
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

Systems reliability modelling for phased missions with maintenance-freeSystems reliability modelling for phased missions with maintenance-free
operating periodsoperating periods

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

© Samuel Chew

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Chew, Samuel P.. 2010. “Systems Reliability Modelling for Phased Missions with Maintenance-free Operating
Periods”. figshare. https://hdl.handle.net/2134/6331.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

Thesis Access Form

Copy No…………...…………………….Location………………………………………………….……………...…

Author…………...………………………………………………………………………………………………..…….

Title……..

Status of access OPEN / RESTRICTED / CONFIDENTIAL

Moratorium Period:…………………………………years, ending…………../…………200……………………….

Conditions of access approved by (CAPITALS):……………………………………………………………………

Supervisor (Signature)………………………………………………...…………………………………...

Department of……………………………………………………………………...…………………………………

Author's Declaration: I agree the following conditions:
Open access work shall be made available (in the University and externally) and reproduced as necessary at the
discretion of the University Librarian or Head of Department. It may also be digitised by the British Library and
made freely available on the Internet to registered users of the EThOS service subject to the EThOS supply
agreements.
The statement itself shall apply to ALL copies including electronic copies:

This copy has been supplied on the understanding that it is copyright material and that no quotation from the
thesis may be published without proper acknowledgement.

Restricted/confidential work: All access and any photocopying shall be strictly subject to written permission from
the University Head of Department and any external sponsor, if any.

Author's signature……………………………………….Date…………………………………...…………...……...

users declaration: for signature during any Moratorium period (Not Open work):
I undertake to uphold the above conditions:

Date Name (CAPITALS) Signature Address

Systems Reliability Modelling for Phased Missions with
Maintenance Free Operating Periods

By

Samuel Chew

A Doctoral Thesis

Submitted in partial fulfilment of the requirements for the award of
Doctor of Philosophy of Loughborough University

May 2010

 by Samuel Chew 2010

CERTIFICATE OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this thesis, that the
original work is my own except as specified in acknowledgments or in footnotes, and
that neither the thesis nor the original work contained therein has been submitted to this
or any other institution for a degree.

……………………………………………. (Signed)

……………………………………………. (Date)

In memory of my dad

- i -

Abstract

In 1996, a concept was proposed by the UK Ministry of Defence with the intention

of making the field of reliability more useful to the end user, particularly within the

field of military aerospace. This idea was the Maintenance Free Operating Period

(MFOP), a duration of time in which the overall system can complete all of its

required missions without the need to undergo emergency repairs or maintenance,

with a defined probability of success. The system can encounter component or sub-

system failures, but these must be carried with no effect to the overall mission, until

such time as repair takes place. It is thought that advanced technologies such as

redundant systems, prognostics and diagnostics will play a major role in the

successful use of MFOP in practical applications.

Many types of system operate missions that are made up of several sequential

phases. For a mission to be successful, the system must satisfactorily complete each

of the objectives in each of the phases. If the system fails or cannot complete its

goals in any one phase, the mission has failed. Each phase will require the system to

use different items, and so the failure logic changes from phase to phase. Mission

unreliability is defined as the probability that the system fails to function

successfully during at least one phase of the mission. An important problem is the

efficient calculation of the value of mission unreliability.

This thesis investigates the creation of a modelling method to consider as many

features of systems undergoing both MFOPs and phased missions as possible. This

uses Petri nets, a type of digraph allowing storage and transit of tokens which

represent system states. A simple model is presented, following which, a more

complex model is developed and explained, encompassing those ideas which are

believed to be important in delivering a long MFOP with a high degree of

confidence. A demonstration of the process by which the modelling method could

be used to improve the reliability performance of a large system is then shown. The

complex model is employed in the form of a Monte-Carlo simulation program,

which is applied to a life-size system such as may be encountered in the real world.

Improvements are suggested and results from their implementation analysed.

- ii -

Acknowledgements

Enormous thanks must go to my supervisors, Professor John Andrews and Dr Sarah

Dunnett, for their huge efforts in guiding and supporting me as I worked through

my Ph.D. Without them and the incredible patience they have shown, the creation of

this thesis would not have been possible.

Thanks must also be given to my sponsors at BAE Systems – Angus Murray and

Clive Downes, plus Greg Slaughter – for their generous funding, and for taking so

much time and effort to ensure that I had everything I needed to complete the work.

There are also many people in the Aeronautical and Automotive Engineering at

Loughborough University who made the experience of carrying out this research

one which I will always treasure.

To my mum, Cathy, my brother, Jim, my sisters, Sine and Lindsay, and all my

friends and family who have taken an interest in the progress of this work, you

should know that without your support and encouragement, it is unlikely that this

would have been completed.

Thank you God for giving me the skills and opportunities I have had to make it this

far, and for being with me throughout all of this.

Finally, to my wife, Christabel: I can never ever repay the huge amount of belief,

support, management, guidance, understanding, patience and love that you have

shown to me in the time it has taken to finish this work. If it were not for you, I am

sure I would have given up on this work many years ago. The existence of this

thesis is as much testament to your hard work as it is to mine.

- iii -

Contents

Chapter 1 Introduction 1

1.1 Introduction to Reliability and Risk Assessment 1

1.2 System Failure Quantification 3

1.3 Fault Tree Analysis 5

1.4 Markov Methods 7

1.5 Monte-Carlo Simulation 7

1.6 Phased Mission Systems 8

1.7 Maintenance-Free Operating Periods 9

1.8 Research Objectives 10

Chapter 2 Reliability Analysis Tools 12

2.1 Introduction 12

2.2 Fault Tree Analysis 12

2.2.1 Fault Tree Construction 12

2.2.2 Qualitative Analysis 14

2.2.3 Quantitative Analysis 16

2.2.3.1 Top Event Probability 16

2.2.3.1.1 Upper and Lower Bounds for System Unavailability 17

2.2.3.1.2 Minimal Cut Set Upper Bound 17

2.2.3.2 Importance Measures 17

2.3 Binary Decision Diagrams 19

2.3.1 BDD Properties 20

2.3.2 Formation of a BDD using If-Then-Else Structure 21

2.3.3 BDD Minimisation 22

2.4 Markov Analysis 23

2.5 Summary 25

Chapter 3 Maintenance Free Operating Periods 27

3.1 Introduction 27

3.2 Explanation of MFOP 28

3.3 MFOP Basics 29

3.4 Impact of MFOP 30

- iv -

3.4.1 Technologies Within MFOP 30

3.4.2 Advantages 31

3.4.3 Disadvantages 32

3.4.4 Arguments Surrounding MFOP 33

3.5 Using and Achieving MFOP 34

3.5.1 Enablers of MFOP 35

3.5.1.1 Inherent Reliability (IR) 35

3.5.1.2 Prognostics 37

3.5.1.3 Diagnostics 38

3.5.1.4 Redundancy/Reconfigurability 38

3.5.2 Considering MFOP in Design 40

3.5.3 Maintenance Recovery Period 41

3.6 Analysing MFOP 43

3.6.1 Mathematics of MFOP 43

3.6.2 Ultra Reliable Aircraft Model (URAM) 48

3.7 Summary 50

Chapter 4 Phased Missions and Petri Nets 52

4.1 Introduction 52

4.2 Phased Missions 52

4.2.1 Non-Repairable Systems 52

4.2.1.1 Transformation of a Multi-Phased Mission to an Equivalent

Single-Phased Mission 53

4.2.1.1.1 Cut Set Cancellation 55

4.2.1.2 Obtaining Bounds for Mission Unreliability 56

4.2.1.3 Expected Number of Failures 59

4.2.1.4 Laws of Boolean Phase Algebra 59

4.2.1.5 Binary Decision Diagrams 66

4.2.1.6 Non-Coherent Fault Trees 71

4.2.1.7 Importance Measures 74

4.2.1.8 Markov Methods 77

4.2.2 Repairable Systems 79

4.2.2.1 Combinatorial Approaches 79

4.2.2.2 Markov Methods 80

- v -

4.2.2.2.1 Homogeneous Markov Model 80

4.2.2.2.2 Non-Markovian Models 89

4.2.3 Summary 92

4.3 Petri Nets 93

4.3.1 Introduction 93

4.3.2 Formal Definition 94

4.3.3 Basics of Petri nets 94

4.3.3.1 Original Petri net Concept 94

4.3.3.2 Timed Petri nets 95

4.3.3.3 Arc Multiplicities 97

4.3.3.4 Inhibitor Arcs 98

4.3.3.5 Reachability Graphs 99

4.3.3.6 Coloured and Aging Petri nets 101

4.3.3.7 Other Variations 102

4.3.4 Application of Petri nets to Reliability 102

4.3.4.1 Markov Analysis 103

4.3.4.2 Fault Tree Modelling 105

4.3.4.3 Multi-Phased Missions 108

4.3.5 Summary 111

Chapter 5 Development of Initial Model 113

5.1 Introduction 113

5.2 Development of Model 114

5.2.1 System Net 114

5.2.1.1 Phase Petri Nets 116

5.2.1.2 Component Petri Net 118

5.2.1.2.1 Dependency Modelling 119

5.2.2 Phase Net (Master Petri Net) 120

5.2.3 Simulation Model 123

5.3 Model Validation 124

5.3.1 Non-repairable Small System 124

5.3.1.1 Theoretical Analysis 125

5.3.1.2 Petri Net Model Results 130

5.3.1.3 Comparison of Results 132

- vi -

5.3.2 Repairable Small System 132

5.3.2.1 Markov Analysis 133

5.3.2.2 Comparison of Results 135

5.3.3 Larger Repairable System 136

5.3.3.1 Results 138

5.4 Summary 140

Chapter 6 Development of Complex Model 141

6.1 Introduction 141

6.2 Phased Missions 141

6.2.1 Phase Lengths 141

6.2.2 Probability Transitions 142

6.2.3 Fleet of Platforms 143

6.2.4 Platform Operation 144

6.2.5 MFOP Operation 146

6.2.6 Mission Operation and Abandonment 147

6.2.7 Total Loss of Platform 148

6.2.8 MFOP Abandonment 149

6.2.9 Mission Abandonment to Phase 150

6.2.10 MRP Modelling 151

6.2.11 General Failure 152

6.2.12 Phase Selection 154

6.2.12.1 Event-driven Phase Selection 154

6.2.12.2 Probability-driven Phase Selection 155

6.2.13 Phase Insertion 156

6.3 Reliability & Maintainability and MFOP Enablers 157

6.3.1 Inherent Reliability 157

6.3.2 Discrete Events 158

6.3.3 Component Replacement 159

6.3.4 Line Replaceable Items 160

6.3.5 Scheduled Life Replacements 164

6.3.6 Diagnostics 166

6.3.6.1 Sensors 166

6.3.6.2 Inspection 168

- vii -

6.3.7 Redundancies 177

6.3.8 Prognostics 185

6.3.8.1 Modelling Component Wear 186

6.3.8.2 Diagnosing Wear Level 188

6.3.8.3 Predicting Component Failure Times 190

6.3.8.4 Assessing MFOP Criticality 194

6.3.8.5 Modelling Actions Taken Based on Predictions 195

6.4 Summary 199

Chapter 7 Application of Model to Large System 201

7.1 Introduction 201

7.2 Application to Previous Systems 201

7.2.1 Non-repairable Small System 202

7.2.2 Repairable Small System 202

7.2.3 Repairable Larger System 203

7.3 Application to a Large System 205

7.3.1 The System 206

7.3.1.1 Potential for Total Loss 206

7.3.1.2 Potential for Mission Abandonment 207

7.3.1.3 Missions and Phases 208

7.3.1.4 Platforms and MFOPs 209

7.3.1.5 Component data 210

7.3.1.6 Enablers 210

7.3.2 Performance of Simulations and Results 210

7.3.2.1 First Generation 210

7.3.2.2 Second Generation 217

7.3.2.3 Third Generation 225

7.4 Summary 229

Chapter 8 Conclusions and Further Work 230

8.1 Summary 230

8.2 Conclusions 235

8.3 Further Work 237

8.3.1 Verification of Repairable Larger System Results 237

- viii -

8.3.2 Cost modelling 237

8.3.3 Reconfigurability 238

8.3.4 Phase and Component Dependency 238

8.3.5 Degradation 238

8.3.6 Prognostics 239

8.3.7 Platforms and MFOPs 239

8.3.8 MFOPs and Missions 239

8.3.9 Maintenance & Logistics Support 240

8.3.10 Importance Measures 240

8.3.11 Optimisation 240

8.3.12 System of Systems 241

References 242

Appendix A Description of Simulation Program 250

A.1 Introduction 250

A.2 Basic Information 251

A.3 Inputting Data to the Program 254

A.3.1 Phase Fault Tree, Component and Sensor Data 254

A.3.1.1 Phase Fault Trees 256

A.3.1.2 Component Failure Data 259

A.3.1.3 Sensor Data 261

A.3.1.4 Discrete Events 262

A.3.1.5 Component Dependencies 263

A.3.2 MFOP Enabler Data 264

A.3.2.1 LRI Data 265

A.3.2.2 Scheduled Life Replacements 268

A.3.2.3 Inspections 268

A.3.2.4 Redundancies 270

A.3.2.5 Prognostics 271

A.3.3 Platform, MFOP and Mission Data 273

A.3.3.1 Fleet and MFOP information 274

A.3.3.2 Missions Information 275

A.3.3.3 Creating the Master Petri Net 279

- ix -

A.3.3.4 Discrete Events 280

A.4 Performing Simulations 281

A.4.1 Simulation options 281

A.4.2 Simulation Process 283

A.4.2.1 Initial Processes 283

A.4.2.2 Sampling Transition Switching Times 287

A.4.2.3 Simulation Performance 289

A.4.2.4 Assessing Component Criticality 292

A.5 Outputs 297

A.5.1 Petri Net information 298

A.5.2 Simulation Results 300

A.5.2.1 Platform Failure Information 301

A.5.2.2 MFOP Failure Information 302

A.5.2.3 Mission Failure Information 302

A.5.2.4 Phase Failure Information 304

A.5.2.5 System Failure Information 305

A.5.2.6 Component Failure Information 307

A.5.2.7 Discrete Event Information 308

A.5.2.8 LRI information 308

A.5.2.9 Prognostics Information 309

A.5.2.10 Redundancies Information 309

A.5.2.11 Inspections Information 310

A.6 Summary 310

Appendix B Data Input Files 312

B.1 First Generation 313
B.1.1 Fault Tree, Component Data and Discrete Events file 313
B.1.2 MFOP Enablers 332
B.1.3 Platform, MFOP, Mission and Phase Data 332

B.2 Second Generation 334
B.2.1 Fault Tree, Component Data and Discrete Events file 334
B.2.2 MFOP Enablers 336

B.3 Third Generation 337
B.3.1 Fault Tree, Component Data and Discrete Events file 337
B.3.2 MFOP Enablers 339

- x -

Nomenclature

A(t) Availability function

[A] State transition matrix

Aj Occurrence of component A in phase j

A(j) Existence of component A in phase j

Aij Failure of component A from start of phase i to end of phase j

aj Failure of component A in phase j

jA Success of component A in all phases up to and including phase j

C Consequence of an event

Ci Existence of cut set i

)(jiC Existence of cut set i in phase j

D Vector of switching delays of transitions

E Set of edges (arcs) in Petri net

E[Aj] Expectation of component A in phase j

Ej Boolean expression for the failure combinations of phase j

F(t) Unreliability function

fi(t) Failure probability density function (PDF) for item i

Fi(t) Failure cumulative distribution function (CDF) for item i

Gc(q(t)) Criticality function for event c (Birnbaum’s measure of importance)

Gi,j Criticality function for component i in phase j
T

kjiG ,, Phase transition criticality function for component i in phase k prior to

phase j

GPN Set of Petri net data

h(t) Conditional failure rate (hazard rate)

Ic
CR Criticality measure of component importance

Ic
FV Fussell-Vesely measure of component importance
FV
Ck

I Fussell-Vesely measure of minimal cut set k importance

Ic
ST Structural measure of component importance

Ii,j Importance measure for component i in phase j
P

jiI , Phase component importance measure for component i in phase j

- xi -

T
jiI , Phase transition importance measure for component i in phase j

M(t) Vector of Petri net place marking at time t

Mi(t) Number of tokens in place i at time t

m Number of phases in mission

mf Number of failure modes

iCN Number of basic events in cut set Ci

jiCN Number of basic events in cut set Ci in phase j

nl Number of wear levels

Nmcs Number of minimal cut sets

jmcsN Number of minimal cut sets in phase j

NS Total number of system states

P Probability

 [P] State probability vector

jcp Component phase j availability (success probability)

jiCp Probability of success of cut set Ci in phase j

ba ll PP , Lower and upper percentage bounds of wear level l

)(tP
iS Probability of being in state Si at time t

PFCj Phase failure combinations for phase j

Q(t) Unavailability function

Qj(t) Phase j failure probability (system phase j unavailability)

q(t) Vector of component unavailabilities

qc(t) Component unavailability (failure probability) function

)(tq
jc Component unavailability (failure probability) function in phase j

)(tq
jiC Unavailability function of cut set Ci in phase j

ijcq Unavailability of component c from phase i through to phase j inclusive

QIN-EX Minimal unreliability bound using the inclusion-exclusion expansion

QIN-EX(CC) QIN-EX with cut set cancellation technique

QMCB Minimal unreliability bound using the minimal cut set bound to estimate

phase unreliability

QMCB(CC) QMCB with cut set cancellation technique

- xii -

QMCSU Minimal cut set upper bound

QMISS Mission unreliability

QSYS(t) System unavailability function

QS(t) Probability of being in state S at time t

)(tQS
& Rate of transition into state S

R Risk

R(t) Reliability function

R(t) Vector of system state reward rates

jiAr
,

 Probability of success of component A in phases i to j inclusive

Ri(t) Probability of item i surviving to time t

Rj Phase j reliability (success probability)

RMISS(t) Mission reliability (success probability)

RSYS(t) System reliability function

Si(t+u | t) Survivability of item i after interval length u given survival at time t

Snar Non-age-dependent survivability

t Time

cc RF tt , Component failure and repair time

ba FF tt , Upper and lower bounds for predicted component failure time

ti Life of item i

zIt Time of current inspection z

tj End of phase j and start of phase j+1

tl Time to enter wear level l

u Length of MFOP

umax Design life of system (maximum MFOP length)

Vp Set of places in Petri net

|Vp| Number of places in Petri net

Vt Set of transitions in Petri net

Xj Event of system being failed in phase j

xc Binary indicator variable for component states

Y(t) Instantaneous accumulated reward

βi Weibull distribution shape parameter for component i

ηi Weibull distribution characteristic life parameter for component i

- xiii -

λc Conditional failure rate of component

µi Mean time to failure (MTTF) for failure mode i

µSYS Mean time to failure (MTTF) for the system

υc Conditional repair rate of component

jcρ Conditional reliability of component c in phase j

 - 1 -

Chapter 1 Introduction

1.1 Introduction to Reliability and Risk Assessment

On rare occasions an incident will occur with catastrophic consequences due to the

failure of an industrial system. The industries within which these systems operate

include aeronautical, nuclear, oil and gas, and transport. Incidents such as the

explosion on the Piper Alpha oil platform in 1988 and the Air France disaster over

the Atlantic in 2009 both resulted in multiple fatalities. Examples such as this

demonstrate the importance of efforts to assess accurately and reduce the risk posed

from complex systems. Applying system safety assessments at an early stage in

design can reduce or prevent the possibility of unwanted incidents occurring once

the system is in active use.

Developing techniques to assess the risk and reliability of systems has been a

research interest for many years, with a great deal of progress made since the

Second World War. These techniques provide the ability to evaluate the causes, and

probability or frequency, of a hazardous event occurrence, taking into account,

where necessary, the failure of safety systems to respond. The risk or ‘expected

loss’, R, of any hazardous event is defined as the product of its consequence, C, and

the probability or frequency of its occurrence, P:

 R = C × P

1.1

In safety studies, a consequence can be, for example, number of fatalities, cost of

compensation, or damage to buildings. The risk can be reduced either by reducing

the associated consequences of the hazard, or by reducing the probability or

frequency of its occurrence.

 - 2 -

A quantitative risk assessment of a potential hazard involves four basic stages:

1. Identification of potential safety hazards.

2. Estimation of the consequences of each hazard.

3. Estimation of the probability or frequency of each hazard.

4. Comparison of the results against the acceptability criteria.

The consequences of a hazard are usually measured by the expected number of

fatalities and indicate the severity of the incident. Consequence modelling is very

much industry dependent, as systems and their modes of failure can vary

significantly from one industry to another. Reliability assessment techniques,

however, which are concerned with calculating the probability or frequency with

which system failure can occur, are generic. Methods such as Failure Mode and

Effect Analysis (FMEA), Event Tree Analysis, Markov Analysis and Fault Tree

Analysis are used extensively in many industries.

Once a hazard has been assessed to find the consequences and probability of its

occurrence, Equation 1.1 is used to determine the associated risk. In order to assess

whether a level of risk is acceptable, the HSE (Health and Safety Executive)

consider the use of a three-band approach known as the ALARP (“As Low As

Reasonably Practicable”) principle [1]. This is shown in Figure 1.1.

Figure 1.1 – The ALARP Principle [1]

Unacceptable

Satisfactory if
ALARP

Broadly
Acceptable

Consequence

Frequency

Low

High

Low High

 - 3 -

Risks that fall into the “Broadly Acceptable” region are considered low enough to

be permissible. Generally, they have a low probability of occurrence and do not

have a severe hazard associated with them. Risks that fall into the “Unacceptable”

region are not tolerated and either the probability or consequence of the event must

be reduced. Between these bands is the “Satisfactory if ALARP” region, where risks

are considered to be acceptable if they are as low as reasonably practicable. The test

for reasonable practicability takes into account factors such as cost, effort, industry

or legal standards, comparative risk prevention by competitors, and so on.

1.2 System Failure Quantification

It is possible to predict the reliability performance of a system from the known

reliability performances of the components which make it up, by using appropriate

techniques. This reliability performance of system or components can be expressed

through the quantification of failure probabilities. The common parameters that are

used throughout this thesis are defined below.

If a system or component can be repaired, and so its failure can be tolerated, a

useful measure of performance is availability, A(t). This is defined as:

the fraction of the total time that a system or component is able to

perform its required function.

This parameter can also be defined at a specified time point t as:

the probability that a system or component is working at time t.

The complement of availability is unavailability, where:

Unavailability = 1 – Availability

 - 4 -

Unavailability is defined as the probability that a component or system does not

work at a given time t, and is denoted by qc(t) for a component and Qsys(t) for a

system.

Reliability of a system or component, R(t), can be defined as:

the probability that a system or component will operate without

failure for a stated period of time under specified conditions.

Reliability is typically more appropriate for systems where failure cannot be

tolerated, and so the successful functioning of the system or component over a given

time interval is an important performance measure. The probability that a system or

component fails to work continuously over a given duration and under specified

conditions is known as its unreliability, F(t), where:

Unreliability = 1 – Reliability

If a component or system is non-repairable and it is working at time t, then it must

have worked continuously since t=0. Therefore for the non-repairable case, the

unavailability is equivalent to the unreliability.

The transition of a component or system to a failed state can be characterised by the

conditional failure rate, h(t), also known as the hazard rate. This parameter is a

measure of the rate at which failures occur amongst those items which have not yet

failed, i.e. those that are still functioning at time t. It is defined as follows:

the conditional failure rate, h(t), is the probability that a system or

component fails in the interval (t, t+dt), given that it has not failed in

[0,t).

A component family will typically have reliability characteristics which can be

modelled by a “reliability bath-tub curve”, as shown in Figure 1.2.

 - 5 -

Figure 1.2 – Reliability Bath-Tub Curve

Phase I of the curve in Figure 1.2, called “Burn-in”, sees the hazard rate reducing

over time as weaker components fail and are removed from the overall population.

During the second phase there is an almost constant hazard rate, leading to this

period of life being known as the “useful life” of the components. The hazard rate

Phase III increases as the components start to wear out and fail. Reliability

assessment is typically performed on components which are thought to be in their

useful life phase. The system reliability, Rsys(t), can be expressed in terms of a

constant hazard or failure rate λ by equation 1.2.

tetR λ−=)(sys

1.2

Further component and system quantification methods can be found in [2] and [3].

Tools exist which allow the evaluation of the reliability parameters of a system in

terms of those of its constituent components. Two of the typical methods, Fault Tree

analysis and Markov methods, are discussed below.

1.3 Fault Tree Analysis

Fault Tree Analysis is a concept first introduced by H. A. Watson in the early 1960s

[4], and is a deductive procedure for identifying the causes of a particular system

failure mode using a “what could cause this” technique. The fault tree diagram

provides a visual representation of the combinations of component failure events

which result in the system failure mode occurring. The system failure mode under

Hazard
Rate

I
Burn-in II

Useful Life

III
Wear-out

t

 - 6 -

consideration is referred to as the “top event” of the fault tree and branches of the

tree are constructed below, each one of which represents a contributory cause. The

events are continually redefined in terms of their causes, until each branch ends with

a basic event, which is typically a component failure or human error. A fault tree

can then be analysed to provide information on the causes of top event in terms of

the basic events, with the probabilities of the latter allowing the calculation of the

top event probability.

As the Fault Tree Analysis process starts with the top event and works downwards,

building the fault tree beneath, this is known as an example of a “top-down”

technique. This is in contrast to other methods, such as Failure Modes and Effects

Analysis (FMEA), which are known as “bottom-up” approaches, since their starting

point is a set of component failure conditions and the process allows the

identification of the possible consequences using a “what happens if” approach.

Techniques which allow the quantitative analysis of a fault tree, known as Kinetic

Tree Theory (KTT), were developed in the early 1970s by Vesely [5]. KTT allows

the calculation of various system reliability parameters, such as probability and

frequency of top event occurrence, using those of the basic events. This allows an

assessment of whether the risk of system failure is acceptable and so if the required

safety standards are being met.

The main disadvantage of KTT is that as fault trees grow larger, the analysis

becomes more and more computationally intensive and so may require the use of

approximations. This obviously leads to inaccuracies in the calculations. As the

techniques are already so well developed, further refinement is unlikely to result in

vast improvements.

 - 7 -

1.4 Markov Methods

KTT is based on the assumption of statistical independence between the basic

events in a fault tree. In many cases this is invalid, such as in systems which feature

standby redundancy, common cause failures, secondary failures, or multiple-

component states.

Markov analysis provides a means of analysing the reliability and availability of

systems whose components express these dependencies. The method is a state-space

approach. The likelihood of any event in the chain is determined only by the

immediately preceding state and is independent of any other past events. As with

fault tree analysis, the main disadvantage of the Markov approach is that as the

number of components, and thus the number of system states, grows, the model can

grow very rapidly in size.

1.5 Monte-Carlo Simulation

Sometimes, a system cannot be easily solved by graphical or simple mathematical

methods. Another solution is to simulate the reliability performance of the system

on computer. The method works by generating a computer model of the system

failure logic in some way, and using a random number generator to simulate times

to failure for each component. The failure times generated can be made to follow

the distribution of times for each component, such that if a sufficient number of

times were randomly generated and plotted with frequency of occurrence against

time, the distribution would be recreated. These times are then fed into the failure

logic for the system, and the combinations of component failures at generated times

will lead to system failure after a certain time. As more simulations are performed, a

description of the system reliability failure distribution is built up, which can then

be used for analysis.

 - 8 -

1.6 Phased Mission Systems

A common scenario in many real-world situations is one where a system undergoes

missions, with distinct and differing objectives at consecutive time intervals. Such a

concept is known as a Phased Mission, as first described by Esary and Ziehms [6],

while each time interval with a unique objective is known as a phase. During the

mission, in order to complete the different objectives for each phase, different sub-

systems and components will need to be in use at different times, and as such the

ways in which the overall system can fail changes with time. The phases in a

mission may be identified in ways such as phase number, time interval, system

configuration, task(s) to be undertaken, performance measure(s) of interest, or

maintenance policy.

A multi-phased mission can be considered as a sequence of individual events. The

success of each of these events means success of the overall mission. Thus, for the

mission to be successful, each of the phases must not fail. Examples of systems

which undergo phased missions include aircraft flights, rocket launches and many

military operations for aircraft or ships. An aircraft mission can be thought of as

containing the following phases: Pre-flight check, taxi to runway, take-off, ascent,

transit to destination, descent and approach, landing, and taxi to the terminal.

Components in the system may fail at any time, but their failure may only be critical

for the failure of the system during a specific phase. As a result of this, the transition

from one phase to the next may be the critical event which causes system, phase and

mission failure, if component failures occurred earlier in the mission.

It is not possible to find the reliability of a mission by simply finding all of the

phase reliability values and multiplying them together. This is due to the condition

that at phase change times, the system must be in a state which is operational for

both the current and the next phases. This creates statistical dependence between the

phases. In order to understand how phases and missions can fail, it is necessary to

express how the combinations of component failures can occur in each phase and

thus cause system failure. Quantification of this allows mission failure probability

and frequency to be determined. Mission unreliability is defined as the probability

 - 9 -

that the system fails to function in at least one of the phases within it. An important

problem is the calculation of the exact value of this parameter to a high level of

efficiency.

The techniques which have been applied to solve for phased mission reliability

parameters are predominantly those of fault tree, Markov or simulation analysis.

Fault tree analysis is commonly used in industrial applications to find the

probability of failure of their systems. It can be used to express the failure logic of

the system in each phase. The combination of a different model for each of the

potentially many mission phases makes the process of solving for reliability

parameters considerably more complex than a single-phase system. If the

assumption of independence between component failures is not applicable in a

given situation, another method such as Markov analysis may be employed. If the

modelling of a system by either of these methods is impractical or unfeasible, then it

may be necessary to simulate the performance of the system. An instance where this

may be required could be one where the system is too complex to use deterministic

analysis, or if the component failure or repair rates are not constant. Simulation

techniques typically offer a very high level of breadth in terms of representation and

analysis, but suffer from often very expensive computational requirements.

1.7 Maintenance-Free Operating Periods

The concept of Maintenance-Free Operating Periods (MFOP) is an attempt to

provide a more useful way of describing the reliability performance of a system.

Created with the operators of military aircraft in mind, for whom the successful

planning and execution of missions and maintenance is critical, it expresses the

availability of an aircraft in a slightly different way. An MFOP can be defined as:

The period of operation during which an item will be able to carry

out all its assigned missions, without the operator being restricted in

any way due to system faults or limitations, with the minimum of

maintenance [7].

 - 10 -

In other words, an MFOP is a time interval in which the system will perform as

required without any emergency or unexpected maintenance being needed, with a

specified confidence level. A period of maintenance follows each MFOP, and is

known as a Maintenance Recovery Period (MRP). During each MRP, the system is

recovered to a state whereby it can complete the next MFOP. It is allowable that the

system may carry some faults into an MFOP, as long as they are not critical for that

time period.

Research has indicated that the application of technologies such as prognostics

(which allow estimation of future failure times) and redundancies (providing extra

systems which are typically offline, only becoming operational when the primary

system fails, covering for the loss of functionality), are critical in allowing an

MFOP of a meaningful size. However, the concept is still relatively young and as

such there is very little operational experience of the ways in which the technologies

and procedures which will enable it can be applied to yield a satisfactory

maintenance-free duration.

1.8 Research Objectives

The aim of this research is to develop methods which would allow an accurate

analysis of Maintenance-Free Operating Periods and how they could be applied.

This needs to take account of all of the technologies and maintenance schemes

which would be critical in providing an MFOP value which is of use to the operator.

Some of these reliability technologies are novel and very complex, and the sum total

of their effect on a system may be similarly complex and not well understood. The

analysis method developed should allow further insight into as yet unforeseen

problems which may arise, and contribute to assessments into whether MFOP is a

metric which will be useful in future applications.

Also important for consideration is the performance of the missions within an

MFOP. These missions are performed sequentially, without emergency

maintenance, and so each of them must be successfully completed. Considering

each of these as single-phased would not provide an accurate enough figure for

 - 11 -

mission reliability, and so a multi-phased mission approach is applied. The analysis

method developed must take into account real-world considerations of the multi-

phased nature of missions, such as alterations to the mission plan while it is being

carried out.

The combination of phased missions analysis with the novel concept of MFOP is

one which requires a very powerful way of modelling the reliability performance.

The research objectives are to find a modelling tool which will provide this power,

and present a modelling method using this tool.

Meeting these objectives involved the following:

• Review of research into Maintenance-Free Operating Periods: the creation

and development of the concept, the methods by which it is expected to

work, the mathematical and computational models which have been created

to analyse it.

• Review of existing methods for phased missions systems: the development

of the concept, and the ways in which it has been analysed for both the

repairable and non-repairable cases.

• Establishment of a method which allows modelling of MFOP and phased

missions in combination, to a satisfactory level of detail.

• Development of a modelling method which considers both these concepts in

depth. The complexities of MFOP and phased missions, such as prognostics,

redundant systems, and real-time mission reconfiguration should be taken

into account.

• Application of the modelling method into a form which allows analysis of a

real-world system. This is a computerised form, making it possible either to

swiftly calculate end-values, or to simulate system reliability data.

• Demonstration of the modelling method to a real-world system, showing

how it can be of use in designing new systems or developing current ones to

achieve a high value of MFOP with a high confidence level.

 - 12 -

Chapter 2 Reliability Analysis Tools

2.1 Introduction

Predicting the reliability performance of a system is typically done in terms of the

reliability performance of the components which make it up. The methods most

widely used for this purpose are Fault Tree Analysis (FTA), Binary Decision

Diagrams (BDDs) and Markov analysis, which are discussed in this chapter.

2.2 Fault Tree Analysis

In a fault tree, a specific system failure mode is expressed using a visual symbolic

representation of how component failure events can combine to cause it. In this

way, FTA allows the causes of system failure and corresponding reliability

parameters to be established by a logical and structured process. The method is

often employed at the design stage of a system, in order to highlight potential areas

for improvement, both in its inherent reliability and the way it is used by operators.

2.2.1 Fault Tree Construction

A fault tree is typically constructed in a top-down fashion. This means that it must

begin with the identification of the system failure mode to be analysed. If a system

has more than one failure mode, then a different fault tree for each mode is required.

The system failure mode becomes the top event of the tree, with the branches below

it describing the events which could cause this. Each event in the tree has the causes

for its occurrence ascertained, gradually increasing in resolution until each branch

terminates with the failure of a component, known as a basic event. Intermediate

events are those which are between basic events and the top event. Each basic event

can be described in terms of its failure probability over time, and the combination of

these in the specific logic visualised by the fault tree establishes the failure rate of

the top event.

 - 13 -

Events in a fault tree are linked logically by gates. Each gate is a way of

establishing how an intermediate event can be caused by basic or other intermediate

events of a higher resolution. The symbols for events used in fault trees are shown

in Table 2.1. Table 2.2 shows the symbols for gates, of which there are three types:

AND, OR, or NOT, which represent the Boolean operations of “intersection”,

“union” and “complementation” respectively. A fourth type is also shown, which is

a simplified way of representing an output event occurring when k out of n inputs

have occurred.

Table 2.1 – Event Symbols

Event Symbol Explanation

Top Event

Intermediate event

developed by gate

below

Basic event

A system in which failure can only be caused by component failures and in either

AND or OR logic is known as a coherent system. If at least one component success

is used anywhere to define system failure, a NOT gate is required for each success

and the system is known as non-coherent.

Analysing a fault can be done in two ways. The first identifies the logical

combination of component failures which cause system failure, and is known as

qualitative analysis. The second allows calculation of system reliability parameters

using those of components, and is known as quantitative analysis.

 - 14 -

Table 2.2 – Gate Symbols
Gate Symbol Gate Name Causal Relation

AND Gate Output event occurs only

when all input events

have occurred.

OR Gate Output event occurs

when at least one input

event occurs

k-out-of-n

Voting Gate

Output event occurs if at

least k out of the n input

events occur

NOT gate Output event occurs if

the input event does not

occur

2.2.2 Qualitative Analysis

This type of analysis is used to logically express the failure of a system in a

particular way in terms of the component failures which can combine to cause it.

Each individual combination of basic events which will definitely lead to system

failure is known as a cut set, defined as:

A cut set is a collection of basic events such that if they all occur, the

top event also occurs.

A cut set may contain events which do not contribute towards the system failure

mode. If the cut set {A B C D} ensures that the system will fail, but components B

and D could cause this alone, then the states of A and C are irrelevant. This allows

the definition of a minimal cut set:

k

n inputs

 - 15 -

A minimal cut set is the smallest combination of basic events, such

that if any basic event is removed from the set, the top event will not

occur.

If one fault tree shares the same minimal cut sets as another, then they are logically

equivalent. The number of basic events within a minimal cut set defines the cut set’s

order. Typically, minimal cut sets of a lower order influence the system failure rate

most, and so at the design stage, it is these which should be focused on and

removed. If NOT logic is used anywhere within a fault tree, the combinations of

basic events which cause system failure are known as implicants. Minimal sets of

these are called prime implicants.

Determining a fault tree’s minimal cut sets can be done either in a “top-down” or a

“bottom-up” approach, which results in a Boolean expression for system failure in

terms of component failures. The “top-down” approach continually substitutes

Boolean events lower down the tree for those higher up the tree, so the top event is

consistently “broken-up” into smaller events which are all eventually basic. The

“bottom-up” approach begins with each set of events for each gate at the bottom of

the tree and gradually combines these until the top event is reached. The product

symbol, ‘·’ is used to represent ‘AND’, while the sum symbol, ‘+’ represents ‘OR’

in logical expressions. The logic is typically expressed in a sum-of-products (s-o-p)

fashion from which the cut sets can be found. In order for only minimal cut sets to

be found, the s-o-p expression must be minimised by removing any redundancies in

accordance with Boolean algebraic laws. See [2] for a more detailed explanation,

with examples, of constructing fault trees.

For a complex system there may be thousands of minimal cut sets which can only

be analysed by intensive and expensive computation. In these conditions, it is

possible to make approximations by removing cut sets above a certain order, or

removing those of a low probability while they are being quantified. While this may

be faster, it reduces the accuracy of the analysis and produces further error in the

quantitative analysis.

 - 16 -

2.2.3 Quantitative Analysis

This method of analysing a fault tree allows parameters to be evaluated which

describe the reliability performance of the overall system. Important parameters

which are widely used in industrial applications are the probability, frequency and

expected number of top event occurrences.

2.2.3.1 Top Event Probability

The probability of the top event occurring, which is also the unavailability of the

system, can be obtained by combining the failure probability for each event in a

minimal cut set in a specific method, known as the inclusion-exclusion expansion.

The probability that a minimal cut set Ci exists is equal to the product of the

probabilities that each basic event within it exists. For instance, if cut set Ci =

{A,B}, its probability of occurrence equals the probability of A failing multiplied by

the probability of B failing. In general, this is expressed by equation 2.1.

∏
=

=
iCN

c
ci tqCP

1

)()(

2.1

As the top event is caused by any of the minimal cut sets occurring, a system with

Nmcs minimal cut sets will have failure probability at time t, QSYS(t), equal to the

probability of the union of the set of minimal cut sets, as shown in equation 2.2.

=

=
U

mcsN

i
iSYS CPtQ

1

)(

2.2

This may be expanded as shown in equation 2.3.

() ()
mcs

mcs
mcsmcs

N
N

N

i

i

j
ji

N

i
iSYS CCCPCCPCPtQ ∩∩∩−++∩−= −

=

−

==
∑∑∑ KK 21

1

2

1

11
)1()()(

2.3

 - 17 -

If a top event is made up of many minimal cut sets, using the inclusion-exclusion

expansion to calculate the top event probability may be unfeasible due to the large

number of calculations required. In this case, approximation techniques are

employed to find bounds for the parameter.

2.2.3.1.1 Upper and Lower Bounds for System Unavailability

In the inclusion-exclusion expansion shown in equation 2.3, as the number of cut

sets being combined increases, the contribution of each term towards the exact

figure reduces. The series can be truncated to give upper and lower bounds for the

system unavailability, shown in equation 2.4.

() ∑∑∑∑
==

−

==
≤≤∩−

mcsmcsmcs N

i
iSYS

N

i

i

j
ji

N

i
i CPtQCCPCP

12

1

11
)()()(

2.4
 Lower Bound Exact Upper Bound

The upper bound is also known as the rare event approximation since the rarer the

component failures, the closer this figure comes to the exact system unavailability.

2.2.3.1.2 Minimal Cut Set Upper Bound

The Minimal cut set upper bound, QMCSU, is more accurate than the rare event

approximation. It is given by equation 2.5.

[]∏
=

−−=
mcsN

i
iMCSU CPQ

1

)(11

2.5

2.2.3.2 Importance Measures

A valuable exercise is the calculation of how dependent the system is on a particular

component, in terms of its reliability. Importance measures may be calculated,

which assign a value to basic events or cut sets. These express in various ways the

likelihood of a component failure causing system failure. There are several different

types, used in different ways, which can be broadly categorised in two ways:

deterministic and probabilistic.

 - 18 -

Deterministic importance measures do not consider component failure probabilities.

Instead, the structure of the system is analysed and the value of the importance

measure stems from that. An example of one of these is the Structural Importance

Measure, given by equation 2.6.

components remaining)1(for the states ofnumber total
component for states critical ofnumber

−
=

n
cI ST

c

2.6

A critical state for component c is one where the other (n–1) components are in a

state such that the failure of c will cause the system to transition from a working to a

failed state.

A major drawback of this type of importance measure is the lack of consideration

shown to the component failure rates. As such, probabilistic measures of importance

are typically of more use than deterministic measures.

Probabilistic importance measures take account of the contribution of component

failures to system failures in terms of the component failure and minimal cut set

occurrence probabilities. As mentioned above, they come in two types: those

concerned with either system unavailability or system unreliability. The Birnbaum

measure of importance, Gc(q(t)), also known as the criticality function, is defined as

the probability that the system is in a critical system state for component c. It can be

determined using equations 2.7 or 2.8.

))(,0())(,1())((tQtQtG cSYScSYSc qqq −=

2.7
where (1c,q(t)) = (q1,…,qc-1,1,qc+1,...,qn) component c failed

 (0c,q(t)) = (q1,…,qc-1,0,qc+1,...,qn) component c working

)(
))((

))((
tq

tQ
tG

c

SYS
c ∂

∂
=

qq

2.8

 - 19 -

The criticality measure of importance is defined as the probability that the system is

in a critical state for component c, and component c has failed. This is weighted by

the system unavailability and is shown in equation 2.9.

))((
)())((

tQ
tqtG

I
SYS

ccCR
c q

q
=

2.9

The Fussell-Vesely importance measure [8] is defined as the probability of the

union of the minimal cut sets Ck containing c given that the system has failed.

Equation 2.10 shows this.

()
))((

|

tQ

CP
I

SYS

kck kFV
c q

U ∈=

2.10

The Fussell-Vesely Measure of Minimal Cut Set Importance is defined as the

proportion of times a cut set Ck causes system failure. This is calculated as in

equation 2.11.

))((
)(
tQ

CP
I

SYS

kFV
Ck q

=

2.11

2.3 Binary Decision Diagrams

Fault trees and the analysis methods used to solve them can become very large and

inefficient when the systems they are applied to are themselves large or complex.

Instead of analysing in this way, it may be more efficient and worthwhile converting

the fault tree to a Binary Decision Diagram (BDD), and then performing analysis.

Initially developed by Rauzy [9], a BDD in reliability analysis allows the top event

failure logic to be expressed in the form of a Boolean equation. This Boolean

equation can be solved in a much simpler way than the inclusion-exclusion

expansion shown in equation 2.3, and so they are a preferred option in reliability

 - 20 -

analysis. The method allows for both qualitative and quantitative analysis, with

exact solutions being found without the need for approximations as are standard in

the fault tree approach.

2.3.1 BDD Properties

A BDD is a directed acyclic graph, made up of both terminal and non-terminal

nodes (also called vertices) connected by branches. Its acyclic nature means that

paths are followed in one direction only, without any loops. Non-terminal nodes

represent basic events of a fault tree, while terminal nodes express the final state of

the system. This state is binary, where a 0 represents “system works”, and 1

represents “system fails”. An example of this is shown in Figure 2.1.

Figure 2.1 - Example Binary Decision Diagram

Every root and non-terminal node has two branches underneath. The left branch,

labelled ‘1’, represents the occurrence of the basic event (that is, a component has

failed). The ‘0’ branch represents the component’s success. The size of a BDD is

expressed in terms of the number of non-terminal nodes.

Each path through a BDD begins at the root node and runs through a series of non-

terminal nodes until a terminal node is reached. If a path ends with a ‘1’ node, a cut

set of the system can be described by including in it all those basic events through

which a ‘1’ branch was followed. For instance, in Figure 2.1, two paths end in

A

B 0

C1

01

Root node

Terminal 0
node

Non-terminal
node

Terminal 1
node

1

1

1 0

0

0

 - 21 -

terminal 1 nodes, A→B and A→ B →C. By ignoring the success of B in the second

path, the cut sets become {A,B} and {A,C}.

In order to create a BDD for a system, the basic events need to be considered in an

order. An order can be chosen which will create the best size of BDD and speed up

analysis; however, if the order is poorly chosen, a large BDD can result. Sinnamon

and Andrews [10, 11] have researched both the qualitative and quantitative aspects

of BDDs.

2.3.2 Formation of a BDD using If-Then-Else Structure

Developed by Rauzy [9], the if-then-else (ite) method of converting fault trees to

BDDs takes each gate in the fault tree in turn, beginning with the top event. These

are expressed in the form of a Boolean function, f(x), pivoted about any variable X1.

Shannon’s formula can be expressed as in equation 2.12:

f (x) = X1·f1 + ·f2X1
2.12

where f1 and f2 are functions with X1=1 and X1=0 respectively.

The ite structure for this is represented as ite(X1,f1,f2), and is explained as “if X1

fails, then consider f1, else consider f2”. In the BDD, a ‘1’ branch of X1 will

achieve f1, while a ‘0’ branch achieves f2. These represent “X1 occurs” and “X1

does not occur” respectively, as shown in Figure 2.2.

Figure 2.2 – BDD Vertex of ite(X1,f1,f2)

X1

f1 f2

1 0

 - 22 -

When beginning the process of constructing a BDD, each basic event x is given the

structure ite(x,1,0). Each gate in the fault tree is then considered using a bottom-up

approach, with the following rules applied:

 If X < Y J ⊕ H = ite(X,f1 ⊕ H, f2 ⊕ H)

 If X = Y J ⊕ H = ite(X,f1 ⊕ g1, f2 ⊕ g2)

where J = ite(X,f1,f2) and H = ite(Y,g1,g2) are the gate inputs.

An advantage of this method is the automatic elimination of any repeated nodes.

2.3.3 BDD Minimisation

If the ordering of the variables is not optimal, the BDD and the calculated cut sets

will not be minimal. Rauzy [9] developed a minimisation process which will create

a minimal BDD which represents the minimal cut sets of the fault tree. Each node in

the BDD has a general ite representation of

F = ite(x,G,H)
2.13

If δ is a minimal solution of G, and δ is not a minimal solution of H, then the

intersection of δ and x, ({δ}∩ x), will be a minimal solution of F. The set of all

minimal solutions of F, solmin(F), will also include the minimal solutions of H, and

can be expressed as in equations 2.14 and 2.15.

solmin(F) = {σ }
2.14

where

σ = [{δ}∩ x] ∪ [solmin(H)]
2.15

 - 23 -

Rauzy also defined the without operator, where all minimal solutions of G which are

also minimal solutions of H are removed. By removing all minimal solutions of G

which are also minimal solutions of H, equation 2.15 is minimal.

2.4 Markov Analysis

Markov methods are used where components of a system have strong dependencies

between each other. They allow the calculation of the reliability and availability, but

are more useful for smaller systems, due to a size explosion as systems grow larger.

The Markov approach assumes that a system’s future state depends only upon its

present state, not on any states it has gone through previously. Thus, each event is

dependent only upon the present system state, and not upon any previous events.

The approach also assumes that the rate of switching from one state to another is

constant, and thus allows a solution for the reliability characteristics to be

calculated.

A Markov model consists of two parts: states and transitions. States describe the

operation or failure of components in the system at the current point in time, while

transitions describe the rate at which the switch from one state to another is

possible. If states are not linked by a transition, the system cannot go from one state

to the other directly. Some states have no outgoing transitions, in which case they

are described as absorbing states.

The method described below assumes that there are a fixed number of discrete

system states and that the transition rate between them is either zero (impossible) or

constant. These rates thus imply that component failure and repair times follow the

exponential distribution. Thus, the Markov method used here is discrete in space

and continuous in time.

The starting point of Markov analysis is typically the construction of a Markov

model. This is a directed graph where each node represents a system state, and the

edges between them represent the transitions in the direction of the arrow, with

associated rates. This results in a set of equations of the form of equation 2.16.

 - 24 -

]][[][APP =&

2.16

where []P& is the instantaneous probability per unit time of being in each state.

In general, the matrix A is found from the Markov diagram, by using the following

rules:

- The matrix is square, with the number of rows and columns equalling the

number of states.

- The sum of each row is zero.

- All non-diagonal elements in row i and column j represent the transition from

state i to state j.

- All diagonal elements ii represent the total transition rate out of state i.

As the Markov state equations are linear differential equations with constant

coefficients, one method of solving them is by using Laplace transforms. However,

where a Markov model is large or complex, it is typically more suitable to solve the

resulting large set of Ns differential equations using numerical methods. Equation

2.16 may be expanded to give equation 2.17.

[] [][]A
SS NN PPPPPP L&L&&

2121 =

2.17

Because
dt

tPdttP
tP ii

i
)()(

)(
−+

=& ,

2.18

Equation 2.17 may be rewritten as equation 2.19.

[] [][]dttPtPtPdttPdttPdttP
SS NN][)()()()()()(2121 AI +=+++ LL

2.19

The general numerical solution to the set of differential equations is therefore given

by equation 2.20.

 - 25 -

 [] [][]KPP)()(tdtt =+ where [] [][]dtAIK +=

2.20

This leads to a recursive solution to the differential equations over a duration of

time.

2.5 Summary

This chapter has introduced methods which allow the reliability of a system to be

predicted, based on the reliability of its components.

Fault tree analysis provides a logical method of gradually breaking down a specific

system failure mode into the sub-system and component failures which may build

up to cause it. This approach considers that a failure typically occurs either when

one of many possible causes occurs (OR logic), or all of several causes occur (AND

logic). This structure allows the calculation of cut sets, which are combinations of

basic events which will lead to system failure. Minimal cut sets are the necessary

and sufficient forms of these, with repetitions and unnecessary events removed. The

failure probabilities of the cut sets can be combined in an inclusion-exclusion

expansion to calculate system failure probability. Importance measures, which

describe the contribution of a component or cut set to system failure, can be

calculated using the qualitative and quantitative expressions of system failure.

Evaluating system failure probability in an inclusion-exclusion expansion for a large

or complex system is time consuming and inefficient. A Binary Decision Diagram

method has been created to speed up the process. A fault tree can be converted to a

BDD, which expresses the top event failure logic in the form of a Boolean equation.

This equation can then be solved much more simply and quickly than a standard

fault tree evaluation technique, without approximations being needed.

Markov analysis expresses the state of a system in terms of the combinations of the

states of the components within it, typically categorising them as “operational” or

“failed” states. The initial conditions and the rates between the states determine the

 - 26 -

probability, at a given point in time, of being in any of them. A matrix set of

equations can be used to express the set of state probabilities and transition rates,

which can then be solved using analytical techniques such as Laplace transforms or

numerical methods.

 - 27 -

Chapter 3 Maintenance Free Operating Periods

3.1 Introduction

In 1996, the Ministry of Defence introduced the idea of the Maintenance Free

Operating Period (MFOP). This was to satisfy what it saw as the needs of the

typical military customer, which were centred on improved operational reliability &

availability and the need to reduce costs. The supplier guarantees the customer that

for a specified proportion of the operational time, the overall system will not

completely fail or lose enough functionality such that it cannot carry out all its

assigned missions. After this there is a period of maintenance where the system is

recovered to full capability.

This chapter aims to expand in detail the aspects of MFOP, both basic information

and the technologies which will allow it to work. It will explain some of the

advantages and disadvantages that introducing the concept may create, and state

some of the arguments and opinions regarding MFOP. Also presented is an

investigation of the factors that will affect its implementation, in design,

manufacture, operation and maintenance and how the literature published to date

has attempted to mathematically and computationally model MFOP, with

explanations of some of these analysis methods.

Note: The concept of MFOP was originally intended to be applied to the field of

military aircraft, although it is general and can be applied to many other fields.

Confusion can, however, arise in the use of terminology: a “system” can mean

either an overall item, such as a single aircraft, or a sub-system of it (such as landing

gear). In keeping with the aerospace industry, and to avoid this confusion, the term

“platform” is used to refer to the overall system, such as an aircraft. “System” refers

to one of the individual parts of the platform, such as a fuel or a weapons system.

 - 28 -

3.2 Explanation of MFOP

The constant drive for improvement in all areas of engineering has resulted in an

increased focus on reliability and availability. As a result, in 1995 the Ministry of

Defence (MoD) looked at the needs of the modern military aircraft customer and

looked at ways of providing a platform with the necessary technologies to satisfy

these. These needs include dependable systems that work when required for a long

period of time, with failure- and maintenance-free periods in order to carry out all

missions without any loss in capability or functionality. The equipment must be

affordable, not just in terms of acquisition costs but whole life cost (WLC),

considering reduced cost of operation and support to match reduced funding and

number of personnel (i.e. value for money). Also important is the ability to plan and

predict, with high probability of success, all aspects of missions and mission

support, allowing for quick deployment and the spreading of fighting across several

areas, providing for increased emphasis on expeditionary warfare. The overall goal

is, in summary, smaller, resourceful fleets that are more capable and cheaper to

maintain.

Some of the needs mentioned above, such as dependable systems and good WLC

are already important considerations of the current schemes in operation.

Maintenance Free Operating Periods were first proposed by the MOD at a seminar

in 1996 as a way of providing for all of the needs listed above [12]. The MFOP is

defined, in [7], as:

The period of operation during which an item will be able to carry

out all its assigned missions, without the operator being restricted in

any way due to system faults or limitations, with the minimum of

maintenance.

In effect this is a period in which there are no failures of any type which can cripple

the platform or prevent it from carrying out its mission specifications. Accompanied

with this is a probability of the MFOP being completed, sometimes called MFOPS

(MFOP Survivability). MFOP considers the overall platform survival, so as long as

 - 29 -

sufficient failure tolerance is built in, individual system failures can occur if they do

not affect operations. Although MFOP may become a prime metric in reliability

engineering, it will not necessarily improve the reliability of the platform’s systems

– it may in fact be reduced.

A particular MFOP would require, for example, 12 days of continuous operation.

After this time it is anticipated that the platform will have built up component or

system failures that have not affected its functionality or caused mission failure but

which require attention prior to the next MFOP. The period during which the

majority of maintenance will take place is called the Maintenance Recovery Period

(MRP). It is intended that this period will not end up being so long as to inhibit

operations but will efficiently consolidate all necessary maintenance actions into the

same time interval, hence saving on costs. After each MRP the platform is ready for

completion of another full MFOP.

An MFOP is not defined to contain absolutely no maintenance; rather it is

considered that minor actions, such as refuelling, rearming and repairing important

safety related features, will still need to take place.

3.3 MFOP Basics

Over time the definition of MFOP has changed and is now more pragmatic in

nature. The Committee for Defence Equipment Reliability and Maintainability

(CODERM) and the Ultra Reliable Aircraft (URA) consortia agreed definition is:

A period during which the system will operate without failure and

without the need for any maintenance, however, faults and minor

planned, contractually agreed maintenance are permissible. [21]

 This definition may further mature over time and may need to be specifically

documented in contracts.

 - 30 -

MFOP is driven by a “weakest-link” style hierarchy – the lowest system MFOP will

decide the platform MFOP. Improving this will therefore improve the platform

MFOP [13]. As Figure 3.1 shows, the platform takes the MFOP level of system D,

which has the shortest length, rather than A B or C. By improving system D, the

platform MFOP will increase.

Figure 3.1 – Nature of MFOP Platform

The changes to the reliability specification are largely technology driven and so are

likely to be carried out over the longer term. A platform would need to be designed

to operate MFOPs and so it will be realistically impossible to introduce MFOP into

the current generation [14]. Use of MFOP does not remove the need for a “faults per

hour” parameter, even if faults are not causing system failure.

3.4 Impact of MFOP

3.4.1 Technologies Within MFOP

MFOP has the potential to be used as a means of significantly improving the

operational capability and platform-level reliability of the platform applying it and

therefore provide a way of better meeting the customer’s needs. There are various

potential improvements, listed below and outlined in detail in Section 3.5.1. These

are regarded as beneficial in creating a consistent period during which high

likelihood, critical system failures will not occur.

One of these improvements involves understanding and increasing the reliability

and availability of each component and system. Detailed research, investigation and

effort will allow failure modes to be removed or improved, while knowledge of

components' failure time distributions can be updated. Where this method is

 - 31 -

restricted by cost or time constraints, redundant components and systems can be

used to back up those that are more prone to failure, or which have unacceptable

consequences upon failure. With mechanical equipment this may be inapplicable

due to an unacceptable weight or bulk penalty, but avionics are able to use this idea.

An extension of this is reconfigurable systems, which can adapt their behaviour

either to take over the operation of a failed module or sub-system, or continue their

current operation, allowing for the fact that another module has failed.

Other technologies include prognostic systems to predict the future failure of a

component or system, using Health Monitoring and accurate failure time

distribution knowledge to allow improved estimation of the time of failure.

Similarly, diagnostic systems detect and locate the components that are currently

failed, perhaps with the capability to relay this information back to main base to

allow efficient planning of maintenance operations. Providing maximum support for

inspection, such as ease of access to systems and improved Built In Test Equipment,

will shorten the MRP, increasing availability and reducing costs.

These technologies are not new and are not exclusive to MFOP, but the expectation

is that the setting of an ambitious goal, such as a guaranteed maintenance-free

period, will drive all those involved with the development and operation of the

platforms towards the ambition of having one which requires no maintenance at all.

3.4.2 Advantages

The key advantages of introducing MFOP (from the supplier’s point of view) will

be those that create or increase consumer interest in their product. In this case the

primary advantages will be linked to improving the purchase and whole life costs of

the platform or providing operational benefits.

Examples of the advantages which using MFOP will confer include the

predictability of maintenance periods which allows for overheads such as manpower

and facilities to be used less often and with more planning, with little probability of

emergency or reactive maintenance. Facilities need not be available throughout a

 - 32 -

mission or series of missions, saving on costs or allowing for greater flexibility in

mission planning. Another cost-related benefit will be realised if maintenance is

made to be more efficient, by employing more powerful diagnostic tools, or

planning repairs and spares better. Details of failures discovered mid-mission could

be transmitted back to the repair facility, allowing for spares and manpower to be

made available.

Successful application of MFOP will create a better chance of completing a mission

and will reduce the time spent in the failed state (improving availability). If this is

the case, it may be possible to perform missions to the same standard with a smaller

fleet, as fewer backup platforms are necessary to cover for any one becoming

inoperable. Also, if the platform is more reliable then its availability and

effectiveness will be increased. This is key for the military customer whose funding

partially rests on ability to perform.

Having a system which is very reliable and well understood will allow good

prediction of its failure time. The key of MFOP is that the platform only needs to

maintain its ability to operate for the next period. If prognostic systems predict that

a system is not going to last for the duration of the next MFOP then it can be

replaced or corrected before dispatch. Although this will lead to components or

systems potentially being scrapped before failure, it is thought that the consequent

improvement in reliability and reduction in necessary manpower can reduce costs

enough to overcome the increase in throughput of spares. The resultant increase of

“wasted” life of a component and overuse of spares can be reduced by more

accurate health monitoring.

3.4.3 Disadvantages

While there is much that could be gained from the use of MFOP, there are also

potential downsides. For instance, as shown in Figure 3.1, MFOP is based on a

hierarchy whereby the system with the smallest MFOP dictates the MFOP of the

platform. This allows for the most unreliable system to be improved, after which the

system with the next lowest MFOP is improved, and so on. This method of

 - 33 -

improvement was adopted by the Germans during WW2 while working on their V2

rockets. Their eventual quality was poor, as they did not focus on the overall

reliability of the platform but its constituents. This approach therefore has a

historical basis to be considered as weak.

The large level of improvements and technologies that will have to be developed to

allow the MFOP concept to be successful is very ambitious and will take much

time, money and effort to bring about. Contracts requiring MFOP before

understanding of it is mature will only lead to strained relations between customer

and supplier. All stakeholders must have knowledge of the starting situation and the

timeframe of improvements. However, the addition of complex technologies to a

system may well lead to a reduction of quality and availability unless the

complexity is understood and allowed for. New technologies typically feature new

components whose reliability is not well understood, and so a reduction in

reliability or availability in the short term may result. Also, there may well be

unforeseen problems which appear when MFOP is being implemented.

3.4.4 Arguments Surrounding MFOP

The novelty of the concept of MFOP will inevitably lead to a debate within the

target industry (military aircraft) over whether it is a good thing or not. There are

several aspects of this that are worth stating. The MoD papers that have been

published to promote the concept of MFOP, particularly Knowles [15], Appleton

[13] and Turner et al (1997) [14], have argued that the use of the term “Mean Time

Between Failures” (MTBF) has a negative effect on reliability engineering. Some of

their arguments include

− Use of MTBF implies the use of the negative exponential distribution

and constant Rate of Occurrence of Failure (ROCOF)

− Use of the term indicates that engineers have no desire to understand the

causes of random failures, and that as a mean level of failures per unit

time is contracted for, failures are ‘allowable’

 - 34 -

− As a result of not understanding when failures are going to occur,

maintenance support is required to be available round the clock, wasting

time and money.

MTBF is the average time across any given distribution of failure times, not just the

exponential distribution. Efforts to improve the MTBF level require an improved

understanding of cause, and given that it is impossible to completely eradicate

failures, allowances must be made for this. Even with an MFOP methodology in

place, it is unrealistic to expect a perfect, accurate prediction of exactly when a

failure will occur. As such it will always be necessary to have maintenance crews on

standby for situations where emergency repairs must take place. Stating that the

designers do not consider failures to a full extent or that the motivation to

understand failures is lacking (a charge made by Knowles [15] against electronics

designers), will irritate members of the industry who are working to these goals, and

help to instil a resistance to the proposed idea.

The lack of objectivity of some of the statements made does little to convince others

in the industry that MFOP is a worthwhile cause. It is likely that the best way to

inspire confidence in MFOP is to outline the proposed benefits, rather than to focus

on the perceived failures of the current methods. The most successful reports in

getting the necessary ideas across are those that concentrate purely on MFOP, its

advantages, how it would work and how it is to be studied, evaluated and

implemented.

3.5 Using and Achieving MFOP

The published research investigating MFOP can be split into two broad camps:

those advocating a sea-change in the current methods and cultures by adopting

MFOP in its entirety; and those that want to use the current reliability information,

such as hazard rate, to estimate MFOP.

Several mathematical models (detailed in Section 3.6.1) have been put forward

which aim to estimate MFOP based on a components’ MTBF or Weibull

 - 35 -

distribution variables [16, 17]. However, these models do not consider many issues

which are of concern in application, such as environmental effects. This is

understandable given their infancy, but there will always be a limit on the level of

detail that can be included in mathematical models.

Others [12, 14, 18] tend towards the argument that every component’s exact

distribution and parameters, should be found as accurately as possible and the

approach should be more investigative and considered, with a design-led desire to

improve reliability in all areas of engineering. Whilst this would be worthwhile,

there are several constraints such as cost and lack of availability of failure data

which prevent the possibility of this being fully realised.

3.5.1 Enablers of MFOP

There are many different ideas and technologies that will contribute to prolonged

maintenance-free operation of a platform. These are outlined in the sections below.

3.5.1.1 Inherent Reliability (IR)

Bringing about a lengthy MFOP will require, in part, that the components and

systems have the best reliability levels that are feasible to obtain with the time and

financial constraints in place. It is thought that the technology currently employed

would not yield a long MFOP at an acceptable probability [19]. Improving

component reliabilities through tests and investigations into failure modes, etc., will

allow the supplier not only to understand their components better but will also assist

the other enabling technologies in providing a more integrated set of reliability

management systems.

The desired outcomes of any tests and investigations into component reliabilities

will be:

• To find all the failure modes, and for frequent or catastrophic events, to

eradicate either the effects or the mode itself. This is generally performed by

 - 36 -

Failure Modes Effects (and Criticality) Analysis (FME(C)A) [19] and would

ideally lead to a high mean and a low variance in the reliabilities of items.

• To understand the physics of failure [15] – that is, the absolute root causes of

or descents to failure – of every component.

• To find the true failure distribution of each component in the system, and

obtain accurate parameters for these distributions. If this were achieved, a

much better assessment of the overall system failure rate could be realised.

• To understand the effects of environmental parameters, such as vibration or

temperature, in degrading a component or causing it to fail. This will allow

more complete computational or mathematical models to be produced for

analysis of system reliability.

These outcomes do not stand alone – they will link into one another as they also

interact with the other enablers. Investigating failure modes and then attempting to

minimise them or eradicate them will require investigations into how a component

is to be used in service and how the environment it is subjected to can contribute to

its failure; these environmental issues may affect which distribution is thought to be

the governing one, and so on.

The testing of components to find all this information is a difficult problem – it is

not typically feasible to wait for a sufficiently large number of components to fail in

normal operation, even though this would provide the best quality information, due

to the large time to failure of most components. Other ways of testing components

in laboratories to estimate this information do not always simulate operational

conditions and involve some way of “speeding up” the process. These methods

include Reliability Demonstration or Reliability Growth Testing, Accelerated Life

Testing and Fatigue Testing [20].

The problem of investigating times to failure has led to the creation of several

groups with this purpose in mind. These are such as the Society of British

Aerospace Companies (SBAC) and the Center for Advanced Life Cycle

Engineering (CALCE) in the USA.

 - 37 -

3.5.1.2 Prognostics

Prognostics systems are those that allow the future failure of a component to be

predicted. They are considered an important part of the MFOP concept. Prognostics

technology draws on information regarding components’ failure life characteristics

(FLCs), if they exist, and good knowledge of their physics of failure and failure

time distributions. In order to detect a future failure, there needs to be either a

understanding of the signs that are shown by components before they fail or, in the

event of invisible or no signs of deterioration, an understanding of the conditions

under which the component is likely to fail faster. Electrical components are more

likely to fail spontaneously, whereas mechanical parts are prone to visible wearing.

Items that visibly wear will be regularly inspected, and if the remaining life for a

part is thought to be too low, that part is replaced.

Lack of signs of wear is being dealt with by the introduction of Condition or Health

Monitoring (HM) systems. These systems consider various aspects of a

component’s usage, such as the value of the component’s relevant reliability factor

(flights, hours, etc), the types of excursions taken, environmental factors and so on.

The HM system should then be able to use these figures and calculate the effects on

the aeroplane system, and allow for better scheduling of replacement. A reliable

HM system should keep the level of premature replacement and overuse of spares to

a minimum. More research into the effects of various factors on the health of

systems is needed before HM becomes accurate [21].

According to Cini & Griffith [20], because mechanical components are generally

more bulky and difficult to replace than other components, any decisions made by a

HM system in requiring replacement must be both trusted and accurate (“full

authority”) in their analysis of whether to remove a mechanical item – the advice

must not be merely advisory. They state that the helicopter industry has good

experience in condition monitoring of mechanical parts and may be able to lend

itself to the MFOP philosophy.

 - 38 -

3.5.1.3 Diagnostics

Diagnostic systems are those which check for and locate current failures in a system

or platform. Many failures are found through inspection by a maintenance engineer.

Built In Test (BIT) systems [20] have been introduced which perform tasks such as

identification of faults, without the need for extra personnel. As the name suggests,

they are built in to the system, thereby easing the diagnosis of faults. However, a

problem can occur with BIT systems if they have a high “No Faults Found” (NFF)

rate. This is a figure which indicates the accuracy of the BIT equipment, as they

sometimes report faults when none have occurred, increasing the cost of

maintaining the platform through unnecessary replacement of operational items. As

is the case with some commercial aircraft, such as the landing gear control and

interface unit of the Airbus A320, BIT equipment can be set to control the automatic

change-over to a standby system.

To assist inspection and maintenance, the most unreliable components and those

that require inspection from an engineer will need to be easily accessed and

removed, well-mounted and connected to allow ease of test [22]. Warrington et al

claim that if a technician has access to more information, they have to perform less

work in diagnosing and fixing faults and so need not be as capable [23]. The authors

imply that too much reliance on technician’s skill in handling faults will lead to

more mistakes through human error than automating the process.

3.5.1.4 Redundancy/Reconfigurability

The MFOP concept allows for items to fail as long as the overall platform continues

operation. Failure tolerant items, which involve either redundancy or

reconfigurability, will consequently be a key aspect.

The time of failure of a particular component cannot be specified exactly. If the risk

of a component failure is high, either due to probability or consequence, redundant

or backup systems can be provided in parallel to take over operation in the event of

a failure, such as two electrical power supplies. Some components already contain

redundant sections (e.g. dual rams on a hydraulic actuator). However, redundancy

 - 39 -

for mechanical components is more difficult to implement than electronics due to

the mass/volume/cost implications [24].

Accompanied with redundancy is firstly a diagnosis system that can reveal the

failure if it has not been revealed through impairment of performance, followed by

some method of switching off the failed system and switching on the backup. This

could be manually performed by an operator or automatically managed by a

computer. The backup can be either ‘cold’ (cannot fail while remaining unused),

‘hot’ (operates with normal reliability while in backup state), or ‘warm’ (reliability

figures are in between hot and cold). Newton [21] suggests that hot standby would

give the smoothest switching, but mentions that this creates problems with

establishing which system is faulty.

Despite being widely regarded as a ‘good’ concept, redundancy has not been

extensively researched and so possible problems have not been fully investigated

[21]. Potential difficulties include a common cause fault damaging both the main

and back-up systems (e.g. a power surge) or switching problems. The cost/benefit of

redundancy and its balance with the cost/benefit of improving inherent reliability

will need to be carefully considered as sometimes money invested in redundancy

could be better used elsewhere Throughput of spares would be expected to rise with

increased redundancy, so the costs of this may be deemed unacceptable [24].

Reconfigurability is a more high-tech area of redundancy provision. Reconfigurable

items are capable of adapting their functionality either to carry out the function of a

failed item or continue functioning, taking the item’s failure into account. Integrated

Modular Avionics (IMA) is an area which seeks to exploit this idea, by having

standby processing modules which can be switched over or combined in the event

of failure of a different module. The tasks performed by each module must be

managed by an intelligent management or overview system to control the switching

[24].

 - 40 -

3.5.2 Considering MFOP in Design

Those endorsing MFOP are keen to emphasise the importance of the design process.

Money spent on improvements or considerations at the design stage goes much

further than that spent at later stages in the development of new technologies. The

various papers published on aspects of MFOP indicate a range of factors and

possible problems affecting design and reliability.

Achieving a good balance between the various enablers will reduce costs. Efforts to

improve inherent reliability will only go so far before they become too expensive,

and so effective prognostic systems or good redundancy may need to be employed

[24]. Some component failure modes may have no effect on the system at different

phases of flight – a fuel valve failing open mid-flight may not cause a problem

while a valve failed closed could; an open-valve failure may however present

difficulties for refuelling where a closed failure would go unnoticed. FME(C)A can

find root failure modes and causes, and coupled with a detailed knowledge of the

parameters and effects of the intended operating environments and typical usage,

these can be exploited to great effect [14].

Parameter variations such as tolerances, drift, ageing, etc. will naturally occur

during the life of the platform, and can cause failures. The ability to cope with

varying environmental stresses must be built in: as benign an environment as

possible should be provided for the equipment. Simplicity in design is important,

even with the various enablers considered - if new technology or components

provide no discernible advantage over older technology, then the proof of the older

items in service means it should be retained. Conversely, equipment with known

problems should be removed from the design at the earliest opportunity [22].

Design engineers should consider the MRP and attempt to ensure low variation in

its length [19]. Maintainability is a key part of MFOP – equipment which is more

prone to failures will need to be accessed easily and be well-mounted and connected

to allow for quick replacement [22].

 - 41 -

Relf [24] considered a design methodology with relevance to MFOP. The process

consists of:

1. Laying out the system architecture of the platform so it can be analysed

2. Finding the platform and system MFOP values

3. Identifying the “weak link” system MFOP; that is, the lowest-value

system MFOP

4. Applying one or more enablers to it or adapting the system architecture to

improve the low system MFOP and thereby improve the platform MFOP

5. Another analysis of the platform MFOP can then be performed and the

next weak link found and improved.

As discussed in section 3.4.3, this may not be the most effective way of designing

systems to perform MFOPs.

3.5.3 Maintenance Recovery Period

The MRP is a period during which the platform is brought back to a state where it

can fully complete the next MFOP with the required level of confidence. All

maintenance, except specific activities noted in the customer’s contract, will take

place during the MRP. It will consist of inspection, monitoring, overhaul or testing.

The diagnostics systems on the aeroplane, when they detect a failure, should display

the failure data to the pilot. This can then be communicated back to base, either by

an automated procedure (such as Airbus’ Future Aircraft Navigation System

transmitting Centralised Maintenance System data [20]) or by the pilot. A thorough

knowledge of failures, and their effect on current and future missions will allow the

operators to plan what maintenance will be needed at the end of the MFOP. This

will allow deployment of manpower, spares and facilities ‘just in time’ [13].

Advance knowledge is key to maximising efficiency, in terms of both missions and

maintenance planning, although failures occurring towards the end of the MFOP

will not be handled with as much efficiency. The diagnostics systems (such as a

 - 42 -

“simple” Troubleshooting Manual or an inbuilt system) have a strong requirement

placed on them to be accurate.

The MRP should not be planned to be too long or too short. Due to the different

nature of problems that will arise, the length will vary, especially when performing

structural inspections. The integration of these inspections (which fit the MFOP

philosophy very well) into the MRP will need investigation. The MRP may get

longer as the vehicle ages, especially if it is thought to have a non-constant hazard

rate [20]. The quality of inspections and the effect of false positives and negatives

on the cost of maintenance within the MFOP framework is investigated by Dagg &

Newby [25]. The maintenance itself has various challenges, including prioritisation

of tasks, allocation and scheduling of resources, and fault visibility and isolation.

Priority can be ordered based on the criticality of systems or components with

regard to system failure; or by taking into account issues such as the duration of

repair, access limits, resources and costs.

Line Replaceable Items (LRIs) are groups of components or other LRIs created to

ease repair, and may exist across several systems. An LRI containing other LRIs is

known as a ‘parent’, while one which exists in another LRI is a ‘child’. Replacing

the parent replaces all the children, while a child can be replaced individually [26].

However, the concept of an LRI means that if one is found with a failure, it is

replaced without requiring much knowledge of the actual problem, making it

difficult to design out. The removal of LRIs will lead to them being stripped, rebuilt

and tested which can lead to more component failures than might have occurred if

the LRI had not been removed. More maintenance may therefore lead to more

spares being required [16]. Not isolating a failure down to its root cause due to time

or cost restrictions often results in several Line Replaceable Items (LRIs) being

replaced at the same time and a higher NFF rate in BIT systems. This means a

restriction on the number of LRIs replaced at one particular time, or a ban on certain

types of maintenance at certain times, may be needed [23].

 - 43 -

3.6 Analysing MFOP

Moving immediately to the MFOP concept with the necessary degree of confidence

within defence budgets and timeframes is neither credible nor achievable for current

platforms – high-confidence, high-value MFOPs cannot be expected for some time.

In the meantime, efforts are being made to estimate a realistic MFOP for a typical

platform.

There have been several attempts to produce mathematical models for or simulate

MFOP in order to gauge what problems may arise, how easy it would be to predict

and determine, how achievable the customer’s requirements are and the feasibility

of the overall concept. The following sections detail the current research into

mathematical modelling of MFOP, and the current URAM MFOP simulation

project.

3.6.1 Mathematics of MFOP

The research into mathematically expressing MFOP and discovering it from a

system of components of mixed distributions is largely adapted from current

methods. It will be necessary for any flaws in the models to be identified well in

advance so new methods of theoretically evaluating MFOP can be researched [16].

The mathematics establishes a link between the MFOP and its probability of

survival, referred to as MFOPS (MFOP Survivability), Si (t+u | t). The notation

represents the probability that item i will survive u units of time (the MFOP) given

survival at time t.

The probability, Ri(t), of item i surviving from 0 to t is given in equation 3.1.

 - 44 -

0for)(1)(1

)()(

0

≥−=−=

=

∫

∫
∞

ttFdttf

dttftR

i

t

i

t
ii

3.1

And the probability of i then surviving to time t+ u is shown in equation 3.2.

0for
)(

)(

)(

)(
)|(

≥
+

=

=+

∫

∫
∞

∞

+

u
tR

utR

dttf

dttf
tutS

i

i

t
i

ut
i

i

3.2

A system comprising of n independently distributed components in series has a

survival probability from time t to time (t + u) of:

 ∏
=

+
=+

n

i ii

iii
sys tR

utR
tutS

1)(
)(

)|(

3.3
where ui and ti are individual MFOP and life values for each component i.

Components whose mode of failure is not dependent on age have the survivability

function, Snar, as shown in equation 3.4.

∑
=

−

=

=+

f

sys

m

i i

sys

u

nar etutS

1

1
1 where

)|(

µ

µ

µ

3.4

Increasing survivability is possible either by reducing the MFOP duration u or

introducing redundancy. Replacement will have no effect. Also note that if a high-

confidence MFOP is to be achieved, the MFOP duration must be much smaller than

 - 45 -

the relative MTTF value as Figure 3.2 shows (this applies purely to components

with exponentially-distributed failure times). The data used to create Figure 3.2 is

taken from [21].

The various enablers that will be in place should lengthen the components’ typical

times to failure and produce systems whose own times to failure are much greater

than this, due to prognostics and redundancy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10
MFOP duration/MTBF

A
ch

ie
ve

m
en

t R
at

e

Figure 3.2 – Chart showing Probability of Achieving a Given MFOP Duration

Components whose times to failure are dependent on age are often modelled with

the Weibull distribution. The survivability function for component i is given by

equation 3.5.

 +−=+ β

ββ

η i
i

ii utttutS)(exp)|(

3.5

Combining equations 3.4 and 3.5, the survival probability of the system can be

estimated as in equation 3.6.

 - 46 -

 +−
+−=

=

∑

∏

=

=

n

i i

ii

sys

n

i
inarsys

i

ii uttu

SSS

1

1

)(
exp

series)in are components if(only

β

ββ

ηµ

3.6

The design life of the system, also called the maximum MFOP length, umax, for a

stated value of Ssys is the age at which the reliability falls below the designed

reliability value, given for the Weibull Distribution [17] by:

sys

sys
sys S

u
β

η

1

max
1ln

=

3.7

Equations 3.4 and 3.5 can be rearranged, to give the survival period for a given level

of confidence:

 1 for)ln(=−= βµ narsys Su [non age-related failures]

3.8

0&1for

))ln((
1

>≠
−−=

ii

ii tStu iii

ββ
η βββ

3.9

The relationship of MFOP to the Weibull distribution changes with β (the shape

parameter). MFOP generally decreases with age, as β is generally greater than 1, but

can have other behaviours, as Figure 3.3 shows.

[Weibull-distributed failures]

 - 47 -

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140
Time

M
FO

P

β=4

β=3

β=2

β=0.1

β=0.25

β=1
β=0.75

Figure 3.3 - Graph Showing MFOP for Varying Values of β (η = 200, S = 0.95)

• If β < 1, MFOP curve is convex starting from zero – MFOP increases with

age.

• If β = 1, MFOP is constant throughout life.

• If β > 1, MFOP curve is concave tending towards zero – MFOP decreases

with age.

Note that if the MFOP is considerably shorter than the characteristic life,

survivability does not decrease much over consecutive MFOPs for age-wearing

components. Also note that the units for MFOP (u), characteristic life (η) and age (t)

are undefined here but will be the same as each other. Common units are hours,

days or years.

The assumptions and limitations of this model are rather restrictive:

• All components use the same units of aging.

• All Weibull distributions are two-parameter, not three.

• This model cannot consider redundancy as the components must all be in

series.

Age

 - 48 -

• The normal and lognormal distributions have not been considered.

Todinov [27] uses the broader measure Minimum Failure-Free Operating Period

(MFFOP). This is not directly applicable to the MFOP concept mentioned here as it

is based on the homogeneous Poisson process, and only exponential failure times

are considered. Also, being based on FFOPs, no consideration is made of

redundancy.

3.6.2 Ultra Reliable Aircraft Model (URAM)

The mathematical models that have been produced are limited in their scope. An

alternative approach to evaluate other aspects of MFOP, including more realistic,

complex systems, is Discrete Event Simulation (DES). This allows many factors of

a realistic MFOP scenario to be considered.

URAM [23, 26] is a user-configurable tool that not only assesses the MFOP

capability of an item at all levels (platform down to component), but also considers

other factors such as operating scenarios, maintenance regimes, logistics support,

etc. It can consider most enablers of MFOP, except for reconfigurability, which is

still in development. It outputs a variety of reports, most importantly the probability

of completing an MFOP of a certain length. The program allows designers to

investigate possible options and provides a theoretical method of experimentation.

URAM considers various factors relating to maintenance [23]. These include

forward planning, such as prediction of future failures, scheduled replacements and

changing mission plans based on the system state. Diagnosing faults takes account

of visibility of system failures and varying maintenance regimes. It also includes the

ability to group components and systems in LRIs. Other factors, such as balancing

the importance of controlling costs, minimising repair time and achieving maximum

mission effectiveness are considered. Manpower, spares and other resources can be

scheduled according to need.

 - 49 -

URAM uses “mode maps” to model the relationships between components having

several failure modes, the potential for systems to have various functions within a

given mission, and the potential effects of system failures. These maps can also

allow failures to impact on other systems and components. Consideration is given to

the impact of environmental stresses and how it can vary with location. Different

components can age in different ways, and the environment in which a platform is

operating can speed up or slow down this aging.

URAM is a very large, complex simulation program and is capable of handling

many different aspects of the proposed MFOP idea. However, there are still some

areas where improvement is possible. For instance, the requirement to build the

Reliability Block Diagrams within the program, as is currently the case, is very

time-consuming for large systems, and can lead to over-simplification of the failure

modes of the platform. Similarly, the capability of the software to cover the many

different aspects of MFOP operation is reflected in the complexity and time

consumption of setting up simulations. Even a simple system set-up can take a long

time to implement in URAM.

URAM has only a limited ability to analyse systems which perform phased missions

(see Section 4.2 for more explanation of this subject). While it is possible to

perform a basic analysis of an MFOP system performing phased missions, it cannot

consider more complex real-world factors such as abandonment of missions, choice

of next phase or choosing between a primary mission objective (such as destruction

of a target) or performing a less important, secondary mission objective (e.g.

reconnaissance of target area) due to time, fuel or system failure constraints. In

addition, the simulation results produced for phased missions are not tailored to

offer the data required for in-depth analysis of relevant factors such as phase and

mission failure probability, criticality of component failures to phase and mission

failures, and speed of convergence of the phase unreliabilities.

As outlined above, the modelling of the specific scenario of MFOP systems

performing phased missions needs extending. This is an area addressed in this

thesis.

 - 50 -

3.7 Summary

An MFOP is a period where the platform can be guaranteed for a given (high)

percentage of the time to survive without loss of functionality from failures. A

Maintenance Recovery Period follows each MFOP. This puts the platform back in a

state to complete the next MFOP. The concept of MFOPs has been proposed to

more effectively fulfil the requirements of the current and future aeronautical

industries by bringing together many technologies for a common purpose. MFOPs

are thought to offer considerable advantages in operational availability and

capability, saving the operators time and money. Considerable effort is required to

overcome problems involved with the complexities of implementation.

It is expected that a platform with successful MFOPs will contain the following

features:

• Good inherent reliability – although balanced with cost, it is essential that

the overall reliability of components and systems is improved. Also

important is an understanding of the modes of failures.

• Prognostics – the ability to predict when a system is going to fail, to an

accurate timeframe, would be critical in an MFOP platform and would

enable early replacement to prevent any onboard failures.

• Diagnostics – understanding the precise location and cause of a component

failure would make the provision of maintenance faster and more efficient,

saving costs.

• Redundancy/Reconfigurability – backup systems and the ability to recreate

the functionality of a failed system would act as a cover for less reliable

equipment and further enhances the confidence in the platform. This has to

be managed by a capable diagnostics system.

The current efforts to produce values for MFOP have been restricted to

mathematical models and simulation software. MFOPs are a very complex idea and

so the mathematical models produced thus far have not been able to adequately

consider the effects of combining the various enablers. Much more work is needed

 - 51 -

before these can be used for accurate evaluation of a platform’s MFOP. The only

published MFOP simulation software is the URAM project, which aims to simulate

all aspects of a highly reliable aircraft. This includes maintenance, operations,

missions planning and so on. It is able to consider many more factors than the

analytical mathematical models. However, there are limitations in URAM’s ability

to simulate MFOP systems performing phased missions. For example, as lack of

necessary figures (e.g. phase and mission failure probabilities and speed of

convergence of these probabilities), and inability to model real-world phased

missions scenarios, such as choosing between several options for the next phase,

and reconfiguration of the mission profile to suit time, fuel or system failure

constraints. Hence, there is a need for further research into the combination of

MFOP with phased missions.

 - 52 -

Chapter 4 Phased Missions and Petri Nets

4.1 Introduction

A conceivable and common scenario in real world applications of reliability

engineering is one where a system performs missions, in order to complete one or

more objectives. Often, these missions can be broken up into distinct time intervals,

each of which has at least one goal which must be completed. These time intervals

are known as phases, and due to the necessity of completing different phase

objectives, the system may need to operate different sub-systems at different times.

The failure logic of the system is therefore subject to change as time progresses.

This chapter gives details on how these types of systems have been analysed.

Also investigated in this chapter is the development of a modelling method known

as Petri nets. These are a very versatile way of combining the flexibility of state-

space models with the logical function of combinatorial models. Their development

from first concept through to variations in modern-day use is reviewed. Their

application in the field of reliability, particularly with respect to phased missions, is

also explained.

4.2 Phased Missions

4.2.1 Non-Repairable Systems

In 1975 Esary and Ziehms published a paper [6] outlining the first consideration of

methods of analysing phased missions. A mission is split up into sequential phases,

each of which has a specific task to perform. Various combinations of the non-

repairable basic events may cause phase failure, and these combinations may differ

from phase to phase. If all phases are completed successfully, the mission is a

success. The probability of this is known as Mission Reliability, RMISS.

 - 53 -

Mission reliability cannot be calculated exactly by simply multiplying the individual

phase reliabilities; this will lead to an overestimate of RMISS. This is because the twin

assumptions that all components are in the working state at the beginning of each

phase, and that no components are shared between the phases (and are hence

independent) are both false.

The consideration of non-repairable components means that any component will

work continuously until its failure, thence remaining in the failed state. Esary and

Ziehms’ method transforms a multi-phased mission into a single-phase mission

(assuming zero-duration phase boundaries), following which existing techniques

can be used to calculate mission reliability.

4.2.1.1 Transformation of a Multi-Phased Mission to an Equivalent
Single-Phased Mission

A non-repairable system undergoing a multi-phased mission will require its

components to function through all previous phases in order to be operational in the

current phase. As such, a single component c operating in phase j may be

represented by j components in series. Each “sub-component”, c1, c2,...,cj,

corresponds to the behaviour of component c in each phase up to j. Figure 4.1 shows

this transformation.

Figure 4.1 – Single and Multiple Phase Component Block Diagrams

Similarly, when using Fault Tree Analysis to display the failure of component c,

this can be replaced by an OR combination of the failure of component c in any

phase up to and including phase j.

Following the component transformation, the phase configurations can be joined in

series. Figure 4.2 shows this for a simple three phase and three component mission.

 - 54 -

Figure 4.2 – System Component Configuration in Three Phases

In Figure 4.2, components A, B and C combine in various ways to form the system

in each of the three phases, thus also changing the failure logic in each. The

transformation of this as described yields the equivalent single-phase mission

profile in Figure 4.3.

Figure 4.3 – Equivalent Single Phase Mission to System in Figure 4.2

The single-phase network is created from each of the transformed original systems

(with expanded sub-components as in Figure 4.1) placed in series in the order of the

phases from the start of the mission to the end. Due to sharing common

components, the sub-systems are not independent, and so sub-system reliabilities

cannot be multiplied to produce the mission reliability. These sub-system

reliabilities, Ri, are:

321321321

212121

212121212121222121

11111

3

2

1)(

CCCBBBAAA

CCBBAA

CCBBCCAABBAACCBBAA

CBCBA

R

R

R

ρρρρρρρρρ
ρρρρρρ

ρρρρρρρρρρρρρρρρρρ
ρρρρρ

=

+

−−−++=

−+=

4.1

 - 55 -

where mitxtxPtxP icicccc i
,...,2for]0)(|0)([then,]0)([111

====== −ρρ

failed is component if

 workingis component if
1
0

c
c

xc

=

The true mission reliability,
321321321 CCCBBBAAAMISSR ρρρρρρρρρ= , is found by

finding the simplest form, discussed in the next section, of Figure 4.3, as shown in

Figure 4.4. This reliability value is greater than the product of the subsystem

reliabilities.

Figure 4.4 – Simplest form of Figure 4.3

4.2.1.1.1 Cut Set Cancellation

It is possible to simplify the multiple phase configurations before transformation to

a single-phase structure, by using the technique of cut set cancellation. If a minimal

cut set in a phase contains any minimal cut sets of a later phase, they may be

removed from the earlier phase. This is because the failure logic for later phases

automatically includes mention of the failure of components in all phases up to that

phase, and so these earlier phase cut sets are superfluous.

Continuing the example in Figure 4.2, the fault trees for the phases are shown in

Figure 4.5. The minimal cut sets for each phase are:

Phase 1 Phase 2 Phase 3

{A} {A,B,C} {A}

{B,C} {B}

 {C}

 - 56 -

Figure 4.5 – Phase Fault Trees of System in Figure 4.2

Cut set {A} can be removed from phase 1 as A is also a cut set of phase 3, and A’s

failure in phase 1 will also cause failure in phase 3. Similarly, if component B fails

during phase 1, this will cause mission failure during phase 3, making C’s state

irrelevant. Cut set {B,C} can therefore be removed from phase 1. {A,B,C} can be

removed from phase 2 using the same logic, making the phase minimal cut sets:

Phase 1 Phase 2 Phase 3

- - {A}

- {B}

 {C}

In spite of the cancellations of phase cut sets, the systems are equivalent and will

result in the same figure for mission reliability. The latter approach is easier to

convert to a single-phase mission structure, however.

4.2.1.2 Obtaining Bounds for Mission Unreliability

Mission unreliability is defined as the probability of failure of successful system

operation during at least one of the phases of a mission. It is important, however,

that this figure or bounds for it are calculated as quickly or efficiently as possible.

Burdick et al [28] have reviewed the method of Esary and Ziehms and present

methods to approximate mission unreliability for non-repairable systems with

statistically independent components. The methods are applicable to systems with

large numbers of components, where calculation of an exact mission reliability

figure would be costly.

 - 57 -

Esary and Ziehms’ method of transforming each basic event c into a series of events

c1,…,ci for each phase i creates a large increase in the number of cut sets for the

mission and thus also in the time and cost of an exact calculation of mission

unreliability. The methods of Burdick et al to estimate mission unreliability avoid

the need for basic event transformation, of which four of the most accurate and

conservative are presented here.

• Inclusion-Exclusion Expansion of Phase Unreliabilities

Each phase fault tree is used to find that phase’s minimal cut sets. These are

then used in an inclusion-exclusion expansion (equation 2.3) to find the

unreliability of phase i, Qi, using unconditional basic event unreliabilities.

Equation 4.1 shows an expression to find the conditional basic event c

reliability
jcρ . The unconditional basic event c reliability

jcp derives from

this, as shown in equation 4.2.

 ()[] ∏
=

===
j

i
cjcc ij

txPp
1

0 ρ for j = 1,…,m

4.2

By multiplying these individual phase reliabilities, an approximation to the

mission reliability, EXINQ − , can be reached (equation 4.3).

 ∏
=

− =
m

j
jEXIN RQ

1

4.3

Instead, by summing the individual phase unreliabilities, an approximation

to EXINQ − , the mission unreliability, can be reached, as shown in equation

4.4.

 ∑
=

− ≤
m

j
jEXIN QQ

1

4.4

 - 58 -

If the technique is applied after the cut-set cancellation method mentioned in

the previous section is implemented, another approximation to the mission

unreliability,)(CCEXINQ − , can be found. Due to there being generally fewer

cut sets in each phase due to the cancellation, the resulting approximation is

usually less than EXINQ − .

• Minimal Cut Set Bound

In this approximation, after the minimal cut sets are found, Equation 4.5

allows calculation of the probability of failure of cut set Ci in phase j,
jiCq .

 ∏
=

=
jiC

ji

N

c
C cPq

1

}{

4.5

where c is the occurrence of basic event c in cut set Ci of phase j

The reliability of phase j can thus be estimated using the minimal cut set

bound in equation 4.6.

∏
=

=
jmcs

ji

N

i
Cj pR

1

4.6

This method can be used to find an approximation to the mission reliability, MCBQ

also, by applying equation 4.3. Once again, the cut set cancellation technique can be

applied before the approximation to give another approximation to the mission

unreliability,)(CCMCBQ .

The four approximations to the mission unreliability can be ordered in terms of their

accuracy, as shown in equation 4.7.

 - 59 -

MCB
EXIN

CCMCB
CCEXINMISS Q

Q
Q

QQ ≤≤≤
−

−
)(

)(

4.7

As the approximations do not consider the outcomes of previous phases, the bounds

are only estimates. These are useful, for instance, in systems where a large amount

of components prevents an exact calculation of the mission reliability due to cost or

difficulty.

Veatch [29] presents another technique for estimating the unreliability of a phased

mission system. The method constructs a lower bound structure function for

application to periodic systems.

4.2.1.3 Expected Number of Failures

Finding the expected number of failures for a multi-phased mission is a more

difficult task than finding the same parameter in a single-phase mission. Phase

transitions can cause system failure without a component failure occurring at that

time. Montague and Fussell [30] describe a method for finding the expected number

of failures for a phased mission.

However, their method does not consider the outcome of previous phases. The

combination of all of the cut sets and path sets, to find the expected number of

phases across the phase boundary, would be very time consuming and inefficient for

large systems, and approximation techniques would not be accurate. Due to the

method ignoring the outcome of earlier phases, the value of the expected number of

failures it gives cannot be accurate.

4.2.1.4 Laws of Boolean Phase Algebra

The performance of a component c has been considered by other methods to be a

separate event in different phases, while the system reliability parameters are based

on the product of the event probabilities. Dazhi and Xiaozhong [31] have

established a set of Boolean algebraic laws to combine and simplify expressions of

component behaviour.

 - 60 -

If phases j and k are ordered such that 1 ≤ k ≤ j, the rules of logical AND and OR for

events as expressed in equations 4.8, 4.9 and 4.10 can be applied to phased mission

systems.

U

UU

K

j

ki
ik

j

ki
i

k

i
i

jj

AA

AA

AAAA

1
)(

11

21)(

+=

+==

=

=

∨∨∨=

4.8

 ()
)(

1
)()(

1
)()()()(

k

j

ki
ikk

j

ki
ikkjk

A

AAA

AAAAA

=

=

∧=∧

+=

+=

U

U

4.9

)(

1
)(

1
)()()()(

j

j

ki
ik

j

ki
ikkjk

A

AA

AAAAA

=

=

∨=∨

+=

+=

U

U

4.10

The event of a system being failed in phase j, Xj, could have occurred in any phase

from the first to j inclusive, as shown in equation 4.11.

 jj XXXX ∨∨∨= K21)(

4.11

 where U
jmcs

j

N

i
ii CX

1
)(

=

=

Mission unreliability can then be found from equation 4.12.

 - 61 -

[]

=

=

=

= =

=

U U

U

m

j

N

i
i

m

j
j

mMISS

jmsc

j
CP

XP

XPQ

1 1

1

)(

)(

4.12

The combination of the different phase events in equation 4.12 contains an

automatic implementation of the cut set cancellation technique presented in Section

4.2.1.1.1. Kohda et al [32] supply further Boolean laws which use the minimal cut

sets and path sets for each phase which removes any need to convert the mission

into a single phase system. The use of Boolean laws to solve phased mission

reliability removes the false assumption made by Esary and Ziehms which is that

the performance of the component through different phases is independent.

Somani and Trivedi [33] introduced another method whereby Boolean algebraic

methods were employed to find phased mission system reliability without

converting all the phases into a single mission. This solution necessitates the

transfer of information from one phase to the next, as phases are not independent.

Their method uses cumulative distribution functions (CDFs) with a mass at the

origin. A random variable X has a CDF with time t given by equation 4.13.

)1()1()(11 tTT
X eeetq λλλ −−− −+−=

4.13
 where T1 is the time at the start of the phase.

The function’s mass at the origin is given by P(X = 0) = (1 – 1Te λ−), which is the

probability that the component exists in the failed state at the start of the phase. The

other part of the equation, 1Te λ− (1– te λ−), represents the continuous part of the

function which is the failure probability distribution of the component in the current

phase. These distribution functions can be used to represent the failure probabilities

of components.

 - 62 -

The situation considered by Somani and Trivedi is the simplest, with each phase

having the same system configuration and failure criteria. Each phase differs from

the rest by having differing component failure rates. Phase- and age-dependent

failure rates are considered in addition to random phase durations. Consideration is

also given to situations where the system configuration varies between phases. The

research considered four plausible scenarios across a phase boundary:

1. Accumulation of component failures is insufficient to cause system failure in

either phase j or j+1.

2. Accumulation of component failures causes system failure in both phase j

and j+1.

3. Accumulation of component failures does not lead to system failure in phase

j but does lead to system failure in phase j+1.

4. Accumulation of component failures leads to system failure in phase j but

not in phase j+1.

Cases 1 and 2 do not require a change in failure combinations between phases,

while the combinations in case 3 can be thought of as failure in both phases, as the

failure will occur at the transition point. The mission reliability for these three cases

is found in the same way as for a mission where all phase configurations are

identical, by solving the fault tree for the final phase.

A method is given to solve the fourth situation which accounts for the probability of

occurrence of failure combinations in phase j. System unreliability can be divided

into two parts – common failure combinations and phase failure combinations.

• Common Failure Combinations – considers the component failure

combinations that are common to all phases. If phase j+1 can fail through a

particular combination, that combination can also fail phase j. The

unreliability due to these combinations are found using the same method

mentioned above, that is, finding the failure distribution for each component

and solving for the last phase fault tree.

 - 63 -

• Phase Failure Combinations – considers the component failure combinations

which can cause failure in phase j but in no subsequent phases. Phase failure

combinations for phase j (PFCj) that are treated as success combinations for

all the subsequent phases are given by equation 4.14.

)))(((21 mjjjj EEEEPFC ∧∧∧= ++ KK

4.14

This is simplified in equation 4.15.

)(1 mjjj EEEPFC ∨∨∧= + K

4.15

The phase failure combinations for phase j use the same notation as for the Esary

and Ziehms’ method where a separate symbol (aj) is used to denote the occurrence

of an event in each phase j. A new notation is defined, where Aj represents the

failure of component A in any phase up to and including phase j,

Aj = a1 ∨ a2 ∨ … ∨ aj

and jA represents the success of component A from the start of the mission to the

end of phase j,

jj aaaA ∧∧∧= L21

As the expressions for phase failure combinations represent both failure and success

events, simplification will merge combinations of both terms. Algebraic rules are

introduced to simplify these combinations. If i and j are two phases in a mission

where i < j, the Boolean laws can be summarised as in equations 4.16.

 - 64 -

1. jji AAA →∧ 5. jji AAA →∨

2. iji AAA →∧ 6. 1→∨ ji AA

3. 0→∧ ji AA 7. →∨ ji AA no physical meaning

4. iji AAA →∨

4.16

The laws presented in equations 4.16 contain an error. The sixth law represents the

situation where component A succeeds up to and including phase i OR component A

fails in any phase up to and including phase j. This is combined to become 1, which

is incorrect as for this to be true, the former term would need to be the complement

of the latter, which is not the case. The correct expression would be 1→∨ ii AA ,

which is not the same as rule 6 in equations 4.16. Inaccurate results will result if

these simplification techniques are used uncorrected.

The method becomes even more complicated when terms are combined which

cannot be simplified, such as ji AA ∧ . This represents the event where component A

is operational until the end of phase i, and then fails between the end of phase i and

the end of phase j. This is not the same as Aj, which is the event that component A

fails in any phase up to and including phase j. The probability of this combination is

given in equation 4.17.

() [] ()[]
[] [] () ()11

11

=−==∧−=

−∧=∧==∧

jijii

jijiji

APAPAAEAE

AAEAAEAAP

4.17

It can be seen from equation 4.17 that the probability of event ji AA ∧ is the same as

the probability that component fails between the end of phase i and the end of phase

j. It would be of use to find the value of this term without requiring the use of the

component success probabilities.

 - 65 -

System unreliability is found by evaluating the PFCs for all phases and is given in

equation 4.18.

∑
−

=

+=
1

1
)()(

m

j
jmMISS PFCPEPQ

4.18

The unreliability at the end of each phase j can be expressed in equation 4.19.

∑
=

=
j

i
ij PFCPQ

1
)(

4.19

At the time of phase change, the unreliability figure may jump, due to more

stringent failure criteria in a later phase. This is referred to as a latent failure.

Somani and Trivedi’s method successfully identifies the possible situations that can

occur across a phase boundary. The Boolean laws defined in their work allow for

added simplification of component failure and success events in a phased mission

system, despite the noted error in the laws. All previous methods consider that a

phase failure would result in mission failure, thus preventing the continuation of the

mission after the phase failure event. Phase j failure could not, then, combine with

phase j+1 success. Somani and Trivedi’s method allows the phases of a mission to

occur in any order, allowing this situation to occur. The calculation of the system

performance parameters involves the combination of the current phase failure

combinations with the success combinations for all subsequent phases. This leads to

lengthy calculations for situations where there are numerous phases or cut sets in

each phase.

Ma and Trivedi have extended this work by using a computational algorithm to find

the mission unreliability in the form of the sum of disjoint products [34].

 - 66 -

4.2.1.5 Binary Decision Diagrams

BDDs have previously been used to represent single-phase systems, using the

method shown in Section 2.3. For adaptation to the multi-phased scenario, the

dependence of a component’s failure state on its performance in all previous phases

must be considered. This complicates the BDD technique.

Zang et al [35] present a method to apply the BDD technique to multi-phase

missions. Component behaviour in the current and all previous phases is represented

by using a series of sub-components, as described in Section 4.2.1.1.

The failure function for component c in phase j,)(tq
jc , is the probability that

component c fails in phase j given that it worked at the start of phase j, and is

expressed in equation 4.20.

Since all ci¸ i = 1, 2, …, j are in series,

[] [])()(1)(11)(
1

1

1

1
tqTqTqtq

jiij c

j

i
ic

j

i
icc ⋅

−+

−−= ∏∏

−

=

−

=

4.20

The first term of equation 4.20 represents the probability that the component has

already failed during the previous 1, …, j–1 phases. The second term represents the

failure probability distribution of the component in phase j.

As for a single-phase mission, a BDD requires that the basic events be ordered in a

sequence before it can be constructed. Zang et al present two possible ordering

schemes, expanding each component c into its series of sub-components in the

following ways:

• Forwards Phase-Dependent Operation (PDO): The variables are ordered in

the same pattern as the phase order, c1, c2, …, cm.

• Backwards PDO: The variables are ordered in the reverse of the phase order,

cm, cm-1, …, c1.

 - 67 -

The ite structure of the performance of component c in two phases i and j can be

represented by Ei and Ej respectively,

Ei = ite(ci, G1, G2)

Ej = ite(cj, H1, H2)

Logic operations between Ei and Ej can be represented by BDD manipulations as:

Forwards PDO : ite(ci, G1, G2) ⊕ ite(cj, H1, H2) = ite(ci, G1 ⊕ H1, G2 ⊕ Ej)

Backwards PDO : ite(ci, G1, G2) ⊕ ite(cj, H1, H2) = ite(ci, Ei ⊕ H1, G2 ⊕ H2)

The order of events before BDD construction has a great effect on the resultant size

of the diagram. Methods may be used for the selection of the most appropriate or

efficient ordering sequence of variables in the BDD. Once the order has been

selected, each component is replaced by a series of sub-components in either of the

orders mentioned above. Generally speaking, backwards PDO results in a smaller

BDD and common component cancellation is performed without any additional

calculations.

An algorithm is presented for construction of a BDD for a phased-mission system:

1. Obtain the failure function for each variable using equation 4.20.

2. Order the mission components using an heuristic method.

3. Generate the BDD for each phase using logic equations.

4. Use phase algebra and the backwards PDO to combine each phase BDD

using OR logic to obtain a mission BDD.

5. Calculate the unreliability of the PMS from the mission BDD.

In a backwards PDO BDD, the ‘0’ branches (non-occurrence of the basic events)

always link two variables that belong to different components. The ‘1’ branches

(basic event occurrence) can connect either variables of the same component, or

those of different components.

 - 68 -

Considering a BDD for function G,

G = ite(cj, G1, G2) = 21 GcGc jj ⋅+⋅

Since the ‘0’ branch always links events of different components, G2 cannot

represent any event of component c. It follows that cj and G2 are always statistically

independent events, and so,

P(jc ⋅ G2 = 1) = P(cj = 1) ⋅ P(G2 = 1)

If a ‘1’ branch links nodes from different components, G1 also cannot represent any

event of c, and the same method can be applied as for a single-phase system shown

in equation 4.21.

()

))1(P)1(P())1(P1()1(P
])[E][E(])[E1(][E

][E][E][E][E

][E]G[E1P

121

121

21

21

=−=⋅=−+==

−⋅−+=

⋅+⋅=

⋅+⋅===

GGcG
GGcG

GcGc

GcGcG

j

j

jj

jj

4.21

For a ‘1’ branch linking nodes belonging to the same component, G1 will be

dependent on a variable of c. Due to lack of independence between the two node

events, the following structures apply:

G = ite(cj, G1, G2) = 21 GcGc jj ⋅+⋅

G1 = ite(ci, H1, H2) = 21 HcHc ii ⋅+⋅

Also,

()

][E][E)[E

][E][E)([E

][E]G[E1GP

221

221

21

GcHccHcc

GcHcHcc

GcGc

jijij

jiij

jj

⋅+⋅⋅+⋅⋅=

⋅+⋅+⋅⋅=

⋅+⋅===

 - 69 -

Using the rules of phase algebra in equations 4.16, a branch linking two nodes

belonging to the same component is given in equation 4.22.

()

))1(P)1(P())1(P1()1(P

])[E][E(][E][E

][E][E)[E1GP

221

221

221

=−=⋅=−+==

−⋅+=

⋅+⋅⋅+⋅⋅==

HGcG

HGcG

GcHccHcc

j

j

jijij

4.22

Depending on whether the ‘1’ branch links events of different or the same

components, equations 4.21 or 4.22 would apply respectively.

As failures are possible at phase transition time, the unreliability may jump at this

instant. Phase BDDs can be used to find the system unreliability just before and just

after this time so that the size of the ‘jump’ may be calculated.

Xing and Dugan [36, 37] noted the limitations of the approach given by Zang et al.

The developed PDO will only generate the correct phased mission BDD if the

following rules are adhered to:

1. Orderings implemented in the generation of each phase BDD must be

consistent or the same for all phases.

2. Variables belonging to the same component in different phases must stay

together in the ordering scheme. This is achieved by expanding each

component into sub-component form after the ordering of components has

been defined using heuristics.

If any random ordering scheme is used, the PDO is not complete enough to combine

the single phase BDDs into an equivalent mission BDD. However, a BDD with

backwards PDO may represent an impossible scenario, such as the success of an

event in a later phase ordered before the failure of that event in an earlier phase. An

example of this is shown in Figure 4.6.

 - 70 -

Figure 4.6 – BDD Using Backwards PDO Pattern

If A is working in phase 2, it cannot have failed in phase 1. If impossibilities such as

these are shown by the BDD, they can be removed. The incoming branch to each

impossible node is instead passed to the node on its right ‘0’ branch, as for any

component to work in a later phase, it must have worked through earlier phases.

Nodes below the left son are removed. Thus Figure 4.6 becomes as shown in Figure

4.7.

Figure 4.7 – BDD as in Figure 4.6 but with Impossible Nodes Removed

Similarly, with the forwards PDO, another method must be applied to remove

impossible nodes. Once all impossible node combinations are removed, any

ordering scheme may be used to find the final phased mission BDD.

The method presented by Zang et al reveals a very simple, efficient way of

representing the failure logic of a phased mission, despite the limitations identified

by Xing and Dugan. However, each phase j BDD is only constructed from the

A2

B21

1 0

A2

B21

A11

1 0

 - 71 -

failure logic for phase j, which discounts the potential outcomes of previous phases

and so the phase BDDs will be incorrect.

Dunnett and Andrews [38] outline a method which allows the formation of a full

mission BDD from each of the phase BDDs. The phase BDDs are found by

converting phase fault trees to BDD form. If a component operates successfully

through a phase, it is possible for it to then go on to fail in a subsequent phase. The

construction of the mission BDD therefore considers each phase in turn, with all

BDD paths which end in a terminal ‘0’ vertex being connected to the top node for

the next phase BDD. Each path which ends in system failure is marked to indicate

the first phase which would be failed by that combination of component failures.

The initial overall mission BDD is thus very large, but rules are provided for its

reduction, by removing paths which represent impossible component conditions

such as failing more than once or working in a phase following a failure.

The BDD method has also been applied [39-41] to scenarios where several different

platforms, some of which may be unmanned, execute individual missions which

contribute towards the completion of an overall objective. The completion of the

mission objective may require the platforms to perform different phases

simultaneously, or to finish or commence certain tasks at the same time. In order to

allow the completion of these goals, accurate and fast information is needed on the

state of components at the current point in time, both before and during a mission

(diagnostics), and the likelihood of mission success based on this information

(prognostics). The research uses BDDs as a way of quickly finding reliability

parameters in order to make judgements on whether the overall mission should be

abandoned, amended or substituted for a alternate objective.

4.2.1.6 Non-Coherent Fault Trees

The methods provided so far allow calculation of mission reliability parameters, but

do not allow the system failure probability for each phase to be found. La Band and

Andrews [42] established a method of finding these values using a fault-tree

approach. Their approach continues the fault tree convention of the event of a

component failing in phase i being that where the component could have failed in

any phase from 1 to i. System failure in phase i is represented as the AND

 - 72 -

combination of the system successfully completing phases 1 to i-1 and failing in

phase i. This can be shown in fault tree form as in Figure 4.8.

Figure 4.8 – Generalised Phase Failure Fault Tree

If the phase failure probabilities, Qi, i = 1,...,n are found, the mission unreliability,

QMISS, is found by their sum:

∑
=

=
n

i
iMISS QQ

1

4.23

For every phase other than the initial one, its fault tree as shown in Figure 4.8 will

be non-coherent, due to the inclusion of a NOT gate. This gate is used in

representing the ways in which the previous phases will have survived. The

combinations of basic events which lead to top event occurrence are referred to not

as cut sets but as prime implicants. In order to find qualitatively the ways in which

the system could fail in phase i, the top event failure must be expressed in terms of

the prime implicants. Section 4.2.1.4 established notation for the success or failure

of a component, which is extended by La Band and Andrews to include the event

where a component A fails at some point from the start of phase i to the end of

phase j, Aij. The probability of this event can be found by integrating the

component’s failure time probability density function, fA(t), as in equation 4.24.

G1 Failure
conditions met
during phase i

Failure during
phase i

Phase i fault tree with
each basic event

replaced by an OR
combination of

component failure in any
previous phase or the

current phase
Failure in
phase 1

Failure in
phase i-1

 - 73 -

∫
−

== −

j

i

ij

t

t
AjiAA dttfttqq

1

)(),(1

4.24

This notation allows the algebraic laws in equations 4.16 to be updated and

extended as in equations 4.25, where i < j.

1. Ai ∧ Ai = Ai

2. Ai ∧ Aj = 0

3. Ai ∧ Aij = Ai

4. 0=∧ ii AA

5. jiiji AAA ,1+=∧

6. ijjii AAAA =∧∧∧ + ...1

7. Ai ∨ Ai+1 ∨ ... ∨ Aj = Aij
4.25

The prime implicants occurrence probabilities are combined in an inclusion-

exclusion expansion as in equation 2.3. This method allows phase reliabilities to be

found in terms of the prime implicants which cause phase failure. This is useful for

the analysis of phase risk, where consequences of phase failure must be taken into

account (consider the difference in consequence between a plane failing while

grounded or while in the air). However, although ways of reducing the resulting

fault trees are also provided, the inclusion of previous phase success in each phase

fault tree can very quickly lead to a large fault tree for each subsequent phase or

extra component. If this is then used with an inclusion-exclusion expansion, the

calculation for phase unreliability may require a great deal of computer power.

Because of this, the authors present methods for converting the phase fault trees to

binary decision diagrams. Each phase fault tree is converted to a BDD, using the

standard ite method explained in section 4.2.1.5. The prime implicants are found

from each disjoint path which leads to a ‘1’ node, and these are simplified using the

techniques in equations 4.25. This makes the procedure much more efficient.

 - 74 -

4.2.1.7 Importance Measures

Importance measures, as previously explained in section 2.2.3.2, are a way of

expressing the contribution of a specific component to the system failure. If the

failure of a particular component is found to highly contribute to system failure, this

allows resources to be concentrated on improving the reliability performance of that

component. Andrews [43] extends the concept to find importance measures for

components in systems which undergo phased missions.

Birnbaum’s measure of importance, also known as the criticality function, considers

the probability of the system being in a state such that it is critical for a given

component. This function is also applied to phases, with a critical state for

component i in phase j being defined as “a state of the remaining components

through the previous and current phases such that the system is working in phase j

and the failure of component i will then cause phase (and mission) failure”. The

conditions for this to be true are that all phases prior to j must have successfully

completed, and component i must be working at the start of phase j.

A tabular approach is used to demonstrate the philosophy of the method, but this is

impractical for large systems or missions. A faster method of calculating the phase

criticality function, based on the phase failure likelihood function, is given in

equation 4.26.

ji

j
ji q

Q
G

∂
∂

=,

4.26

While the phase criticality function is useful in qualifying and quantifying the

probability of the system being critical for a given component, a drawback of it is

that, for each component, the function does not depend on its own failure

probability. As such, other importance measures exist which consider the

component’s failure probability in conjunction with the criticality function.

A system failure occurs when it is in a critical state for a component and that

component subsequently fails. If the probability of this is divided by the system

 - 75 -

failure probability, the result is the proportion of times the component failure will

cause system failure. This is a useful expression of component i’s contribution to

system failure. There are two ways in which the criticality and subsequent phase

failure can occur:

1. The system can be in a critical state for a component i in phase j and

component i then fails during the phase causing phase failure (Phase

Importance).

2. The failure conditions for phase j exist prior to that phase beginning, and

phase failure occurs on transition to phase j (Transition Importance).

For transition failure to occur, the system must be in a critical state for component i

in a phase prior to phase j, with i also failing prior to phase j. Andrews then defines

two measures of component importance:

• Phase Component Importance for component i in phase j is the probability

of the system being critical for component i in phase j, and the component

then fails in that phase (equation 4.27):

j

i
i

j

j

ijiP
ji Q

q
q
Q

Q

qG
I

j

jj
∂
∂

== ,
,

4.27

• Phase Transition Importance for component i in phase j is the probability of

the phase failing as it starts, due to the failure of component i. Qj is the

probability of failure in phase j. It accounts for the probability of either

failing during the phase or on transition into the phase. Thus, to find the

probability of failure on phase transition, the logic equations for this must

remove any of the failure events which occur in phase j. Thus, the causes of

phase j failure must occur in phases 1 to j-1, without any of the earlier

phases having failed.

 - 76 -

The phase criticality function for phase j transition failure due to component i in a

phase k prior to j, T
kjiG ,, is shown in equation 4.28.

ki

T
jT

kji q
Q

G
∂
∂

=,,

4.28

The phase transition importance measure is the proportion of system failures which

are caused by entry to that phase, as shown in equation 4.29.

j

j

k
i

i

T
j

j

j

k
i

T
kji

T
ji Q

q
q
Q

Q

qG
I

k

k
k

∂
∂

=

=
∑∑

−

=

−

=

1

1

1

1
,,

,

4.29

The total importance contribution of component i to failure in phase j is the sum of

the phase and transition importance measures, as shown in equation 4.30.

T

ji
P

jiji III ,,, +=

4.30

A measure of the total contribution of the failure of component i to failure of the

whole mission is therefore as shown in equation .

MISS

j
all

j

k
i

i

T
j

i
i

j

i Q

q
q
Q

q
q
Q

I

k

k

j

j

∑ ∑

∂
∂

+
∂
∂

=

−

=

1

1

4.31

This method is extended by Andrews in another paper [44] with the use of Ternary

Decision Diagrams (TDDs, an extension of BDDs) to allow fast calculation of

Birnbaum’s phase and transition criticality measures.

 - 77 -

4.2.1.8 Markov Methods

It is not necessary to use combinatorial approaches such as Fault Tree methods in

order to solve multi-phased missions. Instead, Markov methods may be used either

by solving for each phase individually, or by analysing the entire mission in a single

model. The former approach requires each phase Markov model to be solved

independently, and linked to that of the next phase through a state probability

vector. Dugan [45] considered the latter method, presenting a method of

constructing a single continuous-time discrete-space Markov model for phased-

mission systems, with a state space equal to the size of the union of the components

in each phase model. Phase fault trees are used in its construction.

Continuing the example shown in Figure 4.2, a Markov model may be constructed,

assuming the following:

• Failure rates for the components are constant for the duration of the phase,

but can be different for each phase.

• The system fails due to failure in any phase of the mission.

• Phase change times are deterministic.

If the set of components is not consistent throughout the phases, or if a component

cannot fail in a given phase, the Markov model generation will encounter problems,

as the system states will not match. The phase fault trees in Figure 4.5 can be

converted to Markov chains for further analysis, with system states showing the

states of components A, B and C in the form {A B C} with 0 as working and 1 as

failed, as shown in Figure 4.9.

The combination of these three Markov models into a single model requires the use

of a multiplicative factor, Φi, which is appended to each phase i transition.

Transitions are thus defined by the sum of corresponding phase transitions, as

shown in Figure 4.10.

 - 78 -

Figure 4.9 – Phase Markov Models for Figure 4.2

Figure 4.10 – Combined Mission Markov Model

Standard numerical techniques can be employed to solve the combined model in

Figure 4.10. For solutions to phase i (ti-1 ≤ t ≤ ti), Φi = 1, while Φj = 0, i ≠ j. This

removes any transition not belonging in the current phase. The state space does not

change – only the state transitions vary from phase to phase.

0 0 0

1 0 0
F1

0 1 0
F3

0 0 1
F3

1 1 0
F1

1 0 1
F1

0 1 1
F1

F2

λΑΦ1 + λΑΦ2 + λΑΦ3

λΒΦ1 + λΒΦ2 + λΒΦ3

λCΦ1 + λCΦ2 + λCΦ3

λΒΦ2

λCΦ2

λCΦ2

λΒΦ2

λΑΦ1 +
 λΑΦ2

λCΦ1 +
λCΦ2

λΑΦ1 +
 λΑΦ2

λΒΦ1 + λΒΦ2

λΑΦ2

λΑ+λB

0 0

1 0 0 1

F

λΑ

λΒ λC

λΑ+λC

Phase One

0 0

0 0 1 0 0 1

1 0 0 1 1 1

F

λΑ

λΑ

λΑ

λΒ

λΒ λΒ

λΒ

λΑ

λC

λC λC

λC

Phase Two

0 0

F

λΑ+λΒ+λC

Phase Three

 - 79 -

If the components used differ from phase to phase, the model can still be formed by

creating a full Markov state listing. This is an expansion of all components which

have some contribution at any point of the mission. It is possible for a system state

in a particular phase to be a failed state, and for this not to be true in the earlier

phases. If, however, a failure state is reached in any given phase, it becomes

absorbing for all future phases. The system states can be defined as “operational for

all phases” or “failed in phase i”, where i is the first phase in which the system fails.

The combined Markov model gives a set of differential equations, for which a

numerical solution method such as Runge-Kutta must be used [45]. The initial

conditions for the first phase are known, while the failure probability for each phase

is found by using the Markov state probabilities at the end of the previous phase.

The final phase state probability vector is passed directly to the following phase for

further analysis.

The state space of the combined model is defined by the total number of

components in use at any point of the mission. Due to this, a multi-phased system

using a high number of components will cause a very large Markov model to be

created, and will increase the number of differential equations that require solving.

This potential inefficiency for large systems is a drawback to the Markov method.

4.2.2 Repairable Systems

All of the methods reviewed thus far have been applicable only to non-repairable

systems. While repairs are typically unfeasible on a spacecraft or an in-flight

aircraft, an analysis where repairs are frequently made would be useful. There are,

however, situations where intra-mission repairs are possible, and so it is necessary

to understand the associated reliabilities of these systems. The following sections

review the published methods of analysing repairable multi-phased missions.

4.2.2.1 Combinatorial Approaches

Somani extended his earlier work with Trivedi [33] by applying a combinatorial

method to the situation of repairable multi-phased missions [46]. His approach

 - 80 -

considers the probability that a component is failed or working at the start of a

phase, and the probability that it has changed state (by failing or being repaired

during that phase). By evaluating these, it is possible to calculate the probability that

a component is in either state after time t. However, his method is restricted by the

condition that only components which are not active in the phase being analysed

may be repaired.

Vaurio [47] put forward a method of approximating the unavailability and failure

intensity for each phase of the mission. These values for each component c at the

start of the mission are obtained by using Laplace transforms, and are then used to

calculate phase unavailability and failure intensity, as well as the expected number

of mission failures. However, his method does not model the dependencies that

arise in repairable systems, while the values for phase unavailability and failure

intensity are only approximations of the exact values. Also, the phase calculations

do not consider the outcome of previous phases.

Combinatorial methods, therefore, have not so far been able to allow a satisfactory

solution to finding mission reliability for a repairable multi-phased system. Other

approaches must be considered instead.

4.2.2.2 Markov Methods

As Markov methods allow a consideration of the repeated change of state that a

component’s repairability produces, they are more tuned to the solution of

repairable multi-phased systems than combinatorial methods. Much research has

been undertaken in this area using Markov approaches.

4.2.2.2.1 Homogeneous Markov Model

For a Markov model to be homogeneous, the state transitions must not be dependent

on time, being governed instead by a constant rate. Other assumptions are:

• The system comprises elements which may be working or failed with

independently, exponentially distributed failure and repair times.

• Repair of a component makes it as new, i.e. perfect condition.

 - 81 -

• The purpose of a phase is not considered, and so each phase may have more

than one. The only criterion for mission failure is failure of the system in any

phase.

• Phase change is instantaneous.

Clarotti et al [48] were among the first to investigate the applications of Markov

methods to repairable phased missions.

Continuing the example in Figure 4.2, there are eight possible states of the system,

based on the two states of each of the three components, as Table 4.1 shows.

Table 4.1 – System States of Component Combinations

State A B C
S1 0 0 0
S2 1 0 0
S3 0 1 0
S4 1 1 0
S5 0 0 1
S6 1 0 1
S7 0 1 1
S8 1 1 1

 where 0 = working

 1 = failed

Considering each of the three phases,

Phase 1 (0,t1)

The probability vector expresses the probability of the system being in any of the

eight possible states. The mission begins with the assumption that each component

is in the working state, which results in an initial condition probability vector, P(0),

as shown in equation 4.32.

[]00000001)0(=P

4.32

 - 82 -

Phase 1 success requires A and either of B and C to be working. Therefore, from

Table 4.1, the states which will cause phase failure are states S2, S4, S6, S7 and S8.

The matrix form as defined in equation 2.16, the progression of phase 1 can be

represented by the matrix equation 4.33.

−−−−
−−−

−−−
−

−−−
−

−−
−

=

∑
∑

∑
∑

∑
∑

∑
∑

8

7

6

5

4

3

2

1

0000
0000

0000
0000

0000
0000
0000
0000

)(
)(
)(
)(
)(
)(
)(
)(

)(
)(
)(
)(
)(
)(
)(
)(

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

A

B

BAC

C

CAB

CB

CBA
T

S

S

S

S

S

S

S

S
T

S

S

S

S

S

S

S

S

tP
tP
tP
tP
tP
tP
tP
tP

tP
tP
tP
tP
tP
tP
tP
tP

λ
λ

λλυ
λ

λλυ
λλ

λλλ

&

&

&

&

&

&

&

&

4.33

where 0 represents an impossible state transition

 – represents an absorbing state (no transition is possible out of the state)

 Σi is the sum of the non-diagonal entries in row i.

At phase change time t1, the system must be in a state which fails neither phase 1

nor phase 2. For success in phase 2, the system must not have all three components

failed. Thus, states S1, S3 or S5, as shown in Table 4.1, are required. The probability

of the system residing in each of these states at time t = t1 is represented by)(11
tPS ,

)(13
tPS and)(15

tPS respectively. The sum of these probabilities gives the

probability of completing phase 1 and successfully entering phase 2, as shown in

equation 4.34.

)()()()(1111 531
tPtPtPtR SSS ++=

4.34

 - 83 -

Phase 2 (t1,t2)

Phase 2 can only start if the system is in states S1, S3 and S5, and will progress to

other states from these. The vector of initial phase 2 system state probabilities has

all entries equal to zero except those corresponding to working states for phase 1

and phase 2, as shown in equation 4.35.

[]00000)(
5311 SSS PPPt =P

4.35

The matrix equations for solution of phase 2 are given in equation 4.36.

∑−−−−
∑−

∑−
∑−

∑−
∑−

∑−
∑−

=

8

7

6

5

4

3

2

1

0000
0000

0000
0000

0000
0000
0000
0000

)(
)(
)(
)(
)(
)(
)(
)(

)(
)(
)(
)(
)(
)(
)(
)(

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

ABC

BAC

BAC

CAB

CAB

CBA

CBA
T

S

S

S

S

S

S

S

S
T

S

S

S

S

S

S

S

S

tP
tP
tP
tP
tP
tP
tP
tP

tP
tP
tP
tP
tP
tP
tP
tP

λυυ
λυυ

λλυ
λυυ

λλυ
λλυ

λλλ

&

&

&

&

&

&

&

&

4.36

After the phase change time, any state other than S8 is allowable, due to the failure

logic in phase 2 (see Figure 4.2), where no components are working. Therefore, as

long as any one component is operational, the system will not fail. Once the time for

transition from phase 2 to phase 3 is reached, however, the system must occupy a

state where it is working in both of the phases. For this to be true, the system must

be in state S1, with all components working, at time t = t2. The probability of this is

given in equation 4.37.

)()(22 1
tPtR S=

4.37

 - 84 -

Phase 3 (t2,t3)

For the mission to complete successfully, the system must remain in state S1 for the

entire length of phase 3. The initial phase 3 probability vector is given in equation

4.38.

[]0000000)()(
12 tPt S=P

4.38

The matrix equation for the solution of phase 3 is given in equation 4.39.

∑−−−−
∑−−−

∑−−−
∑−−

∑−−−
∑−−

∑−−
∑−

=

8

7

6

5

4

3

2

1

0000
0000

0000
0000

0000
0000
0000
0000

)(
)(
)(
)(
)(
)(
)(
)(

)(
)(
)(
)(
)(
)(
)(
)(

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

A

B

BA

C

CA

CB

CBA
T

S

S

S

S

S

S

S

S
T

S

S

S

S

S

S

S

S

tP
tP
tP
tP
tP
tP
tP
tP

tP
tP
tP
tP
tP
tP
tP
tP

λ
λ

λλ
λ

λλ
λλ

λλλ

&

&

&

&

&

&

&

&

4.39

The success probability of the mission is the probability that it does not enter any of

the absorbing states (states S2 to S8) and is in S1 at the end of the mission (t = t3).

This is shown in equation 4.40.

)(31
tPR SMISS =

4.40

The method identifies the need to find the initial conditions for each phase. Gray

[49] also identifies this requirement, and uses parallel subgroups with identical

components to solve it. The deficiency of the Clarotti et al method is that every

phase uses the same state space to represent the system. Some missions will have

phases where success does not depend on the performance of some components, or

where a high number of components is used. This will result in a very large and

complex Markov model which will be difficult and expensive to solve. Also, the

 - 85 -

Clarotti et al method considers phase reliabilities to be found which include a

successful transition at the end of the phase. This does not give true phase

reliabilities, however, as the successful transition out of a phase does not affect its

reliability; as long as the system has remained in a successful state for that phase

alone, the phase will be successful. Failure upon transition to the next phase should

be considered by that phase’s reliability.

Random Phase Durations

The methods presented thus far have had an assumption that each phase has a

deterministic length which is defined at the start of the mission. However, this is not

necessarily realistic, as some missions, such as those of a military aircraft, will have

phase lengths prone to variation depending on the circumstances of the flight. Wells

and Bryant [50] first considered this, but in application to a single-phase system.

Alam and Al-Saggaf [51] described two approaches to satisfactorily describe the

marginal distributions of the mission phase change times (MPCTs) when the phase

change times are random variables. The first is a general formula for the joint

probability density function of the MPCTs, while the second models the MPCTs as

order statistics of a continuous random variable. The solution is found similarly to

the method by Clarotti et al, using the expected probability values of being in each

phase. Kim and Park [52] developed this idea by using the system eigenvalues to

solve the differential equations created by the Markov model.

Somani et al [53] also consider random phase durations using Markov models.

Their method investigates the change in system failure criteria between phase

Markov models. The system states in the model for phase i is mapped to that for

phase i+1, using computer software (Hybrid Automated Reliability Predictor, or

HARP) to perform this if there are problems. Examples of these are a state not

having an equivalent in the following phase, or several states sharing an equivalent

state in the next phase.

State Dependent Phase Sequences

A possible mission profile is one where each phase has a pre-determined length, but

the order of them is subject to the system state at the time of switching. Mura and

 - 86 -

Bondavalli [54] present a method which analyses a phased mission system on two

levels. The higher level method models the mission structure with regard to the

phases, while the lower level models the state of the system in the phases.

Components within the system can undergo different failure and repair rates in

different phases, as long as they remain constant within each phase. This satisfies

the requirement for homogeneousness within phases. The phase order can be

changed mid-mission, depending on the state of the system at the end of a phase. An

example system is presented of a spacecraft mission:

Launch (L): Launch of spacecraft. Short, stressful phase.

Hibernation (H): Large periods of dormant behaviour, with

minimal activity, for cruise navigation.

Planet (P): Landing of spacecraft on planet. Short,

stressful phase.

Scientific Observations (SO): Performed in proximity to stellar objects.

Main goal of mission.

Figure 4.11 shows the higher-level model of the spacecraft mission. While the

failure of any active phase will cause mission failure, this model ignores this and

shows merely the possible phase sequences.

Each phase of the mission relies on a given number of computer processors in order

to operate properly. If this number of processors is not available, the phase will fail.

The numbers are:

Phase No. Processors Required

Hibernation

Launch

Planet

nsObservatio Perform
Cruise

nsObservatio Scientific

1

3

3

3

1

 - 87 -

Figure 4.11 – Higher-level Model of a Spacecraft Mission

Four processors are provided for the completion of the mission. Phase SO2 is the

main objective of the mission, and therefore its performance is essential. SO1 is a

secondary goal, to be performed if possible. The choice of whether it is performed

or not rests on whether, at the end of H2, any processors are faulty. If this is true,

SO1 is skipped and a second successive hibernation phase (H4) is entered. If the

system has no faults, SO1 is carried out as normal. The phase carried out after H2 is

therefore state dependent. Reward rates can be applied to phases, to indicate the

benefits of carrying it out.

The lower level models can be represented by generalised stochastic Petri nets (for

an explanation of these, see section 4.3). These Petri nets can be translated into a

continuous time Markov model, which indicates the number of working (#W), spare

(#S) and failed (#F) processors in the form {#W, #S, #F}. {F} is the absorbing

failure state. In the SO phases, all components are required, and so the states are

represented by {#W, #F}.

A separate phase transition model is presented which maps the final state

probabilities of one phase to the initial state probabilities of the next phase. Where

no choice is possible, such as when phase H1 makes a transition to phase P, a

deterministic model is applied. The phase transition model for this change is shown

in Figure 4.12, where c represents the probability of successful reconfiguration of

the system ready for the new phase. The Figure shows the mapping only between

the non-failure states.

L

H1

P

H2

SO1

H3

SO
2

H4

SO2

SUCCESS

pL,H1

pH1,P

pP,H2

pH2,H

pH2,SO1

pSO1,H3

pH3,SO2

pSO2,S

pSO2,S
pH4,SO2

where pS1,S2 is the probability of executing state S2 after state S1.

1

 - 88 -

Figure 4.12 – Deterministic Phase Transition Model from H1 to P

Because phase P requires three processors to operate, the successful transition from

H1 to P will only be true if the number of working and spare processors is at least

equal to this number. The deterministic model shown can be represented by a phase

transition matrix, with the number of rows equalling the number of operational

states in the exiting phase, and the number of columns being the number of

operational states in the entering phase. The elements of the matrix equal the

probability of switching from one state in the starting phase to another in the

subsequent phase.

If the phase transition is not deterministic, and there are state dependencies between

the phases, a probabilistic phase transition model represents the possible system

states at the end of the switching phase, as shown in Figure 4.13.

Figure 4.13 – Probabilistic Phase Transition Model from H2 to SO1 or H4

2,2,0 2,1,1 2,0,2 1,0,3 F

3,1,0 3,0,1 F SO1

H2

c

2,1,1

2,0,2

2,2,0

1,0,3

F

11
1

1-c

H4

2,2,0 2,1,1 2,0,2 1,0,3 F

3,1,0 3,0,1 F P

H1

c
c

(1-c)c

 - 89 -

The probabilistic state transition matrix is generated as above, except that the

number of columns equals the total number of possible states in all possible entering

phases.

The lower level models are solved in the order in which their corresponding phase

appears in the higher-level model. The initial phase state probability vector can be

found by applying the appropriate transition matrix to the state probabilities at the

end of the finishing phase. Solving the higher-level model then allows calculation of

reliability parameters. Mura et al discuss further methods of solutions to this

problem using deterministic and stochastic Petri nets [55].

4.2.2.2.2 Non-Markovian Models

The standard Markov method presented thus far requires each phase to be

considered individually, so that a state probability vector at the time of phase

change can be calculated. A linear transformation of this vector then creates the

initial condition for the subsequent phase. This process works through each of the

phases in the mission until the state probability vector for the last phase is found,

which represents the mission reliability estimate. A limit of this approach is that the

phases are assumed to instantaneously change at specific times, with the condition

that the system must be operational in both the exiting and the entering phases. This

model cannot represent the amount of work performed or the importance of certain

tasks compared to others in a typical mission.

If the transition matrix [A] as shown in equation 2.16 contains globally time-

dependent coefficients, the model is known as non-Markovian. If these rates are

constant, the model is homogeneous. Smotherman and Zemoudeh [56] identified

problems with the homogeneous method. Firstly, phase changes and their timing are

dependent only upon the current phase, and not the state of the system. A feasible

scenario is one where the system has deteriorated, but not failed, such that it takes

longer to complete a given phase than a fully functional system would. Another

issue is that the number of phases with a random time duration is limited, or

requires the computation of order statistic integrals. Also, failure and repair rates

must be constant within a phase. This, therefore, ignores the burn-in and wear out

stages of a component life, as shown in Figure 1.2.

 - 90 -

They present a generalised method of finding system reliability performance

parameters using a continuous time finite-state Markov process. Phase change times

are remodelled as non-overlapping uniform distributions ordered in the same way as

the phases. Failure and repair rates are assumed to be globally time-dependent.

Transitions in the model represent phase changes as well as component failures and

repairs. Thus, arbitrary distributions of phase change times can be expressed in

hazard rate form as time-varying transition rates. The model is solved numerically,

using a fifth-order Runge-Kutta method with the non-Markovian matrix set of

differential equations. This is extended for time-dependent transition rates, and

includes information on each type of phase change: exiting state, entry state(s) and

the branching possibility for multiple entry states. If a phase changes at a fixed-time,

the probabilities are transferred instantaneously from the exiting state to the entry

state(s).

Smotherman and Geist [57] introduce the idea of reward rates which model the

effectiveness of the system in particular states. This is applied to a single non-

Markovian mission model, and can be used in situations where component failures

are not exponentially distributed.

If { }0|)(≥ttX is a finite state stochastic process with the state probabilities

[]itXPtP
iS ==)()(, the set of state differential equations can be expressed by

equation 4.41.

)()()(
1

tatPtP ij

N

j
SS

S

ji ∑
=

=

4.41

The matrix form of this is similar to equation 2.16, with the difference that the

transition matrix is time dependent, [A(t)]. The possible system states for each

phase are given as a subset of the overall set of states in the single model. Phase

changes are time-variant and state dependent, with non-instantaneous phase changes

being modelled by the inclusion of an intermediate state. Thus, missions with more

than one objective and phase change durations greater than zero can be represented.

 - 91 -

In the reward model, each system state, Si has a weight, called a reward rate,)(tR
iS ,

which expresses the “reward” for being in that state for a given length of time. The

accumulated reward, Y(t) is calculated instantaneously. The vector of system state

reward rates, R(t), is defined as in equation 4.42.

R(t) []TSSS tRtRtR
SN

)(,),(),(
21

K=

4.42

The instantaneous reward rate of the system at time t is given by P(t)·R(t). The

expected value of Y(t) is given as in equation 4.43.

[] ∑∫
=

==
S

ii

N

i
SS

t
duuRuPduuutYE

1
0

)()()()()(RP

4.43

This type of information may give details such as the expected time in a given

subset of states. This allows it to be used to calculate parameters such as expected

time on duty or expected time under repair.

A disadvantage of this type of non-Markovian model is the requirement for it to be

solved numerically. A standard initial-value solution algorithm may perform this,

but the transition matrix must be re-evaluated at each time step, as the transition

rates vary with time. If a particular transition rate approaches a discontinuity, the

time steps must become smaller and smaller, and so the problem takes much more

computing time to solve. Because the model accounts for every state in every phase,

the state space is potentially very large, and so the flexibility of the model is

counteracted by the increase in computational power required to solve it.

Smotherman and Geist provide a worked and quantified example to explain the

method further.

 - 92 -

4.2.3 Summary

Various methods for analysing systems which undergo phased missions have been

presented. The methods are split into those which consider repairable or non-

repairable systems. Whatever the type of system being analysed, the main parameter

of interest is that of mission reliability, or the likelihood of mission success. This is

equal to the probability that no phases within the mission fail.

The bulk of the literature detailing analysis methods for non-repairable systems has

focused on combinatorial methods. The original analysis method was concerned

with the formation of a single mission fault tree from those of each of the phases.

Basic events were broken down into sub-events representing the failure of the

component in each phase. Thus, existing fault tree techniques can be employed to

solve the single mission model. This method can yield very large mission fault trees

if the number of components or phases increases by only a small amount, and so the

computation of the reliability parameters may be expensive. Approximation and

reduction techniques have therefore been researched and presented, in order to make

the analysis easier to compute. Boolean algebra phase laws can be employed to

simplify expressions for phase and mission failure, combining component success

and failure throughout multiple phases.

Binary Decision Diagrams have been employed to speed up the process of

evaluating the mission’s reliability performance. Parameters other than mission

reliability, such as importance measures for each component’s contribution to the

failure of the mission, or the expected number of mission failures in a given time

interval, can be calculated. Markov methods have been employed with non-

repairable systems to a small degree.

For repairable systems, the bulk of the research has focused on state-space

approaches such as Markov methods, with combinatorial approaches typically being

unable to account for the dependencies that arise with repairable systems. State-

space methods such as Markov consider each phase to have a set of states relating to

the operation or failure of each of the components in the system. Homogeneous

 - 93 -

Markov methods consider that the transitions between these states are constant with

respect to time. Homogeneous Markov methods express the set of transitions from

state to state in the form of a matrix. The probabilities of being in any state, some of

which will represent phase and mission failure, is calculated. The state probabilities

at the end of one phase become the initial conditions for the next phase. By

considering each phase in turn, the state probability vector for the final phase gives

the mission success probability.

Further developments, such as state-dependent phase sequences, or the

consideration that phases may have random durations, have been considered. Non-

Markovian methods, which do not require each state change to have a constant rate,

have been employed. Their increased flexibility in analysis is countered by the

requirement to solve them numerically.

4.3 Petri Nets

4.3.1 Introduction

Petri nets (PNs) were first created in 1962 by Carl Adam Petri [58]. Since that time,

many people have researched extensions and adaptations to the original technique,

often for application to their specific area of concern. The most important

developments, such as the addition of timed elements, and a form of NOT logic, are

explained within this chapter.

Since around 1987 the Petri net has been adapted to analyse system reliability. The

versatility of PNs allows a PN reliability model to incorporate fault trees, event

trees, Markov models and other system representations. Scenarios capable of being

modelled by PNs include phased missions, various maintenance policies, MFOPs,

fleets performing various missions, and non-exponential component failure time

distributions. Prof. Petri himself feels that reliability modelling is an excellent

application of PNs [59].

 - 94 -

This part of this chapter aims to review the development of Petri nets from their

initial conception to the status quo, and their application to the field of reliability

analysis.

4.3.2 Formal Definition

This formal definition of a Petri net is taken from Schneeweiss [60]:

A Petri net, GPN, is a bipartite digraph with markings of nodes and edges as

shown in equation 4.44:

 ())()(,,),0(;,, pttptpPN VVVVEWDMEVVG ×∪×⊆=

4.44

where M(0) is the initial marking vector of the set Vp of places,

The components of M and W are integers and those of D are non-negative real

numbers. Thus, a PN is an ordered 6-tuple of two sets of nodes (Vp and Vt), edges

(which are ordered pairs of nodes), vector integers (M and W) and a random non-

negative real vector (D).

4.3.3 Basics of Petri nets

Two sources offering explanations of the basic operation of Petri nets are

Schneeweiss [60] and Bobbio [61].

4.3.3.1 Original Petri net Concept

The original 1962 Petri net concept is a directed bipartite graph with two distinct

types of node: places, drawn as circles, and transitions, shown as bars. These nodes

are connected to one another by directed edges or arcs. These arcs are usually

considered to be input arcs if they go from a place to a transition, and an output arc

if they are directed the other way, although this convention is not universal.

 - 95 -

Places contain marks or tokens, shown graphically as bullet points, which represent

the dynamic aspect of the net: the marking (the position of all tokens throughout the

entire PN) at any point shows the current state of the system being modelled. This

marking changes when any transition switches. This switching can only take place

when the transition is enabled. This process is shown in Figure 4.14.

Figure 4.14 – Enabled Transition Firing

As Figure 4.14 shows, a transition (the bar in the middle of the net) is enabled when

each of the places (circles) which input to the transition contain one or more tokens.

More specifically, there must be a token available for each arc having an input to

the transition. Once the transition is enabled, it fires, taking one token from each

input place and depositing one token in each place with an arc leading away from

the transition. The marking of the net has thus been altered: the system state

represented by the first marking has now changed to the one shown by the second.

4.3.3.2 Timed Petri nets

The limited applicability of the original Petri net model, where each transition fired

the instant it was enabled, led to the incorporation of temporal modelling. Various

proposals were consequently put forward to model transient system behaviour [62]:

• In Ramchandani’s doctoral thesis [63], it was proposed that each transition

have a delay associated with it. This became the accepted practice.

• Merlin [64] and Berthomieu & Menasche [65] suggested using two values,

minimum and maximum times, to define a range of delays for each

transition.

• Sifakis [66] suggested associating the delays with places. Coolahan and

Roussopoulos [67] used a similar approach. This does not increase the

 - 96 -

modelling power over Ramchandani’s approach, but does retain the

immediate firing feature of the ‘standard’ PN model.

• Razouk [68] proposed using firing and enabling times – in his model, tokens

are “absorbed” by the transition after a given enabling time has passed, and

tokens are not output until the firing time has elapsed.

The time associated with delaying transitions can be either deterministic or

stochastic. If a PN is required to model processes that have a random (or pseudo-

random) nature to them, and this randomness follows a certain pattern such as a

statistical distribution, the transitions can sample their switching times from this

distribution. Stochastic Petri nets (SPN) were created [69, 70], where the firing

times for each transition follows the negative exponential distribution. Ajmone-

Marsan et al [71] put forward Generalised Stochastic Petri nets (GSPN) which also

allow transitions to have zero firing time (they fire as soon as they are enabled),

thereby reincorporating the original ‘standard’ Petri net into the more developed

technique. Investigations into applying other distributions to the transitions’

switching times are fewer in number than those using only exponential times [72].

Graphically, while an immediate transition is shown as a single, thick line as Figure

4.14 shows, a timed transition is typically shown as a hollow rectangle – see Figure

4.15.

Figure 4.15 – Timed Transitions and Arc Multiplicities

In Figure 4.15, t is the time delay associated with the transition. The Figure shows

the transition to be enabled, but only after t units of time have passed will the

transition fire.

2

4

3
t tAfter

time t
2

4

3

 - 97 -

It is conceivable that situations may arise which cause a conflict. Examples of these

include:

• If two or more transitions are enabled from a common place, then the one

with the earlier time delay will switch first. If the input place’s token is

taken, the other transition will be disabled.

• If two transitions sharing a common input place are immediate or share the

same switching time, both will try to take the place’s token at the same time.

If this occurs, there are several options to resolve the situation:

o Transitions are given a certain level of preference as to which takes it

(say, transition A has a 60% chance of taking it, while B has a 40%

chance)

o The preference could be based on the number of tokens in the input

place(s) for the transitions

o One transition automatically overrides the other.

• If a transition is disabled while waiting for its switching time to pass, there is

often a choice as to how this time is affected upon re-enabling [73]:

o The time can be renewed from the previous enabling

o A completely new time could be generated

o The old time could be regenerated

Different transitions may use different resolutions to these problems within the same

Petri net.

4.3.3.3 Arc Multiplicities

A widely accepted extension to the standard PN is having more than one arc

between a place and a transition. Each place has to have a token for each arc before

the transition would be enabled [62]. It is more normal now for the arcs to be

contracted into one, with the single arc crossed and a number written next to it

which indicates the multiplicity or weight of the arc; that is, either how many tokens

are needed on that arc before a transition will be enabled; or how many tokens will

be put in an output place [74]. Note that if no multiplicity is explicitly shown, it is

always assumed to be 1.

 - 98 -

Figure 4.15 shows the effect that arc multiplicities have on the transfer of tokens. In

the Figure initially, the three places which input to the transition have, from the top

down, two, one and five tokens respectively, while the places to which the transition

outputs have one and no tokens. Because each of the input places has a number of

tokens greater than or equal to the multiplicity of its arc to the transition (these are

2, 1 and 4 respectively), the transition is enabled. After a time delay of t, the

transition switches, removing the weight-number of tokens from each of the input

places and putting the weight-number of tokens (three and one) in the output place.

This leaves the net with a marking of (0 0 1) in the input places and (4 1) in the

output places.

4.3.3.4 Inhibitor Arcs

Like arc multiplicities, inhibitor arcs have become an integral part of the Petri net

technique. Inhibitor arcs go only from places to transitions, and act such that if the

place inhibiting the transition contains a token, the transition cannot switch,

regardless of whether it is otherwise enabled. These arcs can also be associated with

multiplicities, so that the place must have a weight-number of tokens before it will

inhibit the transition [73].

The inhibitor arc is shown in Figure 4.16 by a normal arc with a circle on the end

rather than an arrow. Any multiplicity is shown in the same way as normal arcs. In

the initial net, the transition’s input places have enough tokens to enable the

transition, but the inhibiting place is marked, and thus disables the transition. Hence,

after time t has passed, the transition does not switch.

Figure 4.16 – Inhibited Transition

2

4

3
t After

time t
2

4

3
t

 - 99 -

Inhibitor edges are useful in resolving possible clashes between transitions (see

Section 4.3.3.2), allowing one to be disabled while the other takes the token. They

are also useful for ensuring that, if an immediate transition has a particular place

which is both an input and an output, it does not repeatedly fire and place an infinite

number of tokens in any other output places.

4.3.3.5 Reachability Graphs

A common way of expressing all the possible markings of a Petri net from a given

initial marking is the reachability graph (RG). This is a state graph in which each

node corresponds uniquely to a given marking. For example, consider the Petri net

in Figure 4.17. The Figure shows a PN with three numbered places and three

numbered transitions. Associated with transitions 1 and 2 are time delays D1 and D2.

Transition 3 is immediate.

Figure 4.17 – Example Cyclic PN [59]

When one considers the initial marking (1 2 0) as shown in Figure 4.17, there are

two possible ways for the marking to change:

o If D1 < D2, transition 1 will switch first. Place 2 will then have three tokens,

and the others none.

o If D2 < D1, then transition 2 will switch before the others, and all places will

have one token. Transition three immediately switches, placing a token in

place 1, emptying places 2 and 3, giving a marking of (2 0 0).

The full RG of the PN in Figure 4.17 is shown in Figure 4.18.

1 D1

1

2

2

D2

3
3

 - 100 -

Figure 4.18 – Reachability Graph of Example PN

Schneeweiss [60] gives a mathematical notation of RGs. The marking in a given RG

node, as shown in Figure 4.18, is displayed in the form:

))(),...,(),(()(21 tMtMtMt
pVM =

4.45

In a RG, the movement from state to state is linked by an arc which shows the

transition that switches to make the state change. The RG in Figure 4.18, no matter

which transitions switch first, always ends in the absorbing state (0 0 1), with

places 1 and 2 empty and place 3 containing 1 token. An absorbing state is one

where no more transitions can switch, and the marking cannot change.

As a RG describes all the possible markings that a Petri net can reach from a given

initial marking – if a marking is not on this RG, then it is described as unreachable

from the initial state. Probabilities or sampling times attached to the switching of

each transition can therefore govern the probabilities of the PN being in a given

marking at any time. This is useful, for example, in giving the probability of a place

marked “System Up”/”System Down” being marked. Reachability graphs of a Petri

net are closely related to Markov models (see section 4.3.4.1).

1 2 0

0 3 0 1 1 1

0 2 1 2 0 0

1 1 0 0 2 0

1 0 1 0 1 1

0 1 0 1 0 0

0 0 1

1 2

32

1

1

1

1
3

2

3

2

2

(Absorbing)

 - 101 -

4.3.3.6 Coloured and Aging Petri nets

Coloured Petri nets (CPNs) have had some application in the field of reliability, by

Volovoi [73, 75] and Mura & Bondavalli [76]. Created by Kurt Jensen [77], each

token can affect the firing of a particular transition in a different way, depending on

its colour. The colour is merely a graphical way of distinguishing between different

tokens, by giving them a label.

Figure 4.19(a) – Inhibiting Coloured Tokens; (b) – Varying switching times for coloured tokens

Figure 4.19 shows two examples of CPNs. Figure 4.19(a) shows place 1 as input to

a transition which outputs to place 2, while place 3 inhibits this transition. If the

tokens were indistinguishable, the transition would never be able to fire, due to the

token in place 3. In this CPN, a token can only inhibit the switching of a token

which is the same colour. In Figure 4.19(a), once the transition’s enabling time has

passed, the transition will switch the dark token, but not the white token, as a white

token is inhibiting the transition. Figure 4.19(b) shows the effects of two different

coloured tokens on the time to switch a common transition. The white token will

switch it after time a, while the black token is switched after time b. These

switching times can be sampled from dissimilar time distributions.

In a standard Petri net, tokens in places which input to transitions are destroyed

when the transition switches, while tokens are “created” to be put in the output

places: the two events are considered to be independent of one another. These

actions can instead be considered as a single action of moving a token from the

input to the output. For standard PNs the difference is indistinguishable, while the

second interpretation is core to the notion of CPNs [73]. It is possible for the label

or colour of a token to change once it has passed through a transition. All rules

pertaining to the effects of specific tokens on transitions, and vice versa, are decided

Transition
switches

1 2

3

1 2

3

Time a

Time b

1 2

1 2 1 2

1 2

(a) (b)

 - 102 -

for the specific modelling situation, and may differ for transitions within the same

net.

Volovoi introduced aging tokens in the papers [73, 75] as an extension to CPNs,

allowing tokens to have ‘counters’ as labels. These counters can change

continuously throughout the time the token enables a transition, rather than once the

transition switches, as in standard CPNs. For instance, the value of a counter might

be between 0 and 1, to indicate the proportion of its life that has expired. The

primary application of this in reliability engineering is in modelling damage to

components or systems, such as in warm spares, or the effects of different

environments on a particular equipment.

4.3.3.7 Other Variations

Other variations in Petri net design include:

• Bi-directional transitions have one associated distribution of times to switch

when enabled in one direction, and another distribution when enabled in the

other. These transitions connect to places using edges with no arrowheads.

This is an attempt to minimise the size of the overall model, and offers no

extra modelling power [78].

• Stochastic Reward Nets – These attempt to minimise the often confusing

nature of large Petri nets. By establishing Boolean logical statements

between certain places, transitions which offer only a logical function may

be removed. Although the authors claim this offers more clarity and more

power than Petri nets, they have not been widely used [74, 79].

4.3.4 Application of Petri nets to Reliability

Petri nets have been applied and adapted to modelling different situations, including

workflow management [80] and concurrent computing [81]. One of the original

investigations of using Petri nets for reliability prediction was with assessing their

ability with respect to the modelling of computer software system reliability [62]. A

large number of papers using the Petri net for reliability analysis consider Markov

 - 103 -

Regenerative Stochastic Petri nets. This involves producing a reachability graph,

which is converted back to a Markov model, allowing an analytical solution to the

problem [76, 82]. This section aims to review the ways in which Petri nets have

been applied in the field of reliability engineering.

4.3.4.1 Markov Analysis

The concept of Markov analysis was explained briefly in Section 2.4. It is possible

to represent a Markov model using a Petri net, as shown by Figure 4.20. The system

states are shown as places, while a Markov arc is replaced by two arcs and a

transition, using the same rate or distribution of times. The Markov PN will only

ever have one token in it, in the place representing the current system state. Upon

state change, one of the transitions switches and moves the token to a different

place.

Figure 4.20 - A PN representation of a Markov model

The relationship between PNs and Markov is not restricted to a conversion from one

model to the other. As explained in Section 4.3.3.1, the markings of a PN represent

the current system state. Continuing the example in Figure 4.17, the initial marking

of (1 2 0) represents the operation of the system in a particular way. If transition 1

switches, the marking changes to (0 3 0), which represents the operation of the

system in a different way. The RG in Figure 4.18 shows all the possible system

states that can be reached from the initial marking, and the transitions that must

switch to reach those states. If the time delays of transitions 1 and 2, D1 and D2, are

State
1

State
2

State
3

State
4

State
5

State
1

State
2

State
3

State
4

State
5

 - 104 -

randomly sampled from the negative exponential distribution, then the RG is

equivalent to a Markov model, and Markov state equations can be created from

which the required system reliability characteristics can be evaluated [2].

The Markov state equations for a Markov model are given by equation 2.16.

Considering as an example the RG given in Figure 4.18, firstly it is necessary to

combine states which are only reached instantaneously into the following state. As

shown in Figure 4.17, transition 3 is an immediate transition, and so any markings

enabling this need not be considered. Applying this, there are nine states, including

the initial marking (1 2 0), that are reachable for a fixed time. These are given in

Table 4.2.

Table 4.2 – State numbers of markings of PN in Figure 4.17

State No. Marking State No. Marking State No. Marking
1 1 2 0 4 1 1 0 7 1 0 0
2 0 3 0 5 0 2 0 8 0 1 0
3 2 0 0 6 1 0 1 9 0 0 1

Applying the state markings in Table 4.2 to equation 2.16 gives the set of

simultaneous system equations in equations 4.46, where λ1 and λ2 are the rates of

occurrence of transitions 1 and 2 switching, respectively, gives equations 4.46.

)()()(1211 tQtQ λλ +−=&)()()(61426 tQtQtQ λλ −=&

)()()(22112 tQtQtQ λλ −=&)()()()(7161527 tQtQtQtQ λλλ −+=&

)()()(31123 tQtQtQ λλ −=&)()()(82718 tQtQtQ λλ −=&

)()()()()(42131224 tQtQtQtQ λλλλ +−+=&)()(829 tQtQ λ−=&

)()()(52415 tQtQtQ λλ −=& 4.46

When the equations 4.46 are combined with equation 4.47,

 ∑
=

=
9

1
1)(

i
i tQ ,

4.47

 - 105 -

results can be reached for the values of Qi(t) with respect to λ1 and λ2, by using a

Laplace Transform to convert the differential equations into a set of solvable

algebraic equations.

A criticism that has been levelled at PNs [61] is that they can become very large

when modelling complex systems. While this is true, the number of different states

within a large PN is also very large, and hence a representation of this in a RG or a

Markov model would be enormous. Referring specifically to Stochastic Petri nets

(SPN), Volovoi mentions a “commonly shared belief about SPNs being a mere

preprocessor to Markov chains” and “associated assumptions about the limitations

of SPNs” [73]. By stating this he is criticising the approach of converting PNs into

Markov chains, thus limiting the modelling possibilities of the PN technique.

Volovoi mentions alternatives to this such as discrete event simulation or “direct

numerical solutions of SPNs balance equations”, citing Horton [83] for further

reading on this latter technique.

4.3.4.2 Fault Tree Modelling

Fault trees have been introduced in section 1.3 and explained further in section 2.2.

While Fault Trees are useful for breaking down the occurrence of a top event into

basic events, they require the basic events to be independent of one another in order

to find an exact analytical solution to the top event probability. Other common

reliability scenarios such as component repair or bringing redundant systems online,

which may then affect their rate of failure, cannot be accounted for in a standard

fault tree. It is useful then to convert a fault tree into PN form and adapt it to include

these other real-life factors.

Trivedi and Malhotra [74] outline the simplest way of converting a fault tree to a

PN, and provide an algorithm for this purpose. Starting from the top event, each

non-basic event is represented by a place, and the logic gates are formed by

immediate transitions linking the places representing events further down the tree.

 - 106 -

Figure 4.21 – OR and AND Gate PN Representation

An OR gate produces its output event if any number of the input events occur. In

PN form, as shown in Figure 4.21, each input to the OR gate is a place, connected to

an immediate transition, and each transition inputs to the single output place. If any

gate-input place receives a token, that token will move to the output place. An AND

gate produces its output event only when all of the input events occur. As the Figure

shows, the PN equivalent is a series of input places all providing an input to the

same immediate transition, as transition switching inherently includes an AND type

logic rule. This transition then outputs to the higher-level event place. Only once all

the input places are marked will the transition switch and deposit a token into the

output place.

A problem with Trivedi and Malhotra’s PN representation of OR gates is that if

more than one input event occurs, more than one token will be put in the output

place. Although this is a minor problem, this could cause effects in other parts of the

net. It may then be necessary, once an input event has occurred, to prevent the other

gate transitions from switching.

Malhotra and Trivedi also present the PN version of basic events. These are very

simple, containing only two places and two transitions each, as shown in Figure

4.22. The two places represent the states “Component Up”, where the relevant basic

event is in a working state, and “Component Down”, where it has failed. They are

linked by a timed transition, whose time to switch may be sampled from a

distribution of failure times which matches that of the relevant component. Once

this time has passed, the basic event will fail, the transition will switch and the token

will move into the “Component Down” place. Added to Malhotra and Trivedi’s PN

can be
shown

as

can be
shown

as

 - 107 -

representation of a basic event is a repair transition, which allows a failed

component to return to the working state after a given time period.

Figure 4.22 – Repairable Basic Event in PN Representation

Figure 4.23 – NOT Gate PN Representation

A PN for the NOT gate is shown in Figure 4.23. This is adapted from Liu and Chiou

[84]. When no token is present in the input place, the gate place enables transition 2,

which switches and places tokens in both the output place and back in the gate

place. The output place then inhibits transition 2 to prevent an infinite number of

tokens being output to it (this was omitted in Liu and Chiou’s paper). If a token

appears in the input place and the output place is marked, transition 1 (also omitted

from Liu and Chiou’s paper) is enabled and switches, removing the token from the

output place and placing a token back in the input place. Transition 2 thus becomes

inhibited.

As logic gates in PN representation use only immediate transitions, then, as with

Boolean algebra, Petri nets can be cut down in size [60]. For instance, in the

situation that an OR gate has several AND gates as inputs, the PN may be

constructed as in Figure 4.24(a). If there is a single place followed by a single

transition, then these are superfluous elements and may be removed, as shown in

Figure 4.24(b). Liu and Chiou [84] call this absorption.

Component
Up

Component
Down

1 2

Input
Gate

Output

 - 108 -

Liu and Chiou [84] developed a method to get minimal cut sets from PNs which is

identical to MOCUS in Fault Tree structures.

Figure 4.24 – Contraction or absorption of a PN.

4.3.4.3 Multi-Phased Missions

Phased missions were described earlier in this chapter. There have been a small

number of papers that have attempted to model multi-phased missions using Petri

nets and their work shall be highlighted here.

Mura and Bondavalli, in conjunction with others, have previously published papers

[55, 85] concerning Phased Missions and PNs. These culminate in the most recent

method, contained in their 2001 paper [76], to model more complex areas of

concern of Phased Missions. Volovoi also discusses the modelling (not the

computation) of phased mission reliability [75]. The 2001 Mura & Bondavalli paper

[76] outlines a PN method of modelling four situations which gradually become

more complex:

• The simple case, hitherto handled by all previous phased missions literature,

of constant-duration phases in a fixed order. Intra-phase behaviour is

modelled by a time-homogeneous Markov chain.

A

B

C

D

E

F

G

H

X

Y

Z

TOP

A

B

C

D

E

F

G

H

TOP

(a) (b)

 - 109 -

• Missions of different goals, either primary (a vital mission goal that must be

completed unless system failures prevent this) or secondary (a less

important, often optional, mission goal which can be performed based on

conditions such as failures of systems, fuel levels and environment). The

next phase can be dynamically decided depending on the events which occur

during the mission. If, for example, a system failure prevents a primary goal

being carried out, the next phases will change to include performance of a

series of secondary tasks. Alternatively, if a mission is very successful,

secondary goals may be scrapped, bypassing some possible intermediate

phases. This then yields a tree of choices for the mission to follow.

• Phase changes are triggered by random events, creating phases of random

start time and length. Even if the start times of phases are modelled by the

negative exponential distribution, this is still a very complex problem.

• Intra-phase behaviour not satisfactorily modelled by time-homogeneous

Markov chains. The papers published previous to Mura & Bondavalli’s 2001

paper concerning Petri nets and phased missions used PNs where the system

behaviour does not change with time. In this situation, transition switching

delays are modelled using the negative exponential distribution, so the PN is

time-homogeneous. The accuracy of modelling the reliability of systems

within phases can be affected if no consideration of system aging is made.

Two other papers [56, 57] have considered non-homogeneous Markov

models with respect to Phased Mission reliability.

The main method suggested by Mura & Bondavalli is the use of at least two

different Petri nets to model systems performing phased missions. The first, known

as the Phase Net, models the tree of phase choices and the progression from the first

phase to the last. The transitions model the timings of phase changes. An example

phase net is shown in Figure 4.25.

 - 110 -

Figure 4.25 – Example Phase Net

In Figure 4.25 each phase is represented by a place. Only one of these phase places

can be marked at any time. If phase place P1 is marked, transition t1 will switch after

a time delay which is either deterministic or sampled from a distribution of phase 1

lengths. After phase 2 has completed, there is a choice of the next phase: the

mission can go to phase 3 or phase 3’, which may correspond to a choice between a

primary or secondary objective, and may be influenced by variables in the model,

such as system failures or current mission time. Regardless of the phase chosen, the

mission ends once the token finishes in the PSTOP place.

The second PN, called the System Net, models the system failures in each phase

(the authors combined this into a single PN for their example). A system failure may

be modelled by the System Net and affect the choice of the specific phases

performed. Similarly, component failure rates may be affected by a switch from one

phase to another. The Mura and Bondavalli (2001) paper does provide an example

system net, but it is rather obscure and disorganised. Instead, a good example of a

system net may well be a fault tree in Petri net form, such as that in Figure 4.24(a).

Success of each phase in the mission would depend upon the operation of several

different systems, which themselves rely on the working of their constituent

components. A component failure could then cascade through the fault tree Petri net

(FTPN) and cause system, phase or mission failure.

Converting the PN to a Markov chain allows analytical solutions to be used. When

this is not possible because of the system features, or the size of the PN prevents an

efficient and accurate Markov solution being reached, Petri nets can be used in

conjunction with simulation. This allows greater use of the flexibility of PNs, for

example letting various distributions control the transition switching times, and

P2 P1 Pchoice

P3

P3’

P4 PSTOP

t1 t2

tyes

tno t3’

t3 t4

 - 111 -

allows the PN modelling technique to be tailored more directly to a particular

problem.

Volovoi [75] uses aging coloured tokens to attempt to simplify the modelling of

systems performing phased missions. Despite this, the article is focused more on the

aging of components within the phased mission system and not on providing a more

accurate model of this scenario. One section involves the failure of phases, as shown

in Figure 4.26.

Figure 4.26 – Phase Failure Model [75]

Figure 4.26 shows two places (corresponding to phases of a mission) which run

cyclically. Each phase place i has a transition associated with it with delay ei.

However, in Volovoi’s model, the token currently in the “Phase 1” place is capable

of aging when enabling either of the phase failure transitions. These transitions can

age the token at different rates, simulating the effects that different phase

environments might have on a common system. If the age of the token becomes too

high, one of the failure transitions will switch and the system fails. As shown in

Chapter 5, this model can be adapted for use with non-aging tokens in simulating

the reliability of phased mission systems.

4.3.5 Summary

Petri nets are an extremely versatile and useful tool when applied to systems

modelling. They have a significant capability when modelling the situations

encountered in predicting system reliability. These features include component

failures and repairs, logical combinations of component failures producing higher-

level system failures, universal (perfect) repair, queued repair and multiple phases

Phase 1 Phase 2

Failed Failed

e1 e2

 - 112 -

within missions. If those missions have probabilistic phase choices, this can also be

modelled.

While there have been many extensions of Petri nets since their conception, such as

the inclusion of coloured or aging tokens, the components mentioned above form

the basis of modern PNs. A Petri net with inhibitor arcs and arc multiplicities is

regarded as “high-level”.

Reachability graphs (RG) detail all the possible markings of a PN from an initial

state, and the transitions that must switch to achieve these. If a PN is time-

homogeneous, it is known as a Stochastic or Generalised Stochastic PN (SPN or

GSPN). The RGs produced for SPNs can be analysed mathematically using Markov

techniques, to find the probability of reaching a particular PN marking. If a PN

model is very large or aspects of it prevent this approach from being adopted due to

incompatibility or inefficiency, then a technique such as discrete event simulation

can be used to find these marking probabilities.

If the Petri net is used with a computational simulation tool, then the potential scope

for modelling widens dramatically. A simulation PN model can include non-

exponential switching time distributions, various repair schedules can be modelled,

and so on. This can then use Monte-Carlo simulation to analyse any size of

problem.

Perhaps one of the reasons why Petri nets are not as widely used as other methods

for system reliability assessment is due to there being no unified standard definition

of a Petri net. However, the basic “modern” Petri net (with timing, arc multiplicities

and inhibitor arcs) can be extremely useful for modelling. Further adaptations may

provide extra power, but should only be considered if the benefits over the basic PN

are apparent.

 - 113 -

Chapter 5 Development of Initial Model

5.1 Introduction

The limitations of the MFOP modelling methods presented and the suitability of

Petri nets for modelling system reliability afforded an opportunity to develop a

robust and flexible MFOP model. A preliminary model was created first, however,

in order to prove the concept and provide a basis from which more complex aspects

of MFOPs and Phased Missions can be analysed.

An MFOP can be considered as a sequence of missions which are performed back

to back, without maintenance taking place between them. The simplest type of

MFOP will be one where one mission is repeated a finite number of times before the

MRP takes place. This scenario is the one considered in this chapter.

Each of the parts of the Petri net as used in the modelling of Phased Missions and

MFOPs has a particular purpose. Places are used mainly to represent a particular

state, event or a given factor or variable. For example, a place may represent the

failure or operation of a component, the level of damage a system has incurred, the

activity of a phase of a mission, the failure of an MFOP, etc. The presence of tokens

within these places indicates that the event that the place represents has occurred, or

can show what the value of a factor is. If a “component failure” event has an

associated place, and this place contains a token, then the component is considered

failed. Transitions move tokens between places, and thus change the status of the

system or mission. For instance, the repair of a component involves the change of

state from “component down” to “component up”. This requires a transition to

remove a token from the place representing the former state and create one in the

place representing the latter. Similarly, a component failure can cascade through

several levels of sub-system and system failure to cause platform failure for a

phase. This cascading requires transitions to pass a token from the ‘cause’ place to

the ‘effect’ place.

 - 114 -

This chapter describes the development of a simple Phased MFOP model using

ideas contained within the noted literature. The model developed can analyse a

simple repetitive mission and MFOP profile containing a defined sequence of

phases. The development of the PN model took place at the same time as its

implementation in a simulation program. As a result, some of the decisions taken

while growing the capabilities of the model came as a result of feedback from

unsuccessful attempts to implement previous ideas.

5.2 Development of Model

Section 4.3.4.3 details some of the work undertaken by others in representing

aspects of phased missions using Petri Nets. Figure 4.25 and Figure 4.26 show the

two ideas that provided a base from which to develop further ideas. The

System/Phase net idea from Mura & Bondavalli was developed to provide a more

structured and rigorous modelling platform, the Phase Net being renamed to the

Master PN (see Section 5.2.2), while the System Net also underwent many changes

as explained in the next section. The method of modelling phase failure proposed by

Volovoi [75] was also considered.

5.2.1 System Net

The purpose of the System Net (SN) is to model the failure of the system in the

different phases and propagate any failures to the Phase or Master PN, so it can

establish whether a phase failure (and therefore a mission and MFOP failure) has

occurred. As this research models the multi-phased mission scenario, it was

necessary to consider the failure logic for each individual phase in the SN. One of

the simplest ways to represent the possible component-level causes of system failure

in a particular phase is by using Fault Trees. As mentioned in Section 4.3.4.2, it is a

very simple task to convert a FT into a PN, and so it was decided that the System

Net would contain PN versions of the FTs for each phase. Each fault tree’s top

event (system failure in that phase), would then feed into the Master PN to

propagate system failure into phase and mission failure.

 - 115 -

A problem that became apparent in the programming of this part of the model was

the usage of computer memory: the way that place and transition data were stored

meant that a single System Net would be less memory efficient than having a

different System Net for each phase failure FT. However, taking this step to reduce

memory efficiency presented a further problem. It is likely for most systems that

there are components whose failure will affect the system in more than one phase.

In this instance, it was not immediately apparent where the component information

would be stored and how each System Net would use it. There were several options

available for this:

• It could be stored in the first phase failure PN to use that particular

component. Subsequent phases affected by the failure of that component

would take their inputs from it. A problem with this approach is that keeping

track of all the components would be very complicated, and the phase failure

PNs would very quickly lose the simplistic graphical nature of the FTs.

• Each instance of the component failure in different PNs would simply have

its PN representation repeated throughout them all. This would, however,

unnecessarily increase the memory taken up by the fault trees, and it would

be difficult to ensure that the failure of each component was instantaneously

repeated for all its instances.

• All the component failures would be modelled in a separate PN, the

Component PN, which would then feed the occurrence of each failure into

the correct phase failure PN as required. This would not increase the

memory requirements, but would complicate its appearance further.

The third option was chosen as the most efficient way of representing the

components in the system. This means that the System Net section can be broken

down further into two subsections – the phase PNs and the Component PN. The

different PNs communicate in this model by using linking arcs. These are standard

arcs, shown as dotted lines to indicate their passing from one PN to another. The

different PNs, therefore, could theoretically be combined into one whole – the

separation is merely for ease of representation.

 - 116 -

The three resulting Petri net types – component, phase and master – connect to each

other for various reasons, as shown in Figure 5.1. The component PN links the

failures of the components to the Phase PNs. The phase PNs, in turn, output their

phase failures to the master PN. The master PN and the component PN interact in

terms of the ending of one MFOP, the component repair process taking place, and

the next MFOP beginning.

Figure 5.1 – Interactions Between Petri Nets

5.2.1.1 Phase Petri Nets

The phase Petri nets (PPNs) are the PN representation of the phase fault trees that

are inputted to the model, and show the occurrence of the top event (system failure

in the relevant phase) in terms of the basic events contained in the Component PN.

The requirement here, therefore, is to convert and model as accurately as possible

from the information that a FT provides.

Each top or intermediate event in the phase fault tree is represented in the PPN by a

place. If that place has a token, the event can be considered to have occurred. The

logic gates are reproduced in PN form by using immediate transitions in different

ways. An example PPN is shown in Figure 5.1.

Component
Failures

Phase
Failures

MFOP Finished/
Begin Repair/

Begin Next
MFOP

Component
PN

Phase
PNs

Master
PN

 - 117 -

When a component is simulated to have failed, a

token will be deposited in a “component n failed”

place in the Component PN. This will have a

linking arc to one or more of the PPNs, and so will

cascade the token down to a certain point in the

PPN based on the failures of other components and

the failure logic. The parts of the net facilitating this

propagation are the immediate “logic gate”

transitions. There are several different gates used in fault tree analysis, and these can

be represented by Petri nets. Examples of OR and AND gate representations used in

earlier work are shown in Figure 4.21. In this work, however, it is desirable to

highlight each failed gate in a phase fault tree, regardless of whether a higher gate

has also failed, due to the data that the simulation software must collect. Therefore,

inhibitor arcs have been added to the AND and OR gates developed previously to

enable this – see Figure 5.2 and Figure 5.3).

When there are sufficient tokens in the input places to a gate to mark the output

place, a token is passed to the output place by the gate transition, and also back to

the input place (see the double-edged arcs in Figure 5.2 and Figure 5.3). The

inhibitor arcs from the output place to the gate transition then prevent an infinite

number of transition switches, and each gate which is failed stays as marked.

Figure 5.2 – Actual PN AND Gate Used in
Model

Figure 5.3 – Actual PN OR Gate Used in
Model

can be
shown

as

can be
shown

as

TOP

Gate
1

Gate
2

Figure 5.1– Example Phase Petri
Net

 - 118 -

5.2.1.2 Component Petri Net

The component Petri Net (CPN) was formed, as mentioned in Section 5.2.1, from

the necessity of organising and modelling the basic event failures effectively and

efficiently. A PN representation of a repairable basic event, adapted from a non-

repairable version by Malhotra and Trivedi, has been shown in Figure 4.22. If a

linking arc is created between the “component down” place and an input transition

in one or more PPNs, this will allow the marking of the component as failed to be

propagated to items higher in the system architecture.

The switching times associated with the failure transitions are randomly sampled

from any one of a number of statistical distributions (negative exponential, normal,

Weibull, etc); the behaviour of the repair transition depends on the maintenance

policy being used in the modelling.

For instance, if each component was to be repaired individually a certain time after

it failed, then each repair transition would (similar to the failure transition) have a

unique time to switch. However, if, as in an MRP, the repairs will only commence

at given times, the behaviour of the basic events is modelled differently. The

maintenance policy used to simply model an MRP is that each failed component is

instantaneously repaired at the same time as all the others. An example of a model

of an MRP is shown in Figure 5.4.

Figure 5.4 – Example Component PN

Compt 1
Up

Compt 1
Down

Compt 2
Up

Compt 2
Down

Compt 3
Up

Compt 3
Down

MFOP MRP

Phase
Petri Nets

(Mission
Abandonment)

Component
Petri Nets

Master
Petri Net

 - 119 -

The Figure shows a set of three basic events, each with the standard “Compt n Up”

and “Compt n Down” places, a timed failure transition but an immediate repair

transition. Each repair transition is controlled by a “Repairing” place, shown at the

top centre of Figure 5.4. During missions, a token resides in the “Not repairing”

place. When an MFOP is ended, the timed transition (simulating the length of an

MRP) will switch, beginning the repair process. Note that if only flying hours are

considered to age components, this time should be zero. When a token is in the

“Repairing” place, and components are failed, the immediate transition ending the

repair period cannot switch due to the inhibitor arcs leading from the “Compt n

Down” places. Instead, the repair place enables the repair transition for any failed

basic events until each component’s token is in the “Compt n Up” place. Only then

will the “Repairing” immediate transition switch, ending the repair process and

allowing a new MFOP to commence.

Also of note in Figure 5.4 is that a component failure may cause mission and MFOP

abandonment, as shown by the arc leading from the “Compt 3 Down” place to the

Master PN. This is explained further in Section 5.2.2.

5.2.1.2.1 Dependency Modelling

It is conceivable that dependencies can exist in the system and

failures do not occur independently. In this circumstance a

component may fail faster depending upon the functionality

or failure of a different component or system. A simple

example of this is the processor and fan in a computer – if the

fan fails, the processor overheats and fails much quicker. This

behaviour is dealt with in the model by allowing a component

to have more than one failure transition. Only one of these can

be enabled at any one time, depending on the components or

systems which cause the acceleration of failure, as shown in

Figure 5.5. In the Figure, the dependent component has four

failure transitions, due to the dependency between two

different components. Figure 5.5 shows the dependent and

Figure 5.5 –
Component

Dependencies

 - 120 -

independent components to be presently operational. This state means that

transitions A.B, .BA and BA. are inhibited, while transition B.A is operational. If

A fails but B remains operational, then transition BA would be newly enabled,

while all the others, including B.A , would be inhibited. A new time to failure can

now be sampled from an alternative distribution. This simple dependency modelling

is capable only of describing the effect of other components on a component’s

failure rate, and not other factors such as phase change or redundancy configuration.

5.2.2 Phase Net (Master Petri Net)

The Master Petri Net (MPN) has been developed from the Phase Net idea discussed

in Mura and Bondavalli. The point of this net is to show the completion of the

phases in sequence, after which the mission is considered complete. Where MFOPs

are considered, one mission will lead to the next without any maintenance.

Figure 5.6 – Master Petri Net

The MPN is a complex net and as such can be considered in three interdependent

sections, as shown in Figure 5.6. These sections are:

 - 121 -

• Control of the sequence of phases, and failure or success of each mission

(solid line border)

• Ending each mission or MFOP and performing repairs (dotted line border)

• Abandoning the mission due to specific component or system failures

(dashed line border).

The section surrounded by a solid line controls the changing of the phases. Each

phase has a place which, if marked, indicates that that phase is currently in

operation. This outputs to a timed transition whose switching time is the length of

the phase. Whilst these phase durations are often considered to be deterministic, it is

possible that randomly sampled phase lengths may be desirable, which are as easily

created. This timed transition inputs to the next phase place, whose timed transition

is then enabled.

If the phase n top event occurs as a result of sufficient component failures, then a

token will be present in the top place of the phase n PN such as that in Figure 5.1.

This is connected to an immediate transition by a linking arc and, if phase n is

currently in operation, allows the failure of the system in the mission. Both

conditions (phase n execution and phase n failure) are required to be simultaneously

true for mission failure to occur. This means that if a phase has completed before

the top event occurs, then the mission can still succeed, whereas if a phase failure

occurs before that phase has started, the mission will fail once the phase begins.

This style of modelling phase sequences and failures was adapted from Volovoi

[75, 73], see section 4.3.4.3.

The final phase place has two timed transition outputs modelling its duration, only

one of which can be enabled at any time. If the mission completes successfully, it is

possible either that another mission will take place straight away, before any

maintenance, or that the system will enter an MRP. If the former is true, there will

be a positive number of tokens in the “Number of Missions Left” place. This

inhibits the top of the output transitions shown in Figure 5.6 and enables the bottom

one. After this switches, it redeposits a token in the phase 1 place and restarts the

mission. If the “Number of Missions Left” place is empty, the top transition is

 - 122 -

uninhibited and enabled. This transition, upon switching, ends the current MFOP,

after which the “repair” section of the MPN (the dotted part of Figure 5.6) becomes

important.

The phases token will enter the “MFOP Finished” place, and, as mentioned in

section 5.2.1.2, enable the “Commence Repair” transition in the component PN to

begin system repair. This transition can only switch if there are a positive number of

tokens in the “Number of MFOPs Left” place, and is reduced by one with each

MRP that takes place. Once it switches, a number of tokens equal to one less than

the number of missions to perform in each MFOP is deposited in the “Number of

Missions Left” place. Once repair is complete, the token goes back to the “Not

Repairing” place, and another is put in the “Phase 1” place for the next MFOP to

begin. When the number of MFOPs left reaches zero, the immediate transition

output from the “MFOP Finished” place is no longer inhibited. Completion of the

final mission of an MFOP will thus cause a token to be placed by the transition into

the “Simulation Success” place.

The final section has a dashed border in the Figure and allows for a mission to be

abandoned. This abandonment occurs when critical safety-related failures occur. For

example, an aircraft is returned to base to undergo repairs, prior to loss of the

platform. This means that the current set of missions will cease, the MFOP is

considered failed and an MRP will begin.

The modelling of abandonment is quite simple – once the “Phase 1” place is

marked, it also marks a “Mission Active” place. If a particular component or sub-

system fails, the relevant place representing its failure will be marked, as shown in

Figure 5.4 and at the top-left of Figure 5.6. A linking arc from that place will cause

an immediate transition in the MPN to become enabled, which in turn deposits a

token in the “Mission Abandoned” place. Each phase place has a corresponding

immediate transition which, if the mission is active and that particular phase is

operational, becomes enabled upon mission abandonment and places the phase

token in the “MFOP Finished” place, to begin the MRP. In this instance, there could

be tokens left in the “Number of Missions Left” place, so an immediate transition

removes these.

 - 123 -

5.2.3 Simulation Model

Software simulating the Petri net to produce the overall system reliability has been

developed. It takes in the phase fault trees and component failure data in text-file

format, and automatically produces the different nets mentioned above. The

component failure data and phase lengths (which can both be sampled from a

number of distribution types such as normal, exponential, etc.) are used to give the

relevant timed transitions distributions of switching times. A time for each transition

to switch can be randomly sampled from these distributions, by using various

methods such as those described in [2]. The simulation algorithm runs for ns

simulations as follows:

1. Randomly sample switching times for each newly enabled timed transition

in each net from the switching time distribution assigned to it

2. Find the transition with the earliest switching time and switch it

3. Search through each of the immediate transitions and if any are enabled,

switch them

4. Repeat step 3 until no more immediate transitions are enabled

5. Test for any of the following conditions and log them:

a. If system has failed, begin next simulation

b. If system has been abandoned, begin next MFOP

c. If mission has completed, begin next mission

d. If MFOP has completed, begin MRP

e. If MRP has completed, begin next MFOP

f. If all MFOPs and MRPs completed, simulation is complete – begin

next simulation

6. If simulations completed < ns, go to step 1, else end.

The results of the ns simulations can then be outputted to a text-file for analysis.

 - 124 -

5.3 Model Validation

To ensure that both the PN modelling method and the programmed version of are

giving a satisfactory output, it is necessary to compare the results given against

theoretical values. This section takes an example small system and compares the

theory with the PN simulation model results for both non-repairable and repairable

versions of the same system. If the results are similar, it places confidence in the

ability of the model to accurately portray the mission reliability of systems

undergoing MFOP. A third, larger, example has also been modelled.

5.3.1 Non-repairable Small System

In order to validate the model, results have been obtained for a simple non-

repairable system and compared with the theoretical results. This simple phased-

mission system was modelled with the Petri net software developed using the

models described above.

The phase fault trees for the example considered are shown in Figure 5.7, with the

corresponding PPNs shown in Figure 5.8. The system undergoes four phases, and is

dependent upon four different components for operation. Each MFOP is assumed to

consist of three missions of the four phases. The lengths of the phases and

component failure characteristics are given in Table 5.1. The full Petri net for this

example is given in Figure 5.9. The software described above was then executed

and results obtained for the probability of mission and phase failure.

Figure 5.7 – System Phase Fault Trees

 - 125 -

Figure 5.8 – System PPNs

Table 5.1 – Phase Lengths and Component Unreliabilities

Phase Phase Length (Hrs) Component Failure Rate - λ (h-1)
1 0.5 A 0.0045
2 2.5 B 0.0130
3 4.0 C 0.0081
4 1.25 D 0.0011

5.3.1.1 Theoretical Analysis

In order to obtain an accurate measure of reliability for each phase in each mission

of the example, it is first necessary to adapt the problem. Firstly, a three-mission

period of four phases per mission without maintenance can be considered as a 12-

phase non-repairable mission, with each phase fault tree occurring three times. The

method of Esary and Ziehms [6] combines these phase fault trees into a single

model for the mission. This method could not, however, calculate the individual

probabilities of phase failure. Instead, the method of La Band & Andrews [42], as

outlined in Section 4.2.1.6, can determine these phase unreliabilities, thus allowing

comparison between the theory and the model. Mission unreliability is then the sum

of the phase unreliabilities. This method has been used to establish values for the

probability of system failure in each phase, mission and the overall MFOP.

 - 126 -

Figure 5.9 – Full PN for Example in Section 5.3.1

As an example, consider the occurrence of a system failure during phase 2 of the

phased mission presented. This would be described by the prime implicants

(minimal combinations of working and failed component states in non-coherent

fault trees that cause top event failure) obtained from the fault tree shown in Figure

5.10. From Figure 5.10, the prime implicants of a system failure within Phase 2,

represented by T2, can be expressed in the following way:

))()()(()(

Failure) 2 Phase(Success) 1 Phase(

212121111

2

CCAABBDBA

T

+⋅+++⋅+=

⋅=

5.1

 - 127 -

Figure 5.10 – Phase 2 Failure Fault Tree

Using the rules expressed in equations 4.25, equation 5.1 becomes:

() ()
2,1122112,12111

2,12,12,11111

2121211112))()()(()(

CBABADCADBA

CABBADA

CCAABBDBAT

+++=

+⋅+=

+⋅+++⋅+=

5.2

Once the prime implicants have been established, finding the probability of failure

in phase 2 requires the application of the inclusion-exclusion expansion, as

expressed in equation 2.3. As the number of prime implicants increases, it takes

more terms in the inclusion-exclusion expansion to reach an exact value for the top

event probability. If the amount of terms becomes large, it is necessary to

approximate the overall failure probability, for example using either the rare event

approximation or minimal cut-set bound methods as explained in Section 4.2.1.2.

However, these approximations to the true reliability figure may not be accurate

enough.

Since the simplification for sequential component phase failures uses OR logic, as

shown in equations 4.25, it is more likely that using this will lead to higher numbers

of prime implicants when finding overall phase failure probability (Ai+1,j expands to

give j–i separate terms which would produce prime implicants). The simplification

for component success in subsequent phases, however, inherently considers them

 - 128 -

with AND logic (jiA ,1+ has just one term in the prime implicant). Therefore, the

expression for success up to the end of a phase is generally simpler than the

expression for its failure. This can be exploited to give a more efficient way of

finding the exact conditional phase failure probability, using equation 5.3.

)1 Phase of end toup SuccessPr(
) Phase of end toup Pr(Success-1

success) 1Phase|SuccessPr(Phase-1Failure) PhasePr(

−
=

−=

p
p

ppp

5.3

For instance, the success up to the end of phase 2 has the path sets (combinations of

component failure and success events which cause the system to function) shown in

equation 5.4.

2,12,112,12,1

11112,12,12,12,1

1112,12,12,1

222

)).((

)(.)(

)P toup Success).(Pin Success(

CBABA

DABACBAB

DBACAB

T

+=

++=

++=

=

5.4

Using the inclusion-exclusion expression given in equation 2.3, the mission success

up to the end of phase 2, R1,2, can be determined from equation 5.5:

2,12,12,12,12,112,12,1

)Pr()Pr()Pr(2,12,12,12,12,112,12,12,1

CBACBABA rrrrrrrr
CBACBABAR

−+=
−+=

5.5

The evaluation of the failure or success probabilities of each basic event can be

determined using equation 5.6.

)()()(),(

1

11
1

,

,,

−− −===

−=

∫
−

iAjA

t

t AjiAA

AA

tFtFdttfttqq

qr
j

i
ji

jiji

5.6

 - 129 -

For constant failure rates these become:

1

,,

11

,

11

)1()1(

−

−−

−−

−−−−

−+=−=

−=−−−=

iAjA

jiji

jAiAiAjA

ji

tt
AA

tttt
A

eeqr

eeeeq
λλ

λλλλ

5.7

Applying this to the expression for phase 2 success gives:

9261.0

9366.0

9489.0

9760.019760.011

9618.019618.011

9866.010.986611

9978.019978.011

2,12,12,1

2,12,11

2,12,1

2,1

2,1

2,1

1

00081.030081.0

0013.03013.0

00045.030045.0

00045.05.00045.0

=

=

=

=−+=−+=

=−+=−+=

=−+=−+=

=−+=−+=

×−×−

×−×−

×−×−

×−×−

CBA

CBA

BA

C

B

A

A

rrr

rrr

rr

eer

eer

eer

eer

Hence, from equation 5.5,

9593.0
9261.09366.09489.02,1

=
−+=R

5.8

All values given are to four decimal places. A similar application of the previous

steps to the path sets of success of phase 1, 1111 and DABA , yields the phase

reliability to be R1 = 0.9977. Using this and equations 5.3 and 5.8, the unreliability

for phase 2 is therefore:

0385.09615.01
9977.0
9593.0111

1

2,1
22 =−=−=−=−=

R
R

RQ

The alternative approach to calculating this value is to use the four prime implicants

for phase 2 given in equation 5.2, and use the inclusion-exclusion given in equation

2.3. For later phases, the calculations saved by using the method described above

 - 130 -

increases. This method was applied to obtain the unreliability in each of the twelve

mission phases. The results are shown in Table 5.2.

Table 5.2 – Prime Implicants and Unreliabilities of Mission Phases

Phase Prime Implicants (Phase Success)
Mission

Reliability at
Phase end

Phase
Unreliability

1 1111 , BADA 0.9977 0.00225

2 2,12,112,12,1 , CBABA 0.9593 0.03850

3 3,12,13,113,13,12,13,13,11 ,, DCBADBACBA 0.9103 0.05107

4 4,13,113,13,14,13,13,14,1 ,, CBADBACBA 0.9086 0.00194

5 5,13,15,13,15,15,13,15,15,1 ,, DBADBACBA 0.8772 0.03452

6 6,16,15,13,16,16,13,16,16,1 ,, CBADBACBA 0.8294 0.05448

7 7,16,17,15,17,17,16,17,17,15,1 ,, DCBADBACBA 0.7862 0.05210

8 8,17,15,17,17,18,17,17,18,1 ,, CBADBACBA 0.7836 0.00327

9 9,17,19,17,19,19,17,19,19,1 ,, DBADBACBA 0.7580 0.03271

10 10,110,19,17,110,110,17,110,110,1 ,, CBADBACBA 0.7164 0.05493

11 11,110,111,19,111,111,110,111,111,19,1 ,, DCBADBACBA 0.6784 0.05302

12 12,111,19,111,111,112,111,111,112,1 ,, CBADBACBA 0.6753 0.00451

5.3.1.2 Petri Net Model Results

The Petri net model was used in the simulation program to randomly sample from

the appropriate distributions to produce timed transitions’ switching times. To

ensure a good convergence of the model to the reliability, 10,000,000 simulations

were performed, with three four-phase missions in each maintenance-free operating

period, and one MFOP per simulation. The system is, in effect, non-repairable.

Table 5.3 shows the results obtained.

 - 131 -

Table 5.3 – Results of Simulated Model
Phase 1 2 3 4 5 6

Phase Failures 22258 384042 490352 17581 312836 478172

Phases Started 10000000 9977742 9593700 9103348 9085767 8772931

Unreliability 0.00223 0.03849 0.05111 0.00193 0.03443 0.05451

Phase 7 8 9 10 11 12

Phase Failures 432422 25978 257002 416899 379478 30325

Phases Started 8294759 7862337 7836359 7579357 7162458 6782980

Unreliability 0.05213 0.00330 0.03280 0.05500 0.05298 0.00447

The software is capable of producing tables for each phase which show the

instantaneous unreliability at regularly spaced points, for investigation of the

convergence of the simulation results. The convergence of the first phase of the

MFOP over the 10,000,000 simulations performed is shown in Figure 5.11. The

graph shows the number of simulations against reliability level, measured every

200,000 simulations.

Convergence of Phase 1 Unreliability

0

0.0005

0.001

0.0015

0.002

0.0025

0 2 4 6 8 10
MillionsNo. Simulations

In
st

an
ta

ne
ou

s
Un

re
lia

bi
lit

y

Simulation

Analytical

Figure 5.11 – Convergence of Phase 1 Unreliability

As can be seen from Figure 5.11, the convergence to the approximate phase

unreliability value is very swift – the first point recorded, at 200,000 simulations, is

just above the actual unreliability. Executing further simulations does not lead to a

 - 132 -

much more accurate estimate for the system reliability, and for most of the rest of

the set of simulations, this estimated value stays below the real figure.

5.3.1.3 Comparison of Results

Table 5.4 shows a comparison between the conditional phase failure probabilities

produced by the Petri net software and the analytical solution. All, except the first

phase, show a percentage error of less than 1%. The convergence of the model over

the ten million simulations is very swift as Figure 5.11 shows. A good estimate to

the unreliability can be established after around 600,000 simulations (within 2% of

the analytical solution). Extending the analytical approach to a much larger system,

as is typically found within industry, would require extensive calculations.

However, extending the simulation model does not require a much greater increase

in the length of time to find phase reliability.

Table 5.4 – Comparison of Analytical and Simulation Unreliability Results

Phase 1 2 3 4 5 6

Analysis 0.00225 0.03850 0.05107 0.00194 0.03452 0.05447

Simulation 0.00223 0.03849 0.05111 0.00193 0.03443 0.05451

Per cent Error 1.118% 0.037% 0.081% 0.246% 0.247% 0.057%

Phase 7 8 9 10 11 12

Analysis 0.05210 0.00327 0.03271 0.05493 0.05302 0.00451

Simulation 0.05213 0.00330 0.03280 0.05500 0.05298 0.00447

Per cent Error 0.069% 0.947% 0.253% 0.141% 0.081% 0.840%

5.3.2 Repairable Small System

Further demonstration of the accuracy of the modelling method is provided in the

following example. This considers the same system, MFOP, mission and phase

profile as that described in Section 5.3.1, but in this case the components are

repairable. Components A and B, which have revealed failures, are repaired after

each MFOP if failed; while components C and D, which have unrevealed failures,

are inspected during every third MRP and repaired if failed at that point.

 - 133 -

In order to provide analytical reliability figures for the repairable situation, a

Markov model was produced which models the deterioration of the system from

having all components working at time t = 0, over 12 MFOPs. The approach is

taken from Clarotti et al [48], and details are provided in the next section.

5.3.2.1 Markov Analysis

The Markov model for the component failures is shown in Figure 5.12.

Figure 5.12 – Markov Model of Component Failures

Table 5.5 shows the system failure states for each phase, according to the state

numbers in Figure 5.12. Since states listed in the second column of Table 5.5 lead to

system failure, they are made to be absorbing states for the relevant phase and all

transitions leading from them are disabled. For instance, the fault tree for phase 1

has cut-sets {A} and {B.D} (see Figure 5.7). Hence, state 2 (A failed, all other

components operational) cannot lead to any other states, as it causes system and

phase failure. The three transitions leading from this state are therefore disabled.

States marked with an asterisk are unreachable states in that phase.

 - 134 -

Table 5.5 – Failure and Acceptable States for Phases
Phase i Failure States in i Acceptable States at ti

1,5,9 2,6,7,8,10,12,13*,14,15,16* 1,4,5,11

2,6,10 3,6,7,9,10,12*,13,14,15,16* 1,2,4,5,8

3,7,11 3,6,9,10,11,12,13,14,15*,16* 1,2,4,5,8

4,8 7,12,14,16 1,3,4,5,9,11

12 7,12,14,16 1,2,3,4,5,6,8,9,10,11,13,15

At time ti (the end of phase i), in order for transition between phases, the system

needs to occupy a state which causes failure neither in phase i nor in phase i+1. The

third column in Table 5.5 shows the states that satisfy these requirements for each

phase. The repetition of the mission profile within the MFOP leads to repeated sets

of failure states for given phases. However, while phases 4 and 8 lead back to the

profile of phase 1, phase 12 leads to a repair state, so its acceptable states at the

phase end time differ.

The probability of the system being in each state at phase change is calculated,

given the failure rates and phase lengths shown in

Table 5.1. This yields the probability of system success or failure at ti. The

probabilities of being in each of the acceptable states at ti form the initial conditions

for the next phase. The process of calculating the initial conditions for the next

phase continues until the repair phase. When repair takes place, if components C

and D are not inspected, the system is returned to any of the states 1, 4, 5 or 11. If

they are inspected, the next MFOP will begin from state 1.

The Markov analysis tool within the modelling software FaultTree+ was used to

find the MFOP success and failure rates. This uses numerical integration methods to

find the state probabilities after set times. These figures were also predicted using

the Petri net modelling software after performing 10,000,000 simulations. Both sets

of results are given in Table 5.6 and results from the two models are compared in

the next section.

 - 135 -

Table 5.6 – Results from Markov Analysis and Petri Net Model
MFOP Platform unreliability up to

end of MFOP (Markov)

MFOP Failure

Prob. (Markov)

MFOP Failure Prob.

(Petri Net Model)

Percentage Error

between results

1 0.32473 0.324730 0.324872 0.0437%

2 0.5498 0.333304 0.333222 0.0246%

3 0.7026 0.339405 0.339228 0.0522%

4 0.7992 0.324815 0.324865 0.0154%

5 0.8661 0.333167 0.332750 0.1252%

6 0.91157 0.339582 0.339362 0.0648%

7 0.94029 0.324777 0.323946 0.2559%

8 0.96018 0.333110 0.333117 0.0021%

9 0.97370 0.339528 0.339884 0.1049%

10 0.98224 0.324715 0.324741 0.0080%

11 0.98816 0.333333 0.333041 0.0876%

12 0.992179 0.339443 0.339061 0.1125%

5.3.2.2 Comparison of Results

A comparison of the MFOP failure rates produced by the Markov model and that

produced by the Petri net model software (as shown in Table 5.6) shows a high

degree of correlation. Due to the possible repair of C and D only after the third

MFOP, the results follow a cycle where the MFOP failure probability increases

slowly, and then returns to the initial level after the third MRP. There is a maximum

of just over a quarter of a per cent error between any two values, and a mean error

over all twelve MFOPs of 0.0747%. The correlation between the two sets of results

gives confidence that the Petri net modelling software can accurately predict the

reliability of repairable phased systems.

The convergence of the failure rate of the first MFOP over the run of simulations is

shown in Figure 5.13.

 - 136 -

Convergence of MFOP 1 Failure Rate

0.3

0.305

0.31

0.315

0.32

0.325

0.33

0 1 2 3 4 5 6 7 8 9 10
Millions

No. MFOP Starts

Fa
ilu

re
 R

at
e

Figure 5.13 – Convergence of MFOP 1 Failure Rate

5.3.3 Larger Repairable System

This section gives the details and results of using the modelling method to analyse a

larger, 10-phase, 10-component system, including MFOP complexities mentioned

in Section 5.2.2. Table 5.7 shows the component failure rates and dependencies.

Table 5.8 gives, for each phase, the durations and components which can cause

abandonment. The dependencies column shows the new failure rate of the main

component if the component listed in the column fails. Figure 5.14 shows the fault

trees for the 10 phases.

Three missions were performed in each MFOP and three MFOPs were carried out in

each simulation. Every component failure is repaired in each MRP.

All this detail was entered into the modelling software and 1,000,000 simulations

were performed to reach an estimate of the likelihoods of failure of the MFOPs,

missions and phases.

 - 137 -

Table 5.7 – Component Failure Data
Component Failure Rate Dependencies

A Exponential, λ=0.0025

D – Exp, λ=0.0015

B – Normal, µ=150, σ=20

Both - Exp, λ=0.000158

B Weibull, β=3.2, η=130

C Exp, λ=0.0041 J – Exp, λ=0.0012

D Lognormal, µ=5, σ=0.7

E Normal, µ=140, σ=23

F Exp, λ=0.0016

G Norm, µ=160, σ=19

A – Exp, λ=0.056

H – Lnorm, µ=5.2, σ=1.2

Both – Weib, β=1.3, η=340

H Exp, λ=0.00036

I Weib, β=2.1, η=240

J Exponential, λ=0.0024

Table 5.8 – Phase Lengths & Abandonments

Phase
Duration

(Hours)
Abandonments

1 0.5 J

2 2.5 D, G

3 4.0

4 1.25 D

5
Normal

(µ=3.4, σ=0.2)
A, B, I, J

6 0.6 G

7
Exponential

(λ=0.14)
G

8 3.2 E, H

9 2.1

10
Normal

(µ=5.6, σ=0.4)
C, D, E

 - 138 -

Figure 5.14 – Larger System Phase Fault Trees

5.3.3.1 Results

Table 5.9 shows the number of simulations, failures, abandonments and conditional

failure probabilities for each of the MFOPs and missions, as outputted from the

program. Table 5.10 then shows the number of failures of each phase in each

mission, and their total failure probability.

Table 5.9 – MFOP and Mission Failure Results

MFOP/

Mission

Starts Failures Abandon-

ments

Failure

Prob.

MFOP 1 1000000 113270 618047 0.731317

MFOP 2 886730 60814 766730 0.933253

MFOP 3 825916 34780 778346 0.984514

Mission 1 2712646 105400 928724 0.381223

Mission 2 1678522 67725 805461 0.520211

Mission 3 805336 35739 428938 0.576998

 - 139 -

Table 5.10 – Phase Failure Results
Failures in Phase Starts

Mission 1 Mission 2 Mission 3

Total

Failures

Failure

Prob.

1 5196504 3300 72030 34800 110130 0.021193

2 5086374 45587 60528 33264 139379 0.027402

3 4946995 9 27 24 60 0.000012

4 4946935 37868 30475 20633 88976 0.017986

5 4857959 274334 310171 187647 772152 0.158946

6 4085807 32128 22453 9263 63844 0.015626

7 4021963 51337 41698 22158 115193 0.028641

8 3906770 151011 88526 36544 276081 0.070667

9 3630689 0 0 0 0 0

10 3630689 438550 247278 120344 806172 0.222044

The convergence of the MFOP failure rates (without abandonments) over the run of

1,000,000 simulations is shown in Figure 5.15.

Convergence of MFOP Failure Rates

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

No. MFOP Starts

M
FO

P
Fa

ilu
re

 R
at

e

MFOP 1
MFOP 2
MFOP 3

Figure 5.15 – Convergence of MFOP Failure Rates for Third Example

 - 140 -

5.4 Summary

Petri nets provide an effective, easily understood and very powerful way of

predicting the reliability of a system or platform. The Petri net technique extends to

the area of Phased Missions, where complexities of modelling such as component

failure rate dependencies, varying distributions and repairable systems are easily

included. The technique can also be used to model a basic Maintenance-Free

Operating Period.

The model outlined in this chapter can account for various reliability considerations

such as component, system, phase, mission and MFOP failure, mission

abandonment, the MRP and component failures affecting the failure rate of another

component.

Comparing the results from the Petri net model with an analytical solution for an

example non-repairable system, the correlation is good. System performance

prediction from the model can also be reached without the complexities of finding a

qualitative solution. It can produce the probability of failure in a particular phase as

well as the overall system reliability. The solution speed is fast and the approach

more efficient than that for the analytical solution, even for a small system. The

results when applied to a repairable system are also accurate compared to a Markov

model, providing confidence in the capabilities of the Petri net modelling method.

Its capabilities for simulating larger systems have also been demonstrated.

Because the performance of the preliminary Petri net model has been demonstrated

to be good, it is worthwhile to develop it further, including more complex aspects of

phased missions and MFOPs. The development of this more complex model is

covered in the next chapter.

 - 141 -

Chapter 6 Development of Complex Model

6.1 Introduction

The successful development of a simple Petri net modelling technique for MFOPs

and Phased Missions creates an opportunity to expand its scope. In order to provide

a method of modelling the performance of MFOPs and phased missions as they

would be applied in the real-world, many more considerations need to be made.

Chapter 3 mentions the technologies and ideas identified thus far which will help to

bring about a successful and lengthy MFOP. This includes redundancies,

prognostics and so on. Section 4.2 discusses the development of various ways of

modelling phased missions, and some of the latest research which suggests more

complex aspects of it, such as phase insertions and phase choice. It is worthwhile to

produce a method of modelling these additions to the main concepts of MFOPs and

Phased Missions.

This chapter covers the development of the simple Phased Mission and MFOP Petri

net model into one which considers important, relevant complexities of both Phased

Missions and MFOPs. These are discussed and then the ways in which they are

simulated using Petri nets is explained.

6.2 Phased Missions

6.2.1 Phase Lengths

The application of the modelling method proposed here as a simulation tool allows

for a wide variety of distribution types to be considered (exponential, Weibull,

normal, etc.). These distributions can be applied not only to component failure rates,

but also to phase lengths. If one phase’s length is randomly sampled, it is

conceivable that a second phase may need to have a length based on that of the first.

For instance, in a typical aircraft mission, the “return to base” phase length may

 - 142 -

need to mirror that of the “fly to mission” phase. As such, two further options have

been made available as phase lengths:

• Reverse a phase length: the time applied to the reverse phase mirrors that of

the original phase. The length of the reversing phase is equal to the total time

the original phase was active for. If the original phase was never carried out,

the time to complete for the reversing phase will be zero.

• Match a phase length: the time for the matching phase to complete is equal

to the time left for the original phase to complete. If the original phase has

completed, the time to complete for the matching phase will be zero.

6.2.2 Probability Transitions

In order to model a situation where only one of several outcomes can happen, with a

given probability, an addition to the Petri Net modelling method has been created.

The previous way of modelling this situation, shown in Figure 6.1, would have been

to have two transitions (immediate or not) with the same time to switch, both taking

an input from the same initial place. These would then output to separate places, one

for each transition. Only one transition can take the token from the initial place, and

the system would apply a probability check to find which one. However, it is

difficult to implement this system in a computer model, and so the Petri net method

has been extended to include probability transitions and probability arcs.

As shown in Figure 6.2, the adaptation of the PN method involves a single transition

which has arcs which input to the output places with given probabilities. Otherwise,

a probability transition retains the same functionality as normal transitions, such as

Input 0.8

0.2

Output

Not
Output

0.8

0.2

Input Output

Not
Output

Figure 6.2 – New Probability MethodFigure 6.1 – Previous Method

 - 143 -

the ability to have a time delay, inhibition and output arcs which do not have a

probability attached.

A probability transition must have enough probability arcs such that their sum

equals 1, as the probabilities on these arcs are interdependent: only one of them will

be selected for an output. Thus, in Figure 6.2, the place “Output” will receive a

token in 80% of switches, while “!Output” receives it for the rest of the time.

This type of transition has found its use in applications such as probability-driven

phase choices (section 6.2.12.2) and discrete events (section 6.3.2).

6.2.3 Fleet of Platforms

A typical real-life situation when considering platform reliability in action is that a

fleet of platforms may be available to carry out many different combinations of

missions. Each platform is identical to the others, in that they all have the same

components, systems, prognostic and diagnostic capabilities, and so on. (Note that a

“system” refers to any intermediate or top event of a phase fault tree – each of these

events can very loosely be considered to correspond to the failure of a system in

some way). Each set will, however, act independently from the others. One way of

modelling this situation would be to have a different set of Petri Nets (Master,

Component and Phases) for each platform. As the fleet is of identical platforms, this

would create an unnecessary and inefficient increase in the memory required to

simulate the scenario. Instead, coloured tokens, as described in Section 4.3.3.6, have

been used to represent each of the platforms.

Each platform in the fleet is assigned a unique “colour”. Only one set of component,

phase and master PNs is then needed to model the entire fleet. Transitions treat each

colour separately: for a transition to be enabled with a colour, each of the input

places to the transition must have the correct number of tokens of that colour. The

sampled switch times that the transition generates will differ for each different

colour the transition is enabled in. Once the transition switches, only tokens of the

switched colour are created in the output places.

 - 144 -

For example, Figure 6.3 shows a Component PN with coloured tokens, for a three-

plane fleet. Each plane has the same components as the others, and using the

coloured PN rules stated above, each transition for each component will have a

different time to switch, representing the varying time to fail for each component in

the different planes. Component 1 in the “white” plane, for instance, may have a

time to fail of 431.8 flight hours, while the same component in the “black” plane

could fail after 5089.6 flight hours and that in the “grey” plane has a life of 3491.6

flight hours. The same transition will switch the different token at different times.

Figure 6.3 – Component PN with Coloured Tokens

Similarly, each plane will carry out a different set of MFOPs and missions, and will

fail at different times and in different ways. The modelling of this is covered in the

next section.

6.2.4 Platform Operation

In a typical scenario considering MFOPs, a platform might be expected to carry out

any number and type of missions in a given interval, before maintenance takes

place. The different planes in the fleet will be expected to perform different

missions at the same time, and will therefore undergo different stresses and failures

concurrently.

 - 145 -

In simulating this situation, a “platform” has been considered to be an entity which

carries out a distinct sequence of MFOPs, independent of other platforms in the

fleet, as shown in Figure 6.4. The PNs for modelling the fleet are contained within

the Master PN, as are those for modelling MFOPs and Missions.

Figure 6.4 – Fleet PN Model

Figure 6.4 shows three “Planes”, each with a differently coloured token in the

“Plane p” place, where p = 1,…,nPL, the total number of platforms. This token

enables an immediate transition which switches, and commences the first MFOP for

the plane, putting a token in the “MFOP m1” place, where m1 is the number of the

first MFOP for that plane. Once this MFOP is complete, an MRP will take place,

repairing the plane to a state where it is capable of carrying out the next MFOP in

the sequence. A place represents the “MRP Complete” state (shown in the Figure as

“MRP Over”), and once this is marked the next MFOP begins immediately. Once

each platform has completed its sequence of MFOPs, the simulation is considered

complete.

Note that each platform can carry out any number of MFOPs in its sequence, and

this number need not match those of other platforms. Similarly, a platform may

carry out the exact same sequence of MFOPs as any other platform. However, there

is no “system of systems” approach taken with this model: two platforms

performing the same mission or MFOP concurrently are assumed to be independent

of each other.

 - 146 -

6.2.5 MFOP Operation

The example in Figure 6.4 shows three different types of MFOP. In this research, an

MFOP is defined as a specific sequence of missions carried out without repair. If an

MFOP differs from another by only one mission, it is a different MFOP and

requires a different PN. PNs for example MFOPs are shown in Figure 6.5.

Figure 6.5 – MFOP PN Model

In Figure 6.5, a place, “MFOP m”, where m = 1,…,nMF, the total number of MFOPs,

represents the start of that MFOP. Considering the coloured tokens seen in Figure

6.3, Planes 1 and 2 are performing “MFOP 1”, while Plane 3 is carrying out “MFOP

2”. These tokens are placed here by the “Begin MF m” arcs from the immediate

transitions shown in Figure 6.4. Once an MFOP commences, the coloured tokens

are immediate passed to the “Msn u1” place of the MFOP, where u1 is the first

mission of that MFOP, while another token is sent to the “Msn Active” place for

that mission.

If a mission ends, its “Msn Active” and “Msn End” places will both be marked, and

so an immediate transition switches in the PN shown below to start the next

mission. After all missions have been completed, the MFOP is finished and a token

will end up in the “MFOP Complete” place.

As mentioned in the previous section, completion of an MFOP leads to an MRP,

after which the following MFOP will begin.

 - 147 -

6.2.6 Mission Operation and Abandonment

Missions are modelled in much the same way as in the simple model. Shown in

Figure 6.6, a phase to be carried out in the mission is represented by a place. Three

other places represent the mission being active, abandoned and ended. Part of the

platform and MFOP PNs, as explained in the two previous sections, are also shown.

Figure 6.6 – Mission Petri Net

In Figure 6.6, Plane 3 begins its first MFOP, number 2, which then commences

mission 3. The activation of mission 3 marks the place for its first phase, and after

the phase length its phase transition switches to phase 2. This sequence continues

until a token marks “Msn 3 Complete”, and the next mission in the PN for the

parent MFOP can begin, as shown in Figure 6.5. Note that it is possible for a phase

to be repeated within the same mission.

If, during any phase, that phase’s failure place is marked, this represents mission

failure. The combination of the phase operation and phase failure places being

marked will result in the mission failure and mission complete places being marked.

This, in turn, removes the token from the MFOP PN and places it directly in the

“MFOP Complete” place, so a Maintenance Recovery Period can begin

immediately.

Msn 3
Failure

Plane 3 MFOP 2

Msn 3MFOP 2

Msn 3
Active

Phase 1 Phase 2 Phase 3 Phase 4

Msn 3
Complete

MFOP
Complete

 - 148 -

Because the failure of a mission in this way leads to MFOP completion and

performance of an MRP, this failure reflects the abandonment of a mission. This

“soft” MFOP failure allows the platform to perform future missions and stands in

contrast to total loss, which is explained in the next section.

6.2.7 Total Loss of Platform

It is possible that a platform may suffer a catastrophic failure, where it is totally lost.

Examples of this situation include a flight into terrain, explosion, abandonment in

enemy territory, and so on. For the purposes of this model, any catastrophic failure

will cause all activity for that platform to stop: component and system failures will

no longer be possible, and no further missions, MFOPs or MRPs can be carried out.

Figure 6.7 shows how this is modelled with Petri Nets.

Figure 6.7 – Platform Failure Model

In Figure 6.7, part of the PN for an example platform is shown. Plane 3 performs

MFOP 2 first, and so tokens are passed to both “MFOP 2” places from the initial

“Plane 3” place. Similarly, Mission 3 is the first task in MFOP 2, so tokens are put

into the “Msn 3” and the “Msn 3 Active” places. This commences Phase 1, which

finishes after a time and begins phase 2.

 - 149 -

If, during phase 2, a catastrophic failure arises and the top place of the Phase 2 PN

becomes marked, immediate transition 1 removes the token from the Phase 2 and

Msn 3 Active places. A token is placed into the “Catastrophe” place, taking the

token from the “MFOP 2” place through immediate transition 2, and thus marking

the “Plane Crash” place. This place removes any mission tokens from the formerly

active MFOP through immediate transition 4, after which immediate transition 3

switches, completing the simulation for that platform.

There are two different ways, therefore, that a mission and an MFOP can be

considered to have failed: abandonment, or total loss. Hence, this requires there to

be two sets of failure logic for each phase.

6.2.8 MFOP Abandonment

Upon the abandonment of a mission as explained in section 6.2.6, the platform

would return to base for repair. The phase, mission and MFOP would be considered

failed, and the normal sequence of missions as modelled in Figure 6.5 would not

take place. Thus, a model of this failure process is required, as shown in Figure 6.8.

Figure 6.8 – MFOP Failure Model

In Figure 6.8, the mission profile of MFOP 1 is shown, as in Figure 6.5, running

along the centre. Also shown here are Mission Failure, Mission Active and Mission

 - 150 -

End places for each mission. If a mission is failed such that the platform is still

capable of returning to base, a token will be in the “Msn u Fail” place. In Figure 6.8,

the scenario is that the abandoned mission (Mission 1) has ended. In this case, the

“Msn 1 Fail” place inhibits the transition which would typically commence the next

mission. Instead, an immediate failure transition deactivates the mission, and places

the coloured token in the “MFOP End” place. This allows repair to commence, after

which the next MFOP will take place.

6.2.9 Mission Abandonment to Phase

Section 6.2.6 describes the modelling of the abandonment of missions. The

modelling method requires the mission to immediately end, cancelling the MFOP

and immediately beginning an MRP. Particularly for the case where a platform is

performing a mission far from base, it is unrealistic to expect the mission to end

immediately once the command to abandon it has been given. In this case, then, it is

of use to allow a mission to abandon to a sequence of phases, after which the

mission ends and an MRP can begin. Figure 6.9 demonstrates this idea.

Figure 6.9 – Mission Abandonment to Phase

In the Figure, the top event place for the abandonment fault tree PN in phase 2 is

marked. As the mission is currently in phase 2, the mission is abandoned and,

instead of the token going directly to the “Mission Complete” place, as it does in

Figure 6.6, a token is placed in the “Abandon Phase 1” place. This phase will take

Phase 2
PN

Abandon FT
Top Event

Phase 1 Phase 2 Phase 3

Mission
Complete

Abandon
Phase 1

Abandon
Phase 2

Mission
Failure

Master PN

 - 151 -

time to complete, after which “Abandon Phase 2” takes place. Only after these two

phases have finished will the mission have finished and an MRP can begin.

Of note is a small complication that arises from this provision of abandoning to

phases: it would theoretically be possible for an abandonment phase to itself

abandon to another phase, ad infinitum. Because of this, while it is possible for

catastrophic failures to still occur during an abandonment phase, it has been made a

condition of abandonment that the “Mission failure” place, when marked, inhibits

all abandonment transitions. Thus, when a mission has been abandoned in a certain

way, it cannot then be abandoned to a different phase: the sequence must complete

as given.

6.2.10 MRP Modelling

If a platform is set to undergo more than one MFOP, there must be a Maintenance

Recovery Period between the two, where the platform is brought back up to the

point where it can perform the next MFOP. One way of modelling the progression

from Ending MFOP → Repair → Next MFOP is shown in Figure 6.10.

Figure 6.10 – MFOP-MRP Sequence Model

In the Figure, whenever an MFOP commences in the Fleet PN (Figure 6.4), a token

of the relevant colour is placed in the “MFOPs Active” place in the Component PN.

Nothing will then happen in this part of the overall PN until the MFOP is

MFOP
Complete Switch to

next MFOP

Begin MFOP

MFOPs
Active

Enable
Repairs

Unrepaired
Components

Next
MFOP

Component PN

Master PN

 - 152 -

completed, and a coloured token is present in the “MFOP Complete” place, as

shown in Figure 6.5. This enables an immediate transition which switches and

marks the “MRP Active” place. When in this state, the platform is capable of

undergoing whatever repairs are required, and will only switch out of the state when

the necessary components for the next MFOP have been repaired. These

components’ failure places will, if marked, inhibit the exit transition from the MRP

Active state. When this repair is completed, the immediate transition to which the

“MRP Active” place inputs deposits a token in the “Next MFOP” place, which

corresponds to the “MRP Over” place shown in Figure 6.4, and allows the

immediate transitions in that Figure to switch, commencing the next MFOP.

The “MRP Active” place is one of the most important in the whole net: it is through

this one place that many of the processes explained below, such as inspections and

replacements, are possible.

6.2.11 General Failure

If it is possible for a platform to be failed in the same way during any of its phases,

it would be inefficient to have each phase fault tree repeat the same modes and

events of failure. Instead, therefore, it is possible to define a general failure fault

tree which, if the top event for either catastrophic failure or mission abandonment

occurs, the mission and MFOP will be abandoned.

The fault tree PNs for general abandonment and total loss are contained in their own

PPN, structured in the same way as the other PPNs. The main difference between

the other PPNs and the general PPN is that the occurrence of either of the top events

in the latter net can cause a mission failure regardless of the current phase. Figure

6.11 and Figure 6.12 show this.

In Figure 6.11, the General PPN failure top event place is marked with a token,

indicating the platform’s total loss. This place acts as an input to four different

failure transitions in the Master PN shown on the right side of the diagram.

Whichever phase place is marked in the active mission and MFOP (“Phase 1” and

 - 153 -

“Msn 3” in this instance) will have its token removed by the corresponding failure

transition which puts a token in the “catastrophe” place.

Figure 6.11 – General Platform Total Loss

Figure 6.12 – General Mission Abandonment

The procedure for abandoning a mission works in a similar way, as shown in Figure

6.12. The marking of the General PPN Abandonment top event place will cause the

relevant phase place to automatically lose its token via a failure transition, with the

mission abandonment place being marked instead. If the phase is set to abandon to

another phase, as explained in section 6.2.9, then this phase will begin (note that any

abandonment transition for this new phase will be inhibited). Once the sequence of

Msn 3
Active

Phase 1 Phase 2 Phase 3 Phase 4

Msn 3
Complete

Msn 3
Abandon

Catastrophe
Gen

Abandon

General Phase
PN

Msn 3
Active

Phase 1 Phase 2 Phase 3 Phase 4

Msn 3
Complete

Gen Fail

General Phase
PN

Msn 3
Abandon Catastrophe

 - 154 -

abandonment phases has completed, or if there is no sequence, the “mission

complete” place will be marked, and an MRP will begin.

Due to the possibility of any or all of general phase failure/abandonment and

normal phase failure/abandonment occurring at the same time, a hierarchy has been

created to prevent more than one of these affecting a mission. This works as

follows:

1. General phase failure

2. Individual phase failure

3. General and individual phase abandonment

As such, the general failure place is set to inhibit the transitions relating to general

abandonment and individual fail & abandonment. Individual phase failure will

inhibit the abandonment transitions.

6.2.12 Phase Selection

A phased mission does not necessarily consist of one linear sequence of phases. It is

possible that different events, such as the failure of one or more of the objectives of

a mission (for example, a missile missing a target), or component or system failures,

may lead to one phase from an array of choices being selected to be performed next.

The nature of the drivers behind the selection can be broken down into two areas:

those prompted by events considered within the model, and those which are outside

its scope. The former use these events to enable or inhibit progression to a different

phase, while the latter use probability transitions, explained in section 6.2.2, to

randomly select (with a given weighting towards each option) which phase is

carried out next.

6.2.12.1 Event-driven Phase Selection

Component or system failures can affect the choice of the phase to begin next. As

an example, consider a mission with an attack phase where a missile must be

launched. The failure of either the launch system or the missile will prevent this

 - 155 -

phase from being successful, and so an alternative phase may be performed instead,

such as sending the platform to a secondary objective. This can be modelled using

the PN system as shown in Figure 6.13.

Figure 6.13 – Event-driven Phase Selection

In this example, phase 2 in the master PN has two output transitions. An event (be it

basic, intermediate or top) controls which of these is enabled at any one time,

depending upon whether it is marked or not. If the component or system is

operational, it will not be marked, and so the mission will progress normally from

phase 2 to phase 3. If a failure has occurred and the event place is marked, the

normal phase transition is inhibited, and instead the one shown below it in Figure

6.13 is enabled instead. As a result, phase 2 will enter phase 3’ once it is finished.

6.2.12.2 Probability-driven Phase Selection

Certain factors (such as the weather on a given day or the likelihood of a successful

attack) are not considered directly within the scope of the model. These factors may

still affect the behaviour of a mission, however, and as such a method to decide the

following phase according to user-defined probabilities has been provided. This

method uses the probability transitions introduced in Section 6.2.2, with the

probabilities on the arcs corresponding to those of entering each phase.

Figure 6.14 – Probability-driven Phase Selection

Phase 1

Phase 3

Phase 3’

Phase 2 0.75

0.25

Phase 1
Phase 3

Phase 3’

Event Phase 2

 - 156 -

Figure 6.14 shows a probabilistic phase transition taking its input from the phase 2

place. In 75% of cases, the output selected will be phase 3, while in 25% of cases it

will be phase 3’. This probability may represent anything uncontrollable by the

operator, such as requiring a prevalent weather condition for phase 3, or the

presence of civilians in 25% of cases requiring an alternate mission plan.

6.2.13 Phase Insertion

It is possible that, due to external conditions, an emergency phase may need to be

performed immediately, after which the original phase resumes where it was

interrupted. An example to consider is where a plane must refuel at an intermediate

base or in-flight, due to spending longer than planned in the air.

Phase insertion is another complexity of phased missions modelling which can be

simulated in Petri net form. A typical way to mimic the insertion is shown in Figure

6.15 below.

Figure 6.15 – Phase Insertion

In the Figure, an intermediate event has occurred during Phase 2. This intermediate

event prompts an immediate transition to remove the token from the Phase 2 place

and put one in the Emergency Phase place and one in the “Insert Control Place”.

The latter of these inhibits the Insert transition from switching more than once in a

given mission. Once the Emergency Phase has completed, its phase transition

switches and the token is placed back in the Phase 2 place. The timed transition for

Phase 2 resumes its previous switch time (increased to account for the interruption)

Phase PN Master PN Phase 1 Phase 2 Phase 3

Mission
Complete

Emergency Phase

Insert Control Place

Intermediate
Event

 - 157 -

and the mission can continue. Once the mission has ended, an immediate transition

removes the token from the Insert Control place.

As the phase interruption can compete with phase failure and abandonment in

removing the token from the phase place, it has also been given a place in the

hierarchy mentioned in section 6.2.11, at the bottom. Therefore, the phase insertion

transition will be inhibited by all phase failure and abandonment top event places.

Also, in order to ensure that phase insertion cannot occur in abandonment phases,

every abandonment transition will, in addition to marking the abandonment phase

and the “Mission failed” places, put a token in all of the Insert Control places for

that mission.

The improvements to the model shown in section 6.2 apply primarily to the nets in

the Master PN, which control the active phase, mission and MFOP for each

platform. The following section covers those changes which allow for more

complex modelling of aspects regarding reliability and platform performance. These

include the MFOP enablers mentioned in section 3.5.1.

6.3 Reliability & Maintainability and MFOP Enablers

The discussion of MFOPs so far in this chapter has focused primarily on their

relation to the concept of phased missions. However, as outlined in Section 3.5,

suggestions have been published as to how an MFOP of a useful duration is

achievable. This section covers the inclusion of these aspects in the Petri net model.

6.3.1 Inherent Reliability

The consideration of inherent reliability in the MFOP philosophy provides for a

greater understanding of the failure modes and distributions of the components of

the platform. Improvements to the component reliabilities can be made and will thus

affect the reliability of the platform. However, this improvement does not need to be

 - 158 -

modelled using Petri nets – rather, more reliable and accurate failure time

distributions can be provided for input to the model once this is known.

6.3.2 Discrete Events

It is possible to describe an event that does not have a “failure” like other basic

events, but instead is the occurrence or non-occurrence of some outcome with a

given probability at a given time, in response to a trigger. These types of events are

here referred to as “discrete” events (DEs). An example of this is a simple human-

error consideration, such as the maintenance crew of an aircraft not replacing the

fuel cap before flight. This is not an event that can be described as a failure over

time, as it cannot happen mid-flight. Instead, it is a DE that either does or does not

occur after a prompting event (in this case, refuelling before a mission begins).

Discrete events use immediate probability transitions to provide an output to either

an “event occurs” or an “event does not occur” place. The full net for a DE is shown

in Figure 6.16.

Figure 6.16 – Discrete Event Model

The trigger for a DE can be anything considered within the scope of the model: an

MRP, the start of a phase, mission or MFOP, a component failure and so on. If the

trigger event occurs and its associated place becomes marked, the place causes

transition 1 in Figure 6.16 to switch. This will mark either of the “Event” or “NOT

Event” places, depending on a randomly sampled number between 0 and 1, and the

arc probabilities. Transition 1 is disabled by the marking of the output places, while

transitions 2 and 3 will remain inhibited by the trigger event, until such time as the

Trigger
Event

0.8

0.2

Event

NOT
Event

1

2

3

 - 159 -

trigger event place becomes unmarked. When the input event is no longer occurring,

either transition 2 or 3 (depending on which output was originally selected) will

switch, removing the token from the output place. Discrete event ‘Yes’ places are

able to act as inputs to phase fault trees, reproducing responses to failures or event

occurrences.

Phases and MFOPs have multiple places which represent their operation. If a

discrete event takes an input from a phase or an MFOP, a “summary” place is

created, which takes as inputs each instance of the occurrence of the relevant event

in an OR logic. When the summary place is marked, the discrete event makes its

decision then.

6.3.3 Component Replacement

The simple MFOP model considered that the replacement of a component could

only occur if the item was failed. The repair process moved the component directly

from the failed state to the working state. It is possible, however, that a component

which is not failed needs to be replaced, for instance due to having a scheduled life

after which it is considered unsafe to allow the component to continue operating.

Figure 6.17 – Component Replacement

Figure 6.17 shows a component PN which is connected to the MFOP-MRP-MFOP

places as described in Figure 6.10. If a component fails after a given time, the token

shown in the “Compt Up” place will move to the “Compt Dn” place. During an

MRP, previously the token would have returned directly to the “Compt Up” place.

MFOP
Active

MFOP Complete MRP
Active

Next
MFOP

Compt
Up Compt

Dn
Compt

Replace

Replacement
Trigger

 - 160 -

In the model shown in Figure 6.17, however, the token instead moves to the “Compt

Replace” place. A token is then replaced in the “Compt Up” place where another

failure time can be sampled randomly.

The occurrence of an event may mean that the component must be replaced during

the next MRP, regardless of whether it is operating or not. Figure 6.17 shows the

“Compt Up” place providing an output to a transition on its top-left, which also

takes inputs from the replacement trigger and MRP Active places. This transition

then passes an output to the “Compt Replace” place. The presence of a token in the

“Compt Replace” place resets the time of the component failure transition. The

token is then replaced in the “Compt Up” place and a new time to failure generated.

This component replacement model is used extensively as a part of other modelling

methods. One of these is the concept of Line Replaceable Items, which are

explained in the next section.

6.3.4 Line Replaceable Items

Components are rarely removed as individual items. For all the typical inspections,

repairs or replacements that need to be performed during maintenance, this would

be a very costly procedure, in terms of time and money. Instead, to speed this

process up, they are often located together in batches in physical items which can be

removed or replaced as a whole. These groups are known as Line Replaceable Items

or LRIs. A LRI may contain other LRIs, a full system or several independent

components. A LRI containing other LRIs is typically referred to as the parent,

while those it contains are child LRIs.

A LRI, as far as this model is concerned, is a simple, descriptive way of allowing

multiple component replacements in response to a single stimulus, regardless of

whether those components are currently in the working or failed states. The children

for each LRI are specified, whether these are other LRIs, components or systems.

Also given is the logic which dictates how many of the children must have failed in

order for the parent to be considered worth replacing. This will either be all of the

 - 161 -

children (in which case the input logic is essentially an AND gate), any one of the

children (an OR gate), or a certain number (a x-out-of-y vote gate).

Figure 6.18 – OR and AND logic inputs to LRI place

Figure 6.19 – 2-out-of-3 Voting gate input to LRI place

Figure 6.18 shows the first two cases mentioned, with the left-hand PN being that

where any one input needs to have failed in order to replace the LRI. The right-hand

PN is for the case where all of the inputs need to have failed. The three places which

input to the LRI place are a child LRI replace place, a component failed place and a

system failed place. If a system failed place provides input to the LRI, then the

transition it inputs through must also output to a control place, which prevents the

system failure place from causing multiple replacements of the LRI in an MRP.

This control place is cleared whenever the system failed place is cleared.

Figure 6.19 shows a much more complicated PN using the same three places for

inputs as in Figure 6.18. This is an example net where any two of the three inputs

need to have failed for the LRI to be replaced. Each input place enables a transition

Child
Component

LRI

Child
LRI

Child
System

LRI

Child
LRI

Child
Component

Child
System

Control
Place

Control
Place

Control
Place

Control
Place

LRI

Child
LRI

Vote
Place

Vote Control
Place

Child
Compt

Child
System

Control
Place

 - 162 -

which places a token in a “vote place”, as well as in an input control place, which

prevents the transition from switching more than once for a given failure. The vote

place outputs to a transition which allows it to mark the LRI place. Due to the arc-

multiplicity of two, the vote place can only enable this transition when there are two

tokens within the vote place, which is when enough inputs are marked. When this

condition is satisfied, the vote place inhibits all input transitions, and switches its

output transition. This remarks itself, and marks the LRI place and a “vote control

place”. The vote control place prevents the vote place from repeatedly enabling and

switching its output transition.

If an input place becomes unmarked, its control place will output its token to a

newly enabled transition. The vote place also outputs to this transition, and so will

reduce its token count by one whenever the transition switches. When all input

places are no longer marked (which will only happen during an MRP), the vote

place will be empty, and the vote control place will output to a transition which

removes its token as well. Thus, the net is cleared before a new MFOP begins.

The nets shown thus far merely explain how a LRI place can come to be marked.

Once it is marked, it must play a role in replacing each component contained within

it. Consider the PN shown in Figure 6.20. There are three components shown: A, B

and C, each of which can be replaced as demonstrated in the previous section. Also

shown are places representing six LRIs. LRI 1 is the parent of LRIs 2 and 3. LRI 2

is the parent of LRIs 4, 5 and 6. LRIs 3, 4 and 5 are not considered in this example

other than to demonstrate the nature of the LRI parent-child hierarchy.

At some point during an MFOP, LRI 2 is marked for replacement during the

following MRP, due either to failures of its child items or to having a scheduled

replacement time. A LRI, when marked for replacement, will also mark all of its

child LRIs for replacement. This therefore creates tokens in the places for LRIs 4, 5

and 6, the latter of which contains A, B and C. At the time of the MRP, A and C are

operational, while B has failed. The “LRI 6” place acts as the replacement trigger

for each of the components, as shown in Figure 6.17. Its being marked causes the

tokens to be removed from A and C’s up places, and B’s down place, and mark the

 - 163 -

respective replacement places. These then re-mark the component-up places,

following which a new time to fail is generated for each component.

Figure 6.20 – LRI Replacement

Each LRI has a transition which acts to remove the tokens from the places

representing that LRI, all its child LRIs and the replacement places of all the

components contained in itself and its children. If a LRI has a parent, the parent LRI

place will inhibit the clearing transition for the child LRI, as the parent will have its

own clearing transition which must switch instead. The transition that performs this

function for LRI 2 is shown at the bottom-centre of Figure 6.20. Once the LRI has

been replaced and all the relevant “Compt Replace” places are marked, this

transition switches, removing the tokens from each input.

Figure 6.10 shows each “component failed” place as inhibiting the transition which

allows progression from an MRP to the next MFOP. If a component is fixed by a

LRI, it will no longer directly inhibit this transition; the LRI place does this instead.

If a system is specified to be an input to a LRI, this means nothing other than all the

components which it contains are all to be replaced. However, the system failed

place becomes an input to the LRI, so any failure logic will focus only on the

system and any other inputs, not on the individual components within the system.

B Up B Dn B Repl.
MA

A Up A Dn A Repl.

C Up C Dn C Repl.

MA

MRP Active (MA)

LRI 1

LRI 2

LRI 3

LRI 4

LRI 5

LRI 6

MA MA

MA

 - 164 -

Note that a component or system cannot be part of more than one LRI, excepting

that LRI’s set of parents. This is because a LRI is a physical location of the

component, rather than an arbitrary grouping.

6.3.5 Scheduled Life Replacements

Certain items within the platform may be important, and yet cannot be supported

within the platform architecture by redundancies or other means. If these items fail,

they could put the platform into a critical state, and so they are subject to scheduled

life replacements (SLRs). This means that, once a certain time has expired after the

item was installed, the item will be replaced regardless of whether it has failed or

not. While this is typically an expensive maintenance strategy in terms of

throughput of components, it may prove rewarding in the improvement in overall

platform reliability.

There are two types of item to which an SLR can be applied: LRIs and individual

components. The left-hand-side of Figure 6.21 shows the PN for an SLR as used

with a LRI. The SLR needs to mark the main LRI place after a given length of time.

To achieve this, whenever any MFOP is defined as being “active”, it will mark a

SLR control place, unless the LRI is already set to be replaced. If it is not, the

marked control place will enable a timed transition set to switch after the length of

time defined by the user. When this switches, the LRI is marked to be replaced

during the next MRP. A third transition forces the SLR control place to be emptied

whenever the LRI place is marked in a different way.

 - 165 -

Figure 6.21 – SLRs for an LRI and a Component

Figure 6.21 also shows the net modelling an SLR for a component. For the LRI, an

SLR control place inputted to the timed transition, but for the component A, its “up”

place takes this role. The “Ready for Replacement” place shown in the Figure is

similar in purpose to the main LRI place. While the “A Up” place is marked, a

timed transition is enabled which, once the time has expired, will place a token in

the “ready for replacement” place, without removing it from the up place. If the

component were to fail after this time, the token in the “A Dn” place would cause

the ready for replacement place to be emptied, through the transition at the bottom

of the Figure, and the component would be repaired in the next MRP as normal.

If, however, the component remains in operation until the next MRP, then the

marking of the MRP Active, Ready For Replacement and A Up places causes an

immediate transition to switch which empties the latter two places and marks the “A

Repl.” place. This resets the time to fail for A, and when the up place is marked

again, a new time to fail is generated.

If a component is specified to have a scheduled life replacement, and the component

is a specific member of a LRI (that is, not as part of a parent system), then a few

alterations must be made to the nets shown in Figure 6.20 and the right-hand-side of

Figure 6.21 to allow the two to work together. These alterations are shown in Figure

6.22.

MFOP Active MRP Active Next MFOP

LRI

SLR Control

MFOPs Active MRP Active Next MFOP

A Up A DnA Repl.

Ready for
Replacement

 - 166 -

Figure 6.22 – Combining Component LRI and SLR

Figure 6.22 shows standard component and LRI arcs as dotted, and SLR arcs and

transitions as grey. A new transition is created, inhibited by the LRI place and

enabled by the MRP active place, which allows the replacement place to input back

to the up place. Thus, there would be two transitions returning tokens performing

this role. The one which was created explicitly for the LRI would be newly enabled

by the LRI place, always allowing the replacement place to remark the up place

regardless of whether it is the LRI or the SLR which has prompted the replacement.

6.3.6 Diagnostics

The purpose of a diagnostics system is to detect the occurrence and location of

failures, faults or performance deterioration within the overall system. This can

either be performed in real-time through the use of sensors, or during maintenance

periods through inspections. These play a role in the ability to predict future

failures, either of individual components, or of phases and missions, as well as

affecting redundancies. The ways in which these two failure detection methods have

been implemented in the PN model are outlined below.

6.3.6.1 Sensors

In real situations, sensors monitor a feature of a system, such as flow rate through a

pipe, or potential difference between two points. For the purposes of the model,

however, a sensor is a single component which, if working, will detect a failure of

Ready for
Replacement

MFOPs Active MRP Active Next MFOP

A Up A DnA Repl.

LRI

 - 167 -

another component or a system. The manner in which the sensor or sensor system

decides that the failure has occurred is irrelevant here; only the ability to detect it is

important.

Figure 6.23 – Sensor Detecting Failure of a System

In Figure 6.23, system X consists of two components, A and B, such that they both

need to fail for X to fail. A third component, the sensor, will detect the failure of X

only if it itself is working. This is handled in PN form by having an immediate

transition inputting from X alone (and so being enabled whenever X is marked),

outputting to the “Failure detected” place and back to “System X Failed”, and being

inhibited by the “Sensor dn” place. In the marking in Figure 6.23, the currently

operating sensor allows the marking of the detection place.

A common problem with failure detection systems is a spurious trip or No Fault

Found (NFF). Occasionally, a sensor will consider the item it is monitoring to have

failed when no actual failure has occurred. Where there are consequences of the

reported failure, such as switching power to a backup system, or abandoning a

mission to return to base, this can be costly. This has been modelled in Figure 6.23

by attaching the “Sensor up” place to a second timed transition and inputting to the

“Failure detected” place. The timed transition will sample a time randomly from the

NFF rate, which describes the distribution of times at which NFF errors occur. If the

sensor remains operational and the component it is sensing does not have a detected

failure before this time expires, the transition will switch, reproducing a spurious

trip.

A up

B up

A dn

B dn

Sensor
up

Sensor
dn

System X
failed

Failure
detected

Component PN Phase PN

MRP
Active

 - 168 -

When an MRP takes place, any tokens in the “Failure detected” place, regardless of

being caused by a real failure or spurious trip, will be removed as long as neither the

sensor nor the sensed component or system is failed.

6.3.6.2 Inspection

If a component or system’s operation is not monitored by a diagnostic sensor

system, it may instead be inspected at regular intervals throughout its life to detect

failure or signs of wear. Within the scope of the MFOP policy, these inspections

must take place within MRPs after either regular time intervals (numbers of hours),

numbers of MFOPs, or in response to the detected failure of a higher system.

Inspections can take place on components or systems.

The formation of a PN for each item undergoing an inspection depends on the

following factors:

- Does the inspection take place after a fixed period of flying hours, a fixed

number of MFOPs, or on the discovered failure of a parent system?

- Is it a component or a system?

- Is it a member of a LRI, either directly or through a parent system?

The subsections below explain the PNs for each type of case, beginning with the

implementation of the inspection on the various possible items.

Component with no parent LRI

If a component which is not a member of a LRI, either directly or through a parent

system, is to be inspected, then this is relatively simple to model. Figure 6.24 shows

the typical PN for this case.

 - 169 -

Figure 6.24 – Inspection for Component, no LRI

The Figure shows a standard component, without any replacement place. An

inspection place has been also included, and when this is marked with a token, at the

next MRP, one of two things will happen. If the component is in the working state,

then the transition at the bottom of the PN shown will switch and clear the

inspection place. If the component is failed, then the inspection will switch the

repair transition and the token will return to the “A up” place.

Note that if the component has scheduled life replacements, then as explained in

section 6.3.5, it will have had a replacement place created. However, the addition of

the inspection place enabling the repair/replacement transition does not affect the

SLR PN, or vice versa. There would usually be an inhibitor arc between “A Dn” and

the MRP complete transition, as shown in Figure 6.10, but this is deleted and an arc

leads instead from the inspection place. This is because a failure may be carried

through an MRP if an inspection on a failed component is not yet due.

Component with parent LRI

A component which is part of a LRI will not typically be replaced individually, but

instead when the overall LRI requires replacement. Section 6.3.4 explains how a net

for a component LRI member is generated, and how they interact with each other.

Requiring the component to undergo an inspection complicates the net further,

depending on whether the component is a direct part of a LRI, or a parent system is.

If the component is a direct member of a LRI, then the net as exemplified in Figure

6.25 applies.

MFOP Active MRP Active Next MFOP

A DnA Up

Inspection

 - 170 -

Figure 6.25 – Inspection for Component in LRI (Direct Member)

The Figure shows, in grey, the standard PN for a component LRI member. Its

“down” place inputs to the LRI (whether this is via AND, OR or vote logic does not

affect the inspection net), while the LRI place forces replacement when marked.

The inspection place inhibits the “MRP Complete” transition as explained above,

and it outputs to three different transitions. As the component is a direct member of

the LRI, its input to it is based on the component having failed. However, its failure

is not revealed until the inspection has taken place, and therefore an arc must lead

from the inspection place to the LRI input transition used by the component.

The two other transitions to which the inspection place outputs remove its token

based on the LRI having been replaced, but due to a component failure, and an

inspection of the component revealing that it is still operational.

If the component has a parent system which is a direct member of a LRI, then the

component will undergo replacements, but will not have an input to the LRI

directly. It has been considered that if a component is specified to undergo

inspections independently of a parent system, then the component must be able to

be replaced by itself, in addition to being part of a LRI. The PN for this is shown in

Figure 6.26.

MFOPs Active MRP Active Next MFOP

Inspection

A Up A DnA Repl.

LRI

 - 171 -

Figure 6.26 – Inspection of Component with LRI (Indirect Member)

The Figure is almost identical to Figure 6.25, but for the difference of one

transition: the LRI input transition, at the right of Figure 6.25, is not shown, as the

component does not directly input to the LRI. Instead, a transition which allows the

token to return directly from “A Dn” to “A Up”, without going through the

replacement place, is shown. This is enabled by the MRP Active place, A Dn and

the inspection place, and inhibited by the LRI place, so that if the LRI is due to be

replaced, this is the superior condition. If an inspection during the MRP finds that

the component is failed, it is returned immediately to the working state.

System with no parent LRI

Inspections of systems which are not part of a LRI do not have an immediate effect.

If a failure of the system is detected, then the system as a whole cannot be simply

removed and replaced, as it is not part of a LRI, and so the model assumes that the

system’s components are in different physical locations in the platform. Instead, the

system’s inspection must lead to further inspections of components within the

system, as the system cannot be repaired until the components within it are repaired.

The PN for this case takes this consideration into account, as shown in Figure 6.27.

MFOPs Active MRP Active Next MFOP

Inspection

A Up A DnA Repl.

LRI

 - 172 -

Figure 6.27 – Inspection of a System with No LRI

The Figure shows the failure place for System X, and an inspection place

accompanying it. The transition labelled ‘1’ in Figure 6.27 takes inputs from the

“MRP Active” place, System X failure and the inspection place (returning tokens to

the former two places). When components are inspected following the failure of a

parent system, it is transition 1 which provides the token to the components’

inspection places, as shown in Figure 6.32. Transition 2 removes the token from the

inspection place during an MRP if the system is found to be working.

System with parent LRI

A system which is part of a LRI can be set to be inspected at regular intervals. The

net which is created depends upon the logic used to decide whether the LRI should

be replaced. If, as shown in Figure 6.18, the system failure place inputs to the LRI

with an AND or OR logic, it will have a control place created for it. Upon being

marked for inspections, the control place is converted to an inspection place. This is

done as shown in Figure 6.28 below.

X Failed

MFOPs Active MRP Active Next MFOP

Inspection

2

Phase PN

Component PN

 - 173 -

Figure 6.28 – Inspections on System with LRI (AND/OR Logic Input)

In the Figure, an input & inhibitor arc is shown greyed out between the inspection

place and transition 2. This is the arc as created for the control place in Figure 6.18,

which is now the inspection place. This arc is deleted from the net, and an arc

leading from the inspection place to transition 2 replaces it. This new arc sets the

inspection place as only allowing the “System X failed” place to input to the LRI

place when the inspection is due. Transition 1, which removes the token from the

inspection place when X is found not to have failed, is newly enabled by the MRP

Active place. Finally, the inspection place is set to inhibit the “MRP Complete”

transition in the Component PN.

If, instead, the logical input to the LRI is a m-out-of-n vote gate, then the input

transition to the LRI Vote gate will already have had a control place created. This

cannot be converted into an inspection place; a new place is created instead. As

shown in Figure 6.29, this is set up in a very similar manner to Figure 6.28: the

inspection place outputs to a transition (1) which removes the token in an MRP if

the system X is found to be working. The transition (2) which inputs to the LRI vote

place also now takes an input from the inspection place, and is enabled by the MRP

Active place.

X Failed

MFOPs Active MRP Active Next MFOP

Inspection
1

2

Phase PN

Component PN

LRI

 - 174 -

Figure 6.29 - Inspections on System with LRI (m-out-of-n Vote Logic Input)

However the inspection place is applied, there must be conditions set to allow the

model to know when an inspection is required. For this, there are three inspection

schedules provided:

- After a user-defined interval tI

- After f MFOPs have been performed

- Once a parent system has been inspected and found to have failed

These three schedules are rendered in PN form as shown below.

Inspection after Time Interval

Figure 6.30 shows how the inspection place is marked when it is set to be performed

after a given time interval. A timed transition is created, with its distribution set to

be deterministic and the delay to that specified by the operator. This transition is

enabled by the “MFOPs Active” place in the Component PN, so that whenever the

platform is undergoing MFOPs, the transition will be enabled and waiting for the

time delay to expire. The transition inputs to the Inspection place (which also

inhibits it, so if an inspection is due because of another schedule, the transition is

disabled). Whenever the time expires, an inspection will take place in the next

MRP.

X Failed

MFOPs Active MRP Active Next MFOP

Inspection

2

Phase PN

Component PN

LRI Vote
Place

Vote Control
Place

m

 - 175 -

Figure 6.30 – Inspection after Time Interval Figure 6.31 – Inspection after f MFOPs

Inspection after MFOPs

Figure 6.31 shows the PN method of modelling inspection after a given number, f,

of MFOPs. Every time the “MFOP Complete” transition switches from a completed

MFOP to an MRP, a token is also placed in the “MFOP Counter” place. When f

tokens have been counted in that place, indicating that f MFOPs have completed,

another immediate transition switches, removing those tokens and placing one in the

inspection place.

Inspection after Parent System Failure

If a failure is detected or revealed in an important system, a typical procedure would

be to investigate further to find the reasons for the fault. This revelation of failure

could, therefore, cause a child system or component to be inspected. If an item is

specified to have this type of inspection, it can be modelled in PN form. There are

two cases within this scenario: where the parent system is itself inspected, and

where it is not. If it is inspected, then the inspection place for the child item is

connected to the transitions created for the parent system to pass on the noted failure

– these are shown as transition 1 in Figure 6.27 and transition 2 in Figure 6.28 and

Figure 6.29. Figure 6.32 below shows how the net is created to model this.

Inspection

MRP Active

MFOP
Counter

MFOPs Active

Inspection

MFOPs Active

 - 176 -

Figure 6.32 – Inspection after Parent System Failure Found

In Figure 6.32, the transition mentioned above inputs to the “Child Inspection”

place when, in an MRP, an inspection of system X has found a failure. If the child

system or component is a member of a LRI, it will not inhibit this transition, while it

will do so if it is not a member of a LRI. As such, the inhibitor arc is shown in grey

in Figure 6.32. In order to prevent the child inspection place being marked for

inspection several times, another transition is created to remove any tokens in the

child inspection place when a failure in system X is found during an MRP. This is

shown at the bottom of the figure.

If the parent item is not inspected, then the inspection of the child depends directly

upon the failure of the parent item. If the parent item has a sensor attached to it, the

marking of the “failure sensed” place (as shown in Figure 6.23) is used to trigger

inspection in the child; if not, the system failure place is used. The nets are created

as shown in Figure 6.33.

Figure 6.33 – Inspection after Parent System Failure

When the place representing either “System X failed” or “System X failure sensed”

is marked, this will mark both the inspection place of the child item and a control

place, provided that neither of these are already marked. When an MRP next takes

MFOPs Active

X Inspection

MRP Active

X failed

Child
Inspection

Next MFOP

Control
Place

X failed/
X failure sensed

Child
Inspection

 - 177 -

place, the child item will be inspected for failure. If the control place is marked and

the failure or failure sensed place is newly unmarked, a second transition removes

the token from the control place.

The inspections modelling methodology has been designed to be compatible with an

item having multiple inspection schedules. If it has more than one way of

establishing whether it should be inspected, there is still only one inspection place,

but different ways of inputting to it are created.

Being able to detect item failures in the ways outlined above provides a great deal of

control over when items can be replaced and how detected failures can impact on

current and future missions. One of the major applications of these diagnostic tools

is the ability to bring online redundant items. This is expanded in the following

section.

6.3.7 Redundancies

Redundant items are often put in systems in order to provide an extra degree of

reliability – if the primary item fails, the redundant item is brought online to

continue its function. The nature of redundancies is such that a group of components

within a system are considered to be either online or offline, whenever that system is

in either of those states. Components which are offline are further specified as

having either cold, warm or hot failures. These relate to the component’s failure rate

being zero, reduced, or that of the online component respectively.

Redundancies are simulated in the model in two ways. They can either be manual,

where an operator has manual control over bringing the redundant item online; or

automatic, where a sensor system detects the failure and acts accordingly. The

former is subject to error in that the operator may fail to bring the redundant item

online, while the latter will fail to occur if the sensor has failed. Failure to bring a

redundant system online is the equivalent to that system having failed, and so this

must also be handled by the PN model.

 - 178 -

In the explanation below of how PNs are created to represent redundancies, a

standard nomenclature is used. ‘X’ refers to the item which, upon failure, requires a

redundant item ‘Y’ to become operational. Places are used in each redundancy net

to represent:

- System X failure

- System X/Y operational (usually abbreviated in diagrams to “X op” or “Y op”)

- Redundancy successfully/unsuccessfully switched (written in diagrams as

“Yes” or “No”)

- System Y not operational (“Y not op”)

Each component in an item related to a redundancy will have its main failure

transition (or transitions, if it has dependencies on other components, as outlined in

section 5.2.1.2.1) enabled by the item’s operational place. If the component has

warm or hot failures when offline, another failure transition will represent this, and

will be inhibited by the operational place. Figure 6.34 shows this.

Figure 6.34 – Operational System Affecting Component Failure Transition

If the redundancy is manually switched over by an operator, then a level of human

error will creep into the action. Any failure by the operator to correctly activate the

redundant item will leave it unable to perform the function it is required to. Thus,

the item can be considered to have failed. The process of manually switching

between the primary item and the redundancy is modelled by the PN demonstrated

in Figure 6.35.

A
Up

B
Up

A Dn

B Dn

X
Op

 - 179 -

The PN shows six places and nine transitions. The left-most place, “X failed”

enables transition 1 when it is marked. If either of places “Yes” or “No” are not

already marked, transition 1 will switch and, as it is a probability transition, will

mark one of them depending on the value of P(Y) and a random number. If the

token is placed in “Yes”, this means the switch to the redundant item has been

successful, while “No” being marked indicates the opposite.

Figure 6.35 – Manual switchover from Item X to Item Y

If “Yes” is marked and system X is still operational, transition 4 will be enabled and

“X Op” will pass its token to place “Y Op”, indicating that item X is now turned off

and item Y is switched on. As mentioned above, this will inhibit the online failure

transitions of the components in X and enable those in Y. Similarly, if “No” is

marked, X Op passes a token to “Y Not Op”, and any online failure transitions in Y

will not be enabled.

Of note are the arc multiplicities leading to and from places “X Op”, “Y Op” and “Y

Not Op”. These are marked oX or oY as appropriate, and represent the number of

redundant outputs from X and Y respectively. That is, if X has one redundant

output, oX = 1. If Y were to have two further redundant items for its own failure, Z1

and Z2, oY = 2. If Y has no outputs, oY = 1. The reason for this is that each item X

with oX redundancies Y1,Y2,…,
X

Yo must output one token to enable each of these,

and so must contain oX tokens to switch each of them on upon its failure.

X
Failed

Yes

No

X
Op

oX
oX

oX

oX

Y
Op

Y Not
Op

oY

oY

oY

oY

oY

oY

oY

oY

P(Y)

1-P(Y)

 - 180 -

If X is repaired at any point, the “X failed” place will become unmarked and,

depending on whether “Yes” or “No” was originally selected by transition 1, either

of transitions 2 or 3 will be enabled, unmarking the relevant place. This, in turn, will

enable either of transitions 6 or 8. If the redundancy switch was successful,

transition 6 will switch, removing all tokens from Y Op and placing one in X Op.

When X Op contains oX tokens again, it inhibits these transitions. “X Failed”

inhibits the transitions allowing return from “Y Not Op”, so that X cannot become

operational while it remains failed. Transitions 7 and 9 exist to allow Y Op to be

switched off if X Op is still marked, for some reason, though this should only

happen if item Y can be switched on by more than one primary item.

Similar to the PN in Figure 6.35 is that for a sensed switchover to a redundant item.

In this case, however, the “sensor failed” place acts as the “No” condition, while “X

Failure sensed” is the “Yes” condition. No probability transition is needed as the

function of the redundancy is based purely on the sensor working properly. Figure

6.36 shows this.

Figure 6.36 – Sensor Switchover from Item X to Item Y

In the Figure, transitions 1 and 2, and the arcs between “X failed”, “X failure

sensed” and “sensor failed” are exactly as shown in Figure 6.23. If the sensor fails,

and then X fails, transition 4 will be enabled and X Op will be unmarked, while Y

Not Op is marked with oY tokens. This will only be unmarked when “Sensor

X
Failed

X Failure
Sensed

Sensor
Failed

X
Op

oX

oX

oX

oX

Y
Op

Y Not
Op

oY

oY

oY

oY

oY

oY

oY

oY

 - 181 -

failed”, “X failed” and “X failure sensed” are all unmarked, with a token returning

to X Op. If a failure in X is detected, accurately or spuriously, transition 3 marks Y

Op and unmarks X Op.

The nets shown thus far model the ability of components to be online or offline, and

the switching from an item X to an item Y, either manually or automatically. A

complication of this, however, is that item Y may fail while it is operational.

Similarly, Y may be repaired in an MRP, while X is not repaired. Another scenario

already mentioned is that where Y is not activated, and thus is counted as having

failed. In order to propagate the failure onto higher events, there must be interaction

between “Y not op” and “Y failed” places.

Figure 6.37 – Failure of Redundancy for Component and System

Figure 6.37 shows two similar nets which handle the issue of Y failing to be

switched on. The left-hand PN is that for a component. If component Y is a

redundant item, the place representing “Y failed” outputs to a transition which

marks “Y not op” with oY tokens, as long as Y Op is not marked. The arcs from “Y

failed” propagating its failure to higher events are transferred to the Y not op place

instead. If Y is a system, as shown in the right-hand PN in Figure 6.37, then the

marking is the other way around: Y not op marks Y failed instead. The reason for

this difference is that if the component failure place were to be marked by the Y not

op place (which is the simpler of the two options), there would be two tokens in the

component PN (one in the “up” place, one in the “down” place), which must is a

prohibited condition. This is not an issue for the system failure place, however.

Y Not
Op

Y
Op

Y Failed

oY oY

Y Not
Op

Y Failed

oY oY

Y Op

 - 182 -

The “Y op” place inhibits the transition in either net in Figure 6.37 because if it is

marked and a failure occurs in Y, it must then switch to “Y not op”. Figure 6.38

shows how this simple switching is performed. If the opposite is true, and neither

the “No” place nor the “Y failed” places are marked, and yet the “Y not op” place

is, then it is set to switch back to Y op as shown in Figure 6.39.

Figure 6.38 – Failure in Operational Item Y

 Figure 6.39 – Repair of Failed Item Y

Another issue which arises is when a system with a redundant backup system

contains sub-systems which themselves have redundancies. The issue concerns the

components within the systems. Typically, a primary or redundant system will

enable or disable the online and offline transitions of all sub-components, even

those that are contained within sub-systems, as they are all turned on or off at the

same time. If, however, a sub-system has a redundancy, then its sub-components

may be switched on or off either when the main system or the sub-system switches

to the redundancy.

Consider the platform shown in Figure 6.40. It consists of two parallel systems, A1

and A2, of which A1 is the primary system and A2 is the secondary, redundant

system. If A1 fails, all sub-systems and components are switched off and A2

becomes online, along with all its sub-items. A1 contains three subsystems: B1 and

B2 are in parallel, with B2 acting as the redundant system for B1; C is independent.

A2 contains two subsystems with no redundancies. Each subsystem contains two

components in series.

Y Not
Op

Y
Op

Y Failed

oY oY

No

Y Not
Op

Y
Op

oY oY

Y Failed

 - 183 -

Figure 6.40 – Example Platform with Redundant Systems

At the start of a mission, A1 is online and A2 is offline, along with sub-systems D

and E, and components Q, R, S and T. Within system A1, B1 and C are initially

online, while B2 is offline. If B1 fails, B2 is turned on and continues its function,

allowing A1 to continue operating as well. If C fails while B1 is operational, A1

fails and B1 is turned off. Thus, components Z and Y are dependent on the

operation of both B1 and A1 for being online or offline.

It is undesirable to have more than one “System Operational” place enable or inhibit

components’ online and offline transitions, as shown in Figure 6.34. This is

because, to continue the example used above, while the online transitions of Y and

Z would rightly be disabled whenever either of A1 or B1 were disabled, the offline

transitions would need both of them to be inactive to be enabled. So, if B1 failed

and switched to B2, its components’ offline transition would be inhibited as A1 is

still operational. The solution to this problem is, firstly, to allow A1 to control the

marking of the operational places of both B1 and B2, such that they can only be

marked when A1 is marked. Secondly, if any component is controlled by two

redundant systems in a hierarchy, as shown in Figure 6.40, only its most immediate

parent system with redundancies is allowed to operate its online and offline

transitions.

B1
C

D E

Z Y

V U

T S R Q

A1

A2

B2

W X

 - 184 -

For instance, the platform in Figure 6.40 would allow the “System A1 Operational”

place to control only the components in System C, U and V. Components Y and Z

would be controlled by “B1 Op”, and W and X by “B2 Op”. The marking of child

operational places by the parent operational place is performed as shown in Figure

6.41. If the parent system operational place (“P Op”) becomes marked, an

immediate transition will copy this to the child item operational place (“C Op”) as

long as it is not already marked with oC tokens and is not failed. Once again, the

arcs have multiplicities related to the number of outputs of the parent and the child.

A second transition removes the tokens from C Op when P Op is marked with less

than oP tokens.

Figure 6.41 – Marking of Child Op places by Parent Op place

A point which has already been mentioned briefly is that an item can have more

than one redundancy. Similarly, an item can be the redundancy for more than one

input. In the former case, the places representing “X op”, “X failed”, “Yes”, “No”,

and the transitions which affect just these places (numbers 1, 2 and 3 in Figure 6.35;

numbers 1 and 2 in Figure 6.36), are not duplicated. Places for “Y op”, “Y not op”,

and transitions inputting and outputting from these are created for each redundant

item, if they do not exist already. These transitions are numbers 4-9 in Figure 6.35

and 3-8 in Figure 6.36. If an item is being used as a redundancy for multiple

primary items, its “Y op” and “Y not op” places will be reused, as will the

transitions in Figure 6.37 and Figure 6.39. Transitions 4-9 in Figure 6.35 and 3-8 in

Figure 6.36 will be duplicated for each primary input to the redundant item.

In summary, a method has been shown which allows creation of Petri nets to model

the situation where a system or component has a redundant item which can perform

oP oP

oC

P Op

oC

C Op C Fail

 - 185 -

its function in the event of its failure. There is the capability to model any

combination of system and component, with multiple inputs or outputs possible.

Redundancies can be switched either manually, with a penalty relating to the

probability of failure to switch on the redundant item; or automatically through

sensors, with a penalty relating to the potential for failure of the sensors.

6.3.8 Prognostics

Prognostics have been identified as one of the key areas to help bring about a useful

duration for an MFOP. Prognostic technologies attempt to accurately predict the

future failure of components or systems. This can be through a health monitoring

system, which uses sensors to keep track of the stresses on and lifetimes of items, or

to measure the deterioration in output of a system. Another option is inspection,

where maintenance engineers visually examine an item to verify its level of wear. A

third part of prognostics is Scheduled Life Replacement, where an item is

automatically replaced after a certain lifespan regardless of how worn it is. This was

explained in section 6.3.5.

Modelling prognostic systems introduces some complexities – in real life,

components have masked future failure times, and the exact time of failure is

impossible to predict. However, during their life, components may give signs which

indicate how they cope with the stresses they are placed under, and thus how they

may last into the future. Warrington et al discuss one method of modelling

prognostics, as included in their URAM simulation model [23]. Components which

can be monitored have a prognostic indicator which allows an estimate of their

future failure time to be made. However, the accuracy of this prediction is based on

the skill and experience of the technician inspecting the item. The prognostic model

used in URAM takes account of this, assigning a probability value to the event of

the prognostic indicator being successfully noted or not. This value increases over

time, as the indicator becomes more difficult to miss. Also accounted for is a

minimum time before which the indicator cannot be noticed, known as a prognostic

horizon.

 - 186 -

It is difficult, however, to reconcile this concept with randomly sampled failure

times within a computer simulation model. As stated above, it is expected that the

prediction of a future failure time on the simulated time to failure. In a real situation,

however, the future failure time is not known – the only clues to this figure are the

levels of wear which occur. In order to accommodate this fact, therefore, a different

model to Warrington et al has been proposed.

The prognostic model can be broken down into several parts:

• Creating ‘wear’ in components – this wear can be either physical,

particularly in terms of mechanical items, or it can be simply a way of

expressing deterioration in an item’s performance. The term ‘wear’ is used

to denote any performance measure or physical characteristic which would

allow prediction of a component’s future life.

• Establishing what the wear level on the component is, through inspection or

diagnostic systems.

• Using the amount of wear on a component to predict what life it is likely to

have left.

• Considering the missions within the MFOP and the revealed system and

component failures together with the predicted failure times for prognostic-

monitored components to establish whether a mission is likely to fail

catastrophically.

• If a catastrophic failure is found to be imminent mid-mission, abandoning

(and therefore failing) the current MFOP to preserve the platform.

Alternatively, when the platform is analysed during an MRP, looking at

possible future failures and replacing them before they can cause failures in

the next MFOP.

6.3.8.1 Modelling Component Wear

The proposed method of modelling prognostics considers each item which is

monitored to have at least one level of wear specified for it, with each level

corresponding to a defined portion of the lifetime of the component. For instance, a

given component may have the following levels of wear:

 - 187 -

• Level 1 (Early wear/bedding-in) – 0-10% of item lifetime

• Level 2 (Entering late life) – 70-80%

• Level 3 (Failure imminent) – 90-99%

Each level of wear, as seen, corresponds to a percentage of the lifetime of the item

in which it tends to occur. These levels of wear, when they occur, can then be used

to make pessimistic estimates of when the future failure will occur. The model

considers the probability of the wear level occurring at any time to be uniform

within the percentage bounds stated, and zero outside those levels.

The percentage values pertaining to each level of wear are inputted to the model.

This can then use a randomly sampled number between 0 and 1 to generate a

percentage point of the component’s life at which it will enter that level of wear, as

Figure 6.42 shows.

Figure 6.42 – Sampling a Random Point of Component Life for Wear Level

In Figure 6.42, a number, X, has been randomly generated and is set to 0.647. If the

range between
al

P and
bl

P is considered as a unit, then the random number defines

a proportion of that unit. The time at which the wear level is sampled to occur is

therefore as shown in equation 6.1.

() ()
cccaab RRFllll tttPPPXt +−⋅+−⋅=)(

6.1

% of Life 20% 40%

X = 0.647

0 32.94%

Period of
component life for

level of wear to
occur

20 + 0.647×(40-20)
al

P
bl

P

 - 188 -

Using this formula gives a progression through wear which has a degree of

randomness, and is linked to the component’s life. In the example shown in Figure

6.42,
al

P = 20% and
bl

P = 40%. The percentage life at which the component will

switch to the wear level is therefore 0.647 × (40-20) + 20 = 12.94 + 20 = 32.94%.

When multiplied by the component’s lifespan and added to the last repair time, the

time to enter the wear level is found. This time is used in a PN which allows the

component, when operational, to build up wear.

Figure 6.43 shows the standard “up” place for a component as being connected to a

timed transition. Whenever the component is operational, this transition will be

enabled, and the time generated for it to switch will be equal to that calculated by

equation 6.1. Whenever it does switch, an additional token will be deposited in the

“Wear Level” and “Control” places, indicating the current level of wear of the

component. Once the maximum number of wear levels, nl, is reached, an inhibitor

arc with that multiplicity prevents the transition from switching.

Figure 6.43 – Modelling Wear in Components

6.3.8.2 Diagnosing Wear Level

Once a method of modelling wear in components is established, a further issue is

that of discovering what the wear level is. As mentioned in section 6.3.6, there are

two main ways of diagnosing faults in a system: through sensors or inspection. This

also applies to discovering wear in a component, and affects not just the net which

is created, but also the way in which the prognosis can be dealt with.

Compt
Up

nl

ControlWear
Level

 - 189 -

If sensors monitor the wear in the item, then the wear level will be discovered

immediately, during an MFOP, and action can be taken to mitigate it should an

imminent component failure be important enough to threaten the mission. The only

issue threatening this capability is the operation or failure of the sensor component.

Figure 6.43 shows how this is applied in PN form. The “sensor failed” place for the

sensor component inhibits the wear level timed transition, so that the detected level

of wear, equal to the number of tokens in the corresponding place, stays equal to the

last updated value. As the component’s failure time gets closer, no more wear is

detected, and so no mitigating actions can take place unless any predictions from

wear that has been found are accurate enough to prevent mission failure.

If, instead, the wear levels are found through inspection, then as inspections can

only take place during an MRP, there are two types of wear level – the state in

which the component is in, in real-time, and the state of which the operator is aware,

for which plans can be made. This difference between actual and detected wear

levels is shown in Figure 6.43. In the Figure, one place representing both types of

wear level is shown. The timed transition inputting to “Wear Level (Actual)” is left

free to switch, as long as the control place is not inhibiting it. This place cannot

cause any actions to take place, however. Only once an MRP is taking place and an

inspection is due will the current wear level be discovered and component

replacements are able to take place. The transition which removes the inspection

Compt
Dn

nl

Control
Wear
Level

(Actual)

Inspection
Due Wear

Level
(Detected)

MRP
Active

Figure 6.43 – Inspecting
Component Wear Level

through Inspection

Compt
Up

Compt
Up

Compt
Dn

nl

ControlWear Level
(Detected)

Sensor
Failed

Figure 6.43 – Sensor Detecting
Current Wear Level

 - 190 -

place’s token, should the component be found to be operational, is inhibited by the

Wear Level (Actual) place, to prevent the loss of the token occurring before the

inspection place can move the tokens from Wear Level (Actual) to Wear Level

(Detected).

6.3.8.3 Predicting Component Failure Times

The purpose of creating a model for component wear is to allow the level of wear to

provide information about the probable life of the component. Calculations can be

made regarding the level of wear and the time at which it was detected in order to

create bounds for the component failure time. These calculations take into

consideration a confidence interval in order to provide a value for component failure

time.

The simplest situation is where a component’s increase in wear level is detected by

a sensor. Note that “wear level” refers to the category of wear of the component (a

discrete level), rather than the continuous amount of wear on the component. If a

component’s wearing is sensed, then the time at which the present wear level

category was entered is known very accurately. The formula which calculates the

lower and upper bounds for the component failure time,
aFt and

bFt respectively,

where the time of entering the wear level is known accurately is shown in equation

6.2 below.

 −
×=

 −
×=

=

=

al

l

bb

bl

l

aa

n

Rnl
FF

n

Rnl
FF

P
tt

tt

P
tt

tt

,min100

,max100

6.2

Setting initial values for
aFt and

bFt as being zero and infinity respectively, equation

6.2 sets their latest values to the most accurate of either the current value, or a new

value calculated with the latest information. This new value is the component’s age

at entering the wear level divided by one of the bounds to reach a minimum and a

 - 191 -

maximum for the failure time. As an example, consider a component, operational

since time t=0, whose wear levels are specified to be:

- Wear level 1 – 30-40%

- Wear level 2 – 50-65%

- Wear level 3 – 78-92%

The component is sensed as entering wear level 1 after 34.092 hours. This marks the

bounds of its failure time as lying between
aFt and

bFt as calculated below.

hours 64.113
30
092.34,min100

hours 23.85
40
092.34,0max100

=

∞×=

=

×=

b

a

F

F

t

t

These bounds for the failure time of [85.23,113.64] hours are fairly loose, mainly

due to the early time and the bands for wear level 1. It is usual for the failure time to

become more accurate and refined as the component ages. A confidence interval

specifies the point at which we are sure to that proportion that the component will

not have failed before. For instance, if the confidence interval is specified to be

95%, then this suggests that we can be 95% certain that the component will not fail

before 86.65 hours in this example, as 85.23 + (113.64–85.23)×(1–0.95) = 86.65

hours.

If the component enters wear level 2 after 66.86 hours, the bounds for the failure

time are refined as shown below:

()

() hours 64.11372.133 ,64.113min
50

86.66100 ,64.113min

hours 86.10286.102 ,23.85max
65

86.66100 ,23.85max

==

 ×=

==

 ×=

b

a

F

F

t

t

Thus the earlier failure time bound has been refined substantially, but the later time

has remained the same. The confidence interval of 95% suggests a new estimated

 - 192 -

failure time of 103.40 hours. Calculating results for wear level 3 may lead to further

refinement, and thus allow much more confidence over abandoning an MFOP at a

particular time, or replacing the component in an MRP before it has had the chance

to fail.

While sensed component monitoring can lead to good levels of accuracy in

predicting component failure time, it is not so straightforward when component

wear is only discovered through inspections. In this scenario, component failure

times are predicted similarly, but with less accurate information. Consider the

example used with a sensed component above, but instead of the wear level being

discovered immediately, it is found through inspections at regular intervals of 40

hours.

As above, the component enters its wear level 1 at time 34.092 hours. At the

inspection at time 40 hours, the component is found to have entered wear level 1.

The earliest point at which it could have entered this is at the very beginning of the

component’s life, and the latest point is just before the current inspection. To find

the bounds for the component failure time, equation 6.2 can be adapted to take these

considerations into account:

 −
×=

 −
×= −

a

z

bb

b

z

aa

l

RI
FF

l

RI
FF

P
tt

tt

P
tt

tt

,min100

,max100 1

6.3

From equations 6.3, the bounds can be calculated as accurately as possible:

hours 33.133
3.0

40 ,min100

hours 0
4.0

0 ,0max100

=

∞×=

=

×=

b

a

F

F

t

t

 - 193 -

A problem with the calculation above is that, obviously, if the component’s failure

time were 0 hours, then the component would have failed immediately, and not be

at wear level 1. A limiting factor on the minimum value, therefore, is whether or not

the suggested failure time would lead to entering wear level 2 before the current

inspection. This limiting condition can be expressed as shown in equation 6.4

below.

 −−
=

+

−

b

z

b

z

aa
l

RI

l

RI
FF P

tt
P

tt
tt

1

,,max 1

6.4

Given that the earliest time that the component could enter wear level 2 is negligibly

after the current inspection time, the earliest time that this suggests for the

component failure time is hours 54.61
65
40 0, ,0max100 =

×=

aFt . The final term in

equation 6.4 states this as the inspection time divided by the upper percentage

bound for the next wear level. The bounds of (61.54,133.33) suggest a 95%

confidence interval of failing after 65.13 hours.

At the next inspection, at 80 hours, the component is in wear level 2. The

predictions for component failure time come out as

()

() hours 33.133160 ,33.133min
50
80100 ,33.133min

hours 96.8696.86 ,54.61 ,54.61max
92
80100 ,

65
40100 ,54.61max

==

 ×=

==

 ××=

b

a

F

F

t

t

which suggests a 95% confidence interval failure time of 89.28 hours. Given that

the next MFOP is likely to take longer than 9.28 hours to complete, if the failure of

the component will cause mission failure, then the component would be replaced

during the MRP in which the inspection is taking place. The assessment of whether

components are critical for mission and MFOP operation is covered in the next

section.

 - 194 -

6.3.8.4 Assessing MFOP Criticality

Once predictions have been made for all components whose wear levels have

updated, it is important to check whether the new information suggests that the

current mission or MFOP is under threat. There is a hierarchy of desired outcomes

from them, which affects how the prognostic systems are applied. The best result

from an MFOP is the successful completion of all missions within it. If, however,

the MFOP is destined for failure, then abandonment of a mission before it has begun

(for aircraft, this will be during the safest point of a mission, before take-off) is best.

During a mission, it is most important to prevent catastrophic failure, and loss of the

platform, so that it can carry out more missions in the future. If the current mission

must be abandoned to do this, then this is the best option.

In order to best protect an entire MFOP, an assessment of component wear, taking

into account revealed and sensed failures which have not been repaired, for each

individual mission is performed during the MRP preceding it. This forces the

replacement of any component which is considered critical. During an active

MFOP, criticality is only tested for the current mission. If the assessment results in a

possibility of completing the current mission without catastrophic failure, then the

mission is not abandoned. It will only be aborted once it is considered that there is

no way to avoid total loss. This criticality assessment is also performed at the start

of a mission, in order to prevent it taking place if the platform is not in a healthy

state.

The criticality assessment consists of three main parts:

1. Assigning predicted durations of each phase in the mission

2. Establishing what the most likely mission phase profiles are

3. Estimating whether each phase in the mission is likely to fail or not.

Appendix A.4.2.4 explains the methods by which the model assesses the criticality

of the current mission and MFOP in more detail. Because phases can be inserted or

chosen to follow the current phase, as explained in sections 6.2.12 and 6.2.13, this

can lead to complicated or multiple possible mission profiles. The model considers

 - 195 -

each phase insertion, choice and abandonment and predicts the mission profile

based on how they currently stand.

If, however, there is a probability-based phase choice at some point within the

mission, this leads to the creation of multiple mission profiles, each with a different

probability attached. Mission profiles with a probability of less than 1 × 10-6 are

discarded, while in the others, the phase durations are summed to find the estimated

duration of the mission. The mission profiles are then sorted in order of length and

probability of occurrence. The probabilities of each mission profile are added

together with increasing duration and, once the summed probability is greater than

the confidence interval, mission profiles with longer durations are discarded.

The model then takes each phase in each mission profile in turn. Taking into

account revealed and sensed component failures as well as components predicted by

the prognostics model to have failed by the time that phase has ended, decides if any

phase in that profile will have failed, thus failing the mission profile. Depending on

the predictions made, the model will either take immediate action to abandon the

current mission, replace all critical components, or do nothing. The method by

which the PN performs these actions is explained in the next section.

Usually, once a component gets to a certain wear level, it would be replaced at the

next MRP – this is Condition Based Maintenance. The prognostic model used here

makes predictions which consider the importance of a component to a mission.

Hence, if the component’s failure in the current mission or forthcoming MFOP is

calculated to be critical, it will be repaired in the next or current MRP. If it is not,

the platform is considered to be capable of carrying the potential failure, and it will

be repaired once it has actually failed.

6.3.8.5 Modelling Actions Taken Based on Predictions

There are, as stated above, two main actions that can be taken if component failures

are deemed to be imminent. If the component failures are predicted to cause mission

and MFOP failure before they can be satisfactorily completed, then they will be

abandoned. If this occurs, or if during an MRP components are found to be critical

for any part of the next MFOP, they are replaced.

 - 196 -

In order to perform any of these actions, the wear level place

shown in Figure 6.43 is linked to a timed transition, which inputs

to a place called “Action”, as shown in Figure 6.43. Only one arc

leads from the wear level place to the timed transition and back,

in order to enable it, rather than nl arcs. This is because the

action place can be marked even if the wear level place only

contains one token, if the model predicts the component failure

to occur before the end of the current mission.

The action place sets off component replacement during either an MFOP or an

MRP. The way it does this varies according to whether or not the component is a

member of a LRI. If it is not, a replacement place and transitions are created as in

Figure 6.17, with the Action place acting as the replacement trigger. Figure 6.44

shows this in more detail.

Figure 6.44 – Prognostics Prompting Component Replacement

In the Figure, the action place is connected to the immediate transition to the top-left

of the “Up” place via an input arc and an output arc. Whenever the action place is

marked and the component is operational, the component will be replaced during

the next MRP. If the component has failed, then the action place is likely to have

been marked if the component was critical for the MFOP. Either way, the failed

component will be replaced at the next MRP. If the component undergoes

MRP
Active

Up Dn

nl

Control
WL (D)

Action

Inspection

Repl

Wear
Level

(Detected)

Action

Figure 6.43 –
Action Place

 - 197 -

inspections, the inspection place will be an input to the repair transition shown to

the bottom-left of the “Dn” place. The transition immediately below this, which the

action place enables, is inhibited by the inspection place so that its token will be

used up in the next MRP.

The method by which the failed component is replaced is unimportant, either by

inspection or due to a prognosis. The transition which removes the inspection place

if the component is operational, shown in grey in Figure 6.44, is inhibited by the

action place (this is the same transition which is also inhibited by the “Wear Level

(Actual)” place, as shown in Figure 6.43.

If the component is an input to an LRI, then the PN for replacement is set up

slightly differently. The creation of an LRI will have already set the component up

for replacement, and if the component is a direct input to the LRI, then the

component failure place will have an input and an output arc to an LRI input

transition, as shown in Figure 6.18 and Figure 6.19.

Figure 6.45 shows the component with replacement net, and the prognostic net as

well. Similarly to the inspection place in Figure 6.44, the LRI place enables the

component repair transition and inhibits the prognostic transition allowing

component repair. In this case, however, the action place does not enable the

component replacement transition (to the top-left of the “Up” place). Instead,

whenever it is marked, it forces the LRI which the component is a part of to be

replaced, regardless of the state of the other members of it. The LRI will cause the

component to be replaced instead.

When the component replacement place is marked, immediate transitions are

enabled which remove the tokens from the action, wear level (actual), wear level

(detected) and control places. Each of these places inhibits the transition emptying

the replacement place, so they can each be cleared before the net moves on.

 - 198 -

Figure 6.45 –Component Member of LRI with Prognostics

The other action that the prognostic system can take if it predicts catastrophic

failure, is abandoning an active mission. Section 6.2.11 explains how, if specified

by the operator, a method to fail or abandon any phase in any mission is provided.

This general failure mechanism is used to allow the prognostic system to abandon

the mission. Regardless of whether the operator has included consideration of

general abandonment, a top event place for this eventuality, in addition to all of the

transitions which remove the place from the phase places, as shown in Figure 6.12,

is created anyway. When prognostics are specified for a component, a link is created

between the “action” place and the “General abandonment top event” place via an

immediate transition, as shown in Figure 6.46. This is inhibited by the “MRP

Active” place, so that the transition will not switch during an MRP, when a mission

cannot be abandoned.

Figure 6.46 – Prognostic Abandoning of Mission

To summarise, a method, procedure and set of PNs have been explained which

allow the model to consider prognostic systems, which predict the future failure of

Action

MRP
Active General

Abandon

Up
Dn

nl

Ctrl
WL (D)

Action

LRI

MRP
Active

Repl

 - 199 -

components and their effect on the platform. This allows the abandonment of

missions and the replacement of items before they are allowed to result in total loss.

6.4 Summary

This chapter has explained the creation of nets which simulate the behaviour of

systems undergoing MFOPs and phased missions. The modelling method presented

takes account of complex aspects of MFOPs and Phased Missions, including:

• The Petri nets are newly capable of modelling multiple platforms within a

fleet, multiple MFOPs and multiple missions. Missions and MFOPs can be

catastrophically failed or abandoned, with catastrophic failure leading to

total loss of the platform.

• A “general phase” set of fault trees can be provided, in order to allow a

mission or MFOP to be failed or abandoned in any phase.

• A mission need not consist of a simple linear progression from one phase to

the next. Phases may be inserted immediately, interrupting the current phase,

which resumes afterwards. Alternatively, the next phase may be chosen,

either randomly or resulting from the failure or operation of certain systems

or components, from an array of possible candidates.

• Discrete events are events which do not occur according to a probability-

time distribution, but in response to a stimulus. The stimulus may be any

event, such as the commencement of a particular phase, the failure of a

system or starting an MRP. When the trigger event occurs, the discrete event

either occurs or does not occur according to a set probability. This can then

feed into phase or general fault trees.

• In real life, components may be replaced when they have not failed. This is

modelled in the program by using a “component replacement” place. When

this is marked, the component’s time to fail is reset and a new one created

when the component is operational again.

• The function of replacing items regardless of being operational or failed is

used by a method of modelling Line Replaceable Items. These are batches of

 - 200 -

components on the same physical item, which are easily removed and

replaced, to provide a quick changeover during maintenance.

• Another complexity of MFOPs to be considered is Scheduled Life

Replacements. These force a component or LRI to be replaced in the next

MRP after a certain time.

• A method of modelling prognostic monitoring systems is presented. This

simulates the build-up of wear in components, and then uses that wear to

calculate predictions for their future failure. If this future failure is imminent

and critical for the MFOP, the current mission can be abandoned and the

component set to be replaced.

• Diagnostic modelling is provided in the form of “sensors”, which discover

failures and faults in real-time, during missions; and “inspections”, where

these are only found during the Maintenance Recovery Period. Finding these

failures can affect the replacement of components, systems or LRIs, and can

affect mission abandonment.

• Redundancies are items which take over the functionality of a specific

component or system whenever it fails. The capability for modelling this is

also included here.

All of these modelling methods have been implemented in a form which allows

production of results which describe the performance of the platform or fleet. This

is explained in Appendix A. The next chapter describes the application of the

proposed model to a life-sized system, and the methods by which suggested

improvements are evaluated for effectiveness.

 - 201 -

Chapter 7 Application of Model to Large System

7.1 Introduction

A modelling method has been created, both in theory and in the form of a software

tool, which allows the estimation of reliability parameters for a fleet of platforms

performing maintenance-free operating periods and phased missions. It is important,

however, to demonstrate the potential applications of this in the real-world industry.

One of the potential uses for it could be in the design stage of a new military

aircraft, to attempt to minimise the possibility of missions failing. Another is in the

proposed installation of systems designed to protect mission reliability onto a

currently operational platform.

In order to show some of the principles which may be applied when using the

method developed in this thesis, an example is given in this chapter which takes a

large, complex system architecture and attempts to reduce the MFOP, mission and

phase unreliability figures through the use of MFOP enablers.

7.2 Application to Previous Systems

Before being applied to a large system, the complex program was first used with the

three examples employed in Chapter 5. This was in order to establish that it was

producing verifiable results, and is consistent with expectations, giving a degree of

confidence that the results for more complex systems will also be accurate. The

reason for the reuse of these systems was because the nets produced by the complex

model do not exactly match those of the simple model explained in Chapter 5. For

instance, a net for a platform will be created featuring the MFOP sequence, and the

inspection procedure for the repairable system differs in the complex model. As a

result of the difference in the PNs, a comparison between the simple model results

and those of the complex model becomes necessary.

 - 202 -

7.2.1 Non-repairable Small System

The details of the non-repairable small system are given in section 5.3.1. These

details were inputted to the new model, and 10,000,000 simulations performed. The

results of the simulations from the complex model are compared to those of the

analysis and of the simple model, in Table 7.1. These results are the phase failure

probabilities.

Table 7.1 – Comparison of Model and Analysis Phase Failure Probabilities for Non-Repairable

System
Phase 1 2 3 4 5 6

Analysis 0.00225 0.03850 0.05107 0.00194 0.03452 0.05447

Simple Model 0.00223 0.03849 0.05111 0.00193 0.03443 0.05451

Complex Model 0.00224 0.03857 0.05096 0.00194 0.03453 0.05442

Per cent Error 0.258% 0.173% 0.216% 0.105% 0.036% 0.092%

Phase 7 8 9 10 11 12

Analysis 0.05210 0.00327 0.03271 0.05493 0.05302 0.00451

Simple Model 0.05213 0.00330 0.03280 0.05500 0.05298 0.00447

Complex Model 0.05209 0.00328 0.03270 0.05486 0.05302 0.00448

Per cent Error 0.027% 0.229% 0.031% 0.124% 0.008% 0.660%

The Table shows a high degree of correlation between the phase failure probabilities

given by the complex model and those from the analytical results. The highest error

is just under two thirds of a per cent, though this higher figure can be attributed to

the very low failure probabilities. In reality, the figures are very accurate.

7.2.2 Repairable Small System

Section 5.3.2 discusses a repairable system for which a Markov analysis method

was used to solve. These results were compared with a run of 10,000,000

simulations of the simple model. 10,000,000 more simulations were performed with

 - 203 -

this system using the complex model. The results from this are compared with the

previous sets of results as in Table 7.2.

Table 7.2 – Comparison of Model and Analysis MFOP Failure Probabilities for Repairable

System

MFOP
MFOP

Failure Prob.
(Markov)

MFOP Failure
Prob. (Simple

Model)

MFOP Failure
Prob. (Complex

Model)

Percentage
Error between

results
1 0.324730 0.324872 0.324961 0.0710%
2 0.333304 0.333222 0.333218 0.0258%
3 0.339405 0.339228 0.339415 0.0029%
4 0.324815 0.324865 0.324308 0.1560%
5 0.333167 0.332750 0.333617 0.1351%
6 0.339582 0.339362 0.339962 0.1120%
7 0.324777 0.323946 0.324464 0.0962%
8 0.333110 0.333117 0.332244 0.2600%
9 0.339528 0.339884 0.339519 0.0027%

10 0.324715 0.324741 0.324702 0.0039%
11 0.333333 0.333041 0.332512 0.2463%
12 0.339443 0.339061 0.341150 0.5030%

The Table shows, once again, a good degree of correlation between the complex

model results and those of the simple model and the Markov analysis. The highest

error is just over half a per cent, while most other errors are less than a tenth of a

percent. These figures are also very accurate, and lend yet more confidence to the

complex model.

7.2.3 Repairable Larger System

Section 5.3.3 describes a larger repairable system, featuring ten phases and ten

components. It has features such as phase abandonment and component

dependencies. 1,000,000 simulations were performed using the complex model

program, and these are compared to the results from the simple model in

Table 7.3 and Table 7.4.

The Tables show a good correlation between the two sets of results. The relative

error between every data point for the complex and simple model is less than 1%.

 - 204 -

There is one exception to this, the failure probabilities for phase 3, which have an

exceptionally low value.

Table 7.3 – Comparison of MFOP and Mission Failure Probabilities for Large Repairable

System
MFOP/
Mission

Simple Model
Failure Prob.

Complex Model
Failure Prob.

Failure
Prob. error

MFOP 1 0.11327 0.11346 0.1651%
MFOP 2 0.06858 0.06903 0.6461%
MFOP 3 0.04211 0.04243 0.7621%

Mission 1 0.03886 0.03916 0.7747%
Mission 2 0.04035 0.04046 0.2671%
Mission 3 0.04438 0.04418 0.4546%

MFOP/
Mission

Simple Model
Abandon

Prob.

Complex Model
Abandon Prob.

Abandon
Prob. error

MFOP 1 0.61805 0.61734 0.1146%
MFOP 2 0.86467 0.86420 0.0546%
MFOP 3 0.94240 0.94226 0.0155%

Mission 1 0.34237 0.34162 0.2184%
Mission 2 0.47986 0.48034 0.0992%
Mission 3 0.53262 0.53202 0.1125%

Table 7.4 – Comparison of Phase Failure Probabilities for Large Repairable System

Phase
Simple

Failure Prob.
Complex

Failure Prob.
Error between

results
1 0.02119 0.02130 0.4892%
2 0.02740 0.02743 0.0823%
3 1.21 × 10-5 1.42 × 10-5 14.3073%
4 0.01799 0.01803 0.2428%
5 0.15895 0.15887 0.0464%
6 0.01563 0.01573 0.6775%
7 0.02864 0.02879 0.5284%
8 0.07067 0.07054 0.1847%
9 0.00000 0.00000 -
10 0.22204 0.22164 0.1801%

Thus, for each of the models used by the simple program, the complex model has

been able to reproduce the results very accurately. While this only confirms that the

modelling of the simple aspects of the complex model is accurate, this is still an

important basis to continue on to modelling a large system.

 - 205 -

7.3 Application to a Large System

The close correlation between the results from the simple model and those from the

complex model suggest that the complex model is capable of producing satisfactory

results. A more complicated demonstration of its operation is given in this section.

In order to ensure that the model was capable of handling the type of large, complex

systems used by operators such as the Royal Air Force, systems information on a

model of aircraft were provided. This information comprised a single-phase fault

tree establishing how the aircraft could experience total loss, and a set of documents

explaining missions systems and giving component failure data. Also provided was

information on three typical missions that the aircraft is typically required to

perform. This data has been modified to produce only a demonstration of the sort of

results which can be achieved.

The conversion of this data into something compatible with the model required the

production of two sets of fault trees – catastrophic failure and abandonment for each

phase. The single-phase total loss fault tree was slightly truncated, due to its size, so

that intermediate events at a certain level of resolution were categorised as

“undeveloped”, with their failure rates set to that calculated by FaultTree+. After

this, each branch of the tree was analysed for its relevance to each phase of each

mission that the aircraft would perform. If it was deemed to be not applicable to a

particular phase, the branch was deleted. Thus, a number of distinct total loss phase

fault trees were produced. The compilation of the set of phase abandonment fault

trees was based on the observation that, while engine failure and similar incidents

may cause catastrophic failure, the failure of an aircraft to deploy a missile or

sonobuoy can only cause the mission to fail and be abandoned. Thus, the first set of

mission abandonment fault trees was based on the failure of mission-critical, but

non-flight-critical systems. Each fault tree considers the failure of any of these

phase-critical systems as prompting phase abandonment. The causes of failure for

each of the systems were estimated from the systems information and component

failure data provided.

 - 206 -

An important point is that while the information used with the model is based on

that available for the aircraft, it would be very difficult to reproduce the typical

conditions of mission or platform failure without an expert knowledge of the

system. Because of this, efforts have been made to produce a set of mission

scenarios which are realistic in terms of size, complexity and in the failure rates

used, but may not necessarily represent accurately the operation of an aircraft in an

actual military environment. The aim of this chapter is to demonstrate the usefulness

of the Petri net modelling method when applied to a large system; it is not to exactly

replicate and improve the mission performance of a military aircraft.

7.3.1 The System

Much of the data regarding the systems which make up the aircraft is subject to

security restrictions, and so cannot be published in full. This section, however, aims

to give a brief overview.

7.3.1.1 Potential for Total Loss

The main ways in which Total Loss can occur are considered to be:

• Deviation from intended flight path:

o Loss of aerodynamic control (LAC):

o Loss of/incorrect thrust from engines: this could be due to lack of

fuel, insufficient thrust from engines (for instance, due to an engine

failure), or an erroneous supply of air data due to icy conditions.

• Loss of structural integrity:

o Structural damage and physical hazards: either due to failure of

systems such as powerplant systems or the landing gear; or due to

physical hazards present in the aircraft’s environment.

o Fire or explosion: explosion could be due, for instance, to the fuel

tank exploding (such as happened with TWA Flight 800 in 1996

[86]), while a fire could have stemmed from the engines, weapons

bay or several other systems.

 - 207 -

o Failure of the landing gear to support the aircraft.

• Controlled Flight into Terrain:

o Autopilot fails

o Display errors

o Erroneous navigational data

o Pilot lack of consciousness

o Human performance limits exceeded

7.3.1.2 Potential for Mission Abandonment

Missions are abandoned when any of the mission critical systems have failed. These

have been identified as:

• Tactical Command System (TCS) – interacts with the aircraft’s other

systems to provide the crew with all the data they need to complete

missions. Allows for mission, information and sensor management, and

displays all information through various visual units. Interfaces with crew

through the use of keyboards, mice, programmable entry panels, multi-

function displays, and so on.

• Defensive Aids Sub-system (DASS) – this system allows the detection of

threats, evaluates the size of the threat, warns the crew and puts in place

measures to deal with the threat.

• Flight Management System (FMS) – provides data on aircraft position and

other navigational information

• Magnetic Anomaly Detector (MAD) – detects fluctuations in the earth’s

magnetic field which may indicate the presence of a ferrous objects such as a

submarine.

• Radio Communications System (RCS) – allows communication with other

entities such as aircraft, mission control, air bases, and so on, either through

voice or data transfer (such as tactics, mission data, etc.)

• Stores – items deployed during missions. May include weapons, defensive

aids and sonobuoys amongst others.

 - 208 -

• Radar/Identification of Friend or Foe (Radar/IFF) – allows detection of

various items, with follow-up functions. For instance, surface vessels may

be detected, classified and tracked; submarine masts may be spotted and

tracked; warnings of adverse weather can be given; persons may be found

during a search and rescue (SAR) operation.

• Electronic Support Measures (ESM) – detects the emission of

electromagnetic data, and provides information about the emitter, such as

bearing, range, position, and emitter type.

• Electro-Optical Surveillance/Detection System (EOSDS) – provides day or

night imaging surveillance capability while airborne.

7.3.1.3 Missions and Phases

There are three missions used in the set of simulations: anti-submarine warfare

(ASW), anti-surface warfare (ASUW) and search and rescue (SAR). Each of the

missions has the following basic profile:

• Pre-Flight Check and Taxi (1 hour)

• Engine Start (15 minutes)

• Take-off (1 minute)

• Climb (15 minutes)

• Transit (3 hours)

• Descent into operational area (15 minutes)

• Operations (various durations)

• Ascent out of operational area (15 minutes)

• Return transit (3 hours)

• Descent towards runway (15 minutes)

• Approach (10 minutes)

• Landing (5 minutes)

• Taxi to hangar (30 minutes)

 - 209 -

The order of the phases and their lengths are based upon the data provided. The

individual missions have the following operational phases:

• ASUW and ASW:

o On-Task (5 hours) – 10% of phases have an inserted “Attack” phase.

o Attack (9 minutes) – reverts to On-Task once finished.

• SAR:

o On-Task (2.5 hours)

Each mission requires the use of different systems to the others, and thus several of

the phases mentioned above have several different total loss and abandonment fault

trees depending on the mission they are used in. Each phase which can be

abandoned is set to abandon to the logical return phase – for instance, “Transit”

abandons to the phase “Return transit”. As such, most of the return phases reverse

their counterparts’ durations, as mentioned in Section 6.2.1, rather than having an

absolutely defined value. The phase fault trees used are given in Appendix B, in the

format as inputted to the simulation program.

7.3.1.4 Platforms and MFOPs

A fleet of three platforms is used with a set of three possible MFOPs. Each platform

performs each MFOP once, in a different order. These orders are:

Platform 1 – MFOP 1, MFOP 2, MFOP 3

Platform 2 – MFOP 3, MFOP 2, MFOP 1

Platform 3 – MFOP 2, MFOP 3, MFOP 1

Each of the MFOPs is a different combination of the three available missions. These

combinations are:

 MFOP 1 – ASUW, ASW, SAR

 MFOP 2 – ASW, ASUW, SAR

 MFOP 3 – SAR, ASW, ASUW

 - 210 -

7.3.1.5 Component data

Most component data was taken directly from the information provided or best

estimates obtained. However, some component data was missing, and so a universal

estimate of a failure rate of one failure in a million was applied to these

components, using a negative exponential distribution. Note, however, that this does

not indicate that all components with a failure rate of 1 × 10-6 had missing data.

7.3.1.6 Enablers

No enablers were used in the first generation of the simulations. One of the aims of

this chapter is to show the process by which platform weaknesses are identified and

enablers, such as prognostics or redundancies, can be used to reduce their

contribution to MFOP and mission failure.

7.3.2 Performance of Simulations and Results

Three sets of simulations were carried out, with improvements being made between

each set and the next. The following sections describe the results of each set and the

improvements made for the next set.

7.3.2.1 First Generation

The first set of simulations was performed and the results compiled and analysed.

70,100 simulations were performed, at which point the result was considered to

have converged. Figure 7.1 shows the convergence of each of the platform

catastrophic failure (CF) probabilities.

 - 211 -

Figure 7.1 – Convergence of Platform Catastrophic Failure Probabilities

In order to demonstrate the nature of the process by which system reliability

problems can be identified and potential improvements suggested, it was decided

that the focus of the analysis of the first set of results would be on attempting to

improve the catastrophic failure probability of the platforms. As such, a pareto

analysis, whereby the most critical factors are identified in a hierarchy downwards,

terminating with improvements to the most vulnerable items.

This process begins by observing the failure probabilities of the different platforms

and identifying which, if any, of the MFOPs they perform are more or less prone to

total loss of the aircraft. Table 7.5 shows this information.

 - 212 -

Table 7.5 – Platform and MFOP Catastrophic Failure Probabilities
Platform Category No. Starts No. CFs CF Prob.

PF1 Platform 70100 323 0.0046

 MFOPs 210001 323 0.0015

 MFOP1 70100 98 0.0014

 MFOP2 70002 103 0.0015

 MFOP3 69899 122 0.0017

PF2 Platform 70100 322 0.0046

 MFOPs 209949 322 0.0015

 MFOP3 70100 125 0.0018

 MFOP2 69975 101 0.0014

 MFOP1 69874 96 0.0014

PF3 Platform 70100 325 0.0046

 MFOPs 209982 325 0.0015

 MFOP2 70100 111 0.0016

 MFOP3 69989 96 0.0014

 MFOP1 69893 118 0.0017

The results show that the total CF probabilities for each of the platforms are nearly

identical. This is to be expected, as each platform performs the same MFOPs as

each other, albeit in a different order. The results show very similar figures for each

of the MFOP catastrophic failure probabilities for each platform. MFOP3 causes

most problems in platforms 1 and 2, but fewest in platform 3. Similarly, MFOP1

causes fewest problems in the first two platforms, but most in the third. There is no

discernible pattern between the first or last MFOPs performed by a platform causing

most or fewest catastrophic failures. This lack of a pattern in the results suggests

that any minor differences in the catastrophic failure probability of the different

MFOPs are little more than natural variation. As such, there is no weight to place on

any of the three MFOPs as being more or less of a problem than the others.

Considering this, the analysis then looked at the absolute MFOP failure probabilities

independently of the platforms, and how the three different missions affect these.

The convergence of each of the MFOP CF probabilities is demonstrated in Figure

 - 213 -

7.2, while the numerical data on the MFOP CF probabilities and those of the

missions within them is given in Table 7.6.

Figure 7.2 – Convergence of MFOP Catastrophic Failure Probabilities

Table 7.6 – MFOP and Mission Catastrophic Failure Probabilities

MFOP Category No. Starts No. CFs CF Prob.

MFOP1 MFOP 209867 312 0.00149

 Missions 583330 312 0.00053

 ASUW 209867 113 0.00054

 ASW 199925 102 0.00051

 SAR 173538 97 0.00056

MFOP2 MFOP 210077 315 0.00150

 Missions 584953 315 0.00054

 ASW 210077 97 0.00046

 ASUW 194091 124 0.00064

 SAR 180785 94 0.00052

MFOP3 MFOP 209988 343 0.00163

 Missions 579176 343 0.00059

 SAR 209988 90 0.00043

 ASW 194796 139 0.00071

 ASUW 174392 114 0.00065

 - 214 -

These results show that there is little difference between the failure probabilities for

MFOPs 1 and 2, but MFOP 3 has a slightly higher chance (0.00013) of failing. For

MFOP1, there is little difference in the likelihood of total loss for each of the

different missions. In MFOP2, however, the ASW mission has a fairly low failure

probability, while ASUW has a fairly high value. In MFOP3, ASW and ASUW

both have fairly high failure probabilities, while that for SAR is low.

Once again, however, there is no significant pattern or difference in any of the

results which suggests that one MFOP or mission is a great problem more than any

of the others. As such, all of the missions must be assessed equally for their absolute

CF probability, and how this is affected by the phases within them.

Figure 7.3 – Convergence of Mission Catastrophic Failure Probabilities

Figure 7.3 shows the convergence of the mission CF probabilities, which are shown

numerically in Table 7.7. As can be seen, ASUW has the highest probability,

followed by ASW and then SAR. However, there is still little difference in real

terms between the failure probabilities – they are exceptionally low. In order to

 - 215 -

understand the phases which are the common causes of failure, consider Figure 7.4

below.

Table 7.7 – Mission Catastrophic Failure Probabilities
Mission Starts No. CFs CF Prob.
ASUW 578350 351 0.000607
ASW 604798 338 0.000559
SAR 564311 281 0.000498

Mission Failures in Phases

Take-Off
3%

Climb
8%

Transit
11%Descent1

6%

On-Task
40%

Return
16%

Descent2
5%

Approach
6%

Land
3%

Others
2%

Figure 7.4 – Proportion of Mission Failures in Individual Phases

From Figure 7.4, it can be seen that the main contributors to mission failure are the

phases On-Task, Return and Transit. These phases account for two-thirds of

catastrophic failures of missions, and thus should be the focus of any attempts to

improve platform CF probabilities.

The analysis took the most critical of the phases, On-Task, and looked at the

systems which were causing its failure most often. The causes of these system

failures were then analysed in turn, until the primary causes of failure were

ascertained. For instance, the top event of the On-Task phase is “Aircraft 7”. The

three subsystems of this are:

 - 216 -

• 1.1-DEV_FP5 (failed in 20% of top event failures)

• 1.2-CFIT4 (40%)

• 1.3-STRCT7 (41%)

The results suggest that the latter two systems are more critical than the first (note

that all gates are OR gates unless otherwise stated). Looking at 1.3-STRCT7, it has

two events below it in the phase fault tree - 1.3.1STRC6 and 1.3.2FIRE7, which

cause 74% and 26% of failures respectively. 1.3.1STRC6 has four subsystems:

• SD_GEN_SYS4 (16% of failures)

• G647-2 (84%)

• SD_LOW_ZHA (0%)

• SD-FCS (0%)

This shows that SD_LOW_ZHA and SD-FCS are not critical at all, while

SD_GEN_SYS4 is much less important than G647-2. All of the failures of this gate

are caused by SDSTOREDAM1, which has only one input (SDWEP1). SDWEP1

has two inputs, SD_WEPS1 and SD_NON_WEP, which cause two-thirds and one-

third of its failures respectively. SD_NON_WEP has two component inputs which

cause it to fail an equal number of times, while SD_WEPS1 has one subsystem and

two component inputs. The two components, G023 and G618, have a modest effect

on SD_WEPS1, causing 14% and 17% of failures respectively. The subsystem,

SD_WEP_PL1, however, prompts SD_WEPS1 to fail 69% of the time.

Continuing this approach across the three phases earmarked for improvement yields

a list of systems and components which are the main causes of total loss. This list is

shown in Table 7.8, which shows the estimated phase criticality for the given item,

and the method proposed to remedy the problem. The place of the items within the

phase fault trees can be seen in Appendix B.1.

 - 217 -

Table 7.8 – Items Most Critical for Total Loss of Aircraft
Estimated Phase Criticality1

Item Type
Phases

Affected Transit
On-

Task
Return

Remedy

G594 System All Flight2 25% 12% 19% Redundancy

G625 Component All Flight 2% 1% 1%
Improve Inherent

Reliability

NVEPITDISP &

NVECDISP
Systems All Flight 24% 14% 20%

Create LRI, SLR –

50h

NVMMRSYSERR System All Flight 10% 6% 8% Redundancy3

CDD1EFISERR Component All Flight 14% 9% 12% Prognostics

CDD2EFISERR Component All Flight 7% 4% 6% Prognostics

CDERRPFD2HW Component All Flight 7% 5% 6% Prognostics

WEP_LAUNCH System
On-Task,

Attack
- 15% - Redundancy

SD_NON_WEP System
On-Task,

Attack
- 9% - Redundancy

EXP_WEP System
On-Task,

Attack
- 4% -

Abandon mission

if either of two

inputs fails

G621 Component
On-Task,

Attack
- 6% - SLR – 70h

G642-GATE1 Component Return - - 11% Improve IR

G642-G178 Component Return - - 14% Improve IR

G274NMVTUPR Component All Flight 7% 3% 19% Prognostics

7.3.2.2 Second Generation

The proposed remedies were applied to a second generation of simulations, as can

be seen in Appendix B.2. A set of 76,800 simulations were performed with this new

information, and results obtained in a similar fashion to those of the first generation.

The convergence of the platform failure probabilities can be seen in Figure 7.5.

1 The per cent figure given estimates how often, proportionally, the corresponding item contributed
to the failure of the phase.
2 Flight phases are Climb; Transit; Descent1; On-Task; Attack; Off-Task; Return; Descent2;
Approach; Land.
3 NVMMRSYSERR has two subsystems, NVM1SYSERR and NVM2SYSERR, the failure of either
of which causes system failure. The redundancy puts in place a third sub-system, which comes
online when either of the other two sub-systems fails.

 - 218 -

Figure 7.5 – Convergence of Platform CF Probabilities for Second Generation of Simulations

These results were first used to gain an understanding of how the remedies proposed

in Table 7.8 have affected the catastrophic failure probability. Following this, a new

analysis was performed on MFOP and mission abandonment, to see how this could

be improved.

Table 7.9 compares the platform, MFOP and mission total loss probabilities from

the first and second generations of simulations.

Table 7.9 – Reduction in CF Probabilities between Generations of Simulations

Item
1st Generation

CF Prob.
2nd Generation

CF Prob.
Relative

Reduction
PF1 0.0046 0.0041 11.3%
PF2 0.0046 0.0038 16.7%
PF3 0.0046 0.0037 20.0%

MFOP1 0.0015 0.0013 12.6%
MFOP2 0.0015 0.0011 24.7%
MFOP3 0.0016 0.0015 11.1%
ASUW 0.00061 0.00048 20.5%
ASW 0.00056 0.00052 6.6%
SAR 0.00050 0.00039 21.7%

 - 219 -

Each platform, MFOP and mission shows a modest reduction in the failure

probability, which suggests that the remedies of the primary causes of total loss are

having some effect. In order to show the level at which the MFOP enablers which

have been employed are successful, a note was made of the improvement in

reliability performance for each of the items:

• The prognostic components can be measured by how many times they failed

overall, and how many times the prognostics system in place led to MFOP

abandonment and component replacement.

o CDD1EFISERR had 59 critical failures and was replaced by the

prognostics system 299 times.

o CDD2EFISERR had 33 critical failures and 168 replacements.

o CDERRPFD2HW had 31 critical failures and 129 replacements.

o G274NMVTUPR had no critical failures and was replaced 8 times.

From this, it can be inferred that the prognostics system can prevent

potential mission-critical component failures approximately 80% of the time.

• The effectiveness of the redundant items which have been put in place can

be measured by finding the number of failures of the parent systems, and the

number of times the redundancy switched or failed.

o The system G594 was changed in the second generation of

simulations, such that it became the parent of G594-MAIN and

G594-RED. The latter is a carbon copy of the former, with redundant

versions of the sub-components. With a sensed redundancy, 2393

switches were made, all of which were successful, and no failures of

G594 occurred. However, results show that only 138 of these

switches were made due to an actual failure of G594-MAIN. The

NFF rate of the sensor was 1 × 10-4 hr-1, as it was for all the other

sensors. This value may be unrepresentative of a real-life situation,

but does show the importance of reducing the NFF rate of sensors

detecting system failures.

o Similarly, SD_NON_WEP was converted to contain a main system

and a redundant system, switched by a sensor. This had 2339

 - 220 -

switches with a 100% success rate. This time, however, only 47

failures of the primary sub-system, SDNW_MAIN, occurred, with

no failures of the redundant system.

o NVMMRSYS had manual switchovers to a redundant system. With

this system, as mentioned in footnote 3 of Table 7.8, NVMMRSYS

has two subsystems, NVM1SYSERR and NVM2SYSERR, and if

either of these fails, a third sub-system, NVM3SYSERR, is

activated. 66 switchovers took place, of which 61 were successful.

On top of the five failed switches, two more failures of the overall

system took place, due to NVM3SYSERR failing.

o WEP_LAUNCH was set up such that it was the main system in

SD_WEP_PL1. WEP_LAUNCH failed 122 times, and 118 of the

switches to the redundant item were successful. No failures of

SD_WEP_PL1 took place.

These examples show the important differences between bringing online

systems either automatically or manually. Manually-switched redundancies

are more prone to human error not bringing the redundant item online.

Automatic systems will very rarely fail to bring online the redundant item,

but may well cause NFFs the majority of the time.

• Improvements in inherent reliability were applied to items G625, G642-

GATE1 and G642-G178. In the first generation of simulations, these items

failed 10, 22 and 22 times respectively (adjusted to compensate for the

difference in the numbers of simulations performed). In the second

generation, the items failed 3, 4 and 1 times respectively. These values

reflect a very good improvement in the number of failures.

• NVEPITDISP and NVECDISP were put into an LRI, such that if one of the

items failed, the other item was replaced at the same time. The idea behind

this is that because a failure of either of these items will cause the parent

system to fail, the replacement of the other child system should improve its

reliability performance, hopefully bringing about a reduction in parent

system reliability through a change in maintenance regime alone. In this

 - 221 -

scenario, however, the introduction of a LRI seems to increase the number

of failures of the parent system, G442/443 by more than three and a half

times. A possible explanation for this is that if either of the items

NVEPITDISP or NVECDISP has a long life before failure, the replacement

of it as part of an LRI, before it has failed, leads to a good chance that the

replacement component will have a shorter time to fail. Because each

simulation regards the platform over a specified interval, this may make it

less likely in any given simulation that either of the components could

survive until the end of the three MFOPs, and more likely to cause parent

system failure.

• A feature which may have exacerbated the problems mentioned in the

previous point is that the LRI was scheduled to be replaced automatically

after every 50 hours in service. Component G621 also had scheduled life

replacements, every 70 hours, though these only had a modest effect,

reducing the number of failures from 32 down to 25.

After focusing on the causes of total loss, the analysis moved on to MFOP and

mission abandonments. The process begins in the same way as that for total loss.

Figure 7.6 shows the convergence of the MFOP abandonment probabilities over the

set of simulations, while Table 7.10 shows the numerical results. It can be seen that

MFOPs 1 and 2 have an approximately equal abandonment probability, while

MFOP 3 has a probability which is lower by about 0.075. An apparent reason for

this is that the search and rescue mission, SAR, is the final mission in both MFOPs

1 and 2, and the “FlightCheck3” phase is abandoned a much larger percentage of the

time the later in the MFOP it occurs. There is no such large increase in the

abandonment probabilities for missions ASUW or ASW depending on position

within the MFOP.

 - 222 -

Figure 7.6 – Convergence of MFOP Abandonment Probability for Second Generation of

Simulations

Table 7.10 – Abandonment Probabilities of MFOPs

MFOP Category No. Starts No.
Abandons

Abandon
Prob.

MFOP1 MFOP 230030 70727 0.30747
 Missions 638859 70727 0.11071
 ASUW 230030 10828 0.04707
 ASW 219105 29262 0.13355
 SAR 189724 30637 0.16148
MFOP2 MFOP 230215 70835 0.30769
 Missions 640958 70835 0.11051
 ASW 230215 17567 0.07631
 ASUW 212558 14285 0.06721
 SAR 198185 38983 0.19670
MFOP3 MFOP 230136 53388 0.23198
 Missions 635609 53388 0.08400
 SAR 230136 16251 0.07061
 ASW 213804 22005 0.10292
 ASUW 191669 15132 0.07895

Table 7.11 shows the overall abandonment probabilities of the three different

missions. As expected, SAR has the highest probability, of 13.9%, followed by

ASW at 10.4% and ASUW at 6.3%. The phases in which these abandonments

typically take place are shown in Figure 7.7. From this, it can be seen that the vast

proportion (81.6%) of mission abandonments take place in the two phases “Flight

 - 223 -

Check” and “On-Task”. These, then, should be the focus of efforts to improve the

mission abandonment figure.

Table 7.11 – Abandonment Probabilities of Missions

Mission
No.

Starts
No.

Abandons
Abandon

Prob.
ASUW 634257 40245 0.063452
ASW 663124 68834 0.103803
SAR 618045 85871 0.138940

Failures in Phases

Flight Check
45.4%

Climb
1.3%

Transit
7.9%

Descent1
0.6%

On-Task
36.2%

Off-Task
0.6%

Return
7.6%

Others
0.3%

Figure 7.7 – Proportion of Mission Abandonments in Individual Phases

The method used in section 7.3.2.1 to establish the primary causes of MFOP

abandonment was reapplied to create another list of systems and components. These

items, their effect on phases On-Task and Flight Check and the remedies put in

place to prevent their high criticalities are shown in Table 7.12.

 - 224 -

Table 7.12 – Items Most Critical for Abandonment of MFOP

Item Type Sub-system

Estimated

MFOP

Criticality4

Remedy

APR Component DASS5 2.9% Redundancy

SUPERHET System DASS 2.5% Redundancy

DRR Component DASS 0.9% Improve IR

CBR Component DASS 0.6% Improve IR

TQG Component DASS 7.4% Improve IR; Redundancy

LRA Component DASS 6.2% Improve IR

MADCOMPAMP Component MAD6 3.0% Redundancy

DETECTHEAD Component MAD 4.2% Improve IR

SMGMTPROC Component STORES7 1.8% Improve IR; Redundancy

SPINCHAN System ESM8 6.1% Redundancy

MRX Component ESM 2.6% Improve IR

REC-EXC Component
RADAR-

IFF9
4.4%

Redundancy

RFTRANS Component
RADAR-

IFF
5.5%

Improve IR; Redundancy

RFSCAN Component
RADAR-

IFF
6.2%

Improve IR; SLR – 80h

TUR1 Component EOSDS10 8.3% Improve IR; SLR – 80h

PDU1 Component EOSDS 1.8%
Redundancy; LRI with

Redundant Item

SCU1 Component EOSDS 13.6%
Improve IR; SLR – 50h;

Redundancy

4 This value is the approximate proportion of MFOP abandonments contributed to by the specified

item.
5 DASS sub-system features in the following phases: All FlightCheck, Climb, Transit, Descent1, All

On-Task, All Attack, Off-Task and Return.
6 MAD sub-system features in phases FlightCheck1, On-Task1 and Attack1.
7 STORES is used in phases FlightCheck1, FlightCheck2, Attack1 and Attack2.
8 ESM is used in phases FlightCheck2, On-Task2 and Attack2.
9 RADAR-IFF is used in FlightCheck2, FlightCheck3, On-Task2, On-Task3 and Attack2.
10 EOSDS is used in FlightCheck3 and On-Task3.

 - 225 -

In addition to the recommended improvements shown in Table 7.12, two more LRIs

are to be created, containing:

• LRI_RWR – APR, SUPERHET, the redundancy for SUPERHET, and

SIGNAL REC

• LRI_TRDS – DEC, TQG, DASSLNCH.

7.3.2.3 Third Generation

The remedies suggested were implemented in a third generation of simulations, as

can be seen in Appendix B.3. 70,000 simulations were carried out, until all the

results had a satisfactory level of convergence, as shown in Figure 7.8.

Table 7.13 shows a comparison between the different MFOP abandonment

probabilities for the second and third generations.

Table 7.13 – Comparison of Abandonment Probabilities between Simulations

Item 2nd Generation
Abandon Prob.

3rd Generation
Abandon Prob.

Relative
Reduction

MFOP1 0.307469 0.109258 64.5%
MFOP2 0.307691 0.106816 65.3%
MFOP3 0.231985 0.087392 62.3%
ASUW 0.063452 0.019814 68.8%
ASW 0.103803 0.045108 56.5%
SAR 0.138940 0.039231 71.8%

As can be seen from the results, the measures brought in to reduce the abandonment

probabilities, shown in Table 7.12, have been very successful. While MFOPs are

still abandoned around 11% of the time, this is a huge reduction from the previous

value of between 23% and 31%. The typical relative probability reduction is nearly

two-thirds for the MFOPs, and reaches a value of nearly three quarters in the case of

mission SAR.

 - 226 -

Figure 7.8 – Convergence of MFOP Abandonment Probability

The success of the various remedies can be approximated, although in many cases

items had several remedies put in place at the same time, so the effect of any one is

difficult to ascertain.

• The failure rate of many of the components was reduced to a tenth of its

previous value. This resulted in a large reduction in the number of failures

for each of these components, as shown in Table 7.14. Note that in this

Table, the number of failures for the second generation has been adjusted to

account for the different numbers of simulations performed. A vast reduction

in the number of failures per item can be seen, which plays a large role in the

reduction of MFOP abandonments.

 - 227 -

Table 7.14 – Comparison of Component Failure Numbers

Component 2nd Generation
Failures

3rd Generation
Failures

CBR 1177 19
DRR 1645 39
TQG 12917 331
LRA 10844 247

DETECTHEAD 12644 304
SMGMTPROC 6066 122

MRX 5002 117
RFSCAN 14087 328

RFTRANS 12643 307
TUR1 22237 541
SCU1 36138 874

• The three new LRIs can have their performance measured based on the

number of failures of the parent system:

o LRI_RWR contains the items for which RADWARNR is the parent.

The number of failures of RADWARNR reduced by 90%, though it

is difficult to say how much of this can be ascribed to the LRI.

o Similarly, LRI_TRDS contained the sub-items for TRDS. TRDS

failed 67% less in the third generation than the second.

o The problem, mentioned in section 7.3.2.2, of LRIs replacing long-

life items with shorter-lived components, reared its head with PDU1.

In the third generation, PDU1 failed 8% more often than in the

second generation.

• Redundancies were used regularly in the third generation of simulations. A

way of measuring the performance of the redundancies is to look at the

reduction in the number of parent system failures over the set of simulations.

Table 7.15 shows these values, in addition to other parameters concerning

redundancies, such as No Faults Found and the number of failed switches.

The “Type” column refers to whether a redundancy is sensed (S) or manual

(M).

 - 228 -

Table 7.15 – Reduction of Failures due to Redundancies
Parent System

Failures Item Type
No.

Switches
NFFs

No.

Failed

Switches 2nd
 Gen 3rd Gen

Reduction

APR S 8417 2423 0 13340 1276 90.4%

TQG S 3798 2377 0 32600 10769 67.0%

MADCOMPAMP S 12485 2287 0 22889 2839 87.6%

SMGMTPROC S 3031 2385 0 6083 26 99.6%

REC-EXC S 13472 2215 0 65071 33792 48.1%

RFTRANS S 3734 2372 0 65071 33792 48.1%

PDU1 M 5075 0 490 63372 4686 92.6%

SCU1 S 6312 2238 0 63372 4686 92.6%

SUPERHET M 5094 0 484 13340 1276 90.4%

SPINCHAN M 12836 0 1317 16789 1959 88.3%

The Table shows that each of the redundancies has had an effect on the

number of parent system failures, with the lowest reduction being just under

half, for REC-EXC and RFTRANS. The failures for the parent system of

SMGMTPROC, SMGMTSYS, were reduced to almost zero.

The NFF rate was the same for the sensors used in the third generation as for

the second. Here, however, while the number of NFFs is around the same, it

has less impact as the number of switches due to a real fault is typically

much larger than those for catastrophic failures. Nonetheless, a great deal of

abandoned missions would be prevent through the improvement of the NFF

rate for sensors controlling redundancy switchovers.

Ultimately, the main point of these improvements to the system design is to

decrease the number of MFOPs that are abandoned. Table 7.16 shows a comparison

between the MFOP failure probabilities (for either abandonment or total loss) in the

first set of simulations, and those for the third set.

 - 229 -

Table 7.16 – MFOP Failure Probability Comparison

MFOP
1st Generation

Failure Prob.

3rd Generation

Failure Prob.

MFOP1 30.7% 11.1%

MFOP2 31.0% 10.8%

MFOP3 23.6% 8.9%

As the table shows, the probabilities of failure of the three different MFOPs, which

were so problematic for the first generation, have been reduced to a much more

satisfactory level in the third generation. Further improvements could be made,

potentially, to reduce this value even more.

7.4 Summary

The modelling method presented in Chapter 6 and implemented in the form of a

simulation program (as explained in Appendix A), has been applied to several

systems in this chapter.

First, the model was applied to those systems shown in Chapter 5 for the simple

modelling method, in order to demonstrate it is capable of producing the same

values. The success of this led to the model being applied to a much larger, more

realistic system. A method by which the model could be used to investigate the

effectiveness of different strategies to try to decrease the MFOP failure probability

is presented. Through the use of various MFOP enablers, the MFOP failure

probabilities were able to be reduced from around 30% to around 10%.

Furthermore, the modelling method was able to give more detailed information

regarding the performance of the system, such as suggesting that use of LRIs may

increase the expected number of failures of components.

The ability to investigate the application of many different reliability technologies to

a real-world system is one which provides a great deal of value. It has great

potential to be used in the design stage of a new platform, to find the most effective

(both in terms of reliability and cost) ways of increasing its availability.

 - 230 -

Chapter 8 Conclusions and Further Work

8.1 Summary

The concept of maintenance-free operating periods (MFOPs) has been introduced as

a length of time in which no maintenance other than simple replenishment of fuel,

stores, and so on can take place. A system performing an MFOP must complete all

of the missions scheduled within that time without incurring any failures which

prevent any further operation with a high, specified, likelihood. Once an MFOP is

completed, a maintenance recovery period (MRP) takes place. During this time, any

sub-system failures which occurred during the mission are fixed, while inspections

and tests ensure that no part of the system is likely to cause failure during the

forthcoming MFOP.

MFOPs were introduced in order to help plan platform operations and the support

resources required. It also attempts to make reliability concepts more appropriate for

the end user. The ability to have a high degree of confidence that a platform will be

able to carry out all assigned tasks, before undergoing highly organised and

scheduled maintenance, is an ideal future situation. Previous research has indicated

that the most effective way to provide a high-value, high-confidence MFOP is

through the use of technologies such as prognostics, which aim to accurately predict

future failure; diagnostics, which identify and locate current failures; and redundant

systems to replace the functionality of failed systems.

A second concept, phased missions, has also been demonstrated. A phased mission

is one where a system operates to complete a sequential set of objectives over

different time intervals. The system will use different sub-systems at different times

in order to complete each of the individual objectives, and so will have a failure

logic model which changes with each of the phases.

The probability of mission failure cannot be found by simply multiplying the phase

unreliabilities, because at phase change times, the system must be in a state which

allows it to function in both the exiting and the entering phase. This statistical

 - 231 -

dependence requires a more complex analysis method than multiplying phase

unreliabilities.

Several existing techniques are commonly used to solve the phased missions

scenario, such as fault tree analysis, Markov methods and binary decision diagrams

(BDDs). However, drawbacks of these methods include factors such as an explosion

in the size of a Markov model as the system complexity increases, or the inability of

fault trees to consider complicating factors such as component dependencies. Other

complexities of phased missions include the insertion of a phase within the mission,

following the failure of an item within the system; non-deterministic phase

durations; phase choices, where the subsequent phase is selected from a group,

based on random events or the current system state; and the two different failure

modes of mission abandonment and catastrophic failure.

The twin concepts of phased missions and MFOPs combine well, such that an

MFOP can be redefined to be a period of a certain number of missions in a given

order, during which there is a high, specified, probability that none of the missions

can fail such that emergency maintenance is required or the system is lost. In order

to consider all of the factors which would affect the performance of MFOPs with

phased missions, a modelling method is required which is more powerful than either

fault trees, BDDs or Markov methods.

A new method of modelling MFOPs with the phased mission situation has been

proposed. This uses Petri nets (PNs), a digraph with two types of node (places and

transitions), which allow the storage and transmission of data, in the form of

“tokens”. The position and number of tokens within the various places in the net at

any one time represents the currently modelled system state. This simple, yet

powerful, method is capable of denoting many possible situations.

The new modelling method consists of three different types of net:

• A component PN (CPN), which contains all of the data relating to

component states, such as “working”, “failed”, “replacing”, and so on, and

 - 232 -

the transitions to switch between these states. The CPN also contains

information on whether the platform is undergoing repair or not.

• A set of phase PNs (PPNs), which are representations of phase fault trees.

These take inputs from component failure places, and combine these to

model whether the overall platform has failed in any phase. Failure consists

of two possible modes: total loss and abandonment. As such, each PPN

typically contains two PN fault trees.

• A master PN (MPN). This contains the models of each of the platforms, the

MFOPs they have to perform, the missions within the MFOPs, and the

phases within the missions. If a phase failure top event occurs while that

phase is active, the MPN models mission and MFOP failure (either

catastrophic or abandoned).

The model can consider a fleet of identical platforms, through the use of “coloured”

tokens. One colour is considered completely independently of another, and in this

application there is no possible interaction between tokens of different colours. The

use of coloured tokens significantly reduces the overall size of the PN model, as one

set of PPNs, CPN and MPN can be used for the whole fleet. Each different platform

performs a different sequence of MFOPs, after which the modelling ends.

The various complexities of both MFOPs and phased missions are modelled in PN

form. For instance, it is possible that a certain combination of failures may occur

such that the mission always fails, regardless of which phase it is in. These can be

described as general failures and can be stored under a General PPN, again in the

form of either abandonment or total loss.

Phase choices can take place through a small alteration of the PN mechanism:

“probability arcs” allow a single transition to output to just one of a selection of

possible output places, according to a given probability for each. As such, a

probabilistic phase choice can take place, while phases can also be chosen based on

the current system state. These event-driven phase choices can be made to occur

 - 233 -

based on a specified conditional fault tree, stored within the relevant PPN, where the

presence or absence of the top event alters which phase is chosen to perform next.

It is considered unrealistic for an abandoned mission to end instantly – for example,

an aircraft in mid-flight is unable to immediately appear at the base after aborting.

Instead, the aircraft must go through a series of phases which are different from

those it was intending to perform. As such, the model allows emergency phases to

be carried out in the event of mission abandonment, ending with MFOP abortion

and an unscheduled MRP. As part of this, it is possible for a phase’s duration to

mirror that of another phase, such that, for instance, the length of a “return” phase is

exactly equal to that of a “transit” phase, regardless of whether the earlier phase was

cut short.

Another feasible scenario is one where a phase must be inserted into the mission,

before continuing with the previous objectives. An example of this is in-flight

refuelling, something which is commonly performed with long-range aircraft such

as Nimrod. The PN model considers this to taking place when the top event of a

conditional fault tree has occurred. The phase is immediately carried out,

interrupting the previous phase, which continues where it left off.

An event may occur whose appearance cannot be described according to a time-

based probability distribution, but as in response to the occurrence of another event,

with a certain probability. These are here termed “discrete events”, and are

modelled in PN form using probability arcs to propagate a trigger event (which may

be, for example, the start of a mission or phase, a component failure, and so on) to

either “event occurs” or “event does not occur”, based on a randomly sampled value

and the assigned probabilities. These are useful to represent factors such as weather,

human responses to stimuli or preventable maintenance issues (such as failing to

replace a panel, for instance), and can be used as inputs to PPNs.

It is common practice within many industries to remove a group of components in

close physical proximity as one, due to the failure of one or more of them. These are

termed “Line Replaceable Items” (LRIs). The modelling method allows components

to be replaced together regardless of their operational state, with new failure times

 - 234 -

being sampled following replacement. These replacements can also be scheduled to

occur after a certain length of time in flight, so as to prevent a serious failure event

occurring.

If a failure event does occur, its occurrence and location may need to be found for a

variety of reasons. For instance, it may not be repairable until the failure is seen, or

the failure may require a redundant system to be brought online. These diagnostics

are here modelled in two forms: sensors, and inspections. Sensors are physical

components which can themselves fail, but if they are operational, will immediately

detect a failure in the component or system they are monitoring. Another issue is

that of No Faults Found (NFFs) – the sensor detects a main system failure where

none has occurred. These spurious trips can be a large problem where the sensor, for

instance, causes mission abandonment upon failure detection. A NFF rate can be

specified, modelling NFFs and their effect on the system. Inspections, however, are

performed only within MRPs, and can, for instance, prompt item replacement if a

failure is found. Inspections can be set to be performed after a certain length of time,

after a given number of MFOPs, or in response to a discovered failure in a higher

system.

If a component or system fails, it may be necessary to bring a previously non-

operational item online to replace its function. These items are called redundant, and

can be useful, albeit with a penalty of cost, bulk or weight. The redundant systems

are modelled as being brought online either manually or automatically. Automatic

transition occurs through the use of sensors. As mentioned above, these can fail and

thus not bring the redundant system online. Also, NFFs may take the main system

offline where no failure has occurred. Manual transition is carried out by an

operator, and as such is subject to human error. A success rate of the transition

taking place is specified, and so redundant items will fail to be brought online a

certain proportion of the time. However, spurious trips will not occur with manual

transitions.

Prognostic systems aim to predict the future failure of components, which systems

will be affected by this and whether any phases and missions will potentially fail. A

modelling method for this has been proposed based on the concept of levels of wear.

 - 235 -

It is assumed that components degrade, that this wearing is detectable and can be

categorised into levels of wear. It is further assumed that the levels of wear occur at

certain stages within the life of the component, expressed as a percentage range of

its failure time. Once a component has reached a level of wear at a certain time,

predictions can be made as to how much longer it may have before it fails.

Predictions of the length of the current or future missions can then be made, and the

effect of the component failure upon the mission estimated. If a current mission is

predicted to fail, it can be abandoned and the failing component replaced. During an

MRP, if any mission is predicted to fail, components can be replaced to prevent this.

All of these considerations have been represented in PN form, and designed to take

into account other complications (such as components which are part of an LRI

undergoing inspections). The modelling method has been applied in the form of a

program, which uses a Monte-Carlo simulation approach to randomly sample

transition switching times for components, phases, and so on. These timed

transitions are switched, followed by any enabled immediate transitions, until each

simulation ends. If enough simulations are performed, an accurate picture of the

performance of the platform can be seen. The program has been used with a real-life

system to establish whether it is a useful tool and that the modelling method works

as intended, to provide valuable information at the design stage on the MFOP

performance of a platform or fleet of platforms.

8.2 Conclusions

The aim of the research was to produce a modelling method capable of considering

the two concepts of MFOPs and phased missions in-depth, and giving important

data on whether a system undergoing these is performing as required. The following

conclusions can be made:

• A full-scale, in-depth model capable of considering both MFOPs and phased

missions has not been previously produced. The modelling method shown in

this thesis is novel, and can provide valuable information on a new reliability

metric which has not seen widespread use in any industry to date.

 - 236 -

• While Petri nets have previously been applied to phased missions, there has

not been, to date, a method of providing models with a consistent structure

and mode of creation. This thesis has built upon previous works in order to

provide a way of modelling phased missions which is easily understood and

can be repeatedly applied to different scenarios.

• An adaptation of the Petri net has been suggested, clarifying the situation

where two immediate or identically-timed transitions are enabled from the

same place, where only one transition can take the token within it. Instead,

these transitions are replaced by a single one, which has “probability arcs”

leading to output places. Only one of the places connected to a probability

arc will take the token when the transition switches, according to a randomly

sampled number.

• Methods of modelling the complexities of phased missions, such as

abandonment to phases, phase insertion, phase selection, and so on, have

been produced in the form of Petri nets. Even outside the scope of MFOP,

these have uses in the form of a simulation program.

• The enablers of MFOP, such as redundancy, prognostics, inspection,

automated sensing, line replaceable items, and so on, have all been

considered within the model shown. The methods of modelling these in PN

form are new, and may have uses outside of the scope of this thesis.

• In particular, a prognostic PN model has been produced which has a wear-

based method of predicting future component failure. This is then combined

with phase fault trees to establish whether a component likely to fail before

the mission or MFOP has ended will cause a critical system failure. If so, the

current MFOP can be abandoned or, if the prognostic system is being used

during an MRP, the component can be replaced.

• The suggested model has been implemented in the form of a Monte-Carlo

simulation program. This takes inputs such as phase fault trees, component

 - 237 -

failure data, sensors, discrete events, MFOP enablers, and fleet, MFOP,

mission and phase data. This program is capable of providing a great deal of

information regarding the implementation of various MFOP enablers,

mission structures, abandonment and maintenance regimes, and so on. It is

hoped that this will be a useful tool to designers considering reliability

issues, in order to find the most effective ways of having a high-value

MFOP with a high degree of confidence. It is possible that it may provide

data which is counter-intuitive, such as LRIs potentially increasing the

expected number of failures of a sub-component within a certain timeframe.

As a result, it is of great value to understand how MFOPs may be

implemented in real-world systems.

8.3 Further Work

The scope of this research leads to the possibility of further areas of investigation.

Potential directions are discussed in the following sections.

8.3.1 Verification of Repairable Larger System Results

A larger system was modelled as described in section 5.3.3. As the system and

mission profile used in that example was so complex, the results from the

simulations could not be compared to theoretical figures. It would be worthwhile for

mathematical values to be produced in order to compare these with the results from

the simulations.

8.3.2 Cost modelling

While the model shown here considers many of the important areas of both MFOPs

and phased missions, a factor absent from this is the costs associated with various

maintenance regimes, employment of manpower, total loss of platform, cost of

phase insertion or abandonment, and so on. It would be useful to expand the

research to include cost factors, and potentially other important considerations.

 - 238 -

8.3.3 Reconfigurability

There is no direct consideration of reconfigurability outside of the scope of

redundant systems. While the model is capable of handling many different

variations of redundancies, such as several systems sharing a single redundant

output, a redundancy itself having a redundancy, or a single system having several

redundancies, it is possible that there are further complications specific to

reconfigurable systems which require direct modelling.

8.3.4 Phase and Component Dependency

While the model takes account of components which affect each others’ failure

rates, there is no consideration within the model of how different phases may affect

component failure rates, or how the failure of components or system may lengthen

or shorten a phase’s duration. It is probable, for instance, that a jet engine is more

likely to fail mid-flight than when the aircraft is idling. Similarly, if one of several

jet engines fails mid-flight, it is likely that the aircraft will take more time to return

to base.

8.3.5 Degradation

The model has a very binary approach to component failures. In reality, a common

issue is that the performance of components gradually reduces over time. This may

manifest itself by reducing system effectiveness, lengthening phases or possibly

affecting phase choice. A realistic approach would be to allow the wear-levels of

components as shown in the prognostic model to affect the outcome of systems or

phases.

 - 239 -

8.3.6 Prognostics

The prognostics model used within this research has been necessarily simplified, in

order for it to be included as part of a broader whole. It is certainly possible that

there are much more complex ways of predicting component failures and their

effects on systems, or that several approaches need to be all considered at the same

time within a single model. A broader, more accurate prognostic model may be

capable of being produced.

8.3.7 Platforms and MFOPs

The model restricts the number of MFOPs that a platform may perform, and in

doing so can only provide an observation of the platform over a relatively short

period of time. The ability to consider many more MFOPs, potentially an unlimited

number, over the full lifecycle of a platform, would be a useful feature. This would

lend itself well to consideration of whole life cost.

8.3.8 MFOPs and Missions

The results from section 7.3.2 provided an indication that the placement of a

mission within an MFOP may significantly affect the probability of the MFOP

failing, especially where the failure is categorised as an abandonment. It would be

useful to investigate the extent of this dependency on mission order, to find if there

is an easy way to establish the optimum MFOP survivability figure. An example of

how this might be carried out would be to have eight MFOPs, each with seven

instances of “Mission 1”, and one instance of “Mission 2”. “Mission 2” would be in

a different location in each MFOP, and the resulting failure rates for each of the

MFOPs would be compared.

 - 240 -

8.3.9 Maintenance & Logistics Support

The maintenance regimes within the model shown here are simplified. In the real

world, the maintenance of the platforms will be an issue which is critical to how

they then go on to perform MFOPs. Factors such as availability of spares or

manpower, operation of different bases, repair only of necessary components or

systems in a “just in time” capacity, potential for inspection to fail to find a present

fault, and so on, could all be modelled more accurately, providing a much better

picture of how maintenance issues could affect MFOP performance.

8.3.10 Importance Measures

An important aspect of the modelling capability is the necessity of indicating which

MFOPs, missions, phases, systems, components and so on are the most important.

The ability to give various types of importance measure for each of these items, for

both catastrophic failure and abandonment, would be useful. Furthermore, the

ability to indicate the effectiveness of a particular enabler, such as a redundancy,

would provide a valuable indicator.

8.3.11 Optimisation

The fault trees that the model uses are converted to PN form in such a way that they

exactly represent the original fault tree. There are, however, many optimisation

techniques which exist in order to reduce the size of fault trees and thus the number

of calculations required to find the top event occurrence probability. These same

optimisation techniques would reduce the size of the phase PNs and speed up the

simulations.

 - 241 -

8.3.12 System of Systems

A recent development of reliability within the military environment is that of

systems of systems. The approach considers several distinct types of system

working together to achieve a common mission. A particular system may provide a

valuable function at an early part of the mission, which has a given timeframe to

complete, otherwise another system cannot perform its function. This interaction of

different systems is complex to model. It is probable that the phased mission and

MFOP concepts may fit comfortably within this area. Similarly, a PN approach may

be able to consider all factors necessary to modelling each mission. An investigation

into how these issues may work with the system of systems concept would be

useful.

 - 242 -

References

[1] Hazardous Installations Directorate, “HID's Approach to ALARP Decisions”,

Technical Note SPC/Permissioning/09, 2002.

[2] Andrews, J.D., and Moss, T.R., “Reliability and Risk Assessment, Second

Edition”, Professional Engineering Publishing Limited, Bury St. Edmunds, UK,

2002, pp. 540.

[3] Henley, E.J., and Kumamoto, H., “Probabilistic Risk Assessment”, IEEE Press,

1992.

[4] Watson, H.A., “Section VII”, Launch Control Safety Study, Vol. 1, Bell

Telephone Laboratories, Murray Hill, NJ, USA, 1961.

[5] Vesely, W.E., “A Time-Dependent Methodology for Fault Tree Evaluation”,

Nuclear Design and Engineering, Vol. 13, 1970, pp. 337-360.

[6] Esary, J.D., and Ziehms, H., “Reliability Analysis of Phased Missions”,

Reliability and Fault-Tree Analysis, 1975, pp. 213-236.

[7] Dinesh Kumar, U., Knezevic, J., and Crocker, J., “Maintenance free operating

period - an alternative measure to MTBF and failure rate for specifying

reliability?” Reliability Engineering and System Safety, Vol. 64, 1999, pp. 127-

131.

[8] Fussell, J.B., “How to Hand Calculate System Reliability and Safety

Characteristics”, IEEE Transactions on Reliability, Vol. R-24, No. 3, 1975, pp.

169-174.

[9] Rauzy, A., “New Algorithms for Fault Tree Analysis”, Reliability Engineering

and System Safety, Vol. 40, 1993, pp. 203-211.

[10] Sinnamon, R.M., and Andrews, J.D., “Improved Efficiency in Qualitative Fault

Tree Analysis”, Quality and Reliability Engineering International., Vol. 13,

No. 5, 1997, pp. 293-298.

[11] Sinnamon, R.M., and Andrews, J.D., “Improved Accuracy in Quantitative

Fault Tree Analysis”, Quality and Reliability Engineering International., Vol.

13, No. 5, 1997, pp. 285-292.

[12] Appleton, D.P., “Future Offensive Aircraft - maintenance free operating

periods”, Proceedings of the R, M & T for Future Projects Seminar,

Northumberland House, London, 8 November 1996.

 - 243 -

[13] Appleton, D.P., “An Alternative Approach to Setting Reliability and

Maintainability Requirements for Combat Aircraft”, Advances in Safety and

Reliability: ESREL '97, Lisbon, Pergamon, Oxford, UK, 1997, pp. 923-930.

[14] Turner, T., Hockley, C., and Burdaky, R., “The Customer Needs A

Maintenance-Free Operating Period”, 1997 Avionics Conference and

Exhibition, Vol. 97, ERA Technology, 1997, pp. 2.2.1-2.2.10.

[15] Knowles, D.I., “Should We Move Away from “Acceptable Failure Rate”?”

Communications in Reliability, Maintainability and Supportability, Vol. 2, No.

1, 1995, pp. 23-28.

[16] Crocker, J., “Maintenance Free Operating Period - Is this the way forward?”

7th International Symposium, University of Exeter: Centre for Management of

Industrial Reliability, Cost and Effectiveness, University of Exeter, 1997, pp.

96-102.

[17] Dinesh Kumar, U., “New trends in aircraft reliability and maintenance

measures”, Journal of Quality in Maintenance Engineering, Vol. 5, No. 4,

1999, pp. 287-295.

[18] Hockley, C.J., and Appleton, D.P., “Setting the requirements for the Royal Air

Force's next generation aircraft”, Annual Reliability and Maintainability

Symposium 1997, IEEE, New York, NY, USA, 1997, pp. 44-49.

[19] Hockley, C.J., “Design for success”, Proceedings - Institution of Mechanical

Engineers, Vol. 212, No. G, 1998, pp. 371-378.

[20] Cini, P.F., and Griffith, P., “Designing for MFOP. Towards the Autonomous

Aircraft - Achieving Customer Expectations”, Proceedings of 1999 Avionics

Conference and Exhibition; Vol. 99-0815, ERA Technology, Leatherhead, UK,

1999, pp. 7.1.1-7.1.13.

[21] Newton, C.O., “The potential impact of MFOPs (maintenance free operating

periods) on the reliability of electronic systems”, Proceedings of 1999 Avionics

Conference and Exhibition, Vol. ERA REPORT NO 99-0815, ERA

Technology, Leatherhead, UK, 1999, pp. 9.1.1-9.1.9.

[22] Murray, A.J.F., “Durability”, 2003, BAE Systems Warton (Technical Note).

[23] Warrington, L., Jones, J.A., and Davis, N., “Modelling of maintenance, within

discrete event simulation”, 48th Reliability and Maintainability Symposium

(RAMS); IEEE, Piscataway, NJ, 2002, pp. 260-265.

 - 244 -

[24] Relf, M.N., “Maintenance-Free Operating Periods - The Designer's Challenge”,

Quality and Reliability Engineering International, Vol. 15, 1999, pp. 111-116.

[25] Dagg, R.A., and Newby, M., “Optimal overhaul intervals with imperfect

inspection and repair”, IMA Journal of Mathematics Applied in Business and

Industry, Vol. 9, No. 4, 1998, pp. 381-91.

[26] Jones, J.A., Warrington, L., and Davis, N., “Integrated modelling of system

functional, maintenance and environmental factors”, 48th Reliability and

Maintainability Symposium (RAMS); IEEE, Piscataway, NJ, 2002, pp. 399-403.

[27] Todinov, M.T., “A new reliability measure based on specified minimum

distances before the locations of random variables in a finite interval”,

Reliability Engineering & System Safety, Vol. 86, 2004, pp. 95-103.

[28] Burdick, G.R., Fussell, J.B., Rasmuson, D.M., “Phased mission analysis: a

review of new developments and an application”, IEEE Transactions on

Reliability, Vol. R-26, 1977, pp. 43-49.

[29] Veatch, M.H., “Reliability of periodic, coherent, binary systems”, IEEE

Transactions on Reliability, Vol. R-35, No. 5, 1986, pp. 504-35.

[30] Montague, D.F., and Fussell, J.B., “A methodology for calculating the expected

number of failures of a system undergoing a phased mission”, Nuclear Science

and Engineering, Vol. 74, No. 3, 1980, pp. 199-209.

[31] Dazhi, X., and Xiaozhong, W., “A practical approach for phase mission

analysis”, Reliability Engineering & System Safety, Vol. 25, No. 4, 1989, pp.

333-47.

[32] Kohda, T., Wada, M., and Inoue, K., “A simple method for phased mission

analysis”, Reliability Engineering & System Safety, Vol. 45, No. 3, 1994, pp.

299-309.

[33] Somani, A.K., and Trivedi, K.S., “Boolean Algebraic Methods for Phased-

Mission System Analysis”, Proceedings of Sigmetrics, 1994, pp. 98-107.

[34] Y, M., and K.S, T., “An algorithm for reliability analysis of phased-mission

systems”, Reliability Engineering & System Safety, Vol. 66, No. 2, 1999, pp.

157-70.

[35] Zang, X., Sun, N., and K.S, T., “A BDD-based algorithm for reliability

analysis of phased-mission systems”, IEEE Transactions on Reliability, Vol.

48, No. 1, 1999, pp. 50-60.

 - 245 -

[36] Xing, L., and Dugan, J.B., “Comments on PMS BDD generation in `A BDD-

based algorithm for Reliability Analysis of phased-mission systems'“, IEEE

Transactions on Reliability, Vol. 53, No. 2, 2004, pp. 169-73.

[37] Xing, L., and Dugan, J.B., “A separable ternary decision diagram based

analysis of generalized phased-mission reliability”, IEEE Transactions on

Reliability, Vol. 53, No. 2, 2004, pp. 174-84.

[38] Dunnett, S.J., and Andrews, J.D., “A binary decision diagram method for

phased mission analysis of non-repairable systems”, Proceedings of the

Institution of Mechanical Engineers, Part O : Journal of Risk and Reliability,

Vol. 220, No. 2, 2006, pp. 93-104.

[39] Prescott, D.R., Andrews, J.D., and Downes, C.G., “Multiplatform phased

mission reliability modelling for mission planning”, Proceedings of the

Institution of Mechanical Engineers, Part O : Journal of Risk and Reliability,

Vol. 223, 2009, pp. 27-39.

[40] Prescott, D.R., Remenyte-Prescott, R., and Andrews, J.D., “A systems

reliability approach to decision making in autonomous multi-platform systems

operating a phased mission”, Proceedings of the Annual Reliability, Availability

and Maintainability Symposium (RAMS), Las Vegas, USA, IEEE, Jan 2008, pp.

8-14.

[41] Prescott, D.R., Remenyte-Prescott, R., Reed, S., “A reliability analysis method

using binary decision diagrams in phased mission planning”, Proceedings of the

Institution of Mechanical Engineers, Part O : Journal of Risk and Reliability,

Vol. 223, 2009, pp. 133-143.

[42] La Band, R.A., and Andrews, J.D., “Phased mission modelling using fault tree

analysis”, Proc. of the 15th Advances in Reliability Technology Symposium

(ARTS), Mech. Eng. Publications for IMechE, 2003, pp. 81-97.

[43] Andrews, J.D., “Identifying the major contributions to risk in phased missions",

2006, Proceedings of the Annual Reliability, Availability and Maintainability

Symposium (RAMS), 2006, IEEE, pp. 624-629.

[44] Andrews, J.D., “A ternary decision diagram method to calculate the component

contributions to the failure of systems undergoing phased missions”,

Proceedings of the Institution of Mechanical Engineers, Part O : Journal of

Risk and Reliability, Vol. 222, No. 2, 2008, pp. 173-187.

 - 246 -

[45] Dugan, J.B., “Automated analysis of phased-mission reliability”, IEEE

Transactions on Reliability, Vol. 40, No. 1, 1991, pp. 45-52.

[46] Somani, A.K., “Simplified Phased-Mission System Analysis for Systems with

Independent Component Repairs”, International Journal of Reliability, Quality

and Safety Engineering, Vol. 4, 1997, pp. 167-191.

[47] Vaurio, J.K., “Fault tree analysis of phased mission systems with repairable

and non-repairable components”, Reliability Engineering & System Safety.,

Vol. 74, No. 2, 2001, pp. 169-180.

[48] Clarotti, C.A., Contini, S., and Somma, R., “Repairable Multiphase Systems -

Markov and Fault-Tree Approaches for Reliability Evaluation”, edited by G.

Apostolakis S. Garribba and G. Volta, Synthesis and Analysis Methods for

Safety and Reliability Studies, Plenum Press, New York, 1980, pp. 45-58.

[49] Gray, J.N.P., “Continuous-time Markov methods in the solution of practical

reliability problems”, Reliability Engineering, Vol. 11, No. 4, 1985, pp. 233-

252.

[50] Wells, C.E., and Bryant, J.L., “Reliability characteristics of a Markov system

with a mission of random duration”, IEEE Transactions on Reliability, Vol. R-

34, No. 4, 1985, pp. 393-396.

[51] Alam, M., and Al-Saggaf, U.M., “Quantitative reliability evaluation of

repairable phased-mission systems using Markov approach”, IEEE

Transactions on Reliability, Vol. 35, No. 5, 1986, pp. 498-503.

[52] Kim, K., and Park, K.S., “Phased-mission system reliability under Markov

environment”, IEEE Transactions on Reliability, Vol. 43, No. 2, 1994, pp. 301-

309.

[53] Somani, A.K., Ritcey, J.A., and Au, S.H.L., “Computationally-Efficient

Phased-Mission Reliability Analysis for Systems with Variable

Configurations”, IEEE Transactions on Reliability, Vol. 41, No. 4, 1992, pp.

504-511.

[54] Mura, I., and Bondavalli, A., “Hierarchical modeling and evaluation of phased-

mission systems”, IEEE Transactions on Reliability, Vol. 48, No. 4, 1999, pp.

360-8.

 - 247 -

[55] Mura, I., Bondavalli, A., Zang, X., “Dependability Modeling and Evaluation of

Phased Mission Systems: A DSPN Approach”, Proc. International Federation

for Information Processing International Conference on Dependable

Computing And Fault Tolerant Systems (DCCA-7), Vol. 12, IEEE Computer

Society Press, 1999, pp. 319-338.

[56] Smotherman, M., and Zemoudeh, K., “A non-homogeneous Markov model for

phased-mission reliability analysis”, IEEE Transactions on Reliability, Vol. 33,

No. 5, 1989, pp. 585-590.

[57] Smotherman, M.K., and Geist, R.M., “Phased mission effectiveness using a

nonhomogeneous Markov reward model”, Reliability Engineering and System

Safety, Vol. 27, 1990, pp. 241-255.

[58] Petri, C.A., “Kommunikation mit automaten”, PhD Thesis, 1962.

[59] Schneeweiss, W.G., “Design of Petri-Nets (for Reliability Engineering)

[Tutorial Notes]”, 2001 Annual Reliability and Maintainability Symposium,

IEEE, 2001, pp. 1-11.

[60] Schneeweiss, W.G., “Petri nets for reliability modeling: in the fields of

engineering safety and dependability”, LiLoLe Verlag, Hagen, 1999.

[61] Bobbio, A., “System modelling with Petri nets”, edited by A.G. Colombo and

A. Saiz de Bustamante, System Reliability Assessment, Kluwer, Dordrecht,

Netherlands, 1990, pp. 102-143.

[62] Leveson, N.G., and Stolzy, J.L., “Safety Analysis Using Petri Nets”, IEEE

Transactions on Software Engineering, Vol. 13, No. 3, 1987, pp. 386-397.

[63] Ramchandani, C., “Analysis of asynchronous concurrent systems by timed

Petri nets”, PhD Thesis, 1974.

[64] Merlin, P.M., “A study of the recoverability of computing systems”, PhD

Thesis, 1974.

[65] Berthomieu, B., and Menasche, M., “An enumerative approach for analyzing

time Petri nets”, Proceedings of the 9th IFIP Congress, North-Holland,

Amsterdam, Netherlands, 1983, pp. 41-46.

[66] Sifakis, J., “Use of Petri nets for performance evaluation”, Proceedings of the

Third International Symposium on Measuring, Modelling and Evaluating

Computer Systems, North-Holland, Amsterdam, Netherlands, 1977, pp. 75-93.

 - 248 -

[67] Coolahan, J.E., and Roussopoulos, N., “Timing requirements for time-driven

systems using augmented Petri nets”, IEEE Transactions on Software

Engineering, Vol. 9, No. 5, 1983, pp. 603-619.

[68] Razouk, R.R., “The derivation of performance expressions for communication

protocols from timed Petri net models”, Proceedings of the ACM SIGCOMM

symposium on Communications architectures and protocols: tutorials &

symposium, Vol. 211, 1984, pp. 210-217.

[69] Beyaert, B., Florin, G., Lonc, P., “Evaluation of computer systems

dependability using stochastic Petri nets”, Digest 11th Annual Symposium on

Fault-Tolerant Computing, IEEE Computer Society, 1981, pp. 79-81.

[70] Molloy, M., “Performance analysis using stochastic Petri nets”, IEEE

Transactions on Computers, Vol. 31, No. 9, 1982, pp. 913-917.

[71] Ajmone-Marsan, M., Conte, G., and Balbo, G., “A class of generalized

stochastic Petri nets for the performance evaluation of multiprocessor systems”,

ACM Transactions on Computer Systems, Vol. 2, No. 2, 1984, pp. 93-122.

[72] Sörensen, K., and Janssens, G.K., “Automatic Petri Net Simulation Model

Generation for a Continuous Flow Transfer Line with Unreliable Machines”,

Quality and Reliability Engineering International, Vol. 20, No. 4, 2004, pp.

343-362.

[73] Volovoi, V., “Modeling of system reliability Petri nets with aging tokens”,

Reliability Engineering and System Safety, Vol. 84, No. 2, 2004, pp. 149-161.

[74] Malhotra, M., and Trivedi, K.S., “Dependability modeling using Petri-nets”,

IEEE Transactions on Reliability, Vol. 44, No. 3, 1995, pp. 428-440.

[75] Volovoi, V., “Modeling multiphased missions using stochastic Petri nets with

aging tokens”, Proceedings of the Annual Reliability and Maintainability

Symposium 2004, IEEE, Piscataway, NJ, USA, 2004, pp. 232-236.

[76] Mura, I., and Bondavalli, A., “Markov Regenerative Stochastic Petri Nets to

Model and Evaluate Phased Mission Systems Dependability”, IEEE

Transactions on Computers., Vol. 50, No. 12, 2001, pp. 1337-1351.

[77] Jensen, K., “Coloured Petri nets: A high level language for system design and

analysis”, Lecture Notes in Computer Science: Advances in Petri Nets 1990,

Vol. 483, 1990, pp. 342-416.

 - 249 -

[78] Kumar, V., and Aggarwal, K.K., “Petri net modelling and reliability evaluation

of distributed processing systems”, Reliability Engineering and System Safety,

Vol. 41, No. 2, 1993, pp. 167-176.

[79] Muppala, J., “Performance and dependability modeling using stochastic reward

nets”, PhD Thesis, 1991.

[80] van der Aalst, W.M.P., “The Application of Petri Nets to Workflow

Management”, Journal of Circuits Systems and Computers, Vol. 8, No. 1, 1998,

pp. 21-66.

[81] Corradini, A., “Concurrent Computing: from Petri Nets to Graph Grammars”,

Electronic Notes in Theoretical Computer Science, Vol. 2, 1995, pp. 56-70.

[82] Lopez-Benitez, N., “Petri-Net Based Performance-Evaluation of Distributed

Homogeneous Task Systems”, IEEE Transactions on Reliability, Vol. 49, No.

2, 2000, pp. 188-198.

[83] Horton, G., “A new paradigm for the numerical simulation of stochastic Petri

nets with general firing times”, Simulation in Industry: 14th European

Simulation Symposium, SCS-Europe Publishing House, Erlangen, Germany,

2002, pp. 129-136.

[84] Liu, T.S., and Chiou, S.B., “The application of Petri nets to failure analysis”,

Reliability Engineering and System Safety, Vol. 57, No. 2, 1997, pp. 129-142.

[85] Bondavalli, A., Mura, I., and Nelli, M., “Analytical modelling and evaluation

of phased-mission systems for space applications”, Proceedings of the IEEE

High-Assurance Systems Engineering Workshop 1997, IEEE Comput. Soc, Los

Alamitos, CA, USA, 1997, pp. 85-91.

[86] National Transportation Safety Board, “In-flight Breakup Over The Atlantic Ocean,

Trans World, Airlines Flight 800, Boeing 747-131, N93119, Near East Moriches, New

York, July 17, 1996”, Aircraft Accident Report NTSB/AAR-00/03, Washington, DC.

http://www.ntsb.gov/Publictn/2000/AAR0003.pdf

 - 250 -

Appendix A Description of Simulation Program

A.1 Introduction

The creation of a complex PN model is one which would require a great deal of

time to recreate even one scenario of component failures. One of the benefits of

performing these tasks on a computer simulation program, as outlined in Section

1.5, is that thousands or millions of simulations can be performed in a short

timeframe. A simulation program using Monte-Carlo methods can, with sufficient

numbers of simulations, build up an accurate picture of the reliability performance

of the platform.

These facts led to the creation of a program which applies the Petri net modelling

methods explained in Chapter 5 and Chapter 6 in the form of Monte-Carlo

simulations. This is the means of providing the data to accurately analyse all aspects

of the combination of phased missions and MFOPs being performed by a series of

platforms.

The following sections of this appendix will explain the procedures of the program,

including:

• Inputting phase fault trees, component data, mission, MFOP and platform

data, and information on MFOP and phased mission complexities

• Conversion of inputted information into a useful set of PNs

• Changing options regarding running the simulations

• Performing simulations on the platform

• The way in which the inputted data is stored, and what parameters from the

simulations are stored

• Outputting the results obtained or information on the system

In this appendix, code is always displayed in a different font, and is written as

it would typically be in C++, except where abbreviated code is indicated in square

 - 251 -

brackets. Comments are shown either on the same line as code, using two forward

slashes //, or as a block of text, which is bookended by a forward slash and an

asterix:

/* A block of text following /* will be ignored by the compiler

until ended with the characters: */

Similarly, text which forms the inputs or outputs to the program is also written in a

different font.

A.2 Basic Information

The simulation model was programmed in C++ using Microsoft Visual Studio 6.0.

This is an object-oriented language, which differs from structured languages. Most

programming languages provide the capability for creating variables of integer,

floating point, Boolean and string types, amongst others. In a structured language, it

is possible to define a structure type which contains many different sub-variables.

For instance, consider the following code:

struct simple_structure

{

 int a;

 float b;

 bool c;

 char d;

};

A structure has been defined of type simple_structure which has the sub-

variables a, b, c and d. Values can be assigned to these sub-variables and functions

can be written to use them. In an object-oriented programming language, this ability

to bind together sub-variables under an umbrella structure is still present. Also

defined under that umbrella, however, are the functions capable of being performed

on the sub-variables. Instead of a structure, this is known as an object of a class.

This can be defined in C++ as follows:

 - 252 -

class simple_object

{

public:

 void function1();

 int function2();

 float function3();

private:

 int a;

 float b;

 bool c;

 char d;

};

The public and private operators are there to define what aspects of the class

non-object functions can access. Best practice states that object functions should be

accessible, or “public”, to any part of the program, while the variables should be

“private”, or only directly accessible to the object. Typically, the only way to access

a variable in an object is if a function exists to return the variable or its memory

pointer. Continuing with the above example, the object would be defined in the

following way:

void external_function()

{

 simple_object object_name; //Defining the object

 object_name.function1(); //Accessing a function of the

object

}

Coding in an object-oriented language allows for a great deal of flexibility and

memory efficiency. Every effort has been made with the code to establish a good

balance between time to run all of the simulations and the memory used in doing so.

Dynamic memory allocation (DMA), where variables, arrays, and objects are only

defined at run-time to be the size that they need to be, has been used copiously.

Using DMA allows for the possibility of memory leaks, where memory is allocated

but is not released after it is no longer needed. All memory leaks have been

removed from the program, so that its RAM usage remains stable while running a

batch of simulations.

 - 253 -

The interface of the program is not a standard Windows application. Like most

simple programs coded in C++, the graphical user interface (GUI) is, instead, a

screen resembling DOS, an early text-based operating system, as shown in Figure

A.1.

Figure A.1 – Typical GUI of Simulation Program

The status of the inputted model is shown at the top of the program screen, with

information such as the number of simulations to be performed and fleet, MFOP

and mission data. The user options are presented in the form of menus, each one of

which has an assigned number. The number is typed in where the screen says “Enter

your choice”, and pressing enter takes the user to that option. Some options result in

sub-menus, while others perform tasks directly.

Upon execution, the program first creates a main simulation object named “Sim”, of

class “Input_Output”. This single object controls the entire program and operates

everything else. The whole of the rest of the code, including all other objects, is a

part of Sim. These other objects are:

• A Petri Net object, containing all the information on the various PNs

• Objects for Platforms, MFOPs, Missions and Phases

• Objects for LRIs, Systems, Components and Discrete Events

• Objects for redundancies and prognostics.

 - 254 -

Sim also contains variables such as the numbers of platforms, MFOPs, missions,

phases, LRIs, systems, components and discrete events, in addition to the

confidence level mentioned in Section 6.3.8.3, and the number of simulations to be

performed. The PN object is created at run-time, although it is initially empty.

A.3 Inputting Data to the Program

The first step necessary to operating the program is to input data to allow it to create

the various Petri Nets used to model the fleet of platforms and their missions. All

inputs are in the form of text files, which are easily inputted to the program, but

must be in a very specific format for each type of input. As Figure A.2 shows,

entering the input menu, the user is faced with two options: return to the previous

menu, or input the phase failure & abandonment fault trees, and sensor and

component failure data.

Figure A.2 – Input Menu

A.3.1 Phase Fault Tree, Component and Sensor Data

Figure A.3 shows the process by which the Phase fault trees, component failure

rates, sensor data, discrete events and component dependencies are inputted to the

program. The following sections describe this in more detail.

 - 255 -

Figure A.3 – Flowchart describing input processes for phase fault trees, component data,

sensors, discrete events and component dependencies

Entering the name of a text file which contains this information begins the process

of creating the first set of PNs. This file must contain the following information, in

the following order:

 - 256 -

- Number of phases to be inputted.

- Catastrophic Failure Fault tree information for each phase

- If an abandonment specific to the phase is possible, the details of the fault tree

for that.

- Fault tree information for general total loss and general abandonment

- Failure information for each basic event specified in the phase fault trees

- Information on sensors, including what they monitor and failure rates

- Data on discrete events

- Specifics of dependencies between components

A.3.1.1 Phase Fault Trees

The layout of the text file is very precise. For inputting the phases, this is as follows:

PHASES <# PHASES>

PHASE <PHASE NAME> <# EVENTS>

<EVENT 1 NAME> <GATE TYPE> <# EVENTS > <EVENT 1> <EVENT 2> ...

<EVENT 2 NAME> <GATE TYPE> <# EVENTS > <EVENT 1> <EVENT 2> ...

...

ABANDONS <# EVENTS>

<EVENT 1 NAME> <GATE TYPE> <# EVENTS > <EVENT 1> <EVENT 2> ...

...

PHASE <PHASE NAME> <# EVENTS>

...

In practice this is typed as:

 - 257 -

PHASES 6

PHASE A 5

GTOPA + 5 G1001 G1002 A B C

G1001 * 2 G1003 D

...

ABANDONS 1

ATOPA * 3 A1001 C E

A1001 + 5 A B D F G

...

The number of phases (“no_phases”) inputted at the top of the file allows for the

creation of an array of objects relating to phases. The number in the array is

no_phases+1, which accounts for the general phase in addition to the others. While

each of these objects stores a great deal of information, the only data that can be

saved immediately is the name of each phase and the number of the system which

represents the abandonment fault tree top event.

For each phase, the fault trees for total loss and abandonment are written in text

format. Each line represents one event, top or intermediate, of the fault tree, with the

name of that event written first. Each of these has a logic gate attached to it, into

which various other events input. If the logic gate is an AND gate, this is written as

‘*’, while if it is an OR gate, this is typed as ‘+’. Following this is the number of

event inputting to the logic gate and the names of each of these. The data are

inputted and the events are separated into their different types. All top events are the

names of the first lines in each fault tree. Intermediate events are the names of the

other lines in each fault tree, while basic events are those which have no logic gate

inputs.

The program assigns a number to each event, based on their type and the value of a

global non-variable identity called NO_BASICS. This number, set to a preliminary

value of 1000, defines the maximum number of basic events which may be inputted.

 - 258 -

Each basic event number lies in the range 0 to NO_BASICS-1, while each top or

intermediate event number lies in the range NO_BASICS to 5×NO_BASICS-1. These

numbers are attached not just to events but to places which represent those events,

and are used for identification.

Once the phase fault trees have been inputted, the general failure and abandonment

fault trees are taken in. These follow exactly the same format as above, swapping

the words “PHASE <PHASE NAME>” for “GENERAL FAILURES”. The number of basic

events throughout all the different fault trees is added up, taking account of any

repetitions, and this forms the number of components (“no_compts”). As mentioned

in section 6.2.3, the other events from the fault trees are considered to be systems,

and so that number is summed (again accounting for repetition of events), and this

becomes “no_systems”. These values are used to create two objects arrays.

The only information that can be stored on each component or system, at this point,

is its name and number. In addition, the program scans through the fault trees, and

sets each component object to store the numbers of the systems it occurs in. Each

system object stores data on each system and component inputting to it, as well as

the number of times that system is repeated, and the phases in which it occurs.

Following the logging of data for each phase, system and component, the program

begins converting each event in each fault tree into PN form. The PN object

mentioned above contains two object arrays – one for places, and one for

transitions, in addition to other variables. Each place object is quite small,

containing data only on the name of the place, its number, the marks it contains for

each platform and the numbers of the transitions to which it connects with three

different types of arc. A transition object also contains this arc data on places linked

to it, as well as whether it is timed or immediate, probabilistic or not, its time to

switch, any probability arcs, the probability distribution from which the time to

switch is sampled and whether it is enabled or not. These objects are set up in a two-

dimensional array. The first dimension is the number of phases plus three, which

relates to each PPN, the General PPN, the Master PN and the Component PN. The

second dimension is the number of places or transitions within each of these.

 - 259 -

The process of fault tree conversion to PN form begins by creating in the

component PN the three places, shown in Figure 6.10, which represent “MFOP

Active”, “MRP Active” and “Next MFOP”. Two loops are then entered, running

through each phase in turn and, within that phase, each event. As according to the

phase PN information shown in Section 5.2.1.1, a place is created for each fault tree

event, with the logic gates set up according to the inputted information. Sub-event

places are also created, and if these are basic events, the “up” and “down” places, as

well as the failure and repair transitions are added and connected to each other. As

each place or transition is set up, the relevant object (phase, system, component) is

made aware of that node’s number, expressed as a PN and place, in the array. Most

of these are stored with an accompanying “type” number. This number is arbitrary,

as long as it is different from other place and transition “types”, and can be recalled

when the program needs the node index in another function. For instance, the “up”

and “down” places for a component are types 0 and 1 respectively.

A.3.1.2 Component Failure Data

Once each of the fault trees has been set up in PN form, and all the data extracted

and organised in arrays of objects, the next stage is to input the component data. The

information must be arranged as shown below:

COMPONENTS

<COMPONENT 1 NAME> <R/U> <ON DIST> <PARAS> <OFF DIST> <PARAS>

<COMPONENT 2 NAME> <R/U> <ON DIST> <PARAS> <OFF DIST> <PARAS>

...

where R/U is whether the component’s failure is revealed or unrevealed.

 ON DIST is the component’s online failure distribution type, followed by

its parameters

 OFF DIST is, if it exists, the component’s offline failure distribution type,

followed by the relevant parameters. This is used with

components which are set offline by a redundant system and

have warm or hot offline failures.

 - 260 -

The distribution types are of six different types, each entered in a specific way:

- EXP is the exponential distribution. It requires one parameter, which is the

failure rate per hour.

- SET is a deterministic time, followed by a time in hours. The component will

fail at exactly this time. This is used mainly for experimentation and

troubleshooting, and is not a realistic description of a component’s actual

failure rate.

- NORM is the normal distribution. It has two parameters, the average failure time

and the standard deviation.

- LNORM is the lognormal distribution, with the same two parameters for the

logarithm of the function.

- WEIB2 and WEIB3 are the two-parameter and three-parameter versions of the

Weibull distribution. The first two parameters, common to both, are the shape

and scale parameters respectively, while the third one, used only with WEIB3, is

the location parameter, which shifts the distribution such that no failure can

occur before this point.

Examples of how these component distributions are laid out are shown below.

COMPONENTS

A EXP 5.9E-5 EXP 7.2E-8

B SET 50

C NORM 600 70 NORM 1500 40

D LNORM 6.9 0.1

E WEIB2 2.4 700

F WEIB3 2.4 700 300

...

The program has calculated how many components to expect during the previous

stage, so this information is not necessary to input. After the first set of probability

distributions is inputted, the program checks whether the next input is the name of

any of the distribution types or not. If it is, then it knows to input the rest of the data

for the offline failure transition and create this for the component. Otherwise, there

 - 261 -

are no PNs to set up; the information is added to the relevant timed transition

objects.

A.3.1.3 Sensor Data

Once component data has been saved, the next set of information to be taken in is

that for sensors. Sensors are themselves components, and so failure data needs to be

specified for them, in addition to the items that the sensors monitor. The standard

layout for this information in the inputting text file is as follows:

SENSORS

<SENS 1 NAME> <SENSED ITEM> <R/U> <FAIL DIST> <PARAS> <NFF DIST> <PARAS>

<SENS 2 NAME> <SENSED ITEM> <R/U> <FAIL DIST> <PARAS> <NFF DIST> <PARAS>

...

An example of this would be:

SENSORS

SENS_A A R EXP 7E-8 EXP 6E-3

SENS_G1001 G1001 U EXP 4E-11 EXP 8E-4

...

The number of sensors does not need to be inputted; the program will input each

line at a time, create the PNs for the component as needed, and loop through this

procedure until it is recognised that the section for sensors has ended. The sensor

could have been included as a component in the phase fault trees entered earlier. If

it was, the failure data is applied to the component’s online transition as above. If it

is a new component, then the PN is set up for it with the inputted failure data.

Following this, the failure place for the item which the sensor monitors is found,

and two new transitions and a place are created to allow the detection to take place,

as shown in Figure 6.23. Every place for the sensor is set to have a number lying in

the range of 5×NO_BASICS to 6×NO_BASICS-1.

The No-fault-found (NFF) rate describes the frequency with which sensors “find” a

failure which does not exist. One of the major problems regarding availability of

 - 262 -

platforms, NFF may force evasive action or bring online redundant systems when it

is not necessary too. The probability distribution which describes the likelihood of

an NFF occurring is inputted after the main failure distribution. If a sensor is perfect

and does not give spurious trips, the NFF rate does not need to be entered.

A catastrophic failure fault tree describes events which must happen in order for the

platform to undergo total loss. It is a real-world, definite result of a series of

component and system failures. An abandonment fault tree, however, is a

description of the events which must happen before the current mission is aborted,

and this is based on the information which is available at the time. As such, if the

sensor is mentioned in a catastrophic failure fault tree, it is assumed that the sensor’s

failure is critical to the phase. If, however, the sensor inputs to an abandonment fault

tree, it is assumed that the data the sensor provides is most important. As such, the

arcs from the sensor’s failure place are all transferred instead to the “failure sensed”

place just set up.

Sensors are components, and so their data on names, numbers, failure data, and so

on, is stored as part of the components object array.

A.3.1.4 Discrete Events

The next stage in the inputting of the first text file is the discrete events. As

described in Section 6.3.2, these can be set up to be triggered by almost any event

describable by the model. However, many of these events have not yet been set up.

As a result, it is possible to input at this stage only discrete events which are

triggered by component, sensor or system failures. Because it is called at two

different stages, the function for inputting discrete events is external to, and called

by, the function which inputs this text file. The discrete event data is inputted using

the following format:

DISCRETE EVENTS <# EVENTS>

<DE 1 NAME> <TRIGGER NAME> <SUCCESS PROBABILITY>

<DE 2 NAME> <TRIGGER NAME> <SUCCESS PROBABILITY>

...

 - 263 -

An example of this might be:

DISCRETE EVENTS 4

DE1 A 0.76

DE2 G2001 0.5

...

The input function loops for the number of DEs to be entered. Taking each line at a

time, the trigger event name is searched for among the sensors, components and

systems. When the correct item is found, the failure place is logged. After this, a

search is performed to establish whether the DE has already been inputted as a

component input to a fault tree. If it has, the component net is converted into a

discrete event PN; if not, it is created as new in the component PN. The conversion

process makes the “Component Failure” place into the “Yes” place and the

“Component Operational” place into the “No” place. The timed failure transition

becomes a probabilistic, immediate decision transition, while the repair transition is

the transition which clears the Yes place when the trigger place is emptied. A

transition is created to empty the No place. The arcs are altered to be in the right

place, leaving the next stage to be performed, which links the trigger place to the

DE net, enabling the decision transition and inhibiting the yes and no place

clearance transitions.

Objects are created for each discrete event, and store information on its name,

number (the number for each DE is set to be in the range 6×NO_BASICS to

7×NO_BASICS-1), the associated probability of the event succeeding and each of the

places and transitions.

A.3.1.5 Component Dependencies

A component dependency, explained further in Section 5.2.1.2.1, describes the way

a component’s failure rate may change when another component fails. The nature of

this change is capable of being expressed, to the program, in two ways. The first of

these is by specifying another distribution for the component to be used when the

other component fails. The second is by inputting a “stress level”. The “stress” on a

component can be thought to be a combination of all of the factors which can cause

 - 264 -

an item to fail faster or slower: temperature, humidity, vibration, and so on. If the

stress on a component doubles when another component fails, the failure time

decreases by half.

The method of inputting data on component dependencies is shown in an example

below:

DEPENDENCIES

A 2 D EXP 1.2E-3

 E NORM 1.1E-3 100

 EXP 0.018

C 1 E 1.3

The number of components with dependencies does not need to be given. As the

component dependency details are the last set of data to be inputted, the input

function will continue input dependency data until the end of the file is reached.

A component name is taken in, followed by the number of components on which it

is dependent. If the number is one, then the program inputs one component name

followed by the stress or failure data for one transition. If, however, it is dependent

on the upper limit of two components, then there are three extra transitions needed.

The relevant number of transitions is created and linked to the “operational” and

“failure” places for each component dependency, as shown in Figure 5.5. If a stress

value is entered, as a proportion of the normal value, the new failure transition is

given the same distribution information as the original failure transition. The

component object which has the multiple failure transitions is then set to store this

information.

A.3.2 MFOP Enabler Data

Once the first set of information has been installed, the program allows the user to

specify a second text file which contains information on the MFOP Enablers, as

shown in Figure A.4.

 - 265 -

Figure A.4 – Inputting MFOP Enablers Text File

Pressing ‘2’ and then entering the full name of the file begins the process. The

program allows five types of item to be specified at this point, in the following

order:

1. Line Replaceable Items (LRIs)

2. Scheduled Life Replacements (SLRs)

3. Inspections

4. Redundancies

5. Prognostics

The data is inputted as described in the flow chart in Figure A.5.

A.3.2.1 LRI Data

LRI data must be set out in the text file as shown below:

LRI <# LRIs>

<LRI 1 NAME> <VOTE NO> / <# ITEMS> <ITEM 1 > <ITEM 2> ...

<LRI 2 NAME> <VOTE NO> / <# ITEMS> <ITEM 1 > <ITEM 2> ...

...

 - 266 -

Figure A.5 – Flowchart describing input process for MFOP Enablers Text File

An example of this would be:

LRI 2

LRI_1 2/3 LRI_2 B G3001

LRI_2 1/4 A G D A4010

START

Enter textfile name

File
found?

Input LRI data, create
PNs and object array

Inspection
data?

Input inspection data,
create PNs

Go to 1

1

Input redundancy,
create PNs and

object array

Redundancy
data?

Prognostics
data?

Input prognostics
data, create PNs and

object array

END

LRI
data?

SLR
data?

Input SLR data,
create PNs

Y

Y

Y

Y

Y

Y

N

N

N

N

N

N

 - 267 -

The number of LRIs must be stated on the first line, after the word “LRI”. Following

this, rather than taking each line in turn and creating each LRI one at a time, certain

sections of all the LRIs are generated in sequence. This is due to the interactions

that may exist between different items; the program must be aware of all of the LRIs

it is making.

An array of objects for the LRIs is set up, and the vote number, number of events

and the event names are inputted and stored locally. Each LRI object is given a

name and the vote number, after which each of the items which are contained in the

LRI are categorised according to whether they are components, systems or child

LRIs. Each LRI object stores the array index numbers of its child items, and, if it

exists, its parent LRI. The total number of sub-items is stored also at this point.

Another loop is entered, one pass for each LRI, and the number of places and

transitions to be created is established. This is done so that the arrays for the place

and transition objects, contained in the Petri_Net object as mentioned above, can

be extended to contain the new nets.

The next stage is creating the PNs to replace components, systems and child LRIs.

Running through each LRI one at a time, component and system failure places are

located, as are LRI main places. A first input transition is created and the index

number is stored in the LRI object – other input transitions do not need these

numbers stored, as their index numbers increment by one from this value for each

child item. If the vote number equals the number of events, then the logic input to

the LRI is created as an AND gate, and this one input transition will perform the

task. If the vote number equals one, the logic is an OR gate, and a new input

transition is needed for each input. The transitions are linked to the input places and

the LRI main place, as shown in Figure 6.18. The figure shows that systems have

control places created for the inputs, and so these are created after all of the other

input items have been managed. If the vote number is greater than one and less than

the number of events, then the logical input to the LRI is as a voting gate. The input

transition already created is linked to by the vote place, as shown in Figure 6.19.

The child item places are linked to vote transitions and control places as shown in

 - 268 -

the figure. Each LRI object is set to store the index numbers for each place and

transition used in inputting to the main place.

The subsequent step is to set each LRI with child LRIs to place a token in the

child’s main place, using an immediate transition. After this, all component inputs,

either directly or indirectly through being a part of a child system, are set to be

replaced whenever the LRI place is marked, as shown in Figure 6.20. The new place

and transition index numbers are stored by the matching component object. The

final step is to create the transitions which remove the tokens from the LRIs when

all sub-components have been replaced.

A.3.2.2 Scheduled Life Replacements

If the operator specifies individual LRIs or components to undergo regular

replacements, regardless of its working or failed state, that information is entered

here. Its simple format is exemplified below:

SCHEDULED LIFE 2

A 150

LRI_2 300

The number of SLRs to be created is given after the words “SCHEDULED LIFE”. The

first line is taken in, and the first term, which should be the name of the component

or LRI, is compared to the object arrays and found. The PNs are created as shown in

Figure 6.21, with the relevant component or LRI object made to remember the

places and transitions. If a component is also a member of an LRI, an account is

made of this as shown in Figure 6.22. The timed transitions which, when they

switch, mark the item as requiring replacement are given the “SET” distribution,

with the parameter being the second term entered from each line.

A.3.2.3 Inspections

When inputting data on inspections to be carried out, the text file must have its

information set out in the following way:

 - 269 -

INSPECTIONS <# INSP>

<ITEM 1 NAME> T/M/S <PARAMETER>

<ITEM 2 NAME> T/M/S <PARAMETER>

...

The number of inspections to be inputted must be stated after the title

“INSPECTIONS”. “T/M/S” specifies the type of inspection that the item is to have:

‘T’ refers to an inspection carried out after a given time, specified where the line

says “<PARAMETER>”. ‘M’ is an inspection made after a number of MFOPs, while ‘S’

allows a system to be specified which, if found to be failed, prompts the inspection

of this item. An example of how the inspection data is inputted is shown below.

INSPECTIONS 6

G2001 T 300

B M 4

C S G2001

...

Once the information is all inputted, the program checks to see whether the item is a

system or component, and if it is a member of an LRI or not. The places and

transitions to be created are counted and the object arrays extended again. Initially,

inspection places are created and linked to the relevant component or system item,

accounting for LRI membership. The PNs for this are shown in Section 6.3.6.2. If

the inspection place becomes marked through a count of time or MFOPs, the

transitions to allow this are created next. If, however, inspections are based upon the

discovery of failure in a higher system, then the program must complete the process

of creating nets for inspection of the higher system if this is specified. Only after

this loop has ended can another loop be entered, linking system inspection, “failure

sensed” or failure places with a transition to input to the lower item. As with all

other inputs, the LRI, system and component objects store the index numbers of

places created for them, where this is necessary.

 - 270 -

A.3.2.4 Redundancies

Redundancies and prognostics, which are covered in the next section, are handled

slightly differently to the other MFOP enablers inputted. Each of these has its own

object containing information about the enabler. Component (which can have both

redundancies and prognostics) and system (which can only have the former) objects

have a pointer to each of these built-in and set to zero at run-time. Only when the

item is defined as having redundancies or prognostics is the object for the enabler

created and the pointer set to the newly-allocated memory point.

The process of inputting the details of redundant items begins with the information

given in the text file. This is laid out, typically, as shown below.

REDUNDANCIES <# REDS>

<ITEM NAME> S/M <PARAMETER> <# OUTPUTS> <OUTPUT 1> ...

An example of this is shown below:

REDUNDANCIES 4

A S SENS_A 2 B C

C M 0.89 1 D

G2002 S SENS_G2002 1 G2003

G3004 M 0.56 3 C F H

Redundancies, as explained in Section 6.3.7, are either automatically switched upon

failure detection by a sensor, or they are manually switched by an operator. The

former scenario is selected by using an ‘S’ and specifying a sensor component to

link to. The manual switching requires a parameter to specify the probability that

the redundancy will be successfully brought online. After this is given, the number

and name of the items which are brought online when the main system fails are

inputted.

After the data is inputted, the program enters a loop which is bounded by the

number of items with redundancies. Almost the entirety of each redundancy PN is

created in this loop, one at a time. The failure places for the item is located, and the

 - 271 -

net allowing it to be turned off upon failure is set up, depending upon whether the

item is a system or component, and the automatic or manual nature of the switching.

This includes linking the “X Op” place to component online and offline transitions

as shown in Figure 6.34. The redundancy object in the item is made to store the

index number for each place or transition created.

Another loop is then entered, within the previous one, which is terminated by the

number of redundant item outputs the main item has. Each output item has its

redundancy nets created and linked to the “Yes” or “No” places, which represent the

successful or unsuccessful switching to the redundant item(s), as shown in Figure

6.35 and Figure 6.36. The “Y Op” place, like the “X Op” place earlier, is linked to

the component(s) which are turned on when the redundancy is brought online.

These details of these nodes are stored in the item’s redundancy object.

The final part of the function creates the PNs which link the “X Op” place for a

subsystem with redundancies to that of a higher system with redundancies. As

shown in Figure 6.41, the X Op place for the child item must be unmarked when the

parent system fails. Because this is linking different redundant items, this must be

performed outside of the previous two loops. The function ends after this, and

prognostics information may be entered.

A.3.2.5 Prognostics

As explained in section 6.3.8, the prognostics modelling method devised within this

research is based on the idea of detectable deterioration in components. This

deterioration, or wear, must be expressed in the form of levels, with confident

predictions based on the typical point in an item’s life when the wear level occurs.

Thus, in order to set up nets for prognostics, it is necessary for the wear levels to be

specified in the input text file:

PROGNOSTICS 2

C 3 15 25 40 50 70 92

I 2 10 20 80 90

 - 272 -

This information is set up with the number of prognostic components stated

immediately after the title, and the names of each item specified first on each line.

Following the component name, the number of wear levels is given, followed by the

lower and upper bounds for each level in turn. Thus, in the example shown,

component ‘C’ has three wear levels, with the bounds 15%-25%, 40%-50% and

70%-92% of the component’s life. ‘I’ has two wear levels, the first between 10%

and 20%, and the second between 80% and 90% of the component’s life.

This is all the information that the program needs to set up the PNs. By this point,

all diagnostic methods (sensors and inspections) should have been declared and

inputted, and the program uses this information, if it exists, in generating the PNs

for prognostics. The input function enters a loop terminated by the number of

prognostics, and creates the set of nodes and arcs entirely within that loop.

As mentioned earlier, the components which feature prognostics have an object

created to store such data as the wear levels, the current predicted failure time, PN

information, and so on. The correct component is found in the component object

array by searching for the inputted name, and, if it does not already exist, the net for

component replacement is set up. If it does already exist, then the component is

probably part of a LRI, and so the LRI number is located. The places and transitions

for “Wear Level (Actual)” and “Action” are set up, as well as the transitions which

remove the tokens from these when the replacement place is marked. If the

component has sensed failures, the PNs are set up to use the sensor to detect the

wear. If, instead, regular inspections are performed, the inspection place is

connected as shown in Figure 6.43, with the “Wear Level (Detected)” place set up

as well.

If the component was earlier found to be a part of an LRI, then when the prognostics

model requires the component to be replaced, a transition is set up to force the LRI

to replaced, regardless of the state of its other inputs. Otherwise, the action place is

linked to the “Replace component” transition and the function exits. This ends the

second input stage, following which the missions data can be entered.

 - 273 -

A.3.3 Platform, MFOP and Mission Data

Once the MFOP enablers information has been entered, the final stage of the input

process is telling the program the details of the fleet, the MFOPs they will perform,

the missions within those MFOPs and the phases in the missions. The program

prompts for the input as shown in Figure A.6.

Figure A.6 – Inputting Platform, MFOP and Mission data

Entering ‘3’ and then the name of the file containing the information begins the

process. Figure A.7 shows a flow chart describing the process by which the data

inputted is used to create the Master PN. All details, excluding those for discrete

events, are taken in and stored before any PNs are created. How the data must be set

out is explained in the following sections.

 - 274 -

Figure A.7 – Flowchart describing input process for Platform, MFOP and Mission Data Text

File

A.3.3.1 Fleet and MFOP information

Everything in the program must be pre-determined. Platforms perform a set

sequence of MFOPs, following which the simulation is complete. This data takes

the form exemplified below:

FLEET 4

PLTFM1 3 MFOP1 MFOP2 MFOP3

PLTFM2 4 MFOP2 MFOP2 MFOP3 MFOP3

PLTFM3 2 MFOP1 MFOP1

PLTFM4 2 MFOP1 MFOP4

START

Enter textfile name

File
found?

Go to 1

1

Discrete
Events?

Input discrete events,
create PNs and

update object array

END

Y

Y

N

N

Input platform data

Input MFOP data

Input missions data

Create object arrays

Link object arrays to
establish order of
MFOPs, missions

and phases

Set colours for all
required objects to

number of platforms

Create Mission PNs

Create Platform PNs

Set size of master PN

Create MFOP PNs

 - 275 -

The number of planes in the fleet is given next to that title. After this the name of

each platform is given on a line, followed by the number of MFOPs it is to perform

and the names of these. The MFOP data is laid out in a similar way:

MFOPS 4

MFOP1 3 ASUW ASW MISSION3

MFOP2 4 MISSION3 ASW ASUW ASUW

MFOP3 2 MISSION3 MISSION3

MFOP4 1 MISSION4

The number of MFOPs is entered next to the title “MFOPS”. Each set of information

for an MFOP is written on a line, with the name coming first, followed by the

number of missions within it and the names of each of them.

The platforms and MFOPs each have their own objects in arrays. At this stage,

however, the only information that can be entered are, for the fleet, the names of

each platform and the number of MFOPs they perform. For the MFOPs objects, the

data stored is their names and the number of missions within them. A function also

tells each platform object of the sequence of MFOP indices which it performs.

A.3.3.2 Missions Information

Because of the phased mission complexities allowed by the model, as specified in

Section 6.2, factors such as phase choices or insertions make inputting missions data

much more involved than the respective process for MFOPs and platforms. The first

thing to declare is the mission name and the number of phases contained within it:

MISSION1 7

Each phase is then declared on a line, followed by the phase length distribution and

parameters. If a phase is identified as definitely following after, then this is also

declared:

Alpha SET 1.5 Beta

 - 276 -

The phase probability distributions can also “match” or “reverse” another phase’s

duration, as stated in Section 6.2.1. If this type of distribution is required, it is

inputted by typing either “MATCH” or “REV” and then the name of the phase as the

parameter. If there is a probabilistic phase choice, then instead of stating one follow-

on phase, the word “OUTCOME” allows these to be stated, with a name and

probability for each outcome:

Alpha SET 1.5

 OUTCOME Good_Weather 0.9 Beta

 OUTCOME Heavy_Rain 0.1 Delta

Like the platforms and MFOPs, missions have an object array which stores

important data used in running the simulations. One subset of this is the order of the

phases in the mission, which includes the possibilities and probabilities for which

phase follows the current one. Thus, the number of outcomes, their names and

probabilities are stored for each phase, with the indices of the phases as they appear

in the phase object array also remembered. Note that if a phase is an ending for the

mission, the “next phase” must be declared as “END”.

The information explained thus far is necessary – all phases in the mission must be

inputted with a phase duration probability distribution and at least one subsequent

phase. Extra information may also be entered, however. One example of this,

introduced in section 6.2.9, is the idea that phases may be abandoned without

immediately ending the mission. Instead, a phase is declared to be started upon

abandonment in the following way:

Alpha SET 1.5 Beta

 ABANDON Delta

If no abandonment phase is specified, the program will assume that the mission

ends immediately when the phase’s abandonment fault tree top event place is

marked.

In addition to this, it is possible to state conditions under which one of three things

will happen:

 - 277 -

- The phase may abandon to an alternative phase than the one specified above.

- A different subsequent phase may be carried out (this is equivalent to the

“event-driven phase choice explained in section 6.2.12.1).

- A phase may be immediately inserted, with the current phase resumed once the

inserted phase (or sequence of phases) have finished.

These options are invoked by using the “IF” statements outlined below:

Alpha SET 1.5 Beta

 ABANDON Delta

 IF (A + C) OUTCOME Epsilon

 IF (B + D) ABANDON Gamma

 IF (A + A1004) INSERT Mu

When the program encounters an “IF” word, it prepares to input a string of

characters which are interpreted in a special way. Each “IF” statement has a set of

logical conditions and a resulting action. While the action is categorised easily

enough, the input conditions are more difficult to handle. The logical conditions

entered give a fault tree-like structure to the causes of the action. In order to better

organise the conditions, they are separated, within each statement, into “levels”,

“groups” and “events”. The way it works is best explained through the use of an

example. Consider the following conditional statement:

IF D * (I + A4003) * (B + C * (G2001 + H)) INSERT Epsilon

All names of components, systems and phases are turned into events. The example

shows a set of events causing the insertion of phase Epsilon into the current phase.

A “level” indicates proximity to the top event of the logical conditions. For instance,

because ‘D’, indicating the failure of component D, occurs at level 0, it directly

inputs to the action. Where a open-bracket is encountered, this indicates that another

level must be created. Thus, “(I + A4003)” occurs on level 1. However,

“B + ...” also occurs on level 1, but is not in the same bracket. Thus, these form

different “groups” within level 1. Each group must have only one logic type, so if

the program encounters multiple types within the same group, it will put the events

surrounding the second logic type into a new level. This can be seen with the

 - 278 -

statement “(B + C * (G2001 + H))”, where an OR and AND symbol feature in

the same set of brackets. The program effectively puts a set of brackets around the

second logic symbol, so it would read “(B + (C * (G2001 + H)))”. ‘C’ is then

on level 2, and “G2001 + H” is on level 3.

The net for each conditional statement is set up in the PPN of the phase to which it

applies. Figure A.8 shows the PN for the conditional statement given above.

Figure A.8 – PN for Example Conditional IF Statement

As the Figure shows, each “IF” statement has a place which enforces the action it is

tasked to perform. In order for this to be marked, immediate transitions are set up

which represent the logic in each group on each level. Each group on each level has

a place created for it, while each event failure place directly enables the logic

transition for the group to which it inputs.

In this way, then, the program takes in actions based on user-defined conditions.

The only other complexity regarding inputting the data on each phased mission is

the ability to repeat phases. The usefulness of this comes, for instance, if a phase has

only two possible lengths rather than a distribution, and so two OUTCOMEs could be

specified with a certain probability. The first phase name is inputted as stated above,

while subsequent phases have a suffixed index given in square brackets after the

name:

IF

D

L1 G1

L1 G2

I

A4003

B

L2 G1

C

L3 G1

H

G2001

 - 279 -

Beta SET 1.5 Gamma ABANDON Delta

 IF G OUTCOME Epsilon [2]

Epsilon MATCH Beta Beta [2]

Beta [2] REV Epsilon Alpha

Epsilon [2] MATCH Gamma Gamma

As the example shows, a repeated phase is consistently referred to using the “[2]”,

“[3]”, etc., after the name. The phase will be failed and abandoned using the same

fault trees as the normal occurrence.

In summary, a typical mission profile may look like that shown in the example

below. The program takes in all of these details and only once all mission data has

been inputted does the process of creating the Master PN begin.

ASUW 7

Alpha SET 1.5

 OUTCOME Success 0.9 Beta

 OUTCOME Heavy_Rain 0.1 Delta

 ABANDON Epsilon [2]

 IF D * (B + C) INSERT Epsilon

 IF A INSERT Delta

Beta SET 1.5 Gamma ABANDON Delta

 IF G OUTCOME Epsilon [2]

Gamma SET 1.5 Delta ABANDON Delta

 IF G2001 + (B * (E+D)) INSERT Epsilon [2]

Delta REV Epsilon [2]

 OUTCOME Success 0.8 END

 OUTCOME No_Land 0.2 Delta

Epsilon MATCH Beta Beta [2]

Beta [2] REV Epsilon Alpha

Epsilon [2] MATCH Gamma Gamma

A.3.3.3 Creating the Master Petri Net

Once all of the platform, MFOP and mission data has been taken in, the program

links the different objects together. For instance, if MFOP 1 contains missions A

and B, but not C, then the MFOP 1 object will store the indices to the first two

 - 280 -

mission objects, and the order in which they appear, but not the third. Each MFOP

object is also linked to the relevant phase objects for each part of the mission, as

well as the platforms which perform it. Platform objects create an array of mission

object indices, while mission objects contain an array of platform and MFOP

objects indices. Similar arrays are also set up for phases and systems.

When the program has stored these links, it counts the number of transitions and

places which are required in the various PNs and sets the number of colours

throughout the model as being equal to the number of platforms. The first loop

entered creates the nets for the missions, starting with the places for “mission

failure”, “mission success” and “mission active”. Each phase place and timed

transition is set up in the order in which they were inputted, with arcs linking the

phases in the sequence as desired. If a transition has a probabilistic phase choice, the

timed phase transition is set up with probability arcs. Following this, general &

phase abandonment immediate transitions are established, and linked to either the

“mission success” place or the phase specified to be carried out instead. The nets for

the IFs, as explained above, are created, with a hierarchical structure also set up to

prevent more than one of these being able to affect a phase at the same time. This is

based on the order which the conditional statements were entered, and works by

each IF top place inhibiting the transition which activates the action of all those IFs

below it in the hierarchy. Each phase object is made aware of the IFs which affect it,

with all necessary details, such as transitions, outcomes, and so on.

MFOP and platform nets are then set up as explained in section 6.2. This is

followed by the nets for catastrophic failures, at which point the procedure ends.

The only possible information left to be inputted, should they be required, are

discrete events relating to the items inputted either by the enablers or the missions

text files.

A.3.3.4 Discrete Events

Entering discrete events in the missions text file uses the same function as explained

in section A.3.1.4. If they are entered, the same procedures are followed, except that

more trigger events can be used:

 - 281 -

• If an MFOP or phase name is entered, the system has no way of knowing

which of the potentially many repetitions of the “MFOP/phase active” places

is marked. To prevent this causing problems, a new place is set up, to which

each of the occurrences of the MFOP or phase input to in an OR logic. This

then acts as the trigger to set off the discrete event.

• LRI and mission names may be entered also, so that when an LRI is set to be

replaced, or the “mission active” place is marked, the discrete event will be

triggered.

• Component and system names can also be entered here as well, though there

is no reason for these not to have been entered in the phase fault trees &

component data text file.

Once all information is inputted, the function ends and the user returns to the main

menu. No more data may now be inputted, unless the user selects option ‘2’ from

the main menu. This option deletes all inputted information.

A.4 Performing Simulations

A.4.1 Simulation options

After inputting all of the necessary information to create all of the PNs, and store

information in the object arrays for the overall PN, places, transitions, platforms,

MFOPs, and so on, the system will allow the operator to begin running simulations.

Before this is started, the user can alter various options which affect the simulation

performance. The options menu is found by entering ‘4’ on the main menu. Figure

A.9 shows the options menu.

The number of simulations to perform is preset by the user. This must be an integer

and is entered by typing ‘1’ and then the number of simulations required. The

confidence interval which is used by the prognostics functions is set in option ‘2’.

This is inputted as a percentage, and must be a multiple of five. If it is not entered in

this way, the nearest multiple of five is set instead.

 - 282 -

Figure A.9 – Simulation Options Menu

It is possible to add “commentary” to the simulations, which describes what is

happening in the simulations as it runs through. Entering ‘3’ leads the user to a sub-

menu which allows each possible commentary item to be specified, as shown in

Figure A.10. Each item can be individually selected, or they can all be turned on at

once by entering ‘9’. The status at the top of the program screen shows the items

which have been selected to be commented on. The default setting is to have no

commentary. Note that if “Component Failures/Repairs” or “Timed Transition

Switching” is selected, the program will halt whenever a component fails, an MRP

is entered, or a timed transition switches. When the user presses any key, the

simulations will continue.

Figure A.10 – Commentary Options

 - 283 -

The user can also state the options for data recording which are required. The

default for this setting is that simulation information on everything is recorded, but

this can be changed by entering ‘4’ on the simulation options menu. This enters

another sub-menu, as shown in Figure A.11.

Figure A.11 – Data Storage Options

The individual items are turned on or off by entering the corresponding number.

This will, however, only minimally affect the speed with which the simulations are

performed, so it is not advised to change any of these options unless there is a clear

reason for doing so.

A.4.2 Simulation Process

A.4.2.1 Initial Processes

Once the options are set as required, the simulations can begin by entering ‘5’ on

the main menu. This enters a function which does not exit until all the simulations

have completed. Figure A.12 describes the process by which simulations take place.

The process begins by setting some initial conditions. A function in C++ allows the

current time point, expressed as the number of seconds since January 1, 1970, to be

given. This is recorded, with the intent of allowing the duration of the simulations to

be calculated. An array of the indices of all the timed transitions in the overall PN is

set up, allowing each of their times to switch, if they are enabled, to be quickly

found.

 - 284 -

Figure A.12 – Flow chart describing process by which simulations take place

Each platform, MFOP and mission object contains, respectively, a list of all the

MFOPs, missions and phases they are to carry out. This is expressed in two ways

for each object – the first is the indices of the sub-items as they appear in their own

object arrays, while the second is compared to the order in which they appear. For

START

Set no_colours for
each object

Go to 1

1

All platforms
finished?

Increment
current_simulation

END

Set current simulation
= 0

Reset index counters
of object arrays

Set System_Time = 0

Increment count of
each mission, MFOP,

etc. starting.

Set marks in all
required component

& platform places

Run Initialise
Transitions function –

see Figure A.13

Run Test_For Failure
function – see Figure

A.14

Reset just_switched
values

Create timed
transition index array

Switch all enabled
immediate transitions

(run check
immediates function)

All simulations
complete? Reset

PN

Calculate time at end
of simulations,
display time to

complete.

Set down &
just_switched values

Y

Y

N

N

 - 285 -

instance, consider the following arrays of MFOPs and missions, with the numbers

expressing the indices of the relevant objects, noting that in C++, all arrays number

their indices by starting at zero:

Table A.1 – Example MFOP & Mission Arrays

MFOP Object

Array

Mission Object

Array

MFOP Mission

Index Array

MFOP

Mission Order

0. MFOP1

1. MFOP2

2. MFOP3

3. MFOP4

0. MISSION1

1. MISSION2

2. MISSION3

3. MISSION4

{3, 0}

{0, 1, 2}

{2, 0, 3}

{2, 0}

{0, 1}

{0, 1, 2}

{0, 0, 1, 2}

{0, 1, 1}

The first two columns in Table A.1 show the arrays of the MFOP and mission

objects in the program. In the third column is, for each MFOP object, a list not of

the order in which the missions occur, but of the indices to the objects for all the

missions contained within the MFOP, ignoring any repetitions. The lists in the

fourth column show the specific order of the missions performed by each MFOP,

with the numbers relating to the point in the Mission Index Array. For instance,

MFOP1 has the mission order {0,1}. Each number is compared against the Mission

Index Array, so MFOP1 performs MISSION4 and then MISSION1. MFOP 3

performs MISSION3 twice, then MISSION1 and MISSION4.

The platform and mission objects have similar arrays for MFOPs and phases

respectively. This allows the program to keep track of which phases, missions and

MFOPs are being carried out by which platforms at the current point in time. These

current value variables are set to their initial values when the simulation process

begins. The places which represent “Component Up” and “X Op” for each item

with redundancies are all marked with one token in each colour. Platform start

places are also marked with the corresponding colour.

The program operates by switching the timed transition with the earliest time, and

then switching each immediate transition which becomes enabled as a result. After

this, the next timed transition switches, and so on. For this to system to work, the

program needs to put each timed transition’s time to switch into chronological

 - 286 -

order. Marking the places as mentioned above causes the component failure

transitions to be enabled, but not the phase transitions. As such, the immediate

transitions must all be switched to prepare the nets for the upcoming simulation.

The function that performs this task resembles the following algorithm:

1 int immediates_enabled=0,*phaseswitches=0,*transswitches=0;

 do

 {

 for (int a=0;a<immediates_enabled;a++)

 {

 if (check_enabled(imm_trans))

 {

 Switch_Trans(imm_trans);

 imm_trans.set_enabled(switch_colour,0);

10 check_scenarios();

 //If transition is no longer enabled, remove from list.

 if (!check_enabled(imm_trans))

 {

 [delete imm_trans from array]

 immediates_enabled--;

 a--;

 }

 }

 else

20 {

 [delete imm_trans from array]

 immediates_enabled--;

 a--;

 }

 }

 immediates_enabled=0;

 [delete old imm_trans array if exists]

 [create new imm_trans array]

 for (int b=0;b<no_phases+3;b++)

30 for (i=0;i<no_transitions[b];i++)

 {

 bool itenabled=check_enabled(b,i,switch_colour);

 //If transition is enabled

 if (!Tran_array[b][i].return_timed() && itenabled)

 {

 - 287 -

 immediates_enabled++;

 [add enabled imm_trans to array]

 }

40 }

 }while (immediates_enabled>0);

The algorithm describes a “do...which” loop (the C++ version of a do...until loop),

which forcibly runs through once and then keeps looping unless the exit condition is

satisfied. In this case, an integer parameter called “immediates_enabled”, which is

the count of the number of immediate transitions currently enabled, must be zero

before the loop ends. On the first pass, immediates_enabled is zero, and so the

for loop which switches all enabled transitions is bypassed. Instead, an array of the

indices of the enabled immediate transitions is created, with immediates_enabled

set to the size of that array. On the next pass, the for loop switches each immediate

transition in the array in turn, checking each time that the switching of a previous

transition has not disabled one of those set to be switched. If the switched transition

is now disabled, it is removed from the list. A new array of enabled immediate

transitions is then created again, and will do so until no more are enabled, when the

loop exits.

Each discrete event, component, system, phase and mission object has two Boolean

variables which allow the program to keep track of whether they are operational or

failed, and whether this has happened just recently or not. These are called “down”

and “just_switched” and are used to prevent data which must be recorded from

being so more than once. The program’s initial functions set these values to zero for

each object. The platform objects each have a “clock”, which remembers the last

point at which an event occurred. This is used to update various objects with

information such as the last repair time, time of failure, and so on. These are all set

to zero at the start.

A.4.2.2 Sampling Transition Switching Times

When all of the immediate transitions have been switched and the platform clocks

set to zero, the program is ready to generate switching times for each of the timed

transitions. The flowchart describing the process involved is shown in Figure A.13.

 - 288 -

 Figure A.13 (a)– Flow chart describing process by which transitions are initialised

START

Translist
created?

Add all enabled timed
transitions to list END

Phase
switch?

Compt
fail?

Prog
action/SLR/
Inspection?

Delete transition
from list

Remove from list Set prog believed
level

Check most recently
switched timed trans

Update Matched/
Rev’d transitions

Predict time to
compt failure

Find new enabled
phase trans, add to

list

If sensed, add
enabled action

trans to list

Is WL trans still
enabled, get new
switch time, else
delete from list

MRP just
performed?

If prog, report
replacement

Remove from list

Mission
interrupted/
abandoned

?

Get new compt
failure times

Find enabled WL,
SLR, Insp

transitions, get new
times, add to list

Set renewal time
for interrupted trans

Update Matched/
Rev’d transitions

Delete interrupted
trans from list

Add new phase
trans to list

1

Y

Y Y Y Y

Y
Y

N N

N
Prog wear

level?

N N N

N

 - 289 -

Figure A.13 (b) – Flowchart describing process by which transitions are initialised

The function which performs this, called “Initialise_Transitions” creates an

array named “translist”, which contains the details of each enabled timed

transition, including its indices and its time to switch. When sampling the switching

time for each transition, the function first checks if it is enabled, and upon

confirmation it calls a function with the transition object called “Get_Time”. This

function looks at the distribution set for the transition and uses this to generate a

time for failure in a particular way for each distribution type. This is typically based

upon the Cumulative Distribution Function for the distribution type, and a randomly

sampled floating-point number between 0 and 1, as explained in Sections 1.5 and

6.3.8.1. Timed transitions which are set to match or reverse another transition’s

switching time are updated each time the platform’s clock is updated. This sets a

disabled time to the transition which, when it becomes enabled, is added to the

platform time to form the matched or reversed switching time. Once the list is

created, the transitions have their Boolean “enabled” flags set to 1 and they are

ordered in ascending switching time.

A.4.2.3 Simulation Performance

Once the initial parameters are all defined, the program enters a loop which does not

exit until all of the simulations are complete. With each pass of the loop, a function

is performed, called “Test_For_Failure”. This function is part of the Petri_Net

Compt
failed/

repaired?

Check other compts
for dependencies,

update list if present

END

1

If compt is disabled,
delete fail trans from
list, set any prog WL/
action trans to high

switch time

MRP/
Redundant

items
switched?

Update list for online
& offline components

Test prog compts for
criticality (function) –
see section A.4.2.4

Platforms
finished all
MFOPs?

Delete all transitions
from list for that

colour

Sort list by time

Y

N N N

Y
Y

 - 290 -

object and it performs the core requirements of each simulation pass: switch a timed

transition, switch all enabled immediate transitions, and record data. The general set

of functions performed can be seen in the flowchart in Figure A.14.

When each transition is switched, a basic count of time, based on the number of

flying hours, is kept up to date with this. The program will check to see if the switch

was relevant in some way. For instance, if a component failure transition switches, a

component has failed and this failure must be recorded. The data for this is useful

not just to the relevant component object, which counts the number of failures and

the average MTBF, but also any system objects to which it inputs, any sensors

which may connect to it, and so on. Similarly, if a phase transition switches, this

could be either a normal phase transition or an event-driven phase choice, as shown

in Section 6.2.12.1. Whatever the cause, the starting phase must have its start

recorded in its phase object and the old phase set as being successful. The results of

the phase change may be the end of a mission, so if this is the case, the number of

the current mission that the platform is undertaking must be changed, and the first

phase of it activated.

If a phase or a component has switched, the “just_switched” Boolean value in the

relevant object must be set to 1, and all others set to zero. After this, the

“check_immediates” function mentioned in section A.4.2.1 is performed. Because

simulations are now active, the “check_scenarios” function, called on line 10 of

the check_immediates algorithm, becomes important. This function tests for

various conditions after each immediate transition switch, which includes:

• Component or system inspection

• Component repair or replacement

• LRI replacement

• Phase insertion

• Phase failure

• Mission abandonment

• Starting and ending of MRP

• Inspection of prognostic components in MRP and criticality testing, which

may lead to replacement (see Section A.4.2.4).

 - 291 -

Figure A.14 – Test_For_Failure Function Flowchart

Component
Failure

Transition?
Record Failure

Test_For_Failure

Update System Time
(=Event Time)

Switch Earliest
Timed Transition

Phase
Change?

Activate new phase
Deactivate old phase

New
Mission?

Update Current
Mission

Set just_switched
values

Check immediate
transitions (function)

Initialise Transitions
(function) – see

Figure A.13

Check discrete events and
system failures (function)

Reset just_switched
values

End of
Current

Simulation?

End of All
Simulations

?

END

Reset PN
Create new switch times

Y

N

Y

N

N

Y

Y

N

N

Y

 - 292 -

Once all the immediate transitions that are enabled have switched, and the data from

the resultant marking of the net is recorded, the next stage is to run the

Initialise_Transitions function mentioned in section A.4.2.2. When this is first

run, it merely creates an array of transition times. If the array is found to already

exist, a different part of the function is entered, which generates switching times for

transitions based on those which have just switched. For instance, if a phase

transition has just switched, a new phase transition will be enabled, so this transition

is found and a time is sampled for it. Any transitions whose times are set to match

or reverse either the ending or the starting phase are updated. Other conditions lead

to different procedures being followed, and new transition times being created. The

translist array which keeps a record of the transition switching times must have

the old time removed and the new one put in place. The array is then sorted in

ascending order of time to switch.

A final set of functions records the effects of component failures on systems, the

effects of system failures on phases, and the switching of discrete events. When

these functions are finished, the program resets the just_switched values for each

object and tests to see whether the “Simulation success” place is marked. If it is not,

the loop reruns Test_For_Failure. Otherwise, the overall PN is reset, necessary

values are changed, and the initialisation process for the net, as described in sections

A.4.2.1 and A.4.2.2 is performed ready for the next simulation. If the finished

simulation is the last, a summary of the elapsed time for all the simulations to

complete is displayed on screen, and a keypress returns the user to the main menu.

A.4.2.4 Assessing Component Criticality

Section 6.3.8 explains the methods by which the program assesses a component’s

predicted future failure. This includes modelling and detecting component wear, and

using this to predict future failure times. Also explained is how the actions that the

prognostic model can take – abandoning a mission immediately, or having a

component replaced during an MRP – are carried out in Petri net form. This section

explains how the program reaches its decisions on the criticality of components to

the current or future missions, and assigns a switching time to the prognostic

“action” transition accordingly.

 - 293 -

When a platform undergoes an MRP, and all components have been repaired or

inspected for wear levels; or when the Initialise_Transitions function is

performed, the program will enter a function called “test_criticality”. This

function makes use of the confidence interval which has been defined by the user

(as mentioned in section A.4.1).

The first task that the function performs is considering each of the phases within the

mission and assigning a duration to them. If, for example, the confidence interval

was 90%, the program would find the time at which 90% of phases with this

duration probability distribution would have completed.

The second stage of the function is to create a list of phase sequences, taking into

account any insertions, abandonments or event- or probability-driven phase choices.

The method of this stage is explained by way of an example. Consider the mission

with the phase sequence as shown in Figure A.15. The phases are Alpha, Beta,

Gamma and Delta, with the phase indices 0,1, 2 and 3 respectively. ‘-1’ is an index

symbolising the end of the mission.

Figure A.15 – Example Mission Net

The function begins with the active phase, as the operational state of the current

mission means that previous phases have not failed it, and thus cannot have any

more effect on the mission performance. The program creates a series of arrays,

each of which relates to the phase sequences. These include: a matrix of phase

sequences, MPS and the number of phases in, probability of, and estimated time

duration of each sequence. For the first phase, these will look like equations A.1.

Note that, in this example, the confidence interval is assumed to be 95%.

Alpha

Delta

0.8

END

0.2

0.9

0.1

Beta Gamma
1.2

3.5 4.9

2.2

0

1 2
3 -1

 - 294 -

{ } { } { } { }
PSPSPSPS TPNM time,Sequence array,y Probabilit sequence,in phases ofNumber

2.1110

A.1

With the second phase, however, there is a probabilistic phase choice. Because of

this, the program creates a second line in each of the arrays and fills in the relevant

information. This is done by multiplying each line in the probability array by the

relevant probability of entering the new phase on that line, and by adding on that

phase length to the sequence time array. If any sequence probability is less than

1 × 10-6, that line is deleted from the arrays. The arrays will look like equations A.2

at this stage.

Line New
Line Active

4.32.22.1
7.45.32.1

2.02.01
8.08.01

2
2

30
10

←
←

=+
=+

=×
=×

PSPSPSPS TPNM

A.2

The sequence on which it concentrates remains the top line. At the next stage, there

is another probabilistic phase choice. Phase Beta can either progress to Gamma or

revert back to Alpha. The arrays then become those shown in equations A.3.

Line New

Line Active

9.52.17.4
4.3

6.99.47.4

08.01.08.0
2.0

72.09.08.0

3
2
3

010
30

210

←

←

=+

=+

=×

=×

PSPSPSPS TPNM

A.3

Phases Gamma and Delta are added to the arrays, until the mission end is found.

This finalises the row:

Line Active

9.5
4.3

8.112.26.9

08.0
2.0

72.0

3
2
5

010
30

13210 ←

 =+

 −

PSPSPSPS TPNM

A.4

 - 295 -

When a line finishes, the program re-arranges the arrays so that the finished

sequences are ordered by increasing duration. The program will then sum the

probabilities of the finished sequences, and if this sum is greater than the confidence

interval, any lines with durations longer than the newly finished sequence are

deleted. However, any unfinished lines with shorter durations are kept, as they may

yet yield a shorter mission span than the currently finished ones. In the example

shown, the sum of the finished line probabilities is 0.72, which is less than the

confidence interval of 0.95. As such, the line with the shortest time is selected next

(the second sequence), and the function continues. After the second sequence is

completed and re-ordered, the arrays look like those in equations A.5.

Line Active9.5
8.11
4.3

08.0
72.0
2.0

3
5
3

010
13210

130

←

−

−

PSPSPSPS TPNM

A.5

The sum of the finished lines is now 0.92, still less than the confidence interval of

0.95. The program selects the only unfinished line, the third one, and continues.

When this is finalised, the arrays are those in equations A.6.

Line Active

6.10
1.8
5.16
8.11
4.3

0064.0
016.0
0576.0
72.0
2.0

5
4
7
5
3

01010
3010

1321010
13210

130

←

−
−

−

PSPSPSPS TPNM

A.6

The sum of the probabilities of the finished lines is now 0.9776, greater than the

confidence interval. However, both of the unfinished lines have times less than the

greatest of these, 16.5 hours, and so the program continues. The fourth line is

quickly finalised, and the fifth line expanded so the arrays look like equations A.7.

 - 296 -

Delete

3.15
2.21
5.16
8.12
8.11
1.8
4.3

000512.0
004608.0
0576.0
00128.0

72.0
016.0
2.0

7
9
7
7
5
5
3

0101010
132101010

1321010
1301010

13210
13010

130

←

−
−
−

−
−

−

PSPSPSPS TPNM

A.7

The sixth line of the arrays in equations A.7 can be deleted, as the confidence

interval time is still 16.5 hours, and the duration of this phase sequence is 21.2

hours. If sequence seven is then expanded, all three sequences will have times

greater than 16.5 hours, so the program deletes these lines and exits the loop. The

result from this part of the function is that at least 95% of possible phase sequences

will have ended inside 16.5 hours.

The next stage of the function uses each of the finalised phase sequences to make

estimates as to whether or not a particular component with prognostics is likely to

have failed by the end of each phase in that sequence. Any that may have done are

noted. The program then makes a note of the components and systems which have

had revealed or sensed failures. Each phase in each sequence is then again taken in

turn. The component PN and the relevant phase PN are then reset so that no

components or systems in them are failed, except those that are known to be

potentially failed by the end of them. The failures are cascaded up, and if the phase

fails catastrophically, this is noted. After this has been done for each phase in each

sequence, the PNs are set back to their previous values.

If a mission is currently active, all of the different phase sequences has failed

catastrophically, then the prognostic action transition is given a switching time

equal to the current system time – effectively an immediate switching. If none are

failed, the action transition is given a very large switching time. If some are failed

and some are active, the transition is made to switch at the notional mission end

time. This has the effect of waiting to see how the mission progresses before

potentially abandoning it.

 - 297 -

If an MRP is taking place, any components which may cause mission failure, even

in just one potential scenario, are replaced. Only if a component cannot cause any of

the missions in the forthcoming MFOP to fail is it left to continue.

The approach described here is an attempt to automate and model what is, in reality,

often a very complex decision-making process. This allows a degree of control and

accuracy in the area of predicting future component failure times based on available

information.

A.5 Outputs

When data is inputted or simulations are performed, it is possible for the program to

create text files which provide data to the user. There are two types of output

available: Petri net information and simulation results. Pressing option ‘7’ on the

main menu, as shown in Figure A.1, leads to the options menu displayed in Figure

A.16.

Figure A.16 – Output Menu

 - 298 -

A.5.1 Petri Net information

One of the most important requirements of a program applying the Petri net method

described in this thesis is to allow the Petri nets which have been created to be

checked. This was important for debugging the program while it was being written,

but is also vital when putting a system into the program for analysis, to check it has

been converted as expected.

The format of the Petri net information text file follows a set pattern, which is

shown below.

0: PHASE Alpha

PLACES

 Gate

Place Gate Name Number Marks

 0 GTOP 1000 (1,1,0)

 1 G1001 1001 (0,0,0)

...

TRANSITIONS

Transition

 Number Timing Stress

 0 Immediate 1

 1 EXP(0.03) 1

 2 SET(50) 1

 3 Immediate, Probability Transition (0.1,0.9,0) 1

...

INPUT/OUTPUT MATRIX

 0 1 2 3 4 5 ...

 0 1 0 1 1 0 1

 1 1 1 0 1 0 1 0 0 1

 2 1 0 1 1 0 1

 3 0 1 0

...

 - 299 -

LINKS

(0 0)-(6 7) - 0 0 1

...

Each PN is displayed in turn, with the number and name of the net acting as a title.

The first subsection is a list of the places within the net. These are referred to by

index within the net array of places, name, “gate number” and the marks for each

colour as allocated at the start of simulations. The gate number helps the program to

recognise the purpose of the place, according to a list of pre-defined ranges. These

ranges are summarised in Table A.2, where N refers to the global defined parameter

NO_BASICS, defined in Section A.3.1.1.

Table A.2 – List of Gate Numbers by Place Type

Range from Range up to but

not including

Type of place

0 N Component

N 5N System

5N 6N Sensor

6N 7N Discrete Event

7N 8N LRI

50N 60N Phase

60N 70N Mission

70N 80N MFOP

80N 90N Platform

90N IF

The “marks” column will not typically display any numbers greater than zero,

unless the PN information is output after simulations have been run.

The next set of information is that on the transitions within the net. Each transition

is identified by its location in the array for that PN. If it is timed, then the assigned

distribution and parameters are shown. If not, it is labelled as “immediate”. The

“stress” assigned to the transition is also given. This will typically be 1, unless it is a

failure transition for a component with dependencies. If the transition is

probabilistic, then it is labelled as such next to the timing information. The

probabilities for each of the output arcs it has are given in brackets.

 - 300 -

A matrix of arc multiplicities for each of the places and transitions in the net is then

shown. Along the top of the matrix are the index numbers of transitions, while down

the left-hand side are the place indices. Because a text file can only have a certain

number of characters on a line, only 140 transitions can be shown in each matrix. If

this limit is exceeded, the program will show another matrix below, starting from

transition 141, 281, and so on. Each element of the matrix has three values,

corresponding to, from the perspective of the place, input arc multiplicity, output arc

multiplicity, and inhibitor arc multiplicity. For instance, if place 4 has arcs {3,4,2}

to transition 6, this is the equivalent of the net in Figure A.17. If the element is

blank, all arcs are zero.

Figure A.17 – Net with arcs {3,4,2}

The final set of information is that for arcs which link between places in the current

net and transitions in other nets. In the example given, the link is

“(0 0)-(6 7) - 0 0 1”. This indicates that a single inhibitor arc goes from place

0 in net 0 to transition 7 in net 6. From the information given by the text file, the full

net can be reproduced in graphic form, and analysed for correctness.

A.5.2 Simulation Results

The other output from the program is a text file which shows the results of the

simulations which have been run. This is option ‘2’ on the output menu as shown in

Figure A.16. This gives results in a table format, with the following data provided:

• Platform, MFOP and mission failures and abandonments

• Phase failures and the systems which caused these

• System and component failures

• Discrete event switches

• LRI failures and replacements

3
4

2

4 6

 - 301 -

• Prognostic components, the number of abandonments and replacements

• Redundant items, the number of switches, and the success rate of these

• Inspected items, and the number of inspections and located failures.

Further information on each of these is given below.

A.5.2.1 Platform Failure Information

The first set of data given concerns the performance of each platform. This is

tabulated for each one, and shows the number of starts, the number of times an

MFOP or mission was abandoned, and the number of catastrophic failures. This

information is also broken down for each of the MFOPs and missions that the

platform undertook, as shown in the example below.

PLATFORM PERFORMANCE SUMMARY

 PLAT- | MISSION/ | | ABANDON- | FAIL- | UNRELI-

 FORM | MFOP | STARTS | MENTS | URES | ABILITY

--------+----------+--------+-----------+-------+---------

 PLTFM1 | MFOPs | 63 | 17 | 46 | 0.730159

 | Missions | 68 | 17 | 46 | 0.676471

 | | | | |

 | MFOP1 | 50 | 8 | 42 | 0.84

 | MFOP2 | 8 | 5 | 3 | 0.375

 | MFOP3 | 5 | 4 | 1 | 0.2

 | | | | |

 | MISSION1 | 50 | 7 | 40 | 0.8

 | MISSION2 | 3 | 0 | 1 | 0.333333

 | MISSION3 | 15 | 10 | 5 | 0.333333

 | | | | |

 PLTFM2 | MFOPs | 101 | 56 | 45 | 0.445545

...

As the example shows, a figure for unreliability is given. This is the total number of

catastrophic failures divided by the number of starts for that MFOP or mission.

 - 302 -

A.5.2.2 MFOP Failure Information

The information on MFOP failures is similar to that for platforms. An example table

is shown below.

 | MISSION/ | | ABANDON- | FAIL- | ABANDON | FAILURE

 MFOP | PLATFORM | STARTS | MENTS | URES | PROB | PROB

------+----------+--------+----------+-------+---------+---------

MFOP1 | | 60 | 2 | 2 | 0.03333 | 0.03333

 | Missions | 176 | 2 | 2 | 0.01136 | 0.01136

 | | | | | |

 | PLTFM1 | 15 | 1 | 1 | 0.06667 | 0.06667

 | PLTFM3 | 30 | 1 | 1 | 0.03333 | 0.03333

 | PLTFM4 | 15 | 0 | 0 | 0 | 0

 | | | | | |

 | MISSION1 | 60 | 1 | 1 | 0.01667 | 0.01667

 | Alpha | 60 | 0 | 1 | 0 | 0.01667

 | Beta | 55 | 0 | 0 | 0 | 0

 | Gamma | 55 | 0 | 0 | 0 | 0

 | Delta | 71 | 1 | 0 | 0.01408 | 0

 | Epsilon | 0 | 0 | 0 | ---- | ----

 | | | | | |

 | MISSION2 | 58 | 0 | 0 | 0 | 0

 | Beta | 58 | 0 | 0 | 0 | 0

...

The failure data for each MFOP is, like that for the platforms, split up so it can be

seen which platforms and missions featured the most or the fewest failures. The

number of times each platform started the MFOP is shown, as is the number of

times the MFOP started each of its missions and the phases within each of these.

Probabilities of the MFOP failing or being abandoned for a given platform or in a

particular mission or phase are shown.

A.5.2.3 Mission Failure Information

The results for the individual missions is laid out as in the example below.

 - 303 -

 | MFOP/ | | | | |

 | PHASE/ | | ABANDON- | FAIL- | ABANDON | FAILURE

 Mission | PLATFORM | STARTS | MENTS | URES | PROB | PROB

---------+----------+--------+----------+-------+---------+--------

-

MISSION1 | | 138 | 4 | 5 | 0.02899 | 0.03623

 | Phases | 683 | 4 | 5 | 0.00586 | 0.00732

 | | | | | |

 | PLTFM1 | 41 | 2 | 2 | 0.04878 | 0.04878

 | PLTFM3 | 30 | 1 | 1 | 0.03333 | 0.03333

 | PLTFM4 | 15 | 0 | 0 | 0 | 0

 | PLTFM2 | 52 | 1 | 2 | 0.01923 | 0.03846

 | | | | | |

 | MFOP1 | 60 | 1 | 1 | 0.01667 | 0.01667

 | MFOP2 | 78 | 3 | 4 | 0.03846 | 0.05128

 | | | | | |

 | Alpha | 138 | 2 | 2 | 0.01449 | 0.01449

 |- Beta | 121 | | | |

 |- Delta | 13 | | | |

 | Beta | 121 | 1 | 0 | 0.00826 | 0

 | Gamma | 122 | 0 | 3 | 0 | 0.02459

 | Delta | 162 | 1 | 0 | 0.00617 | 0.00617

 |- END | 131 | | | |

 |- Delta | 29 | | | |

 | Epsilon | 0 | 0 | 0 | --- | ---

...

The table of results is once again very similar to those for platforms and MFOPs.

Each mission’s figures are broken down into the platforms, MFOPs and Phases

which link to it. Values are given for numbers of starts, abandonments and

catastrophic failures, with probabilities for the latter two. Something different to

note, however, is that phases which have several options for which phase follows on

show the number of times each output option was selected. This is denoted by a

hyphen before the phase name. For instance, either of phases Beta or Delta can

follow phase Alpha, and of the 134 times Alpha didn’t fail, 121 led to Beta being

performed, and 13 to Delta.

 - 304 -

A.5.2.4 Phase Failure Information

The output given by the program relating to phase failure information is split into

two parts. The first relates the phase failures to the missions, phase choices and

platforms, while the second shows the systems which prompted the phase failures.

The first set of information is similar to that shown in the previous three sections, an

example of which is shown below.

 | PLATFORM/ | | |

 PHASE | MISSION | STARTS | FAILURES | UNRELIAB.

--------------+--------------+-----------+-----------+-------------

 Alpha | | 268 | 43 | 0.160448

 | Missions | 268 | 43 | 0.160448

 | | | |

 | PLTFM1 | 73 | 13 | 0.178082

 | PLTFM2 | 129 | 25 | 0.193798

 | PLTFM3 | 66 | 5 | 0.0757576

 | | | |

 | MISSION1 | 112 | 10 | 0.0892857

 | MISSION3 | 156 | 33 | 0.211538

 | | | |

 | IF 0 | | 10 |

 | IF 1 | | 0 |

...

As before, the number of times the item of concern has failed is related to each

platform which performs it, and the missions which it forms part of. The number of

times the phase failed in each of these is also shown, together with a figure for

unreliability, conditional to the mission or platform. The program does not

distinguish between an abandoned or a catastrophically failed phase. Another piece

of information given here is the number of times that the phase was affected by an

“IF” event as explained in Section A.3.3.2. These are listed in the order in which

they were inputted, without any further information on whether they relate to a

phase abandonment or insertion, or an event-driven phase choice.

The second set of information is typically laid out as in the example below.

 - 305 -

 | | | CRITICAL

 PHASE | SYSTEM | FAILURES | FAILURES

--------------+--------------+-----------+-----------

 Alpha | | 43 | 43

 | GTOP | 33 | 12

 | G1001 | 0 | 0

 | ATOP1 | 231 | 31

 | | |

 Beta | | 6 | 6

 | GTOP2 | 0 | 0

 | G2001 | 0 | 0

 | G2002 | 0 | 0

 | G2003 | 0 | 0

 | ATOP2 | 7 | 5

This table shows the “systems” (top and intermediate gates in the phase fault trees)

which can contribute to phase failure. Each time one of these systems fails, the

“failures” value in the relevant phase object is incremented. If the phase fails, the

program searches through each of the systems which could contribute to its failure,

and notes those which have failed. Each of these is classed as a “critical failure”,

even if it did not necessarily help cause phase failure. In the example above, system

“ATOP1” in phase Alpha failed 231 times, but only caused Alpha to fail or be

abandoned 31 times. This could be due to Alpha not being active before another

phase failed or an MRP was entered.

A.5.2.5 System Failure Information

System failure information is given in terms of the phases each system can cause

failure in, and the sub-systems and components which are inputting events to it. A

typical table of information is shown below.

 - 306 -

 | PHASE/LOWER | | |

 | SYSTEM/ | | CRITICAL |

 SYSTEM | COMPONENT | FAILURES | FAILURES | MTTF

--------------+----------------+-----------+-----------+-----------

 GTOP | | 33 | | 5.44432

 | Alpha | 12 | |

 | | | |

 | G1001 | 0 | 0 |

 | | | |

 | A | 33 | 33 |

 | B | 0 | 0 |

 | D | 0 | 0 |

 | | | |

 G1001 | | 0 | | 0

 | Alpha | 0 | |

 | | | |

 | | | |

 | B | 0 | 0 |

 | D | 0 | 0 |

 | | | |

 ATOP1 | | 231 | | 4.12259

 | Alpha | 31 | |

 | | | |

 | | | |

 | SENS_E | 36 | 34 |

 | -E | | |

 | F | 216 | 197 |

...

The number of times the system failed is shown at the top. Each time a failure is

recorded, the time since the last repair is added to an average value, which is shown

in the last column, under “MTTF”, or Mean Time to Failure. The sub-systems

which could cause the failure of this item are shown. As with the phase failure

information, both “failures” and “critical failures” are recorded. The former is the

number of times the child item failed, while the latter is the number of times the

child item was failed when the parent item failed.

The components which could cause system failure are then shown. This list includes

not only the components which are direct inputs to the system, but those inputting to

 - 307 -

sub-systems. Failure and critical failure information is then given as with the sub-

systems. For instance, in the example shown, component ‘A’ has failed 33 times,

and because it is a direct input to system “GTOP”, which has an OR failure logic,

each of these was a critical failure. GTOP subsequently failed phase Alpha 12 times.

Note that where the system is part of an abandonment fault tree, sensors which are

children of that system will input to it when the item they sense fails, and not when

the sensor itself fails. This is explained in Section A.3.1.1. When outputting, the

program highlights the item which is sensed by the sensor component below its

name in the table. In the example above, “ATOP1” has input component “SENS_E”,

which passes on the failures of component ‘E’.

A.5.2.6 Component Failure Information

Information showing the simulation results pertaining to the individual components

is shown in a table similar to that for the systems. An example of this is given

below.

 COMPONENT | SYSTEM | FAILURES | MTTF

--------------+--------------+---------------+-----------

 A | | 33 (0) | 5.44432

 | GTOP | 33 |

 | GTOP2 | 0 |

 | G2001 | 0 |

 | G2002 | 0 |

 | GTOP4 | 0 |

 | GTOP5 | 33 |

 | AGENERAL | 0 |

The data in this table relates the component failures only to those systems to which

it inputs, directly or indirectly. For instance, in the example above, component A is a

direct input to system G2002, which is a sub-system of both G2001 and GTOP2, and

so these are also listed. The number of failures of component A, together with a

figure for the average mean time to fail is given. Below this, the number of times

the failure of A caused a failure of the systems for which it is an input is given. In

the example shown, A failed GTOP and GTOP5, but none of the other systems.

 - 308 -

If a component is redundant, it is possible that an attempt to bring it into operation

may fail, and thus cause parent system failure, as explained in Section 6.3.7. If this

is the case, the number of times the component was not brought online is shown in

brackets next to the number of actual failures.

A.5.2.7 Discrete Event Information

Every time a discrete event switches, the results of that switch are recorded by the

program into the corresponding discrete event object. The data is compiled and

added to the simulation below the component failure information, taking a form

similar to that shown below.

 | NUMBER | NUMBER | NUMBER | |

 EVENT | SWITCHES | YES | NO | SYSTEM | FAILS

----------+----------+----------+----------+--------------+--------

 D1 | 33 | 24 | 9 | TOP | 14

 | | | | G1001 | 14

 D2 | 0 | 0 | 0 | |

 D3 | 112 | 7 | 105 | |

The number of times each event switched and the number of times it resulted in a

positive or negative outcome is shown. If the discrete event is an input to one or

more systems, the number of times its failure prompted the system to fail is shown.

A.5.2.8 LRI information

Similarly to the discrete events, the number of times an LRI is switched and the

inputs which prompted these are shown in a table, similar to the example below.

 | # REPLA- | EVENT | NUMBER OF

 LRI NAME | CEMENTS | NAME | FAILURES

--------------+-----------+--------------+-----------

 LRI_1 | 0 | LRI_2 | 0

 | | LRI_3 | 0

 LRI_2 | 31 | LRI_4 | 0

 | | LRI_5 | 31

 - 309 -

A.5.2.9 Prognostics Information

Each component which has its performance estimated by a prognostics system will

have the data from this outputted to a table similar to the one below.

 | | WEAR | | REPLACE- | MFOP | REPLACE

 COMPT | STARTS | LEVEL | NUMBER | MENTS | ABANDONS | RATE

--------+--------+-------+--------+----------+----------+----------

 C | 150 | 1 | 3 | 0 | 0 | 0

 | | 2 | 2 | 0 | 0 | 0

 | | 3 | 1 | 1 | 0 | 1

The table shows the name of the component, and the number of times that it

“started”; taking account of the amount of times a simulation began for each

platform, and the number of times it was repaired. Each wear level the component

can experience is shown with the number of times it was found to be worn to that

stage. If the component’s predicted future failure in any of the wear levels prompted

its replacement or an MFOP to be abandoned, the number of times this happened is

shown. Also displayed is a rate, equal to the number of replacements divided by the

number of times the wear level was entered.

A.5.2.10 Redundancies Information

Each item which has redundancies assigned to it will have the details of these

shown in a table similar to that below.

 | | NUMBER OF | | | SUCCESS

 ITEM NAME | TYPE | SWITCHES | SUCCESS | FAILURE | RATE

-------------+--------+-----------+-----------+-----------+--------

 A | Manual | 31 | 20 | 11 | 0.645161

 E | Sensed | 26 | 26 | 0 | 1

The table lists the items (components or systems) which have redundancies. The

type of redundancy, manual or sensed, is shown in the next column. The number of

times the switch occurred, and how many of these succeeded or failed, is shown,

together with a success rate. Note that the “failure” number should match the

 - 310 -

number in brackets for the redundant item in either of the component or system

failure information tables.

A.5.2.11 Inspections Information

Each item which undergoes inspections will have the details of these given. The

data shown is the component or system name, the number of times it was inspected,

and how many item failures were found during each inspection. The rate of

replacement with respect to number of inspections is then shown in the next

column. The table below demonstrates this.

 | NUMBER OF | FAILURES | REPLACEMENT

 ITEM NAME | INSPECTIONS | FOUND | RATE

--------------+-------------+----------+-------------

 F | 86 | 86 | 1

 G3001 | 115 | 115 | 1

The data on item inspections is the last of the sets of results that the program

exports.

A.6 Summary

A program has been created for the task of simulating a fleet of platforms

undergoing phased MFOPs. This applies the Petri net models explained in Chapter

5 and Chapter 6, using inputs, in the form of text files, containing phase fault trees,

component failure data, MFOP enabler information, and mission configurations.

Using these, it creates arrays of objects, which can store information on each item

such as a place, transition, phase, component or system.

The Petri nets it creates are simulated by randomly assigning switching times to all

enabled timed transitions. These are switched in the order of these times, with all

subsequently enabled immediate transitions being switched in between. By doing

this over a satisfactory number of simulations, the expected performance of each

platform, MFOP and mission can be estimated. When compared with the results

from different system and enabler configurations, conclusions may be drawn over

 - 311 -

the approach which appears to be most apt. This data has the potential to allow a

great deal of improvement and demonstration of quality of systems, and could thus

become a very valuable part of the design process.

 - 312 -

Appendix B Data Input Files

This section contains the data files inputted to the simulation program. These were

used to obtain the results given in Chapter 7. No explanation is given, as these fault

trees are based on restricted material. It is felt that the short length of event names

should be sufficiently informative without compromising sensitive data.

There are three generations of files. The second and third generations have minor

differences from the first, and so the sections detailing these files will only highlight

the differences from the previous set. The file “nimmish.txt”, shown in the first

generation, did not undergo any changes.

 - 313 -

B.1 First Generation

B.1.1 Fault Tree, Component Data and Discrete Events file

PHASES 19

PHASE FlightCheck1 51

AIRCRAFT1 + 2 1.3-STRCT1 1.4-ON_GND

1.3-STRCT1 + 2 1.3.1STRC1 1.3.2FIRE1

1.4-ON_GND + 1 G368

1.3.1STRC1 + 2 SD_GEN_SYS1 SD_LOW_ZHA

1.3.2FIRE1 + 2 EXPLOSION FIRE_DAM1

EXPLOSION + 1 G592-1

SD_GEN_SYS1 + 2 SD_ENG SD_LGS1

FIRE_DAM1 + 2 FIRE_FLUID1 FIRE_OTHER1

SD_ENG + 5 G155 G157 G164 G160 G415

FIRE_FLUID1 + 3 G694. G714 G005-1

SD_LGS1 + 1 SD_LG1

SD_LG1 + 2 G449 G368

FIRE_OTHER1 + 3 G481 G009-1 G226

SD_LOW_ZHA + 2 G660. G641

G157 + 2 G157NONFBO G637

G368 + 3 LG-LHGRSTRC LG-RHGRSTRC LG-ASSY1

G160 + 2 G160-G286 G160-G287

G009-1 + 1 G009-G316

G009-G316 + 3 G009FRSPGND G009-G11 G009-TIT

G009-G11 * 2 G009-G15 G009-G12

G009-TIT * 2 CF-APU-TIT FP-FIRE14

G226 + 4 G226-G1 G226-G264 G226-G369 G226-G474

G592-1 + 2 G592-002-1 G592-003-1

G592-002-1 + 1 G592-004

G592-003-1 + 5 G592-006-1 G592-009 G592-083 FU-PMPFRXP

 FU-TMPSNSFR

G592-004 * 2 G592-005 CF-EXTFIRE

G592-005 + 8 FU-BURSTDR FU-DRAINVLK FU-XPOPPLK FU-LBURST FU-LFLAMEAF

 FU-RBURST FU-RFLAMEAF FU-RBURST

G592-006-1 + 1 FU-T4AWIRE

G592-009 * 2 FU-GA_NIS FU-GA_OC

G592-083 + 3 G592-011 G592-012 G592-013

G415 + 4 PP-415-ENG1 PP-415-ENG2 PP-415-ENG3 PP-415-ENG4

G005-1 * 3 G005LEAK1 CF-OX-IGN1 CF-OX-COMB1

G005LEAK1 + 2 G005BRA1 G005OBGRATM

G005BRA1 + 1 G005BLKEGRD

G005BLKEGRD * 2 G005-ECSGRD G005-BOSGRD

G226-G1 + 3 G226-G11 G226-G167 G226-G700

G226-G11 * 2 G226DRILL11 G226-EF1-1

G226-G167 * 2 G226DRILL21 G226-EF2-1

 - 314 -

G226-G264 + 3 G226-G265 G226-G284 G226-G838

G226-G265 * 2 G226DRILL12 G226-EF1-2

G226-G284 * 2 G226DRILL22 G226-EF2-2

G226-G369 + 3 G226-G370 G226-G389 G226-G921

G226-G370 * 2 G226DRILL13 G226-EF1-3

G226-G389 * 2 G226DRILL23 G226-EF2-3

G226-G474 + 3 G226-G475 G226-G494 G226-G999

G226-G475 * 2 G226DRILL14 G226-EF1-4

G226-G494 * 2 G226DRILL24 G226-EF2-4

G226-G700 * 2 G226-HF1-1 CF-FP-LK-1

G226-G838 * 2 G226-HF1-2 CF-FP-LK-2

G226-G921 * 2 G226-HF1-3 CF-FP-LK-3

G226-G999 * 2 G226-HF1-4 CF-FP-LK-4

ABANDONS 144

ABANDONS1 + 6 DASS FMS MAD RCS TCS STORES

DASS + 3 DASSDET DASSEVAL DASSPROT

DASSDET + 2 RADWARNR MISWARNR

DASSEVAL + 1 DSM

DASSPROT + 2 TRDS CFD

RADWARNR + 3 APR SUPERHET SIGNALREC

MISWARNR + 2 ECU MISSENS

TRDS + 3 DEC TQG DASSLNCH

CFD + 3 SDU DCU CFDF

SUPERHET + 2 SUC SUR

SIGNALREC + 3 CDBAND MIDHIBAND SIGCONV

CDBAND + 2 CBR CBA

MIDHIBAND + 2 DRR DASSANT

SIGCONV * 2 DC1 DC2

DASSANT + 2 DASSFANT DASSRANT

DASSFANT * 2 HA1 HA2

DASSRANT * 2 HA3 HA4

MISSENS + 4 STP STB MISLSENS MISRSENS

MISLSENS * 2 SLN SLB

MISRSENS * 2 SRN SRB

DASSLNCH + 2 LRA PLC

CFDF / 6 12 DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8

 DR9 DR10 DR11 DR12

DR1 + 4 FMG1 CMG1 TOP1 BOT1

DR2 + 4 FMG2 CMG2 TOP2 BOT2

DR3 + 4 FMG3 CMG3 TOP3 BOT3

DR4 + 4 FMG4 CMG4 TOP4 BOT4

DR5 + 4 FMG5 CMG5 TOP5 BOT5

DR6 + 4 FMG6 CMG6 TOP6 BOT6

DR7 + 4 FMG7 CMG7 TOP7 BOT7

DR8 + 4 FMG8 CMG8 TOP8 BOT8

DR9 + 4 FMG9 CMG9 TOP9 BOT9

DR10 + 4 FMG10 CMG10TOP10 BOT10

DR11 + 4 FMG11 CMG11TOP11 BOT11

DR12 + 4 FMG12 CMG12TOP12 BOT12

 - 315 -

FMS + 3 FMCFAIL MCDU USMS

FMCFAIL + 2 EGI FMC

MCDU * 2 MDCU1 MDCU2

EGI * 2 EGI1 EGI2

FMC * 2 FMC1 FMC2

EGI1 + 4 EGI1INPUTS EGI1UNIT EGI1POW EGI1TRAY

EGI2 + 4 EGI2INPUTS EGI2UNIT EGI2POW EGI2TRAY

EGI1INPUTS * 2 EGI1GPS EGI1ANT

EGI2INPUTS * 2 EGI2ANT EGI2GPS

USMS * 4 USMS1 USMS2USMS3 USMS4

USMS1 + 2 USMS1COM USMS1CB

USMS2 + 2 USMS2COM USMS2CB

USMS3 + 2 USMS3COM USMS3CB

USMS4 + 2 USMS4COM USMS4CB

MAD + 5 MADCOMPAMP DETECTHEAD VECTMAGNET MADBASE MADCB

RCS + 2 TDI COMM

TDI * 3 TSN TCSOSSATCOM

COMM * 2 VOICECOM TEXTCOM

TSN * 2 L16 L11

TCSOS + 3 IOPS TCSOSMD TCSOSSCSI

VOICECOM * 2 RADIOCHAN ADDITIONAL

TEXTCOM + 2 TCSOS TTYMODEM

TTYMODEM + 3 TTYMOD TTYKEYGEN TTYPOWSW

RADIOCHAN + 2 RADIOF RADCTRLF

ADDITIONAL * 2 L16 SATCOM

L16 + 5 DLS JTT ANTSYS3 L16SWI L16BUS

L11 + 6 L11DTS L11DLP L11CRYPT L11PWRSW L11CB

 L11RADIO

SATCOM + 3 INTERFACE INTELEC SIGCOMM

RADIOF * 2 HF V/UHF

RADCTRLF * 2 TCSOS RMU

RMU * 2 PILOTRMU COPILOTRMU

HF * 2 HF1 HF2

V/UHF * 2 "V/UHF1,2" V/UHF3-5

INTERFACE + 3 MOUNTS PSW PNL

INTELEC + 4 MODEM RFC PSU CTRLUNIT

SIGCOMM + 3 KEY DSC ANTENNAE

MOUNTS * 2 MT1 MT2

MODEM + 4 RPA BAS MCD MPS

CTRLUNIT + 3 SCI AUI PRO

ANTENNAE * 2 ANTSYS1 ANTSYS2

ANTSYS1 + 2 ANT1 MCM1

ANTSYS2 + 2 ANT2 MCM2

DLS + 2 RAD BAT

ANTSYS3 * 2 ANTTOP ANTBOT

L16SWI + 2 SWA PWR

L16BUS * 2 L16BUSA L16BUSB

ANTTOP + 2 ATT RAT

ANTBOT + 2 ATB RAB

L16BUSA + 3 BAC CBA TBA

L16BUSB + 3 BBC CBB TBB

 - 316 -

"V/UHF1,2" * 2 V/UHF1 V/UHF2

V/UHF3-5 * 3 V/UHF3 V/UHF4 V/UHF5

V/UHF1 + 5 V/U1XCVR V/U1FILT V/U1ANT V/U1DTOA V/U1LOGU

V/UHF2 + 5 V/U2XCVR V/U2FILT V/U2ANT V/U2DTOA V/U2LOGU

V/UHF3 + 5 V/U3XCVR V/U3FILT V/U3ANT V/U3DTOA V/U3LOGU

V/UHF4 + 5 V/U4XCVR V/U4FILT V/U4ANT V/U4DTOA V/U4LOGU

V/UHF5 + 5 V/U5XCVR V/U5FILT V/U5ANT V/U5DTOA V/U5LOGU

V/U2FILT * 2 V/U2VFILT V/U2UFILT

HF1 + 6 HF1RECEXC HF1POWAMP HF1ANTTUN HF1PPSFIL HF1DTOA

 HF1SHUNT

HF2 + 8 HF2RECEXC HF2POWAMP HF2ANTTUN HF2PPSFIL HF2DTOA

 HF2SHUNT HF2POWSW GHF2ANT

GHF2ANT + 5 HF2FWDANT HF2CNTANT HF2AFTANT HF2ANT HF2GNDANT

L11RADIO * 4 HF1 HF2 V/UHF4 V/UHF5

PILOTRMU + 2 FCRA1 RMUIF1

COPILOTRMU + 2 FCRA2 RMUIF2

FCRA1 * 2 NRCTCS FI1

RMUIF1 + 4 PSU1 MC1 FLX1 CA1

FCRA2 * 2 B3I2 FI2

RMUIF2 + 4 PSU2 MC2 FLX2 CA2

NRCTCS + 2 B3I1 TCSOS

TCS + 3 TCSPROC TCSOPTCSREC

TCSPROC + 2 IOPIFU TCSOS

TCSOP * 4 NORM5WKSTN PILOTWKSTN ACO2WKSTN ORDN2WKSTN

TCSREC * 6 VIDINTU HDDR MAGDISK1 MAGDISK2 CBS TXTPRINT

IOPS / 2 3 IOP1 IOP2 TAC1PWRSW

NORM5WKSTN * 5 WKSTN1 WKSTN2 WKSTN3 WKSTN4 WKSTN5

PILOTWKSTN + 4 PILOTTCP PILOTDP PILOTTCPIFU PILOTCHRD

ACO2WKSTN * 2 ACOWKSTN1 ACOWKSTN2

ORDN2WKSTN * 2 ORDWKSTN1 ORDWKSTN2

ORDWKSTN1 + 3 ORD1PEP ORD1PSU ORD1SONRS

ORDWKSTN2 + 3 ORD2PEP ORD2PSU ORD2SONRS

ACOWKSTN1 + 4 ACO1PEPS ACO1PSU ACO1CHRDS ACO1INPUTS

ACOWKSTN2 + 4 ACO2PEPS ACO2PSU ACO2CHRDS ACO2INPUTS

ACO1PEPS * 2 ACO1PEP1 ACO1PEP2

ACO1CHRDS * 2 ACO1CHRD SPARECHRD

ACO1INPUTS * 4 ACO1KEYP ACO1KEYB ACO1KEYPL ACO1ROLBAL

ACO2PEPS * 2 ACO2PEP1 ACO2PEP2

ACO2CHRDS * 2 ACO2CHRD SPARECHRD

ACO2INPUTS * 4 ACO2KEYP ACO2KEYB ACO2KEYPL ACO2ROLBAL

WKSTN1 + 5 WK1PEP WK1DPWK1PSU WK1CHRD WK1INPUTS

WKSTN2 + 5 WK2PEP WK2DPWK2PSU WK2CHRD WK2INPUTS

WKSTN3 + 5 WK3PEP WK3DPWK3PSU WK3CHRD WK3INPUTS

WKSTN4 + 5 WK4PEP WK4DPWK4PSU WK4CHRD WK4INPUTS

WKSTN5 + 5 WK5PEP WK5DPWK5PSU WK5CHRD WK5INPUTS

WK1PEP * 2 WK1PEP1 WK1PEP2

WK1INPUTS * 4 WK1KEYP WK1KEYB WK1KEYPL WK1ROLBAL

WK2PEP * 2 WK2PEP1 WK2PEP2

WK2INPUTS * 4 WK2KEYP WK2KEYB WK2KEYPL WK2ROLBAL

WK3PEP * 2 WK3PEP1 WK3PEP2

WK3INPUTS * 4 WK3KEYP WK3KEYB WK3KEYPL WK3ROLBAL

 - 317 -

WK4PEP * 2 WK4PEP1 WK4PEP2

WK4INPUTS * 4 WK4KEYP WK4KEYB WK4KEYPL WK4ROLBAL

WK5PEP * 2 WK5PEP1 WK5PEP2

WK5INPUTS * 4 WK5KEYP WK5KEYB WK5KEYPL WK5ROLBAL

STORES + 2 SMGMTSYS SONORELSYS

SMGMTSYS + 4 SMGMTPROC STNCTRLU BBAYDR WEAPRELSW

SONORELSYS * 2 SINGLAUNCH TENSHOT

STNCTRLU * 5 STNCTRLU1 STNCTRLU2 STNCTRLU3 STNCTRLU4 STNCTRLU5

WEAPRELSW * 4 WRELSW1 WRELSW2 WRELSW3 WRELSW4

SINGLAUNCH * 2 SINGSHOT1 SINGSHOT2

TENSHOT * 4 TENSHOT1 TENSHOT2 TENSHOT3 TENSHOT4

PHASE FlightCheck2 1

AIRCRAFT1A + 2 1.3-STRCT1 1.4-ON_GND

ABANDONS 33

ABANDONS1A + 7 DASS ESM FMS RADAR-IFF RCS TCS STORES

ESM + 2 GSIGPROC INTTCS

GSIGPROC + 2 SIGDEL ESMPRO

INTTCS * 2 MSU 1553BUS

SIGDEL + 2 SPINCHAN MAINCHAN

SPINCHAN + 2 PROCFAIL SAU

MAINCHAN + 2 ANTCLUST MRX

ANTCLUST * 4 ACLUST1 ACLUST2 ACLUST3 ACLUST4

PROCFAIL + 2 SRX SFE

ACLUST1 * 3 FR1 LBA1 HBA1

ACLUST2 * 3 FR2 LBA2 HBA2

ACLUST3 * 3 FR3 LBA3 HBA3

ACLUST4 / 2 3 FR4 LBA4 HBA4

LBA1 + 2 LSPIANT1 LB1

HBA1 + 2 HSPIANT1 HB1

LBA2 + 2 LSPIANT2 LB2

HBA2 + 2 HSPIANT2 HB2

LBA3 + 2 LSPIANT3 LB3

HBA3 + 2 HSPIANT3 HB3

LBA4 + 2 LSPIANT4 LB4

HBA4 + 2 HSPIANT4 HB4

LSPIANT1 * 2 LS1-1 LS1-2

HSPIANT1 * 2 HS1-1 HS1-2

LSPIANT2 * 2 LS2-1 LS2-2

HSPIANT2 * 2 HS2-1 HS2-2

LSPIANT3 * 2 LS3-1 LS3-2

HSPIANT3 * 2 HS3-1 HS3-2

LSPIANT4 * 2 LS4-1 LS4-2

HSPIANT4 * 2 HS4-1 HS4-2

RADAR-IFF + 10 DATAPROC SIGPROC IFFINTGTR INS-GPS REC-EXC RFTRANS

 RFCTRL RFSCAN RADCOOLING 1553BBUS

IFFINTGTR + 3 IFFUNIT CRYPTOFILL IFFCB

RADCOOLING * 2 DRADTDCR PRADTDCR

1553BBUS * 2 1553BUS1 1553BUS2

 - 318 -

PHASE FlightCheck3 1

AIRCRAFT1B + 2 1.3-STRCT1 1.4-ON_GND

ABANDONS 3

ABANDONS1B + 6 DASS FMS RADAR-IFF RCS TCS EOSDS

EOSDS + 7 TUR1 SCU1 PDU1 HGP1 TLU1 PWP1 EOSDSCP

EOSDSCP + 2 DPS1 RTS1

PHASE EngStart 13

AIRCRAFT2 + 2 1.3-STRCT2 1.4-ON_GND

1.3-STRCT2 + 2 1.3.1STRC2 1.3.2FIRE2

1.3.1STRC2 + 2 SD_GEN_SYS2 SD_LOW_ZHA

1.3.2FIRE2 + 2 EXPLOSION2 FIRE_DAM1

EXPLOSION2 + 1 G592-2

SD_GEN_SYS2 + 2 SD_ENG SD_LGS2

SD_LGS2 + 2 SD_LG1 SD_WBT1

SD_WBT1 + 1 G495.

G592-2 + 2 G592-002-1 G592-003-2

G592-003-2 + 6 G592-006-2 G592-007 G592-009 G592-083

 FU-PMPFRXP FU-TMPSNSFR

G592-006-2 * 2 GATE11-1 FU-T4AWIRE

G592-007 * 2 CFSTOREFIRE FUINADVJETT

GATE11-1 + 1 CFFUEAIRMIX

ABANDONS 1

ABANDONS2 + 1 RCS

PHASE Take-Off 58

AIRCRAFT3 + 3 1.1-DEV_FP1 1.3-STRCT3 1.4-ON_GND

1.1-DEV_FP1 + 2 1.1.1-AERO1 1.1.2-TRST1

1.3-STRCT3 + 2 1.3.1STRC3 1.3.2FIRE3

1.1.1-AERO1 + 3 LAC_FCS LAC-ENV1 LAC-PILOT

1.1.2-TRST1 + 2 TRST_FUEL1 G554-1

1.3.1STRC3 + 4 SD_GEN_SYS3 G647-1 SD_LOW_ZHA SD-FCS

1.3.2FIRE3 + 2 EXPLOSION3 FIRE_DAM3

LAC_FCS + 7 G394 G568 G569 G570 G696. G698. G697.

G554-1 + 4 G174-1 G398-1 G659-1 G173-1

TRST_FUEL1 + 1 G166

EXPLOSION3 + 1 G592-3

SD_GEN_SYS3 + 3 SD_ENG SD_LGS3 SD_AIR1

SD_AIR1 + 1 G274-1

FIRE_DAM3 + 2 FIRE_FLUID3 FIRE_OTHER3

FIRE_FLUID3 + 3 G694. G714 G005-3

LAC-ENV1 + 2 G_430_LM G658

LAC-PILOT + 2 G312 G635

SD_LGS3 + 2 SD_LG1 SD_WBT2

G394 + 3 LAC_FLAPS G265 G309

G568 + 3 G670 G671 G672

G569 + 3 G654 G673 G674

 - 319 -

LAC_FLAPS + 1 G134

G_430_LM + 1 G430

G570 + 3 G675 G676 G677

G647-1 + 1 SD_OTH_DAM1

SD_OTH_DAM1 + 1 SD_CNTL1

SD_CNTL1 + 3 BBD_OPEN SD_FLAP1 G683.

BBD_OPEN + 1 G644

SD_FLAP1 * 2 G265 CFFLAP>ENV.

SD_WBT2 + 2 G396-1 G495.

G396-1 + 3 G629 G695.G530

FIRE_OTHER3 + 3 G481 G009-2 G226

SD-FCS + 2 G715 GATE12

G274-1 + 2 G274NMVTUPR G274VTPRNM

G166 + 3 G166-2007AX G166-2007BX G166-2007CX

G174-1 + 1 G554TL3ENTR

G398-1 + 4 G554-ADC G554-CREW8 G554-INDERR G554-TR-INC

G659-1 + 1 G554-G4821

G173-1 * 2 G554-TL-2EN CF-G554-C4

G009-2 + 1 G009-FRFLT1

G009-FRFLT1 * 2 G009-G417 G009-TAR1

G009-G417 + 3 G009FRSPFLT G009-G320 FP-FIRE14

G009-TAR1 + 2 G009-G307 CF-APUOPFLT

G592-3 + 1 G592-003-3

G592-003-3 + 5 G592-006-3 G592-009 G592-083 FU-PMPFRXP

 FU-TMPSNSFR

G592-006-3 * 2 GATE11-2 FU-T4AWIRE

GATE11-2 + 2 CFFUEAIRMIX CF-NEGGMAN

G658 + 2 G658-G100 G658-G110

G635 * 2 HEPEVNAV NVVNAVER

GATE12 + 2 G312E_AIRSP G312L_AIRSP

G005-3 * 3 G005-LEAK3 CF-OX-IGN3 CF-OX-COMB3

G005-LEAK3 + 3 G005BRA1 G005OBGRATM G005PRATMOS

G005PRATMOS * 2 G005INSFPFL G005-PBTLFL

G005-PBTLFL + 3 G005PBTL1FL G005PBTL2FL G005PBTL3FL

G005PBTL1FL + 2 OX-PBTL1LK OX-PBTL1HED

G005PBTL2FL + 2 OX-PBTL2LK OX-PBTL2HED

G005PBTL3FL + 2 OX-PBTL3LK OX-PBTL3HED

G430 + 2 G230 G275

ABANDONS 1

ABANDONS3 + 3 RCS FMS TCS

PHASE Climb 64

AIRCRAFT4 + 3 1.1-DEV_FP2 1.2-CFIT1 1.3-STRCT4

1.1-DEV_FP2 + 2 1.1.1-AERO2 1.1.2-TRST2

1.2-CFIT1 + 5 AP_CFITMSA1 CFIT_DISPL CFIT_SR_NAV CFIT_PIL1 G656.

1.3-STRCT4 + 2 1.3.1STRC4 1.3.2FIRE4

1.1.1-AERO2 + 3 LAC_FCS LAC-ENV2 LAC-PILOT

1.1.2-TRST2 + 2 TRST_FUEL2 G554-2

1.3.1STRC4 + 4 SD_GEN_SYS4 G647-1 SD_LOW_ZHA SD-FCS

1.3.2FIRE4 + 2 EXPLOSION4 FIRE_DAM4

 - 320 -

G554-2 + 4 G174-1 G398-2 G659-2 G173-1

TRST_FUEL2 + 2 L/VNAV_ERR G166

EXPLOSION4 + 1 G592-4

SD_GEN_SYS4 + 2 SD_ENG SD_AIR2

SD_AIR2 + 4 G576. G274-1 G575 G010

FIRE_DAM4 + 2 FIRE_FLUID4 FIRE_OTHER4

FIRE_FLUID4 + 3 G694. G714 G005-4

AP_CFITMSA1 + 1 G425-1

LAC-ENV2 + 2 G_430_LM G364-1

CFIT_DISPL + 1 G312

CFIT_SR_NAV + 3 G442/443 G635 G625

CFIT_PIL1 + 2 G106 G109-1

FIRE_OTHER4 + 4 G481 G010 G009-2 G226

L/VNAV_ERR + 2 G625 G635

G575 * 2 G575ECPVNYC G575ECSVNYC

G398-2 + 3 G554-ADC G554-CREW8 G554-TR-INC

G659-2 + 2 G554-G4821 G554-G4822

G010 + 2 G010FISLKAG G010FISLKHP

G592-4 + 1 G592-003-4

G592-003-4 + 6 G592-006-3 G592-008-1 G592-009 G592-083

 FU-PMPFRXP FU-TMPSNSFR

G592-008-1 * 4 CFFLJETTIS CFSTOREFIRE FUFLPROCEA FUFLPROCEB

G364-1 * 1 G364-SVRACC

G442/443 * 2 NVEPITDISP NVECPDISP

NVEPITDISP + 3 NVMMRSYSERR NVEPFD1PROC NVPILOTPFD1

NVPILOTPFD1 * 2 NVEPFD1DISP NVEND1DISP

NVEPFD1PROC + 1 CDEDMC1SYS

NVEPFD1DISP + 2 CDERRPFD1HW CD_SW_DU2

NVMMRSYSERR * 2 NVM1SYSERR NVM2SYSERR

NVM1SYSERR + 4 NVERRMMR1HW NV_SW_MMR ECSLDCCRTUN ECSBDCCRUN

NVM2SYSERR + 2 NVERRMMR2HW NV_SW_MMR

NVECPDISP + 3 NVMMRSYSERR NVEPFD2PROC NVCPND1

NVCPND1 + 1 NVEPFD2DISP

NVEPFD2PROC + 1 NVEDMC2SYS

NVEPFD2DISP + 2 CDERRPFD2HW CD_SW_DU3

NVEDMC2SYS + 2 CDD2EFISERR CDDMC2ECOOL

CDEDMC1SYS + 2 CDD1EFISERR NVDMC1ECOOL

NVDMC1ECOOL * 2 CD_DMC_COOL SFCDLC

CDDMC2ECOOL * 2 CD_DMC_COOL SFCDLC

NVEND1DISP + 2 CDERRND1HW1 CD_SW_DU2

G109-1 + 4 G109INAR5DC G109IAR5DEC G109-PORTFL G109-ISMK

G005-4 * 3 G005-LEAK4 CF-OX-IGN4 CF-OX-COMB4

G005-LEAK4 + 3 G005-BRA2 G005OBGRATM G005PRATMOS

G005-BRA2 + 1 G005BLKEFLT

G005BLKEFLT * 2 G005ECSFFLT G005BLKFLT

G109IAR5DEC * 3 OXRDCMPCOND CFOXAR5COND G109-GL-AR5

G109INAR5DC * 2 G109-GLNAR5 OXRDCMPCOND

G109-PORTFL + 2 G109PFLNAR5 G109PFLAR5

G109-ISMK * 2 OX-SMK-COND G109-GL-SMK

G109-GL-AR5 + 2 G109GLAR5S OXPLTDCFAIL

G425-1 + 6 G593 G594 G596 G597 G598-1 G599-1

 - 321 -

G594 + 5 G594-ALT G594-APPR G594-LVLCHG G594-VNAV G594-VS

G597 + 2 G597A G597B

G593 + 2 G593B G593C

G599-1 + 2 G425APSENG1 G425APSENG2

G598-1 + 1 G425-SMJAM

G596 + 2 G425-TRMLOS G425-TRMRUN

ABANDONS 1

ABANDONS4 + 4 DASS FMS RCS TCS

PHASE Transit 23

AIRCRAFT5 + 3 1.1-DEV_FP3 1.2-CFIT2 1.3-STRCT5

1.1-DEV_FP3 + 2 1.1.1-AERO2 1.1.2-TRST3

1.2-CFIT2 + 5 AP_CFITMSA2 CFIT_DISPL CFIT_SR_NAV CFIT_PIL2 G656.

1.3-STRCT5 + 2 1.3.1STRC5 1.3.2FIRE5

1.1.2-TRST3 + 3 TRST_FUEL2 G554-3 G452

1.3.1STRC5 + 4 SD_GEN_SYS5 G647-1 SD_LOW_ZHA SD-FCS

1.3.2FIRE5 + 2 EXPLOSION4 FIRE_DAM5

G554-3 + 3 G174-1 G398-2 G659-2

SD_GEN_SYS5 + 2 SD_ENG SD_AIR3

SD_AIR3 + 4 G576. G274-2 G575 G010

FIRE_DAM5 + 2 FIRE_FLUID5 FIRE_OTHER5

FIRE_FLUID5 + 4 G565. G694.G714 G005-4

AP_CFITMSA2 + 1 G425-2

CFIT_PIL2 + 3 G106 G580-1 G109-1

FIRE_OTHER5 + 4 G481 G010 G009-3 G226

G274-2 + 3 G274-G100 G274NMVTUPR G274VTPRNM

G009-3 + 1 G009-FRFLT2

G009-FRFLT2 + 1 G009-G417

G580-1 * 3 G580CDPR15K G580NALCBHI ECCALT15KFT

G580CDPR15K + 2 G580DPR15KL G580DPR15KA

G580NALCBHI + 2 G580CHRWF SFCDLW

G580CHRWF * 2 G580HIRXPRI G580HIRXSEC

G425-2 + 5 G593 G594 G596 G597 G598-1

ABANDONS 1

ABANDONS5 + 4 DASS FMS RCS TCS

PHASE Descent1 12

AIRCRAFT6 + 3 1.1-DEV_FP4 1.2-CFIT3 1.3-STRCT6

1.1-DEV_FP4 + 2 1.1.1-AERO2 1.1.2-TRST4

1.2-CFIT3 + 5 AP_CFITMSA3 CFIT_DISPL CFIT_SR_NAV CFIT_PIL1 G656.

1.3-STRCT6 + 2 1.3.1STRC4 1.3.2FIRE6

1.1.2-TRST4 + 3 TRST_FUEL2 G554-4 G452

1.3.2FIRE6 + 2 EXPLOSION3 FIRE_DAM6

G554-4 + 3 G398-2 G659-2 G173-2

FIRE_DAM6 + 2 FIRE_FLUID4 FIRE_OTHER5

AP_CFITMSA3 + 1 G425-3

G173-2 + 1 G554-TL-2EN

G425-3 + 5 G593 G594 G596 G597 G598-2

G598-2 + 2 G425-SMJAM G598APLDHAZ

 - 322 -

ABANDONS 1

ABANDONS6 + 4 DASS FMS RCS TCS

PHASE On-Task1 26

AIRCRAFT7 + 3 1.1-DEV_FP5 1.2-CFIT4 1.3-STRCT7

1.1-DEV_FP5 + 2 1.1.1-AERO1 1.1.2-TRST5

1.2-CFIT4 + 5 AP_CFITMSA4 CFIT_DISPL CFIT_SR_NAV CFIT_PIL1 G656.

1.3-STRCT7 + 2 1.3.1STRC6 1.3.2FIRE7

1.1.2-TRST5 + 3 TRST_FUEL2 G554-5 G452

1.3.1STRC6 + 4 SD_GEN_SYS4 G647-2 SD_LOW_ZHA SD-FCS

1.3.2FIRE7 + 2 EXPLOSION5 FIRE_DAM7

G554-5 + 4 G174-2 G398-2 G659-2 G173-2

EXPLOSION5 + 2 EXP_WEP G592-5

FIRE_DAM7 + 2 FIRE_FLUID4 FIRE_OTHER6

EXP_WEP + 2 G617. G607.

AP_CFITMSA4 + 1 G425-4

G647-2 + 2 SDSTOREDAM1 SD_OTH_DAM1

SDSTOREDAM1 + 1 SD_WEP1

SD_WEP1 + 2 SD_WEPS1 SD_NON_WEP

SD_WEPS1 + 3 SD_WEP_PL1 G023 G618.

SD_WEP_PL1 + 1 WEP_LAUNCH

WEP_LAUNCH + 4 G582. G583. G607. G617.

FIRE_OTHER6 + 5 G621 G481 G010 G009-3 G226

SD_NON_WEP + 2 G024 G071

G174-2 + 1 G554TL3ENTA

G592-5 + 1 G592-003-5

G592-003-5 + 6 G592-006-3 G592-007 G592-009 G592-083

 FU-PMPFRXP FU-TMPSNSFR

G425-4 + 6 G593 G594 G596 G597 G598-3 G599-2

G599-2 + 1 G425APSENG3

G598-3 + 2 G425-SMJAM G598APOTHAZ

ABANDONS 1

ABANDONS7 + 5 DASS FMS RCS TCS MAD

PHASE On-Task2 1

AIRCRAFT7A + 3 1.1-DEV_FP5 1.2-CFIT4 1.3-STRCT7

ABANDONS 1

ABANDONS7A + 6 DASS ESM FMS RADAR-IFF RCS TCS

PHASE On-Task3 1

AIRCRAFT7B + 3 1.1-DEV_FP5 1.2-CFIT4 1.3-STRCT7

ABANDONS 1

ABANDONS7B + 6 DASS FMS RADAR-IFF RCS TCS EOSDS

PHASE Attack1 19

AIRCRAFT8 + 3 1.1-DEV_FP6 1.2-CFIT4 1.3-STRCT8

1.1-DEV_FP6 + 2 1.1.1-AERO1 1.1.2-TRST6

1.3-STRCT8 + 2 1.3.1STRC7 1.3.2FIRE8

 - 323 -

1.1.2-TRST6 + 3 TRST_FUEL2 G554-6 G452

1.3.1STRC7 + 5 SD_GEN_SYS4 G647-3 SDHIGHERZHA SD_LOW_ZHA SD-FCS

1.3.2FIRE8 + 2 EXPLOSION6 FIRE_DAM7

G554-6 + 3 G174-2 G398-2 G659-2

EXPLOSION6 + 2 EXP_WEP G592-6

G647-3 + 3 SDSTOREDAM2 SDOTHERDAM2 SD_JETT1

SD_JETT1 * 2 G070 CFJTRELENV.

SDSTOREDAM2 + 1 SD_WEP2

SD_WEP2 + 2 SD_WEPS2 SD_NON_WEP

SDOTHERDAM2 + 1 SD_CNTL2

SD_CNTL2 + 2 BBD_OPEN G683.

SD_WEPS2 + 3 SD_WEP_PL2 G023 G618.

SD_WEP_PL2 * 2 WEP_LAUNCH CFWEPLNCH.

SDHIGHERZHA + 2 G702 G707

G592-6 + 1 G592-003-6

G592-003-6 + 7 G592-006-3 G592-007 G592-008-1 G592-009 G592-083

 FU-PMPFRXP FU-TMPSNSFR

ABANDONS 1

ABANDONS8 + 6 DASS FMS RCS TCS MAD STORES

PHASE Attack2 1

AIRCRAFT8A + 3 1.1-DEV_FP6 1.2-CFIT4 1.3-STRCT8

ABANDONS 1

ABANDONS8A + 7 DASS ESM FMS RADAR-IFF RCS TCS STORES

PHASE Off-Task 2

AIRCRAFT9 + 3 1.1-DEV_FP4 1.2-CFIT5 1.3-STRCT6

1.2-CFIT5 + 5 AP_CFITMSA2 CFIT_DISPL CFIT_SR_NAV CFIT_PIL1 G656.

ABANDONS 1

ABANDONS9 + 4 DASS FMS RCS TCS

PHASE Return 25

AIRCRAFT10 + 3 1.1-DEV_FP7 1.2-CFIT2 1.3-STRCT9

1.1-DEV_FP7 + 2 1.1.1-AERO2 1.1.2-TRST7

1.3-STRCT9 + 2 1.3.1STRC8 1.3.2FIRE5

1.1.2-TRST7 + 3 TRST_FUEL2 G554-7 G452

1.3.1STRC8 + 5 SD_GEN_SYS5 SD_COLL G647-1 SD_LOW_ZHA SD-FCS

G554-7 + 3 G174-1 G398-1 G659-2

SD_COLL + 2 G642 G653COLLDAY

G642 + 2 G642-G176 G642-G177

G642-G176 * 3 SF568UNCP/U CFPPG642RFL AWCREWE153

G642-G177 + 2 G642-GATE1 G642-G178

G653COLLDAY * 3 G6533TOAVD G653AVDFDAY CFTMRSKD

G653AVDFDAY * 3 G653COMFL G653-SVFLD AWCREWE125

G653COMFL * 2 G653CMATCFL G653CMBSFL

G6533TOAVD + 2 G6531PLTFRL G653RLSADHD

G653RLSADHD + 1 CF3PTHRAD

 - 324 -

G6531PLTFRL * 2 G653-FLRULE CCOLL3FLT

G653-FLRULE + 3 AWCREWE126 AWCREWE127 G312

G653CMATCFL + 3 CF-ATCFAILS TCRADFL AWCREWE174

G653CMBSFL + 4 CFOPBOUTRNG CFOPSBASFLS TCRADFL AWCREWE175

AWCREWE125 * 2 HE3FDETDAY AWCREW-ERR1

AWCREWE126 * 2 HEPTFVFRIFR AWCREW-ERR1

AWCREWE127 * 2 HE3FVFRIFR AWCREW-ERR1

AWCREWE153 * 2 HEPG642TCLS AWCREW-ERR2

AWCREWE174 * 2 HEPLFATCINS AWCREW-ERR1

AWCREWE175 * 2 HEPLTFLOPIN AWCREW-ERR1

ABANDONS 1

ABANDONS10 + 4 DASS FMS RCS TCS

PHASE Descent2 18

AIRCRAFT11 + 3 1.1-DEV_FP4 1.2-CFIT6 1.3-STRCT10

1.2-CFIT6 + 5 AP_CFITMSA2 CFIT_DISPL CFIT_SR_NAV CFIT_PIL3 G656.

1.3-STRCT10 + 2 1.3.1STRC9 1.3.2FIRE9

1.3.1STRC9 + 4 SD_GEN_SYS6 G647-4 SD_LOW_ZHA SD-FCS

1.3.2FIRE9 + 2 EXPLOSION7 FIRE_DAM6

EXPLOSION7 + 1 G592-7

SD_GEN_SYS6 + 2 SD_ENG SD_AIR4

SD_AIR4 + 4 G576. G274-3 G575 G010

G647-4 + 1 SDOTHERDAM3

SDOTHERDAM3 + 1 SD_CNTL3

SD_CNTL3 + 3 BBD_OPEN SD_FLAP2 G683.

SD_FLAP2 + 1 G265

CFIT_PIL3 + 3 G106 G580-2 G109-1

G274-3 + 2 G274-G100 G274VTPRNM

G580-2 * 2 G580CDPR15K G580NALCBHI

G592-7 + 1 G592-003-7

G592-003-7 + 7 G592-006-3 G592-007 G592-008-2 G592-009 G592-083

 FU-PMPFRXP FU-TMPSNSFR

G592-008-2 * 3 CFSTOREFIRE FUFLPROCEA FUFLPROCEB

ABANDONS 1

ABANDONS11 + 3 FMS RCS TCS

PHASE Approach 13

AIRCRAFT12 + 3 1.1-DEV_FP8 1.2-CFIT7 1.3-STRCT11

1.1-DEV_FP8 + 2 1.1.1-AERO3 1.1.2-TRST4

1.2-CFIT7 + 5 AP_CFITMSA5 CFIT_DISPL CFIT_SR_NAV CFIT_PIL1 G656.

1.3-STRCT11 + 2 1.3.1STRC10 1.3.2FIRE9

1.1.1-AERO3 + 3 LAC_FCS LAC-ENV3 LAC-PILOT

1.3.1STRC10 + 4 SD_GEN_SYS4 G647-5 SD_LOW_ZHA SD-FCS

AP_CFITMSA5 + 1 G425-5

G647-5 + 2 SDOTHERDAM3 SD_JETT2

SD_JETT2 + 1 G070

LAC-ENV3 + 2 G_430_LM G364-2

G364-2 + 1 G364-SVRACC

G425-5 + 6 G593 G594 G596 G597 G598-2 G599-3

 - 325 -

G599-3 + 1 G599-LAND

ABANDONS 1

ABANDONS12 + 3 FMS RCS TCS

PHASE Land 26

AIRCRAFT13 + 4 1.1-DEV_FP9 1.2-CFIT8 1.3-STRCT12 1.4-ON_GND

1.1-DEV_FP9 + 2 1.1.1-AERO2 1.1.2-TRST8

1.2-CFIT8 + 5 AP_CFITMSA5 CFIT_DISPL CFIT_SR_NAV CFIT_PIL4 G656.

1.3-STRCT12 + 2 1.3.1STRC11 1.3.2FIRE10

1.1.2-TRST8 + 3 TRST_FUEL3 G554-8 G452

1.3.1STRC11 + 4 SD_GEN_SYS7 G647-4 SD_LOW_ZHA SD-FCS

1.3.2FIRE10 + 2 EXPLOSION8 FIRE_DAM8

G554-8 + 2 G398-2 G659-2

TRST_FUEL3 + 3 L/VNAV_ERR G069 G166

EXPLOSION8 + 1 G592-8

SD_GEN_SYS7 + 3 SD_ENG SD_LGS4 SD_AIR2

FIRE_DAM8 + 2 FIRE_FLUID4 FIRE_OTHER7

SD_LGS4 + 2 SD_LG2 SD_WBT3

SD_WBT3 + 2 G396-2 G495.

G396-2 + 5 G629 G695.G058 G064 G530

CFIT_PIL4 + 2 G106 G109-2

SD_LG2 + 3 G589. G449 G368

FIRE_OTHER7 + 4 G481 G010 G009-4 G226

G069 + 6 G069-IFBBD G069INSFLFP G069ARBENRQ G069ISFFLAI

 G069LGENRQ G069ISFFLAL

G069-IFBBD + 1 G069INSFBBD

G009-4 + 2 G009-FRFLT2 G009-G316

G592-8 + 2 G592-002-2 G592-003-3

G592-002-2 * 2 G592-004 CF-ONGROUND

G069ISFFLAI + 1 G069ARAENRQ

G109-2 + 3 G109INAR5DC G109-PORTFL G109-ISMK

G069ISFFLAL * 3 OXRDCMPCOND CFPLE10000 G069OBOGSLS

ABANDONS 1

ABANDONS13 + 3 FMS RCS TCS

PHASE Taxi 17

AIRCRAFT14 + 2 1.3-STRCT13 1.4-ON_GND

1.3-STRCT13 + 2 1.3.1STRC12 1.3.2FIRE11

1.3.1STRC12 + 3 SD_GEN_SYS8 G647-6 SD_LOW_ZHA

1.3.2FIRE11 + 2 EXPLOSION9 FIRE_DAM9

EXPLOSION9 + 1 G592-9

SD_GEN_SYS8 + 2 SD_ENG SD_LGS5

FIRE_DAM9 + 2 FIRE_FLUID1 FIRE_OTHER8

SD_LGS5 + 2 SD_LG1 SD_WBT4

SD_WBT4 + 2 G396-3 G495.

G396-3 + 2 G695. G064

G647-6 + 1 SDOTHERDAM4

SDOTHERDAM4 + 1 SD_CNTL4

SD_CNTL4 + 2 SD_FLAP2 G683.

 - 326 -

FIRE_OTHER8 + 3 G481 G009-5 G226

G009-5 + 2 G009-FRFLT1 G009-G316

G592-9 + 2 G592-002-1 G592-003-8

G592-003-8 + 4 G592-009 G592-083 FU-PMPFRXP FU-TMPSNSFR

COMPONENTS

G164 U EXP 0.000000283

G155 U EXP 0.000000001

G660. U EXP 9E-10

G637 U EXP 0.00000053

G641 U EXP 9E-10

G694. U EXP 9.9E-10

G714 U EXP 9.9E-10

G157NONFBO U EXP 1.43E-08

G481 U EXP 0.000000075

LG-ASSY1 U EXP 3.31E-08

FP-FIRE14 U EXP 0.0000001

CF-EXTFIRE U EXP 0.000001

FU-BURSTDR U EXP 0.00000404

FU-LBURST U EXP 0.000004

FU-DRAINVLK U EXP 0.0000174

FU-LFLAMEAF U EXP 0.000000001

FU-T4AWIRE U EXP 0.0000001

FU-RFLAMEAF U EXP 0.000000001

FU-RBURST U EXP 0.000004

FU-GA_NIS U EXP 0.00000078

FU-GA_OC U EXP 0.0000002

FU-TMPSNSFR U EXP 0.000000001

FU-PMPFRXP U EXP 0.000000001

FU-XPOPPLK U EXP 0.00000211

G160-G286 U EXP 7.322E-08

G160-G287 U EXP 3.07E-09

PP-415-ENG1 U EXP 8.94E-11

PP-415-ENG2 U EXP 8.94E-11

PP-415-ENG3 U EXP 8.94E-11

PP-415-ENG4 U EXP 8.94E-11

LG-LHGRSTRC U EXP 6.455E-09

LG-RHGRSTRC U EXP 6.455E-09

G449 U EXP 4.858E-08

G005-ECSGRD U EXP 0.04732

G005-BOSGRD U EXP 0.000001319

G005OBGRATM U EXP 2.903E-08

G009-G15 U EXP 0.003909

G009FRSPGND U EXP 9.687E-11

G226DRILL11 U EXP 0.0003139

G226-EF1-1 U EXP 0.000001205

G226DRILL21 U EXP 0.0003158

G226-EF2-1 U EXP 1.056E-07

G226-HF1-1 U EXP 5.491E-09

G226DRILL12 U EXP 0.0003139

G226-EF1-2 U EXP 0.000001205

G226DRILL22 U EXP 0.0003177

G226-EF2-2 U EXP 1.056E-07

G226-HF1-2 U EXP 5.491E-09

G226DRILL13 U EXP 0.0003139

G226-EF1-3 U EXP 0.000001205

G226DRILL23 U EXP 0.0003176

G226-EF2-3 U EXP 1.056E-07

G226-HF1-3 U EXP 5.491E-09

G226DRILL14 U EXP 0.0003139

G226-EF1-4 U EXP 0.000001208

G226DRILL24 U EXP 0.0003164

G226-EF2-4 U EXP 1.056E-07

G226-HF1-4 U EXP 5.491E-09

G592-011 U EXP 9.998E-10

G592-012 U EXP 9.998E-10

G592-013 U EXP 1.285E-09

G009-G12 U EXP 0.000001498

G495. U EXP 5.68E-08

CFFUEAIRMIX U EXP 0.0000025

CFSTOREFIRE U EXP 0.001

FUINADVJETT U EXP 6.878E-08

G265 U EXP 2.997E-10

G683. U EXP 1E-14

G695. U EXP 0.00000001

G696. U EXP 0.000000099

G697. U EXP 0.000000064

G698. U EXP 0.00000001

G715 U EXP 0.000000006

CF-APUOPFLT U EXP 0.019

CF-NEGGMAN U EXP 0.0000277

OX-PBTL1LK U EXP 0.00000011

OX-PBTL1HED U EXP 0.0000012

OX-PBTL2LK U EXP 0.00000011

OX-PBTL2HED U EXP 0.0000012

OX-PBTL3LK U EXP 0.00000011

OX-PBTL3HED U EXP 0.0000012

CF-G554-C4 U EXP 0.00718

G670 U EXP 2.882E-09

G134 U EXP 0.000001

G309 U EXP 0.000001

G671 U EXP 5.25E-09

G672 U EXP 7.216E-09

G654 U EXP 4.759E-09

 - 327 -

G673 U EXP 8.029E-08

G674 U EXP 5.812E-08

G675 U EXP 2.17E-09

G676 U EXP 9.53E-08

G677 U EXP 7.792E-11

G658-G100 U EXP 0.000001

G658-G110 U EXP 0.000001

G230 U EXP 7.598E-08

G275 U EXP 4.428E-09

G312E_AIRSP U EXP 2.174E-09

G312L_AIRSP U EXP 2.015E-09

HEPEVNAV U EXP 1.78022E-16

NVVNAVER U EXP 0.0003156

G166-2007AX U EXP 2.981E-09

G166-2007BX U EXP 2.981E-09

G166-2007CX U EXP 2.484E-10

G554TL3ENTR U EXP 2.048E-09

G554-ADC U EXP 9.895E-10

G554-CREW8 U EXP 1.01197E-16

G554-INDERR U EXP 3.095E-09

G554-TR-INC U EXP 3.243E-11

G554-G4821 U EXP 3.72646E-18

G554-TL-2EN U EXP 0.000005456

G312 U EXP 5.885E-09

G274NMVTUPR U EXP 0.000001

G274VTPRNM U EXP 7.504E-10

G160-G285 U EXP 1.811E-10

G530 U EXP 1.544E-08

G629 U EXP 1.541E-09

G644 U EXP 1.283E-09

G005INSFPFL U EXP 0.004378

G009-G307 U EXP 2.84E-08

G009-G320 U EXP 2.074E-09

G009FRSPFLT U EXP 1.354E-10

G576. U EXP 0.00000009

G656. U EXP 0.000000001

G106 U EXP 9.9E-10

ECSLDCCRTUN U EXP 0.000008

ECSBDCCRUN U EXP 3.62E-08

CD_DMC_COOL U EXP 0.001

CDERRPFD1HW U EXP 0.00019

CD_SW_DU2 U EXP 0.000001

CDD2EFISERR U EXP 0.00024

NVERRMMR1HW U EXP 0.000162655

NVERRMMR2HW U EXP 0.000162655

CDERRPFD2HW U EXP 0.00019

CD_SW_DU3 U EXP 0.000001

CDD1EFISERR U EXP 0.00024

CDERRND1HW1 U EXP 0.00019

NV_SW_MMR U EXP 0.000001

OXRDCMPCOND U EXP 0.000001

OX-SMK-COND U EXP 0.00001

OXPLTDCFAIL U EXP 0.00001

G364-SVRACC U EXP 4.493E-09

G625 U EXP 0.000001

G554-G4822 U EXP 1.01205E-20

G109PFLNAR5 U EXP 0.000001

G109PFLAR5 U EXP 2E-18

G109-GL-SMK U EXP 0.004024

G593B U EXP 0.000001

G593C U EXP 5.003E-08

G594-ALT U EXP 0.000001

G594-APPR U EXP 0.000001

G594-LVLCHG U EXP 0.000001

G594-VNAV U EXP 0.000001

G594-VS U EXP 0.000001

G425-TRMLOS U EXP 2.1E-09

G425-TRMRUN U EXP 3.084E-09

G597A U EXP 9.945E-11

G597B U EXP 0.000001

G425-SMJAM U EXP 4.114E-11

G425APSENG1 U EXP 0.000001

G425APSENG2 U EXP 0.000001

G575ECSVNYC U EXP 0.00001316

G575ECPVNYC U EXP 0.00001226

G010FISLKAG U EXP 2.281E-08

G010FISLKHP U EXP 1.405E-08

G005ECSFFLT U EXP 0.004378

G005BLKFLT U EXP 0.000001365

G109GLAR5S U EXP 0.003952

SFCDLC U EXP 1.737E-07

G565. U EXP 9E-10

G452 U EXP 9.9E-10

G580HIRXPRI U EXP 0.00002651

G580HIRXSEC U EXP 0.00002651

G580DPR15KL U EXP 0.000001896

G580DPR15KA U EXP 0.0001682

G274-G100 U EXP 7.601E-08

SFCDLW U EXP 6.714E-08

G598APLDHAZ U EXP 3.628E-09

G621 U EXP 0.000001

G607. U EXP 0.000001

G617. U EXP 0.000001

G583. U EXP 0.000001

G071 U EXP 0.000001

G582. U EXP 0.000001

G024 U EXP 0.000001

G023 U EXP 0.000001

G618. U EXP 0.000001

G554TL3ENTA U EXP 8.465E-09

G598APOTHAZ U EXP 7.675E-09

G425APSENG3 U EXP 0.000001

 - 328 -

G070 U EXP 0.000001

G702 U EXP 0.000001

G707 U EXP 0.000001

CFPPG642RFL U EXP 0.0092

CCOLL3FLT U EXP 0.001

CF-ATCFAILS U EXP 0.001

HEPLTFLOPIN U EXP 0.001

CFOPSBASFLS U EXP 0.001

CFOPBOUTRNG U EXP 0.001

HEPLFATCINS U EXP 0.001

TCRADFL U EXP 0.001

HEPTFVFRIFR U EXP 0.001

CF3PTHRAD U EXP 0.000001

AWCREW-ERR1 U EXP 0.000000009

AWCREW-ERR2 U EXP 0.000000009

SF568UNCP/U U EXP 3.578E-10

G642-GATE1 U EXP 0.000001

G642-G178 U EXP 0.000001

G653-SVFLD U EXP 0.000001

G599-LAND U EXP 0.000001

G589. U EXP 0.000001

G069INSFBBD U EXP 4.71E-08

G069INSFLFP U EXP 3.514E-11

G069ARBENRQ U EXP 3.908E-08

G069ARAENRQ U EXP 3.427E-10

G069LGENRQ U EXP 1.77E-08

G069OBOGSLS U EXP 0.002794

G058 U EXP 1.29E-08

G064 U EXP 8.762E-08

DSM U EXP 0.0004

APR U EXP 0.0002535

SUC U EXP 0.0001141

SUR U EXP 0.0001014

CBR U EXP 0.0000551

CBA U EXP 0.0000041

DRR U EXP 0.0000769

HA1 U EXP 0.0000053

HA2 U EXP 0.0000053

HA3 U EXP 0.0000053

HA4 U EXP 0.0000053

DC1 U EXP 0.0003333

DC2 U EXP 0.0003333

ECU U EXP 0.00008365

STP U EXP 0.00001281

STB U EXP 0.00001281

SLN U EXP 0.00001281

SLB U EXP 0.00001281

SRN U EXP 0.00001281

SRB U EXP 0.00001281

DEC U EXP 0.0002352

TQG U EXP 0.00060467

LRA U EXP 0.0005005

PLC U EXP 0.000168

SDU U EXP 0.000004

DCU U EXP 0.0000486

FMG1 U EXP 0.000001

CMG1 U EXP 0.000001

TOP1 U EXP 0.0000718

BOT1 U EXP 0.0000718

FMG2 U EXP 0.000001

CMG2 U EXP 0.000001

TOP2 U EXP 0.0000718

BOT2 U EXP 0.0000718

FMG3 U EXP 0.000001

CMG3 U EXP 0.000001

TOP3 U EXP 0.0000718

BOT3 U EXP 0.0000718

FMG8 U EXP 0.000001

CMG8 U EXP 0.000001

TOP8 U EXP 0.0000718

BOT8 U EXP 0.0000718

FMG9 U EXP 0.000001

CMG9 U EXP 0.000001

TOP9 U EXP 0.0000718

BOT9 U EXP 0.0000718

FMG10 U EXP 0.000001

CMG10 U EXP 0.000001

TOP10 U EXP 0.0000718

BOT10 U EXP 0.0000718

FMG11 U EXP 0.000001

CMG11 U EXP 0.000001

TOP11 U EXP 0.0000718

BOT11 U EXP 0.0000718

FMG12 U EXP 0.000001

CMG12 U EXP 0.000001

TOP12 U EXP 0.0000718

BOT12 U EXP 0.0000718

FMG4 U EXP 0.000001

CMG4 U EXP 0.000001

TOP4 U EXP 0.0000718

BOT4 U EXP 0.0000718

FMG5 U EXP 0.000001

CMG5 U EXP 0.000001

TOP5 U EXP 0.0000718

BOT5 U EXP 0.0000718

FMG6 U EXP 0.000001

CMG6 U EXP 0.000001

TOP6 U EXP 0.0000718

BOT6 U EXP 0.0000718

FMG7 U EXP 0.000001

CMG7 U EXP 0.000001

TOP7 U EXP 0.0000718

 - 329 -

BOT7 U EXP 0.0000718

ESMPRO U EXP 0.00021851

MSU U EXP 0.001104

MRX U EXP 0.00023099

SAU U EXP 0.0003169

SRX U EXP 0.00012306

SFE U EXP 0.00010911

FR1 U EXP 0.00007948

FR2 U EXP 0.00007948

FR3 U EXP 0.00007948

FR4 U EXP 0.00007948

LB1 U EXP 0.000000024

LS1-1 U EXP 0.000000026

LS1-2 U EXP 0.000000026

HB1 U EXP 0.000000024

HS1-1 U EXP 0.000000026

HS1-2 U EXP 0.000000026

LB2 U EXP 0.000000024

LS2-1 U EXP 0.000000026

LS2-2 U EXP 0.000000026

HB2 U EXP 0.000000024

HS2-1 U EXP 0.000000026

HS2-2 U EXP 0.000000026

LB3 U EXP 0.000000024

LS3-1 U EXP 0.000000026

LS3-2 U EXP 0.000000026

HB3 U EXP 0.000000024

HS3-1 U EXP 0.000000026

HS3-2 U EXP 0.000000026

LB4 U EXP 0.000000024

LS4-1 U EXP 0.000000026

LS4-2 U EXP 0.000000026

HB4 U EXP 0.000000024

HS4-1 U EXP 0.000000026

HS4-2 U EXP 0.000000026

MDCU1 U EXP 0.00021882

MDCU2 U EXP 0.00021882

EGI1UNIT U EXP 0.000333

EGI1POW U EXP 0.0000491

EGI1TRAY U EXP 0.0000124

EGI1GPS U EXP 0.0000375

EGI1ANT U EXP 0.0000111

EGI2UNIT U EXP 0.000333

EGI2POW U EXP 0.0000491

EGI2TRAY U EXP 0.0000124

EGI2ANT U EXP 0.0000111

EGI2GPS U EXP 0.0000375

FMC1 U EXP 0.000333

FMC2 U EXP 0.000333

USMS1COM U EXP 0.00076923

USMS1CB U EXP 0.0000192

USMS2COM U EXP 0.00076923

USMS2CB U EXP 0.0000192

USMS3COM U EXP 0.00076923

USMS3CB U EXP 0.0000192

USMS4COM U EXP 0.00076923

USMS4CB U EXP 0.0000192

MADCOMPAMP U EXP 0.0004354

DETECTHEAD U EXP 0.00058989

VECTMAGNET U EXP 0.00004214

MADBASE U EXP 0.000002231

MADCB U EXP 0.0000096

DATAPROC U EXP 0.00031958

SIGPROC U EXP 0.00032909

INS-GPS U EXP 0.00015797

REC-EXC U EXP 0.00047708

RFTRANS U EXP 0.00058922

RFCTRL U EXP 0.00015179

RFSCAN U EXP 0.0006594

IFFUNIT U EXP 0.00037

CRYPTOFILL U EXP 0.000017

IFFCB U EXP 0.0000048

DRADTDCR U EXP 0.000013

PRADTDCR U EXP 0.000013

1553BUS1 U EXP 0.0000046

1553BUS2 U EXP 0.0000046

PSW U EXP 0.0000136

PNL U EXP 0.000010824

MT1 U EXP 0.000001

MT2 U EXP 0.000001

RFC U EXP 0.0002091

PSU U EXP 0.0000362

RPA U EXP 0.0000036

BAS U EXP 0.0000283

MCD U EXP 0.0000771

MPS U EXP 0.0000317

SCI U EXP 0.0000509

AUI U EXP 0.0002299

PRO U EXP 0.0000895

KEY U EXP 0.000367647

DSC U EXP 0.00010204

ANT1 U EXP 0.0001333

MCM1 U EXP 0.0002199

ANT2 U EXP 0.0001333

MCM2 U EXP 0.0002199

JTT U EXP 0.000001

RAD U EXP 0.0004431

BAT U EXP 0.0000525

SWA U EXP 0.0000136

PWR U EXP 0.0000136

ATT U EXP 0.000005

RAT U EXP 0.000001

 - 330 -

ATB U EXP 0.000005

RAB U EXP 0.000001

BAC U EXP 0.000000032

TBA U EXP 0.0000001

BBC U EXP 0.000000032

CBB U EXP 0.000000141

TBB U EXP 0.0000001

V/U1XCVR U EXP 0.0003074

V/U1FILT U EXP 0.0003908

V/U1ANT U EXP 0.0000445

V/U1DTOA U EXP 0.00010204

V/U1LOGU U EXP 0.0000446

V/U2XCVR U EXP 0.0003074

V/U2ANT U EXP 0.0000445

V/U2DTOA U EXP 0.00010204

V/U2LOGU U EXP 0.0000446

V/U2VFILT U EXP 0.0003908

V/U2UFILT U EXP 0.0002999

V/U3XCVR U EXP 0.0003074

V/U3FILT U EXP 0.0003908

V/U3ANT U EXP 0.0000445

V/U3DTOA U EXP 0.00010204

V/U3LOGU U EXP 0.0000446

V/U4XCVR U EXP 0.0003074

V/U4FILT U EXP 0.0003908

V/U4ANT U EXP 0.0000445

V/U4DTOA U EXP 0.00010204

V/U4LOGU U EXP 0.0000446

V/U5XCVR U EXP 0.0003074

V/U5FILT U EXP 0.0003908

V/U5ANT U EXP 0.0000445

V/U5DTOA U EXP 0.00010204

V/U5LOGU U EXP 0.0000446

HF1RECEXC U EXP 0.0001964

HF1POWAMP U EXP 0.0001131

HF1ANTTUN U EXP 0.000141

HF1PPSFIL U EXP 0.0000935

HF1DTOA U EXP 0.00010204

HF1SHUNT U EXP 0.00003906

HF2RECEXC U EXP 0.0001964

HF2POWAMP U EXP 0.0001131

HF2ANTTUN U EXP 0.000187512

HF2PPSFIL U EXP 0.0000935

HF2DTOA U EXP 0.00010204

HF2SHUNT U EXP 0.00003906

HF2POWSW U EXP 0.0000068

HF2FWDANT U EXP 0.000001

HF2CNTANT U EXP 0.000001

HF2AFTANT U EXP 0.000001

HF2ANT U EXP 0.000001

HF2GNDANT U EXP 0.000001

L11DTS U EXP 0.0001272

L11DLP U EXP 0.0001012

L11CRYPT U EXP 0.0001963

L11PWRSW U EXP 0.0000068

L11CB U EXP 0.0000105

TTYMOD U EXP 0.0003876

TTYKEYGEN U EXP 0.000367467

TTYPOWSW U EXP 0.0000068

B3I1 U EXP 0.0000119

FI1 U EXP 0.0000062

PSU1 U EXP 0.0000382

MC1 U EXP 0.0000285

FLX1 U EXP 0.00000014

CA1 U EXP 0.00000014

B3I2 U EXP 0.0000119

FI2 U EXP 0.0000062

PSU2 U EXP 0.0000382

MC2 U EXP 0.0000285

FLX2 U EXP 0.00000014

CA2 U EXP 0.00000014

TUR1 U EXP 0.001045

SCU1 U EXP 0.00170196

PDU1 U EXP 0.00021692

HGP1 U EXP 0.000025

TLU1 U EXP 0.000021

PWP1 U EXP 0.00000018

DPS1 U EXP 0.0000136

RTS1 U EXP 0.0000136

1553BUS U EXP 0.00000001

IOPIFU U EXP 0.00013313

IOP1 U EXP 0.000124

IOP2 U EXP 0.000124

TAC1PWRSW U EXP 0.00000549

TCSOSMD U EXP 0.00002

TCSOSSCSI U EXP 0.0000001

ORD1PEP U EXP 0.00006666

ORD1PSU U EXP 0.00002381

ORD1SONRS U EXP 0.00007594

ORD2PEP U EXP 0.00006666

ORD2PSU U EXP 0.00002381

ORD2SONRS U EXP 0.00007594

ACO1PEP2 U EXP 0.00006666

ACO1PSU U EXP 0.00002381

ACO1PEP1 U EXP 0.00006666

SPARECHRD U EXP 0.0001

ACO1CHRD U EXP 0.0001

ACO1KEYP U EXP 0.00003333

ACO1KEYB U EXP 0.00002527

ACO1KEYPL U EXP 0.00002

ACO1ROLBAL U EXP 0.0001

ACO2PSU U EXP 0.00002381

 - 331 -

ACO2PEP1 U EXP 0.00006666

ACO2PEP2 U EXP 0.00006666

ACO2CHRD U EXP 0.0001

ACO2KEYP U EXP 0.00003333

ACO2KEYB U EXP 0.00002527

ACO2KEYPL U EXP 0.00002

ACO2ROLBAL U EXP 0.0001

PILOTTCP U EXP 0.00012189

PILOTDP U EXP 0.00013548

PILOTTCPIFU U EXP 0.00002495

PILOTCHRD U EXP 0.0001

WK1DP U EXP 0.00013548

WK1PSU U EXP 0.00002381

WK1CHRD U EXP 0.0001

WK2DP U EXP 0.00013548

WK2PSU U EXP 0.00002381

WK2CHRD U EXP 0.0001

WK3DP U EXP 0.00013548

WK3PSU U EXP 0.00002381

WK3CHRD U EXP 0.0001

WK4DP U EXP 0.00013548

WK4PSU U EXP 0.00002381

WK4CHRD U EXP 0.0001

WK5DP U EXP 0.00013548

WK5PSU U EXP 0.00002381

WK5CHRD U EXP 0.0001

WK1PEP1 U EXP 0.00006666

WK1PEP2 U EXP 0.00006666

WK1KEYP U EXP 0.00003333

WK1KEYB U EXP 0.00002527

WK1KEYPL U EXP 0.00002527

WK1ROLBAL U EXP 0.0001

WK2PEP1 U EXP 0.00006666

WK2PEP2 U EXP 0.00006666

WK2KEYP U EXP 0.00003333

WK2KEYB U EXP 0.00002527

WK2KEYPL U EXP 0.00002527

WK2ROLBAL U EXP 0.0001

WK3PEP1 U EXP 0.00006666

WK3PEP2 U EXP 0.00006666

WK3KEYP U EXP 0.00003333

WK3KEYB U EXP 0.00002527

WK3KEYPL U EXP 0.00002527

WK3ROLBAL U EXP 0.0001

WK4PEP1 U EXP 0.00006666

WK4PEP2 U EXP 0.00006666

WK4KEYP U EXP 0.00003333

WK4KEYB U EXP 0.00002527

WK4KEYPL U EXP 0.00002527

WK4ROLBAL U EXP 0.0001

WK5PEP1 U EXP 0.00006666

WK5PEP2 U EXP 0.00006666

WK5KEYP U EXP 0.00003333

WK5KEYB U EXP 0.00002527

WK5KEYPL U EXP 0.00002527

WK5ROLBAL U EXP 0.0001

VIDINTU U EXP 0.00008333

HDDR U EXP 0.0007692

MAGDISK1 U EXP 0.00002

MAGDISK2 U EXP 0.00002

CBS U EXP 0.0000366

TXTPRINT U EXP 0.0001

SMGMTPROC U EXP 0.0002857

BBAYDR U EXP 0.0000011

STNCTRLU1 U EXP 0.000114285

STNCTRLU2 U EXP 0.000114285

STNCTRLU3 U EXP 0.000114285

STNCTRLU4 U EXP 0.000114285

STNCTRLU5 U EXP 0.000114285

WRELSW1 U EXP 0.00000201

WRELSW2 U EXP 0.00000201

WRELSW3 U EXP 0.0000491

WRELSW4 U EXP 0.000013

SINGSHOT1 U EXP 0.00086207

SINGSHOT2 U EXP 0.00086207

TENSHOT1 U EXP 0.00018885

TENSHOT2 U EXP 0.00018885

TENSHOT3 U EXP 0.00018885

TENSHOT4 U EXP 0.00018885

DISCRETE EVENTS 26

CF-APU-TIT FP-FIRE14 0.18

CF-OX-IGN1 G005LEAK1 0.1

CF-OX-IGN3 G005-LEAK3 0.1

CF-OX-IGN4 G005-LEAK4 0.1

CF-OX-COMB1 G005LEAK1 0.01

CF-OX-COMB3 G005-LEAK3 0.01

CF-OX-COMB4 G005-LEAK4 0.01

CF-FP-LK-2 G226-HF1-2 0.05

CF-FP-LK-3 G226-HF1-3 0.05

CF-FP-LK-4 G226-HF1-4 0.05

CF-FP-LK-1 G226-HF1-1 0.05

CFFLAP>ENV. G265 0.9

CFFLJETTIS CFSTOREFIRE 0.005

FUFLPROCEA CFSTOREFIRE 0.01

FUFLPROCEB CFSTOREFIRE 0.01

CFOXAR5COND OXRDCMPCOND 0.01

G109-GLNAR5 OXRDCMPCOND 0.061

ECCALT15KFT G580CDPR15K 0.224

CFJTRELENV. G070 0.9

CFWEPLNCH. WEP_LAUNCH 0.9

HEPG642TCLS AWCREW-ERR2 0.01

 - 332 -

CFTMRSKD G6533TOAVD 0.5

HE3FDETDAY AWCREW-ERR1 0.5

HE3FVFRIFR AWCREW-ERR2 0.01

CF-ONGROUND G592-004 0.05

CFPLE10000 OXRDCMPCOND 0.109

B.1.2 MFOP Enablers

There were no MFOP enablers for the first generation of runs.

B.1.3 Platform, MFOP, Mission and Phase Data

FLEET 3

PF1 3 MFOP1 MFOP2 MFOP3

PF2 3 MFOP3 MFOP2 MFOP1

PF3 3 MFOP2 MFOP3 MFOP1

MFOPS 3

MFOP1 3 ASUW ASW SAR

MFOP2 3 ASW ASUW SAR

MFOP3 3 SAR ASW ASUW

MISSIONS 3

ASUW 15

FlightCheck1 SET 1 EngStart

EngStart SET 0.25 Take-Off

Take-Off SET 0.0167 Climb

 ABANDON Land

Climb NORM 0.25 0.0003 Transit

 ABANDON Approach

Transit NORM 3.0 0.15 Descent1

 ABANDON Return

Descent1 SET 0.25 On-Task1

 ABANDON Off-Task

On-Task1 NORM 2.5 0.8

 OUTCOME NoAtt 0.9 On-Task1 [2]

 OUTCOME Attac 0.1 Attack1

 ABANDON Off-Task

On-Task1 [2] NORM 2.5 0.8 Off-Task

 ABANDON Off-Task

Attack1 SET 0.15 On-Task1 [2]

 ABANDON Off-Task

Off-Task REV Descent1 Return

 - 333 -

 ABANDON Return

Return REV Transit Descent2

Descent2 REV Climb Approach

Approach SET 0.167 Land

Land SET 0.083 Taxi

Taxi NORM 0.5 0.07 END

ASW 15

FlightCheck2 SET 1 EngStart

EngStart SET 0.25 Take-Off

Take-Off SET 0.0167 Climb

 ABANDON Land

Climb NORM 0.25 0.0003 Transit

 ABANDON Approach

Transit NORM 3.0 0.15 Descent1

 ABANDON Return

Descent1 SET 0.25 On-Task2

 ABANDON Off-Task

On-Task2 NORM 2.5 0.8

 OUTCOME NoAtt 0.9 On-Task2 [2]

 OUTCOME Attac 0.1 Attack2

 ABANDON Off-Task

On-Task2 [2] NORM 2.5 0.8 Off-Task

 ABANDON Off-Task

Attack2 SET 0.15 On-Task2

 ABANDON Off-Task

Off-Task REV Descent1 Return

 ABANDON Return

Return REV Transit Descent2

Descent2 REV Climb Approach

Approach SET 0.167 Land

Land SET 0.083 Taxi

Taxi NORM 0.5 0.07 END

SAR 13

FlightCheck3 SET 1 EngStart

EngStart SET 0.25 Take-Off

Take-Off SET 0.0167 Climb

 ABANDON Land

Climb NORM 0.25 0.0003 Transit

 ABANDON Approach

Transit NORM 3.0 0.15 Descent1

 ABANDON Return

Descent1 SET 0.25 On-Task3

 ABANDON Off-Task

On-Task3 NORM 2.5 0.8 Off-Task

 ABANDON Off-Task

Off-Task REV Descent1 Return

 ABANDON Return

Return REV Transit Descent2

 - 334 -

Descent2 REV Climb Approach

Approach SET 0.167 Land

Land SET 0.083 Taxi

Taxi NORM 0.5 0.07 END

B.2 Second Generation

B.2.1 Fault Tree, Component Data and Discrete Events file

The second generation of the fault tree, component and discrete event data file made

some alterations to current gates, and some new additions. The changes from the

previous file are shown below.

PHASE Climb 68

...

NVMMRSYSERR * 2 NVMSEMAIN NVM3SYSERR

NVMSEMAIN * 2 NVM1SYSERR NVM2SYSERR

NVM1SYSERR + 4 NVERRMMR1HW NV_SW_MMR ECSLDCCRTUN

 ECSBDCCRUN

NVM2SYSERR + 2 NVERRMMR2HW NV_SW_MMR

NVM3SYSERR + 2 NVERRMMR3HW NV_SW_MMR_R

NVECPDISP + 3 NVMMRSYSERR NVEPFD2PROC NVCPND1

...

G425-1 + 6 G593 G594 G596 G597 G598-1 G599-1

G594 * 2 G594-MAIN G594-RED

G594-MAIN + 5 G594-ALT G594-APPR G594-LVLCHG G594-VNAV

 G594-VS

G594-RED + 5 G594-ALTR G594-APPRR G594LVLCHGR

 G594-VNAVR G594-VSR

G597 + 2 G597A G597B

...

PHASE On-Task1 29

...

SD_WEPS1 + 3 SD_WEP_PL1 G023 G618.

SD_WEP_PL1 * 2 WEP_LAUNCH WEP_LAUNCHR

WEP_LAUNCH + 4 G582. G583. G607. G617.

WEP_LAUNCHR + 4 G582.R G583.R G607.R G617.R

FIRE_OTHER6 + 5 G621 G481 G010 G009-3 G226

SD_NON_WEP * 2 SDNW_MAIN SDNW_RED

SDNW_MAIN + 2 G024 G071

SDNW_RED + 2 G024R G071R

 - 335 -

G174-2 + 1 G554TL3ENTA

...

ABANDONS7 + 7 DASS FMS RCS TCS MAD G617. G607.

...

ABANDONS7A + 8 DASS ESM FMS RADAR-IFF RCS TCS

 G617. G607.

...

ABANDONS7B + 8 DASS FMS RADAR-IFF RCS TCS EOSDS

 G617. G607.

...

PHASE Attack1 19

...

SD_WEP_PL2 * 3 WEP_LAUNCH WEP_LAUNCHR CFWEPLNCH.

...

ABANDONS8 + 8 DASS FMS RCS TCS MAD STORES G617.

 G607.

...

ABANDONS8A + 9 DASS ESM FMS RADAR-IFF RCS TCS

 STORES G617. G607.

...

GENERAL FAILURES 1

GENTOP + 1 EMPTYCOMP

ABANDONS 1

AGENERAL + 1 EMPTYCOMP2

COMPONENTS

EMPTYCOMP U EXP 1E-20

EMPTYCOMP2 U EXP 1E-20

...

NVERRMMR3HW U EXP 0.000162655 EXP 1e-6

...

NV_SW_MMR_R U EXP 0.000001 EXP 1e-9

...

G625 U EXP 1e-7

...

G594-ALTR U EXP 0.000001 EXP 1e-9

G594-APPRR U EXP 0.000001 EXP 1e-9

G594LVLCHGR U EXP 0.000001 EXP 1e-9

G594-VNAVR U EXP 0.000001 EXP 1e-9

G594-VSR U EXP 0.000001 EXP 1e-9

 - 336 -

...

G582.R U EXP 0.000001 EXP 1e-9

G583.R U EXP 0.000001 EXP 1e-9

G607.R U EXP 0.000001 EXP 1e-9

G617.R U EXP 0.000001 EXP 1e-9

...

G642-GATE1 U EXP 1e-7

G642-G178 U EXP 1e-7

...

SENSORS

SENS_G594 G594 U EXP 7e-9 EXP 1e-4

SENS_SDNW SD_NON_WEP U EXP 7e-9 EXP 1e-4

SENS_CDD1 CDD1EFISERR U EXP 7e-9 EXP 1e-4

SENS_CDD2 CDD2EFISERR U EXP 7e-9 EXP 1e-4

SENS_CDDE CDERRPFD2HW U EXP 7e-9 EXP 1e-4

SENS_G274 G274NMVTUPR U EXP 7e-9 EXP 1e-4

SENS_NVEPIT NVEPITDISP U EXP 7e-9 EXP 1e-4

SENS_NVECPD NVECPDISP U EXP 7e-9 EXP 1e-4

B.2.2 MFOP Enablers

Due to the emptiness of the first generation input file, the second version was

entirely new. The update is shown below.

LRI 1

LRI_NV 1/2 NVEPITDISP NVECPDISP

SCHEDULED LIFE 2

LRI_NV 50

G621 70

INSPECTIONS 0

REDUNDANCY 4

G594-MAIN S SENS_G594 1 G594-RED

NVMSEMAIN M 0.9 1 NVM3SYSERR

WEP_LAUNCH M 0.95 1 WEP_LAUNCHR

SDNW_MAIN S SENS_SDNW 1 SDNW_RED

PROGNOSTICS 4

CDD1EFISERR 3 30 40 60 70 85 95

CDD2EFISERR 3 30 40 70 80 92 97

 - 337 -

CDERRPFD2HW 4 10 20 40 50 60 70 80 90

G274NMVTUPR 2 30 40 80 90

B.3 Third Generation

B.3.1 Fault Tree, Component Data and Discrete Events file

PHASE FlightCheck1

...

ABANDONS 150

...

RADWARNR + 3 SYS_APR S_HET_BIG SIGNALREC

SYS_APR * 2 APR APR_RED

MISWARNR + 2 ECU MISSENS

TRDS + 3 DEC SYS_TQG DASSLNCH

SYS_TQG * 2 TQG TQG_RED

CFD + 3 SDU DCU CFDF

S_HET_BIG * 2 SUPERHET S_HET_RED

SUPERHET + 2 SUC SUR

S_HET_RED + 2 SUC_RED SUR_RED

SIGNALREC + 3 CDBAND MIDHIBAND SIGCONV

...

MAD + 5 MCA DETECTHEAD VECTMAGNET MADBASE

 MADCB

MCA * 2 MADCOMPAMP MCA_RED

...

SMGMTSYS + 4 SMGP STNCTRLU BBAYDR WEAPRELSW

SMGP * 2 SMGMTPROC SMG_RED

...

PHASE FlightCheck2

...

ABANDONS 38

...

SIGDEL + 2 SPIN_BIG MAINCHAN

SPIN_BIG * 2 SPINCHAN S_CHAN_RED

SPINCHAN + 2 PROCFAIL SAU

S_CHAN_RED + 2 PROCFAIL_R SAU_RED

MAINCHAN + 2 ANTCLUST MRX

ANTCLUST * 4 ACLUST1 ACLUST2 ACLUST3 ACLUST4

PROCFAIL + 2 SRX SFE

PROCFAIL_R + 2 SRX_RED SFE_RED

...

RADAR-IFF + 10 DATAPROC SIGPROC IFFINTGTR INS-GPS

 SYS_REC-EXC RFT RFCTRL RFSCAN RADCOOLING

 1553BBUS

 - 338 -

IFFINTGTR + 3 IFFUNIT CRYPTOFILL IFFCB

SYS_REC-EXC * 2 REC-EXC REC-EXC_RED

RFT * 2 RFTRANS RFT_RED

RADCOOLING * 2 DRADTDCR PRADTDCR

...

PHASE FlightCheck3

ABANDONS 5

ABANDONS1B + 6 DASS FMS RADAR-IFF RCS TCS EOSDS

EOSDS + 7 TUR1 SCU PDU HGP1 TLU1 PWP1 EOSDSCP

PDU * 2 PDU1 PDU1_RED

SCU * 2 SCU1 SCU1_RED

EOSDSCP + 2 DPS1 RTS1

COMPONENTS

APR_RED U EXP 0.0002535

SUC_RED U EXP 0.0001141

SUR_RED U EXP 0.0001014

CBR U EXP 0.00000551

DRR U EXP 0.00000769

TQG U EXP 0.000060467

TQG_RED U EXP 0.000060467

LRA U EXP 0.00005005

MRX U EXP 0.000023099

SAU_RED U EXP 0.0003169

SRX_RED U EXP 0.00012306

SFE_RED U EXP 0.00010911

MCA_RED U EXP 0.0004354

DETECTHEAD U EXP 0.000058989

REC-EXC_RED U EXP 0.00047708

RFTRANS U EXP 0.000058922

RFT_RED U EXP 0.000058922

RFSCAN U EXP 0.00006594

TUR1 U EXP 0.0001045

SCU1 U EXP 0.000170196

SCU1_RED U EXP 0.000170196

PDU1_RED U EXP 0.00021692

SMGMTPROC U EXP 0.00002857

SMG_RED U EXP 0.00002857

SENSORS

...

SENS_SCU1 SCU1 U EXP 7e-9 EXP 1e-4

SENS_TQG TQG U EXP 7e-9 EXP 1e-4

SENS_RFT RFTRANS U EXP 7e-9 EXP 1e-4

SENS_REC REC-EXC U EXP 7e-9 EXP 1e-4

SENS_MCA MADCOMPAMP U EXP 7e-9 EXP 1e-4

 - 339 -

SENS_APR APR U EXP 7e-9 EXP 1e-4

SENS_SMG SMGMTPROC U EXP 7e-9 EXP 1e-4

B.3.2 MFOP Enablers

LRI 4

LRI_NV 1/2 NVEPITDISP NVECPDISP

LRI_RWR 1/4 APR SUPERHET SIGNALREC S_HET_RED

LRI_TRDS 1/3 DEC TQG DASSLNCH

LRI_PDU1 1/2 PDU1 PDU1_RED

SCHEDULED LIFE 5

LRI_NV 50

G621 70

SCU1 50

TUR1 80

RFSCAN 80

...

REDUNDANCY 14

G594-MAIN S SENS_G594 1 G594-RED

NVMSEMAIN M 0.9 1 NVM3SYSERR

WEP_LAUNCH M 0.95 1 WEP_LAUNCHR

SDNW_MAIN S SENS_SDNW 1 SDNW_RED

SCU1 S SENS_SCU1 1 SCU1_RED

TQG S SENS_TQG 1 TQG_RED

RFTRANS S SENS_RFT 1 RFT_RED

REC-EXC S SENS_REC 1 REC-EXC_RED

MADCOMPAMP S SENS_MCA 1 MCA_RED

SMGMTPROC S SENS_SMG 1 SMG_RED

APR S SENS_APR 1 APR_RED

PDU1 M 0.9 1 PDU1_RED

SUPERHET M 0.9 1 S_HET_RED

SPINCHAN M 0.9 1 S_CHAN_RED

