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ABSTRACT 

The problem of vibration and flutter analysis of 

~imply-supported unstiffened and orthogonally stiffened 

circular cylindrical shells which are typical of missile 

bodies has been developed and programmed for digital 

computer solution. 

An extensive review of the existing literature cover­

ing various aspects of the shell flutter problem is given 

with a critical appraisal of the assumptions made, results 

'obtained, etc. A comprehensive chronological bibliography 

is also included. 

The analysis and the programme which have been developed 

are capable of handling shells of arbitrary geometrical, 

modal and flow parameters. 

In the case of stiffened shells, the stiffener 

effects may be treated as 'averaged' ('smeared') or 

'discrete' and in each case the influence of eccentricity, 

inplane and rotary inertias may be studied. 

The aerodynamic generalis'ed forces may be calculated 

using the linear piston theory, the linear piston theory 

with a correction for curvature, and the exact potential 

flow solution. 

By combining the invacuo-natural vibration analysis 

and the aerodynamic generalised forces the cylindrical 

shell flutter problem may be solved and the flutter bound­

aries may be obtained in each of the above cases. 

The procedures have been illustrated with typical 

examples in each of the above cases and the results dis­

cussed. A few shells have been tested using an experimental 

vibration rig designed and built for the purpose and com­

pared with the theoretically predicted invacuo-natural 

frequencies and mode shapes. 
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CHAPTER I 

FLUTTER OF CIRCULAR CYLINDRICAL SHELLS - A REVIEW 

Summary 

A comprehensive review is given of the aerodynamic and 

structural assumptions made in the existing cylindrical 

shell flutter analyses. A review is also given of such 

analyses for shells of infinite and finite lengths. A 

critical discussion of analytical and experimental results is 

included and a comprehensive chronological bibliography is 

appended. 

The intention is to assess the state of the art with 

regard to shell flutter analyses and indicate the areas 

where future investigations may usefully be made to add 

to the existing knowledge. 

1.1 INTRODUCTION 

Supersonic flutter of thin circular cylindrical shells 

is one of the important problems in the structural design 

of flight vehicles such as rockets and missiles. 

The term "Panel Flutter" refers to the flutter of a 

thin plate, shell or membrane When, generally, one of the 

surfaces is exposed to an airstream and the other to still 

air. The, panel then experiences elastic, inertia and aero­

dynamic forces which can lead to the dynamic instability 

of the structure. Extraneous disturbances such as aero­

dynamic noise, flow turbulence or ,oscillating shocks may 

also cause instability but these are not regarded as panel 

~lutter and will net be considered here. The smallest 

thickness of the panel (shell) required to prevent instab­

ility at a given airstream velocity defines the "Flutter 

Boundary". For a given thickness, the minimum flight speed 

at which instability can occur is defined as the "Flutter 

Speed". 

On practical aerospace structures the most vulnerable 

flutter condition often occurs near a point where the highest 

dynamic pressure is encountered and usually this is also 



the point where severe structural loads are imposed. In 

general, the structural non-linearities tend to limit the 

flutter amplitudes and therefore cause the modes of 

. structural failure to be related to fatigue rather than 

explosive fracture of the panel. However, it may be quite 

dangerous to regard panel flutter only as a fatigue 

problem. The existence of the flutter phenomenon has been 

demonstrated in the laboratories and in flight and there 

2. 

is considerable literature available to study the various 

aspects of the problem. Unfortunately there is no general 

reliable theoretical formula nor a computer programme of 

guaranteed accuracy to design against panel flutter for all 

conditions. The physical features of the problem are 

Simple, the observed oscillations are usually mild but the 

experimental and theoretical difficulties are enormous. 

The geometry and the co-ordinate system for the 

cylindrical shell- are illustrated in Fig. Ha). 



------- - - - - --

3. 

1.2 STRUCTURAL ASSUHPT10NS 

The first step in the formulation of the flutter problem 

is to determine the equations of motion which will adequately 

describe the invacuo natural vibration characteristics of the 

complete cylinder. A large number of formulations are avail­

able in the literature for the vibration analysis of cylindrical 

shells. Starting from Love's first approximation, many 

attempts have been made to refine or simplify the equilibrium 

equations to handle different situations. 

If the components of displacements of the middle surface 

of the shell are u, v, \~ in the axial, circumferential and 

radial (positive outwards) directions respectively, all the 

various formulations may be written in the general form which 

expresses the quantities u,v,w in terms of the external load­

ings of the shell (Ref. 69). 

A 
uv 

A vu 

A 
vv 

A vw 

A vw 

u 

v 

w 

X + N yy 

=(1~~2 ). Y - N xx 

z + N xx 

2 1. ~w) ( Cl v 
()xi}y R Clx 

a 2v 

~x2 
iw 1 d v Cl w N ( -- + -- + R ~ y ax2 yy dy2 

(1.1) 

where (u,v,w) are implicit functions of x,y,t; h is the shell 

thickness, R is the radius, E is the Young's modulus and V is 

the Poisson's ratio. N ,N are constant mid-plane stress xx yy 
resultants in the shell; the shear stress resultant Nxy has been 

neglected but may easily be included, e.g. Timoshenko (Ref. A17). 

The terms X Y,Z represent the external loadings in units of 

pressure and include all aerodynamic and inertia effects. The 

operators A .. may be ~Jritten as 
~J 

where cl. = 

common to 

A.. = B.. + cl. C 
~J ~J ij 

(1.2) 

h 2 
~~2 is a small quantity. The operators B .. are 
1?R ~J 
all the usual shell formulations but different 

formulations do occ~r in the Cij • 

) 



4. 

To illustrate the form of equation (r.1) the expressions 

given below are based on. the work of Novozhilov (Ref. A18) 

and Goldenveizer. (Ref. A..9) and are comparable to the set 

used for linear panel flutter analyses by Voss (Ref. .35) and 

Johns (Ref. 32) 

A uu 

A vv 

A wv 

A ww 

a2 
= --2 + 

dX 

1-'\1 i 
-2- ()y2 A = A vu uv 

1-"11 
= -2-

= A vw 

()2 
-- + 
dy2 

. { 2 
0<. 2(1-'\1) ~ + 

()x 

1 d =---+O(R R i)y {(2-V) 

(r .• 3 ) 

Edge support conditions can have a pronounced effect on 

the flutter problem and, in the case of complex structural 

configurations analytical prediction procedures for the invacuo 

modes and frequencies can be quite inadequate; recourse should· 

be had to measured values vJhere possible. 

The role of structural damping has been examined extensively 

and Ref. 133 provides a useful summary of the position. It 

is concluded that structural damping is usually stabilising 

for damping terms containing no spatial derivatives. Hence 

there is a distinct advantage in applying dissipative (damping) 

mechanisms at the panel boundaries. For finite surfaces having 

damping terms with spatial derivatives it will be extremely 

likely that a combination of parameters may be chosen to produce 

a destabilising effect. Therefore, for a cylindrical shell, 

structural damping may be stabilising or destabilising and it 

is recommended that theoretical studies should investigate this 

as a variable. There is no trend in analytical studies towards 

the sole use of either viscous or hysteric damping and both 

have been extensively used. For both types of damping the 

effect is proportionally greatest at higher altitudes when 

aerodynamic damping is least. 



5. 

It may be concluded that for the flutter analysis of 

isotropic circular cylindrical shells the more exact equations 

be used without simplification, by including explicitly the 

effects of structural damping •. For non-linear analysis 

alternative formulations are usually used. 



6. 

1.3 AERODYNAMIC ASSUI"JPTIONS 

I·3.1General 

The determination of aerodynamic forces on an oscillating 

cylindrical shell is a prerequisite for the study of its aero­

elastic stability. Considerable efforts have been expended in 

recent years to develop aerodynamic theories for such shells. 

Basically, the problem is to determine the aerodynamic 

forces on an oscillating cylindrical shell (of infinite or finite 

length) I'lith the assumption of inviscid potential flow parallel 

to the generators of the shell. Mathematically, a solution is 

sought to the linearised, unsteady partial differential equation 
~20 __ 1_ { (')20 "<120 2 ·i0 } 

a 2
0 

at2 + 2U dXdt + U ~x2 = 0 (1.4) 

wi th the appropriate boundary conditions depending on I'lhether 

the shell is of infinite or finite length. In equation (1.4) 

,0 is the velocity potential, U is the freestream velocity, a o is 

the acoustic veloci ty and ,/ is the hlo-dimensional Laplacian 

operator 

'12 + (1.5 ) 

The aerodynamic pressure pon the cylindrical shell is deter­

mined from the well-known Bernoulli equation 

p = - U ...£..[ } 
~x 

(I .6 l 

L3.2 Cylindrical Shells of Infinite Length 

For a shell of infinite length, Leonard and Hedgepeth (Ref. 

8) have determined the air forces by reducing the unsteady flow 

problem to a steady flOl'1 problem by means of a moving co-ordinate 

system and have obtained results for both subsonic and super­

sonic flows. Miles (Ref. 13) has made further simplifications 

in the aerodynamic theory using a plane wave approximation. 

Dowell (Ref. 87) has carried out a flutter analysis using an 

exact solution of equation (1.4) without any approximation. 

Bolotin (Ref. 74) formulated the problem using the full aero­

dynamic theory but carried out the stability analy.sis 



7. 
by approximating the aerodynamic expressions. Dzygadlo and 

Kaliski (Ref. 36) have generalised the analysis of Miles 

to stiffened orthotropic shells. Most of these papers have 

used travelling wave solutions. 

Stepanov (Ref. 14) has 'employed "piston theory" for 

the aerodynamic forces but this is inadequate for the flutter 

analysis of infinitely long cylindrical shells with travel­

ling wave motions. This has been discussed by Miles 

(Ref. 3~(a». Krumhaar (Ref. 68) investigated the applic­

ability of linear piston theory to infinitely long shells 

by applying the well known asymptotic expansions for cylinder 

functions to .the solution of Leonard & Hedgepeth (Re£' 5) and 

suggested a first-order improvement to linear piston theory 

involving the addition of a curvature term in Cw/R); thus 

p ; a '? o 0 [ 
~w aowJ 

aoM ~wx + 
a at - 2R 

No numerical results have been presented to compare the 

efficacy of the suggested improvement. However the terms 

in the asymptotic expansion process show that at least in 

the following cases 

(i) \M1\ .c:. 1, 1M2' < 1; (ii)\M1\ < 1, IM2\"> 1, 

M + (wi th C,J as the 

circular frequency, and V as the wave number) linear piston o . 
theory (i.e. with the curvature term in equation (l.7) omitted) 

cannot be considered as a first order approximation for the 

determination of the aerodynamic pressure. 

L~3 Cylindrical Shells of Finit~ Lenqth 

Steady or quasisteady theories in various forms have 

been used with success in recent years to predict the aero­

dynamic pressures on oscillating cylindrical shells of finite 

length; the forms more commonly used are the following: 
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(1.9 ) 

(I.l0) 

(I ;l1) 

The expression (I.8) is the Ackeret result, and (I.9) is the 

familiar linear piston theory expression which is valid for 

high Mach numbers. It is obvious that the expressions (1.10) 

and (T.ll) l<Jhich are obtained by an asymptotic expansion of an 

exact solution of equation (1.4\ under various assumptions, 

will fail to give the first order term(M:-2) if the Mach 

number is close to {2, for then the M -1 coefficient of 

the aerodynamic damping term tends to zero. 

In one of his papers, Fung (Ref. 65) mentions that the 

static, quasi-static or piston theory approximations of the 

aerodynamic pressure should not be used for "scallop" modes of 

flutter of cylindrical shells if the number of circumferential 

'nodes is large, (n of the order of 10). But a later investi­

gation by Olson and Fung (Ref. 116) sholved that a flutter 

analysis using piston theory yields results which corresponded 

more closely to experiment than those using the potential 

theory solution. 

Kopzon (Ref. 12(a» used an axial source distribution to 

obtain the aerodynamic lo~ds on the cylinder and employed 

the Laplace-transform method to solve the resulting integro­

differential equation similar to Goland and Luke's (Ref. 2 (a» 

approach for the case of flat panel. No numerical results 

are presented. 

Refined aerodynamic expressions are obtained by HOlt and 

Strack (Ref. 40) and Strearman (Ref. 76). In both these 

references a formal mathematical solution is presented in 

terms of Laplace transformation of the velocity potential for 

the unsteady f'101-1 problem in a manner similar to that used by 
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Randall (Ref. 19) in his investigation of the steady flow 

p~oblem. The approximations used by Holt and Strack are 

rather severe and consist essentially of first reducing the 

unsteady flow problem to the steady flow problem and then 

expanding about the limiting case of blo-dimensional flow. 

Only the first two terms of the expansion "re retained, the 

first of which corresponds to the Ackeret result and the 

second "term is a first-order correction to that result. 

The inherent approach is equivalent to neglecting the out-of­

phase time effects and is onl~ justified for oscillations 

of low frequency. 

Dzygadlo (Ref. 57) has carried out an expansion process 

in a more systematic way. First three terms of the asymptotic 

expansion (in ascending powers of the inverse Mach number 

of the undisturbed flow) are retained and unsteady effects 

are included. The first term of the expansion is equivalent 

to the piston theory approximation. This expansion process 

however is not rapidly convergent. 

Dzygadlo (Ref. 13 9) has generalised 

In a more recent paper 

this approach to study 

the external or internal flows; for arbitrary time dependent 

oscillations of the shell. 

An improvement to the static approximation of Holt and 

Strack (Ref. 40)' is made by Brown and Holt (Ref. 66 and 

Ref. 77) by taking into account the first order effects of 

frequency. This causes a phase shift between the shell 

displacement and the corresponding pressure or the aerodynamic 

force coefficient which may decrease the energy transfer to 

the shell and thereby raise the critical flutter velocity • 

. The phase angle which is a complicated function of the 

reduced frequency WR/U, the Mach number M and the axial 

co-ordinate x is approximated by Li (Ref. 113) who found that 

the flutter boundary is not lOvler than that of the static 

approximation (see Fig. 2). 

Anderson (Ref. 112) has made some new observations by 

introducing an arbitrary spatial angle y in the pressure 

expression but neglecting the frequency effects. The 

results of a four-mode Galerkin analysis neglecting the 
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inplane loads are shown ,in Fig. 3. The curves are symmetric 

with respect to ~= 90 0
• Divergence is shown to be possible 

near ~= 90 0 at very large.values of dynamic pressure ratios 

(A). If ~ is not exactly 90 0 then flutter can occur at 

very much lower values 6f A and these values are insensitive 

to changes in ~for a wide range (_30 0 to +60 0
). This latter 

result suggests that for cylindrical shell"analyses the 

details of pressure distribution are not so much of importance 

in low frequency flutter and that an Ackeret type theory can 

·then probably be used with success. 

Randall's method (Ref. 19) for the steady supersonic flow 

problem has been extended to the unsteady problem by Dowell 

(Ref. 98) and Davies (Ref. 137). Dowell has reduced the 

problem analytically to a single integration in terms of a 

Laplace transformation variable for the aerodynamic generalised 

forces and the integration is performed using the standard 

complex variable techniques. In another paper (Ref. 99) Dowell 

has adopted the Fourier transfo+mation to solve both the super­

sonic and subsonic flow problems. It was found that for sub­

sonic flow the Laplace transform method is not directly 

applicable and the Fourier transform method is less efficient 

for the supersonic flow problem. Dowell has published the 

first results using the full potential theory for the aero­

dynamic generalised forces (see Fig. 4). This theory, uied 

in conjunction with an appropriate shell theory in a systematic 

stability analysis may permit the evaluation of the accuracy 

of the various existing simplified theories. 

Explicit calculations of the generalised forces associated 

with each mode has been made by Coupry (Ref. 134) starting 

from the concept of equivalent distributions and an asymptotic 

expansion of the pressure potential. 

In conclusion, it is considered that a need exists for 

a thorough and systematic study of the variations caused in 

flutter predictions by the use of different aerodynamic 

approximations as against exact potential solutions. In 

particular ~he"analyses of Dowell would form a useful basis 

for such a comparative study. 



t~4 FLUTTER ANALYSIS OF INFINITELY LONG CYLINDRICAL SHELLS 

I.~l Unstiffened Cylindrical Shells 

11. 

The aeroelastic stability of infinitely long isotropic 

cylindrical shells has been analysed by several authors under 

various assumptions. 

Leonard and Hedgepeth (Ref. 8) have studied the flutter 

of infinitely long circular cylinders by including midplane 

tensile stresse& and a small amount of structural damping. 

Donnell's equations are used to describe the structural 

behaviour and linearised unsteady potential theory predicts 

the aerodynamic pressures. When the number of circumferential 

waves (n) is small enough to invalidate the formulation, 

simplified Flugge's equations have been used to check the accuracy 

of the results. For unstiffened thin shells it is shown that 

the only instability at subsonic speeds is static 

speeds flutter seems to be the only 

divergence. 

possible At supersonic 

instability. The conclusion is reached that the second 

asymmetric mode (n=2) is the most critical \vi th regard to 

stability on the premise that neither 'the axisymmetric mode 

(n=O) nor the first symmetric mode (n=l) involved panel action. 

Fig. 5 shows the stability boundaries for aluminium cylinders at 

sea level with no applied membrane stresses. The stability 

cri teria are ob'tained by including the eff ects of structural 

damping and then taking the limit as damping tends to zero. 

This approach has led to the interesting result that the 

addition of damping makes the structure more prone to flutter. 

This may be explained by the fact that a damping force, even 

though in itself dissipative, can cause phase changes in such 

a manner as to allow the moving outside air to feed more energy 

into the structure resulting in a net energy gain. 

Miles (Ref. 13) has analysed the same problem by using 

the Timoshenko shell equations and extending the flat panel 

analysis to include the curvature effect. The results show 

that the axisymmetric mode (n=O) generally yields the most 

cri tical flutter speed. The instabili tyassociated with n Q- 2 

is shown likely to be much vleaker than that associated with 

n=O, thus contradi'cting the results of Leonard & Hedgepeth. 
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Fig. 6 gives the minimum thickness ratio required to prevent 

flutter of an empty isotropic shell. By a precise examination 

of the neighbourhood of critical instability it can be con­

cluded that while structural damping is beneficial in this 

neighbourhood, no finite amount thereof can prevent instability 

predicted by the linear theory. Axial prestress has the effect 

of increasing the theoretical flutter speed while the circum­

ferential prestress has no such effect. 

Thus, it can be seen from Figures 5 and 6 that both 

Leonard & Hedgepeth and Miles have obtained results that are 

practically identical as far as the thickness requirement to 

prevent flutter is concerned, even though their analyses were 

based on widely differing assumptions. This may be due to 

the fact that their aerodynamic approximations closely 

approximate to each other if the wavelength is small compared 

to the radius. 

A different approach to the infinite length cylinder problem 

is due to Stepanov (Ref. 14) wno has used piston theory aeco­

dynamics in the Donnell's equations as ~Jell as in Goldenveizer's 

equations. The cases n = 0 and n~2 are considered and it is 

found that the critical speed has a fixed value of h/R (h: 

thickness and R: radius) when n=O and has the same minimum for 

larger values of n (of order 20). The value of critical Mach 

number obtained differs by unity from the corresponding value 

of Miles (see Fig. 7) due to the replacement of ~ by M in the 

airforce expression. The stability boundary is obtained 

through a more direct approach by solving an octic equation 

compared to the Nyquist diagram technique of Miles and Leonard 

& Hedgepeth. Stepanov has also concluded that the axisymmetric 

mode (n=O)" is the most critical with regard to stability. 

However, the result is suspect because of the doubtful validity 

of piston theory to infinite cylinders. 

The analysis given by Dowell (Ref. 85) attempts to over­

come the limitations of the previous studies and very complete 

results are given for incompressible and compressible flows. 

An exact aerodynamic pressure expression is used with Golden­

veizer's shell equations. Assuming'the deflection in a 

travelling wave form 
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{ 211"i } w = a exp --1-- (ct - x) cos nG 

(n=O, 1, 2, •••• ) 

(where G is the angular co-ordinate, a is the amplitude, 

1 is the wave length and c is the phase velocity) and omitting 

the midplane inertia forces the flutter problem of an infinitely 

long cylindrical shell is reduced to the solution of an 

algebraic equation (which is f~rmally identical to that for an 

infinite flat plate) 

2 2 2" 
Co - c - fA F (U - cl = 0 (1.13)' 

(where Co is the transverse \~ave velocity of the panel ir. va"cuum, 

f is the mass ratio, U is the freestream velocity and F is the 

term "representing the aerodynamic pressure). F is expressed 

in terms of Bessel functions thus facilitating the analysis 

considerably. The axisymmetric mode (n=O) "and the asymmetric 

modes (n ~ 2) are considered separately. By minimising the 

critical velocity in each case with respect to (l/R) ratio 

(R: Radius of the cylinder) it is shown that the most critical 

"configuration for very small structural damping is theasymmetric 

mode with n=L and long waves (l/R of order JR/h, h: shell 

thickness) for low Mach numbers (Q ~ 11::;: l'10 > 1), while it is the 

axisymmetric mode (n=O) with short waves (l/R of order Jh/R) 

for M ~Mo. The value of l'10 depends upon the mass ratio and the 

thickness ratio. The mass ratio effect is shown to be import­

ant in the transonic and low supersonic regime; the three­

dimensional effect is "only important in this regime, if in 

addition, the cylinder is relatively thick h/R - 10-1 . For 

high l'1ach numbers neither effect seems significant and the 

instability is relatively so weak that the low supersonic l'1ach 

number range (M~2) may well prove to be of greater practical 

significance; even though the thickness required to prevent 

any instability increases 11ith Mach number. A comparison of 

the n = 0 and n = 2 modes is made in Fig. 8, for an aluminium 

cylinder at sea level where the thickness 

flutter is plotted against Mach number. 

required to prevent 

The figure shows that 
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for M ,1.52, the n=2 mode gives the larger thickness require­

ment whereas for M>1.52 the n=O gives the largest thickness 

requirement. Thus either the n=O or the n=2 mode could be most 

cri tical depending on the values of h/R, M, f. Thus· the resul ts 

of Miles and ·Leonard & Hedgepeth are reconciled. For the asym­

metric mode n=l the ,Jave length of instability is found to be 

infinite. Holtlever long cylinders at n=l behave like beams and 

the model considered should be replaced by that used in the 

investigation of· the stability of pipelines. An important con­

sequence of the asymmetric mode (n ~1) calculations is the 

indication that the aerodynamic loadings in these modes are 

essentially of the 'slender body' types. Therefore compressi­

bility effects seem to be relatively insignificant. 

'I.4.;! Stiffened Cylindrical Shells 

The influence of adding rigid ring stiffeners which prevent 

radial deflections of unstiffened circular cylindrical shells 

is considered by Leonard & Hedgepeth (Ref. 8). The stiffeners 

are assumed not to interfere with the flow of air outside or 

of fluid inside the cylinder. The conclusion is reached that for 

ring stiffened shells also flutter is not possible at subsonic 

Mach numbers and the only possible instability is divergence. 

Fig. 9 sholtJS the cri tical divergence boundaries for infinitely 

long unstressed ring stiffened aluminium cylinders at sea-level. 

Both panel flutter and divergence seem likely at supersonic Mach 

numbers but no numerical results are available. 

The critical parameters of an eccentrically stiffened 

orthotropic anelastic shell vibrating in a linearised supersonic 

flow are determined by Dzygadlo and Kaliski (Ref. 36) including 

the' effects of structural damping. Fig. 10 shm'Js the effect of 

damping on the stability boundaries for an isotropic shell rein-

forced by rigid stringers. It has been 'found for a stringer 

stiffened shell also that an increase of damping can result in 

lowering the critical Mach number. 

I.4~ Experimental Studies 

Experimental experiences on the flutter of unstiffened 

thin-I'Jalled pressurised and unpressurised cylinders seem to 

indicate that flutter, if it occurs in practice, is mild 



15. 

in character and of wave lengths small compared to the radius 

of the cylindrical shell contrary to the prediction by 

infinite length shell theory. Well defined flutter has been 

observed where local buckling of the shell occurs, but in 

the case of unbuckled shells flutter has seldom been observed. 

Much more definitive experiment will have to be performed 

before the shell flutter problem is well understood. 

The effects of membrane tension, internal pressure, inter­

nal fluid, aelotropic character of the shell material and 

boundary layer effects have all been theoretically analysed 

(see refs. 13, 16 and 22) but experimental results are 

lacking. 

~.4A Dynamical Equations 

All the analyses described. so far have used the simpli­

fied Donnell's shell equations at some stage or other. These 

are strictly valid for n ~ 2 only. As the resul ts seem to 

indicate that the low 'n' modes are the most critical, the 

question arises whether or not: this equation is sufficiently 

accurate to describe the structural behaviour of the shell. 

For the case n <.2 more refined shell equations (e.g. Flugge's 

equations) are available. In addition, the mid-plane 

(longitudinal and circumferential) inertia forces tend to 

be more important for 10"1 n. However, as the wavelengths 

become smaller relative to the radius both these effects 

diminish in importance. Since the critical \Olavelengths seem 

to be of the order Ji it 'Nould appear that these effects are 

relatively unimportant and the' use of Donnell's equations 

may be satisfactory. An analysis by Shulman (Ref. 24) to 

investigate this point suggest that this is indeed the case. 

r.4.5 Applicability of the Analyses of Infinitely Lonq Shells 

to Shells of Finite Length 

The validity of infinite length shell analyses to 

practical shell structures of finite length has not been 

proven and since large values of critical shell thickness 

result, they must be used with caution. 

The results for the infinitely long shells would be 

applicable to shells of finite length only if the wave lengths 
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of the flutter modes are small in comparison '.vi th the length 

of the finite shell; but the most cri tical ~Iavelengths for 

infinitely long unstiffened cylinders are predicted theoret­

ically to be very large ,(see Fig. 11). It is conceivable 

that for a finite shell the flutter modes vlould tend to settle 

on the smaller of the two longitudinal wave lengths. However, 

for higher Mach numbers (M ~ 5) even these smaller wave lengths 

are fairly high; for instance, for n=2 wave lengths from one 

to three times the radius have been experienced. 

The comparison of the results of infinite and finite 

length shells are rather unrealistic since most of the existing 

analyses for finite length shells have adopted piston theory 

aerodynamic expressions which are inadequate for dealing with 

infinitely long cylindrical shells. Nevertheless, Dowell 

(Ref. 85) has made a comparison for the axisymme~ric mode cases 

(n=O) since only for this case is the piston theory even 

qualitatively correct for a long narrow cylinder. It is con­

cluded that the results of infinite length shells are 

applicable to finite length shells in a qualitative sense, 

as the aerodynamic damping coefficient gA and thickness ratio 

h/R increase (see Fig. 12). Unfortunately the values of h/R 

I-Ihich occur in practice may violate the condi tions on which 

this contention is based. 

The comparison of the results of infinite and finite 

length flutter analyses is also difficult in view of the fact 

that most of the analyses for the former class of problems 

have used the travelling wave solutions while the standing 

wave solutions are prevalent for the latter. HO\1ever, Johns 

(Ref. 32) has applied'the travelling 'tlave solution to a shell 

of finite length in an axisymmetric (n=O) mode and obtained a 

. value of 144 for the flutter speed parameter (= ' 24qL3 
('l-,l)} 

This value is more conservative compared MEh3 

to the corresponding value of ~74 obtained by the standing 

wave approach. The inherent method is equivalent to applying 

the travelling vlave analysis to one. bay of an infinite shell 

with added rig1d ring stiffeners and applying the boundary 

condition of zero radial deflections at the 'ring stiffeners. 
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I.4~ Discussion of the Results 

The results presented so far yielded the highest value 

of the thickness to radius ratio for which at least one \vave 

made ~Iill flutter (a wave mode is determined by particular 

values of n and the longitudinal \vavelength) and seem to 

indicate that the lowest values of n are the most critical. 

The question of which one of the tWQ wavelengths associated 

with each n is more critical, remains unsettled, though Miles 

concludes on the basis of his calculations that the shorter 

of the wavelengths is more critical. In this case his approxi­

mate aerodynamic expressions are probably acceptable. 

If the thickness ratio is insufficient to prevent flutter, 

the degree of instability may be expressed~ the number of cycles 

necessary to double the amplitude or as a logarithmic 

increment. The degree of instability in a real fluid is 

seen to be much smaller than that predicted on the basis of 

linearised potential theory. 



I. 5 FLUTTER ANALYSIS OF SHELLS OF FINITE LENGTH 

:I.5.1 General 

18. 

~n the treatment of panel flutter of infinitely long 

cylindrical shells the aerodynamic forces on the distorted 

cylinder have been calculated by a travelling wave approach, 

which are inapplicable for shells of finite length on physical 

grounds. This may partially account for the fact that the 

flutter speeds predicted by infinite l'ength analyses are much 

10\oJer than those observed in flight. Thus it is logical to 

investigate the analyses which include the effects of finite 

length. One additional factor which is to be considered for 

finite shell analyses is the boundary support conditions. 

Considerable literature is available for studying the 

flutter problem of cylindrical shells of finite length to 

deal with different situations. 

1.5:2 Cylindrical Shells \"i th Different Boundary Condi tions 
Stepanov (Ref. 14) considers the problem of finite length 

cylinders under the follovJing e,nd support condi ti ons: 

i), simply supported at both ends; ii) clamped at both ends; 

iii) simply-supported at one end and rigidly clamped on the 

other; iv) clamped at one end and free at the other; 

v) simply supported at one end and free at the other. Table 1 

shows the values of the critical velocities for the boundary 

conditions (i), (ii) and (iii) just mentioned. The results 

seem to indicate that for all the thickness/radius and 

radius/length ratios considered, the simple support boundary 

conditions at both ends yields the minimum critical velocities 

compared to the others. Piston theory aerodynamics and the 

medium length shell theory due to Goldenveizer are used to 

reduce the order of the equations from eight to four and to 

enable the use of Movchan's method. The effect of this approxi-

mation is to neglect the longitudinal bending stiffness of the, 

shell. Since the residual longitudinal stiffness is due solely 

to the membrane stresses and is inversely proportional to n4, 

the result suggests that the flutter speed decreases mono tonic­

ally with n. 1his means that there always exists a'particular 

mode (n) for which "the shell will flutter at any given speed. 

This result is obviously unacceptable on physical grounds. 
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Hol t and Strack (Ref. 40) have attempted to improve 

Stepanov's analysis by introducing more refined expressions 

for the aerodynamic forces into the Goldenveizer's equations 

in the hope that the results would be valid for both super­

sonic and hypersonic flows. The inherent aerodynamic refine­

ments have been discussed in sectionr,3,~ •. The resulting 

equations are solved by a method similar to that used by 

Hedgepeth and Stepanov. The more realistic aerodynamic term 

is shown to lead to higher eS,timates of critical flutter 

Mach numbers than Stepanov's (see Fig. 13). Although a 

lower critical shell thickness is obtained, the static 

approximations for aerodynamics seems unrealistic in discount­

ing the effect of time dependence and also makes it difficult 

to justify the retention of the inertia terms in the elastic 

equations which are of the second order in the reduced fre­

quency parameter wR/V. The critical Mach numbersobtained 

decrease with the number of circumferential nodes as found 

by Stepanov. 

Fig. 14 shows the thickness requirement curves for steel 

cylinders of finite length for the case ofaxisymmetric 

flutter mode (n=O). The results of Miles for infinite length 

shells are also shown for comparison and which reveal the con­

siderable influence of finite length. Fig. 1&' shows the results 

of Strack and Holt for the asymmetric flutter modes (n = 4, 

",7). If this is compared with the curves of Hedgepeth, the , , 
effect of finite length is again apparent. A comparison of 

the scale of ordinates of Figures 1~ and 14 shows that the 

thickness requirement for flutter is far more critical for the 

'axisymmetric mode n=O and hence this mode was thought initially 

to be of the greatest interest. The number of circumferential 

modes n has only a minor effect on the stability of infinitely 

long shells (see Fig. 5), while their effect has since been 

shm'm to be considerable for fini te length shells. 

The discussion in the previous paragraph refers to the 

calculations based on the clamped-simple support boundary 

conditions. The effect of varying the end conditions is to 

change the values comprising the curves but not their form. 

_ Thus the- value of the critical parameter H ("Ihich is a 



function of the dynamic pressure, Mach number and R/h 

ratio) changes from 480 for the clamped-simple support 

. condition to (~)(480) in the clamped-clamped case and to 

(t x 480) for the simple support conditions at both ends 

case suggesting that the simple support case yields the 

minimum critical speed. 

r.5~ Influence of Damping and Tangential Inertia Forces 

20. 

The significance of structural damping, aerodynamic 

damping and mid-plane inertia (longitudinal and circumferential) 

forces on the cylindrical .shell flutter results was shown 

by Voss (Ref. 35). He has presented a more exact form-

ulation of the structural problem and has used an aerodynamic 

theory \vhich can be shown to be similar to that of Stepanov 

and Strack & Holt, but resulting in a differential equation 

which suggests a modal solution. Only the 'freely-supported' 

boundary conditions are considered. A shallow shell analysis 

based on Reissner's equations revealed that if a modal 

solution of the cylindrical shell flutter problem is to be 

used, the determination of natural vibration frequencies 

should be as accurate as possible and that the formulation 

should include structural and aerodynamic damping. The 

expression used for aerodynamic loading at low supersonic 

speeds (and M ? J2) is 

p(x,y,t) 20 
= --

~\v "l 
,t + 2 
<J H -1 

where q is the dynamic pressure and ~ = J l'l-l ~Ihile for 

high supersonic speeds and simple harmonic motion it is 

p(x,y,t) 1.9. t ~w + . w'i } e iwt 
= 1 U ~I . 

f3 ax (1:.15) 

where .9. tends to .9. 0 
~ 

1'1 for 1'1 > M1 and 

"i 
01'12_2 

for .J2 <1'1<1'11 = 
1'12_1 

(1.16) 

= 1 for M >1 

and the value of M1 is left to the user. 
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It has been shown by voss that for n=O the modal fre-

quency spectrum is very dense \vi th varying m and many m-modes are 

required for convergence but at high n this is not so. (See 

Figures 16 and 17). This result is particularly significant in 

the flutter solution wherein the modes are uncoupled spanv~e -

i.e. separate solutions are considered for eaCh \Eilue of n. 

There are two ranges of critical modes to be considered for 

the cylinder: the first corresponds to low values of circum­

ferential mode number n but relatively high values of longi­

tudinal mode number m which will be referred to as membrane­

type flutter and the second corresponds to high values of nand 

low values of m which will be referred to as panel-type flutte~ 

C'alculations performed on an aluminium cylinder (neglecting 

aerodynamic damping) of 40 inches diameter, 40 inches long 

and ~04 inches thick revealed that for very low structural 

damping (g = 0.001) the initial instability occurs in the mode 

n=O at % = 5.4 and the next occurs in the mode n=16 at l = 

15.1 (see Figures 18 and 19). However the instability at n=O is 

relatively weak by comparison and occurs at a con~iderably 

higher frequency. When structural damping was increased to 

0.01 the critical condition for n=O has been nearly trebled 

while the high n condition was but little affected (see 

Fig. 20). From figures 18, 19 and 20 it would appear therefore 

that the addition of aerodynamic damping could also delay the 

onset of Imv n instability to somewhat higher dynamic pressures 

particularly as this damping is strongly dependent on flutter 

frequency which is high for n=O; while the high n modes are 

conversely relatively unaffected in shifting the stability 

boundaries as the flutter frequency (and the lO\'Jest invacuo 

frequencies) are then much lO\'ier (see later). 

Further, the neglect of tangential inertia forces is 

justified only for large values of nand/or m. 

The correlation of these results \'Iith experiments is 

poor and there is need for further experimental evidence to 

substantiate these conclusions. 

The study of Voss sho\'is that the modal approach is 

entirely satisfactory for panel-type flutter analysis 

(Le. with high number of circumferential modes) \'Ihile it 

is not entirely satisfactory for membrane-type flutter due to 
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the large number of modes required to obtain convergence 

(up to 16 modes in m were used in the calculations). 

The effect of aerodynamic damping has also been considered by 

by Johns (Ref. 32). His analysis is based on the theories of 

Love and Novozhilov used in conjunction \'!i th linear piston 

theory for the aerodynamic forces viz: 

p Cl w} 
at 

(I.17) 

For a shell of finite length L, simply supported at both ends, 

a compatible set of displacement functions used for the 

displacements u,v,w are: 

u = iILt ::z L Umn cos !!Y. cos mnx e r;-m n R 

e iRt 2, L Vmn sin !!Y. sin mnx 
(I.18) m n R r;-v = 

e int ~ ::a w m n w = !!Y. sin m"JTx cos r;-mn R 

A two degree of freedom analysis and the Galerkin procedure 

leads to the following expressions for tre flutter speed and 

frequency respectively: 

2 6" Sl2 = Fr + Fs (I.19) 
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where F = 
m 

Eh 

= r,s, with the 

2)4 + n 

(A 2 + 
m 

condition that (r + s) must be odd. The and m 

term 

which 

<? U.n.. o 
11 

represents the aerodynamic damping the neglect of 

can be justified only \1hen.J.1.. is small (as in the 

case of plane panels). For cylindrical shells, Sl is much 

higher because.of the curvature effects and is given by 

t<.n. 2 + ..n 2) 
r s 

1 
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where ~ are the natural frequencies in the r,s modes. r,s 
To illustrate the significance of the aerodynamic damping 

terms, table 2 represents the results for a particular shell 

in which it is assumed that the axisymmetric mode n~O is the 

most cntical. This analysis has neglected the tangential 

inertiarorces. It is felt that these should be included, 

the justification for this being that the critical speeds in 

the absence of aerodynamic damping depend on tre quantity 

(Fr - Fs)2 and thus on the difference in the squares of the 

natural frequencies. This difference appears to be least 

~hen tangential inertia forces are neglected, for n~O, r~2, 

s~1. This is not so when the tangential inertia forces are 

included. The analysiS of Voss also confirms that this is so. 

The simple binary flutter analysis of Johns indicates 

that the axisymmetric flutter mode is the most critical if 

the aerodynamic damping is neglected but that this is not in 

general a justifiable assumption. 

The fact that the aerodynamic damping is not negligible 

is also revealed by the stUdies of Kobayashi (Ref. 71). 

Effects of the internal pressure and the axial force on the 

flutter boundary are also studied. Kobayashi has used the 

Donnell's equation, quasi-steady aerodynamic force and 

Galerkin's two-mode approximation to the case of a cylindrical 

shell which is simply supported at both ends. It is concluded 

that the aerodynamic damping and internal pressure raise the 

flutter boundary while the axial compression lowers it. The 

results for n~O cases are given in Fig. 21. 

I.5.4 Applicabilitv of the Galerkin Method 

The applicability of the Galerkin method to cylindrical 

shells has been confirmed by Krumhaar (Ref. 42) who has 

developed 'exact' results for the axisymmetric flutter of a 

simply supported circular cylindrical shell as presented in 

Fig. 22. By using linearised Timoshenko shell equations and 

linear piston theory the problem is reduced to a non-self-

adjoint eigenvalue problem. This is rigorously investigated with­

out any further approximations. The following conclusions are 

drawn from th~ analysis. Aerodynamic and structural damping 
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have a considerable stabilising effect as was pointed out by Voss 

(Ref. 35), vlhile the influence of internal pressure differential 

is very small. The larger the air strea~ velocity the more 

modes one has to employ in the Galerkin method to obtain 

reliable results. Flutter could not be observed experimentally 

in the Mach number range predicted by this analysis. The 

unsatisfactory physical assumptions, piston theory aerodynamic 

approximation, the neglect of both boundary layer effects and 

tangential inertia forces are thought to be responsible, at 

least partially for the disagreement. The results of 

Krumhaar lead to considerably higher estimates of critical 

flutter Mach numbers than those of HOlt and Strack(see 

Fig. 23). 

The mode shapes in the neighbourhood of the flutter bound­

aries given by Krumhaar (Ref. 42) are investigated by 

Muller (Ref. l35). Fig. 24 represents the real parts of the 

mode shapes for two values of the generalised velocity A 

belonging to the stable domain' (A < Acri t), the cri t,ical value 

(A = A 't) and for two values of A belonging to the unstable crl. 
domain (A> Acrit ). It can be observed that the maxima are 

shifted towards the trailing edge of the shell \vi th increasing 

airstream velocities. These results are consistent with those 

of Movchan (Ref. 55) for flat pan~ls finite length. 

I.~5 Influence at the Boundary Laver 

The influence of the boundary layer on the flutter of 

cylindrical shells 

(Refs. 54 and 65). 

has been examined by Anderson and Fung 

A uniform parallel subsonic layer of con-

stant thickness is assumed to exist between the external super­

sonic flow and the oscillating cylindrical shell. It is 

inferred that the boundary layer has a large effect "lith 

-respect to scallop modes of flutter even at high Mach numbers. 

The effect is to stabilise the high n flutter so that the 

neglect of boundary layer leads to conservative results (see 

Fig. 25). For axisymmetric flutter for which structural damp­

ing has a larg~ influence, whether the neglect of boundary 

layer effect is considerable or not is still uncertain. 

This problem was re-examined by Olson (Ref. 101) using 

a somevlhat more realistic boundary layer model - that of a 
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parallel shear flow with a velocity profile given by the 

mean velocity distribution in a classical turbulent boundary 

layer. The oscillating shell surface \oJas approximated by an 

oscillating plane wall whose deflection was sinusoidal in 

both plane directions. Viscous effects were neglected with 

respect to flow perturbation quantities and the resulting 

equations were linearised. The final equations admitted 

solutions with 'exponential dependence on .time and the inplane 

co-ordinate directions but had to be integrated numerically 

in the direction normal to the plane. The results from this 

study and the results of the later work by Anderson (Ref. 90) 

indicated that themfluence of the boundary layer may have 

been overpredicted by an order of magnitude in the earlier 

work (Ref. 54). 

The main parameter that governs influence of boundary 

layer in the linearised problem is the ratio of the boundary 

layer thickness to the axial I-Jave length of the vlall deflect­

ion. The b6undary layer thickness decreases as this parameter 

decreases. For cylindrical shell flutter with a large 

number of circumferential waves the pertinent axial wave 

lengths of interest are very large with respectto the boundary 

layer thickness (at least for the experimental configurations 

reported by Olscmand Fung (Ref. 116» so that the influence of 

boundary layer is probably negligible. Intuitively it is 

understandable that this might be so since in the boundary 

layer theory it is shown that the transverse pressure 

variation is of second order and in practical calculations 

the pressure inside the boundary layer is all-Jays taken to be 

the same as that of the outside potential flow. Therefore the 

aerodynamic force on the shell should not differ too much 

from that of the potential flow if a boundary layer exists 

at all (also see Ref. 113). 

i.5~6 Experimental Investigations and Flutter Criteria 

The first successful experimental observation of 

cylindrical Shell flutter was observed at the NASA Ames 

8-x7-ft. supersonic tunnel in Hay 1962 (Refs. 53 and 65). 

The flutter c'ondition formulated in linearised theories (an 

exponential increase of amplitude with increasing time) was 
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unobservable in the experiments. Hence an experimental 

definition of flutter was suggested by Fung (Ref. 65) leading 

to the criterion 

t ( if- ) R ) 
h 

:::: 7 (1. 23) 

which seems to be independent of the length of tre shell. 

Additional tests on the same shels by Olson (Ref. 86) confirm 

this equation. Since the shells tested were of the same 

length, this criterion needs further confirmation. The tests 

of Stearman (Ref. 53) and Olson (Ref. 86) for L/R = 2 show 

that the value of ncrit is in the range 14 to 25 (see Fig. 26). 

It is of interest to note that for n = 25 the effective L/W 

for each shell element between the streamwise nodal lines is 

about 16 and for n = 14, L/w = 9, Equ~tion (1.23) may be 

rewritten as 

(
A "'E)1- h 1 R ...1:...!::. ( _ ) ~ 
q L "'7L (I.24) 

and if this equation with L/R = 2 is compared vJith Fig. 27 

for unswept flat panels (Ref. 51) it can be seen that the 

agreement is good for L/W in the range 9-16. Thus it would 

'appear that for the high-n flutter of cylindrical shells the 

individual panels bebJeen longitudinal nodal lines behave 

similarly to flat rectangular panels and equation (1.23) 

could be interpreted as a special case of the general results 

shown in Fig. 27. 

For the high-n case Voss (Ref. 35) has indicated that 

a~rodynamic damping should not modify the flutter boundaries 

significantly presumably because the flutter frequencies are 

then much lower than for the n=O case where the aerodynamic 

damping is knovm to be most important. 

If the bm-mode (m=2,1) closed form solutions of Johns 

(Ref. 32) are analysed for the high-n case .. ith the aerodynamic 

damping neglected, it can be shown that fo.,. 

2 "IT R) 
).m = L 
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(L2S) 

This result is also derived by Shulman (Ref. 24) wno has 

,shown that the value of ncrit is not necessarily equal to the 

value of n for the minimum in-vacuo frequency. The corres­

ponding expression for the critical dyaamic pressure parameter 

is 

-L t R 
( Er.. ) (L ~ 0.912 { 2 LR } ncrit 

. , 
(1.26) 

Substitution of eqn. (1.251 into (1.26) leads to a criterion 

of the form 

(iE h 
:::;; 6.2 ( R ( R 

L (1.27) 

and it is seen that length L appears explicitly as a parameter. 

Inserting the shell data of Stearman et al (Ref. 53) into 

eqns. ('I.25) and (1.26) 'Jives the results 

t ( it- ) 
= 31 '(1.28) 

~ ) -;:':: 7.2 

Altnougn the estimate Of ncrit is in error, the agreement of 

equation (1.29) with (1.23) is remarkably good. HO\,Jever, 

because of the inherent assumptions made in deriving equations 

(T~'27) to (1.29), these cannot be taken as general. 

A semi-empirical criter10n to determine the flutter 

bpundary of simply-supported cyiinders which also includes 

the length of the snell as a parameter and is applicable for 

a wide range of L/R and R/h 1S given by Dixon and Hudson 

(Re£' 141) as 

).* 
AR 

( h )x for·L/ R ;;;. 1 = 
- 'i) R (1 

(·1.30 ) 

),R h x L :I 

2 
( R ) ( 

R 
) for L/R < 1 

1 - 11 
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where AI< = (1- ·i) (K)X f( ~), x = tarih (O.~L) . 

. Table 3 gives the average calculated values of 

aerodynamic damping for a range of values of ( 
,,* for no 

L 
I< ). The 

variation of ,,0 with L/R is indicated in Fig. 28, showing 
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good agreement with other theoretical and experimental results. 

This also reveals that length is a very significant factor in 

cylinder flutter, thus indicating that theoretical solutions 

of infinite shells would be of little value in predicting the 

results for finite cylinders. 

Al so shown on Fig. 28 is the two-mode resul t of eqn. (:r. 27) 

and interestingly the agreement is reasonaole at L/R = 0 and 

L/R = 2 with the experimental and theoretical results. The two 

mode result is unconservative for L/R > 2..2-

Circumferentially travelling \-Iave type of flutter in 

Olson's experiments (Ref. ~6) were observed to be critical in 

high n modes (ot order 2U) while standing vlaves in the longi­

tudinal direction \vere more critical \-li th zero, one or two, 

circumterential nodal lines. It was found (iri qualitative agree­

ment with theory) that small amounts of internal pressur-

1sation were very stabilising but moderate amounts reduced 

stability to the unpressurised level. On the other hand, 

contrary to theory, large amounts of pressurisation completely 

stabilised the shells, independent of axial loading or previous 

buckling conditions. 

Olson and Fung (Ref. 116) assumed that flutter occurs 

with a large value of n and, by using Donnell's fourth order 
'" cylinder equations, have derived equations for A and ncrit 

similar to those discussed in equations (I.2~) to (:r.29) • 

. On the basis of these two mode analyses with aerodynamic 

damping neglected itwas concluded that a static internal 

pressure differential has no effect on the flutter boundary. 

However, the modal frequencies which couple to produce scallop 

mode flutter increase rapidly with internal pressurewhen n is 

large and so, also, does the flutter frequency. As a result 

it becomes no longer valid to neglec·t the aerodynamic damping 

when the internal pressure is large. Therefore the critical 
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flutter boundary is raised, as indicated in Fig. 29. It 

should be emphasized that the internal pressure was not of the 

hydrostatic type as this would presumably have been immediately 

stabilising due to the axial tensile stresses introduced. 

Corresponding results are' also shown in Fig. 29 for four and six 

mode analyses employing, respectively, piston theory and Re~.B 

potential theory, as well as from experiments. The potential 

solution flutter boundaries are seen to be somewhat higher 

than the piston theory boundaries '.'Ihich are higher than, but 

closer to, the experimental results. Both the aerodynamic 

theories seem to predict the same stabilising influence of 

the internal pressure but interestingly the more refined aero­

dynamic theories seem to yield unconservative results. 

Critical flutter speeds for a shell have also been 

computed by Shveiko (Ref. 34) using piston theory in a 

Galerkin analysis. The modes of vibration corresponding to 

the critical flutter speed is found to have at least six waves 

around the circumference. Increase of damping leads to higher 

critical Mach numbers but the wave number seems to decrease 

slightly. No experimental results are available to compare 

these results. In a later paper, Shveiko (Ref. 83) has con­

sidered the effect of a liquid filler contained within the 

shell and found that the hydrostatic pressure of the liquid 

increased the critical velocity but the value of ncrit was not 

modified when the shell was completely filled. 

I.~7 Non-linear theories 

An attempt to analyse the non-linear effects \'Ihich strongly 

influence the experimental phenomena has been made by Olson and 

Fung (Ref. 65). They have presented a non-linear flutter 

analysis based on a two-mode, piston theory approximation in a 

Galerkin procedure to obtain an approximate limit cycle 

solution. The results which are of a qualitative character, 

indicate that for practical purposes, cylindrical shell flutter 

in a standing wave mode does not occur belovl the stability 

boundary predicted by linear theory for infinitesimal disturb­

ances and that the limit cycle amplitudes seem to agree \-Iell 

with th6se observed experimentally. The interesting result is 

reported that for high asymmetric mode flutter, the critical 



30. 

mode may jump from one circumferential wave to another as 

one penetrates into the flutter regime. On Fig. 30 the peak 

. limit cycle versus dynamic pressure curve is shown schematically. 

A reversal in the slope of the curve can be observed. Olson 

has determined the two portions of the curve as stable and 

unstable regimes respectively. 

·the critical flutter mode jumps 

Presumably as one reaches ~'b 

from n=23 to a neighbouring 

flutter curve, which has a stable limit cycle with, say, n=22. 

Olson cites some indications of such a behaviour from his 

experiments. 

A more detailed and refined non-linear analysis is 

presented by Olson and Evenson (Ref. llS) by using the non­

linear Donnell's shell theory, the linear piston theory and 

the Galerkin procedure. The limit cycle solution is obtained 

by the method of harmonic balance. Two types of limit cycle 

flutter are obtained i) two-mode standing wave flutter and 

ii) four-mode circumferentially travelling wave flutter. It 

has been demonstrated that the circumferentially travelling 

wave flutter, which has been observed experimentally, can be 

predicted from a non-linear analysis. Fig. 31 illustrates 

the limit cycle amplitudes for values of n varying from 17 to 

27 and for zero structural damping. The analysis indicates 

that flutter can occur at aerodynamic pressures belm, the 

linear flutter boundary ~ which may explain some of the 

unconservatism in the linear theory. 

Some other refinements are introduced into the structural 

aspects of the shell flutter analysis by Carter and Stearman 

(Ref. ~11) in an attempt to explain the discrepancies between 

experimental and theoretical results. The analysis utilizes 

the non--linear Donnell shell theory coupled ,oJi th a linear 

potential flo') theory approximation for the aerodynamic loading. 

The axisymmetric preflutter deformation due to internal pressur­

isation and axial loading and the aerodynamic loading induced 

by this preflutter deformation are included in the analysis. 

However, the flutter solutions are obtained by Galerkin's 

technique applied to the linearised equations. The calculations 

sho"). that the predeformation state. due to static loading 

conditions does not appreciably affect the flutter boundaries 
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for the range of parameters employed in the experiments 

(see Fig. 32). In particular it tends to stabilise the shell 

and hence, its neglect in a design analysis would be conserv­

ative. The fact that a large number of terms are needed to 

obtain convergence in the Galerkin procedure, particularly at 

higher values of shell internal pressure is revealed in Fig. 33. 

The conclusion is also reached that the tlutter boundaries 

are sensitive t"O the type of structural boundary conditions 

and that the agreement between theory and experiment becomes 

progressively worse as the amount of preloading is increased. 

Barr and stearman (Ref. 126) have extended the analysis 

of Carter and st'earman by incorporating initial geometric 

imperfections and radial edge constraint and prestability 

deformation. The combined influence of initial impertections 

and prestability deformation is found to be strongly destabil­

ising probably due to the induced curvature of the middle 

surface over the central portion ot the shell. The results 

show excellent correlation with the band of the experiment 

data plotted in Fig. 29, for all values of shell internal 

pressure. In a more recent paper (Ref. 142), Barr and stearman 

have studied the influence of an external supersonic flo\-I 

field on the critical buckling load of a finite shell subjected 

to axial compressive loading and internal pressure. They con­

clude that the critical buckling load and circumferential 

wave number ot the static instability are not significantly 

influenced by the supersonic flow field. This has also neen 

demonstrated by Fung (Ref. 92). 

Linrescu and Malaiu (Ref. 138) have obtained the non­

linear flutter equations using an intinite number of modes 

in the Galerkin method. The shells are considered to be 

hetrogeneous and orthotropic and the non-linearities are con­

sidered to be geometrical and aerodynamic in nature. In the 

case of a large geometric non-linearity the excitation of 

flutter on the boundary of the instability domain results in 

the fact that a small increment of the critical velocity is 

sho\oJn to correspond to small amplitude increases, making the 

critical flutter boundary "non-dangerous" while for an 

increase of Mach number when the aerodynamic non-linearity is 



prevalent the critical flutter boundary tends to be 

"dangerous". 

32. 
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I.6 CONCLUSIONS AND SCOPE OF THE PROPOSED INVESTIGATIONS 

It is apparent from the review that the shell flutter 

problem has been approached from both the linear and the 

non-linear formulations. On the linear formulation the aim 

has been to determine the flutter boundaries. The investi­

gations carried out in this field differ either as regards 

the physical aspects (such as different shell equations, 

influence of inertia forces, structural damping, etc., 

from the structural viewpoint;, different approximations for the 

aerodynamic forces, the role of aerodynamic damping, 

boundary layer effects, etc., from the aerodynamic point 

of view), or as regards the mathematical manner of approach­

ing the problem. On the non-linear approach the aim has 

been to determine the conditions in which the critical flutter 

speed can be exceeded without an immediate failure of 

the structure (i.e. the flutter is mild) or the case in 

which the flutter is violent; the character of the non­

linearities themselves may be,important in such analyses. 

It is also clear that most of the analyses reviewed 

have tended to use the simplest structural and aerodynamic 

theories that yield acceptable results for Mach numbers and 

shell geometries of interest. The structural equations 

usually used are those due to Donnell, Goldenveizer, 

Novozhilov, etc., with different approximations or additions 

such as mid-plane in'ertia terms, structural damping, etc. 

The aerodynamic expressions are available from the simplest 

solution (such as the Ackeret Result or the linear piston 

theory) to the exact potential flow solution for an oscillat­

ing cylindrical shell of finite length, with various inter­

mediate approximations. However the choice of a particular 

aerodynamic theory for application to shell flutter is 

usually based on the order of magnitude considerations or 

on the success achieved in previous flutter investigations 

and yet no shell flutter calculations appear to have been 

performed using any of the existing exact aerodynamic 

theories. 

The range of aerodynamic assumptions and the flutter 



predictions \~hich result have shown a great need for a 

comparative study to be made of the. influence of aerody­

namic approximations in shell flutter. (Ref. 144) 
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whilst experimental data on unstiffened shell flutter 

is scanty and evidenceof full-scale incidents apparently 

non-existent, there remains a strong possibility that high 

n mode flutter may occur on longitudinally stiffened shell 

structures for. which the stiffener effect can be minimised 

by a correspondance of stiffener-spacing and nodal pattern. 

Hence there is a need for further studies to be made of the 

influence of stiffeners (including eccentricity effects) 

on the flutter. 

The following aspects have been investigated in the 

studies conducted for the Ministry of Technology of which 

this review is a part. 

i) A simple analytical method has been developed 

for the invacuo-natural vibration aria lysis of simply-supported 

circular cylindrical shells which are stiffened py an 

orthogonal set of stringers and/or rings, to include the 

effects of eccentricity, inplane and rotary inertias, by 

a) treating the stiffener effects as "smeared" or averaged 

over the surface of the shell and b) tr~ating the 

stiffeners as discrete members of the structure. A few 

such shells have been tested. in an experimental rig, 

designed and built during the course of this study, to 

verify the theoretical results for these natural vibration 

modes and frequencies. (Refs. A36, A37) 

. ii) The aerodynamic generalised forces obtained from a 

form of linear piston theory are compared with those 

from exact potential flow solutions for a harmonically 

oscillating circular cylindrical shell with a view to 

having an indication of the areas of agreement (or other­

wise) between the two theories. (Ref. A38) 

iii) The flutter problem is formulated in terms of the 

invacuo-natural frequency • factor·.:of the cylindrical 

shell and the aerodynamic generalised forces for a multi­

degree of freedom system (i.e. for a given circumferential 
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modal pattern and the interaction of any number of 

axial modes), and programmed -for digital computer solution. 

The influence of eccentric stiffening has also been 

-included in the frequency expressions. (Ref. A38) 

iv) Flutt.r boundaries for unstiffened shells are 

obtained for.a two-mode Gelerkin solution for a range of 

shell geometries of various lengths/radii and thickness/ 

radii ratios and compared with higher order solutions 

using up to ten axial modes to assess the convergence of 

the solutions. Comparison is also made of these boundaries 

with the flutter boundaries obtained using aerodynamic 

generalised forces derived from the exact potential flow 

solution. (Ref. A38) 

v) Flutter boundaries for stringer stiffened shells are 

obtained for a two mode Galerkin solution using the linear 

piston theory for a range of eccentricities, a range of 

shell geometries of different length/radius and 

thickness/radius ratios and compared with higher order 

solutions up to ten to assess the convergence. (Ref. A39) 
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CHAPTER 2 

VIBRATION ANALYSIS - THEORY 

Summary 

A simple analytical method is developed for free 

vibration analysis of simply-supported circular cylindrical 

shells which are stiffened by an orthogonal set of stringers 

and/or rings, to include the effects of eccentricity, inplane 

and rotary inertias, with stiffeners treated as i) discrete 

elements and ii) 'smeared' over the surface of the shell. 

The intention was to eventually develop a program 

using the information presented in this section for super­

sonic shell flutter analysis. To that end it was decided 

at an early stage that the generalised aerodynamic forces 

would be more easily determined using the single, simple 

trigonometric mode chosen than from a more complex set of 

normal modes. Such a set could be obtained from a vibration 

analysis involving many degrees of freedom as in Ref. A22 

but this has not been attemptea here. 

11.1 GENERAL 

The first step in the formulation of the flutter 

problem is to determine the equations of motion which will 

adequately describe the invacuo-natural vibration character­

istics of the structure. In this study the structure is a 

missile body which can be idealised to a circular cylindrical 

shell. A large number of different formulations is avail­

able in the literature for determining the natural fre­

quencies of such shells. 

11.2 UNSTIFFENED CYLINDRICAL SHELLS 

The problem of determining the vibration character­

istics of circular cylindrical shells of finite length has 

been of interest to engineers and scientists for over a 

century.· This interest is maintained in.the aerospace 

industry and elsewhere when the structural response to 

dynamic loads must be predicted with extreme accuracy. 
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Starting from Love's first approximation many 

attempts have been made to refine or simplify the equi­

librium equations for cylindrical shells. The literature 

is too numerous to give a complete survey of all the work 

done in this field. In general, it can be said that the 

wide variety of the resulting equations arise basically 

from small differences in the formulation of the strain­

displac"ement relationships, and the discrepancies occur 

only in those terms which have little numerical signifi­

cance. As long as the limitations of thin shell theory 

are observed, all the different formulations generally 
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give numerical results within about three to four per cent. 

An excellent account of this fact is given by Warburton 

(Ref. A23) where it is remarked that for a wide range of 

parameters the effect of various shell theories is very 

small. An extensive review of shell dynamics can be 

found in Ref. A24. 

The procedures for the determination of the natural 

frequencies of unstiffened cylindrical shells can be 

combined, basically, into two broad "groups: i) By consider­

ing the equilibrium of an element of the shell, three 

differential equations containing the displac~ments (u, v, 

w) as unknowns can be derived. The exact solution of a 

dynamical problem requires the determination of (u,v,w) to 

satisfy the equilibrium equations and the boundary condit-

ions. For most practical end conditions it 

difficult to obtain the solution this way. 

would be rather 

Alternatively 

the Galerkin method may be applied to these differential 

equations to obtain an approximate solution. ii) Alternat­

ively, the strain and kinetic energies of the shell 

element can be written and integrated over the volume of 

the shell. This method forms the basis of the Rayleigh­

Ritz procedure and is usually considered to be approximate. 

The success of this method and of the Galerkin Method 

depends on the choice of appropriate functions for the 

displacements (u,v,w). 

Considering the basic point of simplicity and accuracy 
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of the various shell theories, the only comprehensive 

results are the natural frequencies of cylindrical shells 

with simply supported ends. With this end support condition 

the energy method gives. exact results since the assumed mode 

shapes are exact solutions of the equilibrium equations. 

Simple support conditions are typical of missile bodies 

between two stiffening rings and also one bay of, say, a 

tall chimney between two heavy intermediate rings. 

II.3 STIFFENED CYLINDRICAL SHELLS 

The vibration analysis of stiffened cylindrical shells 

is of considerable interest in the design of various types 

of structures in air, space and water craft. Theoretical 

investigations of this problem may be divided into two broad 

classes: i) those in which the stiffener effects are 

averaged or 'smeared' over the entire surface of the shell -

this effectively amounts to replacing the stiffened shell 

by an equivalent monocoque sh~ll with orthotropic propert­

ies, and ii) those in which the stiffeners are treated as 

discrete members of the structure. 

As in the case of unstiffened shells, solutions have 

been obtained in the literature by the differential equat­

ions approach and the energy method, for this class of 

problems also. However,in order to represent the stiff­

ener effects accurately with a minimum of effort the energy 

approach is considered to provide a sufficiently accurate 

formulation. An excellent bibliography of literature 

related to stiffened shells is contained in Ref. A25. 

Several methods have been developed in recent years for 

studying the vibration characteristics of stiffened cyl­

indrical shells, with various assumptions. Hoppmann 

(Refs. A26, A27) replaced the stiffened shell by an 

equivalent orthotropic shell of some uniform thickness, 

having the equivalent stiffness characteristics and 

verified his theoretical results with experiment for the 

simple support boundary conditions. Consequently the 

effects of eccentricity, rotary 'inertia and stiffener con-
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figuration are not explicitely discussed. The analysis 

of McElman, et al (Refs. A28, A29) considers .the eccentricity 

effects by averaging ("smearing") the stiffener effects over 

the shell surface and neglecting the inplane and rotary 

inertias. Egle and Sewall (Ref. A22) have presented a 

solution for stiffened shells by treating the stiffeners as 

discrete elements and considering the symmetric and anti­

symmetric modes separately, leading to the evaluation of 

a large determinant. Schnell and Heinr·ischbeuer (Ref. A30) 

compare the results obtained by smeared and discrete 

solutions with experiments. The method of Scruggs, et al 

(Ref. A31) relaxes the requirement of large wavelength to 

spacing ratio by providing for the effects of inter­

stiffener deformations. 

The purpose of the present investigation is to develop 

a simple, comprehensive vibration analysis to include the 

effects of eccentricity, inplane and rotary inertias; to 

examine the efficacy of i) the stiffener discreteness as 

compared to stiffener smearing, and ii) stiffener configur­

ation; and to study the influence of various inertia terms 

on the natural frequencies of vibration of stiffened cylin­

drical shells. The mode shapes corresponding to simple support 

boundary conditions of the unstiffened shell are assumed 

to describe also the mode shapes of the stiffened shell. 

The Rayleigh-Ritz technique is adopted to derive the frequency 

equation. Numerical results are presented for three 

specific cases and are compared with existing experimental 

and theoretical results. 

II.4 ANALYSIS 

A vibration analysis is developed, based on the energy 

approach. Expressions for the strain energy and kinetic 

energy of the shell and stiffeners are derived in terms of 

the axial, circumferential and radial displacements (u,v,w) 

of the shell middle surface, with due allowance for 

eccentricity,· inplane and rotary inertias. Vibration modes 

appropriate to the simple support boundary condition are 

assumed. For this boundary condition. the energy approach 
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is exact in the case of unstiffened shells because the 

assumed mode shapes are exact solutions of the equilibrium 

equations. 

II.5 BASIC RELATIONSHIPS 

The displacements (u', v', w') of any point of the 

shell or stiffeners can be expressed in terms of the shell 

middle ~ur(ace displacements (u, v, w) as 

u' 

v' 

= u _ z i}w 
i)x 

aw 
= v - z-

<iY 

w' = w 

(II.i) 

The strains (E~, Ey' i~y) at a distance z from the 

shell middle surface are given by the linear Donnell-type 

relations 

e' = Ex x 

E' y = ey (II.2) 

')'~y = "ixy 

Where the middle surface strains (Ex' ~ , Yxy) are defined 
. y 

as 

~x 
Clu 

= ax 
~v· w 

Ey = + R ay 
(II.3) 

"'Yxy = ....2...!::. + 
<'Iv 

ay oX 

The stress-strain relations are 

<1"' = x 1 _ -v2 
E 

E a-' = 
y 1 - v 2 

1:x~ :::Gi.3 E 
where G = 2 (i+-V) 

(II. 4) 

is the shear modulus, E is the Young's 
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modulus of the shell and 1Jis the Poisson's ratio. 

II.6 SHELL STRAIN ENERGY 

An element of a cylindrical shell of mean radius R, 

uniform thickness h and length L is considered. The 

thickness ratio h/R is assumed to be small in order to be 

able to apply thin shell theory. As for thin plates, the 

stresses ~z' ~xz and ryz are zero at the free surfaces 

z ; ~ h/2 and it is assumed that for a thin shell these 

stresses are zero throughout the thickness. Shells of , 
finite length have modes of vibration in which both axial 

and circumferential nodes exist. In such cases the 

assumption that the middle surface is inextensible is not 

valid. Consequently both bending and stretching of the 

middle surface should be considered. At a distance z 

from the middle surface, the strain is equal to the 

appropriate middle surface strain plus the strain due to 

change in curvature (twist). 

The total strain energy of the deformed cylindrical 

shell (subscript c), neglecting the stresses that have 

been assumed to be zero and neglecting the trapezoidal form 

of the faces of the element perpendicular to the x-axis, 

may be expressed as 

2ITR L h/2 

; J 1 S -t (0- '(; , + 0- 'c;;..' +!" 'l'xy')dXdydz x· x y y xy 

o 0 -h/2 
(I!. 5) 

Substituting equations (11.2), (11.3), (11.4) into 

(11.5) and performing the integration with respect to z, 

the strain energy expression reduces to, 

2rrR L 

S 5 
o 0 2 (i-i) 

Eh 

211 R 

+ ~ 5 
o 

2 
)( Cl w 

;) xay (11.6 ) dx dy 
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whe.r:e D = 

shell. 12(1-J) 
is the flexural rigidity of the cylindrical 

II.} STIFFENERS 

The shell is reinforced by a set of equally spaced 

uniform stringers and/or rings; the co-ordinate system for 

which is shown in Fig. l(C). 

Stifteners are assumed to be integrally attached to the 

shell surface. The displacements of the stiffeners are taken 

to be equal to the displacements of the shell at points ot 

attachment, thus satisfying compatibility. The width of the 

stringer and/or ring is assumed to be small compared to the 

shell radius and/or length. It is also assumed that the 

cross sections of the stiffeners do not deform. Stiffener 

twisting is accounted for in an approximate matter. The 

effects of joints in the stiffener tramework are ignored. 

II.8 STRINGER STRAIN ENERGY 

An element of a stringer, having cross-sectional area 

dAs ' torsional stiffness GsJs is considered. The strain 

energy per unit length, due to bending ab9ut the y and z axes, 
Ut\d r-(l{'iIfJ'" ""b!;l>A.t tt;;;e th"X. Q.)<.L'S, 

stretching along the x axis.lof the i str~nger (suffix si) 

are 1 E .E,2 per unit area, and t G .J . (: ~ )~ respectively, 
Sl x Sl Sl X Y 

where E . is the Young's modulus, G . is the shear modulus 
Sl Sl th 

and J . is the torsion constant, of the i stringer. The 
Sl 

total strain energy of the 2Ls stringers (subscript's') con-

sidered as discrete elements .(superscript D) is, 

L 

SS 
i=1 o A .. 

L 

+ J dx (II.7) 

o 

As the cross-sections are assumed to be uniform, the 

integrations ov.er the stringer cross-sectional area can be 

performed. The strain energy of the 2Ls stringers (equation 

(II.7) can be expressed in terms of shell middle surface 
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strains by using the first of equations (11.2) as 

L 

.\ 
i=l o 

+ (II.8) 

where Asi is the area, zsi is the centroid measured from 

the shell middle surface (positive, zero or negative 

according to external, symmetric or internal attachment 

respectively) and Iosi is the second moment of area about 

an axis in the middle surtace of the shell, of the ith 

stringer cross section. 

If the stringer eftects are averaged or 'smeared' 

(superscript 5) over the circumference of the shell, the 

finite sum appearing in equation (11.8) can be replaced oy 

the appropriate integral. The result is 

U (5) _1 
s a 

0 0 a 2w 2) 
G J 

(lvl ) 2J s s + Ios (axdY) + 2 dxdy 
Cl xC},y 

(II.9) 

where d is the stringer spacing. 

11.9 RING STRAIN ENERGY 

The strain energy of a ring is composed of bending about 

-the x and z axes, stretching along the circumference and 

to~sion about the y axis. By considering an element of the 

ring and proceeding in a manner similar to that for stringOers, 

the total strain energy of the Kr+l rings (subscript r) con­

sidered as discrete elements (superscript D) is 
Kr 21iR 

U
r 

(D) = Z j [E2j {Arj (~~ + ~)2 
j=O °0 

+ I - (--2) ~ a
2

w 2} 
or] i) y ~ 
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G .J. ",2 2J 
r) r] ( co w) d 

+ 2 axay y (II.l0) 

·where Arj is the area, Zrj is the centroid (positive, 

aero or negative according as external, symmetric or 

internal attachment respectively) and I .is the second orJ 
moment of area about an axis in the middle surface of the 

shell, of the jth ring cross-section. This analysis 

assumes that the rings are equally spaced such that a 

ring is attached to each end of the shell (x;O and x;L). 

If the ring effects are smeared (superscript S) over 

the length of the shell the finite sum appearing in equat­

ion (11.10) can be replaced by the appropriate integral. 

The result is 
2nR L 

1 
- T j j 

o 0 

r A ~v 
[

E { 
2 r(ay 

where 1 is the ring spacing. 

11.10 SHELL KINETIC ENERGY 

+ dxdy 

(11.11) 

By considering an element of the shell the total 

kinetic energy of the cylindrical shell (subscript C) can 

be written in terms of the axial, circumferential and 

radial displacements (u', v', w·) as 

2rrR L h/2 

Tc -} J \ r 
!i' ch l(~~')2 + ~2 ~2J ; J at) + a t) .. dxdydz v 

0 0 -h/2 

(II.12) 



where Pc is the-mass density of the material of the 

cylindrical shell. 
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On using equations (II.1) and integrating with respect 

to z, equation (II.12) can be expressed in terms of the 

shell middle-surface displacements (u, v, w) as 

L 

S 
o 

dxdy (rr.13) 

where Ioc is the moment of inertia of the shell element. 

Equation (II.13) exhibits the inclusion of inplane (axial 

and tangential) inertias and rotary inertia of the shell 

in addition to the radial inertia. 

II.11 STRINGER KINETIC ENERGY 

By considering an element of a 'stringer, the total 

kinetic energy of the 2Ls stringers (subscript s) treated 

as discrete elements (superscript D) can be written, in 

terms of the axial, circumferential and radial displace­

ments (u', v', w') as 

T (D) = 1-
s 

- (Ir.14) 

where ~si is the mass density of the material of the ith 

stringer. 

On using equations (II.1) and integrating with respect 

to' z, equation (II.14) can be expressed in terms of the 

shell middle surface displacements (u , v , w) as 
2L L 

T (D) = 1- ~S S[ 0 .A . 5(ou)2+(dV)2+( ~)2} 
s i=l 0 'Sl. Sl.tat at d t 

C) - {au d
2

W av a
2

w l 
- 2l siAsi zsi at ox~t + ~ ayatS 

f Cl 2w 2 clw 2} \ 
+ ~siIosi l(dX;)t) +(aYdt) J dx (rr.15) 

. where Iosi is the'moment of inertia of the ith stringer 



cross-sectional area about an axis in the middle surface 

of the shell. Equation ttI.15) exhibits the inclusion of 

'inplane (axial and tangential) and rotary inertia of the 

~ringer, in addition to the radial inertia. 

If the stringer effects are smeared (superscript s) 

over the circumference, equation (11.15) reduces to the 

form L 27fR 
T (S) ; t J S [ ~sAs{(~)2+( ~v)2+('?JW)2} ,s o d .. t at at 

2:~sAs 
- {(}u clw dV a2

w } 
d Zs c)t Cl xu t, + Cl t ., ye> t 

'~sIos { (}2w 2 i}
2

w 2} J dxdy (11.16) + d «)xat) + (ay~t) 

11.12 RING KINETIC ENERGY 

By considering an element of a ring and proceeding 
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.in a manner similar to that for the stringers, the total 

kinetic energy of the (Kr +1) rings (subscript r), considered 

as discrete elements (superscript D) can be written in 

terms of shell middle surface displacements, to include 

the effects of inplane and rotary inertias as 
K 2TTR 

T/D) = t t 5 [~rjArj{(:~)2~(~t)2+(~~)2} 
j-O 0 

, 2 2 
o - f dU d w ClV Cl W} 

21rjArjZrj\"Clt <lx'at + at oyClt 

~ iw 2 i)
2

w 2} J 
+VrjIorj 1. (dxot) +(ayat) dy (II.17) 

If the ring effects are smeared (superscript S) over 

the length of the shell, equation (11.17) reduces to the 

form 2nR L 
T (S) = t J J [ q(r { (0 u) 2 + (ilv) 2 + ('dw) 2} r 

~ at at 0 0 
2 Cl \~ 

axat 
aV iw} 

lat ayat 

2 
(a w )2}] d d ayat x y (II .18) + 
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II.13 FUNCTIONS REPRESENTING'THE MODE SHAPES 

The integrations with respect to x and y canre 

performed in the foregoing equations only when the vibrat­

ion forms for the displacements (u,v,w) have been assumed. 

Displacements which satisfy the simple support bound­

ary conditions at both ends of the shell (x = 0 and x = L) 

are taken as 

u = u cos ffi/TX 
r;- cos ~y sin wt 

v = v sin mtrx 
sin ~y, sin r.vt ( II.19) r;-

w w sin mTIX ~ sinwt = r;- cos R 

where (u,v,w)are the modal amplitudes, U) is the circular 

frequency of harmonic oscillation, m is the number of axial 

half waves and n is the number of circumferential full 

waves. The integers m and n define the nodal petterns of 

the shell. 

The tangential and radial.displacements (v and w) are 

zero and the axial force and moment are zero at both ends 

of the shell with this particular choice of modal functions. 

For the discrete stiffener 

located at positions determined 

case, the 2L . stringers are s . 
by 

= i '= 1,2, ••••• 2L 
. s 

(II. 20) 

and the (Kr +l) rings at positions determined by 

Xj . 

L=~ j = 0,1,2, •••• Kr 
(II.21) 

The appropriate co-ordinate system is shown in Fig. l(c). 

Thus, the functions representing the displacements 

.corresponding to discrete stringers are evaluated by means 

of equatiOns (II-19) at y = Yi as 

u = (u)y=y., v = (v)y=y., w = 
~ ~ 

= 

(w) i y=y. 

. i=1,2, •• 2Ls 

. j - (II.22) 



and those corresponding to discre~e rings at x ; Xj as 

u = ('~)x~x., v = (v)x=x.' w = (w)x = x 
] ] 

( ~w) (aw) j;1, 2, •• i<r rx ; iJ x x;x. 
] 

- (II.23) 

for the discrete stiffener case, this type of 

stiffen"er distribution has the advantage that i) their 

axial and radial displacements are zero when the circum­

ferential ·nodes are a multipl~ of the number of stringers 

and ii) their circumferential and radial displacements 
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are zero when the axial nodes are a multiple of the number 

of rings. Simple support boundary conditions are satis­

fied by this choice of stiffener distribution. 

For the smeared stiffener case, equations (11.19) are 

used for the displacements occuring in the strain and 

kinetic energy expressions for the shell and for the 

stiffeners. 

II.14 DERIVATION OF THE FREQUENCY EQUATION FOR~E 

DISCRETE STIFFENER CASE 

For the composite structure consisting of the shell 

and the stiffeners, the total strain and kinetic energy 

are given by 

U(D) u(D) (0 ) 
= Uc + + Ur max max max s max 

T(D) = Tc + T (D) + T(D) 
max max s max r max 

(II.24) 

where the relevant expressions are given in appendix 1. 

Equating the maximum strain and kinetic energies 

yields an equation for ~2 The Rayleigh-Ritz condition 

applied in the form 
~( ... 2) ()((o)2) 

= = o (II.25) 
Cl U d v 

leads to three characteristic equations for the frequency. 

This can be·written in matrix form as 

(II.26) 



where {Ci} is the column vector of modal amplitudes 

(u, v, w) and, ~ is the frequency factor defined as 

~cR2 (1- J)~2 
!:,.= 

E 
(Ir. 27) 

The expressions for the matrix elements (Ai~~ Bi~» are 

given in ,appendix 2& The finite trigonometric sums 

involved in these expressions can be replaced by their 

equivalent values (see appendix 3). 
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II.15 DERIVATION OF THE FREQUENCY EQUATION FOR THE S~ffiARED 

STIFFENER CASE 

When the stiffeners are smeared over the surface of the 

shell, the finite sums are replaced by the values of the 

appropriate integrals (see appendix 3). The corresponding 

frequency equation is 

= o (II.28) 

The. matrix element's are defined in appendix 4. If the 

inplane and rotary inertias are neglected, it can be shown 

that equation (II.28) reduces exactly to equation (42) of 

Ref. (A29 and to eqn. (2.3) of Ref. (34) with certain 

modifications':' 

II.16 DISCUSSION OF THE FREQUENCY EQUATIONS 

The frequencies can be obtained from the characteristic 

equations (II.26) and (II.28) by setting the determinant 

of the matrix to zero. The determinant, when expanded, 

leads to the following cubic equation in the frequency 
.. 

factor A ~ 

/:,3 _ K
2

},,2 + K/~ - K o = o (II. 29) 

where the coefficients Ko' K1 , K2 are functions of the 

matrix elements (Aij , Bij ). In turn, these elements are 

functions of many parameters such as thickness ratio (h/R), 

stiffener areas (As, Ar ), number of axial and circumferent­

ial waves (2m"n), Poisson's ratio v, density ratios 

*Ref. 34 is based directly on Goldenveiser's equilibrium 

equations whereas Ref. A29 has used an energy approach. 
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For a specific set of values of these parameters, it 

is found that the cubic equation (29) yields three real, 

distinct and positive values for ~ and consequently three 

frequencies are obtained. These three frequencies corres­

pond essentially to axial, circumferential and radial 

vibrations, with the radial frequency much lower than the 

other two. 
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If the inplane (longitudinal and tangential) inertias 

are neglected, the frequency equation will be linear. 

Consequently, only one value for the frequency is obtained 

for each value of m and n. This eigenvalue is an approxi­

mation to the lowest of the three frequencies just mentioned. 

• The effects of eccentricity of stiffeners are reflected 

in the terms involving zr' zs. 

II.17 DISCUSSION OF NUMERICAL RESULTS AND COMPARISON WITH 

EXISTING EXPERIMENTAL AND THEORETICAL RESULTS 

In order to investigate the effects of inplane and 

rotary inertias as well as discrete and smeared stiffening 

on the natural frequencies of stiffened shells, calculat­

ions were performed for three shell geometries for which 

experimental and/or theoretical results were already avail­

able. Their properties are given in Table 4. 

Table 5 gives the comparison between the results 

obtained for the unstiffened shell analysed by Voss in 

Ref. 35, i) by the present analysis with and without 

various inertia terms, ii) the analysis of Voss neglecting 

inplane inertia terms and iii) results of Voss. Inplane 

inertias can have more significant effects as compared to 

rotary inertia. 

Table 6 gives the comparison of minimum frequencies for 

an eccentrically stiffened shell (of Ref. A28) with various 

stiffening configurations. Eccentricity alters the fre­

quencies considerably. Of all the possible configurations 

studied, internal rings yield a much higher frequency 

compared to the others. The influence of inplane and 



rotary inertias seems to be more significant for stiffened 

shells than for unstiffened shells. Fig. 34 illustrates 
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the influence' of stiffener configuration. The frequency 

spectrum is given in Fig. 35 for the shell with a particular 

stiffener configuration to illustrate the influence of 

inplane and rotary inertia for various values of n. 

Stringers, when attached internally or symmetrically 

yield frequencies which are lower than the corresponding 

unstiffened shell, probably because the stringer contri­

bution to the kinetic energy is greater than its contribut­

ion b the strain energy for low values of m. With larger 

values of m, however, increa~ of stiffness prevails over 

that of mass, resulting in higher frequencies, as shown in 

references A22 and A30. Also included in Table 6 are the 

minimum frequencies of the shell when stiffeners are treat­

ed as discrete elements. These results sho"l very good 

agreement Ioli th those for smeared stifiEners. 

Table 7 gives the comparison of frequencies of the 

shell with four internal stringers analysed by Egle and 

Sewall in Reference A22, by Schnell and Heinrichbeuer in 

Reference A30 and by the present analysis, for increasing 

values of n: The results from the present analysis are 

somewhat lower than those of Egle and Sewall. This is 

probably due to the fact that the inplane inertias were neg­

lected in the numerical calculations presented in Ref. A22. 

Surprisingly, there is very good agreement whether the 

stringers, even when they are few in number, are treated as 

smeared or discrete, particularly for the minimum frequency. 

T,hus the assumption of discrete stiffening seems to have 

little advantage over smeared stiffening whether the stiff­

eners are densely spaced or sparsely spaced. In fact the 

frequencies by smeared and discrete analyses are identical 

for odd values of n while there is only a small difference 

for even values of n. This phenomenon can be explained as 

follows. 

Taking the particular shell under consideration for 

illustration, ,we see that the spacing with four stringers 

'" C.OWl.PClfo...bl€ re'Sl.Al~ a.re 3l':'Q.V\ to'(' "'eo f::.Cl.\A,i\e A'\-..el\ v,:,dt... bo .Q:lt~e:m(:\.l 

sl:-nV'\.~~'Cs \.", To..ble S. 
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Hence the integrals for the smeared case 

which appear in appendix 3 have the value 2 for all values 

of n and are independent of the radius while the summations 

for the discrete case have the following values. 

2Ls 

2. cos2 

i=l 

2Ls 

~ 

i=l 

(2i-l)n lT 

2Ls 

2L 

"t 
i=l 

= Dj 

2L 
s 2 2 ,sin 

i=l 

(2i-l)nlT 
2Ls = 

( 2i-l)nTl 
. 2Ls 

(2i-l)nTI 
2Ls 

2, for n=1,3,5,7 •• 

= 4 for n=2,6,10 •. 

= 0 for n=4,8,12, •. 

Consequently, the frequency spectrum, which is smooth in 

the smeared' c1i.se; has a slight vlavy appearance' if' the' 

stringers are treated as discrete elements. This is illus­

trated in Fig. 36. 

11.18 CONCLUSIONS 

A simple analysis has been presented for determining 

the natural frequencies of vibration of stiffened cylindri­

cal shells. A one term solution, with a proper choice of 

stiffener distribution and including inplane and rotary 

inertia terms yields results which are in good agreement 

with existing more complicated analyses and experimental 

data. Numerical results show that inplane and rotary 

inertias can have significant effect on the frequencies. 

The efficacy of i) stiffener configuration, ii) treating 

stiffeners as discrete or smeared and iii) omission or 

inclusion of any particular term can be easily studied by 

means of a single computer programme. 
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CHAPTER III 

VIBRATION ANALYSIS - EXPERIMENT 

Summary 

Experimental vibration analysis has been performed 

on unstiffened, and stringer stiffened circular cylindrical 

shells which are simply-supported at both the ends. The 

experimental results are compared with an analysis which 

utilises the modes of the unst~ffened shell in a Rayleigh­

Ritz solution to the problem. Good agreement was found 

between theoretically predicted results and experimental 

results for the shells tested. 

111.1 INTRODUCTION 

An experimental rig was designed and built to determine 

the modes and frequencies of unstiffened and stringer 

stiffened circular cylindrical shells. The apparatus con­

sists of a shell fixture, an excitation system and a shell 

modal pattern sensing system. The details of design and 

instrumentation are described below and can be seen in 

Figs. 37 - 39 •. 

111.2 CONSTRUCTION OF THE SHELLS 

It would be ideal to have a seamless shell machined out 

of a tubular stock material. But, for the type of geometries 

that it was intended should be tested, it would be almost 

impossible to construct shells this way. Hence, a success­

ful attempt was made to fabricate circular cylindrical shells 

from commercially available aluminium sheets. These sheets 

can be obtained \~i th very good tolerance on the thickness 

distribution over the entire sheet. Thesheet is rolled into 

the desired form and joined by one or two seams along a 

generatrix of the shell. Shells of any desired length/radius 

ratio can be easily and inexpensively 'made by this process. 

The seams can be joined either by seam or spot welding 

or with a strong .. adhesive. Either type of welded seam has 

the disadvantage of leaving the joint non-uniform and 
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can produce localised discontinuities of shape or stiffness 

and hence th~ seams vlere joined using adhesives. There 

is still some discontinuity effect due to the seams but 

these are considered to be minimal. 

Stiffeners of rectangular section have been added to 

the shell by bonding stripsof the same material on to the 

shell at equal intervals. Eccentricity of the stiffeners 

can be varied by adding additional layers of strips to the 

stiffeners. 

III.3 END SUPPORT CONDITIONS 

The object here has been to simulate the simple­

support end conditions in accordance with the theoretical 

assumptions. Each end of the shell was provided with a 

smooth fitting, light aluminium plate accurately machined to 

fit the bore of the cylinder and shaped to provide as 

near as possible line contact with· the inner surface of 

th~ shell. Slackness of fit in the end plates was found 

to produce inconsistent results and when this occurred 

sui table packing was introduced. 

Some cut-outs were introduced into the end plates as 

shown in Figure 37 to give access to instrumentation 

inside the shell and reduce the weight of the end plates. 

The cylinder, with the end-plates in place vias supported 

between centres by a central shaft so that it could freely 

be rotated. and the shaft is mounted on stanchions resting on 

a solid. base. Various lengths of the shell can be 

accommodated by adjusting the distance between the stanchions. 

An air bearing was provided between the endplate and the 

central shaft to reduce any inherent restraint against 

longitudinal motion of the shell due to friction in the end 

supports. 

III~4 MODEL EXCITATION DEVICE 

Initially, an oscillator, amplifier and loud speakers 

were used as the input power source to excite the shell. 

This was thought to have the advantage that the excitation 
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system was non-contacting but the instrumentation 

output signals were swamped by the excessive noise gener­

ated by the speakers. This difficulty was overcome by 

substituting for the loud speakers an electromechanical 

shaker. The shaker was suspended on rubber chords to 

excite the shell radially by action/reaction and to reduce 

the inertia introduced by the shaker armature. The shaker 

was allowed to rest against the shell and, in this configur­

ation it was tound that a more uniform vibration pattern 

was produced with all the "anti-nodes vibrating at near-equal 

amplitude. The shaker is powered by an oscillator and 

amplifier. The oscillator is a precision decade oscillator 

(Muirhead-Wigan type D-890-A Decade Oscillator) which can 

be varied in O.lHz steps making the detection of resonances 

more accurate. The amplifier used has a 50 watt output which 

""directly powers the shaker. 

III.5 INSTRUMENTATION 

An instrumentation set up was developed to detect 

the nodal patterns and frequencies and record them in a 

suitable form (Pig. 38). " 

The sensors used for the purpose could be contacting 

or non-contacting types. The former type very often 

influences the nodal preference and hence the non­

contacting type sensors were preferred. Two types of 

transducers have been tried, viz. i) Capacity probes and 

ii) pressure transducers and the comments on their behaviour 

are recorded below. In the first instance the vibration 

was measured with a Wayne Kerr vibration meter which is a 

capacity-type transducer. It was found on application 

that due to the slight non-cirCUlarity of the shell the 

distance of the probe head from the shell surface exceeded 

the maximumalowable range. The results obtained were 

inaccurate and hence their use was abandoned. 

Next, a" pressure transducer was tried. A Kistler 

differential transducer was fitted inside the shell to scan 

the shell surface axially and circumferentially. But, due 



56. 

to the excessive noise generated by the acoustic exciters 

used with it" the recorded nodal patterns were swamped 

by the input signals. 

Finally a successful attempt has been made to detect 

the resonances by scanning the inside of the shell with a 

microphone mounted in a perspex holder. (Fig. 39) 

The block diagram of the resonance detection and 

excitation system is shown in Fig. 40. 

The microphone (Acos MIC 43-3) was used in preference 

to the Kistler because of its small size, cheapness and 

availability. The inlet to the microphone to detect the 

pressure variations due to the vibration of the shell wall 

is via a 1" long, i" diameter base steel tube, this tube is 

to confine to a small area that portion of the shell being 

monitored. The electric output from the microphone is fed 

to the input of the wave analyser via a screened cable. 

The Nuirhead wave analyser, filters the input at the 

excitation frequency and, by careful tuning the exact 

vibration frequency can be verified. The instrument is 

fitted with a pair of output terminals which monitor the 

filtered signal. This output has a maximum peak to peak 

value of 8v. An attenuating network has been added to 

reduce the signal to one tenth of its intial value to 

produce a signal suitable for feeding into the AC-DC 

converter. The converter used is a Dawe Engine Roughness 

measuring instrument which takes the AC signal and converts 

to a DC voltage which is proportional to the peak to peak 

value of the input signal. The instrument in normal use 

displays the output on a meter but it has been modified 

so that theoutput is brought to and monitored on a Sanborn , 

two-channel chart recorder. A typical recording is shown 

in Fig. 41. 

III.6 SCANNING SYSTEM 

The microphone is attached to an arm which is mounted 

on the central shaft. The arm is capable of axial and 

circumferential scan. The axial traverse is by means of a 



lead screw and nut. The lead, screw is capable of being 

rotated by a small motor which acts as an actuator and 
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the arm can be driven in either direction by a push button 

and a direction switch. The circumferential scan is driven 

by a 1/15 horsepower electric motor through a stepped belt. 

On depressing the scan-initiate button the microphone will 

scan 360 0 and then stop. On redepressing it will scan 

3600 in the other direction, the change in direction being 

to avoid winding up the microphone lead. 

III.7 GENERAL TEST PROCEDURE 

The clarity of the mode shapes is affected by the 

position of the shaker. Best results are usually obtained 

when the shaker is positioned in the centre of the shell, on 

the seam to detect the circumferential modes corresponding 

to m = 1. Thecircumferential scan for the m=2 modes were best 

excited by placing the shaker roughly a quarter of the way 

along the shell. Similarly, the shaker is positioned at a 

point of maximum amplitude, corresponding to the higher 

m modes. 

Having placed the shaker in a suitable position all the 

instruments are switched on and one of the limit switches 

is closed in order to energise one of the relays. The 

microphone is adjusted to be as close as possible to the shell 

wall suCh that it does not touch the shell during a circum­

ferential scan. 

Starting with the lowest predicted frequency, the 

oscillator is adjusted in steps of 10Hz until a response 

is produced from the shell. The oscillator is then adjusted 

to produce a maximum amplitude on the oscilloscope. At 

each step, the output from the microphone which is monitored 

through the wave analyser is adjusted to the frequency 

giving the maximum amplitude and the resonant frequency. A 

scan is then eken, the frequency and any mode shape inform­

ation produced noted on the chart record. The frequency 

is then increa'sed until the next resonant mode is encountered 

and so on. When all the detectable'm=l modes had been 
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accounted for, the shaker was moved and as many of the 

m=2 modes found as possible. 

III.8 RESULTS AND CONCLUSIONS 

The experimental results are compared with theory in 

Tables 9 to 14. The response of each mode is described as 

very good, good, moderate, poor and inconclusive. In terms 

of the apparatus these mean as follows: 

Very good response:, Clearly defined peak of amplitudes. 

Good response: 

Moderate response: 

Poor response: 

Inconclusive: 

The trace has mainly regular peaks. 

Easily detectable peak 'of amplitude, 

few irregularities in the trace 

present. 

Low amplitude or peak hard to find, 

possibility of nodes missing from the 

trace. 

Amplitude almost nil or no definite 

peak, irregular trace with nodes' missing. 

Almost completely swamped by another 

mode or almost nil amplitude, many 

nodes missing from the trace, could be 

a different mode from that specified. 

The most successful shell was made of 0.052"thick aluminium 

sheets, 28" long, 28" diameter. For a stringer-stiffened 

shell 0.25'" wide strips were cut from the same sheet and 

bonded to the shell to form 12 equal stringers. 

Good agreement has been shown, in general, between the 

experimental results and theoretical predictions. The 

detection of high circumferential resonances is possible due 

to the low vibration amplitudes. Modes with a few circum­

ferential nodes cannot be detected with the present vibrator 

as it appears that the shell cannot be excited sufficiently. 

A good representation has been achieved for excitation 

frequencies between approximately 100 to 1000Hz which 

encompasses n ,numbers between about 8 and 20. 

It has not been possible to detect the axial modes 



corresponding to m>2 probably because they were beyond 

the scope of the equipment. 
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For the'case of shells stiffened with external stringers 

very good response was achieved when the number of nodes 

was a multiple of the number of stringers. 



CHAPTER IV 

GENERALISED AERODYNAMIC FORCES 

Summary 

The aerodynamic generalised forces based on the most 

commonly used form of linear piston theory expression 

and the exact potential flow solutions are examined 

for a harmonically oscillating circular cylindrical shell, 

with a view to adapt them in the formulation of the flutter 

equations in terms of the invacuo-natural frequencies corres­

ponding to the assumed modes for a multi-degree of freedom 

system. 

IV.l GENERAL 

In the assumed mode approach to the flutter problem 

the aerodynamic quantities directly involved in the flutter 

equations are the generalised forces and not the correspond­

ing pressure distributions themselves. 

A considerable economy of effort may be accomplished 

by dealing directly with the generalised forces, particularly 

when using the exact potential flow solution. The general 

aerodynamic assumptions have already been discussed in the 

literature survey. 

IV.2 LINEAR· PISTON THEORY APPROXIMATION 

Piston theory was introduced into supersonic aero­

elastic analyses by Ashley and Zartarian as a handy tool 

in 1956 (Ref. 10). The term piston theory as used here, 

refers to any method of calculating the supersonic aero­

dynamic loads on surfaces in which the local pressure 

generated by the body's motion is related to the local 

normal component of fluid velocity in the same way that 

these quantities are related to the face of a piston 

moving in a one-dimensional channel. The expression for 

the pressure difference (between the instantaneous pressure 

and the pressure at infinity) can be written as 

(IV.l) 



where w is the normal (radial) deflection, 

the sUbstantial derivative of a 

d 
«)t + 
fluid 

u 2....) 
~x 

particle represents 

·in unsteady motion in the linearised form and U is the 

free stream velocity. 

In general it is believed that linear piston theory 

may be employed for large flight Mach numbers or high 
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reduced frequencies of unsteady motion, whenever the sur­

face involved is plane or nearly plane and not inclined too 

sharply to the flow. Linear piston theory has been 'tJidely 

used with success in supersonic plane panel flutter analysis. 

Because of the previous lack of appropriate simple expres­

sions for the aerodynamic pressures on a vibrating shell, 

it has also been used in the flutter analysis of such cylin­

drical shells. 

The non-dimensional aerodynamic generalised forces 

are defined, in the usual way, as, 

1 
Q - "ou2 mr- l Sf (IV.2) 

s 

where 
x 

Pmn is the aerodynamic pressure due to a deflection 
Amx 

n9j/- sin ~ Wmn (L' 9) = cos 

and .Am = m~R • This deflection 

assumed flutter mode of a simply 

shell (see Eqn. I.1~· 

(IV.3) 

Wmn corresponds to the 

supported cylindrical 

Phsyically, a generalised force ~r equals the work 

that would be done by a pressure field Pmn per unit 

deflectbn, wrn -

If equations (IV.1) and (IV.3) are used in (IV.2) and 

integrated over the surface of the cylinder, the non­

dimensional aerodynamic generalised forces corresponding to 

linear piston theory are obtained as 

and 

Q 
mr 

~m 
where M 
k = .tlL 

IT 

1 
= M for m;lr 

(IV.4) 

= 

u. 
= -- is the free stream Mach number and a 
is tRe non-dimensional frequency p·arameter. 



IV.3 EXACT POTENTIAL FLOW SOLUTION 

Randall (Ref. 19) has developed an exact solution to 

the steady potential flO\-J equation in terms of Laplace 

transformation. The solution is based on the linearised 

small perturbation theory of supersonic flow and involves 

Bessel functions of imaginary arguments to be evaluated 

numerically. Holt and Str·c.ck (Ref. 40) have suggested an 

extension of this method to obtain the pressures on an 

. oscillating cylindrical shell and derived the general sol­

ution to the problem. Dowell (Ref. 98) and Davies (Ref. 

137) have gone a stage further to determine' the aerodynamic 

generalised forces using the exact solution. The approach 

of Dowell (Ref. 98) has been adopted here as it leads 

directly to the formulation of the shell flutter equations 

and is explained below. 

The cylindrical shell of length L and radius R is 

assumed to be performing small oscillations around its mean 

position in the presence of an external supersonic potential 

flow field parallel to its axis. The radial component of 

the shell defle~tion is denoted by w(x, G, t) and the radial 

co-ordinate of a point on its middle surface is given by 

r = R + w (x, G, t) (IV. 5) 

The perturbation velocity potential ~ induced by the 

shell deformation satisfies the differential equation 

2 
V <t 1 - a: = 0 (IV.6) 

The problem is to solve this equation subject to the follow­

ing boundary conditions: i) the normal component of velocity 

should vanish everywhere on the cylinder surface. 

i.e. 
a<l> [l:::! U l:::! J for 0 L (ar) r=R = + <x<:. 

dt eX 
(IV.7) 

= 0 for x< 0 

ii) the appropriate conditions at infinity should be satis-

fied that a) the fluid is undisturbed at an infinite 

distance from the shell ( </> .... 0 as r....;.."" forx>O) and b) the 



disturbance is only confined to the Mach cone at any given 

point (cb= 0 for x~ 0) • 

The radial displacement wand the potential function 

6~ • 

~ (so also the corresponding aerodynamic pressure p) are 

assumed to have periodic variation with time and it is assumed 

that the circumferential (n) modes are decoupled from the 

axial modes (m). With these assumptions the follo~ling 

equations can be written: 

w(x,G, t) = W(x)cosnG eiJl.t } 

~(x,r,G,t) = m(x,r)cosn9' eiJl.t 

p(x,~,t) = P(x)cosnG e iftt 
(IV.B) 

The differential equation (IV.6) and the boundary condit­

ions (IV.7) now become 

1 
r 

ilm 
ar 

2 -nai.,. ilai 
ax + U

2 
d

2mJ = 0 

tlx2 

= U ~W(x) + i~W(x) 
Cl x for 

(IV.9) 

0",x"'L1 

o for x"'O 
j (IV .10) 

By using the Laplace transform with respect to the 

stream~lise variable x, the above equations can be solved 

RU 
L 

(IV.11) 

where Kn is the modified Bessel function of order nand 

K ' its derivative, with the complex argument ~ given by 
n 

~2 = 

The aerodynamic 

Bernoulli~ equation. 

from equation (IV.2) 

..AL and k = -­
U 

(IV.12) 

pressure is determined 

The generalised force 

which for this case is 

from m using 

is determined 

(IV.13 ) 

-i<>o 

where the function Gmr(s) represents the influence of 

coupling between the axial modes m and r. If sinusoidal 
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axial modes (eqn. IV.3) are assumed for the cylinder 

deflection, closed form expressions are 

function Gmr(s) depending on whether or 

equal (Ref.98). 

i) 'If m = 

ii) If m I-r 

available for the 

not m and rare 

Gmr(s) = (s+ik)2 rm { -1 [l_(_l)re sJ 
r2_m2 (nil 2+s2 

+ (-1) 2 ~1- -1 e + [l_(_l)m+Y 1 ~m 2 
m+rr ( )m sJ 

(m") +s - i -m 

The integral (IV.13) has been evaluated around the 

contour shown in Fig., 42. By taking the contributions to 

the integral along the various branches of the contour it 

can be shown that itreduces to the form: 

R 
- (L) 

So 

+ S 
si 

s2 

Gmr 

, in 

j [ Kn (re ) Kn(r) 
ds 

rei7f K
n

,'(reh ) '( Kn' (r) 

_i1T 
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+ J Gmr 
l Kn(re ) 

-in K '( -in) 
Kn (r> ~ 

rKn'(r) dS} (IV.1S) 

So 
re n re_ 

where r is the modulus of S, ~, are the zeros of K 'Cs) and ,J n 
the corresponding Sj are determined by solving equation 

(IV.12): -ikM2 l~~(L/R)2(M2_1)_k2M~ t 
Sj = M2 -1 + M2_1 

Randall (Ref. 19) has tabulated the (j for n=l - 10 and 

Dzygadlo (Ref. 139) has extended thisup to 25. The 

function Kn'(~) has all its zeros ta the left of the imagin­

ary axis and the number of zeos is the nearest even integer 

to (n+t). Thus, Ko'(~) has no zero, K1 '(s) and K2'(~) each 

have two zeros, K3'(~) and K4 '(() each have four zeros, and 



so on. These zeros are reproduced in Table 15 for n=l 

,to 25. 

It is a fairly straight forward procedure to compute 

the various terms of equation (IV.16) and hence the aero­

dynamic generalised forces. 

IV.4 NUMERICAL RESULTS AND CONCLUSIONS 
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Numerical results have been obtained for various 

values of the cylindrical shell and flow parameters. The 

gen~ralised forces using exact aerodynamic ,theory are 

functions of six parameters (M, k, L/R, n, m, r), whereas 

the linear piston theory generalised forces are only funct­

ions of four parameters (M, k, m, r). In other words the 

latter are independent of the circumferential wave number 

(n) and the length to radius ratio (L/R). The comparisons 

are listed in Tables 16 to 20 to cover a wide range of 

the parameters involved. It is very difficult .to give a 

general realistic comparison 'between the two theories. In 

fact, according to the linear piston theory expressions 

(Equations IV.4) when the axial coupling between the 

'modes m and r are equal, Qmm is a purely imaginary quantity; 

it is only a function of the two parameters M and k; it 

is always positive and is independent of the axial modes. 

When m is differemt from r, Qmr is a function of three 

parameters (m, r, M); it is invariant with the frequency 

parameter k; it is purely real and is non-zero only if 

Wn+r) is odd. These are not so in general for the exact 

generalised forces. Looking at Tables 16 to 20, bearing all 

the foregoing remarks in mind suggests that linear piston 

theory can be expected to be a reasonable approximation 

only for short shells vibrating with large number of 

circumferential modes. 



CHAPTER V 

FLUTTER ANALYSIS 

Summary 

The flutter problem of a simply-supported circular 

cylindrical shell oscillating harmonically in supersonic 

flow is formulated in terms c£ the invacuo-natural frequency 

factors of the shell and the aerodynamic generalised forces 

for a multi-degree of freedom system in the assumed modes. 

The problem is ultimately reduced to a complex eigenvalue 

problem and programmed for digital computer solution, via 

the well-known "U-g method". Flutter boundaries are 

obtained for unstiffened and stringer stiffened shells using 

linear piston theory for a two mode solution. These 

results are compared with the higher order solutions up to 

ten to assess the convergence of the two-mode solution. 

Results using the exact aerodynamic theory have also been 

obtained for specific cases and convergence of the solutions 

established. A range of i) shell geometries (i.e. L/R and 

h/R ratios), ii) eccentricities (in the case of stringer­

stiffened shells), iii) circumferential modal patterns; 

have been considered. 

V.l GENERAL FORM OF THE AEROELASTIC EQUATIONS 

The most general form of aeroelastic equations of 

dynamical systems (in the absence of external forces) can be 

expressed (Ref. A35) symbolically by equating the elastic 

force (~) to the aerodynamic (A) and inertia (I) forces in 

terms of the generalised displacements q. 

:S(q) = A(q) + I(q) (V. 1) 

The term generalised displacement is used because-the 

co-ordinates used to describe the system analytically 

need not necessarily have the dimensions of length; some 

of them may be angles or even quantities with no direct 

observable physical significance at aD. 

The flutt.er problem is to solve the equation (V.l) and 

determine the conditions of sustained self-excited oscillat­

ions of constant amplitude in the presence of an external 
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supersonic flow field. 

If A(q) = 0, the problem reduces to that of determining 

the invacuo-natural vibration characteristics of the structure. 

For a majority of applications to flight vehicle 

structures it may not be possible to solve equation (V.l) 

exactly and hence various approximate numerical solutions 

have been developed. Most of the approximate methods can be 

broadly divided into two steps: first the space configuration 

of the deformed structure, which is actually an infinite 

degree of freedom system, is approximated by an equivalent 

system with finite degrees of freedom. The equations of the 

continuous system are thus reduced to systems simultaneous 

equations. The second step is to solve the simultaneous 

equations and determine the critical parameters of the 

problem. 

One of the most commonly accepted ways of deriving the 

flutter equations of a structure is the Rayleigh-Ritz or the 

Galerkin method in which the deformed shape of the structure is 

assumed to consist of a superposition of a finite number of 

pre-assigned mode shapes. The prescribed displacement 

boundary conditions of the structure must be satisfied by 

these mode shapes. The displacements of the structure 

(u,v,w) can then be expressed in terms of the assumed mode 

shapes and the generalised co-ordinates q, (which are as 

many in number as the desired degrees of freedom). In some 

cases it may be possible to describe the displacement funct­

ions as the natural mode shapes which satisfy the boundary 

conditions exactly. In such cases the natural mode shapes 

are orthogonal functions and the generalised co-ordinates 

are the same as the normal co-ordinates. The term normal 

co-ordinate implies a co-ordinate which expresses the dis­

placement in a natural mode of motion. 

By writing the expressions for kinetic andpotential 

energies of the system and applying Lagrange's equations the 

aeroelastic equations are derived. 
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V.2 FLUTTER EQUATIONS FOR A CYLINDRICAL SHELL 

The circular cylindrical shells considered here have 

simple-support end conditions and hence the displacement 

functions in a given mode can be conveniently chosen as the 

natural mode shapes appropriate to unstiffened circular 

cylindrical shells. 

Umn 
miTX cosn\:l umn = cos -y-

vmn = vmn sin 
miTx sinnQ 

L 
(V. 2) 

wmn = wmn sin mrrx cosnQ --r:-

The expressions 

in terms of the 

u = 2: umnqmn' 

for the displacements (u,v,w) can be written 

m 

normal co-ordinates qmn as . 

v = 2, vmnqmn' w = 2:. wmnqmn 
m m 

(V. 3) 

There are as many terms in these equations as the number of 

axial modes (degrees of freedom) chosen, since the axial 

(m) and circumferential (n) motions are assumed decoupled 

and a particular value of n is chosen for investigation. 

The general expressions for the kinetic and potential 

energy can be written for an unstiffened shell as 

T = t 2:: M~n <'!~n 
m 

Jc " M'~ 2 2· U = < G mn qmn ~mn 
m 

(V.4) 

where Mmn = 5 Cti~n + v~n + w~n) 0- ds is the generalised 
s 

mass, wmn is the invacuo-natural frequency of the shell in 

the mode (m,n) and 0- is the mass per unit area of the shell 

surface s. 

Lagrange's equation is applied in the form 

+ = (V.5) 

where Q~n) is·the mth (dimensional) generalised torce 

(=9oU2Qmr) and equals the work done by the external force 
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field per unit displacement q • In the present applicat-mn 
ion the external force field consists of the aerodynamic 

pressures acting on the surface of the vibrating cylinder 

and is equal to the sum of the pressures induced by eamof 

the individual axial modes assumed. 

Hence 
-(n) Qm = 

m' 

S Le p) 1 + ( p-) 2+· •• + ( p) m ,] WmnClS = L 
s r=l 

(V.6) 

where ( P)l' ( P2) ••• are the pressure distributions 

resulting from the motions w1nq1n' w2nq2n' .••• w~nq~n and m' 

is the maximum number of axial modes chosen (degrees- of 

freedom) • 

Since neutral stability is under investigation, each 

generalised co-ordinate can be assumed to have the form 

qmnei.tlnt and, using equations (V~4, 5', 6), the flutter 

equations for a cylindrical shell can be written as 

= 0 

m=1,2, ••••• m' 

u 2 v 2 
(mn) + ( mn) 

wmn wmn 

(V. 7) 

where Tmn = + 1 

The equations (V.7) are written in terms of wmn implying 

that the radial modes are more predominant, which is usually 

the case. The term Tmn can be considered as a correction to 

the generalised mass which arises due to the coupling of 

the in-plane modes with the predominantly radial mode. 

Equations (V.7) may be written more conveniently in terms 

of the frequency factors 

~2 R2 ~ c ( 1- i) 
..6 mn ( = mn E ) and t1 

. 2 
..Qn 

(= 

in the matrix form as (with Tmn=l), 
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= 0 
• 

(V.H) 

where kl = 2 (1~';) (~) (~) ~ou2 is a non-dimensional aero­

dynamic stiffness ratio parameter and ~r are the non­

dimensional aerodynamic generalised forces defined already. 

By setting the determinant of theoomplex matrix in eqn. (V.B) 

to zero, for a given n, there will be a set of solution 

frequencies equal in number to the number of axial modes 

(m') assumed, each with its associated damping ratio. 

The flutter stability boundary can be fixed by the vanish­

ing of the damping ratio for one of the modes. 

The expressions for the generalised forces appearing 

in equation (V. B)' are given by equation (IV. 4) and (IV.1.5) 

corresponding to a linear piston theory and the exact 

aerodynamic theory respectively. 

For a simply-supported cylindrical shell stiffened by 

an orthogonal set of stringers and rings the in-vacuo-natural 

frequencies can be determined from the expressions given in 

Appendix 4. These are illustrated in a few cases below. 

V.3 NATURAL FREQUENCIES OF VIBRATION OF CYLINDRICAL SHELLS 

a) Unstiffened Shells 

The characteristic determinant to determine the natural 

frequencies of an unstiffened shell, can be derived from 

appendix 4 by setting the terms corresponding to stringers 

and rings to zero, and, only retaining the frequency parameter 

for radial inertias, 
i-I> 2 

).~ + -2 n 

-A v m 

_ 1+11 ~ n 
2 m 

i-V \ 2 2 
-- 1\ +n 2 m 

n 

- >. 'I> 

n = 0 

(V.9) 



which on expansion yields a simple expression for the 

natural 

j 
mn 

as 

6 
mn 

frequency factor 

w2 R2(1-l) 
(= ~c mn ) 

E 

= 

b) stringer-Stiffened Shells 

(V .10) 

7 1. 

The characteristic determinant to determine the 

natural frequencies of a stringer-stiffened shell, neglect­

ing inplane and rotary inertias, and assuming the stringer 

effects to be 'smeared', can be derived from appendix 4 

by setting the terms. corresponding to rings ~o zero, i.e. 

j.2(1_s)+1-V n 2 _(l+V);n -j..lv+·2 ZSs] 
m -2- 2 Am .Am R 

_ (1+))))., n 1-\>>,2 + n2 n = 0 
.2 m 2 m 

_Alv+>-~Z~s] n A33 -(1+fs ),1 

(V .11) 

where 

Z ·4 (2.) 2 -. i + Am s + R 

fs 
mass of strinqers 

';::. ( 
As 

) = of shell hct mass 

'h +h 
and zs = ~,(hs = depth of the stringer) 

The determinant (V.ll) when expanded, yields the explicit 

expression for the frequency factor b~~) as 

(5) 1 h 2 l ·2 2 4 , b s 2' 
/::" mn = 11+f:» 12R2 ("\m+ n )+A m(l-V-lf s (h) 

b 
.,.\2 n22 (1-vlf~ (h

s
)2 .J 

+ m 5 + 
b L 

f 2+ (2.) 4 (h) 2 (2.) 2 
s h R IT 



(V.12) 

V.4 SOLUTION OF THE SHELL FLUTTER EQUATIONS 

The flutter equations (V.8 ) may be looked upon as an 

eigenvalue problem of the form 

(A - 6.I)Q = 0 (V.13) 

where the elements of the matrix A are complex numbers 

composed of generalised inertial, elastic and aerodynamic 

forces, I is the unit matrix, ~ is the eigenvalue and Q 
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is the correspondingeigenvector. In general, the aerody­

namic forces are transcendental functions of the eigenvalue 

itself and hence it may not be possible to solve the eigen­

value problem uniquely. 

However, the problem may be reduced to an algebraic 

eigenvalue problem by calculating the aerodynamic general­

ised forces for constant (assumed) values of Mach number 

Ma and frequency parameter k a • For each pair of values of 

(Ma' k a ), the set of eigenvalues .b. can be predicted by any 

of the available methods (e.g. Ref. A331 _Using the relation 

.1t. nL 
= U 

a predicted Mach 

Physically, 

U number l'Ip (= a-) may be determined. 

flutter condi~ion is reached only if ~ 
is real and positive and Mp is equal to Ma' But, for 

~rbitrarily assumed values of (Ma'. k a ) this is generally 

not the case. Therefore, the generalised aerodynamic 

forces have to be calculated for various assumed pairs of 

values of (Ma' k a ) and the eigenvalue problem is to be 

solved for each pair until a positive real eigenvalue is 

. obtained. In order not to miss a possible flutter case Ma 

and ka have to be varied in small steps involving a large 

number of different matrices and their solutions. This is 

the effect of reducing the original transcendental eigen­

value problem to an algebnic one. 



For arbitrarily assumed values of (Ma,ka ) the real 

part of the eigenvalue determines a predicted frequency 

factor and the ratio of the imaginary part to the real 

part can be thought of as an artificial damping inherent 

in the system, i.e. 

Im (t.) 
gp = Rl (6) (V.14) 
For each of a series of pre-assigned Mach numbers Ma 

the critical speed Mp is determined using one of the standard 

methods such as the U-g method. (Rei. A3 4) • Once this is 

done, a plot of Mp vs Ma can be drawn and the point where 

this curve meets the line Mp = Ma determines the critical 

flutter speed Mf for the geometry under investigation. Also 

then found is the critical value of the flutterrrequency 

parameter k f • 

V.5 CLOSED FORM SOLUTIONS FOR A TWO-t<IODE (BINARY) FLUTTER 

ANALYSIS USING THE LINEAR PISTON TEEORY 

V.5(a) Unstiffened shells 

If the linear piston theory generalised forces 

(equations IV.4) are used with the frequency expression 

( .v .10) in a binary analysis (coupling between the two 

axial modes rand s), the flutter determinant (V.8) can 

easily expand to yield explicit expressions for the flutter 

frequency factor ~F and the flutter Mach number Mf as 

.6F = t [6rn + L\nJ 

r2_s2 E L h r. 2 
MF= ( 4rs ) 2:? (R) (R) L(lIrn- .1sn ) . 

2 ~oao (l-V) 

J a 2(1~i) t,. +A t 
+ 4( ~o) ~o 0 (R)2 ( rn sn~' 

~c E h ~ ~ CV.15) 

with the condition that (r+s) is an odd integer. 

V.5(b) Stringer-stiffened shells 

If the linear piston theory generalised forces (equat­

ions IV.4) are combined with the frequency expression 

(V.12) in a bi'nary analysis, the following expressions are 

obtained for the flutter rrequency factor ~(;) and rlutter 



Mach number ~S) corresponding to a stringer-stiffened 

shell. (The stringer effects are assumed to be smeared 

in this case) 

b (S) = 
,F 

M(S) 
2 2 

( r -s 
4rs ) F = 

lD. (S) + 
rn 

E 

2 ~oao 2 
(1- i) 

4(ro) 
~~ao2(l-;) ~ 

(~) ( + 
~c E 

(L)(h) l(~(S)- 6(S»2 
R R rn sn 

(S) 
+ ",,(S) J t 

i'>rn sn) 
2 

(V.16) 

with the condition that (r+s) is an odd integer. 

V.S(c) Krumhaar Correction. 

If the Krumhaar Correction (Ref. 64) is included in 

the linear 

(I. 7), the 

= 

piston theory expression .as given by equation 

(non-dimensional) generalised forces are 
ik (L) 1 
2M R 4M2 
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(V.17) 

and = 
r Ll for m ! r 

The effect of this correction is to introduce an aerody­

namic stiffness term in the leading diagonal of the flutter 

determinant. In a binary analysis, the inclusion of 

Krumhaar correction leads to the following explicit expres-

sions ror the flutter frequency factor and Mach number. 

h­
F 

A.\ ( 1- ..} ) Doao2 
= (Dr" ~ L,"'} _ (R) \ 

. h 2E 

E 

Il 2 2) 2 ~oao (l-v 

2 2 ~ ao (l-V) R:I..(i~· + b sn o E (n)l-~r~n~2--~ 

The condition. that (r+s) is odd applies. 

(V.l8) 

( l-·i) 
2E 

It is interesting. to note that the correction term is inde-



pendent of M, k and n. 

V.S(d) Divergence Criterion for an Unstiffened Shell 

Resulting from the Krumhaar Correction 

Putting Jl. = 0 in the binary flutter determinant 

including the Krumhaar correction leads to the following 

criterion for the divergence of an unstiffened shell. 

4rs 
s2~2 

a 2 
<?o 0 ) 

2R 

:= 0 , (V.19) 

which on expansion gives the following expression for the 

critical divergence speed: 

Md' J.v 

2 2 ra a 2(1_/) 
(L) (h) (r -s ) . ...:.~.::.o-'-o= __ _ 

R R 4rs L 2E 

(V.20) 
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A single degree of 

obtained by setting any 

determinant (eqn. V.19) 

freedom divergence· criterion may 

of the leading diagonal terms of 

to zero, i.e. 

be 

the 

2 2 
~oao (l-v ) 

2E Llrn (V.21) 

V.6 NUMERICAL RESULTS 

The shell flutter problem has been programmed for 

digital computer solution and numerical results have been 

obtained for'various values of cylindrical shell and flow 

parameters. The follo'o"Jing numerical data (Ref. 71) is 

common to all the shells considered for flutter analysis: 

Material of the shell: Steel, E=2.04.10 4Kg/mm2 

o -6 3 
lCg = 7 .l::!,_ 10 Kg/mm, V = 0.3 



'/6. 
Flight altitude: sea-level, 

Static pressure of undisturbed flow = 
-L 2 

~ = 1.03.10 Kg/mm 
-9 3 

~og = 1.L2S.1U Kg/mm 

Ratio of specific heats = Y = 1.4 

V.6(a) Two Mode (Binary) Flutter Analysis of Unstiffened 

Shells using Linear Piston Theory 

The most critical combination of modes rand s giving 

the lowest 'cri tical Mach n\lmbers was found to be r = 2 and 

s = 1, and accordingly, critical flutter Mach 'numbers have 

been obtained for a range of length to radius (L/R) 

and thickness to radius (h/R) ratios. Fig. 43 shows the 

variation of critical Mach numbers as a function of circum­

ferential mode number n for a particular thickness ratio. 

The pattern of these curves is very similar to the invacuo 
--' -natural frequency spectrum in that the,minimum critical speed 

does not correspond to the minimum circumferential mode 

number suggesting that the asymmetric flutter could be more 

cri1:ical than the axisymmetric flutter. For short shells 

(L/R ...... 2.0) the critical speed may occur at values of n 

higher than 17. For longer shell~, however, the critical 

circumferential mode numbers can be considerably less (as 

loW 'as 4 for L/R ,..... 20). ,The dotted lines correspond to 

the critical Mach numbers obtained by neglecting the 

influence of aerodynamic da~ping. This leads to the con­

clusion that the neglect of aerodynamic damping may in 

certain circumstances lead to very pessimistic results. 

In Fig. 44 the variation of the invacuo-natural fre­

quency factors corresponding to L/R = 2.0, h/R =0.002, 

m = 1,2 is compared with the flutter frequency factor which 

is the arithmetic mean of these two invacuo frequency 

factors (see equation V.1S). The value of n 't correspond-
cr~ 

ing to Mcrit could be very different from that correspond-

ing to ~F (e.g. for L/R = 2.0 Mcrit occurs at ncrit = 17 
while the minimum flutter frequency corresponds to n = 10). 

The effect of increasing the (L/R).is to reduce the value of 



n corresponding to the minimum natural frequency and also 

that corresponding to Mcrit ' The former is illustrated 
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in Fig. 45 for the case m = 1 and h/R = 0.002, and the 

latter is apparent from Table 26. The curves of critical 

Mach numbers as a function of the (h/R) ratio is drawn in 

Fig. 46 for cylinders of various values of (L/R) vibrating. 

at particular circumferential modes. It appears that the 

influence of thickness on the flutter boundary is very 

significant for short shells as compared with very long 

shells. The influence of aeroaynamic damping is again 

apparent. The values of Mcrit and the corresponding ncrit 

are listed in Table 26 for a range of (L/R) and (h/R). 

It was found over a very wide range of L/R, h/R, and n 

the Krumhaar correction did not significantly affect the 

critical Mach numbers or the frequency factors (see equation 

V.18) and hence the results are not presented here. 

It was found also over the same wide range of para­

meters that equation (V •. 20) yields imaginary divergence 

speeds suggesting that divergence may not be possible for a 

cylindrical shell in the supersonic flow field. 

It is to be noted that the single degree of freedom 

divergence criterion (Eqn. V.20) does not yield a critical 

. divergence speed since the aerodynamic stiffness terms 

introduced by the Krumhaar correction in the leading diagonal 

terms of the determinant are independent of the flow para­

meters M and k. Once the shell material and the flight 

altitude are fixed the right side of equation (V.21) varies 

inversely as the thickness ratio (h/R), and is independent 

of m, n, L/R, h/R. The values of (L/R) which yield minimum 

values of ~rn equal to the right hand side of equation (V.21) 

are plotted against (h/R) for steel shells at sea level in 

Fig. 47. This figure may be considered as a tlivergence' 

boundary derived from a single degree of freedom system. 

The corresponding curve for aluminium is also included in 

the same figure. 



V.6(b) Multi-mode Flutter Analysis of Unstiffened Shells 

Using the Linear Pisto'n Theory 

The determination of flutter Mach numbers and flutter 

frequency factors of an unstiffened shell becomes very 

tedious when the number of axial modes is more than two. 
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It is not possible to derive simple explicit expressions 

such as equations (V.1S) applicable to a multi-mode system. 

Hence the indirect procedure described in Section V.4 is 

followed. The flutter Mach number and the flutter frequency 

. factor given by the binary analysis may be used as a useful 

guide to choose the assumed initial values of Ma and ka 

and to reduce the computational labour. 

The procedure is illustrated for a cylindrical shell with 

L/R = 10.0, h/R = 0.002 for \vhich the critical Mach number 

and frequency parameter derived from the binary are:. 

Mcrit = 1.397 and kcrit = 2.384? corresponding to ncrit = 6. 

The chosen value of L/R is not typical of missile bodies but 

is selected for the following reasons: 

i) It was intended to compare these results with the 

flutter boundaries derived from the exact aerodynamic theory •. 

The programme to calculate the exact aerodynamic generalised 

forces was restricted to values of n up to 10 due to 

limitations on computer time and storage whereas the critical 

Mach numbers for short shells were beyond this range for 

most of the thickness ratios considered (see Table 26). 

ii) The variatior. of critical Mach numbers with thick­

ness ratio in the range of the latter considered is so 

rapid for short shells that one has to consider Mach 

numbers of unrealistic magnitudes (of the order of M~100; 

see Table 24). 

The various steps involved in the calculation of flutter 

Mach number and flutter frequency factor are as follows: 

i) Data: Material - E, ~ ,V 
c 

E) 

Shell - (h/R), (L/R) 

Mode - m, n 

Airflow - ~o' ao 
Invacuo-.natural frequency factors b. ( 



are determined using the above data in eqn. 

(V.l0). 

iii) A pair of 

is chosen 

assumed initial values (M , k ) a a 
and the aerodynamic generalised forces 

are determined from eqn. (IV.4). 

iv) The elements of the complex matrix in equation 

(V.8) are formed. The order of the matrix 

would be equal to the number of axial modes 

chosen. 

v) The eigenvalues and eigenvectors of the complex 

matrix are determined using Ref. A33. 

Results: 

a) 

b) 

c) 

The real part of the eigenvalue 

!'l and 

is a predicted 

frequency factor 

-fiR 1 E!5 
- Qc(l- i) where ~ is the predicted fre­

quency corresponding to the 

assumed values of (M , k ). 
JL L a a • 

ka = ~L = uR (R) by definition and hence the 

predicted Mach number corresponding to (Ma' k a ) 

Artificial damping 
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is 

The calculations are repeated 'Ni th different pairs of 

(Ma' k a ) until a positive, real eigenvalue is obtained. 

Sample results are presented for some values of Ma 

and ka in Table 21 in which 2 to 10 axial modes were 

considered. 

The conventional U-g plots leading to the critical 

Mach number and frequency parameter are given in Fig. 48 

corresponding to 10 axial modes. Figs. (4i)a,b,c corres­

pond to the assumed Mach numbers of 1.7, 1.8, 1.9 respect­

ively, each yielding a predicted Mach number of 1.84, 1.8, 

1.775. These values are plotted in Fig. 48(d) and the 

point where the Mp""'" Ma curve intersects the 450 line is 

the flutter Mach number. The real parts of the eigenvalues 

are plotted against Na in Fig. 48(e) and the point where 



------

this curve meets the ~ line·corresponds to the flutter 

frequency factor. 
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Table 22 shows the comparison of the two mode solution 

with various higher order solutions up to 10. It can be 

seen that for the cases analysed the convergence of the 

Galerkin solution is reached by taking six or seven axial 

modes. The invacuo-natural frequency factors for the first 

ten axial modes and the flutter frequency factors by taking 

the first two, three, •.• ten axial modes are given in Table 

23. An increase in the number of axial modes does not 

seem to alter the flutter frequency factors considerably, 

most of them being closer to the invacuo frequency factor 

corresponding to m=2. An examination of the eigenvector 

components corresponding to the flutter solution also 

suggests the most predominant influence of the second axial 

mode and the significant influence of the first and the 

third axial modes respectively. This is a possible justi­

fication for considering the ~oupling of the first few 

modes only for flutter analysis. 

V.6(c) Flutter Analysis of Unstiffened Shells Using the 

Exact Aerodynamic Theory 

The generalised forces using the exact aerodynamic 

theory are implicit functions of the Mach number and the 

frequency parameter. Consequently, it is not possible to 

derive explicit expressions for the flutter speed and 

frequency, even 

theory is used. 

for a binary, if the exact aerody~amic 

The procedure to determine the critical 

Mach numbers is exactly the same as listed in Section 

V.6(b) except that now the aerodynamic generalised forces 

are determined from equations (IV.14) and (IV.1S). The 

amount of computer time involved in the calculation of 

the exact aerodynamic generalised forces is so large that 

the results have only been obtained for specific cases. 

In Table 24 the flutter Mach numbers using the exact 

aerodynamic theory are compared with those using the 

linear piston theory for a two-mode solution. It was 
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concluded from Tables 16 to 20 that the linear piston 

theory generalised forces are closer to the exact theory 

for large n and small L/R at high Mach numbers. It can 

be seen in Table 24 that the comparison between the two 

theories is very good for small L/R, large n and M but gets 

progressively worse for longer L/R, smaller nand M. 

Surprisingly th~ difference in the critical Mach numbers 

between the two theories is very much less when the thick­

ness ratio is doubled, even though the (L/R) ratio is large. 

The convergence of the Galerkin solution can be seen 

by comparing the two mode results with higher mode results. 

From Table 22 it appears that increasing the number of 

modes does not appreciably change the results when exact 

aerodynamic theory is used. 

There is as yet no definite method of determining the 

severity of the flutter condition. However, the rate of 

change of damping inherent in the system may give an indi­

cation of the severity of flutter. In Table 25 the inherent 

damping predicted by the exact aerodynamic theory is 

presented along with that predicted by the linear piston 

theory for one set of parameters. A negative damping may 

be thought of as corresponding to instability and a positive 

damping as that corresponding to stability. This Table 

suggests that the damping predicted by the exact theory is 

much higher than that by the linear piston theory implying 

the stabilising influence of the exact aerodynamic theory. 

The results presented here are typical cf the observed trend 

in all the cases analysed. 

V.6(d) Two-mode (Binary) Flutter Analysis of Stringer­

stiffened Shells Using Linear Piston Theory 

In Tables 26 and 27 the critical Mach numbers are 

presented for shells stiffened internally or externally with 

stringers, using the linear piston theory in a binary analysis. 

The total mass of the stringers has been assumed to be equal 

to the total mass of the Shell in each of the cases analysed. 

The effect of doubling the mass of a given shell by 



distributing the additional mass in the form of ten equal 

stringers of rectangular cross-section is studied and the 

following conclusions may be inferred from the results. 

For all the (L/R) and (h/R) ratios considered, the 

shells stiffened with external stringers appear to yield 

much higher critical Mach numbers compared to the shells 

stiffened with internal stringers of the same eccentricity, 

(see Tables 26 and 27). Eccentric stiffening appears to 

yield higher critical Mach numbers for short shells provided 

that the eccentricity is sufficiently large (i.e. the ratio 

of the stiffener depth/shell thickness = h /h > 5.0 for s 
external stringers and about 8.0 for internal stringers). If 

the stiffener eccentricity is small, however, it seems that 

a monocoque shell of double the thickness yields critical 

Mach numbers higher than the corresponding stringer-stiffened 

shell of the same mass. As the (L/R) ratio is increased, the 

effectiveness of eccentric stiffening over the monocoque 

shell of the same mass in increasing the critical Mach 

numbers may be ftit only if the'eccentricity is very high. 

Table 28 shows the convergence of the Galerkin solution 

for a stringer-stiffened shell. Comparison is also given of 

the results corresponding to a monocoque shell of the same 

mass. The conv~ed ~olution seems to indicate that for this 

case the shell stiffened with stringers is only marginally 

better than the monocoque shell of the same mass. 

V.7 CONCLUSIONS 

Due to the mwtiplicity of the parameters involved it 

is very difficult to draw general conclusions applicable 

to the whole range of geometrical, modal and flow parameters. 

The results obtained so far at least confirm the 

rather conservative nature ot the results derived previously 

from binary analysis using linear piston theory and also 

'that one has to adopt at least six or seven axial modes to 

obtain:a realistic estimate of the tlutter boundary. If the 

exact aerodynamic theory is used the results seem to indicate 

that the instability is milder than that predicted by the 
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linear pistom theory. The amount of computer time involved 

to produce meaningful results using exact aerodynamic theory 

is ao large that it prohibits very extensive calculations 

over a wide range of parameters. HOl'lever the results 

obtained from linear piston theory may be refined at least 

for particular cases of interest, by having the closed form 

binary solutions as a useful guide to reduce the computational 

labour. 

VI GENERAL CONCLUSIONS 

The problem of vibration and flutter analysis of simply­

supported unstiffened and orthogonally stiffened circular 

cylindrical shells which are typical of missile bodies has 

been developed .and programmed for digital computer solution. 

The analysis and the programme are capable of handling shells 

of arbitrary lengths to radius (L/R) and thickness to radius 

(h/R) ratios. 

In the case of stiffened shells, the stiffener effects 

may be treated as 'smeared' or 'discrete' and in each case 

the effects of eccentricity, inplane and rotary inertias 

could be studied. 

The aerodynamic generalised forces may be calculated 

using the linear piston theory, with or without the Krumhaar 

correction and also using the exact aerodynamic theory. 

By combining the invacuo-vibration analysis and the 

aerodynamic genealised torces the flutter boundaries may be 

obtained in eaCh of the above cases for a binary involving 

only two axial modes and the accuracy may be improved by 

increasing the axial modal cOmbinations to produce a 

converged solution. 

The following general conclusions may be drawn from this 

study: 

i) A one term solution which corresponds to that of a 

simply-supported, unstiffened cylindrical shell when used with 

a proper choice of stiffener distribution yields the invacuo­

natural frequencies which are in good agreement with the 

existing more complicated analytiai and experimental results. 



ii) Inplane and rotary inertia of the stiffeners can 

have significant influence on the frequencies of a shell 

depending on their mass and eccentricity • 

iii) The assumption of treating the stiffeners as 

'discrete' members of the structure seems to have little 

advantage over that of treating them as 'smeared' if a 

proper stiffener distribution can be made. 
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iv) The fu'eoretical predictions of natural frequencies 

can ne verified against carefully conducted experiments to 

give more confidence in the use of the theoretical results. 

v) Good agreement in the aerodynamic generalised forces 

netween the linear piston theory and the exact aerodynamic 

theory appear to exist only for short shells vibrating at 

a large number of circumferential VJaves in a supersonic 

stream at high Mach numbers. 

vi) The simple closed form solution obtained by combin­

ing the linear piston theory in a two-mode Galerkin (binary) 

analysis may be used as a useful guide bproduce flutter 

boundaries of unstiffened and orthogonally stiffened 

cylindrical shells. 

vii) The convergence of the Galerkin solution and the 

corresponding critical flutter modes may be established by 

including more axial modes and studying the critical Mach 

numbers, flutter frequencies and eigenvectors. The Binary 

results may be used as a useful initial guide in the choice 

of (Ma' k a ) to reduce the computational labour involved in 

the determination of critical parameters via t~e well-known 

U~g method. It has been found that six or seven axial 

modes may be SUfficient to give a reasonable estimate of 

the critical Mach numberwhich is close to the converged 

solution. 

viii) Exact aerodynamic theory may be used to further 

refine the calculations and determine the severity of the 

flutter condition. The influence of using the exact aero 

theory is to predict flutter of shells as a mild instability. 
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APPENDIX 1: Expressions ·for U and T max max 

Displacements are substitut.ed from Equations (r1.19) 

(22) and (23) into (6), (8), (10), (13), (15), (17) and 

integrations are performed. After some manipulation, the 

maximum strain and kinetic energy expressions become as 

follows: 

Uc 
Eh Tr L [ ;\~u2 + (ny+w)2-2vAu (ny+w) = 
4R(l-i) m max 

l-v - -)2 cl ,4 
(1+ -2)2 2J (A1.l) + -2- (Amv-nu + ).. . ~ w m 

U(D) 
2Ls 

[ LE~i Asi = 2 [A~ (li 
Zsi Vi) 2 s 7 -A max i: 1 4 
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Isi Am -2 J cos 2 (2i-l)nTf + 
R4 
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GsiJsi 2 2-2 sin2 (2i-l)nll J + L A n w 2Ls 
4R4 m 

(A1.2) 

U(D) 
Kr 

[ nR~rj t· {1+n2 zr j} ) 2 = L --E.J. (ny + w r R2 R max j=O 

I rj 4 -2 } sin 2 ~ + 
R4 

n w 
Kr 

TIR GrjJrj 2 2 -2 cos2 mrrj ] + 
2R4 

n Am w. Kr 
(Al.3) 
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TI'RL [ -2 -2 -2) (2c I oc ,\2(1+ ~2 )w2] (A1.4) = 4"" X h(u +v +w I 2 
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T(O) Z [l2rjArj 
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0(= 

I = 
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2 
Asi zsi 

-2 A . Zrj rJ 
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(Al.7) 

with ISi' I rj as the moments of inertia of the stringer and 

ring cross sections about an axis through the centroid 

perpendicular to their planes respectively. 

For the smeared stiffener case, the summations are 

replaced by the app'ropriate integrals (see Appendix 3). 
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APPENDIX 2: Matrix Elements A~~)and B~~) 
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APPENDIX 3: Trigonometric Sums 

If the stiffeners are assumed to be identical, the 

finite trigonometric sums in Appendix 2 can be replaced 

by their equivalent values (Ref.A'39.) 
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For the smeared case, these summations are replaced 

by the following appropriate integrals: 
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2rrR 
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mn x dx 
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APPENDIX 4: Matrix 
(S) B~~ ) Elements Aij , 
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TABLE .1. 

VALUE OF THE CRITICAL VELOCITIE:S (m/sec) OF FLOI'J FOR CLOSED CYLINDRICAL SHELLS 

(Shells simply supported on the ends (I); clamped on one end and simply supported on the other (II); 

and clamped on both ends (Ill).) 

Exact 
h R 
R T I 11 III 

1 14,067 19.182 26,642 1) 

. 
1 "s 5,934 9,092 11,239 

WU 1 
11) 3,038 4,1.43 5,754 

1 
1,758 2,397 3,330 12 

1 
9,378 12,788 17,761" 6" 

, 
3,956 5.396 7,493 "1 U 

300 
1 
m 2,025 2,769 3,836 

1 1,172 1,598 2,220 TI 

2nd 

I 

12,278 

5,203 
-
2,708 

1,648 

8,197 

3 , 48~, 

1,687 

1,120 

By the variational method 
approximation 3rd approximation 

II III I II III 

16.883 22,132 14,770 .20,448 29,040 

7,141 9,352 6,332 8,869 11,880 
-

3,686 4,812 3,369 4,238 6,134 

2,186 2,822 1,999 2,656 3,526 

11,266 14,765 9,847 13,939 19,360 

4,775 6,249 4,308 5,913 7,920 

2,475 3,225 2,246 3,314 4,089 

1,444 1,902 1,390 2,014 2,539 

'>-, 
o 
DJ 
• 



TABLE 1 

cont. 

h R 
Exact By the variational r:lethod 

R 1 2nd approx ir:la tion 3rd approximation 
I 11 III 

I II III I 11 III 

1 7,033 9,591 1_3,321 6,160 8,461 11,085 7,385 10,723 14,879 b 

-} 2,968 4,048 - 5,623 2,629 3,596 4,701 3,233 4,437 5,943 
1 . 

400 1 1,520 2,072 2,879 1,378 1,874 2,436 1,685 2,533 3,069 10 , 
1 879 1,199 1,666 861 1,130 1,447 1,043 1,626 1,976 12 

1 
5,656 7,673 10,656 4,940 b 6,781 8.880 5,908 8,578- 11,903 

1 -, 2,375 3,238 4,498 2,119 2,892 3,776 2,586 3,549 4,754 500 1f 

1 1,216 1,658 2,303 1,129 1,512 1,968 1,348 2,026 2,595 10 

1 
3,751 5,115 7, -104 3,322 4,548 5,946 3,938 5,718 7,367 b 

1 t 1,583 2,159 2,999 1,450 1,964 :<,552 1',890 2,366 3,169 750 . 
1 810 1,105 1,535 796 1,056 1,354 1,025 1,350 1,636 "TO 
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TABLE 2. 

Critical Mach Number- for Axisymmetric Flutter of a Light Alloy 

Cylindrical Shell at Sea Level 

Elastic 
i::qua ti.ons 

Flugge 

h 
L = 

~Mode 
m = 

Novozhilovj 

Solution 

1,2,3,4 

9.5 

9.6 

L 

" 
= 2 . , 

x = 0 

L = 2ft; 

2-110de Solution 

m = 1,2 

11,2 

11.2 

n = o 

2-l'lode Solution 
(No (,ero Damping) 

m = 1.2 

2.5 

2.6 

Average Calculated Values of A (for no aerodynamic damoina) 

1 

L/R 0 0.75 1 2 4 6 
'0 d 

)..' 374.7 10 1408 1190 40.41 4.063 1.844 0.723 
1 



TABLE 4: Properties of Shells for Numerical Examples 

to Determine the Invacuo-natural Frequencies 

111. 

Rei. 35 Ref. AL8 Ref. A22 

Length = L in. 

Radius = R in. 

Thickness = h in. 

Young's Modulus = E 

= Es = Er(p·s.L) 

densi ty = \? 
c. 3 

= \\ = r pb/l.n. ) 

Poisson' s ratio = V 

Stringer/Ring breadth 

b s = br(in.) 

Stringer/Ring depth 

hs = hr (in~ 

No. of Stringers = 2Ls 

No. of Rings = (Kr+l) 

Stringer Spacing = d 

Ring Spacing = 1 

4U 

20 

0.04 

o .09~8 

0.3 

23.75 24.00 38.85 

9.55 ~.537 7.657 

0.028 0.U256 U.0182 

10.5xl06 

0.u95 0.U975 U.2815 

u.3 0.315 0 •. 3 

0.096 0.1118 0.U40S 

0.302 0.2262 0.3981 

60 6u 4 

25 

1 

1 



TABLE 5: Calculated Natural Freguencies (Hz) for an 

Unstiffened Shell With and without Various 

Inertia Terms' 

Present Analysis Ret. 36" n 

(i) (i) (iii) (i) (ii) (iii) (i) 

2 3741.24 3741.23 33!:>4.UO 3741.17 

4 1.314.71. 1314.7U 1271.00 1314.16 

6 669.12 6b9.11 659.3u 666.97 

8 536.76 536.74 53,!'~ 4U 532.22 

10 6!:>2.35 652.31 649.uO 646.66 

• (i) radial inertia, (ii) in-plane inertia, 

(iii) rotary inertia 

Ref.36 

(i) (ii) 

3362 

1270 

65'/ 

527 

643 
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TAI:lLE 6: Minimum Frequencies (Hz) For a Cylindrical Shell 

\~ith Various Stiff~ning Confiaurations (m='l)" 

No. Case n S\i) is (i)("")~. S (i) 
J.ll • ( ii ) (ill 

1 Un stiffened 6 185.35 185.34 182.68 

~ Stringers - External 7 205.4U 202.41 202.08 

3 Stringers -

Symmetric '/ 169.50 168.97 165.57 

4 Stringers - Interna;L 6 150.4!:J 149.03 146.61 

5 Rings - External 3 480.79 479.91 452.57 

6 Rings - Symmetric 3 417.12 416. !:J5 393.71 

7 Rings - Internal 3 5U9.98 509.05 482.01 

8 Stringers & Rings - .. 
External 3 41:l4.28 41:l3.11 458.1:l5 

!:J Stringers & Rings -

Symmetric, 4 375.60 375.22 363.68 

10 Stringers & Rings -

Internal 3 436.28 435.22 411.94 

11 Stringers - Internal 3 435.75 434.70 408.;W 

Rings - External 

12 Stringers - External 3' 473.U1 471.87 45'1.04 

Rings - Internal 

"S" = Smeared, D = Discrete, (i) radial inertia, 

(ii) Inplane inertia, (iii) Rotary'inertia 

D(i) 
ij) (ui) 

182.68 

~04. 75 

167.56 

147.00 

45U.33 

39u. !:J!:J 

480.04 

457.8~ 

366.32 

411.681 

407.84 

4~u.05 



TABLE 7: Freguencies. (Hz) of a Shell Stiffened with -,1 Internal Stringers 

Present Egle & Sewall (Ref.A22) 
n Expt n' ~~~o .. o _ Unstiffened 

Discrete Smeared Symmetric Unsymmetric 

2 314.61 315.31 - - - -

3 158.72 158.72 - 169 169 171 

4 100.27 102.21 100 103 108 108 . -

5 93.U9 93.09 87 94.7 94.7 98.1 

6 115.UO 113.91 104 109 116 117 

7 144.UO 144.00 137 145 145 151 

8 179.71 185.26 176 183 192 194 

9 233.26 233.26 224 236 236 243 

10 296.!:!1 287.38 295 278 297 300 



TAtlLE 8: Frequencies (Hz) o:t a Shell Stiffened with 

60 External Stringers 

Present Egle & Sewall Shnell & 
n Discrete (Ref .f.io??' Discrete Heinrichbeur 

Smeared 

2 666.98 736.~ 736.3 

3 424.tJ9 445.3 445.1 

4 297. -10 3U4.0 3U3.9 

5 229.56 231.8 231.8 

6 197.13 -197.70 197.9 

0' 187.83 188.2 188.6 

8 194."17 196.u 196.°, 

9 213.33 216.1 217.0 

1U £40.4-1 £45.2 £46.3 
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TABLE 9: ~xperimental Results for an Unstifrened Shell 

m = 1 m = 2 

::! N2as..u:ed Pred. '1easrd Pred. Remarks 
~(Hzl Freq (Hz) Remarks :'reqHzl 'l:e:j Q-lz) 

5 207 Not Found 6<:4 ~ot Found 

6 :UO Interferred with by r.=7,8 modes 4CJ6 " " 
7 llJ8.u 166 POOl:' Response - 397 ~wamped by n=12.m=1 mode 

8 177.0 184 Moderate Response but hard to - 347 
separate 

9 219.6 218 Very Good Response - 330 ,Swamped by Vibration 

10 265.8 261 " " " - 338 IJ 

11 315.4 311 " " " 358 367 i.:iood Response 

12 370 367 " " " 407 409 " " , 
13 437 429 " " " 460 463 " " 
14 503 496 Good Response 529 525 10derate ResEonse 

15 578 569 " " 598 594 Poor Trace . 
16 657 646 " " 677 669 loderate Response 

17 743 729 " " 759 750 " " 
18 833 816 >Almost S\'Jamped by Vibration 856 837 Tnconclusive 

19 927 909 110derate Response 940 929 " 
20 1028 1006 . " " - 1026 ~ntraceable 

·Untraceable Vibrations at 329Hz and 827Hz - source unknown. 



TABLE 10:. Experimental Results for a Strinqer Stiffened Shell (2 Strips) 

m = 1 m = 2 
:::~, ·leasured redicte ~EE.sured Pred. 

Hz)Freq. req(Hz) Remarks (Hz:F'req fl:eq(Hz) Remarks 

5 207 Not Found 617 Not Found 

6 171 " " 490 486 Inconclusive" 
. 7 154 164 Inconclusive 399 

8 174.8 181 ~jodera te Response 350 

9 214 213 Good Response 332 ~nterferred with one 
\3.nother 

10 255.5 254 " " 339 

11 -- 302 Swamped by Untraceable 364 
Vibrations' 

·12 354 346 Very Good Response 389 394 Very Good Response 

13 427 417 Good Response 449 455 Good Resgonse 

14 -- 482 SltJarnped by strong 490Hz 521 515 " " 
Vibra tions" 

15 564 551 Good Response 587 581 Moderate Response 

16 640 626 " " -- 653 Interferred wlth by 
m=l mode 

17 724 706 Noderate Response 748 731 ,Just Detectable 

18 818 Too Hiqh for Shaker 844 Iroo Hiqh for Shaker 

" " ,,11 " " " '''' 11 " 19 880 904 

" " " " " " ., 11 " 20 975 ';)98 

"There were very strong responses at 312Hz and again at 490Hz. The ~90Hz vibration 
sE:emed to indicate m=2, n=6, :'ut proof of m=2 was inconclusive. 

-



TABLE 11: Experimental Results for a Stringer Stiffened Shell (3 Strips) 

n m = 1 m = 2 

iSRSErvd 
a-li)f'rea :fre~. 'rea 0 Remarks 

~?ervo 
(HaFrEl:!. &~ea. :eq(Hz Remarks 

5, L08 Swamped by 6=9 mode 618 Undetectable 

6 172 Integral with n=8 mode 489 !I 

7 178 165 Moderate Response 405 !I 

8 - 181 Interferred with P:= 6 mode 358 Interferred vlith r~=9, LO; 11 

9 212.4 212 Good Response 340 11 !I 2',=8, 10,11 

10 259.5 252 !I !I 35u 346 Moderate Resp_onse 

11 - 300 Swamped by Vibration' 370 Interferred \vi th n=8, 9, '10 
, 

12 370 336 very Good Response 378 393 110derate 

13 420 412 !I !I 11 441 450 t10derate Response 

'14 - 4'/b S"Jamped by Vibration' 516 Swamped by Vibration' 

15 557 545 Poor Response , 580 51:)1 Inconclusive 

16 633 619 l-loderate Response 652 Undetectable 

17 715 697 !I !I 728 !I 

'18 - 822 Undetectable 857 !I 

19 - 969 !I 891:) !I 

20 - 96L 11 990 !I 

• There were very powerrul vibrations at 319Hz and again at 490Hz. These swamped the 

1\,=11, 14, m=l modes and the P=14, m=2 mode. 



TABLE 12: Experimental Results for a Stringer Stiffened Shell ( 4 Strips) 

m ; 1 m ; 2 n 
r'leasured B:B::i:ic ted Measured fredicted 
"req.(Hz) rreq.(Hz ) Remarks Freq.(Hz) "req"(Hz) Remarks 

5 210 Undetectable 620 Undetectable 

6 '175 " 4n " 
7 172.1 167 Moderate Response 415 " 
8 182.7 '183 Good Response 369 " 
9 209.3 213 " " 351 " 

10 254.~ 252 " " 357 " 
11 298 Swamped by Vibration" 381 " 
1~ 340.U 328 Very qood Response 3'/4 396 Modarate Response 

'0 418 4u~ " " .. 447 466 " " 
14 472 Swamped bv Vibration" 522 Undetectable 

15 552 539 Good Response 585 " 
16 627 612 Moderate Response 654 " 
17 708 689 " " 729 " 
18 827 S\'Jamped by 1328Hz Vibration 876 " 
19 891 858 Very Weak 895 " 
20 950 Undetectable 986 " 
·The 1 ;11, m;l, mode was swamped by an untraceable vibration at 296 and 303Hz. 

'I'he 11=14, m;l, mode was swamped by a vibration of 482Hz. 



TABLE 13: Experimental Results for a Stringer Stiffened Shell (7 strips) 

m· = 1 m = 2 
)':-

Measured Predicted Remarks Measd. fre:licted Remarks Freq. (Hz) Preq .(Hz) 8:EqQ-!z) ~(Hz) 

5 224.6 231 Poor Response 672 Not Found 

6 192 Not Found 519 

7 171.6 189 Poor Response 509 

8 200 Appeared to Interfere with 474 
one another 

9 225 461 

10 257.8 259 Poor Response 465 ·Swamped by Vibration 

11 300 ·Swamped by Vibration 482 

12 30? " " " 480 

13 409 400 Good 
, 

Response 549 Untraceable 

14 458 ·Swamped by Vibration 595 " 
15 538 520 Very Poor Trace 648 " 
16 586 708 " 
17 657 ·Swamped bv Vibration 773 " 
18 881 861 t10derate Response 999 " 
19 813 Untraceable no " 
:?O 897 " ~1000 " 
·Strong Vibrations at 659Hz, 311Hz and at 470Hz, 823Hz 

>-' 

'" c 
• 
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TABLE 14: Experimental Results for a Strinqer-Stiffened Shell 

(10 Strips) 

m = 1 m = 2 
·leasured Etedictd Remarks IVeascl. Predicted Remark, n' freq.(HZ) Fi:eq (Hz) 'teqCBzl 'req.(Hzl 

4 3U7 Not Found 829 

5 233 " " 681 

6 194 " " 522 

7 156.tl 192 Poor RespDnse 522 

8 '178.4 203 Good Response 488 

9 195.u 227 " " 475 

10 242.6 261 Very Good Response 47~ 

11 301 • S"Jamoed oy Vibration 4~5 

12 301 " " " 495 

'13 401 40U Moderate Resoonse 561 

14 457 'S\-Jamped by Vibration 6u6 

'15 526 518 Moderate ResPo:'lse 658 

16 590 5tl4 " " 716 

'17 655 • S\'Jamoed bv Vibration 780 

'18 864 Untraceable 9;,>4 

19 BUt! 'S\-Jamped bv Vibra.tion lQll -
'Strong Vibrations at 280Hz, 3u4Hz, 46UHz, 65~Hz, 829Hz 



TABLE 15: Zeroes of K' (-.,,(.,+irB,)for n = lto 25 inclusive 
n ]-] 

n j 0(; ~i n j c(; f'J n j 01.; ?i 
"1 '1 -0 .6435~ u.50118 14 1 -1.66183 13.006B2 21 1 -1.90932 19.86895 

2 1 -0.83455 1. 43444 2 -4.67488 10.48267 2 -5.54430 17.085B1 
3 -6.39619 8.47718 3 -7.76070 14.92601 

3 1 -0.96756 2.37386 4 -7.57868 6.61123 4 -9.41256 12.946:J9 

2 -1.98162 0.44080 5 -8.39903 4.B1167 5 -10.70086 11.06073 

4 1 -1.07279 3.32208 
6 -8.93364 3.04796 6 -11.71626 :J.23047 
7 -9.22047 1.30319 7 -12.50886 '1.43664 

2 -2.44093 1.32259 8 -13.10922 5.66"/27 

5 1 -1.16125 4.27689 15 1 1. 70167 13.98474 9 13.53672 3.91421 

2 -2.80372 2.21193 
2 -4.81647 11.41990 10 -13.80353 2.17142 

3 -3.30981 0.43637 
3 -6.62004 9.39079 11 -13.91669 0.43402 
4 -7.88181 7.50804 

6 1 -1.23832 5.23662 5 -8.78277 5.69612 22 1 -1.93986 20.85183 

2 -:1. 10823 3.10944 6 -9.40221 3.9236L 2 -5.65015 18.03583 

3 -3.B3945 1.31040 7 -9.7B092 "2.17340 , 3 -7.92542 15.85587 

7 1 -1.30706 6.20016 8 -9.:J3986 0.43416 4 -9.63207 13.86164 
5 -10. :J7383 11.96325 

2 -3.37302 4.01420 16 1 -1.,73976 14.9635:J 6 -12.04274 10.12315 
3 -4.28713 2.18909 2 -4.95117 12.35946 7 -12.88990 8.32132 
4 -4.63643 0.43515 3 -6.B3234 10.30729 

4 -8.16837 B. 40 792 
8 -13.54668 6.54555 

B 1 -1.36:J41 7.16673 5 -9.14415 6.5B356 
9 -14.03331 4.78760 

2 -3.6u873 4.:J2518 6 -9.84144 4.80185 
10 -1.4.36289 3.04143 

3 -4.67840 3.07328 7 -10.30328 3.04535 
11 -14.54355 1.30227 

4 -5.19993 1.30647 8 10.55323 1.30283 23 1 -1.96:J48 21.83521 

9 1 1.42666 8.13579 17 1 -1.77628 15.94327 
2 -5.75255 18.98717 

2 -3.B2205' 5.84153 3 -8.08454 16.78747 

3 -5.02799 3.96283 . 2 -5.07975 13.30114 4 -9.84381 14.77826 

4 -5.69437 2.18088 
3 -7.03445 11022645 5 -11.23675 12.86'187 
4 -8.44039 9.31068 

5 -5.96254 0.43465 5 9.48609 7.47384 
6 -12.35669 11.01794 



n j O(j ~j n j oJ.j 
10 1 -1.47974 9.10691 17 6 -10.25545 

2 -4.01755 6.76252 7 .. -10. '/9349 
3 -5.34530 4.85737 8 -11.12546 
4 -6.13752 3.05918 9 -11.26550 
5 -6.54609 1.30470 18 1 -1.81137 

11 1 -1.52933 D .,07980 2 -5.20286 
2 -4.19846 7.68757 3 -7.22748 . 3 -5.63673 5.75647 4 -8.69954 
4 -6.54075 3.94149 5 -9.ClI095 
5 -7.07040 2.17695 6 -10.64753 
6 -7.28842 0.43440 7 -11.25577 

12 1 -1. 57595 1l.05421 8 -11.66281 

2 -4.36716 8.61620 9 -11.88437 

3 -5.90688 6.65971 19 1. -1.84517 
4 -6.911.85 4.82774 2 -5.32103 
5 -7.511847 3.05207 3 -7.41236 
6 -7.88525 1.30376 4 -8.94721 

5 -10.12071 13 1 -1.62001 12.02993 
6 -11.02031 2 -4.52549 9.54802 7 ':"11:69397 3 -6.15916 7.56673 

4 -7.25644 5.71773 8 -12.17012 

5 -7.98920 3.93030 9 -12.46594 

6 -8.43037 2.17475 10 -12.59111 

'I -8.61418 0.43425 20 1 -1.87778 
2 -5.43471 
3 -7.58987 
4 -9.18455 
5 -10.41686 
6 -11.37595 
7 -12.11088 
8 -12.65122 ... ... .. .. .. 
9 -13.01536 

10 -13.21437 

(i>j n j 

5.68266 23 7 
3.91930 Cl 
2 .17250 9 
0.43410 10 

• 11 16.92371 12 '14.24476 
12.14807 L4 1 
10.21613 2 
8.36683 3 
6.56600 4 
4.7953Cl 5 
3.04359 6 
1.30258 7 

17.90484 8 

1.5.1.901.6 9 

1';3 .07197 10 

11.12410 11 

9.26239 12 

7.45180 25 1 
5.67364 2 
3.91634 . 3 
2.17187 4 
0.43405 5 

18.88660 6 

16.13722 
7 
Cl 13.99800 
SI 12.03444 10 10.16040 11 Cl.33999 

6.55407 12 

4.79087 13 

3.04235 
''', 

1.30240 

~ 
-13.25563 
-13. %571 
-14.0,0785 
-14.89595 
-15.13900 

15.24226 

-1.99824 
-5.85177 
-8.23850 
10.04Cl43 

-11.49047 
-12.65921 
-13.6U749 

14.36dl0 
-1.4.95261 
-15.4055'1 
-15.70670 
-15.87211 

-2.02622 
-5.94803 
-8.38769 

-10.24647 
-11. 73573 
-12.95127 
-13.94669 
-14.75538 
-15.39950 
-15.89414 
-16.L4965 
-16.47285 
-16.56/81 

f?j 
9.20804 
7.42571 
5.66.<60 
3.91263 
2.17108 
0.43400 

22.81906 
19.93975 
17.72070 
15.69674 
13.77447 
11.91476 
10.09675 
8.30774 
6.53924 
4.7d514 
3.04074 
1.30217 

23.Cl0334 
20.d9350 
18.65547 
16.6169Cl 
14.6ClL96 
12.81351 
10.98737 

9.1915':) 
7.41755 
5.659U6 
3.91142 
2.17082 
0.43398 

- --< .... ,,-,- ... 

"'" '" tAl 



M 

2.0 

3.0 

4.0 

5.0 

6.0 

124. 

I 

I l R I R I R I 
0.11 0.11 0.12 0. 12 0. 22 0. 22 

-0.2523 0.2766 I 0.8597 I -0.0090 -0.3890 0.2625 

0 0.2500 I 0.6667 0 0 0.2500 
---

-0.1313 0.1991 0.5740 0.0135 -0.2176 0.2183 

0 0..1667 0.4444 0 0 0.1667 

0.4431 I 
c- - ---_._-

-0.0910 0.1587 0.0127 -0.1540 0.1773 

0 I 0.1250 0.3333 0 0 0.1250 
I 

-0.0702 ! 0.1328 : 0.3652 0.0106 -0.1190 0.1486 

0 0.1000 0.2666 0 0 0.1000 

-0.0573 0.1147 0.3121 0.0089 -0.0965 0.1280 

0 0.0834 0.2222 
I 

0 0 0.0834 

TABLE 16: Aerodynamic Generalised Forces 0. for small mr 
Values of L/R and n 
L/R = 1.0, n = 2, k = 1.0, ~ = 2, r = 1 

Upper values: Exact Theory. 

Lower values: Linear Piston Theory. 

• 
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--- .. -f-------------l-------j------\-----'I----I--------1 
10.0 -0.0285 0.0028 0.1490 -0.00035 0.00075 0.0023 

o 0.0025 0.1333 0 0 0.0025 
---I-----------·~~+--~---+-~~~~~·~~-~-+-~--~ 
12.0 -0.0162 0.0022 0.1202J -0.00026 0.0054 0.0019 

o 0.0021 , 0.1112 o· 0 0.0021 
--.- .------- ---- 4-------1------1----1 

-0.0096 0.0019 I 0.1004 -0.00020 0.0073 0.0016 

________ O ____ I __ O~.'_0_0 __ 1_8 __ ~. 0.095 2 ____ ~ ________ 0 __ . ___ +-0_._0_0_18_+ 

16.0 -0.0056 0.0016 i 0.0860 -0.00016 0.0080 0.0014 

14.0 

0.05 i 

o 0.0016 ! 0.0833 0 \ 0 0.0016 

10.0 - -0.0284 0.0056 0.1490 11 -0.000069 I 0.00075 0.0045 

o 0.0050 0.1333 I 0 0.0050 

12.0 

--_.--

14.0 1 

I 16.0 

---~ 
10.0 I 

-0.0162 0.0045 I' 0.1202 1-0.00051 i 0.0054 0.0037 

o 0.0042 0.1112, 0 I 0 0.0042 

-0.0096 0.0037 1 0.1004 ~ -0.00039 i 0.0073 0.0032 1' 

o 0.0036 0.0952; 0 i 0 0.0036 
-------- -------- ------:----·------;--------~-----I 

-0.0056 0.0032 0.0860 i -0.00032 : 0.0080 1 0.0027 I 
o 0.0031 '0.0833 1 0 I 0 i 0.0031 I 

-0.0284 0.0083 ,I 0.1490 : -0.0010 '0.000741
1

, 0.0068 I 
I i I o 0.0075 I 0.1333 0 ,0 ! 0.0075 

0.10 

I 
I 
i 

I--

I -0.0162 I 0.0067 0.1202 ,-0.00077 i 0.0054 0.0056 

_--+---0~~0.~0~0~6~3-+-0~.1~1=~1=2~+!--~0---~--~0---_+-0~.'-0~0_6~3~ 
1 ! 

0.1004 i -0.00059 I 0.0073 0.0048 

__________ .Q 0 • 005 4 ~_O. 0952 _: __ ~-----i- __ 0 ___ +-_0_._0_0_5_4........., 

16.0 : -0.0056 0.0048' 0.0860 : -0.00048 ' 0.0080 0.0041 
I 

__ ; ___ 0 ___ 0.0047 0.0833 ' 00 0.0047 

10.0 -0.0284 0.0100 0.1490 i ':'0.0012 0.00073 0.0082 

; 0 I 0.0090 0.1333 i· 0 0 0.0090 -----,-----. -----T--------,--------j-----=------.:..----=-----.L..~...::....::~ 
12.0 I -0.0162 i 0.0081 . 0.1202 i -0.00092 0.0054 0.0067 

1 I ! o 0.0075 0.1112 i 0 0 0.0075 0.18 

12.0 

14.0 

I 

-0.0095 0.0056 

0.15 

------
14.0 I -0.0095 0.0067 0.1004 i -0.00071 0.0073 0.0057 

I 0 0.0064 0.0952 I 0 0 0.0064 

l6~-O-l--~O=~056-- -- ~-:-~-~:-: I ~:~:~~ i -0.~0057 0-:~080-+--~:~~:: 

TABLE 17: Aerodynamic Generalised Forces Qmr for medium values 

of L/ii, Large values of n, and very high Mach numbers 

for a range of frequency parameters. 

L/:! = 2.0, n = 9. m = 2, r = 1 

Upper values! Exact theory; Lower values: Linear piston theory. 
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M 
R Q
11 

I Q
11 

R 
Q

12 
I Q
12 

R Q
22 

I Q
22 k 

0.0 -0.0294 0.0111 0.1490 -0.0014 0.00072 0.0091 

0 0.01 0.1333 0 0 0.01 
2.0 -0.01:J 0.0090 0.1202 -0.0010 0.00538 0.0075 

o 0.0083 0.1112 0 0 0.0083 0.2 
4.0 

f.------ --------
-0.0095 0.0075 0.1004 -0.00079 0.0072 0.0063 

0 0.0071 0.0952 0 0 0.0071 
6.0 -0.0056 0.0064 0.0860 -0.00064 0.0080 0.0055 

0 0.0063 0.0833 0 0 0.0063 ----
0.0 -0.0282 0.0277 0.1487 -0.0034 0.00049 0.0227 

0 0.025 0.1333 0 0 0.0250 
-----
2.0 -0.0160 0.0224 0.1200 -0.0025 0.0052 0.0187 

0 0.0209 0.1112 0 0 0.0209 0.5, , 

I 4.0 -0.0094 : 0.0187 '0.1003 -0.0019 0.0071 10.0159 

I 0 0.0179 0.0952 0 0 0.0179 
---

10.0138 6.0 -0.0055 0.0160 0.0859 -0.0016 

I 
0.0079 

0 0.0157 0.0833 0 0 0.0157 I ' I , 
0.0 -0.0273 I 0.0554 ' 0.1478 -0.0067 1-0'.00035 10.0456 

i 

i 0 I 0.05 0.1333 0 I 0 0.0500 
I 2.0 -0.0154 0.0447 0.1194 -0.0049 0.0045 0.0375 

I 
0 0.0417 10.1112 0 0 0.0417 1.0 

4.0 

I 
-0.0089 

, 
0.0374 i 0.0998 

I 
-0.0038 0.0065 10.0319 

0 0.0357 I 0 0 10.0357 ,0.0952 I I , 
I 6.0 -0.0051 0.0321 10.0855 

, 
-0.0031 0.0074 i 0.0276 

I 
, 

I 0 0.0313 
! 

0 0 i 0.0313 ! 0.0833 I I , 
I 

1-0.~016 I 
I 

0.0 ! -0.0259 0.0828 10.1464 -:-0.0097 ! 0.0689 

I I 
, 

0 0.075 0 ! 0.0750 J ,0.1333 , , 

I 2.0 ...,0.0144 I 0.0670 i 0.1184 -0.0071 
, 

i 0.0567 I 0.0035 

I 10.1112 
I 0 0.0626 0 0 10.0626 1. 5 I 

4.0 \-0.0082 0.0560 10.0990 I -0.0055 

I 
0.00'57 10.0481 

, 

I ! 0 0.0536 10.0952 I 0 0 \0.0536 I - I 6.0 1-0.0045 0.0480 !0.0849 I -0.0044 0.0067 0.0417 

I 0 0.0470 0.0833 0 0 0.0470 , , 
i 

TABLE 17: Continued. 



---r------~-------~------~-------~------~·------_+----l 
.5 -0.1405 0.0002 0.00135 0.00784 -0.5700 0.00066 

o 0.0333 0.8889 0 0 0.0333 
---.---,-------j-- ::-;:-::---I-::-:=-=-=c:::--~ 
.0 -0.1414 0.0003 0.00246 0.00806 -0.5852 0.0009~ 

o 0.0250 0.6667 0 0 0.0250 0.1 
--------------·~~~--t_o~~~_+~~~~~r_~~~~+_~~~~~ 
.0 -0.1430 0.0006 0.00015 0.00952 -0.6581 0.00473 

o 0.0167 0.4444 0 0 0.0167 
-----\---------+------+-----1-------1------+-----1 
.0 -0.1502 0.001.1 0.01935 0.01321 -0.7188 0.0216 

o 0.0125 0.3333 0 0 0.0125 
~.-5--- ------0~.-1-4-1---:7:---j----:0-.--:0---:0---:0--=5---t------::-0-. -'-0-'-0 -'---13::-8l 0 • 0 2 3 5 - 0 • 5 714 0 • 00 19 7 

o 0.1000 0.8889 I 0 0 0.1000 
-.-0--1---0--.-14-2-7--1-0-.-0-0-0-9--+-0--.0-0-2-4-2--~'-0-.-0-2-4-2--~11 ---0-.-05-8-7-0--r-0-.-00--29-9~ 

o 0.0750 0.6667 0 0.0750 0.3 

,.0 -0.1444 1I 0.-0017 0.00009, 0.0286 I -0.6615 I 0.0144 I 
o 0.0500 0.4444 I 0 I 0 I 0.0500 iJl .------,-----------------.- -------------- - ------'----------+-1-----------+-------

.0 -0.1521 10.0034 0.0212 I 0.0396 _I -0.7180 110.0648 I 

o ,0.038 0.3333 I 0 , 0 0.0375 I 
:~O-I--:O.1437! O. o012-j-0-.-0-0-2-4---~1--0-.-0-3-2-3---i-I---0-.-5-8-8-6----+1-0--.0-0-4-0-

I· 0 i 0.1000 0.6667 - i 0 i 0 ! 0.1000 -----t--- , 
,.0 ' -0.1538 'I 0.0046 0.0229 i 0.0527 i -0.7174 i 0.0863 

i i i ___ 9__ __ 1 ~_~~_o_l ~:23=-3~3:__-j:____:c--::-0-::__,___--:----'--' ----,:--:0:-::-:--=----+--,---0 _. 0::-::5_0_0_ 
-0.1594 r 0.0240 10.1603 0.0213 -0 .• 3527 0.0703 

o i O. 0 333 ; O. 22_2_2_--'---__ 0 __ --+ ___ 0 ___ -:-0. 0 333 

,.0 

:.0 

I 
0.4 'j 

-0.1163 0.026610.1785 0.0038 -0.1423 0.0386 

o i 0.0250 ! 0.1666 0 0 0.0250 i ------------,---------,-----------;---------- ----------;---------r_---, , ' 
!.O 'I -0.1451 : {l.0015 10.0024 0.0404 -0.5906 0.0051 

, I 
- I 0 i 0.1250 10.6667 0 0 '0.1250 ---, 

i.O 1 -0 .• 1560 0.0058 i 0.0250 0.0657 -0.7166 0.0179 

, 0 ,_~~~~ __ LO_._3_3_3_3 __ --'--~_0 ______ __,__---0------:--0--. 0_6 __ 2 _5 __ , ;-.o--r -0.1603 ! 0.0300 : 0.1617 0.0265 -0.3506 0.087( 

t ____ O 0.0417 I 0.2222 0 0 0.0417 

-0.1164 '
1
' 0.0333 10.1789 0.0047 -0.1415 0.0482 

- I 
____________ 0 ___ 1 o. 0 31_~L9_~} 6 6.§..__ 0 0 O. 0 313 

1.0 

0.5 

TABLE 13: Aerodynamic Generalised Forces Q for large values mr 
of L/R, n, Medium to High l'1ach Numbers for a range 

.. of k. D/::: = 4.0, n = 9, m = 2, r = 1 

Upper values: Exact Theory; Lower values: Linear piston theory. 



M 

.0 -0.1468 

o 
0.0018 0.0023 0.0485 -0.5931 0.0061 

0.1500 0.6667 0 0 0.1500 
~·ci---~·-0-.-=-1-=-5-:-86-:-1-0-=-.-0-0-7-2-1--0"-.0c-2-=-7-5-+--:-0-.-0-78-=-7-+---0-.-7-1-:-5-=-6-+\1-0-.-1-2-9-5-1 

o 0.0750 0.3333 0 0 0.0750 
- .. -.1------.. --1-----1-----1-------1------+--------' 
.0 

.0 

.0 

-0.1614 

o 
-0.1166 

o 
-0.1511 

0.0362 0.1635 0.0

0

316 -0'03482 'I 0.1050 

0.0500 0.2222 0.0500 

0.0400 0.1794 0.0

0

056 -0'01406 \1 0.0577 

0.0375 0.1666 0.0375 

0.0024 0.0022 0.0648 -0.5993 

o 

_
.0_-JI __ -_0_.l~5 __ 6_5_1' 0.0029 I 0.0021 0.0812 -0.5073 i 0.0107 I 

1

1 0 0.2500 I 0.5567 0 0 1 0.2500 

.0 -0.1603 I 0.0055 1-0.00081 0.0981 -0.6993 i 0.0555 

__ ;.1 ___ 0 __ , 0.1657 1_~.4444, 0 0 I 0.1657 

.0 

128. 

k 

0.6 

0.8 

1.0 

: -0.1740 10.013810.0425 10.1297 -0.7095 i 0.2160 

_._~ __ 0 __ _l--0~.1-2:....5-0___:_.-0-. 3_3_3~3_'--~0~ __ i_.----'0-- ' 0.1250 'I 

.5 11 -0.1637 ! 0.0020 ' 0.0018 ., 0.0982 -0.5968 0.0081 i ! 

__ +-,--_,-0 ___ [ 0.4167 ! O. 8E!. . .:8 . .:....9--:1_~0 ___ +---0---i.-.::.0..:. . ..:.4..::.1.:..5.:...7__i1 i 
.0 I -0.1653 i 0.0036 : 0.0021 : 0.1019 -0.6197 0.0139 I' 

I 0 I 0.3125 '0.6667 I 0 0 I 0.3125 '1.25 1 

--'------~---------~---------~---·~-_7~~~--i1 
.0 -0.1703 I 0.0070 0.00034/ 0.1246 -0.7217: 0.0751 I 

! 0 0.2083 i 0.4444 0 0 i 0.2083 ! 
..... -'-----+-~--------i_----i---=----..:....:...c"-'-'-'--_; 

-0.1873 0.0193: 0.0555 0'01605 jl -0'07042 ' 0.2701 I 
__ ,I ____ 0 __ ~_0_._15_6_3 __ j,_0_._3_33_3_i_ ___ ~ ____ ~1_0_._1_5_6_3_J ____ 1 

.0 

TABLE ';3: Contipued. 
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.0 

.0 

:.0 

~. 0 

l.O 

;.0 

1.0 

~. 0 

1.0 

;.0 

1.0 
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k 

------------I-----I-----+------f------I-----------f-

-0.1233 0.00006 -0.0031 0.0178 -0.5148 0.0010 

o 0.0417 0.6667 0 0 0.0417 0.25 

-0.1336 0.0023 1 0.0151 0.0265 -0.6147 0.0369 

_______ 0 ___ --+_0_._0_3_1_2'--.-__ o. 333_3 ___ .:::O __ +----_---,O=---_---+.:::.O~ • .:::.0 :::..31",,2=---t 

-0.1399 0.0108 0.1135 0.0154 -0.3831 0.0396 

_______ 0._ ___ .O~g 3.<:l~ _____ 0 _. 2_2_22 ____ __ ----"O ___ rl __ --'-O ___ -t---0.::....:.... 0::..::2.0_8 __ _ 

-0.1129 0.0135 0.1444 0.0056 I -0.1972 0.0253 

.1.. __ -.2 ___ ~g156 ..Q..16~ __ .J2~ 0 0.0156 

I -0.1311 0.00017--r -0.0033 0.0571 I -0.5258 0.0035 

: _____ ~ ____ .....Q.:2000 0.6667 0 : __ . ...c0 ____ c...:0:..:.:...:2:..:0c.::0c.::0__ I 
! -0.1447 0.0081 0.0236 0.0843 '[ -0.6160 1' 0.1189 11 I 

l------g-· __ ..J2..10~ 0.3333 0 0 0.1000 0.8 

i -0.1463 0.0354 10. 1220 0.0480; -0. ~732 ! 0.1254 I 
1... __ ..9 ____ 0.0667 I 0.2222 L 01 I 0.0637 

j -0.1153 0.0437 I 0.1481 I 0.0175 II -0.1918 ! 0.0802 

! 0 0.0500 I 0.1667 i 0 0 f 0.0500 

r:::0.136--;--o.-O~02 -0.0034 0.0716 1 -0.5326 i 0.0046 

1 ___ ..Q ___ ·.Q.,_~.s00 0.6667 0 III 0 ! 0.2500 

I " I 6 6 ,-0.1516 0.0107 I 0.0289 I1 0.1050 -0. 1 8 i 0.1491 

i 0 0.1250, 0.3333 0 , 0 i 0.1250 

~-~O:~-50-3-~~:~i- I ~:~~:~ I 0.~591 ! -0.3671 0.1557 ; 

o 0.0833 
I 

0.1503 I 0.0214 -0.1884 0.0996 

1.0 

I 
I 

1 
[ 

~-_0_._~_1_6_7_j ~:~~~: 0.1667~ ___ 0 ____ L_ ___ 0 ___ ~ __ 0_.0_6_2_5 __ ~ __ ~ 

TABLE :9:Aerodynamic Generalised Forces Qmr for very large 

values of L/R and Medium values of n, Medium to 

High r·lach Numbers for a range of k. 

L/R = 10.0, n = 4, m = 2, r = 1 

Upper values: Exact theory. 

Lower Values: Linear Piston Theory. 
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~!I _____ Q_~_1 ___ II-----Q-~-1--~----Q-~-2--~---Q-~-2----~--Q-~-2--_+--__ Q_~_2 ____ ~k~i 
.• 5 

.0 

-0.0825 

o 
-0.0830 

o 
,.0 -0.0842 

o 

-0.0001 -0.00079 0.0220 -0.3264 -0.00036 

0.1667 .0.8889 0 0 0.1667 

-0.00006 -0.0012 0.0224 -0.3317 -0.00005 

0.1250 0.6667 0 0 0.1250 

0.00019 -0.0017 0.0236 -0.3469 0.0014 

0.0833 0.4444 0 0 0.0833 
------ ----------------i------j----c--+----:----:---+------i 
.0 -0.0860 0.00081 -0.0012 0.0253 -0.3689 0.0047 

_.5 

o 0.0625 0.3333 0 0 0.0625 

-0.0887 

o 
-0.00022 -0.0009 0.0440 -0.3330 -0.00073 

0.3333 0.8889 0 0 0.3333 

:.0 -0.0893 -0.00013 -0.0013 0.0449 -0.3889 -0.000098 

o 0.2S00 0.6667 0 0 0.2500 
-:.-0-'[---0-.-0-9-0---9- --0-.-0-0-036----0--.001-8-.---0--.-0--4-7-5--+---0-.-3-5-6-1--+--0-.-0-0-3-0---1 

I 0- 0:1667 0.4444 0 0 0.1667 

0.5 

1.0 

---,---------------.- --1·-----1-----_+-------
1.0 1-0.00932 0.0016 -0.0016 0.0512 -0.3828 0.0104 I, 

0.1250 0.3333 0 0 0.1250 , 

~_1-0.~9:~_~~:~~~~7 I -~:~~~_~ __ 1-0-.-~-6-6--1-r! _-_0_. 0_34_4_0---"1--_~_:_~0_0 O_l~ ___ t I 
:.0 1-0.09990 -0.00023 -0.0015 0.0674 -0.3509 -0.00015 I 

o 0.3750 0.6667 0 0 0.3750 1.5 
---r-------1·---------+-------+------+------~-------~ I 
1.0 -0.1021 I 0.0005 -0.0021 0.0716 1-0.3715 I 0.0049 I 
___ 1 ____ 0 ______ [' O. 2500 J __ 0 __ ._4_4_4_4 ___ 1 ___ 0 ____ 1 ____ 0 _____ :-_0_._2_5_0_0 __ -I1 ! 
1.0 -0.1052 0.0023 -0.0022 10.00782 ,i. -0.04060 I1 0.0184 I : 

o 0.1875 0.3333 0.1875! ---T-----j---------f----+' ___ ---; ___ -L ____ I-__ __ 
l.5 

:.0 

1.0 

i -0.1135 -0.00056,' -0.0013 0.0882 1-0.3595 ,'-0.0015 I: 

1 0 0.6667 0.8889 0 I 0 0.6667 

I -0.1147 -0.00037 'I; -0.0017 0.0901 

I 0 0.5000 10.6667 0 
---!----~-r_--

1-0.3677 I -0.0002 

I 0 0.5000 2.0 
! I -0.1179 0.0006 -0.0024 0.0963 0.0072 I 

I 0 0.3333 0.4444 0 
1-0. ~933 

0.3333 

0.0031 -0.0027 0.1068 

0.2500 0.3333 0 ~ __ -0 __ .~_2_2_4 __ ~I.----------~----------'L--------'lL--0--.~-3-8-5~---~-:0_2_~~_~ __ ~1 __ ---'1 

TABLE ?-': Aerodynamic Generalised Forces Q for Very Large 
mr 

Values of L/:(. Large Values of n. L/i': = 10.0, n = 6, m = 2, r =1 

Upper Values: Exact Theory, LO~ler Values: Linear Piston Theory. 
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R I R I R I 
k M Q

11 
Q

11 
Q

12 
Q

12 
Q

22 Q
22 

----- ------ ----------- ---.- - --

.• 5 -0.1322 -0.00081 -0.0016 0.1104 -0.3794 -0.0020 
0 0.8333 0.8889 0 0 0.8333 

.0 -0.1339 -0.00056 -0.0020 0.1130 -0.3894 -0.00024 
-

0 0.6250 0.6667 0 0 0.6250 2.5 
,.0 -0.1385 0.00070 -0.0027 0.1216 -0.4215 0.0099 

0 0.4167 0.4444 0 0 0.4167 
·.0 -0.1451 0.0038 -0.0026 0.1376 -0.4801 0.0470 

0 0.3125 0.3333 0 0 0.3125 
.• 5 -0.1551 

, 
-0.0011 -0.0019 0.1328 -0.4038 -0.0025 

0 1.000 0.8889 0 0 1.000 
:-0 I 0.1362 

i 

I -0.1573 -0.00082 -0.0024 1-0.~161 -0.00028 
0 0.7500 I 0.6667 0 0.7500 I 3.0 

.0 -0.1639 i 0.0008 i -0.0029 0.1477. -0.4566 0.0134 I 

I 0 0.5000 i 0.4444 0 0 0.5000 I 
.0 -0.1736 0.0048 i -0.0012 0.1713 i -0.~302 I 0.0709 i 1 

I 
I 

0 0.3750 I 0.3333 0 0.3750 i 
.5 -0.1821 -0.0015 i -0.0024 0.1552 -0.4326 -0.0030 I 

0 1.1667 i 0.8889 0 0 1.1667 J 
.0 -0.1851 i -0.0011 i -0.0029 0.1596 -0.4479 

I 
-0.00031 ! 

I I I I 3.5/ 0 0.8750 0.6667 0 0 0.8750 I , 
.0 . -0.1943 0.0009 i -0.0032 0.1748 i-0.~991 I 0.0177 I 

I 
, 

1 I I 0 0.5833 i 0.4444 0 0.5833 I , i - I -r 

.0 I 
i 

.5 ! 

0.2033 I-O.~494 
0 

0.2486 1-0.6512 
0 ' 0 

~; _______ ~ ______ ~ ________ ~ _____ i _______ +!--------~---

TABLE :>0: Continued. 



TABLE 21: Intermediate Results for Illustration of U-g Method 
Linear Piston Theory - 2 to 10 Axial Modes 

iNo •of ka i.U 2.05 

M IAxial 
l:; '10

3 
a 'lodes M gp M gp R . P P 

2 U.4949 1.6656 -0.0529 1.6249 -0.U474 

3 0.6°'65 1.94°'3 U.Ul72 1.9UOO 0.Ud3 

4 0.5755 1.7962 -0.0049 1.7524 -0.0001 

1.7 5 0.5828 1.8075 0.OU52 1.7634 0.0099 . L/R 

6 0.5810 1.8045 0.U020 1.7607 0.0067 hR 

7 0.5817 1.8059 0.0°032 1.7618 0.0079 M p 
8 0.5815 1.8055 0.0026 1.7615 0.0073 M a 
9 0.5817 1.8057 0.0029 1.7617 0.Q076 k a 

10 0.51:)16 1.8056 0.0028 1.7616 0.0075 gp 

2 0.4949 1.6656 -0.0585 1.6249 -0.0526 

3 0.6866 1.9619 -0.0472 1.9140 -0.U429 

4 0.51:)49 1.8107 -0.0111 1.7665 -0.0062 

1.8 5 0.5945 1.8255 0.0005 1.7809 0.0053 

6 9.5920 1. 8217 -0
0
.0033 1.7773 0.0016 

7 0.5930 1.8232 -0.0019 1. 7787 0.0030 

8 0.5<;)26 1.8227 -0.0025 1.7782 0.0024 

9 0.5928 1.8229 -0.0022 1.7785 0.0027 

10 0.5928 1.8228 -0.0024 1.7784 0.0025 

= 
= 
= 
= 
= 
= 

10.0, h/R = 0.002, n = 6 

Real part of the eigenvalue 

predicte1 
° d Mach number assume 

assumed frequency parameter 

predicted inherent damping 

corresponding to (Ma' ka l 

,.., 
W 
I\J 



, TABLE 22: Critical Mach Numbers for a Long (Unstiffened) Shell 

NUMBER OF AJIAL MODES 
h/H 

2 3 4 5 6 7 

LINEAR 0.002 1.4 1.73 1.67 1.82 1.8 1.8 
PISTON 
THEORY 0.004 2.82 3.48 3.60 3. '/5 3. '/0 3.75 

EY.ACT 
AERODY- 0.004 3.10 3.12 3.13 3.2 3.2 3.2 NAMIC 
THEORY 

L/R = 10.0, n = 6; Convergence of the Galerkin's Solution 

8 9 

1.8 1.8 

3.75 3.75 

3.2 3.2 

10 

1.8 

3.75 

3.2 

t-' 
W 
W 
• 



TABLE 23: 

(a) Freauencv Factors for an Unstiffened Shell . 

m f:,. m " 
10'; No.of b,. "10 3 

axial modes . 
F __ 

y: N4.tAcuO Ft-ViTeR 

1 0.4412 

2 0.5486 2 0.4949 

3 0.9812 3 u.5748 

4 2.0776 4 0.5e49 

5 4.2372 5 0.5~45 

6 7.8647 6 0.5920 

7 13.3186 7 0.5930 

8 20.e728 8 0.5~26 

9 30.6932 9 0.5928 
. 

10 42.8315 10 0.5928 

(b) Components of the Non-Dimensional Eiqenvector 

Correspondinq to the Eiaenvalue "Ihich Leads to the 

Flutter Solution "Jith 10 Axial Modes 

Eiqenvector Components 
m Real Part Imaginary Part 

1 425. '/ 314.5 

2 617.1 -7.e81 

3 317.~ , -85.32 

4 90.5 -15.67 

5 29.2 -3.299 

6 11.0 -0.517 

7 5.3 -0.364 

e 2.7 -0.034 

9 1.6 -0.u93 

10 1.0 O.uOO 

L/R = 10.u, m = 6, h/R = 0.002 

134. 



TABLE 24: Critical Mach Numbers Using Exact Theorv 

and Linear ~iston Theory Usinq a Tlvo­

mode Solution For an Unstiffened Shell 

L/R h/R 
MCRIT MCRIT 

n (EXACT (LINEAR 
THEORY) PISTON THEORY) 

2.0 0.U02 9 12.2 12.13 

4.0 0.002 9 4.2 3.29 

10.u 0.002 6 2.7 1.4 

10.U 0.004 6 3.10 2.e2 

135. 

---



No. of 

Axial Modes 

2 

3 

4 

5 

6 

7 

8 

9 

10 

g 

Exact 

Theory 

0.005333 

0.032779 

0.040811 

0.040443 

0.040913 

0.040897 

0.040967 

0.040965 

0.040983 

g 

Linear 

Piston 

Theory. 

-0.0168 
• -0.0239 

-0.0002 

0.0049 

0.0032 

0.0038 

0.0035 

0.0037 

0.0036 

--

TABLE 25: Damping Inherent in the System 

for a Particular Shell Using 

Exact Theory and Linear Piston 

Theory. 

L/R = 10.0, h/R = 0.004, n = 6, M = 4.0, , 
k = 2.0 

136. 



TABLE 26: Critical Mach Numbers for Un stiffened and Internally Stringer-Stiffened 

Cylindricaol Shells: Binary Analysis r = 2, s = 1 ; 

Linear Piston Theory 

UNS 'ITFF' £[£ D STRINGERS - INTERNAL 
ns/n 0 1.0 3.0 5.0 S.O 10.0 

L/R 
rcrit M n M n Mcrit :lcri t Mcrit n N n M h/R cr~t cr~t crit cri cri crit crit crit 

0.OU2 16 3.352 16 2.374 °13 5.U64 11 9.103 ~ 16.13 S 21.1 

o .U04 14 14.11 13 9.Cl74 10 24.!:>8 8 44.99 7 77.59 7 97.7 

2.0 u.006 12 35.64 11 24. °/9 S 63.62 7 115.5 6 193.7 6 ;<36.8 

O.OOS 11 69.35 10 4Cl. 0 9 7 125.Cl 6 227.5 5 3/7,4 5 457.8 

0.010 10 116.2 9 SO. "14 7 212.7 6 3ClCl.7 5 6;<3.8 5 777.U 

U.012 9 178.9 8 124.6 6 329.5 !> 596.C! !:> %4.8 5 1234. 

v.002 11 1.984 11 1.46 °1 10 2.U18 9 3.194 8 p.4°17 7 6.944 

0.°:)04 10 5.3 °1 4 10 3.Cl92 8 13.345 7 14.6b 6 ~4.29 6 28.8;< 

4.0 U.006 10 12.vl 9 8.b64 °1 20 • 6 6 b 36.37 5 ~7.1S 5 6:::.33 

V.008 9 22.54 Cl 16.3C! 7 ~0.31 6 70.36 5 ~S.6v 5 105.4 
" 

v.Ul0 8 37.47 Cl 26. °/8 6 ~5.66 !> 112.0 5 53.9 5 163.2 

o .U 1.2 S 5°,.34 0' 4u.67 6 101.6 ~ "167. V 4 21.1 4 234.4 

.~. 



TABLE 26 continued 

UNSTIFFENED STRINGERS - INTERNAL 

h/h 0 1.0 3.0 5.0 8.0 10.0 

L/R n crit 11 crit n crit 11 crit n crit M crit ncrit M crit n crit M crit n crit M crit , h/R 

0.002 8 1.637 8 1. 263 8 1.448 8 1. 927 7 2.995 7 3.809 

0.004 8 3.700 8 2.759 7 4.668 6 7.998 6 13 .04 5 15.22 

0.006 8 7.003 8 5.182 7 11.21 6 19.55 5 29.02 5 31. 58 

6.0 
0.008 8 12.34 7 9.142 6 20.93 5 35.95 5 51. 74 5 53.23 

0.010 7 19.66 7 14.45 5 35.65 5 59.15 4 75.73 4 74.19 

0.012 7 29.72 7 22.03 5 52.20 4 88.47 4 101.9 4 99.40 

0.002 6 1.397 6 1.084 6' 1.138 .6 1.277 6 1.654 6 1.983 

0.004 6 2.822 6 2.125 6 2.644 5 3.899 5 5.889 5 6.998 

0.006 6 4.572 6 3.418 6 5.529 5 e.774 4 13.31 4 13.95 

.10.0 0.008 6 6.881 6 5.142 5 9.634 4 16.87 4 22.02 4 21. 76 

0.010 6 10.04 6 7.534 4 15.89 4 26.04 4 32.61 4 30.62 

0.012 5 14.36 6 10.85 4 24.64 4 38.U9 4 44.72 4 40.60 

• 



TABLE 27: Critical Mach Numbers for Unstiffened and Externally Stringer-Stiffened 

Cylindrical Shells: Binary Analysis, r=2, s=l, Linear Piston Theory 

UNSTIFFENED STRINGERS - EXTERNAL 
h , slh 0 1.0 3.u 5.'0 8.0 10.0 

Lip, 
n M n M n M M n M n 

h/ R crit crit crit crit crit crit ncrit crit cri crit crit 

0.002 16 3.352 18 3.427 15 8.;<4: 12 15.28 10 27.75 10 

0.U04 14 14.11 15 16.19 11 43.24 9 '/~.()3 8 139.0 7 

2.0 0.006 12 35.64 13 42.67 10 114.7 8 207.7 7 348.5 6 

0.OU8 11 69.35 11 85.28 8 228.3 7 4u6.2 6 657.2 6 

0.010 10 116.2 10 145.9 8 388.4 6 6'17.6 5 1074. 5 

u.012 9 '117. ~ 10 226.1 7 595.;< 5 1029. 5 1613. 4 

0.u02 11 1.984 11 1. 717 11 2.6~9 10 4.546 OJ 8.09u 8 

U .004 10 5.347 11 5.245 ~ '12.48 8 22.86 'I 39.'11 7 

0.u06 10 12.0'1 10 12.56 cs 32.~8 7 5~.5:o 6 :l8.03 6 

4.u 0.008 9 22.54 9 24.60 7 6~.19 6 '117.3 6 182.U 6 

0.010 8 37;47 9 41. 72 7 110. 'I 6 195.9 6 293.3 6 

0.u12 8 57.34 8 64.40 6 :1.72.1 6 300.9 5 426.U 6 

" 

M crit 

36.47 

175.5 

427.5 

806. '1 

1327. 

2021. 

10.53 

49.30 

115.u 

207.1 

328.0 

481.0 



TABLE 27 continued 

, 
UNSTIFFENED STRINGJ::RS - EXTERNAL 

hS/h 0 1.0 3.u 5.U 8.U 10.0 

L/H n M n M n M n M n M n M , 
h/R crit crit crit crit crit crit crit crit crit crit crit crit 

0.002 8 1.637 9 1.386 ~ 1.740 8 2.4tJ7 8 4.100 7 5.226 

0.004 8 3.700 9 3.342 8 6.~84 '/ '11.17 6 19.21 6 23.4~ 

0.uu6 8 '1.003 9 6~835 7 15.8 '/ 6 28.80 6 47.22 6 54.50 
6.0 0.008 8 12.34 8 '12.34 7 3'1.69 6 56.5tJ 5 85.22 5 94.20 

0.010 7 '19.66, ,(j LO.63 6 53.08 5 94.02 5 133.2 5 144.u 

U.012 7 29.72 7 31.36 6 tJL.46 5 141.U 5 191.5 5 205.0 

0.Ou2 6 1.397 6 1.140 6 1.256 6 1.470 6 1.9'/4 6 2. 3~0 

o .'U04 6 2.822 6 2.344 6 3.175 6 4.tJ5e 5 7.916 5 9.46~ 

10.0 0.006 6 4.572 6 3.958 6 6.tJ68 5 11.82 5 18. /5 5 21.18 

0.U08 6 G.e81 6 6.196 5 '13.22 5 22.6tJ 4 34.35 5 36.53 

0.0 '10 6 10".04 6 9.303 5 21.55 4 3e.54 4 51.88 4 54.17 

O.U 12 5 14.36 6 13.52 5 3' .03 4 56.60 4 72 .49 4 74.53 

. 
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TABLE 28: Critical Mach Numbers Ca) Unstiffened 

NUMBER 

Ch/R - 0.004), Cb) Stiffened with 10 Internal 

Stringers Ch/R = 0.002) 

OF MeRIT 
AXIAL MODES 

(b) . (a) 

2 1.98 2.82 

3 2.75 3.48 

4 3.00 3.60 

5 3.60 3.75 

6 3.65 3.70 

7 3.85 3.75 

8 3.80 3.75 

9 3.90 3.75 " 

10 3.80 3.75 
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FIG. 10 CO-ORDINATE SYSTEM FOR. THE 

CIRCULAR CYLINDRICAL SHELL .. 
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n=O n=2 

n=1 n=4 
CIRCUMFERENTIAL NODAL PATTERN 

- ..,," -, 
..... _------ --- -

'--'--'--'1-' '--'--' -+-.. -------. -- .. 
- ...... _-' 

m=1 m=2 
AXIAL NODAL PATTERN 

NODAL ARRANGEMENT 
FOR n=3. m=4 

143. 

n=3 

CIRCUMFERENTIAL NODE 

FIG. 1 b NODAL PATTERNS 
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RING DETAIL. 

FIG.1 (c) 
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STRINGER DETAIL. 

STIFFENER NOTATION 
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FIG.2 

L / R = 4, SEA LEVEl. 
STEEL SHELL. 

----, ...... """'" --,-_-- n=7 STATIC - APPROX 

3 '4 5 6 7 8 9 10 
MACH NUMBER, M 

COMPARISON OF THE FLUTTER BOUNDARY WITH THAT 

OF STATIC APPROXIMATION. (REF 113) 



...,. 16 FLAT PLATE CYLINDER 
250x103 

t= " R = 8'0 '-... •• :.:: L = 15·4 
t< w w 

h = 0·004" :.:: 
U U t< 

0 Z Z n = 28" 200 w W 
I- 12 (9 (9 0 « Cl:: Cl:: Cl:: W W I-« 
w > > Cl:: 
Cl:: 0 0 150 w ::) 
Vl Cl:: 

~8 FLUTTER FLUTTER ::) 
Vl 

Cl:: If, 
Q. W 

100 Cl:: 
U Q. ., 
~ u « z 4 ~ ,-,,' . 
>- 50 « 0 z: 

>-
0 

STABLE STABLE 

0 
-90 -45 0 45 90 45 0 -45 -90 

0 

SPATIAL PHASE ANGLE '4' DEGREES 

FIG.3 STABILITY BOUNDARIES FOR A FLAT PLATE & A CYLINDRICAL 

~OU2 R 3 
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