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Abstract  

Exterior vehicle noise has a very big impact when it comes to environmental 

noise pollution. Due to the decrease of the other noise sources of a 

passenger car, like power-train and air turbulence noise in the last decade, 

the tyre/road noise has become a more important part in the overall noise 

generation of a vehicle nowadays. It is considered as the main noise source 

in nearly all driving conditions, especially with increasing vehicle speed. The 

easiest idea to tackle this pollution is to introduce rules like speed-limits to 

control the noise at a certain area or time. More interesting, however, is to 

approach the problem of unwanted noise directly at the source. 

This Thesis, carried out at Loughborough University, aims to give a 

better understanding about the basic noise generation mechanisms at the 

tyre/road interface. Especially, the air related mechanisms of closed cavities 

are analysed. With the usage of a solid rubber tyre, unique measurements 

have been carried out and the results are compared to the theories already 

existing in the literature. These measurements reveal some of the strengths 

and weaknesses of the current understanding of air related noise generation. 
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Chapter  1   

In t roduct ion 

 

 

 

In this chapter a general introduction to environmental noise is given. Also a 

historic overview of tyre/road noise that is playing a big role in environmental 

noise is presented. Finally the objectives of the research and the structure of 

the Thesis are explained.  

 

 

 

1.1.  No ise and t ra f f i c  no ise 

 

Noise can generally be defined as unwanted sound. With the industrialisation 

hence the development of large industries and transportation the human ear 

was exposed to a lot more sound or noise than it used to be in the times 

before.  

The healthy human ear can recognise sounds in the frequency range 

from 20 Hz to 20 kHz. The weakest sound a human ear can detect has an 

amplitude of 20 millionths of a Pascal (20 µPa). On the other hand it is even 

capable of sound pressures more than a million times higher. As a result of 

this broad range of nearly unmanageable numbers another scale is normally 

introduced: the decibel [dB] scale. Therefore the linear sound pressure p is 

converted into a logarithmic sound pressure level Lp (with the acronym SPL). 

The mathematical definition is 
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is the previously mentioned internationally standardised reference sound 

pressure that makes the sound pressure level to 0 dB at the threshold of 

hearing. Table 1.1 shows a brief composition of different sounds and their 

resulting sound pressure levels. Here the A-weighted sound pressure level is 

used: dB(A); it is widely accepted for noise-assessed purposes regarding the 

human ear at normal noise levels. For this A-weighting the measured levels 

on a decibel scale of noise are converted using a frequency dependent 

weighting that approximates the characteristics of human hearing. 

 
Effects Sound intensity ratio SPL in dB(A) example sound source  

Serious hearing damage 100 000 000 000 000 140 dB 

 

Space rocket launch (in 

vicinity of lauch pad) 

     

Threshold of hearing damage 

     

Serious hearing damage 

hazard 

100 000 000 000 110 dB 

 

Rock music concert near  

the stage 

     

     

Health effects 100 000 000 80 dB 
 

Heavy truck, 70 km/h (10 m 

distance) 

     

     

Good environment 10 000 40 dB 
 

Subdued radio music 

     

     

Uncomfortably quiet pref 0 dB  Anechoic chamber 

Threshold of hearing 

     

 

Table 1.1 Sound pressure levels of different sounds 
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The red zone in Table 1.1 illustrates the damaging region for human 

hearing with sound pressure levels above 110 dB. The yellow zone is the 

hazardous area that contains sound pressure levels above 80 dB and goes 

up to 110 dB, and the green zone is assumed to be the healthy area with 

respect to the human ear. As can be seen in Table 1.1, the traffic noise 

generated by lorries and cars already may have adverse health effects. Road 

traffic noise, as reported by the EU [EU, 1996] is supposed to create about 

90% of the noise imposed upon the European population. With nearly a 

quarter of the population actually suffering from high noise levels. 

This environmental noise causes a variety of adverse health effects 

and the evidence is strong for annoyance and severe sleep disturbances 

[Institute of Environment and Health, 1997]. An example for the resulting 

benefit of noise reduction is given by Öhrström [Öhrström, 2004], who 

presented results of a sleep log for a period of 3 nights. People living at a 

very busy road, were questioned before and after the opening of a new 

tunnel for diverting the traffic that introduced a reduction of road traffic of 

about 90% during 24 hours. According to Öhrström exposure to high levels of 

road traffic noise introduces bad effects on sleep, and sleep quality is 

remarkably improved when the noise is reduced considerably. 

 

 

 

1.2.  Tyre/road in teract ion no ise 

 

In 1979 Nilsson [Nilsson, 1979] predicted that in the future tyre noise will be 

the main source for noise pollution of a vehicle. It is said that the exterior 

tyre/road interaction noise has become a concern only during the last few 

decades, as evidenced by the fact that there are rarely papers existing 

before the 1970’s regarding this topic. However, it is interesting to consider 

that even in the Roman Empire there were complaints about traffic noise due 

to the interaction of metal (wheel rim as well as horse shoes) upon stone 

(pavement) [Sandberg, 2001]. Today it is commonly accepted that at low 
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vehicle speeds, the power unit noise dominates, whereas at high speeds the 

tyre/road noise dominates. Between high and low speeds, there is a certain 

“crossover speed”  where the contributions are about the same. 

Tyre/road noise was already dominant in the mid 20th century along 

the highways but only at high speeds. During this time the crossover speed 

was in the range of 50 to 70 km/h for cars and from 70 to 90 km/h for lorries. 

In the 1980’s and 1990’s, the crossover speed for constant driving conditions 

was said to be from 50 to 60km/h for cars and from 60 to 70 km/h for lorries 

[Sandberg, 1982]. This decrease indicates that tyre/road noise dominated 

motorway based driving conditions, whereas power unit and transmission 

noise dominated urban based driving conditions. 

According to Sandberg [Sandberg, 2001] the crossover speed since 

the 1990’s is even lower. This further decrease leads to the conclusion that 

tyre/road noise dominates over power unit noise for all speeds and gears 

except first gear. So in practice at constant speed, driving tyre/road noise 

almost certainly dominates, even in a “30km/h” zone or a congested urban 

situation. The only exception may be an accelerating vehicle. In this case 

tyre/road, power and transmission unit noise levels increase in a certain 

proportion, dependent on various variables as engine size or gearbox model. 

In the case of an accelerating vehicle, the power unit noise dominates. 

The noise inside of the vehicle cabin was and still is a significant area 

for commercial product development in comparison to the outside noise. This 

quantification means vehicles that are quiet on the inside, are assumed to be 

comfortable and lead to a luxurious feeling for the driver. However, the 

outside noise of the vehicle is now the concern for environmental noise 

pollution legislative requirements. This requirement however, may not be 

highly demanded from a customer point of view. An example development of 

environmental noise pollution generated by vehicles can be seen in Figure 

1.1. Three different plots are presented showing the trends between the 

vehicle speed (x-axis) and noise emission (y-axis). The first plot on the left 

displays the development regarding passenger cars, the middle one 

represents the light trucks and the final plot shows the tendency for heavy 

lorries. On all three plots the dashed blue line indicates a test in 1974 and the 

solid red line displays a recent inspection from 1999. By taking a closer look 
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at Figure 1.1, it can be seen that the noise level increases with speed in 1974 

were nearly linear, whereas today the tendency is rather digressive. More 

significantly for passenger cars the noise level has actually increased for 

speeds from 30 to 100km/h, which is the most important speed section for 

urban and rural traffic. This dilemma could be the result of traffic today; it 

may also be due to some kind of inertia effect as there are many old vehicles 

still on the road, for which the new legislative requirements do not apply. 

Nevertheless, it is clear that action must be taken to reduce the noise 

pollution by road traffic. 

 
Figure 1.1 Noise emission comparison from 1974 and 1999 [de Graff, 2000] 

 

 

 

1.3.  Thes is  ob ject ives 

 

The aim of this Thesis is to investigate, experimentally, into the air related 

effects of tyre/road noise. Those effects are still not completely understood 

and contradictory theories have been presented in the literature to explain 

the air movements occurring when a tyre is in contact with the road. The 

main idea in this Thesis is to avoid the complex structure of a modern vehicle 

tyre and conduct measurements that can be easier to analyse and could lead 

to a more fundamental understanding of the air effects in tyre/road noise. In 

order to achieve this aim, the following points will be considered: 

http://www.unece.org/trans/doc/2000/wp29gr

b/TRANS-WP29-GRB-33-inf08e.pdf 

Page 2 
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• A literature survey encompassing explanation and identification of the 

tyre/road noise mechanisms of interest. 

• An appropriate simple tyre design will be presented that will be used 

to conduct tyre/road noise measurements. 

• A test rig will be built and a measurement routine chosen by utilising 

the facilities available at Loughborough University. 

• The obtained results will be compared to air related models from the 

literature and further findings will be explained. 

 

 

 

1.4.  Thes is  s t ructure  

 

Initially this Thesis gives a short introduction to tyre and road history as well 

as the tyre function. The complex structure of a modern tyre can lead to 

manifold generating mechanisms of the noise produced during tyre/road 

interaction. The literature survey in Chapter 2 deals with all the mechanisms 

of tyre/road noise that exist to date. In Chapter 3, the theories of the air 

related models are explained in detail. These theories are then divided into 

models for the leading edge, contact patch and trailing edge of a tyre. The 

measurement results are also divided into these three stages. Chapter 4 

presents details about the measurement setup and the uniquely designed 

tyre-noise rig. Chapter 4 also contains an explanation of the methods applied 

to condition the data. 

The results are presented in Chapters 5 to 7. Where Chapter 5 

presents an extensive analysis of the leading edge signal generated by tyres 

with cavities. An assessment of the models introduced in Chapter 3 are 

given, as well as a comparison between leading edge and trailing edge 

signals. In Chapter 6, data recorded for tyres with grooves are explained. 

Only for grooved tyres, can air movement be measured at the outside of the 

tyre, when the groove is completely covered by the road. Chapter 7, the last 
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measurement chapter, presents the findings at the trailing edge of a tyre for 

the tyres with cavities only.  

Finally Chapter 8 gives the conclusions obtained within this Thesis. In 

addition, future work is proposed that could be undertaken to collect more 

information about the air related mechanisms at the tyre/road interface. 
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Chapter  2   

L i terature survey and pro ject  def in i t ion 

 

 

 

In this chapter a short introduction to the history of tyre/road noise is given. 

Mechanisms related to tyre/road noise are then explained in detail. These 

are divided into generation and amplification mechanisms. Finally the 

findings are summarised and a resulting orientation of the Thesis is 

presented. 

 

 

 

2.1.  H is tory  o f  ty re  deve lopment  

 

The wheel could arguably be one of the most significant inventions of all 

time. More often than not a new invention is likely to be compared to it. The 

first wheel was supposedly invented between 5500 and 3000 BC [Anthony, 

2007]. The need for this invention could have either been pottery or 

transportation use. Wood was the main material used to build wheels by the 

Egyptians, Romans and Syrians. Even now if the performance is adequate, 

basic wheel constructions are still installed all over the world.  

By definition, the tyre itself is a combination of the extremities of a 

wheel. In the early days this outer layer used to be a wooden cover that 

suffered from the wearing of the road. Later, wheels were also developed 
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that had a leather cover, for instance in Egypt. The Romans are supposed to 

have used iron-covered wheels.  

 
Figure 2.1 Comparison of: a) first pneumatic tyre [Blackcircles.com Ltd, 2008]; and b) a 

recent tyre design [Yokohama Tire Corporation, 2008] 

The first rubber tyres are comparatively different to those developed 

today, as illustrated in Figure 2.1. Back in 1844 Charles Goodyear’s invention 

of vulcanized rubber initiated the rubber tyre development [The Goodyear 

Tire and Rubber Company, 2008]. Shortly after that the Scotsman Robert 

William Thomson (1822-1873) invented and patented the first pneumatic 

rubber tyre in 1845 [Blackcircles.com Ltd, 2008]. This first design used a 

number of thin inflated tubes inside a leather cover as shown in Figure 2.1a 

that yield to a number of advantages over later designs. For instance, it 

would need more than just one puncture to deflate the whole tyre, and also 

varying the pressures in the different tubes could alter the ride conditions 

significantly. Nevertheless, it is a complex design and therefore costly to 

produce. Despite these developments the solid rubber tyre (patented by 

Robert William Thomson in 1867) was the main tyre to be found on the roads 

until the late 18th Century. John Boyd Dunlop (1840-1921) invented the first 

practical pneumatic or inflatable rubber tyre for a bicycle. As a result Dunlop's 

tyre patented in 1888 is known as the base of today’s tyre development 

[Dunlop Tires, 2008], and so he received the most recognition. The main 

objective of the air-inflated tyre was to give smooth riding comfort by allowing 

the vehicle to run on a cushion of air. This tyre introduced a spring like 

a) 

http://www.blackcircles.com/general/history 

  

b) 

http://www.yokohamatire.com/customer_ser

vice/construction.aspx 
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mechanism under the un-sprung axle that was also capable of clasping 

around small obstacles on the road.  

Over the years the tyre has been further developed resulting in the 

highly technological designs used today as shown in Figure 2.1b. Two of the 

milestones in technical tyre development are: creating a radial tyre that 

improved grip in 1948 (Michelin) and designing a tyre without an inner tube 

for cars in 1972 (Dunlop). Today, it is essential for a tyre to deliver a good 

performance. This means structural integrity, longevity, comfort and grip. 

 

 

 

2.2.  H is tory  o f  road des ign 

 

Road design began with a surface of beaten earth initiated by the movement 

of animals [Lay, 1992]. This compacted soil was sometimes reinforced with 

gravel or stones. The first indications of roads constructed by humans date 

back to about 4000 B.C. However, modern road development started in the 

18th Century. Pioneers such as John Metcalfe, Thomas Telford and John 

Loudon MacAdam put forward the idea of building raised, cambered roads 

that allowed water to drain off them as fast as possible.  

 
Figure 2.2 Drawing of road design by: a) Telford’s; and b) MacAdam [Saburchill.com, 

2008]. 

Thomas Telford (born 1757) improved the method of building roads 

with broken stones. Eventually his design became the norm of praxis for all 

road constructions. Telford’s usage of solid earth as a base topped with a 

a) and b) 

http://www.saburchill.com/history/chapters/IR/024.html 
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layer of small broken stones is shown in Figure 2.2a [Neath Port Talbot 

County Borough, 2008]. To guarantee a smooth finish a thin layer of mud 

was introduced on the top and ditches on both sides of the road for drainage.  

John Loudon McAdam (born 1756) designed roads using broken 

stones laid in symmetrical, tight patterns. This base was covered with small 

stones to create a hard surface. Eventually he used a third layer of gravel for 

a smooth surface, as illustrated in Figure 2.2b [Neath Port Talbot County 

Borough, 2008]. 

Later the basic road toppings were enhanced with tar that was 

eventually replaced by asphalt, or concrete. In general road designs have not 

changed dramatically over the years. However, the surface of a road is a 

very significant factor when it comes to tyre/road noise. Substantial research 

is being undertaken in this area with different materials used to minimise 

noise. Unfortunately the durability of the road is often sacrificed for improved 

acoustics. 

 

 

 

2.3.  Tyre/road no ise generat ion 

 

2.3.1.  In t roduct ion 

 

Tyre/road noise has been researched extensively since the 1970s, but it 

could have been a concern much earlier. According to Sandberg [Sandberg, 

2001] tyre/road noise was an issue when the iron-supported wheels were 

driven over a stone pavement back in the 19th Century. 

Today roads are much smoother than in former times and tyres have 

changed from wood (covered with iron or leather) to steel/alloy rims 

surrounded by a rubber, air-inflated tyre. Unfortunately this design makes it 

more challenging to tackle tyre/road interaction noise. The complexity of the 

modern tyre/road system results in many tyre/road noise generating 

mechanisms. In addition, those mechanisms are also interacting to generate 
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the whole tyre/road noise phenomenon. According to Sandberg and Ejsmont 

[Sandberg and Ejsmont, 2002] there are currently seven different 

mechanisms (or groupings) responsible for the occurrence of tyre/road noise. 

However, opinion is divided about the relative portion that each of these 

mechanisms contributes to the whole tyre/road noise event. 

These seven phenomena of tyre/road noise can be categorised into 

two groups: the generating mechanisms and the amplification or reduction 

mechanisms. The generating mechanisms can be split into two further 

groups of aerodynamically generated noise and the noise generated due to 

vibration. The generating mechanisms therefore include the air displacement 

mechanism and the so-called impact mechanism (mostly radial vibration) and 

the adhesion mechanism (mostly tangential vibration). The other four 

remaining mechanisms, responsible for amplification or reduction of the 

tyre/road noise are the horn effect, the acoustical impedance effect, the 

mechanical impedance effect and the tyre resonance effect. The following 

sections give a short explanation about each of these seven mechanisms. 

 

 

2.3.2.  No ise generat ion mechanisms 

2.3.2.1 Impact mechanism 

 

The impact mechanism is thought to be mainly a radial excitation mechanism 

[Sandberg and Ejsmont, 2002]. Due to a sudden displacement of the tread 

elements, vibrations are generated. Those displacements can be caused by 

a collision between the tyre tread and an object on the road surface, as 

illustrated in Figure 2.3a. Another impact can be a result of normal contact of 

the tread and road surface. When an element at the leading edge enters the 

contact patch it also gets displaced, depending on the load of the tyre. 

Furthermore, a similar process happens at the trailing edge when the radial 

compression of the tread, because of the tyre load, is released. This 

mechanism is illustrated in Figure 2.3b. It is often referred to as the “inverse 

impact” mechanism at the trailing edge. One problem when analysing this 
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mechanism is the complex relationship between tread depth and the impact 

displacement, depending on the rubber stiffness, groove width and other 

variables. In the frequency range between 500 and 1000 Hertz bending 

waves are the most common wave types in a tyre. Therefore, whatever the 

nature of this impact mechanism, it generates these bending waves, the 

sound from which can also be amplified by resonances in the tyre. Thus, it 

could be assumed that a tread-less smooth tyre would generate no sound 

whilst rolling over a smooth surface. However, this is not the case as a slick 

tyre can also produce sound. Depending on the surface it is running on it 

might even generate more sound than a tyre equipped with a tread [Iwao and 

Yamazaki, 1996].  

 
Figure 2.3 Illustration of impact mechanisms and resulting tyre vibration due to: a) 

leading edge road texture impact; and b) inverse impact mechanism at trailing edge 

Another vibration initiated by the impact mechanism is sidewall 

vibrations. Figure 2.4 displays this phenomenon in which the height of the 

sidewall and inflation pressure are also important factors. The sidewall can 

act as a ‘sound board’ and therefore radiate sound into the environment 

[Kuijpers and van Blokland, 2001]. Resonance frequencies of sidewall 

vibrations are in the region of 400 to 800 Hertz [Virmalwar et al., 1999]. 
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Figure 2.4 Illustration of sidewall vibrations due to the impact in between the tyre and 

the road 

 

 

2.3.2.2 Adhesion mechanism 

 

When all forces - that should exist on a tyre - are taken into account, there 

must also exist some lateral and longitudinal stresses. These stresses result 

in tangential displacements from the tyre circumference point of view. In the 

footprint as shown in Figure 2.5a tangential displacements occur, whether 

the tyre is in a free rolling or driving stage. Whilst passing through the contact 

patch a tread element accumulates a potential energy until the friction forces 

from the interaction with the road are lower than the forces in the tread 

element. Suddenly, the tread element slips back into its initial position. There 

it sticks or locks again. This process may be repeated even whilst the 

element is in the contact area between the tyre and road, it is called 

scrubbing or simply stick/slip as in Figure 2.5a. Stick/slip will give increased 

noise when friction is increased, typically at high frequencies [Sandberg and 

Ejsmont, 2002].  

Another similar adhesion mechanism is called stick/snap. Stick/snap 

occurs at the trailing edge and can either result in tangential or radial 
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vibrations. The latter can be initiated when a very warm winter tyre tread 

contacts a dry clean surface, it can also occure for a racing car tyre in normal 

test conditions as the tyres are mostly softer and prone to significant heating 

up. In this case the rubber element sticks to the road surface and before it is 

released again at the trailing edge of the tyre, it will be stretched slightly. 

When the tread block is finally released it continues vibrating until it reaches 

its initial, uncompressed condition. However, the main vibration direction for 

stick/snap is supposed to be the tangential one, as illustrated in Figure 2.5b. 

This vibration is significantly increased with load [Taylor and Bridgewater, 

1998]. 

 
Figure 2.5 Illustration of vibrations due to adhesion: a) Stick/slip at the contact patch; b) 

resulting tangential tread element vibrations at the trailing edge 

Most roads will be covered with a layer of dirt that reduces the 

adhesion between tyre and road considerably. Thus, the stick/snap 

mechanism resulting in radial vibration of the tread element is not that 

relevant with regards to tyre/road noise in normal traffic conditions. The only 

condition where it can change the noise behaviour of a tyre will be in the 

laboratory when a tyre is driven on a chassis dynamometer drum. The 

adhesion effects in general are very difficult to simulate and measure 

because of changing material properties during wear [Kroeger et al., 2004]. 



Literature survey and project definition 

 16 

2.3.2.3 Air displacement mechanism 

 

Air displacement mechanisms are “air-borne based phenomena”. One of 

these is the air turbulence effect that can be further divided into two different 

categories. The first is called displacement turbulence noise. In this case air 

turbulence is caused by the tyre moving along in a longitudinal direction, thus 

displacing the air at the leading edge of the tyre. The second category is 

named rotational turbulence noise. Here the tread pattern and to some extent 

even the smooth tyre can drag air around it as it rotates, like a fan. This could 

also be called spinning disc noise because only the rotation of the wheel is 

the cause for this noise not the longitudinal movement along the road. 

Chanaud [Chanaud, 1969] carried out investigations regarding spinning disc 

noise and concluded that this was only important at very high speeds. 

Ruhala and Burroughs [Ruhala and Burroughs, 1998] investigated the 

turbulence noise generated by the spinning rim only, but found this was less 

significant then expected. Therefore, Sandberg and Ejsmont [Sandberg and 

Ejsmont, 2002] concluded that it is not very likely for rotational turbulence 

noise to have an affect on overall sound levels, but it may be a factor to 

consider at higher speeds on low noise road surfaces, where other higher 

frequency tyre/road noise radiation is low.  

A further air displacement mechanism is the air pumping effect named 

by Hayden [Hayden, 1971] in 1971. Hayden proposed a theory based on the 

deformation of a cavity between the tread elements when they enter the 

contact patch. The cavity is compressed and thus air is pressed away at the 

leading edge of a tyre as shown in Figure 2.6. At the trailing edge there can 

be a corresponding air displacement, due to tread and cavity expansion that 

should generate a sucking effect as it is shown on the left hand side of Figure 

2.6. In volumetric flow rate terms, this characterises the driving mechanism 

as an acoustic monopole. As a result of this idea, Hayden modelled a 

prediction of the sound pressure level of a tyre at an observation point 50 ft 

away from the roadway.  

The air pumping mechanism can occur as a result of air pockets in a 

tyre tread pattern, but also for pockets in the road surface as identified by 
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Schaaf [Schaaf et al., 1990] and Hamet  [Hamet et al., 1990]. However, the 

effect of the road surface seems to decay very quickly and therefore might 

not have such a significant influence. 

  
Figure 2.6 Air displacement illustration at the leading and trailing edge 

According to Sandberg and Ejsmont [Sandberg and Ejsmont, 2002] air 

pumping occurs in a frequency range from 1 to 10 kHz. A more recent theory 

of the air pumping mechanism has been developed by Gagen [Gagen, 1999, 

2000] and also by Kim et al. [Kim et al., 2006]. Both models are based on 

computational fluid dynamics simulations, where Kim et al. additionally apply 

a Kirchoff integral method. Gagen also delivers a prediction for the energy 

emitted at the leading edge of a tyre equipped with a groove with one open 

end. However, so far there has not been any experimental confirmation for 

either model. Also Gagen’s model is not mentioned in a recent publication by 

Kropp [Kropp et al., 2004], where some ideas about air pumping are 

discussed. According to Kropp air pumping is a very complex process, thus, 

some models only fit for certain cases but cannot be generalised. 

Even within the contact patch there are thought to be significant air 

displacements. So-called pipe resonances occur in channels of the footprint 

of a tyre because the tread grooves convert into pipes when they are 

covered by the road surface, as illustrated in Figure 2.7a. In fact when in 

contact with the road, every tread pattern design is a system of pipe 

resonators. The resonance frequency of the pipes is only dependent on their 
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geometry, not on the driven speed of the vehicle. So inflation pressure and 

load might be the only two variables that can slightly change the resonant 

frequencies of the grooves because the contact patch length depends on 

both variables. As a result it can be said that, in general, the resonance 

frequency is only a function of groove length.  

 
Figure 2.7 Illustration of air related mechanism at the contact patch: a) groove 

resonance; and at the trailing edge: b) air resonant radiation 

The last air related noise phenomenon of a tyre is the air resonant 

radiation, or Helmholtz resonance. This effect is modelled as a simple mass-

spring vibration system. For this application the air in front of the cavity acts 

as the mass and the volume of the cavity is the spring as indicated in Figure 

2.7b. In some special cases this phenomenon can be the main mechanism 

for tyre/road interaction noise according to Nilsson [Nilsson et al., 1979]. The 

acoustical result of a Helmholtz resonance for a tyre is assumed to be a tone 

blast. This means that as soon as the cavity leaves the ground at the trailing 

edge there will be a high amplitude medium frequency signal that is decaying 

with increasing frequency. To avoid the occurrence of the Helmholtz 

resonance effect efficient ventilation of all grooves is recommended, either by 

designing an appropriate tread pattern or by using a porous road surface 

[Sandberg and Ejsmont, 2002]. 
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2.3.3.  No ise ampl i f i cat ion and reduct ion mechanisms 

2.3.3.1 The horn effect 

 

One significant tyre noise amplification mechanism is the so-called horn 

effect. When noise is generated just at the leading or trailing edge it is 

typically amplified by the horn effect. The name horn effect is chosen, 

because from the side view of a tyre, the tyre tread and the road surface 

create a horn shape, as is illustrated in Figure 2.8 marked by the red area. 

The first elaboration of this effect was by Schaaf and Ronneberger [Schaaf 

and Ronneberger, 1982]. They invoked the reciprocity principle for 

quantification of the horn effect. Thus, comparison measurements were 

made with and without the tyre, with the source directly at the contact patch 

and the receiver in the far field and vice versa.  

 
Figure 2.8 Illustration of the horn built between the tyre tread and the road surface  

Due to the horn effect, Schaaf and Ronneberger measured 

amplifications of up to 25 dB at certain receiving positions for frequencies up 

to approximately 1000 Hertz. Further, it can be said that the efficiency of the 

horn built by tyre and road surface is higher the wider the tyre, as is reported 

in experimental investigations by Graf [Graf et al., 2002] and suggested by a 

theoretical model by Kuo [Kuo et al., 2002]. However, the efficiency of the 

horn effect can drop when at least one of the surfaces, either tyre (tread) or 

road, are porous [Kropp et al., 2002]. 
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2.3.3.2 Acoustical impedance effect 

 

The acoustical impedance effect in tyre/road noise is defined as the 

acoustical behaviour of the road structure regarding amplification or 

attenuation of radiated sound. For example, porous surfaces should act like 

sound absorbing material, thus affecting sound propagation into the far field. 

The influence of the horn effect can, for instance, be reduced dramatically by 

these road surfaces according to [Beckenbauer, 2003]. Results of a 

computational model developed by Duhamel et al. [Duhamel et al., 2006] 

show that an absorbing road can reduce the sound propagation by 2 to 5 dB 

in comparison to a rigid road. 

 

 

2.3.3.3 Mechanical impedance effect 

 

Mechanical impedance is defined as a measure of how much a structure 

resists motion when subjected to a given force. The mechanical impedance 

effect in tyre/road noise describes the vibrational behaviour of road when a 

tyre impact takes place. Beckenbauer [Beckenbauer, 2003] found that a tyre 

could have a local mechanical impedance effect onto the road surface. In his 

publication, Beckenbauer proves that the elasticity and damping 

characteristics of the top layer of a road can have a significant influence on 

the noise contribution into the far field. 

 

 

2.3.3.4 Tyre resonance 

 

The literature defines  two different categories of whole tyre resonances. One 

is belt vibration, as is illustrated in Figure 2.9 and the other one is air cavity 

resonance in the tyre tube. Both can be initiated by an impact from the road 

surface, for instance, impact mechanisms such as texture impact or inverse 
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impact. Due to this, four different types of impact waves can be initiated 

[Larsson et al., 2002]. First of all membrane waves occur at low frequencies. 

At higher frequencies these waves change in nature into bending-type 

waves. A Longitudinal wave is the third wave type that can be generated in a 

vibrating tyre and the fourth wave type is a shear wave. The shear wave 

takes place between the parallel movement of the reinforced belt and the tyre 

tread. In general tyre belt/carcass vibrations are likely to be in a region in 

between 700 to 1300 Hertz [Sandberg and Ejsmont, 2002]. The design and 

construction of the belt would have a significant influence towards the 

frequency range of the vibrations.  

 
Figure 2.9 Illustration of tyre carcass/belt vibrations 

The frequency of the cavity resonance is dependent on the tyre and 

rim size and on the fluid medium the tyre is filled with. The noise due to 

cavity resonance in a tyre is assumed to be more important for interior 

vehicle noise than exterior noise. The reason for that is the low resonance 

frequency of approximately 200 to 300 Hertz that generates a structural 

noise [Periyathamby, 2004] and [Torra i Fernandez and Nilsson, 2004] (for 

an air filled tube). According to Nilsson [Nilsson, 1979], for instance, a tyre 

filled with rubber exhibits a lower resonance frequency and also increased 

damping.  
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2.4.  Summary and thes is  or ientat ion 

 

The various mechanisms of tyre/road noise are summarised in Table 2.1 

[Kuijpers and van Blokland, 2001]. The mechanisms are explained in terms 

of frequency range and a speed exponent, vexp. By using a given speed 

exponent the variation of sound pressure level amplitude, Lp, in dependence 

of tyre velocity can be calculated for a specific tyre/road noise generation 

mechanism by the following equation:  
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    Frequency range, [Hertz] 

    Speed exponent       

Vibrational mechanisms vexp   100     500   1000   2000   3000 
            

 radial vibrations of the 

tyre carcass 
2.0 – 3.0       

            

 radial vibrations of the 

tread elements 
3.0 – 3.5       

            

 tangential vibrations of 

the tread elements 
3.0 – 5.5       

            

 stick/slip      

stick/snap 
3.0 – 5.0       

            

Aerodynamical mechanisms       
            

 

 
air pumping 4.0 – 5.0       

            

 

 
air resonance radiation 0.0       

            

 

 
pipe resonances 0.0       

            

Table 2.1 Overview of frequency range for tyre/road noise generation mechanisms 

with speed exponents, used to predict the change of sound radiation when the tyre velocity 

is changed [Kuipers and van Blokland, 2001] 
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The speed exponent vexp taken from Table 2.1, and the actual rolling speed v 

are needed to predict the change in sound pressure amplitude in comparison 

to a reference speed v0. 

In Table 2.1 the radial vibrations clearly dominate the low frequency 

noise of less than 1000 Hertz. Unfortunately, a dominating mechanism for 

the high frequency noise cannot be identified. This noise is caused by a 

combination of many different noise-generating mechanisms that makes the 

understanding of high frequency tyre noise a complex process.  

It is clear from earlier sections of this chapter that significant work has 

already been undertaken into the area of tyre/road noise. The amplification 

mechanisms such as acoustical impedance and mechanical impedance and 

the tyre resonance effects will not be of interest because in this Thesis the 

actual source of the noise phenomena will be identified. The same rationale 

applies to the horn effect that is now rather extensively explored in 

references [Schaaf and Ronneberger, 1982], [Graf et al., 2002] and [Kuo et 

al., 2002].  

When considering the generation mechanisms, the tyre carcass and 

radial vibrations of the tread elements occur generally in the lower frequency 

region, as shown in Table 2.1. These mechanisms are not that important in 

the frequency region for exterior noise, as explained earlier. Sandberg 

[Sandberg, 2003] describes the main problematic area of tyre/road noise as 

the frequency region around 1000 Hertz. Thus, the aim of this Thesis is to 

focus on the noise generating mechanisms that are assumed to be 

responsible in that frequency region.  

General rules of tyre tread design are already formulated [Saemann, 

2006]. Saemann noted in 2006 that a tyre with an intelligent pattern produces 

only up to 3 dB(A) more noise than a slick tyre, but according to Kropp 

[Kropp, 1989] there is still a lack of quantitative knowledge about the 

influence of the different tyre noise mechanisms. At the Euronoise 2006 

Conference [Kropp, 2006] Kropp noted again a lack of models specifically for 

the air related effects. This area is also supported by Sandberg and Ejsmont 

[Sandberg and Ejsmont, 2002], who suggest that the air pumping effect “is 

believed to be one of the most important in tyre/road noise generation, if not 

the most important at least for several tyre/road combinations”.  
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Therefore, this Thesis extends research into the air related effects of 

tyre/road noise, where Hayden [Hayden, 1971] is a pioneer with his model of 

“air pumping”. Hayden’s theory was supported in former times [Plotkin et al., 

1979 and Samuels, 1979], however, has recently been questioned by Gagen 

[Gagen, 2000] without a satisfactory experimental validation. Thus the aim of 

this Thesis is to provide further experimental insight into the basics of air 

related displacement mechanisms at the tyre/road interface. 
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Chapter  3   

Theoret ica l  models  o f  a i r - re la ted no ise 
generat ion mechanisms 
 

 

 

This chapter deals with an explanation of four different air related models of 

tyre/road noise presented in the literature. Those models are assessed by 

the measurements conducted for this Thesis. Results of the comparison 

between the models and measurements are presented in Chapter 5 through 

to Chapter 7. 

A pioneer in the field of air related noise generated by a tyre rolling 

over a road is Hayden [Hayden, 1971], who introduced the expression ‘air 

pumping’ and proposed a theoretical model to describe the phenomena. Air 

pumping is the main expression used for air related mechanisms at the tyre 

road interface [Sandberg and Ejsmont, 2002]. However, there are other 

mechanisms as well, which have been presented throughout the years. This 

chapter lists all the important processes in analogy to their time of 

occurrence regarding the tyre tread position. At first, when the tyre tread 

touches the road surface an air movement out of the tread is initiated. Two 

theoretical approaches explain a possible solution for the process at the 

leading edge, introduced by Hayden and Gagen [Gagen, 1999, 2000]. When 

the tyre processes further and the tread is covered by the road, the groove 

resonance is the active noise generating mechanism. Finally at the trailing 

edge of a tyre when the tread lifts off the road again another mechanism is 

found to be active, which is the air resonant radiation introduced by Nilsson 

[Nilsson et al., 1979]. Those four theoretical approaches are explained in 

detail in the following section.  
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The notations of groove/cavity dimensions used throughout the 

remainder of this thesis are illustrated in Figure 3.1. The groove width in 

direction of the tyre width is labelled W, the depth of the groove is written as 

D, and the length of the groove, L, is in the direction of the tyre rotation. 

 
Figure 3.1 Illustration of groove/cavity dimensions  

 

 

 

3.1.  Lead ing edge:  Hayden mode l  

 

3.1.1.  Monopole theory 

 

In 1971 Hayden [Hayden, 1971] introduced a theory for tyre/road noise that 

describes the process of a tyre tread cavity hitting the road surface. Hayden’s 

model is based on the monopole theory. In the monopole theory the sound 

source is assumed to be acting at one point in space and the sound is 

radiated in spherical waves away from the source into the space, as shown 

for an example of a tyre in Figure 3.2.  

During the process of air pumping a transient volumetric flow is 

created when air is squeezed out of the cavity at the leading edge or sucked 

into it at the trailing edge of a tyre contact patch. Over time these fluctuations 
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of the volumetric flow are assumed to be the driving mechanisms of the 

acoustic monopole or simple source theory. From the definition of sound 

intensity I(rmic,t) that is the time average of pressure p and particle velocity vp 

 

   

! 

I rmic,t( ) = p "vp , (3.1) 

 

in combination with the relationship between pressure and particle velocity in 

a free field where the ambient density is ! and c the speed of sound  
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, (3.2) 

 

the following general expression for sound intensities for a simple monopole 

in free space is formulated 
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Where Q is the volumetric flow rate and rmic the recording distance of the 

source.  

 
Figure 3.2 Illustration of monopole source sound radiation at the tyre/road interface 

A monopole is defined as a source that radiates sound equally in all 

directions in space. A simple example of a monopole source is a sphere with 
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a radius that alternately expands and contracts in a sinusoidal behaviour. 

The monopole source creates a sound wave by alternately introducing and 

removing fluid into the surrounding area. A tyre would be expected to have 

two separate monopoles one at the leading and one at the trailing edge, as is 

illustrated in Figure 3.2. This indicates that the monopole assumption is 

clearly an approximation.  

Eventually Hayden presents a mathematical prediction of the sound 

pressure level Lp(rmic,v)  from Equation (1.1) in combination with Equation 

(A1.6) generated by a cavity at the circular frequency of reoccurrence ! 

(A1.5) of the cavity  
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This is dependent on the cavity width W and depth D, the circumferential 

distance to the next cavity xcirc, the distance of the microphone to the source 

rmic, the reference sound pressure level pref and the squared tyre speed v. 

Hayden also adds a factor for the number of cavities (sources) per tyre width, 

n. However, the difficulty with this model is how to accurately estimate the 

fractional change in the cavity volume (fc) when the load of the tyre 

compresses the cavity. Hayden assumed this change to be 0.1 or 10 % of 

the cavity volume.  

 

 

3.1.2.  L i terature va l idat ion 

 

To get an accurate idea of the volume change it should be measured not 

assumed. This was carried out by Samuels [Samuels, 1979] and Plotkin 

[Plotkin et al., 1979] and presented at the International Tyre Noise 

Conference in 1979. Both introduced a practical validation of the application 

of the monopole theory based on Equation (3.3). However, neither of them 

used Hayden’s sound pressure level prediction at a certain frequency from 

Equation (3.4). 
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Samuels [Samuels, 1979] used a photographic technique to record 

the deformation of the tyre tread in the contact patch. By mounting a camera 

underneath a transparent road surface, photographs were taken that showed 

the changing surface dimensions of a tread cavity. With this information and 

a “constant tread depth approach accepted by the industry” the volume was 

calculated. This means that the volume change is still assumed, because the 

actual volume change is not measured, only the surface deformation. 

Unfortunately Samuels failed to provide reference details for the tread depth 

approach, in addition many of the initial values used in his calculations are 

not provided. Based on the monopole theory, Samuels [Samuels, 1979] 

proposed the following equation 
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Samuels introduced additional variables: k as the wavenumber, and pmag as 

the magnitude of the spectral peak at the tread element passing frequency. 

This magnitude value was found by conducting a Fourier analysis of the 

differentiated cavity volume change. Samuels claims to have found good 

agreement between the values calculated by Equation (3.5) and the 

measured values of source strength, at least for the fundamental tread 

element passing frequency. 

Another approach was presented by Plotkin et al. [Plotkin et al., 1979], 

where the volume change of the cavity was measured using a complex 

experimental procedure. At first it was checked by high-speed photographs 

that cavity compression of a tyre tread only depends on the pressure 

between the road and the tyre. Hence it was concluded that the volume 

change is independent of tyre speed. Then Plotkin et. al placed a latex 

bladder filled with water into a groove (with one open end) of a heavy truck 

crossbar tyre. The tyre was then advanced in 1 mm increments on the 

rotating drum and the displaced water volume was recorded. It was found 

that the volume in the cavity first slightly increased and then decreased until 

reaching a minimum value. To predict a sound pressure due to this 
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measured volume change the monopole theory from Equation (A1.2) was 

used. The volumetric flow rate Q was written in terms of volume, hence, the 

second time derivative of volume displaced   

! 

˙ ̇ V  (A1.1) was used giving an 

estimate of the pressure as [Plotkin et al., 1979] 
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This solution is only valid for small values of radius r in comparison to the 

wavelength from the emitted sound, with low fluid velocities in comparison to 

the speed of sound [Gagen, 2000]. Due to the fact that the experimental 

measurement from Plotkin was conducted at low speed, the volume 

displaced was measured independent of distance, hence, the time derivative 

can be substituted with 
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Substituting into Equation (3.6) this eventually leads to 
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where the pressure generated at the leading edge of a tyre is dependent on 

the volume that is squeezed out and on the speed of the tyre. Note that the 

tyre speed has significant influence because it is a squared quantity. Plotkin 

considered the sound radiation into a quarter space. As a result the 

corresponding Equation (3.8) was multiplied by a factor of 4. This was done 

because the microphone was positioned at the side of the tyre so the road 

surface and the tyre sidewall were building mirror sources. Two mirror 

sources in total lead to an increase in source strength by the factor 4.  Plotkin 

then compared the predicted pressure calculated by Equation (3.8) with 

measured pressure against time. The results showed a good agreement. 

However, Hayden initially assumed pockets in the tyre, whereas Plotkin et al. 
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used a groove that is open at one end. This will probably mean that the 

groove resonance effect also occurred in the recordings conducted by 

Plotkin. Whereas, for pockets there would be a defined end of the squeezing 

process due to the fact that the cavity is closed completely by the road at 

some stage of the process. 

As indicated by Plotkin, the common assumption is that the volume 

change of cavities contacting the road reaches a constant value 

(independent of tyre speed). So the second derivative of this volume change 

when used in Equation (3.8) results in the pressure that is generated. 

Consequently, for higher tyre speeds, a higher amplitude and higher 

frequency pressure peak is generated when recorded against time. Thus, 

tyre deformation is directly linked to volume fluctuations, which result in 

sound propagation. Hamet et al. [Hamet et al., 1990] however, claim with 

their investigation of cavities in the road that air pumping can also be found 

without volume deformation.  

 

 

 

3.2.  Lead ing edge:  Gagen mode l  

 

Another approach for air pumping was introduced by Gagen [Gagen, 1999, 

2000]. Gagen was the first to use computational fluid dynamics modelling to 

simulate the aerodynamically related processes occurring at the leading 

edge of the tyre with a groove open at one end. He also used volume change 

as the initiation of the air movements. Conte and Jean [Conte and Jean, 

2006] in contrast used computational fluid dynamics to simulate air 

fluctuations without volume change from cavities in the road surface. 

Gagen [Gagen, 2000] argues that the Hayden model cannot be used 

to model the effect of air being pumped out at the leading edge of the tyre. 

Due to the simplicity of the monopole theory the model might not be suitable 

for the complex air squeezing process at the tyre/road interface. His main 

argument is that air actually responds sluggishly to local volume changes, 
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while the monopole theory equates local air movements exactly with the 

volume changes of the system. (This “sluggishness” in terms of fluid 

dynamics is additional to the usual propagation delay of wave motion at finite 

speed).  

 

 

3.2.1.  K inet ic  energy o f  expe l led yet  

 

Gagen derives a formula for the kinetic energy (based on acoustic wave 

equations, explained in Appendix A2) that is generated by the air when 

squeezed out of a groove due to the volume change. According to Gagen the 

energy, E, of air expelled from a linearly squeezed groove with one open end 

is  
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with A being the amount of volume change and L the length of the groove in 

circumferential dimensions. The kinetic energy Ep is dependent on the mass 

of air, m0, moving at a certain speed across the groove that in accordance to 

the notation is defined by groove width W (perpendicular to circumferential 

tyre dimension) and closure time T: 
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The initial fluid mass m0 being dependent on the density " and the cavity 

dimensions (Figure 3.1) defined as  
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m0 = " #D #W #L. (3.11) 

 

By combining Equations (3.9), (3.10) and (3.11), the kinetic energy of an 

expelled jet according to Gagen finally becomes 



Theoretical models of air-related noise generation mechanisms 

 33 

 

 

    

! 

E =
" #D # A3 #W 3 #v2

2 1$ A
L

% 

& 
' 

( 

) 
* #L4

. (3.12) 

 

Given by Equation (3.12) the energy of the expelled air is dependent on the 

geometry of the cavity, the volume reduction of the cavity in the contact patch 

and the squared speed of the tyre/vehicle. This derived model is investigated 

by the use of computational fluid dynamics but has not been experimentally 

confirmed. 

 

 

 

3.3.  Contact  patch :  groove resonance mode l  

 

Sections 3.1 and 3.2 described mechanisms that are assumed to occur at 

the leading edge of the tyre. Another possible mechanism is focused on, in 

the contact patch area. This is the pipe resonance effect for grooves, also 

well known from other areas of acoustics. As introduced for tyres by Favre 

[Favre, 1979] in considerable detail and later updated by Sandberg 

[Sandberg, 2004] the groove resonance effect is developed from the basic 

acoustical application of a pipe resonance. This resonance frequency, f, is 

dependent on the length W (according to Figure 3.1) of the groove and the 

fluid medium, contained within the groove. Thus, for an open pipe assuming 

the wavelength #=2W , then 
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In addition it is quite common to introduce a correction factor to consider the 

diameter d of a pipe [Sandberg and Ejsmont, 2002]. The equation for 

calculating the resonance of a pipe with a certain length W and two open 

ends is then approximated by 
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The integer n describes the order of given harmonics of the fundamental 

frequency, f. The factor X is a constant, which according to Sandberg is 

generally considered to be in a range between 0.3 and 0.4. 

There are usually grooves in a tyre with one open end and the other 

closed. In this case [Sandberg and Ejsmont, 2002] the corresponding 

equation is: 
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For this type of groove the fundamental frequency is approximately a quarter 

of the wavelength (called !/4 resonator).  

Certain guidelines have been formulated by experts to prevent groove 

resonances from dominating the noise generation in the contact patch. The 

main idea is that all grooves should be well ventilated. Unfortunately, in that 

case a high number of tread blocks is introduced that are effected by 

vibrational excitation [Sandberg, 2004]. Gagen [Gagen, 1999] does not 

recommend the usage of medium wide grooves because they produce a 

significantly higher noise level in comparison to thin and very wide grooves. 

A further idea is to change the width within a groove. According to Sandberg 

this should be narrow at the closed end. However, this might lead to more 

noise radiation at the trailing edge because the groove might behave more 

like a cavity. 

 

 

 

3.4.  Tra i l ing edge:  a i r  resonant  rad ia t ion 

 

There is one widely accepted model that describes the trailing edge noise 

generation process of a tyre equipped with a groove, derived by Nilsson 
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[Nilsson, 1979] and based on a Helmholtz type of resonance. This resonance 

effect is created by the volume of air in a groove of a tyre and a mass 

reactance in the area between the tyre tread and the road surface at the 

trailing edge. Nilsson builds a damped mass and spring system to describe 

the resonance occurring at the trailing edge. The area in the cavity is seen as 

the spring and the changing area underneath the cavity is the vibrating mass 

with a connected damper. This changing mass and damper yields to a 

frequency modulation at the trailing edge with changing amplitude. 

 

 

3.4.1.  Geometr ic  exp lanat ions 

 

The initial volume, V0, of the groove or cavity can be measured or calculated. 

The area, S(x), of the air in between the groove and road surface has to be 

approximated. As shown in Figure 3.3, the height h is needed to get an idea 

about the area S(x), that lies underneath the cavity at the trailing edge. 

Nilsson calculates this assuming of the area S(x) is only dependent on the 

distance x of the centre of the hole from the point of contact of the tyre.  

 
Figure 3.3 Schematic view of tread volume and related area S(x) underneath it, after 

[Nilsson, 1979] 
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Basic trigonometry is used to calculate the height h in. Thus, 
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x1
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Nilsson [Nilsson, 1979] assumes for small values of the height, h, the 

squared term, h2, to be negligible. Therefore, the height, h, can be expressed 

as  
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Thus, the area S(x) underneath the cavity, with respect to the cavity width, 

W, can be approximated to 
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Figure 3.4 Comparison of Nilsson simplifications and accurate geometry 
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The mathematically correct value of the area Sacc(x), where exact geometric 

calculations are used, would however be  
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The difference between Equation (3.18) and (3.19) is shown in Figure 

3.4 for a given tyre radius r = 0.06 m without taking the width W of the cavity 

into account. The difference in height h is not significant, especially for 

significantly small values of x up to 0.015 m; thus, as mentioned by Nilsson 

the difference is negligible. This statement will be compared later on to the 

results obtained by the measurement. 

 

 

3.4.2.  Mass-spr ing-damper system 

 

As previously mentioned Nilsson [Nilsson, 1979] applied a Helmholtz type of 

resonator to explain the trailing edge signal recorded from tyres with grooves. 

In that case the cavity volume would be the compliance (spring) and the 

expanding area between tyre and road would be the inertance (mass-

reactance). The basics of this resonance circuit are explained in Appendix 

A3. According to Nilsson the resistance part of the mass, spring and damper 

system, R(!,x), can be is defined, as  

 

    

! 

R ",x( ) =
# $ %$ c kx1( )2

S(x) 1+ kx1( )2[ ] . (3.20)

 
 

Here a coefficient, $, is implemented to compensate for the approximation 

that is introduced by assuming the travelling wave will only move in one 

direction away from the tyre. Due to the fact that energy can also spread 

sideways, which leads to losses, the coefficient must be smaller than unity. 
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The variable, k, is the wavenumber used to calculate the resonance 

frequency of the system.  

The mass reactance, M(!,x), according to Nilsson, is  

 

    

! 

M ",x( ) =
#$ %$ c$ kx1

"$ S(x) 1+ kx1( )2[ ] , (3.21)

 
 

where a coefficient, %, is introduced, because of the same reason as for 

coefficient $. Nilsson evaluates those two coefficients $ and % experimentally 

for the best fit of his model to the measured data.  

Nilsson also defines a spring constant by the following equation that is 

derived from a combination of impedance from a standing wave generated at 

the contact zone and one initiated by a wave in the actual cavity. This spring 

constant K(!,x) is defined as 
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In accordance to the literature, for a free movement vibration of a damped 

mass and spring system (Equation (A3.15)), the undamped oscillating part is 

described by the real part only. The circular frequency !(x) is in this case 

equal to  
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As Nilsson was only interested in the frequency content of the signal not in 

the actual shape in the time history, he only used the undamped part to build 

his final model. By combining Equations (3.20), (3.21) and (3.22) with 

Equation (3.23)  
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Nilsson ends up with this final result where the frequency, via wavenumber, 

k, of the oscillating volume can be calculated in dependence of the cavity 

position x. When the tyre is moving, the position of the cavity, relative to the 

road, x, increases and so does the Area S(x). Therefore, Nilsson predicts a 

frequency change generated by the oscillating air. This is only valid for small 

changes of frequency, however.  

In the literature Nilsson’s theory has been confirmed by Jennewein 

and Bergmann [Jennewein and Bergmann, 1984], and Ronneberger 

[Ronneberger, 1989]. Both authors also confirm a Helmholtz resonance at 

the trailing edge of the tyre with transverse tread grooves. The Helmholtz 

resonance can also be found for a cavity in the road surface, as investigated 

by Deffayet [Deffayet, 1989], However, Nilsson’s model only explains the 

frequency content of the signal and not the amplitude. This is due to the fact 

that Nilsson only takes the real part of Equation (A3.11) for his model, so 

there is no damping included. Therefore, the amplitude stays constant. 

 

 

 

3.5.  D iscuss ion and summary 

 

For each section: leading edge, contact patch and trailing edge, of a tyre in 

contact with the road, a mathematic explanation is presented. At the leading 

edge a model introduced by Hayden [Hayden, 1971] is normally referred to, 

namely air pumping. The expression is used in the literature for the whole air 

related effect at the contact patch of a tyre. Hayden developed a relationship 

between the volume squeezed out of a cavity at the leading edge and the 

resulting sound pressure level. This relationship is based on the Monopole 

Theory. Recently another approach for an explanation of the process, 
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happening at the leading edge, was introduced by Gagen [Gagen, 1999, 

2000]. Gagen doubts the applicability of the monopole theory used by 

Hayden. Instead Gagen presents an equation for the energy generated by 

the airflow out of the groove at the leading edge. This thesis aims to clarify 

the process happening at the leading edge of the tyre by conducting a series 

of experiments with tyres equipped with different types of cavities.  

The noise generation at the contact patch of a tyre equipped with a 

groove is generally explained by the pipe resonance theory. This theory only 

predicts the resonance frequency but not the amplitude of the sound 

radiated. However, it is stated that medium sized grooves emit the highest 

sound in comparison to very wide or very small grooves [Gagen, 2000]. 

Tyres equipped with grooves are used to investigate if this resonance is also 

found in the experimental work of this project.  

At the trailing edge of a tyre equipped with a groove the air resonance 

radiation explained by Nilsson [Nilsson, 1979] is an accepted approach to 

understand the process occurring. However, this only explains the 

frequencies of the resonance but not the amplitude. The sound radiation at 

the trailing edge is measured and analysed regarding the cavity dimension 

with different cavities in a tyre. Nilsson uses a mathematical simplification to 

calculate the area, S, underneath a tyre groove by Equation (3.18). The 

results for the trailing edge found in Chapter 7 will be investigated to 

determine if there is a better fit when the exact mathematical expression from 

Equation (3.19) is used.  
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Chapter  4   

Exper imenta l  apparatus and measurement 
methods 
 

 

 

In this chapter the experimental testing conducted is introduced. The first 

section describes the chassis dynamometer laboratories at Loughborough 

University. All measurements for this Thesis were carried out in these 

facilities. Details of slight modifications implemented to lower the noise 

radiation of the chassis dynamometer driving mechanism are explained. A 

special tyre presented in this chapter was chosen to investigate the air 

effects of tyre/road noise, along with different treads used. A rig was 

constructed to run the tyre on the chassis dynamometer. This rig is illustrated 

and explained.  

Two different types of measurements to record tyre/road noise were 

conducted. In the first stage the sound radiation of a tyre was measured with 

a high number of microphones. In the second stage only two microphones 

were used however they were located in close proximity of the source: 

pointing to the leading and trailing edge of the tyre. The facilities where the 

measurements were conducted are not anechoic, thus, signal condition 

techniques needed to be applied to the measurement results. This 

conditioning was carried out using bandpass filter and interpolation 

techniques explained in the last section of this chapter.  
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4.1.  Exper imenta l  apparatus  

 

4.1.1.  Chass is  dynamometer 

 

The dynamometer is designed for vehicle performance and emission testing 

so it does not take noise reduction into account. During data collection the 

chassis dynamometer available at Loughborough University produced high 

levels of noise, whilst running. Therefore, initially noise reduction needed to 

be applied to the driving mechanism of the dynamometer. The dynamometer 

consists of two double drum sections to accommodate a car with one driven 

axle. For the experiments reported in this Thesis just one single drum, to 

place the tyre on, was needed. It was chosen to place the rig onto the drum 

that is the furthest away from the driving engine of the dynamometer. This 

position is also in the centre of the room, which is a further advantage, 

because the influence from reflections of the wall is minimized.  

 

 
Figure 4.1 Photograph of the chassis dynamometer facility at Loughborough University 

Figure 4.1 shows the arrangement of the rig that is located on top of 

the chassis dynamometer drum in the bottom right corner. The driving 
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mechanism of the chassis dynamometer is located on the left hand side 

underneath the yellow steel covers. The other double section of drums that is 

not in use is covered by a red wooden plate to minimize sound radiation from 

the drums and the driving mechanisms underneath. Also for the drum section 

that is in use a brown wooden plate is implemented for shielding, as can be 

seen in Figure 4.1. Only a small section of that plate is left open to allow the 

tyre to run on the drum. Further insulation at the base of the chassis 

dynamometer could not be introduced due to safety reasons.  

When the chassis dynamometer drums are rotating unwanted noise is 

generated by the driving mechanism and the fans that provide cooling for the 

driving mechanism. In order to reduce the unwanted noise the cooling fans 

were switched off during the measurement period as it was of short duration. 

Therefore, an override option was implemented into the software of the 

control unit of the dynamometer. This significantly reduces the background 

noise radiation, at least for low dynamometer speeds. 

 
Figure 4.2 Comparison of the effect of different noise reduction mechanisms for a 

dynamometer speed of 19km/h, with a smooth tyre running on the drum 
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Figure 4.2 shows the frequency content of the measurement results of 

the three different noise reduction stages. The first measurement was taken 

with the dynamometer running at 19 km/h, shown by the red line, with no 

reduction mechanisms in place. The next stage was recorded when the 

cooling fans were switched off, as shown by the green line. The third stage 

was carried out with all reduction mechanisms in place, so the cooling fans 

were switched off and wooden plates introduced to cover the rollers of the 

chassis dynamometer, as shown by the yellow line. A microphone facing the 

trailing edge of the tyre recorded the noise level at the three stages.  

Figure 4.2 shows that mainly the low frequency areas below 300 Hertz 

are influenced by the noise generated by the chassis dynamometer. The red 

line, where no noise reduction is in place, clearly dominates at all 

frequencies, especially between 100 Hertz and 300 Hertz. Thus, the 

possibility of switching off the cooling fans significantly reduces the unwanted 

noise at low frequencies. By introducing the wooden plates, further noise 

reduction is achieved but it is not as effective as the previous step. As only a 

slight difference in the frequency region of around 300 Hertz and 1000 Hertz 

is achieved. This potentially is due to the microphones being located very 

close to the tyre (and dynamometer), thus, the wooden plates do not provide 

such effective shielding. However, for the whole chassis dynamometer 

chamber it would probably have a more significant effect because less noise 

would be emitted to the surroundings, hence fewer reflections occur from the 

walls.  

Another problem identified was that with increased speed the noise of 

the driving mechanism reaches high levels. Even with the reduction 

mechanisms in place a considerable amount of unwanted noise was 

recorded. Figure 4.3 overleaf shows a comparison of the sound pressure 

generated at different driving speeds of the chassis dynamometer plotted 

over frequency. The red line displays the high speed of 41 km/h, the green 

line the medium speed of 31 km/h and the yellow line shows the low speed 

case of 19 km/h. These three dynamometer speeds were chosen from a 

number tested and represent the best trade off regarding speed and 

acceptable unwanted noise generation. Figure 4.3 illustrates that the low 

speed case shows a moderate low-level noise influence, whereas the high 
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speed case of 41 km/h shows high levels of noise generated by the chassis 

dynamometer at certain frequencies. This is especially apparent in the 

frequency region below 100 Hertz. In addition the high speed case generates 

a lot of noise at the frequency of 650 Hertz and at 1300 Hertz, the latter one 

is probably a harmonic. Therefore it was found that keeping the speed of the 

chassis dynamometer as low as possible reduced the dynamometer noise. 

The only roller surface available is smooth metal. Thus, it is of good use for 

basic investigations into the tyre noise generation mechanisms, however 

influences of the road surface cannot be considered. 

 
Figure 4.3 Comparison of noise emitted by the chassis dynamometer at three different 

dynamometer speeds 
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4.1.2.  The so l id  rubber  tyres 

 

The experiments in this Thesis are meant to be as “simple” as possible. To 

eliminate the complex geometry and the influence of numerous different 

materials used in a modern tyre, a simple castor was used for the 

measurements of tyre/road noise. This solid tyre should result in increased 

damping of the tyre body according to experiments done with a real tyre filled 

with rubber by Nilsson [Nilsson, 1979] and also Richards [Richards, 1974]. 

Thus, it would help to reduce other unwanted vibrational noise generated by 

the rolling tyre. The Author of this dissertation is not aware of any work done 

with solid rubber tyres concerning aerodynamical tyre road noise. The main 

reasons for the chosen tyre for this project are low cost and constant material 

properties. Furthermore it should be rather small in comparison to the drum 

of the chassis dynamometer, thus, the curvature of the drum would not affect 

the measurements. The tyre material should not be too stiff so that the 

contact patch is still affected by the load of the tyre. However, it should not 

be too soft either so holes or grooves can be accurately machined into the 

tyre structure as shown in Figure 4.4.  

 
Figure 4.4 Drawing of a solid rubber tyre with examples of tread cut into the smooth 

surface 

Figure 4.5a overleaf shows a photograph of the chosen unmodified 

tyre. The tyre itself is low cost because it is a mass produced castor with a 

firm rubber surface. The tyre geometry is ideal; the rubber surface is thick 
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enough to allow a thread depth of up to 10 mm as shown in Table 4.1. Also 

the diameter of 121 mm of the tyre in combination with the chassis 

dynamometer drum (diameter: 500 mm) results in a good drum/tyre ratio of 

4.23. This guarantees that the contact patch of the solid rubber tyre on the 

curved drum is similar to that of an actual car tyre on a flat road surface. 

 
Figure 4.5 Photograph of the experimental solid rubber tyre: a) original; and b) modified 

tyre with enlarged shaft accommodation and smooth rolling surface  

However, the black rim, constructed from plastic, needed to be 

modified to make sure that the tyre ran smoothly even at high speed. The 

inner diameter was therefore enlarged as shown in Figure 4.5b (in 

comparison to the original tyre, Figure 4.5a). This enabled a shaft to be 

accommodated that was supported by ball bearings, and guaranteed a tight 

and perpendicular fit to the tyre. As a result of the manufacturing process the 

middle of the tyre tread contains a circumferential line. Thus, the blue rolling 

surface was modified to get a smooth and even contact to the chassis 

dynamometer drum. This modification could introduce a slight variation 

between different tyres due to the adjustments that were needed to initialise 

the roller for the measurements. The modified tyre in Figure 4.5b shall be 

referred to as  ‘smooth tyre’, sometimes it is also called ‘plain tyre’.  
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Width [mm] Diameter [mm] Rubber thickness [mm] 

26 121 15 

Table 4.1 Geometry of the experimental tyre after modification 

The next step considered was the tread design. In this Thesis the air 

related effects of tyre road noise were analysed. Sandberg and Ejsmont 

[Sandberg and Ejsmont, 2002] recommended a good ventilation of the tyre 

tread for low air related noise generation, as stated in Chapter 3. In 

contradiction to this statement the most effective tread for noise generation is 

a tread with cavities, because the air can only escape suddenly in one 

direction. Thus initially it was decided to equip tyres with cavities. From a 

manufacturing point of view a circular cavity is the easiest to produce so this 

was the first one to be made and experimentally tested. Two different tyres 

were produced, one with a large cavity and another with a small cylindrical 

cavity with the geometrical dimensions as displayed in Table 4.2. 

 

 Large cavity Small cavity 

Diameter, [mm] 9 2.5 

Depth D, [mm] 5.5 2 

Volume V0, [mm3] 350 9.8 

Table 4.2 Cylindrical cavity dimensions for two experimental tyres 

Photographs of the two tyres are shown in Figure 4.6, in which the 

difference of cavity size is noticeable. The tyre with the large (9 mm 

diameter) cavity shall be referred to as the ‘large cavity’ tyre and the tyre with 

the small (2.5 mm diameter) cavity as ‘small cavity’ tyre respectively. The 

‘large cavity’ is of a size similar in dimension to a normal tyre tread for an 

ordinary vehicle tyre. The ‘small cavity’ however scales to the small tyre 

when it is compared to the proportions of the tread of a realistic tyre. The 

noise generated by both of these designs was compared to other tread 

designs including the plain tyre shown in Figure 4.5b. 
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Figure 4.6 Photographs of two experimental tyres with cylindrical cavities: a) ‘large, 9 

mm diameter, cavity’; and b) ‘small, 2.5 mm diameter, cavity’ 

The next tread designs were rectangular cavities, which are intended 

to give a more realistic approach when compared to a real tyre tread. The 

dimensions are similar to the tyre with the ‘large cavity’.  

Figure 4.7 shows photographs of the three different rectangular 

cavities constructed. The cavities were cut with a milling machine. In Figure 

4.7a the large square cavity is shown with the same depth and length as the 

large cylindrical cavity described earlier, however, the volume is about 27 % 

larger because of the squared area instead of a circular area. This tyre shall 

be referred to as the ‘square cavity’ tyre.  

In addition tyres with two further cavity dimensions were engineered. 

Both have the same volume, which is half the volume of the ‘square cavity’. 

The only difference is the alignment of the cavity itself, one has the longer 

side in the longitudinal direction of tyre rotation, see Figure 4.7b. This cavity 

shall be referred to as the ‘long cavity’. The other cavity has the longer side 

in the lateral direction of the tyre circumference as shown in Figure 4.7c, this 

shall be referred to as the ‘wide cavity’. Thus, all three types of cavity are 

linked together volume wise: either half the volume or the same volume with 

different orientation. This is done to see if the measurement shows any 
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connection between cavity volume and noise generation. Table 4.3 

summarises the geometries of the three different rectangular cavities. 

 
Figure 4.7 Photographs of the tyres with rectangular cavities: a) ‘square cavity’; b) ‘long 

cavity’; and c) ‘wide cavity’ 

 Square cavity Long cavity Wide cavity 

Width W, [mm] 9 4.5 9 

Depth D, [mm] 5.5 5.5 5.5 

Length L, [mm] 9 9 4.5 

Volume V0, [mm3] 445.5 222.75 222.75 

Table 4.3 Rectangular cavity dimensions for three experimental tyres 

The last set of tyres that were used are equipped with a groove in the 

tread. They are expected to be not that efficient in overall noise radiation but 

will result in a more realistic acoustical experience in comparison to a real 

tyre. Figure 4.8 shows photographs of the three tyres with grooves used 

during the experimental testing. All grooves were cut using a milling machine. 

Figure 4.8a shows the tyre, which shall be referred to as tyre with the ‘square 

groove’. The second tyre in Figure 4.8b, shall be named the tyre with the 

‘small groove’. And finally in Figure 4.8c a special kind of groove is 

introduced, which is chosen to give an idea about the directional behaviour of 

a tyre tread. This tyre shall be referred to as the tyre with the ‘chevron’. Table 

4.4 shows the details of the dimensions of the grooves cut into the tyres.  
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Figure 4.8 Photographs of the tyres equipped with grooves: a) ‘square groove’; b) 

‘small groove’; and c) ‘chevron’ type of groove 

 Square groove Small groove Chevron 

Width W, [mm] 26 26 30 

Depth D, [mm] 5 2 2 

Length L, [mm] 5 2.5 5 

Volume V0, [mm3] 650 130 300 

Table 4.4 Groove dimensions for three experimental tyres 

 

 

4.1.3.  Exper imenta l  r ig  

 

The design of the experimental rig was suggested by an example presented 

by Graf [Graf, 2002]. However, the load of the tyre for this rig is provided by 

weights instead of a bolting mechanism. Thus, the real load on the tyre can 

be estimated via calculation. Figure 4.9 shows a diagram of the rig design. 

The supporting frame that holds everything in place is drawn in green. The 

tyre (blue) is mounted In the middle of the rig. It is held in place by the yellow 

shaft that is running in ball bearings to be as silent as possible. The shaft is 

designed to accommodate the tyre with a tight fit but still allows a quick and 
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easy exchange of the tyre. To put additional (apart from the frame) load on 

the tyre, weights can be placed onto the frame at the right hand side, as 

indicated by the purple disc. The orange plates are the acoustical shielding 

plates of the chassis dynamometer. To help simulation of an even road 

surface, the plates should be placed as close as possible to the chassis 

dynamometer and to the tyre. Rubber bushes at the front fixture of the rig 

introduce insulation to the plates from the vibrational excitation of the rig and 

vice versa. 

 
Figure 4.9 Diagram of the experimental rig design with tyre mounted onto the chassis 

dynamometer drum 

A photograph of the rig is displayed in Figure 4.10, including the blue 

tyre in the centre mounted to the metal frame. The frame itself is about 13.5 

kg in weight, additionally there can be extra load applied to the tyre by the 

weights (up to 20 kg) at the right hand side of the rig. Altogether this leads to 

a load of approximately 57.6 kg at the roller itself (see Appendix A7). The 

maximum load the tyre is capable of is 150 kg. The roller turns clockwise 

from this point of view. Thus, the leading edge of the tyre is at the right hand 

side and the trailing edge at the left hand side. On the left hand side are the 

mounting points of the rig that are insulated from the metal plates by two 

rubber bushes. Furthermore the wooden plate covering the chassis 
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dynamometer drums by leaving only a small section for the roller to run on is 

shown. This plate is installed to prevent noise radiation generated from the 

driving mechanism of the chassis dynamometer.  
 

 
Figure 4.10 Photograph of the original rig layout with tyre, wooden cover and weights in 

place 

 

 

4.1.4.  Microphone locat ion:  d i rect iv i ty  pat tern measurements 

 

At first directivity pattern measurements of the radial sound radiation around 

the tyre with the ‘large cavity’ were conducted in the chassis dynamometer 

lab. While the tyre was spinning on the chassis dynamometer drum a circular 

array of seven microphones was placed next to it at a distance of 1000 mm 

and a height of 200 mm.  

The microphones themselves were mounted accurately in a 10 

degrees interval onto a wooden support, whose dimension is a quarter circle 
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of a radius of 1000 mm, as shown in Figure 4.11. To capture the whole 

sound field around the tyre the microphone support needed to be moved and 

the measurements were repeated at different positions. This movement was 

done six times to cover a whole circle of 360 degrees around the tyre (with 

the outer microphones overlapping each time). Sound radiation plots with a 

resolution of 10 degrees around the whole tyre could be produced with this 

setup. These plots give an idea about the noise distribution around the tyre. It 

is expected that the recorded result, however, is contaminated by unwanted 

noise, generated by the chassis dynamometer and reflections off the walls 

and ceiling. 

 

Figure 4.11 Photograph of the sound radiation measurement setup, the wooden 

microphone support faces the trailing edge 

 

 

4.1.5.  Microphone locat ion:  lead ing and t ra i l ing edge record ings 

 

This time only two microphones were used to measure the sound produced 

by the tyre. They were placed closer to the actual source, the leading and 
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trailing edge of the tyre. Thus, a better signal strength can be obtained and 

less reflection influences the measurements. To prevent any structural 

vibration affecting the microphone recordings the microphones should have 

no physical connection to the vibrating rig that holds the tyre. For the same 

reason the microphones should not be based on the metal plates covering 

the chassis dynamometer with its driving mechanism, as it was done at the 

sound radiation measurements mentioned previously. Thus, it was chosen to 

configure a microphone support based on the concrete floor. The 

arrangement of the microphone support is shown in Figure 4.12. A long 

metal rod was used to bridge the chassis dynamometer. This rod was placed 

onto metal stands so it could be adjusted to the right height. With this design 

it was possible to place the microphones very close to the spinning tyre but 

isolated from ground vibrations. In addition to that the connection cable from 

the microphones could be guided away from the chassis dynamometer to 

lower the noise influence due to electric induction.  
 

 

Figure 4.12 Photograph of microphone support isolated from ground vibrations excited 

by the driving mechanism of the chassis dynamometer  
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Figure 4.13 shows the freely attached microphones located in close 

proximity to the tyre, without contacting the frame the tyre is mounted to. So 

the data could be recorded not more than 40 mm away from the source, in 

this case the contact patch. This close position guaranteed good signal 

strength and less influence from reflections of the walls of the reverberant 

room. However, the microphones were close to the chassis dynamometer as 

well, so the noise, generated by the rotation of the drum, was recorded as 

well. In addition to that extra care needed to be taken when the tyre was 

running, so that the microphones do not contact the tyre or the vibrating 

metal frame of the tyre support. To make sure that the microphones show the 

right sign for an analysis a short tap on the microphone was recorded. This 

tap initiated a positive peak in the recordings. Due to this fact it is assumed 

that a pressure pulse moving towards the microphone is recorded with a 

positive sign. 

 

Figure 4.13 Photograph of the experimental rig with the two microphones in place facing 

the leading and the trailing edges 
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4.2.  Measurement  method 

 

4.2.1.  Data acquis i t ion 

 

The measured sound was recorded with a real time analyser, called Focus 

from the company LDS Systems. With this mobile solution it is possible to 

record up to eight channels in the time domain while doing a simultaneous 

frequency analysis. However, after some initial investigations it was decided 

to record the time history only and post process it later in MATLAB. Thus, the 

maximum sampling frequency of the system of 96000 Hertz could be utilised. 

This high sampling rate gave sufficient time resolution to analyse the data 

recorded at the leading and trailing edge of the tyre in detail. According to 

Gagen [Gagen, 2000], the air effects occurring around a tyre are considered 

to be of a very quick nature, this makes a high sampling rate a necessity.  

The duration of the recording time of each signal is two seconds. This 

short interval was chosen to keep the recorded file within a reasonable size 

to make it possible to post process in MATLAB. Despite the short interval of 

two seconds the recording still gives a sufficient time history for 

interpretation. In combination with the high sampling rate used 192000 data 

points for each signal were created. With the chosen dynamometer speeds 

of 19, 31 and 41 km/h the signal contains from 27 cavity repetition events, for 

the lowest speed up to 60 cavity repetition events for the high. This gives a 

sufficient number of events, for all speeds, to take satisfactory average 

values, for all the different tyres. For the tyre equipped with the ‘small cavity’ 

the dynamometer speed was even increased to 91 km/h to investigate into a 

possible difference in the process happening. For real traffic conditions, 41 

km/h is a low speed. However for these experiments a trade off had to be 

made between the background noise (generated by the chassis 

dynamometer) and tyre noise of interest. Whilst running at high speeds the 

chassis dynamometer produces too much noise.  
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4.2.2.  Bandpass f i l ters  

 

In the previous section it is mentioned and shown that the chassis 

dynamometer driving mechanisms generates a lot of unwanted noise. This 

noise was recorded by the microphones as well as the sound generated by 

the spinning tyre. As shown the low frequency region is dominated by the 

chassis dynamometer noise. To get an idea of the magnitude of influence 

and to find a solution, measurements were conducted at first with the 

‘smooth tyre’ running on the chassis dynamometer. The results were then 

compared to the signal produced by the other tyres. With this comparison the 

pure signal generated by the altered tyre could be identified and so a filtering 

process could be introduced to the whole signal. The filtering is applied to the 

time recording because the emphasis is on the shape of the signal in the 

time domain generated at the leading and trailing edge of the tyre. 

To find out the frequencies involved in the process, the signal is 

converted into the frequency domain after recording. Figure 4.14 shows the 

Fast Fourier Transform (FFT) of two recorded time histories at the trailing 

edge of the tyre in comparison to the time history of the ‘smooth tyre’. In 

Figure 4.14a the ‘smooth tyre’ and the tyre with the ‘small cavity’ are 

compared. In Figure 4.14b the ‘smooth tyre’ is compared to the tyre with the 

‘large cavity’. The dynamometer speed for both measurements was 41 km/h. 

The low dominant frequencies are similar for all types of tyres; Especially the 

frequencies below 4000 Hertz for the tyre with the ‘small cavity’ and below 

2000 Hertz for the tyre with the ‘large cavity’. Frequencies above 20000 

Hertz are also similar for the ‘smooth tyre’ and the tyres with a cavity. Thus, a 

bandpass filter was applied to the signal.  

With a second order Butterworth bandpass filter the time history could 

be changed and the unwanted frequencies that influenced the identification 

process could be minimized. The higher the order of the Butterworth filter the 

sharper the filter behaviour [Kuo, 1966]. For the measurements recorded the 

phase of the filter should still show a linear behaviour, because the 

frequencies of the time history should not be changed. Therefore, the low 

filter order of two is a good compromise. The chosen options for the filter in 
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accordance to Figure 4.14 are shown in Table 4.5 overleaf. Two different 

filters were applied to the signals of the two different types of cavities. 

However, the only difference was the lower frequency boundary, where 1440 

Hertz was used for the ‘large cavity’. This lower frequency limit was also 

used for the other tyres. Only for the tyre equipped with the ‘small cavity’ the 

lower frequency boundary was chosen slightly higher, with 2400 Hertz. 

Those filters were applied to all the measured signals and resulted in a 

satisfactory time signal of the processed data. The implementation of the 

filter was done with the software MATLAB after the measurements have 

been conducted. 

 
Figure 4.14 FFT of the two seconds time history signal from the ‘smooth tyre’ (red) 

running on the chassis dynamometer in comparison with the signal generated by the tyre 

with the: a) ‘small cavity; and b) ‘large cavity’  
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Tyre tread Bandpass filter 

type 

Order Lower cut-off 

frequency [Hertz] 

Higher cut-off 

frequency [Hertz] 

Large cavity Butterworth 2nd 1440 24000 

Small cavity Butterworth 2nd 2400 24000 

Table 4.5 Bandpass filter options 

 

 

4.2.3.  Sp l ine in terpo lat ion 

 

 
Figure 4.15 Spline interpolation applied in between measured points of an example 

signal, to produce more accurate peaks and troughs 

In addition to the bandpass filtering a second data conditioning process is 

introduced. The frequency resolution of a signal can be improved by a 

mathematical approximation in between the measured data points. This 

yields an even smoother shape of the signal. It is found that by applying a 
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spline interpolation to the signal these demands effects are best met. The 

spline interpolation is a piecewise polynomial interpolation, which is very 

flexible and quick to use. With the processing software MATLAB the spline 

interpolation can be applied to the measurement recordings after the 

bandpass filter is implemented. Figure 4.15 shows an example of the 

application of a spline function to the time history recoding of an event at the 

trailing edge of the tyre. The blue circles demonstrate the points actually 

measured. The spline function is shown as the green solid line connecting 

the points in a smooth way. Thus, to estimate the maximum amplitude of the 

peaks and troughs in the measured signal the maxima of the spline 

interpolated signal are used instead. As can be seen in Figure 4.15 those 

points marked with stars give slight different amplitudes in comparison to the 

blue circular markings from the measurement.  

 

 

4.2.4.  H i lber t  t ransform 

 

The signal shown in Figure 4.15 shows a frequency modulation and 

changing amplitude behaviour at the same time. Shown before is the Fast 

Fourier Transform to get the frequencies occurring in the whole signal. When 

the frequency that occurs at a certain point in time is wanted, the Fast 

Fourier Transform is of no use. Therefore another transform is used: the 

Hilbert transform. The main difference between the Fast Fourier Transform 

and the Hilbert Transform is that the latter is a local descriptor of the signal, 

instead of a global one [Sun, Sclabassi, 1993]. Thus, the Hilbert transform 

gives an idea of the instantaneous frequency of the signal at a given time. 

This is used in this Thesis to identify the frequencies in a signal. Figure 4.16 

shows the Hilbert transform of the example signal introduced in Figure 4.15. 

It can be seen that it is the same time span as on the figure before but the y-

axis is now frequency instead of amplitude. 
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Figure 4.16 Hilbert transform of the example signal from Figure 4.15 

 

 

 

4.3.  D iscuss ion and summary 

 

The measurement setup is introduced and explained in this section of the 

Thesis. The room where the chassis dynamometer is located at 

Loughborough University is not equipped with anechoic termination. Thus, 

the acoustic measurements conducted are influenced by reflections of the 

walls and ceiling in this room. Especially the sound radiation measurements 

suffer from these reflections as shown later on. Moving the microphones 

closer to the source, the leading and trailing edge of the tyre, can reduce the 

influence of the reflections. 
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Another problem is the unwanted noise generated by the chassis 

dynamometer that is also recorded by the microphones close to the tyre. 

Applying a second order Butterworth bandpass filter to the time history of the 

recordings reduces the effects of background noise on the measurements. 

This however does not completely remove the noise without having an 

influence on the signal of interest. The measured data is further conditioned 

by a mathematical spline interpolation to improve the resolution and so the 

shape of the signal. It needs to be mentioned that the used filter did not 

change the characteristics of the signal. Hence, interpretation of the filtered 

signal is still related to the recorded unfiltered signal. 

The tyres needed modification before they could be used for the 

experiments. This can introduce some inaccuracy in geometry between the 

different tyres. In addition to that, there were slight problems with cutting the 

holes and grooves into the tyre due to the soft rubber material of the tyre 

tread. Those two issues can be an indication for variations between the 

models and measurements described later on in this Thesis.  
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Chapter  5   

Resu l ts  and d iscuss ion:  lead ing edge 

 

 

 

The measurement results shown in the next chapters are divided into the 

different tyre types used and split regarding the microphone position. First of 

all the results of the sound radiation measurements are presented. They 

were conducted with the tyre equipped with the ‘large cavity’ to give a 

general idea of the sound field around a tyre with a cavity. 

In the following section the emphasis is on the sound generation of the 

leading edge of the rotating tyre. The results of the circular cavities and of the 

tyres with the rectangular cavities, introduced in Chapter 4, are presented. It 

is aimed to get a better understanding of the process happening at the 

leading edge when the cavity hits the road surface. In addition to that the 

measured results are compared against the before introduced models from 

Chapter 3 for the leading edge signal of a tyre. 

 

 

 

5.1.  D i rect iv i ty  pat tern measurements  

 

For the directivity pattern measurements seven microphones were used at a 

time to measure the sound field around the tyre with the ‘large cavity’, 

running on the chassis dynamometer at 41 km/h. The measured time history 

data is post processed within MATLAB, this means it is filtered and 
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transformed into the frequency domain. This transformation is done to get an 

idea where in respect to the tyre and at what frequencies the highest noise 

levels occurred. Figure 5.1 shows a three-dimensional plot of the Fast 

Fourier Transform of the time signals 360 degrees around the tyre. Only the 

frequencies in between 2000 Hertz and 10000 Hertz are shown because the 

lower frequencies are generated by the chassis dynamometer and so not of 

interest for the noise source: tyre. There are no dominant components in the 

frequencies higher than 10000 Hertz so these are cut off as well.  

 
Figure 5.1 Circular diagram of the frequency content of the sound radiation 

measurements at 36 locations around the spinning tyre equipped with the ‘large cavity’ 

running at 41 km/h 

On the left hand side of Figure 5.1 indicated by the arrow is the trailing 

edge of the tyre and on the right hand side the leading edge, respectively. 

There is one Fast Fourier Transform plotted for every 10 degrees of the 360 

degrees circle around the tyre. The plot starts at 2000 Hertz in the centre of 

the circle, the frequency increases with larger radius. The data in between 

the measured lines of 10 degrees is interpolated by the software MATLAB. 

As shown: the main sound is generated at the trailing edge of the tyre. In this 

direction there are significant red peaks. However, there is also sound 
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generated at the side and at the leading edge of the tyre. The main problem 

of the measurement was that there were reflections from the walls, floor and 

ceiling that influenced the recordings. This noise explains the high peak at 

the top of Figure 5.1 that is at the side of the tyre, where the closest wall was 

located.  

The next figures show more detailed sound radiation profiles. In 

Figure 5.1 all the frequencies and amplitudes are displayed in a three-

dimensional plot, whereas in the next figures the sound radiation at just one 

frequency is shown with its amplitude around the tyre, generating a two-

dimensional plot. This layout makes it easier to identify the actual directivity 

but it is for one certain frequency only. In the first example the frequency 

6256 Hertz is chosen. The plot is a top view of the rig where the trailing edge 

of the tyre is pointing to the left hand side from the centre of Figure 5.2, and 

the leading edge points to the right hand side from the centre of the figure. 

For this rather high frequency in respect to tyre noise the sound radiation to 

the sides are dominant. However, as shown there is only little sound 

radiation at the leading edge, as already indicated by Figure 5.1. 

 
Figure 5.2 Sound radiation, at a frequency of 6256 Hertz, of tyre equipped with the 

‘large cavity’ running on the chassis dynamometer  



Results and discussion: leading edge 

 67 

 
Figure 5.3 Sound radiation, at a frequency of 4993 Hertz, of tyre equipped with the 

‘large cavity’ running on the chassis dynamometer  

The next plots show a similar behaviour. Both have a rather weak 

signal at the right hand side of the plot, the leading edge, and both have 

noise influence. Especially in Figure 5.3 at the top, a very high peak is shown 

at one side of the tyre that cannot be found at the other side. Ideally a mirror 

effect with both sides showing equal amplitudes would be expected. This 

mirror effect is apparent in Figure 5.4, where the top and bottom of the plot 

are identical. Again the signal at the leading edge is rather low. 

It has been clearly shown that the main noise source was the rear of 

the tyre. However, there were big noise influences caused by the reflections 

within the room. The microphones were tested beforehand with a speaker in 

an anechoic environment; this provided much better results of the recorded 

sound field, the results of that can be found in the Appendices in section A4. 

In the room where the chassis dynamometer is located that has no anechoic 

termination the signals in the far field are significantly influenced by noise, 

results of an experiment in there with the same microphones located around 

a speaker are embedded in the appendices in section A5.  
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Figure 5.4 Sound radiation, at a frequency of 3642 Hertz, of tyre equipped with the 

‘large cavity’ running on the chassis dynamometer 

To analyse the pure signal, generated by the tyre, the microphones 

were located in the vicinity of the contact patch very near to the actual 

source.  Only two microphones of better quality were used to record the 

process at the leading and at the trailing edge simultaneously. This would 

give further clarification about the signal structure at both sides of the tyre 

that is described in detail in the next chapters. 

 

 

 

5.2.  C i rcu lar  cy l indr ica l  cav i t ies  

 

In Chapter 4 two different types of cylindrical cavities used in a tyre during 

this project, are introduced: the ‘large cavity’ and the ‘small cavity’. The size 

difference of both of them is significant. Thus, it is expected to get a 

difference in noise generation between the tyre with the ‘large cavity’ and the 
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one with the ‘small cavity’ at the leading edge. First of all the ‘large cavity’ is 

analysed regarding the noise generation at the leading edge. 

 

 

5.2.1.  Large cav i ty  

 

Figure 5.5 shows a top view of the tyre with the ‘large cavity’. The cylindrical 

hole is large in comparison to the tyre itself and with a volume of 350 mm3 

similar from the size point of view, to a real tyre tread. The first signal to be 

inspected is the leading edge signal of the tyre with the ‘large cavity’. The 

time history was recorded at three different speeds and afterwards filtered in 

MATLAB with a Butterworth bandpass filter as explained in Chapter 4.  

 
Figure 5.5 Photograph of top view of the tyre equipped with the ‘large cavity’ 

In Figure 5.6 the recorded leading edge time history of this tyre 

running at a speed of 41 km/h is shown. At the top (Figure 5.6a) the pure 

unfiltered signal is presented over the interval of two seconds. Some peaks 

related to the event at the leading edge when the cavity contacts the chassis 

dynamometer drum can already be identified. However, there is a lot of noise 

as indicated by the oscillations around the centreline of the plot. To minimize 

this noise the 2nd order bandpass Butterworth filter is applied to the signal, 

with the details according to Table 4.5. The bandpass filtered signal is shown 

in Figure 5.6b. The noise around the centreline is clearly reduced and the 

reoccurring events at the leading edge are clearly dominant now. The 

distance of the events is depended on the rotational speed of the tyre and is 

referred to frequency of reoccurrence. The maximum amplitude of the peaks 

is slightly different in comparison to the ones of the unfiltered signal. It has to 

be mentioned though that the amplitudes of the peaks, when compared to 
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each other, show a large fluctuation over the short recording duration of two 

seconds. This behaviour is analysed later on, it was already mentioned by 

Ronneberger [Ronneberger, 1984] that the peak at the leading edge is more 

inconsistent than the one generated at the trailing edge of the tyre. 

Therefore, an average value of the amplitude will be taken for which the 

number of peaks available should be sufficient.  

 
Figure 5.6 Time history of the leading edge signal from the tyre with the ‘large cavity’ at 

41km/h: (a) unfiltered signal; and (b) bandpass filtered signal 

At next, the time histories of the different rotational speeds are 

compared to each other. A lower overall sound radiation, hence lower peak 

amplitudes are expected with lower tyre speed. In Figure 5.7 the signals of 

the three different speeds are shown. The lowest speed of 19 km/h is plotted 

at the top, in the middle the signal of the speed of 31 km/h is shown and at 

the bottom the 41 km/h signal, already introduced in Figure 5.6, is repeated 

for comparison.  



Results and discussion: leading edge 

 71 

 
Figure 5.7 Time history of the leading edge signal from the tyre with the ‘large cavity’ 

for different speeds including average peak level: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

The same bandpass filter is applied to all signals and it is clearly 

shown that the background noise of the chassis dynamometer driving 

mechanisms does increase significantly with speed. The repetition frequency 

of the event at the leading edge does also increase with speed. Thus, the 

number of peaks in the constant time interval of two seconds reaches from 

27 for the lowest speed, until 60 for the highest tyre speed. Furthermore, a 

dashed green line is added to each plot indicating the average peak 

amplitude in the two seconds recording for each tyre speed.  
 

 19 km/h 31 km/h 41 km/h 

Number of peaks 27 44 60 

Average value [Pa] 1.475 4.023 6.396 

Table 5.1 Number and average amplitude values of peaks taken from Figure 5.7 of 

the leading edge signal of the tyre with the ‘large cavity’ 
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Table 5.1 summarises the average peak amplitude values taken from 

Figure 5.7. It is found that there is a proportional behaviour between average 

peak amplitude and tyre speed. However, the behaviour is not linear 

between the amplitudes for two speeds, as when for instance the value of 19 

km/h (1.4752 Pa) is compared to 41 km/h (6.3964 Pa). But a quadratic 

relationship can be identified: the amplitudes in Pascal are dependent on the 

squared velocity of the tyre. This result is confirmed by the speed exponent 

vexp introduced by Kuijpers and van Blokland [Kuijpers and van Blokland, 

2001] as mentioned in Chapter 2. These authors refer to a speed exponent 

of four for the sound pressure level difference of the air pumping process at 

different tyre speeds as it was initially suggested by Hayden [Hayden, 1971]. 

 
Figure 5.8 Example leading edge signal event of the ‘large cavity’ contacting the 

chassis dynamometer drum at 41 km/h, with assumed contact patch area  

For a better understanding of the process happening at the leading 

edge a single event is analysed. Therefore, the highest tyre speed recordings 

are chosen from Figure 5.7c, this results in the highest amplitude and so the 
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clearest process. In Figure 5.8 an example event of the cavity contacting the 

chassis dynamometer drum is shown. A sharp peak is shown (at 2.1*10-3 s) 

that is identified to be the process happening at the leading edge of the tyre. 

When the cavity is fully covered little aerodynamic sound is emitted, the red 

area in the middle of Figure 5.8 marks this assumed phase that lasts about 

0.7*10-3 s. This approximation is in accordance with a contact patch length of 

17.5 mm (measurement see Appendix 6). After that, oscillations are initiated 

produced at the trailing edge of the tyre that is analysed in detail in Chapter 

7. As mentioned before, the main noise source is the trailing edge, so it could 

be possible that the microphone at the leading edge also picks up this signal.  

The leading edge signal was also analysed by other authors for 

instance by Samuels [Samuels, 1979], by Plotkin et al. [Plotkin, 1979] and by 

Ronneberger [Ronneberger, 1984], they used pockets or grooves in a tyre. 

Or by Hamet et al. [Hamet, 1990], who used a cylindrical cavity in the road. 

Except Ronneberger, who tried to develop his own model based on a 

roughness element on the road, the other Authors always aimed to explain 

the signal at the leading edge with the monopole theory that was initiated by 

Hayden [Hayden, 1971]. Here the same approach is used to see if it also 

applies to results obtained in the experiments.  

First of all however the signal is checked to find a reason for such 

diversity in maximum amplitude of the peak itself. Therefore some of the 

dominant peaks are compared to the minor ones. This is initially done for the 

highest speed of 41 km/h. The spline interpolation introduced in Chapter 3 is 

used to connect the measured points with each other, to generate a smooth 

signal with higher resolution. As shown in the four sections in Figure 5.9 the 

peak amplitudes differ significantly: they range from 5.5 Pa up to 7.4 Pa for 

the highest. However, the peak to trough distance, marked by the red lines is 

similar for all the examples shown.  

Table 5.2 presents the exact values of the example peak amplitudes 

from Figure 5.9. By comparing the difference between each maximum and 

minimum value a rather constant range is achieved that leads to an average 

difference value of 8.078 Pa for the four example readings at the leading 

edge signal of the tyre running at 41 km/h. When unwanted noise is added 

from the chassis dynamometer the signal produced by the tyre is prone to be 
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influenced in a significant way. Thus, resulting in high amplitude fluctuations. 

Even with the applied bandpass filter the fluctuations are still apparent. 

However, by looking at the whole pulse (oscillation) a satisfactory average 

value of the amplitude can be found.  

 

 (a) (b) (c) (d) 

Peak, [Pa] 7.364 5.511 6.292 6.644 

Bottom, [Pa] -1.248 -1.893 -1.897 -1.463 

Difference, [Pa] 8.612 7.404 8.189 8.107 

Average, [Pa]  8.078 

Table 5.2 Peak value calculation for the leading edge signal of the tyre with the ‘large 

cavity’ at 41 km/h 

 
Figure 5.9 Four different example peaks of the leading edge signal at a tyre speed of 

41 km/h generated by the ‘large cavity’ 
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Figure 5.10 Four different example peaks of the leading edge signal at a tyre speed of 

31 km/h generated by the ‘large cavity’ 

 

 (a) (b) (c) (d) 

Peak, [Pa] 3.152 3.930 4.181 4.350 

Bottom, [Pa] -1.391 -0.731 -0.740 -0.660 

Difference, [Pa] 4.543 4.661 4.921 5.010 

Average, [Pa]  4.784 

Table 5.3 Peak value calculation for the leading edge signal of the tyre with the ‘large 

cavity’ at 31 km/h 

The same analysis is conducted for the measured signal of the lower 

speeds of 31 km/h and 19 km/h. The amplitudes for the peaks generated by 

the spline interpolation, at 31 km/h, taken from Figure 5.10 are shown in 

Table 5.3. The maximum peak amplitudes this time reach from 3.152 Pa to 

up to 4.181 Pa. Again the difference to the bottom value of each peak is 
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measured as indicated by the red lines in Figure 5.10. Finally the average 

pressure difference is calculated that results in 4.697 Pa, again this is slightly 

higher than the one calculated for the whole signal in Figure 5.7.  

 
Figure 5.11 Four different example peaks of the leading edge signal at a tyre speed of 

19 km/h generated by the ‘large cavity’ 

 (a) (b) (c) (d) 

Peak, [Pa] 1.042 1.449 1.421 1.586 

Bottom, [Pa] -0.507 -0.139 -0.239 -0.398 

Difference, [Pa] 1.549 1.588 1.66 1.984 

Average, [Pa]  1.695 

Table 5.4 Peak value calculation for the leading edge signal of the tyre with the ‘large 

cavity’ at 19 km/h 

Finally the results of the lowest speed of 19 km/h are analysed. The 

noise level produced by the chassis dynamometer is significantly lower at 

that speed, however, without the bandpass filter applied not a single event is 
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recognisable in the signal. This time there is nearly no need for the 

interpolation with the spline function because the peak itself is not very 

sharp. Figure 5.11 shows four example peaks of the lowest speed time 

history. The amplitudes range from 1.042 Pa to 1.586 Pa. According to Table 

5.4 this results in an average pressure difference of 1.695 Pa at the leading 

edge when the ‘large cavity’ hits the chassis dynamometer drum. Again this 

is slightly higher as the before proposed average value of the peak 

amplitudes only.  

Table 5.5 summarises the obtained average values from Table 5.1 to 

Table 5.4 in dependence of the speed of the tyre. The reference speed v0 is 

chosen to be the highest of 41 km/h. As mentioned before, a factor of the 

square of the velocity is assumed to be the connection between the different 

obtained pressure values and speeds. First the average amplitudes from 

Figure 5.7 are compared to the recorded average value of 41 km/h (6.396 

Pa). The 31 km/h reading multiplied with the speed factor gives a deviation of 

9 % in comparison to the maximum pressure at 41 km/h. A similar result is 

obtained for 19 km/h. Multiplied with the corresponding speed factor this 

gives 6.868 Pa, which means a deviation of 7 %.  

By taking the manual average from Figures 5.9, 5.10 and 5.11 the fit is 

more accurate. In this case the highest speed results in an average value of 

8.078 Pa, 31 km/h including the speed factor yields to 8.216 Pa and 19 km/h 

multiplied by the speed factor gives 7.893 Pa. Both deviations are only 3 %, 

which clearly indicates proportionality between velocity and pressure. The 

reason for the slightly more different results, when the whole average is 

taken from the signal, is first of all due to the different number of peaks. For 

41 km/h the number of peaks is twice is many as for 19 km/h. Secondly it is 

due to noise in the signal. For 41 km/h the generated chassis dynamometer 

noise is more significant and so the peaks are more affected. This influence 

can be reduced by the other method used where the difference between the 

peak and the trough is considered. 
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 41 km/h 31 km/h 19 km/h 

Average, [Pa] 6.396 4.023 1.475 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 6.396 7.033 6.868 

Deviation, [%]  +9 +7 

    

Manual average, [Pa] 8.078 4.784 1.695 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 8.078 8.367 7.893 

Deviation, [%]  +3 -3 

Table 5.5 Calculated peak amplitudes for the two lower speeds in comparison to the 

high speed of 41 km/h for the tyre with the ‘large cavity’ 

For a visual approach of the peak amplitude relationship of the 

different recordings the Figure 5.12 is introduced. Where Figure 5.12a shows 

selected peaks of the different tyre speeds with average amplitude values 

according to Table 5.1. The high-speed case of 41 km/h is shown by the blue 

line, for 31 km/h red is used, and for 19 km/h the colour green is taken. 

Remarkable is that the peaks all have the same duration in time, hence the 

same frequency. The only factor that differs is the amplitude. 

By multiplying the lower speeds of 31km/h and 19km/h with the speed 

difference factor, taken from Table 5.5, Figure 5.12b is generated. For both 

lower speeds the whole signal is multiplied by this factor and as can be seen 

not only the maximum amplitude of about 6.4 Pa fits very well, also the slope 

after it and the minimum value of -2 Pa is similar for at least the two lower 

speeds. Without the unwanted noise covering the signal the result could be 

even more accurate. Interesting for the highest speed is the negative 

pressure part before the peak itself. This is due to the fact that the pressure 

in the cavity is suddenly occurring, quicker for the high speed and 

significantly slower for the lower speeds. Some of those initial negative 

pressure regions are diminished by the filter, thus, later on for the pure signal 

comparison there will be no filter technique applied. With this example the 

speed and amplitude of the leading edge for the tyre with the ‘large cavity’ is 
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shown to be dependent on the squared velocity. In addition to that the 

signals of the different tyre velocities seem to have all the same duration 

(0.1*10-3 s) that means there is no connection between cavity length and 

peak duration. A comparison to existing models introduced in Chapter 3 will 

be approached at the end of this chapter.  

 
Figure 5.12 Average peak of the leading edge signal from the tyre with the ‘large cavity’ 

for the three different speeds: (a) normal recordings; and (b) slower velocity signals 

multiplied by the speed factor  

 

 

5.2.2.  Smal l  cav i ty  

 

Figure 5.13 shows the tyre with the other circular cavity cut into the tread: the 

‘small cavity’. In comparison to the ‘large cavity’ the volume of this is more 

than 30 times smaller. So it is interesting to see if there is any noise 
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generated at all at the leading edge of a tyre equipped with such a small 

cavity. 

 
Figure 5.13 Photograph of top view of the tyre equipped with the ‘small cavity’ 

 
Figure 5.14 Time history of the leading edge signal from the tyre with the ‘small cavity’ at 

41km/h: (a) unfiltered signal; (b) normal bandpass filtered signal; and (c) 3rd order bandpass 

Butterworth filter used 

Figure 5.14 shows the unfiltered and bandpass filtered data of the 

whole leading edge signal of the tyre with the ‘small cavity’. At the top (Figure 

5.14a), the unfiltered signal is shown, which is purely dominated by noise. 

Even in Figure 5.14b with the 2nd order bandpass Butterworth filter according 
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to Chapter 4 applied to the signal, nothing can be identified that indicates the 

contact of cavity and road at the speed of 41 km/h. Thus, a more powerful 

filter is introduced. Figure 5.14c shows the signal conditioned with a 3rd order 

bandpass Butterworth filter with the lower cut-off frequency of 4320 Hertz. 

However, this is only done to identify the peaks in the signal, not for the 

actual measurement of peak height because it changes the shape of the 

peak significantly. The maximum amplitude is now negative as Figure 5.14c 

shows. With this higher filter order the events can be located and four 

reference peaks are taken from the signal (Figure 5.14b) to calculate the 

average peak height. 

 
Figure 5.15 Four different example peaks of the leading edge signal at a tyre speed of 

41 km/h generated by the ‘small cavity’ 

Figure 5.15 shows the four reference events chosen. For this plot 

again the normal 2nd order bandpass Butterworth filter is used, because this 

filter does not influence the original shape of the signal as significantly. The 

shape of the peaks is similar to the ones produced by the ‘large cavity’, which 
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is to be expected because the same type of cavity is used. For the ‘small 

cavity’ however, the maximum of the peak differs significantly. In comparison 

to the ‘large cavity’ this signal is weaker and thus, prone to be even more 

influenced by the noise, as can be seen in Table 5.6. The four examples 

show a quite significant difference between maximum and minimum value. 

The calculated values reach from 1.458 Pa up to 2.085 Pa and produce an 

average difference of 1.783 Pa. These significant fluctuations between the 

peak amplitudes and the low maximum pressure in comparison to the 

unwanted noise produced by the chassis dynamometer yields to an 

unsatisfactory accuracy in the results. 

 

 (a) (b) (c) (d) 

Peak, [Pa] 1.558 1.289 1.546 1.445 

Bottom, [Pa] -0.475 -0.169 -0.011 -0.640 

Difference, [Pa] 2.033 1.458 1.557 2.085 

Average, [Pa]  1.783 

Table 5.6 Peak value calculation for the leading edge signal of the tyre with the ‘small 

cavity’ at 41 km/h 

The signal generated by the lower speed of 31 km/h is now analysed. 

Again a stronger filter has to be used to identify the peaks at the leading 

edge in the first place. Then for the actual peak analysis the normal 2nd order 

bandpass Butterworth filter is applied to the time history. Figure 5.16 shows 

the four example peaks despite the cavity size and the low speed it is 

however possible to identify the events. 

 

 (a) (b) (c) (d) 

Peak, [Pa] 0.900 0.7805 0.470 0.757 

Bottom, [Pa] -0.193 -0.373 -0.459 -0.162 

Difference, [Pa] 1.093 1.154 0.929 0.920 

Average, [Pa]  1.024 

Table 5.7 Peak value calculation for the leading edge signal of the tyre with the ‘small 

cavity’ at 31 km/h 
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Table 5.7 summarises all the values taken from the different examples 

in Figure 5.16. In comparison to each other they are in a similar range, when 

the difference between maximum and minimum value is considered. This 

difference ranges from 0.920 Pa to 1.154 Pa, which results in an average 

difference of 1.024 Pa.  

 
Figure 5.16  Four different example peaks of the leading edge signal at a tyre speed of 

31 km/h generated by the ‘small cavity’ 

At 19 km/h it is not possible to spot the events at the leading edge, 

because for this ‘small cavity’ a reasonably high tyre speed is needed to 

produce a significant signal at the leading edge. Therefore the signal was 

overlaid by the trailing edge signal and so the stronger signal created at the 

trailing edge helped to identify the right areas for the leading edge peak. Four 

example peaks are found, but as Figure 5.17 indicates, the amplitude is low 

and nearly not distinguishable from the noise in the signal. Nevertheless the 

data is analysed and the results are summarised in Table 5.8. As expected a 
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rather low combined amplitude of 0.209 Pa is the result of the readings from 

Figure 5.17. 

 

 (a) (b) (c) (d) 

Peak, [Pa] 0.191 0.182 0.17 0.201 

Bottom, [Pa] -0.032 0.007 -0.055 -0.01 

Difference, [Pa] 0.223 0.175 0.225 0.211 

Average, [Pa]  0.209 

Table 5.8 Peak value calculation for the leading edge signal of the tyre with the ‘small 

cavity’ at 19 km/h 

 
Figure 5.17 Four different example peaks of the leading edge signal at a tyre speed of 

19 km/h generated by the ‘small cavity’ 

Table 5.9 summarises the results of the amplitude measurements for 

the tyre with the ‘small cavity’ at the different speeds tested. Satisfactory 

agreement is achieved in between the result of 31 km/h and of 41 km/h (0.3 
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% deviation) when the speed factor is used. As expected the recording of 19 

km/h does not deliver a good result. It is about half the amount as the theory 

would suggest in this case. The speed of the tyre for this small sized cavity is 

too low. The chassis dynamometer noise is significantly influencing the 

sound produced by this cavity/speed combination 

 

 41 km/h 31 km/h 19 km/h 

Manual average, [Pa] 1.783 1.024 0.209 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 1.783 1.789 0.973 
Deviation, [%]  +0.3 -54 

Table 5.9 Calculated peak amplitudes for the two lower speeds in comparison to the 

reference speed of 41 km/h for the tyre with the ‘small cavity’ 

Due to this low-speed problem higher dynamometer speeds are 

investigated to see if there is any change, especially in the duration of the 

peak. The maximum speed the tyre is driven at was 91 km/h. This 

experiment is only conducted with the ‘small cavity’ tyre because of safety 

reasons. The cavity is small in comparison to the tyre thus, is does not affect 

the structure of the tyre as much. This high speed in combination with the 

microphones being very close to the tyre was a challenging experiment. It 

was decided not to be repeated again for the other tyres, due to the 

vibrations in the rig and the close proximity of the microphones to the tyre. 

Nevertheless the results are convincing. It is possible to identify pressure 

peaks generated at the leading edge, even in the signal for the high speeds 

of 71 km/h and 91 km/h that are overlaid by significant noise generated by 

the chassis dynamometer. The peaks are not easy to spot in the time history 

because of the high overall noise levels. However, due to the sharp shape 

they can still be identified. Figure 5.18 shows a comparison of the following 

velocities tested: 31 km/h, 51 km/h, 71 km/h and 91 km/h. Again the duration 

of the pressure peaks in time is the same for all of the results, it is slightly 

less than a 10th of a millisecond. The initial idea was to reach a speed so the 

closing time of the cavity would be shorter as the duration of the peak. 
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However, 91 km/h is just the borderline speed as indicated in Table 5.10. 

The actual cavity length of the ‘small cavity’ in circumferential direction is 

2.5mm. The speed of 91 km/h is equivalent to a velocity of 2528 mm/ms, this 

value is close to the actual cavity dimension, however, in order to draw 

meaningful conclusions a higher speed is needed. At 101 km/h the level of 

noise created by the chassis dynamometer is excessively high, therefore, no 

contacting signal of cavity and road can be identified at the leading edge for 

this speed. 

 

Speed (km/h) Speed (m/s) Speed (mm/ms) Speed (mm/s*10-4) 

91 25.28 25.28 2.53 

Table 5.10 Speed unit conversion for the tyre with the ‘small cavity’ 

 
Figure 5.18 Average peak of the leading edge signal from the tyre with the ‘small cavity’ 

for four different speeds: (a) normal recordings; and (b) slower velocity signals with speed 

factor multiplied 
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Figure 5.18 also shows the maximum pressure amplitude comparison 

between the four different speeds tested. In Figure 5.18b the reference 

speed v0 of 91 km/h is plotted in magenta. Good agreement in amplitude and 

shape is achieved, when lower speeds of 31 km/h, 51 km/h and 71 km/h are 

multiplied by the squared speed difference to 91 km/h.  

It has been found that also for the ‘small cavity’ a signal is produced at 

the leading edge of the tyre. This signal is similar to the one of the ‘large 

cavity’ shown earlier on. It shows similar attributes that are: same duration in 

time for all the speeds; and the amplitudes are proportional to the square of 

the velocity. This assumption is even valid for much higher velocities up to 91 

km/h. 

 

 

 

5.3.  Rectangu lar  cav i t ies  

 

Previously quick and accurate to manufacture circular cavities have been 

investigated. Now the same analysis with emphasis on the leading edge is 

carried out with rectangular cavity types. Here an interesting comparison is 

conducted where three different cavities have a volume relationship of either 

half the volume or the same volume, but different orientation of the cavity.  

 

 

5.3.1.  Square cav i ty  

 

The ‘square cavity’ is similar to the before introduced circular ‘large cavity’. It 

has the same dimensions in all directions but not the same volume. It is a 

more realistic design that could be found in a real tyre tread. In comparison 

to the solid rubber tyre this cavity is rather large, it nearly covers half of the 

tyre width. Therefore it is expected to produce sufficient noise at the contact 

patch, for a detailed analysis. Figure 5.19 shows the top view of the tyre with 

the ‘square cavity’.  
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Figure 5.19 Photograph of top view of the tyre equipped with the ‘square cavity’ 

 
Figure 5.20  Time history of the leading edge signal from tyre with the ‘square cavity’ at 

41km/h: (a) unfiltered signal; and (b) bandpass filtered signal 

The same approach as previously used is chosen to analyse the 

leading edge signal. Figure 5.20 shows the leading edge recording of the tyre 

with the ‘square cavity’. Again at the top of Figure 5.20 the unfiltered signal is 

shown. In this unfiltered signal peaks of the event can already be identified. 

However, with the filter applied those peaks become more dominant, as 

shown in Figure 5.20b. The amplitudes of the peaks show high levels; they 

are of much greater order than the ones for the tyre with the ‘large cavity’. 

The square shape of the cavity, resulting in a sudden impact when in contact 
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with the road, could explain this greater order. Also the larger volume, V0, in 

comparison to the ‘large cavity’ could contribute to higher-pressure 

amplitudes in the signal.  

 
Figure 5.21 Time history of the leading edge signal from the tyre with the ‘square cavity’ 

for different speeds including average peak level: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

 19 km/h 31 km/h 41 km/h 

Number of peaks 27 38 60 

Average value [Pa] 3.1173 4.6612 9.0975 

Table 5.11 Number and average amplitude values of peaks taken from Figure 5.21 of 

the leading edge signal of the tyre with the ‘square cavity’ 

Figure 5.21 shows the filtered measurements for the speeds of 19 

km/h, 31 km/h and 41 km/h with the average taken of all peak amplitudes. 

The values obtained in Figure 5.21 are summarised in Table 5.11. Figure 

5.21a shows high peak amplitudes for the slow speed of 19 km/h. This is 

also confirmed by the high average value of 3.1173 Pa. In comparison to 

19km/h, the average value for 31 km/h, which is 4.6612 Pa seems to be 
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rather low. For the top speed of 41 km/h, shown in Figure 5.21c the average 

amplitude is 9.0975 Pa. The relation of speed of the tyre and peak amplitude 

at the leading edge is checked later on. But for this ‘square cavity’ the before 

formulated velocity squared factor in between the peak amplitudes does not 

seem to be valid, when 19 km/h and 41 km/h are compared.  

 
Figure 5.22 Four different example peaks of the leading edge signal at a tyre speed of 

41 km/h generated by the ‘square cavity’ 

 (a) (b) (c) (d) 

Peak, [Pa] 9.293 11.190 7.414 10.360 

Bottom, [Pa] -0.880 -0.223 -1.632 -0.747 

Difference, [Pa] 10.173 11.413 9.046 11.107 

Average, [Pa] 10.435 

Table 5.12 Peak value calculation for the leading edge signal of the tyre with the 

‘square cavity’ at 41 km/h 
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Four example events, of the tyre with the ‘square cavity’ recorded at 

41 km/h are displayed in Figure 5.22. The structure of the peaks is similar to 

the ones presented in the previous sections, where the results of the circular 

cavities are presented. Thus the signature of the pulse is not dependent on 

the cavity shape. The difference values between peak and trough (after the 

maximum) indicated by the red lines in Figure 5.22, are calculated and 

summarised in Table 5.12. There is a significant difference between the 

highest result of 11.413 Pa and the lowest of 9.046 Pa. The large cavity size 

could be a reason for that. A big chunk of rubber is missing out of the tyre 

body that might result in stability issues in the tyre. Thus, leading to a 

deformation of the cavity, when entering the contact patch, resulting in a 

more irregular peak behaviour. 

 
Figure 5.23 Four different example peaks of the leading edge signal at a tyre speed of 

31 km/h generated by the ‘square cavity’ 

Figure 5.23 shows reference peaks of the lower speed of 31 km/h. 

Again the shape is similar to the ones shown before. A single event consists 
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of a dip at the beginning, followed by a sudden rise and nearly symmetric fall 

of the amplitude down to a minimum value. In comparison to the 

measurements conducted at 41 km/h just the amplitude is different.  

 

 (a) (b) (c) (d) 

Peak, [Pa] 5.385 3.828 5.070 4.875 

Bottom, [Pa] -0.580 -1.226 -0.342 -0.540 

Difference, [Pa] 5.965 5.054 5.412 5.415 

Average, [Pa]  5.462 

Table 5.13 Peak value calculation for the leading edge signal of the tyre with the 

‘square cavity’ at 31 km/h 

All four different example maximum and minimum values are 

summarized in Table 5.13. The highest difference between maximum and 

minimum value from the two seconds signal is 5.965 Pa and the lowest is 

5.054 Pa that is within an acceptable range. The four different peaks result in 

an average value of 5.462 Pa. 

 

 (a) (b) (c) (d) 

Peak, [Pa] 3.569 2.715 2.939 2.699 

Bottom, [Pa] 0.132 -0.111 0.110 -0.052 

Difference, [Pa] 3.437 2.826 2.829 2.751 

Average, [Pa] 2.960 

Table 5.14 Peak value calculation for the leading edge signal of the tyre with the 

‘square cavity’ at 19 km/h 

Figure 5.24 shows the measurement of the tyre with the ‘square 

cavity’ at 19 km/h. Resulting in lower peak amplitudes in comparison to the 

ones shown for the higher speeds. The detailed results of the four events are 

outlined in Table 5.14. The highest difference between the maximum and 

minimum value is 3.437 Pa and the lowest is 2.826 Pa. These numbers lead 

to an average value of 3.030 Pa that is slightly lower than the measured 

average from Figure 5.21a.  
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Figure 5.24 Four different example peaks of the leading edge signal at a tyre speed of 

19 km/h generated by the ‘square cavity’ 

The results from Figure 5.21 and from the Tables 6.12 – 6.14 are 

combined in Table 5.15. As used before the reference speed v0 is 41 km/h, 

hence, the other amplitudes are compared to that multiplied by the squared 

velocity difference. In the first section the data results from the average 

measurements of Figure 5.21 are presented. As previously indicated at the 

lowest speed of 19 km/h a rather high average peak amplitude was obtained 

in combination with the speed factor this results in 14.514 Pa. Compared to 

the average value for 41 km/h this results in a difference of 5.4 Pa (+59 %), 

and thus the theory of proportionality of speed and amplitude can not be 

supported. However, for the velocity of 31 km/h, the theory of proportionality 

is applicable again. Here in combination with the speed factor a maximum 

pressure of 8.153 Pa is obtained, resulting in a difference of 10.5 % in 

comparison to 41 km/h. Similar results are obtained for the manual checked 
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amplitudes. In this case the difference between the average value of 41 km/h 

and 19 km/h multiplied with the speed difference squared is smaller than 

before, however, 3.3 Pa still results in a significant difference of 32 %. When 

the manual taken average of 41 km/h is compared to the average of 31 km/h 

the difference is in an acceptable (8.5 %) range that can be justified by noise 

in the recorded signal.  

 

 41 km/h 31 km/h 19 km/h 

Average, [Pa] 9.098 4.661 3.117 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 9.098 8.153 14.514 

Deviation, [%]  -10.5 +59 

    

Manual average, [Pa] 10.435 5.462 2.960 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 10.435 9.554 13.780 

Deviation, [%]  -8.5 +32 

Table 5.15 Calculated peak amplitudes for the two lower speeds in comparison to the 

reference speed of 41 km/h for the tyre with the ‘square cavity’ 

Figure 5.25 finally shows the visual comparison between the events 

occurring at the leading edge for the tyre with the ‘square cavity’. Figure 

5.25a shows the original events and in Figure 5.25b the lower speed 

recordings are multiplied by the squared velocity difference to be directly 

comparable to the highest velocity of 41 km/h. As previously assumed there 

is a satisfactory fit in between the signal of 41 km/h and 31 km/h. However, 

when the peak from 19 km/h is multiplied by the velocity factor a rather high 

maximum pressure amplitude is obtained. This high value would not support 

the theory of a proportional connection between amplitude and velocity.  
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Figure 5.25 Average peak of the leading edge signal from the tyre with the ‘square 

cavity’ for the three different speeds: (a) normal recordings; and (b) slower velocity signals 

multiplied by the speed factor  

 

 

5.3.2.  Long cav i ty  

 

Results of a different rectangular cavity are presented in this section. This 

‘long cavity’ has exactly half the volume of the ‘square cavity’. It has the 

same depth and length as the ‘square cavity’ however the width is half the 

size. With this volume difference a direct comparison can be carried out 

considering cavity size and the pressure peak generated at the leading edge.  

Figure 5.26 shows a photograph of the tyre with the ‘long cavity’, this 

cavity is not as accurately manufactured, that is the main problem of the 

rectangular cavities. Hence deviations in the results could be obtained for 

this cavity when compared to the other ones.  
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Figure 5.26 Photograph of top view of the tyre equipped with the ‘long cavity’ 

 
Figure 5.27 Time history of the leading edge signal from the tyre with the ‘long cavity’ for 

different speeds including average peak level: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

Figure 5.27 shows the time histories of the leading edge signal 

recorded while the tyre equipped with the ‘long cavity’ was running on the 

chassis dynamometer. The maximum pressure peak for each speed is lower 

in comparison to the ‘square cavity’ however it is still possible to conduct the 

computational averaging process. Even for the lowest speed of 19 km/h 

(Figure 5.27a) there is just about enough maximum amplitude to pick it out of 
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the background noise. Table 5.16 shows the summary of the average peak 

values from the whole two seconds recording. The amplitudes for all speeds 

are half the magnitude of the ones recorded for the ‘square cavity’. This 

presents an interesting fact for the comparison to the existing models at the 

end of this chapter.  

 

 19 km/h 31 km/h 41 km/h 

Number of peaks 27 38 59 

Average value [Pa] 0.8894 2.5663 4.1637 

Table 5.16 Number and average amplitude values of peaks taken from Figure 5.27 of 

the leading edge signal of the tyre with the ‘long cavity’ 

 

 
Figure 5.28 Four different example peaks of the leading edge signal at a tyre speed of 

41 km/h generated by the ‘long cavity’ 
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 (a) (b) (c) (d) 

Peak, [Pa] 5.076 3.698 4.641 4.016 

Bottom, [Pa] 0.052 -0.812 -0.003 -0.129 

Difference, [Pa] 5.024 4.510 4.644 4.145 

Average, [Pa] 4.581 

Table 5.17 Peak value calculation for the leading edge signal of the tyre with the ‘long 

cavity’ at 41 km/h 

Figure 5.28 shows a single event at the leading edge of the ‘square 

cavity’. There is a slight difference in the peak shape in comparison to the 

other cavities. The end of the actual process seems to be cut off. There is no 

dip in the signal anymore after the pressure has settled down from the 

maximum value. Therefore it is difficult to pick the end of the signal, hence 

the point when the cavity is fully covered by the road. This is essential for the 

comparison in height for the different speeds. Due to that lack of sharpness 

in the signal the end-point is chosen to be defined by a significant gradient 

changes at the end of the signal, as shown in Figure 5.28, marked by the red 

lines. In Table 5.17 all difference values for the tyre with the ‘long cavity’ 

taken from Figure 5.28 are enumerated. The highest difference between 

maximum and minimum in one event is 5.024 Pa and the smallest is 4.145 

Pa. The resulting manually calculated average amplitude change is 4.581 Pa 

that is slightly higher than the average taken from the whole time history in 

Figure 5.27. 

The next tyre velocity to analyse for the ‘long cavity’ is 31 km/h. Four 

example events picked out of the whole two seconds recording from Figure 

5.27b, are shown in Figure 5.29. The maximum peak amplitudes reach from 

1.885 Pa up to 3.680 Pa. The difference in between the maximum and 

minimum points, marked by the red lines, are between 2.208 Pa and 2.920 

Pa. All values obtained are summarised in Table 5.18, again the calculated 

average value of 2.715 Pa is slightly higher than the computed average of 

the whole time history recording of 2.566 Pa.  
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 (a) (b) (c) (d) 

Peak, [Pa] 3.680 2.995 1.885 2.639 

Bottom, [Pa] 0.760 0.060 -0.323 -0.158 

Difference, [Pa] 2.920 2.935 2.208 2.797 

Average, [Pa] 2.715 

Table 5.18 Peak value calculation for the leading edge signal of the tyre with the ‘long 

cavity’ at 31 km/h 

 

 
Figure 5.29 Four different example peaks of the leading edge signal at a tyre speed of 

31 km/h generated by the ‘long cavity’ 

Four different events, of the 26 in total, taken from the two seconds 

recording of the tyre with the ‘long cavity’ running at 19 km/h, are shown in 

Figure 5.30. The highest value between maximum and minimum amplitude of 

the event marked by the red lines is 1.100 Pa and the lowest is 0.825 Pa. 

The average calculated by the four results, shown in Table 5.19, is 0.952 Pa. 

  



Results and discussion: leading edge 

 100 

 (a) (b) (c) (d) 

Peak, [Pa] 1.170 0.913 0.934 0.876 

Bottom, [Pa] 0.300 -0.186 -0.080 0.051 

Difference, [Pa] 0.870 1.100 1.014 0.825 

Average, [Pa] 0.952 

Table 5.19 Peak value calculation for the leading edge signal of the tyre with the ‘long 

cavity’ at 19 km/h 
 

 
Figure 5.30 Four different example peaks of the leading edge signal at a tyre speed of 

19 km/h generated by the ‘long cavity’ 

Finally all different average values obtained for the tyre with the ‘long 

cavity’ are combined in Table 5.20. The first section of Table 5.20 shows the 

average values taken from the whole two seconds recording. 41 km/h is the 

reference speed with an average peak amplitude of 4.164 Pa. By multiplying 

the average peak amplitude of 31 km/h with the squared speed difference to 

41 km/h an average of 4.489 Pa is obtained that leads to a deviation of 7.8 
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%. The result of the average peak amplitude taken at a speed of 19 km/h 

combined with the speed factor gives 4.140 Pa that delivers a good result in 

comparison to the 41 km/h (0.5 % deviation).  

The results in the lower section in Table 5.20 for the manual 

measured height of a single event confirm the proportionality for both velocity 

recordings. When 31 km/h is compared to 41 km/h a deviation of 3.6 % is 

obtained and when 19 km/h is compared to the 41 km/h a deviation of only 

3.3 % is the result. Thus also for the ‘long cavity’ a velocity square 

relationship in between the maximum amplitudes at the leading edge can be 

confirmed.  

 

 41 km/h 31 km/h 19 km/h 

Average, [Pa] 4.164 2.566 0.889 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 4.164 4.489 4.140 

Deviation, [%]  +7.8 -0.5 

    

Manual average, [Pa] 4.581 2.715 0.952 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 4.581 4.749 4.433 

Deviation, [%]  +3.6 -3.3 

Table 5.20 Calculated peak amplitudes for the two lower speeds in comparison to the 

reference speed of 41 km/h for the tyre with the ‘long cavity’ 

Figure 5.31 shows three example events of the three different 

recorded speeds. Where in Figure 5.31a the purely recorded signals are 

shown, with the 19 km/h signal displayed by the green line, the 31 km/h by 

red and the 41 km/h is shown by the blue graph. In Figure 5.31b the signals 

of 19 km/h and 31 km/h are multiplied by the factor taken from Table 5.20 in 

accordance to the reference speed of 41 km/h. A good fit of all the events 

can be shown, where duration and amplitude of the peak are nearly constant.  
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Figure 5.31 Average peak of the leading edge signal from the tyre with the ‘long cavity’ 

for the three different speeds: (a) normal recordings; and (b) slower velocity signals 

multiplied by the speed factor  

 

 

5.3.3.  W ide cav i ty  

 

The last leading edge time history to analyse is generated by the tyre 

equipped with the ‘wide cavity’. This tyre has a similar cavity design in 

comparison to the ‘long cavity’. It has the same volume and shape but its 

orientation is transversal, in respect to the rotation of the tyre, instead of 

longitudinal as for the ‘long cavity’. By using the same volume it will be 

investigated if there is a difference in sound radiation depending on 

orientation of the cavity. This then is compared to the models presented for 

the leading edge air pumping phenomena. The volume displaced by this 
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cavity is assumed to be the same as for the ‘long cavity’. Thus, if sound 

radiation at the leading edge is proportional to the volume squeezed out the 

‘wide cavity’ and the ‘long cavity’ should generate the same amount of noise. 

Figure 5.32 shows a photograph of the top view of the tyre with the ‘wide 

cavity’. The dimensions of the cavity are 4.5 mm in length, 9 mm in width and 

5 mm in depth.  

 
Figure 5.32 Photograph of top view of the tyre equipped with the ‘wide cavity’ 

 
Figure 5.33 Time history of the leading edge signal from the tyre with the ‘wide cavity’ for 

different speeds including average peak level: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

The average maximum peak amplitudes of the tyre with the ‘wide 

cavity’ are presented in Figure 5.33 and summarised in Table 5.21. In 
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comparison to the results obtained by the tyre with the ‘long cavity’ from 

Table 5.16 these average amplitudes are significantly higher. The higher 

level could be explained by the orientation of the cavity. The length of the 

‘wide cavity’, in respect to the rotation of the tyre, is only half the length of the 

‘long cavity’. Thus, the amount of time needed for the air to evacuate the 

‘wide cavity’ is also only half of the amount as for the ‘long cavity’. This 

shorter time could result in higher air speeds, hence more noise generation. 

The maximum pressure values however result in no obvious relationship of 

the ‘wide cavity’ to the ‘square cavity’ in respect to sound radiation at the 

leading edge. Whereas the ‘long cavity’, in comparison to the ‘square cavity’, 

generated about half the maximum amplitude pressure at the leading edge. 

The results obtained for the ‘wide cavity’ when compared to each other are 

promising, only the average of the 19 km/h recording seems to be low in 

comparison to 31 km/h and 41 km/h.  

 

 19 km/h 31 km/h 41 km/h 

Number of peaks 27 38 59 

Average value [Pa] 1.0492 3.1299 6.1709 

Table 5.21 Number and average amplitude values of peaks taken from Figure 5.33 of 

the leading edge signal of the tyre with the ‘wide cavity’ 

Figure 5.34 shows the example events at the leading edge for the tyre 

with the ‘wide cavity’. Remarkable for this ‘wide cavity’ is the shape of the 

peak. This time it is starting much earlier with a significant low-pressure part 

at the beginning. The end of the event in comparisons to the ‘long cavity’ is 

not as defined, it more or less settles down to around zero pressure. Defining 

the end value of the process, when the cavity is completely covered, is not as 

exact as it is for the other signals. The red lines in Figure 5.34 mark the 

beginning and end points chosen for the averaging process. The resulting 

values are summarised in Table 5.22. A maximum difference of 7.299 Pa 

and a minimum of 6.046 Pa is measured that is a significant variation. For 

this signal it would be more appropriate to measure the minimum at the 

beginning of the signal, because this is more strongly defined, however a 
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comparison to the other values in the sections before would not be possible 

in that case. 

 
Figure 5.34 Four different example peaks of the leading edge signal at a tyre speed of 

41 km/h generated by the ‘wide cavity’ 

 (a) (b) (c) (d) 

Peak, [Pa] 6.292 4.645 8.387 6.567 

Bottom, [Pa] 0.090 -1.401 1.088 0.108 

Difference, [Pa] 6.202 6.046 7.299 6.459 

Average, [Pa] 6.501 

Table 5.22 Peak value calculation for the leading edge signal of the tyre with the ‘wide 

cavity’ at 41 km/h 

Examples of the lower speed measurements of 31 km/h are shown in 

Figure 5.35. The shape of the peak is similar to the one for the higher speed. 

Table 5.23 displays the collected maximum and minimum values from Figure 

5.35. The calculated difference of the peaks is between 2.659 Pa and 3.558 
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Pa. This leads to an average of 3.206 Pa, which is slightly higher than the 

average of the whole signal of 3.129 Pa, obtained by the computer. 

 
Figure 5.35 Four different example peaks of the leading edge signal at a tyre speed of 

31 km/h generated by the ‘wide cavity’ 

 (a) (b) (c) (d) 

Peak, [Pa] 3.558 3.741 2.491 3.079 

Bottom, [Pa] 0.000 0.326 -0.700 0.420 

Difference, [Pa] 3.558 3.415 3.191 2.659 

Average, [Pa] 3.206 

Table 5.23 Peak value calculation for the leading edge signal of the tyre with the ‘wide 

cavity’ at 31 km/h 

The last measurement carried out for the tyre with the ‘wide cavity’ 

was for the tyre speed of 19 km/h. As previously mentioned the average 

value of the whole signal does not deliver a satisfactory value. Taking a 

closer look at the actual signal recorded at the event when this cavity hits the 
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road surface shows that the shape of the event differs a lot from the ones 

seen before. This low tyre speed results in a double peak at the leading edge 

of the tyre with the ‘wide cavity’, as shown for all the four examples drawn in 

Figure 5.36. Thus, the slow speed might allow the air in the cavity to 

generate a more complex fluctuation. There could be two waves travelling 

through the cavity one in the direction of rotation and another one 

perpendicular to that, resulting in a double pressure peak. Beforehand only 

one wave travelling in the direction of rotation was assumed. 

 
Figure 5.36 Four different example peaks of the leading edge signal at a tyre speed of 

19 km/h generated by the ‘wide cavity’ 

The last maximum of each event in Figure 5.36 is taken for the average 

measurement procedure, because this is closer to the end of the event. The 

values taken from Figure 5.36 are combined in Table 5.24. The highest 

difference value is 1.151 Pa and the lowest is 0.827 Pa. By adding the other 

two examples, an average value of 0.984 Pa is gained. This, however, is 

lower than the average taken from the whole signal that is 1.049 Pa. 
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 (a) (b) (c) (d) 

Peak, [Pa] 1.399 0.767 0.938 1.077 

Bottom, [Pa] 0.521 -0.312 -0.213 0.250 

Difference, [Pa] 0.878 1.079 1.151 0.827 

Average, [Pa] 0.984 

Table 5.24 Peak value calculation for the leading edge signal of the tyre with the ‘wide 

cavity’ at 19 km/h 

Table 5.25 shows a summary of all values from the tables in this 

section. The highest tyre velocity of 41 km/h is used as the reference speed 

for the other recorded velocities. The average values of the whole time 

history found by the computer are compared to the ones taken manually from 

the example events. Comparing 31 km/h to 41 km/h leads to a difference of 

0.8 Pa (11 %) for the computational method and to 0.9 Pa (13 %) for the 

manual method. The main challenge is to find the right end point of the event 

(when the cavity is fully covered by the road). For the low speed of 19 km/h a 

slightly higher difference of 1.3 Pa (20 % deviation) and 2 Pa (30 % 

deviation) is obtained when compared to 41 km/h.  
 

 41 km/h 31 km/h 19 km/h 

Average, [Pa] 6.171 3.130 1.049 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 6.171 5.475 4.885 
Deviation, [%]  -11.3 -20.8 

    

Manual average, [Pa] 6.501 3.206 0.984 

Speed factor 1 
  

! 

41
31( )

2
   

! 

41
31( )

2
 

Result, [Pa] 6.501 5.608 4.582 
Deviation, [%]  -13.3 -30 

Table 5.25 Calculated peak amplitudes for the two lower speeds in comparison to the 

reference speed of 41 km/h for the tyre with the ‘wide cavity’ 
 

Figure 5.37 summarises the comparison of the three different speeds. 

The example event for 41 km/h is shown in blue, 31 km/h is red and 19 km/h 
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is drawn in green. In Figure 5.37a the different original examples are overlaid 

and shifted so they end at the same time. Figure 5.37b shows the same 

graphs but in this case the lower speed signals are multiplied by the squared 

speed difference to 41 km/h as taken from Table 5.25. By comparing the 

signal of 41 km/h to 31 km/h a perfect overlay is shown. The signal 

generated at 19 km/h has a different shape as previously shown, a double 

peak is measured which makes the comparison difficult. However, the main 

amplitude of the signal approaches the maximum of the other two. In the next 

section these results are compared against the models available for the 

leading edge signal of a tyre.  

 
Figure 5.37 Average peak of the leading edge signal from the tyre with the ‘wide cavity’ 

for the three different speeds: (a) normal recordings; and (b) slower velocity signals 

multiplied by the speed factor  
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5.4.  Compar ison o f  the e f fec t  o f  cav i ty  geometry  

 

After this analysis of pulse height and duration of the leading edge signal for 

different types of cavities the results are compared to the models introduced 

in Chapter 3. First of all the signals of the different cavities are compared to 

each other, to investigate into the cavity dimensions and resulting noise 

generation. Figure 5.38 shows the events combined for the circular cavities 

at the top and the rectangular cavities at the bottom for a tyre speed of 41 

km/h. For the circular cavities in Figure 5.38a it is noticed that the ‘large 

cavity’ produces a sound at the leading edge that is about four times higher 

than the one produced by the ‘small cavity’. However the duration (or 

frequency) of the peak is exactly the same (0.05 ms) and does not depend 

on the cavity dimension. A connection between cavity dimensions and sound 

radiation cannot be found for those cavities, mainly because all three 

dimensions of the cavities (length, width and depth) are different. 

For a comparison of cavity geometry and noise generation the 

rectangular cavities are introduced in Figure 5.38b. All peaks have the same 

duration in time, also a duration of about 0.05 ms. This is remarkable 

because the length in the direction of rotation of the ‘wide cavity’ is only half 

the amount in comparison to the ‘long cavity’ and the ‘square cavity’ 

respectively. The tyre with the ‘square cavity’ generates the highest sound 

pressure amplitude (9.4 Pa) at the leading edge. The tyre with the ‘long 

cavity’ generates half of that sound pressure (4.7 Pa). The only difference in 

the geometry in between both cavities is the width. The ‘square cavity’ has 

double the width of the ‘long cavity’ hence double the volume. Thus a linear 

relationship between the width of a cavity and the maximum pressure 

amplitude of the leading edge signal can be found. For the ‘wide cavity’ it is 

different, despite having the same volume as the ‘long cavity’ the sound 

radiation is significantly higher. By comparing the dimensions and sound 

radiation of the ‘long cavity’ to the ‘wide cavity’, the relation between the peak 

amplitudes of the signal and cavity length is found to be .  

 

    

! 
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Figure 5.38 Leading edge signal example events of the different cavities at the same 

tyre velocity of 41 km/h: (a) circular cavities; (b) rectangular cavities 

Similar results to those discussed previously are obtained for the 

lower speed of 31 km/h shown in Figure 5.39. Here the relation between the 

signals generated is equivalent to the higher speed measurements, this is 

due to the square velocity connection in between the peak amplitudes for all 

the introduced cavities. Only the shape of the event is not as sharp as with 

the higher speed previously shown. The shape of the peaks shown in this 

Dissertation is similar to measurements conducted by Ronneberger 

[Ronneberger, 1984] and to results of simulations presented by Conte [Conte 

and Jean, 2006] for a cavity in the road surface. So the peak itself can be 

seen as a real effect and is not a creation of the filter technique applied. 

Comparing filtered and unfiltered signal also confirmed this. However, 

Ronneberger and Conte do not mention a relation between the signal 

amplitudes and volume of a cavity or the speed of a tyre.  
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Figure 5.39 Leading edge signal of the different cavities at the same tyre velocity of 31 

km/h: (a) circular cavities; (b) rectangular cavities 

 

 

 

5.5.  Frequency ana lys is  

 

Hayden [Hayden, 1971] introduced the first theory regarding air pumping and 

therefore his idea is always referred to when this effect is analysed. As 

described in detail in Chapter 3 Hayden proposed a model based on the 

monopole radiation theory, to predict the sound pressure generated by a tyre 

with cavities. This sound pressure is predicted at the frequency of excitation 

for the monopole, calculated with Equation (A1.5). Where v is the forward 

velocity that the dynamometer or tyre is driven at and xcirc is the 
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circumferencial distance of the cavities. In our case there is one cavity only in 

the whole tyre. Thus the circumference of the tyre of 0.38 m is taken as the 

cavity distance. Table 5.26 shows the frequencies of reoccurrence for the 

tyre cavity as well as for the dynamometer drum (1.570 m circumference) at 

the different speeds analysed.  

 

 41 km/h 31 km/h 19 km/h 

Frequency tyre, [Hertz] 29.9 22.7 13.9 

Frequency dynamometer, [Hertz] 7.3 5.5 3.4 

Table 5.26 Repetition frequencies of the cavity and the chassis dynamometer in 

dependence of tyre speed 
 

 
Figure 5.40 Fast Fourier Transform of leading edge signal of the tyre with the ‘large 

cavity’: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

As previously discussed the low frequency region of the recorded 

signals is dominated by the unwanted noise of the chassis dynamometer 
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driving mechanism. Due to the long distance in between the cavities (only 

one per tyre) the frequency of reoccurrence of each cavity falls into this low 

frequency region. Thus, at the fundamental reoccurrence frequencies named 

in Table 5.26 no peak can be identified in the frequency analysis of the time 

signal at the leading edge. Figure 5.40 shows the Fast Fourier Transform of 

the leading edge signal recorded from the tyre with the ‘large cavity’. As 

shown for all the three different tyre speeds the main area of interest lies 

between 4000 and 6500 Hertz. The single peak at the leading edge cannot 

generate this broadband frequency area. It is in fact due to the oscillations at 

the trailing edge that were recorded by the leading edge microphone as well, 

as shown in Figure 5.8. 

The structure of the frequency plots in between 4000 and 6500 Hertz 

consists of a high number of single peaks that build the envelope broadband 

frequency area. A magnified view of the spectrum in between 4800 and 5200 

Hertz is shown in Figure 5.41. At the top the frequency analysis of the 19 

km/h signal is plotted. The distance between the low amplitude peaks 

correspond perfectly to the repetition frequency of the cavity hitting the 

chassis dynamometer drum shown in Table 5.26. Figure 5.41b shows the 

magnified 31 km/h recording. The high level peaks correspond to the 

repetition frequency for the cavity hitting the drum at 22 Hertz. Also the 

quarter harmonics in between those peaks are present that could be 

generated by the chassis dynamometer as explained by Chang et al. [Chang 

et al., 1997]. The tyre/chassis dynamometer drum ratio is about four: this 

would support Chang’s theory. Similar observations can be made for the 

frequency content of the high speed of 41 km/h Figure 5.41c, showing very 

high amplitudes. 

Conclusively, the repetition frequency can be picked up in the 

frequency spectrum of the leading edge signal, but only harmonics of it and 

not the fundamental. For this reason the initial model presented by Hayden 

from Equation (3.4) cannot be applied, because it defines the amplitude 

pressure at the fundamental of the repetition frequency. In addition to that the 

approach from Samuels [Samuels, 1979] cannot be used either, because the 

first harmonic cannot be found in the frequency spectrum of the leading edge 

signal. 
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Figure 5.41 Magnified Fast Fourier Transform of leading edge signal of the tyre with the 

‘large cavity’: a) 19 km/h; b) 31 km/h; and c) 41 km/h 

 

 

 

5.6.  Compar ison o f  theoret ica l  mode ls  

 

5.6.1.  Monopole theory 

 

This leaves the last approach from Plotkin et al. [Plotkin et al., 1979], where 

the initial monopole idea from Hayden is transformed to calculate the 

displaced volume of a cavity or groove when entering the contact patch. 

According to Hayden this process is initiated as soon as the edge of the 

cavity touches the road, introducing a squeezing process, where the air is 
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squeezed out continuously until the whole cavity is covered. Table 5.27 

shows the closing times in dependence of cavity length L (in circumferential 

direction) and rotational speed. 

 

  Cavity length (L) 

  9 mm 4.5 mm 2.5 mm 

41 km/h 7.90*10-4 s 3.95*10-4 s 2.19*10-4 s 

31 km/h 10.45*10-4 s 5.23*10-4 s 2.90*10-4 s 

S
pe

ed
 

19 km/h 17.05*10-4 s 8.53*10-4 s 4.74*10-4 s 

Table 5.27 Duration for the cavity to be completely closed in dependence of cavity 

length and rotational speed of the tyre  

 
Figure 5.42 Zoomed example event at the leading edge of the tyre equipped with the 

‘large cavity’ for the three different speeds, the time when the cavity edge touches the road 

is marked 

In Figure 5.42 one example event of the leading edge of the tyre with 

the ‘large cavity’ is shown for each of the three different speeds recorded. A 
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possible initiation of the closing time in dependence of the tyre speed is 

marked with the coloured dashed line in accordance to the speed it is for. 

The cavity is assumed to be fully closed when the event is finished; this 

position is marked by the black dashed line at time zero on the x-axis. The 

blue line indicates the start for the tyre speed of 41 km/h. Due to noise in the 

signal identification of a start of the process that indicates an air movement 

out of the cavity at that time is impossible. However, as described previously 

there is a pressure drop in the signal from the dashed line on so the theory of 

Hayden could be supported. But a negative pressure is recorded that 

indicates air moving away from the microphone. For the other speeds the 

closing time of the cavity is of such a big order, so that due to noise in the 

signal no pressure drop is noticeable at the assumed beginning.  

 
Figure 5.43 Zoomed example event at the leading edge of the tyre equipped with the 

‘wide cavity’ for two different speeds, the time when the cavity edge touches the road is 

marked 
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Hence for the setup used the speed needs to be significantly high to 

see the initiation of the event at the leading edge. Nevertheless Plotkins’s 

theory is checked with a signal to identify if it applies to the measurements 

conducted for this Thesis. Instead of going for higher speeds, because this 

would introduce more noise, the ‘wide cavity’ with a shorter length L, hence 

quicker closing time, is chosen. 

Figure 5.43 shows the event at the leading edge for the tyre with the 

‘wide cavity’. This cavity is just half the length of the ‘large cavity’, thus 

resulting in half the closing time, see Table 5.27 for the exact times. Only 31 

km/h and 41 km/h are shown because the 19 km/h reading does not give a 

satisfying pressure drop. Again the vertical dashed red line marks the 

assumed time when the cavity starts to cover up for the tyre speed of 31 

km/h. Slightly later this happens for the speed of 41 km/h as indicated by the 

blue dashed line. Similar behaviour for both of the signals can be identified. 

In comparison to the signal produced by the ‘large cavity’ the negative 

pressure part is much more developed, even for the lower speed of 31 km/h.  

As stated in Chapter 3 Plotkin and his co-authors measured the 

volume change in a groove during a slow motion experiment, with the 

amount of fluid squeezed out of a bladder that was located in the groove with 

one open end. The results were then linked to air pressure fluctuations 

measured on the side of the leading edge of the tyre at higher speed. For our 

experiments no such volume change measurements were possible. 

Nevertheless, the recorded pressure data is transformed into the resulting 

volume change based on Equation (3.8) [Plotkin et al., 1979], to verify if this 

results in a realistic volume change. Equation (3.8) is transformed so it can 

be solved for the second derivative of the volume. Also a factor of 2 is 

implemented because of a different microphone location in front of the tyre 

instead of at the side (only one mirror source underneath the road surface). 

Thus the second derivative of the volume change becomes 
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In this equation also the speed has an exponent of two that is equivalent to 

the proportionality of pressure amplitude and speed found during the 

experiments. As noted, the second derivative of the volume is needed to 

calculate the resulting pressure. This means an integration of the pressure 

signal to obtain the volume change. A spatial way of integration is 

programmed into the software MATLAB and applied to the time signal. The 

results are shown in the next figure. 

In Figure 5.44a the signals from Figure 5.43 are repeated just cut to 

the exact length of the closing time for the cavity, depending on the tyre 

speed. The green line shows the 41 km/h recording and the blue dashed line 

the 31 km/h recording for the tyre with the wide cavity. Figure 5.44b shows 

the same signal just over distance, not time, in this case the signals have the 

same length according to the length of the cavity of 4.5 mm. The bottom part 

of the figure shows the results of the spatial integration and so the volume 

change over time and distance, respectively. The graph of the displaced 

volume shows a similar shape for both speeds. Actually the minimum value 

should be at the same level, but due to noise in the signal there is a slight 

deviation. The minimum value reached by the integrated signal is about -

3.5*10-9 m3. This corresponds to a volume change of 1.5 % when compared 

to the actual cavity volume of 222*10-9 m3. In terms of an expected volume 

change of 4.2 % calculated in the Appendices (A6) this is significantly lower 

(10 % volume change is normally assumed in the literature [Hayden, 1971]). 

In addition to that the volume is of negative order that was not obtained by 

Samuels. However, both signals result in a similar minimum value that could 

be seen as the initiation of the dominant positive pulse at the leading edge. 

The final value reached by the volume calculation in Figure 5.44 is 

different for both signals. This is explained by the peak duration. When the 

cavity impacts onto the road surface there is an airwave generated in the 

cavity. On the outside this is recorded as a negative pressure that yields to a 

positive pressure peak at the end. This peak occurs for all the cavities, as 

shown before. The amplitude of the event is dependent on the speed 

squared but has the same duration for all speeds. Thus, the peak at the end 

of the signal is not connected to Hayden’s theory, because its length does 

not change with speed. The monopole theory is only valid until this sharp 
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peak starts. Until then the volume calculation would result in a similar volume 

change, because it is assumed that the process for the lower speeds starts 

earlier. However, this would result in a negative volume change and this is 

not the way Hayden suggested it. If the positive peak only would be 

considered for the volume calculation the volume change would be of greater 

magnitude for higher speeds because the amplitude changes, but not the 

duration. Gagen [Gagen, 1999, 2000] introduced a theory with a wave 

travelling through the groove after the initial impact and being squeezed out 

at a later stage. This theory is compared to our measured results for the 

cavity as well.  

 

 
Figure 5.44 Sound pressure pulses recorded at the leading edge for the tyre with the 

‘wide cavity at 41 (dotted green) and 31 km/h (dashed blue) over: (a) time; and (b) distance; 

and prediction of the displaced cavity volume over: (c) time; and (d) distance  
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5.6.2.  Gagen model  

 

The model derived by Gagen is based on computer simulation and has not 

yet been verified by experiments. In addition to that it was initially developed 

for grooves with one open end. For our case this does not apply because the 

results presented are from cavities in a tyre tread only. Gagen assumes a 

wave travelling in direction of the width W, towards the exit of the groove 

(perpendicular to the tyre rotation) hence, a change of volume in the length of 

the groove. In this Thesis a change of volume in the depth D due to the 

impact onto the road and a wave travelling in the direction of the tyre rotation 

is assumed. Therefore Equation (3.12) is changed to 

 

 

    

! 

E =
" #W # A3 #L3 #v2

2 1$ A
D

% 

& 
' 

( 

) 
* #D4

. (5.2) 

 

The tyre geometries are used in Equation (5.2) with the assumption of a 5 % 

volume change of the cavity when compressed by the load. This is chosen 

mainly because of investigations presented in the Appendices (A6). 

However, as previously mentioned the assumed volume change to be found 

in the literature is up to 10 %. 

Table 5.28 lists the energy results of the Gagen model together with 

the maximum amplitude values from the investigations for the different types 

of cavities. All measured results show a velocity square relation for the 

cavity, this can also be seen for the energy, as the velocity is also squared in 

Equation (6.2). The other factor where energy and amplitude deliver a similar 

result is for the width of the cavity. When the results of the ‘square cavity’ are 

compared to the results of the ‘long cavity’ exactly half the amount of energy 

and also half the amplitude is generated by the long cavity. So the Gagen 

model and the measurements deliver similar results in this case. Only the 

results of the ‘wide cavity’ do not fit to Gagen’s model. This cavity actually 

generates more noise than the ‘long cavity’ but Equation (6.2) delivers a 

significantly lower energy radiation. The difference in energy generated by 

the ‘small cavity’ and the ‘large cavity’ is also too high in comparison to the 
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measurement results. Although Gagen’s model looked promising when 

comparing the results of the ‘long cavity’ and the ‘square cavity’ it cannot be 

successfully applied to all of the results presented from cavities in the tyre. 

The velocity relationship can be supported; the width relationship does 

deliver a satisfactory result as well. However Gagen’s model does not deliver 

the right energy when the influence of the cavity length towards peak 

amplitude is tested. Therefore a different approach is presented to explain 

the phenomena happening at the leading edge of a tyre equipped with a 

cavity. 

 

  41 km/h 31 km/h 19 km/h 

Large cavity, [Pa] 8.078 4.784 1.695 

Gagen model, [W]  7.55*10-9 4.32*10-9 1.62*10-9 

Small cavity, [Pa]  1.783 1.024 0.209 

Gagen model, [W] 0.13*10-9 0.07*10-9 0.03*10-9 

Square cavity, [Pa] 10.435 5.462 2.960 

Gagen model, [W] 12.72*10-9 7.27*10-9 2.73*10-9 

Long cavity, [Pa] 4.581 2.715 0.952 

Gagen model, [W] 6.36*10-9 3.64*10-9 1.37*10-9 

Wide cavity, [Pa] 6.501 3.206 0.984 
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Gagen model, [W] 1.59*10-9 0.91*10-9 0.34*10-9 

Table 5.28 Comparison of maximum pressure amplitudes to the energy model 

presented by Gagen for the different types of cavities 

 

 

5.6.3.  Inverse a i r - resonant  model  

 

By comparing the measurement results in this project another route can be 

taken that explains the signal occurring at the leading edge. This is a visual 

approach and can be identified when the leading and trailing edge signals 

are compared to each other. As previously mentioned the chassis 

dynamometer generates high levels of unwanted noise, otherwise higher 
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speeds could have been tested and so more data could be used for 

verification. However, the main process happening at the leading edge can 

be identified already with these low speeds. The signal at the leading edge 

consists of one peak, whose width is independent of the speed when the 

main shape of the peak is considered. The amplitude of the peak is the only 

speed dependent variable. Similar behaviour shows the trailing edge of the 

signal. Thus the next figure is composed where leading and trailing edge 

signal are overlaid. To produce this figure the leading edge signal is reversed 

and shifted towards the start of the trailing edge signal.  

 
Figure 5.45 Overlaid leading and trailing edge signal for the tyres equipped with the 

circular cavities: (a) ‘large cavity’ at 41 km/h; (b) ‘large cavity’ at 31 km/h; (c) ‘small cavity’ at 

41 km/h and (d) ‘small cavity’ at 31 km/h 

Figure 5.45 shows this procedure done for the circular cavities. The 

shifted leading edge signal is drawn by the solid blue line and the trailing 

edge signal is displayed by the dashed red line. On the left hand side 

example events of 41 km/h are shown and on the right hand side the lower 

speed of 31 km/h. The top of Figure 5.45 shows an example event of the tyre 
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with the ‘large cavity’. When overlaid the leading edge pulse shows a similar 

shape as the initial part of the signal at the trailing edge. The same visual 

approach can be applied to the tyre equipped with the ‘small cavity’ that is 

shown at the bottom of Figure 5.45.  

 

 
Figure 5.46 Overlaid leading and trailing edge signal for the tyres equipped with the 

rectangular cavities: (a) ‘square cavity’ at 41 km/h; (b) ‘square cavity’ at 31 km/h; (c) ‘long 

cavity’ at 41 km/h; (d) ‘long cavity’ at 31 km/h; (e) ‘wide cavity’ at 41 km/h and (f) ‘wide cavity’ 

at 31 km/h 
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Figure 5.46 shows example events of the tyres equipped with the 

rectangular cavities. At the top of this figure the results for the ‘square cavity’ 

are shown, in the middle an example signal produced by the ‘long cavity’ is 

plotted and the bottom results for the ‘wide cavity’ are drawn. Again leading 

edge pulse and initiation of the trailing edge signal overlay nicely, for all 

cavities and speeds shown. The only difference to the circular cavities is a 

sharper end of the leading edge signal, because of the shape of cavity. 

The amplitudes of the leading and the trailing edge signal show not 

always a similar level the main reason for that is the influence of noise. 

Nevertheless, the shape at the end of the signal at the leading edge is similar 

to the beginning of the signal at the trailing edge. Thus the initial part of the 

air resonant radiation that dominates the trailing edge signal, as it is 

confirmed in Chapter 8 is also to be found at the leading edge. However, only 

when the cavity at the leading edge is nearly covered by the road, thus 

pressure in the cavity is built up sufficiently to initiate the resonator. This 

initiation time of the resonator is dependent on the speed and cavity 

dimensions and can be linked to the monopole theory, the shape of the pulse 

however is purely due to the air resonant radiation and a volume 

displacement of a cavity cannot be predicted in this case. 

 

 

 

5.7.  Conc lus ion 

 

All the different measured types of cavities show a similar behaviour at the 

leading edge. It is found that the pressure peak amplitudes of the leading 

edge generated by the cavity on the road are proportional to the square of 

the speed of the rotating tyre. This can be confirmed by the literature where 

mainly sound pressure level is analysed as stated by Heckl [Heckl, 1986], 

Kim et al. [Kim et al. 1997] and Kuijpers and van Blokland [Kuijpers and van 

Blokland, 2001].  
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In these experiments the generated maximum pressure also seems to 

be linearly dependent on the width W of the cavity. The dependence of cavity 

length and generated sound is found to be . The duration in reference 

to time of the peak at the leading edge is the same for all cavities and 

speeds. It is not dependent on cavity size for the measurements presented, 

as proposed by Hayden initially. The peak amplitude relation is shown for the 

speed comparison from 31 km/h and 41 km/h and is expected for higher 

speeds as indicated by the results of the ‘small cavity’. Only at low speeds 

some irregularities occur for wider cavities as the results of the tyre with the 

‘square cavity’ and the tyre with the ‘wide cavity’ show.  

The model presented by Hayden could not be applied to the signal at 

the leading edge. The volume displacement and resulting sound radiation 

theory from Plotkin et al. [Plotkin et al., 1979] are only valid for the low 

pressure part before the sharp peak starts. When this low pressure part is 

converted into volume change it results in similar volume fluctuation for 

different speeds, however, it is of negative order. Also the model presented 

by Gagen [Gagen, 1999 and 2000] for grooves with one open end in the tyre 

cannot be applied to the measurement results presented in this Thesis. 

However, the idea presented by Gagen seems plausible, because Gagen 

stated that the air behaves sluggishly when the first impact to the groove 

takes place. This can be confirmed by the measurement because only at the 

very end, when the cavity is nearly closed a pressure change can be 

measured. Guidelines are given for the created pressure amplitude at the 

leading edge in dependence of cavity dimensions. Also a connection 

between the leading and the trailing edge is presented that could explain the 

shape of the pulse at the leading edge and might reveal this as an inverse air 

resonant radiation phenomenon.  

This air resonance is already generated at low speeds for a cavity in a 

tyre. At high speed the phenomenon is more visible, however the main 

difficulty during the measurements conducted in the facilities at 

Loughborough University proves to be the noisy chassis dynamometer. The 

generated background noise results in heavy fluctuations of the peak 

amplitude measured at the leading edge. To avoid this, as presented in here, 
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the peak needs to be analysed in detail. Further irregularities in the 

measurements occurred because of the temperature of the tyre, as rubber 

stiffness changes when the temperature changes. Therefore it was tried to 

heat the tyre up beforehand, to have a similar temperature throughout the 

short measurement period for each speed.  

It would be interesting to see what happens when the closing time of 

the cavity is so short that it reaches the duration of the pressure peak of the 

signal. As shown for the tyre with the small hole very high speeds are 

needed for this to happen that are out of the region of interest for normal 

driving conditions. After these presented results for the leading edge the 

contact patch and the trailing edge are investigated to see if similar relations 

between noise generation and cavity dimensions can be found. 
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Chapter  6   

Resu l ts  and d iscuss ion:  contact  patch 

 

 

 

After the measurement analysis of the leading edge signal the tyres with a 

groove cut into the tread are considered. In this chapter the emphasis is 

mainly on the groove resonance that occurs in the contact area between tyre 

and road. However, also the event that occurs at the trailing edge after this 

resonance is looked into. Three different types of tread are used. These are: 

a large ‘square groove’, a ‘small groove’ and a ‘chevron’ type of groove. In 

the literature different groove sizes and their contribution to noise generation 

in the far field of the tyre have been covered widely already [Ejsmont et al., 

1984]. In this Thesis the results of the grooved tyres are compared to those 

obtained by the tyres with cavity. This comparison is done to investigate into 

the air mechanisms generated by more realistic tyre treads.  

 

 

 

6.1.  Grooves 

 

The first groove to be investigated is a square transversal groove. In 

comparison to the size of the tyre this groove is of large size and will also 

introduce a significant amount of vibration to the rig.  
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6.1.1.  Square groove  

 

As with the other large cavities before, this one is more realistic to a real tyre 

from its size, but in comparison to the model tyre it is rather large. Figure 6.1 

shows the ‘square groove’ from the top view with the dimensions of 5 mm in 

depth and 5 mm in length in regard to the rotational direction. 

 
Figure 6.1 Photograph of top view of the tyre equipped with the ‘square groove’ 

Separate microphones as used before record the leading and trailing 

edge signals. For this kind of tyre, it is challenging to distinguish between the 

signal purely generated at leading edge and the one at the trailing edge. This 

is due to the pipe resonance happening when the groove is closed by the 

road surface. Thus, a continuous signal is generated that is changing 

dependent on the position of the cavity to the road. In addition to that, non-

dominant peak amplitudes are expected in comparison to the tyre with 

cavities because air has always time and space (on the sides) to escape out 

of the groove when the tread is covered by the road. 

The whole two seconds signal recorded at the trailing edge is shown 

in Figure 6.2, where the top (Figure 6.2a) shows the unfiltered signal that is 

overlaid by a substantial amount of noise. Thus, a narrower 2nd order 

bandpass Butterworth filter with a lower cut-off frequency of 3840 Hertz is 

chosen and the upper cut-off frequency is the same as used before (24000 

Hertz). The result of the bandpass filtering process is shown in Figure 6.2b. 

Now the events when the groove is in contact with the road surface can be 

identified. This gives an idea about the rather complex process happening at 

the contact patch of the tyre with the ‘square groove’. The same filtering is 

applied to the leading edge signal that results in a similar signal. 
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Figure 6.2 Recorded signals of the trailing edge of the tyre equipped with the ‘square 

groove’ at 41km/h: (a) unfiltered signal; and (b) bandpass filtered signal 

Both signals, leading and trailing edge are combined in one graph to 

draw conclusions about the process happening at the contact patch of a 

grooved tyre. Figure 6.3 shows an example of both signals recorded 

simultaneously. The blue line displays the data recorded by the leading edge 

microphone and the red line the recording at the trailing edge. By comparing 

both lines, a difference at the beginning and at the end of the event can be 

identified. When the groove is in contact with the road (assumed green area 

lasting for about 0.0007 s) both signals show similar behaviour. Although the 

groove is ventilated (open at both sides in this case) and does have 

possibilities for the air to escape, the leading edge pulse is still quite 

significant (0.6983 s). It looks similar to the high amplitude trailing edge 

recording at the end of the signal (0.6992 s), from the frequency and 

amplitude point of view. In the middle of the signal leading and trailing edge 
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recordings show an overlay. At the end of the process, when the groove lifts 

off the road, high amplitude oscillations occur that could be related to the air 

resonant radiation introduced for the tyres with cavities in the next chapter. 

This resonance is recorded by the trailing edge microphone only. The leading 

edge signal shows oscillations that appear to be influenced by the groove 

resonance. Measuring the frequency content of the signal will present 

additional information about the processes happening in the contact patch of 

the tyre with the ‘square groove’. 

 
Figure 6.3 Leading and trailing edge signal of the tyre with the ‘square groove’ at 41 

km/h and assumed contact patch area 

Figure 6.4 shows a sample event for the lower tyre speed of 31 km/h. 

The amplitude of the signal is lower, as it would be expected. The shape of 

the event is similar to the higher speed recordings previously shown in Figure 

6.3. The only difference is at the leading edge at 0.9115 s where there is a 

negative double peak that could be due to a frequency change when the 

groove resonance is initiated. It also occurs for the high-speed example at 
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0.6983 s but just not as significantly. After this first visual inspection the 

frequencies of the signal are analysed, so they can be compared to the 

models presented in Chapter 3. Especially the effect of groove resonance 

and the air resonant radiation shall be considered here. 

 
Figure 6.4 Leading and trailing edge signal of the tyre with the ‘square groove’ at 31 

km/h and assumed contact patch area 

The resonance frequency of a pipe with two open ends is dependent 

on the dimensions of the groove used, it can be calculated in conjunction 

with Equation (3.14). In this equation the diameter of a pipe is needed to 

calculate the resonance frequency of a pipe. The pipe/groove found in the 

tread of the tyre used is equipped with a square section, therefore, the 

diameter is approximated by the area of the square section. The dimensions 

of the groove L and D are used to calculate the area of the square section 

(0.000025 m2). To get the same area with a circular shape a diameter of 

0.0056 m is needed as shown in Table 6.1. The resulting pipe resonance for 

should be in a region between 5576 Hertz and 5790 Hertz.  
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 Length, [m] Diameter, [m] Resonance frequency, [Hz] 

Square groove 0.026 0.0056 5576-5790 

Table 6.1 Groove resonance frequency calculation for the tyre with the ‘square groove’ 

 
Figure 6.5 Instantaneous frequency at the leading edge for the tyre with the ‘square 

groove’ at 41 km/h and 31 km/h 

Figure 6.5 shows the instantaneous frequencies that are taken off the 

signal via the maximum and minimum values of the oscillations by the 

software MATLAB. Both speeds are shown in this graph by the crosses, 

where the red colour marks the frequencies for 31 km/h and the green colour 

shows the results for 41 km/h. Both speeds present a more or less linear 

behaviour of the frequency over time. However, the mean value of the 

crosses is a bit lower than the actual calculated resonance frequency. The 

factors influencing this deviation can be the unwanted noise in the recorded 

signal, and a not accurately cut groove. In addition to that it has to be 

considered that the cross section of the groove is a square shape, instead of 
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a circular, as needed for the pipe resonance calculations. Also the shape of 

the cross section is different when the groove is compressed due to the load 

of the tyre. At the beginning of the signal a slight decrease in frequency is 

shown for the first three crosses, this can be an indication for an inverse air 

resonant radiation at the leading edge.  

 
Figure 6.6 Instantaneous frequency at the trailing edge for the tyre with the ‘square 

groove’ at 41 km/h and 31 km/h 

The frequency analysis of the recording of the trailing edge 

microphone shown in Figure 6.6 is very interesting. Again, both speeds are 

shown by the crosses and the pipe resonance frequency is marked with the 

blue horizontal line. In addition, the air resonant radiation model proposed by 

Nilsson [Nilsson, 1979] is drawn in the figure. This model introduced in 

Chapter 3 describes the frequency behaviour at the trailing edge of a tyre 

with a groove. The model is dependent on the location of the groove in 

relation to the trailing edge, therefore in Figure 6.6 the frequency is plotted 

over distance not over time. The distance zero corresponds to the start of the 

signal at 0.6984 s in Figure 6.3 where it is assumed that the groove is fully 
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covered. As already shown in the time history plot, the initial part of the 

recording shows a constant frequency that could be explained by the pipe 

resonance happening at the contact patch. In the middle of the signal 

however, the frequency rises (at about 0.011 m). This change of frequency 

could be explained by the air resonant radiation that takes place when the 

groove lifts off the road. However the fit between the frequencies predicted 

by Nilsson and the measured instantaneous frequency is not accurate, 

furthermore it can only be achieved because of the applied bandpass filter to 

the initial signal. At the very end of the time recording shown in Figure 6.6 the 

pipe resonance dominates again due to the fact that the crosses settle down 

around the area of the blue bar.  

 
Figure 6.7 Example of the leading edge signal from the tyre with the ‘square groove’ for 

two different speeds: (a) normal recordings; and (b) slower velocity signal multiplied by 

speed factor  
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Figure 6.8 Example peak of the trailing edge signal from the tyre with the ‘square 

groove’ for two different speeds: (a) normal recordings; and (b) slower velocity signal 

multiplied by speed factor  

As previously shown at the contact patch of a tyre with a groove a 

rather complex air process occurs. It is difficult to judge from the signal when 

a process starts at the leading or trailing edge because the transition is 

influenced by the pipe resonance. However, the models from the literature for 

the pipe resonance and the air resonant radiation could indicate both 

processes. Neither of those measured frequencies for the models are 

dependent on the speed of the tyre. However, the amplitudes are speed 

dependent. This is clearly recognisable when the 31 km/h signal is directly 

compared to the signal at 41 km/h as shown in Figure 6.7 and Figure 6.8, 

separately for the leading and trailing edges. At the top of both figures the 

plain example signals are plotted, where 41 km/h is in blue and 31 km/h is in 

red. At the bottom of both figures the 31 km/h recording is multiplied by the 

speed factor to the reference speed 41 km/h, as introduced in the previous 
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chapter. These plots reveal a similar relationship between the amplitudes as 

presented in Chapter 5. Again the amplitude is dependent on the square of 

the velocity difference. This dependence applies to the constant frequency 

groove resonance section in the middle of the signal and also to the air 

resonance radiation occurring at the end of the signal. 

The signal for the tyre with the ‘square groove’ is as best explained in 

the following way: At the entrance to the contact patch an air movement is 

initiated that is converted to the groove resonance. When the groove lifts off 

the road the air resonant radiation is dominating, however, at the end this is 

converted into the groove resonance again. In the next section a significantly 

smaller groove in the tyre is investigated, to compare the results to the ones 

obtained for the ‘square groove’. 

 

 

6.1.2.  Smal l  groove  

 

This time the groove is smaller in the dimensions so it fits better to the size of 

the tyre and does not lead to that much vibrational impact into the rig when 

contacting the chassis dynamometer drum. With a cross section still nearly 

square and the length obviously the same as before, it is hoped that the 

results will look similar to the ones previously obtained by the groove with the 

larger square section. The volume is significantly smaller in comparison to 

the tyre with the ‘square groove’, thus, the overall sound generation by this 

tyre is expected to be lower. 

 
Figure 6.9 Photograph of top view of the tyre equipped with the ‘small groove’ 

As shown in Table 6.2 the smaller calculated diameter results in a 

slightly higher resonance frequency range. This time the pipe resonances are 

supposed to be in between 6073 and 6184 Hertz. 
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Figure 6.10 shows the recordings at the leading and trailing edge at 

41 km/h for the ‘small groove’. Again with the bandpass filter used the events 

are clearly visible in the time history. The leading edge signal (blue) has an 

initial peak followed by a good fit to the trailing edge signal. In the middle 

however there is a section with a drop in the amplitude (1.5853 s). A similar 

thing happens to the trailing edge signal (red). This drop could either be due 

to noise in the signal or the change of air effect from groove resonance to air 

resonant radiation, because the frequencies do not match up. Another 

explanation might be that the energy of the initiation for the groove 

resonance is simply dissipated. This time the trailing edge signal is 

dominating, whereas for the ‘square groove’ before the leading and trailing 

edge had similar maximum amplitudes 

 Length, [m] Diameter, [m] Resonance frequency, [Hz] 

Small groove 0.026 0.0025 6073-6184 

Table 6.2 Groove resonance frequency calculation for the tyre with the ‘small groove’ 

 
Figure 6.10 Leading and trailing edge signal of the tyre with the ‘small groove’ at 41 

km/h and assumed contact patch area 



Results and discussion: contact patch 

 139 

The next plot shows the recording for the lower speed of 31 km/h. In 

the leading edge recording in between 0.2136 s and 0.2141 s no significant 

signal is recorded that is also shown to some extend in the trailing edge 

recordings. When Figure 6.11 is compared to Figure 6.10 it becomes 

apparent that the shape of the signals is similar only the amplitude differs. 

Thus, both signals are expected to contain similar frequencies.  

 
Figure 6.11 Leading and trailing edge signal of the tyre with the ‘small groove’ at 31 

km/h and assumed contact patch area 

Figure 6.12 shows the instantaneous frequency content of the leading 

edge signal for both speeds of the tyre with the ‘small groove’. The red 

crosses display the measurements for 31 km/h the green ones for 41 km/h, 

respectively. The pipe resonance frequency range taken from Table 6.2 is 

shown with the blue broad line. By comparing the crosses generated by the 

measured data to the bold line a similar trend is shown. However, in the 

middle (between 0.8 s and 1.1 s) measured and calculated results differ. This 

difference could be due to the corrupted data from the measurements. 
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Nevertheless the pipe resonance seems to occur. Again as shown for the 

‘square groove’ the measured resonance frequency is slightly lower than the 

predicted one from Table 6.2. 

 
Figure 6.12 Instantaneous frequency at the leading edge for the tyre with the ‘small 

groove’ at 41 km/h and 31 km/h 

The results for the frequency calculations of the trailing edge signal 

are shown in Figure 6.13. Both speed recordings show similar frequency 

behaviour. There is a good fit to the pipe resonance area (blue) at the 

beginning and just before the model introduced by Nilsson is applied. In the 

middle section, however, the frequencies taken from the time signal are 

much higher than expected. Again at the very end of Figure 6.13 after 0.013 

m the Nilsson model is also shown in the graph. The distance zero 

corresponds to the start of the oscillations when the groove is supposed to 

be completely covered by the road at the leading edge. This time the Nilsson 

model is shifted to a further distance in comparison to the tyre with the 

‘square groove’. This shifting is due to the fact that a constant contact patch 
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length is assumed for the tyre, hence a groove with smaller width lifts off the 

road at a later stage than a wider groove. The measured frequencies show 

good agreement to the predicted frequency modulation from Nilsson. The 

trailing edge and so the air resonant radiation delivers the highest levels of 

noise generated by this kind of groove. 

 
Figure 6.13 Instantaneous frequency at the trailing edge for the tyre with the ‘small 

groove’ at 41 km/h and 31 km/h 

In comparison to the ‘square groove’ the ‘small groove’ generates less 

noise and does not present the expected groove resonance frequencies as 

well. The ‘small groove’ does show a similar behaviour, however, the 

unwanted chassis dynamometer noise seems just too significant for this type 

of tyre. For the tyre with the ‘square groove’ the maximum amplitudes 

generated at the leading and trailing edge are similar, whereas for the tyre 

with the ‘small groove’ the trailing edge signal clearly dominates. The 

ventilation of the groove could explain the aplitude difference at the trailing 

edge. The ‘square groove’ has a larger square section, hence more room for 
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the air to escape at the contact patch, whilst having the same length. Thus 

the air resonant radiation is not as significant for the  ‘square groove’.  

Figure 6.14 shows the recordings of the leading edge signal for 41 

km/h in blue and 31 km/h in red. Both recordings are combined in one plot to 

investigate into the speed and amplitude relationship of the tyre with the 

‘small groove’. At the top of the figure both originally recorded signals are 

plotted. When the slower signal is multiplied by the speed factor that is the 

squared difference to the reference speed (41 km/h) both signals show a 

similar amplitude as shown Figure 6.14b.  

 
Figure 6.14 Example of the leading edge signal from the tyre with the ‘small groove’ for 

two different speeds: (a) normal recordings; and (b) slower velocity signal multiplied by 

speed factor  

The same is generated for the trailing edge recordings as shown in 

Figure 6.15. Here again the blue line presents 41 km/h and 31 km/h is 

displayed by the red line. The time of the process at 41 km/h is much shorter 

in comparison to 31 km/h. Hence, the signals are not overlaying perfectly. 



Results and discussion: contact patch 

 143 

However, the amplitude comparison in Figure 6.15b again shows good 

agreement for the groove resonance area (1.3 s until 2.2 s). Also for the air 

resonance radiation, when comparing the signal of 41 km/h in between 2.2 s 

and 2.7 s to the signal of 31 km/h in between 2.5 s and 3.1 s. Thus, the 

speed dependence of the pressure amplitude of the signal is also to be found 

for the tyre with the ‘small groove’.  

 
Figure 6.15 Example peak of the trailing edge signal from the tyre with the ‘small groove’ 

for two different speeds: (a) normal recordings; and (b) slower velocity signal multiplied by 

speed factor  

 

 

6.1.3.  Chevron  

 

This groove type is of a very special signature. It is a realistic shape for tyres 

used for agriculture vehicles or for vehicles in the construction business. The 
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chevron is chosen to simulate a directivity of a tyre tread. This special 

arrangement of the groove means the chevron can either be pointing in the 

direction of rotation of the tyre or against it. Thus, measurements are 

conducted with the chevron running either way, to investigate into the 

difference in noise radiation. 

 
Figure 6.16 Photograph of top view of the tyre equipped with the ‘chevron’ shape of 

groove 

 
Figure 6.17 Recorded signals of the trailing edge of the tyre equipped with the ‘chevron’ 

shape of groove at 41km/h: (a) unfiltered signal; and (b) bandpass filtered signal. The 

chevron points in the direction of rotation 
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Figure 6.17 shows the results at the trailing edge of this tyre moving at 

a speed of 41 km/h with the chevron pointing into the direction of rotation. In 

this case where the chevron points to the actual road surface while rotating 

no event can be identified in the signal. The unfiltered recording in Figure 

6.17a is purely dominated by noise even in the bandpass filtered recording in 

Figure 6.17b. Thus, it can be concluded that for the setup used and the 

chevron pointing in the direction of rotation of the tyre no significant air 

related noise generation is identified. This phenomenon could be explained 

by the fact that the air is easily squeezed out of the tread, towards the open 

end of the chevron, when it enters the contact patch. Thus no air is captured 

in the tread and, hence, no significant resonance behaviour.  

 
Figure 6.18 Recorded signals of the trailing edge of the tyre equipped with the ‘chevron’ 

shape of groove at 41km/h: (a) unfiltered signal; and (b) bandpass filtered signal. The 

chevron points against the direction of rotation 

Figure 6.18 shows the signal at the trailing edge produced by the 

chevron in the tread pointing in the other direction in respect to the rotation of 
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the tyre at a tyre speed of 41 km/h. In the unfiltered part, Figure 6.18a, there 

is nothing obvious to identify, however, in the bandpass filtered signal 

recording (Figure 6.18b) peaks with a constant distance related to the 

frequency of reoccurrence, of the chevron contacting the chassis 

dynamometer drum, can be identified.  

 
Figure 6.19 Leading and trailing edge signal of the tyre with the ‘chevron’ shaped groove 

at 41 km/h, the chevron points against the direction of rotation  

A reference peak of this trailing edge signal is shown in Figure 6.19 

alongside with the leading edge signal in blue. There are no significant air 

movements at the leading edge of the tyre when the chevron hits the road 

surface. However, at the trailing edge some considerable oscillations can be 

identified with changing amplitude. For this special kind of groove it is difficult 

to judge what kind of signal that is. Due to the fact that there is no indication 

at the leading edge the initiation of the signal, in reference to the chevron 

location at the contact patch, cannot be identified. The open ends of the 

chevron point towards the trailing edge microphone therefore no signal is 
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picked up at the leading edge. To identify the responsible mechanism for this 

noise further research needs to be conducted.  

 

 Length, [m] Diameter, [m] Resonance frequency, [Hz] 

Chevron 0.0368 0.0032 4327-4398 

Half chevron 0.0184 0.0032 8126-8382 

Table 6.3 Groove resonance frequency calculation for the tyre with the ‘chevron’ 

shaped groove 

 
Figure 6.20 Instantaneous frequency at the trailing edge for the tyre with the ‘chevron’ 

shaped groove, pointing against the direction of rotation, at 41 km/h and 31 km/h 

Therefore, the frequency content of the recorded signal is analysed. In 

Figure 6.20 the frequencies of the pulse for both speeds (31 km/h and 41 

km/h) in comparison to the model derived by Nilsson are shown. Due to the 

fact that the oscillations are at the trailing edge only, Nilsson’s model this 

time starts at the cavity distance of zero meters. However, the fit is not 

satisfactory. The frequency values for both speeds seem to be rising at the 

beginning, however, are eventually rather oscillating. Thus, groove 
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resonance could be the mechanism that generates those oscillations. With 

this kind of groove the resonance frequency is rather complex to define, so 

there are two simple attempts presented.  

In Table 6.3 two different resonance regions are shown that are also 

plotted in Figure 6.20 by the blue line. Those are derived from the geometry 

of the chevron. The lower region is the frequency calculation over the whole 

length of the chevron that results in a very low resonance frequency, much 

lower than the measured values. The higher resonance frequency region 

only considers half the length of the chevron to give an idea what pipe 

resonance frequency this would produce. Unfortunately, this one is much 

higher than the measured values; therefore it could be something in between 

of both calculations due to the fact that the chevron is a special kind of 

groove. 

 
Figure 6.21 Example peak of the trailing edge signal from the tyre with the ‘chevron 

groove’ for two different speeds: (a) normal recordings; and (b) slower velocity signal 

multiplied by speed factor 
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Figure 6.21 shows the comparison of the trailing edge signals of 31 

km/h and 41 km/h for the tyre equipped with the chevron type of groove. The 

signals show a similar shape. In Figure 6.21b the slower speed recording 

(red) is multiplied by the speed factor that again leads to similar amplitudes 

of the oscillations when compared to the recording of 41 km/h (blue). Hence, 

an air effect is supposed to be the source of that oscillation at the trailing 

edge. 

 

 

 

6.2.  Conc lus ion 

 

Interesting results have been presented for more realistic treaded tyres. 

However, it is shown that with those kind of grooves the complexity of the 

whole signal generated by air movements at the contact patch is increased 

significantly. For the grooved tyres first of all a signal is generated when the 

groove enters the contact patch. This then is converted into the groove 

resonance and afterwards into the “air resonant radiation”. At the very end of 

the process it can go back to the groove resonance depending on groove 

size. The first three stages could be observed for both types of grooves used 

during the experiment. When the maximum peaks are compared the tyre with 

the ‘square groove’ shows very similar maximum pressure amplitudes for 

both leading and trailing edge. However, for the tyre with the small groove 

the maximum amplitude of the oscillation at the trailing edge is more 

significant. The “ventilation” of the groove could explain this. The ‘small 

groove’ is not as effectively ventilated because of the smaller square section 

in comparison to the ‘square groove’ (both have the same groove length). 

Thus, the air resonant radiation dominates for the tyre with the ‘small groove’ 

as it does for the tyres equipped with cavities. The signal at the trailing edge 

also is not converted into the groove resonance anymore after the air 

resonant radiation occurred. For the ‘small groove’ the leading edge 

recording only shows the groove resonance, until the very end of the signal.  
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Again the amplitudes of the signals are dependent on the speed of the 

tyre. The pressure amplitudes are, as in the previous chapter, proportional to 

the squared velocity of the tyre. This is found for the groove resonance 

recorded at the leading and trailing edge and also for the air resonant 

radiation only recorded at the trailing edge 

The tyre with the chevron cut into the tread, only produces noise in 

one direction of rotation. When the chevron points to the direction of rotation 

no recognisable noise is generated. The shape of the chevron could explain 

this. While the chevron points in the direction of rotation the air can escape at 

the leading edge towards the open ends of the chevron. However, when the 

chevron points against the direction of rotation an air movement can be 

recorded at the trailing edge. Due to the fact that the open ends of the 

chevron are squeezed first at the leading edge an air movement into the 

chevron is initiated. Thus, an airwave is moving towards the inside of the 

chevron. At the trailing edge this airwave that is reflected at the inside, is 

released out of the chevron. This movement generates a sound that is 

explained by the groove resonance rather than by the air resonant radiation. 

Again the amplitude of the signal produced by the tyre with the chevron is 

shown to be proportional to the squared tyre velocity. This experiment could 

be an explanation for the high amount of tyres, equipped with a directional 

tread, that are used recently. The directivity leads to a reduction in 

aerodynamic noise generation on both sides: the leading and the trailing 

edge of a tyre. 
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Chapter  7   

Resu l ts  and d iscuss ion:  t ra i l ing edge 

 

 

 

In this chapter the event at the trailing edge of tyres with cavities is analysed. 

Results in Chapter 5 indicated a higher pressure amplitude at the trailing 

edge in comparison to the leading edge. In addition to that, the leading edge 

microphone recorded oscillations generated at the trailing edge as well, as 

presented in Chapter 5. Therefore, a clear signal is expected at the trailing 

edge. The trailing edge pulse is also more consistent than the leading edge 

one [Ronneberger, 1989], thus there is no averaging process applied as 

used for the leading edge signal. 

 

 

 

7.1.  C i rcu lar  cav i t ies  

 

The first tread shapes investigated are the circular cavities. In analogy to 

Chapter 5, the ‘large cavity’ is considered first. For the trailing edge signal 

only one model is available that is presented by Nilsson [Nilsson et al., 1979]. 

This mathematical approach to predict the frequencies of oscillations at the 

trailing edge of a tyre with a groove is explained in detail in Chapter 3. The 

recordings produced by all cavities are compared to the model and it is 

expected to find a similar relationship between the signals for the different 

speeds as it was found for the single leading edge pulse. 
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7.1.1.  Large cav i ty   

 
Figure 7.1 Photograph of top view of the tyre equipped with the ‘large cavity’ 

The signal produced at a speed of 41 km/h by the tyre with the ‘large 

cavity’ at the trailing edge is shown in Figure 7.2. For comparison the 

unfiltered (Figure 7.2a) and bandpass filtered signal (Figure 7.2b) are shown. 

Even with no filter applied, the signal produced is strong and the event 

happening at the trailing edge can be identified clearly. The amplitudes are 

sharp and the variations in the maximum pressure reached by each peak are 

not significant. 

 
Figure 7.2 Time history of the trailing edge signal generated by the tyre with the ‘large 

cavity’ at 41 km/h: (a) unfiltered; and (b) bandpass filtered signal 
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For the filtered signal in Figure 7.2b, as for the leading edge signal, a 

2nd order bandpass Butterworth filter is implemented via the software Matlab. 

The only difference between the unfiltered and the filtered signal is the noise 

around the centreline of the signal that is significantly reduced by the filter 

used. A detailed example event of the filtered signal from Figure 7.2b is 

presented in Figure 7.3. 

 
Figure 7.3 Magnified example event of the trailing signal generated by the tyre with the 

‘large cavity’ at 41 km/h, including marked position “cavity fully open” (red dotted line) 

For a better analysis this event is shifted towards zero on the time axis 

that now marks the beginning of the signal. The trailing edge recording 

consists of an oscillation, whose amplitude increases first until a certain point 

(0.6 s), then decreases again until it is overlaid by the noise of the chassis 

dynamometer (1.6 s). This oscillation is also picked up by the microphone at 

the leading edge, as Figure 5.8 reveals. To clarify the relationship between 

cavity position and the oscillation, the red dashed line is introduced into 
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Figure 7.3. It marks the time when the ‘large cavity’ is fully open and not 

partly covered by the road surface anymore. The time for this to happen at a 

speed of 41 km/h is taken from Table 5.27. The maximum amplitude of the 

oscillation is reached before the cavity is fully open. This means that the 

resonator is most efficient when the road still covers about 1/3 of the cavity. 

Furthermore a frequency change takes place in the signal, showing a low 

frequency at the beginning that is rising towards the end of the oscillation. So 

the next logical step is to analyse the frequency content of this oscillation. 

The Fast Fourier Transform of the leading edge signal in Figure 5.40 shows 

a broadband frequency content in between 2000 and 6500 Hertz for the 

whole recorded time signal. To analyse a single oscillation adequately the 

instantaneous frequency is needed that will give information about the 

frequency at a certain time instead of just for the complete signal analysed.  

 
Figure 7.4 Instantaneous frequency in comparison to the frequency calculation via the 

maxima and minima of the oscillation found at an example event at the trailing edge of the 

tyre with the ‘large cavity’ at 41 km/h  
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Initially two different approaches are used to obtain the instantaneous 

frequency. These are a manual approach and the Hilbert Transform, 

explained in Chapter 4. For the manual approach the inverse difference of a 

neighbouring minimum and maximum value is calculated, multiplied by the 

factor 0.5. This results in the frequency in between the two points. The 

Hilbert Transform analyses the whole time signal and gives out the frequency 

at each point of the oscillation. Figure 7.4 shows a comparison of both ways 

for the instantaneous frequency, of the example oscillation from Figure 7.3. 

This time however the frequency is plotted over distance and not time, that 

enables a comparison of the different tyre speeds to each other. The green 

double crosses in Figure 7.4 mark the manually taken frequencies of all 

maxima and minima in Figure 7.3, the red line is the converted signal by the 

Hilbert transform. Both show good agreement indicating both ways deliver a 

decent analysis for the instantaneous frequency of the reviewed signal. For 

further investigation the manual approach is preferred to the Hilbert 

Transform. This is taken for two reasons, first of all due to the fact that it 

delivers quick results when implemented by a routine in Matlab and secondly 

because it is less influenced by noise in the signal. The Hilbert Transform is 

very sensitive when noise is present in a signal, as the beginning and the 

end of the red line in Figure 7.4 indicates. 

The frequency content of the example oscillation lies between 3500 

and 6200 Hertz that is similar to the results obtained by the Fast Fourier 

Transform of the whole time history as shown in the Frequency analysis 

section of Chapter 5. Starting at 3500 Hertz the frequency rises while the 

distance from the cavity to the road is increasing. The maximum frequency is 

reached at a cavity position of about 0.015 m away from the road surface, 

after that the frequency decreases again. Now the instantaneous frequency 

of events at lower tyre speeds is determined to draw conclusions for different 

velocities. 

One example oscillation of the trailing edge signal for each speed 

measured is presented in Figure 7.5. In the top plot of Figure 7.5 the 41 km/h 

recording is shown in the middle it is 31 km/h and at the bottom 19 km/h. The 

first remarkable thing is the magnitude of the oscillations that increases with 

speed. The maximum amplitude of the oscillation is not at the same time for 
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every speed recorded, this could be dependent on the cavity position. Again 

the red dashed line marks the point of the fully open cavity. Similar to the 

leading edge signal the duration of the oscillation is nearly the same for all 

tyre speeds. At the beginning of the process the frequencies decrease with 

speed this fact makes it difficult to overlay the signals and compare the 

amplitudes. The comparison of the instantaneous frequency of those three 

oscillations to the predictions calculated by Nilsson [Nilsson et al., 1979] is 

shown in the next figure. 

 
Figure 7.5 Example events of trailing edge signal from the tyre with the ‘large cavity’ at: 

(a) 41 km/h; (b) 31 km/h; and (c) 19 km/h 

As mentioned in Chapter 3, where the Nilsson model is explained in 

detail, Nilsson supposes a frequency modulation of the resonance frequency 

measured at the trailing edge of a tyre with a transversal groove in the tread. 

This frequency change occurs due to the fact that the air volume in between 

the groove and road changes when the groove progresses away from the 
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road. In this chapter Nilsson’s model is compared to cavities in the tyre. 

Equation (3.24) shows the mathematical method developed by Nilsson. With 

this equation the air resonance radiation frequency at the trailing edge can 

be predicted in dependence of the position of the cavity in respect to the 

road. The only parameters needed are tyre geometry and cavity dimension. 

In addition to that Nilsson introduces two variables whose quantity (between 

zero and one) can be freely chosen for best fit to the measured data. Those 

two variables are ! and ". The chosen values for them in accordance to the 

measurements are listed in Table 7.1. These two determined values are 

used for all the different cavity types analysed in this thesis. Thus, they are 

tyre dependent not cavity dependent. 

 

Nilsson model variables 
! " 

0.16 0.3 

Table 7.1 Chosen variables for best fit of predicted frequency (by Nilsson) to results  

Figure 7.6 presents the results obtained by comparing the 

instantaneous frequency of the three tyre speeds of the tyre with the ‘large 

cavity’. The red crosses mark the frequencies for 19 km/h, the blue ones for 

31 km/h and the green double crosses show the results of the tyre velocity of 

41 km/h. The purple line indicates the instantaneous frequencies predicted 

by the Nilsson model for this kind of cavity. A good fit of the measured 

frequencies to the predictions by Nilsson is achieved nearly over the whole 

range of the measurements. At the beginning (the first two crosses for each 

speed) there is a slight mismatch between the model and the measurements. 

This could be due to the fact that the cavity is still mainly covered by the 

road, hence compressed by the load. Thus, the cavity volume is changing 

that in the Nilsson model is assumed to be constant. Also the reference point 

for the position of the cavity used by Nilsson to compute the area underneath 

the cavity is actually the middle of the cavity. This means the Nilsson model 

is only valid when the middle of the cavity lifts off the road, for the ‘large 

cavity’ this at a position of 0.0045 m. From this point on, model and 

measured data overlay nicely. However, this does not mean that there is no 
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noise generation at an earlier point, when the cavity just lifts off the road. A 

noise is generated with slightly higher frequencies that are increasing with 

speed (this is similar to the leading edge pulse behaviour), but this is not 

incorporated in Nilsson’s model. At the end of the oscillation the signal is not 

of a strong nature anymore, the noise from the chassis dynamometer 

becomes dominant again. Therefore, the match between the Nilsson model 

and the measured frequencies is not satisfactory for higher distances than 

0.015 m. Nevertheless over the whole range a good agreement is presented 

for the signal at the trailing edge of the tyre with the ‘large cavity’ in 

comparison to the model derived by Nilsson.  

 
Figure 7.6 Instantaneous frequency of the oscillations at the trailing edge produced by 

the tyre with the ‘large cavity’ in comparison to the frequency change predicted by Nilsson 

[Nilsson et al., 1979] 

In Chapter 3 it is mentioned that Nilsson used a mathematical 

simplification to calculate the area S underneath the cavity in his model. But 

as previously stated until a distance of 0.015 m the differences between the 

accurate calculation and the assumptions made by Nilsson are negligible. 
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This is also confirmed by the yellow line in Figure 7.6 that shows the 

frequency predictions for the accurate area, S, calculated by Equation (3.19). 

 
Figure 7.7 Trailing edge signal comparison of an example event of the tyre with the 

‘large cavity’ in reference to the speed of 41 km/h, the other signals are multiplied by the 

speed factor  

Now the three different example events are compared visually over 

time. The pressure at the leading edge appears to be proportional to the 

squared power of velocity as shown in Chapter 5. This is also tested for the 

trailing edge signal. Figure 7.7 shows the oscillations of the three speeds 

now combined in one plot. The lower speed oscillations are multiplied by the 

difference of velocity squared in relation to the reference speed of 41 km/h. 

Again red is used for 19 km/h, blue for 31 km/h and green for 41 km/h. At the 

beginning of the oscillation a good fit is obtained between the amplitude and 

phase of the different signals. Afterwards, however, the oscillations differ in 

signature. One important point is the maximum value reached by each 
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oscillation. This value differs with speed, the higher the speed the earlier the 

oscillation reaches its maximum value. Another difference is the frequency; 

with higher speed the frequency of the oscillation also changes quicker. 

Thus, a comparison of the oscillations generated at different tyre speeds is 

difficult. Generally speaking the pressure oscillation at the trailing edge 

seems to be proportional to the squared power of velocity, however, due to 

the different speed and damping included, this can only be confirmed for the 

initial oscillations at the trailing edge, that are similar to the leading edge 

signal as shown in Chapter 5.  

 

 

7.1.2.  Smal l  cav i ty   

 

The next results presented are the trailing edge recordings of the tyre with 

the ‘small cavity’ (Figure 7.8). As shown for the leading edge signal even this 

small whole in the tyre tread produces an air movement that was picked up 

by the microphone. Thus, for the trailing edge the signal should be even 

more significant. 

 
Figure 7.8 Photograph of top view of the tyre equipped with the ‘small cavity’ 

Figure 7.9 presents example events of the trailing edge oscillation of 

the ‘small cavity’ for the three tyre speeds measured. At the top the event for 

41 km/h is plotted, in the middle 31 km/h and at the bottom 19 km/h. In 

comparison to the oscillations produced by the ‘large cavity’ those ones are 

smaller, in duration and amplitude. Again the maximum amplitude of the 

signal is reached before the point when the cavity is fully open (marked by 

the dashed red line). The frequency content of this rather weak signal is 

analysed in the next figure. 
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Figure 7.9 Example events of trailing edge signal from the tyre with the ‘small cavity’ at: 

(a) 41 km/h; (b) 31 km/h; and (c) 19 km/h 

To compare the model from Nilsson to the frequencies of the 

oscillations produced by the ‘small cavity’, the cavity dimensions 

implemented in the model need to be adjusted. However, the factors ! and " 

introduced before, remain constant because the tyre geometry is still the 

same. Figure 7.10 shows the frequency change predicted by Nilsson’s model 

with a purple line. Red crosses are used for 19 km/h, blue ones for 31 km/h 

and green double-crosses for a tyre velocity of 41 km/h. Although the 

amplitude of the oscillations is not high, it still produces satisfactory results 

regarding the instantaneous frequency, when compared to the predicted 

frequency modulation. However, the results are not as good as for the ‘large 

cavity’. This is due to the fact that the air pressure movements generated by 

the ‘small cavity’ are of small amplitude; hence, the produced signal in 
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comparison to the noise of the chassis dynamometer is low. However, 

nevertheless air resonant radiation seems to be active even for the tyre with 

the ‘small cavity’. 

 
Figure 7.10 Instantaneous frequency of the oscillations at the trailing edge produced by 

the tyre with the ‘small cavity’ in comparison to the frequency change predicted by Nilsson 

[Nilsson et al., 1979] 

The example oscillations from the different velocity recordings of 

Figure 7.9 are combined in Figure 7.11. 41 km/h is the reference speed 

drawn in green. The other two signals from 31 km/h (blue) and 19 km/h (red) 

are multiplied by the according speed factor used for the leading edge signal 

introduced in Chapter 5. In comparison to the results of the ‘large cavity’ the 

fit for the different speeds is better. An explanation for this could be the cavity 

length (in rotational direction). When the resonance is initiated by the ‘small 

cavity’ the time needed to fully open the cavity is shorter, so it is not that 

influenced by damping of the surrounding air. It is shown that the amplitudes 
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of the oscillations generated by the ‘small cavity’ at the trailing edge are 

proportional to the squared tyre velocity. 

 
Figure 7.11 Trailing edge signal comparison of an example event of the tyre with the 

‘small cavity’ in reference to the speed of 41 km/h, the other oscillations are multiplied by the 

speed factor 

 

 

 

7.2.  Rectangu lar  cav i t ies  

 

As the air resonant radiation is found to be the mechanism at the trailing 

edge for the tyres with circular cavities tested in this Thesis, it is interesting to 

see if there is any connection between the amplitude of the resonance and 

the cavity geometry. Therefore the results of the rectangular cavities are 

presented.  
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7.2.1.  Square cav i ty   

 
Figure 7.12 Photograph of top view of the tyre equipped with the ‘square cavity’ 

The ‘square cavity’ shown in Figure 7.12 has the largest volume of all the 

cavities tested in this Thesis. This tyre is therefore expected to produce the 

highest level of noise. In comparison to the circular cavities it should yield to 

even better results at the trailing edge, due to the fact that the square shape 

is more realistic to a real tyre and this is what the Nilsson model was 

developed for.  

 
Figure 7.13 Example events of trailing edge signal from the tyre with the ‘square cavity’ 

at: (a) 41 km/h; (b) 31 km/h; and (c) 19 km/h 
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The time history of a single event at the trailing edge for the three 

different tyre velocities are shown separated by their speed in Figure 7.13. 

Figure 7.13a shows the oscillations of the highest tyre velocity of 41 km/h. 

This produces the highest amplitude in comparison to the lower speeds of 31 

km/h (Figure 7.13b) and 19 km/h (Figure 7.13c). This time the maximum 

amplitude reached is closer to the time when the cavity is fully open. All the 

signals have again a similar duration in time, however, the initial frequencies 

of the oscillations are lower with lower tyre velocities.  

 
Figure 7.14 Instantaneous frequency of the oscillations at the trailing edge produced by 

the tyre with the ‘square cavity’ in comparison to the frequency change predicted by Nilsson 

[Nilsson et al., 1979] 

This behaviour is also presented in the analysis of the frequency 

content of the three signals. Figure 7.14 shows the frequencies measured in 

comparison to calculated ones from the Nilsson model adjusted to the 

geometry of this cavity. The green double-crosses mark the instantaneous 

frequencies of the tyre velocity of 41 km/h the blue crosses mark 31 km/h 
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and the red ones 19 km/h. The initial frequencies for all speeds are higher 

than predicted by the Nilsson model (purple line), they rise with speed as 

mentioned before for the other cavities. When the cavity has reached the 

reference point for the Nilsson model (the middle of the cavity just lifts off the 

road surface) at 0.0045 m, model and measured frequencies show a good 

agreement. For this cavity even at the end of the resonance process the 

agreement between predicted frequency and measured results is good. In 

addition to that, it is clearly shown that with higher speeds the maximum 

frequency reached is higher as well. This increase is due to the fact that the 

oscillation lasts longer (in respect to distance) for a higher tyre velocity.  

 
Figure 7.15 Trailing edge signal comparison of an example event of the tyre with the 

‘square cavity’ in reference to the speed of 41 km/h, the other oscillations are multiplied by 

the speed factor 

The oscillations for the different velocities are combined for direct 

comparison in Figure 7.15. Here 41 km/h (green) is the reference signal 



Results and discussion: trailing edge 

 167 

again which the other examples are compared to. The signals of 31 km/h 

(blue) and 19 km/h (red) are multiplied by the speed factor according to the 

velocity difference to 41 km/h. When the blue signal (31 km/h) is compared to 

the green one (41 km/h) regarding the amplitude and shape a good 

agreement is achieved. However, this does not work well for the 19 km/h 

example oscillation. As for the leading edge for this kind of cavity the 

amplitude at 19 km/h is high in comparison to the other two tyre velocities. 

This phenomenon would support the idea that the initial excitation of the 

resonance at the trailing edge is a similar mechanism to that occurring at the 

leading edge. However, none of the existing models give an explanation why 

the amplitude of the low speed of 19 km/h is that high in comparison to the 

other speeds measured. 

 

 

7.2.2.  Long cav i ty   

 

The trailing edge signal of the tyre with the long cavity is the next to be 

looked at in detail (Figure 7.16). At the leading edge, presented in Chapter 5, 

the pressure amplitude seems to be half the magnitude of the one generated 

by the square cavity that is equivalent to the volume relationship of both 

cavities. A similar behaviour is expected to be found for the trailing edge 

signal.  

 
Figure 7.16 Photograph of top view of the tyre equipped with the ‘long cavity’ 

Figure 7.17 shows the events at the trailing edge produced by the 

‘long cavity’ at the three different speeds. The oscillation with the highest 

amplitude is generated by the tyre velocity of 41 km/h shown at the top of 
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Figure 7.17. In analogy to a decrease in speed the amplitude decreases as 

can be seen for 31 km/h (Figure 7.17b) and 19 km/h (Figure 7.17c). The 

maximum pressure of the oscillation is reached before the cavity is fully open 

(marked by the red dashed line). Again this approximately takes place when 

a third of the cavity is still covered by the road.  

 
Figure 7.17 Example events of trailing edge signal from the tyre with the ‘long cavity’ at: 

(a) 41 km/h; (b) 31 km/h; and (c) 19 km/h 

The frequency content of the three signals is shown in Figure 7.18. 

The purple line in Figure 7.18 marks the predicted frequencies by Nilsson, 

adjusted to the geometry of the ‘long cavity’. The instantaneous frequencies 

of the three measured oscillations from Figure 7.17 are plotted with the 

crosses in the colour according to the tyre speed as explained in the legend. 

Again the first two crosses of every result do not fit to the predictions from the 

mathematical model. This means that the measured frequencies are actually 

higher than predicted by Nilsson. Again this takes place before half of the 
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cavity has cleared the road, thus out of the range for the Nilsson model. 

However, it is still assumed to be the initiation of the air resonant radiation 

process only this time dependent on the velocity of the tyre. A higher speed 

results in a higher frequency. The other measured values deliver an 

especially satisfactory fit to the model, even at the end of the oscillations  

 
Figure 7.18 Instantaneous frequency of the oscillations at the trailing edge produced by 

the tyre with the ‘long cavity’ in comparison to the frequency change predicted by Nilsson 

[Nilsson et al., 1979] 

The last figure for the ‘long cavity’ shows the amplitude comparison for 

the different tyre velocities. In Figure 7.19 the oscillation in green generated 

by the ‘large cavity’ at the trailing edge at 41 km/h, is the reference signal 

where the other ones are compared to. Again when the blue signal 

generated at 31 km/h is multiplied by the squared speed difference it shows 

similarities when compared to the green signal. For the lower speed of 19 

km/h shown in red the fit is not that satisfactory. At the start of the oscillation 
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it is good, however, due to the fact that the cavity moves slower the highest 

amplitude is lower and reached later. 

 
Figure 7.19 Trailing edge signal comparison of an example event of the tyre with the 

‘long cavity’ in reference to the speed of 41 km/h, the other oscillations are multiplied by the 

speed factor 

 

 

7.2.3.  W ide cav i ty   

 

The tyre with the ‘wide cavity’ shown in Figure 7.20 is analysed in this last 

results section. This tyre has the same cavity volume cut into the tread as the 

tyre with the ‘long cavity’ just at a different orientation. Due to this different 

layout the duration needed for the cavity to be completely open is just half 

the length in comparison to the other rectangular cavities. At the leading 

edge this resulted in a higher pressure amplitude as the ‘long cavity’. 
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Figure 7.20 Photograph of top view of the tyre equipped with the ‘wide cavity’ 

Figure 7.21 shows three different example events of the trailing edge 

recordings for the three different speeds analysed. This time, due to the short 

cavity length in the rotational direction, the maximum amplitude of the 

oscillations is reached close to the actual time where the cavity is fully 

opened marked by the red dashed line. Again the length of the signals is 

similar but the amplitude varies with speed. To get an idea about the 

frequencies occurring throughout the oscillations the instantaneous 

frequency is plotted in the figure overleaf. 

 
Figure 7.21 Example events of trailing edge signal from the tyre with the ‘wide cavity’ at: 

(a) 41 km/h; (b) 31 km/h; and (c) 19 km/h 
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In Figure 7.22 the comparison of measured frequencies and the 

Nilsson predictions are shown. Similar behaviour as previously shown is 

achieved. The first two frequencies points measured do not fit to the Nilsson 

model and again they are influenced by the rotational speed of the tyre. High 

frequency values are obtained for the speed 41 km/h (green double cross) 

and lower ones for the lower speeds of 31 km/h (blue cross) and 19 km/h 

(red cross). After those two points at the beginning, the measured values of 

the different velocities plotted over distance result in a similar frequency rise 

that is predicted by the model from Nilsson. At the end of the process 

however, lower frequencies are measured as compared to those predicted 

by Nilsson.  

 
Figure 7.22 Instantaneous frequency of the oscillations at the trailing edge produced by 

the tyre with the ‘wide cavity’ in comparison to the frequency change predicted by [Nilsson et 

al., 1979] 

The direct comparison of the oscillations, multiplied by the squared 

velocity difference to 41 km/h, is shown in Figure 7.23. This time the results 
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show a similar shape, even for the low speed of 19 km/h (red). The maximum 

pressure amplitude reached is the same for all velocities. This is due to a 

shorter cavity length in the direction of tyre rotation. Therefore, the damping 

of the surrounding air has not such a big impact on the resonance produced 

at the trailing edge. It is also remarkable that for the ‘wide cavity’ a rather 

high maximum amplitude is reached that is similar to the one produced by 

the ‘square cavity’ at the trailing edge. 

 
Figure 7.23 Trailing edge signal comparison of an example event of the tyre with the 

‘wide cavity’ in reference to the speed of 41 km/h, the other oscillations are multiplied by the 

speed factor 

 

 

 

 



Results and discussion: trailing edge 

 174 

7.3.  Compar ison o f  the e f fec t  o f  cav i ty  geometry  

 

As presented for the leading edge signal, example oscillations of the different 

cavities tested are compared to each other at the same speed measured. 

 
Figure 7.24 Trailing edge signal example events of the different cavities at the same tyre 

velocity of 41 km/h: (a) circular cavities; (b) rectangular cavities 

Figure 7.24 shows example signals for a tyre velocity of 41 km/h. The 

two circular cavities are plotted at the top and the rectangular ones are 

plotted at the bottom graph of the figure. For the circular ones there is a big 

difference at the trailing edge. The shape of the signal is similar but duration 

amplitude and frequency differ significantly. There is a factor of 35 between 

the volume of both cavities but this is not obviously linked to the sound 

generation at the trailing edge. The result shown for the rectangular cavities 

in Figure 7.24b give more possibilities for interpretation. The relationship 

between cavity dimension and noise generation, as formulated for the 
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leading edge pulse, cannot be confirmed at the trailing edge. Although also 

here the ‘long cavity’ (blue) generates the lowest level of noise that was 

similar at the leading edge. However it is not half of the amplitude of the one 

produced by the ‘square cavity’ (green). This connection can only be found at 

the beginning of the signal that is found to be the same as the leading edge 

event. The time of the oscillation is nearly constant for the different 

rectangular cavities. The time when the maximum peak amplitude is reached 

(3.1 ms) is similar in between the ‘long cavity’ and the ‘square cavity’, the tyre 

with the ‘wide cavity’ peaks earlier this could be due to a shorter cavity 

length, L. The maximum amplitude of the ‘wide cavity’ and the ‘square cavity’ 

approach nearly the same value. 

 
Figure 7.25 Trailing edge signal of the different cavities at the same tyre velocity of 31 

km/h: (a) circular cavities; (b) rectangular cavities 
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Similar conclusions can be drawn for the measurements of the tyre 

speed of 31 km/h. Figure 7.25 shows the results of the oscillations produced 

separated for the circular and rectangular cavities. 

 

 

 

7.4.  Frequency ana lys is  

 

In accordance to the leading edge signal also a frequency analysis is 

conducted for the trailing edge. The instantaneous frequency of a single 

event for all the tyres tested has already been analysed. Now the whole time 

history generated by the tyre with the ‘large cavity’ is converted into the 

frequency domain for the three different speeds the tyre was driven at. 

 
Figure 7.26 Fast Fourier Transform of trailing edge signal generated by the tyre with the 

‘large cavity’: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 
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Figure 7.26 shows the Fast Fourier Transform of the whole two 

seconds recording for the unfiltered trailing edge signal of the tyre with the 

‘large cavity’. The result for a tyre velocity of 19 km/h is shown at the top of 

the figure, in the middle 31 km/h and at the bottom the result of 41 km/h is 

plotted. As for the oscillations at the trailing edge, the amplitude of the 

frequency transformation is also dependent on the speed that is shown 

clearly in the area in between 2000 and 6500 Hertz. The low frequency 

region is dominated by the noise of the chassis dynamometer driving 

mechanism. As for the leading edge signal, the repetition frequency of the 

cavity contacting the chassis dynamometer drum is low and also here 

nothing can be picked up at the fundamental frequencies from Table 5.26.  

The instantaneous frequency calculations earlier in this chapter 

showed the frequency modulation of an example trailing edge signal. The 

same resulting frequencies can be seen in Figure 7.26 where the whole time 

history of two seconds is analysed. For all the three different tyre speeds the 

area of interest is constant in between 2000 and 6500 Hertz that are the 

same values predicted by Nilsson and measured by the instantaneous 

frequency. The structure of that frequency area consists of a high number of 

single peaks that build the envelope for the broadband frequency peak.  

A more detailed view of the actual high amplitude area is presented in 

Figure 7.27 that shows only a section of the frequency area in between 3200 

and 3400 Hertz for all the three speeds. At the top the frequency spectrum of 

the 19 km/h signal is plotted. All the fine peaks are shown and the distance of 

those corresponds perfectly to the repetition frequency (13.9 Hertz) of the 

cavity hitting the chassis dynamometer drum. Figure 7.27b clarifies the 

structure of the broadband frequency at the 31 km/h. The high peaks 

correspond to the repetition frequency for the cavity hitting the drum at 22.7 

Hertz. In addition to that peaks of lower amplitude are present as well, these 

are the quarter harmonics that could be generated by the chassis 

dynamometer due to the tyre/chassis dynamometer drum ratio of about four. 

The same applies to the frequency content for the high speed of 41 km/h 

shown in Figure 7.27c. Here peaks are shown for the repetition frequency of 

29.9 Hertz and the quarter harmonics occur as well. Hence, the repetition 

frequency can be picked up at the trailing edge, however, only harmonics of 
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it and not the fundamental. These are similar observations as for the leading 

edge signal.  

 
Figure 7.27 Zoomed Fast Fourier Transform of the trailing edge signal generated by the 

tyre with the ‘large cavity’: (a) 19 km/h; (b) 31 km/h; and (c) 41 km/h 

 

 

 

7.5.  Conc lus ion 

 

This last chapter shows a detailed analysis of the trailing edge signal of tyres 

with different types of cavities in the tread. The recorded time signal was 

analysed regarding the instantaneous frequency and the amplitude 

produced. The instantaneous frequencies measured at the trailing edge were 

compared to a mathematical model introduced by Nilsson. Satisfactory 
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agreement is presented between the model and the measured data, for 

different shaped cavities.  

Therefore, it could be concluded that air resonant radiation is found to 

produce the main noise at the trailing edge for the tyres used in this research 

project. And Nilsson delivers an appropriate model to explain this 

phenomenon. Frequencies in between 2000 and 7000 Hertz can be found in 

the signal that is also proven by a Fast Fourier Transform applied to the 

recordings. It is noted that the first measured frequencies for each cavity and 

each speed do not fit to the predictions from the Nilsson model. Nilsson uses 

the middle of the cavity as the starting point. However, noise is already 

generated when the cavity just clears the road surface that could be seen as 

the initiator of the air resonant radiation. In this early stage, the middle of the 

cavity is still covered by the road. As soon as the middle of the cavity has 

cleared the road the Nilsson model is valid. In comparison to the Nilsson 

model, the highest speed always produces slightly higher frequencies than 

the lower speeds measurements. The Doppler effect could explain this 

because the source is moving towards the microphone. This is however only 

a minor difference because of the rather low speed of the tyre.  

A model for the amplitude of the air resonant radiation is not available 

in the literature. Some findings from this project regarding the amplitude 

behaviour at the trailing edge are: 

• The amplitude of the oscillation changes with cavity position 

• The amplitude is dependent on the squared velocity of the tyre. 

Although much better agreement has been shown for the 

leading edge regarding this. 

• The relationship of volume of the cavity and sound radiation 

found for the single leading edge pulse is different in 

comparison to the trailing edge oscillations. 

• The number of oscillations is similar for different tyre speeds 

but dependent on the cavity. 

• The frequency change is quicker with higher tyre speeds but 

constant with distance. 
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Chapter  8   

Conc lus ions and future work 

 

 

 

As shown during the experimental work in this Thesis, the air related 

mechanisms at the tyre/road interface are of a difficult nature to investigate 

and to explain. This Thesis gives an inside view and understanding about the 

air effects occurring, especially when a tyre with a cavity enters and leaves 

the contact patch. A detailed analysis about different cavity sizes could not 

be found in the literature, neither experiments with a solid rubber tyre, where 

other known active noise mechanisms at the tyre/road noise interface can be 

neglected. Therefore, the experimental work presented in this Thesis helps 

clarify theories of air pumping which have come into question recently.  

 

 

 

8.1.  Conc lus ion and summary o f  resu l ts  

 

Due to the initial literature survey an experimental project regarding the air 

related mechanisms at the contact patch of a tyre rolling over a road surface 

was defined. The models described in the literature consider different stages 

of the air related processes. However, the understanding about these models 

has been questioned especially by Gagen [Gagen, 2000]. By choosing a 

simple tyre design mounted onto a constructed rig acoustic measurements of 

high resolution could be carried out within the facilities available at 
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Loughborough University. This led to a detailed analysis of the leading and 

trailing edge signals of rubber tyres with cavities that are presented in this 

Thesis.  

Generally the sound radiation measurements conducted and the 

comparison of the separate leading and trailing edge recordings show that 

for tyres with cavities the main aerodynamic noise source is at the trailing 

edge. Even for the low maximum tyre velocity of 41 km/h significant levels of 

noise were generated. This supports the theory from Sandberg [Sandberg, 

2001], that tyre road noise is dominant already at low speeds. The air effects 

for tyres with pockets or even grooves are a dominant source for the 

generation of that noise. The frequencies found in the signal at the trailing 

edge can be partly modelled by the air resonant radiation theory developed 

by Nilsson [Nilsson et al., 1979]. Attempts have been made to model the 

trailing edge signal amplitude. However, a mathematical explanation could 

not be found (A8), especially because the duration of the oscillation does not 

appear to be speed dependent. Neither is there a relation between cavity 

volume or change in cavity volume and duration of the pulse. The only factor 

that has not been investigated is the depth of the cavity. This could give more 

clarification about the duration of the oscillation when the cavity lifts off the 

road surface.  

The mathematical frequency description presented by Nilsson 

overlays well with the obtained results of the trailing edge recordings. 

However, the first oscillation of a single event does not fit to the frequencies 

predicted by Nilsson for either of the tyres tested. The generated signal starts 

as soon as the cavity opens up at the trailing edge. The Nilsson model is 

valid when the middle of the cavity starts to lift off the road and this is when 

the model can be compared to the results of the measurements. The first 

part of the oscillations could be seen as the initiator of the air resonance 

radiation. The frequencies for this initial part of the oscillation are speed 

dependent, they increase with speed. Therefore, in the time domain those 

initial parts of the resonance overlay when the different speed recordings are 

compared. This beginning section is also similar in comparison to the signal 

found at the leading edge. Here the frequency of the signal changes 

proportionally with speed as well. By overlaying, the leading edge and the 
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trailing edge signal from a tyre with a cavity, a connection between both 

signals can be presented. The initial part of the trailing edge signal can be 

found at the leading edge as well, however, the oscillation of the Helmholtz 

resonator are not occurring at the leading edge.  

The process described by Hayden [Hayden, 1971], to explain the 

effect happening at the leading edge of a tyre with cavities could not be 

applied. First of all the frequency of repetition could not be identified in the 

frequency analysis of the time signal. Also the monopole theory could not be 

applied successfully to explain the results obtained. The volume change of a 

cavity due to the load of a tyre, when entering the contact patch could be 

constant. However, a connection in between the volume change and the 

sound pressure generated at the leading edge cannot be confirmed by the 

calculations in Chapter 5. Gagen [Gagen, 2000] presents a more plausible 

description of the process happening at the leading edge. However, the 

model derived by Gagen for the energy of an expelled jet at the leading edge 

of a tyre with a groove with one open end cannot be completely applied to 

the tyres with cavities either, even after alteration. However, Gagen’s theory 

about the behaviour of air in the compressed grooves seems realistic, 

especially when the peaks at the leading edge are analysed in detail. The 

duration of the peak at the leading edge and cavity length cannot be linked. 

Thus, the explanation of the air in a cavity behaving sluggishly as presented 

by Gagen could be supported. It is assumed that the peak at the leading 

edge occurs only at the end when the cavity is nearly closed. This would 

indicate that the initial air movement in a cavity is not recorded at the outside, 

hence, no noise is emitted into the environment at that stage. Only at a late 

stage of the cavity closing process can a noise be recorded. 

Similar peaks at the leading edge were also found by other authors: 

Ronneberger  [Ronneberger, 1984] for cavities in tyres and Conte [Conte and 

Jean, 2006] for cavities in the road surface. This fact and also a comparison 

of unfiltered and filtered leading edge signals reveal this sharp peak as a real 

effect that is not influenced by the filter applied. It is found that the peak 

amplitudes generated at the leading edge are dependent on the speed of the 

tyre. The higher the speed, the higher the pressure peak. However, the 

duration in time of the peak stays constant, even for different types of 
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cavities. The maximum amplitude values of that peak in the time history of 

one recording do vary, as also mentioned by Ronneberger [Ronneberger, 

1989]. However, this is found to be due to noise in the signal. Actually the 

difference between the peak and trough of the short oscillation is rather 

constant when every peak is analysed in detail. The results reveal 

proportionality to the square of the velocity for the leading edge peak 

pressure amplitude. This dependency can also be found for the acceleration 

level when impact measurements are conducted at the contact patch 

[Perisse, 2002]. The speed exponent for the sound pressure level presented 

by Kuijpers and van Blokland [Kuijpers and van Blokland, 2001], explained in 

Chapter 2, is of an order of four to five for air pumping in accordance to the 

initial model from Hayden. This order can be confirmed for the leading edge 

signal because the amplitude of the sound pressure level, when compared 

for different speeds, is proportional to the squared velocity. Furthermore this 

relationship could also be found for the groove resonance and the trailing 

edge signal (air resonant radiation) for all different tyre treads tested in the 

experiments. However this proportionality is not mentioned in the 

publications of Kuijpers and van Blokland. Instead they suggest a speed 

exponent of zero for the groove resonance and also the air resonant 

radiation phenomena. This exponent would indicate no amplitude change for 

the air resonant radiation or groove resonance, when the tyre speed is 

changing. This does not seem to be the case for the results presented in this 

Thesis. When the tyre load is decreased, the volume change of a cavity 

passing the contact zone should decrease. This would lead to a lower level 

of sound generation at the leading and the trailing edge. However, the 

frequencies are not influenced by a load change at all, as shown in the 

appendices (A7).  

When measurements are conducted there is always a possibility to 

introduce inaccuracy to the recordings. During the experiments carried out 

for this Thesis mainly the following points could have influenced the results 

obtained:  

• Changing tyre rubber stiffness due to temperature 

• Noise of chassis dynamometer 
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• Reflections from the walls, floor and ceiling of the chassis 

dynamometer chamber 

• Inaccuracy in cutting the tread  

The main point in the list is the noise from the chassis dynamometer and the 

resulting reflections in the chamber. Thus, for more accurate measurements 

an anechoic environment should be built around the chassis dynamometer 

also the noise of the driving mechanisms should be reduced significantly.  

 

 

 

8.2.  Future work  suggest ions 

 

To get an even better understanding of the air processes at the tyre/road 

interface measurements with a higher number of different cavity shapes 

could be carried out. This would give an advanced understanding about what 

is happening at the leading and trailing edge. Investigation into the depth of a 

cavity to see if this changes the results in a different radiated maximum 

sound pressure, would also be interesting. Specifically, the energy prediction 

presented by Gagen could be tested with this additional parameter. 

Another suggestion would be to try and compare a cavity to a groove 

with one open end, where both should have the same dimensions. This 

would give an interesting insight into the change of amplitude for both the 

leading and the trailing edge. Further information would be collected to derive 

a mathematical prediction of the pressure signal generated by a groove with 

two open ends that is a more realistic shape. 

The measurements presented could be repeated with a different, 

larger solid rubber tyre. This would give clarification about the influence of 

the tyre dimensions to the radiated sound especially for the constants ! and " 

used in Nilsson’s model. The cavity dimension should stay the same to 

compare it to the results obtained here. Also a real tyre filled with air could be 

tested with similar cavities/grooves for validation of the statements made in 

this Thesis. 
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Appendices 

 

 

 

A1.  Hayden mode l  

 

Hayden [Hayden, 1971] proposed a model of a noise generation mechanism 

at the leading edge of a tyre due to air movements when the tread is 

compressed. This section of the Appendix gives a further inside view of the 

model developed by Hayden. 

The monopole theory is the base for Hayden’s model. Equation (3.3) 

shows the basic understanding of that theory. By differentiation with respect 

to time Hayden assumes the volumetric flow rate per time is equal to the 

volumetric flow rate Q times the circular frequency !  

 

 
    

! 

"Q
"t

=#$Q=
"2V
"t2 , (A1.1) 

 

Combining Equations (3.3) and (3.4) for a narrow band of frequencies an 

expression for the mean squared acoustic pressure at a distance rmic from 

the source is given by 

 

 
    

! 

p2 rmic,"( ) = #2"2Q2

16 $ % 2 $ rmic
2 . (A1.2) 

 

The groove or cavity initial volume V0 is calculated by 

 

     

! 

V0 = L "D "W . (A1.3) 
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Where L is the circumferential dimension of a cavity, D is the depth of the 

cavity (tread depth), and finally W is the width of a single cavity in the 

direction of the tyre width (Figure 3.1). The only unknown variables in 

Equation (A1.2) are the mean volumetric flow rate Q(v) and the circular 

frequency of reoccurrence of the cavity !. An assumption for the mean 

volumetric flow rate according to Hayden is 

 

 
  

! 

Q v( ) =
volume change

time
=

fc( ) "D "W "L
L /v

= fc( ) "D "v "W . (A1.4) 

 

Where fc shall be the fractional change in cavity volume V0, and v is the 

forward velocity. Note the circumferential dimension of the tread 

grooves/cavities L is eliminated, so there is no influence of this factor in the 

model. Hayden wanted to take this further so the frequency of this volume 

change can be predicted as well. Thus Hayden approximated the circular 

frequency of reoccurrence of the cavities by 

 

 
    

! 

" v( ) = 2# $v
xcirc

, (A1.5) 

 

where xcirc is the circumferential distance between the cavities in the tread. 

This fundamental circular frequency ! shall be referred to as the ‘repetition 

frequency’ for the cavity hitting the road surface. By combining Equations 

(A1.2), (A1.4) and (A1.5), the sound pressure at a certain distance rmic 

generated by a groove with n as the number of cavities per tyre width can be 

calculated. 

 

 
    

! 

p rmic,v( ) =
"# v2 # fc( )# D#W

2# xcirc # rmic

# n . (A1.6) 

 

With the use of this equation Hayden aimed to predict the sound pressure at 

the repetition frequency from Equation (A1.5).  
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A2.  Gagen mode l  (wave equat ions)   

 

The model for squeezed cavities in the contact patch of a tyre derived by 

Gagen [Gagen, 1999, 2000] is based on computational fluid dynamics. 

Gagen combines the small amplitude acoustic wave equation with terms 

from fluid dynamics in squeezed cavities and calls this squeezed acoustic 

wave equations. This part of the Appendix explains the details Gagen’s 

model is based on.  

Gagen developed his equation by simulating a volume deformation in 

a groove with one open end. The volume deformation is assumed to be in 

one direction of the groove only. This direction is equivalent to the parameter 

L defined as length of groove in this Dissertation (Figure 3.1). The function of 

changing groove length, fL(t), with respect to time according to Gagen is 

given by  

 

   

! 

Lf (t) = L" fL (t) . (A2.1) 

 

When the groove is fully closed, Equation (A2.1) can be written as.  

 

   

! 

A = L" fc . (A2.2) 

 

Here A is the part of the length that L is shortened by, due to the squeezing 

of the groove. According to the notations used the variable A is given by the 

product of length, L, and fractional change of volume, fc. 

Gagen states that for a pure cavity with no open ends the density change 

with respect to time is defined as the inverse of cavity size change. Thus, 

 

 
    

! 

"(t) =
1

f (t)
. (A2.3) 

 

The speed of cavity size change, v(y,t), for an open ended groove is 

assumed to be  
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! 

v(y,t) =
˙ f (t)" y
f (t)

 (A2.4) 

 

where the speed of the air inside the groove travels in transversal direction y 

of the tyre rotation, i.e. the direction along the parameter W. So the air moves 

to the direction where the open end of the groove is. The initial mass change 

of the fluid in the groove at a certain time, t, is defined as  

 

     

! 

"m = #$ D$W $ L0 $ ˙ f (t)$ "t . (A2.5) 

 

When integrating Equation (A2.5) to the total mass, m(t) , which is expelled 

at time t, Hayden gets  

 

     

! 

m t( ) = m0 1" f (t)( ) . (A2.6) 

 

Hayden assumes linear squeezing of the groove with a volume loss, fc, as 

introduced in Equation (A2.2), then Equation (A2.8) turns into 

 

 
    

! 

m =
A
L

m0. (A2.7) 

 

For the kinetic energy, E, which Gagen defines as the expelled mass, m, at a 

velocity v(Lf,t). Thus, 

 

 
    

! 

"E =
1
2
"m# v L,t( )2 . (A2.8) 

 

After integration the total kinetic energy E at closure time, T, becomes  

 

 
    

! 

E(t) = "EpT
2 dt

0

t

#
˙ f 3(t)
f 2(t)
$ 

% 
& 

' 

( 
) . (A2.9) 

 

For a constant volume velocity, hence linear squeezing with loss of volume 

Gagen gets 
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! 

"V
V

=
t
T

=
A
L

. (A2.10) 

 

Substituting into for Equation (A2.9) Hayden defines the kinetic energy of the 

expelled yet  

 

 
  

! 

E =
A

Lf " A
Ep . (A2.11) 

 

 

 

 

A3.  N i lsson mode l  (wave equat ions)  

 

The model of the trailing edge signal generated by tyres with grooves 

developed by Nilsson, is based on propagating wave motion. This section of 

the Appendix gives further inside into the mathematical background of 

Nilsson’s air resonant radiation phenomenon.  

As the space between the tyre and the road is regularly referred to as 

being the shape of a horn (Figure 2.8) Nilsson uses the wave equation of a 

conical horn as the base of the air resonant radiation model. 

 

 
    

! 

"2#
"t2 $

2c2

x
"#
"x

$ c
"2#
"x2 = 0 , (A3.1) 

 

where ! is the velocity potential, x the distance and c the speed of sound. For 

a stationary signal at an angular frequency " and with the variable B as a 

constant, Equation (A3.1) can be expressed as 

 

 
  

! 

" #,x( ) =
B
x
$ e j #t ±kx( ) . (A3.2) 
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According to Nilsson the pressure p(",x)  and volume velocity u(",x)  can be 

deduced from the velocity potential (A3.1) as  

 

 
  

! 

p ",x( ) = #$
%&
%t

, (A3.3) 

and 

 
  

! 

u ",x( ) = S(x)#$
#x

. (A3.4) 

 

When the observer is located in the vicinity of the contact patch the only 

wave that is seen is the wave travelling away from the source through the 

horn. Very close to the source there would be one wave only in the direction 

perpendicular to the trailing edge. There the pressure according to Nilsson 

would be defined as  

 
  

! 

p ",x( ) = #
j"$% B

x
% e j "t#kx( ) . (A3.5) 

 

The volume velocity u(",x) can be written as 

 

 
    

! 

u ",x( ) = #
S(x)$ B

x2 $ 1+ jkx( )$ e j "t#kx( ) . (A3.6) 

 

The impedance Z(",x) for a monopole (for x=x1) is defined as pressure 

divided by the volume velocity  

 

 
  

! 

Z ",x( ) =
p ",x( )
u ",x( )

 (A3.7) 

 

With both Equations (A3.5) and (A3.6) inserted into Equation (A3.7) the 

following standard expression for a monopole can be obtained 

 

     

! 

Z ",x( ) =
#$ c$ kx1( )

S(x) 1+ kx1( )2[ ]
$ kx1( ) + j[ ]. (A3.8) 
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In our case the impedance can be divided into a resistance and mass 

reactance according to a simple spring mass damper relationship. This can 

be written as follows 

 

   

! 

Z ",x( ) = R ",x( ) + j"# M ",x( ) . (A3.9) 

 

Splitting Equation (A3.8) in accordance to Equation (A3.9) reveals the actual 

Resistance (3.20) and Mass (3.21) part of the damper/mass system. 

The spring constant is derived in a different way. The volume of the 

groove/cavity in the tyre is assumed to be the spring in accordance to 

Nilsson. Thus, this time the observer is located outside the tyre facing the 

trailing edge. There are two parallel standing waves to be seen, with the 

same components from Equation (A3.5) and (A3.6) as the travelling wave 

before. One standing wave towards the contact patch (for x=0) with the 

impedance Z2(",x) of  

 

     

! 

Z2 ",x( ) =
1
j"
#
"# $# x
S(x)

#
1

1% kx1

tan kx1( )
. (A3.10) 

 

There is a second standing wave with a spring like impedance Z3(",x), in the 

cavity itself defined as 

 

     

! 

Z3 ",x( ) =
1
j"
#
"# $# x
S(x)

#
1

1% kx1

tan kx1( )
. (A3.11) 

 

The impedances from Equation (A3.6) and (A3.7) connected in parallel result 

in the spring stiffness K 

 

     

! 

1
Z2 ",x( )

+
1

Z3 ",x( )

# 

$ 
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' 
( )

1
j"

=
1

K ",x( ) , (A3.12) 

 

yielding to Equation (3.22). 
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The mass, damper and spring coefficients can be combined to a 

resonance circuit. For a free movement vibration of the oscillating volume of 

air V(",t), initiated by the impulse, generated when the cavity lifts off the 

road, the circuit can be written as 

 

     

! 

M ",x( )# ˙ ̇ V + R ",x( )# ˙ V + K ",x( )#V = 0 . (A3.13) 

 

Where the oscillating volume of air, V(",t), is defined as 

 

     

! 

V ",t( ) =V1 #e
j"t . (A3.14) 

 

By combining this function of volume V(",t) with Equation (A3.13) the circular 

frequency "(x) can be calculated. It is a damped oscillation with a real and 

imaginary part  
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" x( ) =
R ",x( )

2M ",x( )
j ±

K ",x( )
M ",x( )

#
R ",x( )

2M ",x( )
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2

. (A3.15) 

 

 

 

 

A4.  Sound rad ia t ion p lo ts :  anecho ic  chamber  

 

As shown in Chapter 5 the sound radiation measurements in the chassis 

dynamometer laboratory were influenced a lot by unwanted noise and 

reflections. To check if the used equipment delivers suitable results 

measurements were done in a room with anechoic termination in place. This 

could guarantee that there is less unwanted reflections in the recordings. The 

chassis dynamometer was not located in the anechoic chamber; thus, it was 

decided to use a speaker generating a sine wave with a constant frequency. 

The rig used to accommodate the microphones around the speaker was 

explained in Chapter 3. Seven microphones were used at a time to cover 60 
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degrees of the circular measurements one meter away from the speaker. 

The microphone stand needed to be repositioned five times and then the full 

circle around the source was covered. The recorded time signal then was 

transformed within the software Matlab into the frequency domain and the 

peaks at that frequency where the sine wave was generated at was 

compared for the 42 measurement positions. Actually just 36 microphone 

position would be needed, however, with the microphones overlapping the 

results could be checked to see if the same level was recorded at the end 

position during the next set of measurements. 

The next figures show the sound radiation of 8 different frequencies 

checked from 7000 Hertz down to 500 Hertz. Those frequencies were 

chosen in accordance to the frequency modulation measured at the trailing 

edge signal of the tyre with the ‘large cavity’. For all the measurements the 

speaker was pointing to the right hand side, according to the direction of the 

trailing edge of the tyre, which produced the highest-pressure amplitude.  

This measurements show very smooth sound radiation plots around the 

source, which clearly indicates the importance of an anechoic environment. 

For the middle frequencies (1000 and 3000 Hertz) nearly no directivity can 

be seen. These plots are compared to recordings taken in the chassis 

dynamometer lab to see the influence of reflections in the next section. 
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Figure A4.1 Sound radiation, at a frequency of 7000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 

 
Figure A4.2 Sound radiation, at a frequency of 6000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 
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Figure A4.3 Sound radiation, at a frequency of 5000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 

 
Figure A4.4 Sound radiation, at a frequency of 4000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 
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Figure A4.5 Sound radiation, at a frequency of 3000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 

 
Figure A4.6 Sound radiation, at a frequency of 2000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 
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Figure A4.7 Sound radiation, at a frequency of 1000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the anechoic chamber 

 
Figure A4.8 Sound radiation, at a frequency of 500 Hertz, generated by a speaker facing 

to the right hand side of the plot, recorded in the anechoic chamber 
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A5.  Sound rad ia t ion p lo ts :  chass is  dynamometer  lab  

 

The results from the anechoic chamber before are compared to results 

obtained with the same measurement setup, done in the chassis 

dynamometer laboratories. Again a speaker is used to generate sinusoidal 

signals at the same fixed frequencies in between 500 and 7000 Hertz. The 

only difference is this time there is no anechoic termination.  

As to be seen in Figure A5.1 and the following ones for the lower 

frequencies this time the sound radiation recordings are distorted. Again the 

speaker is pointing to the right hand side, which could clearly be identified for 

the higher frequencies measured in the anechoic chamber. This time 

however nearly no directivity is to be seen. There is a lot of influence of 

reflection in this recordings especially with a constant sinusoidal signal in a 

reflective room standing waves could be generated that would not be that 

bad for a transient signal as it is produced by the tyre at the trailing edge. 

Nevertheless the influence of the reflections is clearly shown in those plots 

which explains the inaccuracy of the sound radiation plots generated for the 

tyre running on the chassis dynamometer. 

 
Figure A5.1 Sound radiation, at a frequency of 7000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 
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Figure A5.2 Sound radiation, at a frequency of 6000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 

 
Figure A5.3 Sound radiation, at a frequency of 5000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 
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Figure A5.4 Sound radiation, at a frequency of 4000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 

 
Figure A5.5 Sound radiation, at a frequency of 3000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 
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Figure A5.6 Sound radiation, at a frequency of 2000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 

 
Figure A5.7 Sound radiation, at a frequency of 1000 Hertz, generated by a speaker 

facing to the right hand side of the plot, recorded in the chassis dynamometer laboratory 
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Figure A5.8 Sound radiation, at a frequency of 500 Hertz, generated by a speaker facing 

to the right hand side of the plot, recorded in the chassis dynamometer laboratory 

 

 

 

A6.  D isp laced vo lume est imat ion 

 

To investigate into the air volume that is displaced from the cavity 

measurements were done to identify the length of the contact patch. The tyre 

tread was coated with a thin layer of water and then carefully placed on the 

chassis dynamometer drum. At that time the drum was covered with a sheet 

of paper as shown in Figure A6.1. On this sheet of paper a footprint was 

generated by the tyre that had the average length of 17.5 mm. This value of 

the stationary measurement could also be the assumed length of the contact 

patch also during driving conditions. There might be a slight change in 

contact patch length when the tyre is moving especially at high speed when 

the contact patch should be shorter. However, the speeds used during the 
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experiments are of low nature, thus, the change in contact patch length is 

assumed to be negligible.  

 
Figure A6.1 Photograph of the stationary contact patch measurement with the loaded 

tyre on the chassis dynamometer, white paper in place to get a footprint of the contact patch 

Figure A6.2 overleaf shows the illustration of the calculated volume 

change estimation for a contact patch of length C. Fist the height h needs to 

be calculated. This is done with a trigonometry definition for the triangle with 

the sides r, h and C/2, defined as   
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The roots of this quadratic function in Equation (A6.1) in dependence of the 

variable h are defined as 
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For the values of r and C named in Table A6.1 the height h results in 0.6308 

mm. In comparison to the tyre rubber coating thickness of 15 mm this is 

about 4.2 %. Thus, the volume change of every cavity in this tyre is assumed 

to be in the region of 4.2 % as well. Obviously there is going to be a slightly 

larger contact patch resulting in a higher volume change, for tyres equipped 

with large cavities. For those tyres a lot of rubber is missing when the cavity 

is in touch with the drum of the chassis dynamometer, which could results in 

a bigger compression and thus bigger volume change. However, again this is 

just a reference value to get an idea about the approximate volume 

fluctuations for the solid rubber tyres at the contact area.  

 

 r C h 

Dimension, [mm] 61 17.5 0.6308 

Table A6.1 Contact patch dimensions and resulting difference in tyre radius 

 
Figure A6.2 Illustration of the tyre deformation at the contact patch 
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A7.  Un loaded tyre  

 

The rig designed for this Thesis also had the option of changing the load of 

the tyre running on the chassis dynamometer. During the experiments it was 

found that the more load applied the more sound was generated at the 

leading and trailing edges. Thus, in the main body of the thesis only the 

results of the loaded tyre are shown. In this section the results of the 

unloaded tyre are presented but the only difference is the amplitude of the 

signal not the frequency. 

The normal weight of the rig was about 13.5 kg in addition to that 

another 20 kg of extra weights could be added to the rig. With an assumed 

centre of equilibrium of the rig at 30 % of the actual length LR the load on the 

tyre can be calculated according to the illustration in Figure A7.1.   

 
Figure A7.1 Schematic view of static forces at the tyre and rig construction 

The resulting moment equilibrium around the point where the rig is fixed 

(Fm=0) can be expressed as 

 

    

! 

LR " Ft #1.3" LR " Fr + 2" LR " Fw , (A7.1) 
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which can be reduced to  

 

    

! 

Ft "1.3# Fr + 2# Fw = 564.6 N . (A7.2) 

 

This results in a load of about 57.6 kg that is resting on the tyre. Without the 

additional weight on the rig the factor Fw in Equation (A7.1) becomes zero. 

Then the load on the tyre is approximately 17.6 kg, which is equivalent to a 

reduction of 70 %. 

A comparison of the recordings of the tyre equipped with the ‘large 

cavity’ with load and without load is shown in the next figures. Here only the 

measurements at a speed of 41 km/h are presented as reference, 

measurements with other velocities and types of cavities have been 

conducted and similar results have been obtained.  

 
Figure A7.2 Example recordings leading and trailing edge overlaid: (a) tyre with no 

additional load; and (b) tyre with additional load 
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Figure A7.2 shows an instance of a leading and trailing edge 

recording for the loaded and unloaded tyre with the ‘large cavity’. Both signal 

amplitudes, at the leading (blue) and at the trailing edge (red) are dependent 

on the load of the tyre. A higher load results in signal of higher pressure 

amplitude as it can be seen when Figure A7.2a (unloaded) is compared to 

Figure A7.2b (loaded). In addition to that the contact patch length is 

influenced by the load as well.  

 
Figure A7.3 Direct comparison of example event at: (a) the leading edge; and (b) the 

trailing edge for the loaded (red) and the unloaded tyre (green) 

Figure A7.3 shows a direct comparison of the example signals from 

Figure A7.2. The figure is separated into the leading edge example 

recordings at the top and trailing edge example recordings at the bottom. The 

green line is the recording for the loaded tyre used through this Thesis and 

the red line is the recoding from the unloaded tyre. For both, leading and 

trailing edge, only the amplitude is different not the length of the signal nor 
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the frequencies of the oscillations. Thus, the air generated noise radiation at 

to contact patch of a tyre equipped with a cavity is proportional to the load of 

the tyre and so the volume of air which is rushing out and back into the 

cavity. 

 

 

 

A8.  A i r  resonant  rad ia t ion ampl i tude 

 

 
Figure A8.1 Direct comparison of example event at (a) the trailing edge and simulated 

signal; and (b) the frequency content of measured (red) and simulated trailing edge signal 

(blue) 

Nilsson’s model previously explained, only deals with the frequencies 

generated at the trailing edge signal of a tyre. Neither the air resonant 

radiation model cannot predict maximum amplitude nor the shape. A 

sinusoidal signal with frequencies modulation in the range of the frequencies 
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obtained by Nilsson’s model is built and compared to the signal of the tyre 

with the ‘large cavity’. A teardrop function is used to simulate the shape of 

the signal as shown in Figure A8.1a. Even the frequency content of both 

signals show a similar result as shown in Figure A8.1b.  

However, a mathematical explanation for the amplitude behaviour 

cannot be found, the duration of the signal is hard to investigate from the 

measurements. Even with the damping part of Equation (A3.11) attempts 

have been made to approach the measured amplitude behaviour but this 

was not successful. Thus, a simulation of the whole trailing edge signal 

cannot be found during this research despite of the large number of 

experiments conducted.  

 


