

CORRIGENDA

Page

17 Equation (1-7) should read:

$$
\Phi(\Omega)=\frac{27.8 \times 10^{-6}}{\Omega^{1.77}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft}
$$

35 The 5 th and 4 th lines from the bottom of the page should read:
the values proposed by Houbolt (ref. 20), i.e. $n=2$, and $\bar{C}=6.7 \times 10^{-6}$ and 20×10^{-6} for good and rough runways respectively. $-\ldots-\ldots-$ -

36 Immediately after equation (1-19), delete: which results in a curve with two linear segments on the log-log axes.
and insert: which results in a smooth curve on the log-log axes.

80 :The 4 th line after the title should read: The mean-square value $\ldots \ldots \ldots-\ldots$ -.

80 The list line of equation ($4-2$) should read:

$$
\Phi_{\ddot{x}}\left(\omega_{f}\right)=\omega_{f}^{4} \cdot \Phi_{x}\left(\omega_{f}\right)
$$

80 . The 2 nd line of equation $(4-2)$ should read:

$$
=\omega_{f}^{4} \cdot H_{\frac{x}{q}}^{2}\left(\omega_{f}\right) \cdot \Phi_{q}\left(\omega_{f}\right)
$$

82
Equation (4-4) should read:

$$
=\left(\cos \frac{d}{V} \omega_{f}+\right.
$$

Page
82 Equation (4-6) should read:

$$
\dot{h}_{I}=i \omega_{f}\left(\cos \frac{\alpha}{V} \cdot \omega_{f}+i \sin \frac{\alpha}{V} \cdot \omega_{f}\right) e^{i \omega_{f} t}
$$

Line 2.

$$
4.5 \text { and } 4.6 \text { should read: } 4.7 \text { and } 4.8
$$

The equation immediately after equation (4-30) should read:

$$
H(i \omega)_{\frac{x}{h}}=\cdots=\frac{1}{\left(K-u \omega_{f}^{2}\right)+i\left(c \omega_{f}\right)}
$$

Halp nay doin page:

$$
\therefore H(i \omega)_{\frac{h}{r}}=\sqrt{ }
$$

should read:

$$
\therefore\left|H(i \omega)_{\frac{h}{r}}^{h}\right|=\sqrt{ }
$$

Equation (4-33) should read:

$$
\left|H(i \omega)_{\frac{x}{r}}\right|=\sqrt{ } \times \sqrt{ }
$$

Equation ($4-34$) should read:

$$
\ddot{\ddot{x}}^{2}=\int_{\omega_{1}}^{\omega_{2}} \omega^{4} \cdot\left|H(i \omega)_{\frac{x}{r}}\right|^{2} \cdot \oint_{r}(\omega) d \omega
$$

The tro lines immediatoly after equation (4-38) should read:

The troughs on the curve will occur when

$$
\cos \frac{d}{\vec{v}} \cdot \omega_{\mathrm{f}}=-1
$$

Line 19.
delote: from table 4.3
and insert: used to produce the values in table 4.3

126 Lines 12 and 13.
delete: Thus, for a given set of parameters, coupling tends to lower the modal damping substantially.
and insert: Although the values of $\beta=0.0448$ and 0.0295 reflect an effective increase in damping due to the neglect of tyre stiffness, causing lower resonant frequencies, there is indication that, for a given set of parameters, coupling tends to lower the modal damping.

133 3rd line from the bottom of the page.
Figure 4.2 .4 should read: Figure 4.24

Equation (A - 13) should read:

$$
\begin{gathered}
\bar{\delta}^{2}<\int_{\Omega=\frac{2 \pi}{\infty}}^{\infty} \frac{4 \bar{c}}{\Omega^{2}} d \Omega \\
\Omega
\end{gathered}
$$

Line 6.
after: These values are ploted on figure Bl.
insert: The curves have been approximated by straight lines, although strictly, for an arithmetic mean, each pair of points would be connected by a curved linc.

RESPOMSE OF A LINEARIZED AIRCRAFT TO RUNWAY DISTURBANCES

by

BARRIE HUTCHINSON, M.Sc.

A Doctoral Thesis

```
Submitted in partial fulfilment of the requirements for the award of
Dootor of Philosophy of the Loughborough University of Technology.
October }197
Supervisor: Professor F.D.Hales, Ph.D.
    Department of Transport Technology.
```

 (C) by Barric Hutchinson, 1974
 | Loughborough Universty
 of Technoiogy Liairy |
| :--- |
| Dais June 78 |
| Cluss |
| Ace $067758 / 01$ |

ACKNOWLEDGEMENTS

The author would like to express his sincere arreciation to his Supervisor, Professor F.D.Hales, for his guidance in this research and for his enthusiasm for the project.

He would also like to thank his wife, Shirley, for her typing of the manuscript, the interretation of which must have been more than a little difficult.

SUMMARY

A statistical analysis has been developed, using power spectral density methods, to examine the response of an aircraft to runway unevenness. The analysis includes rigid body heave and pitch and any number of symmetrical flexural modes of the airframe, linear values of main and nose oleo and tyre stiffness and damping, and wheel masses. The analysis has been used to produce computer programs for response and optimisation studies, to investigate the effects on response of flexural modes, taxiing velocity, oleo stiff'ness ent dampiné, mad undercarriage position.

It is found that for the aireraft used for the investigation (the values are based on the Boejng 707) a good estimate of the response can be obtained by considering rigid body modes only. Of the flexural modes the lst and 4 th are by far the most predominant, but their effects tend to counterbannee conch other.

The response acceleration at ary positicn on the fuselage generally increases with increased taxiing velocity, althouch this is not alwáys a steady increase. Unaulations are apparent on the response curves, particularly for the pilot location, where they are caused by the effects of the phased undercarriare imputs on the pitching mode. Those on the mainwheel response curve, due to the heave mode, are less pronounced.

Reducing the oleo stiffness is by far the most effective way of reducing the response, the main oleo having by far the nost effect
on the mainwheel location response, which is predominantly due to heave, but both oleos having a large effect on the pilot location response, which has large contributions from both heave and pitch. Increasing the damping also causes a reduction in response, but only to a quite small extent.

As the mainwheels are moved aft from their oricinal position, the response at the pilot location decreases, but that at the mainwheel location increases, the sum of the two responses remaining remarkably unaffected by undercarriage position.

An approximation to the response has been developed, which, when used as an optimisation function, produces good working optima in very short computer times.

The simplified system developed in this thesis is useful for preliminary design, for the study of the effects of parameter variations, and for optimisation.

CONTENTS

PageACKNOMI WDGEMFN1Si
SU:MARY ii
COMIFWES iv
NOTATION viii
INTP ODUCTION 1
SECTION 1 DISCUSSION OH THE PROBLEM WITH REFERENCE TOPFEVIOUS WORK 3
1.1 IRunway profiles and unevenness criteria 5
1.2 Analytical methods of estimating the
dynamic response 22
1.2.1 Deterministic solution 24
1.2.2 Statistical analysis by' the power spectral density method 28
1.3 Effect of flexural modes 4,0
1.1. Parameter variations 1,2
1.5 Design oriteria 47
Figures 50
SECTION 2 DERIVAIION OF THE PYPICAL RUNWAY CHARAC'LERISNICS 57
2.1 Geometric mean runway 60
2.2 Sumnary of Program Data for geometric
mean runway 63
Pable 64
rigures 65
SECIION 3 LHE AIRCRAFT 68
3.1 Idealization 68
3.2 Equations of motion 69
3.2.1 Free-free airframe 69
3.2.2 Undercarriage forces Q_{i} 71
3.2.3 Overall equations 72
fisures 77
SEMION 4 TRSPONE STUDIES 80
1.1 Frequency response function 81
4. 2 Computer programs 87
4.2.1 Main response program, IESPONSE 12 87
4.2.2 Uncoumled heave and pitch responseprograms, BDARBHH4 and PITCH RESPONSE 689
4.3 Presentation and interpretation of results 90
4.3.1 Effect of neglecting various modes 90
4.3.2 Variation of response with taxiing velocity 98
4.3.2.1 Heave response 105
4.3.2.2 Pitch response 112
4.3.2.3 Overall rigia'body response 119
4.3.3 Variation of response with undercarriage stif'f'ness 132
4.3.4 Variation of response with undercarriace damping 136
4.3.5 Variation of response with underoarriage position 139
4.3.5.1 Same linear undercarriages 140
4.3.5.2 Same non-linear undercarriates 140
4.3.5.3 Same natural frequencies 143
4.3.6 Comments on runways used 1.45
Tables 1:9
Figures 156
SBOTION 5 OPTIMISAPION STUDIES 194
5.1 Optimisation techniques 194
5.1.1 Minimum along a line 195
5.1.2 Direct search methods 198
5.1.3 Gradient methods 201
5.1.4 Scaling of variables 204_{4}
5.2 Hethod used for optimisation studie3 206
5.3 Optimisation on actual function 210
5.4 Optimisation on approximation to function 212
Figures 222
SECMION 6 DISCUSSION 228
Figure 236
sECIIOH 7 CONCLUSIONS 237
CRFMEMCES 240
APMEMDICES
A. IMPROVED CENTMAL DEVIATION VALUE 245
A. 1 Houbolt's derivation of maximum deviation from the mean (ref 20) 245
A. 2 Derivation of improved value of central deviation 246
B. DERIVATION OF ARITHETIC :EAN RUNWAY 251
Table 253
Ifigure 254
C. bOEING 707 DATA AND EQUTVALENI LITBAR UNDERCARPIAGE CHARACTPRISTICS 255
C.I Undercarriage and pilot positions 255
C. 2 Masses and Inertias 255
C. 3 hodal frequencies, generalized masses, and damping for first 6 flexible modes 255
C. 4 hode shapes for first 6 flexible modes 256
C. 5 Undercarriage stiffnesses 256
C. 6 Undercarriage damping 257
C. 7 Tyres 261
C.7.1 Stiffnesses 261
C.7.2 Damping 261
C. 8 Summary of program data for aircraft with
6 flexible modes for initial response studies and as starting data for optimisation studies 262
Figures 264
D. AIFCPAF'I AID PUIWAY DATA USED FOR :OST OF THE YORK IN THIS REPORT 267
D. 1 Runway characteristics 267
D. 2 Aircraft characteristics. 267
Tables 269
E. REQULBEMENT FOR AND DEVELOPMENT OF
integration mediod 271
5. 1 Requirement 271
E. 2 Development 274
E. 3 Method for main response program 278
E. 4 hethod for uncoupled pitch response program 280
Figures 284
f. MAIN MESPONSE PHOGRAM, RUSPONBE 12 292
G. uhcoupied heave hesponse program, BDarbhil 302Uhotipled pitca hesponse paogna, pitch
PMSPONSE 6 303
II. Oprimisaiton plocedure, sterep 306
J. opyititsation prograll, bdarBheo 303
K. OPTMISAMTON Piogram, oprimisation on APPROXIMATE RESPONGE FUUCTION 5 315

NOTATION

The following is a list of symbols used in this thesis. Any symbols or suffices used which are not included in this list are explained in the text. Where symbols or suffices can represent more than one quantity their use is made clear in the text.

a	distance from aircraft ceg to main undercarriage
a_{0}, a_{1}	displacements in rigid body and first flexural
	modes respectively for equivalent 3 mass system
b	distance from aircraft cg to nose undercarriage
$\mathrm{C}_{\mathrm{Nm}}, \mathrm{C}_{\mathrm{Nn}}$	non-linear ($V\|V\|$) damping coefficients for main
	and nose oleos respectively
$\mathrm{C}_{\mathrm{em}}, \mathrm{C}_{\mathrm{en}}$	equivalent linear (viscous) danping coefficients
	for main and nose oleos respectively
C_{m}, C_{1}	viscous damping coefficient for main oleo
C_{n}, C_{2}	viscous damping coefficjent for nose oleo
$C_{t 1}, C_{t 2}$	Linear tyre damping coefficients for main and nose
	undercarriages respectively
$\mathrm{C}_{\text {crit }}$	critical viscous damping coefficient
C	equivalent viscous oleo damping coefficient for
	rigid body heave mode
C	equivalent viscous oleo damping coefficient for
	rigid body pitch mode
C_{j}	linear structural damping coefficient for jth mode
\bar{C}	runway unevenness constant
$\overrightarrow{\mathrm{C}}_{\mathrm{a}}, \overline{\mathrm{c}}_{\mathrm{b}}$	\bar{C} for lower frequency and higher frequency lines
	respectively ior geometric mean rumay

d	longitudinal distance between main and nose
	undercarriages
e	distance from aircraft cg to pilot location
F_{di}	oleo damping force for ith oleo
F_{ti}	tyre force for ith oleo
$\mathrm{F}_{s i}$	nett oleo spring force for ith oleo
F_{S}	force transmitted to the airframe from the two oleos
$\frac{\mathrm{H}_{\mathrm{x}}(\omega)}{\mathrm{y}}$	frequency response function relating output x to
	input y
h	runway profile elevation;
	heave input to undercarriage system
$\mathrm{h}_{1}, \mathrm{~h}_{2}$	runway profile elevations at main and nose undercarriages
	respectively
I, J	moment of inertia in pitch of aircraft about cg
K	equivalent linenr oleo stirfness for ricid body
	heave mode
K_{e}	equivalentlinear oleo stiffness for rigid body
	pitch mode
k_{1}, k_{2}	linear spring stiffnesses for main and nose oleos
	respectively
$k_{t 1}, k_{t 2}$	linear tyre stif'fnesses for main and nose umdercarriages
	respectively
L	runway unevenness wavelength
L_{m}, I_{n}	distance from aircraft $c \in$ to main and nose
	undercarriages respectively
\cdots	proportion of the aircraft mass carried by main
	undercarriage

$\mathrm{H}_{2}, \mathrm{H}_{2}$	unsprung masses of main and nose undercarriages
	respectively
M_{3}, N_{4}	generalized masses for rigid body heave and
	pitch modes respectively
M_{j}	generalized mass in j th mode
IN	total number of modes including undercarriage modes
	$N=N_{1}+4$
N_{1}	number of flexural modes
IM	number of modes including rieid body modes but
	excluding undercarriage wozes
	$m=\pi_{2}+2$
n	minus the slope of the straight-line PS function
n_{a}, n_{b}	n for lower frequency and higher frequency lines
	respectively for geometric mean runway
$P_{j}(t)$	generalized forcing function in j th mode
p	Laplace transform variable
Q_{2}, Q_{2}	main and nose landing gear forces respeotively
$\bar{Q}_{1}, \overline{\bar{Q}}_{2}$	static values of Ω_{1}, Ω_{2} respectively
$\mathrm{R}(\chi)$	autocorrelation function
s_{i}	stroke of ith oleo from static equilibrium posjition
U_{i}	vertical displacement at ith location on airframe
V	taxiing velocity of aircraft
W_{1}, W_{2}	unsprung weights of main and nose uniercarriages
	respectively
$\mathrm{x}_{1}, \mathrm{x}_{2}$	vertical displacements of main and nose wheel
	masses respectively
$\mathrm{x}_{3}, \mathrm{x}_{4}$	generalized coordinates of rigid body heave and
	pitch modes respectively

$X_{j}(t)$	ceneralized coordinate of j th mode ($j=5$ to N for flexural modes)
$\overline{\mathrm{X}}_{1}, \overline{\mathrm{x}}_{2}$	static displacements of masses M_{1}, M_{2} respectively
x	displacement along the runway
\bar{x}^{2}	mean-square-value of x
$y(x)$	vertical displacement at any position x along the
	runway
$z(x, y, t)$	vertical displacement of any point on airframe
β	structural damping coefficient
Δ_{n}	largest acceleration peak
Δn_{10}	magnitude of acceleration peak that occurs 10
	times during a take-off run
δ	central deviation from a straight edge
$\delta(t)$	unit impulse function
ξ_{i}	modal displacement at the point where the ith
	oleo joins the airframe
θ_{0}	pitch input to undercarringe syatem
λ	eigenvalue
σ	root-mean-square value of disturbance $y(x)$
σ^{\prime}	average peak amplitude of unevenness
$\Phi(\Omega)$	power spectral density (PSD) of a quantity at spacial frequency Ω
$\Phi_{x}(\omega)$	PSD of response displacement at circular frequency ω
$\Phi_{y}(\omega)$	PSD of runway unevenness amplitude
$\Phi_{\ddot{x}}(\omega)$	PSD of response acceleration
$\phi_{i}{ }^{j}(x, y)$	j jh moie shape at ith location on airirame
Ω	spacial frequency $\left(=\frac{2 \pi}{L}\right)$
ω	circular frequency

ω_{α}	natural damped frequency
ω_{f}	frequency of input disturbance
ω_{j}	modal frequency in the j th mode
ω_{n}	natural undamped frequency
[c]	damping matrix of equations of motion of airoraft
	defined by equation (3-29)
$\left[\mathrm{CA}_{\mathrm{j}}\right]$	damping matrix defined by equation ($3-23$, , $j=3$ to N
$\{F(t)\}$	forcing funotion column matrix defined by equation (3-31)
$\{G\}$	forcing function column matrix defined by equation (4-9)
[k]	stiffness matrix of equations of motion of aircraft
	defined by equation ($3-30$)
$\left[k_{j}{ }_{j}\right]$	stiffness inatrix defined by equation (3-24),
	$j=3$ to N
Γ_{M}	diagonal mass matrix of. $\mathrm{Hj}_{j}, j=1$ to N
Γm_{j}	diagonal matrix of generalized masses, $j=3$ to N
$\left\{P_{j}\right\}$	column natrix of generalized forcing functions
	$P_{j}(t), j=3$ to N
$[U(p)]^{-1}$	matrix of transfer functions for aircraft system
	defined by equations (4-11) and (4-12)
$\{x\}$	column matrix of generalized coordinates $X_{j}, j=1$ to N
$\left\{x_{j}\right\}$	colunn matrix of generalized coordinates $X_{j}, j=3$ to N
$\left\{x\left(i \omega_{f}\right)\right\}$	column matrix of generalized coordinates of
	frequency response functions in the various modes
	definea by equation ($4-15$)
$\left[\phi_{i}^{j}\right]$	row matrix of mode shapes at ith locntion on
	aircraft, $\mathrm{j}=3$ to N
$\left.\phi_{i}^{j} x_{j}\left(i \omega_{f}\right)\right\}$	column matrix of frequency response functions in

$\left[\omega_{j}\right.$	
[]$^{-1}$	$\left.\begin{array}{l}\text { diagonal matrix of modal frequencies, } j=3 \text { to } N, \\ \omega_{j}=0 \text { for } j=3,4 \\ \underline{b} \\ \underline{w} \\ \underline{w} \\ \underline{x}\end{array}\right\}$inverse of matrix transpose of matrix matrix

INTPODUCTION

With the advent of larger more flexible aircraft the underearriage designed purely to withstond landing impact i;s no longer o. completely satisfactory vibration absorber for fround roverent, i.e. for taxiing, take-off runs, and landing runs. Nany problems are associated with vibration of the aircraft during ground manœuvring, such as fatiguc in the airframe, derradation of a pilot's ability to control the aircraft during the critical rotation phase of take-off, and crew an passonger discomfort.

Several criteria have been proposed as limits for the level of vibration response in the pilot compartment, and os Iimits to the level. of runway unevenness rhich may be tolerated. Most runway roughess criteria have been prosented in the form of power spectral densities of unevenness amplitude of the runuay profile. There is a requirement of course for reliable methods of analysis so that the aircraft may be designed so as not to produce excessive response levels.

Analytical methods of estimating the dynamic response of an aircraft to runway unevenness fall into two broad categories: deterministic, and statistical. The deterministic method involves the solution, by digital or analogue means, of the differential equations of the airframe and undercarriage system, using; a deterministic input such as discrete values of elevation along a runway profile. These methods in general have the disadvantage of requiring: large amounts of computer time, but con produce very
accurate results. The statistical methods use lineorized equetions of motion of the airframe and undercarriage system, in conjunotion with the power spectral density function of a runway, to proluce a statistical analysis of the response. These methods encorally have the disadvantages that only statistical information obout the response is obtained, such as root-mean-square values of acceleration, and that an average response along a runwoy is produced, so that individual routh areas cannot be detected. However, the method is. concise, and gencrally thourht to be of particular use when the response to many runways is required, for example, for fatime studies. Authors who have presented statistical analyses nave only generally considered two modes of vibration, either rigid body heave and pitch (usually uncoupled), or rigid body heave and the first flexurnz mode.

The aim of this thesis is to develop a statistical analysis, using power spectral density methods, in which any number of modes of the airframe may be used, and to use the analysis in computer proerans for response and optimisation gtudies to investigate the effect of various undercarriage parameters on the rms value of the response acceleration of the aircraft. The analysis winl include rigid body heave and pitch and any number of symmetrical flexural modes of the airframe, linear values of main and nose oleo and tyre stiffness and damping, and wheel masses. The effects on response of flcyural modes, taxiing velocity, main and nose oleo stiriness and damping, and undercarriage position will be investigated.

SECTION 1

DISCUSSION OF THE PROBLEM TITH REFERENCE TO PRTVIOUS : i ORK

For many years aircraft undercarriages have been designed primarily to absorb landing impact, and the landing problem has been extensively investigated. For many practical purposes the air-pressure force and the seal friction in the oleo unit, and the lower or unsprung mass, can be completely ignored, and the tyre-force deflection relationship can be assumed to be linear (ref. 1). The forces and responses induced on landing are prezominantly dependent on the oleo damping characteristics.

While aircraft were relatively stiff and had low take-of f and landing specds they were not particularly susceptible to runway roughness induced vibrations, and the undercarriage desitned purely for the landing case was perfectly satisfactory. In current subsonic and supersonic transports the change of mass distribution, coupled with increased structural flexibility and higher speeds on the ℓ round, results in a dynamic system with several flcxible modes whose frequencies are low enough to be excited by the runway waveleneth variations present in the runway unevenness. Furthermore the Iover frequency modes may have frequencies of the same order as, and be closely coupled with, the rigid body heave and pitch modes.

The problem of runway induced vibrations has been discussed in an introduction to a previous work by the author (rer. 2), which was manly concerned with experimental investigations into the feasibility of applying power spectral density (PSD) techniques to the
determination of response to runway unevenness. Further discussion of the problem, with a different emphasis, can be useful here, since the object of this thesis is to use PSD techniques to investigate the response of a linearized aircraft to runway unevenness, and of course further literature has become available since reference 2 was produced.

There would be no problems of taxiing vibrations if all runways and taxiways were perfectly smooth and flat. This is of course not a feasible possibility. The practical difficulties involved, and the cost incurred, in creating and maintaining such perfect surfaces would be prohibitive. There is thus a need to establish reliable methods of predicting aircraft dynamic response, during taxiing, take-off and landing, with a view to inproving the vibration isolation characteristics of undercarriage units, so that the aircraft designer can provide a landing gear and airframe structure which can operate safely and comfortably from existing runways. However, an aircraft can only be designed with shock absorbing capabilities for withstanding a finite and known level of rouchness. Thus there is still a need to produce reliable methods of measuring and describing runway roughness, criteria for indicating acceptable levels of runway roughness, and methods of effecting repairs economically.

1.1 Funway profiles and unevenness criteria

Runway longitudinal profiles contain, in a somewhat random manner, weves of different wavelengths with the amplitudes generally becoming larger as the wavelengths increase. There are several methods by which the runway profile can be specified. Figure 1.1 shows one such method. Runway elevations are simply plotted against distance along the runway. The same information can also be presented as a list of ordinates of runway elevation measured at say 2 ft intervals along the runway. A very simple method of giving a numerical value to the runway unevenness is to 3 tate the maximum deviation from a straight edge held on the runway surface.

The runway unevenness characteristics may also be presented as shown in figure 1.2. Here the elevation measurements from figure 1.1 have been converted to PSD plots. The ordinate in figure 1.2 is the power spectral density, Φ, whioh is a measure of the power contained (proportional to the square of the amplitudes) in the unevenness corresponding to the wavelengths shown on the abscissa. Hence the higher the curve in figure 1.2, the higher the indicated roughness level. The power spectrum gives a concise picture of unevenness make-up of a given random profile, which clearly indicates the wavelengths that are troublesome, and from which additional information about the profile may be derived. The area under the PSD curve is equal to the mean-square value of the elevation values of the given profile. Furthermore, if it is assumed that the random profile is of a given nature (for example a Gaussian stationary randor process), other properties such as the number of peaks above
a given level of elevation may be deduced. However, the PSD variation with wavelength represents an average roughness over the entire runway length for various wavelengths. It does not therefore distinguish between many bumps of small amplitude and a few bumps of large amplitude at a given wavelength, nor does it give any indication of the location of unevenness along the runway.

In the 1950^{\prime} s almost all significant aircraft response occurred in the very narrow frequency range of $1 \frac{1}{2}$ to 2 Hz (ref. 3), giving runway profile wavelengths of concern, due to the range of ground speeds then used, of 17 to 150 feet. This range has been extended considerably by modern generations of aircraft. of particular interest are the trend towards lower resonant frequencies for the larger more flexible aircraft, and the increase in runway speeds. Coleman and Hall (ref. 4) showed that the frequencies of the predominant responses for a large jet transport and a fighter aircraft of the early 1960 's were about I and 3 Hz respectively. These give ranges of runway wavelengths of concern of about 40 to 270 feet for the transport and 14 to 70 feet for the fighter. The variation of wavelength with taxiing speed for several frequencies is shown in figure 1.3. Shaded areas have been drawn covering wavelengths capable of exciting response in the fighter and the transport. The fighter, with its relatively rigid airframe, would ride over unevenness wavelengths of 200 to 300 feet with little or no response, whereas the same inevenness could be expected to excite considerable response in the jet transport, with its higher runway speeds and modes of lower resonont frequency. Less response is expected to be excited at lover speeds for both aircraft. Hence a runway which is satisfactory for
some aircraft may cause complaints by pilots of other types (see for example refs 5, 6).

An investigation by Morris (ref. 7) in 1965 showed the predominant normal acceleration responses of two transport airaraft to be at about $\frac{3}{4} \mathrm{~Hz}$ and $1 \frac{1}{2}$ to $1 \frac{3}{4} \mathrm{~Hz}$ for the centre of gravity (cg) and about $\frac{3}{4} \mathrm{~Hz}$ for the pilot compartment. Mitchell (ref. 8) has reported similar response frequencies for a Boeing $707-436$ passenger transport at a maximum take-off weight of 310000 lbf. Heavy pitching of the aircraft occurred at 0.7 to 0.9 Hz , and heaving at $1 \frac{1}{4} \mathrm{~Hz}$, with structural vibrations at higher frequencies. In 1970, Morris investigated the response characteristics of 6 aircraft ranging from a small jet trainer to a heavy bomber (ref. 6). Significant acceleration responses of these aircraft extended over a frequency range from $\frac{3}{4}$ to over 13 Hz , with pitching frequencies ranging from $2 / 3 r d s$ to $1 \frac{3}{4} \mathrm{~Hz}$, the larger aircraft producing the lowest frequenoy resonances. The responses of the large aircraft were generalily associated with runway unevenness with peak-to-trough elevation differences of 0.05 to 0.25 feet with wavelengths of up to 250 feet.

The first generation of supersonic transports has extended the range of wavelengths of concern even further. Calculations and initial taxiine trials have shown (ref. 9) that the symmetric response of Concorde during take-off would be characterized by 3 main modes: pitching at 0.7 Hz , heaving at 1.3 Hz , and elastic vibration at 2.3 to about 8 Hz . The lowest frequency could be excited by waveleneths up to 460 feet. Concorde pitches more than a subsonic transport aircraft, probably because of its long fuselage and short wheelbase.

It was calculated that even on a relatively smooth munway, the nose undercarriage load would vary between 10000 and 4.0000 Ibf at 0.7 Hz for about half the take-off run; on rougher runways the nosewheel could be bouncing off the runway from about 60 knots upwards. The heaving at 1.3 Hz would cause fluctuation of main undercarriage loads, the maximum load occurring during rotation as a result of the elevator down load needed to initiate rotation. The elastic modes would also be strongly excited, particularly the fundamental at 2.3 Hz , which would be excited by wavelengths up to 14.0 feet at 190 lnots.

Thus, frequencics in the range of about 0.7 to 13 Hz may be excited in modern aircraft by munay unevenness wavelengths up to almost 500 feet. Clearly vibrations anywhere in this frequency range can cause fatigue damage in the airframe, and particularly in the undercarriages and their associatcd structure, depending on the amplitude of the vibration. Also, in some exceptional circumstances, the amplitudes may be large enough to cause limit loads, thus making the aircraft taxi-critical. However, in addition to causing structural damage problems, the vibration environment affects the crew and passengers.

Human discomfort or disturbance by vibration will depend to sone extent on individual susceptibility and particular oircumstarees, and discomfort, or lack of it, is not necessarily a reliable guide to whothor or not working efficiency is lowered or health impaired (ref.l0). However, the tolerance of the human body to vibration is in general a function of applied frequenoy, acceleration amplitude, and duration of exposure, the performance of tasks involving co-ordination between hand
and eye being nost easily degraded by whole body vibration in the frequency range 4 to 8 Hz (refs 10, 11). Also visual blurring can be equally distracting, and thus a threat to efficiency, whether it is caused by vibration of the eye or of the object being observed. Whilst it has been shown that lateral vibrations are more critical than vertical vibrations with respect to a pilot's difficulty in reading instruments etc, since this thesis is concerned only with vertical response, the discussion will be limited to this aspect.

Levels of vibration at the pilot location of an aircraft can be twice those at the cg (refs $6,7,8,12$), even more in a supersonic transport. Calculated values of pilot compartment/cg rims acceleration ratio (ref. 13) showed a value of 2.84 for the proposed American supersonio transport Boeing 733-94, taxiing at $100 \mathrm{ft} / \mathrm{s}$ on the Langley runway, as opposed to 1.92 for a Boeing 707. Calculations and initial taxiing trials on ${ }_{\text {oncorde }}$ have showm (ref. 9) that the cockpit/cg vertical acceleration ratio would average about 3 during take-off, but would be higher when pitching motion was occurring. The vertical acceleration in the cockpit on a given runway would be more than twice that for a subsonic transport. However, these values had not been borne out in practice, and it appeared that the calculations in some cases overestimated the aircraft response considerably. In a later report (ref. 14) Mitchell has stated that on 'ioncorde the flying controls are very precise, and control of the rotation manoeuvre has proved to be easier than on subsonic transports. Pitching on the runway has not been found to introduce any piloting problems.

Although the question of whether a runway is rough or not is partially a subjective one, depending on pilot interpretation and experience, there are many effects from which a roughness criterion can be obtained objectively. For example, particular ranges of amplitude and frequency of vibrations will lead to calculable fatigue damage or to definite physiological effects, regarjless of whether or not the crew finds these vibrations unduly uncomfortable.

Criteria for roughness can be presented in two major ways. The criterion may simply be a measure of runway roughness, or it may be a measure of level of vibration at some point on an aircraft taxiing on the runway. In other words the criterion can either be a measure of the environment, or of response to the environment. The two methods are not necessarily compatible for different airoraft on the same runway, due to the differenoes in dynamio response characteristios between aircraft, and the method used would in general depend upon the problem being faced.

The most widely accepted response criterion, proposed by Morris and Hall (ref. 5), is that the maximum vertical acceleration in the cockpit should not exceed ± 0.48 for sections of the runway where precise aircraft control is required. Several authors have expressed agreement with this criterion. Notably, in a later paper, after a comprehensive series of tests on 6 different aircraft types (ref. 6), Morris conoluded that the figure of $\pm 0.4 \mathrm{~g}$ in the cookpit was approximately the dividing line between satisfactory and unsatisfactory runways from the pilot's viewpoint, but did not represent a sharp
"cut-off". Pilots described peak acclerations greater than 0.6 g as objectionable, peaks between 0.4 and 0.5 E as slightly severe, and raised no objection to peaks less than 0.4 g . Cockpit acceleration peaks in excess of $1 g$ had resulted in pilots' complaints of actual physical discomfort, considerable doubt as to their ability to control the aircraft, and difficulty in reading the airspeed indicator.

Although an acceleration response of $\pm 0.4 E$ was generally considered objectionable, this does not neeessarily mean that this represents a dangerous level. In measurements of cockpit vertical vibration in a Boeing $707-436$ during routine flying by a British airline (ref. 8) vertical vibration of up to $\pm 0.4 \mathrm{~g}$ with occasional peaks of $\pm 0.7 \mathrm{~g}$ did not affect the accuracy of the speed at which the crew initiated rotation for take-off.

Mitchel.l has found (ref. 9) that a good measure of the severity of a take-off is the magnitude of the acceleration peak that occurs 10 times during the take-off run. This was given the symbol Δn_{10}. The acceleration peak was defined as the sum of successive peaks of incremental acceleration of opposite signs, the peak of incremental acceleration being defined as the largest peak between successive zero crossing3. It was tound empirically that for both Concorde and VC 10 accelerations the overall rms value was $0.37 \Delta n_{10}$, and that Δn_{10} was a more consistent measure of the intensity of the vibration than the more easily observed single peak acceleration. However, on averose, for coclpit accelerations, the lagest peak Δ_{n} was $1.47 \Delta n_{10}$. Hence, it may easily be deduced that the overall ras was, on average, $0.252 \Delta n$.

Measurements of vertical acceleration in the cockpit of a Boeing 707 (ref. 1j) showed that a Δn_{10} of $0.3 g$ was exceeded frequently on take-of't', and 0.56 on landing. These levels appeared to be acceptable. However, accelerations of $\Delta n_{10}=0.5 \mathrm{~g}$ with a typical peak acceleration of 0.7 g , measured in the cockpit of a Super VC 10 during take-off at Addis Ababa (ref. 9), produced crew complaints of inability to read instruments, and concern about overloading the airframe and undercarriage. Similarly, peak cockpit accelerations of $\pm 0.4 \mathrm{~g}$, with a Δn_{10} of 0.28 g , recorded in a prototype Trident I (ref. 16), were rated by the cren as unacceptable. If this is compared with the Boeing 707 values above, the vibration should have been acceptable. However, whilst the report did not indicate why the vibration was considered too severe to be accepted, it is interesting to note that the predominant vibration mode was at 5.5 Hz , i.c. in the range where the performance of tasks involving the skilled use of hand and eye is most easily degraded. On the other hand, it would be expected that the predominant response of the Boeing 707 would be at a much lower frequency.

Thus runway unevenness can induce vibrations in aircraft of such frequencies, and sufficient amplitude, as to cause not only structural fatigue and crew and passenger disoomfort, but also in some severe cases a hazard to safety. There is little the pilot can do to reduce the response other than taxi at a very low speed (ref. 3). However, the speed of the aircraft, particularly on take-off and landinf runs of course, is dictated by other operational requirements, as is the control of lift.

Mitchell has produced evidence (ref. 8) to show that when the cockpit acceleration exceeds about $0.3 g$ the control column is moved in sympathy with the acceleration; the pilot is trying, possibly subconsciously, to reduce the acceleration. However, his action may well have the opposite effect. Operational data has shown (ref. 17) that for the case of hard landings pilot attempts to correct the effects of an initial bounce usually resulted in increased structural loads on the second bounce due to the differently phased responses of the aircraft and the control system.

Criteria for runway profile unevenness may be expressed in several ways, the two major methods being (a) deterministic, and (b) power spectral. The deterministic method usually defines the measured profile, the actual profile defined by measuraments made at regular intervals. Unevenness criteria may be expressed as deviations from a straight edge placed on the runway surface. The PSD of an actual or measured runway profile will produce a line such as those presented in figure 1.2. Clearly more regular curves than these are desirable for use as unevenness criteria, and most proposals have been in the form of straight lines on the log-log scales. In spite of the disadvantages of the power spectral method of depicting criteria, and the condemnation of the method by several authors (refs 4, 5, 28,19) as being insufficient to define acceptable levels of runway unevenness, most criteria have been proposed in power spectral terms. Some, however, have been proposed in other terms.

A proposal by Milwitzky (ref. 3) suggests criteria in the form of maximum deviations from straight edges placed on the runway.

Figure $1(i)$ shows the average peak amplitude σ^{\prime} of the unevenness within any given horizontal distance L.

Fig. 1 (i)

Maximum deviations $2 \sigma^{\prime}$, for "new construction" and "nceds repair", were based on measurements of a very good commercial runway, and are shown in table $l(i)$.

	$\begin{aligned} & \text { Straight } \\ & \text { edge length } \\ & \text { (feet) } \end{aligned}$	Maximum deviation from straight edge, $2 \sigma^{\prime}$ (inches)	
		Milmitzky	Houbolt
New construction	$\begin{array}{r} 17 \\ 80 \\ 150 \end{array}$	$\begin{aligned} & .156 \\ & .281 \\ & .344 \end{aligned}$	$\begin{aligned} & .14+ \\ & .313 \\ & .428 \end{aligned}$
Needs repair	$\begin{aligned} & 17 \\ & 80 \\ & 150 \end{aligned}$.313 .562 .688	$\begin{aligned} & .250 \\ & .54+3 \\ & .741 \end{aligned}$

Table 1(i)
It is worthy of note that Milwitzky's criteria were published in 1959, at which time the runway wavelengths of concern were about 17 to 150 feet. Because the upper limit of wavelengths of concern is now of
the order of 500 feet, criteria expressed in this way should now include maximum deviations over much longer wavelengths.

Milwitzky also produced power spectra corresponding to the above criteria. These are show in figure 1.4, together with the power spectra of the four runways examined.

In a review of previous runway unevenness studies (ref.20) Houbolt sets out criteria, similar to those shown in figure 1.4. His criterion for new construction is

$$
\begin{equation*}
\Phi(\Omega)=\frac{6.7 \times 10^{-6}}{\Omega^{2}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft} \tag{1-1}
\end{equation*}
$$

and for "needs repair" is

$$
\begin{equation*}
\Phi(\Omega)=\frac{20 \times 10^{-6}}{\Omega^{2}} \mathrm{ft} / \mathrm{rad} / \mathrm{ft} \tag{1-2}
\end{equation*}
$$

The criterion for new construction yields a value for maximum deviation from the mean in a length L ft of $0.00146 \sqrt{\mathrm{~L}}$. This may be derived as shown in Appendix A, and corresponds to Milwitzky's σ^{\prime} in figure $1(i)$, so that the maximum deviation from a straight edge placed on the runway, for new construction, is given by

$$
\begin{equation*}
2 \sigma^{\prime}=0.00292 \sqrt{\mathrm{~L}} \mathrm{ft} \tag{1-3}
\end{equation*}
$$

Similariy, the "needs repair" criterion yields

$$
\begin{equation*}
2 \sigma^{\prime}=0.00505 \sqrt{\mathrm{~L}} \mathrm{ft} \tag{1-4}
\end{equation*}
$$

Table $1(i)$ compares Kilwitzky's maximum deviation criteria with those calculated from equations $(1-3)$ and $(1-1$). In Houbolt's criteria the deviations for "needs repair" are $\sqrt{3}$ times those for "new construction", whereas the corresponding factor in Milwitzky's criteria is 2 .
straight edge and the runway. Referring to figure l(ii), the central deviation δ from a straight edge of length L, for the thew

Fig. 1 (ii)
construction" criterion, is derived as

$$
\begin{equation*}
\delta=0.00324 \sqrt{\mathrm{~L}} \mathrm{ft} \tag{1-5}
\end{equation*}
$$

Comparing δ in figure $I(i i)$ with $2 \sigma^{\prime}$ in figure $1(i)$, and noting that $2 \sigma^{\prime}$ is a maximum deviation, whilst δ is a central deviation, and also that whilst Milwitzky's straight edge is an actual straight edee placed on the runway surface, Houbolt's "straight edge" is in fact: a straight line drawn between any two points on the rumway profile, and can thus "cut off" peaks as shown in the figure, it is felt that δ cannot possibly be greater than $2 \sigma^{\prime}$. It would indeed be possible for δ to be a negative quantity. A suggested value of central deviation from a straight edge of length I, to replace Iloubolt's value in equation (1-5) is

$$
\begin{equation*}
\delta=0.00206 \sqrt{\mathrm{~L}} \mathrm{ft} \tag{1-6}
\end{equation*}
$$

This is derived in Appendix A, where it is also proved that δ cannot indeed exceed $2 \sigma^{\prime}$, and could be expected to be of the order of $\sqrt{2} \sigma^{\prime}$.
also quotes runway unevenness criteria in terms of "straight-line" PSD's, the criterion for a paved runway being

$$
\Phi(\Omega)=\frac{27.8 \times 10^{-6}}{1.77} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft} \quad(1-7)
$$

The specirication also states that acceptable runway roughness shall be in accordance with the data specified in figure 1.5. This shows a further means of expressing criteria, the height of discrete (1 - cosine) undulations being plotted against their wavelengths.

Coleman and Hall have shom (ref. 4) what level of smoothness could be obtained with the construction criteria which had been used for many years. The maximum permissible deviation for most rumways constructed since about 1945 had been $+\frac{1}{8}$ inch from a straight edge, 10 to 16 feet long, placed on the runway surface. This permissible deviation represented a compromise between increased construction costs and increased roughness. An indication of the level of smoothness which could be realized under these criteria is show in figure 1.6 (reproduced from ref. 4.). The power spectrum of rou hiness of a new runway at an international commercial airport is far below that specified by Milwitzky's criterion for new constmiction. Experience with a number of runways had indicated that a runway would be satisfactory for most, if not all, aircraft current at that time (1963) provided its roughness parer spectrum did not exceed the "new construction" line.

In general then, newly constructed runways have had a satisfactory level of smoothness. Of major concern has been the development of rollghess as the runway deteriorates with age and usage.

This deterioration may be general, such as would be expected to be caused by settling of the runway base or movement of the surface due to environmental changes, or more localized, such as would be caused by landing impacts or auxiliary runway construction.

It has been indicated (ref. 4) that munway roughness power spectra are not a reliable basis for judging when a runway needs repair. The major reason for this is the inherent limitation of the spectrum for describing the detailed characteristics and location of the roughess, when the roughness is localized. In an investigation of the location and simulated repair of rough areas of a given runway (ref. 19) Hall and Kopelson used analogue techniques of analysis. The aircraf't was simulated by a very simple mathematical model incorporating rigid body heave and pitch only, and undercarriages with linear characteristics. The time histories of the simulated responses to 3 minways indicated several distinct runway irregularities as being the primary cause of the various peak responses. The "runway repairs" were made simply by "cutting off" peaks on the runway surface by means of horizontal lines produced by a diode limiting circuit. Considerable reduction in response of the aircraft was obtained in this manner. However, a conparison of time histories of 2 runways showed that one was rougher in most cases than the other, whereas the power spectra indicated about the same rouchness. Thus, power spectra based on whole runway averages did not appear to be suitable for this type of problem, where specific areas were or interest.

Most of the published data on runway roughness is also in PSD form. In addition to the limitations of the method already discussed, the applicability of much of this data is limited for the following reasons:
(a) Most of the data was obtained in the late 1950^{\prime} s. Thus it may not be representative of the runways as they exist today, and in general the spectra were calculated to cover only the range of wavelengths of concern at that time, i.e. up to about 150 feet.
(b) Many of the published spectra may be in error (ref. 21). The PSD's at the Ionger wavelengths have been overestimated due to a contaminating effect of very long wavelengths such as runway grades. It is for this reason that the values of root-mean-square roughness derived from the power spectra have not been considered a reliable measure of runway roughness, since most of the rms value comes from mavelengths in excess of about 60 feet.
(c) Most of the data is single-track, thus providing no information for the determination of roll response to runway unevenness.

With regard to this last limitation, Wignot et al have show (ref. 22) that analyses which assumed the unevenness to be uniform across the runway overestimated the cg response by factors of about 1.5 to 2.0 . However, this result should be viewed with reservation, since the sincle-track analysis used in the comparisons used a single cear representation of the aircraft, no pitching contribution from the runway being considered. Since the aircraft
pitching motion contributes significantly to the wing bending (ref. 22) it might well also modify the contribution to the cG response from the flexible modes, and hence modify the results of the singletrack analysis above. Experience on the Constellation, the Ll88 and the P-3 aircraft have shom (ref. 23) that anti-symmetric and symmetric modes were approximately equally excited, whilst on the Cl30 and the C-141A rigid rolling occurred, but the anti-symmetric elastic modes were not excited significantly.

There is evidence then, although not conclusive, that the use of 3-track profiles might be desirable in analyses. Morris (ref. 24.) has presented 3-track rumway elevation profiles for 2 operational runways at United States Government installations, the profiles being defined along the centre-line of each runway and alone tracks 10 feet on cither sice of the centre-line, and Wignot et al (ref. 22) have presented a method of developing properly correlated tracks, for any wheel tread, from longituainal profiles at small lateral intervals across a runway. The task of collecting the vast amount of data which would be required to produce such correlated tracks, for many runways, would be almost prohibitive. Furthermore, it is felt that as long wavelengths in the runway unevenness are more significant in exciting response of larger more flexible aircraft, since the anti-symmetric component of runway unevenness is less significant at longer wavelengths, 3-track onalysis may not be so important. for later generations of aircraft.

Finally, although much has been said dout runways, it must
be remembered that airoraft spend in the region of 80% of their ground manoeuvring time on taxiways, which are generally rougher than munays and are not surveyed.

1.2 Analytical methods of estimating the dynamic response.

Analytical methods of estimating the dynamic response of an aircraft to runway unevenness during taxiing fall into two broad categories:
(a) deterministic, and
(b) statistical.

In order for the exact response of a particular aircraft taxiing along a given runway to be obtained by deterministic means the requirements are simply:
(a) the equations of motion of the airfreme,
(b) an accurate mathematical description of the undercarriages, and
(c) an accurately measured runway profile. The aocuraoy with which the above requirements are formulated dictates the accuracy of the results.

Requirements (a) and (c) are relatively easily obtained; the elastic modes and frequencies of the airframe can be determined with a high degree of reliability, and runway profiles can be measured to an acceptable degree of reproduction. However, the second requirement is not so easily obtained. The oleo-pneumatic undercarriage unit is extremely non-linear, particularly over large displacements. The stiffness depends on the polytropic compression and expansion of air in a tube, damping is by oil being forced through orifices, and friction is present between the sliding members of the oleo; tyres also have mild non-linearities. Many other factors have an effect on the non-linearities.

However, oleo stroking displacements are relatively small during taxiing. Experimental investigations by the present author (ref. 2) indicated that at very low oleo stroking velocities compression was almost isothermal and orifice damping was negligible, all the useful damping being provided by friction in the seals. Furthermore, this friction did not produce the classical Coulomb friction, $\pm F$, but a damping effect dependent on the nth power of the stroking velocity, where n is less than unity.

Notwithstanding the above complications, very good mathematical models of the undercarriage system can be formulated, and thus the deterministic approach can be made to yield good results.

The power speotral approach is easily applied if the equations are linear. However, since the underoarriace system is non-linear, methods used in general try to arrive at near equivalent linearized systems. Thus the same daree of accuracy may not be expected from a power spectral analysis. Furthermore, detailed information about the response, such as peak values, cannot be obtained, but only statistical information such as root mean square values. However, if the nature of the random process is known, expected peak values may be predicted.

It is now generally consjedered that there is a place for both categories of analysis in the investigation of runway unevenness induced vibrations; the deterministic method is incomparable for specific studies such as the response of a particular airoraft at say
a runway intersection, whilst the power spectral techniques can provide a concise and extremely useful method for such studies as the effects of parameter variations.

1.2.1 Deterministic Solution

The deterministic method of analysis consists briefly of:
(a) setting up the coupled differential equations of motion of the airframe and undercarriage system which govern the response,
(b) determining the forcing functions, or inputs, to be introduced into these equations, and
(c) solving these equations of motion by dicital or anelogue means.

In a digital computer study (ref. 13) the dynamio responses of the Boeing 707 airoraft and the proposed Boeing $733-94$ supersonic aircraft were computed using deterministic runway input. The analysis considered only symmetrical modes, 2 rigid body and 6 flexural, and the undercarriage models incorporated non-linear oleos with Coulomb friction, and linear (but undamped) tyres. The 10 ooupled differential equations of motion werc solved by a numerical step-bystep method using an IBM 7090 digital computer. The time required to compute the response of the 707 aircraft for a run of 3000 feet at $100 \mathrm{ft} / \mathrm{s}$ was about 32 minutes when 6 elastic modes were included and about 10.5 minutes when only the rigid body modes were included.
disadvantages of the deterministic methods where actual runway profiles are to be used as input. The conventional methods of solution of the differential equations of motion involve numerical step-by-step or forward integration procedures. In computations on the effects of runway unevenness on a supersonic transport aircraft (ref. 14) Mitchell used a relatively simple mathematical model of the aircraft, incorporating rigid body heave and pitch and symmetrical flexural modes, non-linear undercarriages, and aerodynamic lift and pitching moment. A fourth-order Runge-Kutta step-by-step integration routine mas used, runs being made with a number of different step lengths to find a value for which the integration converged to give results that did not vary with step length. The final step lengths and computer times were not stated, but it was stated that the simplifications had been made to reduce computing time, and thus make praoticable the study of the influence of several undercarriage parameters on the dynamic loads during taxiing. The quality of agreement of calculations for Concorde with flight measurements was very good, the measured vibration being 0.8 of the predicted. However, agreements with this program had not always been that good; the measured cockpit acceleration on a VC 10 had been only 0.6 of that calculated, whilst main undercarriage rms loads for the P-3A were overestimated by up to a factor of 3 .

In a deterministic method for the optimisation of undercarriage suspension characteristics (ref. 25) an extremely ambitious mathematical model was selected. It included both symmetric
and asymmetric modes of vibration, and complicated undercarriage non-linearities. The analysis was not restricted to small motion, and therefore many effects were included which might normally be considered negligible. The equations of motion were to be solved using a Runge-Kutta numerical forward integration procedure, a complicated cost function being optimised by means of a Rosenbrock technique, and were programmed for solution on a large digital computer. However, the number of time increments required for an acceptably accurate solution was large, and for optimisation studies using this program the computer time was prohibitive. Even employing simplifications, feasible use of the program was thought to be limited. Hence, an alternative method was proposed using a much simpler model (symmetric, 2-dimensional) and a hybrid computer.

Another very complicated mathematical model was used by Wignot et al (ref. 22) in a deterministio analysis, the equations of motion being integrated numerically by means of a linear integration subroutine using a fixed integration interval. An integration interval of 0.0002 seconds gave good accuracy in most cases.

It will be seen from the above examples that the computer time required for the large number of runs required in optimisation, or in investigations of the effects of parameter variations, using a deterninistic method with a very complicated model is prohibitive. The model must be greatly simplified, and even then the computer time is great, very short time intervals being required along the minway for accuracy.

However, the disturbance under investigation may be quite discrete in nature; there is a very valuable place in analysis for discrete bumps such as steps or ramps. Wignot et al. (ref.22) list several bump shapes which have been used in reports concerning unprepared runways. An obvious advantage of using discrete bumps is that the computer time required to find the response to a short series of discrete bumps is much less than that required to find the response over an entire runway; this is one reason why discrete bumps analysis has been popular with aircraft manufacturers. A disadvantage is that the mixed wavelengths found in the natural runway are not represcnted.

Thus, it is important that the mathematical representation of the aircraft be as complete and detailed as is practical, boaring in mind the types of result required and the need to conomise as much as possible on computer time. Wignot et al (ref. 22) sugecst programs of varying refinement, the types of model they employed ranging from an idealized linear single-degree-offreedom system, used in studies relating to parameter variations, to a 3-gear flexible system with non-linear undercarriages, used for correlation with experience.

The deterministic method can bo used equally well on hybrid and analogue computers, the selection of the type of computer to use being dependent on the nature of the work to be performed. Hybrid and analogue computers are most efficient where a high yield is required with only minor changes in input. An example is the
work done by Hall and Kopelson on the location and simulated repair of rough areas of a runway (ref. 19). However, set-up and checkout time on complex programs can be very time consuming, so that a digital program would be more etficient where a variety of individual cases are to be processed, the results of one run being required to determine data for the next run.

1.2.2 Statistical analysis by the power spectral density method

The power spectrum of runway elevation fluctuations provides a description of the frequency content of the runway height variations. Since runway unevenness is a space disturbance rather than a disturbance in time, it is often desirable to define the power spectral density in terms of the frequency argument Ω in radians per foot, rather than ω in radians per second, in which case the power spectral density function $\Phi(\Omega)$ of the disturbance $y(x)$ is defined as :

$$
\Phi(\Omega)=\lim _{x \rightarrow \infty} \frac{1}{2 \pi x}\left|\int_{-x}^{x} y(x) e^{-i \Omega x} d x\right|^{2}(1-8)
$$

Whilst the PSD function may be evaluated directly from observed data by use of equation (1-8), it has been found more convenient and less tedious in practice to make use of the autocorrelation function $R(X)$, defined as:

$$
R(x)=\lim _{x \rightarrow \infty} \frac{1}{2 x} \int_{-x}^{x} y(x) y(x+x) d x(1-9)
$$

This function has the symmetrical property $R(X)=R(-X)$, and is related to the PSD function by a Fourier cosine transform pair, so that :

$$
\left.\begin{array}{l}
\Phi(\Omega)=\frac{2}{\pi T} \int_{0}^{\infty} R(x) \cos \Omega x d x \\
R(x)=\int_{0}^{\infty} \Phi(\Omega) \cos \Omega x d \Omega
\end{array}\right\} \quad \begin{aligned}
& (1-10) \\
& (1-11)
\end{aligned}
$$

From equations (1-9) and (1-11)

$$
R(0)=\frac{y^{2}(x)}{}=\sigma^{2}=\int_{0}^{\infty} \Phi(\Omega) d \Omega \quad(1-12)
$$

Ideally, the values of elevation of the murray profile from which the power spectrum is to be calculated should have a zero mean value, and the sampling length should be long enough to give a reliable estimate of the average values calculated. Unfortunately runway profiles generally have a nonzero mean, and long; wavelength trends. There may also be distortion of the data points in tho form of extraneous "noiso" signals, caused by such things as instrument limitations. For those reasons the runway data is usually modified during its processing so that the final spectrum obtained is a true reflection of the roughness which is important to the aircraft response problem. The details of the operations used are not important to this discussion, and have been described many times elsewhere (see for example refs. 26 to 30), together with descriptions of the basic power spectral theory referred to above (see also 20, 31, 32).

The statistical expressions in equations (1-8) to (1-12) may be expressed in terms of the circular frequency ω. The frequencies, wavelengths of unevenness, and associated spectra are related as follows:

$$
\begin{equation*}
\Omega=\frac{2 \pi}{\mathrm{~L}}=\frac{\omega}{\bar{V}} \tag{1-13}
\end{equation*}
$$

$$
\begin{equation*}
\Phi(\Omega)=V \cdot \Phi(\omega) \tag{1-14}
\end{equation*}
$$

The use of a lower integration limit of $\Omega=0$ in expression (1-12) implies that unevenness with infinite wavelength exists in the runway profile. The rms value of unevenness contained within wavelengths below a certain finite length I is normally required, so that a lower limit of $\Omega=\frac{2 \pi}{L_{I}}$ is usually used. Similarly, wavelengths below say L_{2} would not be expected to excite measurable response in a given aircraft, and in any case wavelengths below 4 feet have not been adequately specified by most measured data, so that equation (1-12) usually becomes

$$
\bar{y}^{2}(x)=\sigma^{2}=\int_{\Omega_{1}=\frac{2 \pi}{L_{1}}}^{\Omega_{2}=\frac{2 \pi}{L_{2}}} \Phi(\Omega) d \Omega
$$

The power spectrum of any desired response quantity is related to the power spectrum of the runway unevenness through the frequency response function for the response quantity under consideration. The frequency response function is defined as the response due to a unit sinusoidal input of varying frequencies, and reflects the dynamic characteristics of the airframe and undercarriage system in the output. The statistical properties of the response time history may thus be deduced without actually evaluating the time history. Thus, the PSD of the response acceleration, $\Phi_{\ddot{x}}(\omega)$, is given by

$$
\begin{align*}
\Phi_{\ddot{x}}(\omega) & =\omega^{4} \cdot \Phi_{x}(\omega) \\
& =\omega^{4} \cdot H_{\frac{x}{y}}^{2}(\omega) \cdot \Phi_{y}(\omega) \tag{1-16}
\end{align*}
$$

from which the mean square value of response acceleration is given by

$$
\begin{equation*}
\ddot{x}^{2}=\int_{\omega_{1}}^{\omega_{2}} \bar{\Phi}_{\ddot{x}}(\omega) d \omega \tag{1-17}
\end{equation*}
$$

Equation (1-16) relies on the assumption of a timeinvariant linear system, giving a unique frequency response function, that the response is due to a single input, and that the input is a stationary random process, some of the statistical results which may be obtained relying on the assumption that the random process is Gaussian in its distribution.

Power spectral techniques of analysis have been developed to a large extent in the analysis of aircraft response to atmospheric gusts. Atmospheric turbulence may be fairly uniform over regions of many miles. Furthormore, an aircraft traversing continuous turbulenoo will enoountor a different environment from a time history viewpoint than an aircraft which traversed the same area the previous day, so that it has been found very realistic to describe atmospheric turbulence as a continuous stationary random process.

Compared to the atmosphere and its properties, the surtace unevenness environment provided by runways is deterministic in character. Two aircraft passing along the runway on successive days should encounter identical environnents, assuming of course that either the aircraft follow the same track or the runway profile is invariant across the widh of the runway. Furthermore, runway roughness is of ten found to be quite localized, the bump shapes which may be encountered being of a wide variety, but not neoessarily
occurring as a continuous random profile. However, for good quality runways in commercial use, having rms displacements less than 0.06 feet, the probability density function can be considered Gaussian (ref. 33). It is worthy of note that approximately half the surfaces surveyed in reference 26 came into this category of smoothness. For rougher surfaces Gaussian distribution could not be assured without further investigation.

It is now generally considered that, particularly where analysis is being made which concerns response to a ler ge number of runways, the assumption that the profiles are stationary random processes, with statistical properties similar to those of known surveyed runways, is valid.

A more important obstacle to applying a statistical analysis to the airoraft taxiing problem is that of non-linearities in the undercarriages. The equations of motion of the airframe may be considered essentially linear in character, and hence gust analysis has no such problem in this respect. Similarly, the airfrome equations provide little problem for the ground case. The undercarriage units, however, as already discussed, are highly nonlinear. Morris (refs 7, 18) found that aircraft transfer functions computed from the ratio of the response acceleration spectra of aircraft to the runway input spectra varied significantly between repeated runs for similar test conditions and did not define a unique transfer function which was independent of amplitude and aircraft speed.

Since it is not possible to make a direct application of the theory of random processes to non-linear systems, if the method is to be used resort must be made to linearized systems. The accuracy now then will depend not only on the complexity of the model, but on the ability of the linearization method used to give a true representation of the model.

Two important methods of Iinearization have been developed by Crandall (ref. 34) and Caughey (ref. 35). These are the Perturbation Technique and the Equivalent Linearization Technique respectively. The application of these methods to the non-linear undercarriage characteristics of a taxiing aircraft has been discussed by Tung, Penzien and Horonjeff (ref. 13). Neither method was direotly applicable to the problem, both methods having certain disadvantages for some types of non-linearitios. It was sugesested that an engineering solution to the problem might be to first use the equivalent linearization method to determine the equivalent linear damping coefficients of the non-linear damping forces and the Coulomb friction forces for both landing gears, considering the aircraft as a single-degree-of-freedom system, and then apply the perturbation method with an equivalent linear damping coeff'icient and a polynomial representation for the non-linear air sprine foroe, considering the system as a multi-degree-of-freedom system. The reference does not, however, present a program for the implementation of this solution.

Linear models do, however, have an important place in
analysis. Such a model was used by Hall and Kopelson (ref. 19) in the runway repair studies already described. Whilst it was realized that the actual aircraft landing gear could not be easily approximated by linearization, the simulated aircraft was believed to represent a typical jet transport in that the resonant frequencies of the 2 rigid body modes were representative. Thus, although the magnitude of acceleration response to a given input was questionable, it was thought that the relative response to runway roughness would indicate which seotions of the runway caused the most severe response, and that these same areas would produce the most severe response in an actual aircraft having the same resonant frequencies in heave and pitch.

Runmay unevenness normally constitutes 3 inputs, through the nose whool and the 2 main wheols. The assumption of multiple inputs oan ereatly increase the complexity of the analysis, and requires considerably more measured runway data, if indeed measured data is to be used. In a comparison of predicted responses of vehicle components to random road-surface undulations with those aotually measured on the vehicle (ref. 36) Robson and Dodds applied standard techniques of random vibration analysis to a series of analytical models of increasing complexity. The models varied from a very simple 2 -degree-of-freedom linear system, subjected to a single random displacement input, to a 4 -wheel model requiring 4 inputs. For the particular vehicle and road surface used, the 4-input model gave virtually no improvement in accuracy over the 2-input model, and even the single-input model gave remarkably good

Abstract

results considering its simplicity. However, with systems having resonances of the order of say 10 Hz a 4 -input model should give better results, since the anti-symmetric component from the surface would be much more significant at this frequency.

The report concluded that simple random vibration theory is relevant to vehicle response analysis, though care must be taken to match the sophistication of the model to the needs of the particular problem; increased sophistication may not be justified in terms of increased accuracy, since the spectral description of roads may still contain important sources of error arising both from difficulties of analysis and measurement.

In order to simplify runway input data mathematical expressions have been proposed to approximate the power spectra of runway profilo displacoments. The most comon have been single straight lines on the $\log -\log$ axes of PSD against frequency, with expressions of the form

$$
\begin{equation*}
\Phi(\Omega)=\frac{\bar{C}}{\Omega^{n}} \tag{1-18}
\end{equation*}
$$

Silsby (ref. 12), Kirk (ref. 37) and Kirk and Perry (ref. 38) have all used expressions of this form in statistical analyses, using the values proposed by Houbolt (ref. 20), i.e. $n=2$, and $\bar{G}=6.7 \times 10^{-6}$ i for $\ell 00$ and rough runways respectively. One American aircraft company uses expressions of this form with 2 sets of values: (a) $\bar{C}=174 \times 10^{-6}$ and $n=2$, and (b) $\bar{G}=5.777 \times 10^{-6}$ and $n=2.576$ (ref. 22).

As an aid to including PSD representations of various environments in computer programs, Wignot et al (ref. 22) have proposed an expression of the form

$$
\begin{equation*}
\Phi(\Omega)=\frac{\overline{C_{1}}}{\Omega^{n_{1}}}+\frac{\overline{C_{2}}}{\Omega^{n_{2}}} \tag{1-19}
\end{equation*}
$$

which results in a curve with two linear segments on the log-log axes.

In a statistical analysis to determine the response of an aircraft with rigid vertical translation and one flexible mode (ref. 39), Kirk used an input PSD function of the form.

$$
\Phi(\Omega)=\frac{1}{A \Omega^{3}+B \Omega^{2}+C \Omega} \quad(1-20)
$$

The values of A, B and C were found by matching the function at 3 values of Ω to on notual PSD curve. A different function of the form of equation ($\mathbf{I}-20$) was determined for cach taxiinge velooity V, the valucs of Ω used in the matohing beine chosen quite close together in the region of the major peak of the frequency response function.

Silsby has applied the power spectral method of analysis to compute the uncoupled heave-pitch response of a rigid aircraft, with linear undercarriages, to random runway unevenness (ref. 12). Kirk (ref. 37) has extended Silsby's analysis to include non-linear oleo damping and Coulomb friction. He used a method developed by Kirk and Perry (ref. 38) to obtain an equivalent linear damping coefficient which dissipated the same average energy during random
vibration as the non-linear damping and Coulomb friction. LWignot et al (ref. 22) had shown that if this method is used with the assumption that the motion is simple harmonic the equivalent linear viscous darping coefficient obtained underestimates the actual damping. 7 It was assumed that the damping was symmetric, and the oleos never locked. The equivalent linear damping coefficient was calculated from the root-mean-square value of the oleo stroking velocity, using an iterative process. In all other respects the analysis mas similar to Silsby's, the heave and pitch being analysed separately and their complex frequency response functions added to obtain the final response.

Both Silsby and Kirk investigated the effect of taxiing velocity on response, Kirk in particular showing interesting undulations on tho curves of of and pilot location acceleration against taxiing velocity. These results will be discussed in sub-section 1.4.

Cook and Milwitzky have suggested (ref. 40) that for landing impact calculations the effects of rigid body-elastic mode interaction can be approximately taken into account by considering the oleo force produced by the interaction of the rigid body heave mode with the first symetric elastic mode, the resulting oleoforce being used to obtain the responses in the individual higher modes, which are assumed to be uncoupled. This neglect of coupling can only be justified of course if the modal frequencies are well separated. In a statistical analysis of taxiing induced vibrations in aircrart (ref. 38) Kirk and Perry used a mathematical model based
on this suggestion, and used the iterative method described above for computing the equivalent linear damping coefficient. A single random input was assumed, account being taken of the rigid body heave mode of the aircraft and the first symmetrical flexural mode of the airframe. A wheel mass was included, with a tyre having linear stiffness and no damping, and the oleo was assumed to have a linear spring, with stiffness equal to the slope of the air spring compression curve of the oleo at the static equilibrium position. After findings published in references 13 and 41 , the latter assumption mas expected to lead to an overestinate of taxiing dynamic response.

The mathematical representation of the aircraft consisted of a 3 mass system whose paraneters were derived in a rather interesting way. Tho oquations of motion of the rieid body heave and first elastio modes of an airframe were written thus:
for the rigid body mode,

$$
\begin{equation*}
u_{0} \ddot{a}_{0}=-F_{s} \tag{1-21}
\end{equation*}
$$

for the first elastic mode,

$$
\begin{equation*}
M_{1} \ddot{a}_{1}+C_{1} \dot{a}_{1}+M_{1} w_{1}^{2} a_{1}=-F_{s} \xi 1 \tag{I-22}
\end{equation*}
$$

The top 2 masses of the 3 -mass system, and the linear spring and damper connecting them, were made dynamically equivalent to equations (1-21) and (1-22), so that their masses and the stiffiness and damping were expressed in terms of the parameters in these equations; the representation of the oleo and the wheel and tyre was independent of the system resting on the oleo.

The response acceleration of a Boeing 707 aircraft was
calculated, and found to be 50% greater than that calculated in reference 13 by a deterministic method using 6 flexural modes. It was concluded from this that the spectral method of analysis overestimates rms response by about 50%, the discrepancy being attributed to the assumption of stationarity, and that the method yields an upper bound on response. However, elastic modes above the first were neglected in this analysis; it will be show in sub-section 4 .3.1 that considerable care must be taken in the selection of modes to neglect if accurate estimates of response are to be obtained.

In afurther work on this subject (ref. 39) Kirk used the same method of analysis as above, but used.a runway unevenness PSD input of the form of equation (1-20). The variation of response with taxiling velocity was computed, this time the curve showing only mild undulations compared to the large undulations found in reference 37. It will be shown in sub-section 4.3.2.1 that these mild undulations are of the form one would expect if pitching is neglected.

1. 3 Effect of flexural modes

Although several authors have commented on the effect on calculated response of neglecting all flexural modes of the airframe, no investigations appear to have been made on the effects of individual modes. Furthermore, agreement on the effect of neglecting all flexural modes has not been good. For example, failure to include the flexural modes led to an overestimate of main and nose tyre forces and undercarriage loads on a Boeing 707 and the proposed supersonic Boeing 733-94 (ref. 13), but did not significantly alter those on the Constellation (ref. 22). Cook and Milwitzky found (ref. 40) that on one aircraft neglect of the flexural modes lad to an overestimate of undercarriage loads, and subsequent overestimate of structural loads, but on another airoraft, with higher structural frequencies (i.e. a relatively stiff airoraft), the effects of dynamic magnification when flexural modes were included more than overcame the reduction in landing gear force due to riefid body-flexural mode interaction, resultine in increased structural loads.

It was also observed in reference 13 that the inclusion of flexural modes in the dynamic analysis reduced the magnitude of the rigid body translation. However, it should be noted that it was the rigid body mode generalized co-ordinate which was reduced, and not the total cg displacement. On the other hand, contributions from the flexural modes increased the rigid body acceleration levels by approximately 20% for the C-I4IA (ref. 22), whilst on the

Constellation the rigid body motions of the aircraft were not significantly altered by the addition of flexural modes, since the driving gear forces were not sienificantly altered, although the true cg acceleration, including the flexural mode contributions, was significantly increased, as was the pilot compartment acceleration, the dynamic magnification factors due to flexural modes being approximately 1.25 to 1.50 for the cg and 1.90 for the pilot location. Similarly the inclusion of flexural mode response gave considerably higher accelerations in the pilot compartment at higher frequencies for the Boeings (ref. 13), but the pilot compartment response displacement was due primarily to rigid body rotation.

There has been general agreement, that to be sure of aocurate results it is nocessary to include the flexural modes in analysis, particularly for response at the pilot location. However, the significance of the number of flexural modes selected for inclusion in an analysis depends on the aircraft response quantity being investigated. Wignot of al have show (ref. 22) that the internal loads at the extremities, such as the outer wine panels, will require a greater number of modes to define the loads than will the wing root, fuselage, and landing gear. It is perhaps also clear from the above that if it is desired to neglect flexural modes in the interest of ease of analysis, or economy of computer time, an investigation must be made for the individual aircraft in order to determino the effect.

1. 4 Parameter variations

In general, parameters which may affect the aircraft response may be associated with the landing gear, the airframe, or the operations. This discussion will be limited to variation of taxiing velocity, and those parameters associated with the landing gear, since the following computer studies will be concerned with these parameters.

It is now mell known that the response of an aircraft increases as the taxiing speed increases. In power spectral terms, if a linear system is assumed, and it is assumed that the runway input speatrum is of the form

$$
\Phi(w)=\frac{\bar{C} V}{w^{2}}
$$

it can easily be show that the mean-square value of response is proportional to the taxijng velocity V. Taxi tests on a B-29 aircraft (ref. 4.2) produced linear results for lower taxiing velooities, but showed a drop-off in the mean-square acceleration at higher velocities, which was attributed to the more frequent overcoming of stiction, and therefore more oleo sliding movement, at the higher velocities, producing more damping.

Milwitzky (ref. 3) and Silsby (ref. 12) have both produced by theoretical analysis, and Morris (ref. 6) by aotual measurements on aircraft, curves of response at the cg and pilot
locations against taxiing velocity, which have shown slight undulations. In a statistical analysis of uncoupled heave-pitch response (ref.37) Kirk has shown pronounced undulations on the curves of response against velocity for a Boeing 707, particularly at the pilot compartment (fig. 1.7). The undulations on the curve for the pilot compartment were show to be caused by phasing of the pitch frequency response with the nosewheel-mainwheel lag frequency response. It will be seen that, neglecting the undulitions, the general trend of the curves shows the response to be ajproximately proportional to the square root of the taxiing velocit. f, as indicated in reference 42. There is a drop-off at the high velocities due to the effect of the last peak.

Mitchell has show (ref. 8) in actual measurenents during airline oporations that the maximum cookpit aoceleration in a Boeing 707 during take-off is likely to occur at approximately 80 or 120 knots, which shows a fair agreement with Kirk's curves, whilst Concorde (ref. 14) reached its maximum response at 120 knots. In a later statistical analysis (ref. 39), this time neglecting the rigid body pitch mode but incorporating the first flexural mode, Kirk shoved very mild undulations on the cg response-velocity curve f'or a Boeing 707, the maximum response occurring at 124 knots.

The effect of oleo airspring stiffness on response has not been extensively investigated, but in general a reduction in oleo airspring 3 tiffness results in a reduction in airoraft response. Wignot ot al (ref. 22) have shom that the significant parameter is the combined effective stiffness of the tyre and oleo in series.

A large tyre stiffness change only has a small effect on this parameter, and hence causes only a slight change in aircraft response. However, analytical studies made on a Constellation aircraft indicated that softening of the maingear airspring by a factor of 2 , which resulted in a reduction of about 30% in equivalent linear stiffness of the oleo and tyre in series, reduced both the passenger and crew station accelerations by 25%. Kirk has compared the effects of two linearized airspring stiffnesses (ref. 39), corresponding to isothermal compression $(n=1.0)$ and isentropic compression ($n=1.3$), and found that the stiffer airspring yielded rms responses at the $c g$. which were 25% greater than those yielded by the softer spring.

It must be remembered that with the non-linear oleo airspring the stiffness depends on the compression, and hence will be affected by anything which affects the compression. The stiffness will be greatest at the aircraft's maximum all-up weight, and Kirk and Perry have show (ref. 38) that the response of the aircraft increases as its weight increases. Similarly, wignot et al have shown (ref. 22) that the neglect of lift in a dynamic analysis can lead to an overestimate in response of up to 50% at the final stage of a take-off run. The stiffness of the nose gear will increase with braking or with down elevator, causing an increase in pitching response, and hence response acceleration at the pilot location (refs. 8, 22).

The most important paraneters for Concorde are the airspring stiffness, and friction, of the main undercarriage (ref. 14), the response generally decreasing as the 3 tiffness is reduced.

However, to obtain the potential benefit, the softer the spring, the lower the oleo friction must be.

Variation in oleo damping appears to be less effective than variation in oleo stiffness in reducing aircraf't response. In an analogue study (ref. 38) Kirk and Perry have show that a tenfold increase in main oleo damping coefficient would be required for the Boeing 707 to decrease the ctg acceleration by 58%, whilst Wignot et al have shom (ref. 22) that varying the hydraulic daning has negligible effect on crev and passenger vertical accelerations. The main problem with the oleo damping, of course, is that since orifice damping gives a force proportional to the square of the stroking velocity, at the very low stroking velocities associated with taxiing the damping forces are very small. Hall has show (ref. 43) that a linear damper having the same maximum stroke as on orifice damper, nould not only be markedly superior in taxiing operations, but would give a 10% reduction in strut force in heavy landings.

Thompson has shown (ref. 44) that the optimum damping value for ride comfort in a road vehicle depends on the statistical properties of the road, the speed of the vehicle, and the dynamic properties of the seat. Calculated values of linear dampine rate for minimum response acceleration corresponded to damping ratios varying from 0.075 to 0.29 , depending on the roughness spectrum of the road. However, Kirk has shown (ref.45) that the optimum equivalent linear damping ratio is greater than 0.5, whereas typical equivalent damping ratios during taxiing have been shown to be of the order of 0.05 .

Positioning of the undercarriages has more repercussions on the airframe design than variation of the other parameters. Wignot et al (ref. 22) considered that location of the main gear was not a parameter that could be used in taxi load optimisation studies, but there was a greater degree of freedom in selecting the location of the nose gear. However, moving the nose gear $\pm 16 \%$ of the distance between the nose and main gears, for a supersonic transport desien, had negligible effect on the pilot location incremental load factor. Silsby (ref. 12) and Kirk (ref. 37) have investigated the effect of undercarriage location, using statistical analyses. Both found that as the distance between the main gear and the aircraft $c g$ was increased, the distance between main and nose gears being kept constant, the $c e r e s p o n s e$ acceleration was reduced, but the acceleration at the pilot location was increased, although Silsby found that the pilot location displacement was decreased.

1. 5 Design criteria

Design criteria and procedures for taxiing aircraft should establish both the design loads and the fatigue spectra. No manufacturer appears to have optimised the undercarriage characteristics to produce minimum response; the undercarriages have generally been designed for the landing case and then, if at all, analysed to ensure their integrity, and that of the airframe, during ground operations. Whilst, in general, ground operetions have not provided the limit load case for the airframe, they have done so in some cases; for example the Constellation, 1049G, was taxi critical because of the external fuel tanks installed on the winetips.

The design loads or the fatigue spectrum may be calculated either from arbitrary criteria, such as a 2 g static load factor for limit loads or application of arbitrary numbers of given incremental load factors for fatigue, or from rational criteria in which the response to a runway with a design level of roughness is obtained by either deterministic or statistical means. A problem which arises with stress analysis by statistical means is that no phasing is available to indicate in what proportions the various design-level loads, such as wingshear and torsion, combine. Two methods which have been developed to overcome this problem are the "matching condition" technique (ref. 46) and a "joint probability" technique (ref. 47); both methods are believed to offer entirely acceptable approaches for airworthiness requirements.

In a massive and very comprehensive report (ref. 22) Wignot et al have carried out a survey to establish the dynamic taxi analytical methods and design criteria used by various airframe manufacturers. 10 approaches to design methols were obtained from 7 airframe manufacturers. Findings of particular interest were as follows: 2 do not specify a design load criterion, the remaining 8 a.1. usine some kind of arbitrary criterion or discrete bump; 4 do not specify a fatigue criterion, whilst 1 of the remaining 6 uses a random profile traversed at constant velocity for 5 minutes per flight; only 4 use runway profiles, either directly or by use of PSD's; 9 use complete non-linear representation of struts and tyres, whilst the other does not analyse landing gear for taxi; 9 use a flexible aircraft, 6 of these using only symmetrical modes.

Dynamic taxi design procedures have been developed and presented in reference 22. Firstly a simple method was suggested to check whether or not an aircraft is taxi critical. This consists of considering a static $1.0 g$ load factor, on which is superimposed in turn a $1.0 B$ translational load factox, a rolling acceleration related to the roll radius of gyration, and a pitching acceleration related to the pitch radius of gyration. Secondy rational deterninistic criteria were proposed. These involve deterministic analysis of the aircraft taxiing over phased (1 - cosine) bumps, and over runway profiles which have been amplified by suitable rourhness amplification factors, to determine limit loads, and production of exceedance curves by deterministic analysis of the aircraft taxiing at appropriate speeds for given percentages of its
cround :novement time over profiles with different disorete rouchness rances. Finally rational statistical criteria were proposed to produce both lesign loads and fatigue spectra. A method of generating random runway profiles having a given power spectral density was presented; the profile could then be used with a deterministic analysis. Alternatively a set of design taxi loads which had a specified likelihood of occurrence in the life of the aircraft could be determined from taxi load spectra derived from PSD's.

Reference 27 also suggests that aynamic taxi analysis should be performed using discrete step and (1 - cosine) bumps, and a continuous runway profile. It suggests that a 2 -dimensional model should be satisfactory for the majority of aircraft, but that a 3-dimensional model might be necessary for a very large flexible aircraft. However, the analysis should include non-linear shock absorber and tyre characteristics, all significant rigid body and flexural modes of vibration, aerodynamic and propulsive forces, and Iongitudinal forces due to tyre-ground interaction and local profile slope effects.

FIGOLRE 1.1

MEASURED PROFILES

$$
\begin{gathered}
\text { TYPIEAL SPECTRA OF RUNWAY } \\
\text { ELEVATION }
\end{gathered}
$$

FIGURE 1.3

FIGURE 1.4

MILWITEKY'S RUNWAY UNEVENNESS
CRITERIA

POWER SPECTRUM OF ROUGHNESS FOR

A NEW RUNWAY

The power spectral density, $\bar{\Phi}_{y}(\Omega)$, of runway unevenness may be plotted against spacial frequency, Ω, as shown in figure 2.1. If the spacial frequency, Ω, is multiplied by the velocity, V, of traversing the runway, and the PSD, $\bar{\Phi}_{y}(\Omega)$, is divided by V, a curve of PSD, $\underline{\Phi}_{y}(\omega)$, against frequency, ω, can be obtained for a particular velocity of the aircraft. Values could be taken from this latter curve to use as runway data in a computer program to compute the PSD of the displacement x of the aircraft from the relationship

$$
\begin{equation*}
\Phi_{x}(\omega)={\frac{H_{x}}{\bar{y}}}^{2}(\omega) \cdot \Phi_{y}(\omega) \tag{2-1}
\end{equation*}
$$

and hence the mean-3quare-value of aircraft displacement from $\bar{x}^{2}=\int_{\omega_{1}}^{\omega_{2}} \bar{\Phi}_{x}(\omega) d \omega$ Thus the response of the aircraft to an actual runway profile would be found.

However, this would detract from one of the main ndvantages of using statistical methods in that the response to each runway the airoraft is likely to use would have to be computed, and deterministic methods could therefore be used. Thus, an expression is usually used for PSD in terms of frequency which will give a curve approximating to actual PS ${ }^{\nu}$ curves, and in which the roughness level can be varied by the adjustment of constants.

In previous work in this ficld it has been common to assume
that the PSD of the input from the runway is given by

$$
\begin{equation*}
\Phi(\Omega)=\frac{\bar{C}}{\Omega^{n}} \tag{2-3}
\end{equation*}
$$

althouch other expressions have been used. Common values which have been used are $n=2$, and $\overrightarrow{\mathrm{C}}=6.7 \times 10^{-6}$ rad ft for a good runway and 20×10^{-6} for a rough runway. Thus, if the PSD is plotted against the spacial frequency on log scales a straight line will resuilt with a slope of -2 and an intercept with the $\Omega=1$ ordinate of 6.7×10^{-6}, or 20×10^{-6} (fig. 2.3).

Whilst this is a very simple and straightforward approach it is felet that it is not very representative of actual runway PSD curves. A more realistic expression could be deduced without unduly increasing the complexity of the calculations, particularly since all the calculations are made by digital computer.

Examination of the PSD curves in reference 26 suggests that most of them could be approximated very well by fitting two straight lines to the curve, as shown in figure 2.2. Thus, the PSD can be represented by two lines of the form of equation (2-3), intersecting at some point P. If expressions of this form are found for several runways it should be possible to obtain mean values of \bar{c} and n to represent a runway of average roughness.

A series of numbers may of course be averaged arithmetically or geometrically. It is necessary therefore to decide what propertics are required of the average runway. Runways with PSD's derived by the two averaging methods may be defined as follows:
a. Arithmetic mean munway. This would be derived by taking an arithmetic mean of the PSD's of several runways. It nay be said that the total sample of runways would contain as much roughness above that of the arithmetic mean runway as below.
b. Geometric mean runway. This would be derived by taking a geometric mean of the PSD's of several runways. It may be said that the total sample of runways would contain approximately as many runways with roughness above that of the seometric mean runway as below.

The arithmetic mean runway would be much rougher than the geometric mean runway since a very few very rough runways can boost the value of the arithmetic mean but do not weight the geometric mean nearly so much. There would thus be little difference between the arithnetic mean runway and a rough runway. In view of this it is felt that the geometric mean runway is the better one to choose as a mean.
'The analysis for the geometric mean runway PSD is shown below. The analysis for the arithmetic mean runway PSD is shown in Appendix B, and the PSD is compared with that for the geometric mean runway.

2. 1 Geometric mean runway

The PSD of a typical runway is given by

$$
\begin{equation*}
\Phi_{i}(\Omega)=\frac{\vec{C}_{i}}{\Omega^{n_{i}}} \tag{2-4}
\end{equation*}
$$

It is not sufficient to merely find the mean values of \bar{C} and n, since it is in fact the mean value of $\Phi(\Omega)$ which is required.

$$
\text { If the geometric mean of a set of values } \frac{a_{i}}{b_{i}} \text { is required, }
$$

then

$$
\begin{aligned}
\text { Geometric mean } & =\sqrt[m]{\frac{a_{1}}{b_{1}} \times \frac{a_{2}}{b_{2}} \times \frac{a_{3}}{b_{3}} \times \cdots \cdots \frac{a_{m}}{b_{m}}} \\
& =\frac{\sqrt[m]{a_{1} \times a_{2} \times a_{3} \times \cdots \cdots a_{m}}}{\sqrt{b_{1} \times b_{2} \times b_{3} \times \cdots \cdots b_{m}}} \\
& =\frac{\text { Geometric mean of } a_{i}}{\text { Geometric mean of } b_{i}}
\end{aligned}
$$

Thus the geometric mean of $\overline{\mathrm{C}}$ and Ω^{n} may be found separately.

$$
\text { If the geometric mean of a set of values } \Omega^{n_{i}} \text { is required, }
$$

then

$$
\text { Geometric mean }=\sqrt[m]{\Omega^{n_{1}} \times \Omega^{m_{2}} \times \cdots \cdots \Omega^{n_{i n}}}
$$

The value of p is required such that

$$
\Omega^{p}=\sqrt[m]{\Omega^{m} \times \Omega^{2} \times \cdots \times \Omega^{m}}
$$

$\therefore p \log \Omega=\frac{1}{m}\left(n_{1} \log \Omega+n_{2} \log \Omega+\ldots \ldots+n_{m} \log \Omega\right)$
$=\frac{1}{m} \log \Omega\left(\sum_{i=1}^{m} n_{i}\right)$
$\therefore p=\frac{1}{m} \sum_{i=1}^{m} n_{i}=$ arithmetic mean of n_{i}
Thus to find the geometric mean of a set of PSD's given
by equation (2-4) it is necessary to calculate the geometric mean of \bar{C}_{i} and the arithmetic mean of n_{i}

Referring to figure 2.2, two straight lines, A and B, are fitted to the PSD curve, with slopes of n_{a} and n_{b}. Their intercepts with the $\Omega=1$ ordinate are $\overline{\mathrm{C}}_{\mathrm{a}}$ and $\overline{\mathrm{C}}_{\mathrm{b}}$. Table 2.1 gives n and $\log \overline{\mathrm{C}}$ for each straight line, for each runway in reference 26. Many of the PSD curves had a "bump" at the high frequency end (see figures 2.1 and 2.2). It was thought that this could be due to "aliasing" errors, and in any case always occurred at a value of Ω greater than $1.0 \mathrm{rad} / \mathrm{ft}$, which even at an aircraft velocity of $60 \mathrm{ft} / \mathrm{s}$ represents a value of ω greater than $60 \mathrm{rad} / \mathrm{s}$. Since it was found that PSD's in this frequency range have no significant effect on the response of the aircraft, these "bumps" were ignored.

Taking values from the table,
Ari.thmetic mean of $n_{a}=\sum_{i=1}^{m} n_{a_{i}}$
$=3.58$
Arithmetic mean of $n_{b}=2.24$
Geometric mean of $\bar{c}_{a}=\operatorname{Antilog}\left[\frac{\sum_{i=1}^{m} \log \bar{c}_{a_{i}}}{m}\right]$
$=3.8 \times 10^{-7}$
Geometric mean of $\overline{C_{b}}=8.2 \times 10^{-6}$

The point of intersection of the two lines is Given by

$$
\begin{aligned}
\frac{3.8 \times 10^{-7}}{\Omega^{3.58}} & =\frac{8.2 \times 10^{-6}}{\Omega^{2.24}} \\
\Omega & =0.101
\end{aligned}
$$

giving

Thus, the geometric mean runway PSD is riven by If $\Omega<0.101 \mathrm{rad} / \mathrm{ft}, \Phi(\Omega)=\frac{3.8 \times 10^{-7}}{\Omega^{3.58}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft}$ If $\Omega>0.101 \mathrm{rad} / \mathrm{ft}, \Phi(\Omega)=\frac{8.2 \times 10^{-6}}{\Omega^{2.24}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft}$

These values are plotted in figure 2.3 , where they may be compared with the two single-straight-line PSD's discussed previously.

It is more convenient, for computation, to work in terms of circular frequency, ω. Since $\omega=\Omega V$, then

$$
\begin{align*}
\Phi(\Omega) & =\frac{\bar{C}}{\Omega^{n}}=\frac{\overline{C V^{n}}}{\omega^{n}} \\
\therefore \Phi(\omega) & =\Phi \frac{\bar{\Phi}(\Omega)}{V}=\frac{\overline{C V^{n}}}{\omega^{n} V^{n}} \\
\text { ie. } \quad \Phi(\omega) & =\frac{\bar{C} V^{n-1}}{\omega^{n}} \tag{2-5}
\end{align*}
$$

2. 2 Sumnary of Frogram Data for Geometric Mean Runway

Analysis Symbol	Program Identifier	Value
$\overline{\mathrm{C}}_{\mathrm{a}}$	CA	3.8×10^{-7}
n_{a}	NA	3.58
$\overline{\mathrm{C}}_{\mathrm{b}}$	CB	8.2×10^{-6}
n_{b}	NB	2.24
intersection	ONGA	$0.101 \mathrm{rad} / \mathrm{ft}$
Ω		

Fig.	n_{a}	$\underline{L O G} \bar{C}_{a}$	n_{b}	Log $\overline{\mathrm{C}}_{\mathrm{b}}$
3	2.83	$-6+0.54$	2.30	$-6+1.07$
	2.83	$-6+0.54$	2.30	$-6+1.07$
5	2.32	$-6+0.90$	2.32	$-6+0.90$
7	2.68	$-6+0.10$	1.85	$-6+0.73$
10	2.60	$-6+0.10$	2.22	$-6+1.55$
	2.60	$-6+0.10$	2.22	$-6+1.55$
12	3.13	$-6+0.35$	1.95	$-6+0.80$
15	3.66	$-6+0.27$	2.07	$-6+0.73$
	2.78	$-6+0.54$	1.30	$-6+1.32$
20	2.46	$-6+1.25$	2.46	$-6+1.25$
	2.46	$-6+1.25$	2.46	$-6+1.25$
	2.46	$-6+1.25$	2.46	$-6+1.25$
	2.46	$-6+1.25$	2.46	$-6+1.25$
23	2.72	$-6+0.55$	2.72	$-6+0.55$
	6.67	$-6+3.87$	2.15	$-6+0.52$
26	3.34	$-6+0.20$	2.05	$-6+0.55$
	3.80	$-6+0.20$	2.08	$-6+1.10$
29	4.96	$-6+1.88$	$2.07{ }^{\circ}$	$-6+0.65$
	5.66	$-6+3.17$	1.87	$-6+0.95$
32	7.00	$-6+4.12$	2.71	$-6+0.54$
	7.00	$-6+4.12$	2.71	$-6+0.54$
37	4.90	-6-2.30	2.20	$-6+0.85$
	4.90	-6-2.30	2.20	$-6+0.85$
	4.90	-6-2.30	2.20	$-6+0.85$
	4.90	-6-2.30	2.20	$-6+0.85$
40	3.08	-6 + 0.00	1.73	$-6+0.50$
	3.08	$-6+0.00$	1.73	$-6+0.50$
43	5.25	-6-2.18	2.40	$-6+2.00$
	5.25	-6-2.18	2.40	$-6+1.00$
46	2.55	$-6+0.93$	2.55	$-6+0.93$
	2.55	-6 + 0.93	2.55	$-6+0.93$
49	2.79	-6 + 0.4 .2	2.79 .	$-6+0.42$
	2.79	-6 + 0.42	2.79	$-6+0.42$
52	2.34	$-6+1.14$	1.31	$-6+1.48$
	2.94	$-6+0.10$	1.61	$-6+0.80$
55	2.20	$-6+1.16$	2.20	$-6+1.16$
56	1.65	$-6+1.93$	2.91	$-6+1.20$
Totals	132.49	$-222-15.64$	82.52	$-222+33.96$

FIGURE 2.2

TWD STRAIGHT LINES FITTED TO PSDCURVE

POWER SPECTRAL DENSITY FLUNCTIONS

SECTION 3

THE AIPCRAFT

3. 1 Idealisation

A diacrammatic representation of the aircraft considered in this investigation is shom in Figure 3.1. In the analysis it is assumed that the runway profile elevation, h, measured from an arbitrary datum plane, is constant across the runway. Thus, the dynamic response will be symmetrical about the longitudinal axis of the aircraft. The free-free airframe is therefore corsicered to be a two dimensional elastic system, as illustrated in Iigure 3.2, its equations of motion being formulated in terms of the two rigid body modes (rigid body heave and pitch) and any number of symmetric flexural normal modes of the free, unrestrained airframe. It is assumed that the aerodynamio lift on the airoraft is negligible during taxiing, so that the only forces acting on the airframe are the landing gear forces Q_{1} and Q_{2}.

The landing gear system used is shown diagramnatically in
Figure 3.3. It is assumed that the undercarriage leg is a linear device, the forces being produced by a linear sprine and a linear dashpọt, and fixiction in the undercarriage being neglected. The tyre is also represented by a linear spring and a linear damper. The wheel masses plus effective masses of landing gear systems are represented by W_{1} and W_{2} for the mainwheel and nosewheel respectively.

3. 2 Equations of motion

3.2.1 Free-Free Airframe

Figure 3.2 shows the set of reference axes used in the analysis, the origin of the axes being located at the centre of gravity of the airframe. The total vertical displacement $Z(x, y, t)$ of any point on the airframe may be expressed in terms of the rigid body heave (vertical translation), rigid body pitch (rotation about the y axis), and the elastic deformation of the airframe with respoct to the moving. xy plane.

Thus, the total vertical displacement of any point on the airframe from a horizontal reference plane is given by:

$$
Z(x, y, t)=\sum_{j=3}^{N} \phi^{j}(x, y) x_{j}(t) \quad(3-1)
$$

where $N=N_{1}+4, N_{1}$ is the number of flexible modes considered, and the rigid heave and pitch of the x axis are repesented by rigid body modes of zero frequency and generalised co-ordinates $X_{3}(t)$ and $X_{4}(t)$, so that

$$
\begin{aligned}
& \omega_{3}=\omega_{4}=0 \\
& \phi^{3}(x, y)=1 \\
& \phi^{4}(x, y)=-x
\end{aligned}
$$

The shapes, with their correspondine frequencies and normol co-ordinates, of the fllexible normal modes are denoted by $\phi^{j}(x, y), w_{j}$, and $X_{j}(t)$ where $j=5,6-\cdots N$, and the elastic displacement of the airframe relative to the moving x, y plane may be represented by superposition of these modes.
$X_{1}(t)$ and $X_{2}(t)$ are the vertical displacements of the undercarriage masses M_{1} and M_{2} respectively, and are therefore not included in equation(3-1).

Thus, the equations of motion of the elastic airframe are as follows:-

$$
\begin{array}{r}
M_{3} \ddot{x}_{3}=P_{3}(t) \\
M_{4} \ddot{x}_{4}=P_{4}(t) \\
M_{j} \ddot{x}_{j}+C_{j} \dot{X}_{j}+M_{j} w_{j}^{2} X_{j}=P_{j}(t) \tag{3-4}
\end{array}
$$

where

$$
M_{3}=\frac{\pi}{g}
$$

$$
M_{4}=J \text {, the moment of inertia in pitch }
$$ of the aircraft about its centre of Eravity

$$
\begin{aligned}
j & =5,6,---N \\
C_{j} & =2 \beta M_{j} \omega_{j} \\
M_{j} & =\text { generalised mass in } j \text { th mode } \\
\beta= & \text { structural damping coefficient } \\
P_{j}(t)= & \text { generalised forcine function of } j \text { th } \\
& \text { mode, given by } \\
P_{j}(t) & =-\left(Q_{1}-\bar{Q}_{1}\right) \phi_{1}^{j}-\left(Q_{2}-\bar{Q}_{2}\right) \phi_{2}^{j}(3-5)
\end{aligned}
$$

where Q_{1}, Q_{2} represent the concentrated landing gear forces acting on the airfrane from the main and nose undercarriages respectively, and \bar{Q}_{1}, \bar{Q}_{2} represent the corresponding static values of Q when $V=0$, i.e. the aircraft is stationary. $\phi_{i}{ }^{j}$ denotes the j th mode shape at the i th location where $i=1,2$ refer to points O_{1} and O_{2}, the main and nose undercarriage locations respectively, on Figures 3.1 and 3.2.

3.2.: Undercarriage forces Q_{i}

The concentrated forces acting on the airframe from the main and nose undercarriages are represented by Q_{1} and Q_{2}
respectively in Figure 3.2. Referring to Figure 3.3, for the ith landing gear U_{i} represents the vertical displacement of point 0_{i}, and X_{i} represents the vertical displacement of mass H_{i}, both displacements being measured from equilibrium positions for the stationary aircraft. The displacement U_{i} can be expressed in terns of the generalised co-ordinates X_{j} of the rigid body and flezural modes of the airframe as follows:

$$
\begin{equation*}
U_{i}=\sum_{j=3}^{N} x_{j}(t) \phi_{i}^{j} \tag{3-6}
\end{equation*}
$$

If the stroke of the oleo from the static equilibrium positition is S_{i} then

$$
\begin{aligned}
S_{i} & =U_{i}-X_{i} \\
\text { and } \dot{S}_{i} & =\dot{U}_{i}-\dot{X}_{i}
\end{aligned}
$$

Thus, the nett (i.e. actual minus static equilibrium value) oleo spring force is given by :

$$
\begin{equation*}
r_{s i}=K_{i} S_{i}=K_{i}\left(U_{i}-X_{i}\right) \tag{3-7}
\end{equation*}
$$

and the oleo damping force is given by :

$$
\begin{equation*}
F_{d i}=c_{i} \dot{S}_{i}=c_{i}\left(\dot{U}_{i}-\dot{x}_{i}\right) \tag{3-8}
\end{equation*}
$$

where K_{i} is the linear oleo spring stiffness and C_{i} is the linear oleo damping constant.

Since U_{i} is measured from the static equilibrium position,

$$
\begin{align*}
&\left(Q_{i}-\bar{Q}_{i}\right)=F_{s i}+F_{d i} \\
& \text { i.e. } \quad\left(Q_{i}-\bar{Q}_{i}\right)=K_{i}\left(U_{i}-X_{i}\right)+C_{i}\left(\dot{U}_{i}-\dot{X}_{i}\right) \\
& \text { Substituting for }\left(Q_{i}-\bar{Q}_{i}\right) \text { in equation }(3-5) \text { gives : } \\
& P_{j}(t)=-\left[K_{I}\left(U_{1}-X_{1}\right)+C_{1}\left(\dot{U}_{1}-\dot{X}_{1}\right) 7 \phi_{1}{ }^{j}\right. \tag{3-1.0}\\
&-\left[K_{2}\left(U_{2}-X_{2}\right)+C_{2}\left(\dot{U}_{2}-\dot{X}_{2}\right) 7 \phi_{2}^{j}\right. \\
& \text { where } U_{1}=\sum_{j=3}^{N} X_{j}(t) \phi_{1}^{j} \\
& U_{2}=\sum_{j=3}^{N} X_{j}(t) \phi_{2}^{j} \tag{3-11}
\end{align*}
$$

Assuning that the tyre remains in contact with the ground, the interacting force $F_{t i}$ between the ground and the tyre is given by :

$$
\left.F_{t i}=K_{t i}\left(\bar{x}_{i}+X_{i}+h_{i}\right)+c_{t i} \dot{x}_{i}+\dot{h}_{\dot{i}}\right)
$$

where $F_{t i}$ is the linear tyre stiffness
$C_{t i}$ is the linear tyre damping constant
\bar{X}_{i} is the static downward displacement of mass M_{i}

3.2.3 Overall equations

The equation of rotion of the mass h_{i} is :

$$
\begin{equation*}
M_{i} \ddot{X}_{i}=W_{i}+Q_{i}-F_{t i} \tag{3-13}
\end{equation*}
$$

where $W_{i}=$ the weight of the mass M_{i}

$$
i=1,2
$$

Substituting for Q_{i} from equation (3-9) gives :

$$
M_{i} \ddot{x}_{i}=W_{i}+\bar{Q}_{i}+F_{s i}+F_{d i}-F_{t i} \quad(3-14)
$$

and expandine this by equation $(3-7),(3-8)$ and (3-12) gives: $M_{i} \ddot{x}_{i}=W_{i}+\vec{Q}_{i}+K_{i}\left(U_{i}-X_{i}\right)+c_{i}\left(\dot{U}_{i}-\dot{x}_{i}\right)-K_{t i}\left(\bar{x}_{i}+X_{i}+h_{i}\right)$

```
c.f. Equations (3-2) and (3-3).
Now W Wi}+\mp@subsup{\overline{Q}}{i}{}-\mp@subsup{K}{ti}{}\mp@subsup{\overline{X}}{i}{}=0\mathrm{ (static equilibrium 
```

$$
\text { Let }\left\{x_{j}\right\}=\left[\begin{array}{c}
x_{3} \\
x_{4} \\
\vdots \\
x_{N}
\end{array}\right]
$$

$$
\left[\phi_{1} j\right]=\left[\begin{array}{llll}
\phi_{1}^{3} & \phi_{1}^{4} & \cdots & \phi_{1} N
\end{array}\right]
$$

$$
\left[\phi_{2} j\right]=\left[\begin{array}{llll}
\phi_{2}^{3} & \phi_{2}^{4} & \cdots & \phi_{2} N
\end{array}\right]
$$

$$
\text { Then } \left.\begin{array}{rl}
U_{1} & =\left[\phi_{1}^{j}\right]\left\{x_{j}\right\} \tag{3-16}\\
U_{2} & =\left[\phi_{2} j\right]\left\{x_{j}\right\}
\end{array}\right\}
$$

Thus, equation (3-15) becomes :

$$
\begin{align*}
M_{i} \ddot{x}_{i}+c_{i} \dot{x}_{i}+ & c_{t i} \dot{x}_{i}-c_{i}\left[\phi_{i}^{j}\right]\left\{\dot{x}_{j}\right\}+\left(k_{t i}+K_{i}\right) x_{i} \\
& -K_{i}\left[\phi_{i}^{j}\right]\left\{x_{j}\right\}=-K_{t i} h_{i}-c_{t i} \dot{h}_{i} \tag{3-17}
\end{align*}
$$

Putting $i=1,2$ and substituting for h_{i} will give the first two differential equations of a simultaneous set.

$$
\begin{aligned}
& \text { From equation (3-17), if } \\
& \qquad\left\{P_{j}\right\}=\left[\begin{array}{c}
P_{3}(t) \\
P_{4}(t) \\
\vdots \\
P_{N}(t)
\end{array}\right]
\end{aligned}
$$

then

$$
\begin{align*}
& \left\{P_{j}\right\}=-\left[K_{1}\left(U_{1}-X_{1}\right)+C_{1}\left(\dot{U}_{1}-\dot{X}_{1}\right)\right]\left[\phi_{1}^{j}\right]^{T} \\
& -\left[K_{2}\left(U_{2}-X_{2}\right)+c_{2}\left(\dot{U}_{2}-\dot{x}_{2}\right)\right]\left[\phi_{2}^{j}\right]^{T} \tag{3-18}\\
& \text { Taking the first term in RHS of (3-18) } \\
& -\left[K_{i}\left(U_{1}-X_{1}\right)+C_{1}\left(\dot{U}_{1}-\dot{x}_{1}\right)\right]\left[\phi_{1}^{j}\right]^{T} \\
& =-\left[K_{1}\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}-K_{1} x_{1}+C_{1}\left[\phi_{1}^{j}\right]\left\{\dot{x}_{j}\right\}-c_{1} \dot{X}_{1}\right]\left[\phi_{1}^{j}\right] T
\end{align*}
$$

Since $\left[\phi_{i}^{j}\right]$ is a row and $\left\{x_{j}\right\}$ is a column it can easily be shown that

$$
\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}\left[\phi_{1}^{j}\right]^{T}=\left[\phi_{1}^{j}\right]^{T}\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}
$$

so that the first term in RHS of (3-18) now becomes :

$$
\begin{gather*}
{c_{1} \dot{x}_{1}\left[\phi_{1}^{j}\right]^{T}-c_{I}\left[\phi_{1}^{j}\right]^{T}\left[\phi_{1}^{j}\right]\left\{\dot{x}_{j}\right\}+K_{1} x_{1}\left[\phi_{I}^{j}\right]^{T}}-K_{I}\left[\phi_{I}^{j}\right] T\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}
\end{gather*}
$$

Substituting (3-19) in equation (3-18) and forming the second term by similarity gives :

$$
\begin{aligned}
\left\{P_{j}\right\}= & c_{1} \dot{x}_{1}\left[\phi_{1}^{j}\right]^{T}-c_{1}\left[\phi_{1}^{j}\right]^{T}\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}+K_{1} x_{1}\left[\phi_{1}^{j}\right]^{T} \\
& -K_{1}\left[\phi_{1}^{j}\right]^{T}\left[\phi_{1}^{j}\right]\left\{x_{j}\right\}+c_{2} x_{2}\left[\phi_{2}^{j}\right]^{T}-c_{2}\left[\phi_{2}^{j}\right]^{T}\left[\phi_{2}^{j}\right]\left\{\dot{x}_{j}\right\} \\
& +K_{2} x_{2}\left[\phi_{2}^{j}\right]^{T}-K_{2}\left[\phi_{2}^{j}\right]^{T}\left[\phi_{2}^{j}\right]\left\{x_{j}\right\}
\end{aligned}
$$

If $\Gamma_{M_{j}}$ and $\Gamma_{\omega_{j}}$ are diagonal matrices of the generalised masses and natural frequencies respectively in the various modes, where

$$
\begin{aligned}
j & =3,4, \cdots N \\
\text { and } \quad \omega_{j} & =0 \text { for } j=3,4
\end{aligned}
$$

then equation ($3-l_{r}$) may be written :

$$
\Gamma_{M_{j \jmath}}\left\{\ddot{x}_{j}\right\}+2 \beta \Gamma_{M_{j}} \Gamma_{\omega_{j \jmath}}\left\{\dot{x}_{j}\right\}+\Gamma_{M_{j \jmath}} \Gamma_{\omega_{j \jmath}} \Gamma_{\omega_{j}}\left\{x_{j}\right\}=\left\{p_{j}\right\} \quad(3-2 . l)
$$

'Substituting for $\left\{P_{j}\right\}$ from equation (3-20) in equation
(3-21) gives :

$$
\begin{aligned}
\Gamma_{M_{j}}\left\{\ddot{x}_{j}\right\}- & c_{1} \dot{x}_{1}\left[\phi_{1}^{j}\right]^{T}-c_{2} \dot{x}_{2}\left[\phi_{2}^{j}\right]^{T}+\left[C A_{j}\right]\left\{\dot{x}_{j}\right\} \\
& -K_{1} x_{1}\left[\phi_{1}^{j}\right]^{T}-K_{2} X_{2}\left[\phi_{2}^{j}\right]^{T}+\left[K A_{j}\right]\left\{x_{j}\right\}=\{0\}(3-22)
\end{aligned}
$$

where $\left[\mathrm{CA}_{j}\right]$ and $\left[\mathrm{KA}_{j}\right]$ are damping and stiffness matrices respectively for the airframe given by :

$$
\begin{equation*}
\left[C A_{j}\right]=\left[2 \beta^{M_{j}} r_{\omega_{\jmath}}+C_{2}\left[\phi_{1}^{j}\right]^{T}\left[\phi_{1}^{j}\right]+c_{2}\left[\phi_{2}^{j}\right]\left[\phi_{2}^{j}\right]\right] \tag{3-23}
\end{equation*}
$$

$$
\begin{aligned}
{\left[K_{j}\right] } & =\left[\Gamma_{M_{j}} \Gamma_{\omega_{j}} \Gamma_{\dot{\omega}_{j}}+K_{1}\left[\phi_{1}{ }^{j}\right]^{T}\left[\phi_{1}{ }^{j}\right]+K_{2}\left[\phi_{2}{ }^{j}\right]^{T}\left[\phi_{2}{ }^{j}\right]\right](3-24) \\
j & =3,4-\cdots N
\end{aligned}
$$

$$
\text { Equations (} 3-17 \text {) with } i=1,2 \text { and } j=3,4 \cdots N \text {, and }
$$

(3-22) with $\dot{j}=3,4 \cdots--N$ constitute a set of N simultaneous
differential equations which may be written :

$$
\begin{equation*}
r_{M}\{\ddot{x}\}+[c]\{\dot{x}\}+[N]\{x\}=\{F(t)\} \tag{3-25}
\end{equation*}
$$

where $\quad \Gamma_{M_{\jmath}}=\Gamma_{M_{1}}$
$\stackrel{M}{2}^{M_{2}}{ }^{-}{ }_{u_{j}}^{\bar{o}}$

$$
\{x\}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\left\{x_{j}\right\}
\end{array}\right]
$$

$$
\{F(t)\}=\left\{\begin{array}{c}
-K_{t 1} h_{1}-C_{t 1} \dot{h_{1}} \tag{3-31}\\
-\mathrm{K}_{\mathrm{t} 2} \mathrm{~h}_{2}-\mathrm{C}_{\mathrm{t} 2} \dot{\mathrm{~h}_{2}} \\
\{\overline{0}\}
\end{array}\right\}
$$

Premultiplying equation $(3-25)$ by $\Gamma_{M_{j}}^{-1}$ gives:

$$
\begin{equation*}
\{\ddot{x}\}+\Gamma_{M_{j}}^{-1}[c]\{\dot{x}\}+\Gamma_{M}-1[K]\{x\}=\Gamma_{M}-1\{F(t)\} \tag{3-32}
\end{equation*}
$$

FIGURE 3.3

¿TH UNDERCARRIAGE

SECTION 4

RESPONSE STUDIES

The studies of response of the aircraft to a random runway profile are based on the following relationships, which have been discussed in Section 1.

The means-square value of response acceleration is given by

$$
\begin{equation*}
\overline{\ddot{x}^{2}}=\int_{w_{f_{1}}}^{w_{f_{2}}} \bar{\Phi}_{\ddot{x}}\left(w_{f}\right) d \omega_{f} \tag{4-1}
\end{equation*}
$$

$\Phi_{\ddot{x}}\left(\omega_{\rho}\right)$ is the power spectral density of the response acceleration and is given by

$$
\begin{aligned}
\Phi \ddot{x}\left(\omega_{\mathrm{f}}\right) & =\omega_{\mathrm{f}}^{4} \cdot \Phi_{\ddot{x}}\left(\omega_{\mathrm{f}}\right) \\
& =\omega_{f}^{4} \cdot{H_{\mathrm{x}}}_{\mathrm{q}}\left(\omega_{\mathrm{f}}\right) \Phi_{q}\left(\omega_{\mathrm{f}}\right)
\end{aligned}
$$

4. 1 Frequency response function

In order to apply the above relationships, the frequency response function for the aircraft is required, that is the amplitude of the response of the aircraft due to rolling over a sinusoidal curve of frequency ω, and unit amplitude. There are in effect two transfer functions to consider, since the input to the aircraft is not at one point. There is the transfer function linking the runway profile to the input to the wheels at the nose and main undercarriage locations represented by the elevations h_{1} and h_{2} respectively, and there is the transfer function linking the whecl input to the aircraft response. The product of these two transf'er functions will give the overall transfer function linking the aircraft response to the rumay profile. The two transfer functions may be troated together as follows, leading to the frequency response function.

Figure 4.1(a) shows diagrammatically the aircraf't on the sinusoidal runway with runway elevations h_{1} and h_{2} at the main and nose undercarriages measured from some arbitrary ditum. Roferring to figure 4.1 (b), where the datum line has been located centrally on the sinusoidal wave for convenience, the clevation h_{2} is given by

$$
\begin{aligned}
h_{2} & =H \operatorname{Sin} \frac{2 \pi y}{L}=\operatorname{Sin} \frac{2 \pi V t}{L} \\
\text { since } H & =I
\end{aligned}
$$

Since it is response functions which are required, this may be written

$$
\begin{equation*}
h_{2}=e^{\frac{i 2 \pi V t}{L}}=e^{i \omega_{f} t} \tag{4-3}
\end{equation*}
$$

Similarly, h_{l} is given by :

$$
\begin{aligned}
h_{I} & =e^{\frac{i 2 \pi(y+d)}{L}} \\
& =e^{i}\left(\frac{2 \pi V t}{L}+\frac{2 \pi d}{L}\right) \\
& =e^{i \frac{2 \pi v}{L}} \cdot e^{\frac{i 2 \pi a}{L}}
\end{aligned}
$$

Since the aircraft velocity V and the runway undulation wavelength L can vary while d remains constant, $\frac{2 \pi d}{L}$ will vary with ω_{f}.

$$
\text { Thus, } \frac{2 \pi d}{L}=\frac{2 \pi V}{L} \cdot \frac{d}{V}=\frac{d}{V} \cdot \omega_{f}
$$

Hence,

$$
h_{1}=e^{i \omega_{f} t} e^{i} \mathcal{V}^{i} \omega_{f}
$$

$$
=\left(\cos \frac{d}{V} \cdot \omega+i \sin \frac{d}{V} \cdot \dot{\omega}_{p}\right) e^{i \cos _{f} t} \quad(4-4)
$$

From equations ($4-3$) and ($4-4$),

$$
\begin{equation*}
\dot{h}_{2}=i \omega_{\mathrm{p}} e^{i \omega_{p} t} \tag{4-5}
\end{equation*}
$$

$$
\begin{equation*}
\dot{h}_{l}=i \omega_{\mathrm{f}}\left(\cos \frac{d}{\mathrm{~V}} \cdot \omega_{\mathrm{f}}+\sin \frac{\alpha_{V}}{\mathrm{~V}} \cdot \omega_{\mathrm{f}}\right) e^{i \omega_{\mathrm{f}} t} \tag{4-6}
\end{equation*}
$$

- The elements of $\{F(t)\}$ in equation (3-3I) may now be
formed as follows:

$$
\begin{align*}
-K_{t 1} h_{1}-C_{t 1} \dot{h}_{1}= & -K_{t 1}\left(\cos \frac{d}{V} \cdot \omega_{f}+i \sin \frac{d}{V} \cdot \omega_{f}\right) e^{i \omega_{f} t} \\
& -C_{t 1} i \omega_{f}\left(\cos \frac{d}{V} \cdot \omega_{f}+i \sin \frac{d}{V} \cdot \omega_{f}\right) e^{i \omega_{f} t} \\
= & \left\{\begin{array}{c}
\left(K_{t 1} \cos \frac{d}{V} \cdot \omega_{f}+C_{t 1} \omega_{f} \sin \frac{d}{V} \cdot \omega_{f}\right) \\
\\
\\
-i\left(K_{t 1} \sin \frac{d}{V} \cdot \omega_{f}+C_{t 1} \omega_{f} \cos \frac{d}{V} \cdot \omega_{f}\right)
\end{array}\right\} e^{i \omega_{f} t}(4-7) \\
-K_{t 2} h_{2}-C_{t 2} h_{2}= & -K_{t 2} e^{i \omega_{f} t}-C_{t 2} i \omega_{f} e^{i \omega_{f} t} \\
= & \left(-K_{t 2}-i \omega_{t 2} \omega_{f}\right) e^{i \omega_{f} t}
\end{align*}
$$

Substituting equations (4-7) and (4-8) into equation (3-31) and pre-multiplying by $\Gamma_{M_{j}}^{-1}$ gives

$$
\Gamma_{M}{ }^{-1}\{F(t)\}=\Gamma_{M}-1\left\{\begin{array}{c}
\left(\left(-K_{t i} \cos \frac{\alpha}{V} \omega_{f}+C_{t 1} \omega_{f} \sin \frac{d}{V} \omega_{f}\right)\right. \\
-i\left(K_{t 1} \sin \frac{\alpha}{V} \omega_{f}+C_{t 1} \omega_{f} \cos \frac{\alpha}{V} \omega_{f}\right) \\
-K_{t 2}-i C_{t 2} \omega_{f} \\
\{\overline{0}\}
\end{array}\right\} e^{i \omega_{f} t}
$$

Equation (3-32) may now be written
$\{\ddot{x}\}+\Gamma_{M_{A}}^{-1}[C]\{\dot{x}\}+\Gamma_{M}{ }_{\mu}^{-1}[K]\{x\}=\Gamma_{M_{\perp}}^{-1}\{G\} e^{i \omega_{p} t} \quad(4-9)$ where $\{G\}$ is a column matrix having
$G_{I}=\left(-K_{t I} \cos \frac{d}{V} \omega_{f}+C_{t I} \omega_{f} \sin \frac{\alpha}{V} \omega_{f}\right)-i\left(K_{t I} \sin \frac{\alpha}{V} \omega_{f}+C_{t I} \omega_{f} \cos \frac{d}{V} \omega_{f}\right)$
$G_{2}=-K_{t 2}-i C_{t 2} \omega_{\mathrm{f}}$
$G_{i}=0, \quad i=3,4 \cdots \cdots$

In equation (4-9) the left hand side represents the aircraft system and the right hand side now represents the input to the system from a sinusoidal runway profile of unit amplitude and frequency ω_{f}. The transfer function of a system is the Laplace transform of its impulse response. Thus, to find the transfer function of the aircraft system, the following equation may be considered:

$$
\begin{equation*}
\{\ddot{x}\}+\Gamma_{M_{\perp}}-1[c]\{\dot{x}\}+\Gamma_{M_{\perp}}^{-1}[K]\{x\}=\{\delta(t)\} \tag{4-10}
\end{equation*}
$$

Taking Laplace Transforms and putting all initial values

to zero gives
$\left[p^{2} \Gamma_{I_{1}}+{ }_{p} \Gamma_{\perp}-1[c]+\Gamma_{M_{\perp}}-1[K]\right]\{x(p)\}=\{1\}$
which may be written

$$
\begin{equation*}
[U(p)]\{x(p)\}=\{1\} \tag{4-12}
\end{equation*}
$$

Premultiplying both sides by $[U(p)]^{-1}$ gives

$$
\begin{equation*}
\{X(p)\}=[U(p)]^{-1}\{1\} \tag{4-13}
\end{equation*}
$$

where $[U(p)]^{-1}$, the aircraft system transfer function, is an $\mathrm{N} \times \mathrm{N}$ complex matrix in p .

The steady-state response of a linear stable system to an input $x=A e^{i \omega t}$ is given by

$$
y=|P(i \omega)| A^{i(\omega t+\theta)}
$$

Where $|P(j \omega)|=$ magnitude of $P(j \omega)$
$\theta=\arg P(i \omega)$
$P(i \omega)$ is determined by replacing p by i ω in the system transfer function $P(p)$. . "

The input to the aircraft system under consideration is $\Gamma_{M}-1\{G\} e^{i \omega_{\mathrm{f}} t}$ from equation (4-9), and since this input is derived from a runway profile of sinusoidal form with frequency ω_{f} and unit amplitude, the response to this input will be the frequenoy response required for use in equation (4-2).

Thus,

$$
\left\{X\left(i \omega_{j}\right)\right\}=\cdot\left[U\left(i \omega_{0}\right)\right]^{-1} \Gamma_{M_{j}}-1\{G\} e^{i\left(\omega_{f} t+\theta\right)} \quad\left(4-1_{4}\right)
$$

The values of the elements X_{j} of the matrix $\{X$ (iwf) $\}$ are therefore given by

$$
\begin{equation*}
\left\{x\left(i \omega_{\mathrm{p}}\right)\right\}=\left\{\left[U\left(i \omega_{\mathrm{f}}\right)\right]^{-1} \Gamma_{H_{\perp}}{ }^{-1}\{G\}\right\} \tag{4-15}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[U\left(i \omega_{f}\right)\right]=\left[\Gamma_{M}-1[K]-\omega_{f}^{2} \Gamma_{I_{\mu}}+i \omega_{f} \Gamma_{H_{j}}-1[C]\right] \tag{4-16}
\end{equation*}
$$

It must be remembered that X_{j} is the generalised co-ordinate of the j th mode. Thus, the elements of the matrix $\left\{x\left(i \omega_{f}\right)\right\}$ may be said to be the generalised co-ordinates of the frequency response function in the various modes, so that the actual frequency response function of the j th mode is given by $\phi_{i}{ }^{j} X_{j}\left(i \omega_{f}\right)$, at frequency ω_{f}, where $\phi_{i}{ }^{j}$ is the mode shape of the j th mode at the ith position on the aircraft. The matrix of frequency response functions for the various modes at the ith point on the aircraft at f'requency ϵ_{f} is therefore given by

$$
\begin{equation*}
\left\{\phi_{i}^{j} \cdot x_{j}\left(i \omega_{p}\right)\right\}=\left\{\phi_{j} \cdot r_{j}+i \phi_{j} \cdot s_{j}\right\} \tag{4-17}
\end{equation*}
$$

where r_{j} and 3_{j} are the real and imaginary parts respectively of the elements of $\left\{X_{j}\left(i \omega_{\mu}\right)\right\}$.

The elements of the matrix in equation (4-17) give both the magnitudes, and phases relative to each other, of each mode's frequency response function. To take account of the phase differences, the real and imaginary parts must be added separately to give the real and imaginary parts of the overall frequency response function. The frequency response function required for use in equation (4-2) is therefore the modulus of this, so that

$$
\begin{equation*}
H_{\frac{x}{q}}\left(\omega_{f}\right)=\sqrt{Q^{2}+g^{2}} \tag{4-18}
\end{equation*}
$$

where $\mathbb{Q}=\sum_{j=3}^{N} \phi_{i}{ }^{j} \cdot r_{j}=\left[\phi_{i}{ }^{j}\right]\{R\}$
$g=\sum_{j=3}^{N} \phi_{i}{ }^{j} \cdot s_{j}=\left[\phi_{i}{ }^{j}\right]\{s\} \quad(4-20)$
$\{R\}$ and $\{S\}$ are column matrices of order $N-2$ whose elements are r_{j} and s_{j} respectively. $j=3,4-\cdots-N$

NOTE $X_{1}\left(i \omega_{f}\right)$ and $X_{2}\left(i \omega_{f}\right)$ are wheel displacements and thus do not contribute to displacement of the aircraft. Hence in equations ($4-19$) and ($4-20$) the elements considered are $j=3,4$, airframe rigid body heave and pitch respectively, and $j=5,6--N$, airframe flexural modes.
4. 2 Computer Programs

4.2.1 Main Response Program, RESPONSE 12

The main response program is shown at Appendix F. This program computes the rms values of the response acceleration at the mainwheel, nosewheel, and pilot locations of the aircraft for a constant taxiing velocity V, which is read in with the data. The response is programed from the equations developed in section 3 and sub-section 4.1, and the runway PSD with two straight line segments on the log scale3, developed in section 2. A "single straight line" runway PSD may be used when required simply by making both slopes and intercepts the same.

The aircraft considered in the progrom, therefore, has linear oleo stiffness and daming, wheel masses, linear tyre stiffness and damping, rigid body heave and pitch modes, and oan have as many flexural modes as required. The number of modes, $N M$, to be considered is read in with the data, together with the relevant informaion regarding the modes to be considered. NM includes the rigid body heave and pitch modes, so that the number of flexural modes is ($N M-2$).

The frequency response function and input PSD are calculated for a particular frequency, and used in equation (4-2) to compute the output PSD at the three required aircraft locations at that frequency. Earlier less sophisticated programs used constant step lengths of frequency and computed the area under the output PSD v. frequency curve by a simple accumulation of height
times step length. This was found to lead to some inconsistencies and it was realised that a much more sophisticated approach to the step length was required. The procedures S IMPS and SORT were thus developed and used in conjunction with the eigen values, which are also calculated in the program, to give a much more accurate calculation of the area, whose square root is the response required. The requirement for, and development of, the method of integration, using SIMPS etc, are discussed in Appendix E.

Six procedures had been obtained, developed by Wilkinson at NPL, for computing eigenvalues and eigenvectors. These were BALANCE, ELMHES, BALBAK, ELMBAK, CDIV, HQR2. These were all used during the response studies to investigate'some effects. However, for use in the integration program, BALBAK and ELMBAK aro not required, since they apply only to eigenvectors, and IIQR2 has been substantially shortened, the part concerned with eigenvëctors being removed. A new matrix, COEFF, is formed in the program, from which the eigenvalues are computed. It can easily be shown that for a system

$$
M \ddot{x}+G \underline{x}+K x=0
$$

the eigenvalues are found from the matrix

$$
\operatorname{COBFF}=\left[\begin{array}{c:c}
-M^{-1} \mathrm{C} & -\mathrm{M}^{-1} \mathrm{~K} \\
\hdashline I & 0
\end{array}\right]
$$

The response of the aircraft with various flexural modes neglected may be obtained very easily from the above program simply by leaving out the data for the mode or modes to be neglected, and
modifying NM accordingly.

4.2.2 Uncoupled heave and pitch response programs, $B D A R B H H$ and PITCH RESPONSE 6

Programs to compute the rms value of the response acceleration at the mainwheel, nosewheel and pilot locations of the aircraft for a constant taxiing velocity in the rigid body heave mode only and the rigid body pitch mode only are shown in Appendix G. The response is the same at all three locations of course for the heave mode. The heave response program computes the response for a range of taxiing velocities, whilgt the pitch response program computes the response for only one taxiing velocity, although this was amended to cover a range. The aircraft considered in these programs has linear oleo stiffness and damping, but wheel masses and tyres are noglected. The analyses leading to these programs is shom in sub-sections 4.3.2.1 and 4.3.2.2.

The choice of step length for the integration is again a critical factor in the pitch case, but is not so in the heave casé. Thus, the heave program uses constant step lengths but the pitch program uses procedures.similar to those in RESPONSE 12, but differs in its method of selecting the intermediate integration limits. This is described in Appendix E.

4. 3 Presertiction and Interpretation of Results

4.3.1 Effect of neglecting various modes

The response in each mode, i.e. rigid body heave and pitch and flexural modes, was found by a simple modification to the main response program, whereby the modulus of each element of the matrix $\left\{\phi_{i}{ }^{j} \cdot \chi_{j}\left(i \omega_{f}\right)\right\}$ was found, this being the frequency response function for the jth mode. The response for the mode was then computed as in the main response procram.

This program wes used to find the response in each mode e.t the mainwheel, nosewheel and pilot locations for the standard Boeing 707 aircraft parameters using the geometric mean runway. The values computed for a taxiing velocity of $60 \mathrm{ft} / \mathrm{s}$ are shown in table 4.1. It was found, as might be expected; that the Rigid Body Heave mode made the largest contribution to the response at the mainwheel location and the Rigid Body Pitch mode made the largest contribution to the response at the nosewheel and pilot locations. It was also found that, of the first 6 flexural modes, the lst and 4 th had relatively large values of response, the response from the other 4 modes being very small. The response from the lat flexural mode was particularly large at the mainwheel location and that from the 4 th flexural node was particularly large at the pilot location.

Table $4.2(a)$ confirms the above findines. The mean square values of the second derivative of the generalised co-ordinates, $\overline{\ddot{X}}^{2}$, are reproduced from results presented in reference 13. The values. of mode shape ϕ are also taken from the reference. From these
values, since the mode shape is a constant for a given mode and the generalised co-ordinates are stated in inch second units, the rms values of response acceleration were calculated from :

$$
\sigma=\frac{\sqrt{\ddot{x}^{2} \phi^{2}}}{12} \mathrm{ft} / \mathrm{s}^{2}
$$

It will be seen that, with some slight variations, the values of response in the modes confirm the trends discussed above.

Whilst this gives an indication of the contributions of each mode to the overall response, it does not jndicate whether or not a particular mode may be neglected. Since the modulus is used for each element of the matrix in finding the frequency response function for that mode, the final response oontributions are magnituies only, no phase being available to enable the effeot on the overall response to be established. Thus, although a small response, as in flexural modes $2,3,5$ and 6 , will indicate that the mode could be neglected, a large response, as in flexural modes 1 and 4, will not necessarily indicate that it cannot. Depending on the phase of the mode's freguency response function in the matrix $\left\{\phi_{i}^{j} X_{j}\left(i \omega_{f}\right)\right\}$, the neglecting of the mode could lead to cither an underestimate or an overestimate of the response by a large amount, or indeed to very little error if the phase of the mode were approximately at right angles to the phases of the other modes, this assuming of course that the other modes were all in phase or 180° out of phase, a not very likely state of affairs.

In order to estimate more accurately the effeot of negleoting various flexural modes, the main response program was used, using only
the data for the modes to be incorporated each time. Figures 4.2, 4.3 and 4.4 show the results of this for the standard Boeing 707 aircraft parameters, using the geometric mean runway, for various taxiing velocities. It will be seen from these figures that the indications from the response in each mode are confirmed. Neglecting any one, or a combination, or all, of flexural modes 2, 3 , 5 and 6 gives only very small errors in the estimated response compared with that calculated using all 6 flexural modes. The largest errors are at the main-wheel location at the higher speeds ($200,240 \mathrm{ft} / \mathrm{s}$) and are then only of the order of 4%. Neglecting the list or 4 th flexural mode, however, does, as suggested by the previous program, give rise to substantial errors. Neglecting the lst flexural mode leads to an overestimate of the response at the noscwheel and pilot location by up to 25% and "an underestinate of the response at the mainwheel looation by up to 25%. Neglecting the l_{r} th flexural mode leads to an underestimate of the response at the nosewheel and pilot location; in the worst case, at $40 \mathrm{ft} / \mathrm{s}$, the predicted response neglecting this mode is less than half that if all the modes arc included. The response at the mainwheels, however, is not so badly affected by neglecting this mode, the result being an underestimate by up to only about 5%.

Figures 4.2, 4.3 and 4.4 also show the response estimated by neglecting all the flexural modes, i.e. assuming a rigid aircraft. It $\mathrm{c}: \mathrm{n}$ be seen that this gives a closer approximation to the response obtained using all flexural modes than was obtained by neglecting only the lat or 4 th flexural mode. Thus it appears that
the responses in the lst and 4th flexural modes tend to counteract each other to some extent.

The above results vere obtained using an earlier less sophisticated program than the final main response program RESFONSE 12 shown at Appendix F and discussed in sub-section 4.2.1 and Appendix E, and slight differences in data from that derived in Section 2 and Appendix C (see Appendix D). The procram used constant step lengths of $I \mathrm{rad} / \mathrm{s}$ and the mid-ordinate rule for the intcgration of the response PSD. However, it is shown in App:ndix E that this tends to give a fairly constent percentage overestimation of the response and thus, for purposes of comparison, would have been adequate. It was therefore assumed that the same results would be obtained using the more sophisticated program, and they were not repeated after the development of this program.

Figure 4.5 shows the frequency response functions at the mainwheel and pilot locations plotted against the forcing frequency, for the same aircraft and runway parameters used to produce figures 4.2, 4.3 and 4.4 , including the first 6 flexural modes, for a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$. Figure 4.6 shows the corresponding power spectral densities of the acceleration response. The values for these figures were computed as intermediate steps in response computations using the later more sophisticated program RESPONSE 12. These figures confirm that the rigid body heave and pitch, and the Ist and 4th flexural modes, contribute by far the bigger proportion of the response. Since the square root of the area under the PSD curve is the rms value of the response, it can be seen, particularly from figure 4.6, that the contributions from the $2 n d$,

3 rd , 5 th and 6 th flexural modes are negligible.

Figures 4.7 and 4.8 show the frequency response functions and PSD's of acceleration response respectively for the same aircraft parameters, runway parameters, and taxiing velocity as used for figures 4.5 and 4.6 , but neglecting the flexural modes. It can be seen that the tro modes (rigid body heave and pitch) are very close together in this case, and each contributes to the other peak. The eigenvalues for the cases with and without the flexural modes are shown in table 4.3, and the modes corresponding to the various frequencies given by the eigenvalues are noted on figures 4.5 to 4.8 . Since the two modes in figures 4.7 and 4.8 are so close it is not immediately obvious which is heave and which is pitch. Close examination of the eigenveotors indicates that the higher frequency mode is the heave mode, although it also indicates considerable coupling between the modes since there is a considerable contribution to each mode from the other. The fact that the lower frequency mode produces a much greater response at the pilot location than at the mainwheel location also indioates that this is the pitch mode.

For the case where all the flexural modes were considered (figures 4.5 and 4.6) the pitch, heave, and lst flexural modes are close together. This time examination of the eigenvectors did not give so clear an indication of the frequencies of the three modes, since they did not show that each frequency gave a clearly larger contribution to one mode. This indicates that the three modes are in fact very closely coupled. The modal frequency of the
first flexural mode is between the two frequencies found in figures 4.5 and 4.6 for heave and pitch, and thus theory would predict that this should "push apart" the pitch and heave peaks of the frequency response, so that the modes in ascending order of frequency should be pitch, lst flexural, and heave. This appears to be confirmed by the pilot location values in table 4.1. However, examination of the damping ratios in table 4.3 indicates that the mode with frequency $6.47 \mathrm{rad} / \mathrm{s}$ is the pitch mode, and since one would not expect the heave and pitch modes to interchange order of frequencies, it is concluded that the modes in ascending order of frequency are list flexural, pitch and heave. This appears to be confirmed by the mainwheel location values in table 4.1. It should of course be noted that the values in table 4.1 were results for n different taxiing velocity. It is clear from the above discussion that the lst flexural, pitoh, and heave modes are very olosely coupled, producing three peaks on the frequency response curve, and hence on the response PSD curve, which are extremely difficult to distinguish as separate modes.

Examination of figures 4.6 and 4.8 indicates that the area under the PSD curve, and hence the response, is decreased considerably at the pilot location for the heave and pitch modes if the lst flexural mode is included and the peak for the 4 th flexural mode is ignored. The effect on the mainwheel location is not so pronounced but in f'act a small increase in area is obtained by including the lst flexural mode. Now if the lst flexural mode is excluded and the 4 th flexural mode is included, it will be seen that the effect
will be to add the peak of the 4 th flexural mode from figure 4.6 to the rigid body response on figure 4.8, giving a large inorease in response at the pilot location and in fact a small decrease at the mainwheel location. Thus, the effects of the lst and the 4 th flexural modes tend to balance each other, and it will be seen that the areas under the corresponding curves on figures 4.6 and 4.8 are approximately equal, so that for this particular aircraft consideration of only the rigid body modes gives a fair approximation to the response obtained by considering rigid body plus 6 flexural modes. The values from these figures are

	Root mean square values of response acceleration ($f t / s^{2}$)	
	Mainwheel Location	Pilot - Location
All modes included	6.7064	9.9952
Rigid body modes only included	5.6728	10.5907

These figures confirm the earlier indications from the less sophisticated program, shom for this particular velocity on figure 4.3, and therefore most of the remaining investigation of this report, and in particuler the development of computer programs, may be carried out using the rigid body modes only. This will be very much more economical in computer time.

The fact that negleoting the flexural modes causes considerable modification to the response in the heave and pitch modes may also be confirmed by reference to table 4.2. The values
in table (b) were calculated from results presented in reference 13 in the same way as those in table (a). Comparing values in tables $4.2(a)$ and (b) it will be seen that by neglecting the flexural modes the calculated value of response in the heave mode is increased and that in the pitch mode is decreased. If the changes are related. to areas under the response PSD curve the changes are even more apparent, since the rms value of response is equal to the square root of the area under this curve. Thus the changes in area would be 18.2: 29.1 for the heave mode and $35.6: 23.4$ for the pitch mode. Each mode will of course make a contribution to the response in the other mode due to coupling.

The damping in the various modes from the eigenvalues in
table 4.3 is worthy of note here. The damping of the nose underaarriage mode is higher than critical, whilst the main undercarriage mode has a damping ratio of about 0.37 . Those remain essentially unchanged, whether or not the floxural modes are included in the analysi.s. The damping constants obtained for these two modes by considering the expression:

$$
\begin{aligned}
\beta & =\frac{C}{2 \sqrt{K M}} \\
\text { where } C & =\text { oleo damping constant } \\
K & =\text { oleo stifiness } \\
M & =\text { undercarriage mass }
\end{aligned}
$$

are $\beta=3.5$ and 0.48 for the nose and main undercarriage modes respectively. Thus, coupling the undercarriage modes to the aircraft modes causes a reduction in the modal damping of the undercarriages. It will be show in sub-section 4.3 .2 .3 that this also occurs in the heave and pitch damping when these modes are coupled.

The heave and pitch damping ratios from table 4.3
for the case when only rigid body modes are considered are 0.046 and 0.120 respectively. When the flexural modes are included the modal damping ratios for heave and pitch are reduced to 0.032 and 0.113 respectively. Thus the inclusion of the flexural modes causes a reduction in modal domping in the heave and pitch modes. However, although the damping in the heave and pitch modes is reduced by inclusion of the flexural modes, the response from these two modes is not increased, but is actually reduced, as has already been shown. This is because the peaks on the response PSD curve are now further apart and have smaller bandwidths, giving less overlap and much narrower peaks.

The modal damping used for all flexural modes was $\beta=0.025$. It will thus be seen that the effect of coupling has been to increase the demping in the flexural modes.

4.3.2 Variation of response with taxiing velooity

The rms values of response accleration at the mainwheels, nosewheel and pilot locations, for a range of taxiing velocities, were computed using an earlier, much less sophisticated version of the response program RESPONSE 12. It was found when these were plotied that the curves of response v. taxiing velocity, whilst showing an increase of response with velocity, had a considerable amount of undulation. It was in an attempt to explain this undulation, and in particular to explain undulations in the curves of response v. undercarriage stiffness (sub-seotion 4.3.3), that the final, more sophisticated, version of the response program
was developed (see Appendix E). The results discussed in this seotion are therefore computed using the response program RESPONSE 12 (see sub-section 4.2.1).

Figure 4.9 shows the rms values of response acceleration at the mainwheels and pilot location plotted against taxiing velocity, using the aircraft and runway data at Appendix D. The flexural modes of the aircraft were neglected in the computation of values for this figure, as they are for the remainder of this section, and thus only rigid body data for the aircraft is used. It can be seen from the figure that peaks occur in the pilot location response curve, and to a smaller extent in the mainvheel response curve, at taxiing velocities of about 25 and $40 \mathrm{ft} / \mathrm{s}$, but then at taxiing velocities above $60 \mathrm{ft} / 3$ a steady rise in response occurs with increasing velocity.

There is some similarity between figuro 4.9 and the curves published in reference 37. The curves of response against velocity for the Boeing 707 showed peaks at approximately the same taxiing speeds. However, the data used in this reference for the 707 was somewhat different from that used here. In order to provide a better check of correlation between the two methods, the data used in reference 37 for the Boeing 707 and for the runway, was used with the above program. The aircraft masses were as already used, but the stiffnesses were as follows:

$$
\begin{aligned}
& \text { Main oleo stiffness, } K_{1}=2.03 \times 10^{6} \mathrm{lbf} / \mathrm{ft} \\
& \text { Nose oleo stiffness, } K_{2}=162000 \mathrm{lbf} / \mathrm{ft} \\
& \text { Main tyre stiffness, } K_{t 1}=1.158 \times 10^{6} \mathrm{Ibf} / \mathrm{ft} \\
& \text { Nose tyre stiffness, } K_{t 2}=92000 \mathrm{Ibf} / \mathrm{ft}
\end{aligned}
$$

$$
\text { The main oleo damping used was } C_{m}=21600 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})^{2},
$$

and in order to ensure no coupling between the modes it was assumed that

$$
\begin{equation*}
\frac{C_{e m}}{C_{e n}}=\frac{C_{m}}{C_{n}}=\frac{L_{n}}{I_{m}} \tag{4-21}
\end{equation*}
$$

where I_{n} and I_{m} are the distances from the $C g$ to the nose and mainwheels respectively. For this analysis the equivalent main oleo damping was calculated using

$$
\begin{equation*}
C_{e m}=\frac{8}{3 \pi} \cdot C_{m} \dot{X} \tag{4-22}
\end{equation*}
$$

as used to calculate the earlier data in Appendix D, and using \dot{X} from Appendix C, and the equivalent nose oleo damping was calculated from equation (4-21).

```
Thus, the oleo damping used was '.
    Main oleo damping, \(C_{I}=C_{\text {em }}=12250 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})\)
    Nosc oleo damping, \(C_{2}=C_{c n}=970 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})\)
```

The analysis in the reference used no undercarriage masses or tyre damping, so in order to use the response program, the same values were used as for figure 4.9.

The munway used, taken from the reference, was represented by

$$
\begin{equation*}
\Phi(\omega)=\frac{20 \times 10^{-6}}{\omega x^{2}} \tag{4-23}
\end{equation*}
$$

Figure $4.10(\mathrm{a})$ is reproduced from reference37. Figure 4.10(b) was plotted from computer calculations using the above data in the response program RESPONSE 12. Although the analysis in reference 37 used an iterative Iinearisation procedure for the main
oleo damping, and used no undercarriage masses or tyre damping, the $t_{\text {wo }}$ figures show remarkably similar results. The curves in figure 4.10 (a) show a slight dip at around $130 \mathrm{ft} / \mathrm{s}$ which is not evident in figure $4.10(\mathrm{~b})$, and the pilot location response in figure $4.10(\mathrm{a})$ begins to decrease at velocities over about $175 \mathrm{ft} / \mathrm{s}$, which again is not evident in figure 4.10(b). However, the peaks on the curves occur at the same taxiing velocities, and apart from the above slight differences, the curves have a very similar shape. However, in general the curves in figure $4.10(b)$ show responses about 20% higher than those in figure 4.10 (a). This may be explained by the fact that the use of equation (4-22) gives an underestimate of the equivalent damping constant in this case, even if the value of oleo stroking velocity used ($8.05 \mathrm{in} / \mathrm{s}$ in this case) were correct for all taxiing velocities. If equation (4-22) is used, \hat{X} should be the peak value of oleo stroking velooity, whereas the valuo used was an rms value. Thus the equation should have been

$$
c_{\mathrm{em}}=\sqrt{2} \cdot \frac{8}{3 \pi} c_{\mathrm{m}} \dot{X}_{\mathrm{RuSS}} \quad(4-24)
$$

However, a better value would probably have been obtained by equating enerey dissipated over a period of time for a random input having Gaussian distribution (see Appendix C), 'so that :

$$
\begin{equation*}
c_{\mathrm{em}}=2 \sqrt{\frac{2}{\pi}} c_{\mathrm{m}} \cdot \dot{x}_{\mathrm{RuS}} \tag{4-25}
\end{equation*}
$$

Using this equation, and equation (4-21) would have resulted in the following values:

$$
\begin{aligned}
& c_{\mathrm{em}}=23100 \mathrm{Ibf} /(\mathrm{ft} / \mathrm{s}) \\
& c_{\mathrm{en}}=1830 \mathrm{Ibf} /(\mathrm{ft} / \mathrm{s})
\end{aligned}
$$

figure 4.29 that an increase in main oleo damping from $12250 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})$ to $23100 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})$ gives decreases in response of approximately 8 to 10% at the pilot location and 10 to 15% at the mainwheel location. Although the figure does not show such low nose oleo damping values it may reasonably be deduced from the figure that an increase from $970 \mathrm{Ibf} /(\mathrm{ft} / \mathrm{s})$ to $1830 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})$ mould also give a decrease in response, this time the decrease being greater at the pilat location than the mainwheel location. The general values of response for figure 4.10 (b) would therefore be reduced and correspond more closely with figure 4.10(a).

The curves of Eigure 4.10 show much more pronounced peaks than those of figure 4.9. This is due to the very low nose oleo damping used to produce figures 4.10. It is felt that these values are unrealistically low and that on the actual Boeing 707 the nose oleo daming is approximately half of the main oleo danping, or in fact about the same as one inain oleo (see Appendix C). The corollary is, of course, that it is not realistic to assume the heave and pitch modes are uncoupled.

It will also be seen that the response at the pilot location in particular in figures 4.10 stops increasing at medium to high taxiing velocities, and indeed in figure $4.10(a)$ begins to decrease at taxiing velocities over $175 \mathrm{ft} / \mathrm{s}$. This is a funotion of the runway profile used to produce these figures. The runway profile represented by equation ($4-23$) tends to underestimate the runway roughness at low frequencies. This will be discussed more fully in section 4.3 .6 , as it is also felt that the geometric mean runway used may in fact overestimate the roughness at low frequenoies.

For completeness computations were made of response for various taxiing velocities using the standard airoraft parameters wit' the runway described by equation (4-23) and using the aircraft parameters from reference 37 with the geometric mean runway.

Figure 4.11 shows response acceleration at pilot and mainwheel locations for the aircraft data from reference 37, used for fi£ure $4.10(\mathrm{~b})$, running on the geometric mean runway with parameters from Appendix D. The pronounced peaks are still evident at low taxiing velocities, although not quite so high as in figure 4.10. At higher taxiing velocities, however, the response increases rapidly with increase in velocity. This is unrealistic for the following reasons. Firstly, at such high accelerations the wheels, and particularly the nosewheel, would leave the ground, and since this analysis assumes the tyres remain in contact with the ground it oannot predict any motion whioh oocurs if this condition is not met. Seoondly, if such accelerations did occur, they would be accompanied by higher stroking velocities of the oleos, and thus, the equivalent linear damping, from equation ($4-24$), should be increased. This in turn would compute lower accelerations. This demonstrates the requirement, with extreme responses, to calculate a new equivalent damping for each taxiing velocity, or to use ah iterative technique to compute the damping and response. Lastly the high values of response are caused by a combination of the unrealistically low nose oleo damping used in this data and the possible overestimate of runvay roughness at long wavelengtins i.e. low spacial frequencies - by the expression for the geometrio mean runway (see section 4.3.6).

Figure 4.12 shows response acceleration at pilot and
mainwheel locations for the standard aircraft data from Appendix D, used for figure 4.9, with the rumay described by equation (4.-23). Again the peaks at low taxiing velocities are evident, this time slightly more pronounced than using the same parameters on the geometric mean runway (figure 4.9), but not so pronounced as using the parameters from reference 37 (figures 4.10 and 4.11). At higher taxiing velocities, however, the response at the pilot location increases by only $1 \mathrm{ft} / \mathrm{s}^{2}$ between taxiing velocities of $100 \mathrm{ft} / \mathrm{s}$ and $240 \mathrm{ft} / \mathrm{s}$, whilst the main wheel location response increases by only $2.75 \mathrm{ft} / \mathrm{s}^{2}$ over the same range. Comparing this with figure 4.9 it can be seen that the corresponding increase is $12 \mathrm{ft} / \mathrm{s}^{2}$ when the same aircraft parameters are used on the geometric meen runway.

It became clear during the development of the final response procram (RESPONSE 12), that unlike the case of variation of response with main oleo stiffness, the peaks on the curves of response v. taxiing velocity were not caused by too large a step length being used in the integration of the response PSD curve (see sub-section 4.3.3 and Appendix E). The final program, using a varying step length, which is smaller at critical sections of the curve, still produces the peaks, as already seen at figures 4.9 to 4.12 .

In order to investigate and explain the peaks the heave and pitch motions of the aircraft have been simplified and investigated separately as completely independent and uncoupled motions. It is assumed that the aircraft has lincar olco stiffness
and damping, no undercarriage masses, and no tyres. To find the frequency response functions for heave and pitch the airoraft is assumed to traverse a runway profile of sinusoidal form with frequency w_{f} and unit amplitude. Figure 4.13 shows this in diagrammatic form.

4.3.2.1 Heave response

Referring to figure 4.13 the heave input, h, to the undercarriage system is given by

$$
\begin{align*}
h & =h_{2}-\frac{b}{d}\left(h_{2}-h_{1}\right) \\
& =h_{2}\left(I-\frac{b}{d}\right)+h_{1}\left(\frac{b}{d}\right) \tag{4-26}
\end{align*}
$$

From figure $4.13, a+b=d$, so that $1-\frac{b}{d}=\frac{a}{d}$.
Using this, and substituting for h2 and h_{1} from equations (4-3)
and (4-4) giveg

$$
h=e^{i \omega_{p} t}\left(\frac{a}{d}+\frac{b}{d}(\cos \phi+i \sin \phi)\right) \quad(4-27)
$$

where $\phi=\frac{d}{\vec{V}} \cdot \omega_{f}$

The equation of motion for the unooupled heave motion is $M \ddot{z}+\left(C_{n}+C_{m}\right)(\dot{z}-h)+\left(k_{n}+k_{m}\right)(z-h)=0$
i.e. $M \ddot{z}+C \dot{z}+K z=C \dot{h}+K h$
where $C=C_{n}+C_{m}$
$\mathrm{K}=k_{\mathrm{n}}+k_{\mathrm{m}}$
If the runway elevation is denoted by the suffix r, the input displacement to the undercarriage system by h, and the aircraft response displacement by x, then the frequency response function
relating the aircraft response displacement to the runway elevation may be written

$$
\begin{equation*}
\left|H(i \omega)_{\frac{X}{Y}}\right|=\left|H(i \omega)_{\frac{h}{r}}\right| x\left|H(i \omega)_{\frac{X}{\hbar}}^{\hbar}\right| \tag{4-30}
\end{equation*}
$$

Now

$$
\begin{align*}
& H(\Sigma \omega)_{\frac{x}{h}}=\frac{1}{M\left(i \omega_{f}\right)^{2}+C\left(i \omega_{f}\right)+K}=\frac{1}{\left(K-1 \omega_{f}{ }^{2}\right)+i\left(C \omega_{f}\right)^{2}} \\
& \therefore\left|Y(i \omega)_{\frac{x}{h}}\right|=\frac{1}{\sqrt{\left(K-M \omega_{f}^{2}\right)^{2}+\left(\omega_{f}\right)^{2}}} \tag{4-3I}
\end{align*}
$$

and

$$
\begin{aligned}
H(i \cdot \nu)_{\frac{h}{r}}= & \frac{C h}{e^{1}+\frac{K h}{f}} . \\
= & i \omega_{f} c\left(\frac{a}{d}+\frac{b}{d}(\cos \phi+i \sin \phi)\right) \\
& +K\left(\frac{a}{d}+\frac{b}{d}(\cos \phi+i \sin \phi)\right) \\
= & \left(\frac{a}{d}+\frac{b}{d}(\cos \phi+i \sin \phi)\right)\left(K+i\left(c \omega_{f}\right)\right) \\
\therefore H(i \omega)_{\frac{h}{F}}= & \sqrt{\left(\frac{a}{d}+\frac{b}{d} \cos \phi\right)^{2}+\left(\frac{b}{d} \cos \phi\right)^{2}} \times \sqrt{K^{2}+\left(c \omega_{f}\right)^{2}}
\end{aligned}
$$

Now

$$
\begin{aligned}
& \left(\frac{a}{d}+\frac{b}{d} \cos \phi\right)^{2}+\left(\frac{b}{d} \cos \phi\right)^{2} \\
= & \left(\frac{a}{d}\right)^{2}+2\left(\frac{a}{d}\left(\frac{b}{d}\right) \cos \phi+\left(\frac{b}{d} \cdot \cos \phi\right)^{2}+\left(\frac{b}{d} \sin \phi\right)^{2}\right. \\
= & \frac{1}{d^{2}}{ }^{2}\left(a^{2}+b^{2}+2 a b \cos \phi\right) \\
= & \frac{1}{d^{2}}\left(a^{2}+2 a b+b^{2}-2 a b+2 a b \cos \phi\right) \\
= & \left(\frac{a+b}{d^{2}}\right)^{2}-\frac{2 a b}{d^{2}}(1-\cos \phi) \\
= & 1-\frac{2 a b}{d^{2}}(1-\cos \phi)
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|H(i \omega)_{\frac{h}{Y}}\right|=\sqrt{K^{2}+\left(c \omega_{f}\right)^{2}} \times \sqrt{1-\frac{2 a b}{d^{2}}(1-\cos \phi)} \tag{4-32}
\end{equation*}
$$

Hence

$$
H(i \omega)_{\frac{X}{F}}=\sqrt{\frac{K^{2}}{\left(K-1 \Delta \omega_{f}\right)^{2}+\left(c \omega_{\mathrm{f}}\right)^{2}}+\left(\omega_{\mathrm{f}}\right)^{2}} \times \sqrt{1-\frac{2 \mathrm{ab}}{\mathrm{~d}^{2}}\left(1-\cos \frac{d \cdot}{v} \cdot \omega_{\mathrm{f}}\right)}(4-33
$$

From equations (4-1) and (4-2) the mean square value of response acceleration is given by

$$
\overline{\dddot{x}}^{2}=\int_{\omega_{1}}^{\omega_{2}} \omega^{4}\left(H\left(i \omega_{\frac{x}{x}}^{\bar{r}}\right)^{2} \times \phi_{r}(\omega) \mathrm{d} \omega\right.
$$

From equation (2-8) the PSD of the runway profile is G iven by

$$
\begin{equation*}
\Phi_{r}(\omega)=\frac{\bar{c}^{n}-1}{\omega^{T r}} \tag{4-35}
\end{equation*}
$$

Substituting from ($4-33$) and ($4-35$) in ($4-34$) Eives

A computer program (BDARBPH H_{4}) was written to compute the root-mean-square value of response acceleration from equation ($4-36$) (see sub-section 4.2.2 and Appendix G) for a range of taxiing velocities. Computations were made using the aircraft parameters derived from reference 37 and the runway profile PSD from the same reference. The results are shown on figure 4.24. Undulations are still ap arent on this curve, but are not nearly so pronounced as on. figures 4.10. Thus it would appear that the heave motion, whilst possibly making some small contribution to the peaks on the curve of response v. taxiiny velocity, is not completely responsible. In order to lurther understand the effect of this motion, equation ($4-36$) is now examined more closely.

Figure 4.15 shows the parts of equation (4-36) which have
to be multiplied together before integrating. Curves (a) and (d) are independent of the taxing velocity except insofar as ω_{f} is dependent on V. Curve (c), for the simple runvay profile used for figure 4.14, is directly dependent on V, and thus magnitudes on the curve will increase directly as V increases. Curve (b) however is a sinusoidal wave given by

$$
\begin{equation*}
F\left(\omega_{\mathrm{f}}\right)=I-\frac{2 \mathrm{ab}}{\mathrm{~d}^{2}}\left(1-\cos \frac{d}{\mathrm{~V}} \cdot \omega_{\mathrm{f}}\right) \tag{4-37}
\end{equation*}
$$

Thus the number of peaks of the curve within a given range of ω_{f} will be dependent on the taxiing velocity V.

The peaks on the curve will occur when

$$
\begin{aligned}
\cos \frac{d}{V} \cdot \omega_{f}=1 \\
\text { i.e. } \quad \frac{d}{V} \cdot \omega_{f}=n \pi, \quad n=0,2,4,6 \cdots
\end{aligned}
$$

The troughs on the curve will oocur when

$$
\cos \frac{\alpha}{\vec{V}} \cdot \omega_{\mathrm{f}}=1
$$

i.e.

$$
\begin{equation*}
\frac{d}{V} \cdot \omega_{\mathrm{P}}=n \pi, \quad n=1,3,5,7 \ldots \tag{4-39}
\end{equation*}
$$

It may reasonably be deduced from figure 4.15 that when the rms values of response, computed from equation (4-36) for a range of taxijng velocities, are plotted against taxiing velocity, local maxima will occur at velocities at which a peak of figure 4.15(b) coincides in frequency with the peak of figure 4.15(a), and that locol minima will occur at velocities at which a trough of (b) coincides in frequency with the peak of (a). It is therefore reouired to find the value of ω_{f} at which $f\left(\omega_{f}\right)$ is a maximum, where

$$
f\left(\omega_{f}\right)=\frac{K^{2}+\left(c \omega_{f}\right)^{2}}{\left(K-M \omega_{f}^{2}\right)^{2}+\left(C \omega_{f}\right)^{2}}
$$

Now $f\left(\omega_{f}\right)$ will be a maximum when $\frac{\partial f}{\partial u_{f}}=0$.

$$
\text { If } f=\frac{A}{B} \text { then } \frac{\partial f}{\partial \omega_{f}}=\frac{B \partial_{A}}{\partial \omega_{f}}-A \frac{\partial B}{\partial \omega_{f}}
$$

Thus, f will be a maximum when

$$
B \frac{\partial A}{\partial \omega_{f}}=A \frac{\partial B}{\partial \omega_{P}}
$$

where

$$
\begin{aligned}
& A=K^{2}+C^{2} \omega_{f}^{2} \\
& B=K^{2}-2 K U \omega_{f}^{2}+u^{2} \omega_{f}^{4}+C^{2} \omega_{f}^{2}
\end{aligned}
$$

ie. for maximum $f\left(\omega_{f}\right)$,

$$
\begin{aligned}
\left(K^{2}-2 K A \omega_{f}^{2}\right. & \left.+\mathbb{M}^{2} \omega_{f}^{4}+C^{2} \omega_{f}^{2}\right)\left(2 C^{2} \omega_{f}\right) \\
& =\left(K^{2}+C^{2} \omega_{f}^{2}\right)\left(-4 K N \omega_{f}+4 d^{2} \omega_{f}^{3}+2 C^{2} \omega_{f}\right)
\end{aligned}
$$

$$
2 C^{2} K^{2} \omega_{f}-40^{2} K \operatorname{Hil} \omega_{f}^{3}+2 c^{2} m^{2} \omega_{f}^{5}+2 c^{4} \omega_{f}{ }^{3}
$$

$$
=-4 K^{3} M \omega_{f}+4 K^{2} M^{2} \omega_{f}^{3}+2 C^{2} K^{2} \omega_{f}-4 C^{2} K M \omega_{f}^{3}
$$

$$
+4 c^{2} M^{2} \omega_{f}{ }^{5}+2 c^{1} \omega_{f} 3
$$

i.e. $\quad 2 C^{2} M^{2} \omega_{f} 5+4 \pi^{2} M^{2} \omega_{f}^{3}-4 \pi^{3} H \omega_{f}=0$
from which

$$
\omega_{f}=0
$$

or $\quad C^{2} M \omega_{f}^{4}+2 K^{2} w \omega_{f}^{2}-2 K^{3}=0$

$$
\text { i.e. } \begin{aligned}
\omega_{f}^{2} & =\frac{-2 K^{2} M \pm \sqrt{4 K^{4} M^{2}+8 K^{3} C^{2} M}}{2 C^{2} M} \\
& =-\left(\frac{K}{C}\right)^{2} \pm \sqrt{\left(\frac{K}{C}\right)^{4}+2\left(\frac{K^{4}}{C}\right)^{4} \frac{c^{2}}{K M}}
\end{aligned}
$$

Taking the positive root,

$$
\begin{equation*}
\omega_{1,2}=\left(\frac{K}{C}\right)^{2}\left(\sqrt{I+\frac{2 C^{2}}{k M}}-1\right) \tag{4-40}
\end{equation*}
$$

where K and C are given by equations (4-29)

Suistituting the values of aircraft parameters used to produce figure 1t. 14 in equation ($4-40$) gives
peak frequenc̈y, $\omega=14.84 \mathrm{rad} / \mathrm{s}$

As a check on this value, if low damping is assumed, it can be said that the peak will occur at approximately the undamped natural frec ency,

$$
\text { i.e. } \begin{aligned}
\omega_{n} & =\sqrt{\frac{K}{1}}=\sqrt{\frac{k_{m}+k_{n}}{H}} \\
& =\sqrt{\frac{2.03 \times 10^{6}+.162 \times 10^{6}}{9912}} \\
& =14.9 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

This indicates that the damping used is very low, which can also be shown from the fact that

$$
\text { Damping ratio, } \begin{aligned}
\beta & =\frac{c}{c_{\text {crit }}}=\frac{c}{2 \sqrt{k A}} \\
& =\frac{12250+970}{2 \sqrt{(2.03+.162) 10^{\circ} \times 9912}} \\
\text { i.e. } \beta & =0.0448
\end{aligned}
$$

Puttin; the above frequency into equation (4-38) and using the wheelbase, d, of 59 feet indicates that local maxima should ocçur at velocities of

$$
140,70,46.6,35,28,23.3,20,17.5 \ldots-. . f t / \mathrm{s}
$$

Similarly, from equation (4-39) local minima should occur at velocities of
$280,93.3,56,40,31.1,25.4,21.6,18.7----f t / \mathrm{s}$

These values are plotted on figure 4.14 and clearly coincide with the peaks and troughs of the undulations on the curve for the higher velocities. In order to demonstrate the
coincidence for the lower velocities it is clear that many computer runs would have had to be done with very small increments in taxiing velocity, and it was not considered that any further value could be gained from this.

It is clear from figure 4.14 that the peaks and troughs are only small undulations on a gradually increasing response. If equation $(4-37)$ is examined further it will be seen that the maximum value of $F\left(\omega_{f}\right)$ is

$$
F\left(\omega_{f}\right)=1-\frac{2 a b}{d^{2}}(1-1)=1
$$

whilst the minimum value is

$$
\begin{aligned}
F\left(\omega_{f}\right) & =1-\frac{2 a b}{d^{2}}(1+1)=1-\frac{4 a b}{d^{2}} \\
& =1-\frac{4(4.33 \times 54.67)}{(59)^{2}}=0.73
\end{aligned}
$$

This, referring to figure 4.15 , the ratio of the values of the peak of the final curve to be integrated for the two cases (i) when the peal of (a) coincides with a peak of (b) and (ii) when the peak of (a) coincides with a trough of (b) will be $1: 0.73$, i.e. a reduction of 27% between maximum and mininum peak values. This of course neglects the effect of curve (c) which will give a steadily increasing value of the peak with V. Since in case (i) some lower values to each side of the peak will be decreased and in case (iij) some lower values to each side of the peak will be increased, the effect will be that the area under the final curve fur case (ii) will be somewhat greater than 73% of that for case (i), and since the rms value of response is a function of the square root of this arca, the rms volue for case (ii) will be sonewhat greater than 85% of that for case (i). This indicates that the graph of
variation of rms value of response with taxiine velocity should show a steadily increasing response on which is superimposed undulations of less than 7% from the mean. Figure 4.14 shows that this is in fact the case.

4.3.2.2 Pitch Response

Referring to figure 4.13 the pitch input, θ_{0}, to the undercarriage system is given by

$$
\begin{equation*}
\theta_{0}=\sin ^{-1}\left(\frac{h_{2}-h_{1}}{d}\right) \tag{4-41}
\end{equation*}
$$

Since ($h_{2}-h_{1}$) is very small compared with d it may be said that

$$
\begin{equation*}
\theta_{0}=\frac{h_{2}-h_{I}}{d} \tag{4-42}
\end{equation*}
$$

Substifuting for h_{2} and h_{1} from equations (4-3) and (4-4) gives

$$
\begin{equation*}
\theta_{0}=\frac{e}{d}^{i \omega_{f} t}(1-\cos \phi-i \sin \phi) \tag{4-43}
\end{equation*}
$$

The equation of notion for the uncoupled pitch notion is

$$
\left.\begin{array}{r}
I \ddot{\theta}+b^{2} C_{n}\left(\dot{\theta}-\dot{\theta}_{0}\right)+a^{2} C_{m}\left(\dot{\theta}-\dot{\theta}_{0}\right)+b^{2} k_{n}\left(\theta-\theta_{0}\right) \\
+a^{2} k_{m}\left(\theta-\theta_{0}\right)=0 \\
\text { i.e. } I \ddot{\theta}+c_{e} \dot{\theta}+K_{e} \theta=c_{e} \dot{\theta}_{0}+K_{e} \theta_{0} \\
\text { where } c_{e}=b^{2} c_{n}+a^{2} c_{m} \\
K_{e}=b^{2 k_{n}}+a^{2} k_{m} \tag{4-45}
\end{array}\right\}
$$

Equation (4-30) applies to the pitch case if x is replaced by θ and h by the angilar input, θ_{0}, to the undercarriage system. Procceding from this equation,

$$
\begin{equation*}
\left|I(i \omega)_{\frac{\theta}{\theta_{0}}}\right|=\frac{1}{\sqrt{\left(K_{e}-I{\omega_{f}^{2}}^{2}\right)^{2}+\left(C_{e} \omega_{f}\right)^{2}}} \tag{4-46}
\end{equation*}
$$

and

$$
\begin{aligned}
H(i \omega)_{\frac{\theta_{0}}{r}} & =\frac{C_{e} \dot{\theta}_{0}+K_{e} \theta_{0}}{e^{i \omega_{2} t}} \\
& =\frac{I}{d}\left(i \omega_{f} C_{e}(I-\cos \phi-i \sin \phi)+K_{e}(I-\cos \phi-i \sin \phi)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{d}\left(\left(K_{e}+i \omega_{f} C_{e}\right)(1-\cos \phi-i \sin \phi)\right) \\
& \therefore\left|H(i \omega)_{\frac{\theta_{0}}{r}}\right|=\frac{I}{d} \sqrt{\left(K_{e}^{2}+\left(c_{e} \omega_{f}\right)^{2}\right)\left((I-\cos \phi)^{2}+(\sin \phi)^{2}\right)} \\
& =\frac{7}{d} \sqrt{\left(K_{e}^{2}+\left(c \omega_{e}\right)^{2}\right)\left(1-2 \cos \phi+\cos ^{2} \phi+\sin ^{2} \phi\right)} \\
& =\frac{\sqrt{2}}{d} \sqrt{\left(K_{e}^{2}+\left(c_{e} \omega_{f}\right)^{2}\right)(1-\cos \phi)} \quad(4-47) \\
& \text { Chus } \\
& |H(i \omega)| \frac{\theta}{r} \left\lvert\,=\sqrt{\frac{2}{d}} \sqrt{\frac{K e^{2}+\left(C_{C} \omega_{f}\right)^{2}}{\left(K_{e}-I \omega_{f}^{2}\right)^{2}+\left(c_{e} \omega_{f}\right)^{2}} \cdot \sqrt{(1-\cos \phi)} \quad(4-48), ~(4)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hence, in the same way as the heavecase, } \\
& \ddot{\theta}^{2}=\int_{\omega_{f 1}}^{\omega_{f 2}} \frac{2}{\dot{d}^{2}}\left(\frac{K_{n}^{2}+\left(c_{c} \omega_{f}\right)^{2}}{\left(K_{e}-I \omega_{f}^{2}\right)^{2}+\left(c_{e} \omega_{f}\right)^{2}}\right)\left(1-\cos \frac{\left.d \cdot \omega_{f}\right)\left(\frac{c^{n} v^{n-1}}{\omega_{f}^{n}} \omega_{f}^{4}\right.}{\omega^{4}}\right) d \omega_{f} \quad(4-49)
\end{aligned}
$$

A computer program (PITCH RESPONSE 6) was written to compute the root-meen-square value of response from equation (4-49) (see sub-section 4.2.2 and Appendix G). The angular response was computed, and from this the linear response at the mainwheel, nosewheel, and pilot locations. The program was run for a range of texiing velocities using the same aircraft parameter's and runway profile PSD as for the heave case. The results for the pilot location are shown on figure 4.16. Very pronounced undulations are apparent on this curve, which indicates that it is the pitch motion that is responsible for the peaks on the curves of response v. texiing velocity (figures 4.9 to 4.12). Equation (4-49) is examined in the same way as the heave equation was examined.

Figure 4.17 shows the parts of equation (4-49) except for the term $2 / d^{2}$ which is a constant for a given aircraft configuration.

The curve of interest is again curve (b) which is a sinusoidal wave given by

$$
\begin{equation*}
F\left(\omega_{\rho}\right)=1-\cos \frac{\alpha}{\vec{V}} \cdot \omega_{f} \tag{4-50}
\end{equation*}
$$

The number of peaks of the curve within a given range of ω_{f} is again dependent on the taxiing velocity V, but this time the peaks on the curve will occur when

$$
\begin{align*}
\cos \frac{d u_{f}}{V} & =-1 \\
\text { i.e. } \quad \frac{d}{V} u_{f} & =n \pi, \quad n=1,3,5,7 \ldots \tag{4-5l}
\end{align*}
$$

and the troughs will occur when

$$
\begin{aligned}
\cos \frac{d}{V} \omega_{f} & =I \\
\text { i.e. } \quad \frac{d \omega_{f}}{V} & =n \pi, \quad n=0,2,4,6 \ldots
\end{aligned}
$$

Referring to figure 4.17 , it is again required to find the frequency at which the peak occurs on (a). Equation (4-40) may be used for the pitch case if K, C and M are replaced by K_{e}, C_{e} and I respectively. However, the damping is again low, since

$$
\begin{aligned}
\beta=\frac{C_{e}}{2 \sqrt{K_{e}}} & =\frac{(4.33)^{2} .12250+(54.67)^{2} .970}{2 \sqrt{\left((4.33)^{2} \times 2.03 \times 10^{6}+(54.66)^{2} \times 162000\right) 5.325 \times 10^{6}}} \\
& =0.0295
\end{aligned}
$$

Hence it can be said that the peak occurs at the undamped natural frequency given by

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{Q}}{I}}=\sqrt{\frac{(4.33)^{2} \times 2.03 \times 10^{6}+(54.667)^{2} \times 162000}{5.375 \times 10^{2}}} \\
& =9.86 \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

Putting this frequency into equations (4-51) and (4-52)
indicates that local maxima on figure 4.16 should occur at taxiing velocities of

185, 61.5, 37, 26.4, 20.5, 16.8 ---- ft / s
and local minima should occur at
$92.5,46.4,30.9,23.2,18.5,15.5 \ldots \mathrm{ft} / \mathrm{s}$
These values are plotted on figure 4.16 and clearly coincide with the peaks and troughs of the undulations on the curve for the higher velocities except that there is not a local maxinum at the highest taxiing velocity of $185 \mathrm{ft} / \mathrm{s}$. The form of the curve has been estimated at the lower taxiing velocities, where the computed pcints were not sufficiently close to show the actual effect, and it will be seen that the computed points do agree with the estimated velocities of peaks and troughs. Again it was considered that no further value could be gained by making the many oomputer runs which would be required to accurately plot the curve at the lower taxiing velocities.

Referring to figure 4.17 it will be seen that without curve (b) the response would gradually increase with increase in taxiing velocity, since the only curve directly dependent on V would be (c) whose magnitudes increase dire:ctly as V (for this particular runway PSD). Hence the rms values of response would increase as $\sqrt{V_{0}}$ Thus, the effect of the coincidence of the peak of (a) with the peaks and troughs of (b) will be to give maximum deviations above and below this steadily increasing curve. A curve is draw on figure 4.16 to represent this. The significance of the velocity of $185 \mathrm{ft} / \mathrm{s}$ may now be seen more clearly. Although it does not
show a local maximum it does give a maximum deviation above the nean line. Referring again to equation (4-50) it will be seen what the mean value of $F\left(u_{f}\right)$ occurs when

$$
\begin{aligned}
\quad \cos \frac{d}{\vec{V}} \cdot \omega_{f} & =0 \\
\text { i.e. } \quad \frac{d}{\bar{V}} \cdot \omega_{f} & =n \pi, \quad n=0.5,1.5,2.5,3.5,4.5--(4-53)
\end{aligned}
$$

giving in this case taxiing velocities of :

$$
370,123.5,74,53,41.2,33.7,28.5---f t / \mathrm{s}
$$

It will be seen that the two curves on figure 4.16 cross at approximately these velocities, although it is thought that this will not be exactly so since curve (a) on figure 4.17 is not symmetrical about the peak. However, the above values indicate that the curves will again cross at a taxiing velooity of approximately $370 \mathrm{ft} / \mathrm{s}$. This is born out by the fact that there should be another local minimum at infinite taxiing velocity, corresponding to $n=0$ in equation (4-52). The explanation of this can be seen by referring to figure 4.17. The final peak at $185 \mathrm{ft} / \mathrm{s}$ occurs when the lst peak of (b) coincides with the peak of (a). Thereafter the value on (b) which coincides with the peak of (a) is a.]ways dećreasing with increase in taxiing velocity. The two curves 0:1 figure 4.16 cross at approximately the taxiing velocjty when the point A on figure $4.17(b)$ coincides with the peak on (a) and after that the two curves on figure 4.16 diverge, the actual curve always decreasing relative to the mean curve.

In the pitch case the peaks and troughs on figure 4.16 are large undulations on the gradually increasing response. Examining equation (4-50) further, it will be seen that the maximum
value of $F\left(\omega_{f}\right)$ is 2 , whilst the minimum value is 0 . In the same way as in the heave case this does not of course mean that the ratio of the areas under the final curves to be integrated will be 2:0. A number of peaks and zeros will occur on the final curve to be integrated, depending on the taxiing velocity. Figure 4.18 shows the final curve to be integrated (i.e. the PSD of the pitch response, the area under which is the mean square value of response acceleration), using aircraft parameters of :

$$
\begin{aligned}
& k_{\mathrm{m}}=2.4 \times 10^{6} \mathrm{Ibf} / \mathrm{ft} \\
& \mathrm{k}_{\mathrm{n}}=187000 \mathrm{Ibf} / \mathrm{ft} \\
& \mathrm{C}_{\mathrm{m}}=6540 \mathrm{Ibs} /(\mathrm{ft} / \mathrm{s}) \\
& \mathrm{C}_{\mathrm{n}}=3438 \mathrm{Ibf} /(\mathrm{ft} / \mathrm{s})
\end{aligned}
$$

The remaining airoraft parameters are as Appendix D. The taxiing velocity used for this figure was $120 \mathrm{ft} / \mathrm{s}$, giving the first peals of $(1-\cos \phi)$ at $6.39 \mathrm{rad} / \mathrm{s}$ and the following zoro at $12.78 \mathrm{rad} / \mathrm{s}$ as marked on the figure. The peak for the aircraft parameter dependent part of the equation (i.e. the natural frequency) was calculated to be at $20.6 \mathrm{rad} / \mathrm{s}$. It can be seen therefore that the effect of $(1-\cos \phi)$ has been to slightly lower the peak, put a value of 'zero at $\omega=12.78 \mathrm{rad} / \mathrm{s}$, and double the values at $\omega=6.39$ and $19.2 \mathrm{rad} / \mathrm{s}$. If the taxiing velocity had been such that ($I-\cos \phi$) $=0$ at $\omega=10.6 \mathrm{rad} / \mathrm{s}$ the curve would have looled completely dieferent.

Figure 4.19 is plotied for the same parameters as figure 4.18, but um:ng a taxiing velcoity of $10 \mathrm{ft} / \mathrm{s}$ thus giving many peaks and zeros on the $(1-\cos \phi)$ cusve which clearly show through on the final curve. This time there is a zero very near to the natural frequency of $10.6 \mathrm{rad} / \mathrm{s}$.

Figure 4.20 shows the PSD of the pitch response using the aircraft parmeters derived from reference 37 (i.e. corresponding to figure 4.16) for a velocity of $10 \mathrm{ft} / \mathrm{s}$. The natural frequency in pitch using these parameters was $9.86 \mathrm{rad} / \mathrm{s}$. It can be seen that the peak nearest to this value is very high compared vith the other peaks, indicating that the aircraft parameter dependent part of the equation had a high narrow peak, and thus the pitch motion has very low damping. This is also verified by the fact that the height of the main peak is almost 20 times the height of those on figure 4.19.

It has already been stated that the value of nose undercarriage damping of $970 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})$ is felt to be unrealistcally low. Even the values of damping used for figures 4.18 and 4.19 are very low, being half of those originally calculated for the Boeing 707 'Appendix D) and only approximately a quarter of the values calc:lated in Appendix C. Referring to the calculation of pitch dampi ig ratio above, it will be seen that even though the nose undercarriage dimping is m uch smaller than the main undercarriage damping it has by far the overriding effect on the pitch damping, since the oleo damping constants are multiplied by the square of their distance from the cg of the aircraft in the calculation of pitch damping. Thus, halving or doubling the main undercarriage damping will have little effect, on the pitch damping, but halving or doubling the nose oleo damping will almost, halve or double the pitoh damping. Thus an increase from 970 to $3438 \mathrm{lbf} /(\mathrm{ft} / \mathrm{s})$ as between figures 4.20 and 4.19 will give almost 4 times the damping in pitch.

It is worth pointing out here that figures 4.18, 4.19
and 4.20 are good examples of why it is necessary to use an integrating technique which varies the step length along the ω axis to give short steps at "peaky"positions (see Appendix E). The integration limits used for the segments in this case were the peaks and troughs of ($1-\cos \phi$), and the undamped natural frequency.

4.3.2.3 Overall Rigid Body Response

The results of the foregoing two sub-sections may now be used to riscuss and explain more fully the shape of the curves of aircraft response v. taxiing velocity (figures 4.9 to 4.12). Comparing figures 4.10 (b) and 4.16 it will first of all be seen that the peaks occur at different taxiing velocities on the two graphs. This is easily explained (see below). However, it is also evident that in general, at the pilot location, the response due to uncoupled pitch alone is ercater thon the response due to combined heave and pitch. Thus it appears that the heave motion has the effect of damping the pitch motion in this airoraft even when the notions are uncoupled. It would appear that the heave and pitch motions must be out of phase at the pilot location (and therefore also at the nosewheel), so that the heave motion actually reduces the response. However, it must be remembered that the analysis for ficure $4.10(\mathrm{~b})$ included undercarriage masses and tyre stiffness and damping which probably filtered some of the runway roughness, particularly at the shorter wavelengths, thus reducing the response.

[^0]has little effect, the response at the mainwheels due to pitch being only $7 \frac{1}{2} \%$ of that at the pilot location. Thus the response at the mainwheel location in figure $4.10(\mathrm{~b})$ is very similar to the heave response in figure 4.14, except again for the difference in taxiing velocities at which the peaks occur.

In the course of the computations made to produce figure 4.10(b) the eigenvalues were computed for the aircraft parameters under consideration. They were found to be as follows:

Nose u/c mode: $-42.15 \pm$ i 137.4
$14 \sin u / o$ mode: $-48.92 \pm$ i 146.7
Heave rode: $\quad-0.1012 \pm$ i 8.933
Pitch mode: $\quad-0.0458 \pm$ i 5.926
From these the modal damping for the nose undercarriage is 0.31 and for the main undercarriage is 0.33 . Thus the nose undercarriage damping is very low compared with the considerable overdamping produced by the standard aircraft parameters from Appendix D (see sub-section 4.3.1).

It will be seen that the frequencies for the heave and pitch modes are $8.93 \mathrm{rad} / \mathrm{s}$ and $5.93 \mathrm{rad} / \mathrm{s}$ respectively. These should be compared with the $14.9 \mathrm{rad} / \mathrm{s}$ and $9.86 \mathrm{rad} / \mathrm{s}$ calculated in sub-sections 4.3.2.1 and 4.3.2.2 for the uncoupled cases; they explain why the peaks on the curves of figure $4.10(b)$ occur at different taxiing velocities to those on figure 4.16. The reason for the reduction in frequencies is that underearriage masses and tyre stiff'ness and damping were uscd for the overall rigid body response case. The reduced frequencies are almost identical to those stated in reference 37, although this reference used no undercarriage masses or tyre
damping. Thus these had no effect on the frequency, as would be expected since the masses were very small and the damping extremely lov. Hence the oleos and tyres were effectively springs in series, giving a lower stiffness and thus a lower natural frequency. This helps to explain the fact that the response at the pilot location for pitch only (without tyres and hence vith higher natural frequency) was higher than that for overall rigid body modes.

The values of taxiing velocity at which the peaks and troughs occur on the 'pitch and heave response curves, from these reduced frequencies, are

Pitch

Peaks : 111.1, 37.1, 22.3, 15.9, 12.4 --- ft/s
Troughs : 55.5, 27.8, 18.5, 13.9, 11.1..... ft/s
Henve
Pcaks : $84,42,28,21,16.8 \ldots \mathrm{ft} / \mathrm{s}$
Troughs: 168, 56, 33.6, 24, 18.7 .-- ft/s
The values of taxiing velocity for the pitch case confirm those found in reference 37. However, this reference discussed only the peaks on the curve for the pilot location, making no attempt to produce similar results for heave or to relate the admittedly small peaks on the mainwhecl response curve. It also stated that the expected peak at $111 \mathrm{ft} / \mathrm{s}$ was absent or not noticeable. It will be shown below however that the peak at $111 \mathrm{ft} / \mathrm{s}$ can be explained and is indeed apparent on the response curve.

Referring to figure 4.10(b) it will be seen that the peaks and troughs on the pilot location response curve coincide
extremely weli with the velocities calculated above for pitch, and those on the mainwheel location curve with those calculated for heave. This suggests, as would be expected, that the response at the pilot location comes predominantly from pitch, and that at the mainwheel location predominantly from heave. The points on the curves at low velocities were not computed sufficiently closely to give the true shape of the curves, and it was felt that no useful purpose would be served by going back and computing more points, since the shape of the curves is now explained and understood.

It was shown in sub-section 4.3 .2 .2 that the peaks and troughs on these response curves are not strictly local maxima or minima, although this is what they constitute at medium and low velocities where they are relatively close'together, but are maximum deviations above and below a steadily increasing response curve. In the same way as in that section, it can be shown that for the pitch case the mean steadily increasing curve would cross the actual curve at taxiing velocities of approximately:

$$
222,74,44.4,32,24.6 \ldots \ldots \mathrm{ft} / \mathrm{s}
$$

Such a curve is dram on the pilot location response surve on figure $4.10(\mathrm{~b})$, and it can be seen that although the taxiing velocity of $131 \mathrm{ft} / \mathrm{s}$ does not show a local maximum it does fairly clearly show a point of maximum deviation of the curve from this mean line.

It has already been shown that the reduction of the mean rate of increase of response with increase of taxiing velocity at the higher taxiing velocities is a function of the runway profile used. This may be verificd by inspecting equation (2-5), i.e. the

PSD of input from the runway, given by

$$
\Phi(\omega)=\frac{\overline{\mathrm{G}} \cdot \mathrm{~V}^{\mathrm{n}-1}}{\omega^{\mathrm{n}}}
$$

Neglecting the undulations caused by the (1-cos ϕ) terms on figures 4.15 and 4.17 the response PSD is proportional to the input PSD, and hence the ras value of the response is proportional to the square root of the input PSD. Thus, rms value of response acceleration, σ, is given by

$$
\begin{array}{r}
\sigma \propto \sqrt{v^{n-1}} \\
\text { i.e. } \sigma \text { or } \sqrt{\frac{n-1}{2}} \\
\therefore \frac{\partial \sigma}{\partial v} \propto \frac{n-1 . v^{\frac{n-3}{2}}}{}
\end{array}
$$

Hence, if n i: less than 3, then as $V \rightarrow \infty, \frac{\partial \sigma}{\partial V} \rightarrow 0$ as shown in the following figure.

In particular, if $n=2$, the case used for figure 4.10, then:

$$
\frac{\partial \sigma}{\partial V} \propto \frac{1}{\sqrt{V}}
$$

and the slope of the curve of response against taxing velocity will aproach zero at lower taxiing velocities than if n is equal to say 2.5. This may be clearly seen by comparing figures 4.10(b) and 4.11. The fact that the slope on these curves for the mainwheel location is actually increasing at the high velocities is of course due to the influence of the $(1-\cos \phi)$ term.

The peaks and troughs on the curves on figure 4.11 occur at the same taxiing velocities as those on figure 4.10 , the same aircraft parameters having been used in both cases.

Similarly, the peaks and troughs on the curves on figures 4.9 and 4.22 ocour at the same taxiing velocities, the stendard aircraft paraneters from Appendix D having been used for both figures. The eigenvalues calculated during computations for these curves are as show in table 4.3 for the case when rigid body modes only wers considered. From these the pitch and heave frequencies are $6.012 \mathrm{rad} / \mathrm{s}$ and $8.073 \mathrm{rad} / \mathrm{s}$. respectively, giving taxiing velocities at which peaks and troughs should occur on the response curves as follows:

Pitch
Peaks : $113,37.6,22.6,16.1,12.6 \ldots-1 \mathrm{f} / \mathrm{s}$
Troughs : $56.5,28.2,18.8,14.1,11.3-\cdots \mathrm{ft} / \mathrm{s}$

Heove

Peaks : 7i.8, 37.9, 25.3, 19.0, $15.2 \ldots \mathrm{ft} / \mathrm{s}$
Iroughs : $151.6,50.5,30.3,21.7,16.8$--- ft/s
Examination of figures 4.9 and 4.12 reveals that the peaks and troughs on the curves of pilot location response and mainwheel response occur at velocities very close to those given above for pitch and heave respectively. Although the velocities calculated above are still an extremely good approximation to the velocities at which the peaks and troughs occur on the actual curves, they do not appear to be quite so good as were the ones for figures 4.10 and 4.11. This may be due to coupling between the modes leading to slight modification of the curves; it will be remembered that the aircraft
parameters from reference 37, used to produce figures 4.10 and 4.11, were chosen to produce uncoupled heave and pitch. However the correlation is so close that the method is extremely valuable in predicting velocities at which these peaks occur.

It is also important to note that since the velocities at which these peaks occur are dependent only on the frequencies of the modes of the aircrant and the aircraft wheel base, they are independent of the surface on which the aircraft is taxiing, only the magnitude of the response at these peaks being dependent on the runway surface. Thas, taxiing velocities may be calculated which should be avoided on all surfaces in order to minimise response acceleration, and thus crew and passenger discomfort and pilot fatigue. However, since the velocities at which minimum response occurs are different for the pilot and mainwheel locations, calculation of an optimum taxiing velocity will have to take into account the jmportance of the position on the aircraft. For a take-off or landing run of course all these velooities must be passed through in any case.

Using the aircraft parameters from table 4.3 the following damping ratios are calculated for the uncoupled heave and pitch modes:

Heave: $\beta=0.0881$
Pitch: $\beta=0.2579$
From the eigenvalues in the table, for the case when flexural modes are neglected, the damping ratios for the coupled heave and pitch modes are

Heave: $\beta=0.0463$
Pitch: $\beta=0.1199$

Similarly, although the aircraft parameters from reference 37 were chosen to produce uncoupled heave and pitch, it has been shown that when the pitch and heave responses are calculated separately the lamping ratios are

Heave: $\beta=0.0448$
Pitch: $\beta=0.0295$
Howevtr, when the same parameters are used in the overall response progrem, as vas done to produce fingures $4.10(\mathrm{~b})$ and 4.11, the damping ratios are found to be

> Heave: $\beta=0.0114$
> Pitch: $\beta=0.0077$

Thus, for a given set of parameters, coupling tends to lower the modal damping substantially.

As an added check on the accuracy of results obtained from the main response program, an attempt was made to duplicate figures obtained in reference 13. In the reference a computer program nas presented to produce the time history of response acceleration by a deteruinistic method of an aircraft taxiing on a given runway profile. From time histories of the response of a Boeing 707 toxiing on Runway 12,' Langley Field, the root-mean-square response accelerations shom in table 4.4(a) were calculated. The profile and PSD curves of this runway are presented in reference 28; the PSD curve is reproduced here as figure 4.21 for reference. A single straight line approximation to the PSD was made (line (1) on the figure) and the PSD found to be given by

$$
\begin{equation*}
\Phi(\omega)=\frac{15 \times 10^{-6 V^{1} \cdot 31}}{\omega^{2.31}} \tag{4-54}
\end{equation*}
$$

This value was used in the main response program in conjunction with the standard aircraft parameters from Appendix D, using rigid body modes only and a taxiing velocity of $100 \mathrm{ft} / \mathrm{s}$. It produced rms values of response accelerations at the pilot and mainwheel locations of $8.312 \mathrm{ft} / \mathrm{s}^{2}$ and $4.598 \mathrm{ft} / \mathrm{s}^{2}$ respectively. On inspection of the intermediate computer printout, however, it was found that most of the response occurred between frequency values of $\omega=5$ to $10 \mathrm{rad} / \mathrm{s}(\Omega=0.05$ to $0.1 \mathrm{rad} / \mathrm{ft}$ at $100 \mathrm{ft} / \mathrm{s})$, and since the estimated PSD is not a very good fit to the actual PSD curve between these values (figure 4.21) the above response values underestimatel the actual response. A better approximation was therefore $d r y m$ to the curve between these frequency values (line (2)) and produced a PSD of

$$
\begin{equation*}
\Phi(\omega)=\frac{4.5 \times 10^{-6} 2.0}{\omega^{3.0}} \tag{4-55}
\end{equation*}
$$

This was used in the program with the same aircraft parameters and produced rms values of response acceleration at the pilot and mainwheel location of 21.231 and $6.023 \mathrm{ft} / \mathrm{s}^{2}$ respectively. These are obviously considerably higher than the values calculated in the reference. However, it has already been stated that the values of equivalent linear damping show in Appendix D are low, and more realistic figures are those calculated in Appendix C. The program Was therefore run a third time using the aircraft parameters of Appendix C, the runway profile given by equation (4-55), rigid body modes only, and a taxiing velocity of $100 \mathrm{ft} / \mathrm{s}$. It was also run using rigid body modes plus the first 6 flexural modes. However, since in this case response was expected up to frequencies of $35 \mathrm{rad} / \mathrm{s}(\Omega=0.35 \mathrm{rad} / \mathrm{ft})$ or more, and since at the higher frequencies equation (4-55) underestimates the roughness of runway

12, a further line was dram in the figure (line (3)), and lines (2) and (3) used as the PSD so that at frequencies below $\Omega=0.22 \mathrm{rad} / \mathrm{ft}$ $(\omega=22 \mathrm{rad} / \mathrm{s})$ the PSD was given by equation (4-55) and at frequencies above this the PSD was given by

$$
\begin{equation*}
\Phi(\omega)=\frac{16 \times 10^{-6} V^{1.04}}{\omega^{2.04}} \tag{4-56}
\end{equation*}
$$

These latter two computer runs resulted in the root-mean-square values of response acceleration shown in table 4.4 (b).

It will be seen from the table that the values are all gre:ter than the values taken from the reference. One reason for this: can be seen by referring to figure 4.21. At frequencies belom $\Omega=0.05 \mathrm{rad} / \mathrm{ft}(\omega=5 \mathrm{rad} / \mathrm{s})$ Iine (2) overestimates the runway routhness. However, this only gives a small error, since, even if all the area under the responsc PSD curve is removed, the values for the pilot location and mainwheel location when 6 flexural modes are considered are 8.2 and $6.05 \mathrm{ft} / \mathrm{s}^{2}$ respectively, and the respective values when only rigid body modes aro considered aro 8.35 and $4.53 \mathrm{ft} / \mathrm{s}^{2}$.

The closestcorrelation between values in tables 4.4(a) and (b) is the response at the pilot location for the case when 6 flexural modes are considered. Here the difference in values is only 5%; less if allowance is made for the overestimate discussed abore. The values calculated here for response at the mainwhecl location do not of course correspond directly with the value from the reference for the cg position since the mainwheel response will contain a contribution from the pitch mode. If this is taken into account the mainwheel location responses should be slightly reduced if they are to be compared with of responses, though this will not be sufficient to reduce the value in table 4.4(b), for the
case when 6 fiexural modes are considered, to its respeotive value in table 4.4(a). However, this value in table 4.4(a) was calculated in reference 13 simply by using the generalised co-ordinate in the heave mode for the case when 6 flexural modes were considered, no contribution at all being included from the flexural modes, it apparently being assumed that the mode shape values at the ceb were zero. It is therefore felt that this result is of little value, and indeed cannot even be used as the cg response for the case when only rigid body modes are considered, since it has been shom in sub-section 4.3.1 that if the flexural modes are neglected, the responsc in the heave mode is considerably modified.

The value calculated here for the response at the pilot location, using rigid body modes only, is considerably higher than its corresponding value from the reforence.

Perhaps the major fact which emorges from the above discussion is that if PSD methods are to be used with equivalent linear aircraft parameters to calcubte responses, then the equivalent linear parameters and the PSD values for the runway must be chosen very carefully.

If the values from table $4.4(\mathrm{~b})$ are compared with those for $120 \mathrm{ft} / \mathrm{s}$ and $80 \mathrm{ft} / \mathrm{s}$ for the corresponding cases on figures 4.2 and 4.3 , it will be seen that whilst all the values in the table are lower due to the increased damping, the trends between the two cases are very similar. However, whilst the damping has had the effect, in the case where rigid body modes only are considered, of decreasing the response at all positions by the same proportion, this is not quite so
for the case where 6 flexural modes mere considered. Here comparison shows that the value of pilot location response in the table is relatively lower and the value of mainwheel response relatively higher than in the figure. In other words the increase in daming has had the effect of reducing the relative difference between the calculated volues of response at different points on the aircraft.

It is of interest to comparo the computer times required to produce the values discussed above. Reference 13 used an IBM 7090 digital computer. The times required to compute the time history of the generalized co-ordinates of the system, their first and second derivatives, the tyre forces of the mainwheels and nosewheel, the peak, mean and mean-square values of all these and of the displacement, velocity, and acceleration at the pilot c mpartment, : 0 or tho Booing 707 aircraft operating at a constant taxiing velocity of $100 \mathrm{ft} / \mathrm{s}$, wero approximately 32 minutes for the case when 6 flexural modes were included and 10.5 minutes when only rigid body motion was considered. The times taken to compute the corresponding rms values of response acceleration at mainwheel, nosewheel, and pilot location for this report, using the Elliot 4120 computer were, exclusive of compiling time, approximately 78 minutes for the case when 6 flexural modes wore included and 4.3 minutes when only rigid body modes vero considered. It should be pointed out that in the latter case, although only ras response accelerations were computed, the coupled values of the generalised co-ordinates of the syster were computed in the process, and thus it would have involved very little more computer time tocompute the
mean-square values of the co-ordinates and their first and second derivatives.

Investigation showed that the speed of operation of the IBM 7090 is 0.44 times the speed of "Atlas", and the speed of the Elliot 4120 is 0.06 times that of "Atlas". Thus the speed of operation of the IBM 7090 is 7.33 times that of the Elliot 4120. In order to compare the program times, therefore; one should consider the times for both programs to be run on the same computer. Using the IBM 7090 computer the programs developed here, using the values used for table $4.4(b)$, would require timos of approximately 10.6 minutes and 35 scconds for the two cases, compared with 32 minutes and 10.5 minutes for the programs in reference 13 . This assumes the times in the reference did not include compiling tine.

It will thus be seen that the programs developed here give volues of response using very much less computing time thon the programs in reforence 23. The profroms used horo of course use a more simple model of the aircraft, and thus the values obtained are probably not so accurate as the values in reference 13. However, for purposes of comparison of different aircraft, investigation of the effects of changes of aircraft or runway parameters, or optimisation of aircraft parameters, these programs should be of value since they show the same trends as much more computer-time consuming programs.

4.3.3 Variation of response with undercarriage stiffnesses.

The rms values of response acceleration at the mainwheels, nosewheel, ani pilot location, for a range of main and nose undercarriage oleo stiffnesses, were computed using the same earlier version of the main response program RESPONSE 12 as that used in early computations of variation of response with taxiing velocity. The carpet plots of response acceleration against main and nose oleo stiffnesses shored a considerable amount of undulation (see figures El and F 2 - Appendix \mathbb{B}). Attempts to explain the undulations led to the conclusion that they were not caused by any physical characteristics of the aircraft or runway systern, but by lack of accuracy in the integration method used in the calculation of area under the response PSD curves. The cause of these undulations and the development of the response program to overcome this problem are discussed in Appendix E . Tho results discussed in this section were obtained using the later more sophisticated response program thus developed.

Figures 4.22 and 4.23 show carpet plots of variation of response acceleration, at the main undercarriage and pilot locations respectively, with variation of main and nose oleo stiffnesses, for a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$, the remaining data being as Appendix D, i.e. based on a Boeing 707 aircraft and a geometric mean runway. Rigid body modes only were used in computation of values for these \therefore figures as they are for the remainder of this section. The range of stiffnesses investigated was from half to twice the values shown in Appendix D. The general trends shown by these figures are that the response at the mainwheel location increases with increase in
main oleo stiffness, but is little affected by changes in nose oleo stifiness, whilst the response at the pilot location increases with increase in either main or nose oleo stiffness. There is some slicht undulation on the mainwheel location response curve at low main oleo stiffnesses and high nose oleo stiffnesses, which results in a minimum response valuc at a main oleo stiffness of $0.6 \times 10^{6} \mathrm{lbf} / \mathrm{ft}$ and a nose oleo stiffness of about $80000 \mathrm{lbf} / \mathrm{ft}$, although this minimum response is only very little less than the response at the minimum oleo stiffnesses used, i.e. $k_{m}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}$, $k_{n}=46800 \mathrm{lbf} / \mathrm{ft}$. She minimum response at the pilot location in fact very clearly occurs at these minimum oleo stiffnesses. The response curve for the nose undercarriage location was very similar in shape to that for the pilot location, the values being in general slichtly lower.

The responses at the mainriheel and pilot locations for the linearized stiffnesses calculated for the Boeing 707 (i.e. $\left.k_{m}=1.2 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}, k_{\mathrm{n}}=93600 \mathrm{Ibf} / \mathrm{ft}\right)$ are showm on figures 4.22 and 4.23 by circles. It is clear that the bettor method of decreasing the pilot location response from this value is to reduce the nose oleo stiffness, reductions in main oleo stiffness resulting in a lesser decrease in response. The better method of decreasing the mainwheel location response from this value is to reduce the main oleo stiffness, whilst a smaller decrease in response may be achieved by an increase in nose oleo stiffness.

Figure 4.2.4 showis the PSD of the response acceleration at the mainwheel and pilot locations for the aireraft and runway parameters in Appendix D, and a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$, i.e.
corresponding to the circled points on figures 4.22 and 4.23. The lower frequency peak corresponds to the pitching mode, and the higher frequency to the heaving mode. Clearly, with these parameters, most of the mainwheel location response results from vertical translation, whilst the contributions to the pilot location response from vertical translation and pitching rotation are approximately equal.

Figures 4.25 and 4.26 show the PSD of the response acceleration at the mainwheel and pilot locations for aircraft parameters corresponding to the extreme corrers of figures 4.22 and 4.23. The lower frequency peak corresponds to the pitching node in each case, as may easily be seen by reforring to the eigenvalues plotter in ficure E 4 (Appendix E) . It is clear from figure 4.26 that with hi: h main oleo stiffness and low nose oleo stiffness the heave mode cuntributes almost all the responsc at both mainwheel and pilot locations, whilst with low main oleo stiffness and high nose oleo stiffness almost all the response at the mainwheel location and most of that at the pilot location comes fron the pitch contribution. Figure 4.25 indicates that when botin main and nose oleo stiffnesses are either low or high most of the mainwhcel location response is contributed $b y$ the heave mode, whilst for the pilot location response a significant contribution is also made by the pitch mode.

Although the 4 sets of curves in figures 4.25 and 4.26 have been drawn to different scales because of their great variations in height, it is clear from examination of the heights and bandwidths that reducing the oleo stiffness has the ef'fect of
increasing the damping in the modes, the nose oleo stiffness having by jar the greatest effect on the pitch mode, and the main oleo stifiness the greatest effect on the heave mode.

Figure 4.27 shows the variation of response acceleration with main and nose oleo stif'fnesses for the same parameters as figures 4.22 and 4.23 except that the main and nose oleo damping has been doubied. The outer curves only of the carpet plots have been drawn, but it is clear that the trends are very similar to those in figures 4.22 and 4.23. However, in general the responses are significantly lower due to the increased damping. With the nigher damping the undulations, which appeared on figure 4.22 , are alnost non-existant, ana there is even less variation in mainwheel location response with change in nose oleo stiffness than there was with the Jower damping.

It is of interest to note that with these hinh damping values the order of the heave and pitch frequencies was reversed at very low oleo stiffnesces. Some of the eigenvalues corresponding to points in fiture 4.27 are shown in table 4.5. It was not clear from the computer printout for some of these eigenvalues which were pitch values :ind which were heave values, since the same eigenvalue, either pitch or heave, was not printed out first each time. In order to decide which eigenvalues gave the pitch frequencies and which the heave the eigenvalues were plotted on figure 4.28 . The eigenvalues clearly fall into two separate curves, which by comparison with figure E 4 (Appendix E) may be clearly identified.

4.3. Variation of respense with undercarriage damping

The rms values of response acceleration at the mainwheel, nose कheel, and pilot locations have been computed for a range of main and nose oleo damping constants, using the program RESFONSE 12. The ranee of damping constants considered was from approximately half to twice the values calculated in Appendix D. Again, rigid body modes only have been used for studics in this section.

Figure 4.29 shows this variation in response for the main:hecl and pilot locations at a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$, usin: the date from Appendix D, i.e. based on a Boeing 707 aircraft and : geometric mean runway. The carpet plots in the figure are very "well-behaved", indicating a general trend for the response at both the mainwheel and pilot locations to decrease as either the main or nose oleo darping is increased. The minimum response obtainable over the range of damping considered is that at the highest main and nose oleo damping, i.e. $C_{m}=26000 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$ and $\mathrm{C}_{\mathrm{n}}=14000 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$. Again the response curve for the nose undercarriage location was very similar in shape to that for the pilot location, the values being in general slightly lower.

The responses at the mainwheel and pilot locations for the linearized damping constants calculated in Appendix D (i.e. $C_{m}=13080$ $\left.\mathrm{lbf} / \mathrm{ft} / \mathrm{s}, \mathrm{C}_{\mathrm{n}}=6876 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}\right)$ are shown on the figure by circles. Reductions of 17.5% and 26% in the mainwheel and pilot locetion responses respectively may be obtained by doubling both the main and nose oleo damping constants. However, it will be seen that as the oleo damping is increased the rate of reduction in response gradually
decreases. Hence the trend is the same as that shown by Kirk and Perrer (ref. 38) that a tenfold increase in main oleo damping coeff'icient would be required for the Boeing 707 to decrease the cg acceleration by 58\%. Kirk and Perry's analysis included only main oleo input, no pitching contribution being considered. It will be seen from figure 4.29 that the decrease in rate of reduction in response is even greater for increasing nose oleo damping.

As might be expected, the pilot location response is influenced more by the nose oleo damping than by the main oleo damping, although at high damping constants the effect of nose oleo damping is substantially reduced relative to the effect of main oleo damping. Similarly, the main oleo daming has nore influcnce on the mainwheel location response; at high damping the effect of increase in nose oleo damping is negligible.

It will be seen that as the nose oleo damping is decreased to half the standard value calculated in Appendix D the response, pari icularly at the pilot location, begins to rise quite steeply. Valncs for nose oleo damping constants, from values used in reference, 37 , have been derived in sub-section 4.3 .2 , where it was stated that these values were felt to be unrealistically low, due to the fact that uncoupled heave and pitch modes were assumed. The values were $970 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ and $1830 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$ depending on the method of calculation. It will be seen from the trends on figure 4.29 that either of these values would extend the curves much higher, giving a considerable increase in response, particularly at the pilot compartment. Figure 4.30 shows the PSD of the pilot location response
acceleration using values of $C_{m}=12250 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ and $C_{n}=970 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, togr ther with other values of aircraft and runway parameters derived frow reference 37 (see sub-section 4.3.2), and using a taxijng vel city of $40 \mathrm{ft} / \mathrm{s}$. The effect of the assumption of uncoupled modus can imnediately be seen in the very clearly separated peaks, and the very low nose oleo damping is reflected in the extremely hisin peak of the lower frequency pitch mode. The PSD of mainwheel location response plotted for the same parameters showed an almost identical heave mode peik, but a negligible pitch mode peak. Figure 4.30 shows. further evidence of the importance of the type of integrating procedure, particularly when investigating light damping.

Beariyg in mind the findings of sub-section 4.3 .3 , i.e. that lowering the stiffness of the oleos has the effect of incressing the damping, values for the lower boundarics of the carpet plots o! figure 4.29 were again plotted, this time using half the previous oleo stiffnesses, i.e. $\mathrm{k}_{\mathrm{m}}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}, \mathrm{k}_{\mathrm{n}}=46800$ lbf/ft. The new boundaries are shown in figure 4.31. In general large decreases in response relative to the values in figure 4.29 have been achieved. Again, the minimum response at the pilot location is rith maximum darping constants, i.e. $C_{m}=26000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, $C_{n}=14000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$. However, minimum response at the mainwheel location occurs with damping constants of $C_{m}=26000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, $C_{n}=5000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, although it should be noted that with $\mathrm{C}_{\mathrm{m}}=26000$ $\mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$, variation of C_{n} over the range 3500 to $14000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ makes only about $7 \pi i r$ difference to the response.

The eigenvalues for the cases in figure 4.31 are shown in table 4.6, where it will be seen that, when the nose oleo damping is
high, the frequencies of the pitch and heave modes are very close together. Figure 4.32 shows the PSD of response acceleration at the mainwhecl and pilot location for the highest damping, together with the low stiffnesses. It will be seen that the effect of the frequencies being so close together is to produce only one peak, the frequency of the peak on the pilot location curve, which one would expect to be predominantly pitch, being at a slightly lower frequency than that on the mainmheel location curve, which one would expect to be predominantly heave.

4.3.5 Variation of response with undercarriage position

The rms values of response acceleration at the mainwheel, nosevheel, and pilot locations have been computed for a range of undercarriage positions. The basic runway and aircraft parameters used were those shown in Appendix D, although the undercarriace parameters were varied fyom these basic values in various ways. Rigid body motion only was assumed, and a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$ was used. The range of undercarriage positions investigated in general covered mainwheel to cg distances of 4.33 to 9 feet, the distance between mainwheel and nosewheel positions being kept constant at 59 feet.

Three methods of varying the undercarriage parameters with position were used. Firstly the same linear oleo parameters were assumed for every position, secondly the same non-linear oleo curves were assumed for every position, and finaliy the same natural frequencies for main and nose oleo stiffnesses with their proportion of the aircraft mass were assumed.

4.3.5.1 Same linear undercarriages

The program RESPONSE 12 was used to compute the rms values of the response accelerations, the linearized undercarriage parameters remaining constant, and only the distances of the undercarriages from the cg being varied. Figure 4.33 shows the responses at the mainwheel, nosemheel, and pilot locations. The standard position for the mainwheels on this aircraft is 4.33 feet behind the cg. Thus it will be seen that as the nainwheels are moved aft from this position the response at the mainwheel location increases, and that at the nosewheel and pilot locations decreases. This is coupletely opposite to the findings of Silsby (ref.12) and Kirk (ref.37).

However, it is felt that the assumption of the same linear olco parameters in each case is unrealistic. Clearly as the nainwhecls are moved aft tho mass supportod by then will be reduced, resultine, since the oleo stiffness remains unchanged, in an increase in heave natural frequency, and hence, from sub-section 4.3.3, in an increase in the contribution to the response from the heave mode. Similarly the natural frequency of heave of the nosevheel supported proportion of the mass on the nose oleo stiffness will decrease, resulting in a reduction in pitch natural frequency, and hence a reduction in contribution to the response from the pitch mode. These would result in the effects shom on figure 4.33.

4.3.5.2 Same non-linear undercarriages

The progrem RESPONSE 12 was again used to computr the rms values of the response accelerations, this time the same non-linear
oleo characteristics being used in each case, so that as the undercarriages were moved the linearized characteristics were changcd. The linear tyre characteristics were kept constant at the values shown in Appendix D.

The linearized oleo stiffness and damping were calculated for mainwheel to cg distances of $5,6,7,8$ and 9 feet, as show in Appendix C for a distance of 4.33 feet, using the oleo characteristic curves in figures C2 and C3, except that the final linearized values of damping constant were calculated using energy dissipated in a harmonic motion as shom in Appendix D. The values of stiffness and damping thus obtained were plotted, and smouth curves drawn throuch them, the final values then being taken rom these curves. This helped to overcome any inaccuracies in values due to difficulty in measuring values and slopes from the rather shall characteristic surves, and ensured undercarriace parameters giving smooth transitions from one position to the next. The curves are shown in figure 4.34, the final values of stiffness ond daming used for computations beine show in table 4.7 .

Figure 4.35 shows the responses at the main:theel, nosewheel and pilot'locations. This time, as the mainwherls are moved aft from their standard position, the responses at the nosewheel and pilot locations increase. This agrees with the trenis shown by Silsby and Kirk, the amount of increase at the pilot location, about 88% at the most aft position, agreeing very cilosely with Silsby's. However, the response at the mainwheel at first decreases very slightly as the wheels are moved aft, and then with further movement
begins to increase, the minimum response being when the mainwheels are about 5 feet behind the cg. Although Kirk only showed values at two discrete positions, and Silsby at three, both showed a decrease in ce response, although only a small decrease. This agrees with figure 4.35 for mainwheel to cg distances of 4.33 to 6 feet. Ho:!ever, since both references computed cg response, there was no pitching contribution to this value, whilst there will be a pitching contribution to the mainwheel response on figure 4.35 . Clearly, as the mainwheels are moved aft, the contribution from the ritch mode will increase, since the nosewheel and pilot location responses have increased. Hence, an increase in the mainwheel response at the higher distances is to be expected.

Ar:in, the assumption of the same non-linear oleos is not very realistic. The change in main oleo paraneters will be small, since the proportion of load carricd by the mainwheels does not chence very much, and hence the same undercarriage micht be feasible. However, the proportion of load carried by the nose undercarriage is more than doubled, so that, referring to table 4.7, if the same undercarriage is used, because of the non-linear curve, a five-fold increase in stiffness is produced. This accounts for the large increases in nosewheel and pilot location response. Clearly such a large increase in stiffness is undesirable, and in any case, with such large increases in load, a larger undercarriage would be required, producing changes in other undercarriage parameters.

4.3.5.3 Same natural frequencies

The final method of varying the oleo characteristics with distance from the ce position was to keep constont the natural frequencies calculated from the main and nose oleo stiffnesses and their proportions of the aircraft mass. This time the tyre characteristics and the unsprung masses were also varied.

The equation of motion of a mass on a spring and damper may be written

$$
\begin{equation*}
\ddot{x}+\frac{\dot{c} \dot{x}}{M}+\frac{k x}{M}=P(t) \tag{4-57}
\end{equation*}
$$

It is required to keep the natural frequency ω_{n} constant, so that

$$
\begin{equation*}
\frac{k}{d}=\text { constant } \tag{4-58}
\end{equation*}
$$

and, to maintain similarity in the equation', "

$$
\begin{equation*}
\frac{c}{1 .}=\text { constant } \tag{4-59}
\end{equation*}
$$

Referring to figure 4 (i) the proportion of the weight of the aircraft supported by the mainwheels is given by

$$
\begin{equation*}
W_{1}=\frac{W_{0} b}{d} \tag{4-60}
\end{equation*}
$$

Using subscript o to denote the original aircraft parameters as calculated in Appendix D and n to denote the new parameters at the
new mainwhecl distance, equation (4-58) gives

$$
\frac{k_{10}}{M_{10}}=\frac{k_{1 n}}{M_{1 n}}
$$

and substituting from equation ($4-60$)

$$
\begin{align*}
& \frac{k_{10} \cdot g \cdot d_{0}}{w \cdot b_{0}}=\frac{k_{1 n} \cdot g \cdot d_{n}}{\pi \cdot b_{n}} \\
& \text { i.e. } k_{1 n}=k_{10} \times \frac{b_{n}}{b_{0}} \times \frac{d_{0}}{d_{n}} \tag{4-61}
\end{align*}
$$

Since the distance between the rainwheels and nosewheels remains constant in this analysis, equation (4-61) becomes

$$
\begin{equation*}
k_{1 n}=k_{10} \times \frac{b_{n}}{b_{0}} \tag{4-62}
\end{equation*}
$$

Similarly, it may be show that

$$
c_{1 n}=c_{10} \times \frac{b_{n}}{b_{0}} \quad(4-63)
$$

and that the nose oleo parameters are given by equations of the form

$$
\begin{equation*}
k_{2 n}=k_{20} \times \frac{a_{n}}{a_{0}} \tag{4-64}
\end{equation*}
$$

The program RESPONSE 15 was used to compute the rms values of the response accelerations. This program is based on RESPONSE 12 but incorporates equations of the above form to vary the oleo stiffness end darping, tho tyre stiffness and damping, and the unsprung mass of the main and nose undercarriages.

Figure 4.36 shoms the resporises at the mainwheel, nosewheel and pilot locations. This time the range of undercarriage positions has been increased slightly to cover mainwheel to cg distances of

3 to 9 feet. As the mainwheels are moved forward, from the standard position at 4.33 feet behind the cg , towards the cg , the manwheel and nosewheel location responses increase slightly, whilst the pilot location response remains essentially unchanged. As the moinwheels are moved aft from the standard position the effect is quite similar to that using the same linear undercarriages (figure 4.33), with the slight differences that a dip occurs in the maini,heel location response, giving a minimum value when the meinwheels are located about 5.33 1eet aft of the cg, and the rilot location response only decreas:s by 26% as opposed to the 51\% on figure 4.33 .

This final method of varying the undercarriage characteristics is probably the most realistic, since an increase in lond carried by the undercarriage results "in a proportionate Increase in the characteristics, and in the weight of the undercarria;e. It is also to somo extent the most effective; moving the main undercarriage I foot aft from the standard position results in slight decreases in response at the mainwheel, nosewheel and pilot lucations, whereas with both the other methods, at least one of the xesponses always increases as the undercarriages are moved.

4.3.6. Comments on munvays used

The runway profile used for most of the response studies has been the ffometric mean runway whose parameters are specified in Appendix D, whilst for some comparison purposes a proxile of the form of equation ($4-23$) has been assumed. The PSD's of these profiles are shown in figure 4.37, together with the PSD of the profile of a rough runway reproduced from reference 26. It should
be noted that at frequencies below $\Omega=0.101 \mathrm{rad} / \mathrm{ft}$ the PSD of the geometric mean runway shown overestimates that of the actual geometric mean runway calculated in Section 2, from values obtained from reference 26 , by a factor of about 1.5 , as shown in Appendix D.

Referring to figure 4.37 it will be seen that the geometric mean runway PSD curve is very similar in shape to that of the actual runway, but with Iower values, as would be expected, since the actual runway is one of the roughest runways from reference 26. However, the profile described by equation (4-23), which should describe a rough runway (ref. 20), also has lover values than the actual runway at all frequenties, and very substantially lower at the lower frequencies.
-.
It appears from this, and from similar inspection of all runvay PSD's published in reforence 26 , that the assumption of a "single straight line" PSD curve with a slope of -2 will badly underestimate the roughness at low spacial frequencies. However, it has been show (ref. 21) that many of the published spectra may be in error. The error consists of an overestimate of the PSD at long wavelengths (low spacial frequencies) due to the contaminating effect of very long wavelergths"such as runway grades. Figure 4.38 (reproduced from reference 4) illustrates this error. The circles show the individual values of PSD computed by use of the method which has been used for the computation of many of the published spectra. This method is described in reference 26. The solid line shows the spectrum computed by modilying this method to produce a better estimate of the true spectrum at long wavelenfths.

The effect of the above modification on the actual PSD curve in figure 4.37 would be to reduce the value of the PSD at a wavelength of 160 feet $(\Omega=0.039 \mathrm{rad} / \mathrm{ft})$ thus reducing the slope of the curve at frequencies below that of the next point, $\Omega=0.075$ rad/ft. Hence, a PSD curve with three straight line segments on the \log sceles may be a more realistic approximation. Since the geometric mean runway was derived from the actual curves in reference 26 , it will overestimate the roughness at low frequencies in the same way as the actual curves.

Hence, whilst the "single straight line" PSD with a slope of -2 rrobably underestimates the roughness at long wavelengths, the geometric mean runway described in this thesis probably overestimates i.t.

Referring to figure 4.37 it wili" bë seen that at spacial frequenoies less than $0.1 \mathrm{rad} / \mathrm{ft}$ the geometrio mean rumwy oontains more roughness than the "single straight line" runway produced by equation $(4-23)$. The effect of this may be seen by examining the response of an aircraft at two velocities on the two runways. If it is assum d that frequencies up to 13 radians per second may cxcite resp nse in the aircraft (this has been shown to be reasonable hen rigid body modes only are considered), then at a taxiing sperd of $240 \mathrm{ft} / \mathrm{s}$ spacial frequencies up to only $0.05 \mathrm{rad} / \mathrm{ft}$ will be importent, and thus the geometric mean runway will be considerably rougher over all the important range. Hence the geometric mean junway will produce considerably more response at this speed. However, at a taxiing speed of $20 \mathrm{ft} / \mathrm{s}$ spacial yrequenoies up to $0.65 \mathrm{rad} / \mathrm{ft}$ will be important, and thus the "single
straight line" PSD runway will be rougher over most of the important renge (0.1 to $0.65 \mathrm{rad} / \mathrm{f}^{\prime} \mathrm{t}$). Hence this runway will produce a greater response at a tixiing speed of $20 \mathrm{ft} / \mathrm{s}$. This may be verified by comparing figures 4.9 and 4.12. The same aircreft parameters were used for both figures, 4.9 using the geometric mean runway, and 4.12 using the runway described by equation (4-23). It will be seen that the geometric mean runway produces less response up to about $70 \mathrm{ft} / \mathrm{s}$, but greater response at grecter taxiing velocities, the difference at high taxiing speeds beine considerable.

Since most of this thesis is concerned with comparisons, and the effects of parameter variations, the actual PSD function used is not critical, so long as it is reasonably representative of a proctical runway profilc.

Response in each mode for parameters in Appendix D

Mode		Response ($\mathrm{ft} / \mathrm{s}^{2}$)		
		Mai nwheel Iocation	Nosewheel Location	Pi.lot Location
Rig	body heave	2.2412	2.2412	2.2412
Rig	body pitch	. 3394	4.2822	5.0590
lst	$1 \mathrm{exu} \times \mathrm{al}$	1.5490	. 3809	. 7210
2nd	"	. 1460	. 3512	. 4065
3 ra	"	. 0128	. 3817	. 4905
4th	"	. 9936	2.4191.	3.4559
5th	"	. 5833	. 1389	. 2778
6 th	"	. 0841	. 1074	. 2070

Rigid body +6 flexural modes considered.
$V=60 \mathrm{ft} / \mathrm{s}$.

(a) Case where 6 flexural modes are included					
Lode	$\overline{\ddot{x}^{2}}$	ϕ_{n}	ϕ_{p}	$\underset{\mathrm{ft} / \mathrm{s}_{2}}{\sigma_{m}}$	$\begin{gathered} \sigma_{p} \\ \mathrm{ft} / \mathrm{s}^{2} \end{gathered}$
Mainvheel	38820				
Nosewheel	33720				
Rigid body heave	2645	1	1	4.27	4.27
Rigid body pitch	. 01192	52	-656	. 473	5.96
(1	94.040	-0.122	0.056	3.12	1.43
(2	6930	0.037	0.103	. 256	. 71.4
Flexural (3	477	-0.010	0.383	. 018	. 697
modes (4	9336	0.230	-0.800	1.850	6.43
(5	5193	-0.168	0.080	1.008	. 480
(6	8863	-0.065	0.160	. 507	1.250

(b) Case where rigid body modes only are considered					
Mode	$\ddot{\mathrm{x}}^{2}$	ϕ_{m}	ϕ_{p}	$\sigma_{m}^{\sigma_{m}}{ }_{\mathrm{ft} / \mathrm{s}^{2}}$	$\begin{aligned} & \sigma_{p} \\ & \mathrm{ft} / \mathrm{s}^{2} \end{aligned}$
Mainvheel	53770				
Nosewher	27470				
Rigid body heave	4,186	1	1	5.39	5.39
Rigick body pitch	. 007819	52	-656	. 383	4.83

	Rigid body modes only considered		Rigid body +6 flexural modes considered	
Mode	Eigonvalue	β	Eigenvalue	β
Nosewheel	-617.8 or -37.0		-622.9 or -35.6	
Mainwheel	$-44.79 \pm i 114.97$. 365	$-45.78 \pm$ i 114.96	. 370
Rifid body heave	$0.374 \quad 8.073$. 046	0.32610 .101	. 032
Risyid body pitch	$0.721 \quad 6.012$. 120	$0.131 \quad 6.411$. 213
l3t tlexural			0.1185 .016	. 035
2nd "			$0.50818 .1 / 2$. 028
3rd "		-	$0.718 \quad 24.013$. 030
4th "			1. 304 32.140	. 040
5tn "			$1.037 \quad 39.097$. 0265
6th "			1.40955 .121	. 0255

Rms values of response acceleration for BORING 707 aircraft

taxiing at $100 \mathrm{ft} / \mathrm{s}$ on Runway 12, Langley Fiela

(a) From reference 13

	Rigid body 6 Flexible Modes considered	Rigia Body Modes only considered
Pilot Location response (ft/s		
ce response (ft/s $\left.{ }^{2}\right)$	4.14.	7.28

(b) Calculated by Program ReSPONSE 12

	Rigid body + 6 Flexible Modes considered	Rigid Body hodes only considered
Pilot Location response (ft/s		
Nosewheel location response (ft/s	8.605	8.820
Mainwheel location response (ft/s	6.941	7.755

$\begin{gathered} \mathrm{k}_{\mathrm{r}} \\ \mathrm{lbf} / \mathrm{ft} \end{gathered}$	$\begin{gathered} k_{n} \\ \operatorname{lbf} / \mathrm{ft} \end{gathered}$	Eigenvalues	
		Pitch	Feave
0.6×10^{6}	46800	$-0.840 \pm$ i 6.234	$-3.634 \pm$ i 6.090
"	80000	$0.856 \quad 6.010$	$2.021 \quad 6.905$
"	120000	$0.652 \quad 5.954$	$1.485 \quad 7.563$
"	155000	$0.570 \quad 5.997$	1.211 . 7.894
. ${ }^{\prime}$	187200	$0.536 \quad 6.036$	1.0268 .123
1.0×10^{6}	187200	$0.487 \quad 6.763$	0.873 8.439
1.2×10^{6}	1	$0.517 \quad 6.951$	$0.780 \quad 8.601$
1.6×10^{6}	"	$0.593 \quad 7.154$	$0.618 \quad 8.913$
2.0×10^{6}	"	0.649 . 7.248	$0.507 \quad 9.183$
2.4×10^{6}	"	$0.685 \quad 7.298$	$0.434 \quad 9.404$

Rigid body modes only considered.
$C_{m}=26000 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}, \quad C_{n}=14000 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$, other parameters as Appendix D.

Eigenvalues for varying main and nose oleo damping

		Eigenvalues			
$\begin{gathered} C_{\mathrm{m}} \\ \mathrm{abf} / \mathrm{ft} \mathrm{t} \end{gathered}$	$\begin{gathered} c_{n} \\ \mathrm{abf} / \mathrm{ft} / \mathrm{s} \end{gathered}$	Pitch		Heave	
6500	14000	$-3.647 \pm$ i 6.017		-. $374 \pm$ i 6.269	
9500	14000	$3.646 \quad 6.027$. 4456.262	
13000	14000	$3.644 \quad 6.038$		$.527 \quad 6.256$	
17000	14000	3.641	6.053	. 6226.249	
21000	14000	$3.638 \quad 6.069$. 7186.242	
26000	14000	3.634	6.090	. $840 \quad 6.234$	
26000	11000	$2.351 \quad 5.174$. 910	6.340
26000	9000	1.709	4.923	. 903	6.452
26000	7000	7.239	4.773	. 843	6.543
26000	5000	. 857	4.687	. 762	6.597
26000	3500	. 599	4.653	. 700	6.618

Rigid body modes only considered.
$\mathrm{k}_{\mathrm{m}}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}, \mathrm{k}_{\mathrm{n}}=46800 \mathrm{Ibf} / \mathrm{ft}$, other parameter s as Appendix D.

TABLE 4.7

Values of oleo stiffness and damping using some non-linear undercarriages

Distance from cg to mainwheels ft	Olco stiffnesses ($1 \mathrm{bf} / \mathrm{ft}$)		Oleo demping ($\mathrm{lbf} / \mathrm{ft} / \mathrm{s}$)	
	k_{m}	k_{n}	C_{m}	C_{n}
4.33	1.2×10^{6}	93600	13080	6876
5.0	1.18×10^{6}	115000	12900	7550
6.0	1.145×10^{6}	165000	12630	8520
7.0	1.115×10^{6}	238000	12360	9350
8.0	1.08 3×10^{6}	328000	12100	9850
9.0	1.05×10^{6}	450000	11840	10170

FIGURE 4.1

(a)

AIRCRAFT ON SINUSOIDAL RUNWAY

ER

AR
RAR

FIGURE 4.13

HEAVE AND PITCH INPUTS FROM
SINUSOIDAL RLINWAY

FIGLIRE 4.15
(a)

(b)

$$
1-\frac{2 a b}{a^{2}}\left(1-\cos \frac{d}{v} \omega_{f}\right)
$$

(c)

$$
\frac{\bar{C} v}{w_{f}^{2}}
$$

(d)

$$
\omega_{f}^{4}
$$

COMPONENTS OF HEAVE EQUATION

FIGURE 4.17
(a)

(b)

$$
1-\cos \frac{d}{V} \omega_{f}
$$

(c)

$$
\frac{\bar{c} v}{\omega_{f}^{2}}
$$

(d)

COMPONENTS OF PITCH EQLATION

FIGURE 4.21

RUNWAY 12, LANGLEY FIELD

FIGLIRE: 4.23

0

FIGURE 4.37

POWER SPECTRAL DENSITY FUNCTIONS

FIGURE 4.38

(REPRODUCED FROM REFERENCE 4)

SEGTION 5

OPTIMISAMION STUDIES

5.1 Optimisation Technigues

It is not the object of this thesis to seleet a best method of optimisation for use with the aircraft taxiing problem, and no attempt whatsoever has been made to do this. The selection of such a method would be an optimisationproblem in itself, dependinf on many variables pertaining to the type of problem. llence, a lengthy discussion of the various optimisation techniques rould be out of place here. However, a brief summary of sone of the basic optimisation methods may be advantageous.

If a system is required to fulfiz a" set of requirements it may be said to be optimum if it performs as well as, or better than, any other system which satisf'ies the requirements. If the performance can be expressed as a mathematical function of a number of variables, then optimisation may be defined as the search for the maximum or minimum value of the function. If the values of some or all of the variables are limited by constraints the optimisation process is said to be constrained; otherwise it is unconstrained. It will be assumed in this summary that the optimum value required is a minimum value. Methods of dealing with constraints vill not be discussed since the only constraints likely to be met in this thesis are inmitations on the maximum and minimum values of the variables, which are quite easily dealt with.

The classical mathematical approach to the optimisation of an algebraic function $f\left(x_{i}\right)$, $i=1,2, \cdots, n$, is to obtain a set of
stationary points by solving the set of equations

$$
\begin{equation*}
\frac{\partial f}{\partial x_{i}}=0 \tag{5-1}
\end{equation*}
$$

These points may be maxima, minima or saddle points, investigation of the matrix of second derivatives (the Hessian matrix) being required to determine the minima. Although most practical problens cannot be expressed sufficiently simply to allow this form of solution, the method is useful in solving problems which are not too complex, and which have only a few variables. However, more important is the theoretical significance of the results of classical optinazation theory in the development of algorithms for solving complex optimisation problems.

The remainder of this summary win] be limited to a class of mumerical optimisation methods generally known as search techniques. These may be broadly catecorized into direct search methods, which require only function evaluation, and descent or Eradient methods, which require both function and gradient evaluation. An important problem in this class is that of finding the minimum of a function of a single variable, since many n-dimensional search techniques use a sequence of one-dimensional searches.

5.1.1 Minimum along a line

Two non-sequential search methods are rancom search and "exhaustive " search. In the former method random values of the indepondent variable are generated within some pre-selected range, and the function is evaluated at each of these values. This method has the advantage that at each successive evaluation every point on
the line is equally likely to be tested. In the latter metnod the pre-selected range is subdivided into a number of equally spaced inturvals, and the function is evaluated at each point. Both methods are very time consuming but may be used to find the minimum of a funcion which has several minima. The minimum may be defined as the roint at which the minimum function value is calculated. How ver, for further accuracy, this minimum point may be used to locate a smaller interval over which the same, or a different, minimization procedure may be used to establish a more acourate v:lue.

Fig. $5(i)$

Figure 5(i) shows the results of an "exhaustlve" search. It will be boon that the values x_{1} and x_{2} bracket only one minimum value, in this case the absolute minimum. The curve between x_{1} and x_{2} is said to he unimodal. Several methods have been developed to find the minimum value of such a function. One of the simplest of these is equal interval search. Any number of intervals may be chosen but liefer (ref. 4.8) has shown that the 3-point (i.e. 4 equal intervals) search is the most economical in terms of number of function evaluations to reach a given interval of uncertainty.

The function is evaluated at $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{3}{4}$ of the interval from x_{1} to $x_{\%}$ (figure $5(i)$). Then helf of the original interval is mallal (i.e. the two adjacent segments containing at their centre the velue of x at which the function is smallest) and the process is repented. Part of the economy of this method is that the two extreme and the centre function velues are always retained from the previous iteration, and hence after the first iteration only two function evaluations are required each time. Thus, after m iterations from figure $5(i)$, the minimum will be located to within an intervel of uncertainty of $\left(\frac{1}{2}\right)^{m} \cdot\left(x_{2}-x_{1}\right)$, and $(2 m+3)$ function eveluations rill be required.

Althourch it misht appear that rejecting hal:' the previous interval vith each iteration is the best mich could be obtainea this is not the case, and the more efficient methods use non-equal interval search. One very efficient method is based on Fibonacci numbers, def'ined by

$$
\begin{aligned}
& F_{0}=F_{1}=1 \\
& F_{i}=F_{i-1}+F_{i-2}, \quad i \geqslant 2
\end{aligned}
$$

The firct few Fibonacoi number's are $1,1,2,3,5,8,25,21,34$, 55, $89,144 \ldots$ rihe method is based on using a step length of

$$
\Delta_{i+2}=I_{i+1} \cdot \frac{F_{n-2-i}}{F_{n-i}}
$$

measured from the end of the previous interval. It can be shown thed jf the oricinal interval is of length L_{1}, then starting with I_{n} the final interval of uncertainty will be

$$
L_{n}=L_{1}\left(\frac{F_{0}}{F_{n}}\right)=I_{1} \cdot \frac{1}{F_{n}}
$$

and this woild require only n function evaluations. For example, in order to reduce the interval of uncertainty to less than 3%, 8 Fibonacci search steps are required, since $\frac{1}{\mathrm{~F}_{8}}=\frac{1}{34}<3 \%$ A very good cxplenation and excmple of this method is given in reference 49

The minimum of a unimodal function may also be found by assuming the function to have a simple algebraic form over the desired rance, the simplestassumption being a quadratic polynomial. As an example, the function may be evaluated at three points, a quairatic polynomial fitted to it, and the minimum of the polynomial found. Finis point then replaces one of the initial points, and the procedure is repeated until a selected measure of accuracy is reached. An algorithm using this method has been described by Fowell (ref. 50). Cubic interpolation may"also be used, a notable outhor on this method being Davidson (ref.51), who has produced interpolation equations using function and gradient evaluations.

5.1.2 Dircot search methods

The great problem with the simpler search methods is that as the number of variables (or dimensions) increases, the number of function evaluations required increases enormously if the same decree of accuracy is required. Thus, a random search method can be used in several dimensions, random values of all variables being fenerated, or a method equivalent to the one- imensional "exhaustive" search method may be used, now called grid search. However, if say 10 function evcluations were used for the one-dimensional case, then for the same degree of uncertainty 10^{n} function evaluations would be
required for n dimensions. Figures 4.22 and 4.23 are in effect examples of 2-dimensional grid search.

A way of cutting down the number of function evaluations required is to use a univariate search nethod, in which only one variable at a time is changed. Usually the variables are changed one by one in some sequence, the function being minimized along each of the co-ordinate directions, and the process repeated until some convergence criterion is reached. This procedure is illustrated for the 2-dimensional case in figure 5(ii).

It will be noted in the figure that alternate points in the iteration (e.g.1,3; 2,4; 3,5 etc) define Iines which lie in the general direction of the minimum. Indeed, if the function were a quedratic the defined lines would pass through the minimum. This property leads to a class of methods known as "pattern move". Exploratory moves are made from a starting point to explore the Local behoviour of the objective runction. The moves are not necensaril: intended to minimise the function alone the co-ordinate
directions, so that if $f(i)$ is the value of the function at the ith point in figure $5(i i)$, and point 1 is the starting point, then if $f(3)<f^{\prime}(2)<f(1)$, the pattern move can be made along the direction of a line through points 1 and 3. A simple method using this principle has been developed by Hooke and Jeeves (ref. 52), a better development of this being that of Rosanbrock (ref.j3). The methods using this principle vary in general in the jegree to which the exploratory and pattern directions are explored. Rosenbrock's method has been shown in general to be very efficient for proctical problems, particulerly in locating an early epproximation to the minimum.

The methods so far described have used mutually orthogonal むirections in each cycle of searches. llowever, this does not necessaxily produce the quickest convercence. Powel. 's method : (ref. ro) uses conjugato directions. If a quabratio function to be minimised is

$$
\begin{equation*}
f(x)=x^{T} \Delta x+b^{T} x+c \tag{5-2}
\end{equation*}
$$

then the directions \underline{V} and $\underline{\nabla}$ are said to be conjugate directions if

$$
\begin{equation*}
\underline{\underline{V}}^{T} \Lambda \underline{w}=0 \tag{5-3}
\end{equation*}
$$

The method. may be described simply as follows: The function is first minimised in each of the co-ordinate directions, and then in the associated pattern direction. One of the co-ordinate directions is discarded in fovour of the pattern direction for all the following iterations, since the pattern direction is likely to be a better direction than the discarded comordinate direction. Tach time a pattern direction has been generated it replaces one of the co-ordinate dircctions, until at the $(n+1)$ th iteration, for an

Abstract

n-dimensional problem, n conjugate directions are used. This method produces quadratic convergence, that is it will minimise a guadratic function in a finite number of steps - in fact the number of variables, so that the starting point for the $(n+1)$ st iteration is the minimum point.

It is possible, with a non-quadratic function, for the set of search directions to become dependent, and hence to scan only a sub-space of the n-dimensional space. Fowell has added a mozification, extended by Zangwill (ref. 55), which ensures a reasonable rate of convergence even when the initial approxination is quite poor. In fact, practicel functions are usualily a reasonable approximation to a quadratic in the region of the minimum, and Fowell's method is probably one of the best of the current search techniques not requiring gradients.

2.1.3 Gradient methods

The direct search methods have orly used information about the value of the function at various pointis in seeking search airections. If now information about the gradient of the function is obtainable this leads to a further class of methods of choosing search directions, potentially more efficient, then the previous methads. The gradient vector, ∇F, of a function $F(\underline{x})$ is defined as

$$
\nabla F=\xi=\left(\frac{\partial F}{\partial x_{1}}, \frac{\partial F}{\partial x_{2}}, \cdots, \frac{\partial F}{\partial x_{n}}\right) \quad(5-4)
$$

This vector lies in the direction of ξ reatest rate of increase of the function and har that rate of increase as its magnitude. Thus a nove in the direction $-\nabla F$ is a move in the direction of steepest
descent, and no vector can give a greater local reduction in F. If the function to be minimised is not readily differentiable a discrete approximation to the gradient may be used. The method of steepest descent was first introduced by Cauchy in 1847, many authors having used it since then.

The basic method uses the step

$$
\begin{equation*}
{\underset{q}{x+1}}^{x_{1}}{\frac{x_{q}}{q}}-\alpha \nabla F \tag{5-5}
\end{equation*}
$$

where x_{q} is the old value of x, x_{q+1} is the new valuc of x, and \propto i.s a real number. The values of x_{q+1} may be found either by function evaluations at intervals along the direction $\nabla \mathrm{F}$ until there is no further decrease in Γ, or by minimisation of the function along the direction ∇ F using one of the previously described methods. Although this method gives, from any position, the greatest local decrease in F, there are better directions which may be used, and the method is in fact relatively inefficient, partioularly so when the minimum is approached along a fairly level floor of a steep valley, the steps then tending to oscillate from side to side of the valley.

A further form of step which can be used is

$$
\begin{equation*}
x_{q+1}=x_{q}-\alpha G \nabla F \tag{5-6}
\end{equation*}
$$

where G is an n x matrix. S everal forms for G have been considered, but the potentially most efficient form of this equation is

$$
\begin{equation*}
x_{q+1}={\underset{\sim}{q}}-H^{-1} \nabla F \tag{5-7}
\end{equation*}
$$

where H is the Hessian matrix. This equation is the n-dimensional equivalent of the well know one-dimensional Newton approximation, where if x_{q} iskapproximation to a minimum, a better approximation,
x_{q+1}, is given by

$$
x_{q+I}=x_{q}-\frac{f^{I}\left(x_{q}\right)}{f^{I I}\left(x_{q}\right)}
$$

The method using equation (5-7) produces quadratic convergence, and therefore generally has a very good rate of convergence near the minimum for a practical problem. However, the method can have considerable disadvantages. It may be difficult or even impossible to compute the Hessian matrix; even for a simple function the elements of H may be extremely time consuming to compute. Furthermore, even if H can be found, computation of the vector $H^{-1} \nabla F$ is a major computational problem for functions of many dimensions. Thus the method is impractical for large or complicated problems.

To overcome much of this complication a method has been presented by Davidon (ref.51) and developed by Fletoher and Powell (ref. 57) which uses on approximation to the Hessian matrix. This method is variously described as a quasi-Newton method, a conjugate directions method, or a variable metric method. Basically equation (5-7) is used, but for the first step His set to any positive definite symmetric matrix; it is conmon to set $H=$ the identity matrix, I, so that the first.step is in the airection of stheepest descent. The function is minimised along this direction, and information gained in this iteration is used to update the matrix H for use in the next iteration. If the function to be minimised is quadratic and unimodal, then for an n-dimensional problem the Hessian matrix is constructed, and the minimum reached, aftar n iterations. If the function is more complicated then the

Hetcher Powell method generates an approximation to the Messian in the vegion of the minimum. The simplification of this method, over that using an actual Hessian, is that the matrix H is updated using first-order information, this being achieved by calculation of the gradient at two different points.

5.1.4. Scaling of variables

The convergence of most minimisation methods can be j.mproved by scaling the variables. The eccentricity of the function can be reatly influenced by the choice of scales. Consider the function

$$
\begin{equation*}
F=144 x_{i}^{2}+4 x_{2}^{2}-8 x_{1} x_{2} \tag{5-8}
\end{equation*}
$$

A new form or this function may be derived using

$$
\begin{equation*}
G\left(x_{1}, x_{2}\right)=\mathbb{F}\left(\frac{x_{1}}{12}, \frac{x_{2}}{2}\right) \tag{5-9}
\end{equation*}
$$

so that

$$
\begin{equation*}
G=x_{1}^{2}+x_{2}^{2}-\frac{1}{3} x_{1} x_{2} \tag{5-10}
\end{equation*}
$$

Function con:ours of F and G are shown in figure 5(iii) (a) and (b), where itrwill be seen that F is much more eccentric than G, so that the fradient vector of F does not point nearly so close to the finimun as that of G, and hence F would be harder to minimize.

The object of scaling is to make the gradients in each direction of the same order of magnitude It will be seen that some eccentricity still exists in figure 5(iii)(b). If there had been no $x_{1} x_{2}$ term, then the contours in this figure would have been circles, and the gradient vector would point to the minimum.

Fig. 5(iii)

On the other hand, if the coefficient of the $x_{1} x_{2}$ term had been numerically larger, the eccentricity would have been greater. The tecimique of making the coefficients of the squared terms equal is not, in general, optimal scaling, even in quadratic problens, beyond the 2-dimensional case. However, considerable benefitican often be gained by this simple process.

In non-quadratic problems one method is to use a diagonal scaling matrix, whose elements are approxinations to the diagonal of the Hessian matrix. The Fletcher-Powell method might be thought of in effect as a steepest descent method using a scaling matrix.

5.2 Method used for optimisation studies

The optimisation studies which will be described are based on a method of steepest descent. Whilst it is appreciated that this is not the most efficient method of optimisation, it has certain advantages for these studies. Firstly the algorithm chosen was easily available, and is straightforvard and easy to use. Secondly it is relatively economical in terms of computer space. This latter point was quite important in these studies, since the response evaluations are quite space consuming and the conputer being used was not large (illiott 4120, 32K).

The optimisation procedure is based on a procedure STEEP 2 obtained from the mathematics department of the Royal Air Force College, Cranwell. This procedure kad in turn been based on procedures STEEP 1 and STEEP 2, presented in Algorithms 203 to 205 of the Collected Algorithms (f CACM. As the optimisation studies progressed it was founc that certain modifications were necessary in order to improve the efficiency of the procedure for this particular application. The final version of procedure SIETP 2 is shown in Appendix H. The modifications which have been made are underlined and will be described in due course.

STEEP 2 contains two sub-routines, procedure ATIVE, for compating the partial derivatives, and procedure SIEP, for computing the components of an array XSIEP [I:NV], which is a new approximation of XMIN [1:NV], an array of the values of the variables at the minimum value of the function, FMIN. LB(i) and $\operatorname{UB}(i)$ are lower and upper bounds of the independent variables,

IV is the number of variables, and $X S(i)$ is the starting value for $\operatorname{XMIN}(i)$. $\operatorname{FUNK}(x)$ is the function to be minimised, in the form of a real procedure, and hence any function evaluation program used for optimisation, eg program PESPONSE 12 , had to be written in the form of a real procedure for use with STEEP 2.

An estimate for the derivative is

$$
\begin{equation*}
\frac{f(x+d x)-f(x-d x)}{2 d x} \tag{5-11}
\end{equation*}
$$

DX was a real number in the original procedure, and hence all the veriables were increased and decreased by the same amount in the calculation of derivatives. It was very soon decided that, since the values, and the derivatives, of the variables could be widely varying in order, $D X$ should be an array with different values for each variable. It was found convenient to make the starting values of $D X$ a direct proportion of the starting values of the variables $X S(i)$. If the derivative is very large the procram reduces the value of $D X$; if the derivative is very small the proeram increases the value of $D X$. A maximum allowable value of DX, DXMAX, is stipulated in the data. DXMAX was also changed from a real number to an array.

The significance of RELAX is to include a proportion of the previous partial derivative in current iterations. Thus if RELAX $=0.5$ the effect is that the new partial derivative becones half of the new estimate for the derivative plus half of the previous partial derivative.

A problem encountered early in the optimisation studies was that when the minimum occurred at an upper or lower bound the
program pould not terminate, but kept oscillating at the boundary. The statements underlined with dashed lines in Appendix H were inserted to overcome this problem, the longest statement replacing FMIN: $=$ FUNK (XMIN) . This amendment had been suggested in a later comment on the Algorithm in CACM by someone who had had the same trouble.

The computation of a new estimate of the value of the ith variable at the minimum is done by

$$
\operatorname{XSTEP}(i)=\operatorname{XPIN}(i)-\operatorname{Px} \alpha_{x} \operatorname{XMIN}(i)
$$

where α is the new partial derivotive, and
P is a weighting factor.
P is put equal to 1 at the beginning of the program and tends to 0 at the minimum. In the original program, after a decrease of the function the step was accepted and P was multiplied by 1.5 , whilst after an increase P was divided by 2. PMAX replaces P when P becomes greater than PMAX, and when P becomes less than ElS the optimisation is terminated, the choice of value of EPS therefore being a measure of the accuracy required. PMAX was set to 0.5 and MPS to 10^{-4} in early studies. The above values, particularly that of PKAX, were found to lead to very slow convergence to the minimum in some cases, as will be discussed later. The program was amended, the values 1.5 and 2 being replaced by PLULP and PDIV so that the weighting factor could be varied at differeat rates, and print statements for P were inserted so that the progress of a computer run could be easily traced.

In certain stages of the program XMIN (i) is replaced by a value ZETA if XIIN(i) < ZETA, and FMIN is replaced by a value

PSI if $F M I N<P S I$. These are safeguards to Frevent denominators becoming too small, and values of $2 \mathbb{E T A}=P S I=I$ were used throughout these studies, which in fact meant that ZBTA and PSI were never used in these minimisations since XMIN(i) and FMIN were always much greater than 1.

5.3. Optimisation on actual function

In the early optimisation studies the rms value of the response acceleration at the nainwheel location was minimised. These studies used the earlier version of the main response program, using equal interval integration steps, in conjunction with the early version of procedure SITEEP 2. Whilst the ninimum values show on ficures 4.22 and 4.29 were verified, optimising on one variable at a time, the computer time to optimise on more than one variable was prohibitive, and it was also at this time that the necessity of using the nore sophisticated integration procedure was realised, paricularly for low stiffness and high damping. However, during tiese carly studies the step lengths for finding the partial derivations i:1 the integration procedure wère changed from real numbers to matrices, so that the step for each variable could be different, and the amendment to overcome cycling at the boundary was made.

All further optimisation studies minimise the sum of the rns values of response acceleration at the mainwheel and pilot locations. This is a simple attempt to decrease the general level of response along the fuselage and should prevent the response being minimised at cne point at the expense of another. Figure 5.1 shows the sum of the nainwheel and pilot location responses for various values of main and nose oleo stiffnesses, keeping the oleo damping constant at the values in Appendix D. This figure is in fact the sum of the lower boundaries of figures 4.22 and 4.23. The minimum response should occur when the main and nose oleo stiffnesses are at their lower bounds.

The optimisation program BDARBH60 is shown in Appendix J. This program uses the main response program written in the form of a real procedure, in conjunction with the minimisation procedure STHEP2, to minimise the response for variable main and nose oleo stiffenesses, K_{I} and K_{2}. Programs basically similar to this, but varying only K_{1} or K_{2}, were used to minimise the response, the computer times required being 23 minutes for K_{1} and 28 minutes for K_{2}. The corresponding values on figure 5.1 were verif'ied using these prozrams. However, program BDARBH60, optimising on both K_{1} and K_{2}, was found to use a prohibitive amount of computer time, the minirum not having been reached after 90 minutes, during which time 33 function evaluations had been made. Minimisation using more than the two variables would obviously be out of the question with this program, as the number of function evaluations required would increase substantially as the number of variables inoreased.

Clearly, modification was requiped before further computations could be made, the two possibilities for investigation bein; the computer time required for each function evaluation, and the number of function evaluations required to reach a minimum.

5.4 Optimisation on approximation to function

There was little possibility of reducing the computer tine required to perform an actual function evaluation. The computations being made at this stage only considered rigid body modes, and the varying step integration method was required for consistancy between results. Hence the possibility was investigated of using an approximation to the response function which would be consistent for all values of the function, i.e. which would decrease as the function decreased.

One of the simplest, and most promising, possibilities investigated is shown in figure 5(iv). The sum of the peak heights times the bandwidths, i.e. the shaded areas, on the curve of response PSD v. frequency, is taken as a measure of the area under the surve. Thus, the PSD need only be calculated at each peak, whose frequencies are given by the eigenvalues (i.e. two only for a rigia aircraft), instead of at the very many points required by the full integration routine. Thus, if the ith eigenvalue is given by

$$
\begin{equation*}
\lambda_{i}=-a_{i} \pm i \omega_{i} \tag{5-12}
\end{equation*}
$$

and the response PSD at ω_{i} is PSDM $_{i}$ at the mainwheels and PSDP_{i} at the pilot location, then the approximations to the rms values of response acceleration at the mainwheel and pilot locations respectively, σ_{m} and σ_{p}, are

$$
\begin{equation*}
\sigma_{\mathrm{m}}=\sqrt{\sum \mathrm{a}_{\mathrm{i}} \mathrm{PSDM}_{\mathrm{i}}} \tag{5-13}
\end{equation*}
$$

$$
\begin{equation*}
\text { and } \sigma_{p}=\sqrt{\sum a_{i} \text { PSDP }_{i}} \tag{5-14}
\end{equation*}
$$

Values for these approximations were calculsted for a very wide range o. stiffnesses, damping, and taxiing velocities, for rigid body modes only, using values of eigenvalues and PSD calculated in the response studies. The approximations are shown in finure 5.2 plotted against the corresponding actual computed responses, the values for mainwhecl and pilot locations all being plotted on the same graph. In fact most of the lower values are mainwheel location response and most of the higher values are pilot location response. The points show that a very good correlation exists between the approximate and the actual values in general, but two distinct sets of points are seen to be diverging from the main curve. The lower set of points are in fact mainwheel location responses, and the upper set of points pilot location responses, for the same set of conditions.

Investigation of these points showed that they were all associated with high nose oleo damping; the higher the damping the further away from the curve was the point. The line of six points is in fact for the highest nose oleo damping ($14000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$)
with 6 values of main oleo damping ranging from $6500 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ to $26000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$. As the damping increased the frequencies of the peaks came closer together, and the bandwidths increased, so that at the higher values of damping equations ($5-13$) and ($5-14$) were in effect including parts of the same area in both peaks. An increase in nose oleo damping had a much greater effect than the main oleo damping, increasing both heave and pitch mode peak bandwidths by a large amount. Also, of course, for high damping, the value of a from equation (5-12) no longer gives the bandwidth.

It was found after some trial that for the oase of rigid body modes only, that is the number of eigenvalues $=2$ (the eigenvalues for the nainwheel and nosewheel movements are discarded since they do not contribute to the response), the following modification to equations (5-13) and (5-14) gave good correlation with actual responses for most values of stiffness and daming. Referring to equation (5-12) and figure 5(iv),

$$
\text { if }\left(a_{1}+a_{2}\right)<0.75\left(\omega_{2}-\omega_{1}\right)
$$

then equations (5-13) and (5-14) are used. However,

$$
\text { if }\left(a_{1}+a_{2}\right)>0.75\left(\omega_{2}-\omega_{1}\right)
$$

then equations (5-13) and (5-14) become

$$
\begin{align*}
\sigma_{m} & =\sqrt{\sum a_{i} P S D I_{i}} \cdot \sqrt{\frac{0.75\left(\omega_{2}-\omega_{7}\right)}{a_{1}+a_{2}}} \tag{5-15}\\
\text { and } \quad \sigma_{p} & =\sqrt{\sum a_{i} P S D P_{i}} \cdot \sqrt{\frac{0.75\left(\omega_{2}-\omega_{1}\right)}{a_{1}+a_{2}}} \tag{5-16}
\end{align*}
$$

For a combination of very low stiffness (which has the effect of increasing the damping) and very high damping even this modiffication does not produce good correlation with actual responses,
since at these values the heave and pitch frequencies are almost equal for the aircraft under consideration, and even reverse position for some extreme values. Hence there is in effect only one peak, as showm in figure 4.32. Since it is not practical to produce on approximation which will give correlation with actual responses for all values of stiffness and damping, a failure criterion has been developed which ends the program if the peaks on the response PSD curve come so close together that equations (5-15) and (5-16) are in danger of giving values which are not proportional to the actual response. Thus, the approximation method fails if

$$
\begin{aligned}
&\left|0.75\left(\omega_{2}-\omega_{1}\right)\right|<0.2 \\
& \text { or if }\left|0.75\left(\omega_{2}-\omega_{1}\right)\right|<0.033 \omega_{2} \\
& \text { or if }\left|0.75\left(\omega_{2}-\omega_{1}\right)\right|<0.05\left(a_{1}+a_{2}\right)
\end{aligned}
$$

A real procedure FUNK (x) incorporating the above approxisations to the responsc, and the failure criterion, is included in the optimisation program show in Appendix K. .The procedure is written to include any number of modes, but equations (5-15) and (5-16) and the failure criterion are incorporated in a conditional statement, only being used if the number of peaks being investigeted is 2. However, it is anticipated that the procedure would only generally be used with rigid body heave and pitch, since it is a method of giving a quick estimate of the value of the parameters required for minimum response.

An initial program incorporating equations (5-13) and
(5-14.) was written to minimise the sum of the rms values of response acceleration at the mainwhecl and pilot locations (i.e.RNSM + RMSP), varying only the main oleo stiffness, K_{1}. The minimum was found at
a value of $K_{I}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}$ in only 4 minutes 54 seconds, making 10 function evaluations. However, when the program was modified to vary both K_{1} and K_{2} the minimum had not been reached after 53 minutes, during which time 143 function evaluations were made (c.f. 33 function evaluations in 90 minutes for the actual response function).

At this time the procedure STEEP2 was still using 1.5 and 2 as the multiplier and divider respectively of P, and values of PMAX $=0.5$ and EPS $=10^{-4}$ were being used. Investigation of the steps in the optimisation print-out showed that the value of K_{2} was very quickly reaching its lower bound (decreasing K_{2} gave the sterpest slope) and the value of K_{1} was then being decreased very slowly along the boundary, since the value of PMAX would not allow large steps to be taken. Furthermore, when a minimum was reachea, the value of p had to bo reduced below 10^{-1+} before the computations were terminated. The value of PMAX in the data was therefore increased to 100 and that of EPS to 10^{-1}, and the same prograin then produced a minimum at $K_{1}=0.6 \times 10^{6} 1 \mathrm{bf} / \mathrm{ft}$ and $\mathrm{K}_{2}=$ $468001 \mathrm{ff} / \mathrm{ft}$ in 16 minutes 5 seconds, making 43 function evaluations.

At this stage the procedure STEEP2 was modified by replacils the values of 2.5 and 2 by PBULI and PDIV so that differe! t values could be used. Increasing the values would mean that the value of step length would be increased quicker after a successiul step and decreased quicker after an unsuccessful step, so that when the minimum was reached the value of P would fall below that of EPS in less iterations. For all further optimisation
programs values of PMULT $=2, \operatorname{PDIV}=3, \operatorname{PMAX}=100$, and $\operatorname{TPS}=10^{-1}$ were used. Using these values the minimum at $K_{I}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}$ and $\mathrm{K}_{2}=46800 \mathrm{lbf} / \mathrm{ft}$ was reached in 13 minutes 11 seconds, and 35 function evaluations were made.

Computer programs were written, incorporating all the above modifications, similar to that shown in Appendix K, but varging firstly K_{1} and K_{2}, secondly C_{1} and C_{2}, and thirdly K_{1}, K_{2}, C_{1}, and C_{2}. The results of optimisations using these programs are show in table $5(i)$.

Parameters varied	Computer tirse	Result
$\mathrm{K}_{1}, \mathrm{~K}_{2}$	12m 9s	$\begin{aligned} & \dot{\mathrm{K}}_{1}=600000 \mathrm{lbf} / \mathrm{ft} \\ & \mathrm{~K}_{2}=46800 \mathrm{lbf} / \mathrm{ft} \\ & \text { FUNK }=5.53 \end{aligned}$
C_{1}, c_{2}	10m 12 s	$\begin{aligned} & \mathrm{C}_{1}=26160 \mathrm{Ibr} / \mathrm{ft} / \mathrm{s} \\ & \mathrm{C}_{2}=13752 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s} \\ & \text { FUNK }=6.65 \end{aligned}$
$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{C}_{1}, \mathrm{C}_{2}$	24 m 49 s	Response approximation failed after 64 function evaluations at $\mathrm{K}_{\mathrm{I}}=600000 \mathrm{lbf} / \mathrm{ft}$ $\mathrm{K}_{2}=46800 \mathrm{lbf} / \mathrm{ft}$ $C_{1}=26160 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ $C_{2}=13752 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ FUNK $=2.046$

Table 5(i)

It should be noted that all the optimisation computer runs were started at the values in Appendix D, i.e. $K_{1}=1.2 \times 10^{6}$,
$K_{2}=93600, C_{1}=13080, C_{2}=6876$, and that upper and lower bounds were ploced on these parameters of twice and half these values respectively. No attempt was made to start near to a possible minimum, as would generally be done in practice to cut down the computer time, since a measure of the relative efficiencies of the programs was required. Clearly the last programs are much more efficient in quickly finding optimum values than were the earliest program using the actual function.

It will be seen that the stiffnesses have gone to the Iower bound and the damping to the upper bourd in seeking a minimum response. Figure 5.1 showis that for constant C_{1} and C_{2}, at the values in Appendix D, the values of K to give minimum value of the actual response are indeed at the lower bound. The values of K_{1} and K_{2} found by the optimisation routine could no v be used in the response progran IESPONSE 12, to predict the actual re:ponse. However, since for variation of K_{1} and K_{2} the response approximation did not fail, the value of FUNK $=5.53$ from table $5(i)$ used in conjunction with fizure 5.2 should give an idea of the actual response. Since there is sone spread on figure 5.2 the value of actual response corresponding to the approximation of 5.53 lies between 8.8 and 9.8 . From figure 5.1 the actual sum of responses at the mainwheel and pilot location is in fact 9.4.

Similarly, figuxe 5.3, which shows the sum of the mainvineel and pilot location responses for varying C_{1} and C_{2}, with K_{1} and K_{2} keeping the values in Appendix D (i.e. figure 5.3 is the sum of the lower boundaries of the curves in figure 4.29), shows that the values of damping to give minimum response are at the upper bound.

The value of FUNK $=6.65$ frow the table corresponds approximately on figure 5.2 with the value of 12.5 from figure 5.3 , the slight error bcing due to the fact that the values of cemping on figure 5.3 are slichtly different from the upper bounds in the optimisation program.

Figures 5.4 and 5.5 show the sum of the mainwheel and pilot location response from figure 4.27, i.e. K_{1} and K_{2} varying, with $C_{1}=26000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ and $\mathrm{C}_{2}=14000 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, and from figure 4.3 I , i.e. C_{I} and C_{2} varying, with $K_{I}=0.6 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}$ and $\mathrm{K}_{2}=4_{4} 6300 \mathrm{Ibf} / \mathrm{ft}$ respectively. The minimum response does in fact occur when the stiffnesses take on values at their lower bounds and the damping takes on values at the upper bounds. Thus, although the response approximation foiled when varying $\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{C}_{1}$ and C_{2} (ser table 5(i)), the proerm had in fact found the optimum values. The value of luNK $=2.046$ docs not however correspond on figure 5.2 with the actual response value of 7.2 from figures 5.4 and 5.5 , since, as the peaks on the response PSD curve get clcser together, and the failure criterion is approached, the value of $0.75\left(\omega_{2}-\omega_{1}\right)$ becomes small, and equations (5-15) and (5-16) underestimate the response by more than the proportion indicated by figure 5.2.

Appendix K shows the optimisation program, OPTIMIS ATION ON APIROXIIATE RESFONSE FUNCTION 5. This program is very similar to the programs used above, includings the better response approximation, the failure criterion, and the better optimisation procedure, but incorporates equations of the form of equations (4-62) to (4-64.) in order to vary the undercarriace positions whilst keeping the heave natural frequencies constant.

The program vias run, starting with values as Appendix D, and produced a minimum in 5 minutes 2 seconds, performing only 9 function evaluations. However, the minimum occurred with a distance from cg to mainmeel location of 3.91 feet, producing a minimum value of the approximation to the response acceleration of FUNK $=$ 9.74. Figure 5.6, which shows the sum of the mainwhecl and pilot locaion responses from figure 4.36, indicates that the minimum value of response should occur when the distance is about $5 \frac{1}{2}$ to 6 feet. However, examination of the figure shows that the difference in response between the positions 3.91 feet and 6 feet is only $4 \frac{1}{2} \%$, so that although the optimisation appears to be inaccurate when viewed in the context of undercarriage position, it has in fact produced a minimum only $4 \frac{1}{2} \%$ higher than the actual minimum, the wide variation in undercarriage poṣition occurring because the aircraft is very insensitive to changes in undercarriage position. Indeed, the variation in response over the whole range investigated is only about $8 \frac{1}{2} \%$ 。

The value of x tual response on figure 5.2 corresponding to the value of FUNK $=9.74$ has a spread from 15.9 to 17.1, i.e. about 7 度: In view of this the production of a minimum to within 42π appears to be a very creditable performance. The effort which would be required to produce an approximation which would give a better results would be disproportionately high for the improvement which it is possible to dtain. At the best only a very small decrease in response can be obtained for this particular aircraft by moving the undercarriages, and for an aircraft which was more
sensitive to undercarriage position the above method would produce the positions to minimise the response to the same small percentage as in this case. The range of undercarriage positions to produce values near to this minimum would then of course be smaller than in this case.

The aircroft under consideration is only insensitive to the undercarriage position, of course, so long as the optimisation function being minimised is the sum of the mainwheel and pilot location rms accelerations. Reference to figure 4.36 shows that if the response at only one position were minimised the result would be much more determinate. For minimisation of pilot location acceleraion for example the mainmheel should be placed 9 feet (the upper bound) behind the ce. However; this would increase the mainwheel location response. Thus, whilst the sum of the mainwheel and pilo: location responses varies only very little with undercarsiage position, responses at individual positions on the aircraft are affected by movement of the undercarriages, and hence a differ nt weightine function, reflecting the relative importance at different positions for individual cases,would produce different results.

$E R$			\square	T\%				$1+1$	$1+1$	\%	71	1			Fit	$\begin{array}{r}17 \\ 4 \\ \hline\end{array}$	64:
				1 m		\square		1	17			\cdots	\cdots			1	1.
							1	+.	+10	+				FIG			54
							4	+1	T10	1+1							
				4	H.	+	10	1 r	5	$1+$	1		-	.			\square
				T					-	-					\square		
				11		,	+15	14	1	T-		4			1		
						\cdots	TTE	$1+4$	T								
				4,		+a,	117	H.				110					
					,	$1+1$	$1+1$	11	4,	1	$1+$	12			1		11
						-	- 1		$1+$	1		.					
				18		1	16		14	4		1		: $:$		$1+1$	
				14	-	+	HI	- 1	1						T	T	TI:
				1%	:	:							14		4	1	+ +
									:1:								
					T	19	14	$1+$	in			14			$1+1$	1	
				-	-	T]			7					1.4	1		\pm
				1:	14	4	+ 1	17				$1+$	11		$11+1$	15	
	-12			- 4		+ +											\square
							+	11:				F\%	-		14	4	
					1	14	\pm	+17	+		-	118	11		1\%!	\square	
								\square									
								1	4			1	\square	!	$1+1$	18	
							1.1	Ht	17	5	\%	11					
								$1+4$.	1		11		1		3		
											1	$41+$,		
				\bigcirc			0	$1++$	+1+	+	$1-$	4			0		,
							29										
			11		11					8		0.1			$(51$		
11		11								1					1%		
	E		T		+11				\cdots						T.		
.					11	H			$1+$		$1+$	1.			-		
$1!$				$\mathrm{k} \mathrm{m}^{7}$		$\times 10$	$a^{6} 16$	F/E		$k^{\prime}=$		300	bf/		1		
															1		
41		11	$1!$	$V=$	120												
		: 1			0		+1,										
				RIGID	AB	Dy:	Noo	Es 0	NLY	con		ceeo					
					,	+1t			+1						11		
							$1+1$		161								
													\% 11				
	\cdots		-			t+											
11			1														
11.																	
11																	
Hil																	
	1	-	O	110 N	+	S	DNS	E	NITH		E0		MP	VG			
114	$\underline{1}$	119	\square	$\pm 1+$	11	+	-	$\pm+1$	1	-			11	+1.1	\because		1
		¢ 1		17		+ +							! 1	1	119		
$1:$		$1!$		14	4	415	H1	$1+1$	111				11				
i		1		H		$\square+$		\square							1	1	
.										4							

AR

SCTION 6

DISCUSSION

Computer programs have been developed, usine
statistical analysis by the power spectral density method, to investigate the response of a linearized aircraft to runway une enness, and to minimise this response by variation of the unarcarriage parameters. The detailea results have been discussed in the relevant sections. However, further comment on some of the results, and dscussion of their overall s.gnificance, is appropriate here.

It has generally been assumed that the higher the frequency of the flexural mode, the less would $b=$ the response from that mode. Hence, if say 4 . fleyural modes were to be included in an analysis, tie first 4 moines would be chosen, since these vould be assumed to have most effect. However, it has been shown in sub-section 1.3.1. that this is not necessarily the case. For the particular airoraft analysed (the values of the parameters were based on the Boeing 707) the 2nd, 3rd, 5 th and 6 th flexural modes contribute a negligible amount to, the response at the mainwheel, nosewheel and pilot locations, and hence,for most practical purposes of computation of fuselage accelcrations, can be neglected. The lst end 4 th nodes contribute a significant amount to the response. However the contributions from these two modes appear to be of such magritude and phase that they counteract each other, and whilst the results may not be representative of actual results if one of these modes is neglecter, if both modes are neglected the results give a grod indication of the actual response. Herve for this particular arcraft, consideration f rigid boly modes mly produces representative values of fusel se acceleraiton. A similar study should be performed on
any other aircraft to be analysed before it is decided which modes can be neglected.

Stuly of the effects of taxiing velocity on response indicates that undulations occur on the curve of response v. taxiing velocity, particularly in the case of pilot location response. These have been shown to be due predominantly to the effect 0 . the phased undercarriage inputs on the pitching mode. The curvis produced in reference 37 (see aigure 4.10) are rather high, an the peaks and troughs have been show to be rather exaggerated due to the unrealistically low nose oleo damping used in the roference, and the runway profile PSD used. A more realisti: curve would be similar to that shown in figure 4.9, but with lover re:ponse at high speeds, since the runway PSD used for this figure tinds to overestimate the rouchness at low frequencies.

Botil the response and optimisation studies have indicated that the response decreases vith decreasing oleo stiffness or increasing oleo damping. These variations are in general very well behaved, the rinimum response occurring at the lower boundary of stiffness.and the upper toundary of damping. The only exception to this is in the case of variation of mainwheel location response with oleo stijeness. Hure, for damping values of $\mathrm{C}_{1}=13080 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ and $C_{2}=6876 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, for high main oleo stiffness the response increases with decreasing nose oleo stiffness, whilst for low main oleo stiffness the response variation with nose oleo stiffness has a trough, the minimum not being at the boundary (see fig. 4.22). For low nose oleo stiffness the variation of response with main oleo
stiffness is well-behaved, but for high nose oleo stiffness the variation of response with main oleo stiffness shows a trough, the mininum again not occurring at a boundary. For damping values of twice those above (figure 4.27) the mainwheel location response shows si!lilar trends, although not nearly so pronounced. In all other ca:ses, including all cases of variation of the sum of the mainwhec and pilot location responses, the minimum response occurrec at lowest oleo stiffness and highest oleo damping.

For all the response and optimisation studies except the stucies of the effects of the various modes, and of course the effect of taxiing velocity, a taxiing velocity of $120 \mathrm{ft} / \mathrm{s}$ has been used. The question therefore arises, "Will the values of the parameters whici give reduced response at this taxiing velocity also reduce the response at other velocities," or could the response be minimised at one velocity at the expense of others?" Repeating all the studies for many velocities vould of course be a prodicious computational task. However, in view of the fact that the variation of response with stiffeness and damping is so wellbehaved, it is anticipated that it would be so ior all taxiing velocities. It would indee be a great coincidence if the response were only so well-behaved at certain velocitiegs, and yet that this good-behaviour coincided for all variables at the velocity chosen for these stulies.

It vas shom in section 4 that the velocities at which the. peaks occur on the curve of response v. velocity are directly proportional to the frequency of the predominant mode - the pitch moas in the case of pilot location response. Hence, the effect of
a reduction in oleo stiffness, for example, is not only to reduce the response at the velocity under consideration, but to reduce the frequencies, and hence the velocities at which the peaks and troughs occur. If the response at the velocity were not reduced, the effect of squeezing the curve to the left would be to increase the response at some velocities and decrease it at others. However, the reduction in response due to the reduction in oleo stiffnesses is greater than the increase in response due to squeezing the curve to the left, at the places where the response would be increased, i.e. on positive slopes. The upper curve on figure 6.1 is reproduced from figure 4.9. Reference to figure 4.23 shows that by halving the oleo stiffiesses the response at $120 \mathrm{ft} / \mathrm{s}$ will be reduced from $10.6 \mathrm{ft} / \mathrm{s}^{2}$ to $5.1 \mathrm{ft} / \mathrm{s}^{2}$. Reference to figure $E 4$ shows that this reduction in stiffness will cause a deorease in pitch frequency from $6 \mathrm{rad} / \mathrm{s}$ to $1.9 \mathrm{rad} / \mathrm{s}$, a decrease of 18.4%. Thus the position of the poaks and troughs, and any points relative to these, will be noved to the left on figure 6.1 the by 18.4%, and hence the position ondcycle which occurred at $147 \mathrm{ft} / \mathrm{s}$ now occurs at $120 \mathrm{ft} / \mathrm{s}$, so that in effect the point A has been moved across to coincide with $l 20 \mathrm{ft} / \mathrm{s}$ and reduced to a value given by point B. If this same procecure, using the same proportions, is now repeated for all taxiing velocities, a curve such as the lower curve in figure 6.1 may be construeted.

If these deductions are correct it will be seen that the effect of a reduction in oleo stiffness will be to reduce the response at all taxiing velocities, but that the reduction at some taxiing velocities will be greater than at others. The increase
in damping, although not changing the frequencies by the same extent, should have a similar effect. Further computations would of course be required to verify these deductions.

The most realistic method of varying the undercarriage position is to keep the same frequencies, calculated from the oleo stiffness and the proportion of the aircraft mass supported by that oleo. Using this nethod, as the main underuarriage moves aft from the standard position the nosewheel and pilot location responses decrease, whilst the mainwheel location response, after a slight reduction, increases. If the optimisation function is taken as the sum of the rms response accelerations at the mainwheel and pilot locations, then the aircraft under consideration is particulanly insensitive to undercarriage position, and little useful purpose would be served by using this method of reducing the response.

The best reduction in response is to ke gained by reducing the oleo stiffnesses. The values computed agree approximately with Wignot et al (ref. 22) who showed that a reduction of about 30% in equivalent linear stiffness of the tyre and oleo in series reduces both the passenger and crew station accelerations by 25% However, no account has been taken of landing imracts and clearly any reduction in stiffnesses would have to take into account the energy absouption requirements of a landing impact.

The reduction to be gained in response by increasing the oleo damping is not so great as that by reducing the stiffness. Furthermore, these studies started with values of $C_{1}=130801 \mathrm{bf} / \mathrm{ft} / \mathrm{s}$
and $C_{2}=6876 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$, and allowed the values to increase to twice these values. However, the values of equivalent damping calculated in Appendix C, i.e. $C_{1}=24650 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$ and $C_{2}=12900 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$, are felt to be more realistic for the Boeing 707. Reference to figure 4.29 indicates that beaause of the shape of the curves at these values, only slight reduction in response would be gained by increasing them quite substantially. This agrees with the findings of Wignot et al (ref. 22) who showed that for a given configuration, varying the hydraulic damping has a negligible effect on crew and passenger vertical accelerations.

The capability exists, in the computer programs developed, to do a complete optimisation using the actuel response program, with all flexural modes included, and varying all the undercarriage parameters, including tyro parameters if required. However, the computer time required for such a table would be prohibitive.

The simplified programs developed appear to be quite efficient in producing practically useful results quite quickly. For example, similar results were produced, using data from reference 37, as were produced in that reference (see figure 4.10), although the reference used an iterative technique to calculate the oleo damping (and lience presumably more computer time), whilst the programs used in these studies used a simply derived constant value for damping. However, for problems where large extremes of response are expected, an iterative technique should be used, preferably iterating a different damping constant at each frequency step, since increased response will produce increased oleo stroking velocity,
and hence increased damping. Hence the response at high response levels will tend to be overestimated if a constant value of damping is used (see figure 4.11). Similarly, results comparable with those in reference 13 have been produced, requiring only 33% of the computer time for the case where 6 flexural modes were included, and only $5 \frac{1}{2} \%$ for the case where rigid body modes only were included.

In the optimisation studies good working results for stiffnesses and damping have been computed using only 25 minutes of computer time on a computer which is, by modern standards, very slow. [All computer times quoted in this thesis have not included compilation time. 7 The procedure converges very quickly onto the minimum. However, it must be remembered that in all cases except the variation of undercarriage position, the minimum being suaght lay on a boundary - or more preaisely at the intersection of n boundaries. Hence values of PMULT, PDIV, PMAX and EPS could be chosen which would converge this particular type of problem quickly, without loss of accuracy. If the minimum did not lie in such a position, but lay in a trough, the values would have to be ciosen differen:ily. The value of EPS would probably have to be reduced to ensure accuracy, and the other values may have to be reduced to prevent oscillation back and forth across the minimum. The fact that the method converged rapidly with only $4 \frac{1}{2} \%$ error in the case of variation of undercarriage position cannot necessarily be taken as being representative of all "trough" problems without further investigation. It must be born in mind, of course, when adjusting EPS to obtain accurac., that for the later
optimisation studies the optimisation function itself is an approximation, albeit a quite reliable one so long as the peaks are not too close together.

These studies have only considered aircraft taxiing at constant velocities. Consideration of an accelerating airoraft, such as in a take-off or landing run, is not practical by the PSD method. However, an approximation to the take-off run could be fairly simply synthesised by letting the aircraft taxi for short times at a number of discrete velocities to fit the acceleration pattern of the aircraft. The number of peak counts of acceleration could then be calculated from the response PSD's for these times; several authors have presented methods of relating peak counts to PSD's (see refs $22,30,58$).

SECTION 7

CONCLUSIONS

1. The simplified system developed is useful in preliminary design, for the study of the effects of parameter variations, and for optimisation.
2. Iror the aircraft used for this investigation (the values are based on the Boeing 707) a good estimate of the response can be obtained by considering rigid body modes only. Of the flexural modes the lst and 4 th are by far the most predominant, but their effects tend to counterbalance each other. A similar study should be performed on any aircraft to be analysed before it is decided which modes to neglect.
3. The response accelcration at ay position on the fuselage generally increases with increased taxiing velocity. However, this is not alays a steady increase, particularly for pilot location response where undulations are apparent on the response curve, caused predominantly by the effect of the phased undercarriage inputs on the pitching mode. Similar, but not nearly so pronounced, undulations were apparent on the main undercarriage location response curve, caused predominantly by the same effects on the heaving mode.
4. The stiffness of the oleos would be the most rewarding parameter to vary in terms of reduction of response. The response decreases approximately linearly, in general, with decrease in equivalent linear oleo stiffness. The main olec has most effect on the
mainwheel location response, which is predominantly due to heave, the nose oleo having almost no effect on this response. Both the main and nose oleos have a large effect on the pilot and nosewheel location responses, which have large contributions from both the pitch and heave modes.
5. Increasing the oleo damping causes a decrease in response acceleration. However, a large increase in equivalent linear damping, from what is thought to be a realistic equivalent for the Boeing 707, does not cause a very significant decrease in response.
6. As the main undercarriage location is moved aft, the distance between the two undercarriages remaining constant, the pilot and nosewheel location responses deccrease, and the mainwheel location response, after a slight decrease, increases. The sum of the mainwheel and pilot location responses for the Boeing 707 remains fairly constant with change of undercarriage position. These variations assume what is thought to be the most realistic method of moving the undercarriages, i.e. keeping the frequency, calculated from the oleo stiffness and its proportion of the aircraft mass, conistant.
7. The approximate optimisation function developed produces good working optima by use of very little computer time.
8. Some of the optimum parameters produced may not be realistic when viewed in the context of landing requirements (for example the oleo stiffness may be too low). However, the performance
characteristics produced should provide a useful standard with which to compare the performance of a realizable system.

RFFHERENCES

1. MILWITZKY, B. and COOK, F.E.	Analysis of landing gear behaviour NACA TR 1154
2. HUTCHINSON, B.	Experimental investigation of underoarriage vibrations H.Sc. Thesis - College of Aeronautics, Cranfield 1969
3. MILWITZKY, B.	Study of taxiing problems associated with runmay roughness NASA Lemorandum 2-21-59L March 1959
4. COLEMAN, T.I. and IIALI, W.H.	```Inplications of recent investigations on runway roughness criteria AGARD Report 416 January 1963```
5. MORRTS, G.J. and MALL, A.T.	Recent studies of runtray roughness NASA conference on aircraft operating problem3 - Langley Rescarch Centre May 1965
6. HOPRIS, G.J.	Response of several turbojet airplanes to runtray roughmess. NASA TN D-5740 Warch 1970
7. MRRIS, G.J.	Response of a turbojet ani a piston-engine transport airplane to runway roughness TMSA TN D-3161 December 1965
8. MITCHELJ, C.G.B.	Vertical acceleration in the cockpit of a subsonic transport aircraft during take-off meanured during airline operation Ministry of Technology - Aeronautical Research Council. C.P.No. 1120
9. MITCFELI, C.G.B.	The symmetric response of Concorde to uneven runways RAE Tech. Hemo. Structures 742 March 1969
10. GJIGNARD, J.C.	Response to low-frequency vibration The Chartered Mechanical Engineer October 1968
11. GUIGNARD, J.C.	Vibration Λ textbook of aviation physiology (ed. Gillies, J.A.) Chapter 29. Pergamon Press 1965
12. SILSBY, N.S.	An analytical study of effects of some airplane and landing-gear factors on the response to runtay roughness with application to supersonic transports NASA TN D-1492 December 1962

13. IUNG, C.C., PENZIDN, J. and HORONJEFF, R .	The effect of runway unevenness on the dynamic response of supersonic transports NASA CR-119 October 1964
24. MIICHELI, C.G.B.	Some measured and calculated et'tects of munway unevenness on a supersonic transport aircraft The Acronautical Journal of the Royal Aeronautical Society May 1971
15. HUTTON, G.B.	Vertical coclppit accelerations measured on an operational jet transport aircraft during talse-off and landing RAE TR 69214 1969
16. CALIENDI, S.C. and HUMPHREYS, B.	Taviing trials on levered suspension undercarriages De Havilland Lircraft Co. Ltd. Technical Note 121/59 March 1963
17. HALL, H. and HUTTON, G.B.	Operational and theoretical studies on the effect of pilot action on heavy landings Ministry of Teahology - Acronautical Rescarch Council. C.P.No. 11191970
18. MORRIS, G.J.	Response of a jet trainer aircraft to roughness of three runways. IVASA TN D-2203 May 1964
19. HALL, A.W. and KOPELSON, S.	The location and simulated repair of rouch areas of a given rumway by on enalyticel method NASA TN D-1486 October 1962
20. HOUBOLT, J.C.	Runway roughness studies in the aeronautical field Journal of the Air I'ransport Division Proceedings of the American Society of Civil Engineers March 1961
21. NEULS, G.S. et al	```Optimum fatigue spectra Technical Report No. ASD-TR-6l-235(USAF) April }196```
22. WIGNOT, J.E. et ol	The development of dynamic taxi desien procedures FAA Report DS-68-11 June 1968
23. MITCHELI, C.G.B.	American experience of gust and taxi design methods and gust alleviation RAB Tech. Lemo. Structures 752 May 1969

24. MOPRIS , G.J.	Three-track runway elevation profiles measured at two United States Government installations INASA TN D-5545 November 1969
25. REYNOLDS, J., JOHISS, D.J. and AIPD, R.J.	The optimisation of undercarriage suspension characteristics by a deterministic nethod A paper, presented at the Synposium on Nonlinear Dynamics - University of Technology, Loughborough March 1972
26. THOMPSON, W.E.	Heasurements and power spectra of munway roughness at airports of the North Atlantic Treaty Organisation NACA TIN 4303 July 1958
27.	Ground Lanocuvring Joint Airworthiness Committee Paper No. 912 - Rat March 1972
28. WALLS, J.H., HOUBOLT, J.C. and PRESS, H.	Sone neasurements and power spectra of runway roughness NACA TN 3305 November 1954
29. PRESS, H. and TUKEY, J.T.	Power spectral methods of analysis and their application to problems in airplane dynamics AGARD Flights Test Lenual, Vol.IV, Part IVc
30. HOUBOLT, J.C. STEINER, R. and PRATT, K.G.	Dynamic response of airplanes to atmospheric turbulonce including flight data on input and response NASA TR R-199 June 1964
32. ROBGON, \because. ${ }^{\text {d. }}$	An introduction to random vibration Edinburgh University Press 1963
32. BENIAT, J.S.	Principles and applications of random noise theory John Wiley and Sons Inc. 1958
33. HOBLIT, F.M.	Profile and power spectra of Lockheed Air Terminal runways Lockheed Aircraft Corporation Report No. 10809 September 1955
34. CRANDALL, S.H.	Perturbation techniques for random vibration of non-linear systems Journal of the Acoustical Society of America, Vol. 35, No. 11. November 1963
35. CAUGHEY, T.K.	Equivalent linearization techniques Journal of the Acoustical Society of America, Vol. 35, No. 11. November 1963

36. ROBSON, J.D. and DODDS, C.J.	The response of vehicles components to random road-surface undulations A paper presented at the 1970 International Automobile Safety Conference, 13th FIS ITA Congress
37. KIRK, C.I.	The rondom heave-pitch response of aircraft to runway roughness The Aeronautical Journal of the Royal Aeronautics I Society July 1971
38. KIRK, C.L. and PERRY, P.J.	Analysis of taxiing induced vibrations in aircraft by the pomer spectral density method The Aeronautical Journal of the Royal Aeronautical Society March 1971
39. KIRK, C.I.	Analysis of taxiing induced vibrations in aircraft by the power spectral density method Cranfield Report Aero. No. 15, Cranfield Institute of Technology February 1973
40. COOK, T.E. and MILWITZKY, B.	Effects of interaction on lending-gear behaviour and dynamic loads in a flexible airplane structure NACA TN 3467 August 1955
41. CAUGHEY, T.K.	Derivation and application of the FokkerPlanck equation to discrete non-linear dynamic systems subjeoted to white noise random excitation Journal of the Acoustical Society of America, Vol. 35, No. 11. November 1963
42. HOUBOLT, J.C., WALLS, J.H. and SMILEY, R.F.	On spectral analysis of runway roughness and loads developed during taxiing NACA TN 3484
43. HALI, H.	Some theoretical studies concerning oleo damping characteristics Ministry of Technology - Aeronautical Research Council. C.P. No. 9511967
44. THOMPSON, A.G.	Optimum darping in a rardomly excited nonlinear suspension Proceedings, Automobile Division, Institution of Lechanical Engineers, Vol.184, Part 2A 1970
45. KIRK, C.L.	Random vibration with non-linear damping The Aeronautical Journal of the Royal Aeronautical Society November 1973
46. HOBLIT, F.M. et al	Development of a power-spectral gust design procedure for civil aircraft FAA Report ADS-53

$\begin{aligned} & \text { 47. FULIER, J.R. } \\ & \text { et al } \end{aligned}$	Contributions to the development of a porer-spectral gust design procedure for civil aircraft FAA Report ADS - 54
48. KIEFER, J.	Optimum sequential search and approximation methods under minimum regularity assumptions. Journal of the Society of Industrial and Applied Hathematics. 5, INo. 3
49. CCOPER, 工. and STEINBERG, D.	Introduction to Methods of Optimisation. TV. B. Saunders Company
50. POWELL, M.J.D.	An efficient method of finding the mininum of a function of several variables without calculating derivatives. Computer Journal, 7. July 1964
51. DAVIDON, 7.C.	Variable metric method for minimization ALC Rescarch and Development Report, ANL - 5990
52. HOOKE, R, and JEEVES, T.A.	```Direct search solution of numerical and statistical problems. Journal of the Association for Computing Wachinery, 8. April 1961```
53. ROSENBROCK, H / H.	An automatic method for finding the greatest or the least value of a function. The Computer Journal, 3. October 1960
54. KOWALIK; J. and ORBORNE, IS.R.	Wethods for unconstrained optimization problems Elsevier
55. ZANGWILL, T.I.	Minimizing a function without calculating derivatives. The Computer Journal, 10.
56. CAUCHY, 1 .	Méthode Générale pour la Résolution des Systémes d'Équations Sinultanées. Comptes Rendus Hebdomadaires des Séances de 1'Académie des Sciences, Paris, 25. October 1847
57. FLETCHER, R. and POWML,M.J.D	A rapidly convergent descent method for minimisation. Computer Journal, 6.
58. AUSTIN, IT. H.	A summary of some recent developments in the description of atmospheric turbulence used for aircraft structural design. USAF SEG-TR-66-45 August 1966

APPENDIX A

InPROVED CENTRAL DEVIATION VALUE

A. 1 Houbolt's derivation of maximum deviation from the mean (ref.20)

The mean-square value of roughness that is present in
a length L is given by

$$
\begin{equation*}
\sigma^{2}=\int_{\Omega_{1}=\frac{2 \pi}{L_{1}}}^{\infty} \frac{\vec{c}}{\Omega^{2}} d \Omega=\frac{\overline{C L}}{2 \pi} \tag{A-I}
\end{equation*}
$$

Hence the root-mean-square value is given by

$$
\begin{equation*}
\sigma=\sqrt{\frac{\overline{\mathrm{C}} \mathrm{~L}}{2 \pi}} \tag{A-2}
\end{equation*}
$$

Rancom process theory shows that the maximum deviation, σ^{\prime}, in a length L can be given as

$$
\sigma^{\prime}=k \sigma
$$

where k is a form factor which depends on the nature of the roughness. Experience has show that the value of k for runway roughness is approximately the same as the value for a pure sine wave, that is $\mathrm{k}=\sqrt{2}$. Hence, the maximum deviation is given by

$$
\begin{equation*}
\sigma^{\prime}=\sqrt{2} \sigma=\sqrt{\frac{\overline{C L}}{\pi}} \tag{A-3}
\end{equation*}
$$

and since for new construction $\bar{C}=6.7 \times 10^{-6} \mathrm{rad} \mathrm{ft}$, then

$$
\sigma^{\prime}=0.00146 \sqrt{L} \text { feet } \quad(A-4)
$$

A. 2 Derivation of improved value of central deviation

Figure $A(i)$ shows the central deviation δ from a straight line of length L dram between any two points on a runway profile. Houbolt's analysis for δ is reproduced below for reference.

In terms of runway elevations, δ may be written.

$$
\begin{equation*}
\delta=\frac{y(x+a)+y(x-a)}{2}-y(x) \tag{A-5}
\end{equation*}
$$

The Fourier transform of δ is

$$
\begin{align*}
P_{\delta}(\Omega) & =\frac{I}{2}\left(e^{i \Omega a}+e^{-i \Omega a}\right) P_{y}-P_{y} \\
& =[\cos (\Omega a)-1] P_{y}(\Omega) \tag{A-6}
\end{align*}
$$

This in turn yields the spectrum

$$
\begin{align*}
\Phi_{\delta}(\Omega) & =[\cos (\Omega a)-1]^{2} \Phi_{y}(\Omega) \\
& =\left(4 \sin ^{4} \frac{\Omega a}{2}\right) \Phi_{y}(\Omega) \tag{A-7}
\end{align*}
$$

The mean square valuc of δ is

$$
\begin{align*}
\overline{\delta^{2}} & =\int_{0}^{\infty} \Phi_{\delta}(\Omega) d \Omega \\
& =\int_{0}^{\infty} 4 \Phi_{y}(\Omega) \sin ^{4}\left(\frac{\Omega a}{2}\right) d \Omega \tag{A-8}
\end{align*}
$$

If the roughness spectrum is assumed to be given by the curve

$$
\begin{equation*}
\Phi_{\mathrm{y}}(\Omega)=\frac{\bar{c}}{\Omega^{2}} \tag{A-9}
\end{equation*}
$$

then equation ($A-8$) yields the following root-mean-square value of δ

$$
\begin{equation*}
\sqrt{\overline{\delta^{2}}}=\sqrt{\frac{\pi \overline{\mathrm{C}} a}{2}}=\frac{1}{2} \sqrt{\pi \overline{\mathrm{C}} L} \tag{A-10}
\end{equation*}
$$

in which $L=2 a$. With a form factor of $\sqrt{2}$, as used previously, the maximum values of δ are round to be in the order of

$$
\begin{equation*}
\delta_{\max }=\sqrt{2} \sqrt{\delta^{2}}=\sqrt{\frac{\pi \overline{C L}}{2}} \tag{A-II}
\end{equation*}
$$

For values of $\bar{C}=6.7 \times 10^{-6}$ and 20×10^{-6} respectively, equation (A-11) gives

$$
\begin{aligned}
\delta_{\max } & =0.00324 \sqrt{\mathrm{~L}} \mathrm{ft} \text { (new construction) } \\
\cdot \delta_{\max } & =0.00561 \sqrt{\mathrm{~L}} \mathrm{ft} \text { (needs repair) }
\end{aligned}
$$

It has been stated in sub-section 1.I that these volues are felt to be suspect. Referring to equation ($\Lambda-8$) no reason can be seen why the lower limit of integration should be zero; since the value of $\bar{\delta}^{2}$ within a length L is required the lower limit should be $\Omega=\frac{2 \pi}{L}$ as in equation (A-1) Thus it is suggested that equation ($A-8$), after substitution of equation ($A-9$), should read

$$
\begin{equation*}
\overline{\delta^{2}}=\int_{\Omega=\frac{2 \pi}{L}}^{\infty} 4 \cdot \frac{\bar{c}}{\Omega^{2}} \cdot \sin ^{4}\left(\frac{\Omega a}{2}\right) d \Omega \tag{A-12}
\end{equation*}
$$

from which it is clear that

$$
\begin{equation*}
\overline{\delta^{2}}<\int_{\Omega=\frac{2 \pi}{L}}^{\infty} 4 \frac{\bar{c}}{\Omega^{2}} \tag{A-13}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\overline{\delta^{2}}<\frac{2 \overline{C I}}{\pi} \tag{A-14}
\end{equation*}
$$

and

$$
\begin{align*}
\delta_{\max } & =\sqrt{2 \sqrt{\delta^{2}}} \\
& <2 \sqrt{\frac{\overline{\mathrm{GL}}}{\pi}} \tag{A-15}
\end{align*}
$$

Thus, from equations ($A-15$) and ($A-3$)

$$
\delta_{\max }<2 \sigma^{\prime}
$$

In an attempt to estimate an approximate expected value of $\delta_{\max }, \sin ^{4}\left(\frac{\Omega_{a}}{2}\right)$ is expanded in equation $(\Lambda-12)$ and a substitution made for $a=\frac{L}{2}$.

Thus

$$
\begin{align*}
\overline{\delta^{2}} & =\int_{\Omega=\frac{2 \pi}{L}}^{\infty}\left[\frac{3}{2} \frac{\bar{C}}{\Omega^{2}}+\frac{\bar{C}}{2 \Omega^{2}} \cos \Omega L-\frac{2 \bar{C}}{\Omega^{2}} \cos \frac{\Omega L}{2}\right] d \Omega \\
& =\frac{3 \overline{C L}}{4 \pi}+F(I) \tag{A-16}
\end{align*}
$$

where $\cdot F(L)=\int_{\Omega=\frac{2 \pi}{L}}^{\infty} \frac{\bar{C}}{\Omega^{2}}\left[\frac{1}{2} \cos \Omega L-2 \cos \frac{\Omega L}{2}\right] d \Omega$
Now $\left.\left\lvert\, \frac{1}{2} \cos \Omega L-2 \cos \frac{\Omega L}{2}\right.\right]$ cannot exceed 2.5 .
Hence

$$
\begin{equation*}
F\left(L_{1}\right)<\frac{5 \bar{C} L}{4 \pi} \tag{A-18}
\end{equation*}
$$

confirming equation (Λ - 14)

However, examination of figure $\Lambda(i i)$ indicates that since the range 0 to $\frac{2 \pi}{L}$ is not included in the integration for $\overline{\delta^{2}}$, and hence for $F(L)$, the value of $F(L)$ will be very much less than the value of $\int_{\Omega=\frac{2 \pi}{L}}^{\infty} \frac{2.5 \overrightarrow{\mathrm{C}}}{\Omega^{2}} \mathrm{~d} \Omega$.

$$
\begin{equation*}
\text { i.e. } F(L) \ll \frac{5 \bar{C} L}{47 \pi} \tag{A-19}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
F(I) \gg-\frac{3 \bar{C} L}{4 \pi} \tag{A-20}
\end{equation*}
$$

It may perhaps be concluded from equations ($A-19$) and ($A-20$) and from figure $A(i i)$ that

$$
T(L) \bumpeq \frac{\bar{C} L}{4 \pi}
$$

so that

$$
\overline{\delta^{2}}=\frac{\overline{\mathrm{C}} L}{\pi}
$$

and hence

$$
\delta_{\max }=\sqrt{2} \sqrt{\delta^{2}}
$$

$$
\bumpeq \sqrt{\frac{2 \bar{\sigma} \mathrm{~L}}{\pi}}
$$

from which

$$
\begin{equation*}
\delta_{\max }=\sqrt{2} \sigma^{\prime} \tag{A-2I}
\end{equation*}
$$

Thus, suggested values of central deviation from a straight line of lengt! L dram between any two points on a runway profile, to replace Houbolt's values (ref. 20) are

$$
\begin{aligned}
& \delta_{\max }=0.00206 \sqrt{\mathrm{~L} f t} \text { (new construction) } \\
& \delta_{\max }=0.00356 \sqrt{\mathrm{~L} f t} \text { (needs repair) }
\end{aligned}
$$

DERIVATION OF ARITHMETIC MEAN RUNWAY

The PSD of a typical runway is given by

$$
\Phi_{i}(\Omega)=\frac{\overrightarrow{\mathrm{c}}_{j}}{\Omega_{i}}
$$

If the arithmetic mean 0 a set of values $\frac{a_{j}}{b_{i}}$ is required then

$$
\text { Arithmetic mean }=\sum_{i=\frac{1}{m}}^{m} \frac{a_{i}}{b_{i}}
$$

$$
=\frac{1}{m}\left[\frac{\left.a_{1}\left(b_{2} \cdot b_{3} \cdot b_{4}-\infty\right)+a_{2}\left(b_{1} \cdot b_{2} \cdot b_{4}--\right)+a_{3}\left(b_{1} \cdot b_{2} \cdot b_{4}-\right)+-\right]}{b_{1} b_{2} b_{3} b_{4}}\right]
$$

Thus it is not sufficient to find the mean of the numerator and denominator separately.

Referring to figure 2.2 the PSD curves can be defined by stating values of PSD at two points on each of the two straight lines. Table $B 1$ giver the values of PSD at $\Omega=0.05$ and $\Omega=1.0$ for line A and at $\Omega=0.1$ and $\Omega=1.0$ for line B for each runway in reference 26.

Taking values fromthe table,

Line A

$$
\begin{aligned}
& \text { Arithmetic mean of } \Phi(\Omega) \text { at } \Omega=0.05 \text { is } \\
& \qquad \begin{aligned}
\Phi_{A}(0.05)= & \frac{\sum_{i=1}^{m} \Phi_{i}}{m}
\end{aligned}=\frac{100.4 \frac{86 \times 10^{-2}}{37}}{}=2.72 \times 10^{-2} \\
& \text { Arithmetic mean of } \Phi(\Omega) \text { at } \Omega=1.0 \mathrm{is} \\
& \qquad \Phi_{A}(1.0)=\frac{239.79 \pi 10^{-6}}{37}=6.49 \times 10^{-6}
\end{aligned}
$$

Line B

$$
\begin{aligned}
& \text { Arithmetio mean of } \Phi(\Omega) \text { at } \Omega=0.1 \text { is } \\
& \qquad \Phi_{B}(0.1)=\frac{88.470 \times 10^{-3}}{37}=2.39 \times 10^{-3} \\
& \text { Arithmetic mean of } \Phi(\Omega) \text { at } \Omega=1.0 \text { is } \\
& \qquad \Phi_{B}(1.0)=\frac{398.61 \times 10^{-6}}{37}=10.78 \times 10^{-6}
\end{aligned}
$$

These values are plotted on figure Bl.

Slopes

a. Line A

Log $2.72 \times 10^{-2}=-2+.4346$
Log $6.49 \times 10^{-6}=-6+.8122$
$\log 0.05=-2+.6990$
$\log 1.0=0$
Thus, slope of line $\Lambda=\frac{(-6+.8122)-(-2+.4346)}{0-(-2+.6990)}$

$$
=-2.79
$$

b. Line B

Similarly, slope of line $B=-2.35$

Intersection

The point of intersection of the two lines is given by

$$
\frac{6.49 \times 10^{-6}}{\Omega^{2.79}}=\frac{10.78 \times 10^{-6}}{\Omega^{2.35}}
$$

Thus the PSD of the arithmetic mean runway is given by

$$
\begin{aligned}
& \text { If } \Omega<0.32 \mathrm{rad} / \mathrm{ft}, \Phi(\Omega)=\frac{6.49 \times 10^{-6}}{\Omega^{2.79}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft} \\
& \text { If } \Omega>0.32 \mathrm{rad} / \mathrm{ft}, \Phi(\Omega)=\frac{10.78 \times 10^{-6}}{\Omega^{2.35}} \mathrm{ft}^{2} / \mathrm{rad} / \mathrm{ft}
\end{aligned}
$$

TABLE BI
Analysis of runways in reference 26

Fig.	IINE \triangle		LINE B	
	Φ at $\Omega=0.05$	Φ at $\Omega=1.0$	Φ at $\Omega=0.1$	Φ at $\Omega=1.0$
	10^{-2}	10^{-6}	10^{-3}	10^{-6}
3	1.738	3.47	2.239	11.75
	1.738	3.47	2.239	11.75
5	0.794	7.94	1.549	7.94
7	0.398	1.26	0.363	5.37
10	9.120	1.26	5.623	35.48
	9.120	1.26	5.623	35.48
12	2.692	2.24	0.550	6.31
15	2.754	0.54	0.661	5.37
	1. 349	3.47	0.417	20.89
20	2.951	17.78	5.248	17.78
	2.951	17.78	5.248	17.78
	2.951	17.78	5.248	17.78
	2.951	17.78	5.248	17.78
23	1.318	3.55	1.995	3.55
	3.981	0.00015	0.398	3.31
26	1.413	0.631	1.318	3.55
	4.266	0.631	3.311	12.59
29	2.818	0.013	0.525	4.47
	1.122	0.00068	$\because 0.661$	8.91
32	10.00	0.00007	1.778	3.47
	10.00	0.00007	1.778	3.47
37	1.445	0.00501	1.202	7.08
	1.445	0.00501	1.202	7.08
	1.445	0.00501	1.202	7.08
	1.445	0.00501	1.202	7.08
40	0.933	1.00	0.166	3.16
	0.933	1.00	0.166	3.16
43	2.951	0.0066	2.818	10.00
	2.951	0.0066	2.818	10.00
46	1.698	8.51	3.090	8.51
	1.698	8.51	3.090	8.51
49.	1.259	2.63	1.820	2.63
	1.259	2.63	1.820	2.63
52	1.585	13.80	0.631	30.20
	0.794	1.226	0.234	6.31
55	1.072	14.45	2.399	14.45
56	1.148	85.17	12.590	15.85
POTALS	100.486	239.79	88.470	398.61

POVVER SPECTRAL DENSITY FUNCTIONS

The basic data from which the following data and linearised undercarriage characteristios are derived is taken from reference 13.

C. 1 Undercarriage and pilot positions

The dimensions required for use in this analysis are shown in figure C 1.
C. 2 Masses and Inertias

$$
\begin{aligned}
& \text { Gross weight o1 aircraft }=324040 \mathrm{lbf} \\
& \therefore \text {. Wass of aircraft }=10078 \mathrm{slug} \\
& \text { Unsprung weight of tro } \\
& \quad \text { main undercariages, } \mathrm{V}_{1}=4992 \mathrm{lbf} \\
& \therefore \text { Unsprung mass, } M_{1}=155 \mathrm{slug} \\
& \text { Unsprung weight of nose } \\
& \text { undercarriage, } \nabla_{2}=342 \mathrm{Ibf} \\
& \therefore \text { Unsprung mass, } M_{2}=10.6 \mathrm{slug}
\end{aligned}
$$

- Total sprung mass of aircraft, M [1,1]

$$
\begin{aligned}
& =10078-(155+10.6) \\
& =9912 \text { slug }
\end{aligned}
$$

Aircraft Moment o: Inertia in pitch about gentre of ravity, $J=0.645 \times 10^{8} \mathrm{Ibf}$ in s^{2}

$$
\text { i.e. } J=U J[2,2]=5.375 \times 10^{6} \text { slug } \mathrm{ft}^{2}
$$

C. 3 Modal freauencies, ℓ eneralised masses, and damoing for first 6 flexible modes

Flexible Mode No.	Modal Frequency $\mathrm{rad} / \mathrm{s}$	Generalised Wass Slug
1	7.22	369.36
2	18.00	278.29
3	23.85	61.23
4	31.0	73.84
5	38.8	72.54
6	55.0	192.46

Damping ratio of airframe, assumed the same in each mode, $\beta=0.025$ C. 4 Mode shapes for first 6 flexible modes

Flexible lode No.	Location on Fuselage		
	Lain u/c	Nose u/c	Pilot Location
2	-0.122	0.030	0.056
3	0.037	0.089	0.103
4	-0.010	0.298	0.383
5	0.230	-0.560	-0.800
6	-0.168	0.040	0.080
	-0.065	0.083	0.160

C. 5 Undercarriage stiffnosses

The spring force curves for the main and nose undercarriages shom in figure C 2 are reproduced fro: reference 13 . The values of spring stiffnesses used for initial response calculations in this investigation are the stiffnesscs (i.e. slopes of curves) at the statio equilibrium position with tho aireraf't at ita maximum all-upweight.

Sprung weight of aircraft at max. AUW

$$
\begin{aligned}
& =324030-(4992+342) \\
& =3187001 \mathrm{bf}
\end{aligned}
$$

- Sprung weight on two mainwheels

$$
=318,700 \times \frac{656}{708}=295,300 \mathrm{Ibf}
$$

Sprung weight on nosewheel $=318700 \times \frac{52}{708}$

$$
=23400 \mathrm{Ibf}
$$

Thus, drawing tangents to the curves at these values in figure $C 2$ gives the following approximate values:

$$
\begin{aligned}
k_{\text {main }}=k_{1}=\frac{500000}{20} \times \frac{9.6}{2.4} & =100000 \mathrm{lbf} / \mathrm{in} \\
& =1.2 \times 10^{6} \mathrm{lbf} / \mathrm{ft}
\end{aligned}
$$

$$
\begin{aligned}
k_{\text {nose }}=k_{2}=\frac{39000}{10} \times \frac{8}{4} & =7800 \mathrm{lbf} / \mathrm{in} \\
& =93600 \mathrm{lbf} / \mathrm{ft}
\end{aligned}
$$

C. 6 Undercarriage damping

The damping coefficient curves for the main and nose undercarriages shown in figure 03 are reproduced from Reference 13. The values of equivalent linear damping coefficients to correspond to non-linear damping coefficients may be calculated by two main methods. One is to equate the damping force of the two coefficients; the other is to equate the energy absorbed per cycle using the two coefficients. Both methods require a knomledge of the non-linear damping coedficient, and a stroking velocity for the oleo. The non-linear damping coefficients may be obtained from the curves in figure $C 3$ by using strokes at static equilibrium position obtained from the curves in figure C2. The velocitics are a little more difficult. There are available, in reference 13, mean square values, ${\overline{\dot{x}_{i}}}^{2}(t)$, of the generalised co-ordinates of response velocity of the aircraft in the various modes. These may be used to calculate an approximate rms response velocity at the main and nose undercarriages which will be used as an approximate rms oleo stroking velooity.

$$
\text { If a quantity } V(t)=V_{1}(t)+V_{2}(t)+\cdots+V_{n}(t) \text {, }
$$

then the mean-square value of V is given by

$$
\begin{aligned}
\overline{\mathrm{V}^{2}}(t) & =\frac{1}{T_{0}} \int_{0}^{T} \mathrm{v}^{2} d t \\
& =\frac{1}{T_{0}} \int_{0}^{\top}\left(V_{1}+V_{2}+V_{3}+\cdots \cdot V_{n}\right)^{2} d t \\
& =\frac{1}{\frac{1}{1}} \int_{0}^{\top}\left[\left(V_{1}^{2}+V_{2}^{2}+\cdots+v_{n}^{2}\right)+\left(2 \sum V_{1} V_{j}\right)\right] d t
\end{aligned}
$$

For a large number of modes $2 \sum \mathrm{~V}_{\mathrm{i}} \mathrm{V}_{\mathrm{j}}$ will approach zero, so that it can be said that

$$
\begin{aligned}
\overline{V^{2}}(t) & \simeq \frac{1}{T_{0}} \int_{0}^{T}\left(V_{1}{ }^{2}+V_{2}^{2}+\cdots-V_{n}^{2}\right) d t \\
& =\frac{1}{T} \int_{0}^{T} V_{1}^{2} d t+\frac{1}{T} \int_{0}^{T} V_{2}^{2} d t+\cdots+\frac{1}{T_{0}} \int_{0}^{T} V_{n}^{2} d t \\
& ={\overline{V_{1}}}^{2}(t)+{\overline{V_{2}}}^{2}(t)+\cdots+{\overline{V_{n}}}^{2}(t)
\end{aligned}
$$

Thus
rms value of $V \bumpeq \sqrt{\text { Sum of mean-square values of } V_{i}}$
Using the mode shapes given in C.4, remembering that $\phi^{3}=1$ (rigid body heave) and $\phi^{4}=-x$ (rigid body pitch) where \therefore is the horizontal distance from the c.g. (sub-section 3.2.1), and taking values of $\overline{\mathrm{X}}_{\mathrm{j}}{ }^{2}(\mathrm{t}$) from Table 3 (p .92) of Reference 13 gives

Root-mean-square value of vertical velocity at main undercarriage

$$
\begin{aligned}
\text { location } & =\sqrt{\sum\left(\phi_{l}^{j}\right)^{2}\left(\dot{x}_{j}\right)^{2}} \\
& =\sqrt{64.94} \\
& =8.05 \mathrm{in} / \mathrm{s}
\end{aligned}
$$

Similarly, rms value of vertical velocity at nose undercarriage

$$
\text { location }=15.7 \mathrm{in} / \mathrm{s}
$$

If these values are assumed to be the oleo stroking velocities they will at the best be only approximations as they take no account of the vertical velocity of the wheel, it being assumed that the wheel remains still relative to the runway. Whilst the mean and mean-square values of main and nose wheel velocities are available in reference 13 , it is felt that since

$$
\begin{aligned}
\dot{\mathbf{s}} & =\dot{\mathbf{u}}-\mathbf{z} \\
\text { where } \quad \dot{s} & =\text { stroking velocity } \\
\dot{u} & =\text { airframe velocity } \\
\dot{x} & =\text { whecl velocity }
\end{aligned}
$$

it cannot be gaid that

$$
\overline{\dot{s}^{2}}(t)=\overline{\dot{u}^{2}}(t)+\overline{x^{2}}(t)
$$

since, with only two values, it cannot be assumed that

$$
\frac{2}{T} \int_{0}^{T} \dot{u} \hat{y} d t=0
$$

However, the above velocities give an idea of the order of the velocities, and thus will give on initial estimate of the order of the equivalent linear damping coctficient which should be used. Since the ultimate aim is optimisation of the undercarriage characteristics, all that is required is a starting value. However, it will be usetul if this is as accurate as possible from the available data, for the purpose of comparing response values for the aircraft with those obtained by previous authors.

From figure C2(a), for the main undercarriage at static equilibrium position,

$$
\begin{aligned}
\text { Stroke position } & =20 \mathrm{in} \\
\text { From figure C3(a) } \quad \mathrm{C}_{\mathrm{Nm}} & =160 \mathrm{Ibf} /(\mathrm{in} / \mathrm{s})^{2}
\end{aligned}
$$

Similarly, for the nose undercarriage, from figures
$\mathrm{C} 2(\mathrm{~b})$ and $\mathrm{C} 3(\mathrm{~b})$
Stroke position $=14 \mathrm{in}$

$$
\mathrm{C}_{\mathrm{Tn}}=43 \mathrm{lbf} /(\mathrm{in} / \mathrm{s})^{2}
$$

where $C_{N_{m}}$ and $C_{N_{n}}$ are the non-linear (i.e.v|V|) damping coefficients for the main and nose undercarriage olcos respectively.

The equivalent linear damping coefficient C_{e} may now be calculated using one of the methods mentioned above. The first method would be to equate damping forces caused by the two damping coefficients, so that

$$
\begin{aligned}
c_{e} \cdot \dot{x} & =c_{N} \cdot \dot{x}^{2} \\
\text { giving } \quad c_{e} & =c_{N} \cdot \dot{x}
\end{aligned}
$$

It is felt that the better method is to calculate C_{e} by assuming the same energy absorption by the two types of damping over a given period. It can be show (ref. 38) that for a harmonic input, equating energy dissipated per cycle gives

$$
c_{e}=\frac{8}{3 \pi} \cdot c_{N} S \omega
$$

where S is the stroke amplitude
ω is the input frequency
Thus, since the motion is harmonic, $S \omega$ is the maximum stroking velocity and therefore equal to $\sqrt{2} \dot{\mathrm{~S}}$ where $\dot{\mathrm{S}}$ is the rms value of the stroking velocity.

Hence, $\quad C_{e}=\frac{8 \sqrt{2}}{3} \cdot C_{N} \dot{S}=1.2 C_{N S} \dot{S}$

$$
=1.2 c_{\mathbb{N}} \dot{\mathrm{X}}
$$

However, since the value of \dot{X} obtained is calculated from the results of a random input it is better to equate the energy absorptions in such a process. It can be show (ref. 38) that for a random input having Gaussian distribution, equating enerey dissipated over a period of time gives

$$
C_{e}=2 \sqrt{\frac{2}{\pi}} C_{N} \cdot \dot{X}=2.593 C_{N} \cdot \dot{X}
$$

It can be seen that, of the above methods, the last one will give the greatest values for C_{e}. For main oleo, equivalent linear damping

$$
\text { coefficient, } \begin{aligned}
C_{\mathrm{em}} & =1.593 \times 160 \times 8.05 \\
& =2055 \mathrm{Ibf} / \mathrm{in} / \mathrm{s} \\
\text { i. e. } C_{\mathrm{em}} & =24650 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

For nose oleo, equivalent linear damping . "

$$
\begin{aligned}
& \text { coefficient, } C_{\text {cn }}=1.593 \times 43 \times 15.7 \\
& =1075 \mathrm{Ibf} / \mathrm{in} / \mathrm{s} \\
& \text { i.c.Cen }=12900 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

C. 7 Tyres

C.7.1 Stiffnesses

Total Main Undercarriage tyre stiffness, $k_{t I}=1.158 \times 10^{6} 1 \mathrm{bf} / \mathrm{ft}$ Total Nose Undercarriage tyre stiffness, $\mathrm{k}_{\mathrm{t} 2}=162000 \mathrm{Ibf} / \mathrm{ft}$

C.7.2 Damping

It is assumed that the damping in the tyres is 2.5% of the critical damping for the wheel mass on the tyre.
Now $C_{\text {crit }}=2 M \omega_{n}=2 M \sqrt{\frac{K}{M}}=2 \sqrt{\mathrm{KM}}$

[^1]\[

$$
\begin{aligned}
c_{t 1} & =.025 \times 2 \sqrt{k_{t 1} M_{1}} \\
& =.025 \times 2 \sqrt{1.158 \times 10^{6} \times 155} \\
& =670.8 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}
\end{aligned}
$$
\]

Nos:wheel tyre damping coefficient,

$$
\begin{aligned}
c_{t 2} & =.025 \times 2 \sqrt{162000 \times 10.6} \\
& =65.6 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

C. 8 Summary of prerem dato for aircraft with 6 flexible modes

 for initial response studics and as starting data for optimisation studies| $\begin{aligned} & \text { Analysis } \\ & \text { Symbol } \end{aligned}$ | $\begin{aligned} & \text { Program } \\ & \text { Identifier } \end{aligned}$ | Value |
| :---: | :---: | :---: |
| k_{1} | K1 | $1.2 \times 10^{6} \mathrm{lbf} / \mathrm{ft}$ |
| k_{2} | IK2 | $93600 \mathrm{lbf} / \mathrm{ft}$ |
| $\mathrm{C}_{1}, \mathrm{c}_{\mathrm{cm}}$ | C1 | $24650 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ |
| $\mathrm{C}_{2}, \mathrm{C}_{\mathrm{en}}$ | C2 | $12900 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ |
| $\mathrm{k}_{\mathrm{t} 2}$ | KTI | $1.158 \times 10^{6} 1 \mathrm{bf} / \mathrm{ft}$ |
| $\mathrm{k}_{\mathrm{t} 2}$ | KT2 | $162000 \mathrm{lbf} / \mathrm{ft}$ |
| $C_{\text {t1 }}$ | CII | $670.8 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ |
| $c_{\text {t2 }}$ | CT2 | $65.6 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$ |
| d | UTBASE | 59 ft |
| β | BETA | 0.025 |
| M_{2} | M1 | 155 slug |
| H_{2} | W2 | 20.6 slug |
| $\Gamma_{M_{j}}$ | $M J[i, i]$ | $\left[9912,5.375 \times 10^{6}, 369.36,278.29\right.$
 $701.23,635.84,742.54,192.46]$ |
| $r_{\omega_{j}}$ | WJ [i,i] | $\left.\begin{array}{cccc} {[0,} & 0, & 7.22, & 18.0, \\ 23.85, & 31.0, & 38.8, & 55.0 \end{array}\right]$ |

Analysis Symbol	Program Identifier	Value
$\left[\phi_{1}{ }^{j}\right]$	PHII	$\left.\begin{array}{l} {[1.0,4.333,-0.122,0.037} \\ -0.010, \end{array} 0.230,-0.168,-0.065\right]$
$\left[\phi_{2}{ }^{j}\right]$	PHI2	[1.0, -54.667, 0.030, 0.089,
$\left[\phi_{p}{ }^{j}\right]$	PHIP	$\left.\begin{array}{c} 0.298,-0.560,0.040,0.083] \\ {\left[\begin{array}{ll} 1.0,-64.583, & 0.056, \end{array} 0.103\right.} \\ 0.383,-0.800, \end{array} 0.080,0.160\right] ~ \$$

UINDERCARRIAGE AND PILOT LOCATIONS

FIGURE CZ

OLEO SPRING FORCES FOR BOEING 707

FIGUREC3

(b) NOSE OLEO

DAMPING CONSTANT

AIRCRAF'T AND RUNTAY DATA USED FOR LCST OF THE VORK IN THIS REPORT

Due partly to some numerical error in early calculations and partly to some modification in thoughts on equivalent. damping as the work progressed, some of the values derived in Section 2 and Appendix C are modifications of values which were actually used for most of the comuter mork in this report. This Appendix shows the actual values vich were used for this work.

D. 1 Runzay characteristics

Referring to the summary in sub-section 2.2 it will be seen that the value of $\overline{\mathrm{C}}_{\mathrm{a}}$ calculated for the geometric mean runway is 3.8×10^{-7}. Due to a numerical error in earlier calculations the original value calculated for $\overrightarrow{\mathrm{c}}_{\mathrm{a}}$ was $\dot{6}_{\mathrm{i}} 1 \times 10^{-7}$. The values of n_{a}, \bar{c}_{b} and n_{b} remain unchanged. By the analysis shown in sub-section 2.1 these valucs led to a value of Ω at the interseotion of the two lines representing the PSD curve of 0.15. The values used for most of the computer work are summarised in table Dl.

These values are plotted on figure Bl in Appendix B. At spacial frequencies in excess of $0.15 \mathrm{rad} / \mathrm{ft}$ of course the line coincides with that plotted from the values in section 2. However, at frequencies below $0.101 \mathrm{rad} / \mathrm{ft}$ it will be seen that the munway derived here contains approximately 1.5 times the power contained by the runway derived in Section 2.

D. 2 Aircraft characteristics

Referring to Appendix C it will be seen that the values of main and nose oleo damping constant calculated from the values
in reference 13 were 24650 and $12900 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$ respectively. These were calculated by equating energy dissipated over a period of time by linear and non-linear dampers subjected to a random input having Gaussian distribution.

An earlier method used mas to equate the energy dissipated per cycle for a harmonic input, so that

$$
c_{e}=\frac{8}{3 \pi} c_{\mathbb{N}} \dot{S}
$$

where

$$
c_{e}=\text { equivalent linear damping coefficient }
$$

$C_{N}=$ non-linear ($\mathrm{V}|\mathrm{V}|$) damping coefficient
$\dot{\mathrm{S}}=$ oleo stroke velocity
However, aue to an error, the ras value of \dot{S} was used instead of the peak value so that, referring to Appendix C

$$
\begin{aligned}
C_{\mathrm{em}}=\frac{8}{3 \pi} \times 160 \times 8.05 & =1090 \mathrm{lbf} / \mathrm{in} / \mathrm{s} \\
\text { i.c. } c_{\mathrm{em}} & =13080 \mathrm{lbf} / \mathrm{ft} / \mathrm{s} \\
\text { and } C_{\mathrm{en}}=\frac{8}{3 \pi} \times 43 \times 15.7 & =573 \mathrm{Ibf} / \mathrm{in} / \mathrm{s} \\
\text { i.e. } c_{\mathrm{en}} & =6876 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

For ease of reference all the standard aircraft parameters used for most of the computer work are summarized in table D2, although all values except oleo damping are the same as in Appendix C.

Program Data for Geometric Mean Runway

Analysis Symbol	Program Identifier	Value
$\overline{\mathrm{c}}_{\mathrm{a}}$	CA	6.1×10^{-7}
n_{a}	NA	3.58
$\overline{\mathrm{c}}_{\mathrm{b}}$	CB	$8.2 \times 10-6$
n_{b}	NB	2.24
Intersection Ω	OLIGGA	$0.15 \mathrm{rad} / \mathrm{ft}$

Summary of program data for aircraft with 6 flexible modes for
initial response studies and as starting data for optimisation studies

Analysis Symbol	Program Identificr	Value
k_{1}	K1	$1.2 \times 10^{6} \mathrm{Ibf} / \mathrm{ft}$
k_{2}	K2	$93600 \mathrm{lbf} / \mathrm{ft}$
$\mathrm{C}_{\mathrm{I}}, \mathrm{c}_{\mathrm{em}}$	Cl	$13080 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$
$\mathrm{C}_{2}, \mathrm{C}_{\text {em }}$	C2	$6876 \mathrm{Ibf} / \mathrm{ft} / \mathrm{s}$
$k_{t 1}$	KTI	$1.158 \times 10^{6} \mathrm{lbf} / \mathrm{ft}$
$k_{t 2}$	KT2	$162000 \mathrm{lbf} / \mathrm{ft}$
$c_{t I}$	Cr1	$670.8 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$
$c_{\text {t2 }}$	CT2	$65.6 \mathrm{lbf} / \mathrm{ft} / \mathrm{s}$
d	WBASE	$59 \mathrm{ft} \quad$.
β	BETA	0.025
M_{1}	111	155 slug
M_{2}	42	10.6 slug
ΓM_{j}	$W[i, i]$	$\begin{aligned} & {\left[9912,5.375 \times 10^{6}, 369.36,278.29\right.} \\ & 701.23,635.84,742.54,192.46] \end{aligned}$
$\Gamma_{\omega_{j}}$	$\pi J[i, i]$	$\begin{array}{cccc} {[0,} & 0, & 7.22, & 18.0 \\ 23.85, & 31.0, & 38.8, & 55.0 \end{array}$
$\left[\phi_{.1}{ }^{j}\right]$	PHII	$\left.\begin{array}{lll} {[1.0,} & 4.333,-0.122, & 0.037 \\ -0.010, & 0.230,-0.168, & -0.065 \end{array}\right]$
$\left[\phi_{2}{ }^{\mathrm{j}}\right]$	PHI2	$\begin{aligned} & {[1.0,-54.667,0.030,0.089} \\ & 0.298,-0.560,0.040,0.083] \end{aligned}$
$\left[\phi_{p}^{j}\right]$	PHIP	$\begin{aligned} & {[1.0,-64.583,0.056,0.103} \\ & 0.383,-0.800,0.080,0.160] \end{aligned}$

APPENDIX E

REQUIREMENT FOR AND DEVELOPMENT OF INTEGRATION METHOD

E. 1 Requirement

Early versions of the Main Response Program RESPONSE 12 used a constant step length method to calculate the area under the response PSD curve. The response PSD was calculated at intervals of $1 \mathrm{rad} / \mathrm{s}$ and the volues added together, in effect being multiplied by the strip width of $1 \mathrm{rad} / \mathrm{s}$. Thus the instruction "FOR" WF: $=1$ "STEP" 1 "UNHIL" 50 was in effect a mid-ordinate rule, integrating the curve from $\omega=0.5$ to $50.5 \mathrm{rad} / \mathrm{s}$.

Using this method of integration to produce rms values of response acceleration, figures El and E2 were produced to show the variation of response at the mainwheel and pilot locations respectively with variation of main and nose oleo stiffnesses. The curves of response at the nosewhecl location were very similar to those for the pilot location but generally slightly lower. The aircraft parameters other than oleo stiffnesses and the runway parameters used to produce these curves mere as in Appendix D. The method was also used to calculate values to produce figure $\mathrm{E} 3(\mathrm{a})$, which shows variation of rms response acceleration at mainwheel and pilot.location with taxiing velocity. Again the values at the nosewheel location were slightly lower than those at the pilot location. The parameters used to produce these curves were those described in sub-section 4.3.2 taken from reference 37. Flexural modes were neglected in the production of all the above figures.

There is a considerable amount of undulation on all three figures described above. In attempts to explain these undulations the eigenvalues and eigenvectors were investigated for rigid body heave and pitch modes, curves of PSD of response acceleration against frequency were plotted, and the responses in uncoupled rigid body heave and pitch were investigated. The eigenvalues are plotted in figure \mathbb{E}_{4} for the same parameters used for figures $E 1$ and $E 2$. It will be seen that they give no indication of any trends which should lead to the unaulations. The eigenvectors too gave no such indication. Investigation of the uncoupled heave and pitch modes however led to large changes of response with velocity in an apparently inconsistent manner, particularly for the pitch case.

Pi\&ures E5 to 57 (copics of figures $4.25,4.26$ and 4.30 for ease of reference) shor the PSD's of response acceleration for some extreme cases of oleo stiffness. Figures $\mathbb{E} 5$ and E6 use the parameters from Appendix D except that, instead of the standard oleo stiffnesses, four combinations of twice and half the main and nose oleo stiffnesses are used. The toxiing velocity for both figures is $120 \mathrm{ft} / \mathrm{s}$. Figure E 7 uscs the parameters taken from reference 37 and a taxiing velocity of $40 \mathrm{ft} / \mathrm{s}$. It is shown in sub-section 4.3.2 that the nose oleo damping in these porameters is unrealistically low. This is evidenced here by the extremely high narrow peak of the pitch mode.

It can immediately be seen from figures E 5 to E 7 that to use constant step lengths of $1 \mathrm{rad} / \mathrm{s}$ to integrate these curves is
quite useless, particularly in cases such as figures E6(a) and E7. Figure 4.6 shom that the same problem will exist when the flexural modes are considered. For the case of variation in oleo-stiffnesses, as the stiffness increases the frequency at which the peak on the response curve, pertaining to the affected mode, occurs increases, and thus will sometimes coincide with a frequency at which the PSD is calculated, and sometimes fall between two PSD calculations. If the peak is narrow this will lead to peaks and troughs on the response curve. Thus, the step length must be sufficiently small to give several steps within the frequency span of each peak. In the case of variation of response with taxiing velocity of course, the cigenvalues remain constant as the velocity changes, and hence the peaks do not change frequency. Thus the undulations on the curves of figure $\operatorname{E3}(\mathrm{a})$ are not caused by this, and in fact havo a physical causo as discussed in sub-seotion 4.3.2. However, figurea3(b), reI roduced from figure 4.10(a) for ease of reference, shows the correct curves of response acceleration with varying taxiing velocity. Comparing this with figure E3(a) , indicates that the effect of using too big a step length has been to give an overestimate of the response over the entire range. A little thought suggests that if any of the aircraft parameters were changed, thus changing the eigenvalues, the degree of this overestimate would change, possibly becoming an underestimate, depending on how close the peals were to a frequency at which the PSD.was calculated.

Another point which emerges from examination of figures $E 5$ to E 7 is that for the case where rigid modes only are considered most
of the power in the response PSD is within a small frequency range of about $6 \mathrm{rad} / \mathrm{s}$, so that there is little point in integrating over a range of say $50 \mathrm{rad} / \mathrm{s}$.

Reference to fieures 4.18 to 4.20 , discussed in section 4.3.2.2, shows that here again, for the case of uncoupled pitch response, there is a clear requirement for a more selective integration method.

E. 2 Development

Clearly a much more accurate method of integration was required in order to give correct results for the rms values of response acceleration. Two main methods dould be employed in order to achieve the desired accuracy. Firstly very small step lengths could be used over the whole range of the integration, and secondly very small step lengths could be used at the critical frequencies (i.e. at the peaks) only.

The first of thesc two methods was quickly discarded as being too lengthy. Although by far the simplest method, it would require step lengths of the order of $.01 \mathrm{rad} / \mathrm{s}$, which, even for the case where rigid body modes only were considered, would require several hundred steps. For the case where several flexural modes were considered, requiring integration up to perhaps $60 \mathrm{rad} / \mathrm{s}$, several thousand steps would have to be employed. The problem would still remain of course of hor to choose the step length in order to minimise the computer time required.

The second method, then, appeared potentially far more attractive in terms of minimising the computer time used. It was thus decided to use small step lengths at and near to the peaks.

The first method considered was to compute the slope of the curve at each step and shorten the step lengths as the slope increased. This is a perfectly reasonable method for what might be called more well behaved curves, but in the case of a curve such as that on figure $\mathrm{E} 6(\mathrm{a})$ or 7 , with very narrow high peaks, a step from A to B (fig.E(i)) would sense a small, and inaccurate, slope. In order to avoid this the progran would have to start with step
 lengths short enough to besure of sensing the correct slope at the peak, and thus would use smaller steps than necessary for much of the time.

It was therefore considered necessary to find the frequencies at which the peak values occurred, and use small step lengths for a range of frequencies on either side of the peak frequencies. Brief consideration was given to scanning the frequency response function in order to find the frequencies of the peaks. This would require either a knowledge of the peak widths, or very small scanning step lengths, in order to avoid missing a peak. One method would be to scan with smaller steps over any range where the frequency response function was found to be greater than a given value, say 3.

It was finally decided that the eigenvalues should be calculated, from which the values of the frequencies at the peaks could be found. The problems thus remained of how far either side of a peak to integrate in small steps, and how small to make the steps in these regions. However, since the eigenvalues were being calculated, the bandwidths of the peaks could be found. Now the highest damping of the curves on figures E5 to E7 is that of the first peak on figure $E 6(a)$, which it will be seen is a very "flat" peak, whose eigenvalue is given by

$$
\begin{equation*}
\lambda=-1.328 \pm i 4.788 \tag{E-1}
\end{equation*}
$$

From this

$$
\begin{align*}
\omega_{d} & =\omega_{n} \sqrt{1-\beta^{2}}=4.788 \tag{E-2}\\
\beta \omega_{n} & =1.328 \tag{E-3}
\end{align*}
$$

where $\omega_{d}=$ damped natural frequency
$\omega_{n}=$ undamped naturol frequency
$\beta=$ damping ratio
giving

$$
\begin{aligned}
\omega_{n} & =4.970 \mathrm{rad} / \mathrm{s} \\
\beta & =0.2672
\end{aligned}
$$

Now from the eigenvalue in equation (E-1), the damping ratio may be calculated approximately by

$$
\beta=\frac{1.328}{4.788}=0.2774
$$

Thus, comparing the values of damping calculated above, and noting the very small difference between the damped and undamped natural frequencies, it may be considered that even for such a "flat" peak as this, the domping is low enough for it to be considered a high Q case, so that

$$
\text { Bandwidth }=\frac{\omega_{n}}{Q}=\omega_{n} \beta=1.328
$$

The peak of course occurs at the damped natural frequency, ω_{d}

Thus, for most damping cases considered in this report, if the cigenvalue is given by

$$
\lambda=-a \pm i b
$$

then
Frequency of peak $=\mathrm{brad} / \mathrm{s}$

$$
\begin{aligned}
& \beta=\frac{a}{b} \\
& \theta=\frac{1}{\beta}=\frac{b}{a} \\
& \text { Bandrridth }=a \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

A method considered for determining the size of integrating steps, and the frequency band over which to üse them, was to make both of these functions of the bandwidth, so that, for example, the width over which small steplengths were to be used would be given by

$$
\Delta \omega=n x \text { bandwidth }
$$

and the size of the steps by

$$
\delta \omega=m x \frac{\text { bandwidth }}{\text { peak height }}
$$

where n and m are constants.
This did not lead to a reliable method of obtaining an accurate value for the integration, and it mas finally decided that a metiod should be used whereby an integration was donc, and was sucoessively repeated, halving the step length each time, until two successive integrations were within a given small percentage, say 1% This could of course be done over the whole range of integration as one integration, but this would mean that however small the final step
length required at the peaks, this step length would be used over the whole integration, steps thus being unnecessarily small at non-critical parts of the curve, leading to a lage and wasteful usage of computer time. After much experimentation the method below was developed for the main response progran RESPONSE 12. During this development the mid-ordinate method of integration was discarded, and a method substituted using Simpson's Rule.

E. 3 Method for Main Response Promrem

Figure E8 represents a curve of PSD of response acceleration against frequency. The curve is showm for the case where rigid body heave and pitch and I flexural mode are considered, but the method, of course, applies to any number of modes.

The eigenvalues are calculated and the 3 frequenoies ω_{B}, ω_{C}, and ω_{D} of the peales are solcotod by taking the imaginary parts of the eigenvalues and discarding the negative values and the high frequencies of the nosewheel and mainwheel modes. The three frequencies are then sorted into ascending order by the procedure SORT and put into the $2 n d, 3 r d$ and 4 th spaces of a 5 th order one dimensional array, the lst and 5 th spaces being reserved for ω_{A} and ω_{E} where

$$
\begin{aligned}
& \omega_{\mathrm{A}}=0.5 \times \omega_{\mathrm{B}} \\
& \omega_{\mathrm{E}}=1.4 \times \omega_{\mathrm{D}}=
\end{aligned}
$$

This array now gives 4 sets of integration limits. These in turn are divided into sub-sets for the actual integration as follows: If $\omega_{n+1}-\omega_{n}<2$ then the limita for the actual integration are $\omega_{n_{+}} 1$ and ω_{n}. However, if $\omega_{n+1}-\omega_{n} \geqslant 2$ then the limits for the actual
integration depend on whether the range being considered is a peak to peak range (e.g. ω_{C} to ω_{D}) or a range at one end of the curve being considered (e.g. ω_{A} to ω_{B} or ω_{D} to ω_{E}). The limits in these cases are shown on figure $E 8$.

Thus, if $\omega_{B}=5 \mathrm{rad} / \mathrm{s}, \omega_{C}=6.5 \mathrm{rad} / \mathrm{s}, \omega_{D}=10 \mathrm{rad} / \mathrm{s}$, then $\omega_{\mathrm{A}}=2.5 \mathrm{rad} / \mathrm{s}$ and $\omega_{\mathrm{E}}=14 \mathrm{rad} / \mathrm{s}$, and the sub-sets of integration limits are

$$
\begin{aligned}
\omega_{A} \text { to } \omega_{B}-0.5 & =2.5 \text { to } 4.5 \\
\omega_{B}-0.5 \text { to } \omega_{B} & =4.5 \text { to } 5.0 \\
\omega_{B} \text { to } \omega_{C} & =5.0 \text { to } 6.5 \\
\omega_{C} \text { to } \omega_{C}+0.5 & =6.5 \text { to } 7.0 \\
\omega_{C}+0.5 \text { to } \omega_{D}-0.5 & =7.0 \text { to } 9.5 \\
\omega_{D}-0.5 \text { to } \omega_{D} & =9.5 \text { to } 10.0 \\
\omega_{D} \text { to } \omega_{D}+0.5 & =10.0 \text { to } 10.5 \\
\omega_{D}+0.5 \text { to } \omega_{D} & =10.5 \text { to } 14.0
\end{aligned}
$$

The procedure SIIPS is nov called for each sub-set of integration limits. Procedure SIMPS uses Simpson's rule to integrate between the two sets of limits. Now Simpson's rule calculates the area under the curve by

$$
\text { Area }=\frac{h}{3}(1 ; t+\text { Last }+2 x \text { odds }+4 x \text { evens }) \quad(E-4)
$$

where h is the step length
lst is the height of the first ordinate
Last is the height of the last ordinate
odds is the sum of the heights of the odd numbered ordinates
and evens is the sum of the heights of the even numbered ordinates

SIMPS starts by using two steps, and successively uses 4, 8 etc until two consecutive iterations are within TOLP\%, for the responses at the mainwheel, nosewheel, and pilot locations, where TOLP is read in with the data. Thus, referring to figure $E(i i)$, it will be seen that at each successive iteration all the intermediate ordinates from the previous iteration nor become odd ordinates. Thus, to lep computer time to a minimum for each iteration the lst, Last, and sum of all
 intermediate ordinates are stored, to be used in the next iteration as lst, Last and sum of odd ordinates. Hence at each iteration only the new even ordinates need be calculatod and then used in oquation (E-4) together with previously stored values. Procedure SIMPS calls procedure POSPDY to calculate the height of each ordinate, and POSPDY in turn calls procedure TRAFON to calculate the frequency response function at the ordinate frequency.

E. 4 Method for Uncoupled Pitch Response program

The method of integration of the response PSD curve for uncoupled pitch response is broadly similar to the method described above, differing only in the method of selection of the sub-sets of integration limits.
of figures 4.18 and 4.19 shows how vastly the response PSD curve varies for taxiing velocities of 120 and $10 \mathrm{ft} / \mathrm{s}$, using the same aircraft parameters. Similarly comparison of figures 4.19 and 4.20 shav 3 how the response PSD curve varies for the same taxiing velocity using different aircraft parameters. Thus, using only the damped natural frequency as a starting point for calculating the sub-sets would be a satisfactory method for figure 4.18, but not for figures 4.19 and 4.20.

It was briefly considered that an accurate estimate of the area could be obtained by replacing each peak by a superimposed triangle as shom in figure E (iii). This would of course give an

Fig. $E(i i i)$
exact value for a sinuzoidal peak, since
and

Area $B=\frac{2 \pi x P}{2}=p \pi$
It will be seen from figure 4.19 that for very low taxiing velocities the peaks are approximatcly sinusoidal, and hence this method would give a good approximation to the area. However, reference to figure 4.18 shows that the method would be grossly
inaccurate here. Thus the method of sub-section E. 3 is used, the method of selecting the sub-sets of integration limits being as follows:

The damped natural frequency, ω_{d}, is found from the pitch equivalent of equation ($4-40$) (Section 4). This gives the peak of the aircraft parameter dependent part of the expression for the mean-square value of pitch response acceleration, equation (4-49). The bottom and top integration limits are then set at $0.5 \mathrm{rad} / \mathrm{s}$ and $2 \mathrm{x} \omega_{\mathrm{d}} \mathrm{rad} / \mathrm{s}$, and all the values of ω_{f} found within this range such that

$$
\begin{aligned}
1-\cos \frac{d}{V} \omega_{f} & =0 \text { or } 2 \\
\text { i.e. } \cos \frac{d}{V} \omega_{f} & = \pm 1
\end{aligned}
$$

Thus

$$
\frac{d}{\mathrm{~V}} \omega_{\mathrm{f}}=n \pi, \quad n=1,2,3,4 \cdots
$$

giving

$$
\omega_{f}=\frac{n \pi V}{d}
$$

where $V=$ taxiing velocity
$d=$ longitudinal distance between nosewheel and mainwheel locations

These values give the frequencies of the peaks and troughs (zero) of the response PSD curve for the lower taxiing velocities (figure 4.19). However, for higher taxiing velocitics where the first trough frequency (other than $\omega_{f}=0$),

$$
\text { i.c. } \omega_{f}=\frac{2 \pi v}{d} \mathrm{rad} / \mathrm{s}
$$

is greater than ω_{d}, the first peak of (I $-\cos \frac{d}{V} \omega_{f}$),

$$
\text { i.c. } \omega_{\mathrm{f}}=\frac{\pi V}{d} \mathrm{rad} / \mathrm{s}
$$

does not show as a peak on the response PSD curve (see figure 4.18). Hence it is important, in order to cut dow the range over which small steps are used in the integration, toinclude ω_{d} in the sub-sets of integration limits.

Thus, the sub-sets of integration limits for the uncoupled pitch response case are given by $0.5, \omega_{d}, 2 \times \omega_{d}$, and the frequencies of all the peaks and troughs of $\left(1-\cos \frac{d}{V} \omega_{f}\right)$ between 0.5 and $2 \times \omega_{\alpha}$.

NARIATION OR THANWHEELTLOCATIDNRESPONSE USING
 $(c r-s \sec 4-2 x)$
ER.

VARIATION OF PILOT LOCATIONIRESPONSE USING
EARLIER CONSTANT STEPLENGTH INTEGRATION PROGRAM (rf fimure 4.23)

PSD OF RESPONSE:ACCELERATION AT PIIDT LOCATION FOR PARAMETERS AS REFERENCE 37


```
RESPONSE 12;
"BEGIN" "INTEGER" NM;
    "READ" NM;
"BEGIN" "COMMENT" THIS PROGRAM COMPUTES RMS
                                    ACCELERATIONS OF THE AIRCRAFT AT
                                    MAINWHEELS, NOSEWHEEL AND PILOT LOCATION FOR ONE
                                    TAXIING VELOCITY;
    "INTEGER" I,J,NSTEPS,SS,LOW,HI,NNEGO,JE,IE,NEIG;
    "REAL" BETA,C1,C2,K1,K2,KT1,KT2,M1,M2,CT1,CT2,
WBASE,OHEGA,V,CA,NA,CB,NB,PSDMTOT,PSDNTOT,PSDPTOT,IM1,IM2,IN1,IN2,IP1,IP2,TOLP,
                    WF,WFMIN;WFMAX,HFFIN,Z1,Z2,ZP,PSDIN,PSDMOUT,PSDNOUT,PSDPOUT,RMSM,
                RMSN,RMSP,WFSTART,WFSTEP,MACHEPS;
    "REAL" "ARRAY" MJ,WJ,XW,YW,UH,VW,A,B,SMC5,SMK5[1:NM,1:NM],PHI1,
                PHI2,SMC1,SMC2,SMK1,SMK2,PHIP[1:1,1:NM],PHI1T,
                PHI2T,SMC3,SMC4,SMK3,SMK4[1:NM,1:1],C,K,MI,
                STFMX,DMPMX,UNIT[1:NM+2,1:NH+2],CMI,U[1:NM+2,1:NM+2,1:2],
                G,X[1:NM+2,1:1,1:2],XJ[1:NM,1:1,1:2],F:COEFF[1:2*(NM+2),1:2*(NM+2)],D,WR,WI[1:2*(NM+2)]
    "INTEGER" "ARRAY" CNT,INT[1:2*(NM+2)];
```

"PROCEDUEE" BALANCE (N,B,A,LOT, HI, D);
"FFOUEDURE' ELMIES (N,K,L, A, INT);
"PROCEDURE" CDIV(XR,XI,YR,YI,ZR,ZI);
"PROTEDURE" HQR2(N,LOT, UPP, lCASHEPS , H, YR, WI, CNT, F,FAIL);

```
"PROCEDUFE" TRAFUN(ARRX,ARRPHI,M,MOD);
    "VALUE" M;
    "INTEGER"M;
    "REAL" MOD;
    "ARRAY" ARRX,ARRPHI;
    "BEGIN"
        "INTEGER" Q;
            "REAL" SUMR,SUMI;
            SUMR:=SUMI:=0.0;
            "FOR" Q:=1 "STEP" 1 "UNTIL" M "DO"
                    "BEGIN"
                            SUMR:=ARRX[0,1,1];
                            ARRPHI[1,Q]+SUMR;
                            SUMI:=ARRX[0,1,2]*
                            ARRPHI[1,Q]+SUMI;
                    "END";
                    MOD:=SQRT(SUMR*SUMR + SUMI*SUMI);
                END" TRAFUN:
```

 "PROCEDURE" SORT (ARREIG,NVAL) ;
 "INTEGER" NVAL;
 "ARRAY" "ARREIG;
 "8EGIN" "INTEGER" QE;
 "REAL" VALEIG
 "BOOLEAN" INTERCHANGE;
 SCAN AGAIN: INTERCHANGE:="FALSE";
"FOR" QE: $=1$ "STEP" 1 "UNTIL" NVAL-1 "DO"
"BEGIN" "IF" ARREIG[QE]>ARREIG[QE+1] "THEN"
"bEGIN" VALEIG:=ARREIG[QE];
ARREIG[QE]: =ARREIG[QE+1];
ARREIG[QE+1]:=VALEIG;
INTERCHANGE:="TRUE";
"END";
"END";
"IF" INTERCHANGE "THEN" "GOTO" SCAN AGAIN
"PRINT" "LZS5'NATURAL FREQUENCIES IN ASCENDING ORDER";
"FOR" QE:=1 "STEP" 1 "UNTIL" NVAL "DO"
"PRINT" ALIGNED(4,6),'"LS19"',SAMELINE,ARREIG[QE];
"END" SORT:

```
    "LI.BRARY" FORMMX,READMX,MXTRANS,MXPROD,MXCOPY,SCPROD,
                MXSUM,CMXFORM,CMXPROD,CMXCOP,CMXINV;
    "PROCEDURE" PUSPDY;
    "BEGIN" CMXFORM(U,STFMX[I,J]-WF*WF*
    UNIT[I,J],WF*DMPMX[I,J],I,J);
    CMXFORM(G,0.0,0.0,I,J);
    G[1,1,1]:=-KT1*COS(WBASE*WF/V)+CT1*WF*SIN(WBASE*WF/V);
    G[2,1,1]:=-KT2;
    G[1,1,2]:=-KT1*SIN(WBASE*WF/V)-CT1*WF*COS(WBASE*WF/V);
    G[2,1,2]:=-CT2*WF;
    CMXPROD(X,CMI,G);
    CMXCOP(G,X);
    CMXINV(U);
    CMXPROD(X,U,G);
    "FOR" I:=1 "STEP" 1 "UNTIL" NH "DO"
    "EEGIN" XJ[I,1,1]:=X[I+2,1,1];
            XJ[I,1,2]:=X[I+2,1,2];
    "END";
    TRAFUN(XJ,PHI1,NM,Z1);
    TRAFUN(XJ,PHI2,NM,Z2);
    TRAFUN(*J,PHIP,NM,ZP);
    "IF" WF<OMEGA*V "THEN" PSDIN:=CA&V\uparrow(NA-1)/WF\uparrowNA "ELSE"
    PSDIN:=CB*V+(NB-1)/WF+NB;
    PSDMOUT:=21*Z1*PSDIN*WF 4;
    PSDNOUT:=Z2*Z2*PSDIN*WF +4;
    PSDPOUT:=ZP*ZP*PSDIN*WF*4;
    "END" POSPDY;
    "PROCEDURE" SIMPS;
    "BEGIN"
"REAL" IMZFIRST, INZFIRST,IP2FIRST,IM2LAST,
    INZLAST,IP2LAST,IM2ODD,IN2ODD,
IP2ODD,MODDTOT,NODDTOT,PODDTOT,
IM2EVEN,IN2EVEN, IP2EVEN,MEVENTOT,
NEVENTOT,PEVENTOI;
```

"FOR" NSTEPS: $=2,4,2$ *NSTEPS "WHILE" TOLP $<100 * A B S(I M 1 / I M 2-1)$ "OR" TOLPく100*ABS(IN1/INC-1) "OR" TOLP<100*ABS (IPi/IP2-1) "DO"
"BEGIN" "IF" NSTEFS "NE" 2 "THEN"
"BEGIN" IM1:=IM2;
1N1:=IN2;
IF1:=1P2;
"END";
WFSTEP: = (WFFIN-WFSTART)/NSTEPS;
"IF" NSTEPS=2 "THEN"
"BEGIN" WF:=WFSTART;
POSPDY;
IM2FIRST:=PSDMOUT;
IN2FIRST: =PSDNOUT;
IP2FIRST: =PSDPOUT;
WF:=WFFIN;
POSPDY;
IMZLAST:=PSDMOUT;
IN2LAST:=PSDNOUT;
IP2LAST:=PSDPOUT;
$W H:=W F S T A R T+W F S T E P$;
POSPDY;
IM2EVEN: = PSDMOUT;
IN2EVEN: = PSDNOUT;
IPREVEN:=PSDPOUT;
IM2ODD: $=0.0$;
1N20DD: $=0.0$;
1P2ODD: =0.0;
MODDTOT:=0.0;
NODDTOT: $=0.0$;
PODDIOT: =0.0;
"GOTO" InTSUM;
"END.";

MODDTOT: $=2 *$ IM2OUD;
NODDTOT: $=2 *$ IA 2ODD;
PODDTOT: $=2 * 1$ P2ODD;
IM2EVEN: $=0.0$;
IN2EVEN: $=0.0$;
IPZEVEN:=0.0;
"IF" NSTEPS "NE" 2 "IHEN"
"FOR" WF: =WFSTART + WFSTEP "STEP" $2 \approx W F S T E P$ "UNTIL" WFFIN "DO"
"BEGIN" POSPDY;
IM2EVEN: = IMREVEN + PSDMOUT;
IN2EVEN: = IN2EVEN+PSDNOUT;
IP2EVEN: = IP2EVEN+PSDPOUT;
"END";
INTSUM: MEVENTOT: $=4$ *IM2EVEN;
NEVENTOT: $=4$ *IN2EVEN;
PEVENTOT: =4*IP2EVEN;
IM2ODD: =IM2ODD + IM2EVEN;
IN2ODD: =IN2ODD + IN2EVEN;
IP2ODD: = IP2UDD+IP2EVEN;
IM2: =(IM2FIRST+IM2LAST+MODDTOT+MEVENTOT)*WFSTEP/3;
IN2: =(IN2FIRST+IN2LAST+NODDTOT+NEVENTOT)*WFSTEP/3;
IP2: = (IP2FIRST+IP2LAST+PODDTOT+PEVENTOT)*WFSTEP/3;
"END" OF NSTEPS LOOP;
PSDMTOT: =PSDMTOT + IM $2+(I M 2-I M 1) / 15$;
PSDNTOT: =PSDNTOT+IN2+(IN2-IN1)/15;
PSDPTOT: = PSDPTOT+IP'2+(IP2-IP1)/15;
"PRINT" ''L2S40'FOR WFSTART=', SAMELINE,WFSTART,
''S'AND WFFIN=',WFFIN,',',
"'S'NSTEFS=`,NSTEPS"DIV"'2,
''LS40'PSDMIOT =, PSSDMTOT,
''S4'PSUNTOI=', PSDNTOT,
''S4'PSDPTOI=';PSDPTOT;
"END" SIMPS;
FORMMX(MJ,0.0,I,J);
FORMMX(WJ,0.0,I;J);

```
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "READ" MJ[I,I];
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "READ" WJ[I,I];
"READ" BETA,C1,C2,K1,K2,CT1,CT2;
HEADMX(PHI1);
READMX(PHI2);
"READ" KT1,KT2,M1,M2,MACHEPS,WBASE,OMEGA,V,CA,NA,CB,NB,WFMIN,WFMAX,TOLP;
MXTRANS(PHI1T,PHI1);
MXTRANS(PHI2T,PHI2);
MXPROD(XW,PHI1T;PHI1);
MXPROD(YH,PHI2T;PHI2);
MXCOPY(UW,XW);
MXCOPY(VH,YW);
SCPROD(XW,C1);
SCPROD(YW,C2)
MXSUM(A,XW,YW);
SCPROD(UH,K1);
SCPROD(VH,K2);
MXSUM(B,UW,VW);
MXPROD(XW,MJ,WJ);
MXCOPY(YW,XW);
BETA:=2%BETA;
SCPROD(XW,BETA);
MXSUM(SMC5,XW,A);
MXPROD(XH,YW,WJ);
MXSUM(SMKS,XW,B);
MXCOPY(SMC1,PHII);
SCPROD(SMC1,-C1);
MXCOPY(SMC2,PHI2);
SCPRUD(SMC2,-C2);
MXCOPY(SMC3,PHIIT);
SCPROD(SMC3,-C1);
MXCOPY(SMC4,PHI2T);
SCPROD(SMC4,-C2);
```

```
\becauseXCOFY(SMK1,PHI1);
SCPROD(SMK1,-K1);
MXCOPY(SMK2,PHI2);
SCPROD(SMK2,-K2);
MXCOPY(SMK3,PHI1T):
SCPROD(SMKZ,-K1);
MXCOPY(SMK4,PHI2T);
SCPROD(SMK4,-K2);
FORMMX(C,0.0,I,J);
C[1,1]:=C1+CT1;
C[2,2]:=C2+CT2;
"FOR" J:=1 "STEP" 1 "UNTIL" NM "DO"
"EEGIN" C[1,J+2]:=SMC1[1,J];
    C[2,J+2]:=SMC2[1,J];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" C[I+2,1]:=SMC3[I,1];
    C[I+2,2]:=SMC4[I,1];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
"UNTIL" NM "DO" C[I+2,J+2]:=SMC5[I,J];
FORMMX(K,0.0,I,J);
K[1,1]:=KT1+K1;
K[2,2]:=KT2+K2;
"FOR" J:=1 "STEP" 1 "UNTIL" NM "DO"
"8EGIN" K[1,J+2]:=SMK1[1,J];
    K[2,J+2]:=SMK2[1,J];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" K[I+2,1]:=SMK3[1,1];
    K[I+2,2]:=SMK4[1,1];
"END";
"FOR" 1:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
"UNTIL" NM "DO" K[I+2,J+2]:=SMK5[I,J];
```

```
    FORMMX(MI,O.0,I;N);
    MI[1,1]:=1/M1;
    MI[2,2]:=1/M2;
    "FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
    MI[I+2,I+2]:=1/MJ[I,I];
    MXPROD(STFMX,MI;K);
    MXPROD(DMFMX,MI;C);
    FORMMX(COEFF,0.0,1,J);
    "FOR" I:=1 "STEP" 1 "UNTIL" NM+2 "DO" "FOR" J:=1 "STEP"
    1 "UNTIL" NM+2 "DO"
    "BEGIN" CCEFF[I;J]:=-DMPMX[I,J];
        COEFF[I,J+NM+2]:=-STFMX[I,J];
    "END"; *
    "FOR" I:=1 "STEP" 1 "UNTIL" NM+2 "DO"
    COEFF[I+NM+2,I]:=1;
    BALANCE(2*(NM+2),2,COEFF,LOW,HI,D);
    ELMHES(2*(NM+2),LOW,HI,COEFF,INT); HQR2(2*(NM+2),LOW,HI,MACHEPS,COEFF,WR,WI,CNI,F,FAIL);
    "PRINT" ''L2S`K1=`,SAMELINE,K1,''S5`K2=`,K2,
"'S5`C1=`,C1,''S5`C2=`,C2,
'L'KT1=',KT1,''S4`KT2=',KT2,
'"S4`CT1=`,CT1,''S4`CT2=`,CT2,
"'LS2`V=`,V,''LZS19'EIGENVALUES`;
    "FOR" I:=1 "STEP" 1. "UNTIL" 2*(NM+2) "DO"
    "BEGIN" "FRINT"SCALED(8), ''LS9'`,SAMELINE,WR[I],'`S4'`,WI[I];
    "END";
NNEGO:=0;
"FOR" I:=1 "STEP" 1 "UNTIL" 2*(NM+2) "DO"
"IF" WI[I]<WFMIN "OR" WI[I]>WFMAX "THEN" NNEGO:=NNEGO+1;
NEIG:=2*(NM+2)-NNEGO;
```

```
        "BEGIN" "REAL" "AKRAY." EIGEN[I:NEIG],LIMINT[1:NEIG+2];
            JE:=1;
            "FOR" I:=1 "STEP" 1 "UNTIL" 2*(NM+2) "DO"
            "IF" WI[I]>HFMIN "AND" WI[I]<HFMAX "THEN"
            "BEGIN" EIGEN[JE]:=WI[I];
                    JE: =JE+1;
            "END";
            "PRINT" ''LZS5`NUMBER OF NATURAL FREQUENCIES WITHIN SPECIFIED RANGE=`,SAMELINE,NEIG,
            ''L2S15'NATURAL FREQUENCIES';
            "FOR" JE:=1 "STEP" 1 "UNTIL" NEIG "DO"
            "PRINT" ALIGNED(4,6),'"LS19`,SAMELINE,EIGEN[JE];
                SORT(EIGEN,NEIG);
    LIMINT[1]:=WFMIN;
    "FOR" JE:=1 "STEP" 1 "UNTIL" NEIG "DO"
                            LIMINT[JE+1]:=EIGEN[JE];
                            LIMINT[NEIG+2]:=EIGEN[NEIG]+5;
    "PRINT" ''L2S15'INTEGRATION LIMITS";
    "FOR" JE:=1 "STEP" 1 "UNTIL" NEIG+2 "DO"
    "PRINT" ALIGNED(4,6);''L2S19'`,SAMELINE,LIMINT[JEJ;
RESPONSE: FORMMX(UNIT,0:0,I,J);
            "FOR"I:=1 "STEP" 1 "UNTIL" NM+2 "DO" UNIT[I,I]:=1;
            CMXFORM(CMI,MI[I,J],0.0,I,J);
            READMX(PHIP);
```

PSDMTOT: $=0.0$;

```
PSDNTOT:=0.0;
PSDPTOT:=0.0;
"FOR" IE:=1 "STEP" 1 "UNTIL" NEIG+1 "UO"
"IF" LIMINT[IE+1]-LIMINT[IE]<2 "THEN"
"BEGIN" WFSTART:=LIMINT[IE];
WFFIN:=LIMINT[IE+1];
SIMPS;
"END"
"ELSE" "BEGIN" WFSTART:=LIMINT[IE];
                                    WFFIN:=LIMINT[IE]+0.5;
                                    SIMPS;
                                    WFSTART: =LIMINT[IE]+0.5;
                                    WFFIN:=LIMINT[IE+1]-0.5;
                                    SIMPS;
                                    WFSTART:=LIMINT[IE+1]-0.5;
                                    WFFIN:=LIMINT[IE+1];
                                    SIMPS;
            "END";
RMSM:= SQRT(PSDMTOT);
            RMSN:=SQRT(PSDNTOT);
            KMSP:=SQRT(PSDPTOT);
            "PRINT"''L3'ACCELERATIONS RMSM=`
                SAMELINE,RMSM,''LS16'RMSN=',RMSN',
                    ''LS16'RMSP=`,RMSP;
"END";
"END";
    "GOTU" END;
FAIL:"PRINT" "L`HQRZ FAILURE';
END: "END";
```

```
BDARBHH4
BEEGIN" "COMMENT" THIS PROGRAM COMPUTES RMS ACCELERATION OF
    ThE aIRCRAFT IN THE UNCOUPLED HEAVE mODE FOR a raNgE OF TAXIING
    VELOCITIES;
    "REAL" K,KM,KN,C,CM,CN,A,B,D,P,WF,WFSTART,WFSTEP,
        WFFIN,XW,YW,ZW,M,V,OMEGA,CA,NA,CB,NB,PSDIN,PSDOUT,
        PSDTOT,RMSX;
    "READ" KM,KN,CM,CN,A,B,D,M,OMEGA,CA,NA,CB,NB,WFSTART,
        WFSTEP,WFFIN;
        "FOR" V:=10 "STEP" 10 "UNTIL" 240 "DO"
            "BEGIN"
        "PRINT" ''L3S`V=`,SAMELINE,V,''L2`KM=`,KM,
            ''S4`KN=`,KN,''S4`CM=`,CM,''S4`CN=`,CN;
            K:=KM+KN;
            C:=CH+CN;
            PSDTOT:=0.0
            P:=2*A*B/(D*D);
            "FOR" WF:=WFSTART "STEP" WFSTEP "UNTIL" WFFIN "DO"
                "BEGIN" XN:=C%WF;
                        YW:=K-M*WF #WF;,
                                    ZW:=(K*K+XW*XW)/(YW*YW+XW*XW);
                                    XH:=1.0-P*(1.0-COS(D*WF/V));
                                    "IF" HF<OMEGA*V "THEN" PSDIN:=
                                    CA*V+(NA-1)/WF+NA "ELSE" PSDIN:=
                                    CB*V+(NB-1)/WF +NB;
                                    PSDOUT:=ZW*XW*PSDIN*WF 44;
                                    PSDTOT:=PSDTOT+PSDOUT*WFSTEP;
                                    "END";
            RMSX:=SQRT(PSDTOT);
            "FRINT" ''L2`HEAVE ACCELERATION RMSX=',
                SAMELINE,RMSX;
"END";
"END";
```

```
PITCH RESPONSE 6;
"BEGIN" "COMMENT" THIS PROGRAM CURPUTES RMS ACCELERATION OF THE AIRCRAFT
    IN THE UNCOUPLED PITCH MODE AND THE RESULTING LINEAR ACCELERATIONS
    AT THE MAINWHEEL., NOSEWHEEL, AND PILUT LOCATIONS AT ONE TAXIING
    VELOCITY:
    "INTEGER" 」,NW;
    "REAL" KM,KN,KE,CM,CN,CE,A,B,D,E,WF,WFSTART,WFSTEP,WFFIN,XW,YW,
        ZW,I,V,OMEGA,CA,NA,CB,NB,PSDIN,PSDOUT,PSDTOT,RMSANG,RMSM,RMSN,
        RMSP,N,WD,TOLP;
    "PROCEDURE" SORT(ARRW,NVAL);
    "INTEGER" NVAL;
    "ARRAY" AREW;
    "BEGIN" "INTEGER" QE;
            "REAL" VALW;
            "BOOLEAN" INTERCHANGE;
SCAN AGAIN: INTEKCHANGE:= "FALSE";
    "FOR" QE:=1 "STEP" 1 "UNTIL" NVAL-1 "DO"
    "BEGIN" "IF" ARRW[QE]>ARRW[QE+1] "THEN"
            "BEGIN" VALW:=ARRW[QE];
                        ARRW[QE]:=ARRW[QE+1];
                        ARRW[QE+1]:= VALW;
                        INTERCHANGE:="TRUE";
            "END"
        "END";
        "IF" INTERCHANGE "THEN" "GOTO" SCAN AGAIN;
        END" SOFT;
    "PROCEDURE" POSPDY;
        "GEGIN" XH:=CE*wF;
                            YW:=KE-I*WF*NF;
                            ZW:=2*(KE*KE+XW*XW)/(D*D*(YW*YW+XW*XW));
                            XW:=1:0-COS(D*WF/V);
                            "IF"WF<UHEGA*V "THEN" PSDIN:=CA*V+(NA-1)/WF+NA "ELSE"
                    PSDIN:=CB*V\uparrow(NB-1)/WFTNB;
                PSLOUT:=ZW*XW*PSDIN*WF+4;
                "PRINT" ''L'`WF=',SAMELINE,WF,''S4'PSDOUT=`,PSDOUT;
    "END" POSPDY;
```

```
"PROCEDURE"-SIMPS;
    "BEGIN" "REAL" I1,I2,I2FIRST,I2LAST,I2ODD,ODDTOT,I2EVEN,
        EVENTOT,NSTEPS:
        "FOR" NSTEPS:=2,4,2*NSTEPS "WHILE" TOLP<100*ABS(I1/12-1) "DO"
        "BEGIN" "IF" NSTEPS "NE" 2 "THEN"
        11:=12;
        WFSTEP:=(WFFIN-WFSTART)/NSTEPS;
        "IF" NSTEPS=2 "THEN"
    "EEGIN" "PRINT" ''L.3S20`WFSTART=`,SAMELINE,WFSTART,'`S5`WFFIN=`,WFFIN;
    WF:=WFSTART;
    POSPDY;
    I2FIRST:=PSDOUT;
    WF:=WFFIN;
    POSPDY;
    I2LAST:=PSDOUT;
    WF:=WFSTART+WFSTEP;
    POSPDY;
    I2EVEN:=PSDOUT;
    I2ODD:=0.0;
    ODDTOT:=0.0;
    "GOTO" INTSUM;
    "END";
    ODDTOT:=2*I2ODD;
    I2EVEN:=0.0;
    "IF" NSTEFS "NE" 2 "THEN"
    "FOR" WF:=WFSTART+WFSTEP "STEP" 2*WFSTEP "UNTIL" WFFIN "DO"
        "BEGIN" POSPDY;
                            I2EVEN:= I2EVEN+PSDOUT;
        "END";
    INTSUM: Eventot:=4*I2Even;
    I二ODU:=i2000+I2EVEN;
    IZ:=(I2FIRST+I2LAST+ODDTOT+EVENTOT)*WFSTEP/3;
    "PRINT" "'L2S30`NSTEPS=`,SAMELINE,NSTEPS,',`,''S5`I2=`,I2;
        "END" NSTEPS LOOP;
        FSDTOT:=FSDTOT+I2+(I2-I1)/15;
    "PRINT" "'L2S44`PSDTOT=`,SAMELINE,PSDTOT;
    "END" SIMFS;
```

```
    "REAB" V,KH,KN,CM,CN,A,B,D,E,I,OMEGA,CA,NA,CE,NB,TOLP;
    "FRINT" ''L3S`V=`,SAMELINE,V,''L2`KM=',
        KM,''S4'KN=',KN,''S4`CM=',CM,
        'S4'CN=',CN;
    KE:=A*A*KM+B*B*KN;
    CE:=A*A*CN+B*B*CN;
    WD:=SQRT((KE/CE)*(KE/CE)*(SORT(1.0+2*CE*CE/(KE*I))-1.0));
    A:=2%W[)*!/(3.1416*V);
    AW:=ENTIER(N)+3;
    "PRINT"''L2`WD=`,SAMELINE,WD,''S5`N=',N,''S4'NW=`,NW;
    "BEGIN" "REAL" "ARRAY" LIMINT[1:NW];
        LIMINT[1]:=0.5;
        LIMINT[2]:=WD;
        LIMINT[NW]:=2%WD;
    "FOR" J:=1 "STEP" 1 "UNTIL" NW-3 "DO"
        LIMINT[J+2]:=3.1416*J*V/D;
        SORT(LIMINT,NW);
    "PRINT" "'L3S15'INTEGRATION LIMITS`;
    "FOR" J:=1 "STEP" 1 "UNTIL" NW "DO"
    "PRINT" ALIGNED(2,6),''L2S19'',
        SAMELINE,LIMINT[J];*
        PSDTOT:=0.0;
        "FOR" J:=1 "STEP" 1 "UNTIL" NW-1 "DO"
        "BEGIN" WFSTART:=LIMINT[J];
            WFFIN:=LIMINT[J+1];
            SIMPS;
            "END";
                RMSANG:= SQRT(PSDTOT);
                RMSM:=RMSANG*A;
                RMSN:=RMSANG*E;
                RMSP:=RMSANG*E;
            "PRINT" ''L2`PITCH ACCELERATION RMSANG=`,
                SAMELINE,RMSANG,
                'LS6'ACCELERATIONS RMSM =',
                RMSM,''LS21'RMSN =',
                RMSN,''LS21'RMSP =',RMSP;
    "END";
```

"END";
"PROCEDURE" STEEPZ (LH, XS, UR, IXX, XHJN,FMIN,NV,EFS,RELAX,DXMAX, ETA,PSI, PMAX,PMULT,PDIV,ZETA,FUNK);
"VALUE" UX,NV,EPS,RELAX,ETA,PSI, DXMAX,PMAX,PMULT,PDIV,ZETA;
"INTEGER" NV;
"REAL" FMIA,EPS,RELAX,ETA,PSI,PMAX,PMULT,PDIV,ZETA;
"ARRAY"LB, XS, UB, XMIN, DX, DXMAX;"REAL" "PROCEDURE" FUNK;
"BEGIN""INTEGER" J; "REAL" ALPHA,P;
"ARRAY" XSTEP, DFDX, DFPRE1:NVJ;
"PROCEDURE" ATIVE;
"BEGIN" "REAL" THETA,LAMBDA,X,GAMMA;"BOOLEAN"BA;
LAMBDA: =0;
"FOR" J:=1 "STEP"1"UNTIL" NV"DO"
"BEGIN" BA:="FALSE"; ALPHA:=DX[J];
"IF" XMIN[J] + ALPHA>UB[J] "THEN"
"REGIN"XSTEP[J]:=XMIN[J];XMIN[J]:=UB[J]-ALPHA; BA:="TRUE" "END"
"ELSE" "IF"XMIN[J]-ALPHA<LBEJ] "THEN"
"BEGIN"XSTEP[J]:=XMIN[J];XMIN[J]:=LB[J]+ALPHA;BA:="TRUE" "END"; $X:=X M I N[J] ;$
XMIN[J]: $=X+D X[J] ; A L P H A:=F U N K(X M I N) ;$
XMIN[J]: $=X-$ DX[J];THETA: =FUNK (XMIN)';
XMIN[J]: $=X$;"IF" BA "THEN""BEGIN" GAMMA: =FUNK(XMIN);
"IF" FMIN "LF" GAMMA "THEN"
XMIN[J]: $=X S T E P[J]$ "ELSE"FMIN: $=$ GAMMA
"END";
DFDX[J]:=(ALPHA-THETA)/(2:DX[J]);
LAMBDA: = LAMBDA+DFI)X[J]个2;
"IF" ALPHA-FMIN>O"AND"THETA-FMIN>O "THEN" "GOTO" END;
THETA: =ABS ((ALPHA-THETA)/("IF"ABS(FMIN)<PSI"THEN"PSI"ELSE"FMIN));
"IF"THETA>ETA "THEN" IXX[J]:=. $3 \times D \times[J]$ "EL.SE"
"BEGIN"DX[J]: = 3*DXEJ]:"IF"DX[J]>DKMAX[J]"THEN"DX[J]:=DXMAX[J] "END"; END: "END" FOR;
LAMBDA: =SQRT(LAMBDA);
"FOR" J:=1"STEP"1"UNTIL"NV"DU" LFFDX[J]:=DFDX[J]/LAMBDA
"END" PROCEDURE ATIVE;
"PROCEDURE" STEP;
"BEGIN""FGR"J:=1"STEP"1"UNTIL"NV"DO"
"BEGIN"ALPHA: = (1-FFLAX) $\because D F D X[J I+R E L A X \because D F P R[J] ;$
XSTEP[J]: =XMIN[J]-P*AL'HA*
("IF"ABS (XMIN[J]) <ZETA"THEN"ZETA"ELSE"ABS (XMIN[J]));
DFPR[J]:=ALPHA;
"IF"XSTEP[J]>UB[J]"THEN"XSTEP[J]: =UB[J]
"ELSE""IF"XSTEP[J]<LB[J]"THEN"XSTEP[J]:=LB[J]
"END"FOR;
"END"STEP;
P:=1;
"FOR" J:=1"STEP"1"UNTIL"NV"DO"
"BEGIN" XMIN[J]:=XS[J];DFPR[J]:=0 "END";FMIN:=FUNK(XMIN);
DERIV:ATIVE;
NEXT:STEP;
ALPHA: =FUNK (XSTEP);
"IF"ALPHAくFMIN"THEN"
"BEGIN"FMIN: =ALPHA;P:=PMULT*P;
"PRINT" '"L2'P=',SAMELINE,P;
"IF"P>PMAX"THEN"P:=FMAX;
"FOR"J:=1"STEP"1"UNTIL"NV"UO"XMIN[J]: =XSTEP[J];
"GOTO" DERIV "END";
P: $=P /$ PDIV;
"PRRINT" '"LZ'P=*,SAMELINE,P;
"IF"P>EHS"THEN" "GUTO" INEXT;
"ENI"STEEF2;
BDARBH60;
"BEGIN" "INTEGER" NM,NV;
"READ" NM,NV;
"BEGIN" "COMMENT" THIS PROGRAM MINIMISES THE SUM OF THE RMS
ACCELERATIONS OF THE AIRCRAFT AT
MAINWHEELS AND PILOT LOCATION FOR ONE
TAXIING VELOCITY FOR VARIABLE K1 AND K2;
"INTEGER" I,J,NSTEPS,SS,LOH,HI,NNEGO,JE,IE,NEIG,COUNT;
"REAL" BETA,C1,C2,K1,K2,KT1,KT2,M1,M2,CT1,CT2,
HBASE, OMEGA, V, CA,NA,CB,NB,PSDMTOT,PSDNTOT,PSDPTOT,IM1,IM2,IN1,IN2,IP1,IP2,TOLP,
WF, WFMIN, WFMAX,WFFIN,Z1, Z2, ZP, PSDIN, PSDMOUT, PSDNOUT, PSDPOUT, RMSM,
RMSN, RMSP, WFSTART, WFSTEP, MACHEPS,FHIN,EPS,RELAX,PMAX,ZETA,PSI,ETA;
"REAL" "ARRAY" MJ,WJ, XW,YW, UH, VH, A, B, SMC5, SMK5[1:NM, 1:NM],PHI1,
PHI2,SMC1,SMC2,SMK1,SMK2, PHIP[1:1,1:NH1, PHI1T,
PHI2T, SMC3, SMCA, SMK3, SMKA[1:NH,1:1],C,K,MI,
STFMX, DMPMX,UNIT[1:NM+2,1:NM+2],CMI,U[1:NM+2,1:NM+2,1:2],XS,LB,Ub,XMIN,DX,DXMAX[1:NV],
$G, X T[1: N M+2,1: 1,1: 2], X J[1: N M, 1: 1,1: 2], F, \operatorname{COEFF}[1: 2 *(N M+2), 1: 2 *(N M+2)], D, W R, W I[1: 2 *(N M \rightarrow 2)]$
"INTEGER" "ARRAY" CNT,INT[1:2*(NM+2)];

```
"PFOCEDURE" BALANCE(N,B,A,LON,HI,D);
"PFOCEDUPE" ELMIES(N,K,L,A,INT);
"PFOCEDUFE" CDIV(XR,XI,YR,YI,ZR,ZI);
"PROCEDUFE" HQR2(N,LOT,UPP,MACHEPS,H,WR,WI,CNT,F,FATL);
```

```
"PFOGEDURE" TRAFUN(APPX,ARPPHI,M,:OD);
"PROCEDURE" SOET(ATRIIT,HVI);
"JLBRAPY" FORMMX,READIX,MXXDANS,MXPROD, MXCOPY,SCPROD,
        MXSTH,CNXFORH,CIXPROD,CUXCOP,CIXXITV;
"PRONEDURE" POSPDY;
"PROCEDURE" SIMPS;
"REAL" "PROCEDURE" FUNK(X);
    "ARRAY" X;
"COMMENT" IN THIS PROCEDURE X(1)=K1,X(2)=K2;
"BEGIN" COUNT:=COUNT+1;
    "PRINT" ':LJ`ENTRY TO FUNK`,SAMELINE,COUNT;
        MXPROD(XH,PHI1T%PHI1);
        MXPROD(YH,PHI2T;PHI2);
        MXCOPY(UW,XW);
        MXCOPY(VW,YW);
        SCPROD(XW,C1);
        SCPROD(YW,C2):
        MXSUM(A,XW,YW);
        SCPROD(UW,X[1]);
        SCPROD(VW,X[2]);
        MXSUM(B,UW,VW);
        MXPROD(XH,MJ,WJ);
        MXCOPY(YW,XW):
        SCPROD(XW,BETA);
        MXSUM(SMC5,XW,A);
        MXPROD(XW,YW,WJ);
        MXSUM(SMK5,XW,B);
```

MXCOPY(SMC1,PHI1);
SCPROD(SMC1,-C1);
MXCOPY(SMC2,PHI2)
SCPROD (SMC2,-C2);
MXCOPY(SMC3,PHIIT);
SCPROD(SMC3,-C1);
MXCOPY(SMC4,PHI2T);
SCPROD(SNC4,-C2):
MXCOPY(SMK1,PHI1);
SCPROD(SMK1,-X[4]);
MXCOPY(SNK2.PHI2);
SCPROD(SMK2,-X[2]):
MXCOPY(SMK3,PHIIT):
SCPROD(SHK3,-X[1]):
MXCOPY(SMK4,PHI2T);
SCPROD(SMK4,-X[2]);
FORMMX(C.0.0,I,j);
C[1,1]:=C1+CT1;
C[2,2]:=C2+CT2;
"FOR" J:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" C[1,J+2]:=SMC1[1,J];
C[2,J+2]:=SMC2[1,J];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" C[I+2,1]:=SMC3[1,1];
C[I+2,2]:=SMC4[I,1];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
"UNTIL" NM "DO" C[I+2,J+2]:=SMC5[1,J];
FORMMX (K,0.0,1,J);
$\mathrm{K}[1,1]:=K T 1+\mathrm{X}[1]$;
K[2,2]:=KT2+X[2];
"FOR" J:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" K[1, J+2]:=SMK1[1, J];
K[2,J+2]:=SMK2[1,J];
"END";

```
    "FOR". I:=1 "STEP" 1 "UNTIL" NM "DO"
    "BEGIN" K[I+2,1]:=SMK3[I,1];
        K[I+2,2]:=SMK4[I,1];
    "END";
    "FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
    "UNTIL" NM "DO" K[I+2,J+2]:=SMK5[I,J];
    MXPROD(STFMX,MI;K);
    MXPROD(DMPMX,MI;C);
    FORMMX(COEFF,0.0,I,J);
    "FOR" I:=1 "STEP" 1 "UNTIL" NM+2 "DO" "FOR" J:=1 "STEP"
    1 "UNTIL" NH+2 UDO"
    "BEGIN" COEFF[I;J]:=-DMPMX[I,J];
    COEFF[1;J+NM+2]:=-STFHX[I,J];
    "END";
    "FOR" I:=1 "STEP" 1 "UNTIL" NH+2 "DO"
    COEFF[I+NM+2,I]:=1;
    BALANCE(2*(NM+2),2,COEFF,LOH,HI,D);
    ELMHES(2*(NH+2),LOW,HI,COEFF,INT); HQR2(2*(NM+2),LOW,HI,MACHEPS,COEFF,WR,WI,CNT,F,FAIL);
    "PRINT" ''L4S`K&=`,SAMELINE,X[1],''S5`K2=`,X[2],
"'S5'C1=`,C1,''S5`C2=`,C2,
\prime'L2`KT1=',KT1,''S4`KT2=',KT2,
    "'S4.CT1=',CT1,''S4`CT2=`,CT2,
    "'L2S2'V=`,V;
NNEGO:=0;
    "FOR" I:=1 "STEP" 1 "UNTIL" 2*(NH+2) "DO"
    "IF" WI[I]<WFMIN "OR" HI[I]>WFMAX "THEN" NNEGO:=NNEGO+1;
NEIG:=2*(NM+2)-NNEGO;
"bEgIN" "REAL" "ARRAY" EIGEN[1:NEIG],LIMINT[1:NEIG+2];
        JE:=1;
        "FOR" I:=1 "STEP" 1 "UNTIL" 2*(NM+2) "DO"
        "IF" WI[I]>WFMIN "AND" WI[I]<WFMAX "THEN"
        "BEGIN" EIGEN[JE]:=WI[I];
            JE:=JE+1;
        "END";
        "PRINT" ''L3S5`NUMBER OF NATURAL FREQUENCIES WITHIN SPECIFIED RANGE=`,SAMELINE,NEIG;
        SORT(EIGEN,NEIG);
```

```
    LIMINT[1]:=EIGEN[1]/2;
    "FOR" JE:=1 "STEP" 1 "UNTIL" NEIG "DO" LIMINT[JE+1]:=EIGENCJE];
    LIMINT[NEIG+Z]:=EIGEN[NEIG]*1.4;
    "PRINT" "'L3S15`INTEGRATION LIMITS`; *
    "FOR" JE:=1 "STEP" i "UNTIL"NEIG+2 "DO"
    "PRINT" ALIGNED(4,6);"'L2SI9"`,SANELINE,LIMINT[JE];
PSDMTOT:=0.0;
PSDNTOT:=0.0;
PSDPTOT:=0.0;
"FOR" IE:=1 "STEP" 1 "UNTIL" NEIG+1 "DO"
"IF" LIMINT[IE+1]-LIMINT[IE]<2 "THEN"
"BEGIN" WFSTART:=LIMINTEIEJ;
WFFIN:=LIMINT[IE+1];
SIMPS;
"END"
"ELSE" "BEGIN"
    "IF" IE=1 "THEN"
    "BEGIN" WFSTART:=LIMINT[IE];
        WFFIN:=LIMINT[IE+1]-0.5;
        SIMPS;
        WFSTART:=LIMINT[IE+1]-0.5;
        WFFIN:=LIMINT[IE+1];
        SIMPS;
    "END"
    "ELSE" "IF" IE=NEIG+1 "THEN"
    "BEGIN" WFSTART:=LIMINT[IE];
        WFFIN:=LIMINT[IE]+0.5;
        SIMPS;
        WFSTART:=LIMINT[IE]+0.5;
        WFFIN:=LIMINT[IE+1];
        SIMPS;
"END"
```

```
    "ELSE"
    "BEGIN" WFSTART:=LIMINT[IE];
        WFFIN:=LIMINT[IE]+0.5;
        SIMPS;
        WFSTART:=LIMINT[IE]+0.5;
        WFFIN:=LININT[IE+1]-0.5;
        SIMPS;
        WFSTART:=LIMINT[IE+1]-0.5;
        WFFIN:=LIMINT[IE+1];
        SIMPS;
    "END"
    "END";
RMSM:=SQRT(PSDMTOT);
    RMSN:= SQRT(PSDNTOT):
    RMSP:=SQRT(PSDPTOT);
    "PRINT"''L3'ACCELERATIONS RMSM=`,
            SAMELINE,RMSM,''LS16`RMSN=',RMSN,
            ''LS16'RMSP=`,RMSP;
"END";
FUNK:=RMSH+RMSP;
"PRINT" ''L2S16*FUNK=`,SAMELINE,RMSM+RMSP;,
"END" FUNK;
"PROCEDURE" STEEPZ (LB,XS,UB,DX,XMIN,FMIN,NV,EPS,RELAX,DXMAX,
ETA,PSI,PMAX,ZETA,FUNK);
    FORMMX(MJ,0.0,I,J);
    FORMMX(WJ,O.O,I,J);
    "FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "READ" MJ[I,I];
    "FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "READ" WJ[I,I];
    "READ" BETA,C1,C2,K1,K2,CT1,CT2;
    READMX(PHI1);
    READMX(PHI2);
```

"READ" KT1,KT2,M1,M2,MACHEPS, WBASE, OMEGA,V,CA,
NA, CB, NB, WFMIN, WFMAX,TOLP;
MXTRANS(PHIIT,PHII);
MXTRANS (PHI2T,PHI.ट);
BETA: =2*BETA;
FORMMX(MI,0.0,1,J)
MI[1,1]:=1/M1;
MI[2,2]:=1/M2;
"FOR" $1:=1$ "STEP" 1 "UNTIL" NM "DO"
MI[I+2,I+2]:=1/MJ[I,I];
FORMMX(LUNIT,0.0,I,J);
"FOR" I:=1 "STEP" 1 "UNTIL" NH+2 "DO" UNIT[I,I]:=1;
CMXFORM(CMI,MI[I,J],0.0,I,J);
READMX(PHIP);
COUNT:=0;
XS[1]:=K1;
XS[2]:=K2;
LB[1]:=XS[1]/2;
UB[1]:=XS[1]*2;
LB[2]: $=X S[2] / 2$;
UB[2]:=xS[2]*2;
DX[1]:=xS[1]/50;
DX[2]:=XS[2]/50;
DXMAX[1]:=XS[1]/5;
DXMAX[2]:=XS[2]/5;
"READ" EPS,PSI, ZETA, ETA,RELAX,PMAX;
STEEP2(LbTXS, UB, DX, XMIN,FMIN,NV,EPS,RELAX,DXMAX, ETA,PSI, PMAX,ZETA,FUNK);
"PRINT" "L3`OPTIMUM VALUES ARE`,
-!L'ACCELERATION RMSH+RMSP=',
SAMELINE,FMIN,''LS22’K1=',
XMIN[1],''S4'K2=',XMIN[2];
"END";
"GOTO" END;
FAIL:"PRINT" "L'hQR2 FAILURE";
END: "END";

```
OPTIMISATION ONG AFPROXIHATE RFSPONSE FUNCTION 5;
```



```
"REAL." SUHRN,!\FFWF:
            "瓦EAD" N|A,浖;
"BEGIH" "COHMFNT" THIS PROGRAH MINIMISES THE SUM OF SIMPLE APPROXIMATIONS TO THE RMS
                                    ACCELERATIONS OF THE AIRCRAFT AT
                                    MAIUNHEEIS AND PILOT LOCATION FOR ONE
                                    TAXIINI; VELOCITY FOR VARIABLE MAINWHEEL AND NOSEWHEEL POSITION;
    "INTEGER" I,J,SS,LON,HI,NNEGO,JE,IE,NEIG,COUNT;
    "REAL" BETA,C1,C2,K1,K2,KT1,KT2,M1,M2,CT1,CT2,
                            OK1,OK2,OC1,OC2,OKT1,OKT2,OCT1,OCT2,OM1,OM2,ODMAIN,ODNOSE,NDMAIN,MNMULT,NSMULT,
WBASE, OHEGA,V,CA,NA,CB,NB,PSDMTOT, PSDNTOT,PSDPTOT,BWMULT,
                WF,WFMIN,WFMAX,Z1,Z2,ZP,PSDIN,PSDMOUT,PSDNOUT,PSDPOUT,RMSM,
                R!SN,RMSP,MACHEPS ,FMIN,EPS,RELAX,PMAX,PMULT,PDIV,ZETA,PSI,ETA;
"RFAL" "ARRAY" HJ,WJ,XW,YN,UN,VW,A,B,SMC5,SMK5[1:NN,1:NM],PHI1,
            PH[2,SHC1,SMC2,S:MK1,SMK2,PHIP[1:1,1:NM],PHI1T,
            PHI2T,SHC3,SHC4,SMK3,SMK4[1:NM,1:1],C,K,MI,
            STF\X,0MP!AX,UNIT[1:NM+2,1:NM+2],CMI,U[1:NM+2,1:NM+2,1:2],XS,LB,UB,XMIN,DX,DXMAX[1:NV],
                        G,XT[1:NM+2,1:1,1:2],XJ[1:NM,1:1,1:2],F,COEFF[1:2*(NM+2),1:2*(NM+2)],D,WR,WI[1:2*(NM+2)
"INTEGER" "ARRAY" CNT, INTE1:2%(NM+2)];
```

```
"PROGEDURE" BALAMCE(N,B,A,LON,HI,D);
"PPOCEDUPE" ELLHES(N,K,L,A,INT);
"PROCEDURE" CDIV(XR,XI,YR,YI,ZR,ZI);
"PROCEDURE" HOR2(N,LOW,UPP,MASHEPS,H,TR,HI,ONI,F,FAIL);
```

```
"FFONEDURE" TPAHUNY(APRY,ARRFEI,:Y,YOD);
'IIERARY' FORMRX,READIX,\XTFALTS,IXPROD,IXCOPY,SCPROD,
    MXSUM,CNXFORM,CIXPROD,CNXOOP,CUXINN;
"PROUEDURE" POSPDY;
```

```
"REAL" "PROCEDURE" FUNK(X);
    "ARRAY" X;
"COMMENT" IN THIS PROCEDURE X(1)=PHI1[1,2];
"BEGIN" COUNT:=COUNT+1;
        "PRINT" "L2S5'ENTRY TO FUNK',SAMELINE,COUNT,''S5'V=`,V;
        PHI1[1,2]:=X[1];
        PHI2[1,2]:=PHI1[1,2]-HBASE;
        MNMULT:=ABS(PHI2[{,2]/ODNOSE);
        NSMULT:=PHI1[1,2]/ODMAIN;
        K1:=0K1:MNMULT;
        C1:=OC1*MNMULT;
        KT1:=OKT1"MNMULT:
        CT1:=0CT1:mNMUUL;
        K2:=OK2*NSMULT;
        C2:=OC2*NSMULT;
        KT2:=OKT2%NSMULT;
        CT2:=0CT2*NSMULT;
        M1:=OM1^MNMULT;
        M2:=0M2*NSMULT;
        MXTRANS(PHI1T,PHI1);
        MXTRANS(PHI2T,PHI2);
        MI[1,1]:=1/M1;
        MI[2,2]:=1/M2;
        CMI[1,1,1]:=MI[1,1];
        CMI[2,2,1]:=MI[2,2];
```

```
MXPROD(XW,FHI1T,PHII);
MXPROD(YW,PHI2T,PHI2);
MXCOPY(UW,XW);
MXCOPY(VN,YW);
SCPROD(XW,C1);
SCPROD(YW,C2):
MXSUM(A,XW,YH);
SCPROD(UN,K1);
SCPKOD(VW,K2);
MXSUM(B,UW,VW);
MXPROD(XH,MJ,WJ):
MXCOPY(YW,XW);
SCPROD(XW,BETA);
MXSUM (SMC5,XW,A);
MXPROD(XW,YW,WJ);
MXSUM(SMK5,XW,B);
MXCOPY(SMC1,PHI&);
SCPROD(SMC1,-C1);
MXCOPY(SMC2,PHI2);
SCPROD(SMC2,-C2);
MXCOPY(SMC3,PHI1T);
SCPROD(SHC3,-C1);
MXCOPY(SMC4,PHI2T);
SCPROD(SMC4,-C2);
MXCOPY(SMK1,PHI1);
SCPROD(SMK1,-K1);
MXCOPY(SMK2,PHI2);
SCPROIV(SMK2,-K2);
MXCOPY(SMKZ,PHI直T);
SCPROD(SHK3,-K1);
MXCOPY(SHK4,PHI2T);
SCPROD(SMK4,-K2);
FORMMX (C,0,0,1,J);
C[1,1]:=C1+CT1;
C[2,2]:=C2+CT2;
```

"FOR" J:=i "STEP" 1 "UNTIL" NM "DO"
"BEG[N" C[1,J+2]:=SMCLT1,J];
C[2,J+2]:=SMC2[1,J];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" C[I+2,I]:=SMC3[I,1];
C[1+2,2]:=SMC4[1,1];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
"UNTIL" NM "DO" C[I+2,J+2]:=SMC5[i,j];
FORMMX(K,0.0,I,J);
K[1,1]:=KT1+K1;
K[2,2]:=KT2+K?;
"FOR" J:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" K[1,J+2]:=SMK1[1,J];
K[2,J+2]:=SMK2[1,J];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO"
"BEGIN" K[I+2,1]:=SMK3[I,1];
K[I+2,2]:=SMK4[I,1];
"END";
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "FOR" J:=1 "STEP" 1
"UNTIL" NM "DO" K[I+2,J+2]:=SMK5[I,J];
MXPROD(STFMX,MI,K);
MXPKOD(DMFMX,MI,C);
FORMMX(COEFF,0.0,I,J);
"FOR" I:=1 "STEP" 1 "UNTIL" NM+2 "DO" "FOR" J:=1 "STEP"
1 "UNTIL" NM+2 "DO"
"BEGIN" COEFF[!;J]:=-DMPMX[I,J];
COEFF[I,J+NM+2]:=-STFMX[!,J];
"END";
"FOR" I:= \& "STEP" 1 "UNTIL" NM+2 "DU"

```
    COEFF[I+NM+2,I]:=1;
    BALANCE (2*(NM+2), 2, COEFF,LOW,HI,D);
```

 ELMHES(2*(NM+2),LOW,HI,COEFF,INT); HQR2(2*(NM+2),LOW,HI,MACHEPS,COEFF,WR,WI,CNT,F,FAIL);
 "PRINT";'L2S2`NDMAIN=',SAMELINE,PHII[1,2],''L2S6`K1=`,K1,''S5`K2=`,K2,
 \primeS5`C1=`,C1,''S5`C2=',C2,
 \prime'{2S5'KT1=',KT1,''S4`KT2=`,KT2,
 ''S4'CT1=',CT1,''S4'CT2=`,CT2.
 ''L2S6`M1=',M1,''S5`M2=',M2;
 NNEGO:=0;
 "FOR" I:=1 "STEP" 1 "UNTIL" 2%(NM+2) "DO"
 "IF" WI[I]<WFNIN "OR" WI[I]\WFMAX "THEN" NNEGO:=NNEGO+1;
 NEIG:=2*(NM+2)-NNEGO;
 "BEGIN" "REAL" "ARRAY" EIGEN[1:NEIG,1:1,1:2],PSDM,PSDN,PSDP[1:NEIG];
 JE:=1;
 "FOR" I:=1 "STEP" 1 "UNTIL" 2*(NM+2) "DO"
 "IF" WI[I]>NFMIN "ANO" WI[I]<WFMAX "THEN"
 "BEGIN" EIGEN[JE,1,1]:=-WR[I];
 EIGEN[JE,1,2]:=WI[I];
 JE:=JE+1;
 "END";
 "PRINT" '"L?S10`NUMBER OF EIGENVALUES WITHIN SPECIFIED RANGE=`,SAMELINE,NEIG,
 ''L2S24'EIGENVALUES';
 "FOR" JE:=1 "STEP" 1 "UNTIL" NEIG "DO"
 "PRINT" ALIGNED(4,6),'"L2S13'`,SAMELINE,EIGEN[JE,1,1],''S4``,EIGEN[JE,1,2];
 PSDMTOT:=0.0;
PSDNTOT:=0.0;
PSDPTOT:=0.0;
"FOR" JE:=1 "STEp" 1 "UNTIL" NEIG "DO"
"BEGIN" WF:=EIGEN[JE,1,2.7;
POSPDY;
PSEM[JE]:=PSUMOUT;
PSD:I[JE]:=PSDNOUT;
PSDP[JEJ:=PSDPOUT;
PSUMTOT:=E[GEN[JE,1,1]\approxPSDH[JE]+PSDMTOT;
PSDATOT:=EIGEN[JE,1,1]*PSDN[JE]+PSDNTOT;
PSEPTOT:=EIGEN[JE,1,1]*PSDP[JE]+PSDPTOT;
"END";

```
    RMSM:=SORT(PSMMTOT);
    RMSN:=SORT(PSONTOT);
    RMSH:=SORT(PSDPTOT);
    "IF" MEIG=2 "THEN"
    "BEGIN" SLMBN:=EIGENL1,1, I]+EIGEN[2,1,1];
        DIFWF:=ARS(0.75*(EIGEN[1,1,2]-EIGEN[2,1,2]));
        "IF" \IFWF<0.2 "OR"
            OIFWF<0.033*EIGEN[2,1,2]"OR"
            DIFWF<!.05*SUMBW "THEN"
            "GOTO" APFAIL;
        "IF" SUMBW>DIFWF "THEN"
        "BEGIN" BWMULT:=SQRT(DIFWF/SUMBW);
                        RMSM:=BWMULT&RMSM;
                RMSN:=BWMULT*RMSN;
                RMSP:=BWMULT*RMSP;
            "END";
    "END";
    "PRINT"''L2S5`ACCELERATION APPROXIMATIONS RMSM=`,
            SAMELINE,RMSM,''LS35'RMSN=',RMSN,
            ''LS35'RMSP=`,RMSP;
"END";
FUNK:=RMSM+RMSP;
"PRINT" ''L2S35'FLUNK=',SAMELINE,RMSM+RMSP;
"END" FUNK;
"PROCEDURE" STEEF' (LH,XS,UB,DX, XMIN,FMIH,NV,EPS,RELAX,DXMAX,
ETA,PSI,PMAX,PMILT,PDIV,ZETA,FUNK);
```

FORMMX (MJ, 0.0, 1, J);
FORMMX(WJ,0.0,I,J);
"FOR" I:=1 "STEP" 1 "UNTIL" NM "DO" "REAU" MJ[I,I];
"FOR" I:=1 "STEP" 1 "UNTIL" NM "JU" "READ" WJ[I,I];

```
"READ" BETA,OC1,OC2,OK1,OK2,UCT1,OCT2;
READMX(PHI1);
READMX(PHI2);
"READ"O KTA,OKT2,OM1,OH?,MACHFPS,WRASE,OMEGA,V,CA,
NA,CE,NB,WFMIN,WFMAX;
BETA:=?*BETA;
FORMMX(MI,0.0,i,J);
"FOR" I:=1 "STEP" 1 "UNTIL" N# "DG"
MI[I+2,I+2]:=1/MJ[I,1];
FORMMX(UNIT,0.0,I,J);
"FOR" I:=1 "STEP" 1 "UNTIL" NM+2 "DO" UNIT[I,I]:=1;
CMXFORM(CIMI,MI[I,J],0.0,I,J);
READMX(PHIP);
COUNT:=0;
"READ" NDMAIN;
XS[1]:=NDMAIN;
ODMAIN:=PHII[1,2];
ODNOSE:=-PHI2[1,2];
    "FOR" I:=1 "STEP" 1 "UNTIL" NV "DO"
    "BEGIN" LB[I]:=XS[I]/2;
        US[I]:=XS[I]*2;
        DX[I]:=XS[I]/50;
        DXMAX[I]:=XS[I]/5;
"END";
"READ" EPS,PSI, ZETA,FTA,RELAX,PNAX,PMULT,PDIV;
STECP2(LB,XS,UB,DX,XMIN,FMIN,NV,EPS,RELAX, DXMAX,ETA,PSI,PMAX,PMULT,PDIV,ZETA,FUNK);
PHl1[1,2]:= XMIN[1];
PHI2[1,2]:=PHI1[1,2]-WBASE;
MNMULT:=ABS(PHI2[1,2]/ODNOSE);
NSMULT:=PHI1[1,2]/ODHAIN;
```

```
    "PRINT" "LJ`OPTIMUM VALUES ARE:-`,
        ''S5'ACCELERAT.ION APPROXIMATION,PMSM+RMSP=',
        SAMELINE,FMIN,''L2S58`NDMAIN=`,XMIN[1],''L2S62`K1=',OK1*MNMULT,
        "'S5'C1=',OC1*MNMULT,''LS62`K2=',
        OK2*NSMULT,''S5'C2=`,OC2*NSMULT,
        "L2S61'KT1=',OKT1*MNMULT,''S4`CT1=',
        OCT1*MNNULT,''LS61.'KT2=`,OKT2*NSMULT,
        "S4'LT2=',OCT2*NSMULT,''L2S62`M1=',
        OM1*MNMULT,''LS62'M2=',OM2*NSMULT;
"END";
    "GOTO" END;
FAIL:"PRINT" '"L'HQR2 FAILURE';
        "GOTO"END;
APFAIL:"PRINT"'"L2S5'ACCELERATION APPROXIMATION HAS FAILED',
            '"LZS5'DIFFERENCE IN RESONANT FREQUENCIES=',
            SAMELINE,DIFWF/0.75,
            ''L`S5'SUM OF BANDHIDTHS=',SUMBW;
END: "END";
```


[^0]: At the mainwheels, as would be expected, the pitch motion

[^1]: - Manwheel tyre damping coefficient,

