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ABSTRACT

The problem of vibration and flutter analysis of
simply-supported unstiffened and orthogonally stiffened
circular cylindrical shells which are typical of missile
bodies has been developed and programmed for digital
computer solution. ,

An extensive review of the existing literature cover-
ing various aspects of the shell flutter problem is given
with a critical appraisal of the assumptions made, results
obtained, etc. A comprehensive chronological bibliography
is also included. o

The analysis and the programme which have been developed
are capable of handling shells of arbitrary geometrical,
modal and flow parameters. ’

In the case of stiffened shells, the stiffener
effects may be treated as 'averaged' (‘'smeared') or
‘discrete! and in each case the influence of eccentricity,
inplane and rotary inertias may be studied.

The aerodynamic generalised forces may be calculated
using the linear piston theory, the linear piston theory
with a correction for curvature, and the exact potential
flow solution.

By combining the invacuo-natural vibration analysis
and the aerodynamic generalised forces the cylindrical
shell flutter problem may-be solved and the flutter bound-
aries may be obtained in each of the above cases.

The prbcedures have been illustrated with typical
examples in each of the above cases and the results dis-

' cussed. A few shells have been tested using an experimental
vibration rig designed and built for the purpose and com-
pared with the theoretically predicted invacuo-natural

" frequencies and mode shapes.
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Small letters
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© structural operators (see egn. I-1)

matrix elements
.3

. —Eb_ | flexural rigidity of the shell

12 (1-14)

Young's Modulus

Shear modulus

Moment of Inertia

Torsion constant

Total no. of rings

Length of the cylindrical shell
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Non-dimensional aerodynamic generalised
forces

Radius of the cylindrical shell

Kinetic energy

Free stream velocity; also strain energy

acoustic velocity
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shell thickness
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=
b
~



r radial co-ordinate; also streamwise mode no.

s Laplace transform variable
t ~ time variable
(u,v,w) axial, tangential and radial displacements
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distance of the centroid of stiffener cross-

3]

section from .shell middle surface
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velocity potential of fluid flow
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shell mass per unit area

Laplacian operator
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frequency factor (

mmT R
L

>

3

Subscripts

Cy 8, refer to cylindrical shell, stringers and rings
‘ as appropriate
o refer to quantities referred to a line in

the shell middle surface

Superscripts

D Discrete

s Smeared

NOTE: i) Other symbols are explained in the text
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contexts when there is no scope for confusion.
These symbols are explained in the section where
they appear.
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CHAPTER I
FLUTTER OF CIRCULAR CYLINDRICAL SHELLS - A REVIEW

Summarx

A comprehensive review is given of the aerodynamic and
structural assumptions made in the existing cylindrical
shell flutter analyses. A review is also given of such
analyses for shells of infinite and finite lengths. A
critical discussion of analytical and experimental results is
included and a comprehensive chronological bibliography is
appended.

The intention is to assess the state of the art with
regard to shell flutter analyses and indicate the areas
where future investigations may usefully be made to add
to the existing knowledge.

I.1 INTRODUCTION

Supersonic flutter of thin circular cylindrical shells

is ‘'one of the important probléms in the structural design
of flight vehicles such as rockets and missiles.

The term "Panel Flutter" refers to the flutter of a
thin plate, shell or membrane when, generally, one of the
surfaces is exposed to an airstream and the other to still
air. The panel then experiences elastic, inertia and aero-
dynamic forces which can lead to the dynamic instability
of the structure. Extraneous disturbances such as aero-
dynamic noise, flow turbulence or oscillating shocks may
also cause instability but these are not regarded as panel
flutter and will nat be considered here. The smallest
thickness of the panel (shell) required to prevent instab-
ility at a given airstream velocity defines the "Flutter
Boundary". For a given thickness, the minimum flight speed
at which instability can occur is defined as the "Flutter
Speed”. ’

On practical aerospace structures the most vulnerable
flutter condition often occurs near a point where the highest

dynamic pressure is encountered and usually this is also



tﬁe point where severe structural loads are imposed. In
general, the structural non-linearities tend to limit the
flutter amplitudes and therefore cause the modes of

" structural failure to be related to fatigue rather than
explosive fracture of tﬁe panel. However, it may be quite
dangerous to regard panel flutter only as a fatigue
problem. The existence of the flutter phenomenon has been
demonstrated in the laboratories and in flight and there
is considerable literature available to study the various
'aSpects of the problem. Unfortunately there is no general
reliable theoretical formula nor a computer programme of
guaranteed accuracy to design against panel flutter for all
conditions. The physical features of the problem are
simple, the observed oscillations are usually mild but the
experimental and theoretical difficulties are enormous.
‘ The geometry and the co-ordinate system for the
cylindrical shell are illustrated in Fig. 1{a).



. : 3.
I.2 STRUCTURAL ASSUMPTIONS

The first step in the formulation of the flutter problem
is to determine the equations of motion which will adequately
describe the invacuo natural vibration characteristics of the
complete cylinder. A large number of formulations are avail-
‘able in the literature for tlevibration analysis of cylindrical
shells. Starting from Love's first approximation, many
attempts have been made to refine or simplify the equilibrium
equations to handle different situations.

If the components of displacements of the middle surface
of the shell are u,v,w in the axial, circumferential and
radial (positive outwards) direcﬁions respectively, all the
various formulations may be written in the general form which
expresses the quantities u,v,w in terms of the external lcad-
ings of the shell (Ref. 69).

- . - — ' 2 B
_ v 1 Ow
Awu Pvu A b X+ Nyy oxdy R 3x
) .
(1-v 2
Auv Avv Avw v "( Eh ) X - Nxx -é%%
. Sx
Auw  Pyw  Buw W Z + N 9VW LN ( a2w + L S v )

where (u,v,w) are implicit functions of x,y,t; h 1s the shell
thickness, R is the radius, E is the Young's modulus and ¥V is

the Poisson's ratio. N Nyy are constant mid-plane stress

’
resultants in the shell?xthe shear stress resultant ny has been
neglected but may easily be included, e.g. Timoshenko (Ref. A17).
The terms X Y,Z represent the external loadings in units of
pressure and include all aerodynamic and inertia effects. The

operators Aij may be written as

- c. . I.»
Aij Bij + ol i3 (1.2)

2 : .
h =~ is a small quantity. The operators Bij

common to %E§ the usual shell formulations but different

where o = are

formulations do occur in the Cij'



4,

To illustrate the form of equation (I,1) the expressions
given below are based on_ the work of Novozhilov (Ref. A18)
and Goldenveizer (Ref. A.9) and are comparable to the set

-used for linear panel flutter analyses by Voss (Ref. .35) and

Johns (Ref. 32)

32 1-v 82 . 1+y 9

-V 3
A = + ,A = A = e——— ;A = A = — —
uu aX2 2 ay2 vu uv 2 Qxay wu uw R ax
2 32 2 2
A, = 15” S+ 92 + = {2(1-W) 32 . 32
9X 3y 99X oy
3 3
A, = AL, = - %-é* + o R ¢ (2-V) g + 33
oY ox"dy oY
2 2
A, = 3 +‘1R2v4 where V7 = ( 82 + 5 )2
v R o ax 23%
-~ - - - (1.,3)

Edge support conditions can have a pronounced_effect on
the flutter problem and, in the case of complex structural
configurations analytical prediction procedures for the invacuo
modes and frequencies can be quite inadequate; recourse should
be had to measured values where possible.

The role of structural damping has been examined extensively
and Ref. 133 provides a useful summary of the position. It
is concluded that structural damping is usually stabilising
for damping terms containing no spatial derivatives. Hence
there is a distinct advantage in applying dissipative (damping)
mechanisms at the panel boundaries. For finite surfaces having
damping terms with spatial derivatives it will be extremely
likely that a combination of parameters may be chosen to produce
‘a destabilising effect. Therefore, for a cylindrical shell,
structural damping may be stabilising or destabilising and it
is recommended that theoretical studies should investigate this
as a variable. There is no trend in analytical studies toﬁards
the sole use of either viscous or hysteric damping and both
have been extensively used. For both types of damping the
effect is proportionally greatest at higher altitudes when

aerodynamic damping is least.



It may be concluded that for the flutter analysis of
isotropic circular cylindrical shells the more exact equations
be used without simplification, by including explicitly the
effects of structural damping. K For non-linear analysis

alternative formulations are usually used.



1.3 AERODYNAMIC ASSUMPTIOQONS

I.3.1General . . L
The determination of aerodynamic forces on an oscillating
cylindrical shell is a prerequisite for the study of its aero-
elastic stability. Considerable efforts have been expended in
recent years to develop aerodynamic theories for such shells.
Basically, the problem is to determine the aerodynamic
forces on an oscillating cylindrical shell (of infinite or finite .
length} with the assumption of inviscid potential flow parallel
to the generators of Lhe shell. Mathematically, a se¢lution is
sought to the linearised, unsteady partial differential equation
Vzg":zl_ {-—33% + 2u af{’z?: v Ul —32—2 = 0 (I.4)
o ot 3%
with the appropriate boundary conditions depending on whether

the shell is of infinite or finite length. In equation (I.4)
'@ is the velocity potential, U is the freestream velocity, a, is
the acoustic velocity and v2 is the two-dimensional Laplacian

operator

2 3%

v =

5 . . .
> + _3—2— . (I .5 )
3x QY

The aerodynamic pressure p on the cylindrical shell is deter-
mined from the well-known Bernoulli equation

- 8,422 , y2f (I.6)

P = ot ax

L3 2 Cylindrical Shells of Infinite Length

For a shell of infinite length, Leonard and Hedgepeth (Ref.
8) have determined the air forces by reducing the unsteady flow
problem to a steady flow problem by means of a moving co-ordinate
system and have obtained results for both subsonic and super-
sonic flows. Miles (Ref. 13) has made further simplifications
in the aerodynamic theory using a plane wave approximation.
Dowell {(Ref. 87) has carried out a flutter analysis using an
exact solution of equation (I.4) without any approximation.
Bolotin (Ref. 74) formulated the problem using the full aero-

dynamic theory but carried out the stability analysis



by approximating the aerodynamic expressions. Dzygadlo azé
Kaliski (Ref. 36) have generalised the analysis of Miles
to stiffened orthotropic shells. Most of these papers have
used travelling wave solutions.

Stepanov (Ref. 14) has employed "piston theory" for
the aerodynamic forces but this is inadequate for the flutter
analysis of infinitely long cylindrical shells with travel-
ling wave motions. This has been discussed by Miles
(Ref. 32(a)), Krumhaar {(Ref. 68) investigated the applic-
ability of linear piston theofy to infinitely long shells
by applying the well known asymptotic expansions for cylinder
functions to .the solution of Leonard & Hedgepeth (Ref. 8) and
suggested a first-order improvement to linear piston theory

involving the addition of a curvature term in (w/R); thus
(.7

No numerical results have been presented to compare the
efficacy of the suggested impfovement.' However the terms
in the asymptotic expansion process show that at léast in
the following cases

Wil <1, ol <15 G gl <1, Al > 1,

(iii) |my| > 1, 1M2| < 1

> : . R
where M, = M = === and M, = M + (with < as the
' 1 Voo 2 %20

circular frequency, and V, as the wave number) linear piston
theory (i.e. with the curvature term in equation (I.7) omitted)
cannot be considered as a first order approximation for the
determination of the aerodynamic pressure.

T.3,3 Cylindrical Shells of Finite Length

Steady or quasisteady'theories in various forms have
been used with success in recent years to predict the aero-
dynamic pressures on oscillating cylindrical shells of finite
length; the forms more commonly used are the following:

) ,
= R0 Y v

p = —
- Me-1 9%

(I.8).-



_ n W
. p = - Qoo [U < "3 ] (1.9)
) _

. SR - VIS G R .Ef} (a0

Ve ox t 3 U 3t y

M -1 M“-1
Q U° 2

p = - 10 a_"‘i + M —2 3.__8_‘:" + 1 1 ( aN ) }
M2_q 9% M2_4 U 3t M2_q O 3F ‘x=0}
- - (T11

The expression (IX.8) is the Ackeret result, and (I.9) is the
familiar linear piston theory expression which is valid for
high Mach numbers. It is obvious that the expressioné (2.10)
and (I.11) which are obtained by an asymptotic exﬁansion of an
exact solution of equation (I.4) under various assumptions,
will fail to give the first order term(ﬂi:g) if the Mach

M2-1

_number is close fo f?, for then the coefficient of’
the aerodynamic damping term tépds to zero.

| In one of his papers, Fung (Ref. 65) mentions that the
static, quasi-static or piston theory approximations of the
aerodynamic pressure shou;d not be used for "scallop" modes of

flutter of cylindrical shells if the number of circumferential

" - nodes is large . (n of the order of 10). But a later investi-

gation by Olson and Fung (Ref. 116) showed that a flutter
analysis using piston theory yields results which corresponded
"more closely to experiment than those using the potential
theory solution.

Kopzon (Ref. 12(a)) used an axial source distribution to
obtain the aerodynamic lopads on the cylinder and employed
tﬁe L.aplace-transform method to solve the resulting integro-
differential equation similar to Goland and Luke's (Ref. 2(a))
approach for the case of flat panel. No numerical results
are presented.

Refined aerodynamic expressions are obtained by Holt and
Strack (Ref. 40) and Strearman {(Ref, 76). 1In both these
references a formal mathematical solution is presented in
terms of Laplace transformation of the velocity potential for

the unsteady flow problem in a manner similar to that used by
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Randall (Ref. 19) in his investigation of the steady flow
problem. The approximations used by Holt and Strack are
rather severeé and consist essentially of first reducing the
unsteady flow problem to the steady flow problem and then
expanding about the limiting case of two-dimensional flow.
Only the first two terms of the expansion are retained, the
first of which corresponds to the Ackeret result and the
second term is a first-order correction to that result.
The inherent approach is equivalent to neglecting the out-of-
phase time effects and is only justified for oscillations
of low frequency;

Dzygadlo (Ref. 57) has carried out an expansion process
in a more systematic way. First three terms of the asymptotic
expansion (in ascending powers of the inverse Mach number
of the undisturbed flow) are retained and unsteady effects
are included. The firs£ term of the expansion is equivalent
to the piston theory approximation. This expansion process
however is not rapidly convergent. In a more recent paper
Dzygadlo (Ref. 139) has generalised this approach to study
the external or internal flows, for arbitrary time dependent
oscillations of the shell.

An improvement to the static approximation of Holt and
Strack (Ref. 40) is made by Brown and Holt {(Ref. 66 and
Ref. 77) by taking into account the first order effects of
frequency. This causes a phase shift between the shell
displacement and the corresponding pressufe or the aercdynamic
force coefficient which may decrease the energy transfer to
the shell and thereby raise the critical flutter velocity.
.The phase angle which is a complicated function of the
reduced frequency wR/y, the Mach number M and the axial
co-ordinate x 1s approximated by Li (Ref. 113) who found that
the flutter boundary is not lower than that of the static
approximation (see Fig. 2).

Anderson (Ref. 112) has made some new observations by
introducing an arbitrary spatisl angle v in the pressure
expression but neglecting the frequency effects. The

results of a four-mode Galerkin analysis neglecting the
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inplane loads are shown in Fig. 3. The curves are symmetric
with respect to = 90°. Divérgence.is shown to be possible
near = 90° at very large .values of dynamic pressure ratios
(M. If W is not exactly 90O then flutter can occur at
very much lower values of A and these values are insensitive
to changes in v for a wide range (-30° to +60°). This latter
result suggests that for cylindrical shell "analyses the
details of pressure distribution are not so much of importance
in low frequency flutter and that an Ackeret type theory can
‘then probably be used with success.

Randall's method (Ref. 19) for the steady supersonic flow
problem has been extended to the unsteady problem by Dowell
(Ref. 98) and Davies (Ref. 137). Dowell has reduced the
problem analytically to a single integration in terms of a
Laplace transformation variable for the aerodynamic generalised
forces and the integratién is performed using the standard
complex Variable techniques. In another paper (Ref. 99) Dowell
has adopted the Fourier transformation to solve both the super-
sonic and subsonic flow problems. It was found that for sub-
sonic flow the Laplace transform method is not directly
applicable and the Fourier transform method is less efficient -
for the supersonic flow problem. Dowell has published the
first results using the full potential theory for the aero-
dyhamic generalised forces (see Fig. 4). This theory, used
in conjunction with an apﬁropriate shell theory in a systematic
stability analysis may permit the evaluation of the accuracy
of the various existing simplified theories.

Explicit calculations of the generalised forces associated
with each mode has been made by Coupry (Ref. 134) starting
from the concept of equivalent distributions and an asymptotic
expansion of the pressure potential.

In conclusion, it is considered that a need exists for
a thorough and systematic study of the variations caused in
flutter predictions by the use of different aerodynamic
approximations as against exact potential solutions. 1In
particular the analyses of Dowell would form a useful basis

for such a comparative study.
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T.4 FLUTTER ANALYSIS OF INFINITELY LONG CYLINDRICAL SHELLS
I.41 Unstiffened Cylindrical Shells

The aeroelastic stability of infinitely long isotropic
‘cylindrical shells has been analysed by several authors under
various assumptions.

Leonard and Hedgepeth (Ref. 8) have studied the flutter
of infinitely long circular cylinders‘by including midplane
tensile stresses and a small amount of structural damping.
Donnell's equations are used to describe the structural
behaviour and linearised unsteady potential theory predicts
the aerodynamic pressures. When the number of circumferential
waves {n} is small enough to invalidate the formulation,
simplified Fliigge's equations have been used to check the accuracy
of the results. For unstiffened thin shells it is shown that
the only instability at subsonic speeds is static divergence.
At supersonic speeds flutter seems to be the only possible
instability. The conclusion is reached that the second
asymmetric mode (n=2) is the most critical with regard to
stability on the premise that neither "the axisymmetric mode
{n=0) nor the first symmetric mode (n=1) involved panel actibn.
Fig. 5 shows the stability boundaries for aluminium cylinders at
sea level with no applied membrane stresses. The stability
criteria are obtained by including the effects of structural
damping and then taking the iimit as daﬁping tends to zero.
This approach has led to the interesting result that the
addition of damping makes the structure more prone to flutter.
This may be explained by the fact that a damping force, even
though in itself dissipative, can cause phase bhanges in such
a manner as to allow the moving outside air to feed more energy
“into the structure resulting in a net energy gain.
| Miles (Ref. 13) has analysed the same problem by using
the Timoshenko shell equations and extending the flat panel
analysis to include the curvature effect. The results show
that the axisymmetric mode (n=0) generally yields the most
critical flutter speed. The instability associated with n% 2
is shown likely to be much weaker than that associated with
n=0, thus contradicting the results of Leonard & Hedgebeth.
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Fig. 6 gives the minimum thickness ratio required to prevent
flutter of an empty isotropic shell. By a precise examination
of the neighbourhood of critical instability it can be con-
cluded that while structural damping is beneficial in this
neighbourhood, no finite amount thereof can prevent instability
predicted by the linear theory. Axial prestress has the effect
of increasing the theoretical flutter speed while the circum-
ferential prestress has no such effect.

Thus, it can be seen from Figures 5 and 6 that both
Leonard & Hedgepeth and Miles have obtained results that are
practically identical as far as the thickness requirement to
prevent flutter is concerned, even though their analyses were
based on widely differing assumptions. This may be due to
the fact that their aerodynamic approximations closely
approximate to each other if the wavelength‘is small compared
to the radius. _

A different approach to the infinite length cylinder problem .
is due to Stepanov (Ref. 14) who has used piston theory aero-
dynamics in the Donnell's equations as well as in Goldenveizer's
equations. The cases n = 0 and n22 are considered and it is
found that the critical speed has a fixed value of h/R (h:
thickness and R: radius) when n=0 and has the same minimum for
larger values of n (of order 20). The value of critical Mach
number obtained differs by unity from the corresponding value
of Miles (see Fig. 7) due to the replacement of p by M in the
airforce expression, The stability boundary is obtained
through a more direct approach by solving an octic equation
compared to the Nyquist diagram technique of Miles and Leonard
& Hedgepeth. Stepanoﬁ has also concluded that the axisymmetric
mode (n=0) is the most critical with regard to stability.

- However, the result is suspect because of the doubtful validity
of piston theory to infinite cylinders.

The analysis given by Dowell (Ref. 85) attempts to over-
come the limitations of the previous studies and very complete
results are given for incompressible and compressible flows.

An exact aerod&namic pressure expression is used with Golden-
veizer's shell equations. Assuming the defiection in a

travelling wave form



13-

w o= aexp{zfl (ct - x)} cos né
(n=0, 1, 2, ....) S (T.12)

(where 6 is the angular co-ordinate, a is the amplitude,
1 is the wave length and ¢ is the phase velpcity) and omitting
the midplane inertia forces the flutter problem of an infinitely
long cylindrical shell is reduced to the solution of an
algebraic equation (which is formally identical to that for an
infinite flat plate)

2

Cy - c2 - fLF(U - c)2'= 0

(r.13)%
(where S is the transverse wave velocity of thé panel in vacuum,
P is the mass ratio, U is the freestream velocity and F is the

‘term representing the aerodynamic pressure). F is expressed

in terms of Bessel fﬁnctions thus facilitating the analysis

considerably. The axisymmetric mode (n=0) ‘and the asymmetric

modés (n22) are considered seﬁarately. By minimising the
critical velocity in each case with respect to (1/R) ratio

(R: Radius of the cylinder) it is shown that the most critical

. configuration for very small structural damping is theasymmetric

mode with n=2 and long waves (L/R of order JR/h, h: shell
thickness) for low Mach numbers U)&rdsbk)>1), while it is the
~axisymmetric mode (n=0) with short waves (1/R of order Jn/Rr)
for M&}Mo. The value of Mo depends upon the mass ratio and the
thickness ratio. The mass ratio effect is shown to be import-
ant in the transonic and low supersonic regime; the three-
dimensional effect is only important in this regime, if in
addition, the c¢ylinder is relatively thick h/R ~ 10_1. For
high Mach numbers neither effect seems significant and the
instability is relatively so weak that the low supersonic Mach
number range (M=2) may well prove to be of greater practical
significance; even though the thickness required to prevent
any instability increases with Mach number. A comparison of
the n = 0 and n = 2 modes is made in Fig. 8, for an aluminium
cylinder at sea level where the thickness required to prevent

flutter is plotted against Mach number. The figure shows that
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for M £ 1.52, the n=2 mode gives the larger thickness require-

ment whereas for M >1.52 the n=0 gives the largest thickness
requirement. Thus either the n=0 or the n=2 mode could be most
critical depending on the values of h/R, M,fL. Thus "the results
of Miles and Leonard & Hedgepeth are reconciled. For the asym-
metric mode n=1 the wave length of instability is found to be
infinite. However long cylinders at n=1 behave like beams and
the model considered should be replaced by that used in the
investigation of:- the stability of pipelines. An important con-
sequence of the asymmetric mode (n>1) calculations is the .
indication that the aerodynamic loadings in these modes are
essentially of the 'slender body' types. Therefore compressi-
bility effects seem to be relatively insignificant,

T2 Stiffened Cylindrical Shells

The influence of adding rigid ring stiffeners which prevent
radial deflections of unstiffened circular cylindrical shells
is considered by Leonard & Hedgepeth (Ref. 8). The stiffeners
are assumed not to interfere with the flow of air outside or
of fluid inside the cylinder. The conclusion is reached that for
ring stiffened shells also flutEer is not possible at subsonic
Mach numbers and the only possible instability is divergence.
Fig. 9 shows the critical divergence boundaries for infinitely
long unstressed ring stiffened aluminium cylinders at sea-level.
Both panel flutfer and divergence sgseem likely at supersonic Mach
numbers but no numerical results are available.

The critical parameters of an eccentrically stiffened
orthotropic anelastic shell vibrating in a linearised supersonic
flow are determined by Dzygadlo and Kaliski (Ref. 36) including
the - effects of structural damping. Fig. 10 shows the effect of
damping on the stability boundaries for an isotropic shell rein-
forced by rigid stringers. It has been found for a stringer
stiffened shell also that an increase of damping can result in
lowering the critical Mach number.

T.43 Experimental Studies

Experimental experiences on the flutter of unstiffened
thin-walled pressurised and unpressurised cylinders seem to

“indicate that flutter, if it occurs in practice, is mild

«
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in character and of wave lengths small compared to the radius
of -the cylindrical shell contrary to the prediction by
infinite length shéll theory. Well defined flutter has been
observed where local buckling of the shell occurs, but in
the case of unbuckled shells flutter has seldom been observed.
Much more definitive experiment will have to be performed
before the shell flutter problem 1s well understood.

The effects of membrane tension, internal pressure, inter-
nal fluid, aelotropic character of the shell material and
boundary layer effects have all been theoretically analysed
(see refs. 13, 16 and 22) but experimental results are
lacking.

T.44 Dynamical Eguations

All the analyses described. so far have used the simpli-
~fied Donnell's shell equations at some stage or other. These
are strictly valid forxf}Z only. As the results seem to
indicate that the low 'n' modes are the most critical, the
guestion arises whether or not this equation is sufficiently
accurate to describe the structural behaviour of the shell.
For the case n<«2 more refined shell equations (e.g. Fligge’s
equations) are available. In addition, the mid-plane
(longitudinal and circumferential) inertia forces tend to
be more important for low n. However, as the wavelengths
become smaller relative to the radius both these effects
" diminish in importance. Since the critical wavelengths seem
to be of the order /%.it would appear that these effects are
relatively unimportant and the use of Donnell's equations
may be satisfactory. - An analysis by Shulman (Ref. 24) to
investigate this point suggest that this is indeed the case.
T-4.5 Applicability of the Analyses of Infinitely Long Shells

to Shells of Finite.Length )

The validity of infinite length shell analyses to

practical shell structures of finite length has not been
proven and since large values of critical shell thickness
result, they must be used with caution.

The results for the infinitely long shells would be
applicable to-shells of finite 1ength only if the wave lengths
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of the flutter modes are small in comparison with the length
of the finite shell; but the most critical wavelengths for
infinitely long unstiffened cylinders are predicted theoret-
ically to be very large (see Fig. 11). It is conceivable
that for a finite shell the flutter modes would tend to settle
on the smaller of the two longitudinal wave lengths. However,
for higher Mach numbers (M3 5) even these smaller wave lengths
are fairly high; for instance, for n=2 wave lengths from one
to three times the radius have been experienced.

The comparison of the results of infinite and finite
length shells are rather unrealistic since most of the existing
analyses for finite length shells have adopted piston theory
aerodynamic expressions which are inadequate for dealing with
infinitely long cylindrical shells. Nevertheless, Dowell
(Ref. 85) has made a comparison for the axisymmetric mode cases
(n=0) since only for this case is the piston thebry even
qualitétively correct for a long narrow cylinder. It is con-
cluded that the results of infinite length shells are
applicable to finite length shélls in a qualitative sense,
as the aerodynamic damping coefficient g, and thickness ratio‘
h/R increase (see Fig. 12). Unfortunately. the values of h/R
which occur in practice may violate the conditions.on which
this contention is based.

The comparison of the results of infinite and finite
length flutter analyses is also difficult in view of the fact
that most of the analyses for the former class of problems
have used the traveliing wave solutions while the standing
wave solutions are prevalent for the latter. However, Johns
(Ref. 32) has applied the travelling wave solution to a shell
of finite length in an axisymmetric (n=0) mode and obtained a
_value of 144 for the flutter speed parameter (2 : 24qL3(1—v2)}

This value is more conservative compared MEh3

to the corresponding value of 274 obtained by the standing
wave approach. The inherent method is equivalent to applying
the travelling wave analysis to one.bay of an infinite shell
with added figid ring stiffeners and applying the boundary

condition of zero radial deflections at the ring stiffeners.
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I.4,6 Discussion of the Results

The results presented so far yielded the highest value
of the thickness to radius ratio for which at least one wave
made will flutter {(a wave mode is determined by particular
values of n and the longitucdinal wavelength) and seem to
indicate that the lowest values of n are the most critical.

The question of which one of the two wavelengths associated
with each n is‘more critical, remains unsettled, though Miles
concludes on the basis of his calculations that the shorter

of the wavelengths is more critical. 1In this case his approxi-
mate aerodynamic expressions are probably acceptable.

If the thickness ratio is insufficient to prevent flutter,
the degree of instability may be expressedas the number of cycles
necessary to double the amplitude or as a logarithmic
increment. The degree of instability in a real fluid is
seen to be much smaller than that predicted on the basis of

linearised potential theory.
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1.5 FLUTTER ANALYSIS OF SHELLS OF FINITE LENGTH

.I.5.1 General . .. -

In the treatment of panel flutter of infinitely long
‘cylindrical shells the aerodynamic forces on the distorted
cylinder have been calculated by a travelling wave approach,
which are inapplicable for shells of finite length on physical
grounds. This may partially account for the fact that the
flutter speeds predicted by infinite length analyses are much
lower than those observed in flight. Thus it is logical to
investigate the analyses which include the effects of finite
length. One additional factor which is to be considered for
finite shell analyses is the boundary support conditions.

Considerable literature is available for studying the
flutter problem of cylindrical shells of finite length to
deal with different situations.

I.52 Cylindrical Shells with Different Boundary Conditions
Stepanov (Ref. 14) considers the problem of finite length

cylinders under the following end support conditions:

i) . simply supported at both ends; ii) clamped at both ends;
iii) simply-supported at one end and rigidly clamped on the
other; iv) clamped at one end and free at the other;

v) simply supported at one end and free at the other. Table 1
shows the values of the critical velocities for the boundary
conditions (i), (ii) and (iii) just mentioned. The results
seem to indicate that for all the thickness/radius and
radius/length ratios considered, the simple support boundary
conditions at both ends yields the minimum critical velocities
compared to the others. Piston theory aerodynamics and the
medium length shell theory due to Goldenveizer are used to
‘reduce the order of the equations from eight to four and to
enable the use of Movchan's method. The effect of this approxi-
mation is to neglect the longitudinal bending stiffness of the |
shell. Since the residual longitudinal stiffness is due solely
to the membrane stresses and is inversely proportional to n4,
the result suggests that the flutter speed decreases monotonic-
ally with n. This means that there always exists a particular
mode (n) for which the shell will flutter at any given speed.

This result is obviously unacceptable on physical grounds.



19.

Holt and Strack (Ref. 40) have attempted t improve
Stepanov's analysis by introducing more refined expressions
for the aeroaynamic forces into the Goldenveizer's equations
in the hope that the results would be valid for both super-
sonic and hypersonic flows. The inherent aerodynamic refine-~

- ments have been discussed in sectionI3.] =. The resulting
equations are solved by a method similar to that used by
Hedgepeth and Stepanov. The more realistic aerodynamic term
is shown to lead to higher estimates of critical flutter
Mach numbers than Stepanov's (see Fig. 13). Although a
lower critical shell thickness is obtained, the static
approximations for aerodynamics seems unrealistic in discount-
ing the effect of time dependence and also makes it difficult
to justify the retention of the inertia terms in the elastic
equations which are of the second order in the geduced fre-
quency parameter ®WR/Yy. The critical Mach numbersobtained
decrease with the number of circumferential nodes as found
by Stepanov. .

| Fig. 14 shows the thickness requirement curves for steel

cylinders of finite length for the case of axisymmetric

flutter mode {(n=0). The results of Miles for infinite length
shells are also shown for comparison and which reveal the con-
siderable influence of finite length. Pig. 18 shows the results
of Strack and Holt for the asymmetric flutter modes (n = 4,
;17). If this is compared with the curves of Hed@epeth, the
effect of finite length is aéain apparent. A comparison of

the scale of ordinates of Figures 18 and 14 shows that the
thickness regquirement for flutter is far more critical for the
‘axisymmetric mode n=0 and hence this mode was thought initially
to be of the greatest interest. The number of circumferential
modes n has only a minor effect on the stability of infinifely
long shells (see Fig. 5), while their effect has since been
shown to be considerable for fini te length shells.

The discussion in the previous paragraph refers to the
calculations based on the clamped-simple support boundary
conditions. The effect of varying the end conditions is to
change the values comprising the curves but not their form.

.Thus the value of the critical parameter H (which is a
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function of the dynamic pressure, Mach number and R/h
ratio) changes from 480 for the clamped-simple support
“condition to (%)(480) in the clamped-clamped case and to
(# x 480) for the simple support conditions at both ends
case suggesting that the simple support case yields the
minimum critical speed.

I.5.3 Influence of Damping and Tangential Inertia Forces

The significance of structural damping, aerodynamic
damping and mid-plane inertia (longitudinal and circumferential)
forces on the cylindrical shell flutter results was shown
by Voss (Ref. 35). He has presented a more exact form-
ulation of the structural problem and has used an aerodynamic
theory which can be shown to be similar to that of Stepanov
and Strack & Holt, but resulting in a differential equation
which suggeéts a modal solution. Only the 'freely-supported'
"boundary conditions are considered. A shallow shell analysis
based on Reissner's equations revealed that if a modal
solution of the cylindrical shell flutter problem is to be
used, the determination of natural vibration frequencies
should be as accurate as possible and that the formulation
should include structural and aerodynamic damping. The
expression used for aerodynamic loading at low supersonic
speeds (and M = J2) is .

- ‘2 ' ]
2q dw MT-2 1 dw i 1 Sw )
p(x,y t) = - &2 {—- b —— e 4 = ( ) B
’ P X MZ_1 U 3t M2_1 U 3t 'x=0( (I.14)

where gq is the dynamic pressure and g-= JME—i while for

high supersonic speeds and simple harmonic motion it is
2 dw ., WA }_ iwt L
px,y,t) = - ?? {_;; =gV e - (I.15)

. g a .
where B tends to ™ for M:>M1 and

o~ 'M2—2 for {Z<m<m,

n

. (I.16)
= 1 for M>1

and the value of M1 is left to the user.
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It has been-shown by voss that for n=0 the modal fre-
quency spectrum is very dense with varying m and many m-modes are
required for convergence but at high n this is not so. (See
-Figures 16 and 17). This result is particularly significant in
the flutter solution wherein the modes are uncoupled spanwise -~
i.e. separate solutions are considered tfor each wvdue of n.
There are two ranges of critical modes to be considered for
the cylinder: the first corresponds to low values of circum-
ferential mode number n but relatively high values of longi-
tudinal mode number m which will be referred to as membrane-
type flutter and the second corresponds to high values of n and
low values of m which will be referred to as panel-type flutter.
Calculations performed on an aluminium cylinder (neglecting
aerodynamic damping) of 40 inches diameter, 40 inches long
and .04 inches thick revealed that for very low structural
damping (g = 0.001) the initial instability occurs in the mode
n=0 at-% = 5.4 and the next occurs in the mode n=16 at % =
15.1 (see Figures 18 and 19). However the instability at n=0 is
relatively weak by comparison and occurs at a considerably
higher frequency. When structural damping was increased to
0.01 the critical condition for n=0 has been nearly trebled
while the high n condition was but little affected (see
Fig. 20). From figures 18, 19 and 20 it would appear therefore
that the addition of aerodynamic damping could also delay the
onset of low n instability to somewhat higher dynamic pressures
particularly as this damping is stfongly dependent on flutter
frequency which is high for n=0; while the high n modes are
conversely relatively unaffected in shifting the stability
boundaries as ithe flutter frequency (and the lowest invacuo
frequencies) are then much lower (see later).

Further, the neglect of tangential inertia forces is
justified only for large values of n and/or m.

The correlation of these results with experiments is
poor and there is need for further experimental evidence to
substantiate these conclusions. _ .

The study of Voss shows that the modal approach is
entirely satisfactory for panel-type flutter analysis
(i.e. with high number of circumferential modes) while it

is not entirely satisfactofy for membrane-type flutter due to
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the large number of modes required to obtain convergence

(up to 16 modes in m were used in the calculations).
The effect of aerodynamic damping has also been considered by
by Johns (Ref. 32). His analysis is based on the theories of
Love and Novozhilov used in conjunction with linear piston

theory for the aerodynamic forces viz:

(1.17)

2
- {QOU 3w, %Y au
b = - M- 3% * M 3¢

For a shell of finite length L, simply supported at both ends,
a compatible set of displacement functions used for the

displacements u,v,w are:

B int Z > ny M X
u = e non Umn cos B cos —3—

- wt 2z oz in DY gipn MIX
v = e = < Vi Sin = sin = (1.18)
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A two degree of freedom analysis and the Galerkin procedure
leads to the following expressions for tlke flutter speed and
frequency respectively:

] 2
2 6 L1 = P+ Fg (1.19)

5 . .
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where F = RPN > 55 (r.21>.
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and m = r,s, with the condition that (r + s) must be odd. The
U
0

which M can be justified only when £L is small (as in the

term represents the aerodynamic damping the neglect of

case of plane panels). For cylindrical shells, 1. is much
higher because.of the curvature effects and is given by

2 2 2 1 N
A° = Ha T+ 0 %) = 5= (Fo+ FY) (I.22)
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where‘ILr’s are the natural frequencies in the r,s modes.
To illustrate the significance of the aerodynamic damping
terms, table 2 represents the results for a particular shell
in which it is assumed that the axisymmetric mode n=0 is the
most crtical. This analysis has neglected the tangential
inertiagbrces. It is felt that these should be included,
the justification for this being that the critical speeds in
the absénce'of aercdynamic damping depend on the quantity
(F,. - FS)2 and thus on the difference in the équares of the
natural freguencies. This difference appears to be least
when tangential inertia forces are neglected, for n=0, r=2,
s=1. This is not so when the tangential inertia forces are
included. The analysis of Voss alsc confirms that this is SO.

The simple binary flutter analysis of Johhs indicates
that the axisymmetric flutter mode is the most critical if
- the aérodynamic damping is neglected but that this is not in
" general a justifiable assumption.

The fact that the aerodynamic damping is not negligible
is also revealed by the studiés of Kobayashi (Ref. 71).
Effects of the internal pressure and the axial force on the
flutter boundary are also studied. Kobayashi has used the
Donnell's eguation, quasi-steady aerodynamic force and
. Galerkin's two-mode approximation to the case of a cylindrical
. shell which is simply supported at both ends. It is concluded
- that the aerodynamic damping and internal pressure raise the
flutter boundary while the axial compression lowers it. The
results for n#0 cases are given in Fig. 21.
I.5.4 Applicabilitvy of the Galerkin Method

The applicability of the Galerkin method to cylindrical
shells has been confirmed by Krumhaar (Ref. 42) who has
" developed 'exact' results for the axisymmetric flutter of a
simply supported circular cylindrical shell as presented in
Fig. 22. By using linearised Timoshenko shell equations and
linear piston theory the problem is reduced to a non-self-
adjoint eigenvalue problem. This is rigorously investigated with-
out any furtheér approximations. The following conclusions are

drawn from the analysis. Aerodynamic and structural damping
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have a considerable stabilising effect as was pointed out by Voss
(Ref, 35), while the influence of internal pressure differential
is very small. The larger the air stream velocity the more
modes one has to employ in the Galerkin method to obtain
reliable results. FIlutter could not be observed experimentally
in the Mach number range predicted by this analysis. The
unsatisfactory physical assumptions, piston theory aerodynamic
" approximation, the neglect of both boundary layer effects and
tangential inertia forces are thought to be responsible, at
least partially for the disagreement. The results of
Krumhaar lead to considerably higher estimates of critical
flutter Mach numbers than those of HOlt and Strack (see
Fig. 23). '
The mode shapes in the neighbourhood of the flutter bound-
aries given by Krumhaar (Ref., 42) are investigated by
Milller (Ref. 135). Fig. 24 represents the real parts of the
mode shapes for two values of the generalised velocity A
belonging to the stable domain -(A <:Acrit)’ the critical value
' (A = Acrit) and for two values of A belonging to the unstable
domain (A > Acrit)' It can be observed that the maxima are
shifted towards the trailing edge of the shell with increasing
airstream velocities. These results are consistent with those
ot Movchan (Ref. 55) for rfiast panels finite length.
I.55 Influence of the Boundary Laver

The influence of the boundary layer on the flutter of
cylindrical shells has been examined by Anderson and Fung
(Refs. 54 and 65). A uniform parallel subsonic layer of con-
stant thickness is assumed to exist between the external super-
sonic flow and the oscillating cylindrical shell. It is
inferred tﬁat the boundary layer has a large effect with
‘respect to scallop modes of flutter even at high Mach numbers.
The effect is to stabilise the high n flutter so that the
neglect of boundary layer leads to conservative results (see
Fig. 25). For axisymmetric flutter for which structural damp-
ing has a large influence, whether the neglect of boundary
layer effect is considerable or not is still uncertain.

This problem was re-examined by Olson (Ref. 101) using

a somewhat more realistic boundary layer model - that of a
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parallel shear flow with a velocity profile given by the

mean velocity distribution in a classical turbulent boundary
layer. The oscillating shell surface was approximated by an
oscillating plane wall whose deflection was sinusoidal in
both plane directions. Viscous effects were neglected with
respect to flow perturbation quantities and the resulting
.equations were linearised. The final equations admitted
solutions with exponential dependencé on .time and the inplane
co-ordinate directions but had to be integrated numericalily
in the direction normal to the plane. The results from this
study and the results of the later work by Anderson (Ref. 90)
indicated that the influence of the boundary layer may have
been overpredicted by an order of magnitude in the earlier
work (Ref. 54).

The mailn parameter that governs influence of boundary
layer in the linearised problem is the ratio of the boundary
layer thickness to the axial wave length of the wall deflect-
ion. The boundary layer thickness decreases as this parameter
decreases. For cylindrical shell flutter with a large
number of circumferential waves the pertinent axial wave
lengths of interest are very large with respectto the boundary
layer thickness (at least for the experimental configurations
reported by Olsonand Fung (Ref. 116)) so that the influence of
boundary layer is probably negligible. Intuitively it is
understandable that this might be so since in the boundary
layer theory it is shown that the transverse pressure
variation is of second order and in practical calculations
the pressure inside the boundary layer is always taken to be
the same as that of the outside potential flow. Therefore the
aerodynamic force on the shell should not differ too much
from that of the potential flow if a boundary layer exists
at all (also see Ref. 113).

I.5.6 Experimental Investigations and Flutter Criteria

The first successful experimental observation of
cylindrical shell flutter was observed at the NASA Ames
8-x7-ft. supersonic tunnel in May 1962 (Refs. 53 and 65).
The flutter condition formulated in linearised theories (an

exponential increase of amplitude with increasing time) was
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unobservable in the experiments. Hence an experimental

definition of flutter was suggested by Fung (Ref. 65) leading

to the criterion

3 .
CgF ) (1) =7 (1.23)

which seems to be independent of the length of tle shell.
Additional tests on the same shels by Olson {Ref. 86) confirm
this equation. Sincé the shells tested were of the same
length, this criterion needs further confirmation. The tests
of Stearman (Ref. 53) and Olson (Ref. 86) for L/g = 2 show
that the value of n, ;. is in the range 14 to 25 (see Fig. 26).
It is of interest to note that for n = 25 the effective L/w
for each shell element between the streamwise nodal lines is
about 16 and for n = 14, L/w-:.9, Equdtion (I.23) may be

rewritten as

%
( _E..qE iy = 1 (1.24)

~
e

and if this equation with L/R = 2 is compared with Fig. 27
for unswept flat panels (Ref. 51} it can be seen that the
agreement is good for L/W in the range 9-16. Thus it would

‘appear that for the high-n flutter of cylindrical shells the
individual panels between longitudinal nodal lines behave
similarly to flat rectangular panels and equation (I.23)
‘could be interpreted as a special case of the general results
shown in Fig. 27. :

For the high-n case Voss (Ref. 35) has indicated that
aerodynamic damping should not modify the flutter boundaries
significantly presumably because the flutter frequencies are
then much lower than for the n=0 case where the aerodynamic .
damping is known to be most important.

If the two-mode (m=2,1) closed form sclutions of Johns
(Ref. 32) are analysed for the high-n case with the aerodynamic
damping neglected, it can be shown that for

2 TR
L

Ref. 9% ) n®>> )\ % (with X = ),
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This result is also derived by Shulman (Ref. 24) wnho has

.8hown that the value of n is not necessarily eqgual to the

crit
value of n for the minimum in-vacuc frequency. The corres-
ponding expression for the critical dymamic pressure parameter
is ' ‘
q R § 2 R B

. R\ . __} _ Coa

' E( () ~ 0.912 Ucrit U (I.26)
Substitution of eqgn. (I.25) into (I.26) leads to a criterion
of the form 7/3 ' 5/3

R . :
(_élﬁ.) = 6.2 (&) (1) (1.27)

o] pu

~and it is seen that length L appears explicitly as a parameter.
Inserting the shell data ot Stearman et al (Ref. 53) into
egqns. (T.25%) and (1I.26) gives the results

Nepige = 31 . _ (1,28)
.ﬁg_ % R . . .
( £ ) (‘L- ) e 7.2 (T.29)

Altnough the estimate ot n is in error, the agreement of

equation (I.29) with (1.23§r§§ remarkably good. However,
' because ot the inherent assumptions made in deriving eguations
(I.27) to (I.29), these cannot be taken as general.
A semi-empirical criteflon to determine the flutter
boundary of simply-supported cylinders which also includes
the length of the snell as a parameter and is applicable for
a wide range of L/p and R/h 1s given by Dixon and Hudson

{(Ref. 141) as

wos D)% forw/gy 1
- - (1.30)
AR h X L .2
> (2)° CF) for L/p <1



where AR =
"Taple 3 gives the average
aerodynamic damping for a
variation of A with L/R

good agreement with other

(1 - ) ¢ £
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% ), X = tanh (

calculated values of )* for no
range of values of ( % ). The
is indicated in Fig. 28, showing

theoretical and experimental results.

This also reveals that length is a very significant factor in
cylinder flutter,'thus indicating that theoretical solutions
of infinite shells would be of 1little value in predicting the

results for finite cylinders.

Also shown on Fig. 28 is the two-mode result of egn. (I.27)
and interestingly the agreement is reasonaple at L/R = 0 and
L/R = 2 with the experimental and theoretical results. The two

mode result is unconservative for L/R >2-2

Circumferentially travelling wave type of flutter in
Olson's experiments (Ref. 86) were observed to be critical in
high n modes (of order 20) while standing waves in the longi-
tudinal direction were more critical with zero, one or two,
- circumterential nodal lines. It was found (in qualitative agrée—'
ment witﬁ theory) that small amounts of internal pressur-
isation were very stabilising but moderate amounts reduced
On the other hand,

large amounts of pressurisation completely

stability to the unpressurised level.
contrary to theory,
stabilised the shells,

buckling conditions.

independent of axial loading or previous
Olson and Fung {(Ref. 116) assumed that flutter occurs
with a large value of n and, by using Donnell's fourth order
cylinder equations, have derived equations for ﬁ and Nepit
similar to those discussed in equations (I.23) to (I.29).
On the basis of these two mode analyses with aerodynamic
damping neglected it was concluded that a static internal
pressure differential has no effect on the flutter boundary.
However, the modal frequencies which couple to produce scallop
mode flutter increase rapidly with internal pressurewhen n is
large and so, dlso, does the flutter frequency. As a result
it becomes no longer valid to neglect the aerodynamic damping

when the internal pressure is large.. Therefore the critical
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flutter boundary is raised, as indicated in Fig. 29. It
should be emphasized that the internal pressure was not of the
hydrostatic type as this wouid presumably have been immediately
stabilising due to the axial tensile stresses introduced.
Corresponding results are also shown in Fig. 29 for four and six
mode analyses employing, respectively, piston theory and Ret.8
potential theory, as well as from experiments. The potential
solution flutter boundaries are seen to be somewhat higher
" than the piston theory boundaries which are higher than, but
closer to, the experimental results. Both the aerodynamic
theories seem to predict the same stabilising influence of
the internal pressure but interestingly the more refined aero-
dynamic theories seem to yield unconservative results.

Critical flutter speeds for a shell have alsoc been
computed by Shveiko (Ref. 34) using piston theory in a
. Galerkin analysis. The modes of vibration corresponding to
the critical flutter speed is found to have at least six waves
around the circumference. Increase of damping leads to higher
critical Mach numbers but the wave number seems to decrease
slightly. No experimental fesults are available to compare
these results. 1In a later paper, Shveiko (Ref. 83) has con-
sidered the effect of a liquid filler contained within the
shell and found that the hydrostatic pressure of the liquid

increased the critical velocity but the value of n was not

; crit
modified when the shell was completely filled.

I.5.7 Non-linear theories

An attempt to arnalyse the non-linear effects which strongly
influence the experimental phenomena has been made by Olson and
Fung (Ref. 65). They have presented a non-~linear flutter
analysis based on a two-meode, piston theory approximation in a

Galerkin procedure to obtain an approximate limit cyclé
.solution. The results which are of a qualitative character,
indicate that for practical purposes, c¢ylindrical shell flutter
in a standing wave mode does not occur below the stability
boundary predicted by linear theory for infinitesimal disturb-
ances and that the limit cycle amplitudes seem to agree well
with those observed experimentally. The interesting result is

reported that for high asymmetric mode flutter, the critical
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mode may jump from one circumferential wave to another as

one penetrates into the flutter regime. On Fig. 30 the peak
-limit cycle versus dynamic pressure curve 1is shown schematically.
A reversal in the slope of the curve can be observed. Olson
has determined the two.portions of the curve as stable and
unstable regimes respectively. Presumably as one reaches A'b
‘the critical flutter mode jumps from n=23 to a neighbouring
flutter curve, which has a stable limit cycle with, say, n=22,

Olson cites some indications of such a behaviour from his
' experiments. )

A more detailed and refined non-linear analysis 1is
presented by Olson and Evenson (Ref. 115} by using the non-
linear Donnell's shell theory, the linear piston theory and
the Galerkin procedure. The limit cycle solution is obtained
by the method of harmonic balance. Two types of limit cycle
flutter are obtained i) two-mode standing wave flutter and
ii) four-mode circumferentially travelling wave flutter. It
has been demonstrated that the circumferentially travelling
wave flutter, which has been observed experimentally, can be
predicted from a non-linear analysis. Fig. 31 illustrates '
~the limit cycle amplitudes for values of n varying from 17 to
27 and for zero structural damping. The anélysis indicates
that flutter can occur at aerodynamic pressures below the
linear flutter boundary - which may explain some of the
unconservatism in the iinear theory.

Some ofher refinements are introduced into the structural
aspects of the shell flutter analysis by Carter and Stearman
(Ref. 111) in an attempt to explain the discrepancies between
experimental and theoretical results. The analysis utilizes
the non-linear Donnell shell theory coupled with a linear
potehtial flow theory approximation for the aerodynamic loading.
The axisymmetric preflutter deformation due to internal pressur-~
isation and axial loading and the aerodynamic loading induced
by this preflutter deformation are included in the analysis.
However, the flutter solutions are obtained by Galerkin's
technique applied to the linearised equations. The calculations
show. that the predeformation state due to static loéding

conditions does not appreciably affect the flutter boundaries
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for the range of pafametefs employed in the experiments
(see Fig. 32). In particular it tends to stabilise the shell
and hence, its neglect in a design analysis woﬁld be conserv-
ative. The fact that a large numkier of terms are needed to
obtain convergence in the Galerkin procedure, particularly at
higher values of shell internal pressure is revealed in Fig. 33.
The conclusion is also reached that the tlutter boundaries
are sensitive to the type of structural boundary conditions
and that the agreement between theory and experiment becomes
progressively worse as the amount of preloading is increased.

Barr and Stearman (Ref. 126) have extended the analysis
of Ca;tér and Stearman by incorporating initial geometric
imperfections and radial edge constraint and prestability
deformation. The combined influence of initial impertections
and prestability deformation is found to be strongly destabil-
ising probably due to the induced curvature of the middle
surface over the central portion ot ﬁhe shell. The results
show excellent correlation with the band of the experiment
data plotted in Fig. 29, for all values of shell internal
pressures. In a more recent paper (Ref. 142), Barr and Stearman
" have studied the influence of an external supersonic flow
field on the critical buckling locad of a finite shell subjected
to axial compressive loading and internal pressure. They con-
clude that the critical buckling load and circumferential
wave number of the static instability are not significantly
influenced by the supersonic flow field. This has also been
demonstrated by Fung (Ref. 92).

Liprescu and Malaiu (Ref. 138) have obtained the non-
linear flutter equatiéns using an infinite number of modes
in the Galerkxin method. The shells are considered to be
hetrogeneous and orthotropic and the non-linearities are con-
sidered to be geometrical and aerodynamic in nature. In the
case of a large geometric non-linearity the excitation of
flutter on the boundary of the instability domain results in
the fact that a small increment of the critical velocity is
shown to corréspond to small amplitude increases, making the
critical flutter Boundary "non-dangerous" while for an

increase of Mach number when the aerodynamic non-linearity is



prevalent the critical flutter boundary tends to be

"dangerous'".

32.
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I.6 CONCLUSIONS AND SCOPE OF THE PROPOSED INVESTIGATIONS

It is apparent from the review that the shell flutter
problem has been approached from both the linear and the
non-linear formulations. On the linear formulation the aim
has been to determine the flutter boundaries. The investi-
gations carried out in this field differ either as regards
the physical aspects (such as different shell equations,
influence of inertia forces, structural damping, etc.,
from the structural viewpoint; different approximations for the
aerodynamic forces, the role of aerodynamic damping,
boundary layer effects, etc., from the aerodynamic point
of view), or as regards the mathematical manner of approach-
ing the problem. On the non-linear approach the aim has
been to determine the conditions in which the critical flutter

speed can be exceeded without an immediate failure of
the structure (i.e. the flutter is mild) or the case in
which the flutter is violent; the character of the non-
linearities themselves hay be important in such analyses.

It is also clear that most of the analyses reviewed
have tended to use the simplest structural and aerodynamic
theories that yield acceptable results for Mach numbers and
shell geometries of interest. The structural equations
usually used are those due to Donnell, Goldenveizer,
Novozhilov, etc., with different approximations or additions
such as mid-plane inertia terms, structural damping, etc.
The aerodynamic expressions are available from the simplest
solution (such as the Ackeret Result or the linear piston
theory) to the exact potential flow solution for an oscillat-
ing cylindrical shell of finite length, with various inter-
mediate approximations. However the choice of a particular
aerodynamic theory for application to shell flutter is ‘
usually based on the order of magnitude considerations or -’
on the success achieved in previous flutter investigations
and yet no shell flutter calculations appear to have been
performed using any of the existing exact aerodynamic
theories. ‘

The range of aerodynamic assumptions and the flutter
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predictions which result have shown a great néed for a
comparative study to be made of the influence of aerody-
namic approximations in shell flutter. (Ref. 144)

whilst experimental data on unstiffened shell flutter
is scanty and evidenceof full-scale incidents apparently
non-existent, there remains a strong possibility that high
n mode flutter may occur on longitudinally stiffened shell
. structures for.which the stiffener effect can be minimised
by a correspondance of stiffener-spacing and nodal pattern.
Hence there is a need for further studies to be made of the
influence of stiffeners (including eccentricity effects)
on the flutter.

The following aspects have been investigated in the
studies conducted for the Ministry of Technology of which
this review is a part.

i) A simple analytical method has been developed
for the invacuo-natural vibration analysis of simply-supported
circular cylindrical shells which are stiffened by an
‘orthogonal set of stringers ahd/or rings, to include the
effects of eccentricity, inplane and rotary inertias, by
a) treating the stiffener effects as '"smeared" or averaged
over the surface of the shell and b) treating the
stiffeners as discrete members of the structure. A few
such shells have been tested. in an experimental rig,
designed and built during the course of this study, to
verify the thecretical results for these natural vibration
modes and frequencies. (Refs. A36, A37)

ii) The aerodynamic generalised forces obtained from a
form of linear piston theory are compared with those
from exact potential flow solutions for a harmonically
oscillating circular cylindrical shell with a view to
having an indication of the areas of agreement (or other-
wise) between the two theories. (Ref. A38)

iii) The flutter problem is formulated in terms of the
invacuo-natural frequency :factor of the cylindrical
shell and the aerodynamic generalised forces for a multi-
degree of freedom system (i.e. for a given circumferential
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modal pattern and the interaction of any number of

axial modes}, and programmed -for digital computer solution.
The influence of eccentric stiffening has also been
‘included in the frequency expressions. (Ref. A38)

iv) Flutter boundaries for unstiffened shells are
obtained for.a two-mode Galerkin solution for a range of
shell geometries of various lengths/radii and thickness/
radii ratios and compared with higher order solutions
using up to ten axial modes to assess the convergence of
~the solutions. Comparison is also made of these boundaries
with the flutter boundaries obtained using aerodynamic
generalised forces derived from the exact potential flow
solution. (Ref. A38)

v} Flutter boundaries for stringer stiffened shells are
obtained for a two mode'Galerkin solution using the linear
piston theory for a range of eccentricities, a range of
shell geometries of different length/radius and
thickness/radius ratios and compared with higher order

solutions up to ten to assess the convergence. (Ref. A39)
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CHAPTER 2 .

VIBRATION ANALYSIS - THCEORY

Summary
A simple analytical method is developed for free

vibration analysis of simply-supported circular cylindrical
shells which are stiffened by an orthogonal set of stringers
and/or rings, to include the effects of eccentricity, inplane
and rotary inertias, with stiffeners treated as i) discrete
elements and ii) 'smeared' over the surface of the shell.
The intention was to eventually develop a program
using the information presented in this section for super-’
sonic shell flutter analysis. To that end it was decided
at an early stage that the generalised aerodynamic forces
would be more easily determined using the single, simple
trigonometric mode chosen than from a more complex set of
normal modes. Such a set could be obtained from a vibration
.analysis involving many degrees of freedom as in Ref. A22
but this has not been attempted here.

II.1 GENERAL

The first step in the formulation of the flutter
problem is to determine the equations of motion which will
adequately describe the invacuo-natural vibration character-
istics of the structure. In this study the structure is a
missile body which can be idealised to a circular cylindrical
shell. A large number of different formulations is avail-
able in the literature for determining the natural fre-
quéncies of such shells.

II.2 UNSTIFFENED CYLINDRICAIL SHELLS

The problem of determining the vibration character-

istics of drcular cylindrical shells of finite length has
been of interest to engineers and scientists for over a
century. This interest is maintained in.the aerospace
industry and elsewhere when the structural response to

dynamic loads must be predicted with extreme accuracy.
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Starting from Love's first approximation many
attempts have been made to refine or simplify the equi=-
librium equations for cylindrical shells. The literature
is too numerous to give a complete survey of all the work
done in this field. 1In general, it can be said that the
wide variety of the resulting equations arise basically
from small differences in the formulation of the strain-
displacement relationships, and the discrepancies occur
~only in those terms which have little numerical signifi-
cance. As long as the limitations of thin shell theory
are observed, all the different formulations generally
give numerical results within about three to four per cent.
An excellent account of this fact is given by Warburton
(Ref. A23) where it is remarked that for a wide range of
parameters the effect of various shell theories is very
small. An extensive review of shell dynamics can be
found in Ref. A24.

The procedures for the determination of the natural
frequencies of unstiffened cylindrical shells can be
combined, basically, into two broad groups: 1) By consider-
ing the equilibrium of an element of the shell, three
differential equations containing the displacements (u, v,
w) as unknowns can be derived. The exact solution of a
dynamical problem requires the determination of (u,v,w) to
satisfy the equllibrium equations and the boundary condit-
ions. For most practical end conditions it would be rather
difficult to obtain the solution this way. Alternatively
the Galerkin method may be applied to these differential
equations to obtain an approximate solution. ii) Alternat-
ively, the strain and kinetic energies of the shell
element can be written and integrated over the volume of
the shell. This method forms the basis of the Rayleigh-
Ritz procedure and is usually considered to be approximate.
The success of this method and of the Galerkin Method
depends on the choice of appropriate functions for the
displacements (u,v,w).

Considering the basic point of simplicity and accuracy
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of the various shell theories, the only comprehensive
results are the natural frequencies of cylindrical shells
with simply supported ends. With this end support condition
the energy method gives exact results since the assumed mode
shapes are exact solutions of the equilibrium equations.
Simple support conditions are typical of missile bodies
between two stiffening rings and also one bay of, say, a

tall chimney between two heavy intermediate rings.

II.3 STIFFENED CYLINDRICAL SHELLS
The vibration analysis of stiffened cylindrical shells

is of considerable interest in the design of various types
of structures in air, space and water craft. Theoretical
investigations of this problem may be divided into two broad
classes: 1) those in which the stiffener effects are
averaged or 'smeared‘ over the entire surface of the shell -
this effectively amounts to replacing the stiffened shell

by an equivalent monocoque shell with orthotropic propert-
ies, and ii) those in which the stiffeners are treated as
discrete members of the structure.

As in the case of unstiffened shells, solutions have
been obtained in the literature by the differential equat-
ions apprcach and the energy method, for this class of
problems also. However, in order to represent the stiff-
ener effects accurately with a minimum of effort the energy
approach is considered to provide a sufficiently accurate
formulation. An excellent bibliography of literature
related to stiffened shells is contained in Ref. A25.

Several methods have been developed in recent years for
studying the vibration characteristics of stiffened cyl-
indrical shells, with various assumptions. Hoppmann
(Refs. A26, A27) replaced the stiffened shell by an
equivalent orthotropic shell of some uniform thickness,
having the equivalent stiffness characteristics and
verified his theoretical results with experiment for the
simple suppor£ boundary conditions. Consequently the
effects of eccentricity, rotary 'inértia and stiffener con-
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figuration aré not explicitely discussed. The analysis
of McElman, et al (Refs. A28, A29) considers the eccentricity
effects by averaging (“smearing") the stiffener effects over.
the shell surface and neglecting the inplanre and rotary
inertias. Egle and Sewall (Ref. A22) have presented a
solution for stiffened shells by treating the stiffeners as
discrete elements and considering the symmetric and anti-
symmetric modes separately, leading to the evaluation of
a large determinant. Schnell and Heinrischbeuer (Ref. A30)
compare the results obtained by smeared and discrete
solutions with experiments. The method of Scruggs, et al
(Ref. A31) relaxes the requirement of large wavelength to
spacing ratio by providing for the effects of inter-
stiffener deformations.

The purpose of the present investigation is to develop
a simple, comprehensive vibration analysis to include the
effects of eccentricity, inplane and rotary inertias; to
examine the efficacy of i) the stiffener discreteness as
compared to stiffener smearing, and ii) stiffener configur-
ation; and to study the influence of various inertia terms
on the natural frequencies of vibration of stiffened cylin-
drical shells. The mode shapes corresponding to simple support
boundary conditions of the unstiffened shell are assumed
to describe also the mode shapes of the stiffened shell.
The Rayleigh-Ritz technique is adopted to derive the frequency
equation. Numerical results are presented for three
specific cases and are compared with existing experimental

and theoretical results.

IX.4 ANALYSIS

A vibration analysis is developed, based on the energy
approach. Expressions for the strain-energy and kinetic
energy of the shell and stiffeners are derived in terms of
the axial, circumferential and radial displacements {u,v,w)
of the shell middle surface, with due allowance for
eccentricity, - inplane and rotary inertias. Vibration modes
- appropriate to the simple support boundary condition are

assumed. For this boundary condition the energy approach
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is exact in the case of unstiffened shells because the

assumed mode shapes are exact solutions of the equilibrium

equations

II.5 BASIC RELATIONSHIPS

The displacements (u', v*, w'} of any point of the

shell or stiffeners can be expressed in terms of the shell

middle surface displacements (u, v, w) as

ul

v’

w.

The
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strains (e*, i? Tiy) at a distance z from the

shell middle surface are given by the linear Donnell-type

relations

Yy

¥ - 2z

& - 273 ' (II.2)

Where the middle surface strains (ek’ ey, Y&Y) are defined

as
. 2QUu
€x = ox
. 3% i
Ey = 5 + R (II.3)
_ ou 9V
Yxy = 3y t 53X
The stress—-strain relations are
E
g! = —=—= (e! +VEY)
X 1 - 2 X Y
oy = £ (€r + ve!) (I1.4)
Tay =6%y g

where G =

T+y is the shear modulus, E is the Young's
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modulus of the shell and v is the Poisson's ratio.

IT.6 SHELL STRAIN ENERGY

An element of a cylindrical shell of mean radius R,

uniform thickness h and length L is considered. The
thickness ratio h/R 1s assumed to be small in order to be
able to apply thin shell theory. As for thin plates, the
zr Ty, and Tyz are zero at the free surfaces
z = + h/2 and it is assumed that for a thin shell these

stresses o

stresses are zero throughout the thickness., Shells of
finite length have modes of vibration in which both axial
and circumferential nodes exist. In such cases the
assumption that the middle surface is inextensible is not
valid. Consequently both bending and stretching of the
middle surface should be considered. At a distance z
from the middle surface, the strain is equal to the
_appropriate middle surface strain plus the strain due to
change in curvature (twist).

The total strain energy of the deformed cylindrical
shell (subscript c), neglecting the stresses that have
been assumed to be zero and neglecting the trapezoidal form
of the faces of the element perpendicular to the x-axis,
may be expressed as

2R L h/2

u. = J J 3 (o te ' + dy'ey' + rxy- fxy')dxdydz

0 0 -h/2
- - = (II.5)

Substituting equations (II.2), (II.3), (II.4) into
(II.5) and performing the integration with respect to =z,

the strain energy expression reduces to,

21}1@ Ij
] Eh [@ngf. $)2 4 22Uy, ¥
U. = s 3 S v ) (ay R) ™ ( >y * R)
2iR L .
2 ” +(.’;Zw 2, oy 2% 3%
2 : 2 2
o 0 3 x2 dy ox° ay
2

_ 2w 2} ' |
+ 2(1 -~V )(axa dx dy (I1.6)
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3
where D = Eh

—————— is the flexural rigidity of the cylindrical
shell. 12(1—1?) .

IT.+ STIFFENERS

The shell is reinforced by a set of equally spaced
uniform stringers and/or rings; the co-ordinate system for
which is shown in Fig. 1{(c). ‘

Stifteners are assumed to be integrally attached to the
shell surrace. The displacements of the stiffeners are taken
to be equal to the displacements of the shell at points or
attachment, thus satisfying compatipility. The width of the
stringer and/or ring is assumed to be small compared to the
shell radius and/or length. It is also assumed that the
cross sections of the stiffeners do not deform. Stiffener
twisting is accounted tor in an approximate matter. The

effects of joints in the stiffener framework are ignored.

IZI.8 STRINGER STRAIN ENERGY

An element of a stringer, having cross-sectional area

dAs, torsional stiffness GSJS is considered. The strain

energy per unit length&hdue to bending about the y and 2 axes,

torswon abowt 1Re t W A& KLS,
stretching along the x axis,jof the i stringer (suffix si)
2 . 2w 2
1 m—area———
are % E_,;€!” per unit area, and 3 Gy si(axay)
where Bsi is the Young's modulus, G_. is the shear modulus

is the torsion constant, of the i &0 stringer. The

respectively,

and J_.
si
total strain energy of the 2Ls stringers (subscript 's') con-

sidered as discrete elements (superscript D) is,

2L L
o) S ([ E 61
_ ' ‘ ST X
Us = Z. J > dASidx
‘ i=1 0hs

370y dx {(Ir.7)

L
SsiJsi a%u .2
+ (—=)
2
0
~ As the cross-sections are assumed to be uniform, the
integrations over the stringer cross-sectional area can be

performed. The strain energy of the 2Ls stringers (equation

(II.7) can be expressed in terms of shell middle surface
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strains by using the first of equations (II.2) as

2L L
S E - ’) 2
(D) 'K [ Si,{au 2 - du dw 3w
U - . (Z=)"A_.-2z A . = + I (=—=)
5 _ 'zi . 2 EP si si‘'si & BXZ Ogy ax2 }
i=1 0
G ,J . 2
si si "W, 2
T Gy 9 (11.8)

where Asi is the area, z is the centroid measured from

si
the shell middle surface (positive, zero or negative
according to external, symmetric or internal attachment
1s the second moment of area about

osi
an axis in the middle surtrace of the shell, of the ith

respectively} and I

stringer cross section.

If the stringer efrects are averaged or 'smeared'
(superscript S) over the circumference of the shell, the
finite sum appearing in equation (II.8) can be replaced by

the appropriate integral. The result is

' 2TR L S . 2
y (50 _ 4 E{AS E8)° - 2Za 28 2y
s T d 2 X
%, 2om21 , Ssls 2fu2] 44
0s ‘9 XdYy 2 9 Xay Y

. - - (II.9)
where d is the stringer spacing.

IT.9 RING STRAIN ENERGY

The strain energy of a ring is composed of bending about

the x and z axes, stretching along the circumference and
torsion about the y axis. By considering an element of the
ring and proceeding in a manner similar to that for stringers,
the total strain energy of the Kr+1 rings (subscript r) con-
sidered as discrete elements (superscript D) is

K 27R
E_.
(D) DY r YV . W, 2
Ur = Z‘ S [_—,Zl{ArJ (g}- + ﬁ)
: j=0 O
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G .J .. 52 '
rj rj 37w 2]
+ % (axay) dy (1r.10)

—

‘where Arj is the area, z is the centroid (positive,

aero or negative accordiié as external, symméetric or
internal attachment respectively) and Iorjis the second
‘moment of area about an axis in the middle surface of the
shell, of the jth ring cross~section. This analysis
assumes that the rings are equally spaced such that a
~ring is attached to each end of the shell (x=0 and x=L).
If the ring effects are smeared (superscript S) over
the length of the shell the finite sum appearing in equat-
ion (II.10) can be replaced by the appropriate integral.

The result is

27R L
E
(s) _ 12 j S —Ela (BY 9¥y2 _ o7 4 QN oWy 3 W
Ve 1 [ 2{Ar(ay R erAr(ay R 32
Y
g 0
2 G _J
+ Ior(—a---—g‘-)z.r + __5_2:'__5 (azw )ZJ dxdy
3y ' S X3y
- = = (II.17)

where 1 is the ring spacing.

II.10 SHELL KINETIC ENERGY
By considering an element of the shell the total
kinetic energy of the cylindrical shell (subscript C) can

be written in terms of the axial, circumferential and

radial displacements (u', v', w'} as

2R L h/2

T = 3. J‘ J E Q.h [}agl)z + (Q%L)2+ 6%ﬂ%)2] dxdydz
0

c ot 9
0 -h/2

- - - (II.12)



. 45,
where P_ is the mass density of the material of the
cylindrical shell.

On using equations (II.1) and integrating with respect
to z, equation (II.1l2) can be expressed in terms of the
shell middle-surface displacements (u, v, w)} as

2TR L '

%f ,f [f’h{( )24 )2+(§-"§>2}

S {( 2w )24 ( -9—-—) }] dxdy  (IT.13)

D Xot a3yt

where Ioe is the moment of inertia of the shell element.
Equation (II.13) exhibits the inclusion of inplane (axial
and tangential) inertias and rotary inertia of the shell
in addition to the radial inertia. '

IT.11 STRINGER KINETIC ENERGY

By considering an element of a stringer, the total

kinetic energy of the 2L_ stringers (subscript s) treated
-as discrete elements (superscript D) can be written, in
terms of the axial, circumferential and radial displace-

ments (u', v', w') as

(D) _ av',2 2
Ts = % %? ?51{‘ +(a >t ( t? }dx d ASl
- -~ (II.14)
. th

where QSl is the mass density of the material of the i
stringer.

On using equations (II.1) and integrating with respect
to z, equation (IXI.14) can be expressed in terms of the

shell middle surface displacements (u , v
2L L

-} Z J[ Qs1hs1 (GBI + GD %+ (5D°

, W) as

2
- Ju _9w d3v O W
_zqsiAsizsi{§f Xt "T'aydt§

' 2
3 “w 2 2
+ QsiIosi {(axat) (ayat } )dx (II.15)
th

. wWhere Io . i1s the-moment of inertia of the 1i

si stringer
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cross—-sectional area about an axis in the middle surface
of the shell. Equation ({I.15) exhibits the inclusion of
"inplane (axial and tangential) and rotary inertia of the
gringer, in addition to the radial inertia.

If the stringer effects are smeared (superscript S)
over the circumference, equation (II.15) reduces to the
form L

ZHR
(s) _ é [Q
T = 535S av 2 aw, 2
-S {a +( +5%
' _ 2?5 s -z u a W av 32w
d 3t 3xot TSt 3yat
?s Os {. a w 2 2
+ (axat + ayat) } } dxdy fII.?G)

II.12 RING KINETIC ENERGY

By considering an element of a ring and proceeding

in a manner similar to that for the stringers, the total
kinetic energy of the (Kr+1) rings (subscript r), considered-
as discrete elements (superscript D) can be written in
terms of shell middle surfacé displacements, to include
the effects of inplane and rotary inertias as

K 2Z2NR
Su 2 av 2 2
Tr(D) = % Zf S QrJArJ{(at) A t) }
j=0
- 20 — {3u _3°%w , 2V 3%w
rj rJ Zrjlat axot St ayot
a W 2
+-?ronrj {(axat) +(ayat }:] dy (IX1.17)

If the ring effects are smeared (superscript 3S) over
the length of the shell, equation (IX.17) reduces to the
form : 2TR L

(s) _ Jj

7,5 = % ?rr{(uz( )2}
0O 0

RcAr — fau 5%w av 3w

2(-55)z : }

3t 3xot "ot BYyat

QI 2 2
Qr orj), o°w,2 (B W }:] dxdy (II.18)
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II.13 FUNCTIONS REPRESENTING THE MODE SHAPES

The integrations with respect to x and y cankte

ﬁerformed in the foregoing equations only when the vibrat-
ion forms for the displacements (u,v,w} have been assumed.

Displacements which satisfy the simple support bound-
ary conditions at both ends of the shell (x = 0 and x = L)
are taken as

u = U CoOsS —= cos sinwt

sin —=—= sin "sinwt (Ir.19)

- T
W = W sin Efi cos

<
i}
<
3,
®
mE wE mE

sinwt

where (U,V,w)are the modal amplitudes, ) is the circular
frequency of harmonic oscillation, m is the number of axial
half waves and n is the number of circumferential full
waves. The integers m and n define the nodal petterns of
the shell.

The tangential and radial.displacements (v and w) are
zerb and the axial force and moment are zero at both ends
of the shell with this particular choice of modal functions.

For the_discrete stiffener case, the 2Ls'st:ingers are
located at positions determined by

Yi  (2ien)T - |
-R__ =, —“_'2_]-::'__ ) 1l = _1,2’.....21'5 (II.ZO)

and the (K.+1) rings at positions determined by
X5 .
1 .
_'f = %r J = 0,1,2,.--.Kr (11021)
The appropriate co-ordinate system is shown in Fig. 1(c).
Thus, the functions representing the displacements
_corresponding to discrete stringers are evaluated by means

of equations (II-19) at vy = Y; as

= u’ = =
u (‘)Y=yi’ \' (v)yzyi, W (W)yzy_
(H B (aw) J...=1,2, OOZLS
3y Yy

i )= (IX.22)
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and those corresponding to discre%e rings at x = x,; as

5 j
u = (u)xéx.’ v = (V)x=x.’ wo= (w)_ _ x
J J
Sw _ W j=1,2,..K
(rx) = (a_X)X=xj ? r
- - (II.23)

for the discrete stiffener case, this type of
stiffener distribution has the advantage that i) their
axial and radial displacements are zero when the circum-
ferential nodes are a multiple of the number of stringers
and ii) their circumferential and radial displacements l
are zero when the axial nodes are a multiple of the number
of rings. Simple support boundary conditions are satis-
fied by this choice of stiffener distribution.

For the smeared stiffener case, equations (II.19) are
used for the displacements occuring in the strain and
kinetic energy expressions for the shell and for the

stiffeners.

II.14 DERIVATION OF THE FREQUENCY EQUATION FOR THE
DISCRETE STIFFENER CASE
For the composite structure consisting of the shell

and the stiffeners, the total strain and kinetic energy

are given by

(D) ) (D) (D)
v max - Uc max Us max+ Ur max
2D oL@, (D) (IL.24)
max C max s max r max

where the relevant expressions are given in appendix 1.
Equating the maximum strain and kinetic energies
yields an equation for 2. The Rayleigh-Ritz condition

" applied in the form

2 2 2
B () - w™) _ 9(w7) _ 0 (1I.25)
d u 3 Vv d W

leads to three characteristic equations for the frequency.

This can be written in matrix form as

[Ai“j” + A Bi‘)?) 1 {9} - 0,(1,4=1,2,3) (II.26)
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Where {E} is the column vector of modal amplitudes
(U, v, w) and. A is the frequency factor defined as

QéRz(i-x?)w?
A= — (1I.27)
The expressioﬁs for the matrix elements (ASD) BFQ)) are

: i3’ "ij
given in appendix 2. The finite trigonometric sums

involved in- these expressions can be replaced by their
equivalent values (see appendix 3).

II.15 DERIVATION OF THE FREQUENCY EQUATION FOR THE SMEARED
STIFFENER CASE

When the stiffeners are smeared over the surface of the

shell, the finite sums are replaced by the values of the
appropriate integrals (see appendix 3). The corresponding
frequency equation is
({3 + & B3 {3} = o (1I.28)

The matrix elements are defined in appendix 4. If the
inplane and rotary inertias are neglected, it can be shown
that equation (II.28) reduces exactly to equation (42) of
Ref.{A29 and to egn. (2.3) of Ref. (34) with certain
" . modifications? ‘

IT.16 DISCUSSION OF THE FREQUENCY EQUATIONS
The frequencies can be cobtained from the characteristic
equations (II.26) and (II.28) by setting the determinant

of the matrix to zero. The determinant, when expanded,.

leads to the following cubic equation in the frequency
factor A t :

A3 - K2A2 + KA -K, = 0 (II.29)
where the coefficients Ky» K4, K, are functions of the
matrix elements (Aij, Bij)‘
functions of many parameters such as thickness ratio (h/R),

stiffener areas (As, Ar), number of axial and circumferent-

In turn, these elements are

ial waves (2m, n), Poisson's ratiov, density ratios

*Ref. 34 is based directly on Goldenveiser's equilibrium

equations whereas Ref. A29 has used an energy approach.
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(QA/QC, €/ ¢), etc. |

~ For a specific set of values of these parameters, it
is found that the cubic equation (29) yields three real,
distinct and positive values for A and consequently three
frequencies are obtained. These three frequencies corres-
pond essentially to axial, circumferential and radial
vibrations, with the radial frequeéncy much lower than the
other two.

_ If the inplane (longitudinal and tangential) inertias
are neglected, the frequency equation will be linear.
Consequently, only one value for the frequency is obtained
for each value of m and n. This eigenvalue is an approxi-
mation to the lowest of the three frequencies just mentioned.
. The effects of eccentricity of stiffeners are reflected
in the terms involving z,, 2. |

IT.17 DISCUSSION OF NUMERICAL RESULTS AND COMPARISON WITH
EXISTING EXPERIMENTAL AND THEORETICAIL RESULTS

In order to investigate the effects of inplane and

rotary inertias as well as discrete and smeared stiffening
on the natural frequencies of stiffened shells, calculat-
jons were performed for three shell geometries for which
experimental and/or theoretical results were already avail-
able. Thelr properties are given in Table 4.

Table 5 gives the comparison between the results
obtained for the unstiffened shell analysed by Voss in
Ref. 35, i) by the present analysis with and without
various inertia terms, ii) the analysis of Voss neglecting
inplane inertia terms and iii) results of Voss. Inplane
inertias can have more significant effects as compared to
. rotary inertia. _

Table 6 gives the comparison of minimum frequencies for
an eccentrically stiffened shell (of Ref. A28) with various
stiffening configurations. Eccentricity alters the fre-
quencies considerably. Of all the possible configurations
studied, internal rings yield a much higher frequency
compared to the others. The influence of inplane and



5ﬂ--

rotary inertias seems to be more significant for stiffened
shells than for unstiffened shells. Fig. 34 illustrates

the influence of stiffener configuration. The frequency
spectrum is given in Fig. 35 for the shell with a pérticular
stiffener configuration to illustrate the influence of
inplane and rotary inertia for various values of n.

Stringers, when attached internally or symmetrically
yield frequéneies which are lower than the corresponding
unstiffened shell, procbably because the stringer contri-
bution to the kinetic energy is greater than its contribut-
ion v the strain energy for low values of m. With larger
values of m, however, increase of stiffness prevails over
that of mass, resulting in higher frequencies, as sho@n in
references A22 and A30. Also included in Table 6 are the
minimum frequencies of the shell when stiffeners are treat-
~ed as discrete elements. These results show very good
agreement with those for smeared stiffeners.

Table 7 gives the comparison of frequencies of the
shell with four internal striﬁgers analysed by Egle and
Sewall in Reference A22, by Schnell and Heinrichbeuer in
Reference A30 and by the present analysis, for increasing
values of nf The results from the present analysis are
somewhat lower than those of Egle and Sewall. This is
probably due to the fact that the inplane inertias were neg-

lected in the numerical calculations presented in Ref. A22.
| Surprisingly, there is very good agreement whether the
stringers, even when they are few in number, are treated as
smeared or discrete, particularly for the minimum frequency.
Thus the assumption of discrete stiffening seems to have
little advantage over smeared stiffening whether the stiff-
eners are densely spaced or sparsely spaced. In fact the '
frequencies by smeared and discrete analyses are identical
for odd values of n while there is only a small difference
for even values of n. This phenomenon can be explained as
follows.

Taking the particular shell under consideration for

illustration, we see that the spacing with four stringers

*. Coml’argbte r€'5""“—$ are SLVQV\ 1"07‘ MW 'Aavu\e A\Ae“ wa L it bO __o_xl'g'mat
Sbrlv\ﬂarﬂ ‘i TC\.th 8.
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IR Hence the integrals for the smeared case

= d= 2WR/4 = — .
which appear in appendix 3 have the value 2 for all values
of n and are independent of the radius while the summations
for the discrete case have the following values.

2L ' 2L

s S
i - .2 2i-~1)nu
2 COS2 _(2_12-%‘)&' = 2 S1ln -E""“z"i."-"""‘)"a = 2, for I’1=1,3,5,7..
' i=1 . ) S i=1 S

2LS QLS )

\ 2 (2i-1)nw_ . 2 (2i-1)nmm _
2 cos ==y — = 0; 2 .5in T' = 4 for n—2,76,10..
i=1 s i=1 S
2Ls ‘ ZLS .
> cos? iﬁ%ﬁllﬂﬁ_ = 4; 2 sin? lg%iilﬂﬂ = 0 for n=4,8,12,..
: S . s .
i=1 i=1

Consequently, the'frequency spectrum, which is smooth in
the smeared ¢ase;, has a slight wavy appearance-if-the-
stringers are treated as discrete elements. This is illus-
trated in Fig. 36.

II.18 CONCLUSIONS

A simple analysis has been presented for determining

the natural frequencies of vibration of stiffened cylindri-
cal shells. A one term solution, with a proper choice of
stiffener distribution and including inplane and rotary
inertia terms yields results which are in good agreement

- wWith existing more complicated analyses and experimental
data. Numerical results show that inplane and rotary
inertias can have significant effect on the freguencies.
The efficacy of i) stiffener configuration, ii) treating
stiffeners as discreté or smeared and iii) omission or
inclusion of any particular term can be easily studied by

means of a single computer programme.



CHAPTER IIX
VIBRATION ANALYSIS - EXPERIMENT

sSummary _
Experimental vibration analysis has been performed

on unstiffened, and stringer stiffened circular cylindrical
shells which are simply-supported at both the ends. The
experimental results are compared with an analysis which
utilises the modes of the unstiffened shell in a Rayleigh-
Ritz solution to the problem. Good agreement was found
between theoretically predicted results and experimental
results for the shells tested.

ITI.1 INTRODUCTION

An experimental rig was designed and built to determine

~the modes and frequencies of unstiffened and stringer
stiffened circular cylindrical shells. The apparatus con-
sists of a shell fixture, an excitation system and a shell
mecdal pattern sensing system. The details of design and
instrumentation are described below and can be seen in
Figs. 37 - 39.

ITII.2 CONSTRUCTION OF THE SHELLS

It would be ideal to have a seamless shell machined out

-of a tubular stock material. But, for the type of geometries
that it was intended should be tested, it would be almost
impossible to construct shells this way. Hence, a success-
ful éttempt was made to fabricate circularcylindrical shells
from commercially available aluminium sheets. These sheets
can be obtained with very good tolerance on the thickness
distribution over the entire sheet. Thesheet is rolled into
the desired form and joined by one or two seams along a
generatrix of the shell. Shells of any desired length/radius
ratic can be easily and inexpensively made by this process,
The seams can be joined either by seam or spot welding

or with a strong. dadhesive. Either type of welded seam has

the disadvantage of leaving the joint non-uniform and
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can produce leocalised discontinuities of shape or stiffness
and hence the seams were joined using adhesives. There
is still some discontinuity effect due to the seams but
these are considered to be minimal.

Stiffeners of rectangular section have been added to
the shell by bonding stripsof the same material on to the
shell at equal intervals. Eccentricity of the stiffeners
can be varied by adding additional layers of strips to the
stiffeners.

IIT.3 END SUPPORT CONDITIONS

The object here has been to simulate the simple=
support end conditions in accordance with the theoretical
assumptions. Eacﬁ end of the shell was provided with a
smooth fitting, light aluminium plate accurately machined to
fit the bore of the cylinder and shaped to provide as
near as possible line contact with: the inner surface of
the shell. Slackness of fit in the end plates was found
to produce inconsistent results and when this occurred
suitable packing was introduced.

Some cut-outs were introduced into the end plates as
shown in Figure 37 to give access to instrumentation
inside the shell and reduce the weight of the end plates.
The cylinder, with the end-plates in place was supported
between centres by a central shaft so that it could freely
be rotated. and the shaft 1is mounted on stanchions resting on
a solid. base. Various lengths of the shell can be
accommodated by adjusting the distance between the stanchions.
An air bearing was provided between the endplate and the
centreal shaft to reduce any inherent restraint against
longitudinal motion of the shell due to friction in the end
supports.

JII.4 MODEL EXCITATICN DEVICE

Initially, an oscillator, amplifier and loud speakers

were used as the input power source to excite the shell.

This was thought to have the advantage that the excitation
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system was non-contacting but the instrumentation

output signals were swamped by the excessive noise gener-
.ated by the speakers. This difficulty was overcome by
substituting for the loud speakers an electromechanical
shaker. The shaker was suspended on rubber chords to
excite the shell radially by action/reaction and to reduce
the inertia introduced by the shaker armature. The shaker
was allowed to rest against the shell and, in this confiqur-
ation it was ftound that a more uniform vibration pattern

was produced with all the anti-nodes vibrating at near-equal
~amplitude. The shaker is powered by an oscillator and
amplifier. The oscillator is a precision decade oscillator
(Muirhead-Wigan type D-890-A Decade Oscillator) which can
be varied in 0.1Hz steps making the detection of resonances
more accurate. The amplifier used has a 50 watt output which
-directly powers the shaker.

IIT.5 INSTRUMENTATION .
An instrumentation set up was developed to detect

the nodal patterns and frequencies and record them in a
suitable form (Fig. 38)..

The sensors used for the purpose could be contacting
or non-contacting types. The former type very often
influences the nodal preference and hence the non-
contacting type sensors were preferred. Two types of
transducers have been tried, viz. i) Capacity probes and
ii) pressure transducers and the comments on their behaviour
are recorded below. In the first instance the vibration
was measured with a Wayne Kerr vibration meter which is a
capacity-type transducer. It was found on applicatidn
that due to the slight non-circularity of the shell the
distance ¢of the probe head from the shell surface exceeded
the maximum dllowable range. The results obtained were
inaccurate and hence their use was abandoned.

Next, a pressure transducer was tried. A Kistler
differential‘transducer was fitted inside the shell to scan
the shell surface axially and circumferentially. But, due
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to the excessive noise generated by the acoustic exciters
ﬁsed with it, the recorded nodal patterns were swamped
by the input signals. |

Finally a successful attempt has been made to detect
the resonances by scanning the inside of the shell with a
microphone mounted in a perspex holder. (Fig. 39)

The block diagram of the resonance detection and
excitation system is shown in Fig. 40.

The microphone (Acos MIC 43-3) was used in preference
to the Kistler because of its small size; cheapness and
availability. The inlet to the microphone to detect the

pressure variations due to the vibration of the shell wall
is via a 1" long, 3" diameter base steel tube, this tube is
to confine to a small area that portion of the shell being
monitored. The electric output from the microphone is fed
to the input of the wave analyser via a screened cable.
The Muirhead wave analyser, filters the input at the
excitation frequency and, by careful tuning the exact
vibration frequency can be verified. The instrument is
fitted with a pair of output terminals which monitor the
filtered signal. This output has a maximum peak to peak
value of 8v. An attenuating network has been added to
reduce the signal to one tenth of its intial value to
produce a signal suitable for feeding into the AC-DC
converter. The converter used 1s a Dawe Engine Roughness
measuring instrument which takes the AC signal and converts
to a DC voltage which is proportional to the peak to peak
value of the input signal. The instrument in normal use
diSplays the output on a meter but it has been modified

so that theoutput is brought to and monitored on a Sanborn .
two-channel chart recorder. A typical recording is shown
in Fig. 41. |

IIT.6 SCANNING SYSTEM

The microphone is attached to an arm which is mounted

on the central shaft. The arm is capable of axial and

circumferential scan. The axial traverse is by means of a
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lead screw and nut. The lead. screw is capable of being
rotated by a small motor which acts as an actuator and

the arm can be driven in either directicn by a push button
and a direction switch. The circumferential scan is driven
by a 1/15 horsepower electric motor through a stepped belt.
On depressing the scan-initiate button the microphone will
scan 360° and then stop. On redepressing it will scan
360° in the other direction, the change in direction being

.to avoid winding up the microphone lead.

IXX.7 GENERAL TEST PROCEDURE _
The clarity of the mode shapes is affected by the

position of the shaker. Best results are usually obtained
when the shaker ‘is positioned in the céntre of the shell, on
the seam to detect the circumferential modes corresponding
to m = 1. Thecircumferential scan for the m=2 modes were best
excited by placing the shaker roughly a gquarter of the way
along the shell. Similarly-thg shaker is positioned at a
point of maximum amplitude, corresponding to the higher
m modes. _

Having placed the shaker in a suitable position all the
instruments are switched on and one of the limit switches
is closed in order to energise one of the relays. The
microphone is adjusted to be as close as possible to the shell
wall sueh that it does not touch the shell during a circum-
ferential scan.

Starting with the lowest predicted frequency, the .
oscillator is adjusted in steps of 10Hz until a response
is produced from the shell. The oscillator is then adjusted
to produce a maximum amplitude on the oscilloscope. at
. each step, the output from the microphone which is monitored
through the wave analyser is adjusted to the frequency
giving the maximum amplitude and the resonant frequency. A
scan is then &ken, the frequency and any hode shape inform-
ation produced noted on the chart record. The frequency
is then increased until the next resonant mode is encountered

and so on. When all the detectable m=1 modes had been
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accounted for, the shaker was moved and as many of the

m=2 modes found as possible.

IXT.8 RESULTS AND CONCLUSIONS

The experimental results are compared with theory in

Tables 9 to 14. The response of each mode is described as
very good, good, moderate, poor and inconclusive. In terms

of the apparatqs these mean as follows:

Very good response:- Clearly defined peak of amplitudes.

The trace has mainly regular peaks.

Good response: " Basily detectable peak of amplitude,
' few irregularities in the trace
present.
Moderate response: Low amplitude or peak hard to find,

possibility of nodes missing from the
trace.
Poor response: Amplitude almost nil or no definite
| peak, irregular trace with nodes missing.
Inconclusive: Almost completely swamped by another
mode or almost nil amplitude, mahy
nodes missing from the trace, could be
a different mode from that specified.
The most successful shell was made of 0.052"thick aluminium
sheets, 28" long, 28" diameter. TFor a stringer-stiffened
shell 0.25" wide strips were cut from the same sheet and
bonded to the shell to form 12 equal stringers.

Good agreement has been shown, in general, between the
exberimental results and theoretical predictions. The
detection of high circumferential resonances is possible due
to the low vibration amplitudes. Modes with a few circum-
ferential nodes cannot be detected with the present vibrator
as it appears that the shell cannot be excited sufficiently.
A good representation has been achieved for excitation
frequencies between approximately 100 to 1000Hz-which
encompasses n .numbers between about 8 and 20.

It has not been possible to detect the axial modes
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corresponding to m > 2 probably because they were beyond
the scope of the equipment. .
For the ‘case of shells stiffened with external stringers
very good response was achieved when the number of nodes

was a multiple of the number of stringers.
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CHAPTER IV

GENERALISED AERODYNAMIC FORCES

Summary
The aerodynamic generalised forces based on the most

commonly used form of linear piston theory expression

and the exact potential flow sclutions are examined

for a harmonically oscillating circular cylindrical shell,
with a view to adapt them in the formulation of the flutter
equations in terms df the invacuo-natural frequencies corres-
pondiﬁg to the assumed modes for a multi-degree of freedom
system. '

IV.1 GENERAL

In the assumed mode approach to the flutter problem
the aerodynamic quantities directly involved in the flutter
equations are the generalised forces and not the correspond-
ing pressure distributions themselves.

A considerable economy of effort may be accomplished
by dealing directly with the generalised forces, particularly
when using the exact potential‘flow solution. The general
aerodynamic assumptions have already been discussed in the
literature survey.

IV.2 LINEAR-PISTON THEORY APPROXIMATION

Piston theory was introduced into supersonic aero-

elastic analyses by Ashley and Zartarian as a handy tool

in 1956 (Ref. 10). The term piston theory as used here,
refers to any method of calculating the supersonic aero-
dynamic loads on surfaces in which the local pressure
generated by the body's motion is related to the local
normal component of fluid velocity in the same way that
these quantities are related to the face of a piston

moving in a one-dimensional channel. The expression for
the pressure difference (between the instantaneous pressure

and the pressure at infinity) can be written as

P = ?o.ao LU %";! + g—% (IVoi)
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where w is the normal {(radial) deflection, (g% + U g&)
represents the substantial derivative of a fluid particle
'in unsteady motion in the linearised form and U is the
free stream velocity.

In general it is believed that linear piston theory
may be employed for large flight Mach numbers or high
reduced frequencies of unsteady motion, whenever the sur-
face involved is plane or nearly plane and not inclined toco
'sharply to the flow. Linear piston theory has been widely
used with success in supersonic plane panel flutter analysis.
" Because of the previous lack of appropriate simple expres-
sions for the aerodynamic pressures on a vibrating shell,
it has also been used in the flutter analysis of such cylin-
drical shells. '

The non-dimensional aerodynamic generélised forces
are defined, in the usual way, as,

| -

- oY X . Pal X

Qe SV X pmn(L,.O)nrn(L,G)ﬁ(L)dQ (Iv.2)
where Prun is the aerody§agic pressure due to a deflection
wmn(%, 8) =n§os né ¢ sin g | (Iv.3)
and Am = EE_ . This deflection w_ corresponds to the

assumed flutter mode of a simply supported cylindrical
shell (see Eqn. I.18) '

Phsyically, a generalised force er equals the work
that would be done by a pressure field Pun Per unit
deflectbn, Wyn '

If equations (IV.1) and (IV.3) are used in (IV.2) and
integrated over the surface of the cylinder, the non-
dimensional aerodynamic generalised forces corresponding to

linear piston theory are obtained as

Q _— LS [1-(-1)m+r] for m#r :
mr M m2—r2
and (IV.4)
ik
Qe = TH
where M = —g; is the free stream Mach number and

k = ﬁ%k is tge non-dimensional frequency parameter.
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IV.3 EXACT POTENTIAL FLOW SOLUTION
Randall (Ref. 19) has developed an exact solution to

the steady potential flow equation in terms of Laplace
transformation. The sclution is based on the linearised
small perturbation theory of supersonic flow and involves
Bessel functions of imaginary arguments to be evaluated
numerically. Holt and Strack (Ref. 40) have suggested an
extension of this method to obtain the pressures on an
"oscillating cylindrical shell and derived the general sol-
ution to the problem. Dowell (Ref. 98) and Davies (Ref.
137) have gone a stage further to determine the aerodynamic
generalised forces using the exact solution. The approach
of Dowell (Ref. 98) has been adopted here as it leads
directly to the formulation of the shell flutter equations
and is explained below.

The cylindrical shell of length L and radius R is
assumed to be performing small oscillations around its mean
position in the presence of an external supersonic potential
flow field parallel to its axis. The radial component of
the shell deflection is denoted by w(x, 8, t} and the radial
co-ordinate of a point on its middle surface is given by

r = R+ w(x, 6, t) (Iv.5)
The perturbation velocity potentiai ¢ induced by the
shell defeormation satisfies'the differential equation

2! 2 2.

2 : 1 Jd 34 2 3 w]

v - — e + 22U —==—— 4+ U =0 (Iv.6)
¢ > 3t2 axat ax2

The problem is to solve this eguation subject to the follow-
ing boundary conditions: i) the normal component of velocity
should vanish everywhere on the cylinder surface.

. ad oW dwW
l.e. (—) = [—— + U-—-J for 0 « x <« L
r‘r=R 2t IX
J {IV.7)

= 0 for x< 0
ii) the appropriate conditions at infinity should be satis-
fied that a) the fluid is undisturbed at an infinite
distance from the shell ( $»0 as r-=e for x>0) and b) the
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disturbance is only confined to the Mach cone at any given
point (¢= 0 for x<£0).

The radial displacement w and the potential functicn
¢ (so also the corresponding aerodynamic pressure p) are
assumed to have periodic variation with time and it is assumed
that the circumferential (n) modes are decoupled from the
axial modes (m). With these assumptions the following

equations can be written:

w(x,8,t) = W(x)cosné e%ﬁt
#(x,r,0,t) = @(x,r)cosndé et nt ' (Iv.8)
int

p(x,89,t) = P(x)cosnd e ,
The differential equation (IV.6) and the boundary condit-
ions (IV.7) now become

2 2 '
3x or ag 352
X
3 _ IW(X)
(a—r')r--R = U 5> * 1aW(x) for 0<x <L
’ ' (IV.10)
= 0 for xe 0

By using the Laplace transform with respect to the
streamwise variable x, the above equations can be solved

for & as x . Ty K_(£) , )
= RY L 0 o SiX-% 3,
a]‘.’:l'\’. - L S [21\-1 3 Kn' ) e ds} (F ikIw(g )dg
~jo
- - (Iv.11)

where K, is the modified Bessel function of order n and
Kn‘ its derivative, with the complex argument § given by

§2 = (R/1)? [M2(5+ik)2~szl and k = ﬁ%é (IV.12)

The aerodynamic pressure is determined from @& using
Bernoullis equation. The generalised force is determined
from equation (IV.2) which for this case is
ieo
S Kn(C)

i%o

R 1
er = (-f) VIEN EE;TT{T Gmr(S)ds (IV.13)

where the function Gmr(S) represents the influence of

coupling between the axial modes m and r. If sinusoidal
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axial modes (eqn. IV.3)} are assumed for the cylinder
deflection, closed form expressions are available for the
function Gmr(s) depending on whether or not m and r are
equal (Ref.98).

i) "If m = r, 5 5 J
(S+ik) -5 2 (m7) m_s } s+2ik
+ - 1-(-1) e + ——
e {52+(mn)2 [§2+(mw)2]2[~ 2
(IV.14)

]

Gmm(s)

ii) If m#r

co 02 rm -1 : L r.s
G, .(s) = (s+ik) [1-(-1)%e ]
r r2—m2‘{(yn)2+52
m+r m_s '
+ (—1)2 ;1*(-1) e +{}_(_1)m+7] ;m >
{(mn)“<+s - “=m

The integral (IV.13) has been evaluated around the
contour shown in Fig. 42. By taking the contributions to
the integral along the various branches of the contour it
can be shown that it reduces to the form:

_(l‘.j Z Gmr(sj) Zj
R 3 [sj(M2-1)+ikM2JL€j2+n2J

Qe =

R, 1 {- ?o [ Kn(re—iﬁ) Kn(rein) -}
- (=) ==r G - - - — — ds

LY 2uwi e mr re—lnxn'(re*ln) relﬂkn.(rel“)

s

o ) . ;
. \g G Kn(relﬂ) K, (r)

mE e Iy YKoy - 98

sS4 re Kn'(re ) n

52 ' { Kn(re*lw) _ Kn(r)—k } )
+ j G : : ds| (IV.15

L mr re_ann'(re-?n) rK *(r)

where r is the modulus of [, §j are the zeros of K '(g) and

the corresponding sj are determined by solving equation

(Iv.12): 5 - b1 3
s . = —'ikMz + (_§J (L/R) (M~ =1)~k MJ
’ M -1 M%-1

Randall (Ref. 19) has tabulated the Cj for n=1 - 10 and
Dzygadlo (Ref. 139) has extended thisuy to 25. The
function K_'({) has all its zeros to the left of the imagin-
ary axis and the number of zeos is the nearest even integer
to (n+4). Thus, K,'(%) has no zero, K,'(3) and K,'(%) each

have two zeros, Ky' (L) and K,'({) each have four zeros, and
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so on. These zeros are reproduced in Table 15 for n=1
-to 25.
It is a fairly straight forward procedure to compute
the various terms of equation (IV.16) and hence the aero-

dynamic generalised forces.

IV.4 NUMERICAL RESULTS AND CONCLUSIONS

Numerical results have been obtained for various
values of the cylindrical shell and flow parameters. The
generalised forces using exact aerodynamic theory are
functions of six parameters (M, k, L/R, n,lm, r), whereas
the linear piston theory generalised forces are only funct-
ions of four parameters (M, k, m, r). In other words the
latter are independent of the c¢ircumferential wave number
(n) and the length to radius ratio (L/R). The comparisons
are listed in Tables 16 to 20 to cover a wide range of
the parameters involved, It is very difficult to give a
general realistic comparison between the two theories. In
fact, according to the linear piston theory expressions
(Equations IV.4) when the axial coupling between the
‘modes m and r are eqgual, Qm is a purely imaginary quantity;
it is only a function of the two parameters M and k; it
is always positive and is independent of the axial modes.
When m is differemt from r, Q.- is a function of three
parameters (m, r, M); it is invariant with the frequency
parameter k; it is purely real and 1s non-zero only if
m+r) is odd. These are not so in general for the exact
generalised forces. Looking at Tables 16 to 20, bearing all
the foregoing remarks in mind suggests that linear piston
theory can be expected to be a reasonable approximation
only for short shells vibrating with large number of

circumferential modes.
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CHAPTER V

FLUTTER ANALYSTS

- Summary
The flutter problem of a simply-supported circular

¢cylindrical shell oscillating harmcnically in supersonic
flow is formulated in terms <« the invacuo-natural frequency
factors of the shell and the aerodynamic generalised forces
for a multi-degfee of freedom system in the assumed modes.
The problem is ultimately reduced to a complex eigenvalue
problem and programmed for digital computer solution, via
the well~known "U-g method". Flutter boundaries are
obtained for unstiffened and stringer stiffened shells using
linear piston theory for a two mode solution. These °
regults are compared with the higher order soclutions up to
ten to assess the convergence of the two-mode solution.
Results using the exact aerodynamic theory hawe also been
obtained for specific cases and convergence of the solutions
established. A range of i) shell geometries (i.e. L/R and
h/R ratios), ii) eccentricities (in the case of stringer-
stiffened shells), iii) circumferential modal patterns;

have been considered.

V.1l GENERAL FORM OF THE AEROELASTIC EQUATIONS

The most general form of aeroelastic equations of
dynamical systems (in the absence of external forces) can be
expressed (Ref. A35) symbolically by equating the elastic
force (¥) to the aerodynamic (A) and inertia (I) forces in
terms of the generalised displacements q.

J(a) = A(q) + I(q) . (v.1)

The term generglised displacement is used because-the
co-ordinates used to describe the system analytically
need not necessarily have the dimensions of length; some
of them may be angles or even quantities with no direct
observable physical significance at all.

The flutter problem is to solve the equation (V.1) and
determine the conditions of sustained self-excited oscillat-

ions of constant amplitude in the presence of an external
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Supersonic flow field. .

If A{(g) = 0, the problem reduces to that of determining
the invacuo-natural vibration characteristics of the structure.

For a majority of applications to flight vehicle
structures it may not be possible to solve equation (V.1)
exactly and hence various approximate numerical scolutions
have been developed. Most of the approximate methods can be
broadly divided into two steps: first the space configuration
of the deformed.structure, which is actually an infinite
degree of freedom system, is approximated by an equivalent
system with finite degrees of freedom. The equations of the
continuous system are thus reduced to systems simultaneous
eguations. The second step is to solve the simultanecus
equations and determine the critical parameters of the
problem. l

One of the most commonly accepted ways of deriving the
flutter equations of a structure is the Rayleigh-Ritz or the
Galerkin method in which the deformed shape of the structure is
assumed to consist of a superposition of a finite ﬁumber of
pre-assigned mode shapes. The prescribed displacement
boundary conditions of the structure must be satisfied by
these mode shapes. The displacements of the structure
{(u,v,w) can then be expressed in terms of the assumed mode
shapes and the generalised co-ordinates q, {(which are as
many in number as the desired degrees of freedom). In some
cases it may be possible to describe the displacement funct-
ions as the natural mode shapes which satisfy the boundary
conditions exactly. In such cases the natural mode shapes
are'orthogonal functions and the generalised co-ordinates
are the same as the normal co-ordinates. The term normal
‘co-ordinate implies a co-ordinate which expresses the dis-
placement in a natural mode of motion.

By writing the expressions for kinetic andpotential
energies of the system and applying Lagrange's equations the

aeroelastic equations are derived.
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V.2 FLUTTER EQUATIONS FOR A CYLINDRICAL SHELL

The circular cylindrical shells considered here have

simple-support end conditions and hence the displacement
functions in a given mode can be conveniently chosen as the
natural mode shapes appropriate to unstiffened circular

cylindrical shells.
v miTx

umn = umn ces T cosng
7 in BiX cinno (V.2)
Ven = Vpp SiD ——sinn _ .
-— . mirs
wmn = Wy Sin T _cosn@

The expressions for the displacements (u,v,w) can be written

in terms of the normal co-ordinates dnp @5
U= S UV =2 Vn9mn? W =3 Wonmn (v.3)
m m m

There are as many terms in these eaquations as the number of
axial modes (degrees of freedom) chosen, since the axial
(m) and circumferential (n) motions are assumed decoupled
and a particular value of n is chosen for investigation.

The general expressions for the kinetic and potential
energy can be written for an unstiffened shell as

: X " 2
T =3 Mmn qmn
m

— CoaE 2 2 - - (v.4)
U =1 % Mhn 9nn wmn
where M = j (ﬁz + v2 + w? )o ds is the generalised
mn mn mn mn g
] .
mass, .. is the invacuo-natural frequency of the shell in

the mode (m,n) and & is the mass per unit area of the shell
surface s.

Lagrange's equation is applied in the form

d AT 3T —(n) .
—— (T) + = Q (V.5)
dat " 3dp, 9 m
_(n) . . th - . .
where Q. is the m (dimensional) generalised iorce

(=_?OUZer) and equals the work done by the external force
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field per unit displacement An® In the present applicat-
ion the external force field consists of the aerodynamic
pressures acting on the surface of the vibrating cylinder
and is equal to the sum of the pressures induced by eadhof
the individual axial modes assumed.

Hence _ m’
Bén) - \[U Pl g+ (P)ote..tl p)m':)wmnds - 2: fOU?er 9rn*mn

s r=1 .

- - (V.6)
where ( p)4, ( py)... are the pressure distributions
resulting from the motions Wand1no w2nq2nt"°w$nq$n and m'
is the maximum number of axial modes chosen (degrees- of
freedom).

Since neutral stability is under investigation, each
generalised co-ordinate can be assumed to have the form
_ -amnei.ﬂnt

equations for a cylindrical shell can be written as

and, using equations (V.4,5,6), the flutter

(en2es2 2 ‘ o 2
[:m'n-wmn)Tmncr * U U ) mn “mn* ;;1 ¥V Qur 9en Yrn = 0

m= 1,2’..-.-m|

where T, . = (==} + (—) + 1
W W
mn mn

The equations (V.7) are written in terms of W, implying
that the radial modes are more predominant, which is usually
the case. The term Tyn S0 be considered as a correction to
the generalised mass. which arises due to the coupling of
the in-plane modes with the predominantly radial mode.
Equations (V.7) may be written more conveniently in terms
of the frequency factors

w2 R%P_(1-+7)
E

in the matrix form as (with Ton=1)s

'11i Rzﬁc(i—w?)

) and 8 (= )

A E

(=

mn
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(81p+k1Q04=D) k1945 KqQqge0r kqQpp qn
k1Qq  (bontkgQrp=8) kqQ53 %1% Tn| _,
[} T
k-lQm'l kfl.Ql’;'IZ.."”'.'.. (Am:1+k1QI;1m—A) qmn
- = = (V.8)

2(151;> t%)(%)?OUZ is a non-dimensional aero-

-where kg =
dynamic stiffness ratio parameter and Q. are the non-
dimensional aerodynamic generalised forces defined already.
By setting the determinant of thecomplex matrix in eqn. (V.8)
to zero, for a given n, there will be a set of solution
frequencies equal in number to the number of axial modes
(m') assumed, each with its associated damping ratio.
The flutter stability boﬁndary can be fixed by the vanish-
ing of the damping ratio for one of the modes.

The expressions for the generaiised forces appearing
in equaticn (V.8) are given by equation (IV.4) and (IV45)
corresponding to a linear piston theory and the exact
aerodynamic theory respectively.

For a simply-supported cylindrical shell stiffened by
an orthogonal set of stringers and rings the in-vacuo-natural
frequencies can be determined from the expressions given in

Appendix 4. These are illustrated in a few cases below.

V.3 NATURAL FREQUENCIES OF VIBRATION OF CYLINDRICAL SHELLS

d) Unstiffened Shells
The characteristic determinant to determine the natural

fregquencies of an unstiffened shell, can be derived from
appendix 4 by setting the terms corresponding to stringers
and rings to zero,and.only retaining the frequency parameter

for radial inertias,

MM +-}-5—— 2 —l;l)mn - AV
1+V 1-v 2
- =3 Amp 5 A+n n = 0
« n2 2 2.2
—Amv n ———3(n +Am) +1-A
12R
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which on expansion yields a simple expression for the
natural frequency factor

A ?cwinRz(i_v?)
- mn (= E )
as
] . 4 2
2 {(1-v7)
A . hT (12,422, Am (V.10)
mn 12R2 Am (Ai + n2)2

b) Stringer-Stiffened Shells

The characteristic determinant to determine the
natural frequencies of a stringer-stiffened shell, neglect-
ing inplane and rotary inertias, and assuming the stringer
effects to be 'smeared', can be derived from appendix 4
by setting the terms . corresponding to rings to zero, i.e.

\ 2 - 1-v 2 1+, . —_
Am(i—s)+ - n - (—— )Amn —AL13+ A ]
(14v) 1wy, 2 2 _
-fE——Amn_ —E—Am + n . n = 0
2 %5 = ‘
_.A[v+ Xm = s] n ) Ayy - (1 +£.)4
where
A.. = —EE— A4 [(1 + E2)+ {ESIS + 52 GSJS}j}
33 12R2 m Dd Dd
4 5.2 =
+ A ('ﬁ'—) s + 1
. A
£ . Mass of stringers .. _S ,
s mass of shell " hd
’hs+h
and Z_ = —E——,(hs-z depth of the stringer)

The determinant (V.11) when expanded, yields the explicit

expr9351on for the frequency factor A( S) as

mn
(s) 1 by o
Mo = ThET W 2l Pre 5
b .
. 3 5,2 .
(2 p29 -0E) G2 J .
+ m [ +

b
£ 24 5)4("‘)2(---)

S
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2 2 2 ';s 2r .2 2,2
. 1+fs{ 1+2(§$[n —vAm] + (F) (Am + n%)

1 .
*TED (1-¥)Aq (A2en2)24s_(14) 20?4 (19142 ]

V.4 SOLUTION OF THE SHELL FLUTTER EQUATIONS
The flutter equations (V.8) may be looked upon as an

eigenvalue problem of the form

(A - AT)Q =0 ' : (v.13)
where the elements of the matrix A are complex numbers
composed of generalised inertial, elastic and aerodynamic
forces, I is the unit matrix, é;is'the eigenvalue and Q
is the corresponding eigenvector. In general, the aerody-
namic forces are transcendental functions of the eigenvalue
itself and hence it may not be possible toc solve the eigen-~
value problem uniquely.

However, the problem may be reduced to an algebraic
eigenvalue problem by calculating the aerodynamic general-
ised forces for constant (assumed) values of Mach number
Ma and frequency parameter ka. For each pair of values of
(Ma, ka), the set of eigenvalues /) can be predicted by any
of the available methods (e.g. Ref. A33} Using the relation

n,L
Ka = T

p(= EH-) may be determined.

Physically, flutter condi%ion is reached only if A

a predicted Mach number M

is real and positive and Mp is equal to M. But, for

arbitrarily assumed values of (M ka) this is generally

a?’
not the case. Therefore, the generalised aerodynamic
forces have to be calculated for various assumed pairs of

values of (M ka) and the eigenvalue problem is to be

1
solved for eZch pair until a positive real eigenvalue is
_obtained. 1In order not to miss a possible flutter case Ma
and ka have to be varied in small steps involving a large
number of different matrices and their solutions. This is
the effect of reducing the original transcendental eigen-

value problem to an algebmic one.
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For arbitrarily assumed values of (Ma,k_) the real

part of the eigenvalue determines a predicted frequency
factor and the ratio of the imaginary part to the real
part can be thought of as an artificial damping inherent
in the system, i.e.

Im (A)

9% = ®1L (&) {(V.14)

For each of a series of pre-assigned Mach numbers Ma

the critical speed M. is determined using one of the standard

methods such as the S—g method (Ref. A34). Once this is
done, a plot of Mp Vs Ma can be drawn and the point where
this curve meets the line Mp = Ma determines the critical
flutter speed Mg for the geometry under investigation. Also
then found is the critical wvalue of the flutterfrequency

parameter kf.

V.5 CLOSED FORM SOLUTIONS FOR A TWO-MODE (BINARY) FLUTTER
ANALYSIS USING THE LINEAR PISTON THEORY
V. S(a) Unstiffened shells

If the linear piston theory generalised forces

(equations IV.4) are used with the frequency expression
( V.10) in a binary analysis (coupling between the two

. axial modes r and s}, the flutter determinant (V.8) can

easily expand to yield explicit expressions for the flutter

frequency factor A and the flutter Mach number Mf as

= 3 [Arn + é%n]

2__2

r°=s E L, h 2 :

Me- (72— D) [T
€ay (1-V) -
eo Qoaoz(i;vz) 2 Arn Aén 2 .
+ 4¢( % = (— (____g__ﬂ (V.15)

with the condition that (r+s) is an odd integer.

V.5(b) Stringer-stiffened shells
If the linear piston theory generalised forces (equat-

ions IV.4) are combined with the frequency expression
(V.12) in a blnary analysis, the following expressions are
obtained for the flutter ftrequency factor A(S) and tlutter
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Mach number MéS)

shell. (The stringer effects are assumed to be smeared

correspdnding to a stringer-stiffened

in this case)

A(ﬁ) Y LA(S) . A(s))

rn

Ly by [0 (S)_ (S),2
G @ (03~ 3

M(S) - r2—s2 E
F - 4rs 2 2
2f,a," (1-y7)

T2 (s) (s)13
+ aite) Yoo (1) By Lent D S“J
Qc E b9 2

with the condition that (r+s) is an odd integer.

V.5{(c) Krumhaar Correction .

If the Krumhaar Correction (Ref. 64) is included in
the linear piston theory expression .as given by equation

(1.7), the (non-d;mens;onal) generalised forces are

ik .
Q = - ( ) ———
Tm 2M 4M2
(v.17)
1 mr r m+r
and er = W ;1'5:';-2— i1~ (=1) } for m# r

The effect of this correction is to introduce an aerody-
namic stiffness term in the leading diagonal of the flutter
determinant. In a binary analysis, the inclusion of
Krumhaar correction leads to the following explicit expres-
sions ftor the flutter frequency factor and Mach number.

2 2
. Appe O (1-v7) g a
bp = (—rhé_%" 2k
(v.18)
2
M, = (5. S E &y By (A ~A_)?
P 4rs 2?0802(1"92) R"'R ( rn ~sn
% ?anz(i-v?) I . SR (1 v ) ]
* A = (B2 - () = $oo

The condition. that (r+s) is odd applies.
It is interesting- to note that the correction term is inde-
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pendent of M, k and n.

V.5(d) Divergence Criterion for an Unstiffened Shell

Resulting from the Krumhaar Correction

Putting {1 = 0 in the binary flutter determinant
including the Krumhaar correction leads to the following
criterion for the divergence of an unstiffened shell.

( Eh‘srn _ Qoaoz) Qou2 4rs
R2(1-\F) 2R M- 2_.2
o, , | = 0. (v.19)
) SQE_ ars Eh Agp _ %%
LM S%rZ R2(1_v2) 2R

which on expansion gives the following expression for the
critical divergence speed:

. 2 2
2 2 {goao (1-9)

ki L, h,, r"-s - R .
M.. = () () ( ) (Fy A +D, )
div ?oaoz(l_vz) R‘ 'R drs " 2E h rn “sn
2 2 +
. a_ “(1-v7)
- {ArHASn+ R Joro )2}] (V.20)

A single degree of freedom divergence criterion may be
" obtained by setting any of the leading diagonal terms of the
determinant (egn. V.19) to zero, i.e.

Poas2 (1-v2)

Bppn = 2E (

) : (v.21)

o g -]

V.6 NUMERICAL RESULTS

The shell flutter problem has been programmed for

digital computer solution and numerical results have been
obtained for various values of cylindrical shell and flow
paraheters. The following numerical data (Ref. 71) is
common to all the shells considered for flutter analysis:
Material of the shell: Steel, E=2.04,10°Kqg/mm?
.9 = ?.B,iO-GKg/mmB, VY= 0.3
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Flight altitude: sea-level,
Static pressure of undisturbed flow =
b, = 1.03 .10 %Kg/mm?
9 = 1.;25_10"?Kg/mm
Ratio of specific heats = P = 1.4

3

V.6(a) Two Mode (Binary) Flutter Analysis of Unstiffened

Shells using Linear Piston Theory

The most critical combination of modes r and s giving
the lowest critical Mach numbers was found to be r = 2 and
s = 1, and accordingly, critical flutter Mach numbers have
been obtained for a range of length to radius (L/R)
and thickness to radius (h/R) ratios. Fig. 43 shows the
variation of critical Mach numbers as a function of circum-
ferential mode number n for a particular thickness ratio.
The pattern of these curves is very similar to the invacuo
-natural fredﬁency spectrum in that the minimum critical speed
does not correspond to.the minimum circumferential mode
number suggesting that the agymmetric flutter could be more
critical than the axisymmetric flutter. For short shells
(L/R~2.0) the critical speed may occur at values of n
higher than 17. For-longer shells, however, the critical
circumferential mode numhers can be considerably less (as
low as 4 for L/R ~ 20). . The dotted lines correspond to
the critical Mach numbers obtained by neglecting the
influence of aerodynamic damping. This leads to the con-
clusion that the neglect of aerodynamic damping may in
certain circumstances lead to very pessimistic results.

In Fig. 44 the variation of the invacuo-natural fre-
guency factors corresponding to L/R = 2.0, h/R =0,002,
m= 1,2 is compared with the flutter frequency factor which
is the arithmetic mean of these two invacuo frequency

factors (see equation V.15). The value of n correspond-

crit
crit could be very different from that correspond-

while the minimum flutter frequency corresponds to n = 10).

ing to M

occurs at n

The effect of increasing the (L/R).1s to reéduce the value of
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n corresponding to the minimum natural freguency and also

that corresponding to M The former is illustrated

in Fig. 45 for the casec;l: 1 and h/R = 0.002, and the

- latter is apparent from Table 26. The curves of critical
Mach numbers as a function of the (h/R) ratio is drawn in
Figf 46 for cylinders of various values of (L/R) vibrating.
at particular circumferential modes. It appears that the
influence of thickness on the flutter boundary is very
significant for short shells as compared with very long
shells. The influence of aerodynamic damping is again
appareﬁt. The values of Mcrit and the corresponding n
are listed in Table 26 for a range of (L/R} and (h/R).

It was found over a very wide range of L/R, h/R, and n

crit

the Krumhaar correction did not significantly affect the
critical Mach numbers or the frequency factors (see equation
'V.18) and hence the results ara not presented here.

It was found also over the same wide range of para-
meters that equation (V.20) yields imaginary divergence
" speeds suggesting that divergehce may not be possible for a
cylindrical shell in the supersonic flow field.

It is to be noted that the single degree of freedom
divergence criterion (Egn. V.20) does not yield a critical
"divergence speed since the aerodynamic stiffness terms
introduced by the Krumhaar correction in the leading diagonal

terms of the determinant are independent of the flow para-
‘meters M and k. Once the shell material and the flight
altitude are fixed the right side of equation (V.21) varies
inversely as the thickness ratio (h/R), and is independent
of my, n, L/R, h/R. The values of (L/R) which yield minimum
values of A. equal to the right hand side of equation (V.21)
are plotted against (h/R} for steel shells at sea level in
Fig. 47. This figure may be considered as a Hdivergence!'
boundary derived from a single degree of freedom system.

The corresponding curve for aluminium is also included in

the same figure.
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V.6(b) Multi-mode Flutter Analysis of Unstiffened Shells

Using the Linear Piston Theory

_ The determination of flutter Mach numbers and flutter
frequency factors of an unstiffened shell becomes very
tediocus when the number of axial modes is more than two.
It is not possible to derive simple explicit expressions
such as equations (V.15) applicable to a multi-mode system.
Hence the indirect procedure described in Section V.4 1is
followed. The flutter Mach number and the fluttef frequency
- factor given by the binary analysis may be used as a useful
guide to choose the assumed initial values of;Ma gnd ka
and to reduce the computational labour.

The procedure is illustrated for a cylindrical shell with
L/R = 10.0, h/R = 0.002 for which the critical Mach number
and freqguency parameter derived from the binary are:
Mepjt = 1-397 and ko pyy = crit = ©¢
The chosen value of L/R is not typical of missile bodies but

2.384, corresponding to n

is selected for the following reasons:

i) It was intended to compare these results with the
flutter boundaries derived from the exact aerodynamic theory..
The programme to calculate the exact aerodynamic generalised
forces was restricted to values of n up to 10 due to
limitations on computer time and storage whereas the critical
Mach numbers for short shells were beyond this range for
most of the thickness ratios considered (see Table 26).

ii) The variation of critical Mach numbers with thick-
ness ratio in the range of the latter considered is so
rapid for short shells that one has to consider Mach
numbers of unrealistic magnitudes (of the order of M~100;
see Table 24). .
The various Steps involved in the calculation of.flutter
Mach number and flutter frequency factor are as follows:
i) Data: Material - E, ¢ ,V
Shell - (h/R), “(L/R)
Mode - m, n |
Airflow - 8., ag ?C02R2(1—v2)

= )

ii) Invacuo-natural frequency factors A(=
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are determined using the above data in eqn.
_ (v.10). ‘
iii) A pair of assumed initial values (Ma, ka)
is chosen and the aerodynamic generalised forces
are determined from egn. (IV.4).
iv) The elements of the complex matrix in equation
' (V.8) are formed. The order of the matrix
would be equal to the number of axial modes
chosen.
v) The eigenvalues and eigenvectors of the Complex
matrix are determined using Ref. A33.
Results:
a} The real part of the eigenvalue is a predicted
frequency factor A and

NR = where {t is the predicted fre-

2
gc(i_v ) quency corresponding to the

assumed values of (M ka).

a’

p) k, = == = ‘ER (%) by definition and hence the
predicted Mach number corresponding to (Ma, ka) is
M, - u _ LR L,
a, kaao R
s s . _ Im(A)
c) Artificial damping Ip = BRI

The calculations are repeated with different pairs of

(M_, k) until a positive, real eigenvalue is obtained.

'
é Sample results are presented for some values of Ma
and ks in Table 21 in which 2 to 10 axial modes were
considered.

The conventionai U-g plots leading to the critical
Mach number and frequency parameter are given in Fig. 48
corfesponding to 10 axial modes. Figs. (4%)a,b,c corres-
pond to the assumed Mach numbers of 1.7, 1.8, 1.9 respect-
ively, each yielding a predicted Mach number of 1.84, 1.8,
1.775. These values are plotted in Fig. 48(d) and the
point where the Mpr--'Ma curve intersects the 45° line is
the flutter Mach number. The real parts of the eigenvalues

are plotted against M_ in Fig. 48(e) and the point where



80..
this curve meets the MF line corresponds to the flutter
frequency factor.

' Table 22 shows the comparison of the two mode solution
with various higher order solutions up to 10. It can be
seen that for the cases analysed the convergence of the
Galerkin solution is reached by taking six or seven axial
modes. The invacuo-natural frequency factors for the first
ten axial modes and the flutter frequency factors'by taking
. the first two, three,... ten axial modes are given in Table
23. An increase in the number of axial modes. does not

seem to alter the flutter freguency factors considerably,
most of them being closer to the invacuo frequency factor
correéponding to m=2. An examination of the eigenvector
components corresponding to the flutter solution also
suggests the most predominant influence of the second axial
mode and the significant influence of the first and the
third axial modes respectively. This is a possible justi-
fication for considering the coupling of the first few
modes only for flutter analysis. '

V.6(c) Flutter Analysis of Unstiffened Shells Using the
Exact Aerodynamic Theory

The generalised forces using the exact aerodynamic
theory are implicit functions of the Mach number and the
frequency parameter. Consequently, it is not possible to
derive explicit expressions for the flutter speed and
frequency, even for a binary, if the exact aerodynamic
theory is used. The procedure to determine the critical
Mach numbers is exacfly the same as listed in Section
V.6(b) except that now the aerodynamic generalised forces
are determined from eguations (IV.14) and (IV.15). The
amount of computer time involved in the calculation of
the exact aerodynamic generalised forces is so large that
the results have only been obtained for specific cases.
In Table 24 the flutter Mach numbers using the exact
aerodynamic Eheory are compared with those_using the

linear piston theory for a two-mode solution. It was
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concluded from Tables 16 to 20 that the linear piston
theory generalised forces are closer to the exact theory
for large n and small L/R at high Mach numbers. It can
be seen in Table 24 that the comparison between the two
theories is very good for small L/R, large n and M but gets
progressively worse for longer L/R, sméller n and M.
Surprisingly the difference in the critical Mach numbers
between the two theories is very much less when the thick-
ness ratio is doubled, even though the (L/R) ratio is large.

The convergence of the Galerkin solution can be seen
by comparing the two mode results with higher mode results.
From Table 22 it appears that increasing the number of
modes does not appreciably change the results when exact
aerodynamic theory is used.

There is as yet no definite method of determining the
severity of the flutter condition. However, the rate of
change of démping inherent in the syétem may give an indi-
cation of the severity of flutter. 1In Table 25 the inherent
damping predicted by the exact aerodynamic theory is
presented along with that predicted by the linear piston
theory for one set of parameters. A negative damping may
be thought of as corresponding to instability and a positive
damping as that corresponding to stability. This Table
suggests that the damping predicted by the exact theory is
much higher than that by the linear piston theory implying
the stabilising influence of the exact aerodynamic theory.
The results presented here are typical € the observed trend
in all the cases analysed.

V.6(d) Two-mode (Binary) Flutter Analysis of Stringer-

stiffened Shells Using Linear Piston Theory
In Tables 26 and 27 the critical Mach numbers are

presented for shells stiffened internally or externally with

stringers, using the linear piston theory in a binary analysis.
The total mass of the stringers has been assumed to be equal

to the total mass of the shell in each of the cases analysed.
The effect of. doubling the mass of a given shell by



distributing the additional mass in the form of ten equal
stringers of rectangular cross—section is studied and the
following cont¢lusions may be inferred from the results.
. For all the (L/R) and (h/R) ratios considered, the
shells stiffened with external stringers appear to yield
much higher critical Mach numbers compared to the shells
stiftfened with internal stringers of the same eccentricity,
(see Tables 26 and 27). Eccentric stiffening appears to
yield higher critical Mach numbers for short shells prcvided
that the eccentricity is sufficiently large (i.e. the ratio
of the stiffener depth/shell thickness = h_/h > 5.0 for
external stringers and about 8.0 for internal stringers}). If
the stiffener eccentricity is small, however, it seems that
a monocoque shell of double the thickness yields critical
Mach numbers higher than the corresponding stringer-stiffened
shell of the same mass. As the (L/R) ratio is increased, the
- effectiveness of eccentric stiffening over the monocoque
shell of the same mass in increasing the critical Mach
" numbers may be f8t only if the eccentricity is very high.
Table 28 shows the.convergence of the Galerkin solution
for a stringer-stiffened shell. Comparison is also given of
the results corresponding to a monocoque shell of the same
“mass. The convermged solution seems to indicate that for this
case the shell stiffened with stringers is only marginally
better than the monocoque shell of the same mass.

V.7 CONCLUSTIONS

Due to the muttiplicity of the parameters involved it

is very difficult to draw general conclusions applicable

to the whole range of geometrical, modal and flow parameters.
The results obtained so far at least confirm the '
rather conservative nature ot the results derived previouély
from binary analysis using linear piston theory and also
"that one has to adopt at least six or seven axial modes to
obtain:a realistic estimate of the tlutter boundary. If the
exact aerodynamic theory is used the results seem to indicate
~ that the instability is milder than that predicted by the
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linear pistom theory. The amount of computer time involved
to produce meaningful results using exact aerodynamic theory
is Bo large that it prohibits very extensive calculations
over a wide range of parameters. However the results
obtained from linear piston theory may be refined at least
for particular cases of interest, by having the closed form
binary solutions as a useful guide to reduce the computational
labour. ' |

Vi GENERAL CONCLUSIONS

The problem of vibration and flutter analysis of simply-

supported unstiffened and orthogonally stiffened circular
cylindrical shells which are typical of missile bodies has
been developed .and programmed for digital computer solution.
The analysis and the programme are capable of handling shells
of arbitrary lengths to radius (L/R)} and thickness to radius
(h/R) ratios. _

In the case of stiffened shells, the stiffener effects
may be treated as 'smeared' or 'discrete!' and in each case
the effects of eccentricity, inplane and rotary inertias
could be studied.

The aercdynamic generalised forces may be calculated
ﬁsing the linear piston theory, with or without the Krumhaar
correction and also using the exact aerodynamic theory.

By combining the invacuo-vibration analysis and the
aerodynamic genealised torces the flutter boundaries may be
obtained in each of the above cases for a binary involving
only tw axial modes and the accuracy may be improved by
increasing the axial modal combinations to produce a
converged solution.

The following general conclusions may be drawn from this
study:

i) A one term solution which corresponds to that of a
simply-supported, unstiffened cylindrical shell when used with
a proper choice of stiffener distribution yields the invacuo-
natural freguencies which are in good agreement with the

existing more complicated analytial and experimental results.
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ii) Inplane and rotary inertia of the stiffeners can
have significant influence on the frequencies of a shell
depending on their mass and eccentricity .

iii) The assumption of treating the stiffeners as
'discrete' members of the structure seems to have little
advantage over that of treating them as 'smeared!’ if a
proper stiffener distribution can be made.

iv) The theoretical predictions of natural frequencies
can be verified against carefully conducted experiments to
give more confidence in the use of the theoretical results.

v) Good agreement in the aerodynamic generalised forces
between the linear piston theory and the exact aerodynamic
theory appear to exist only for short shells vibrating at
a large number of circumferential waves in a supersonic
stream at high Mach numbers.

vi) The simple closed form solqtion cbtained by compin-
ing the linear piston theory in a two-mode Galerkin (binary)
analysis may be used as a useful guide » produce flutter .
'boundaries of unstiffened and orthogonally stiffened
cylindrical shells. _

vii) The convergence of the Galerkin solution and the
corresponding critical flutter modes may be established by
including more axial modes and studying the critical Mach
numbers, flutter frequencies and eigenvectors. Tne Binary
results may be used as a useful initial guide in the choice
of (Ma, ka) to reduce the computational labour involved in
the determination of critical parameters via the well-known
U~g method. It has been found that six or seven axial
modes may be susfficient to give a reasonable estimate of
the critical Mach numberwhich is close to the converged
solution. )

viii) Exact aerodynamic theory may be used to further
refine the calculations and determine the severity of the
flutter condition. The influence of using the exact aero

theory is to predict flutter of shells as a mild instability.

-
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4R
(D) Ke TWRE . (A _ > Zpiy 2
= J { d (nv + W {1+n -—;4)
rmax < 2 RZ R
j=0
Irj 4 =2 2 mmj
+ _Zl n } sin -T—l
R r
TR G_..J .
¥ =35 nfa) WP cos?  pi ] (A1.3)
2R ' r
2 eI
T. =% TRL [*2(:1-1(32+V2+Wz)+——-‘-:-—2-E 321 3292 (a1.)
m
max R
(2i-1)nw
-2 =2 2
TéD) _ [951 Sl{(u +wW )cos L
max
_ 5 (2i=1)nT }
+ V Sin 2LS
— . (2i-1)n
Z254 (2i-1)nn _ Vsin2 __é-]'__,-——) +

- 2045A5; —ﬁ—,kmw(ucos 2L
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I
o . .
+ . si 2 —2 2 (2i-1)nw 2(2i-1)nv¥
951 _Ei—'Am w- (cos _"_Ef;m"— + g sin —__3527_—)

Kp

K .
(D) TR -2 2R3
T = ‘_——4 Z [Qr_‘] rj u Cos

max

+ (72 + W )sinzﬂ—-'}%i
r

i —, v 2 -mTf‘ —2 3 2 mﬂ'.
- zerjhrj —ﬁl Amw(ucos ugi + p 8in mii } (A1.6)

where
- - ’ = 1
12R2 m L mTR
I = I.. +2..°%A_. (a1.7)
o_. si si si '
si
-2
I = I . + 2_. A_.
£ rj rj 'rj
with I.., Irj as the moments of inertia of the stringer and

ring cross sections about an axis through the centroid
perpendicular to their planes respectively.
For the smeared stiffener case, the summations are

replaced'by the appropriate integrals (see Appendix 3).
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APPENDIX 2: Matrix Elements Ai?)and Bi?)
ZLS
- (D) _ 2 - 2 (2i-1)n7 1 -v 2
All = Am (1 + .2; Sicos ——ETT—_—) + 5 n
i=1 s
(D) (1 +v) '
A = _— e ——— (‘\ n
2Ls
(D) [ _ 2 — (2i-1)nw J
A13 B ~Am y +Am ZE Si cos2 2L
. i=1
(D) (D)
Arit T A
5 Kr ‘
(D) 1 -9 2 * - . 2 mmj
A22 = ”‘m + n“(1 +j§0 st.ln -—-R—-l )
K r
r epmlln
(D) _. \ 2 %ri, % _..2 mmj
Aja = n [1 + 2 (1 + n = ) stln —R;-J
r=1 : r
(D) (D)
Az = Ag3
(D) _ (D)
Azp’ = Ap3
2L .
2 r 2 'S E_.I_. (2i-1)nw
(D) _ «AR [_ =2 s { sitsi P
A33 = (1 + p ) Pl ——rp COs ZLS
T RD s
K
Y256 .0, E_.T
+ p { r: rléos2 mTy, 32 rji’rj _.. .2 mmwj
S DL/ 2 K b BL77T st Tk
J=0 r r
2L K —-
4 = —2 . r z .
+ A T, Zgy Cos2 (2i-1)nn . '§11+n2 r3)2sin2
m 1 5 2LS R
1=1 R =0 +1]
_ 2LS Kr
(D) _ __[ 2 (2i-1)nw 2 mj J
811 = 1 + msicos ZLS + mrjcos Kr
1=7 . j:o
(D) _
(D) 2LS Esi 2 (2i-1)nw Kr Ef' 2 milj
B3’ = An [ Mg TRCOST “Tgp— + 3 mp—preos® Tt
. j=0



(D)
B21

g(D}
22

piD)
23

(D)
B3,

(D)
B3,

(D)
B3j

where

0]

|

si

rj

It

+

+
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12
2Ls K
- [1+ S msisinzmj— 2 Mg ySin E_u]
i=1 3=0 r
2LS 3 Kr 2
_ y si _. 2 (Z2i-1)nmn rj .;.2 mmj
n [521 mg; —gF— sin ———Eizr——-+ jg% mrj 5 sin Kr
(D)
13
(D)
23
ZHS Kr
_td 2 (2i-1inw 2 mnj }
[i1+ EJ mg; COS —__EET-_'+ m.y5in” e
i=1 3=0 r
2] LS
A2 I+ 2 (2i-1)nw =2 2 (2i-1)nr
m c I {cos S+ ¢ sin '—_-5———_)
L
K.
(cos? E%l + Ezsin2 ﬂ%l )_]
j=0 i £
€ R2(1— vz)u?
E
) 2
EhTTR
2
ErJArJ(l - }
Eh 1./2
PsiAsi
G.hT R
e. A
~rjr)
€.h 1/2
QsiIOSi
P_hT R’
Pronnj'

2
c
‘chR L/2
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APPENDIX 3: Trigonometric Sums

If the stiffeners are assumed to be identical, the
finite trigoncometric sums in Appendix 2 can be replaced
by their equivalent values (Ref.A3%)

K

.r 2 .t Kr
. cos EEJ = 5 + 1 if m # 0, Kr’ 2Kr, cece
J=o r Kr + 1 if m = O,Kr, 2Kr, as e aae
S mny /2 if m £ 0, K_, 2K
sin K. - r ttom LS o r* °*°*
3=0 0 if m = 0, K., 2Ky evee
2L ' .
zscos2 (2i—1)nT('___Ls if n # L, 2L,, 3L, ..
i1 42Ls 0 if n = Ls’ 3LS,SLS, .o
2L, if n = 2Ls’ 4LS, 6Ls, .
2§L . 2 (2i-1)n¥W _ zz li " f 'II:S’ iis’:is'
. Sln — "2—L'___ S l n - S, s,. S,o-.o
i=1 s .
0 if n =

Ls’2L3’4Ls’6L§"

For the smeared case, these summations are replaced

by the following appropriate integrals:

a
COoS, mT X dx _ L_
sin L 1 1
0
2R 5
j cos; (2i-1)nT dy _ TR
sin 2L d = d
0 s
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(s} L(38)

APPENDIX 4: Matrix Elements Aij’ Bij
(s) _ ,2 = 1 -v 2
A11 = Al’l‘l (1 + 3) + —— n
(s) _ (1+V) )
A12 R p} /\mn
(s) _ 2 25 —]
Aq3 -7 ’\m[.v + )\m -
(s) _ (s)
AT = A
S 1 - 2 2 -
Aéz) = -'—2'L /\m + 1n (1 + R)
als) - n[1 e (102 IR
23 7. PL R
(s) _ (s)
Azy’ = A3
(s) (s)
Azp A3
- E_T G.J G.J - E_I
NG 4 -22%55 -2,5%sYs r'r. -4 rrl
A33 = Q(Am L(1+ > )+ Ba + P ( ) + 53 Y+ % 51 }-
7.2 z
4 S . 2 L, 2-=
+LAm Y. S + (1+n ET) R + 1-1
(s) _ = (s) _ (s) _
Bi1® = My Bgp7 =0, B3t = My
{(s) _ (5) (s) _ = (sy _
B1m = By Bo” = - My By3' = -nMy
(s)y _ (s) (5) _ L(S) (s) [— 2 -2J
B'3] = B3 B35 = By3 B;3' = =M + A T(1+ %)
with 2 2
o E,A_(1-y ) = B E AL (1-y )
5 Eh d ? - Ehl -
, A A e A, z A z
R i”%%ﬂ"sri 'ﬁé*frhr =)
€chd T g.hl S ¢ h1
-_ ¢.Io N Io
I = (Ioc 5 52 (r r2 )
CchdR € b1R



TABLE 1

VALUE OF THE CRITICAL VELOCITIES (m/sec) OF FLOW FOR CLOSED CYLINDRICAL SHELLS

(Shells simply supported on the ends (I); clamped on one end and simply supported on the other (II);
’ and clamped on both ends (III) )

Exact By the variational method
h R 2nd approximation 3rd approximation
R T I 11 ITI
I iTI IIiT I 1T 11T
% 14.067 [19.182 | 26,642 {12,278 116,883 [22,132 {14,770 | 20,448 | 29,040
& 5,934 9,092 | 11,239 5,203 7,141 9,352 6,332 8,869 | 11,380
%5 3,038 4,143 5,754 2,708 3,686 4,812 3,369 4,238 6,134
%5 1,758 2,397 3,330 1,648 2,186 2,822 1,999 2,656 3,526
% 9,378 12,788 | 17,761 | 8,197 [|11,266 [14,765 9,847 | 13,939 | 19,360
L B 3,956 5,396 7,493 3,484 4,775 6,249 4,308 5,913 7,920
30
i | 2.025 | 2,769 | 3,836 | 1,687 | 2,475 | 3,225 | 2,246 | 3,314 | 4,089
I | 1.172 1,598 | 2,220 1,120 1,444 | 1,902 1,290 2,014 | 2,539

‘80T



cont.

TABLE

1

" R pract By the variatiqgnal method
R |71 2nd approximation 3rd approximation
I 11 111 I IT IIT I IT ITI
2| 7,033 | 9,501 {13,321 | 6,160 | 8,461 |11,085 | 7,385 [10,723 |14,879
3 | 2,068 | 4,048 | 5,623 2,629 | 3,596 | 4,701 | 3,233 | 4,437 5,943
1 .
200 | 15 | 1.520 | 2,072 >.879 | 1,378 1,874 | 2,436 | 1,685 | 2,533 3,069
i 879 | 1,199 | 1,666 861 | 1,130 1,447 | 1,043 1,626 1,976
z | 5,656 | 7,673 10,656 4,940 6,781 | 8.880 5,908 | 8,578 {11,903
5513 | 2,375 | 3,218 4,498 2.119 2,892 3,776 2,586 | 3,549 | 4,754
%3 1,216 | 1,658 .| 2,303 1,129 | 1,512 1,968 | 1,348 | 2,026 | 2,595
= | 3,751 | 5,115 | 7,204 | 3,322 | 4,548 | 5,946 | 3,938 | 5,718 | 7,367
1 4 : - ) ) .
ges |& | 1,583 ) 2,159 | 2,999 | 1,450 | 1,964 | 2,552 | 1,890 | 2,366 | 3,169
i g10 | 1,105 | 1,535 796 | 1,056 | 1,354 | 1,025 | 1.350 | 1,636

60l
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TABLE 2.

Critical Mach Number for Axisymmetric Flutter of

a Light Alloy
Cylindrical Shell at Sea Level

aul =2
1
o))
b
=
o
|
x A
’ 1
o
[t
11
™
'-h
rt
3
1§
o

Elastic . £4Mode Solution | 2-Mocde Solution 2-Mode Solution
Equations m=1,2,3,4 m= 1,2 (Nomﬁeio 2a2p1ng)
Flugge 9.5 11,2 2.5
Novozhilov 9.6 11.2 2.6

TABLE 3

e et

Average Calculated Values of )\* (for no

aerodynamnic damping)

L/R 0 0.75 o1 2 4 "6

AT 374.710 1408 1190 40.41 4.063 1.844 0.723




111.
TABLE 4: Properties of Shells for Numerical Examples
to Determine the Invacuo-natural Freguencies

Ref. 38 Ref. AZ8 Ref. A22
Length = L in. 40 - 23,75 24.00 38.85
Radius = R in. 20 9.55 9.537 7.657
Thickness = h in. 0.04 0.028 0.0256 0.0182
Young's Modulus = E :
= E_ = E (p.5.i3) 10x10° 10.5x10% | 10x10® 29x10°
density = ©_
- P, = Pab/in.Y) 0.0998 0.U95 0.0975 | 0.2819
Poisson's ratio =V 0.3 v.3 0.315 0.3
Stringer/Ring breadth
bs = br(in.) - 0.096 0.1118 0.0u409
Stringer/Ring depth
No. of Stringers = 2Lg - 60 6V 4
No. of Rings = (K, +1) - 25 - -
Stringer Spacing = d - 1
Ring Spacing = 1 - 1 - -




Calculated Natural Frequencies (Hz) for an

TABLE 5:

Unstiffened Shell With and without Various
Inertia Terms*

N Present Analysis Ret. 3% Ref .38
(i) (1) (iid) (1) (ii)(iii) (i) (1) (ii)

2 3741.24 3741.23 3354,00 3741.17 3362

4 1314.71 1314.70 1271.00 1314.16 1270

6 669.12 669.11 659,30 666,97 657

8 536.76 536.74 532.40 532.22 527

10 6952.35 652.31 649,00 646.66 643

-

(i) radial inertia,

(iii) rotary inertia

(ii) in-plane inertia,

112.
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TABLE 6: Minimum Ffequencies (Hz) For a Cylindrical Shell
with Various Stiffening Configurations (m=1)*
[
No. Case n|Sii} S(iXﬁQ%ii%Lﬁ“iSE;;)
1 Unstiffened 6]185.351185,.34]182.68 [182.68
Stringers - External| 7]205.40(202.41(202.08 |204.75
Stringers - .
Symmetric 71169.501168.97 |165.57 |167.56
4 Stringers -~ Internal|6|150.49(149.03|146.61 [147.00
5 Rings - External 31480.79(479,.911}1452.57 |450.33
6 Rings - Symmetric 3 (417,12 [416.95]393.71 |290.99
7 |Rings - Internal 3(509.98 (509.05 [482.01 {480.04
8 Stringers & Rings - )
External 3{484.28 |483.11|458.85 [457.8Y
9 |Stringers & Rings -
Symmetric 41375.60 (375,22 |363.68 (366.32
10 Stringers & Rings - )
Internal 3(436.28 |435.22 |411.94 |411.681
11 Stringers - Internal} 3 |435.751434.70 |408.20 (407.34
Rings - External
12 Stringers - Externall|3:4473.01[471.87 |451.04 |450.05
Rings - Internal
"' = Smeared, D = Discrete, (i) radial inertia,

(ii) Inplane inertia,

(iii)

Rotary inertia



TABLE 7: Freguencies. {Hz) of a Shell Stiffened with 4 Internal Stringers

Present Egle & Sewall (Ref.A22) -
n Expt Discrete —|Unstiffened
Discrete [Smeared Symmetric I_Jnsymmetric )
2 | 314.61 315.31 - - - -
3 | 158.72 158.72 - 169 169 171
a | 100.27 | 102.21 |100 103 108 - 108
5 93,09 93.09 87 94.7 94.7 98.1
6 | 115.00 113.91 | 104 109 116 117
7 | 144.00 144.00 | 137 145 145 151
8 | 179.71 185.26 | 176 183 192 194
9 233.26 233.26 | 224 236 236 243
10 | 296.81 287.38 | 295 278 297 300

"I



TABLE 8:

Frequencies (Hz) ot a Shell Stiffened with

60 External Stringers

115.

n PFesent Egle.& Sgwall Shpel} &
Discrete (Ref AP? Discrete | Heinrichbeur

Smeared
2 666.98 73645 736.3
3 424.89 445.3 445.1
4 297.10 304.0 3u3.9
5 229.56 231.8 231.8
6 197.13 197.70 197.9
ki 187.83 188.2 188.6
8 194.77 196.V 196.7
9 213.33 216.1 217.0
1w 240,41 245.2 246.3




TABLE 9: bxperimental Results for an Unstifiened Shell

m = 1 _ m = 2
& %éﬁ?giiEES?éa : Remarks giiﬁiﬂi;;ﬁé) Remarks
5 207 [Not Found 624 Not Found
6 1/0 |Interferred with by r=7,8 modes 456 " "
7] 148.0§ 166 IPoor Response - 397 Bwamped by =12,m=1 mode
8| 177.0| 184 |Moderate Response but hard to - 347 ]
separate
9] 219.6] 218 lvery Good Response - 330 ﬁéwamped by Vibration
10] 265.8] 261 " " " - 338 /
11} 315.4] 311 " " " 358 367 [ood Response .
12| 370 367 " " " 407 409 ' "
13| 437 429 n n X 450 | 463 n 3
141 503 496 Good Response 529 525 f(ploderate Response
i5) 578 569 " " . 598 594 Poor Trace
16 657 646 " . 677 669 PModerate Response
171 743 729 " 1 759 750 " "
181 833 816 (*Almost Swamped by Vibration 856 837 [Inconclusive
194{ 8927 209 [Moderate Response 940 929 "
2011028 1006 . " - 1026 ntraceable

*Untraceable Vibrations at 329Hz and 827Hz - source unknown.

9Tt



TABLE 10: Experimental Results for a Stringer Stiffened Shell (2 Strips)

m = 1 oom o= 2
% leasured Predicted Measured[Pred.
(Hz)Freq.Freq(Hz) Remarks (HzFreq dreqiz) Remarks
5 207 Not Found 617 Not Found
6 171 " " 490 | 486  |Inconclusive*
- 7 154 164 Inconclusive 399
8 174.8 181 Moderate Response 350
9 214 213 | Good Response 332 gnterferred with one
nother
10| 255.5 254 | " 339 |l
11 - 302 Swamped by Untraceable 364
Vibrations*
12 354 346 Very Good Response 389 394 Very Good Response
13 427 417 Good Response 449 455 Good Response
14 - 482 Swanmped by Strong 490Hz 521 515 " "
Vibrations®
15 564 551 Good Response 587 581 Moderate Response
16 640 626 " " - 653 Interferred with by
in=1 mode
17 724 706 Moderate Response 748 731 Just Detectable
18 818 - | Too High for Shaker 844 oo High for Shaker
19 880 fr " A 131 90 4 tt 1t 3o It "
20 975 L] 1 R Tt 998 11 " EE ) | ”

*There were very strong responses at 312Hz and again at 490Hz.

sczemed to indicate m=2, n=6, Put proof of m=2 was inconclusive.

The 490Hz vibration

L1l



TABLE 11: Experimental Results for a Stringer Stiffened Shell (3 Strips)

- m = 1 m = 2
%ﬁﬁi@%?@%ﬁﬁa Remarks (Hiﬁ?ﬁ? 5@5&&9 Remarks
5. 208 Swamped by n=9 mode 618 |Undetectable
6 172 __|Integral with n=8 mode 489 "
7 178 165 Moderate Response 405 "
8 ~ 1871 Interferred with =6 mode 358 |Interferred with r=9,10;,11
9 212.41212 Good Response 340 " 1" n=8, 10,11
10 259.51252 " " 350 346 |Moderate Response
11 - 300 Swamped by Vibration®* 370 |Interferred with n=8,9,10
12 370 336 very Good Response 378 393 jModerate
13 420 412 " " " 441 458 {Moderate Response
14 - 476 Swamped by Vibration* 516 |Swamped by Vibration®
15 557 545 rPoor Response - 580 581 (Inconclusive
i6 633 6719 Moderate Response 652 |Undetectable
i7 715 697 " " 728 "
L8 - 822 Undetectable 857 "
19 | - 1869 i 898 ,
20 - 262 " 930 "
* There were very powerrul vibrations at 319Hz and again at 490Hz. These swamped the

n=11,

14, m=1 modes and the =14, m=2 mocde.

"81l1



TABLE 12: Experimental Results for a Stringer Stiffened Shell ( 4 Strips)

" aTired EeETed 2 T e e :
‘req. (Hz) |[Frec.(Hz) Remarks Freq.(l-{;) - eqa(Hz) Remarks

5 210 Undetectable 620 Undetectéble

& 175 " 492 "

7 172.1 167 Moderate Response 415 "

8 182.7 183 Good Response 369 "

9 209.3 213 " " 351 »
10 254,.2 252 " " 357 1"

11 298 Swamped by Vibration®* 381 "
1z 340,0 328 Very good Response 374 396 Moderate Response
13 418 duy " " ' 447 466 " "
14 472 Swampad by Vibration® 522 Undetectable
15 552 539 Good Response 585 "
16 627 612 Moderate Response 654 "
17 708 689 " " 729 M
18 827 Swamped by 828Hz Vibration 876 "
19 891 858 Very Weak 895 "
20 950 Undektectable 986 "

*The 1=11, m=1, mode was swamped by an untraceable vibration at 296 and 303Hz.

The n=14,

.

m=1,

mode was swamped by a vibration of 482Hz.

611



TABLE 13: Experimental Results for a Stringer Stiffened Shell (7 Strips)

. m = 1 m = 2
Frogs (iz) Fregie) Remarks restio) breg. (s Remarks
5 224.6 231 Poor Response 672 Not Found
67 192 Not Found 51§
7 171.6 189 Poor Response 509
8 200 Appeared to Interfere with 474
one another
9 225 461
10 257.8 259 Poor Response 465 *Swamped by Vibration
11 300 *Swamped by Vibration 482
12 302 r " " 480
13 409 400 Good Response 549 Untraceable
.14 458 *Swamped by Vibration 595 "
15 538 520 Very Poor Trace 648 "
16 586 708 "
17 657 *Swamped by Vibration 773 "
18 881 861 Moderate Response 999 "
19 813 Untraceable 920 "
20 897 r 1000 "

*Strong Vibrations at 659Hz, 311Hz and at 470Hz, 823Hz

02T
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TABLE 14: Experimental Results for a Strinqer—Stiffened Shell
{10 Strips)
. = 1 . m_ = 2
" ;z:e:c?r; Zec)j %rzzlé;c; Remarks g‘eezgg ) itgf(cﬁf Remark g
4 307 Not Found 829
5 233 n " 681
6 194 " " 522
7 | 156.8 192 Pcor Response 522
8 1178.4 203 Good ReSponse 488
9 1195.0 227 " " 475
10 | 242.6 2671 very Good Response 479
11 301 *Swamped by Vibration 495
12 301 " " " 495
13 401 400 Moderate Response 561
14 457 *Swamped by Vibration 606
L5 | 526 518 Moderate Response 658
16 | 590 584 " oo 716
17 655 *Swanmped by Vibration 780
18 864 | Untraceable 924
19 8Ub *Swamped bv Vibration 1011

*Strong vibrations at 280Hz, 3u4Hz, 46UHz, 659YHz, 829Hz




TABLE 15: Zeroes of K¢ (-b%iiﬁj)for n = 1.to 25 inclusive
2 | 1] -0.64355 Ju.50118 | 14| 1 | -1.66183 [13.00682 211 1 | -1.90932 | 19.86895
5> | —a.67488 | 10.48267 5 | _5.54430 | 17.08581
2 | 1] -0.83455 11.43444 3 | -6.39619 | 8.47718 3 | -7.76070 | 14.92601
11 ~0.96756 12.37386 a | -7.57868 | 6.61123 2 | -9.41256 | 12.94699
2| -1.98162 |0.44080 5 | -8.39903 | 4.81167 5 }-10.70086 | 11.06073
6 | -8.93364 | 3.04796 6 1-11.71626 | 9.23047
4 1 1f-1.07279 }3.32208 7 | —9.22047 | 1.30319 7 |-12.50886 | 7.43664
21 -2.44093 {1.32259 ;
15| 1 | -1.70167 | 13.98474 8 1-13.10922 | 5.66727
51 1] -1.16125 }4.27689 e 13 9560 9 | 13.53672 3.91421
o| -2.80372 2.21193 2 | 2B e 5070 10 |-13.80353 2.17142
3| -3.30981 {0.43637 21 2552990 2:ina0a _ 11 |-13.91669 | 0.43402
6 | 1| =1.23832 |s5.23662 s | —g.78277 | 5.69612 5o 1| -1.93986 ) 20.85183
5| ~3.10823 {3.10944 6 | -9.40221 | 3.92362 > | -5.65015 | 18.03583
3| -3.53945 {1.31040 7 | —9.78092 | "2.17340 3 | -7.92542 { 15.85587
7 1 1| -1.30706 }6.20016 8 | -9.93986 | 0.43416 i et il ISR
o] 23.37302 |a.01420 | 16| 1 | -1.73976 | 14.96359 > 1190000 | d0sas3as
3] —4.28713 | 2.18909 2 | -4.95117 | 12.35946 STt Sesia | Tal3sias
4| -4.63643 10.43515 3 | ~6.83234 | 10.30729 et eea | elsasss
- 4 | -8.16837 | 8.40792 3. .
8 | 1| -1.36941 | 7.16673 21 818837 gtaiet o |-14.033321 4.78760
ol —3.60873 | 4.92518 2o Gieaia 10 |-14.36289 ] 2.04143
31 -4.67840 |3.07328 . . 11 |-14.54355 |  1.30227
2 el 1 50ean 7 | -0.30328 | 3.04535
. : 8 1-10.55323 | 1.30283 53} 1| -1.96948 | 21.83521
9 | 121 -1.42666 | 8.13579 5| -5.75255 | 18.98717
2| J3ls2205 | s.sans3 | 7] 1 Cl-TOe8 s 3 | -8.08454 | 16.78747
3] -5.02799 | 3.96283 2| 300ame | 11 00eas 4 | -9.84281 | 14.77826
al -5.69437 | 2.18088 . . 5 |-11.23675 | 12.86787
i R oAl e 2| -8.44039 | 9.31068 2 e
s70e . 5 | -9.48609 | 7.47384 12.35669) 11.01794

"ect



i EER B B3 nj o B : & &
10 | 1 [~1.47974]9.10691 | 17| 6 | -10.25545 | 5.68266 7| -13.25563 | 9.20804
2 1-4.017556.76252 7} ~10.79349 | 3.91930 g] -13.96571 | 7.42571
3 |-5.34530/4.85737 8{-11.12546 | 2.17250 9| ~14.50785 | 5.66250
4 1-6.13752/3.05918 9| -11.26550 | 0.43410 10 | -14.89595 | 3.91263
| > 1-6.5460911.30470 | 4154 4| -1.81137 [16.92371 Ta | TI203a099 ¢ 2-17708
117 1 [-1.52933 [p.07980 2| -5.20286 |14.24476 3 :
2 |-4.19846|7.68757 3| -7.22748 |12.14807 1] -1.99824 {22.81906
3 |-5.63673|5.75647 4| -8.69954 {10.21613 2| -5.85177 |19.93975
4 {-6.54075(3.94149 5| -9.51095 | 8.36683 3| -8.23850 |17.72070
5 {-7.07040]2.17695 61-10.64753 | 6.56600 4] 10.04843 |15.69674
6 |-7.28842|0.43440 7 | =11.25577 | 4.79538 51 -11.49047 |13.77447
8 ]-11.66281 | 3.04359 6| -12.65921 |11.91476
12| 1157595 1. 05421 o | -11.88437 | 1.30258 7} -13.60749 [10.09675
2 |72.3671618.61620 8| 14.36510 | 8.30774
3 |-5.90688 [6.65971 | 19| 1| -1.84517 {17.90484 o _qanlesiod e-one
4 |-6.91185 [4.82774 2| -5.32103 {15.19016 IO Il ol B A
5 |-7.54847|3.05207 3| -7.41236 {13.07197 ol Tl B
6 |-7.88525[1.30376 a| -8.94721 |i1.12410 - .
12 | -15.87211 | 1.30217
13 | 1 |-1.62001 12.02993 > [-10.12071 } 9.26239
5 1455505 b5 2080 6 | -11.02031 | 7.45180 1| -2.02622 |23.80334
B PSSR Eaet 7 | 211.69397 | 5.67364 2| -5.94803 {20.89350
s |27 58950 13- 03050 9 | -12.46594 | 2.17187 4|-10.24647 |16.61698
. . 10 | -12.59111 | 0.43405 5 ]-11.73573 [14.68296
v_|-8.61418 [0.43425 | 20} 1| -1.87778 [18.88660 . .
7 | -13.94669 [10.98737
2| -5.43471 |16.13722 .
g | -14.75538 | 9.19159
3| -7.58987 {13.99800 Sy Ti2.70028 | 5.1
4| -9.18455 }12.03444 . y
10 {-15.89414 | 5.65906
5 |-10.41686 {10.16040 .
11 {-16.24965 | 3.91142
6 |-11.37595 | 8.33999
_ 12 | -16.47285 | 2.17082
7 {~12.11088 | 6.55407 bl A7 s IS A
8 [-12.65122 | 4.72087 - - 0.433
: 1 9{-13.01536 | 3.04235 |
10 | -13.21437 | 1.30240

*gct
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M Qy Q14 Q% a3, 2, Q3

2.0 | =0.2523 | 0.2766 ! 0.8597 | -0,0090 | -~0.38%90 | 0.2625
0 0.2500 | 0.6667 0 0 0.2500

3.0 | ~0.1313 | 0.1991 | 0.5740 0.0135 | -0.2176 | 0.2183
0 0.1667 | 0.4444 0 o) 0.1667

4,0 | -0.0910 | 0.1587 | 0.4431 0.0127 | -0.1540 | 0.1773
0 0.1250 | 0.3333 0 ' 0 0.1250

5.0 | -0.0702 | 0.1328 | 0.3652 0.0106 | -0.1190 | 0.1486
0 0.1000 | 0.2666 0 0 0.1000

6.0 | =0.0573 | 0.1147 | 0.3121 0.0089 | =0.0965 | 0.1280
0 0.0834 | 0.2222 0 0 0.0834

TABLE 16:

Aerodynamic Generallised Forces er for small

Values of L/R and n

L/R = 1.0,

Upper values:

n =2, k=1.0,

Exact Theory.

m'=2,

Lower values: Linear Piston Theory.



M Qi Qj, a;, a3, a3, 2, k
0.0 | -0.0285 | 0.0028 | 0.1490 |-0.00035 | 0.00075 | 0.0023
0 0.0025 | 0.1333 0 0 0.0025
2.0 | -0.0162 | 0.0022 | 0.1202 |-0.00026 | 0.0054 | 0.0019
0 0.0021 | 0.1112 0 0 0.0021 | 0.05
4.0 | -0.0096 | 0.0019 | 0,1004 |-0.00020 | 0.0073 | 0.0016
0 0.0018 | 0.0952 0 0 0.0018
6.0 | -0.0056 | 0.0016 | 0.0860 |~0.00016 | 0.0080 | 0.0014
0 0.0016 | 0.0833 0 0 0.0016
0.0 | -0.0284 | 0.0056 | 0.1490 |-0.00069 | 0.00075 | 0.0045
| 0 | 0.0050 | 0.1333 0 0 0.0050
2.0 | -0.0162 | 0.0045 | 0.1202 |-0.00051 | 0.0054 | 0.0037 |
0 0.0042 | 0.1112 | © 0 0.0042 | 0.10
4.0 | ~0.0096 | 0.0037 | 0.1004 -0.0003% , 0.0073 | 0.0032
0 0.0036 | 0.0952 | O 0 0.0036
6.0 | -0.0056 | 0.0032 | 0.0860 | ~0.00032 | 0.0080 | 0.0027
) o | 0.0031 | 0.0833 ! 0 0 0.0031
0.0 | -0.0284 | 0.0083 | 0.1490 ' -0.0010 ! 0.00074 | 0.0068 !
0 0.0075 | 0.1333 ' 0 Lo 0.0075 | %
2.0 | -0.0162 | 0.0067 | 0.1202 émo.ooo77 ' 0.0054 | 0.0056 |
0 0.0063 | 0.1112 | 0 0 0.0063 | 0.15
14.0 | -0.0095 | 0.0056 | 0.1004 5-0.00059 E 0.0073 0.0048 '
) 0 0.0054 | 0.0952 ! 0 i 0 0.0054
16.0 | -0.0056 | 0.0048 ' 0.0860 E—0.00048 ' 0.0080 | 0.0041 :
% 0 0.0047 ' 0.0833 ! 0 L0 0.0047 '
10.0 . -0.0284 | 0.0100 0.1490 {20.0012 _ 0.00073 | 0.0082 :
| 0 0.0090 ' 0.1333 |- 0O .0 0.0090 |
12.0 | -0.0162 | 0.0081 . 0.1202 |=-0.00092 - 0.0054 | 0.0067 |
% 0 0.0075 ' 0.1112 | 0 L0 0.0075 ' 0.18
14.0 | -0.0095 | 0.0067 ' 0.1004 |-0.00071 ; 0.0073 | 0.0057 ; 5
| o | o.0064 0.0952 | o0 Lo 0.0064 |
16.0 | -0.0056 | 0.0058 0.0860 | ~0.00057 | 0.0080 | 0.0049 | |
|0 0.0056 ; 0.0833 | O o | 0.0056 | |
TABLE 17: for medium values

Upper values: Exact theory; Lower values: .Linear p%ston thecry.

Aerodynamic Generalised Forces er

of L/, Large values of n, and very high Mach numbers

for a range of frequency parameters.,

L/7 = 2.0,

n =9,

m= 2,

r =1

L



126.

Qii Qil Qiz Qiz ng ng k

-0.0294 | 0.0141 | 0.1490 | -0.0014 0.00072 | 0.0091

0 0.01 0.1333 0 0 0.01
-0.0162 | 0.0090 | 0.1202 | -0.0010 0.00538 | 0.0075

0 0.0083 | 0.1112 0 0 0.0083 |0.2
=0.0095 | 0.0075 | 0.1004 | -0.00079 | 0.0072 0.0063

0 1 0.0071 | 0.0952 0 - 0 0.0071
-0.0056 | 0.0064 | 0.0860 | ~0.00064 | 0.0080 0.0055

0 0.0063 | 0.0833 0 0 0.0063
~0.0282 | 0.0277 10.1487 | -0.0034 0.00049 | 0.0227

0 0.025 0.1333 0 0 0.0250
~0.0160 | 0.0224 | 0.1200 | =0.0025 0.0052 0.0187

0 0.0209 | 0.1112 0 0 1 0.0209 0.5
-0.0094 ; 0.0187 | 0.1003 | -0.0019 0.0071 0.0159 |

0 0.0179 | 0.0952 0 0 0.0179
-0.0055 | 0.0160 |0.0859 | -0.0016 0.0079 0.0138

0 0.0157 | 0.0833 0 0 0.0157
-0.0273 | 0.0554 |0.1478 | —=0.0067 1-0.00035 |0.0456

0 0.05 0.1333 0 0 0.0500
~0.0154 | 0.0447 [0.1194 | -0.0049 0.0045 0.0375

0 0.0417 |0.1112 0 0 0.0417 |10
-0.0089 | 0.0374 |0.0998 | -0.0038 0.0065 0.0319

0 0.0357 | 0.0952 0 0 0.0357
-0.0051 | 0.0321 | 0.,0855 | -0.0031 0.0074 0.0276

0 0.0313 | 0.0833 0 0 0.0313
~0.0259 | 0.0828 |0.1464 | -0.0097 |-0.0016 0.0689

0 0.075 | 0.1333 0 0 i 0.0750
-0.0144 | 0.0670 |0.1184 | -0.0071 0.0035 10,0567

0 0.0626 |0.1112 0 0 0.0626 [1.5
~-0.0082 | 0.0560 {0.0990 | ~0.0055 0.0057  {0.0481 '

0 0.0536 10.0952 0 0 10,0536
~-0.0045 | 0.0480 |0.0849 | ~0.0044 0.0067  10.0417

0 0.0470 |0.0833 0 0 0.0470 |

TABLE 17:Continued.
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R

I

R

R

I

" Q1 Q9 Q2 Q2 NPy o> k
.5 | -0.1405 |0.0002 }|0.00135 | 0.00784 | -0.5700 | 0.00066
0 0.0333 | 0.8889 0 0 0.0333
.0 | ©0.1414 | 0.0003 |0.006246 | 0.00806 | -0.5852 | 0.00093
0 0.0250 | 0.6667 o 0 0.0250 0.1
.0 | -0.1430 | 0.0006 |0.00015 | 0.00952 | =0.6581 | 0.00473
0 0.0167 | 0.4444 0 0 0.0167
.0 | =-0.1502 | 0.0011 |0.01935 | 0.01321 | =0.7188 | 0.0216
0 0.0125 |0.3333 0 0 0.0125
.5 | -0.1417 | 0.0005 |0.00138 | 0.0235 | -0.5714 | 0.00197
0 0.1000 | 0.8889 0 0 0.1000
.0 | -0.1427 | 0.0009 |0.00242 | 0.0242 | -0.5870 | 0.00299
0 0.0750 | 0.6667 0 0 0.0750 | 0.3
0 | -0.1444 | 0.0017 |0.00009 | 0.0286 | -0.6615 | 0.0144
0 0.0500 |0.4444 0 0 0.0500
.0 | -0.1521 | 0.0034 |0.0212 | 0.0396 | -0.7180 | 0.0648
0 0.038 = | 0.3333 0 0 0.0375
.0 | -0.1437 | 0.0012 |0.0024 | 0.0323 | -0.5886 | 0.0040 |
0 0.1000 |0.6667 | 0 0 0.1000 !
.0 | -0.1538 | 0.0046 |0.0229 | 0.0527 | -0.7174 | 0.0863
0 0.0500 | 0.3333 0 0 0.0500 0.4
.0 | -0.1594 | 0.0240 | 0.1603 | 0.0213 | -0.3527 | 0.0703
0 0.0333 §0.2222 | O 0 0.0333
.0 | -0.1163 | 0.0266 . 0.1785 , 0.0038 | -0.1423  0.0386
| 0 0.0250 10,1666 | O 0 0.0250 :
.0 | -0.1451 | 0.0015 |0.0024 | 0.0404 | -0.5906 | 0.0051 :
0 |0.1250 |0.6667 | 0 0 | 0.1250 :
.0 | -0.1560 | 0.0058 |0.0250 | 0.0657  -0.7166 _ 0.0179 :
0 | 0.0625 10.3333 | 0 0 . 0.0625 | 0.5
.0 ~0.1603 | 0.0300 | 0.1617 | 0.0265 | -0.3506 @ 0.0877 }
_ 0 0.0417 |0.2222 | 0 0 0.0417 E
.0 | -0.1164 | 0.0333 [0.1789 | 0.0047 | -0.1415 : 0.0482 :
0 0.0313 ;0.1666 | O .0 © 0.0313 |
TABLE 13: large values

Upper values:

Aerodynamic Generalised Forces er for
of L/R, n, Medium to High Mach Numbers
B/ = 4.0,
Exact Theory;

of k.

n =9,

Lower values:

m = 2,

for a range

r = 1

Linear piston theéry.
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M Qy, Q§1 Qy, Qiz ng 2, k
.0 | -0.1468 | 0.0018 | 0.0023 | 0.0485 -0.5931 | 0.0061
0 0.1500 | 0.6667 0 0 0.1500
.0 | -0.1586 | 0.0072 | 0.0275 0.0787 -0.7156 | 0.1295
0 0.0750 | 0.3333 0 0 0.0750 0.6
.0 | -0.1614 | 0.0362 | 0.1635 0.0316 -0.3482 | 0.1050
0 0.0500 | 0.2222 0 0 0.0500
.0 | -0.1166 | 0.0400 | 0.1794 | 0.0056 -0.1406 | 0.0577
0 0.0375 | 0.1666 0 0 0.0375
.0 | -0.1511 | 0.0024 | 0.0022 | 0.0648 ~0.5993 | 0.0084
0 0.2000 | 0.6667 0 0 0.2000
.0 | -0.1654 | 0.0102 | 0.0341 | 0.1044 | -0.7130 | 0.1728
. 0 0.1000 | 0.3333 0 0 0.1000 0.8
.0 | -0.1641 | 0.0487 | 0.1678 | 0.0415 | -0.3420 | 0.1391
0 0.0667 | 0.2222 0 0 0.0667
.0 | -0.1171 | 0.0535 | 0.1806 0.0072 ~0.1382 | 0.0765
0 0.0500 | 0.1666 0 0 0.0500
.5 | -0.1553 | 0.0016 | 0.0017 0.0785 | -0.5870 | 0.0065
0 0.3333 | 0.8889 0 0 0.3333
.0 | -0.1565 | 0.0029 | 0.0021 | 0.0812 ~0.6073 | 0.0107
0 0.2500 | 0.6667 0 0 0.2500 1.0
.0 | ~0.1603 | 0.0056 |-0.00081 | 0.0981 .{ -0.6993 | 0.0555
0 0.1667 | 0.4444 0 0 0.1667
.0 ! —0.1740 | 0.0138 | 0.0425 | 0.1297 -0.7096 | 0.2160
0 0.1250 | 0.3333 0 0 0.1250
.5 | -0.1637 | 0.0020 | 0.0018 ' 0.0982 -0.5968 ' 0.0081
0 0.4167 | 0.8889 0 0 0.4167
.0 |'=0.1653 | 0.0036 | 0.0021 | 0.1019 -0.6197 ° 0.0139
0 0.3125 | 0.6667 | 0 0 0.3125_ ! 1.25
.0 . -0.1703 | 0.0070 ; 0.00034 | 0.1246 -0.7217 | 0.0751
‘ 0 0.2083 | 0.4444 0 0 0.2083
.0 -0.1873 | 0.0193 ! 0.0555 | 0.1605 | -0.7042 : 0.2701
0 0.1563 i 0.3333 0 0 0.1563

TABLE 4% Continued.
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M Qii Qil Q?z a3, a3, a, k
.0 | -0.1233 | 0.00006 | -0.0031 | 0.0178 | -0.5148 | 0.0010
0 0.0417 | 0.6667 0 0 0.0417 | 0.25
.0 | —0.1336 | 0.0023 | 0.0151 | 0.0265 | -0.6147 | 0.0369
o 0 0.0312 | 0.3333 0 0 0.0312
.0 | -0.1399 | 0.0108 | 0.1135 | 0.0154 | -0.3831 |0.0396,
0 | 0.0208 | 0.2222 0 0 0.0208
.0 | -0.1129 | 0.0135 | 0.1444 | 0.0056 | —-0.1972 |0.0253
0 0.0156 | 0.1667 0 0 0.0156
.0 | -0.1311 | 0.00017 | =0.0033 | 0.0571 | -0.5258 | 0.0035
R 0.2000 | 0.6667 0 0 0.2000
.0 | -0.1447 | 0.0081 | 0.0236 | 0.0843 | -0.6160 |0.1189
- 0 0.1000 | 0.3333 0 0 0.1000 | 0.8
.0 | —0.1463 | 0.0354 | 0.1220 | 0.0480 | -0.3732 |0,1254
0 0.0667 | 0.2222 0 0 0.0637
.0 | -0.1153 | 0.0437 | 0.1481 | 0.0175 | -0.1918 | 0.0802
0 0.0500 | 0.1667 0 0 0.0500 |
.0 | =0.1360 | 0.0002 | -0.0034 | 0.0716 | -0.5326 | 0.0046 | :
0 0.2500 | 0.6667 0 0 0.2500
.0 | -0.1516 | 0.0107 | 0.0289 | 0.1050 | -0.6168  0.1491
I 0.1250 | 0.3333 0 0 L 0.1250 . 1.0
.0 -0.1503 | 0.0449 | 0.1272 | 0.0591 | =0.3671 | 0.1557
0 0.0833 | 0.2222 0 0 ' 0.0833
.0 -0.1167 | 0.0586 | 0.1503 | 0.0214 -0.1884 0.0996 !
0 0.0625 | 0.1667 0 o !0.0625 g
TABLE .9:

Aerodynamic Generalised Forces er for very large

values of L/R and Medium values of n, Medium to

High Mach Numbers for a range of k.

L/R =

Lower Values:

10.0,

Upper values:

n = 4,

m= 2,

Exact theory.

r =1

Linear Piston Theory.



I

R

R

I

N

M Q4 Q4 Q5 Q15 25 oYY k
.5 | -0.0825 -0.0001 -0.00079 | 0.0220 | -0.3264 | -0.00036
0 0.1667 . 0.8889 0 0 0.1667
.0 | -0.0830 -0.00006 | -0.0012 | 0.0224 | -0.3317 | -0.00005
0 0.1250 0.6667 0 0 0.1250 0.5
.0 | -0.0842 0.00019 | -0.0017 | 0.0236 | -0.3469 0.0014
0 0.0833 0.4444 0 o 0.0833
.0 | ~0.0860 0.00081 | -0.0012 |0.0253 | ~0.3689 0.0047
0 0.0625 0.3333 0 0 0.0625
.5 | -0.0887 -0.00022 | -0.0009 |0.0440 | -0.3330 | -0.00073
0 0.3333 0.8889 0 0 0.3333
.0 | -0.0893 -0.00013 | -0.0013 | 0.0449 | -0.3889 | -0.000098
0 0.2500 0.6667 0 0 0.2500 1.0
.0 | -0.0909 0.00036 | -0.0018. |0.0475 | -0.3561 0.0030
, 0 0.1667 0.4444 0 0 0.1667
.0 | ~0.0932 0.0016 ~0.0016 [0.0512 | -0.3828 0.0104
0 0.1250 0.3333 0 0 0.1250 .
.5 | ~0.0991 ~0.00037 | -0.0011 |0.0661 | -0.3440 | -0.0011
0 0.5000 0.8889 0 0 0.5000
.0 | =0.09990 | -0.00023 | -0.0015 |0.0674 | -0.3509 | -0.00015
0 0.3750 0.6667 0 0 0.3750 135
.0 | =0.1021 0.0005 ~-0.0021 |0.0716 | -0.3715 0.0049
0 0.2500 0.4444 0 0 0.2500
.0 | -0.1052 0.0023 ~-0.0022 |0.0782 | ~0.4060 0.0184
‘ 0 0.1875 0.3333 0 0 0.1875
.5 | =0.1135 -0.00056 | -0.0013 ]0.0882 | -0.3595 | -0.0015
| o 0.6667 0.8889 0 0 0.6667 | :
.0 | =0.1147 -0.00037 | =0.0017 |0.0901 ! ~0.3677 | -0.0002 i
0 0.5000 0.6667 0 0 0.5000 2.0
,0 | =0.1179 0.0006 ~0.0024 |0.0963 | -0.3933 0.0072
| 0 0.3333 0.4444 0 0 0.3333
1.0 | -0.1224 0.0031 -0.0027 |0.1068 | -0.4385 0.0301
0 0.2500 0.3333 0 0 0.2500
TABLE 2™

Aerodynamic Generalised Forces er
Values of L/:.

Large Values of n.

LA

10.0,

for Very Large

=6, m=2, r

=1

Upper Values: 'Exact Thecory, Lower Values: Linear Piston Theory.
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I

R

I

M Q1 Q4 Q5 P Y Ry k
.5 | ~0.1322 | -0.00081 | -0.0016 | 0.1104 | -0.3794 | -0.0020

0 0.8333 0.8889 0 0 0.8333
“0 |750.1339 | -0.00056 | -0.0020 | 0.2130 | -0.3894 | -0.00024

0 0.6250 0.6667 o 0 0.6250 2.5
PR 0.00070 | <0.0027 | 0.1216 | =0.4215 | 0.0099

0 0.4167 0.4444 0 0 0.4167
.0 | -0.1451 0.0038 | -0.0026 | 0.1376 | -0.4801 | 0.0470

0 0.3125 0.3333 0 0 0.3125
.5 | <0.1551 | -0.0011 | -0.0019 | 0.1328 | -0.4038 | -0.0025

0 1.000 0.8889 0 0 1.000
.0 | <0.1573 | -0.00082 | -0.0024 0.1362 |-0.4161 | -0.00028

0 0.7500 0.6667 0 0 0.7500 3.0
.0 | —0.1639 0.0008 | -0.0029 |0.1477. | <0.4566 | 0.0134

0 0.5000 0.4444 0 0 0.5000
.0 1 Z0.1736 0.0048 | -0.0012 |0.1713 | -0.5302 | 0.0709 |

0 0.3750 0.3333 0 0 0.3750 |
.5 | -0.1821 | -0.0015 | -0.0024 | 0.1552 |-0.4326 | -0.0030

0 1.1667 0.8889 0 0 1.1667
.0 | -0.1851 | -0.0011 | -0.0029 |0.1596 |-0.4479 | -0.00031

0 0.8750 0.6667 0 0 0.8750 3.5
.0 | <0.1943 0.0009 | -0.0032 |0.4748 1-0.4991 | 0.0177

0 0.5833 0.4444 0 0 0.5833
.0 | -0.2085 0.0063 0.0022 |0.2082 |-0.5877 | 0.1037

0 0.4375 0.3333 0 0 0.4375 |
.5 | =0.2133 _ -0.0020 | -0.0029 !0.1778 |-0.4661 | -0.0037

0 1.3333 0.8889 0 0. | 1.3333
.0 | -0.2174 | -0.0016 | -0.0034 |0.1835 |-0.4848 | -0.0003 i

0 1.0000 0.6667 0 0 1.0000 . 4.0
0 | <0.2300 0.0011 | -0.0033 |0.2033 |-0.54%4 | 0.0234

0 0.6667 0.4444 0 0 0.6667 |
.0 | —0.2504 0.0087 0.0090 10.2486 ;-0.6512 | 0.1473

0 0.5000 0.3333 0 0 0.5000

TABLE 20: Continued.




Intermediate Results for Illustration of U-g Method

TABLE 21:
Linear Piston Theory - 2 to 10 Axial Modes
o:of 4ka £eU 2.00
M, bodes | 80100 | m g M g
R ' p p p P

2 |0.4949 |1.6656| -0.0529 | 1.6249 | -0.0474

3 10.6765 [1.947/3 | 0.0172| 1.9000 | 0.0213

4 10.5755 |1.7962| -0.0049 | 1.7524 | -0.0001

1.7 5 {0.5828 |1.8075| 0.0052]| 1.7634 | 0.0099. L/R =

6 |0.5810 |1.8045| 0.0020] 1.7607 1 0.0067 Ag
7 ]10.5817 |1.8059| 0.0032} 1.7618 § 0.0079 M,
8 |0.5815 |1.8055] 0.0026] 1.7615 | 0.0073 M
9 |0.5817 |1.8057} 0.0029) 1.7617 | 0.0076 k
10 |0.5816 |1.8056] 0.0028{ 1.7616 | 0.0075 Ip
2 10.4949 |1.6656{ -0.0585} 1.6249 } -0.0526

3 |0.6866 11.9619} -0.0472| 1.9140 {-0.0429

4 10.5849 }1.8107 -0.0121] 1.7665 | -0.0062

1.8 5 |0.5945 |1.8255%f 0.0005{ 1.7809 | 0.0053

6 | 9.5920 {1.8217] ~-0.0033{ 1.7773 | 0.0016

7 |0.5930 {1.8232] -0.0019| 1.7787 | 0.0030

8 |0.5926 |1.8227} -0.0025{ 1.7782 | 0.0024

9 [0.5928 |1.8229]| -0.0022| 1.7785 | 0.0027
10 | 0.5928 |1.8228| -0.0024} 1.7784 | 0.0025

" assumed

10.0, h/R = 0.002, n = 6

Real part of the eigenvalue
predicte

Mach number
assumed frequency parémeter
predicted inherent damping

corresponding to (Ma, ka)

“CEl



"TABLE 22: Critical Mach Numbers for a Long (Unstiffened) Shell

NUMBER oF AXTAL MODES
h/R
2 3 4 5 6 7 8 9 10
LINEAR 0.002 1.4 [1.73| 1.67 | 1.82}§ 1.8 1.8 1.8 1.8 1.8
PISTON
THEORY 0.004 © 2.82)]3.48] 3.60 ] 3.7/5 3./0| 3.75] 3.75] 3.75{ 3.75
EXACT
AERODY-
NAMIC 0.004 3.1013.12| 3.13 | 3.2 3.2 3.2 3.2 3.2 3.2
THEQRY
L/R = 10.0, n = 6; Convergence of the Galerkin's Solution

1

*gel



TABLE 23:

. {a) Freaquency Factors for an Unstiffened Shell

m A_ % 10° No.of AF°103
TR TS axial modes FLUTTER
1 0.4412 .
2 0.5486 2 0.4949
3 0.9812 3 V.5748
4 2.0776 4 0.5849
5 4,2372 5 0.5945
6 7.8647 s 0.5920
7 13.3186 7 0.5930
8 20.8728 8 0.5926
9 30.6832 9 0.5928
10 T 42.8315 10 0.5928
(b) Components of the Non-Dimensional Eigenvector
Corresponding to the Eigenvalue which Leads to the
Flutter Solution with 10 Axial Modes |
Eigenvector Components
m Real Part Imaginary Part
1 425,77 314.5
2 617.1 -7.881
3 317.9 -85.32
4 90.5 -15.67
5 29.2 -3.299
6 11.0 -0.517
7 5.3 -0.364
8 2.7 -0.034
9 1.6 -0.093
10 1.0 0.000
L/R = 10U, m = 6 h/R = 0.002
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TABLE Critical Mach Numhers Using Exact Theory
and Linear Piston Theory Using a Two-—
mode Solution For an Unstiffened Shell

M M
CRIT CRIT
L/R h/R n (EXACT (LINEAR
THEORY) PISTON THEOQRY)
2.0 0.u02 9 12.2 12.13
4.0 0.002 9 4.2 3.29
10.0 0.002 6 2.7 1.4
10.0 0.004 6 3.10 2.82

135.
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No. of g g
Axial Modes Exact - Linear
Theory Piston
Theory.
2 0.005333 -0.0168
3 0.032779 ~0.0239
4 0.040811 -0.,0002
5 0.040443 0.0049
6 0.040913 0.0032
’ 7 0.0408%7 | 0.0038
8 0.040967 | 0.0035
9 0.040965 - 0.0037
10 0.040983 0.0036

TABLE 25: Damping Inherent in the System
for a Particular Shell Using
Exact Theory and Linear Piston
Theory.

L/R = 10.0, h/R = 0.004, n =6, M= 4.0,

k = 2.0 '



TABLE 26: Critical Mach Numheérs for Unstiffened and'Internally Stringer—Stiffened

Cvlindrical Shells:

Binary Analysis r

2,

s=_13

Linear Piston Theory

UNS TTFPENED STRINGERS — INTERNAL
hg/n 0 1.0 3.0 5.0 { s.0 10.0
L/R .
h/R Rerit Mcrlt Berat Mcrit ncriFMcrit lerit Mcrit ncritMcrit Berit Mcrit
0.002 | 16 3.352 16 2.374 13 {5.064 |11 9.103 Y |16.13 8 21.1
0.004 | 14 14.11 13 2.874 10 [24.58 8 44,99 7 |77.59 7 97.7
2.0 0V.006 |12 |35.64 | 11 |24.79 63.62 | 7 |115.5) 6 {193.7 6 | 236.8
0.008 | 11 69.35 10 45 .09 125.8 6 227.5 S B/7.4 5 457.8
0.010 | 10 116.2 9 . 80.74 212.7 ) 3.7 5 p3.8 5 777.0
U.012 9 178.9 8 124.6 329.5 5 596.8 Y P64.8 5 1234.
v.002 Y11 1.984 11 1.4671 10 (2.018 9 3.194 8 p.417 7 6.944
¢.204 110 5.314 10 3.892 8 8.345 7 14.66 6 p4.29 6 28.8¢
4.0 0.006 |10 12.01 9 8.664 7 P0.66 1) 36.37 5 £7.18 5 62.33
U.008 9 22.54 8 16.38 7 HO.31 6 70.36 5 ¥8B.6u 5 105.4
v.010 | 8 137.47 | 8 |z6.78 | 6 b5.66 | 5 [112.0 | 5 bs3.9| 5 | 163.2
0.012 | 8 |s57.34 7 lav.e7 6 [01.6 | 5 J167.0} 4 Lk21.12 4 | 234.4

“LETL



TABLE 26 continued
UNSTIFFENED STRINGERS - INTERNAL
, h¢h 0 1.0 3.0 5.0 8.0 10.0
L/B h/R ncrit Mcrit Nerit] crit ncrit Mc:ritncrit Mcrit ncrit Mcrit Nerit Mcrit
0.002 8 1.637 8 1.263 8 1.448] 8 1.9271 7 2.9951| 7 3.809
0.004 8 3.700 ¢ . 8 2.759 7 4.668] b6 7.998] 6 13.04 | 5 15.22
0.006 8 7.003 -8 5.182 7 11.21f 6 19.551 5 29.02 | S 31.58
6.0 6.008 8 12.34 7 9.142 6 20.931 5 35.95]| 5 51.74 | S 53.23
g 0.010 7 19.66 7 14.45 5 35.65) 5 59.151 4 75.73}1 4 74.19
0.012 7 29.72 7 22.03 5 52.20] 4 8g8.471 4 101.91 4 99.40
0.002 6 1.3587 6 1.084 6 1.138] 6 1.2771 6 1.654 | 6 1.983
0.004 6 2.822 6 2.125 6 2.644| 5 3.899} 5 5.889 | 5 6.998
0.006 £ 4,572 6 3.418 6 5.529] 5 8.7741} 4 13.311 4 13.95
0.0 . 0.008 6 6.881 6 5.142 5 9.634] 4 16.87( 4 22.02 1 4 T 21.76
0.010 6 10.04 &6 7.534 4 15.89f 4 26.04 )] 4 32.61 1] 4 30.62
0.012 5 14.36 6 10.85 4 24.64] 4 38.091] 4 44.72 1 4 40.60
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TABLE 27: Critical Mach Numbers: for Unstiffened and Externally Stringer-Stiffened

Cylindrical Shells: Binary Analysis, r=2, s=1, Linear Piston Theory

UNSTIFFENED STRINGERS - EXTERNAL

Rs/h 0 1.0 3.0 5.0 8.0 10.0

L/F. n__ .0 M__. n_ .. 1M . Mo o M M M.
nR/R crif] ‘crit criftd ‘crit crit| crifcrit | crit] crit crit crit
0.002 16 3.352 18 3.427 8.249 12 15.28 27.75 | 10 36.47
0.004 14 14.11 15 16.19 43,24 9 19.83 8 }133.0 7 175.5

2.0 0.006 12 35.64 13 42.67 114,71 8 207.7 7 {348.5 6 427.5
0.008 11 69.35 11 85.28 228.31 7 a4u6.2 6 1657.2 6 806.1
0.010 | 10 | 116.2 | 10 [ 145.9 388.4° 6 |677.6| 5 [1074. 5 1327.
v.012 9 117.9 10 226.1 595.2‘ 5 102%.¢ 5 1613. 4 2021.
0.u02 11 1.984 11 1.717 2.699'10 4.546 ¥ |8.090 8 10.53
v.004 10 5.347 11 5.245 Y 12.48F 8 22.86 T 139.71 7 49,30
0.006 10 12.01 10 12.56 =] 32.58] 7 59.55 6 j98.U03 6 115.0

4.v 0.008 9 22.54 9 24.60 7 65.19] 6 117.3 6 j182.0 6 207.1
0.010 8 37,47 ] 41.72 7 110.4 6 195.9 6 1293.3 6 328.0
0.u12 8 57.34 8 64.40 6 172.1] 6 300.9 5 1426.0 ) 481.0

.6€T—



TABLE 27 continued

UNSTIFFENED

STRINGERS - EXTERNAL
. hg/h 0 1.0 3.0 5.0 8.0 10.0

L/R T R E T T P U T (T T T M.
h/R crit| ‘crit crit ) crit{ crit} crit | crit| ‘crit] crit| crit| crit crit
0.002 8 [1.637 | 9 1.386| v |1.740| 8 |2.437] 8 [4.100] 7 5.226
0.004 8 13.700 [ 9 3.342| 8 |6.z84| 7 j11.17f 6 |19.21) 6 23.42
0.UU6 8 {7.003 | 9 6.835! 7 |15.87| 6 ]28.80| 6 [47.22| 6 54.50
6.0 0.u08 8 [12.34 | 8 12.34{ 7 |31.69| 6 ls6.ssf 5 |85.22| S 94.20
0.010 7 19.66. | -8 20.63 6 53.08 5 94.02 5 133.7 5 144 .0
v.012 7 |29.72 | 7 31.36| 6 lsz.46) 5 jra1.0f 5 |191.5| 5 205.0
0.002 6 11.397 | 6 1.140) 6 [1.256| & l1.470} 6 |u1.974| 6 2.390
0.U04 6 12.822 | 6 2.344| 6 3.1275| 6 j4a.858{ 5 |7.916| s 9.469
10.0 U.OO6_ 6 4,572 6 3.958 6 6.868 5 11.82 5 18. 45 5 21.18
1 0.u08 6 |6.881 | 6 6.196| 5 |13.22| 5 Je2.es| 4 |34.35| S 36.53
0.010 [3) 10,04 6 9.303 5 21.55 4 38.54 4 51.88 4 54,17
0.U12 s l14.36 | 6 13.52] 5 [37.03] 4 |s6.60| 4 |[72.49]| 4 74,53

“ovl
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TABLE 28: Critical Mach Numbers (a) Unstiffened
(h/R = 0.004), (b) Stiffened with 10 Internal
Stringers (h/R = 0,002)

NUMBER OF . MeRIT
AXIAL MODES
(b). (a)
2 1.98 2.82
3 2.75 3,48
4 3.00 3.60
5 3.60 3.75
6 3.65 3.70
7 3.85 3.75
8 3.80 | 3.75
9 , 3.90 3.75
10 3.80 3.75
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FIG. 1la CO-ORDINATE SYSTEM FOR. THE

CIRCULAR CYLINDRICAL SHELL. -
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