis for both the initial pressure pulse and the scattered pulse. The initial pulse has 

not shifted position, it is still centered at (4,0) and the scattered pulse is centered on 

the cylinder. The correct shape and positioning of the two pulses indicate that there 

is little or no phase error in the approximation of the pressure pulse and also no lo­

cal time warping causing a shift in the location of the center of the pulses. There is 

evidence of some low-magnitude dispersion with the small pressure wave ahead of the 

right-hand portion of the scattered pressure pulse. There appears to be no evidence of 

any dissipation error in the original pressure pulse as the pressure contours remain con­

centric and closely spaced after la time units (t = la). These results demonstrate the 

high accuracy and low-error characteristics of a standard 4th-order central-differencing 

approximation. 

When looking at how the pressure field develops over time, the accuracy and low 

dispersion and dissipation of the structured method is easily observed. The pressure 

contours shown in Figure 4.4 correspond to the pressure fields at 2.5, 5.0, 7.5 and 10.0 

computational time units. All of the pressure fields are displayed with the same contour 

levels. All four of the pressure contour plots show that the pressure pulse has remained 

symmetrical and in the correct location for the entire calculation. The concentric nature 

of the pressure contours also indicate a low level of dispersive and dissipative error. 

The pressure profiles from the structured calculation, displayed in Figure 4.5, show 

the high level of accuracy of the structured method. The first profile, corresponding to 

location A in Figure 4.1, shows no dispersion or dissipation. There is a small difference 

between the computed solution (indicated by the solid line) and the solution taken from 

literature [64] (indicated by the dashed line). The only discrepancies for the A profile 

occur as a slight phase shift on the peak at 6.3 time units and a small under-prediction 

of the pressure at 8.2 time units. 

Looking at the profile associated with the point at location B in Figure 4.5, the 

accuracy of the structure method is confirmed further. There is only a slight phase 

difference with the pressure peak at 8.2 time units. There is also a very slight under­

prediction of the pressure field from 8.6 time units until la time units. Overall, the 

second pressure profile agrees very well with the analytical solution. 

The third pressure trace, that of point C in Figure 4.5, also displays the high accu­

racy of the structured method. The only visible errors appears as a slight phase shift in 
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Figure 4.3: Pressure Contours At t=10 - Structured Method 
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(a) t=2.5 (b) t=5.0 

(c) t=7.5 (d) t=lD.O 

Figure 4.4: Pressure Contours At t=2.5, 5, 7.5 and 10 - Structured Method 
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the pressure peak at 9 time units and a very slight dispersive error at the leading edge 

of the peak. 

Overall, the solution computed using the structured method shows very high accu­

racy. All of the locations and amplitudes of the peaks in the pressure profiles for all 

three pressure point locations are closely matched to the published solution. 
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Figure 4.5: Pressure History for Reference Points - Structured Method 
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4.3 Scattering Problem Solution on Unstructured Meshes 

As stated previously, only one gradient approximation method was used to calculate 

solutions to the scattering problem on the unstructured meshes. Also, only a single 

quadrature point was used. All three of the meshes (NEG, UK and TRI) were used 

with a weighted Least Squares formulation to determine possible mesh dependencies 

of the method. Only the weighted Least Squares calculations were completed because 

they were consistently the most accurate of methods tested on the uniform mean flow 

problem. 

4.3.1 Summary of Scattering Problem Error Calculations 

As with the uniform mean flow problem, examination of the RMS and NRMS errors was 

used to determine the accuracy of the calculations and the effects of the different mesh 

types. The two semi-structured mesh calculations both show higher levels of error when 

compared to the analytical solution. All of the RMS error calculations completed for the 

scattering problem, including that of the structured method, are summarised in Table 

4.1. The values of the NRMS errors can be seen in Table 4.2. The structured solution 

has the lowest error for only two of the pressure point locations, points A and B. The 

unstructured TRI mesh solution has the lowest error for the C pressure location. The 

error values of the structured method and the unstructured method with the TRI mesh 

are similar for the pressure location C, with a difference of only 0.43% . The error values 

of the structured calculations are typically at least an order of magnitude smaller than 

that of the semi-structured mesh solutions. However, when the unstructured method 

is used with the purely unstructured TRI meshes the results are much more accurate 

overall and can be considered to be comparable (or in fact superior) to the error values 

associated with the structured calculations. 

Mesh 
Type 

Structured 
NEG 
UK 
TRI 

1Ir-___ A.-___ p,r_es_s_u_re~B~L-o-c-at-iTon----~c~--~ 

0.9156 E-03 0.1393 E-02 0.9534 E-03 
0.1029 E-Ol 0.1016 E-01 0.8042 E-02 
0.1149 E-Ol 0.1074 E-01 0.9210 E-02 
0.1502 E-02 0.2036 E-02 0.6524 E-03 

Table 4.1: RMS Error of Scattering Problem Calculations 
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Mesh Pressure Location 
Type A B C 

Structured 1.06 1.70 1.50 
NEG 14.46 13.59 15.07 
UK 12.91 12.98 15.03 
TRI 1.69 2.46 1.07 

Table 4.2: NRMS Error of Scattering Problem Calculations 

4.3.2 Scattering Problem Solution on NEG Mesh 

The first unstructured calculation was completed using the semi-structured NEG mesh. 

The contours of the resulting pressure field after ten time units can be seen in Figure 

4.6. The pressure field shown in Figure 4.6 displays both dispersive and dissipative 

errors. The broken contours of the scattered pressure pulse and the increased number of 

contours in the lower left quadrant of the initial pressure pulse both indicate dispersion 

errors. The pressure contours are not symmetric about the x-axis indicating a mesh 

dependency in the method. The increase in the size of the initial pressure pulse at the 

right side of the domain also indicates dispersion error. This occurs on both the left 

and right sides of the domain. Although there is indications of dispersive errors, the 

initial pressure pulse and the scattered pulse appear to be the correct size and general 

shape demonstrating that the method maintains high enough accuracy to simulate the 

phenomenon of acoustic scattering. 

The asymmetric regions of error are most likely caused by the semi-structured NEG 

mesh. Similar dominant error regions were observed with the uniform mean flow prob­

lem when the NEG mesh was used. Since the pressure field calculated using the NEG 

mesh is not symmetric about the x-axis the largest region of error is most likely due to 

the nature of the NEG mesh cells. The gradient approximation method used for this 

calculation was the weighted Least Squares method which incorporates terms relating 

the gradient to the distance between calculation nodes. The semi-structured meshes all 

contain non-equilateral triangular cells, but the dominant cell edges in the UK mesh 

alternates direction every cell and appears to have a different effect on the numerical 

simulation than the NEG mesh. With the NEG mesh the large cell edges align through­

out the entire domain. This alignment is the only difference between the UK and NEG 

semi-structured calculations and must account for the difference in the pressure field. 

As with the uniform mean flow problem, a graphical comparison was also used to 
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Figure 4.6: Pressure Contours At t=10 - NEG Mesh 
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determine the accuracy of the unstructured method. For this case however the analytical 

solution for the pressure field was not known, only the pressure profiles for the three 

monitoring locations were taken from literature. Therefore the pressure field solutions 

obtained with the unstructured method were compared to those of the structured case to 

determine any possible error characteristics. In Figure 4.7 the pressure contours of the 

unstructured method using the NEG mesh are plotted above the pressure contours of the 

structured method. The same contour levels were used as well as the same scale. Figure 

4.7 shows that there is a fairly strong difference between both the initial and scattered 

pressure pulses between the two methods. The initial pressure pulse of the unstructured 

method is the same general size as the structured method pulse, the outer contours line 

up at both the far left and right sides of the pulses. The shape of the unstructured pulse 

is significantly different however. Looking at the right hand side of the pressure pulse, 

dispersive error has increased the overall width of the unstructured pressure pulse as 

well as increasing the number of contours, a sign of dispersive oscillations. There is also 

some proof that with the unstructured method, the pressure pulse is propagating at a 

slower rate than the structured method. The main structure (Le. the closely spaced 

pressure contours at the center of pulse) of the initial pressure pulse of the unstructured 

method is inside the corresponding contours of the structured method. Similarly the 

scattered pulse of the unstructured pressure field is to the left of the structured pulse 

indicating a phase lag or wave speed error. 

The pressure field of the NEG mesh unstructured method was taken at various stages 

of the simulation to determine how the final result evolved. The pressure contours of 

the NEG mesh calculation at 4 different time steps can be seen in Figure 4.8. The 

contour plots of Figure 4.8 confirm the observations made previously. The asymmetric 

error is present early in the calculations, as shown in Figure 4.8(a), and the relative 

size of the error grows as the pressure pulse grows as seen in Figures 4.8(b), 4.8( c) and 

4.8(d). The dispersive error present in the scattered pulse appears to have a cumulative 

effect as the broken contours are not seen until after the t=7.5 pressure field seen in 

Figure 4.8(c). 

The pressure distributions for all three of the pressure locations are shown in Figure 

4.9. The profile associated with the pressure point at location A shows both dispersive 

and dissipative errors. The phase and amplitude of the peak at 6 time units is different 

from the analytical solution, and there is a slight oscillation in the computed solution 

throughout the entire time domain. Also, the calculated profile has lost the wave 

formation at 8.4 time units. 



4.3 Scattering Problem Solution on Unstructured Meshes 113 

Figure 4.7: Comparison of Pressure Contours At t=10 - NEG Mesh vs Structured 
Method 
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(a) t=2.5 (b) t=5.0 

(c) t=7.5 (d) t=10.0 

Figure 4.8: Pressure Contours At t=2.5, 5, 7.5 and 10 - NEG Mesh 
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The profile associated with the pressure point at location B also shows dispersive 

errors. The amplitude of the peak at 8.2 time units, as shown in the middle distribution 

of Figure 4.9, is damped and there is a phase shift as well as an induced oscillation from 

8.6 time units until 10 time units. There is no error in the earlier part of the pressure 

profile because the pulse has not entered the null field that existed there previously. 

The third and final pressure distribution in Figure 4.9 is associated with the pressure 

point at location C. For this point location, the peak also shows dispersive errors, in 

the under-prediction ahead of the pressure wave, and dissipative errors in the damping 

and widening of the base of the pressure peak. 

Overall, the unstructured calculation completed using the NEG mesh show relatively 

high dissipation and dissipation errors for all three of the pressure point locations. All 

of the wave forms in the three distributions have been affected in some way, and most 

of the errors seem to have remained after the pressure pulse has passed. These results 

indicate how an unstructured method has difficulty in approximating the scattering 

phenomena on the semi-structured NEG mesh. 
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Comparison of NEG Mesh Results with POS Mesh Calculation 

In order to confirm that the large error region of the pressure contours of the NEG 

mesh test case was caused by the dominant edge of the NEG mesh formulation the 

calculation was completed again using the the POS mesh. As stated earlier the POS 

semi-structured mesh is nearly identical to the NEG mesh, only rotated 90° about the 

origin of the domain. The contours of the resulting pressure field can be seen in Figure 

4.10. The large region of error that was present in the lower right quadrant of the 

pressure contour plot with the NEG mesh is now present in the upper right quadrant 

of the pressure contour plot. This change in the location of the large region of error 

directly corresponds to the orientation of the dominant cell edge. Similarly the increased 

area of dispersive error present on the reflected or interior pressure pulse, i.e. the pulse 

nearest to the interior boundary, has also moved from the lower half of the contour plot 

to the upper half. The observation that the location and orientation of the large region 

of error present in both these calculations changes with the selection of either the NEG 

or the POS mesh indicates that the error is caused by the specific characteristics of the 

semi-structured mesh. 

Further confirmation that the error is directly related to the semi-structured mesh 

is given by the fact that the two pressure fields computed using the NEG and POS. 

meshes are so similar that when the regions with the largest amount of dispersive error 

are compared, as in Figure 4.11, they are mirror images of each other with the line 

of symmetry at y = O. This symmetry in the dispersive error is identical to that of 

the two corresponding meshes which are also mirror images of each other with a line 

of symmetry extending along the x-axis. The mirror-image regions of error confirm 

that the dispersion error and the skewed pressure contours are created by the dominant 

edges of the NEG and POS mesh. 
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Figure 4.10: Pressure Contours At t=10 - POS Mesh 



4.3 Scattering Problem Solution on Unstructured Meshes 119 

Figure 4.11: Comparison of Pressure Contours At t=10 - NEG Mesh vs POS Mesh 
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4.3.3 Scattering Problem Solution on UK Mesh 

The second calculation completed using the unstructured method used the UK semi­

structured mesh. The contours of the pressure field at ten time units (t = 10) can be 

seen in Figure 4.12. The pressure field of the UK mesh calculation is similar to that of 

the NEG mesh calculation. Both show the effects of dispersive error in both the initial 

and reflected pressure pulses. The UK mesh however has created a solution which is 

symmetric about the x-axis. This was to be expected as the UK mesh is symmetric 

as well. The asymmetric dispersive error of the NEG mesh calculation matches the 

asymmetric NEG mesh much in the same way the symmetric dispersive error of the 

UK mesh calculation matches the symmetric UK mesh. The most disruptive area of 

dispersion error is to the left of the center of the cylinder. This is also the area where the 

points used to monitor the pressure field are located. The dispersive oscillations in the 

pressure field in this region have created a series of broken pressure contours especially 

where the scattered pulse interacts with the initial pulse. These errors suggest that the 

unstructured method may have some difficulty dealing with the accurate simulation of 

this interaction. 

The pressure field of the UK mesh calculation was also compared with the pressure 

field of the structured method calculation. The pressure contours of the two methods 

can be seen in Figure 4.13. Many of the same errors as the NEG mesh test case can be 

seen here as well. The general shape and size of the initial pressure pulse appear correct 

but the dispersion errors of the unstructured method have increased the width of the 

pressure pulse on the right side. The same propagation errors observed with the NEG 

mesh calculation are seen with the UK mesh calculation as the discrepancy between the 

pressure contours of both the initial and scattered pressure pulses are present in Figure 

4.13. 

Looking at the pressure field at 4 different time steps, as in Figure 4.14, it can be 

seen that the numerical method was able to maintain the symmetry of the problem 

for the entire calculation. The dispersive errors present just behind the right side of 

the initial pressure pulse appear in the same location above and below the x-axis. As 

with the previous mesh types, the dispersive error has the greatest effect on the left 

portion of the scattered pulse. This region contains the interaction of the initial and 

scattered pressure pulses. The broken contours of the scattered pressure pulse, as seen 

in Figure 4.14(d), occur mostly with the scattered pulse (Le. closer to the cylinder) 

while the smooth, continuous contours are still present for the initial pressure pulse 
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Figure 4.12: Pressure Contours At t=10 - UK Mesh 
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Figure 4.13: Comparison of Pressure Contours At t=10 - UK Mesh vs Structured 
Method 
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(Le. farther away from the cylinder). This appears to be indicative the unstructured 

numerical method having difficulty simulating accurately the interaction between the 

scattered and initial pressure waves. As with the other calculations it can be observed 

that the dispersive error also has a cumulative effect, the earlier time steps show fewer 

broken contours where the initial and scattered pulse interact and a decreased width of 

the initial pulse. 

The pressure distributions from this solution show the same types of errors as those 

of the previous NEG mesh calculation. The pressure profiles for all three of the pressure 

points can be seen in Figure 4.15. The pressure profile of point A show both dispersion 

and dissipation errors. The peak at 6.2 time units is damped and there are oscillations 

throughout the time domain. The phase of the peak has also been shifted, lagging 

behind the peak from the analytical solution. 

The plot of the pressure trace associated with point B also shows dissipation and 

dispersion. The pressure pulse at 8.2 time units has been damped and shows a phase 

lag in the calculated solution. Also, there is an oscillation in the pressure distribution 

that began at approximately 9 time units and continued until the end of the calculation. 

The pressure profile associated with the point at location C also shows dissipative 

error when compared to the analytical solution. The pressure pulse at 9.2 time units 

shows a drop in amplitude as well as a phase shift and an under-prediction of the 

pressure value on the trailing edge. 

Comparing the pressure distributions associated with all three pressure locations 

and the analytical solutions, it can be seen that the solution calculated on the UK 

mesh has the same dissipation and dispersion errors as the solution calculated on the 

NEG mesh. This similarity points towards the semi-structured meshes as a source of 

error. It appears as though the unstructured method is unable to simulate accurately 

the scattering problem with a semi-structured mesh. Only after comparison of the TRI 

mesh calculation can the overall accuracy of the unstructured method be determined. 
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o 
(a) t=2.5 (b) t=5.0 

(c) t=7.5 (cl) t=10.0 

Figure 4.14: Pressure Contours At t=2.5, 5, 7.5 and 10 - UK Mesh 
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4.3.4 Scattering Problem Solution on TRI Mesh 

The third calculation completed using the unstructured method used the TRI mesh. The 

solution computed with this formulation shows high accuracy and very little discrepancy 

between the calculated and analytical solution. The contours of the pressure field at 

ten time units (t = 10) can be seen in Figure 4.16. The pressure contours of the TRI 

mesh calculation have two important differences to those of the semi-structured meshes. 

The first difference is the lack of broken contours in the region of interaction between 

the initial and scattered pressure pulses. This difference means the pressure field has 

a lower level of dispersive error in the region closer to the cylinder, as indicated by 

the continuous pressure contours. The second difference is the increase in the amount 

of trailing pressure contours inside the right side of the initial pressure pulse. This 

difference demonstrates that the pressure field has a higher levels of dispersion error in 

the region further out from the cylinder. These two regions of the pressure field indicate 

a possible link between the dispersiv/:) error calculated and the mesh size. For the semi­

structured meshes, there was a linear correlation between the distance from the cylinder 

and the mesh cell size. This created an increase in dispersive error in the outer region 

of the test domain, but at levels that appear to be less intense than those of the TRI 

mesh calculations. For the TRI mesh the different method of cell size determination 

has created a different relation between the distance from the center of the domain and 

the dispersion error. 

Aside from the two main differences listed above further inspection of the pressure 

contours for this test case, as shown in Figure 4.16, indicates a pressure field that 

is highly symmetrical about the x-axis, although there are some regions where there 

are minor discrepancies. The high level of symmetry is important because the test case 

solution is perfectly symmetrical about the x-axis. Unlike the UK semi-structured mesh 

case this particular numerical mesh is not symmetrical, the interior is instead filled with 

triangular cells in random orientations. As with the previous calculations the general 

shape and size of the pressure pulses are correct. 

The pressure field of the TRI mesh calculation was also compared with the pressure 

field of the structured method, as seen in Figure 4.17. For this calculation there is a 

great similarity between the scattered pressure pulse of the unstructured method and 

that of the structured method. For the first time with the unstructured calculations 

the entire scattered wave appears to perfectly match that of the structured method 

along the x-axis cut line. There is only a small difference in the length of the small 
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Figure 4.16: Pressure Contours At t=lO - TRI Mesh 
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pressure wave ahead of the right-hand portion of the scattered pressure pulse. The 

similarity between the structured and unstructured pressure fields does not extend for 

the initial pressure wave however. The contours of the unstructured pressure field near 

the right hand boundary show large dispersion error. There are numerous oscillations on 

the pressure field at this location creating the increased number of pressure contours. 

The dispersion error in this region has increased the width of the pressure pulse to 

approximately triple that of the structured calculation at the same point. 

As with the previous mesh types, the pressure field calculated using the TRI fully 

unstructured mesh was also stored at 4 different time steps during the simulation. The 

resulting pressure fields can be seen in Figure 4.18. As with the pressure field shown 

in Figure 4.16 all of the time steps in this calculation show little dispersion error in the 

region of interaction between the initial and scattered pressure waves. The only area 

that shows any effect of dispersion is the right hand side of the initial pressure pulse. As 

with the other test calculations this appears to be a cumulative error as it is not present 

at 2.5 time units (Figure 4.18(a)) and grows to create a large region of oscillations at 

10 time units (Figure 4.18(d)). Even with the dispersion error the pressure contours 

depict a pressure pulse that is the correct shape and maintains symmetry for each of 

the time steps. 

The pressure distributions taken from the TRI mesh solution can be seen in Figure 

4.19. The small errors that do exist appear to be very similar to the errors from the 

structured method calculation. 

The pressure profile associated with the pressure point located at position A shows a 

strong agreement between the calculated pressure and the analytical pressure for almost 

the entire time domain. There is a slight phase shift in the pressure pulse peak at 6.2 

time units, but the amplitude of the wave seems to be predicted correctly. There is also 

a slight phase difference in the pressure wave at 8.3 time units, but it is very minor. 

The recorded pressure values corresponding to location B also show a high accuracy. 

There is no direct evidence of dispersion or dissipation and the only difference between 

the calculated and analytical solution appears as a slight phase lag in the pressure pulse 

at 8.2 time units. 

The pressure distribution from pressure point C also displays an accurate approxi­

mation of the analytical solution. The only errors present in the profile appear to be a 

slight phase lag of the pressure wave at 9.2 time units as well as a small under-prediction 
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Figure 4.17: Comparison of Pressure Contours At t=10 - TRI Mesh vs Structured 
Method 
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(a) t=2.5 (b) t=5.0 

(c) t=7.5 (cl) t=10.0 

Figure 4.18: Pressure Contours At t=2.5, 5, 7.5 and 10 - TRI Mesh 
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of the pressure at 9.4 time units. 

Overall, the three pressure distributions calculated using the unstructured method 

on the purely unstructured TRI mesh show a high degree of accuracy in the numerical 

method. There is little or no dispersive or dissipative errors in any of the three profiles. 

The pressure traces do not show any larger errors than those encountered with the 

fourth-order accurate structured method. These results indicate that the error in the 

previous two test cases is linked directly to the semi-structured form of the NEG and 

UK meshes. The high accuracy of the TRI mesh test leads to the conclusion that the 

unstructured method requires the use of a purely unstructured mesh for more complex 

acoustic phenomena. 
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4.4 Interaction of Pressure Pulse with Solid Boundary 

As stated previously, the main purpose of the scattering benchmark problem is to 

determine the ability of the numerical method to simulate accurately the interaction of 

a pressure pulse and a solid cylindrical boundary. In order to better understand how the 

method deals with the solid boundary a closer look at the interaction region is required. 

With this purpose in mind a series of plots were created showing the effect of the solid 

boundary on the pressure field and allowing the observation of how the pressure field 

interacts at several different time steps. The region used is approximately three cylinder 

diameters in both the x and y directions and is centered at the cylinder. The contours 

of the pressure fields correspond to seven time steps equally spaced between 3.0 and 6.0 

computational time units. This specific range of times was taken because it corresponds 

to when the leading edge of the pressure pulse impacts with and then reflects off of the 

cylinder surface. As with previous pressure field plots, the contours are evaluated for 

signs of dispersion error and dissipation as well as the ability to simulate accurately a 

simple and symmetrical scattering phenomena. 

4.4.1 Structured Mesh Solution 

The first series of pressure plots investigated correspond to the structured test case. 

This test case is taken as the baseline solution as the numerical method used was a 

high accuracy 4th-order central-differencing approximation. The pressure fields of all 

seven different time steps shown in Figures 4.20(a) through 4.21(c) show symmetrical 

contours that remain smooth and continuous as the pressure pulse interacts with the 

solid cylinder. The leading contours of Figure 4.20(a) break and reform into the smooth 

pressure wave in Figure 4.21(a) and there appears to be little dissipation and dispersion 

error. For these series of time steps there are no oscillations created in the initial pressure 

wave as is passes over the cylinder although Figure 4.20( d) shows some small dispersive 

error in the contours of the reflected pressure pulse. However, these oscillations are not 

present 0.5 computational time units later as shown in Figure 4.21(a). 
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(c) t=4.0 (d) t=4.5 

Figure 4.20: Pressure Contours At t=3, 3.5, 4 and 4.5 - Structured Method 
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Figure 4.21: Pressure Contours At t=5, 5.5 and 6 - Structured Method 
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4.4.2 NEG Mesh Solution 

This first series of unstructured method pressure field plots were created using the semi­

structured NEG mesh. In previous comparisons, such as those above in Section 4.3.2, the 

pressure contour plots indicate relatively high dissipation and dispersion errors as well as 

an asymmetrical pressure field. These characteristics are believed to be caused by in part 

by the semi-structured mesh (the asymmetrical features correspond to the orientation 

of the mesh cells) but it is not known whether or not the dissipation and dispersion 

errors are caused by the overall unstructured method or the specific formulation of 

the solid boundary condition. By looking at the pressure plots at the various time 

steps in Figures 4.22{a) through 4.23{c) it can be seen that the simple solid boundary 

condition appears to have a strong dispersive effect. The smooth, continuous pressure 

contours originally seen in Figure 4.22{a) have dissolved into a series of disconnected 

loops indicating large dispersive error. The fact that the pressure contours shown in 

Figures 4.22{a) and 4.22{b) are still smooth indicates that the pressure pulse has been 

propagated across the domain without the introduction of any dispersive error until the 

pulse nears the solid boundary. This leads to the conclusion that the dispersion error 

may be created by the boundary condition and not necessarily the overall unstructured 

method. 

Looking at Figures 4.22{c) and 4.22{d) it can be seen that as the leading edge of 

the pressure pulse nears the solid boundary the dispersion error is already growing. In 

Figure 4.23{a) it appears as though the dispersion is growing in several directions. When 

comparing the NEG mesh pressure field in Figure 4.21{a) with the structured pressure 

field in Figure 4.23{a) the regions above, below and to the right of the cylinder appear 

to be showing high levels of dispersive error. This same increased level of dispersive 

error is obvious when comparing the NEG mesh solution and the structured solution at 

6.0 computational time units as in Figures 4.21{c) and 4.23{c). 

The asymmetrical contours that were noticed in previous pressure plot comparisons 

such as those above in Section 4.3.2 are also apparent, to a lesser degree, in these plots. 

The decreased domain of these pressure field plots do not allow the observation of large 

regions of asymmetry, but Figures 4.22{d) and 4.23{a) do show definite areas above and 

below the centerline which are not symmetrical. This indicates that even on this small 

a scale, the asymmetrical nature of the NEG mesh has a direct negative effect on the 

solution calculated by the unstructured method. 
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(a) t=3.0 (b) t=3.5 

(c) t=4.0 (d) t=4.5 

Figure 4.22: Pressure Contours At t=3, 3.5, 4 and 4.5 - NEG Mesh 
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(a) t=5.0 (b) t=5.5 

(c) t=6.0 

Figure 4.23: Pressure Contours At t=5, 5.5 and 6 - NEG Mesh 
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4.4.3 UK Mesh Solution 

The second set of unstructured method pressure field plots were calculated using the 

semi-structured UK mesh. For this series of plots the pressure contours were expected 

to maintain a symmetrical appearance to coincide with the symmetrical nature of the 

semi-structured UK mesh. On first inspection the plots in Figures 4.24(a) through 

4.25(c) appear to display a level of dispersion error similar to that of the NEG mesh 

solutions while maintaining a symmetrical appearance. As with the NEG mesh results, 

the pressure contours at 3.0 and 3.5 computational time units (as seen in Figures 4.24(a) 

and 4.24(b), respectively) reach the cylinder maintaining a smooth and continuous form. 

The pressure contours at 4.0 and 4.5 computational time units (as seen in Figures 

4.24(c) and 4.24(d), respectively) then show dispersive error in the right hand portion 

of the plot. These findings indicate that the solid boundary condition applied with 

the unstructured method may be the main cause of the dispersion error, adding more 

credibility to the conclusion stated in the previous section. The remaining three UK 

mesh time steps, shown in Figures 4.25(a) through 4.25(c) appear very similar to those 

of the NEG mesh calculation with a large portion of the pressure contours broken up 

due to increasing dispersive error. 

Overall, this series of pressure plots are very similar to those of the NEG mesh 

calculation. At all seven time steps, there are distinct similarities between the NEG 

and UK solution in how the pressure contours interact with the solid boundary and 

begin to show the dispersion error. 

As for the symmetrical nature of the UK mesh test case, all seven of the pressure field 

plots show a high level of symmetry. Even in the regions of large amounts of dispersion 

error, the upper portion of the plot closely mirrors the lower portion. This adds further 

proof that the unstructured method had an inherent sensitivity to the layout of the 

semi-structured meshes. As with the NEG mesh case, this series of snapshots of the 

pressure field has a fairly small scope but does agree with the overall characteristics of 

the solutions as discussed earlier. 
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(a) t=3.0 (b) t=3.5 

(c) t=4.0 (cl) t=4.5 

Figure 4.24: Pressure Contours At t=3, 3.5, 4 and 4.5 - UK Mesh 
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(a) t=5.0 (b) t=5.5 

(c) t=6.0 

Figure 4.25: Pressure Contours At t=5, 5.5 and 6 - UK Mesh 
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4.4.4 TRI Mesh Solution 

The third and final series of unstructured pressure field plots were completed using 

the purely unstructured TRI mesh. This mesh has a non-symmetrical distribution of 

vertices as well as randomly oriented cells. The earlier results discussed in Section 4.3.4 

indicated a solution that appeared largely symmetrical with some dispersion error in the 

outer region. Looking at the interaction of the pressure pulse with the solid cylinder, 

these earlier results still hold. The pressure field contours shown in Figures 4.26{a) 

through 4.27{c) appear much more similar to those ofthe 4th-order accurate structured 

solution than those of the other unstructured calculations. The contours remain smooth 

and continuous for all of the time steps and there appears to be little or no dispersive 

error. In fact for all seven of the different time steps, the interaction of the pressure 

pulse and the cylinder on the TRI mesh is virtually identical to that of the structured 

mesh when compared. 

As stated previously, the contours remain smooth and continuous and there appears 

to be no indication of dispersive error. The overall field also appears to have a high level 

of symmetry. For all of the TRI mesh plots the combination of the simple solid boundary 

condition and the unstructured method closely mirrors that of the high-order structured 

method. These results lead to the conclusion that the dispersion error seen with the 

NEG and UK meshes is not caused by the solid boundary approximation used for the 

unstructured method but must instead be a result of the use of the semi-structured 

mesh. The symmetric and low-error contour plots of Figures 4.26{a) through 4.27{c) 

prove that the dispersion error that does appear at a later time step for this calculation 

is not caused by the boundary condition. This seems to indicate that the error may be 

a result of the decreased mesh resolution encountered at the outer region of the domain. 

These results indicate that this specific formulation has an inherent accuracy, for this 

particular range of time steps, that nears that of the 4th-order accurate structured 

method for the interior region of the domain. 
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Figure 4.26: Pressure Contours At t=3, 3.5, 4 and 4.5 - TRl Mesh 
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(c) t=6.0 

Figure 4.27: Pressure Contours At t=5, 5.5 and 6 - TRl Mesh 
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4.5 Comparison of Test Case Solutions with Published Re­

sults 

In the Second CAA Benchmark Workshop Proceedings [64] there were fourteen different 

researchers that completed calculations for the scattering problem. Of the fourteen, only 

two did not use structured methods. Those two were the work of Atkins as well as Hsi 

and perie. Atkins [5] used a quadrature-free discontinuous Galerkin method to produce 

results that were highly accurate when compared to the published solution. The method 

developed by Atkins used a fifth-order approximation of the finite elements along with 

a standard three step Runge-Kutta time discretisation. The results, reproduced in 

Figure 4.28, show a high degree of accuracy with only a slight under-prediction of the 

peaks of the pressure profiles. The method devised by Hsi an:d Perie [39] employed a 

commercial finite element package coupled with an explicit time integration algorithm. 

The commercial package, RADIO SS CFD, used a Lagrangian finite-element approach to 

calculate the results reproduced in 4.29. The results published by Hsi and Perie show a 

large amount of dispersive error and very low accuracy. The basic forms of the pressure 

waves are lost in the each of the profiles corresponding to the three pressure locations. 

There is very little correlation between the calculated results and the published solution 

in this case. 

Of the remaining structured methods described in the Benchmark Proceedings there 

are several that show high levels of accuracy but not all. The DRP jLDDRK method 

of Tam et al. [65] was used to calculate results that show no dispersion or dissipation 

errors, as with the uniform mean flow problem. The 7-point sixth-order DRP spatial ap­

proximation and the tuned coefficients of the LDDRK temporal approximation required 

the addition of artificial selective dampening to complete a simulation of the scattering 

problem. The DRP /LDDRK results, reproduced in Figure 4.30 show that the calcu­

lated pressure profiles lie directly on the solution profiles. Another accurate method 

that was used to calculate solutions to the scattering problem was that of Hayder et 

al. [35]. This method used a combination of spectral methods and a 6th order compact 

scheme for spatial discretisation and the same LDDRK time stepping algorithm of Tam. 

The results of Hayder et al. have been reproduced in Figure 4.31. As with the results 

of Tam et al., the calculated pressure profiles match the solution profiles showing a very 

high level of accuracy. 

For less accurate results, those calculated by Fung [29] using a 3rd-order compact 
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scheme show dissipation errors that dampen the waveforms of all three of the pressure 

profiles. The results of Fung have been reproduced in Figure4.32. Another method 

that showed effects of dissipation and had difficulty remaining accurate were those of 

Lin and Chan [48]. The method developed by Lin and Chan used a Least Squares 

spectral element method to approximate the spatial discretisation along with a three 

level time stepping technique. The results of Lin and Chan are reproduced in Figure 

4.33 and show that their method had difficulty in resolving the scattered pressure pulse 

especially at pressure locations A and C, directly above and behind the cylinder. This 

selection of results show that even with high-order structured methods the simulation of 

the scattering problem is not a trivial task and is an important part of the determination 

of the accuracy of a numerical method for use in computational aeroacoustics. 
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4.6 Summary of Results 

As with the uniform mean flow problem, the unstructured calculations completed for the 

scattering problem were compared to those of the structured method and the published 

results both numerically and graphically. The RMS error calculations that provided 

the numerical comparison showed that while the semi-structured mesh calculations had 

low accuracy, the accuracy of the purely unstructured TRI mesh calculation was com­

parable to that of the fourth-order accurate structured method. There was typically 

an order of magnitude difference between the RMS error of the semi-structured mesh 

calculations and the TRI mesh calculation. For two of the three pressure profiles, the 

RMS error of the structured method was approximately half that of the TRI mesh 

calculation, but for pressure location C the RMS error of the unstructured TRI mesh 

calculation was better than that of the structured method. This result indicates that 

for this particular problem, the use of a weighted Least Squares gradient approximation 

on a purely unstructured mesh performed on par with a basic fourth-order accurate 

structured method. 

When comparing the three unstructured calculations with the structured results and 

solution, the conclusions remain. The unstructured method appears to have a strong 

error producing sensitivity to the semi-structured meshes for the scattering problem. 

The pressure profiles of both the NEG and UK mesh test cases show high levels of 

dispersive error for all of the pressure point locations. This error is not present with the 

TRI mesh however. For all three pressure profiles the TRI mesh calculation shows a 

high level of accuracy. When compared to published results, the unstructured method 

present here outperforms a 3rd-order compact scheme and a spectral element method. 

The results of the TRI mesh calculation appear very similar to those of the fourth-order 

accurate structured calculation. 

The formulation of this problem required the use of a solid boundary condition 

to represent the wall of the cylinder. Since the governing equations and the basic 

phenomena of the two Benchmark problems are essentially the same it was believed that 

the inclusion of the solid wall caused the semi-structured meshes to lose the accuracy 

they displayed with the uniform mean flow problem. With the unstructured method 

certain characteristics of the meshes were utilized to aid in the application of the solid 

boundary condition for all three meshes. These characteristics were discussed in Section 

2.4.4 of Chapter 2. For the NEG and UK meshes as well as the TRI mesh the repeating 

pattern and cell structure near the interior boundary was used to simplify the solid wall 
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boundary condition to a first order approximation. This approximation appears to have 

had no detrimental effect on the TRI mesh calculation, but seems to be the cause of 

the error for the NEG and UK mesh cases. As shown in Section 4.4 closer examination 

of the interaction between the pressure pulse and the solid cylinder indicates that the 

dispersive error of the TRI test case present at 10.0 computational time units in not 

caused by the application of the boundary condition. The simulation of the pressure 

pulse hitting the cylinder using the unstructured method and the TRI mesh appears 

virtually identical to that of the 4th order accurate structured method calculation. This 

indicates that the dispersion error is caused sometime after the pulse hits the cylinder 

wall and seems to indicate that the middle region of the domain is the true cause. All 

of the unstructured cases show an increasing level of dispersive error at later stages 

of the calculation as the pressure wave is convected through the middle region of the 

mesh (approximately halfway between the cylinder and the external boundary). In 

this region the cells are increasing in size and changing aspect ratio with every step 

further from the solid cylinder. Since the TRI mesh case shows that the error does not 

necessarily come from the solid boundary condition but does appear when the pulse 

reaches a region where the mesh cells are considerably larger, the unstructured method 

seems to demonstrate a sensitivity not only to the semi-structured nature of the NEG 

and UK meshes, but an overall sensitivity to mesh cell size. It is believed that when 

these dispersive errors occur the pressure pulse has not yet interacted with the outer 

boundary and the error is in fact due to the changing nature of the mesh. 



Chapter 5 

Conclusions And 

Recommendations 

5.1 Summary Of Results 

5.1.1 Uniform Mean Flow Problem 

For the uniform mean flow problem there was a marked difference between solutions 

calculated using Green-Gauss gradient approximation and solutions calculated using a 

weighted Least Squares scheme. On two of the t~ree mesh types the RMS error was 

halved by using the weighted Least-Squares gradient method. It was only on the NEG 

mesh that the Green-Gauss approximation performed better than the weighted Least 

Squares method. On both the UK and TRI meshes, the RMS error of the density field 

calculated using the weighted Least Squares scheme was approximately half that of the 

Green-Gauss method. In tests using the UK and TRI meshes the standard Least Squares 

approximation had an RMS error that was slightly lower than that of the Green-Gauss 

method, but not approaching the level of the weighted Least Squares formulation. On 

the NEG mesh the Least Squares technique had nearly double the error of the two other 

approximation methods. When comparing the results of the test cases graphically, there 

appeared to be an acceleration or compression of the pressure pulse when the Green­

Gauss and Least Squares gradient approximation methods were used. This acceleration 

error was present with all three mesh types and had a greater effect on the downstream 

portion of the pressure pulse than the upstream portion. These results were the same 

for both the single and dual quadrature point tests. The uniform mean flow problem 
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solutions were used to determine the best combination of approximation method and 

quadrature, that being the use of a single quadrature point with the weighted Least 

Squares technique. The use of the weighted Least Squares gradient approximation was 

the only method with noticeable dispersion errors. These errors, though small, were 

visible on all three mesh types. This dispersive error had little effect on the calculation 

of the HMS error as the error calculated on the weighted Least Squares test case with 

the TRI mesh was still the lowest of all the unstructured calculations. For all of the 

tests completed, the best unstructured solution had an RMS error that was an order of 

magnitude greater than that of the 6th-order accurate structured method. 

5.1.2 Scattering Problem 

For the scattering problem the weighted Least Squares approximation method was 

tested on different mesh types to determine mesh sensitivity and the effect of boundary 

conditions not present in the previous test case. The most accurate scattering problem 

solution was completed with the use of the purely unstructured TRI mesh. For each of 

the three pressure monitoring points the solution of the TRI mesh was the most accu­

rate, and even had a lower RMS error than the 4th-order accurate structured method 

for one pressure profile. The NEG and UK meshes have similar RMS errors for all three 

pressure points, but the TRI mesh consistently showed an error an order of magnitude 

less than that of the other unstructured methods. The decrease in RM:S error between 

the semi-structured NEG jUK and purely unstructured TRI meshes appears to be linked 

to the application of solid wall boundary conditions. For all of the unstructured mesh 

calculations a simple solid wall BC was applied that mimicked the condition applied 

for the structured method and took advantage of the mesh layout along the boundary. 

The exact same boundary condition was applied to both the NEG and UK mesh test 

cases, but only a similar boundary condition was applied to the TRI mesh. This was 

due to the fact that the orientation of the cells along the boundaries differ between the 

semi-structured and purely unstructured meshes. This change in boundary condition 

seems to have caused the increase in RMS error and the drastic change in the pressure 

profile that was calculated at each of the three pressure locations. 

After completion of the three unstructured calculations the mesh that was best 

suited for the more complex scattering Benchmark problem was the purely unstructured 

TRI mesh. This mesh type was used as a blueprint to created three other similar 

meshes, all created with the same paving algorithm and all progressively more coarse. 
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The difference between each of these three new TRI meshes was the number of vertices 

contained within each mesh. This allows for the calculation of a numerical order of 

accuracy using mesh coarsening as a control. By using the results obtained using these 

purely unstructured meshes it was determined that the approximate numerical order of 

accuracy was different for each of the three pressure profiles calculated. The formulation 

and analysis involved for the numerical order of accuracy can be seen· in Section A.I of 

Appendix A. The numerical order of accuracy analysis provided an interesting result. 

The approximate order of accuracy for two of the three pressure profile calculations was 

different from that of the third. For pressure profiles associated with locations A and C, 

the approximation stated 2nd order accuracy. For the pressure profile associated with 

location B, the approximation gave 1st order accuracy. Not only are the values different, 

but they are much lower than expected. Normally a 2nd order accurate approximation 

would not be considered sufficient for CAA scenarios. By comparing the results of the 

TRI mesh calculation with the 4th order accurate structured case the unstructured 

method displays an order of accuracy approaching 4th order. The unstructured method 

results also compared favorably with those of other researchers, displaying an order of 

accuracy comparable to high order structured methods currently in use. 

In their comprehensive paper on the progress of computational approaches for prob­

lems in aeroacoustics Colonius and Lele conclude that determining factors used for 

choosing the best numerical method for CAA problems must include "ease of imple­

mentation (and especially imposition of BC)" and the "potential for straight forward 

implementation in different geometries and flow configurations" [17]. This conclusion 

is one shared by the majority of researchers in this field and has caused the finite dif­

ference methods, especially the high-order accurate and optimized methods, to become 

the favored methods for computational aeroacoustics. The numerical method used to 

obtain the results discussed above easily fulfills these requirements. The change from 

a structured method to an unstructured one successfully addresses the inherent diffi­

culties associated with complex geometries. Also the simple and unique formulation of 

the boundary conditions have proven to be very successful as shown by the results of 

Benchmark problems. 

Colonius and Lele state how "surprisingly difficult" it is to "maintain high accuracy 

and computational efficiency for flows in complex geometry (i.e. with unstructured 

or overlapping body-fitted coordinates)" and that "complex geometry codes can only 

obtain good accuracy by increasing the resolution" [17]. With the numerical method 

developed as part of this research the use of a simple Least-Squares approximation, on 
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a mesh whose nodes correspond exactly to that of the finite difference scheme, pro­

vides numerical results which match and in some cases outperform a 4th order accurate 

structured method. The unstructured method also demonstrates accuracy approaching 

that of a 6th-order accurate FD scheme. This proves how powerful and unique this 

combination of discretisation and gradient approximation is. The main purpose of this 

research was to develop a simple yet accurate unstructured method for CAA appli­

cations. The results shown by using this numerical method to calculate solutions for 

the Benchmark CAA problems prove that the numerical method developed is accurate 

and demonstrates low dispersive and dissipative error. These results were calculated 

using a basic Runge-K utta time discretisation and Least Squares gradient approxima­

tion fulfilling the main purpose of creating a simple unstructured numerical method for 

aeroacoustic applications. 

5.2 Achievements and Findings 

Referring to the objectives of the present research listed in Section 1.10, the achieve­

ments and findings are: 

1. A standard high-order central-differencing structured method can be used for basic 

aeroacoustic simulations. A 6th-order accurate method was used for a uniform 

mean flow problem and a 4th-order accurate method was used for a scattering 

problem. Both methods showed high accuracy and low dispersion and dissipation. 

Both structured methods displayed accuracy on par with other methods currently 

in use by other researchers in the field. 

2. For CAA problems the most accurate unstructured numerical method tested as 

part of this research included the use of weighted Least Squares gradient approx­

imation with a single quadrature point used for reconstruction. The mesh type 

best suited for this application was shown to be the purely unstructured TRI 

mesh. 

3. For the scattering problem, the unstructured method described above showed 

an agreement with the exact solution comparable to (and even surpassing) that 

of a 4th-order accurate central-differencing structure method. It also showed 

low dispersion and dissipation error making it a suitable choice for aeroacoustic 

applications. 
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4. A spatial convergence analysis showed that the numerical method developed 

should display approximately second-order accuracy. This level of accuracy was 

suggested through both analytical and experimental analysis. The results of the 

test cases showed that the true accuracy was greater than that suggested by the 

analysis. 

5.3 Recommended Future Work 

The ultimate goal of this research would be the extension of the numerical method 

developed into three dimensions and real-life scenarios. It is believed that before that 

occurs, a more logical and rational testing procedure should be completed. The un­

structured code has shown agreement with published results comparable to that of a 

fourth-order accurate structured method for the scattering problem and low dispersion 

and low dissipation for both test case problems it has been tested on. The next step is 

to further test how the method responds to similar but more complex scenarios. The 

uniform mean flow problems should be adapted to include a two-dimensional flow field 

at an angle of 45° across the domain. The next step is to change from a uniform mean 

flow to a complex flow field, although one that is still prescribed analytically and not 

evolving with the flow. Examples of two-dimensional flow fields that are currently being 

used in more recent CAA Workshops are the exhaust of a subsonic nozzle and a shear 

layer [20]. These different flow fields will assess how effective the numerical method 

is at modeling mean flow refraction. The next step is to use a predicted RANS CFD 

mean flow field to determine how the numerical method deals with a real-life flow field. 

This progression from simpler to more complex flow scenarios would give the numerical 

method proof of its ability to be used in real life situations where the flow field can be 

complex. 

The scattering problem shows that the current method has a reasonable implemen­

tation of a solid wall boundary. This should be tested on more complex (but still 2D) 

shapes such as a square or aerofoil profile. Since the method is already unstructured, it is 

relatively straightforward to extend it to 3D. A natural progression would be to test the 

numerical scheme on scattering from a circle in 2D should extend into scattering from a 

sphere in 3D. A similar problem, that of aeroacoustic shedding over a cylinder in three 

dimensions was already suggested in the second CAA Workshop [64]. It is believed 

that the scattering from a sphere is a truer fundamental test of a three-dimensional 

aeroacoustic method and has been investigated with the use of discontinuous Galerkin 
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methods [12, 18]. The comparison of the DG test case results with those of this numer­

ical method is of interest and should be undertaken. It is believed that the extension 

of the method into 3D will prove the effectiveness of the method and lead the way into 

its application onto more complex geometry and eventually real-life geometries such as 

landing gear and engine struts. 

The numerical method tested here is very similar to many finite volume CFD solvers 

used to simulate nonlinear flow scenarios so knowledge learned here can be incorporated 

into existing finite volume unstructured solvers that compute the nonlinear flow field 

and the acoustics together. There are other examples of Benchmark Workshop test cases 

that can be used to further explore the numerical abilities of this unstructured method 

such as the Aeolian tone generation from two cylinders and the sound generation by flow 

over a cavity [21]. By logically increasing the complexity of the flow field capabilities 

and the geometric capabilities the unstructured method would be given the opportunity 

to demonstrate at each step how effectively it deals with the increasing complexity and 

prove its ability to eventually be an important design tool for real-life, complex flow 

scenarios. 



Appendix A 

Analysis of Unstructured Method 

After completing the calculations associated with the scattering problem test case, it 

became apparent that the most accurate formulation of the unstructured numerical 

method includes the use of a weighted Least Squares gradient approximation on a purely 

unstructured mesh. In the first series of calculations, the addition of a second quadrature 

point had little or no effect on the results, therefore only a single quadrature point was 

used for the reconstruction in the scattering test cases. For both the uniform mean 

flow and scattering problems, this combination displayed the highest relative accuracy. 

The next step is to determine an approximate order of accuracy for the unstructured 

method. This is completed using a numerical determination of accuracy using mesh 

coarsening as a control. 

A.I Determination of Numerical Order of Accuracy 

The numerical order of accuracy is determined using the RMS errors calculated on four 

different meshes. The function that best describes the relationship between mesh spac­

ing and RMS error is then ascertained using linear regression. This function will then 

be used as an approximation of the numerical order of accuracy. The four different 

meshes that are used to determine the numerical order of accuracy are all purely trian­

gular meshes. They were all created using the same method as the original TRI mesh 

for the scattering problem. The RMS error is taken from the solution of the scattering 

problem using the weighted Least Squares approximation and single quadrature point 

reconstruction. 
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In the scattering problem test case the TRl mesh was created by specifying a bound­

ary vertex distribution and using a paving algorithm to determine the mesh cells. The 

three additional meshes (TRl2, TRl3 and TRI4) used to determine the numerical or­

der of accuracy were all created the same way, the boundary vertex distributions were 

specified and then the paving algorithm was used to create the meshes. The statistics of 

the meshes used are listed in Table A.l including the number of cells specified along the 

boundary, the number of vertices as well as the number of primary cells. The number 

of vertices of the mesh correspond to the number of median dual control volumes. The 

statistics of the structured mesh used in the calculation of the scattering problem is also 

listed in Table A.l for reference. 

Mesh No. of No. of No. of 
Type Bdy. Vert. Vertices Pri. Cells 

Structured 600 176055 175160 
TRI 600 960863 1920526 
TRI2 500 668241 1335482 
TRI3 400 427699 854598 
TRI4 300 239964 479328 

Table A.l: Statistics of Accuracy Test Meshes 

Once the solutions to the scattering problem were computed, the RMS error between 

the calculated pressure distributions and the published solutions was determined and 

compared. The RMS error for the various TRI mesh calculations can be seen in Figure 

A.2. The RMS error for the structured method solution to the scattering problem is 

included in Table A.2 as a reference. 

The relationship between the mesh spacing and the RMS error of the pressure dis­

tributions can be seen in Figure A.I. The figure shows the log of the mesh spacing 

(defined below in Equation A.4) plotted against the log of the RMS error of the pres­

sure distributions. The lines for the pressure distributions A,B and C are denoted by 

the circle (O),triangle (6), and square (0) symbols, respectively. 

For each of the three different pressure distributions a straight line approximation 

of the relationship between mesh spacing and RMS error was determined using a chi-
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Mesh 
Type 

Structured 
TRI 
TRI2 
TRI3 
TRI4 

11 

Pressure Location 
A B C 

0.9156 E-03 0.1393 E-02 0.9534 E-03 
0.1502 E-02 0.2036 E-02 0.6524 E-03 
0.1410 E-02 0.2572 E-02 0.7130 E-03 
0.5041 E-02 0.4441 E-02 0.1595 E-02 
0.6882 E-02 0.4516 E-02 0.2992 E-02 

Table A.2: RMS Error of Accuracy Test Calculations 

squared linear regression of the equation 

Y = a+bx 
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(A.l) 

where y refers to the log of the RMS error of the pressure distribution and x refers to 

the log of the mesh spacing. Each of the four meshes are used to calculate the linear 

regression for each pressure point locations, so 

(A.2) 

Looking at one of the pressure distributions, the chi-square merit function [57J can 

be written as 

(A.3) 

where cri is the standard deviation for the data set and is assumed to be constant. The 

N term refers to the number of points in the data set (N = 4) and Yi and Xi refer to 

the log of the RMS error and log of the mesh spacing, respectively. The mesh spacings 

for the four TRI meshes are defined using the number of cells as in 

Using the merit function the a and b terms of Equation A.l can be defined as 

SXX . Sy - Sx . Sxy 
a = ----"-----'"' 

~ 

b = S . Sxy - Sx . Sy 
~ 

(A.4) 

(A.5) 

(A.6) 
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where the regression coefficients are defined as 

N 

S _ ~ XiYi 
xy-~ 2 

i=l (J"i 

and the D. term is calculated using 
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(A.7) 

(A.8) 

(A.9) 

(A.1O) 

(A.ll) 

(A.12) 

The RMS error data and mesh statistics are taken from Tables A.l and A.2 and 

used to calculated regression functions for each of the three pressure distributions. The 

coefficients for the three regression functions can be seen in Table A.3. 

Pressure Function Coefficient 
Distribution a b 

P(A) 5.073 2.533 
P(B) 1.212 1.234 
P(C) 4.161 2.356 

Table A.3: Regression Function Coefficients 

For this numerical analysis the slope of the regression functions, term b in Table 

A.3, can be used as an approximation of the order of accuracy of the unstructured 

numerical method. This formulation tells us that the method should show a practical 

order of accuracy of approximately second order. This practical order of accuracy was 

determined with the full unstructured method for the scattering test case on the actual 

TRI mesh, not a simplified problem on a basic mesh. For a situation such as this 

determining a formal order of accuracy can be difficult, however with the combination 

of the spatial convergence analysis suggesting a second-order accurate method and the 
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experimental results showing that the calculated solutions show an agreement with 

the analytical solutions approaching fourth-order accuracy it can be assumed that the 

method is at least second-order accurate. 



Appendix B 

Calculated Solutions of Uniform 

Mean Flow Problem 
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Figure B.1: Structured Method (1) 

167 



B.1 Structured Test Case 168 

25 

> 0~~----------------~~-----4~~~~ 

-25 

100 
x 

Figure B.2: Structured Method (2) 
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Figure BA: Green-Gauss Gradient Approximation Method (2) 



B.2 NEG Mesh Test Cases 

100 

80 

60 

40 

20 

>- 0 

-20 

-40 

-60 

-80 

100 

(a) Density Contours at t=30 

0.2 ""....,..,....,..., ........ .,............,....,...~.,....,....."'!"'T"'r-T"T".,.......,....,....,...I"T"'!''T''T'''I''T'''!''T''T'''!''T'''r'''l ........ ,...,...,...,...,.", 

0.15 
>- 0.1 
t: 0.05 
~ O~-----_--J 
W -0.05 
C -0.1 

-0.15 

-0'~100 -80 -60 -20 0 20 40 60 80 100 
X 

(b) Density Profile Comparison at t=30 
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Figure B.6: Least Squares Gradient Approximation Method (2) 
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Figure B.7: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.8: Weighted Least Squares Gradient Approximation Method (2) 
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Figure B.1O: Green-Gauss Gradient Approximation Method (2) 
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Figure B.Il: Least Squares Gradient Approximation Method (1) 
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Figure B.12: Least Squares Gradient Approximation Method (2) 
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Figure B.13: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.14: Weighted Least Squares Gradient Approximation Method (2) 
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Figure B.15: Green-Gauss Gradient Approximation Method (1) 
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Figure B.16: Green-Gauss Gradient Approximation Method (2) 
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Figure B.18: Least Squares Gradient Approximation Method (2) 
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Figure B.I9: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.20: Weighted Least Squares Gradient Approximation Method (2) 
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Figure B.21: Green-Gauss Gradient Approximation Method (1) 
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Figure B.22: Green-Gauss Gradient Approximation Method (2) 
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Figure B.23: Least Squares Gradient Approximation Method (1) 
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Figure B.24: Least Squares Gradient Approximation Method (2) 
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Figure B.25: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.26: Weighted Least Squares Gradient Approximation Method (2) 
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Figure B.27: Green-Gauss Gradient Approximation Method (1) 
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Figure B.28: Green-Gauss Gradient Approximation Method (2) 
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Figure B.29: Least Squares Gradient Approximation Method (1) 
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Figure B.30: Least Squares Gradient Approximation Method (2) 
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Figure B.31: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.32: Weighted Least Squares Gradient Approximation Method (2) 
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Figure B.33: Green-Gauss Gradient Approximation Method (1) 

199 



B.4 TRI Mesh Test Cases 200 

25 

> 0~~----------------~~-----4~~~~ 

-25 

100 

Figure B.34: Green-Gauss Gradient Approximation Method (2) 
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(b) Density Profile Comparison at t=30 

Figure B.35: Least Squares Gradient Approximation Method (1) 
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Figure B.36: Least Squares Gradient Approximation Method (2) 
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Figure B.37: Weighted Least Squares Gradient Approximation Method (1) 
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Figure B.38: Weighted Least Squares Gradient Approximation Method (2) 



Bibliography 

[1] European Aviation Safety Agency. Safer Skies for European Citizens. [Brochure], 

Cologne, Germany, December 2004. 

[2] J.D. Anderson. Computational Fluid Dynamics: The Basics with Applications. 

McGraw-Hill, Inc., 1995. 

[3] W.K. Anderson and D.L. Bonhaus. Airfoil design on unstructured grids for turbu­

lent flows. AlA A Journal, 37(2):185-191, February 1999. 

[4] H. L. Atkins. Application of essentially nonoscillatory methods to aeroacoustic flow 

problems. In J.C. Hardin, J.R. Ristorcelli, and C.K.W. Tarn, editors, lCASE/LaRC 

Workshop on Benchmark Problems in Computational Aeroacoustics (CAA), pages 

15-26. NASA, May 1995. NASAjCP-3300. 

[5] H.L. Atkins. Application of the discontinuous galerkin method to acoustic scatter 

problems. In C.K.W. Tarn and J.C. Hardin, editors, Second Computational Aeroa­

coustics (CAA) Workshop on Benchmark Problems, pages 45-56. NASA, June 

1997. NASA CP-3352. 

[6] H.L. Atkins. Continued development of the discontinuous galerkin method for 

computational aeroacoustic applications, AIAA Paper 97-1581, 1997. 

[7] H.L. Atkins and D.P. Lockard. A high-order method using unstructured grids for 

the aeroacoustic analysis of realistic aircraft configurations, AIAA Paper 99-1945, 

1999. 

[8] H.L. Atkins and C.W. Shu. Qaudrature-free implementation of the discontinuous 

galerkin method for hyperbolic equations, AIAA Paper 96-1683, 1996. 

[9] T.J. Barth and D.C. Jespersen. The design and application of upwind schemes on 

unstructured meshes, AIAA Paper 89-0366, 1989. 



BIBLIOGRAPHY 206 

[10] O. Baysal, D.K. Kaushik, and M. Idres. Low-dispersion scheme for nonlinear acous­

tic waves in nonuniform mean flow, AIAA Paper 97-1582, 1997. 3rd AIAA/CEAS 

Aeroacoustics Conference. 

[11] J .P. Berenger. A perfectly matched layer for the absorption of electromagnetic 

waves. Journal of Computational Physics, 114:185-200, 1994. 

[12] M. Bernacki, L. Fezoui, S. Lanteri, and S. Piperno. Parallel discontinuous galerkin 

unstructured mesh solvers for the calculation of three-dimensional wave propaga­

tion problems. Applied Mathematical Modelling, 30(8):744-763, 2006. 

[13] P.J. Bismuti and D.A. Kopriva. Solution of acoustic scattering problems by a 

staggered-grid spectral domain decomposition method. In C.K.W. Tarn and J.C. 

Hardin, editors, Second Computational Aeroacoustics (CAA) Workshop on Bench­

mark Problems, pages 69-78. NASA, June 1997. NASA CP-3352. 

[14] C. Cheong and S. Lee. Grid-optimized dispersion-relation-preserving schemes on 

general geometries for computational aeroacoustics. Journal of Computational 

Physics, 174:248-276, 2001. 

[15] C. Chung and P.J. Morris. Wave propagation and scattering in computa­

tional aeroacoustics. In J.C. Hardin, J.R. Ristorcelli, and C.K.W. Tarn, editors, 

ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics 

(CAA), pages 225-232. NASA, May 1995. NASA/CP-3300. 

[16] C. Chung and P.J. Morris. Acoustic scattering from two- and three-dimensional 

bodies. Journal of Computational Acoustics, 6(3):357-375, 1998. 

[17] T. Colonius and S.K. Lele. Computational aeroacoustics: Progress on nonlinear 

problems of sound generation. Progress In Aerospace Sciences, 40:345-416, 2004. 

[18] A. Crivellini and F. Bassi. A three-dimensional parallel discontinuous galerkin 

solver for acoustic propagation studies. International Journal of Aeroacoustics, 

2(2):157-174,2003. 

[19] N.A. Cumpsty. Compressor Aerodynamics. Longman Group UK Ltd., 1999. 

[20] M. D. Dahl. Third Computational Aeroacoustics (CAA) Workshop on Benchmark 

Problems. NASA, August 2000. NASA/CP-2000-209790. 

[21] M. D. Dahl. Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark 

Problems. NASA, September 2004. NASA/CP-2004-212954. 



BIBLIOGRAPHY 207 

[22] G. Dj amb azov , C.-H. Lai, and K Pericleous. Development of numerical tech­

niques for near-field aeroacoustic computations. International Journal for Numer­

ical Methods in Fluids, 29(6):719-731, 1999. 

[23] T. Dong. Industrial applications of caa. In M. D. Dahl, editor, Third Computational 

Aeroacoustics (CAA) Workshop on Benchmark Problems, pages 457-461. NASA, 

August 2000. NASAjCP-2000-209790. 

[24] NASA Facts. Making future commercial aircraft quieter. Technical Report FS-

1999-07-003-GRC, NASA Glenn Research Center, July 1999. 

[25] Great Britain, Department for Transport. The Future of Air Transport. White 

Paper, London: Stationery Office, December 2003. 

[26] Great Britain, Department for Transport. Transport Statistics Great Britain: 2006 

Edition. National Statistics, London: Stationery Office, November 2006. 

[27] K-Y. Fung. Development of compact wave solvers, AIAA Paper 97-1583, 1997. 

3rd AIAAjCEAS Aeroacoustics Conference. 

[28] K-Y. Fung, R.S.O. Man, and S. Davis. An implicit high-order compact algorithm 

for computational acoustics. A/AA Journal, 34(10):2029-2037, October 1996. 

[29] KY. Fung. Development of compact wave solvers and applications. In C.KW. Tam 

and J.C. Hardin, editors, Second Computational Aeroacoustics (CAA) Workshop 

on Benchmark Problems, pages 85-91. NASA, June 1997. NASA CP-3352. 

[30] KY. Fung, R. S. O. Man, and S. Davis. A compact solution to computational 

acoustics. In J.C. Hardin, J.R. Ristorcelli, and C.KW. Tam, editors, ICASE/LaRC 

Workshop on Benchmark Problems in Computational Aeroacoustics (CA A), pages 

59-72. NASA, May 1995. NASAjCP-3300. 

[31] P. R. Gliebe. Computational aeroacoustics workshop industry panel discussion. 

In M. D. Dahl, editor, Third Computational Aeroacoustics (CAA) Workshop on 

Benchmark Problems, pages 425-427. NASA, August 2000. NASAjCP-2000-

209790. 

[32] G.H. Golub and C.F. Van Loan. Matrix Computation. John Hopkins University 

Press, second edition, 1989. 



BIBLIOGRAPHY 208 

[33] J.C. Hardin, J.R. Ristorcelli, and C.KW. Tam. lCASE/LaRC Workshop on Bench­

mark Problems in Computational Aeroacoustics (CAA). NASA, May 1995. NASA 

CP-3300. 

[34] A.C. Haselbacher. A Grid-Transparent Numerical Method for Compressible Viscous 

Flows on Mixed Unstructured Grids. PhD thesis, Loughborough University, 1999. 

[35] M.E. Hayder, G. Erlebacher, and M.Y. Hussaini. Computations of acoustic scat­

tering off a circular cylinder. In C.KW. Tam and J.C. Hardin, editors, Second 

Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, pages 

93-100. NASA, June 1997. NASA CP-3352. 

[36] M.E. Hayder, F.Q. Hu, and M.Y. Hussaini. Towards perfectly absorbing bound­

ary conditions for euler equations, AIAA Paper 97-9075, 1997. 13th AIAA CFD 

Conference. 

[37] R. Hixon. Prefactored small-stencil compact schemes. Journal of Computational 

Physics, 165:522-541, 2000. 

[38] R. Hixon, S.-H. Shih, and R.R. Mankbadi. Application of an optimized 

maccormack-type scheme to acoustic scattering problems. In C.KW. Tam and 

J.C. Hardin, editors, Second Computational Aeroacoustics (CAA) Workshop on 

Benchmark Problems, pages 101-110. NASA, June 1997. NASA CP-3352. 

[39] M.Y. Hsi and F. perie. Computational aeroacoustics for prediction of acoustic 

scattering. In C.KW. Tam and J.C. Hardin, editors, Second Computational Aeroa­

coustics (CAA) Workshop on Benchmark Problems, pages 111-117. NASA, June 

1997. NASA CP-3352. 

[40] F.Q. Hu. On perfectly matched layer as an absorbing boundary condition, AIAA 

Paper 96-1664, 1996. 2nd AIAA/CEAS Aeroacoustics Conference. 

[41] F.Q. Hu. On constructing stable perfectly matched layers as an absorbing boundary 

condition for euler equations, AIAA Paper 2002-0227, 2002. 

[42] F.Q. Hu and H.L. Atkins. Eigensolution analysis of the discontinuous galerkin 

method with non-uniform grids, AIAA Paper 2001-2195, 2001. 

[43] F.Q. Hu and H.L. Atkins. Two-dimensional wave analysis of the discontinuous 

galerkin method with non-uniform grids and boundary conditions, AIAA Paper 

2002-2514, 2002. 



BIBLIOGRAPHY 209 

[44] F.Q. Hu, M.Y. Hussaini, and J. Manthey. Low-dissipation and -dispersion runge­

kutta schemes for computational acoustics. Journal of Computational Physics, 

124:177-191, 1996. 

[45] J.W. Kim and D.J. Lee. Adaptive nonlinear artificial dissipation model for com­

putational aeroacoustics. AIAA Journal, 39(5):810-818, May 2001. 

[46] J.W. Kim and D.J. Lee. Generalized characteristic boundary conditions for com­

putational acoustics, part 2. AIAA Journal, 42(1):47-55, January 2004. 

[47] W.H. Lin. Least-squares legendre spectral element solutions to sound propagation 

problems. Journal of the Acoustical Society of America, 109(2):465-474, February 

2001. 

[48] W.H. Lin and D.C. Chan. Least-squares spectral element solutions to the caa 

workshop benchmark problems. In C.K.W. Tarn and J.C. Hardin, editors, Second 

Computational Aeroacoustics (CA A) Workshop on Benchmark Problems, pages 

165-177. NASA, June 1997. NASA CP-3352. 

[49] W. K. Lord. An industry view of caa. In M. D. Dahl, editor, Third Computational 

Aeroacoustics (CAA) Workshop on Benchmark Problems, pages 439-443. NASA, 

August 2000. NASAjCP-2000-209790. 

[50] P.J. Morris, L.N. Long, A. Bangalore, and Q. Wang. A parallel three-dimensional 

computational aeroacoustics method using nonlinear disturbance equations. Jour­

nal of Computational Physics, 133:56-74, 1997. 

[51] D.M. Nark. The use of staggered schemes and an absorbing buffer zone for compu­

tational aeroacoustics. In J.C. Hardin, J.R. Ristorcelli, and C.K.W. Tarn, editors, 

ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics 

(CAA), pages 233-244. NASA, May 1995. NASAjCP-3300. 

[52] D.M. Nark. A computational aeroacoustics approach to duct acoustics. In C.K.W. 

Tarn and J.C. Hardin, editors, Second Computational Aeroacoustics (CA A) Work­

shop on Benchmark Problems, pages 259-268. NASA, June 1997. NASA CP-3352. 

[53] Great Britain, Civil Aviation Authority, Directorate of Airspace Policy. Aircraft 

Noise. Environmental Information Sheet - Number 12, February 2006. 

[54] D.S. Department of Transportation, Bureau of Transportation Statistics. U.S. 

International Travel and Transportation Trends. BTS02-03, Washington, D.C., 

2002. 



BIBLIOGRAPHY 210 

[55] U.S. Department of 'fransportation, Bureau of Transportation Statistics. 2005 

Total Airline System Passenger Traffic Up 4.6 Percent From 2004. BTS20-06, 

Washington, D.C., 2006. 

[56] International Civil Aviation Organization. Memorandum on lCAD. [Brochure], 

Montreal, Canada, 2006. 

[57] W.H. Press. Numerical Recipes in Fortran 77: The Art of Scientific Computing. 

Cambridge University Press, second edition, 2001. 

[58] Y.B. Radvogin and N.A. Zaitsev. Adequate boundary conditions for unsteady 

aeroacoustic problems. In C.KW. Tarn and J.C. Hardin, editors, Second Compu­

tational Aeroacoustics (CAA) Workshop on Benchmark Problems, pages 179-189. 

NASA, June 1997. NASA CP-3352. 

[59] N. N. Reddy. Industry panel presentations and discussions. In J.C. Hardin, 

J.R. Ristorcelli, and C.KW. Tarn, editors, lCASE/LaRC Workshop on Bench­

mark Problems in Computational Aeroacoustics (CAA), pages 377-387. NASA, 

May 1995. NASA CP-3300. 

[60] N. N. Reddy. Industry panel presentations and discussions. In C.KW. Tarn and 

J.C. Hardin, editors, Second Computational Aeroacoustics (CAA) Workshop on 

Benchmark Problems, pages 377-380. NASA, June 1997. NASA CP-3352. 

[61] Rolls-Royce. The Jet Engine. Rolls-Royce PLC, Derby, fifth edition, 1996. 

[62] C.KW. Tarn. Computational aeroacoustics: Issues and methods. AlAA Journal, 

33(10):1788-1796, October 1995. 

[63] C.KW. Tarn and Z. Dong. Solid wall boundary conditions for computational 

aeroacoustics. Computational Aero- and Hydro-Acoustics, 147:63-70, 1993. 

[64] C.KW. Tarn and J.C. Hardin. Second Computational Aeroacoustics (CAA) Work­

shop on Benchmark Problems. NASA, June 1997. NASA CP-3352. 

[65] C.KW. Tarn, KA. Kurbatskii, and J. Fang. Numerical boundary conditions 

for computational aeroacoustics benchmark problems. In C.KW. Tarn and J.C. 

Hardin, editors, Second Computational Aeroacoustics (CAA) Workshop on Bench­

mark Problems, pages 191-219. NASA, June 1997. NASA CP-3352. 



BIBLIOGRAPHY 211 

[66] C.KW. Tarn and H. Shen. Direct computation of nonlinear acoustic pulses us­

ing high order finite difference schemes, AIAA Paper 93-4325, 1993. 15th AIAA 

Aeroacoustics Conference. 

[67] C.KW. Tarn, H. Shen, KA. Kurbatskii, L. Auriault, Z. Dong, and J.C. Webb. 

Solutions of the benchmark problems by the dispersion-relation-preserving scheme. 

In J.C. Hardin, J.R. Ristorcelli, and C.K.W. Tarn, editors, ICASE/LaRC Workshop 

on Benchmark Problems in Computational Aeroacoustics (CAA), pages 149-17l. 

NASA, May 1995. NASA/CP-3300. 

[68] C.KW. Tarn and J.C. Webb. Dispersion-relation-preserving finite difference 

schemes for computational acoustics. Journal of Computational Physics, 107:262-

281, 1993. 

[69] LH. Tristanto. A Mesh Tmnsparent Numerical Method for Large-Eddy Simulation 

of Compressible Turbulent Flows. PhD thesis, Loughborough University, 2004. 

[70] K Viswanathan and M. C. Joshi. Use of computational methods for noise/vibration 

problems. In M. D. Dahl, editor, Third Computational Aeroacoustics (CAA) Work­

shop on Benchmark Problems, pages 445-450. NASA, August 2000. NASA/CP-

2000-209790. 

[71] Z.J. Wang. Evaluation of high-order spectrral volume method for benchmark com­

putational aeroacoustic problems. AIAA Journal, 43(2):337-348, February 2005. 

[72] D. S. Weir. Relevance of caa to regional and business aircraft engine design. 

In M. D. Dahl, editor, Third Computational Aeroacoustics (CAA) Workshop on 

Benchmark Problems, pages 433-437. NASA, August 2000. NASA/CP-2000-

209790. 

[73] M. Zhuang and R. Chen. Applications of the optimized upwind dispersion-relation­

preserving schemes for multi-dimensional acoustic problems, AIAA Paper 98-2367, 

1998. 4th AIAA/CEAS Aeroacoustics Conference. 

[74] D. Zingg and H. Lomax. Finite-difference schemes on regular triangular grids. 

Journal of Computational Physics, 108(2):306-313, 1993. 




