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Abstract 

This research work characterises diesel engine soot physiochemical properties and 

engine performance and emissions for the combustion of two common mineral diesel fuels 

(low and medium sulphur) and a RME B100 biodiesel fuel at two geometric compression 

ratios (19.5:1 and 16.5:1) and a broad range of EGR (10 to 55%) for an otherwise 

unmodified VW 1.9TDI 130PS engine. The principal focus of the research is the 

physiochemical characterisation of soot sampled from the engine exhaust manifold and also 

a DPF in the exhaust and exploring how the fuel type, compression ratio and EGR influence 

the soot properties and how these properties then influence the evolution of the soot in the 

exhaust. 

A broad set of soot physiochemical characteristics have been studied which include: 

surface elemental composition, bulk elemental composition, surface area, porosity, density, 

primary particle diameter, surface acidity, PAH profile and thermogravimetrical analysis. 

Together these physiochemical characterisations have revealed fundamental insights 

concerning the signature differences between conventional mineral diesel and biodiesel 

soots and how these differences can influence the evolution of the soots in the engine 

exhaust. 

Key findings: The mineral diesel soots were largely similar apart from sulphur 

deposition and its associated effects for the medium sulphur fuel. In comparison, the RME 

B100 soot was observed to be morphologically quite different and to also have a 1.2 - 1.8x 

greater oxidation rate in the exhaust compared to the mineral fuel soots. Fuel sulphur was 

confirmed to be a primary factor for causing distinct changes in soot surface chemistry, bulk 

chemistry and affecting soot transformation in the exhaust system. A correlation of soot 

carboxylic surface acidity to soot surface O/C ratio revealed a linear relationship for most 

soots but there was observed to be a ‘knee point’ at an O/C ratio of ~0.07, below which 

carboxylic and total surface acidity went to zero very abruptly and this region of the O/C ratio 

was populated by the soots produced at high EGR. An overall 5% reduction in BMEP and 

increase in BSFC occurred with the engine compression ratio reduction and the particulate 

and gaseous emissions changes were found to be sensitive to manifold air temperature. The 

reduction in compression ratio also reduced the soot surface O/C ratio, reduced the medium 

sulphur fuel soot surface sulphur concentration 97% and increased lubricant consumption 

which increased the soot contamination from inorganics. Injector coking was 2-4 times 

higher for the B100 fuel and worse at the lower compression ratio whereas the mineral fuel 

coking sensitivity was unchanged. 

Keywords: Diesel Engine, Soot, Physiochemical, Morphology, Diesel Fuel, Biodiesel, 

Sulphur, Compression Ratio, EGR
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Chapter 1 

1 Introduction 

The popularity of the diesel engine for use in light-duty automotive 

applications has steadily grown in Western Europe with the European Automobile 

Manufacturers Association (ACEA) stating growth from 30% market share in 

1999 to over 60% present day [1]. This growth has been driven by the greater 

sensitivity of the motorist to fuel economy during this time as fuel prices and the 

cost of motoring have risen steadily. The improvement in the performance 

attributes off the diesel engine has also played a role in the engines’ popularity 

and this has come about in parallel with the increasingly sophisticated 

technologies utilised for emissions reductions with the increased specific power 

of present day diesel engines’ meeting or exceeding the performance of 

equivalent gasoline engines’. 

However, the increase in popularity has slowed in recent years as diesel 

powered vehicles have come to have an associated cost premium [2] due to the 

needs of engine manufacturers to implement expensive technologies both in the 

engine and the exhaust to meet the ever tightening Particulate Matter (PM) and 

Nitrous Oxide (NOx) legislation. This has been coupled with a disparity in fuel 

prices with diesel now generally more expensive than gasoline since 2004 which 

is explained by the US Energy Information Administration (EIA) to be due to the 

increased diesel demand and the costs refineries have faced in upgrading to 

meet low sulphur diesel fuel legislation [3]. Consequently, it is now estimated the 

average motorist needs to own a diesel vehicle for at least 14 years to recoup 

these additional costs through the diesel engines renowned increased efficiency 

[2]. This cost of ownership equation could continue to balance further against the 

diesel engine and therefore innovation is needed to mitigate this by more cost 

effectively meeting legislative emissions requirements through research. 

This growth in the popularity of the light duty diesel engine and its continued 

dominance of the medium and heavy-duty on-road and off-road markets has only 

been possible by the revolutionary developments in the engine fuel injection 

system, the air management system, the aftertreatment system and the engine 

control system. Between Euro II and Euro IV it was largely the combination of 
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fuel direct injection at increasingly higher pressures and more sophisticated 

control combined with turbocharging (multi-stage), Exhaust Gas Recirculation 

(EGR) and lower compression ratio which provided the performance and exhaust 

smoke improvements required. From Euro IV onwards in larger engines this 

combination of technologies was no longer sufficient and thus the then maturing 

Diesel Particulate Filter (DPF) technology which had come from over 20 years of 

development started to become increasingly common. 

The 80% reduction in NOx demanded for the transition from Euro V to Euro VI 

is now forcing engine manufacturers to use much higher levels of EGR on 

smaller engines and the deployment of selective catalytic reduction with urea 

based fuel additives and catalysed DPF traps on larger engines. In combination 

with all these fundamental engine technology changes there has also been a 

significant shift in the diesel fuel market with the use of biodiesel increasing 

through legislative measures both in Europe and in the US in particular [4]. 

The increasing dependence on the use of DPF technology and the growth in 

proportion of alternative fuels have placed great emphasis in recent years on an 

improved understanding of diesel engine PM emissions, especially the 

physiochemical surface and bulk characteristics of the dry carbonaceous part of 

diesel PM which is often referred to as soot. This is because the regeneration 

performance of DPF systems, whether they are catalysed or non-catalysed, has 

proven to be sensitive to soot properties [5]. In turn, the soot properties are 

sensitive to fuel, engine operating condition, EGR etc. and can evolve in the 

exhaust system as the soot trapped in the exhaust gas is subject to the combined 

processes of oxidation and condensation of volatile exhaust products [6]. 

1.1 Aims and Objectives 

The primary aim of this work is to identify elemental and physical changes in 

soot surface, bulk chemistry and morphology that result from: 1) the use of 

mineral diesel (low and medium sulphur) and biodiesel fuels 2) changes to the 

pressures and temperatures in-cylinder during combustion (achieved through 

engine geometric compression ratio change) and 3) the effect of high levels of 

EGR (>50%). 

A secondary aim of this work is to identify how changes to soot 

physiochemical and morphological characteristics influence the subsequent 

evolution of the soot as it is conveyed from the exhaust manifold to a DPF in the 

exhaust system. 
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This work therefore seeks to extend the present understanding of the 

influences of mineral/biodiesel fuel, geometric compression ratio and EGR on the 

soot trapped in a DPF to provide information to help in the development and 

optimisation of exhaust filtration systems. 

1.2 Background and Motivation 

1.2.1 Brief Synopsis of the Diesel Engine, Soot and Relevant 

Trends and Legislation 

One of the primary concerns with diesel combustion is the production of PM. 

This consists largely of carbon (soot) but also other organic and inorganic 

products of fuel pyrolysis and combustion. The primary particle diameter of these 

soots is typically 15-30 nm upon exit from the cylinder but they then grow into 

aggregate structures of several hundred nanometres as they move down the 

exhaust and later mix with the ambient air resulting in a broad size distribution. 

Diesel engine exhaust PM therefore has a complex physiochemical-

morphological description which derives from the fuel and conditions/composition 

during combustion and the conditions/composition of the exhaust gas. 

Studies on the toxicology and multiagency of diesel engine PM have grown in 

number in recent years and show that beyond the short term impairment of 

breathing in some people there are also longer-term risks of permanent lung 

damage and even cancer. Recent studies have also shown that the latest diesel 

engine technology can cause increased emission of smaller nano-sized 

particulates which are known to be more dangerous as they can penetrate 

deeper into the alveoli of the lung. The importance of this escalated very recently 

with the World Health Organisation (WHO) officially elevating diesel engine PM 

from a potential to a known carcinogen which was announced 12th June 2012 [7]. 

This was because of an increasing weight of evidence of a negative impact from 

PM on human health and increasing problems in major cities with high 

concentrations of aerosols from an ever larger population of diesel vehicles. 

As part of the Euro V-Euro VI legislation the European Union has begun the 

introduction of particulate number based restrictions for engine emissions [8] to 

ensure that the reduced mass of particulate matter from modern engines is not 

causing a higher proportion of the more dangerous smaller nano-particles. This is 

likely to encourage the more widespread adoption of DPF technology on newer 

engines and the retrofitting of older vehicles with the technology. There is 
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therefore continued pressure to better optimise and improve the design of these 

particulate filter systems. This highlights the relevancy and importance in engine 

research for improving the knowledge and understanding of diesel engine soot 

physiochemical properties. 

The question of the importance of the fuel in regard to diesel engine soot has 

reduced on the one hand with the widespread introduction of low sulphur fuels 

which help to reduce the total PM and are also necessary for Selective Catalytic 

Reduction (SCR) systems to avoid catalyst poisoning. However, on the other 

hand there has been growth in the use of biodiesel and biodiesel fuel blends in 

the last decade which has been encouraged by legislation in Europe {EU 

Renewable Energy Directive 2003/30/EC} [9] and America {Environmental 

Protection Agency, Renewable Fuel Standard} [10]. In the UK, the government 

have set a target for 5% {Renewable Energy Directive} [11] of fuel to come from 

renewable resources by 2013/2014 which follows from the EU directive 

mandating a target of 10% by 2020. In America the EPA mandates the blending 

of 3.1 billion litres of biodiesel into the petroleum fuel, which is less than 2% of 

the annual consumption [12, 13]. 

There have been increases in food prices which have been partly attributed to 

the reallocation of agricultural land and there is growing evidence for less than 

expected real-world lifecycle reductions in net CO2 emissions. Together these are 

highly likely to result in freezing of policy nearer to the current EU average of 

4.5% biofuels (78% share of which is biodiesel) with recent news reports 

indicating an impending EU policy update [14]. The UK government 

commissioned independent Gallagher Review (indirect effects of biofuels 

production) [15] is a good example of the raised concerns about the sustainability 

of biofuel targets above 5% with first generation biodiesel fuels. However, as 

things stand, biodiesel is already a part of the transport fuel system and it is thus 

an important factor in diesel engine soot research. In Europe rape seed is the 

most significant biodiesel fuel feedstock in use whereas elsewhere soybean, 

palm oil and canola oil are popular. Several references in literature agree that in 

addition to the widely reported reduction in PM mass when combusting biodiesel, 

the soots have also been observed to have a much higher rate of oxidation in the 

exhaust which has been observed to correlate to a different physical mode of 

oxidation Song et al. [16] though the fundamental reasons for this are not 

completely understood Song et al. [17]. 
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As the nucleation and growth process for particulates is complex and 

dependent upon a broad array of inter-related variables such as fuel, lubricating 

oil, injection system, combustion chamber geometry, air motion etc. it is 

necessary to research into the effects each of these individual variables in order 

to understand the overall collective effect. Two important parameters are the 

cylinder pressure and temperature which influence the formation process of soot. 

For example, Wal et al. [18] detail that pressure/temperature affect the soot 

nanostructure which then leads to different oxidation properties of the soot. 

EGR has become ubiquitous on diesel engines as a technique for reducing 

exhaust NOx but it also increases the amount of PM and has been shown to 

influence the primary particle diameter Zhu et al. [19]. The further 80% reductions 

in NOx emissions between Euro V and Euro VI will likely see increased use of 

EGR and even cooled EGR and some of alternative diesel combustion modes 

being actively developed today such as Low Temperature Combustion (LTC) use 

very high rates of EGR [20] and thus the use of very high EGR is an important 

research area when considering diesel engine soot. 

1.2.2 Important Research Topics 

By combining the practical diesel engine engineering challenges faced today 

with available knowledge, it is possible to identify the key topics which need 

addressing in diesel engine research in relation to the understanding of soot 

physicochemical properties: 

1. Medium/low Sulphur Mineral Fuel (US and European) of Different 

Origin – What are the differences in soot physiochemical characteristics 

arising from two mineral fuels from different feedstock and with different 

sulphur content such as those typically used in Western Europe and the 

United States? 

2. Rape Seed Methyl Ester (RME) B100 Soot Oxidation – Research 

indicates that biodiesel soot has a higher oxidative reactivity and thus 

lower DPF break even temperature (temperature at which a catalysed 

DPF’s regeneration rate matches the soot deposition rate) [17]. Thus, 

what are the distinguishing physiochemical-morphological characteristics 

of mineral and biodiesel soot which impact on soot oxidation rate in the 

exhaust? 

3. Cylinder Pressure-Temperature During Combustion – Research 

shows that the conditions during the pyrolysis and combustion of diesel 
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fuel (such as local temperature and pressure) affect the physiochemical-

morphological characteristics of the soot [21]. Thus, how has the 

compression ratio reduction trend of the last decade potentially affected 

soot physiochemical-morphological characteristics? 

4. Very high rates of EGR – The last decade has seen extensive research 

of alternative diesel engine combustion modes such as LTC which utilises 

high rates of EGR (>50%) as a way to achieve smoke-less, NOx-less 

combustion [20]. In what ways do such a high levels of EGR influence 

soot physiochemical-morphological properties for mineral and biodiesel 

fuels, does the soot produced by these two fuels respond the same to 

high EGR? 

1.3 Contributions of This Work 

This thesis has the following contributions to knowledge: 

1. A positive linear correlation has been identified between soot surface 

carboxylic acid concentration and soot surface O/C ratio between an O/C 

ratio of (~ 0.07 to 0.12); this applies to mineral and biodiesel soot with surface 

sulphur concentrations (< 0.3%) weight with the following exceptions: 

a. Surface sulphur concentrations (>0.3%) weight lead to substantially 

higher carboxylic surface acidity than is described by the O/C ratio 

correlation of contribution 1. 

b. At high rates of EGR (~55%) both mineral and biodiesel soot was 

observed to have no surface acidity and this correlated with a soot 

surface O/C ratio (<0.07), this produces a ‘knee’ in the linear correlation of 

contribution 1. 

2. The reduction in compression ratio reduced the medium sulphur (497 

ppm) mineral fuel soot surface sulphur concentration by 97%. This 

surface sulphur reduction influenced the surface acidity as outlined in 

contribution (1a). 

3. At high rates of EGR (~55%) the low exhaust O2 concentration (1.93-

3.09%) and low NOx concentration (23-24ppm) suppressed the oxidation 

based soot surface O/C ratio increase in the exhaust system and is 

thought to be the causative effect of contribution (1b). 

4. The B100 soot exhaust evolution through oxidation was distinct from that of 

the mineral fuel soot in that it typically increased in surface O/C ratio by a 
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factor of 1.2 to 1.8 relative to the mineral fuel soots and had associated 

large changes in surface area, porosity and density. 

5. When PAH were detected, the PAH molar mass profile analysis showed a 

preference for the PAH molar mass 178 g/mol (Phenanthrene, 

Anthracence) for all mineral and biodiesel fuels, speed/load, compression 

ratio, exhaust sample location and EGR condition. 
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Chapter 2 

2 Literature Review 

2.1 Introduction 

This chapter presents a literature review of diesel engine particulate matter 

with the emphasis on the carbonaceous soot part. First the human health and 

environmental impact of soot is considered which highlights the importance of 

improving understanding of soot physiochemical properties. This is then followed 

by a factual and quantitative review of the physiochemical characteristics of soot 

reported in literature with the emphasis on the properties investigated in the 

research work reported herein. 

2.2 Definition of Particulate Matter and Soot 

Soot is not a clearly and consistently defined substance in literature [22] and 

it is therefore important to outline several definitions utilised throughout this work. 

2.2.1 Particulate Matter 

In this work particulate matter (PM) is used to describe the combined solid 

and liquid-phase materials that are collected when engine exhaust gas is filtered 

as occurs in an emissions homologation test. The morphology of this PM at the 

exhaust exit can be summarised as a highly agglomerated solid carbonaceous 

material with condensed soluble fraction which is formed into aggregate 

structures of multiple primary particles [23, 24]. 

2.2.2 Soot 

The solid-phase material of PM is referred to in this work as soot and is 

sometimes called the solid organic fraction. This carbonaceous soot forms in 

locally fuel rich regions [24] and constitutes a variable fraction of the total 

particulate matter of usually 50% or more [22]. This is the cause of the traditional 

black smoke emissions from diesel engines. Diesel engine soot at the exhaust 

manifold physically is composed of nanometre sized particles of broad size 

distribution from the 10 nm scale (nucleus formed from several primary 1-2 nm 
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nuclei with a defined outer shell) to over 30 nm (coagulation of multiple primary 1-

2 nm nuclei surrounded by ordered graphene planes which form an outer shell). 

The composition of diesel engine soot is dominated by carbon as it originates 

from unburned fuel during combustion of hydrocarbon fuel and this carbon 

dominated composition changes as the soot ages from the first inception in fuel-

rich regions and subsequent oxidation. Newly formed soot can have an initial H/C 

ratio as low as 1 and then as the soot matures this ratio can increase to over 8 

[22, 25]. The solid-phase soot when filtered from the exhaust also has inorganic 

components entrained and these include wear metals from the engine and 

sulphur, calcium, phosphorous and zinc from the burned/partially burned fuel and 

lubricant [26, 27]. The inorganic metallic contaminates are usually grouped 

together and are referred to as ‘ash’ [24] which is the remaining residue when 

soot has been heated to over 700°C. 

This work focusses on characterising this solid-phase soot component of 

diesel engine PM and in this work soot is used throughout to describe this. 

2.2.3 Soluble Organic Fraction 

The soluble-phase material of PM is referred to in this work as the Soluble 

Organic Fraction (SOF) [23] but is also sometimes called the Volatile Organic 

Fraction (VOF). SOF is composed of hydrocarbons or other molecules which are 

the unburned fraction of the fuel and atomized and evaporated lubricant and in 

some cases hydrocarbons from the engine and exhaust wall deposits [24, 28]. 

These can either condense onto the soot surface or can nucleate to form fine 

drops in the dilute exhaust [24] or both depending upon the surrounding 

conditions in the exhaust such as temperature [6] and saturation ratio [24]. SOF 

is comprised of Polycyclic Aromatic Hydrocarbon (PAH) compounds, nitrogen 

and sulphur [24]. The SOF fraction of PM can range from less than 10% to more 

than 90% by mass and is a function of engine operating condition, being highest 

at light engine loads when exhaust temperatures are relatively low [24]. 

2.2.4 Sulphates 

Sulphates in PM have traditionally come from the organic sulphur compounds 

in the fuel [29] when sulphur concentrations in the fuel were (>50 ppm) but with 

the widespread adoption of Ultra-Low-Sulphur Diesel fuel (ULSD) with (<10ppm) 

sulphur, the sulphate component has been reduced significantly. The sulphur is 

typically oxidised to SO2 with a smaller fraction (approximately 2% [30]) being 
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SO3 that quickly reacts with water to produce sulphuric acid droplets {boiling point 

330°C [31]} and sulphate aerosol [24]. 

2.3 Soot: Health and Environmental Considerations 

PM are distributed throughout the atmosphere and have many sources both 

natural and anthropogenic, some of these sources include: skin tissue, plant 

materials, and wildfires, dust from space, construction sites, process wear, and 

combustion processes [29]. 

When carbonaceous soot is released into the atmosphere from the exhaust of 

an engine it becomes an aerosol and as a result of its physical size, size 

distribution, composition and colour etc. it can have consequences for human 

health, atmospheric weather and also when it leaves the atmosphere it can 

pollute the soil [29, 32]. Consequently, engine PM emissions are tightly regulated 

with low emitted mass limits (g/kWh) and also newly introduced particulate 

number emissions limits as part of Euro V and VI in the European Union. The 

introduction of particulate number legislation follows reports which state that the 

technologies introduced to reduce PM mass are leading to increases in the 

number of nanoparticles [33] and that there is a possibility the number of particles 

and the characteristics of them (size, composition) have a higher impact on 

health [29]. For example, particulate traps have become increasingly common as 

a result of the tightening PM legislation and these can achieve a really dramatic 

reduction in particulate emissions (typically > 99% for solid particles) [6]. 

However, there are reports that whilst particulate traps reduce the mass of soot 

emissions, they may also shift the size distribution to smaller particles [33, 34]. 

2.3.1 PM and Health Concerns 

Diesel engine exhaust is composed of many components of potential health 

concern including: PM, NOx, Carbon Monoxide (CO), and a number of air toxics 

{e.g., aldehydes, volatile organic compounds, PAH} [35, 36]. 

Carbon based PM in the atmosphere is grouped into two categories; black 

carbon and organic carbon. Black carbon is defined optically by measuring the 

change in light transmittance, reflection or absorption caused by particles [37]. 

Carbon particles collected on a filter usually attenuate light more than suspended 

particles [38-40] and most studies that characterise carbon particulates measure 

the elemental carbon rather than black carbon [37]. This black carbon has a 

relatively short residence time in the atmosphere compared to other 
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anthropogenic pollutants of concern, being estimated to remain in the 

atmosphere for about a week [41-43]. Organic Carbon is a term used most 

commonly in climate research to distinguish the carbon fraction of PM which is 

not black [37] and can describe 1000’s of different organic compounds. 

2.3.1.1 Anthropogenic PM Emissions 

The black carbon of PM global emissions enters the atmosphere from burning 

of both biomass (wood, agricultural wastes, etc.) and fossil fuels and regulations 

in most developed countries have forced down the amount emitted by these 

counties. However, rapidly growing economies in China and India have been 

emitting large amounts of black carbon into the atmosphere [44] in recent years. 

Total global annual emissions estimates for black carbon and organic carbon 

in literature have a large spread. Lamarque et al. calculate that 5.02 Tg/year of 

black carbon is going into the atmosphere and that the rate is increasing, 

additionally, around 12 Tg/year of organic carbon is emitted and this is also 

increasing [45]. Bond et al. suggest that 8.0 Tg/year for black carbon and 33.9 

Tg/year for organic carbon are emitted [37]. This work also estimates the relative 

contributions of fossil fuel, biofuel, and open burning are as 38%, 20%, and 42%, 

respectively for black carbon. These percentages are 7%, 19%, and 74% 

respectively for organic carbon. Chughtai et al. estimate that 8Tg/year of soot is 

emitted globally and accounts for about 5% of the total mass of anthropogenically 

produced aerosol [46]. Thus, in literature there is a consensus of 5-8 Tg/year of 

total anthropogenic black carbon emissions currently. 

In the case of PM emissions from internal combustion engines; Diesel 

engines generate up to 100 times more PM than equivalent sized gasoline 

engines [47, 48, 49]. Thus, research has traditionally focussed on diesel engine 

PM emissions. 

2.3.1.2 PM Size and Atmospheric Concentration 

The human body has the capability to protect against particulate matter but 

for particles below 10 µm (10,000 nm) the measures the body uses are less 

effective and this group of particles have been defined as PM10 and describe the 

respirable PM fraction [24, 47]. Indeed, the particle size is the most relevant 

factor for the respirability of soot [34]. It is estimated 70-80% of particles with 

diameters between 1 and 7 µm are deposited in the nose and throat and never 

reach the lung. 
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As the particle size gets smaller, the respirability increases and thus a second 

PM size designation exists PM2.5 which describes PM of less than 2.5 µm (2500 

nm) in diameter. It is believed that this class of PM are responsible for much of 

the health effects attributable to PM10 as the much smaller size of the particles 

means they can penetrate much deeper into the lungs and do more harm [50-52] 

Tsolakis et al. report that PM2.5 appear to have considerably enhanced toxicity 

per unit mass as compared to coarser particles between PM2.5 and PM10 [53]. 

PM2.5 particles can also remain suspended in the atmosphere for longer periods 

than larger particulate matter and can be transported by winds over long 

distances. In the atmosphere the concentrations of PM10 are seasonal, varying 

from low in the summer to high in the winter months. 

The concentration of diesel engine PM is variable with population density with 

differences of more than 35% between rural and the higher concentrations in 

urban areas. For example in the United States the average concentration is 

estimated to be 2 mg/m3 but concentrations can approach 20 – 25 mg/m3 when 

measured local to the source such as at the side of the road [54-57]. Close to a 

busy road, particle numbers are increased by a factor far greater than their mass 

[58]. 

2.3.1.3 Diesel Exhaust - An Official Carcinogen 

Diesel exhaust had long been considered as simply dirty, smelly and 

generally unpleasant with diesel particulate regarded as a nuisance dust but then 

in the 1970s the first evidence of potential negative health effects were 

demonstrated [59]. In 1988 with an increasing weight of evidence the World 

Health Organisation (WHO) first classified diesel engine particulate as a potential 

carcinogen. This designation then persisted for over 20 years but as the body of 

evidence linking diesel exhaust to human respiratory system impairment 

continued to grow, the WHO declared 12th June 2012 that diesel engine exhaust 

is carcinogenic to humans [7]. Although the official designation occurred in 2012, 

legislators had been implementing PM emissions limits for much of the period 

since the WHO’s first clarification with ever more restrictive mass-based limits. 

2.3.1.4 Associated Health Effects 

The susceptibility of humans to ambient ultrafine particles is known to vary 

amongst individuals [60-62] with a period of only brief exposure observed to 

cause acute short-term symptoms such as irritation of the eyes and nose and 

throat, breathing difficulty, wheezing, dizziness, nausea and headache. 
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Persistent exposure to diesel exhaust over longer periods, such as experienced 

by mine workers, construction, and road workers has been associated with more 

serious health problems such as lung cancer, cardiovascular and 

cardiopulmonary disease [63-65]. Indeed, many studies have shown that 

exposure to increased levels of respirable particulate is associated with increases 

in mortality and morbidity from cardiovascular and respiratory causes [66-70]. 

Rissler et al. have found when studying how diesel engine soot gets lodged in 

the lungs that in some cases more than half of the exhaust soot inhaled by 

healthy volunteers can remain in the body [60]. This is of great concern as cancer 

studies in experimental animals have shown that carcinogenicity appears to be 

due to the particulate component of the exhaust, because the filtered vapour 

phase of exhaust does not cause lung tumours [71]. 

Human trials have shown that exposure to diesel exhaust of both healthy and 

asthmatic individuals can cause airway inflammation though the evidence is 

contradictory as to whether asthmatics suffer more from exposure [47, 54]. The 

biological pro-inflammatory response to diesel exhaust exposure is reported to 

have an associated threshold exposure level which is 300 mg/m3 and which is 

likely dependent upon the gaseous/particulate composition [54]. Somers et al. 

even indicate that particles can induce inheritable mutations [72]. 

Though there is significant literature reporting on the links of PM to human 

health; the development of accepted and therefore established biological 

mechanisms to explain the underlying effects has remained elusive [34, 47, 63]. 

2.3.1.5 Mortality Rates 

The WHO estimates that there are more than half a million excess premature 

deaths a year caused by PM globally [47]. Individual countries official statements 

suggest quite wide ranging estimates for diesel soot mortality rates. In the UK the 

most recently reported government advice is that there are 35,000 excess deaths 

per year from air pollution which is equivalent to a reduction of between 7-8 

months on everyone’s life [73]. In Germany it has been estimated that in 2001 

there was at least 14,400 deaths from diesel soot exposure out of the German 

population of 82 million [74]. In the United States it is estimated that there are 

22,000-52,000 deaths per year caused by PM pollution [75]. 
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2.3.1.6 Physiochemical Characteristics and Associated Concerns 

Diesel engine PM as described earlier has diverse physiochemical 

characteristics and consequently the severity of the concern associated with PM 

is a function of these physiochemical characteristics [76]. The smaller the particle 

the greater the penetration into the lung and also the greater the surface area for 

the same overall particle mass respired, thus the higher the potential activity of 

the particles in the lung [24]. The toxicity of the particles is also a function of the 

particle bulk composition, morphology and surface composition [24, 35]. 

With the expanding research into the health impact of diesel exhaust PM, 

there has been a growing recognition that other particle characteristics may have 

a more significant impact on health than total particulate mass [24]. This is 

because over 90 % of diesel particles are below 0.1 µm (100 nm) in diameter and 

constitute between 1-20 % of the mass [24]. Consequentially, Setten et al. 

advocate the incorporation into legislation of a measure of diesel PM toxicity [29]. 

The physiochemical properties of soot produced in diesel engines are a 

function of the fuel, engine, combustion conditions etc. and thus the reported 

measured parameters in literature for diesel soot are often broad. This is 

discussed in more detail in Section 2.4. 

2.3.1.6.1 Engine, Fuel and Operating Conditions 

Su et al. state that for the same mass concentration, soot particles produced 

under low-emission conditions exhibit a much higher toxic and inflammatory 

potential than particles from an old diesel engine operating under black smoke 

conditions [77]. This was ascribed to the surface structure of the soot from a Euro 

IV diesel engine being more active, thus a soot mass restriction for such an 

engine may fail to reduce the overall toxicity to humans. 

Rissler et al. found that the deposited number of particles in the lungs of 

volunteers was much higher when exposed to diesel engine exhaust gas from an 

idling engine than during transient driving conditions [60]. This was isolated to the 

presence of a nucleation mode for which the probability of deposition was high 

[60]. Sehlstedt et al. also investigated the effects of diesel exhaust for a vehicle 

running the European Transient Cycle on 15 healthy subjects and determined 

there were was different sensitivity to different particles from different engine 

operating conditions and these differences were identified to relate to differences 

in the exhaust composition [78]. 
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Bagley et al. report that the reduction in fuel sulphur content resulting from 

legislation change, whilst giving a benefit of 90% reduction in particle numbers, 

may have resulted in increases in the mutagenicity of the particle phase due to 

resultant fuel compositional changes [79]. 

2.3.1.6.2 Particle Number and Particle Size 

There is evidence in literature that soot particle number is more important 

than the mass concentration in respect to human biological response [80, 81]. 

Schraml et al. support this by stating that there is a strong indication the diesel 

soot particle size distribution is just as important, if not more so, than the mass 

concentration in terms of the health hazard [34]. 

Rissler et al. comment that differences in soot particle size, morphology, 

volatile vs. core mass fraction, etc. may explain differences and similarities in 

cardio-respiratory responses [60]. Salvi et al. state a similar opinion that soot 

particle size may have distinct effects on the airways [47]. 

Some studies have shown that the smaller the particle, the greater 

inflammatory response in the alveolar space and which is thought to be related to 

the larger surface area of the smaller particles [6, 34, 82, 83, 86]. Furthermore, 

Donaldson et al. consider smaller particles to have a higher respirability and are 

easily deposited in the respiratory tract and in the alveolar region by diffusion and 

are thus more likely to cause respiratory diseases, inflammation, and damage to 

the lungs [84]. Research by Oberdörster et al. indicates that the smaller soot 

particles can potentially penetrate the cell membranes and enter into the blood 

and even reach the brain [85]. 

2.3.1.6.3 Particle Surface Composition and Area 

Results in literature suggest that there is a good correlation between 

inflammatory responses and soot surface area measured using the surface area 

measurement method utilised in this work [6, 85, 86], see Section 3.6.4.1. 

The surface chemical composition of the particle is reported to be important in 

determining the pulmonary oxidative stress [6] and a recent study has found that 

soot oxygen surface chemistry can have significant negative health 

consequences [77]. 

When soot leaves the engine exhaust and becomes an aerosol in the 

atmosphere, further changes occur particularly to the soot surface which can 

include the addition of material and oxidation. These can change the 
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hydrophilic/hydrophobic properties of soot and increase the probability of soot 

acting as cloud condensation nuclei. 

2.3.1.6.4 Particle Bulk Composition 

There are several components in diesel engine exhaust soot which are of 

toxicological concern and include: elemental carbon, organic carbon, PAH, nitro-

PAHs, dioxins/furans and metals [35]. The transition and rare earth elements in 

soot may be released in aqueous, buffered environments as found in lung and 

epithelial tissue of the intratracheal pathway [63]. It is proposed that the 

deposition of these metals on the lower airway may lead to the generation of 

hydroxyl radicals which in turn would cause both acute and chronic lung injuries 

[87, 88]. 

2.3.1.6.5 Polycyclic Aromatic Hydrocarbons (PAH) 

Diesel engine exhaust soot has long been known to contain PAH and several 

such as benzo[a]pyrene are known mutagens and/or carcinogens [89] and thus 

both the PAH concentration and PAH profile of diesel exhaust is important [63, 

90]. 

PAH are mainly deposited at the surface of carbonaceous soot particles and 

thus smaller particles which have a higher surface area may be of greater 

concern as they have the potential for exposing lung tissue to higher levels of 

PAH [34, 91]. 

2.3.1.6.6 Hydrophilic/Hydrophobic Characteristics 

Soot particles emitted into the atmosphere are either hydrophilic or 

hydrophobic and if hydrophilic the primary particles can grow in size in an 

aqueous environment while hydrophobic soot particles cannot [46, 92]. The 

hydration of soot derived from a variety of fuel types is generally increased by 

aging, surface oxidation, and O2 physisorption. In high relative humidity 

environments (>83%) measurements have shown that the soot surface area 

determines the adsorption capacity of the soot. In lower humidity environments 

the hydration is determined by surface functionalities. It is reported that for these 

reasons in atmospheric studies carbon blacks are not acceptable substitutes for 

soot [46]. Smith et al. investigated soot with ozone for soot derived from JP-8 

aviation fuel and found that the ozone created additional surface carboxylic 

groups which in turn increased the hydration of these particles [93]. 
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2.3.2 Soot Environmental Concerns 

Evidence has been accumulating that the global mobilization of black carbon 

from natural and anthropogenic sources is responsible for significant chemical 

and physical effects in the atmosphere [46]. These effects include participation in 

tropospheric chemistry, light scattering/absorption (thus affecting earth’s radiation 

balance), in addition to the aforementioned human pulmonary health impacts. 

2.3.2.1 Radiative Forcing 

Black carbon is considered to influence the earth’s radiation balance through 

radiative forcing microphysical indirect effects. The processes by which it affects 

the atmosphere are quite different to those for greenhouse gases which primarily 

trap heat that rises from the Earth's surface. It has been proposed that reductions 

of light-absorbing particles may assist in slowing the rate of global warming [37, 

94]. While particles of any composition reflect light back to space, only a few can 

absorb light. These include black carbon, soot and desert dust [95], and some 

organic carbon species [96]. Of these, black carbon is thought to dominate light 

absorption by aerosols in many regions [97], and it is the most efficient at 

absorbing visible light. 

Firstly, black carbon is highly efficient at absorbing solar radiation [98, 99] in 

the atmosphere and also light reflecting from the Earth’s surface. This is 

especially so when it is present in the air above snow or ice as sunlight can 

interact with the carbon both on the way to the surface and also when reflected 

from it [100]. 

Secondly, soot can influence clouds and precipitation as soot present in the 

cloud can affect light bouncing around the clouds and within cloud drops which in 

turn can affect the quantities of energy absorbed by the cloud, so influencing 

temperature and cloud lifetime and reflectivity [98, 101]. Soot can also dissolve in 

the cloud drops which can influence their surface tension [102]. Atmospheric 

aerosols can also act as cloud nuclei [32]. 

Thirdly, soot can deposit onto ice surfaces reducing albedo which can 

increase the energy absorbed into these surfaces and hence potentially 

accelerate a phase change in the ice [103]. 

Numerical models for these processes have to consider the particle residence 

time and optical properties which are both affected by the soot particle size and 
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morphology [104]. Such properties are therefore important for the study of soot 

from diesel engine exhaust [32]. 

Diesel exhaust can also have an opposing effect by cooling the atmosphere 

primarily by sulphates [37, 105]. Current estimates of sulphate forcing are 

approximately 0.4 W/m2, and are uncertain by about a factor of 2 [37]. 

2.3.2.2 Soot Atmospheric Lifetime 

The residence time of soot in the atmosphere is around one week as 

precipitation acts to remove the particles [106] so the radioactive forcing effect is 

not persistent like observed for CO2. 

2.3.2.3 Soot Physiochemical Considerations 

Soot from diesel engine exhausts can possess large pore volumes (Section 

2.4.2.2) and these can act as adsorption surfaces for harmful pollutants like PAH 

[107, 108]. Concerns also exist that diesel combustion derived nano-particles can 

impact on crops and the food chain through deposition of the particles upon 

plants and in the soil and can be subsequently absorbed by the plant and impair 

its growth [108, 109]. 

2.3.3 Concluding Remarks 

The review of soot and its health and environmental impacts in this section 

has highlighted the general importance of diesel engine exhaust soot but more 

importantly that the magnitude of impact of soot is fundamentally linked to 

individual physiochemical properties of soot particles which vary widely as is 

illustrated in the following section. 

2.4 Soot Physiochemical Characteristics Review 

The complex processes of soot formation and oxidation when coupled with 

variation in fuels, diesel engine design and engine operating conditions all lead to 

both fundamental and some highly variable soot physiochemical characteristics. 

These differences in soot physiochemical characteristics can subsequently result 

in quite different soot oxidation behaviour [110-113] which is a very important 

consideration in the design of efficient aftertreatment systems [110]. For 

example, soot oxidation rate is one of the important factors which govern the 

temperature at which DPF soot deposition rate matches the soot oxidation rate 

i.e. the break even temperature [113]. 
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Physical soot properties of specific interest include; the structure of the 

primary particles, the tortuosity within the nucleus (crystalline/amorphous), the 

crystalline structure and thickness of the outer shell, the primary particle 

diameter, the surface area and the porosity of the surface [113]. These properties 

are usually termed the ‘soot nanostructure’. 

Chemical soot properties of interest include the H/C and O/C ratios, the 

sulphur contamination in the bulk and the surface, the type and concentration of 

inorganic elements in the soot, the surface functional groups and the PAH profile 

and concentration. The surface properties such as O/C ratio and functional 

groups are important in how reactive soot is to oxidation [18, 113, 114]. 

The present section summarises these principal soot physiochemical 

characteristics reported across a broad collection of diesel engine exhaust soot 

and also carbon black literature and provides a datum for the soot 

physiochemical results reported later in this work (Chapter 5 to Chapter 9). 

2.4.1 Soot Elemental Composition 

The elemental composition of the soot is considered in two sections, the first 

discusses the surface composition and the second reviews the bulk elemental 

composition of soot and carbonaceous particles. 

2.4.1.1 Surface Elemental 

In literature the surface of soot is reported to be largely dominated by the 

elements: carbon, oxygen, hydrogen, nitrogen and sulphur. The relative 

concentrations of these elements are highly sensitive to the conditions in which 

soot forms and persists [115] with many factors of potential significance 

including: engine, fuel, lubricant, conditions during combustion, exhaust 

temperature, free oxygen in the exhaust, sampling method and sample location 

and surface elemental analysis method. Muckenhuber et al. states that the 

surface properties of soot vary considerably due to soot being sampled from 

different sources and aged under different conditions [116]. 

The dominant element of the surface of soot is carbon which as stated earlier 

develops from an initially balanced H/C ratio when soot first forms to a ratio in 

excess of 8 [22, 25] as the soot matures. During this process oxygen is 

chemisorbed onto the surface and the other elements also become components 

of the surface including sulphur (if present in the fuel and lubricant) and some 

nitrogen. The ratio of O/C is reported by Bardasz et al. to be dependent on the 
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engine speed and load with high engine speed observed to produce a higher O/C 

and hence more oxidised surface with a lower O/C ratio observed at high load 

conditions [117]. 

Many properties of soot such as wetting and adsorption behaviour are 

strongly influenced by chemisorbed oxygen [118]. The oxygen in the surface 

oxides of soot may be bound in in the form of a multitude of functional groups 

[118] and these include carboxylic acids, lactones or carboxylic anhydrides [116]. 

Bardasz et al. report that high resolution X-ray photoelectron spectroscopy shows 

that oxygen is attached to the carbon by a single or double bond [117, 119]. 

These reactive surface sites on soot are already formed a short time after 

nucleation when the virgin soot reacts with principally oxygen and NOx [116]. The 

functional groups are distributed over the inner and outer surface of the soot and 

are located at the edges of graphite platelets or within the sections of amorphous 

carbon [120]. 

Surface oxides decompose to CO2 and CO when the soot is exposed to high 

temperatures and some highly reactive sites remain and are believed to have a 

free-radical characteristic [121, 122]. Subsequent cooling in the presence of 

oxygen or water vapour can encourage the formation of new surface oxides, a 

process which is typically characterised by a very rapid initial chemisorption of 

oxygen which then plateaus [118]. 

Unlike oxygen which is strongly bonded to the carbon, sulphur is usually 

found as compounds that are adsorbed onto the surface as sulphates and 

appears to derive from the fuel and lubricant and is therefore sensitive to the 

concentration in both [123]. 

One of the most frequently used surface composition analysis techniques is 

X-Ray Photoelectron Spectroscopy (XPS) though this is unable to detect surface 

hydrogen. The technique can involve both low and high resolution surface 

surveys to detail the elements present and also the binding energy which can be 

used to understand the nature of the carbon and oxygen bonds [119, 124]. 

Alternative techniques include: selective neutralization, Infrared-Spectroscopy 

(IR) and Temperature-Programmed-Desorption-Mass-Spectroscopy (TPD-MS) 

[116]. 

Following a review of literature, a selection of reported soot and carbon black 

surface elemental composition results have been collated and this information is 

summarised in Table 2.1 (this is not an exhaustive list). The mean value 
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percentage weight concentrations for this data confirm that carbon is the 

dominant surface element followed by oxygen, hydrogen and sulphur and finally 

nitrogen. The percentage of carbon is typically above 80% but there are some 

examples where it has been observed as low as 43% [233] although it is not 

clear what the other elements are in these carbon samples. 

Table 2.1 shows that the variation in carbon and oxygen is much more 

significant than that observed for sulphur, nitrogen and hydrogen with the latter 

two in particular always observed in low concentrations (<3% typically). The 

concentration of sulphur in one case is high at over 5% [233] but is typically less 

than 1.5%. 

There are a number of publications which look at carbon black soot 

substitutes and also reference samples from the National Institute of Standards 

and Technology (NIST) which have defined properties supported with test 

certificates; there are several examples of these included in Table 2.1. With the 

many varied sources for the soots detailed in Table 2.1, it is not surprising to see 

such a wide variation in reported properties. 

As described previously, the oxygen concentration is one of the most 

important characteristics of the soot surface and thus the O/C ratio has been 

calculated for the results in Table 2.1 where possible and this data is presented 

in Figure 2.1. The average O/C ratio appears to be just below 0.1 though as 

shown in Figure 2.1 this is somewhat influenced by the relatively high O/C ratios 

reported by Nguyen at al. [124] and the majority of results are in the range of 

0.04 to 0.12. 

 

Figure 2.1: Soot/Carbon Black Particulate Surface O/C Ratio Reported In Literature 
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Table 2.1: Summary of Soot/Carbon Particulate Surface Elemental Composition 

Reported In Literature 

 

2.4.1.2 Bulk Elemental 

The PM from diesel engine exhaust is dominated by elemental carbon which 

forms 50-70% of the exhaust particulate mass depending upon the engine, fuel 

and operating conditions [54]. The other components are organics (19-43% - 

though much higher at low load in some engines), sulphates, nitrates and metals. 

In the dry soot fraction, the elemental carbon is an even greater percentage and 

is typically 80-99% of the total bulk soot mass with the remainder being largely 

metals. The solid carbon is formed during combustion in locally fuel rich regions 

[24]. 

Although trace metals make up a small fraction of the soot (<1%) [35], they 

are important as elements such as lead, manganese, arsenic and chromium 

have been reported in literature and these have associated toxic potential [35]. In 

DPF equipped engines, there may be increased concentrations of catalyst metals 

such as vanadium, copper, and iron [35]. However, Liu et al. report a 93% 

reduction in total metals emissions with a DPF [125]. The concentration of metals 

in the soot is somewhat linked to the engine and engine technologies with Khalek 

et al. reporting an average reduction of 98% for metals and elements when 

comparing 2007 to 2004 engines [126]. 

C O S N H

1 Lamharess_2011 [112] XPS, DPF ULSD, 1500rpm 5 bar BMEP 91.80 7.20 <0.10 <0.05 0.53 0.0784

2 XPS, DPF B30, 1500rpm 5 bar BMEP 89.30 8.90 <0.10 <0.05 0.58 0.0997

3 Stanmore_1999 [139] Idle 79.40 - 1.20 1.40 3.10 -

4 Medium RPM 66.00 - 1.00 0.60 1.30 -

5 High RPM 85.90 - 1.70 0.80 0.90 -

6 Nguyen_2006 [124] SRM 2975 - - - - - 0.2000

7 SRM 1650b - - - - - 0.1800

8 Hexane - - - - - 0.1000

9 Oxidised Hexane - - - - - 0.2000

10 Setiabudi_2004 [262] Common Rail Diesel - Idle 70.80 - 0.48 - - -

11 Common Rail Diesel - Full Load 68.95 - 0.63 - - -

12 Clague_1999 [233] XPS, 6-cyinder Mack Engine Soot 80.80 15.50 1.50 2.10 - 0.1918

13 6-cyinder Mack Engine Soot 91.40 4.10 0.70 0.40 2.90 0.0449

14 6-cyinder Mack Engine Soot 94.10 3.40 0.60 0.30 1.70 0.0361

15 6-cyinder Mack Exhaust Soot 43.40 - 5.10 0.30 0.70 -

16 6-cyinder Mack Exhaust Soot 51.40 - 5.00 0.30 0.70 -

17 Bardasz_1995 [117] XPS GM6.2L High Torque - - - - - 0.0380

18 XPS GM6.2L High Speed - - - - - 0.0700

19 EM6-285 High Torque - - - - - 0.0500

20 EM6-285 High Speed - - - - - 0.0870

21 Bardasz_1996 [119] XPS, GM 6.5l Engine, Diff Lube,  CT Exh Man 96 3.7 0 to 0.11 - - 0.0390

22 XPS, GM 6.5l Engine, Diff Lube, CT Exh Man 96 4.4 0 to 0.11 - - 0.0460

23 Bardasz_1997 [115] XPS, Mack T8, Diff Lube, CT Exh Man 89 9.5 0.4 - - 0.1067

24 XPS, Mack T8, Diff Lube, CT Exh Man 90 9.8 0.7 - - 0.1089

25 XPS, Mack T8, Diff Lube, CT Exh Man 93 6.8 0.6 - - 0.0731

26 XPS, Mack T8, Diff Lube, CT Exh Man 93 6.4 0.3 - - 0.0688

27 Bardasz_1997_2 [211] XPS, GM 6.5l Engine, Diff Lube, CT Exh Man 96 4.1 - - - 0.0427

28 XPS, GM 6.5l Engine, Diff Lube, CT Exh Man 95.3 4.6 - - - 0.0483

Mean 83.1 6.8 1.4 0.8 1.4 0.0909

wt%
O/CInformationReference
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Some of the metallic elements emitted from a diesel engine which are bound 

to soot include silicon, copper, calcium, zinc, lead, manganese, barium, nickel 

and chromium [87]. Organo-metallic additives in lubricant such as Zinc 

Dithiophosphate (ZDP) can contribute calcium, phosphorous and zinc to soot due 

to consumption of lubricant during combustion [87]. At least one study reports 

that calcium was the dominant metallic element [87] though this is not a universal 

result. 

Iron, chromium, nickel and aluminium are usually present in the soot and 

derive from the engine cylinder, piston and cylinder head metallurgy and 

corrosion of the exhaust manifold [29, 127]. Depending upon where the soot is 

sampled from, e.g. close to the cylinder or at the end of the tailpipe, the 

metallurgy of the exhaust manifold and exhaust pipe is important [29]. 

Wang at al. found that the majority of the metal in the exhaust particulates 

was explained by the metal contaminates in the fuel [220]. It was also found that 

the emissions of crust elements (aluminium, calcium, iron, magnesium, silicon) 

were higher generally than anthropogenic elements. 

Wang et al. importantly observed that there was a coupling between the 

concentration of PM in the exhaust and the concentration of metals, such that as 

the PM concentration reduced with operating conditions, the percentage weight 

of metallic elements increased [220]. This suggests that the metals which are 

thought to derive mostly from the fuel and lubricant consumption are observed in 

higher concentrations in the soot when the engine operating condition is such 

that the fraction of carbonaceous matter is reduced. 

Sulphur is largely dependent on the concentration of sulphur in the fuel as 

was detailed for the soot surface composition in Section 2.4.1.1. 

A sample of the reported PM bulk elemental results from literature is 

presented in Table 2.2; note that this table is not exhaustive. Each row of Table 

2.2 represents one sample result set and each column (apart from C/O ratio) 

defines an element detected in the PM. As a consequence of the different sample 

analysis methods used and level of detail in reporting, there is a very broad range 

of elements that have been detected in PM and reported in literature. These 

issues thus make it difficult to analyse quantitatively what the general 

observations are regarding individual element concentration but the mean 

percentage weight has been calculated and this is presented in Figure 2.2. 
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Figure 2.2: Average Soot/Carbon Particulate Bulk Elemental Percentage Weight 

Reported In Literature 

Working through Table 2.2 and Figure 2.2 and referring also to the elements 

found in the soot surface (Section 2.4.1.1), it is clear that the two main elements 

from which soot is composed are carbon and oxygen with some hydrogen and 

quite low concentrations of nitrogen and sulphur and thus the surface and bulk 

elemental compositions are quite similar. 

The crust elements aluminium, calcium iron, magnesium and silicon are 

generally observed to be present in many soot samples and have thus been 

grouped in Table 2.2 and Figure 2.2 to highlight this. Iron and sodium are present 

in fairly high concentrations in some samples with the iron being the principal 

element in the metallurgy of many engines and the sodium likely to derive mainly 

from the fuel. 

2.4.2 Soot Morphology 

The most important morphological related properties of soot from a review of 

literature are: surface area, porosity, density and primary particle diameter and in 

this section each of these is summarised in turn. 

2.4.2.1 Surface Area 

The surface area of soot is a function of the size of the primary particle, the 

porosity of the surface [25] and the extent and form of the aggregation of the soot 

particles. Surface area is an important parameter when characterising soot 

morphology because the greater the surface area, the greater the surface on 

which the volatile organic matter and other components can condense [24, 128]. 
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Since surface area is inversely proportional to primary particle diameter, the 

smaller the soot particles, the greater the surface area. Thus, the very small soot 

nanoparticles identified in Section 2.3.1.2 as being of greatest concern for human 

health due to their higher respirability; can also carry more PAH into the lung and 

thus be more toxic in addition to being able to penetrate deep into the lung. The 

greater toxicity is because PAH have been found to be mostly deposited on the 

surface of soot [34, 89]. 

One potential issue with modern diesel engines that has been highlighted by 

Kittelson et al. is that the reduction in carbonaceous soot mass following 

improved technological measures has resulted in the reduction in the surface 

area available for the volatile organic matter to condense onto. This has 

increased the saturation ratio which has been observed to cause a nucleation 

mode where the volatile organic matter condenses out to form high numbers of 

nanoparticles in the exhaust and especially at the exhaust exit [24]. i.e. the 

amount of material adsorbed onto the carbonaceous soot is dependent on the 

particulate surface area available as well as the saturation ratio [24]. 

One of the popular methods used to quantify the surface area of 

nanoparticles is referred to as the Brunsuer, Emmett and Teller (BET) approach 

(see Section 3.6.4.1) which Darmstadt et al. notes provides very useful 

information on soot surface defects [129]. For example, using this soot analysis 

method, they and also Ahlstrom et al. [130] observed that the surface area of 

diesel soot increased from 35 to 270 m2/g simply by heating the soot to 600°C in 

the presence of nitrogen. A very similar finding has also been reported by 

Ishiguru et al. [131]. These observations indicate that the surface area of the soot 

increases with the removal of the condensed volatile organics (SOF) [123] and 

thus there is an underlying porous surface. This is supported by Smith at al. [132] 

where it is reported that a 6 fold increase in surface area was observed during 

oxidation due to porosity development and similar observations by Bonnefoy et al 

[133]. 

Chughtai et al. considered hydration for a variety of black carbons produced 

from a variety of fuel types and found it to generally increase with aging which 

was from surface oxidation and chemisorption of O2. It was observed that this 

effect increased with greater soot surface area especially for high relative 

humidity (83%) [46]. At lower humidity, it was the surface functionalities which 

determined hydration. 
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Presented across Table 2.3 (Part 1) and Table 2.4 (Part 2) is a summary from 

literature of reported soot and soot analogue surface area determined with 

different test methods and for soots from different origins. This data is 

summarised in Figure 2.3. 

Table 2.3: Summary of Soot/Carbon Particulate Surface Area Reported In Literature 

(Part 1) 
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Table 2.4: Summary of Soot/Carbon Particulate Surface Area Reported In Literature 

(Part 2) 

 

This set of data reveals reported surface areas from 1 to over 2200 m2/g for 

these types of particles which attests to the earlier reported change in soot 

surface area due to aging, oxidation and heating. The mean for the data set is 

225 m2/g which actually compares well to the more traditional diesel engine 

exhaust soot results reported in [131, 134, 135, 136, 137, 138]. 

The data from Otto et al. [135] and Ishiguru et al. [131] shows the effect of 

sample heating and burn-off discussed earlier, with marked increases in 

Reference Information Surface Area

39 Otto_1980 [135] Sample 1 - burn-off 0% (CO2 gas) 86

40 Sample 1 - burn-off 11%  (CO2 gas) 164

41 Sample 1 - burn-off 18%  (CO2 gas) 202

42 Sample 1 - burn-off 28%  (CO2 gas) 268

43 Sample 2 - burn-off 17% (CO2 gas) 260

44 Sample 2 - burn-off 38% (CO2 gas) 314

45 Sample 2 - burn-off 71% (CO2 gas) 327

46 Thiele_Case_Study [236] Carbon Black 62.05

47 Nickel 26.3

48 TiSi2 97.25

49 Ghzaoui_2003 [268] Diesel Tailpipe Soot - unwashed (N2 77k) 52

50 Diesel Tailpipe Soot - washed (N2 77k) 70

51 Rockne_1999 [277] Dodecane  (N2 77k) 85.3

52 Marine Diesel  (N2 77k) 11.7

53 Bus Diesel  (N2 77k) 1.9

54 Wood Stove  (N2 77k) 1

55 Fuel Oil  (N2 77k) 1.5

56 Levitt_2007 [273] Methane Flame Soot 134

57 Propane Flame Soot 146.95

58 Kerosene Flame Soot 105.5

59 Muckenhuber_2004 [116] Diesel Engine 315 kW, 12.7 L Soot Exhaust Manifold 100

60 Diesel Engine 315 kW, 12.7 L Soot Exhaust Outlet 40

61 Yu_2005 [140] Activated Carbon - W660 (N2 77K) 2115

62 Activated Carbon - W602 (N2 77K) 2007

63 Activated Carbon - W269 (N2 77K) 1858

64 Activated Carbon - W101 (N2 77K) 2255

65 Collura_2004 [134] Virgin Soot A (benzene at 25°C ) 238

66 Virgin Soot B (benzene at 25°C ) 168

67 Extracted Soot A (benzene at 25°C ) 240

68 Extracted Soot B (benzene at 25°C ) 147

69 Clague_1999 [233] Carbon Black, Printex 85 200

70 Carbon Black, Vulcan XC-72R 260

71 Carbon Black, Printex 3 95

72 Carbon Black, Elftex 120 40

73 Lu_2011 [142] Coal Stack Soot (N2 77k) 14.6

74 Bau_2010 [151] SiO2 Powder (SBET Adsorption isotherm) 198.3

75 Fe3O4 Powder (SBET Adsorption isotherm) 40.3

76 Al2O3 Powder (SBET Adsorption isotherm) 36.9

77 SiO2 Powder (SBET Adsorption isotherm) 248.4

78 Fe3O4 Powder (SBET Adsorption isotherm) 27.9

79 Al2O3 Powder (SBET Adsorption isotherm) 23

Average: 225.4
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measured surface areas in both cases. The data from Stanmore et al. points to 

an increase in soot surface area with increasing engine rpm [139]. Finally, Yu et 

al. [140] report the surface area for activated carbon and these results stand out 

as the surface area is approximately 2000 m2/g and thus an order of magnitude 

higher than the average for the full set of data and a high surface area for 

adsorption would be expected for such particles. 

 

Figure 2.3: Summary of Soot/Carbon Particulate Surface Area Reported In Literature 

2.4.2.2 Porosity 

For materials of a porous nature there are three different categories of 

porosity that have been defined by the International Union of Pure and Applied 

Chemistry (IUPAC, 1984): Micropores (<2 nm), Mesopores (2 to 50 nm) and 

Macropores (>50 nm). The origin of pores is important in respect to the state and 

structure of pores [141]. Pores which are open are ones which communicate with 

the surface of the soot whereas closed pores create voids in the structure of the 

solid and thus influence the mechanical properties. The presence of porosity in 

soot is a concern as it enables a higher concentration of pollutants such as PAH 

on the surface by virtue of the higher surface area derived from the porosity 

[142]. It is also important as it provides sites of discontinuity in the soot surface 

which could be beneficial for increasing soot reaction rate [16, 143]. 

A crystalline solid such as soot which is composed of atoms or ions has 

intrinsic voids and defects and these are called intraparticle pores. This is 

because relative to the organised outer crystalline shell of soot, the nucleus is 
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generally more amorphous and this disorganised carbon presents plenty of 

opportunities for voids [114]. 

Between particles in an aggregate structure such as that observed for 

exhaust soot, there is inevitably void space created between the particles and 

this is called interparticle pores which can be both rigid and flexible [141]. 

Governing the state and population of these pores are the inter-particle forces 

which can include: chemical bonding, van der Waals force, electrostatic force, 

magnetic force, surface tension of adsorbed films on the primary particles. Thus, 

these pores depend on whether the group structure of primary particles is an 

aggregation or agglomeration of particles. 

Electron microscopy of soot shows crystallites in concentric orientation and 

having boundary edges and these sites create boundaries [144]. The presence of 

foreign elements in the surface of soot most likely increases the concentration of 

surface irregularities [118] in these crystallites; such irregularities therefore 

potentially increase the porosity. The investigation of the micropores in some 

carbon blacks has revealed that these have a slit shape and a width of 1 nm 

[145] and it is possible that the pores of soot are similar. 

It is thought likely that under the action of high temperatures and in the 

presence of oxygen, soot undergoes burning and that this possibly causes 

morphological change through the development and/or opening of pores [143]. 

Neoh et al. found evidence for increases in soot microporosity during oxidation 

and was attributed to micropore development [146]. Song et al. go a step further 

and compare the burning of soots from Fischer-Tropsch and biodiesel fuels and 

found that the biodiesel fuel soot was observed to undergo a hollowing of the 

internal core of the soot whilst the outer shell remained intact [16]. The core of 

the Fischer-Tropsch derived soot by contrast remained intact. This was observed 

to exert a strong influence on the soot oxidation rate and was initiated by the 

development of a micropore which facilitated internal burning with subsequent 

layer plane rearrangement and was enhanced by the more amorphous soot 

structure [16]. 

The mechanism of the removal of volatile matter and the subsequent 

increase in surface area due to micropore opening and penetration of oxygen into 

the soot is also considered by others [123, 130, 147]. The extent of this porosity 

development is known to be affected by both the gasification medium [123] and 

the temperature [131]. 
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A common technique for porosity measurement is to use N2 adsorption at 

77K [141] and for soot with its porous structure this involves several mechanisms 

which include multilayer adsorption, capillary condensation, and micropore filling 

for macropores, mesopores, and micropores, respectively. Consequently, a 

multilayer adsorption model is required and one of the most popular is the Barret-

Joyer-Halenda (BJH) [148] and Dollimore-Heal (DH) [149] models. The N2 in this 

method is sometimes replaced with other gases such as argon and carbon 

dioxide [135] and is an important decision as the gas molecule size needs to 

align to the size of the pores in the soot and N2 appears to be preferred for soot. 

From the review of literature, a set of reported soot and carbon black porosity 

measurements have been collated and these are presented in Table 2.5. 

Table 2.5: Summary of Soot/Carbon Particulate Porosity Reported In Literature 

 

 

Reference Information Porosity

Rockne_1999 [277] Bus Diesel (%) 79

(Paper Table 1) Marine Diesel (%) 54

Dodecane (%) 86

Fuel Oil (%) 65

Wood Stove (%) 67

Zerda_1999 [137] Chevrolet Lumina 3.1L V6  Sample A (Ave Pore Width nm) 1.258

Chevrolet Lumina 3.1L V6  Sample E (nm) 1.254

Chevrolet Lumina 3.1L V6  Sample E olutgassed st 673K (nm) 1.167

Lapuerta_2010 [136] DPF Soot Unpacked (BJH total volume of pores cm3/g) 0.388

Soot Packed (BJH total volume of pores cm3/g) 0.309

Nguyen_2006 [124] SRM2975 - From Forklift (Not heated during outgassing)  (total pore vol mL/g) 0.1965

SRM2975 - From Forklift (Heated during outgassing)  (total pore vol mL/g) 0.2547

SRM1650b Diesel PM (Not heated during outgassing)  (total pore vol mL/g) 0.1274

SRM1650b Diesel PM (Heated during outgassing)  (total pore vol mL/g) 0.2078

Hexane Soot (Not heated during outgassing)  (total pore vol mL/g) 0.176

Hexane Soot (Heated during outgassing) (total pore vol mL/g) 0.1844

Rockne_1999 [277] Dodecane  (N2 77k) (Meso-pore volume cm3/g) 0.08

(Paper Table 2) Marine Diesel  (N2 77k) (Meso-pore volume cm3/g) 0.02

Bus Diesel  (N2 77k) (Meso-pore volume cm3/g) 0.004

Wood Stove  (N2 77k) (Meso-pore volume cm3/g) 0.004

Fuel Oil  (N2 77k) (Meso-pore volume cm3/g) 0.004

Yu_2005 [140] Activated Carbon - W660 (N2 77K)  (total pore volume cm3/g) 1.284

Activated Carbon - W602 (N2 77K)  (total pore volume cm3/g) 1.177

Activated Carbon - W269 (N2 77K)  (total pore volume cm3/g) 1.084

Activated Carbon - W101 (N2 77K)  (total pore volume cm3/g) 1.585

Collura_2004 [134] Virgin Soot A (benzene at 25°C ) (micropore volume cm3/g) 0.02

Virgin Soot B (benzene at 25°C ) (micropore volume cm3/g) 0

Extracted Soot A (benzene at 25°C ) (micropore volume cm3/g) 0.02

Extracted Soot B (benzene at 25°C ) (micropore volume cm3/g) 0

Clague_1999 [233] Carbon Black, Printex 85 (pore volume cm3/g) 0.5

Carbon Black, Vulcan XC-72R (pore volume cm3/g) 1.8

Carbon Black, Printex 3 (pore volume cm3/g) 1.2

Carbon Black, Elftex 120 (pore volume cm3/g) 0.65

Lu_2011 [142] Coal Stack Soot (N2 77k) (total pore volume ml/g) 0.0325

Song_2007 [17] B100 Initial Pore (Mean Diameter nm) 22

B100 Oxidized Pore (Mean Diameter nm) 23
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As a result of the multiple formats available to quantify porosity it is difficult to 

compare directly between the different sets of data to identify the typical porosity 

reported for soot. The results quoted in total pore volume cm3/g consistently 

show that the surfaces of activated carbon and in some cases carbon black have 

far higher porosity than observed for soot. The high porosity for activated carbon 

agrees with the high surface area measurements detailed previously in Section 

2.4.2.1. In literature in general, porosity results for carbon black and activated 

carbon are more readily available than results for diesel exhaust soot. 

2.4.2.3 Density 

The density of diesel engine soot is a function of the composition and the 

structure of the primary particles i.e. the presence of voids between the carbon 

crystallite. In literature there is less data available which reports the measurement 

of diesel soot density than was found for most of the other soot physiochemical 

properties considered in this review and this is attributed to the difficulty in 

measuring density directly [150]. 

The direct method used for measuring soot density is N2 Pycnometry which 

determines the skeletal volume of a sample and then the sample is weighed to 

get the mass, Section 3.6.4.3. This method generally requires a relatively large 

sample mass of several mg and most studies that state soot density therefore 

use a popular value generally quoted in literature [22]. There are several 

examples in literature where alternative methods are sought to determine density 

and compare the results to the pycnometry technique [150-152]. 

It is clear from the literature that the accurate measurement of the inherent 

material density of soot is reliant upon the sample preparation prior to N2 

Pycnometry; the preparation process should remove any condensed volatile 

fraction and ideally break-up any aggregate structure via. sonication or similar. 

The majority of the literature found which discusses soot density states that 

the density of diesel engine soot resides typically in the range 1.8 to 2.0 g/cm3 

[17, 18, 123, 152, 153]. Wal at al. state that density of amorphous carbon is 2.0 

g/cm3 and that most carbons are quoted to have densities between 1.8 to 2.0 

g/cm3 [18]. 

Park et al. [152] showed that when soot was preheated to remove volatile 

components, the density was 1.77 ±0.07 g/cm3; independent of particle size. 

However, without pre-treatment, the density of the soot increased from 1.27 to 

1.78 g/cm3 as particle mobility size of the soot increased from 50 to 220 nm. 
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Thus, it appeared that the heating of the soot removed the volatile hydrocarbons 

adsorbed into the pores and onto surface of the soot providing the much more 

consistent density measurement [6]. 

Maricq et al. found that there was a ~20% change in soot density between 

idle, medium and high load operating conditions but that this was averaged out 

over a transient test which is useful for using online particle sizing to estimate 

soot mass [154]. 

Table 2.6 and Figure 2.4 summarise the density reported in literature for 

diesel soot and similar substances with an emphasis on measurements made 

using pycnometry. 

Table 2.6: Summary of Soot/Carbon Particulate Density (g/cm
3
) Reported in Literature 

 

 

Figure 2.4: Summary of Soot/Carbon Particulate Density (g/cm
3
) Reported in Literature 

Reference Information Density (g/cm3)

1 Stanmore_1999 [139] Idle 0.038

2 Medium RPM 0.061

3 High RPM 0.051

4 Rockne_1999 [277] Bus Diesel 5.3

5 Marine Diesel 1.3

6 Dodecane 0.78

7 Fuel Oil 1.7

8 Wood Stove 1.8

9 Park_2004 [152] Diesel Soot, John Deer 4 cylinder, 4.5 l, 75 kW &  Isuzu, 3 cylinder, 1.5 l, 10 kW 1.27 to 1.78 

10 Bau_2010 [151] SiO2 Powder (SEM image derived) 2.4

11 Fe3O4 Powder (SEM image derived) 5.2

12 Al2O3 Powder (SEM image derived) 4

13 Coudray_2008 [150] Silica particles (SEM image derived) 0.4 to 3.1

14 Silica particles (Pycnometer) 2.5

15 McMurry_2002 [283] mass-mobility relationship  used to determine atmos aerosol particle density 1.5 to 1.8

16 Choi_1995_2 [239] Diesel Soot (helium pycnometry) 1.7 to 1.8 

17 Rossman et al. (from Choi_1995_2) [239] Acetylene black 1.84

18 Hanel_1977 [284] Dry aerosols from atmosphere 1.8 to 3.0

20 Lapuerta_2010 [136] Soot density Assumption 1.85

Average: 1.99

Song_2007 [17], Stanmore_1999 [139], 

Park_2004 [152]

Stated soot density ranges
1.8 to 2.019
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The reported soot density measurements cover the range from 0.04 to 5.3 g/cm3 

with a mean value of 1.99 g/cm3. Excluding the outliners in this data set, the 

range is 0.75 to 2.5 g/cm3. Thus, this set of results from literature support the 1.8 

to 2.0 g/cm3 density range quoted in the majority of works. 

2.4.2.4 Primary Particle Diameter 

The diameter of diesel engine exhaust soot is a function of the conditions in 

which it forms and the fuel being combusted. The typical size ranges quoted in 

literature for diesel soot primary particle diameter is 15–50 nm [6, 25]. The soot 

primary particles form aggregates of chains of ten to hundreds of primary 

particles and the size of these structures can be several hundred nanometres 

[25]. 

As stated previously, the size of the soot primary particles is the most 

important factor in the respirability of soot and is therefore very important from a 

human health perspective [34]. Therefore the factors that affect soot primary 

particle size are very important. The diameter of diesel soot is reported to 

decrease with increasing engine load and with increasing engine speed [34, 155]. 

However, Burtscher et al. report that there is also a strong dependence of the 

size on the type of engine [6]. There are suggestions that the size of soot primary 

particles have reduced with the development of new diesel engine technologies 

such as higher fuel injection pressure [6]. 

When considering the particle size distribution observed at the exhaust when 

diluted, most of the particle numbers emitted by engines are in the nanoparticle 

range (<50 nm) but most of the mass is in the accumulation mode range (50-

1000 nm) [54, 83]. The nanoparticles form by nucleation from hydrocarbons or 

sulphate during dilution and cooling of the exhaust. The accumulation mode 

particles comprise of the carbonaceous soot agglomerates. The size distributions 

of diesel particles in the accumulation mode are very well represented by 

lognormal distributions with an almost constant geometric standard deviation of 

1.8–1.9 nm [6]. Frequently the structure of the agglomerates is described by the 

concept of fractals [6, 17], with typical fractal dimensions of 2.3 quoted [152]. 

Presented in Table 2.7 and Figure 2.5 are the primary particle diameters 

taken from literature for soot, carbon black and some powdered materials. Where 

‘SBET’ is stated, the diameter is calculated from measured surface area using 

assumptions of non-porous spherical particles (See Section 3.6.4.4). 



2 Literature Review 
2.4 Soot Physiochemical Characteristics Review 

 

57 

Table 2.7: Summary of Soot/Carbon Particulate Primary Particle Diameter (nm) Reported 

in Literature 

 

The range in primary particle diameters with outliners rejected is (14-60 nm) 

which agrees well with the generally stated ranges from literature. The average 

particle diameter for this set of data is 31.9 nm. 

 

Figure 2.5: Summary of Soot/Carbon Particulate Primary Particle Diameter (nm) 

Reported in Literature 

The quoted ranges for the three engine exhaust derived soot literature 

references agree well and are quite similar to the average for the sample set [34, 

131, 136]. The results from Ishiguru et al. [131] are particularly interesting when 

combined with the same result set presented for surface area in Section 2.4.2.1. 

The act of heating the soot to high temperatures to initiate oxidation and burn-off 

Reference Information Particle Diameter (nm)

1 Ishiguro_1991 [131] Soot Burn-off 0% 34.5

2 Soot Burn-off 25% 33

3 Soot Burn-off 50% 31

4 Soot Burn-off 75% 27.5

5 Thiele_Case_Study [236] Carbon Black (TEM meas.) 31

6 Carbon Black (SBET est.) 45

7 Wegner_2002 [279] titania particles (SBET est.), burner nozzle dist 5mm 6

8 titania particles (SBET est.), burner nozzle dist 20mm 14

9 titania particles (SBET est.), burner nozzle dist 40mm 18

10 Clague_1999 [233] Carbon Black, Printex 85 15

11 Carbon Black, Vulcan XC-72R 30

12 Carbon Black, Printex 3 28

13 Carbon Black, Elftex 120 60

14 Lapuerta_2010 [136] DPF Soot Unpacked (SBET Est. from BET and density) 14.6

15 Soot Packed (SBET Est. from BET and density) 16.2

16 Johannessen_2000 [280] Al2O3 particel size in flames (TEM imaged) 15.8 to 20.9

17 Al2O3 particel size in flames (BET calc.) 22.1 to 32.7

18 Park_2004 [152] Diesel Soot TEM image analysis to est. primary particle diameter 45 to 215

John Deer 4045 engine, 50% Load, 1400rpm, 360 ppm S fuel

19 Schraml_1999 [34] VW 1.9 TDI Engine 19-36 

Average: 31.9
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causes both a large increase in surface area and a reduction in the primary 

particle size, thus implying the physical removal of any condensed organic 

volatiles and possibly the underlying graphene planes that form the outer shell of 

soot. 

2.4.3 Soot Surface Acid Functionality 

The surface of soot is reported to show both acidic and basic qualities in 

aqueous dispersions [156]. These acidic and basic sites usually coexist, however 

the concentration of basic sites decreases with increasing surface acidic 

functionality [118]. The reactive surface sites are said to be already formed a 

short time after nucleation as the newly formed soot reacts with oxygen, NOx or 

other gases during and after combustion [116]. 

This results in a multitude of functional groups on the soot surface and which 

differ in their acidities e.g. carboxylic acids, lactones or lactols and hydroxyl 

groups of phenolic character [116, 118, 156]. These functional groups can each 

be differentiated by neutralisation with solutions of NaHCO, NaCO and NaOH 

respectively [118]. The basic surface groups are: pyrones, chromenes, ethers 

and carbonyls [156-162]. 

Kittelson et al. state that the surface acid/sulphate fraction of soot is roughly 

proportional to the fuel sulphur content [24]. Therefore, fuel sulphur concentration 

can change the soot behaviour quiet significantly [138]. Together, these 

functional groups cover the inner and outer surface of the soot and are located at 

the edges of graphite platelets or within the sections of amorphous carbon [156]. 

These surface sites remain active and can transform during the particles’ 

lifetime due to heterogeneous reactions or adsorption processes, such as the 

chemisorption of O2 [116, 156]. Surface oxides which are created with oxygen at 

elevated temperatures or with liquid oxidant are acid in character [118]. 

The foreign elements present on the surface of soot (Section 2.4.1.1) have a 

significant influence on the surface functionalities with oxygen being the most 

important [156] and these can therefore influence the reaction rate of the soot. A 

correlation between pH and oxygen content of carbon black has been reported 

by Studebaker [163], the higher the oxygen content, the more acidic the 

dispersion is. Conversely, carbons with low oxygen content show basic surface 

properties. 
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Information about these functional groups can be determined by several 

methods: titration (i.e. selective neutralization as above), X-ray photoelectron 

spectroscopy (XPS), infrared-spectroscopy (IR) or temperature-programmed-

desorption-mass-spectroscopy (TPD-MS) [116]. One of the most used methods 

is the titration method first described by Boehm [157] (See Section 3.6.5). 

As mentioned above, the nature of these functional groups which are on the 

surface of soot are considered as important in the reactivity, hygroscopic 

behaviour, and potential catalytic activity of the soot [106]. In consideration of 

soot hygroscopic/hydrophobic properties, fresh soot from the exhaust is 

hydrophobic and water insoluble [106]. As the soot then oxidises, it becomes 

hygroscopic which is likely beneficial for the removal of soot from the atmosphere 

through wet deposition [92, 164]. Soot surface functionality is also important for 

lubricant dispersant control [138, 165]. Thus, the surface functionality of soot is 

very important for multiple purposes and is one of the most important soot 

characteristics to investigate. 

In open literature the frequency of reported surface acidity of diesel engine 

soot is somewhat low, with many more examples of carbon black measurements. 

A set of reported surface acidity results have been compiled from a detailed but 

not exhaustive search and these are presented in Table 2.8 and Figure 2.6. 

Table 2.8: Summary of Soot/Carbon Particulate Surface Acid Functionality (mmol/g) 

Reported in Literature 

 

 

Reference Information Surface Acidity (mmol/g)

1 Popovitcheva_2000 [166] Combuster Soot (NaOH titration) (mmol/g) 0.1

2 Kim_2012_1 [288] Carbon Nano Tubes (Boehm Titration, total acidity)  (mmol/g) 0.786

3 (Titration method validation) 0.79

4 0.812

5 Lopez_Ramon_1999 [286] Activated Carbon - AZ46-24 (total acidity NaOH) (mmol/g) 2.72

6 Activated Carbon - BV46_OX (total acidity NaOH)  (mmol/g) 1.1

7 Activated Carbon - BV46 (total acidity NaOH) (mmol/g) 0.22

8 Matsumura_1972 [167] Boiler Soot I (KOH solution 1 M, (mmol/g)) 3.02

9 Boiler Soot II (KOH solution 1 M, (mmol/g)) 0.02

10 Boiler Soot III (KOH solution 1 M, (mmol/g)) 1.13

11 Automobile Soot (KOH solution 1 M, (mmol/g)) 0.02

12 Acetvlene Black (KOH solution 1 M, (mmol/g)) 0

13 Goertzen_2010 [243] Black Pearls 2000 (Boehm totration, Phenolic group, mmol/g) 0.18

14 Black Pearls 2000 (Boehm totration, Lactonic group, mmol/g) 0.024

15 Black Pearls 2000 (Boehm totration, Carboxylic group, mmol/g) 0.014

16 Black Pearls 2000 (Boehm totration, Total group, mmol/g) 0.218

17 Yu_2005 [140] Activated Carbon W101 (total acid mmol/g) 0.92

18 Activated Carbon W101-KS (total acid mmol/g) 1.917

19 Activated Carbon W101-CN (total acid mmol/g) 2.29

20 Activated Carbon W101-HT (total acid mmol/g) 1.632

Average: 0.89565
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There are only two results which specifically relate to soot, Popovicheva et al. 

[166] and Matsumura et al. [167] and in the case of the former a surface acidity of 

0.1 mmol/g was measured but for the automobile soot for the latter it was 0.02 

mmol/g. The average surface acidity for the data set is 0.9 mmol/g. The data 

shows a large variation with a standard deviation of 0.93. Clearly, there is a need 

for further detailed investigation of diesel engine soot surface acidity. 

 

Figure 2.6: Summary of Soot/Carbon Particulate Surface Acid Functionality (mmol/g) 

Reported in Literature 

2.4.4 Soot Polycyclic Aromatic Hydrocarbons (PAH) 

PAH were associated with gasoline and diesel engine exhaust PM emissions 

as early as the 1950’s [168, 169] and have since been recognised as some of the 

most toxic constituents of PM from the engine exhaust [35]. PAH are largely 

concentrated on the surface of soot [34] due to the condensation of PAH from the 

exhaust matter [25]. Their presence on the surface of soot combined with their 

toxicity explains why they are of such great concern. An extensive study of 

human cell mutagenicity for 39 PAH is reported by Durant et al. and identifies 

Benzo[a]pyrene (BaP) amongst others [170] as being of greatest concern with 

several of the 16 PAH considered in the Environmental Protection Agency (EPA) 

method 610 [23, 246] also highlighted, Section 3.6.6. 

PAH can often be found together in groups of two or more and they can exist 

in over 100 different forms [171] of which Naphthalene is the simplest [171]. The 

most important in respect to diesel exhaust soot are a group of sixteen defined by 
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EPA method 610 [23, 246]. PAH are also found naturally in the environment such 

as in oil, coal and tar deposits. Indeed, recent research has detected them out in 

space and they are thought to be potential precursors on the path to create 

amino acids and life; an interesting contrast to their associated toxicity to humans 

[172]. 

Diesel fuel is a source of PAH [173, 174] and generally the most abundant 

groups of aromatics in diesel fuel are the lighter PAH naphthalene and 

alkylnaphthalenes [175] though diesel fuel can also contain: fluorene, 

dibenzothiophene, biphenyl, benzothiophene, tetrahydronaphthalenes carbazole 

and their alkyl derivatives [28]. Some PAH are also thought derive from the 

lubricant [23, 28, 176, 177]. PAH are present in the soot precursor nanoparticles 

which range in size from 1-10 nm and ethane flame studies by Dobbins et al [25] 

show the presence of benzenoid PAH even in these young nanoparticles [25] 

suggesting that pyrosynthetic reactions [173, 175, 178] are producing PAH during 

combustion in addition to PAH which survive from the fuel [179]. Indeed, PAH are 

observed in diesel exhaust PM well beyond the limited molar mass range of 128 

to 206 g/mol and such PAH must therefore originate from pyrosynthetic reactions 

rather than the fuel. 

Many of the masses of observed PAH in diesel exhaust correspond to 

stabilomer species or their isomers that were previously found by thermodynamic 

analysis to be the most stable PAHs at temperatures typical of hydrocarbon 

flames [25, 180]. These stabilomer species account for the consistent 

appearance of specific PAH in diesel exhaust PM. The review by Dobbins 

identifies two and three ring alkylated naphthalenes and alkylated phenanthrenes 

as the dominant PAH components and which occupy the low to medium molar 

mas range 128 to 206 g/mol [181]. 

There have generally been reductions observed in diesel exhaust PM PAH 

concentrations with 80-90% reductions observed since 2000-model-year engine 

technology in the following decade [35, 182]. 

PAH condense onto the soot carbonaceous core with a wide range of other 

organic material and do so at different concentrations. The presence of 

oxygenated compounds which are common for soot (Section 2.4.1.1) can also 

hinder analytical measurements. The sample preparation and particularly the 

extraction of PAH from potentially interfering compounds is very important [183]. 

The other complication is that PAH concentration in modern diesel PM can often 
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be at or below 1 ppm total, thus requiring very high precision to resolve 

accurately. The accurate determination of diesel exhaust PM PAH profile and 

individual PAH concentrations is thus a taxing exercise [183] and the analysis 

method generally used is Gas Chromatography–Mass Spectrometry (GC-MS) 

(See Section 3.6.6) as defined in EPA Method 610 [246]. 

Presented in Table 2.9 are the concentrations of 30 PAH reported for 10 

different samples and highlighted in bold font are the 16 PAH identified in the 

EPA Method 610 [246]. Table 2.9 presents the original concentrations reported in 

the referenced literature for each PAH along with the PAH total concentration. 

Table 2.9: PAH Percentage of Total Soot/Carbon Particulate PAH for Ten Samples 

Reported In Literature 

 

 

 

1 2 3 4 5 6 7 8 9 10 Mean All Mean

Molecular Formula PAH Compound (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

128 C10H8 Naphthalene - - 27.57 25.54 76.79 - - 7.14 6.53 4.68 24.71 17.30

142 C11H10 1-methylnaphthalene - - - - - 1.58 1.55 - - - 1.57 0.47

142 C11H10 2-methylnaphthalene - - - - - 3.56 5.32 - - - 4.44 1.33

152 C12H8 Acenaphthylene - - 0.15 0.16 1.14 - - 7.43 6.53 4.78 3.36 2.35

152 C12H8 Biphenylene - - - - - - - - - - 0.00 0.00

154 C12H10 Biphenyl - - - - - - - - - - 0.00 0.00

154 C12H10 Acenaphthene - - 4.35 4.05 3.53 - - 0.00 7.34 0.00 3.21 2.25

166 C13H10 Fluorene - - 15.14 14.26 4.37 - - 7.71 6.53 4.68 8.78 6.15

178 C14H10 Anthracene - 0.34 0.35 0.34 2.23 - - 6.86 6.53 5.82 3.21 2.57

178 C14H10 Phenanthrene - 15.41 44.74 48.47 1.29 - 24.16 7.14 6.53 10.19 19.74 17.77

190 C15H10 4,5-Methylenephenanthrene - - - - - - - - - - 0.00 0.00

192 C15H12 Methylphenanthrenes - 43.72 - - - - - - - - 43.72 8.74

202 C16H10 Fluoranthene 9.82 11.25 4.22 3.77 5.49 47.34 41.88 8.29 6.53 11.43 15.00 16.50

202 C16H10 Acephenanthrene - - - - - - - - - - 0.00 0.00

202 C16H10 Aceanthrylene - - - - - - - - - - 0.00 0.00

202 C16H10 Pyrene 15.29 10.70 2.50 2.54 2.42 1.60 1.30 8.57 6.69 17.67 6.93 7.62

226 C18H10 Benzol[ghi]fluoranthene - 2.73 - - - - - - - - 2.73 0.55

226 C18H10 Cyclopenta[cd]pyrene (CpP) - - 0.06 0.06 0.64 - - - - - 0.26 0.10

228 C18H12 Benzo[a]anthracene 25.07 1.43 0.08 0.09 0.10 0.56 0.29 6.86 6.53 5.82 4.68 5.15

228 C18H12 Chrysene & Triphenylene 33.05 5.86 0.20 0.21 0.09 17.40 13.42 6.86 6.69 5.93 8.97 9.87

252 C20H12 Benzo[b]fluoranthene (BbF) 9.61 1.99 0.05 0.05 0.23 20.47 9.99 7.71 7.01 6.13 6.32 6.96

252 C20H12 Benzo[b]fluoranthene (BkF) 3.44 0.59 0.05 0.06 0.30 - - - - - 0.89 0.53

252 C20H12 Benzo[b]fluoranthene (BjF) - 0.79 - - - - - - - - 0.79 0.16

252 C20H12 Benzo[e]pyrene (BeP) - 1.68 0.23 0.15 0.81 1.98 0.83 - - - 0.95 0.66

252 C20H12 Benzo[a]pyrene, (BaP) 3.72 0.30 0.02 0.02 0.08 - - 6.29 6.20 4.68 2.66 2.40

252 C20H12 Benzo(k)fluoranthene - - - - - 1.21 0.54 7.14 6.53 4.57 4.00 2.40

252 C20H12 Perylene - 0.04 0.02 0.02 0.09 - - - - - 0.04 0.02

276 C22H12 Indenol[1,2,3-cd]pyrene(IcdP) - 1.27 0.03 0.03 0.10 2.49 0.37 5.71 4.08 4.78 2.10 2.10

276 C22H12 Benzol[ghi]perylene (BghiP) - 1.46 0.03 0.03 0.14 0.89 0.12 6.29 4.89 4.78 2.07 2.07

278 C22H14 Dibenz(a,h)anthracene - - 0.01 0.00 0.03 0.93 0.24 0.00 4.89 4.05 1.27 1.14

300 C24H12 Coronene - 0.45 0.20 0.17 0.13 - - - - - 0.24 0.12

Colour: EPA Method 610 PAH [246]

1 Bagley_1996 [79], 50% load, particulae + vapour PAH

2 Dobbins_2007 [25], National Institute of Standards and Technology (NIST) - SRM1650a

3 Lin_2006 [296], diesel generator 

4 Lin_2006 [296], diesel generator, palm 20 % blend

5 Lin_2006 [296], diesel generator, palm 100%

6 Poster_2003 [183],National Institute of Standards and Technology (NIST)  - SRM2975

7 Poster_2003 [183], National Institute of Standards and Technology (NIST) - SRM 1975

8 Lombaert_2003 [221] DJ 5 Peugeot AFR 1.67

9 Lombaert_2003 [221] DJ 5 Peugeot AFR 3.52

10 Lombaert_2003 [221] DJ 5 Peugeot AFR 5.7
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This total concentration has been used to calculate the percentage of total 

sample weight for each PAH and then this data has been averaged across the 

rows for each PAH to produce Figure 2.7. 

 

Figure 2.7: Average PAH Percentage of Total Soot/Carbon Particulate PAH 

Together Table 2.9 and Figure 2.7 provide a summary of the typical PAH 

profile observed for diesel exhaust PM. It is clear that the PAH of highest 

concentration are generally Naphthalene, Phenanthrene and Fluoranthene. 
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Chapter 3 

3 Methodology 

This chapter presents the methodology for all aspects of the research work. It 

begins with the design of experiments and then summarises the experimental 

apparatus and instrumentation system. There is a detailed review of the research 

and development of the key aspects of the system such as the engine 

compression ratio modification, the EGR system adaptation and exhaust soot 

collection apparatus. Finally, the techniques utilised for analysis of the exhaust 

soot are outlined. 

3.1 Experimental Design 

3.1.1 Fuels 

This section summarises the fuel selection, procurement and presents a 

comparison of the fuel properties. 

3.1.1.1 Fuel Selection 

The selection of the fuels for the experimental work followed from the aims 

and objectives of the research work and the collaborative effort with Lubrizol. The 

first clear objective was to investigate a comparison of both mineral and biodiesel 

fuel soots by first establishing a baseline with a European EN590 (henceforth 

denoted as EN590) specification reference diesel fuel and then comparing to 

one of the most frequently encountered biodiesel fuels. Since the aim was to 

consider a very common biodiesel fuel, particularly one found in the European 

Union, rape seed was chosen as the feedstock for the biodiesel. It was also 

decided that the clearest distinctions in soot characteristics would be observed 

for the investigation of a pure biodiesel fuel rather than a mineral/biodiesel blend 

and that these distinctions could be easily ascribed to the respective fuels and 

their properties, which was the aim of the research work. Henceforth, the Rape 

Seed Methyl Ester (RME) biodiesel fuel is referred to as B100. 

Lubrizol’s experience of world fuel and lubricant test standards highlighted 

that a comparison of the soot produced from both a European standard diesel 

mineral fuel and a North American equivalent would complement the mineral-
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biodiesel comparison as it would provide an indication of the relative effects of 

two different but standardised mineral test fuels in relation to a biodiesel fuel. As 

the Western European and North American mineral diesel fuels typically derive 

from different crude sources (paraffinic, aliphatic) [184] and refineries and also 

conform to different standards; the compositions of the fuels are somewhat 

different. Two of the most significant differences are 1) the total aromatic content 

and 2) previously the North American diesel fuel specification had higher sulphur 

content. Each of these differences are frequently reported in literature to 

influence the soot produced during combustion and are thus of interest. Lubrizol 

specifically reported an interest in the North American PC-9 diesel test fuel as 

this is a fuel commonly used in standard lubricating oil high EGR engine tests 

[185].1 

In collaboration with Lubrizol it was therefore decided to use the North 

American PC-9 diesel fuel (henceforth denoted as PC9) as the third fuel in the 

research work as all three fuels together would provide soot characterisation 

results for three fuels representative of the more common mineral/biodiesel 

diesel engine test fuels in use across both the European and North American 

standardised tests. Selecting standard industry test fuels also enabled the 

research work to have a broad application and suitability for follow-up work. 

3.1.1.2 Fuel Supply and Storage 

Lubrizol arranged for the supply of all the fuels used in the research work re- 

ported herein. The two mineral diesel fuels were sourced as single batches in 

each case. The EN590 fuel was barrelled at Lubrizol’s Hazelwood site in the UK 

from the EN590 reference fuel they were using at the time. The PC9 diesel fuel 

was specially shipped over from the United States by Lubrizol and was produced 

by and procured directly from Chevron Phillips. The B100 Rape Seed Methyl 

Ester (RME) biodiesel fuel was sourced by Lubrizol and two separate batches 

were required as the fuel specialists at Lubrizol advised that the fuel should be 

tested without any additives which meant that it had a short storage life. The 

batch used for the initial standard engine compression ratio experiments (referred 

to as the high compression ratio reference experiments at 19.5:1) was sourced 

from a subsidiary of ADM in Germany. The second batch which was used for the 

low compression ratio experiments (at 16.5:1) was sourced from Silver Group 

                                                
1
 PC-9 is a lubrication oil standard test fuel established by the American Petroleum Institute which was 

developed for the EGR equipped engines of the late 1990s and has been later superseded by PC-10 (2007) 
[186]. PC-9 was widely used at the time of the experimental work. 
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Fuels Ltd in the UK in 2007 prior to administration. All fuel was stored in 205 litre 

barrels and then moved into a fuel bund in the test cell when being used in the 

experiments. 

3.1.1.3 Fuel Property Summary 

The properties of each fuel were reported in test reports from the fuel supplier 

with the exception of the reference EN590 fuel which had a fuel analysis 

performed by SGD Germany GmbH. The fuel properties are summarised in 

Appendix 1 (Table A1.1). 

Comparing across fuels, one of the key fundamental differences was the 

density which was higher for the biodiesel fuel. The other physical properties 

which were higher for biodiesel were the viscosity and the flashpoint temperature. 

The cetane number for the EN590 and the biodiesel fuel were quite similar but 

the cetane number for the PC9 fuel was much lower. The total acid number for 

the biodiesel fuel was far higher than for both the mineral fuels, particularly for 

the low compression ratio batch. The sulphur content for the EN590 and both 

biodiesel fuel batches were quite similar and low (<10 ppm) and the PC9 sulphur 

was a factor of 100 higher thus providing an interesting point of comparison. The 

water content for both batches of biodiesel was significantly higher than for the 

two mineral fuels and likely arose from the washing performed during the 

biodiesel transesterification process. 

Comparing between the two mineral fuels, the PC9 fuel had 2% greater 

density and 14% higher viscosity but the flashpoint was lower and the cloudpoint 

was higher. The cetane number of the PC9 fuel was 15.8% lower than the EN590 

baseline fuel and was therefore illustrative of the typical cetane number disparity 

between European and North American fuels. The total aromatic content of the 

PC9 fuel was 70% higher than for the EN590 fuel indicating a different fuel 

feedstock origin and refinery processes. The total acidic number for the PC9 fuel 

was a magnitude lower than that of the EN590 diesel and the total particulate 

matter for both fuels was quite similar. 

Comparing between the two batches of biodiesel fuels, Appendix 1 (Figure 

A1.1), the differences were subtle but worthy of note. The viscosity of the 16.5:1 

fuel was 5% higher than that of the higher compression batch but more 

importantly the cold filter plugging point for the 16.5:1 fuel was somewhat higher 

along with the flash point and a slightly lower cetane number and thus the lower 

compression batch of biodiesel may have had subtle differences in the ignition 
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delay characteristics and combustion compared to the first batch used for the 

high compression experiments. The 16.5:1 B100 fuel also had a significantly 

higher total acid number and slightly higher concentrations of inorganics and 

metals. 

3.1.2 Lubricant 

A single lubricant formulation was used in this work which was selected and 

supplied by Lubrizol with a formulation tailored to investigate (as a separate study 

of principally Lubrizol’s interest and not reported on in this work) whether there 

was any observable rheological differences in the end of test lubricant for each 

set of experiments with different fuel and compression ratio combinations. The 

outline elemental composition of this lubricant was important for reference when 

discussing the soot results and is summarised in Appendix 2 (Table A2.1). 

3.1.3 Identification of Geometric Compression Ratio Range 

During the last decade or more, newly developed Direct Injection (DI) diesel 

engines have shown a tendency toward lower geometric compression ratio, 

particularly those from the German Original Equipment Manufacturers (OEMs) 

and Japanese OEMs such as Honda. This trend has resulted in automotive 

industry companies (e.g. Lubrizol) enquiring whether this trend in compression 

ratio is impacting on the physiochemical characteristics of the soot produced. In 

Lubrizol's case, the question is acute as the soot produced in the cylinder is 

transported into the lubricant through the soot transportation mechanisms namely 

thermophoretic deposition and turbulent deposition. Thus, if there are significant 

changes to the physiochemical properties of the soot then there are potential 

concerns with regards to the performance of the Lubricant and hence Lubrizol's 

dispersant and detergent additives. This section therefore presents a summary of 

the statistical trend of geometric compression ratio in the last decade and 

accordingly identifies the compression ratio range which has been subsequently 

experimentally investigated in the work reported herein. 

3.1.3.1 Engine Compression Ratio Trends 

Obviously, for any given conventional engine design, it is the combination of 

the engine breathing system with the geometric compression ratio that 

determines the charge pressure, density and motion in the cylinder during the 

engine cycle. Thus, there is a complex interplay of an array of a significant 

number of factors that ultimately affect the in-cylinder charge and hence 
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combustion and soot formation - especially so for modern DI diesel engines with 

turbocharging and EGR. However, geometric compression ratio remains a 

fundamental parameter of an engine and describes a group of these factors 

rather than any single factor and as such it can be readily compared engine-to-

engine with an expectation that there will be some form of correlation between it 

and measured parameters. 

A higher compression ratio acts to increase the cylinder pressure and 

temperature for a given crank angle and thus generally on a CI engine with no 

other modifications this results in a shorter ignition delay period at a given 

operating speed. This plus the increased pressure during combustion leads to 

greater thermal efficiency and power when analysed thermodynamically. 

However, there is an associated reduction in mechanical efficiency as the higher 

cylinder pressures increase the piston-ring to cylinder wall friction and there are 

increased heat losses during compression and expansion as a result of the 

increased amount of work being done. Thus, the thermal efficiency gain with 

compression ratio is counteracted by a falling mechanical efficiency, explaining 

why there is typically a range of 15:1 to 24:1 for LD CI engines as a consequence 

of the different elements that form part of the whole package of the engine 

design. 

In the late 1990s Volkswagen (VW) first introduced the 1.9l Turbo Direct 

Injection (TDI) engine series with DI using unit injector technology and in parallel 

Common Rail (CR) diesel fuel systems also saw their first application in Light 

Duty (LD) engines. This initiated a clear shift from the then dominant Indirect 

Injection (IDI) diesel engine design to the now dominant DI design. Thus, over a 

period from 1999 to 2011 the diesel engine has changed considerably and one of 

the characteristics of this change has been a general reduction diesel engine 

compression ratio. 

To ensure that the compression ratio range investigated experimentally in this 

work aligned to the pattern of change in light duty LD diesel engines, a survey of 

reported engine geometric compression ratio for passenger car LD applications 

was undertaken which spanned the years of production 1999, 2005 and 2011. 

The respective data tables for compression ratio are presented in Appendix 3 

(Table A3.1 to Table A3.5). 

The statistical summary of compression ratio for the years 1999, 2005 and 

2011 is presented in Table 3.1 to Table 3.3. 
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Table 3.1: Compression Ratio Statistics -1999 Engine Sample [340] 

 

Table 3.2: Compression Ratio Statistics -2005 Engine Sample [341] 

 

Table 3.3: Compression Ratio Statistics -2011 Engine Sample [342, 343] 

 

To assist the interpretation of this data it was useful to make the assumption 

that a Normal Distribution was a good approximation of the compression ratio 

distribution and to plot individually for the three data sets Figure 3.1. 

 

Figure 3.1: Normal Distribution of Engine Compression Ratio, 1999, 2005, 2011 
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It was found that between 1999 and 2005 there was a very rapid shift from a 

broad distribution of relatively high compression (as there was a change from a 

sample set consisting of IDI and DI diesel engines to just DI) to a much narrower 

distribution with a mean roughly 14% lower. Then between 2005 and 2011 this 

trend continued at a slower rate with a reduction of 6.7% but with an almost 

identical distribution with engine designs solidifying on combining DI, CR, 

turbocharging and EGR. 

As the specific power of the engines has increased, Figure 3.2, the peak 

cylinder pressures have also increased and now hover around 180 bar. 

 

Figure 3.2: Engine Specific Power (kW/litre) for 1999 and 2011 Engines 

Thus, for modern heavily boosted engines, a lower compression helps to 

achieve a better balance between the increase in mechanical losses associated 

with higher peak pressures whilst keeping the peak pressure lower to enable the 

engine block to be as light as possible and yet durable. The additional key driver 

in many engine designs in the same time period has been the reduction in NOx 

emissions. As the kinetics of NOx formation relate to the flame temperature, the 

reduction in compression ratio is a tool for directly reducing total engine NOx 

emission. This has been perhaps the strongest factor in the trend towards 

reduced compression identified in Figure 3.1. 

3.1.3.2 Selecting Engine Geometric Compression Ratio Range 

Reflecting on the Normal Distribution for the 2005 and 2011 engine data in 

Figure 3.1 and the 6.7% reduction in compression in this period, it is projected 
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that the current generation of engines will likely see a stabilisation in mean 

geometric compression between 16:1 and 16.5:1 with a few engines potentially 

tending towards 14:1. Thus, the lower range of compression ratio identified for 

experimental investigation was in the range 15:1 to 16.5:1. The lower value of 

this range was used in the review of methods of compression ratio modification 

(Section 3.3) and the upper value set the limit for the highest-low compression 

ratio configuration that was to be experimentally investigated. The upper limit of 

the experimental range for compression ratio was defined by the combination of 

the 1999 and 2005 data sets. From this data, the upper limit was determined 

to be 20:1 based on estimation for the 2001 engines (i.e. constraining the range 

of investigation to one decade). Therefore, the lower end of this range was 

representative of contemporary LD diesel engines and the upper end was 

representative of older LD engines as well as some Medium Duty (MD) and 

Heavy Duty (HD) diesel engines. 

3.1.4 Selection of Engine 

Initially a range of options were considered for the choice of engine and the 

method for compression ratio change. These two considerations being clearly 

interrelated required careful analysis early in the research. The selection also had 

to be based on the desired range of compression ratio adjustment outlined in 

Section 3.1.3.2. 

One of the first criterions for the experimental engine tests was the selection 

of the base diesel engine combustion system design (injectors, piston bowl, 

cylinder honing, valve configuration, bore-stoke, turbocharger, EGR etc.). It was 

decided from a review of the available research data previously gathered by 

Lubrizol that the VW 1.9 TDI engine was a well understood engine by Lubrizol 

with regard to PM emissions. This knowledge was gained through standardised 

tests that Lubrizol had been conducting as part of their lubricant development 

and certification processes. Thus, it was agreed with Lubrizol to utilise this 

combustion system design and review what options there existed for integrating 

this base design with a variable geometric compression ratio capability. 

Building from this decision, analysis was undertaken into the design 

modifications which would enable the engine to be converted to run at various 

geometric compression ratios within the range 15 to 21:1, this analysis is 

presented in later Section 3.3 and in summary this work resulted in the selection 

of two geometric compression ratios: 19.5:1 and 16.5:1. 
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3.1.5 Experimental Test Design 

The experimental work was divided into three groups of experiments: 

1. Base Engine Performance, Emissions, Cylinder Pressure 

Measurements at Steady-State Conditions (Section 3.1.5.2): For the 

three fuels and two compression ratio permutations, the engine was 

operated over a set sequence of speed-load operating points and 

requisite measurements made to characterise the engine performance 

and emissions. The findings from these experiments helped to develop 

the experimental design for the other two groups of experiments. 

2. Engine Soot Collection Tests (Section 3.1.5.3): For the three fuels and 

the two compression ratios, the engine was operated at a single condition 

to maximise exhaust soot mass flow rate to reduce the soot collection 

time requirement. Soot was collected at the exhaust manifold for all tests 

with an exhaust system diesel particulate filter (DPF) used at one of the 

compression ratios to collect soot to identify exhaust soot evolution from 

the exhaust manifold. Standard engine EGR was used for all tests. 

3. Adapted Engine EGR (low 10% and high 55%) Soot Collection Tests 

(Section 3.1.5.4): For the EN590 reference fuel and the B100 biodiesel 

fuel and a single compression ratio the effect of EGR was considered. 

The emphasis for the experiments was the EGR based influence of soot. 

Soot was collected in a DPF in the exhaust system (See Section 3.5.2). 

The speed/load condition was necessarily different to that used for the 

main soot collection tests of experimental group 2. 

3.1.5.1 Full Factorial or Fraction Factorial Design Consideration 

For the base engine soot collection tests (Section 3.1.5.3) a consideration 

was initially made of whether the experiments should be of a fraction factorial or 

a full factorial design. The advantage of a fraction factorial approach was an 

optimised balance between the number of experiments to be performed and an 

increase in factor permutations which could be tested. During the initial design of 

experiments this was therefore considered with the main feature being more than 

two compression ratio configurations but following finalisation of the engine 

compression ratio modification methodology (Section 3.3) it was concluded that a 

full factorial approach with just two compression ratios was ultimately the more 

secure path to experimentally implement and to derive conclusions from with the 

time and resource available. 
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3.1.5.2 Base Engine Performance, Emissions, Cylinder Pressure 

Measurements at Steady-State Conditions 

A parametric experimental study of the base engine performance and 

emissions was undertaken to quantify the differences between the fuels and the 

geometric compression ratios’ so that the changes in Brake Mean Effective 

Pressure (BMEP), fuel consumption, Air Fuel Ratio (AFR), exhaust emissions 

and cylinder pressure etc. could be understood and utilised to help interpret the 

sampled exhaust soot results. These experiments were also essential in 

establishing the engine operating conditions for the base engine soot collection 

tests and the EGR experiments detailed later in Section 3.1.5.3 and Section 

3.1.5.4. The experimental results from this work are summarised in Chapter 4 

and are supporting to the foremost soot characteristics results in Chapters 5-9. 

The speed-load steady-state operating points used for these experiments are 

detailed in Appendix 4 (Table A4.1) and were designed to broadly consider the 

speed-load envelope of the engine, encompassing EGR and none-EGR engine 

operating conditions. The main limitations which constrained the range of set-

points investigated were a drive line resonance below 1400 rpm which impaired 

the dynamometer controller speed control stability and also a dynamometer 

speed control instability at greater than 60% load between 1400 and 1900 rpm. 

Tuning of the dynamometer speed controller reduced the severity of the system 

oscillation at these points but failed to eliminate them completely and thus these 

unstable regions were avoided. The load groups were defined as follows: A 

(Torque <40 %), B (40<=Torque<60 %), C (60<=Torque<80 %), D 

(80<=Torque<95 %), E (Torque>=95 %). These were used to group the 

measurements and average the data across load groups when summarising the 

performance and emissions changes with fuel and compression ratio, Chapter 4. 

At each steady-state point detailed in Appendix 4 (Table A4.1) the gaseous 

and particulate emissions, engine performance and cylinder pressure were 

recorded using the instruments detailed in Section 3.2.2. The approach taken to 

provide a fixed reference across the three fuels and two compression ratios 

investigated was to set the dynamometer controller to [dynamometer-speed, 

throttle-direct] mode so that the engine throttle was set to a position which 

achieved the same fuel injection duration and the dynamometer speed controller 

loop then managed the torque to achieve the required engine speed. In this way 

the engine performance and emissions were compared across the same fuel 

injection timing and thus changes in fuel density, compressibility and calorific 
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value would be highlighted between the three fuels. This was considered to 

provide a more useful and robust basis for comparison than equating the fuel 

mass flow or engine power output between fuels during the experiments. 

The engine performance and emissions measurements were undertaken with 

two different intake manifold air temperature states (<40°C and >50°C) to enable 

an analysis of the effect of this parameter on the overall engine performance and 

emissions. This parameter was a controllable experimental factor which was 

used to increase the exhaust soot concentration for the base engine soot 

collection tests and is discussed in more detail in Section 3.1.5.5. 

A limitation of the experiments was that the inlet air pressure, temperature 

and humidity could not be controlled (test cell limitations) and thus variation in 

these parameters across the experiments is responsible for a fraction of the 

measurement changes observed. 

The performance and emissions experiments were each conducted prior to 

the associated base engine soot collection experiment which used the same fuel 

and compression ratio configuration (Section 3.1.5.3). This was to align the 

performance and emissions results to the condition of the engine and 

atmospheric conditions at the time of the soot collection experiment for the same 

system configuration. The lubricant used for each experiment was a fresh fill to 

avoid any aged lubricant influence on the results. 

3.1.5.3 Engine Soot Collection Experimental Design 

The design of the engine soot collection experiments developed from the 

design and development of the ceramic thimble based exhaust manifold soot 

collection apparatus detailed in Section 3.5.1. The principle characteristic of this 

collection apparatus which influenced the design of the collection experiments 

was the very low (<1%) collection efficiency at the exhaust manifold confluence 

point which was where the sample line tapping was installed. Further, this 

collection efficiency declined significantly with reduced exhaust soot 

concentration in the exhaust. Consequently, it was necessary to maximise both 

the exhaust soot concentration and the exhaust mass flow rate. The engine 

performance and emissions parametric study described in Section 3.1.5.2 

revealed this to be at ‘rated engine power’ (4000 rpm, maximum load) with the 

original base engine mapping and EGR setting Chapter 4, Section 4.2. 

Section 3.6.8 outlines that the total sample soot mass required to complete all 

of the soot characterisation tests was approximately 2g. Consequently, it was 
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necessary to conduct preliminary experiments which were undertaken with the 

combination of the selection of the rated engine condition and the 2g of soot 

target with the EN590 fuel at 19.5:1 to determine the total hours required for soot 

sampling with the ceramic thimble system. It was determined that at least 20 

hours were required for the EN590 fuel and that the ceramic thimbles needed to 

be changed every 5-7 hours to achieve this requirement. The ceramic thimble 

change was necessary due to the decline in collection efficiency as the thimble 

plugged. 

For each of the fuel-compression ratio combinations (a total of 6) the design 

of the experiment therefore consisted of running the engine at the rated condition 

for a target duration of 20 hours with the ceramic thimble system sampling the 

exhaust soot once the engine exhaust temperature had stabilised. Isolation 

valves were used to control the sampling and the ceramic thimbles were replaced 

with a new thimble every 5-7 hours. The experiments were broken into 5 hour 

intervals at which point the mass of soot collected in the thimble was measured 

using a mass balance and also the mass of condensate (largely water) which 

was trapped in the ceramic thimble system catch-pot (Section 3.5.1.1) was also 

measured. This latter measurement was used to monitor the collection efficiency 

achieved in this period of time so that a decision of when to replace the thimble 

could be made (the sample duration for thimble change was different for each of 

the six test combinations). A 50 ml lubricant sample was also taken at the 5 hour 

interval from the engine main gallery using a tapping on the oil filter mount and 

this provided lubricant rheological performance information for Lubrizol. A 

subdivision of this 5 hour block was necessary at 2 hours after the installation of 

a new thimble as lagging had to be added to the ceramic thimble sample line 

(Section 3.5.1.1) to maintain the thimble temperature above 110°C to avoid 

condensation. 

During each experiment the performance of the engine was monitored and 

recorded using the instrumentation system detailed in Section 3.2.2. 

Measurements were taken every 10 min with the AVL415 smoke meter and then 

at every 30 min the snapshot of the measurements was recorded and checked 

for any significant change. This process revealed a problem with injector coking 

for the two biodiesel experiments and in the case of the 16.5:1 experiment the 

problem was so acute that the soot collection experiment had to be ceased early 

at 12 hours as the exhaust soot concentration and hence collection rate had 

declined to such an extent that the experiment was no longer viable to continue, 
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Appendix 9. The other 5 experiments completed the 20 hours target and the soot 

mass collected is summarised in Section 3.5.1.1. 

For the three 19.5:1 experiments which were conducted first, just the exhaust 

manifold ceramic thimble system (Section 3.5.1) was employed for soot collection 

but for the 16.5:1 experiments a DPF exhaust collection system was also utilised 

(Section 3.5.2). The DPF was employed for these lower compression 

experiments to fulfil the project research aim of understanding how soot which 

originates from different fuels evolves in the exhaust. The DPF had to be used for 

this task in preference to a ceramic thimble system as the lower pressure in the 

exhaust after the turbocharger rendered the ceramic thimble method ineffectual 

at this sample location. 

To maximise the exhaust soot concentration, the Intake Manifold Air 

Temperature (IMAT) was elevated to above 40°C for all experiments and this 

approach is summarised in Section 3.1.5.5. 

3.1.5.4 Adapted Engine EGR (low ~10% and high >50%) Soot 

Collection Experimental Design 

The main criterion of the EGR experimental tests was the exploration of the 

EGR range from low (~10%) to high (>50%) with the method of EGR 

manipulation limited to utilising the original engine vacuum actuation of the 

original EGR valve which is detailed in Section 3.4. The use of the existing 

engine EGR system required a parametric study to first identify the operating 

conditions where both low and high EGR could be achieved. This revealed that 

the EGR rates available depended on the pressure difference across the EGR 

valve (since the VW 1.9 TDI uses a high pressure EGR system design with the 

exhaust gas bleeding off before the entry to the turbine housing). At high loads 

with high intake boost pressures, the maximum achievable EGR was very limited 

as the pressure difference across the EGR valve (i.e. exhaust manifold to intake 

manifold) was small. Therefore the EGR tests had to be performed at lower 

intake pressures and therefore not at the same speed-load condition of the 

baseline engine soot collection experiments described earlier. From the 

parametric investigation the optimum speed was determined as 1400 rpm and 

the torque for the low EGR (10%) point was ~180 Nm (Section 8.2) with a fuel 

injection duration of 12.8 Crank Angle Degrees (CAD). 

Having determined a suitable operating point, it was necessary to confirm the 

estimated exhaust manifold soot collection rate to see if the ceramic thimble 
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collection method was viable. Based on the calculated soot mass flow rate for the 

B100 fuel 10% EGR case (3.3 g/h –Section 8.3) and the typical collection 

efficiency of the ceramic thimble exhaust manifold collection system (~1% - 

Section 3.5.1), it was estimated that the total collection period for the B100 test 

would be infeasible as it would need in excess of 600 hours. The EGR 

experiments were therefore constrained to the use of the just the DPF for soot 

collection. Due to time constraints the experiments were also limited to the 16.5:1 

geometric compression ratio alone. 

The required duration of the soot collection with the DPF was determined in 

two ways. Firstly, by estimation of the minimum time required based on the 

measured exhaust soot mass flow and the assumption that 100% of the soot 

mass measured by the AVL415 smoke meter (Section 3.2.2.5) was trapped by 

the DPF (thus ignoring collection efficiency and exhaust oxidation effects). 

Secondly, pressure sensors were installed pre and post DPF and the pressure 

drop monitored during the test and limited to (<25 kPa). Two additional 

thermocouples were also installed for the EGR experiments and were located in 

the engine intake before and aft of the EGR valve to ascertain the increase in 

temperature of the intake charge caused by the uncooled EGR and these 

measurements are summarised in Section 8.2. 

An important constraint with the EGR experiments was that as the EGR was 

increased there was a corresponding reduction in available boost pressure as the 

VW 1.9 TDI engine uses high pressure EGR and there was thus a significant 

reduction in the pressure ratio across the turbine with higher EGR. For the high 

EGR condition experimentally investigated, the ECU was running at the 

extremities of the calibration tables and consequently fuelling was reduced (12.8 

to 8.2 CAD, Section 8.2) and the torque output also therefore reduced at high 

EGR and thus the EGR soot results reported in this work are also subject to 

these associated fuel injection and boost pressure changes which were 

unavoidable. 

At the time of the experiments the Horiba gas analyser used in this work 

(Section 3.2.2.6) had an incorrectly functioning intake CO2 measurement and 

thus it was necessary to use a calculation approach for the estimation of the 

resultant rate of EGR. This method was based on the assumption of constant 

volumetric efficiency with EGR. The required data from the engine included air 

mass flow and manifold temperature and pressure at conditions under zero EGR 

and with EGR which are detailed in Chapter 8. 
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From the definition of true volumetric efficiency under zero EGR conditions: 

m V Nzero zero vol swept      

With EGR: 
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Now assuming perfect gas behaviour: 
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Further assuming that the molecular weights are similar: 
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                          Equation 3.1 

Equation 3.1 has therefore been used to estimate the EGR rate for all four of 

the EGR experiments using the mass air flow, intake pressure and temperature 

(both measured at the same point). This calculation should only be considered an 

estimation due to the assumptions made in the derivation, however it provides 

the required indication of the extent of the change in EGR when direct 

measurement was not possible. 

3.1.5.5 Intake Manifold Air Temperature (IMAT) Optimisation 

During the base engine performance and emissions experiments the effect of 

manifold air temperature (measured before the EGR valve introduced exhaust 

gas to the intake manifold) was evaluated in regard to the engine Mass Air Flow 

(MAF) and AFR and the resulting impact on exhaust soot concentration. It was 

determined that there were several significant changes in the engine 

performance and emissions with the change of IMAT in the range of 20 to 80°C 
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which usefully included an increase in the exhaust soot concentration with higher 

IMAT and an example of this effect is illustrated in Figure 3.3 for the change from 

low to high IMAT at the two compression ratios for all fuels. This was largely a 

consequence of the parallel reduction in AFR which occurred as the ECU did not 

successfully compensate for the increase in the IMAT. Thus, IMAT was a 

controlled experimental factor which was not part of the original research aims 

but could be optimised to increase the exhaust soot concentration at the majority 

of engine operating conditions. A general summary of the effect of IMAT is 

presented in Section 4.2.1. 

 

Figure 3.3: Increasing IMAT - Effect on Exhaust Gas Soot Concentration (g/h) for Rc = 

16.5:1 (a) and Rc = 19.5:1 (b) 

The IMAT used for the base engine soot collection experiments was 

maintained at a high temperature in the range 74 to 86°C for the 19.5:1 

experiments and the range 44 to 67°C for the 16.5:1 experiments (Section 4.3). 

The range in temperatures was a consequence of the ambient temperature 

variations across the experiment. A slightly lower temperature range was used for 

the 16.5:1 experiments as the turbocharger bearing seals failed twice in the 

19.5:1 experiments and this was attributed to prolonged excessive turbocharger 

temperatures. These intake temperatures therefore maximised the soot collection 

rate and hence soot sample mass for the soot collection experiments. The control 

of IMAT was achieved through the control of the cooling water flow rate through 

an air-water charge air cooler, Section 3.2.1.3. 

3.1.5.6 Test Sequencing 

Experimental test sequencing was an important part of the experimental 

design in terms of the sequence in which the three separate groups of 

experiments were conducted and also the sequencing of the fuels, compression 



3 Methodology 
3.1 Experimental Design 

 

80 

ratio and EGR. The groups of experiments (performance and emissions, soot 

collection, EGR) could not be conducted separately in the order detailed as the 

compression ratio change (19.5:1 to 16.5:1) meant that both the soot collection 

and performance and emissions tests were conducted such that experiments 

alternated between each experiment type following each change in fuel or 

compression ratio. The EGR experiments were distinct in the requirement to use 

the DPF alone for which the installation was not completed until after the engine 

geometric compression had been reduced to 16.5:1 thus these experiments had 

to be sequenced in with this constraint. 

The sequencing of the fuels was important, especially with regard to B100 

biodiesel which was the last fuel to be tested at the 19.5:1 compression ratio and 

was selected as the first fuel to be tested at the 16.5:1 compression ratio. This 

fuel sequencing was devised for several reasons. Firstly to try and run both 

experiments with the same batch of biodiesel fuel and therefore minimise the fuel 

storage time and the risk of fuel degradation [189]. Secondly, to sequence back-

to-back experiments where the only change was the reduction of compression 

ratio and was thus an attempt to more clearly define the influence of the 

compression ratio change alone. Finally, this fuel sequence also allowed the 

mineral diesel experiments to be arranged back-to-back which was 

advantageous as there was a risk with running the engine on un-additised B100 

biodiesel that there would be a measurable impact on the fuel injection system 

performance (e.g. injector coking: Appendix 9). 

However, as stated previously, Lubrizol had advised that the biodiesel fuel 

was to be un-additised so that any additive based influence on the sampled 

exhaust soot could be avoided which meant the fuel had a limited storage life. 

The change to the lower compression ratio as detailed in Section 3.3.4 

consumed such an amount of time that the biodiesel fuel had begun to 

biodegrade when the engine was ready to do the 16.5:1 B100 biodiesel soot 

collection test. Two different batches of B100 fuel were therefore supplied, 

Appendix 1 (Figure A1.1), for the test work; the first batch was used to do the 

base engine soot collection and the engine performance and emissions tests at 

the 19.5:1 compression ratio and also the 16.5:1 EGR tests with DPF soot 

collection. The second batch of B100 fuel was only used for the 16.5:1 

compression ratio soot collection experiments. 
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3.2 Experimental Apparatus 

This section describes the engine experimental system which was installed 

specifically for this work in the Powertrains Laboratory at Loughborough 

University. The installation originally spanned the period June 2004 to March 

2006 and the engine remains in use as of 2014 for research and teaching. The 

system configuration is illustrated in Figure 3.4 and Figure 3.5. 

 

Figure 3.4: Photograph of Experimental System – Test Cell 

 

Figure 3.5: Photograph of Experimental System – Control Room 

The engine was supplied from Lubrizol’s Hazelwood UK research facility as a 

post-test engine which had been completely stripped down and inspected 

following a standard industry lubricant test. With the assistance of Lubrizol the 

engine was rebuilt with the majority of the ancillaries and fasteners replaced. 
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Power curve data from the prior Lubrizol baseline tests of the engine provided 

validation of the installation and instrumentation system described herein. 

3.2.1 Engine 

This section summarises the key parts of the engine installation and where 

deviations exits between the experimental engine and the engine used in a 

vehicle. The VW 1.9 TDI engine has numerous different ratings and 

configurations as the engine has been widely utilised within the whole of the 

Volkswagen Group. In Table 3.4 the full specification of the type AVF engine 

utilised in the experiment research reported herein is outlined. 

Table 3.4: VW 1.9l TDI – Base Engine Specification [187, 188] 

 

3.2.1.1 Engine Electrical System 

Lubrizol procured an original Passat vehicle and then procured a duplicate 

engine loom, ECU, vehicle speedometer panel, ignition key and key transponder 

receiver. This duplicate set was then fitted to the Passat and the system security 

codes programmed by a local VW dealer so that this duplicate system 

functioned. This solution precluded the capability to access the ECU to adjust 

operating parameters and maps etc. 

3.2.1.2 Engine Cooling 

The engine was coupled to the test cell cooling water system using a sized 

Bowman heat exchanger. The engine thermostat was retained to ensure a fast 

warm-up time as there was no control valve on the coolant system to regulate the 
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flow of coolant through the Bowman. Thus, the Bowman coolant flow was set so 

that the engine coolant temperature stabilised at 90°C when the engine was 

warmed up and would then fluctuate between 90-100°C depending on the engine 

operating condition. 

3.2.1.3 Charge Cooler Selection and Control 

The base engine was fitted with an air-to-air charge air cooler and this was 

unsuitable for the test cell so was replaced with an air-to-water charge cooler 

from a Peugeot 2.0l engine which used the laboratory cooling water. 

To achieve the setting of the low and high IMAT condition (Section 3.1.5.5), 

the procedure was to set the water flow control valve to fully open in the case of 

the low IMAT configuration and to then restrict the flow control valve such that the 

maximum IMAT temperature was 90°C (typically either 2000 rpm 76% load or 

4000 rpm full load) for the high IMAT case. 90°C was determined as the upper 

temperature limit due to the onset of increased engine combustion instability 

(coefficient of variation of the Indicated Mean Effective Pressure (IMEP)). The 

methodology was designed to achieve as large as possible delta in the IMAT 

within the limits of the system performance capability. 

3.2.1.4 Exhaust System Routing 

The layout of the test cell where the engine was installed dictated that the 

original engine exhaust required significant modification. This was a result of the 

exhaust side of the engine being on the opposite side of the test cell extraction 

duct. The exhaust was successfully modified to maintain the original system pipe 

lengths and intermediate and final silencer units thus ensuring that the gas flow 

would be as close as possible to the base engine and also as the engine was 

originally installed at Lubrizol, thus achieving the same back pressure 

characteristics. 

3.2.1.5 Fuel Conditioning, Handling and Storage 

The 1.9l TDI engine used in this work had a vehicle under-floor heat 

exchanger to cool the return (spill-back) fuel returning to the fuel tank when in 

service. The volume of spill-back fuel returning to the fuel metering system was 

considerable and required the removal of up to 2 kW of heat from the return fuel 

continually. This was achieved by adapting a Haake UWK90 laboratory chiller 

unit to remove heat energy from the fuel prior to the return fuel from the engine 

being returned to the measurement volume in the fuel metering system. This 
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implementation helped to reduce fuel volumetric measurement variation but did 

not provide precise control of fuel supply temperature. 

The use of multiple fuel types during this experimental work required careful 

fuel handling and storage practices to minimise the opportunities for cross-

contamination. All fuel was stored in regular 205 litre barrels and in the test cell a 

fuel bund was installed into which these barrels could be placed. 

To minimise cross-contamination when changing fuels, the engine fuel 

system was drained and the engine fuel filter replaced prior to charging the 

system with the next fuel. A flush test was then conducted with the engine run at 

high speed and load for more than an hour and the emissions and cylinder 

pressure were continually monitored for stabilisation. The fuel supply and 

metering system was also designed to prevent any backfill from the test cell fuel 

system to the barrel. 

3.2.1.6 Lubricant Handling and Consumption Measurement 

For each soot sample collection experiment with a change of fuel or 

compression ratio, the old engine oil was drained and a fresh fill of lubricant was 

added. This was then followed by a flush run and then the engine lubricant was 

renewed again. These precautions were undertaken to minimise any potential 

contamination of the soot samples from aged lubricant. 

A lubricant sample line was manufactured and installed on the engine oil filter 

mount and during the rated condition soot collection experiments; a 50ml oil 

sample was taken every 5 hours to provide Lubrizol with information on the 

effects soot loading and oil rheology change. To measure the rate and amount of 

lubricant lost from the engine during the soot collection tests, the oil level on the 

engine dip stick was monitored and oil added gradually to maintain the oil level. 

These lubricant mass additions were then used to estimate the lubricant 

consumption rate for all rated condition experiments.
2
 

3.2.2 Instrumentation 

This section summarises the integrated instrumentation system developed in 

this work emphasising the critical components of the system. 

 

                                                
2
 The post-experiment lubricant analysis revealed very low levels of soot loading of the lubricant (<1% 

weight) for all rated condition soot collection experiments and this level of soot loading had negligible influence 
on the rotational viscosity of the lubricant. 
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3.2.2.1 System Overview 

The instrumentation system was developed around a series of measurement 

instruments and sensors and utilised National Instruments LabVIEW® for 

centralised data acquisition and instrument communication for system control 

and monitoring. All the software was conceived and written specifically by the 

author for this research work and was presented at the National Instruments UK 

Academic Conference in 2006 [190]. 

An overview of the system is provided in Figure 3.6 which shows that the 

system was comprised of three Personal Computers (PCs) with two equipped 

with National Instruments DAQ cards and one running an ECU communication 

software (VCDS). The two PCs with DAQ cards were individually optimised for 1) 

low frequency (<10Hz) engine monitoring and system control and 2) for high 

frequency (1440 samples per cycle) cylinder pressure measurement and heat 

release rate online computation. 

The low frequency program monitored and recorded system temperatures, 

emissions, fuel rate, pressures (DPF and ceramic thimble system) at a fixed 

sample frequency and an analysis of this data is summarised in Chapter 4 for the 

emissions and soot collection experiments and later in Chapter 8 for the EGR 

experiments. The high frequency program captured the cylinder pressure signal 

from cylinder 1 (cylinder adjacent to the timing belt end of the engine) with the 

samples triggered by an AVL 364 optical encoder and this provided information 

on the different burn characteristics of the three fuels for both compression ratios. 

The third PC was used to monitor ECU parameters and fault codes with the 

software tool VCDS [191]. This was connected to the ECU via CAN and most 

importantly was used to determine the ECU measured throttle input signal as the 

engine and dynamometer control system was configured to the dynamometer-

rpm, throttle-direct control mode combination for all experiments. 
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3.2.2.2 Dynamometer and Control System 

A Froude AG150-HS eddy current dynamometer was used in combination 

with a Froude Consine Texcel V4 dynamometer-engine control system. Engine 

torque was measured by a load cell fitted to the dynamometer and the engine 

speed was measured using a Hall Effect sensor and toothed wheel which were 

also fitted to the dynamometer. The dynamometer load cell was regularly 

checked throughout the experiments for calibration accuracy. Engine speed and 

dynamometer applied torque were configured to be transmitted via a RS232 link 

between the Texcel V4 controller and the low frequency LabVIEW® data 

acquisition program and this program was also utilised to program Texcel with 

test sequences which assisted with experimental reproducibility. 

3.2.2.3 Fuel Rate Measurement 

A volumetric fuel measurement system manufactured by Plint & Partners Ltd 

of the UK [192] was used for the engine fuel rate measurement. The fuel meter 

was linked to the low frequency LabVIEW® monitoring program to record the time 

for each steady-state fuel measurement. A minimum of three fuel measurements 

were recorded and then averaged for each experimental test point. 

3.2.2.4 Cylinder Pressure and Injector Current Measurement 

For the measurement of cylinder pressure a Kistler Type 6055 piezoelectric 

Pressure Transducer & Type 6535 Glowplug Adapter were fitted to cylinder 1 

(cylinder adjacent to the timing belt end of the engine). An AVL 364 optical 

encoder was configured to 0.5 CAD and used to trigger the sampling of cylinder 

pressure 720 times per engine rotation. A Kistler 5011 charge amplifier converted 

the pressure transducer charge signal to a voltage signal in the range 0-10V 

suitable for the data acquisition hardware. This was equivalent to 0-200 bar and 

thus well matched to the peak firing pressure of around 160-170 bar at 19.5:1. 

Accurate determination of cylinder Top Dead Centre (TDC) position was very 

important for correct IMEP estimation [193] and this was done by first statically 

aligning the AVL encoder to TDC and then motoring the engine and recording the 

cylinder pressure trace. This data was then post-processed with an algorithm 

written in Matlab® based on the methodology described by Hsu [193] and the 

encoder position was then adjusted by the correction estimated from this post 

processing. This sequence was repeated several times to minimise the correction 

calculated in the data post processing. 
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3.2.2.5 Exhaust Particulate Emissions Measurement 

Particulate emissions measurement was performed with an AVL 415 smoke 

meter with an unheated sample line. The sample point for the emissions and 

rated condition soot collection experiments was located approximately 2 meters 

down the exhaust from the turbocharger with the sample probe installed in the 

exhaust pipe following the guidelines of the AVL 415S manual [195] (6 exhaust 

pipe diameters equivalent of straight pipe section ahead of the probe). This 

position was then changed to be before the DPF when the DPF was installed in 

the exhaust, Figure 3.7. 

 

Figure 3.7: AVL 415 Exhaust Sample Locations (with and without DPF) 

However, the sample probe position relative to the DPF depended on 

whether the soot collection tests were for the rated power collection experiments 

(i.e. investigation of soot evolution in the exhaust system, Section 3.1.5.3, or the 

EGR experiments, Section 3.1.5.4). For the former experiment set-up, a long 

exhaust extension was also required to increase the distance between the 

exhaust manifold and DPF to reduce the exhaust gas temperature at the DPF 

(refer to later Section 3.5.2.1) and thus the AVL 415S sample probe was roughly 

5 meters upstream of the DPF position for these experiments. For the EGR 

experiments, the probe was approximately 1 meter upstream of the DPF as the 

exhaust extension was not required. 
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For the position used during the DPF experiments it was necessary to design 

and machine a new main body section for the AVL 415 sample probe which did 

not have a 45 degree angle as the new position enabled the probe to be inserted 

into the exhaust at a 90 degree bend downstream of the sample probe as is 

shown in Figure 3.7 (on the right). As a precaution the unheated sample line was 

cleaned with a high pressure shop air prior to each experiment to remove any 

residue. 

3.2.2.6 Exhaust Gaseous Emissions Measurement 

All exhaust gas emissions were measured pre-catalyst with the same exhaust 

manifold sample point used for the soot collection tests, Figure 3.8. The gaseous 

emissions test bench was a Horiba Mexa 7100 HEGR which included individual 

analysers for measuring CO, CO2, O2, THC and NOx. Each analyser was 

calibrated routinely with span gases before and during each experiment to 

reduce the effect of analyser drift. Regular sample line purging was also 

conducted during the experiments to minimise the hang-up of HCs and any 

condensed water in the sample line. Only steady-state engine operating points 

were considered in this work and the emissions at each point were averaged 

over 30 seconds and repeated. 

 

Figure 3.8: Horiba Mexa 7100 HEGR Exhaust Emissions Analyser and Sample Position 

Detail 

3.3 Engine Geometric Compression Ratio Modification 

The principle engineering challenge in respect experimentally investigating 

geometric compression ratio with the selected VW 1.9l TDI engine was to be able 
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to experimentally test over the required range of relevant geometric compression 

ratio whilst at the same time ensuring that the generated results would be valid 

and not biased by other related fundamental change(s) to the engine. For 

example, these could have included changes to the engine breathing and or 

motion of the charge in the cylinder such as the squish and swirl characteristics 

around the piston bowl for DI diesel engines. 

The change of the geometrical compression ratio could be achieved through 

changing either the physical swept volume or the clearance volume or both. 

Changing the engine swept volume was eliminated as an option as it would result 

in a change in the engine displacement through a change in the stroke of the 

engine; requiring modification of either the crankshaft, connecting rod or piston to 

achieve. 

Thus, the following section reviews the basic design of the VW 1.9l TDI 

engine and considers the ideas for varying the compression ratio through 

modification of the clearance volume so as to meet the research objectives. 

3.3.1 Measurement and Calculation of Engine Geometry 

Section 3.1.3.2 defined that the identified range for the investigation of 

geometric compression ratio was 15:1 to 20:1. This section reviews design 

modifications that were considered for the VW 1.9l TDI engine to change its 

geometric compression ratio within this range. 

Table 3.5 lists the important geometrical specifications of the VW 1.9l TDI 

engine [188]. 

Table 3.5: VW 1.9l TDI – Base Engine Geometry 

 

Equation 3.2 defines the compression ratio of an engine (where; Clearance 

Volume Vc is the clearance volume at TDC, Vs is the swept volume and 

Compression Ratio Rc is the compression ratio) and was used to calculate the 

engine clearance volume for the baseline compression ratio of 19.5:1 and 

deduce what part of this volume derives from the piston bowl and valve recesses 
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in the piston and what part is a consequence of the Clearance Height Hc between 

the piston and the cylinder head. 

𝑉𝑐 = 
𝑉𝑆

𝑅𝐶−1
                                       Equation 3.2 

The volume of the piston bowl was measured separately with water and 

acetone and was found to account for ~86% of the total Vc at TDC. The Hc 

between the piston crown and cylinder head was estimated at approximately 

0.6620mm, and thus very small which implied that the investigation of 

compression ratios’ significantly higher than that of the base engine was unlikely 

to be feasible through a reduction in this clearance without issue with valve 

clearances etc. thus for practical purposes the compression ratio investigation 

was constrained to compression ratio lower than the base engine 19.5:1. 

3.3.2 Analysis of Methods for Changing Geometric 

Compression Ratio 

This section summarises the methods originally considered and investigated 

for changing the clearance volume of the VW 1.9l TDI engine. 

3.3.2.1 Contra-Piston Method 

The contra-piston method is based on the principle that a boundary of the 

combustion chamber consists of a piston Figure 3.9, the position of which is able 

to be finely adjusted such that the adjustment of the cylinder Vc and hence 

compression ratio can be tightly controlled. The main issue with this approach is 

where to site the piston as it is typically forms part of the cylinder head. 

 

Figure 3.9: Contra-Piston 

[Adapted from: Heisler, H., Advanced Engine Technology] 
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3.3.2.2 Auxiliary Chamber Method 

The auxiliary chamber method refers to an auxiliary chamber that is 

connected to the main combustion chamber via a channel which can be sealed 

with a form of screw mechanism Figure 3.10. This creates in a very narrow 

passage for the reactants and products of combustion to pass through therefore 

introducing its own set of problems when it comes to analysing what additional 

effects this method has on in-cylinder gas dynamics and combustion. It is also 

more suited to use on IDI engines where there is a pre-chamber in which the 

auxiliary chamber can be located adjacent to and coupled with. In its basic form, 

this solution also only allows for a single change in compression ratio. 

 

Figure 3.10: Auxiliary Chamber 

[Adapted from: Heisler, H., Advanced Engine Technology] 

3.3.2.3 Joint Ring ’Spacer’ Method 

One method for achieving different compression ratios with the VW 1.9l TDI 

engine was to use the so called joint spacer rings methodology. This involves 

increasing the height of the cylinder head above the block and hence the size of 

the clearance volume through the incorporation of spacer rings of appropriate 

thickness at the head gasket interface Figure 3.11. 

To determine the validity of this method, consideration was given to the 

maximum height increase in the cylinder head required to achieve the lowest 

compression ratio of 15:1. The clearance volumes and heights were calculated 

for compression ratios in the range 15 to 21:1 and the results are presented in 

Appendix 5 (Table A5.1). This showed that a geometric compression ratio of 15:1 

required an increase in the cylinder head height of 2.32125-0.66198 = 1.659mm. 

This was equivalent to a 32.14% increase in the clearance volume Vc and was 
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thus a significant change for the engine. However, in principle this could be 

achieved through the inclusion of a joint ring at the head gasket interface. The 

main concern would be how to combine with the head gasket to ensure a reliable 

gas seal. 

 

Figure 3.11: Joint Ring Separating Engine Block and Cylinder Head 

[Adapted from: VW 1.9l Engine Workshop Manual] 

Closer inspection of the 0.5 increments in compression ratio, Appendix 5 

(Table A5.1), and the resulting change in the clearance height suggested that a 

joint ring installation would be required to be within a tolerance of 0.1 mm (100 

µm). For a unit change in compression ratio the tolerance reduces to 0.2 mm. 

Thus, technically there were no ‘show-stopper’ issues identified with 

implementing this method of compression ratio adjustment. 

The benefit of this method shown by these calculations was that the 

maximum clearance height increase was approximately 9% of the piston bowl 

depth and thus the associated displacement of the injector tip would not have 

been excessively large in relation to important length scales of the engine. The 

26 degree inclination of the injectors precluded that they could not be 

repositioned to account for this offset and so change in the relative position of the 

injector tip to the piston bowl with engine angular position would have to be 

accepted. The impact of this change on combustion and emissions would be 

difficult to quantify and thus such a change would always complicate the 

interpretation of the effect of compression ratio change on soot formation and 

oxidation. This is especially true in view of the fact that it was technically 

infeasible in this work to internally investigate the combustion process other than 
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through cylinder pressure and such a measurement is global and devoid of 

spatial information. 

3.3.2.4 Reduction of the Piston Bowl Pip 

The piston bowl of the VW 1.9l TDI engine employs a re-entrant ‘Mexican hat’ 

design with a prominent piston bowl pip at the centre of the bowl Figure 3.12. A 

possible method of increasing the combustion chamber volume was therefore to 

machine down the piston bowl pip by set increments to achieve specific 

compression ratios’. This approach has the advantage that it avoids changes to 

the fundamental combustion chamber characteristics such as piston bowl and 

injector tip relative position with engine crank angle. Additionally, since the 

clearance height Hc is not being increased, the relative squish and swirl ratios of 

the combustion system should be impacted to a lesser extent compared to 

increasing Hc. Minimising such combustion system effects was fundamental to 

isolating the change in geometric compression ratio from other parameters such 

as swirl and squish and their effect on soot physiochemical characteristics. 

 

Figure 3.12: VW 1.9l TDI Piston Bowl Top Land (sectioned detail) 

The approximate volume of the piston bowl pip was estimated by assuming 

that the pip was essentially a circular cone in form with the dimensions as 

indicated in Figure 3.13, therefore the volume was calculated using Equation 3.3: 

𝑝𝑖𝑝 𝑣𝑜𝑙𝑢 𝑒 ≈ 0.9𝜋2 (
1

3
) (

1

4
) = 0.942 𝑐 3             Equation 3.3 
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Figure 3.13: VW 1.9l TDI Piston Bowl Pip Size Estimation 

Thus, if the entire piston bowl pip were to be machined down, then this is 

equivalent to increasing the Vc from 25.6245 cm3 to 26.567 cm3, which equated 

to a reduction in geometric compression from 19.5:1 to (474.0537/26.567 +1) = 

18.8:1. Therefore, the volume of material incorporated into the piston bowl pip 

itself proved insufficient to enable a compression ratio of 15:1 to be realised. 

Additional material would have to be removed from somewhere and the obvious 

choice would be to deepen the piston bowl below the base of the pip. Assuming 

that the piston bowl at the base was approximately 40mm in diameter, the 

remaining (5.979-0.942 cm3) = 5.037 cm3 volume increase was equivalent to an 

increase in depth of 4.0mm. This equated to 26.7% of the original piston bowl 

depth and was therefore considerable. 

Arcoumanis et al. [195, 196] reported on work undertaken on an optical 

engine designed by VW as part of the Integrated Diesel European Action (IDEA) 

program. This engine employed a design fundamentally similar to the production 

VW 1.9l TDI engine with respect to the principle combustion chamber 

characteristics apart from the fact that the optical engine had a quartz window in 

the piston bowl base. Arcoumanis et al. commented that the absence of the 

piston bowl pip in the optical derivative, resulted in poor mixing and thus higher 

HC’s and PM emissions compared to the standard production engine. Thus, 

when considered against the findings reported in [195, 196], this method of 

compression ratio reduction was concluded to be unsuitable. 

3.3.2.5 Material Removal from the Piston Crown 

Examining a piston crown of the VW 1.9l TDI engine in detail revealed that a 

significant proportion of piston material was machined away to create recesses 

for the intake and exhaust valve heads Figure 3.14. 

These recesses were approximately 1.1 mm in depth and 34 mm (intake 

valve) and 39 mm (exhaust valve) in diameter. A close inspection of the piston 

deposits along the axis of the five radial injections, Figure 3.14; suggested the 
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contaminate deposition to be very high within the piston bowl but that it also 

extended onto the surface of piston crown so any modification was a concern. 

 

Figure 3.14: VW 1.9l TDI Piston Crown Recess Detail 

The volume of piston material above the level of the sections that had been 

recessed for the inlet and exhaust valves was clearly less than the 8.236 cm3 

required to reduce the compression ratio to 15:1. Indeed, it was calculated that 

the entire crown would have to be machined down by more than 1.659 mm, 

assuming it were whole, in order to achieve the required volume change. 

The issue with this piston crown material removal solution concerned the fact 

that it would adversely affect the engine balance unless remedial action was 

taken to rebalance the engine for the changed piston masses. Thus, upon each 

change of compression ratio using this method, engine re-balancing would also 

be necessary. Thus, this method was ultimately considered not practical for 

achieving the significant reduction in compression ratio which was sought. 

3.3.2.6 Addition of a Ring Groove to the Piston 

The analysis of the removal of material from the piston crown of the previous 

Section 3.3.2.5 established that there was insufficient material on the piston 

crown to achieve the desired compression ratio reduction. The other proposed 

methods were also not ideal with the potential of secondary effects through 

changes in the relative position of the injector tip and piston bowl and/or swirl-

squish characteristics. Thus, another method was sought to change the 

clearance volume but which succeeded in avoiding such issues. The only way to 

achieve this appeared to be increasing the clearance volume whilst avoiding 

changing the clearance height. The only two locations inside the combustion 

chamber not considered at this stage where the geometry could be changed 

were: 1) the top land of the piston 2) the cylinder head fire deck. 

In the case of the second option the calculation in Section 3.3.2.5 identified 

the volume of material to be removed was equivalent to a cut-out of depth of at 
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least 1.659 mm assuming a circular cut-out of diameter equal to the bore of the 

cylinder. As this was not considered feasible for the fire-face of the head, 

sections would need to be removed that were of smaller diameter and deeper 

than this and these would likely introduce significant areas of thermal stress in 

and around critical areas such as the valve bridges. 

The first option, the removal of material from the piston top land, appeared 

somewhat more viable. The volume of material that would need to be removed in 

principle was achievable since the top land of the piston was approximately 12 

mm deep and could thus in principle accommodate a relatively large section of 

material wastage. This at first appeared analogous to the addition of an extra ring 

groove to the piston above the first gas ring. Figure 3.15 illustrates the area 

concerned and shows a sectioned view of the piston in the quadrant where the 

distance from the piston bowl to the outer circumference of the piston is smallest. 

This revealed the depth of any groove would need to be less than 15 mm to 

avoid the bowl (based on simply the clearances and not a thorough 

thermal/stress analysis of the piston). It also revealed a cooling gallery adjacent 

to the oil scraper ring which is discussed in detail by Ohmstede et al. [197]. 

 

Figure 3.15: VW 1.9l TDI Piston, Section through Ring Pack Area 

The shape of the ring groove as proposed is illustrated in Figure 3.16. The 

inner radius R1 can be calculated based on the depth D of the groove using 

Equation 3.4. The outer radius is that of the piston top land section, R2 (39.37 

mm).3 

𝑉𝑐  𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =   𝑅 
 − 𝑅1

  𝜋𝐷                             Equation 3.4 

                                                
3
 The piston top land was not perfectly perpendicular to the crown as the piston profile was a barrel shape 

to prevent it ’jamming’ in the cylinder - so this calculation method was only an approximation but sufficient to 
estimate the general dimensions of the required ring groove. 
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Based on the increase in clearance volume required for the reduction in 

compression ratio from 19.5:1 to 15, calculations were performed that considered 

a range of groove depth D from 2mm to 8mm. The resultant incision depth 

required (R2-R1) for a groove depth D=6mm is presented in Appendix 5 (Table 

A5.2). At 15:1 compression it was determined that a ring groove with an incision 

depth of (R2-R1) = 6.009 mm was required and was considered the best balance 

of the two variables. The calculation results for the other groove depths D are 

presented in Figure 3.17. These calculations showed that the required size of the 

additional ring groove was comparable to that of the gas ring grooves. 

 

Figure 3.16: Piston Ring Groove Proposal 
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To fully understand what possible effects the inclusion of this ring groove 

would have on the combustion, a thorough review of literature discussing similar 

piston adaptations was conducted. Several interesting points arose through this 

process but the one which essentially lead to the abandonment of the approach 

was the discovery of work done by A. Pouring et al. [198-201] and the fortunate 

opportunity for the Author to discuss one-to-one with Pouring at the 2004 Society 

of Automotive Engineers (SAE) Fuels and Lubes conference. 

 

Figure 3.17: Ring Groove Incision (R2-R1) Calculation 

Pouring had arrived at the same proposed method for engine compression 

ratio adjustment previously in the 1970s but when it was tested it was determined 

that there was a highly unusual ’Helmholtz - free radial’ effect taking place as a 

consequence of the trapping of charge in the groove and this causing a 

fundamental change in combustion characteristics. 

In essence, the groove was causing the auto-ignition process to change 

fundamentally from that of a DI diesel engine with conventional re-entrant bowl 

design. This change has been proposed to be mediated through intermediate 

and radical chemical species produced in the crevices [198]. Interestingly, this 

phenomenon enables engine designs with lower compression to run low cetane 

fuels and also has the added benefit of the radicals assisting the oxidation of the 

soot in the blowdown process. Pouring and Sonex have utilised this effect to 

Patent a combustion system design called Sonex Combustion System (SCS) 

[202-207]. 
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Subsequent further research in this area revealed Rogers et al. of Ricardo 

have investigated the effects of the in-cylinder cavities proposed by Pouring [208] 

and also there exist at least 98 patents filed at the US in other patent offices 

(search term: ’Piston Auxiliary Charge containing Cavity’) relating to cylinder 

cavity based ideas as considered here. 

It was concluded that the uncertain combustion auto-ignition effects reported 

introduced too many potential additional issues and thus the ring groove method 

and the other cavity based modifications were ultimately abandoned as a result. 

3.3.3 Down-Selection of Compression Ratio Change Method for 

the VW 1.9 TDI 

Following the investigation of the forgoing proposed methods for compression 

ratio modification it was concluded that the best solution was the joint ring 

’spacer’ method Section 3.3.2.3. In summary, the joint ring ’spacer’ method had 

the least number of concerns associated with it and it was also considered as the 

most practical solution that could be implemented. The principle concern with this 

method was the unquantifiable change to the swirl and squish characteristics of 

the combustion system but it was considered that such changes would be almost 

impossible to avoid with geometric compression ratio change. 

3.3.4 Modification of Engine Cylinder Head Gasket 

Usefully for the AVF (Section 3.1.4) derivative of the VW 1.9l TDI engine used 

in this work, a number of different gaskets types and gasket versions were found 

to exist. For each gasket type, there was a subgroup of three derivatives that 

depended on the measured engine piston projection (1,2,3-hole) Table 3.6 [188]. 

Table 3.6: VW 1.9l TDI Gasket Selection Criteria 

 

Each gasket design was based around a centrally located ’spacer’ element of 

a prescribed thickness and bounded on either face by thinner sealing gasket 

layers. Figure 3.18 shows the separate elements of the 2-hole gasket used for 

the 19.5:1 base engine build. 
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This form of gasket construction meant that it was possible to modify the 

gasket thickness by means of replacing the central spacer element with either a 

thinner or thicker element. When the VW part inventory for the AVF engine was 

reviewed, a total of three different versions of the 3-hole gasket were found. The 

thickness of the ’spacers’ for these gaskets and the original (19.5:1) 2-hole 

gasket are detailed upper part of Table 3.7. 

 

Figure 3.18: Head Gasket Individual Elements for 19.5:1 

This table also has the calculated values for the clearance height Hc, the 

compression ratio Rc and the percentage reduction in compression relative to 

19.5:1. 

Table 3.7: VW 1.9l TDI Gasket Versions and Rc Estimate 

 

As the original gasket construction was a set of five elements Figure 3.18, the 

replacement of the single spacer with two or more would have meant that there 

would have been un-coated face-to-face contact between the spacers which 
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would have risked the gasket seal. Clearly, the greater the number of spacers, 

the greater the difficulty in getting the gasket to seal. 

It was therefore determined that the most acceptable compromise was to use 

the two thickest spacers to achieve a compression ratio target of 16.1:1 and then 

stack them such that each spacer was between the two outer elements of the 

original 19.5:1 gasket Figure 3.18. This construction thereby avoided adjacent 

spacers and is illustrated in Figure 3.19. 

 

Figure 3.19: Head Gasket Individual Elements for 16.5:1 

After the elements were stacked in the correct sequence and orientation they 

were riveted together using the original rivet holes. The cylinder head was then 

bolted up normally following a clean of the block and cylinder head gasket 

contact faces. 

On the first build to low compression the engine was initially cranked over 

with the starter to test compression. It was found that the compression pressure 

across the cylinders was even but coolant was seen to be leaking from one of the 

corners of the block. As the compression pressure was good it was believed that 

the leak was due to a lower bolt compression load at the corner of the block close 

to a coolant channel. 

A second attempt at building the engine with this same type of gasket 

assembly was made but in an attempt to try an ensure there would be no coolant 

leak issues, a thin bead of high temperature silicon based sealant (Loctite 5367) 

was applied to each face of the gasket layers to see if this would help create a 

reliable seal. 
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Unfortunately this method proved very unsuccessful as the sealant, although 

applied sparingly, spread into the coolant and oil feed galleries from between the 

layers of the gasket when the cylinder head was bolted up. Thus, although a form 

of sealant was absolutely necessary to ensure a good coolant seal, a sealant 

which would not migrate into the coolant channels and the cylinder and then cure 

was essential. This resulted in some research and following from this a candidate 

sealant was found. This sealant was Loctite 573T M which is an acrylic based 

anaerobic sealant. 

When the engine was rebuilt again with this sealant, Figure 3.20, both the 

coolant and gas seals proved to be good on the first build attempt. 

 

Figure 3.20: LOCTITE® 573 Used To Seal Gasket 

An inspection was made down the oil return channels from the cylinder head 

after the assembly had been left to cure for 24 hours and it was clear that the 

anaerobic sealant had worked as intended as the excess simply dispersed into 

the oil rather than go hard in the channel. 

3.3.5 Cylinder Pressure Evaluation of Compression Ratio 

Table 3.8 shows the measured peak pressure with the engine being motored 

by the starter motor at approximately 300 rpm for both the reduced compression 

configuration and the standard base engine configuration. 

Table 3.8: Rc Reduction Analysis – Cylinder 1 Motored Peak Pressure 
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The direct application of the relation Equation 3.5 (where Pcomp is the 

compression pressure, P0 is the pressure in the cylinder at Bottom Dead Centre 

(BDC), and gamma γ=1.44 is the ratio of specific heats Cp/Cv) to the peak 

pressure data in Table 3.8 leads to Rc estimates of 11.5 and 13.7 for low and 

base engine compression configurations respectively. The calculated value for Rc 

for the base engine was somewhat lower than the actual 19.5:1 due to the 

compression process not being isentropic with heat loss to the cylinder walls, 

non-ideal piston ring sealing and non-ideal cylinder filling. However, this was the 

only practical measurement method to estimate the change in Rc and based upon 

these two Rc estimates the compression ratio was estimated to have been 

reduced ~16.1%. This is equivalent to a reduction from 19.5:1 to ~16.4:1 (i.e. 

19.5 x 0.839). 

𝑃𝑐𝑜𝑚𝑝 = 𝑃0 × 𝑅𝑐
𝛾
                                      Equation 3.5 

A further confirmation of the above compression ratio reduction estimate was 

made by making use of the retarded injection timing characteristics of the VW 

1.9l TDI engine at idle (800 rpm). Such was the retardation in timing, that the 

compression stroke completed prior to auto-ignition and thus the TDC peak 

pressure could be approximated to the motored peak pressure that would be 

observed at this higher rpm. Figure 3.21 illustrates this observation; where ‘Data 

Set 1’ is the base engine idle cylinder pressure and ‘Data Set 2’ is the reduced 

compression data set (both averaged over 50 engine cycles). The peak 

pressures at TDC for this data is summarised in Table 3.9. 

Table 3.9: Rc Reduction Analysis – Cylinder 1 Idle Peak Pressure 

 

Table 3.9 reveals that in both cases the measured peak pressure was higher 

at the higher engine rpm of idle compared to the engine being cranked over with 

the starter motor (as would be expected with improved piston ring sealing and 

improved engine breathing at the higher rpm). Repeat analysis using Equation 

3.5 and a value for gamma of 1.37 (i.e. slightly lower than for air to be reflective 

of a diesel engine lean fuel air mixture [344]) resulted in a base engine 

compression ratio estimation of Rc = 16.1:1 and for the reduced compression 

                                                
4
 Assumes ratio of specific heats for air is 1.4 (U.S. Standard Atmosphere, 1962) [344]. 
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case it was Rc = 13.6:1. The compression ratio was thus estimated to have 

reduced by 15.5% and was therefore similar to the 16.1% reduction estimated for 

the 300 rpm motored condition. 

 

Figure 3.21: Rc Reduction Analysis – Cylinder 1 Idle Pressure 

Table 3.7 shows that the original projected reduction in compression ratio 

resulting from the increase in thickness of the head gasket was 17.4%. This is 

greater than the 15.5 to 16.1% reduction derived from the forgoing analysis of the 

two sets of peak cylinder pressure measurements. Thus, the estimated achieved 

low compression ratio between 16.4 to 16.5:1 (i.e. 19.5 x 0.836, 19.5 x 0.845) is 

higher than the original calculated target of 16.1:1, Section 3.1.3.2. 

The 0.4:1 difference in compression between predicted and measured 

equates to a clearance volume difference of 0.81 cm3 and a clearance height 

difference of 0.163 mm. This is equivalent to a difference of 3.2% in respect to 

the base engine clearance volume. The reason for this could not ascertained 

directly as it potentially had many causes including: wear of the bore, less than 

ideal measurement method for motored peak cylinder pressure, error in gasket 

spacer measurement etc. For simplicity, throughout the remainder of this work, 

the low engine compression ratio is henceforth denoted by 16.5:1 and the high 

compression ratio is denoted by 19.5:1. 
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To ensure that the reduction in compression was even across all four 

cylinders, the cylinder pressure transducer was moved through cylinders 1-4 and 

the pressure measured for the 300 rpm motored condition and the peak pressure 

results are presented in Table 3.10. This showed that the standard deviation 

across all cylinders was 0.249bar, or 0.8% of the mean peak pressure. 

Table 3.10: Rc Reduction Analysis – Cylinder 1-4 Motored Peak Pressure Check 

 

3.4 VW 1.9l TDI EGR System Adaptation 

The VW 1.9l TDI EGR system was a high pressure external design and was 

configured with the EGR control valve mounted directly onto a cast aluminium 

intake manifold Figure 3.22. 

 

Figure 3.22: VW 1.9l TDI EGR Valve 

A pipe connection from the exhaust manifold confluence point delivered the 

exhaust gases to the EGR valve which was controlled by vacuum regulated 

diaphragm. Just upstream of the EGR valve was an intake manifold flap which 

was also actuated using a vacuum regulated diaphragm and was part of the EGR 
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valve assembly. This valve was only designed to cut-off intake airflow on engine 

shutdown [209] and thus was left disconnected for the experimental work 

reported herein. 

In the modification of the system, the vacuum line to the EGR valve was re-

routed to a second redundant EGR valve and the engine EGR valve was then 

connected to a vacuum pump with a manometer connected in-line adjacent to the 

vacuum pump to help control the EGR valve position demand Figure 3.23. 

The inability to override the ECU meant that it was not possible to maintain 

constant engine fuelling with EGR rate change and thus the intake manifold 

pressure and temperature changed and the MAF decreased with increased EGR 

rate. As this occurred, the ECM responded by limiting the engine fuel injection 

duration. Thus, to investigate both high and low rates of EGR, it had to be 

accepted that there would be a change in the engine fuel injection quantity. The 

resulting change in AFR however proved ideal for broadening the conditions of 

soot formation and resulting soot physiochemical properties, Chapter 8. 

 

Figure 3.23: Engine EGR Valve Vacuum Override Detail 
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3.5 Exhaust Soot Collection 

This section describes the two exhaust soot sampling methods used in this 

work: Section 3.5.1 outlines the sampling method implemented at the exhaust 

manifold using ceramic thimbles and Section 3.5.2 describes the use of a diesel 

particulate filter mid-way down the exhaust. 

3.5.1 Ceramic Thimble Exhaust Manifold Soot Sampling 

In the case of exhaust manifold soot which was to undergo extensive 

chemical and physical analysis; the ceramic thimble method was advised by 

Lubrizol to be the most suitable sample collection method and became the 

principle method used to collect the soot for the three fuels and two compression 

ratios investigated in this work. This method had previously been utilised by 

Lubrizol in several published papers starting with Covitch et al [210] which 

defined the collection apparatus; this apparatus and its derivatives were then 

utilised in subsequent reported work [115, 117, 119, 138, 165, 211-213]. 

3.5.1.1 Design and Function of the Ceramic Thimble System  

The ceramic thimble system as described by Covitch et al. derived from the 

international standards [214-217] that govern the sampling of particulate 

emissions in effluent gases from stationary sources; most frequently the stacks at 

industrial installations. These standards are based on isokinetic sampling 

principles and as these standards relate to the collection of particulate from a 

stack, they serve only to establish a foundation for the development of the 

ceramic thimble sampling method covered in this section. 

A review of literature concerning the utilisation of ceramic thimbles beyond 

the Lubrizol works was conducted but little was found which reported in detail on 

the use of the collection methodology, though some papers were found which 

utilised techniques similar to that employed in his work [171, 218-221]. 

Additionally, this review identified technical reports and publications which 

discussed diesel engine soot collection methods in general and these assisted 

the development of the general methodology [24, 222-228]. 

The ceramic thimbles for the tests were procured through Westech [229] in 

the United Kingdom. They are described by their commercial name as Alundum® 

Thimbles and are made from fused alumina oxide (Al2O3). Thimbles with a 

porosity size of 20 micron were selected for this work following Lubrizol’s 

experience. 
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The sampling position for the ceramic thimble system was selected to be the 

confluence point on the exhaust manifold which connected to the inlet of the 

turbine housing foot of the turbocharger. This was chosen as it was relatively 

easy to access, had a suitable surface for tapping into and the exhaust gas at 

this point was as close as could be sampled to the cylinder. A further advantage 

of this sampling position was that the sample gas was at a relatively high 

pressure, thus helping to pump sampled exhaust gas through the ceramic 

thimble system. A Swagelok 1/8 inch NPT threaded tube fitting was tapped into 

the exhaust and off this ran the primary sample line which was ¼ inch 415 

stainless tubing, Figure 3.24 and Figure 3.25. 

The primary sample line from the exhaust manifold extended for 

approximately 2 meters, Figure 3.24, and then interfaced with the input end of the 

ceramic thimble holder, Figure 3.25. The holder was made of stainless steel and 

was designed so that a ceramic thimble would slide over the end of the holder 

and then be sealed by an O-ring which fitted on the outside of the ceramic 

thimble, Figure 3.26. An outer cylindrical sleeve went over the thimble, sealing 

against the O-ring, and this was secured with a cap that screwed to the outside of 

the sleeve. The gas outlet port at the end of the sleeve was connected to a 1 

meter length of ¼ inch stainless steel pipe. After this a 6 mm PTFE pipe went to 

a zinc plated 6 mm regulating ball valve in the control room and then to an 

Edwards RV3 Vacuum Pump with catch-pot (to collect water condensate) and 

then back into the test cell and to the exhaust extract duct, Figure 3.24. 

A by-pass line broke off from the primary sample line 100mm before the 

ceramic thimble and was designed to enable the pre-heating of the sample line 

with exhaust gas prior to switching the gas flow to pass through the ceramic 

thimble. This pre-heating of the sample line was necessary to prevent 

condensation forming on the inside of the sample line, which would entrain soot 

and also condense inside the ceramic thimble reducing the quality of the sample. 

An Edwards RV3 vacuum pump was used to maintain the flow rate of the 

sample gas by the regulation of the pressure drop across the ceramic thimble. 

Reduced vacuum was required with a new ceramic thimble as there was less 

resistance than when soot was entrained (similar to the layer cake of a DPF). A 

needle valve in the control room, Figure 3.24, was used to regulate the vacuum. 

Research and development established that the addition of the vacuum pump 

increased the soot accretion rate by greater than a factor of two. 
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The permissible temperature range for the ceramic thimble and hence the 

temperature of the sample gas was somewhat limited. The lower temperature 

was dictated by the need to avoid condensation inside the thimble and this 

necessitated a minimum temperature in the thimble canister of 120°C; this was to 

account for up to 2bar absolute pressure inside the sample chamber due to the 

exhaust gas pressure at the sampling point5. However, the system was 

configured to operate mainly above 150°C due to a rapid drop in temperature in 

the sample canister as the thimble plugged and the gas flow rate declined. 

 

Figure 3.25: Ceramic Thimble Sample Position and Sample Line 

The upper temperature limit was dictated by the O-rings which sealed the 

thimble in the holder. These were rated to 250°C and when this was actually 

tested it was found that in the worst case the O-ring would not retain the thimble 

in the holder and the thimble would be ’blown’ off the holder mount and hit the far 

end of the outer cylinder sleeve, breaking the fragile thimble. 

A thermocouple was installed into the ceramic thimble canister by tapping a 

channel at the gas inlet end and fitting a 1.5 mm diameter thermocouple and then 

sealing with a high-temperature epoxy adhesive (Scotch-Weld DP760), Figure 

3.26. 

Typically, the temperature of the sample gas in the thimble (sampled from the 

exhaust manifold with the engine at rated power) would fall 20-30°C per hour as 

a consequence of the reduction in sample gas flow rate as the ceramic thimble 

plugged from the accretion of soot. To maintain the sample gas temperature in 

the range of 150 to 250°C, the length of the primary sample line was determined 

                                                
5
 Calculated using the Antoine equation. 
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such that at rated power with a new thimble, the resulting temperature inside the 

thimble was around 230°C. As the thimble began to plug, the vacuum was 

increased on the exit port of the thimble to minimise the reduction in sample flow 

rate and this helped to reduce the rate of temperature decline. Eventually, after 

approximately 2 hours of sampling (EN590 base fuel) the pressure drop across 

the thimble would be at a maximum and the temperature had declined to 150°C 

and at that point lagging was placed on the sample line so that the test could 

continue with that thimble, Figure 3.25. 

 

Figure 3.26: Ceramic Thimble and Holder 

The high pressure drop, poor flow rate and the low thimble temperature in 

combination would necessitate a thimble change. From the tests conducted this 

would equate to about 0.5-0.7 g of total soot collected by the thimble (for the 

mineral diesel fuels) and about 7 hours of continuous testing at rated engine 

power. Thus, to achieve the required 2 g of soot (Section 3.6.8) for each mineral 

based fuel and compression ratio, it was necessary to test for approximately 20 

hours and use three thimbles for each mineral fuel and compression ratio 

combination. 

The test duration would have been much longer with a lower speed-load 

operating point which had both reduced exhaust soot concentration and lower 

exhaust manifold pressure. Hence, the ceramic thimble collection methodology 

as outlined in this section was the principle reason for limiting the engine speed- 

load point to full load rated speed (maximum power). 
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It was essential to ensure that the ceramic thimble and holder were above 

(>100°C) prior to letting the sampled exhaust gas enter the thimble. So a heating 

element which clamped around the outside of the ceramic thimble holder was 

sourced Figure 3.27. The heat output of the element was controlled by a variac 

(variable autotransformer). A process was developed for pre-heating the thimble 

to (>120°C) using just the heating element and a pre-set variac setting and the 

warm-up time was 30min. 

 

Figure 3.27: Ceramic Thimble Holder Heating Element 

The gas pressures both before and aft of the ceramic thimble were measured 

using a pair of Keller 5bar absolute pressure transducers Figure 3.28. This was 

essential as this pressure differential had to be maintained to maximise the gas 

flow rate but it could not be made to exceed approximately 1.5 bar else there was 

a risk of breaking the ceramic thimble. 

 

Figure 3.28: Ceramic Thimble Sample Line Pressure Tapping 

Initial tests prior to the implementation of the vacuum pump showed clearly 

that there would be a lot of water condensing out in the system pipework after the 
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sample gas had passed out of the ceramic thimble (hence the requirement for 

careful temperature control to avoid condensation). This was collected in a catch-

pot that was installed atop the Edwards RV3 vacuum pump. The mass of water 

collected in the catch-pot trap was a reasonable indication of the total mass flow 

of sample gas through the ceramic thimble and was therefore measured. 

Even though the ceramic thimble soot collection rate was much lower for the 

biodiesel fuel; the mass of the collected water proved that there was increased 

total mass flow through the thimble as a consequence of there being 

proportionally less soot blocking the thimble with time relative to the mineral fuel 

tests. Table 3.11 illustrates this point. 

Table 3.11: 19.5:1 Ceramic Thimble Soot and Water Condensate Collection 

 

Table 3.11 shows an 85% reduction exhaust soot concentration in the 

exhaust between the mineral and biodiesel fuels and a corresponding reduction 

in the total soot collected by the ceramic thimble. However, the total water 

condensate collected increased by 56% for the biodiesel fuel as the mass of 

sample gas which has passed through the thimble was so much higher as a 

consequence of the less contaminated thimbles. Therefore, this method of soot 

collection, whilst it worked satisfactorily for the mineral fuels, proved very 

challenging to execute successfully with the biodiesel fuel due to the significantly 

lower exhaust soot concentration observed. 

3.5.1.2 Performance of the Ceramic Thimble System 

Table 3.12 presents a summary for the soot collection system performance 

for the experiments described in Section 3.1.5.3. Table 3.12 illustrates that for the 

biodiesel fuel for both compression ratios, the effect of the reduction in exhaust 

soot concentration was to increase the collection efficiency of the ceramic thimble 

system whilst the total soot yield at the end of the tests was less than 25% of 

what was ideally required for the soot analysis tests. 
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Table 3.12: Analysis of Ceramic Thimble Collection Efficiency 

 

This phenomenon occurred because the accumulation of soot in the thimble 

resulted in a rapid increase in the resistance to the flow of the sample gas 

through the thimble. Thus, within the first hour of the test, the collection rate 

reduced significantly for the mineral diesel fuels. With the biodiesel fuel having 

85% lower exhaust soot concentration, this ’throttling’ took much longer to occur 

and hence over time the total flow through the thimble was higher - increasing the 

collection efficiency. Hence two ceramic thimbles were used for the biodiesel 

tests whereas three were used for the mineral diesel tests. 

Figure 3.29 details the average soot collection rate vs. the exhaust soot rate 

for each fuel-compression ratio permutation and reveals an approximately 

exponential increase in the thimble collection rate and hence the total ceramic 

thimble collected soot with increased exhaust soot concentration. This explains 

why the ceramic thimble sample method proved so ineffective for sampling the 

biodiesel soot. Unfortunately, as this had not been documented by Lubrizol or in 

in literature previously, it was unforeseen when the soot collection method was 

chosen prior to the commencement of the experimental work. 

The exponential reduction in thimble soot accretion rate vs. exhaust soot 

concentration which was determined during the course of this research, makes 

the ceramic thimble collection technique very difficult to implement on diesel 

engines with low exhaust particulate concentrations when the required sample 

mass is several grams as was necessary in this work. This finding explains why 

Lubrizol were able to apply the sampling method to US Tier III MD diesel engines 

successfully and yet the method proved far more challenging to translate across 

to the VW 1.9l TDI engine. 

To illustrate the difficulty with the biodiesel fuel; it was found that soot yield 

was roughly 0.24 g of soot for every 10 hours for each new ceramic thimble. 
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Thus, to achieve the full 2 g would have necessitated more than 8 thimbles and 

in excess of 80 hours of testing at rated condition. This was simply infeasible in 

respect to the available time and resources for the experimental work. 

 

Figure 3.29: Ceramic Thimble Collection Rate 

3.5.2 Diesel Particulate Filter 

A single non-catalysed DPF filter-canister was supplied by Lubrizol and was 

used for all the reported DPF soot collection results in this work. This section 

describes the DPF canister soot collection method. 

3.5.2.1 DPF installation and Soot Collection 

For the EGR experiments (Section 3.1.5.4) the DPF was located in a section 

of exhaust between the exhaust manifold and the central silencer Figure 3.30. To 

achieve a flexible installation the DPF was connected into the exhaust using a 

pair of quick-release V-band clamps. The DPF could be removed and a straight 

section of exhaust inserted in its place thus avoiding any significant exhaust 

system re-configuration when doing the DPF experiments. A tapping for the AVL 

415 smoke meter was installed upstream of the DPF to measure the soot 

concentration (Section 3.2.2.5). A thermocouple on the DPF inlet measured 

temperature and a pair of Keller 5bar absolute pressure transducers measured 

the pressure drop across the DPF. 
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Figure 3.30: DPF Canister Installation Configuration 

To collect soot at the peak power condition where the ceramic thimble soot 

was collected required a very long extension of the exhaust system pipe work to 

maintain DPF temperatures below 250°C and prevent soot from oxidising once 

trapped in the filter matrix. This was achieved via an inelegant though practical 

solution which employed two 2m lengths of semi-flexible 60mm outer diameter 

convoluted exhaust pipe Figure 3.31 which were joined together and connected 

to the exhaust using two V-band flanges. This solution avoided any need to 

completely deconstruct the installed exhaust system and thus ensured it was 

simple to return to the baseline exhaust system when the DPF soot collection 

was complete. 

Due to the two quite different DPF installation positions required for the 

experimental work it was infeasible to implement a bypass system like that used 

for the ceramic thimble. For this reason, the test methodology was designed so 

that the engine was first warmed up without the DPF and a straight pipe section 

instead installed. Once the engine was warmed up, the DPF was fitted; the quick 

release clamps enabling this to be done within two minutes. The engine was then 

started and quickly ramped to the operating condition required by the test. At the 

end of the test, the engine was shut down quickly. This helped to minimise the 

level of contamination of the DPF with soot from engine operating conditions 

outside those of interest. 
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Figure 3.31: DPF Installation with Extended Exhaust 

3.5.2.2 DPF Soot Extraction Method 

The method for the extraction of soot from the DPF canister involved back-

flushing with compressed air. This was achieved by partially sealing the inlet end 

of the DPF with an evacuated polythene bag and then at the other end forcing air 

through the filter matrix at high velocity in a concentrated area using a high 

pressure airline at about 4 bar and a fine nozzle Figure 3.32. As the bag 

pressurised, the pressure was released at the point where the bag was partially 

sealed to the outlet of the DPF. The tip of the nozzle of the airline was then 

traversed across the outlet face of the filter block and soot carried by the reverse 

flow air was caught in the bag. This was the only method which could be 

conceived as the DPF canister was a sealed unit and the only one available; thus 

having to be reused for each test. 

 

Figure 3.32: DPF Soot Extraction with Air Line and Polythene Bag 
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To clean the DPF of soot it was first allowed to cool to room temperature (24-

48 hours) and it was then weighed and its mass compared to the original clean 

canister mass. It was then installed in the position used for the EGR experiments 

Figure 3.30. The engine was then operated at 3000 rpm 200 Nm, generating a 

temperature in excess of 500°C at the DPF inlet. This condition was then 

maintained and the pressure drop across the DPF monitored as it dropped to (<2 

kPa). At which point the engine was quickly stopped. 

The process of collecting soot with the same DPF and then cleaning at 

elevated exhaust temperatures was repeated a total of eight times in this work. 

The first time was a developmental test to determine the operational parameters 

of the DPF which was then followed by the four EGR soot collection experiments 

(Section 3.1.5.4) and then the three rated power experiments (Section 3.1.5.3) at 

the low compression ratio of 16.5:1. Since the same DPF was used for all 

experiments there was a concern of progressive ash contamination of the DPF 

with each successive test. 

To identify whether there was likely to have been any impact on soot 

physiochemical analysis from the build- up of ash in the DPF over the course of 

the experiments, the amount of ash produced from the worst case experiment for 

potential ash vs. carbonaceous soot loading is calculated as follows: 

 

B100 16.5:1 soot collection experiment: 

DPF collection duration = 2h 

Fuel consumption rate = 23.8 kg/h {Table 4.10} 

B100 %wt Ash = 0.002% {Appendix 1 (Table A1.1)} 

Lubricant consumption rate = 13.3 g/h {Table 4.10} 

Estimated Lubricant %wt Ash = 1% 

Estimated total mass of ash from fuel = (2 x 23.8 x (0.002/100)) x 1000 = ~1g 

Estimated total mass of ash from lubricant = 2 x 13.3 x (1/100) = ~0.27g 

Estimated total ash for experiment = ~1.27g 

 

A similar calculation for the EN590 and PC9 16.5:1 DPF soot collection 

experiments resulted in a total ash estimate for both tests combined of around 
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0.3g (collection duration was only 20min). For the four EGR tests the total was 

again about 0.3g. Thus, cumulatively for the experimental tests the total ash 

loading was less than 2g total. In contrast, the estimated total soot produced in 

these tests was (0.3x14.96 + 0.3x17.58 + 2x1.64) Table 4.10 and (0.16 x 216.6 + 

1.365 x17.0 + 85.8x0.53 + 3.3x3.5) Table 8.2 which totals to ~ 128g. Thus, the 

ash loading of the DPF is estimated to have been 2/128g = 1.6% of the soot 

loading. Thus the DPF ash loading was considered as insignificant. Additionally, 

to minimise ash loading over the course of the experiments the DPF was back-

flushed with air after it had been regenerated (using the same technique as used 

to remove the soot) to remove any free ash. 

3.6 Soot Analysis Techniques 

In this work a total of eight physiochemical analysis methods were used to 

characterise the soot sampled from the exhaust with one soot parameter 

calculated for a total of nine characterisations. This section first summarises the 

down-selection process for the selection of each analysis method and then 

summarises the details of each. 

3.6.1 Down-Selection of Measurement Methods 

The literature review of Chapter 2 identified the important soot 

physiochemical characteristics for the understanding of soot and its behaviour in 

the exhaust. The same literature was also utilised to develop a picture of the 

common soot characterisation methods used to quantify these soot 

characteristics. A total of over 50 methods have been reported in the 178 

publications reviewed and for each method the frequency of occurrence in the 

literature has been determined. Appendix 6 (Table A6.1) presents the identified 

top twenty-two analysis methods used for each soot characterisation. 

The identified methods of Appendix 6 (Table A6.1) were then considered in 

association with Lubrizol by evaluating the following criteria to select the soot 

analysis methods to be used in this work: 1) result relevancy 2) usefulness and 

depth 3) mass of soot required 4) cost and accessibility of the method. Based on 

this set of criteria, the frequency of application and the previous experience of 

Lubrizol, a total of nine soot analysis methods were selected Appendix 6 (Table 

A6.2). For each of these methods a fairly comprehensive literature survey was 

undertaken and the references for each method are summarised in Appendix 6 

(Table A6.3 and Table A6.4) which may be of use to other researchers. 
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3.6.2 Surface Elemental Analysis - X-Ray Photoelectron 

Spectroscopy (XPS) 

X-Ray Photoelectron spectroscopy (XPS) {Appendix 6 (Table A6.3)} is a 

technique which is used to provide information about the elemental composition 

and oxidation state of a surface. In XPS a monochromatic X-ray beam of known 

energy is emitted by an X-ray source and is absorbed by an atom in the top 1-10 

nm of the surface of a sample [63]. The incident photon causes ionization and the 

emission an electron from a K-shell orbital (inner shell) of one of the atoms in the 

surface of the sample. 

XPS is also sometimes referred to as Electron Spectroscopy for Chemical 

Analysis (ESCA) and is one of the most widely used surface analysis techniques 

because of the relative simplicity of the test and the data interpretation. Advanced 

forms of XPS can also be used to identify the Oxygen Functional Groups i.e. the 

oxidation state of the surface [230] as detailed in Section 2.4.1.1. 

The kinetic energy distribution of all photoelectrons emitted (i.e. the number 

of emitted photoelectrons as a function of their kinetic energy) from the sample 

surface is simultaneously measured in an electron spectrometer to generate a 

photoelectron spectrum and from this the composition and electronic state of the 

surface region of a sample can be determined. 

For each and every element, there is a characteristic binding energy (Ebinding) 

associated with each core atomic orbital. Thus, each element will give rise to a 

characteristic set of peaks in the photoelectron spectrum at energies determined 

by the photon kinetic energy (Ekinetic) (measured by the electron spectrometer) 

and the energy of the incident photon (Ephoton) and is described by the relation 

(Ebinding = Ephoton - Ekinetic). The photoelectron spectrograph therefore has peaks 

corresponding to each element in the sample region exposed to the X-ray 

source. The intensity of the peaks indicates the concentration of the element 

within the sample region. 

The most commonly employed X-ray sources are those giving rise to Mg Kα 

radiation (hν= 1253.6 eV) and Al Kα radiation (hν = 1486.6 eV) and this is 

therefore the range of the kinetic energies of the emitted photoelectrons. The fact 

that such electrons have very short Inelastic Mean Free Paths (IMFPs) in solids 

is what limits the analysis to the top 1-10 nm of the sample surface. 

However, special treatment methods are used in some circumstances to expose 

the bulk chemistry so that this may also be analysed. 
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For most applications, XPS is generally a non-destructive technique due to 

the use of monochromatic X-ray sources which result in very little degradation. 

This fact was taken advantage of in this work when the soot sample mass 

collected was small. In such situations, the XPS sample was later re-used for one 

of the other soot physiochemical analysis tests. 

It must be remembered however that the XPS method does require an Ultra-

High Vacuum (UHV) and this can lead to the removal of various gases (e.g. O2, 

CO) and liquids (e.g. water, hydrocarbons) that were initially trapped within or on 

the surface of the sample. This form of sample degradation is difficult to estimate 

and detect and is therefore a potential source of error in the application of the 

method to soot. The UHV also means that it is possible for the chemistry and 

morphology of the sample to change until the surface achieves a steady state, a 

source of further error. 

For the soot analysed in this work, the XPS test measured the surface atomic 

weights for (C,O,S,N,Cl and total atomic %). These were then converted to 

percentage weight so that the results could be directly compared to the bulk soot 

results. 

All soot sample surface elemental analysis was outsourced by Lubrizol, 

Wickliffe, Ohio. 

3.6.3 Bulk Elemental Analysis (ICP-MS) 

Inductively coupled plasma mass spectrometry (ICP-MS) {Appendix 6 

(Table A6.3)} is a type of mass spectrometry which is able to determine a range 

of metals and non-metals at concentrations of less than 1 part per trillion. The 

method uses inductively-coupled plasma to produce ionization of a sample and a 

mass spectrometer then separates and detects the ions produced. The ICP-MS 

technique was commercially introduced in 1983 and has gained general 

acceptance in many types of laboratories particularly in geochemical laboratories. 

It is a flexible technique that offers many advantages over more traditional 

techniques for elemental analysis, including Inductively Coupled Plasma Atomic 

Emission Spectroscopy (ICP-AES) and Atomic Absorption Spectroscopy (AAS). 

[231]. 

The sample needs to be introduced into the plasma as an aerosol with as 

small a size as possible so that it can be transported easily into the plasma. 

There exist a variety of techniques to achieve this and these include: aspirating a 



3 Methodology 
3.6 Soot Analysis Techniques 

 

123 

liquid, the acid digestion of a solid sample into a nebulizer and using a laser to 

directly convert solid samples into an aerosol. The acid digestion process is the 

one selected in the majority of literature for preparing soot for analysis. Typically, 

either pure or mixed solutions of hydroflouric (HF), nitric (HNO3) or hydrochloric 

(HCl) acid are used. 

For the analysis of the soot samples in this work, the soot sample was 

dissolved using an acid-digestion technique with a spectrally pure nitric acid as 

reported in [232-234] and then placed into a nebulizer. 

Following the sample preparation step the sample aerosol is introduced into 

the ICP torch and it is completely desolvated and the elements in the aerosol are 

converted first into gaseous atoms and then ionized towards the end of the 

plasma. Thus, this is a destructive test and the sample mass required is typically 

300mg. 

Once the elements in the sample are converted into ions, the ions from the 

plasma are extracted through a series of cones into a mass spectrometer, usually 

a quadrupole mass filter. This is essentially electrostatic filter which only allows 

ions of a single mass-to-charge ratio to pass through the cones to the detector at 

a given instant in time and the detector then receives an ion signal proportional to 

the concentration. The concentration of a sample is determined through 

calibration with certified reference material which can be either a single or multi-

element reference [235]. 

The elements reported for the soot samples analysed in this work include: 

(Ca,Cu,Fe,Mg,Mn,Na,P,S,Si,Zn). 

All soot sample bulk elemental analysis was outsourced by Lubrizol, Wickliffe, 

Ohio. 

3.6.4 Soot Morphological Analysis 

The soot morphological characteristics investigated in the work reported 

herein included: surface area, porosity, density and primary particle diameter. 

3.6.4.1 Surface Area (BET) 

The surface area of the soot was measured using a technique based upon 

the principle of physisorption (physical adsorption) where a gas or vapour phase 

is brought into contact with a solid (the sample) with part of this being taken up 

and remaining on the outside of the sample attached to the surface. Weak Van 
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der Waals forces are responsible for the attraction between the adsorbate and 

the solid surface. The technique is highly suited to porous materials as it enables 

the determination of specific surface area, pore size and porosity. 

The most commonly used method to calculate the surface area is the 

Brunsuer, Emmett and Teller (BET) approach {Appendix 6 (Table A6.3)}. This 

is an equation which uses an Adsorption Isotherm which is a plot of the amount 

of gas adsorbed across a wide range of relative pressures (p/po) at a constant 

temperature. The surface area which this technique describes is the external 

surface of a material which includes the surface attributable to pores. The surface 

area is typically quantified as the specific surface area (m2/g). 

The shape of an isotherm is non-linear as the adsorptive transitions from a 

monolayer on the surface to the onset of capillary condensation and to multi-layer 

formation and then finally the filling of the voids of any pores, this multi-layer 

adsorbate is the condition modelled by the BET model. The point on the isotherm 

where the monolayer formation is valid (p/po = 0.05 to 0.3) is the part which is 

used to estimate the surface area using a BET plot. A single point on the BET 

plot, typically at a p/po = 0.3, can be selected to determine the specific surface 

area but quite often multiple points are used to provide a more reliable 

estimation. For the samples analysed in this work multiple points were used. 

Sample pre-treatment is very important to ensure an accurate measurement. 

This is because the surface and pores should be free for the adsorptive and also 

because during the process of desorption, guest species can interfere with the 

analysis. A cleaning procedure is recommended which involves elevating the 

temperature of the sample in a vacuum to desorb gas and vapour molecules but 

presents a risk of phase transitions in the sample itself. A flow of dry, inert gas is 

also a technique used to remove any desorbed molecules. 

When using this technique, the accurate estimation of the soot surface area is 

reliant on the sample not containing significant aggregations of the soot primary 

particles as these are not considered in the BET theory [141, 236]. Reports in 

literature fail to reliably state the procedure undertaken to reduce the risks of 

error because of this problem. A typical method is sonication for a period time 

[237] and the results reported in this work were from samples that had been 

sonicated. Degassing and heat treatment techniques are also described in 

various forms in literature an example being the sample preparation by 
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degassing under N2 atmosphere at 150°C for 1 hour [237] and even higher 

temperatures (400°C) are reported elsewhere [137]. 

All soot sample surface area analysis was outsourced by Lubrizol, Wickliffe, 

Ohio. 

3.6.4.2 Porosity (BJH) 

The porosity of the soot analysed in this work was determined by utilising the 

Barrett-Joyner-Halenda (BJH) adsorption theory {Appendix 6 (Table A6.3)} 

which was originally proposed in 1951 and has been a popular technique for pore 

size determination in many fields. This theory is applicable to the same 

adsorption isotherm used in the BET surface area determination outlined in the 

previous section. It applies from the point of onset of capillary condensation (the 

pressure ratio p/po is > 0.35) in the assumed cylindrical pores until the upper limit 

of the isotherm is reached (p/po = 0.5). 

The BJH model assumes that pores have a cylindrical shape and that pore 

radius is equal to the sum of the Kelvin radius and the thickness of the film 

adsorbed on the pore wall [141]. The method is therefore based on a modified 

kelvin equation which predicts the pressure at which adsorptive will 

spontaneously condense (and evaporate) in a cylindrical pore of a given size. 

There is a limitation in the BJH method that needs to be considered when 

using it to quantify the porosity of soot; is it is known to underestimate the size of 

small to medium mesopores (2-25 nm). For this reason it is advised to limit use of 

the method to broad size distributions of medium to large mesopores (25-50 nm) 

[238]. As a result, the BJH method is now being slowly superseded in some fields 

with a more recently developed method called Density Functional Theory (DFT) 

which is essentially a far more complex method of utilising the adsorption 

isotherm to calculate the average pore volume and size [238]. However, the 

majority of the literature found which considers diesel soot porosity uses the BJH 

method (Chapter 2) and this is the method adopted in this work. 

In this work the BJH porosity results are reported as ‘average pore diameter’ 

which is calculated on the basis of an assumed cylindrical pore geometry using 

the BET surface area and the volume of the pore [345], Equation 3.6. 

𝑎𝑣𝑒𝑟𝑎 𝑒 𝑝𝑜𝑟𝑒 𝑑𝑖𝑎 𝑒𝑡𝑒𝑟 =
4𝑉𝑙𝑖𝑞

𝑆𝐵𝐸𝑇
                              Equation 3.6 
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Here, Vliq is the volume of the pore which is calculated from the volume of gas 

adsorbed when measuring the N2 adsorption isotherm. SBET is the BET surface 

area outlined earlier. This is a useful relation as it shows that pore volume is 

directly proportional to average pore diameter and surface area reported in this 

work. 

One of the practical issues of both the BET and BJH methods (i.e. they both 

relay on the N2 adsorption isotherm) when applying to an aerosol such as soot is 

that most commercial apparatus requires a sample of several milligrams [151]. In 

this work this constraint resulted in some of the soot samples not being analysed 

for surface area and porosity due to soot sample mass limitations, specifically the 

19.5:1 soot samples at the exhaust manifold. 

All soot sample porosity analysis was outsourced by Lubrizol, Wickliffe, Ohio. 

3.6.4.3 Density (N2 Pycnometry) 

The method utilised to determine the soot density was based on N2 

Pycnometry {Appendix 6 (Table A6.4)} which uses the measured pressure of 

nitrogen gas displaced between sample and reference chambers. The pressure 

of the gas in the original sample chamber is measured and then measured again 

once it has expanded into a chamber with a calibrated volume. This is then used 

along with the volume/pressure relationship of Boyle’s Law to calculate the 

volume of the sample. The density is then simply calculated by the mass/volume 

relationship using the sample mass determined using a precision mass balance. 

The volume determined by a Pycnometer is the space occupied by the 

sample and this is therefore the space which is inaccessible to the gas used in 

the device. A limitation of the method arises with closed pores which form voids 

as these are included as the volume of the sample causing errors in the 

subsequent density calculations. The molecular size of the gas used is important 

for taking into consideration the finest scale of surface features. Generally, 

Helium is used due to its small molecular size and it also being inert. Helium can 

however present issues with some samples which have low density and can be 

permeable to the gas and thus this can cause errors with the volume 

measurement. Therefore Nitrogen was chosen for the soot sample analysis in 

this work as they are reported in literature to have low density, Section 2.4.2.3. 

There is much difficulty with the application of this technique to soot as the 

particle size and low sample mass mean that it is very difficult to get accurate 

measurements as the volume of the sample is very small and the accuracy 
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demands on the pycnometer pressure sensing apparatus is very high. For 

example, Choi et al. [239] quote the density of the soot to be 1.74 g/cm3 with 

uncertainty of +/-0.10 g/cm3 (i.e. +/-5%). 

The density calculated from the volume measured by a gas Pycnometer is 

sometimes referred to skeletal density, true density or helium density [240]. 

Similar to the surface area and porosity measurements the main constraint of 

the N2 pycnometry analysis method is that several milligrams of sample are 

required for accurate determination and this is reported in literature as common 

reason for the technique not being that widely used for diesel engine soot even 

with the advantage of the accuracy and confidence in the method [150]. Thus, 

providing results for diesel soot using this method is very useful. 

All soot sample density analysis was outsourced by Lubrizol, Wickliffe, Ohio. 

3.6.4.4 Primary Particle Diameter Estimation 

The primary particle diameter in this work was determined not through direct 

measurement but by calculation using the measured soot surface area (from 

the BET calculation) and the density (from the N2 Pycnometry), both of 

which were detailed earlier {Appendix 6 (Table A6.4)}. 

The calculation was based on the following principle which assumes that the 

primary particles are nonporous and spherical: 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
=

4

3
𝜋𝑟3

4𝜋𝑟2 =
𝑟

3
=

𝑑

6
                             Equation 3.7 

If we insert both volume and surface area as specific parameters of the 

particle mass, then: 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎
=

𝑑

6
=

𝑚3 𝑔⁄

𝑚2 𝑔⁄
=

1 𝜌⁄

𝑚2 𝑔⁄
                         Equation 3.8 

Thus, the primary particle diameter can be estimated as [241]: 

𝑑 =
6

𝜌× 𝑚2 𝑔⁄  
                                          Equation 3.9 

Where the specific surface area (m2/g) is found using the BET method and 

the density ρ is found by the N2 pycnometry. Thus, this method leverages on the 

indirect measurement of surface area (BET method) and the indirect 

measurement of density (N2 Pycnometry). The estimation is therefore subject to 

any error in these two measurements and thus a direct method of measurement 

such as TEM would likely yield more reliable results for diesel exhaust soot [236]. 



3 Methodology 
3.6 Soot Analysis Techniques 

 

128 

However, due to the limited sample mass collected in this work the decision was 

taken to concentrate on the specific quantification of key physiochemical soot 

characteristics which cannot be derived through TEM as these are less frequently 

reported than the soot TEM images popular in literature. The other consideration 

was that the application of the outlined primary particle size calculation method 

appeared to provide fairly reasonable estimations as reported in Section 2.4.2.4 

and thus TEM was not considered in this work. 

A further consideration with this approach was the assumption of a 

nonporous spherical particle. Such an assumption overly simplifies the 

description of the soot particles since soot primary particles are frequently 

reported in literature to be porous (Section 2.4.2.2) with the primary particles 

grouped together forming aggregates [137]. Porosity will result in a larger surface 

area measurement with the BET technique leading to an underestimation of the 

primary particle diameter. This is countered by the reduction in primary particle 

surface area measurement caused by the aggregation of more than one primary 

particle. 

With this in mind, Equation 3.9 cannot therefore be relied upon for absolute 

precision. It does however permit a reasonable estimation of the primary particle 

diameter to facilitate the analysis of the influence of the investigative parameters 

when the above highlighted limitations are acknowledged. 

3.6.5 Surface Acid Functionality (Boehm Titration) 

The review of the surface acidity analysis of carbon black and soot (Section 

2.4.3) revealed that one of the frequently cited methods for surface acidity 

quantification is the method referred to as Boehm titration {Appendix 6 (Table 

A6.4)}. 

The method was first detailed by Boehm in 1964 [156, 242] and is capable of 

the determination of the acidic oxygen surface functional groups on carbon 

samples. The method is based on the principle that oxygen groups on carbon 

surfaces have different acidities and can be neutralized by bases of different 

strengths. These bases include NaHCO3, Na2CO3, NaOH and sometimes 

NaOC2H5 [243, 244]. The surface functional groups which can be determined 

include phenolic group (–OH), lactone group (C=O) and carboxylic group (–

COOH) [245]. 
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The strongest base generally used is sodium hydroxide (NaOH) and this is 

assumed to neutralise all the Brønsted acids (including phenols, lactonic groups 

and carboxylic acids). Sodium carbonate (Na2CO3) is used to neutralize 

carboxylic and lactonic groups (e.g. lactone and lactol rings) and the weakest 

base sodium bicarbonate (NaHCO3) neutralizes carboxylic acids [243, 244]. The 

concentration and types of oxygen surface groups present on the soot can be 

determined by the differences in the uptake of these various bases [242]. In this 

work both the carboxylic and the total surface acidity of the soots were quantified. 

Sample agitation is important and there are various methods reported in 

literature including: shaking [242], stirring and sonication [244]. Stirring and 

sonication have been shown to result in changes to the macroscopic surface of 

the carbon particles [244] and thus the original Boehm method of shaking was 

used. 

The duration of the shaking is important as the diffusion into the pores can 

affect the results. Therefore, soot which has a high surface area and hence a 

likely significant porosity, requires a longer period of agitation [242, 244]. 

However, too much shaking can potentially physically change the soot surface 

and therefore different groups use different durations for shaking. In this work the 

method of Boehm [242] was followed closely to ensure a clear point of reference. 

All soot sample Boehm titration tests were conducted by Lubrizol, Wickliffe, 

Ohio. 

3.6.6 Poly Aromatic Hydrocarbon (PAH) Profile 

The most widely encountered method for PAH quantification in soot literature 

is Gas Chromatograph Mass Spectroscopy (GC-MS) {Appendix 6 (Table 

A6.4)} with numerous examples of this technique applied to soots formed in 

many different environments (e.g. premixed flames, laminar diffusion flames, 

turbulent flames, microgravity flames) as summarised comprehensively by the 

review paper Dobbins et al. [25]. 

In this work the precise method utilised for the analysis of the PAH content is 

based on test method 610 ‘Methods For Organic Chemical Analysis Of Municipal 

And Industrial Wastewater’ defined by the United States Environmental 

Protection Agency (EPA) [246] which is stated as the method applied in recent 

diesel soot literature [23]. 
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Using method 610 as the basis of the method; first the sample was 

solubilized in methylene chloride to extract the soluble organic fraction (SOF) 

using a soxhlet extractor. This methylene chloride extract was then dried and 

concentrated to a volume of several ml. This extract was then evaporated under 

a nitrogen flux before being injected into the gas chromatography mass 

spectrometer (GC-MS). This produced a gas chromatogram for the poly aromatic 

hydrocarbons based on the retention time. 

A total of sixteen PAH, as detailed by EPA Method 610 [246], were tested for 

and include: Naphthalene, 1-methylnaphthalene, 2-methylnaphthalene, 

Acenaphthylene or biphenylene, Acenaphthene, Phenanthrene, Anthracene, 

Fluoranthene, Pyrene, Benz(a)anthracene, Chrysene, Benzo(b)fluoranthene, 

Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, Dibenz(a,h)anthracene and 

Benzo(g,I,h)perylene.  

All sample PAH analysis tests were conducted by Lubrizol, Wickliffe, Ohio. 

3.6.7 Thermogravimetrical Analysis (TGA) 

Thermogravimetrical analysis (TGA) is a common technique {Appendix 6 

(Table A6.4)} which is applied to study the SOF, carbonaceous part and ash 

content of soot samples from diesel particulate filters DPF and is used in this 

work to determine the composition of the soot for the diesel particulate filters 

(DPF) samples alone due to the previously identified ceramic thimble soot 

sample mass constraints. The method involves heating the sample to a sufficient 

temperature to cause the decomposition of the solid/liquid phase components 

into a gas which dissociates into the air. It is common to use oxygen or nitrogen 

gas environments in which the sample is heated to control the processes by 

which material liberated from the sample into the gaseous phase so that different 

sample fractional parts can be accurately determined. The main advantage of the 

method is that it allows for the discrimination of the volatile fraction condensed 

onto the soot from the carbonaceous part and the non-combustible part which 

are typically metals from the fuel, lubricant, engine and exhaust system (ash). 

The technique used for the analysis in this work followed that outlined by 

Covitch et al (Lubrizol) [210] which in turn references Swarin et al. [247]. This 

involved heating the soot sample (<30 mg) at 20°C/min under nitrogen to 585°C, 

at which temperature the nitrogen stream was replaced by air and the heating 

then continued to 1000°C. 
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The results in this work are reported in the form of percentage of mass 

reduction in each temperature region through which the sample was heated. The 

conventional descriptions of the material removed during each region are defined 

in this work as summarised in Table 3.13. 

Table 3.13: Definition of TGA Temperature Ranges 

 

All sample thermogravimetrical analysis tests were conducted by Lubrizol, 

Wickliffe, Ohio. 

3.6.8 Soot Sample Mass Requirement 

Based upon all eight physiochemical test based soot characterisation 

techniques it was estimated that a soot sample total mass of approximately 

2g was required to enable all tests to be fully completed for a specific soot 

sample. Therefore this was the sample mass requirement which focussed the 

ceramic thimble apparatus development and design of the soot collection 

experiments. 

3.6.9 Repeatability of Test Methods 

The limited mass of soot which could be collected for the thirteen individual 

soot collection experiments performed in this work, precluded that limited repeat 

tests could be performed for each soot analysis technique described in Section 

3.6.1 to Section 3.6.7. Where possible the precision and error was determined for 

each soot analysis technique and this is summarised in this section. This 

information is reported in each table and figure herein where available. 

There were no repeat experiments performed of the individual soot collection 

experiments due to resource and time constraints and thus there were no 

separate soot samples tested to validate general result repeatability and 

reproducibility. 

The XPS analysis being non-destructive enabled repeat testing of individual 

samples and in the work reported herein the precision of the O/C ratio is reported 
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for the thirteen samples analysed. The range of precision was 0.0113-0.0143, 

which was equivalent to 7.6% to 19.8% error, with the highest O/C ratios having 

the greatest precision. 

The ICP-MS tests were performed on all thirteen samples but this destructive 

test required such a mass of soot that it precluded performing any repeat tests on 

individual samples. The ICP-MS results are reported to the nearest 0.01 wt % of 

the sample mass throughout the work herein. 

For a total of ten soot samples the BET surface area was measured; the 

measurement error is reported in each case and falls within 0.5 % +/- 0.01 % for 

all samples. The same ten soot samples were also analysed using N2 

Pycnometry and the measurement error ranged from 0.33% to 0.84%, being 

larger where the available mass of sample to measure was the smallest. 

Boehm titration was repeated where sample mass permitted and the mean 

and standard deviation results are reported herein for each of the nine samples 

that were analysed in this work. For total surface acidity (mmol/g); where acidity 

was detected the coefficient of variation ranged from 0.49% to 13.37%. For 

carboxylic acid the coefficient of variation range covered a smaller range of 

0.13% to 5.14%. 

PAH analysis could not be repeated on any of the singular soot samples due 

to soot mass constraints, indeed it was only possible to test nine out of the 

thirteen total soot samples due to soot mass limitations. All PAH measurements 

reported herein are to a resolution of 0.001 µg PAH/g sample. 

The soot sample mass availability limited the thermogravimetrical analysis 

to just seven of the thirteen soot samples and there were no repeat analysis of 

singular samples due to it being a destructive test. Results are reported to the 

nearest 0.1% weight of sample. 

3.7 Correction of the Soot Bulk Inorganic Observations 

(ICP-MS) for Foreign Contaminates 

Following careful examination of the original ICP-MS results, it became clear 

that there were a series of inconstancies which pointed to several of the soot 

samples being contaminated with elements which either had no identifiable 

source (i.e. foreign to the experiment) or were attributable to known 

uncontrollable factors that could not be avoided when the soot was 

experimentally collected from the engine. 
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The ICP-MS results presented in the main body of this work have therefore 

been carefully corrected to remove the masking effects of identified foreign 

sample contamination. The identified contaminates were sodium, silicon and 

sulphur and these have been negated from the affected sample results according 

to the methodology described in Appendix 8. 

3.8 Injector Coking Issues 

To collect sufficient soot mass at the exhaust manifold, the soot collection 

experiments in this work had to be run at rated engine power as detailed in 

Section 3.1.5.3. However, when the soot collection experiments collectively were 

nearing 50% completion, it became clear that there was a general trend for loss 

of engine torque over the course of each 20 hour collection experiment. This 

trend was exacerbated with the B100 fuel and ultimately forced the 16.5:1 B100 

soot collection experiment to be concluded early at 12hrs. 

Examination of the fuel injectors identified coking around the nozzles as the 

cause of the loss of engine torque and this subsequently required the 

replacement of all four engine fuel injectors so as to complete the experimental 

work. A review of literature suggested that prolonged operation at high loads and 

high cylinder temperatures increases the likelihood of injector coking, 

Argueyrolles et al. [328]. Indeed, it was identified that prolonged operation at the 

rated engine power condition is the standard method of evaluating injector coking 

tendency [328]. Since the soot mass constraint forced the soot collection tests to 

be conducted at rated engine power, it was not possible to adjust the engine 

operating point to avoid the issue. 

An examination of the injector coking issues encountered in this work is 

presented in Appendix 9 and details a hypothesis for the much greater extent of 

coking observed for the B100 fuel. This therefore contains information that may 

be of assistance to future investigations where RME biodiesel fuel is used at high 

engine power for extended duration. 

3.9 Overview of the Collected Soot Samples and the 

Analysis Techniques Performed 

A summary of the measured soot physiochemical results and the chapters in 

which they are presented and discussed is provided by Figure 3.33. 
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Chapter 4 

4 Engine Performance, Gaseous and Particulate 

Emissions Summary 

4.1 Introduction 

This chapter presents a summary of the results for the engine performance 

and emissions for two of the three experimental groups (Section 3.1.5). The first 

set of data presented in Section 4.2 summarises the engine performance and 

emissions for the parametric study of the engine speed/torque operating 

envelope as described in Section 3.1.5.2 which was used to establish the 

operating condition for the soot collection experiments. The second set of data 

presented in Section 4.3 derives from the six fuel and compression ratio rated 

power experimental conditions where exhaust soot was sampled as detailed in 

Section 3.1.5.3. Thus, the first section provides an overview of the general 

influence of fuel and compression ratio on the VW 1.9l TDI engine performance 

and emissions and is a reference for later discussion of the soot results. The 

second section is a reference for the operating conditions, fuelling and AFR etc. 

for the soot collection experiments which produced the soot results presented 

across Chapter 5 to Chapter 9. 

4.2 Engine Performance and Emissions Summary for the 

Parametric Experiments 

The parametric study of engine performance and emissions was performed 

according to the experimental design described in Section 3.1.5.2. This 

experimental study enabled the evaluation of the differences in a broad array of 

measurement parameters arising from the three fuels and two compression ratios 

investigated in this work. The result discussion in this chapter focuses on the 

parameters of exhaust soot concentration and exhaust hydrocarbon emissions. 

These parameters specifically relate to the soot physiochemical analysis in 

Chapter 5 to Chapter 9. 
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4.2.1 Effects of IMAT Change (Low to High) 

The engine performance and emissions measurements were undertaken with 

two different intake manifold air temperature (IMAT) states (<25°C and >40°C) 

herein denoted as low and high IMAT which followed from preliminary work that 

had indicated IMAT strongly influenced the gaseous and particulate emissions. 

This was also useful as the ECU was a production part and would not accept 

overrides, thus IMAT control was an indirect mechanism which could be used to 

manipulate engine fuelling and AFR. 

The most useful attribute of the increase in IMAT from the low to high range 

was to force an increase in the exhaust soot concentration. To illustrate this 

behaviour, Figure 4.1 and Figure 4.2 present the EN590 fuel specific soot 

emissions (g/kWh) measured for torque groups C to E (Section 3.1.5.2) of the 

parametric study at 19.5:1 and 16.5:1 compression and for low and high IMAT. 

This comparison reveals that the increase in IMAT to >40°C resulted in increased 

exhaust soot concentration and that the effect was more pronounced above 3000 

rpm for the torque groups D and E at 19.5:1. 

 

Figure 4.1: 19.5:1 EN590 Low to High IMAT Soot (g/kWh) for Torque Groups C to E 

A critical observation from both Figure 4.1 and Figure 4.2 was that the highest 

exhaust soot concentration was observed at rated engine power (4000 rpm, 

maximum torque) with the concentration relatively low from less than 3000 rpm 

until at 1500 rpm where it increased rapidly as the engine speed reduced further. 
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The increase in soot concentration below 1500 rpm was only evaluated up to 

torque group C (<80% peak torque, Section 3.1.5.2) as torque higher than this at 

this engine speed was found to result in engine-dynamometer speed control 

instability, Section 3.1.5.2. Consequently, the rated power operating point was 

chosen as the engine operating point for the fuel and compression ratio exhaust 

soot collection experiments Section 3.1.5.3. 

 

Figure 4.2: 16.5:1 EN590 Low to High IMAT Soot (g/kWh) for Torque Groups C to E 

Figure 4.1 and Figure 4.2 are both illustrative of the parametric study 

measurements which were also performed for a large number of other 

parameters. Thus, for the purposes of this work a method of data processing and 

presentation was required which concisely consolidates the findings to assist with 

the soot physiochemical result discussion which follows in subsequent chapters. 

The method devised to do this involved calculating the percentage change for 

like fuel and compression ratio configurations with the IMAT change from low to 

high and this is presented in flow diagram form in Appendix 7 (Figure A7.1). In 

summary, percentage change was calculated for each measured parameter at 

each speed-torque point with the change in the factor IMAT from low to high. The 

individual percentage change results were then collated into each respective 

engine torque group to produce an average for the points within that torque group 

– Result 1. This way the general effects of a parameter such as IMAT could be 

summarised for like torque regions via a simplified presentation. The individual 
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speed-torque % percentage change values were then averaged across all speed-

load points to establish an overall ‘total average percentage change’ for all torque 

groups C to E – Result 2. 

This approach was devised so as to summarise the multi-parameter influence 

of factor changes such as IMAT, compression ratio and fuel for local torque 

regions and also globally for the entire engine speed-torque operating envelope. 

The results presented in this chapter focus on the most important torque groups 

for the exhaust soot investigation; namely C to E (torque from 60% to 100% of 

maximum at each engine speed) as these were the torque groups which had the 

highest exhaust soot concentrations. 

A summary of this percentage change data is presented in Table 4.1 with 

each row being one of the important measurement parameters and each column 

being a specific fuel and compression ratio condition at which the IMAT was 

changed from the low to high range. On the right of Table 4.1, further averaging 

of all the fuel observations is presented first at each compression ratio and then 

finally overall. 

Table 4.1: Summary of the Percentage Change in Engine Performance and 

Emissions for Low-to-High IMAT Change (Torque groups C to E) 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1 details how the achievable increase in IMAT was greater for the 

16.5:1 compression condition by virtue of the low IMAT temperatures for the 

16.5:1 experiments being lower as these were undertaken in the winter when the 

ALL FUELS

Rc: 16.5:1 19.5:1 16.5:1 19.5:1 16.5:1 19.5:1 16.5:1 19.5:1 16.5 & 19.5

BMEP (bar) -3.76 -3.39 -4.20 -3.79 -2.65 -1.57 -3.54 -2.92 -3.23

BSFC (g/kWh) 2.30 2.34 2.92 2.78 3.35 2.62 2.86 2.58 2.72

AFR -8.75 -6.71 -8.77 -6.89 -12.25 -4.72 -9.92 -6.11 -8.02

MAF (kg/h) -10.53 -8.14 -10.16 -8.00 -11.85 -3.77 -10.85 -6.64 -8.74

Fuel (kg/h) -1.60 -0.98 -1.42 -1.12 0.60 1.01 -0.81 -0.36 -0.58

Soot (g/h) 32.82 79.89 72.31 52.47 15.47 41.58 40.20 57.98 49.09

Soot (g/kWh) 38.13 86.48 80.05 58.38 18.50 43.80 45.56 62.89 54.23

CO2 (g/kWh) 2.48 10.60 10.13 20.93 1.67 3.97 4.76 11.83 8.30

CO (g/kWh) 33.18 96.54 113.92 87.58 28.67 40.90 58.59 75.01 66.80

O2 (g/kWh) -17.71 -9.83 -15.66 -18.41 -17.83 -10.06 -17.07 -12.77 -14.92

NOx (g/kWh) 7.03 9.89 12.29 5.54 10.56 17.29 9.96 10.91 10.43

HC (g/kWh) -39.44 -13.10 -27.19 -7.70 -46.54 15.70 -37.72 -1.70 -19.71

Delta IMAT (°C) 264.68 118.21 252.86 96.97 232.39 96.06 249.98 103.75 176.86

Exhaust Temperature 11.27 9.59 11.79 9.01 12.77 6.75 11.94 8.45 10.20

48.04 96.81 91.28 64.98 29.97 46.67 56.43 69.48 62.96

Start of Injection -0.09 -1.33 -0.03 -0.35 0.83 0.00 0.24 -0.56 -0.16

Injection Duration -0.02 0.51 0.12 0.00 -0.64 0.00 -0.18 0.17 -0.01

CO2 (mole fraction) 9.69 17.10 16.85 25.92 11.40 6.03 12.65 16.35 14.50

CO (mole fraction) 42.69 110.12 127.28 95.65 41.08 43.69 70.35 83.15 76.75

O2 (mole fraction) -11.98 -6.46 -10.66 -15.09 -10.01 -8.28 -10.89 -9.94 -10.42

NOx (mole fraction) 14.57 14.30 19.03 9.87 21.08 19.60 18.23 14.59 16.41

HC (mole fraction) -35.13 -9.38 -23.10 -3.93 -41.26 18.06 -33.16 1.58 -15.79

MAF + Fuel Change -12.13 -9.12 -11.58 -9.12 -11.25 -2.76 -11.66 -7.00 -9.33

MAP (mbar) 0.22 0.01 0.02 -0.21 -0.02 1.36 0.07 0.39 0.23

Fuel Supply Temp (°C) 9.21 -0.49 4.40 10.44 -0.19 -0.55 4.47 3.14 3.80

ALL FUELSEN590 Vs. EN590 PC9 Vs. PC9 B100 Vs. B100

Soot (     )
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laboratory cooling water had a lower average temperature than for the 19.5:1 

experiments conducted in the summer months. The high IMAT conditions were 

much more consistent as these resulted from highly restricted water flow through 

the charge air cooler Section 3.2.1.3 thereby limiting the influence of water 

temperature. 

The increase in IMAT was observed to have a very similar effect on both 

mineral fuels (EN590 and PC9) with the Brake Mean Effective Pressure (BMEP) 

reducing between 3.4 and 4.2%, the AFR reducing between 6.7 and 8.8% and 

the soot mass flow rate increasing between 30-80% depending upon the fuel and 

compression ratio configuration. 

For the B100 fuel the influence of IMAT on BMEP was smaller and the 

increase in soot mass flow was also lower at between 15 to 42%. For all but the 

19.5:1 B100 experimental condition the HC emissions were generally observed 

to fall with the increase in IMAT with the reductions consistently more significant 

for the low compression ratio 16.5:1. This result implied that the higher IMAT 

benefitted the fuel combustion process through the reduction in HCs possibly 

through improved fuel atomisation. This observation was important as it implied 

the higher IMAT, in addition to increasing the exhaust soot concentration, also 

potentially reduced the soluble organic fraction (SOF) component of the soot. 

This was an important observation in respect to the soot characterisation results 

discussed in proceeding chapters where the soot samples were all collected 

under high IMAT conditions. 

These measured parameter changes occurred with generally consistent 

injection timing parameters and boost pressure implying the soot and HC 

observations derived largely from the IMAT induced AFR reduction and 

associated effects. 

4.2.2 Effects of Fuels at Different Compression Ratios and 

IMATs 

The data from the parametric experimentation presented in the previous 

IMAT section was evaluated to extract information concerning the relative 

influences of the three fuels. Focussing first on the specific exhaust soot 

emissions; Figure 4.3 presents the measurements at 16.5:1 compression for the 

three torque groups C, D and E for both EN590 and PC9 fuels at low IMAT 

conditions. Figure 4.3 shows that for most of the operating conditions 
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investigated the specific exhaust soot emission was higher for the PC9 fuel, 

particularly for higher speed and torque operating conditions. Figure 4.4 presents 

the same results for the B100 fuel measurements and the distinct reduction in 

specific exhaust soot emissions for this fuel is very clear though the pattern with 

engine speed and torque persisted. 

 

Figure 4.3: 16.5:1 EN590 vs. PC9 Fuel Specific Soot (g/kWh) Speed and Torque 

Parameterisation 

 

Figure 4.4: 16.5:1 EN590 vs. B100 Fuel Specific Soot (g/kWh) Speed and Torque 

Parameterisation 
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The method of percentage change based data analysis described in the 

previous IMAT section has been repeated to extract the individual fuel-based 

effects on measured parameters but in this case the percentage change was 

calculated as the parameter change from the B100 and PC9 fuel measurements 

relative to the baseline EN590 fuel. This data is presented in Table 4.2 and Table 

4.3 which describe the four different conditions of compression ratio (high and 

low) and IMAT (low and high) and together define the interrelationships of these 

fundamental factors and each fuel. 

Table 4.2: Summary of the Percentage Change in Engine Performance and 

Emissions for Different Fuels (Torque groups C to E) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PC9 Vs. EN590 B100 Vs. EN590

Total Total

IMAT: low high low high low high low high Average Average

BMEP (bar) 3.80 3.59 2.53 2.11 -3.88 -3.13 -4.13 -2.30 3.00 -3.36

BSFC (g/kWh) -2.18 -1.02 -0.89 -0.54 14.18 15.68 10.91 15.91 -1.16 14.17

AFR -1.54 -2.30 -1.33 -1.79 -9.52 -12.62 -5.43 -9.37 -1.74 -9.23

MAF (kg/h) -0.21 0.17 -0.13 -0.29 -0.81 -2.16 0.13 2.55 -0.11 -0.07

Fuel (kg/h) 1.52 2.54 1.62 1.31 9.73 12.08 6.32 13.26 1.75 10.35

Soot (g/h) 19.27 43.72 3.03 0.41 -79.92 -83.42 -87.96 -80.75 16.61 -83.01

Soot (g/kWh) 14.79 39.37 0.33 -1.74 -79.13 -82.89 -87.43 -80.31 13.19 -82.44

CO2 (g/kWh) -4.00 3.17 -3.93 2.50 0.71 0.20 2.88 -6.83 -0.57 -0.76

CO (g/kWh) -7.64 38.68 7.81 9.59 -33.89 -35.13 -32.48 -40.20 12.11 -35.42

O2 (g/kWh) -9.23 -7.23 -2.04 -10.64 5.43 5.85 5.36 -0.18 -7.29 4.12

NOx (g/kWh) -0.85 4.33 4.19 1.16 15.21 19.48 14.84 10.28 2.21 14.95

HC (g/kWh) -34.91 -22.45 -3.13 -3.88 92.35 -15.18 -3.66 53.54 -16.09 31.76

Delta IMAT (°C) 8.32 9.40 0.58 -1.17 16.94 10.85 -3.99 -9.56 4.28 3.56

Exhaust Temperature 4.79 5.35 2.68 3.22 -6.38 -5.76 -7.38 -9.26 4.01 -7.19

19.52 43.86 3.00 0.16 -79.79 -83.12 -87.96 -81.34 16.64 -83.05

Start of Injection -0.04 0.17 0.07 1.52 -0.68 0.17 -0.31 3.37 0.43 0.64

Injection Duration 0.48 0.59 0.58 0.13 0.45 -0.17 0.32 0.89 0.44 0.37

CO2 (mole fraction) -0.16 6.62 -0.12 5.13 -2.65 -1.30 -0.37 -10.67 2.87 -3.75

CO (mole fraction) -3.93 43.04 11.02 10.16 -36.17 -35.79 -35.18 -43.26 15.07 -37.60

O2 (mole fraction) -5.58 -4.13 0.26 -8.03 1.88 4.22 0.43 -5.16 -4.37 0.34

NOx (mole fraction) 3.14 7.85 6.31 3.69 11.34 17.60 9.24 4.70 5.25 10.72

HC (mole fraction) -32.29 -19.90 -0.75 -1.05 86.12 -15.96 -7.58 44.60 -13.50 26.79

MAF + Fuel Change 1.31 2.71 1.48 1.02 8.92 9.92 6.45 15.81 1.63 10.28

MAP (mbar) 0.10 0.04 0.13 -0.14 -0.02 -0.12 0.23 1.06 0.03 0.29

Fuel Supply Temp (°C) 5.37 1.31 5.06 20.45 12.91 1.52 -3.79 2.05 8.05 3.17

PC9 Vs. EN590 B100 Vs. EN590

16.5:1 19.5:1 16.5:1 19.5:1

Soot (     )
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4.2.2.1 Comparison of PC9 Fuel to EN590 

Relative to EN590, Table 4.2 reveals that the PC9 fuel achieved slightly 

improved BMEP by an average of 3.0% across the three torque groups with a 

slight reduction in BSFC (1.16%) but the fuel mass flow rate was higher as a 

result of the approximately 1.8% relative increase in fuel density (EN590 = 830 

kg/m3, PC9 = 845.1 kg/m3). The increase in BMEP relative to EN590 appeared to 

be slightly greater for the low compression configuration but the effect was very 

small at around 1%. Table 4.3 shows that these BMEP observations were 

consistent across the torque groups (C, D, E) when averaged across the two 

compression ratios and low and high IMAT. 

The BSFC change aligned to the BMEP change suggesting there was 

increased fuel conversion efficiency with the PC9 fuel relative to EN590 for the 

low compression ratio compared to the high compression, Table 4.2, which was 

supported by the generally close agreement in AFR between the fuels across the 

high and low compression ratios and the reduced PC9 fuel HC emissions. 

The PC9 fuel generally had higher specific soot emissions (g/kWh) with an 

overall average increase of 16.6%, Table 4.2. This higher concentration 

appeared to be related to the reduction in compression ratio with the soot 

concentration up to 3% higher at 19.5:1 but between 19.5 and 43.8% higher at 

16.5:1. 

There was no clear indication what was responsible for this compression ratio 

bias from the measured data presented in Table 4.2 and such a bias was not 

observed for the B100 fuel. 

The HC specific emissions for the PC9 fuel were lower than those of EN590 

for all conditions. Generally, with increasing torque the reduction in HC emissions 

for the PC9 fuel compared to EN590 became more significant, though for both 

torque groups D and E the reduction was quite similar Table 4.3. 

Analysing the PC9 vs. EN590 HC emissions across IMAT and compression 

ratio conditions in Table 4.3, it is clear that the PC9 fuel produced lower HC 

emissions at the 16.5:1 compression ratio and this effect was amplified at low 

IMAT. This observation implied there was a reduction in fuel-air mixing caused by 

the compression ratio reduction which impacted on the PC9 HC emissions in a 

far less significant way than was the case for the EN590 fuel and especially the 

B100 fuel which is discussed later. The increased IMAT condition at 16.5:1 

resulted in both PC9 and EN590 emissions reducing but the effect on EN590 was 
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more significant and hence the PC9 fuel’s inherent advantage of lower HC 

emissions was reduced. 

These results demonstrate that the PC9 fuel, compared to EN590, was far 

less sensitive in terms of HC emissions to the reduction in compression ratio. The 

increase in IMAT at 16.5:1 acted to reduce both PC9 and EN590 HC emissions 

but less so in the case of the PC9 fuel. These findings are very useful in 

understanding the soot physiochemical observations reported from Chapter 5 

onwards. 

The PC9 fuel summary engine performance and emissions changes relative 

to the EN590 baseline fuel (average of compression ratios, IMATs, and speed/ 

torque points) are detailed in Table 4.4. 

Table 4.4: Overall Summary of PC9 vs. EN590 Performance and Emissions 

Parametric Experiments 

 

4.2.2.2 Comparison of B100 Fuel to EN590 

The B100 BMEP average reduction relative to the EN590 fuel was 3.36%, 

Table 4.2, and thus almost opposite to the 3% gain observed for the PC9 fuel, 

Table 4.2. This reduction in BMEP was largely explained by the combination of 

increased fuel mass flow rate due to a higher fuel density and a 12.7% lower fuel 

energy content. 

Comparing the BMEP reduction across the three torque groups in Table 4.3 

shows there was observed a very similar pattern as for the PC9 fuel but of 

opposite sign. This indicated that at high torque the relative differences in the 

torque produced by each fuel were smaller than observed for lower torque 

though the differences were small. 
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The BSFC increased significantly relative to EN590 with an overall average of 

14.17% Table 4.2. The original volumetric flow measurements indicted that the 

volumetric fuel flow rate was consistent across the three fuels due to the 

measures used to achieve consistency. Thus, the increase in B100 BSFC 

relative to EN590 arose from the combined effects of a 10.35% increase in fuel 

mass flow rate (due to the increase in fuel density relative to the EN590 fuel) 

combined with the 12.7% reduction in lower heating value of the fuel. The 

increase in BSFC was observed to be higher for torque group C (60-80% peak 

torque) and low speed conditions, potentially indicating reduced fuel conversion 

efficiency particularly at the 16.5:1 low IMAT conditions. 

By far the greatest differentiation observed between the B100 and EN590 

fuels was the specific exhaust soot emission; over all the test conditions the 

average reduction observed was 83%, Table 4.2, and almost identical to the 

exhaust concentration difference. 

Unlike observed for the PC9 fuel, the exhaust soot mass reduction was found 

to be uniform over torque, compression ratio and IMAT conditions, Table 4.3. The 

lowest overall soot emissions were observed at 19.5:1 with low IMAT and for a 

number of the torque group C speed-torque points the AVL 415 smoke meter 

was unable to resolve a concentration above 0 mg/m3. The other characteristic of 

the B100 soot emissions was a substantially reduced sensitivity to a low AFR and 

thus for the high speed-high- torque test points the relative increase in soot with 

torque was far less in the case of the B100 fuel, Figure 4.4. Interestingly, the 

highest B100 specific exhaust soot measurement was 0.03g/kWh which was for 

19.5:1 high IMAT at rated power; by reference the Euro V limit (2008.10) is 0.02 

g/kWh and thus combined with B100 fuel the VW 1.9 TDI Euro III engine without 

a DPF was almost able to achieve the much tougher limit. This helps to put into 

perspective the difficulties experienced and highlighted later in this work with 

collecting sufficient B100 soot mass. 

The overall average analysis presented in Table 4.2 implied that the B100 

fuel relative to EN590 had a 31.8% overall increase in HC specific emissions. 

However, when this was broken down across the test conditions it was clear that 

the result was dominated by large increases for the two conditions 16.5:1 low 

IMAT and 19.5:1 high IMAT. The cause of the former case was isolated to a very 

substantial increase in HC emission of 1185% at rated power relative to the 

EN590 fuel. For the latter 19.5:1 case, this was again caused by a large increase 

at high torque conditions but not specifically rated power. A review of the raw 
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measurement data made it clear that at all maximum fuelling conditions (torque 

group E), the B100 fuel experienced a very dramatic rise in HC emissions relative 

to EN590. Furthermore, unlike for torque group E, there were inconsistent 

relative changes in HC for torque groups C and D across the different speed- 

torque points. These observations are captured in Table 4.3 where the overall 

percentage change in B100 HC emissions relative to EN590 saw a swing from a 

reduction of 20.8% for torque group C to an increase of 167.6% for torque group 

E (>95% peak torque). 

The IMAT breakdown in Table 4.3 shows the sensitivity observed for B100 

HC emissions to IMAT conditions with the increase in HC emissions relative to 

EN590 being reduced from 97.5 to 28.6% as the IMAT transitioned from low to 

high. Finally, the increase in compression ratio resulted in a reduction in the 

relative difference in B100 and EN590 HC emissions from 90.1 to 35.9%, Table 

4.3. This result summary indicates that the mechanisms of HC emissions were 

not connected directly to those of the mineral fuels but included additional 

processes that likely related to the fuel’s fundamental properties and principally 

the fuel spray and atomisation behaviour with changes in the cylinder charge 

density. This was most likely caused by the factor two higher fuel viscosity for 

B100 compared to EN590 which would have impaired the fuel atomisation 

process and exacerbated any impairment in atomisation from the reduction in 

cylinder charge density [87]. 

The B100 fuel summary engine performance and emissions changes relative 

to the EN590 baseline fuel (average of compression ratios, IMATs, and speed/ 

torque points) are summarised in Table 4.5. 

Table 4.5: Overall Summary of B100 vs. EN590 Performance and Emissions 

Parametric Experiments 
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4.2.3 Effects of Compression Ratio Change (High to Low)  

This section analyses the effects of the compression ratio reduction from 

19.5:1 to 16.5:1 across the three fuels and at both low and high IMAT conditions. 

Section 4.2.1 described how there was greater consistency in the high IMAT 

temperature control across the different experiments which means that the 

analysis of compression ratio change effects should be more robust with the 

emphasis placed on the high IMAT i.e. the high IMAT experiments should have a 

smaller variation in cylinder charge density derived from IMAT fluctuation. 

For continuity, the same percentage change analysis methodology is used in 

this section as with the two previous sections to understand the average overall 

compression ratio influence over a broad range of speed and torque. The 

summary of this is presented in Table 4.6 and Table 4.7. 

Table 4.6: Summary of the Percentage Change in Engine Performance and 

Emissions for High-to-Low Compression Ratio (Torque groups C to E) 

 

Table 4.6 details the averaged effects of the compression ratio reduction for 

each of the three fuels at the low and high IMAT conditions and also indicates the 

averaged effects for the three fuels lumped together at low and high IMAT. Table 

4.7 is a continuation of Table 4.6 and segments the observations across torque 

group, fuel and IMAT. Together both tables describe the overall observed effects 

of the compression ratio reduction from 19.5:1 to 16.5:1. 

Table 4.6 and Table 4.7 show that the compression ratio reduction was 

responsible for a consistent but not quite universal increase in AFR across all 

IMAT: low high low high low high low high

BMEP (bar) -5.19 -5.58 -4.00 -4.89 -5.79 -5.50 -4.99 -5.32

BSFC (g/kWh) 4.81 4.29 3.68 4.47 7.63 6.82 5.37 5.20

AFR 6.72 4.40 5.76 2.87 2.71 -1.46 5.06 1.94

MAF (kg/h) 5.36 2.66 5.17 2.08 3.93 -0.57 4.82 1.39

Fuel (kg/h) -0.62 -1.72 -0.49 -0.64 1.38 0.95 0.09 -0.47

Soot (g/h) 0.80 -23.63 13.61 0.67 19.53 -21.75 11.31 -14.90

Soot (g/kWh) 5.89 -19.65 17.76 5.57 26.80 -17.26 16.82 -10.45

CO2 (g/kWh) 2.61 -4.73 2.76 -6.58 -0.48 1.44 1.63 -3.29

CO (g/kWh) 55.42 0.12 26.53 18.81 55.80 22.49 45.92 13.81

O2 (g/kWh) 16.81 7.56 7.15 10.34 20.37 10.09 14.78 9.33

NOx (g/kWh) -12.95 -15.66 -17.24 -12.35 -13.07 -10.80 -14.42 -12.94

HC (g/kWh) 67.25 -2.08 -0.38 -26.09 133.79 -56.49 66.89 -28.22

Delta IMAT (°C) -44.36 -10.60 -39.98 4.08 -35.38 5.81 -39.90 -0.24

Exhaust Temperature -0.15 1.30 2.14 4.51 -0.43 7.07 0.52 4.29

-4.29 -25.54 8.13 -1.32 15.46 -21.43 6.43 -16.10

Start of Injection -0.24 1.38 -0.39 -0.26 -0.37 0.00 -0.33 0.38

Injection Duration -0.63 -1.12 -0.75 -0.80 -0.93 -2.39 -0.77 -1.44

CO2 (mole fraction) -6.13 -11.92 -5.91 -12.80 -9.62 -3.69 -7.22 -9.47

CO (mole fraction) 39.90 -8.27 15.89 11.12 41.25 16.44 32.35 6.43

O2 (mole fraction) 5.08 -0.36 -1.89 2.91 9.17 4.45 4.12 2.33

NOx (mole fraction) -21.84 -22.12 -24.17 -18.18 -20.96 -15.29 -22.32 -18.53

HC (mole fraction) 50.35 -9.00 -8.73 -30.99 111.48 -58.70 51.04 -32.90

MAF + Fuel Change 4.74 0.94 4.68 1.45 5.32 0.38 4.91 0.92

MAP (mbar) -0.47 -0.30 -0.51 -0.08 -0.68 -1.58 -0.56 -0.65

Fuel Supply Temp (°C) -18.86 -10.45 -19.26 -21.93 -7.99 -21.75 -15.37 -18.04

ALL FUELSEN590 Vs. EN590 PC9 Vs. PC9 B100 Vs. B100

Soot (     )



4 Engine Performance, Gaseous and Particulate Emissions Summary 
4.2 Engine Performance and Emissions Summary for the Parametric Experiments 

 

148 

experiments. This increase in AFR was observed to be mostly associated with an 

increase in MAF. 

Table 4.7: Summary of the Percentage Change in Engine Performance and 

Emissions for High-to-Low Compression Ratio Segmented for each Fuel, IMAT 

and Torque Group (C, D, E) 

 

Considering the raw MAF (kg/h) measurements, Figure 4.5 presents the data 

for the high IMAT EN590 experiments for both compression ratios and shows 

that the MAF was observed to be quite similar at both compression ratios for 

torque group C but at higher torque (>80%) there was an increase in MAF with 

the compression ratio reduction. This observation was repeated for both mineral 

fuels and also at low IMAT for these fuels Table 4.6 and Table 4.7. This was 

likely because of the increase in cylinder volume with the compression reduction. 

In the case of the B100 fuel, the overall MAF change did not mirror that of the 

mineral fuels as it was not possible to run all the speed- torque points due to 

limited fuel batch reserves (fuel had to be conserved for the subsequent soot 

collection experiments). 

This MAF change resulted in a proportional effect on the AFR as the fuel 

mass flow rate increased and decreased by the same amount overall for each of 

the two IMAT cases (IMAT average all fuels and all groups column, Table 4.7). 

This is illustrated in Figure 4.6 for the EN590 fuel for high IMAT conditions and 

torque groups C, D and E. This was an interesting overall result as the fuel 

injection duration managed by the ECU was observed to be slightly lower for all 

C D E EN590 PC9 B100 LOW HIGH

BMEP (bar) -4.76 -6.35 -4.79 -5.43 -4.67 -5.80 -5.23 -5.37

BSFC (g/kWh) 4.98 4.92 6.99 5.31 4.03 7.55 5.88 5.38

AFR 3.78 4.02 1.75 4.79 4.45 0.31 4.49 1.87

MAF (kg/h) 3.45 2.11 3.48 4.02 3.49 1.53 4.56 1.46

Fuel (kg/h) -0.04 -1.85 1.85 -0.52 -0.83 1.30 0.32 -0.35

3.37 -13.50 -15.80 -19.75 -0.39 -5.78 0.75 -18.03

Soot (g/h) 7.39 -11.95 -12.93 -16.42 2.99 -4.06 5.16 -16.82

Soot (g/kWh) 12.04 -5.87 -8.83 -12.04 7.65 1.72 10.59 -12.37

CO2 (mole fract) -8.25 -9.08 -7.62 -8.91 -9.35 -6.69 -6.72 -9.91

CO2 (g/kWh) -0.74 -1.37 -0.22 -0.98 -1.83 0.48 2.12 -3.67

CO (mole fract) 34.07 3.54 0.58 9.92 8.77 19.50 22.39 3.07

CO (g/kWh) 45.71 13.28 8.69 21.44 17.60 28.64 34.78 10.34

O2 (mole fract) 3.88 2.57 2.70 1.66 0.47 7.01 4.24 1.85

O2 (g/kWh) 12.71 11.38 11.69 11.49 8.79 15.51 14.92 8.94

NOx (mole fract) -21.69 -21.62 -15.63 -21.06 -20.60 -17.28 -20.68 -18.60

NOx (g/kWh) -15.13 -14.72 -8.43 -13.22 -14.09 -10.97 -12.62 -12.90

HC (mole fract) -6.22 29.95 42.23 22.57 -22.07 65.45 78.56 -34.59

HC (g/kWh) 2.39 41.91 56.74 34.89 -15.52 81.66 97.33 -29.97

MAF + Fuel (kg/h) 3.40 0.26 5.33 3.50 2.65 2.83 4.88 1.11

Exhaust Temperature 3.43 1.48 0.00 0.32 3.36 3.16 0.50 4.06

Start of Injection (CAD) 0.29 -0.19 -0.53 -0.01 -0.32 -0.10 -0.23 -0.05

Injection Duration (CAD) -0.97 -1.59 -0.52 -0.80 -0.75 -1.54 -0.67 -1.39

Fuel Supply Temp  (°C) -19.37 -16.25 -14.13 -14.61 -20.04 -15.11 -15.60 -17.57

Delta IMAT (°C) -22.65 -19.04 -13.31 -25.54 -15.93 -13.54 -36.36 -0.32

MAP (mbar) -0.71 -1.03 -0.10 -0.30 -0.22 -1.33 -0.63 -0.60

and both high & low IMATs Fuels and Groups

Load Group Average All Fuels Fuel Average all Groups IMAT Average All

and both high & low IMATs

Soot (     )
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conditions at lower compression, Table 4.6 and Table 4.7, with the measured fuel 

mass flow fluctuating between increases and decreases across the categories in 

Table 4.6 and Table 4.7. 

 

Figure 4.5: Geometric Compression Ratio Effect on MAF at high IMAT for EN590 and 

Torque Groups (C, D, E) 

 

Figure 4.6: Geometric Compression Ratio Effect on AFR at high IMAT for EN590 and 

Torque Groups (C, D, E) 

It is important to mention that the fuel rate measurement utilised a volumetric 

approach (Section 3.2.2.3) and the accuracy was subject to stable fuel 



4 Engine Performance, Gaseous and Particulate Emissions Summary 
4.2 Engine Performance and Emissions Summary for the Parametric Experiments 

 

150 

temperature which could not be precisely controlled with the compression ratio 

change as shown in Table 4.6 and Table 4.7.6 

Table 4.6 and Table 4.7 detail how there was a universal reduction of 4-5% in 

BMEP with the reduction in compression ratio over all experimental combinations 

and Figure 4.7 illustrates this for the EN590 fuel at high IMAT for torque groups 

C, D and E. This followed from the associated reduction in thermodynamic 

efficiency. 

The change in exhaust soot concentration and mass flow was observed to be 

complex with regard to compression ratio and the different fuels. For all fuels at 

low IMAT, there was an increase in soot mass flow with the lower compression 

ratio but for the high IMAT condition this trend was reversed with the exception of 

the PC9 fuel (the concentration for the PC9 soot did decrease but to a much 

lesser extent). 

 

Figure 4.7: Geometric Compression Ratio Effect on BMEP at high IMAT for EN590 and 

Torque Groups (C, D, E) 

These changes in exhaust soot were set against a general increase in AFR 

which the IMAT analysis of Section 4.2.1 associated with a decrease in soot 

concentration. Thus, with the compression ratio reduction there was a change in 

exhaust soot concentration which was coupled to IMAT but not AFR change. As 

there was an associated consistent small reduction of ( <~1%) in IMAP, the IMAT 

appeared to have had an isolated influence on the cylinder charge density in 

                                                
6
 With the reduction in compression there was a reduction in global cylinder temperature and thus less 

heat in the cylinder head to absorb into the fuel causing a secondary effect on fuel temperature. 
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parallel with the compression ratio reduction such as to be able to switch the 

effects of the compression ratio change on exhaust soot concentration. 

As the compression effect on soot was not consistent across all three fuels 

and had this association with IMAT, it proved quite difficult to isolate the precise 

causative processes behind the observations. The observations were very likely 

related to the effects of compression and IMAT on the fuel injection, atomisation 

and mixing processes as all of these would have been sensitive to fuel and 

cylinder charge density. 

Categorising the changes in specific exhaust soot across the three torque 

groups C, D, E in Table 4.7; group C was observed to have 12% increase but 

groups D and E both showed reductions of 5.9 and 8.8%. These observations 

again failed to follow the AFR pattern emphasising the disassociation of the soot 

observations from AFR with compression ratio change. 

It is useful to finally illustrate these exhaust soot observations through the 

original raw measurement data and presented in Figure 4.8 and Figure 4.9 are 

the data for the EN590 fuel for torque groups C,D,E for low and high IMAT 

respectively. 

 

Figure 4.8: Geometric Compression Ratio Effect on Soot (g/kWh) at low IMAT for EN590 

and Torque Groups (C, D, E) 

Figure 4.8 and Figure 4.9 together illustrate the complexity of the 

interdependency of compression ratio and IMAT with the main feature being an 

increase in the distribution of the exhaust soot rate measurements at high IMAT 



4 Engine Performance, Gaseous and Particulate Emissions Summary 
4.2 Engine Performance and Emissions Summary for the Parametric Experiments 

 

152 

conditions, particularly for the higher torque groups D and E. The generally 

increased specific soot emission with higher IMAT is also illustrated and is the 

behaviour described in Section 4.2.1. 

 

Figure 4.9: Geometric Compression Ratio Effect on Soot (g/kWh) at high IMAT for 

EN590 and Torque Groups (C, D, E) 

Table 4.6 and Table 4.7 both detail how the effect of the compression ratio 

reduction on HC emissions was analogous to that observed in the case of soot, 

being dependent on IMAT. There was a general increase in HC emissions with 

low IMAT and a decrease with high IMAT. Interestingly Table 4.7 details that 

whilst there were overall increases in HC emissions observed for the EN590 and 

B100 fuels, in contrast there were general decreases observed for the PC9 fuel. 

This was largely because with the PC9 fuel there was not the large increase in 

HC at low IMAT with the compression reduction like observed for the other two 

fuels. The summary of HC emissions change with compression ratio reduction 

across torque groups (C, D, E) in Table 4.7 shows that as the torque increased 

the HC emissions generally increased when averaged over both IMAT 

conditions. 

These HC measurements aligned with the qualitative observations during the 

experiments where the engine was more difficult to start with the EN590 and 

B100 fuels with substantial wetting of the exhaust manifold with the B100 fuel 

during engine warm-up. Furthermore, for all fuels at the lower compression ratio, 

white smoke was observed coming from the engine exhaust during the engine 

warm-up phase. 
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The observed coupling between IMAT and compression ratio change and the 

use of high IMAT during the soot collection experiments make it important to take 

the findings presented in Table 4.6 and Table 4.7 and summarise further the 

most essential parameters for the compression ratio reduction at the two IMAT 

ranges investigated. With the IMAT below 40°C, the reduction to 16.5:1 

compression for all fuels resulted in an average overall change in engine 

performance and emissions as summarised in Table 4.8. 

Table 4.8: Overall Summary of Compression Ration Reduction Performance and 

Emissions Parametric Experiments (IMAT<40°C) 

 

With the IMAT above 50°C, the effects of the reduction to 16.5:1 compression 

for all fuels is summarised in Table 4.9. 

Table 4.9: Overall Summary of Compression Ration Reduction Performance and 

Emissions Parametric Experiments (IMAT>50°C) 

 

The soot collection experiments were conducted solely at high IMAT (Section 

3.1.5.3) and clearly from Table 4.8 and Table 4.9 the low and high IMAT were 
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observed to result in quite different responses in specific soot and HC 

emissions.7 

4.3 Engine Performance and Emissions for the Soot 

Collection Experiments 

The engine exhaust soot collection experiments were conducted according to 

the experimental design detailed in Section 3.1.5.3 and the results from the 

analysis of the soot produced by these experiments is presented across Chapter 

5 to Chapter 7. The engine was operated at rated power (4000 rpm, maximum 

fuelling - equivalent to 13.5 to 14.6 bar BMEP) for each of the six fuel-

compression ratio configurations. 

4.3.1 Summary of Performance and Emissions Data 

The engine operating condition, performance and emissions are summarised 

across Table 4.10 part A, B and C (located at the end of this chapter) and are the 

averaged values across all the measurements made for each soot collection 

experiment. 

Table 4.10 Part A reveals the engine power, fuel and air measurements for 

the three fuels at each of the two compression ratios and also presents the AVL 

415 smoke meter measured exhaust soot concentration and computed soot 

mass flow rate. The effects of the higher B100 fuel density and lower energy 

content are clearly seen in the higher fuel mass flow rate and lower output power 

when the engine was fuelled with this fuel. Detailed is how the 16.5:1 B100 

experiment was aborted at around 12 hours and thus short of the target 20 hours. 

This was because the rate of injector coking observed at 16.5:1 for the B100 fuel 

was more than twice that observed at 19.5:1 at the 12 hour point in the 

experiment and was also rapidly increasing, Appendix 9. Thus, the B100 exhaust 

soot concentration was far lower at 16.5:1 and very little mass of soot was being 

collected at the exhaust manifold to the point that the continuation of the 

experiment was of no value. 

Table 4.10 Part A importantly summarises the mass of soot collected for each 

experiment as well as the mass of condensed water collected in the water trap in 

the ceramic thimble exhaust manifold sampling apparatus, Section 3.5.1.1. 

                                                
7
 The impact of the compression ratio reduction on soot physiochemical characteristics reported in Chapter 

6 in this work specifically apply under high IMAT conditions and should not be taken as generally representative 
of engine geometric compression ratio influence. 
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These latter two parameters were useful as they illustrated that for the B100 

experiments, the much lower concentration of exhaust soot meant there was 

overall more sample gas which flowered through the ceramic thimble sampling 

apparatus (as the thimbles were less plugged). However, the total mass of soot 

collected was much lower due to the +80% lower exhaust soot concentration. 

This coupling was ultimately what limited the soot mass which could be collected 

for the B100 fuel in particular at the exhaust manifold. Presented in the last 

column of Table 4.10 Part A is the measured lubricant consumption rate which 

was measured from the mass of lubricant added to the engine during the 

experiments to maintain the lubricant level. 

Table 4.10 Part B presents both the controlled and uncontrolled experimental 

parameters and the temperatures of the engine and soot sampling system 

apparatus. The ambient temperature was the temperature local to the engine in 

the test cell and this fluctuated across the experiments as it could not be 

precisely controlled with the experiments distributed over all the seasons. The 

fuel inlet temperature was regulated by an adapted laboratory air-to-liquid chiller 

Section 3.2.1.5 and the change in test cell temperature affected the heat energy 

the chiller could remove from the fuel and consequently the fuel temperature also 

fluctuated across the experiments with the ambient temperature change. An 

additional effect as detailed in Section 4.2.3 was that the temperatures in the fuel 

system were reduced by the reduction in compression ratio. The measured 

injection duration was the maximum the engine ECU would deliver at 4000 rpm 

and the small variation was due to the ECU calibration and variation in ECU 

measured parameters across the experiments. 

Table 4.10 Part C summarises the exhaust gaseous emissions both in terms 

of the concentration and specific units. These measurements reflect the results 

presented earlier in Section 4.2 with the two mineral diesel fuels being similar 

with the B100 fuel quite distinct. The B100 fuel saw higher HC emissions at both 

compression ratios but especially at 16.5:1. There was also an increase in the 

concentration of exhaust oxygen for all fuels at 16.5:1 and a corresponding 

decrease in exhaust CO2 which aligned with an increased AFR for these 

experiments. This was related to a consistent increase in MAF which followed the 

reduction in compression ratio as observed generally for the broader operating 

conditions reported on in Section 4.2. 

The data in Table 4.10 Parts A, B and C have been further processed to 

compute the % change in respect to compression ratio reduction and the 
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comparison of each fuel to the EN590 reference fuel at each compression ratio. 

These results are presented in Table 4.11, Table 4.12 and Table 4.13 (located at 

the end of this chapter) for Table 4.10 Part A, Part B and C respectively and 

outline the influence of the reduction in compression ratio for each fuel and also 

the differences of the PC9 and B100 fuels relative to the reference EN590 fuel. 

The comparison across like fuels with the compression ratio reduction 19.5:1 

to 16.5:1 in the first part of Table 4.11 reveals that there was a loss in power 

output for all fuels and that the fuel rate for the PC9 fuel reduced when that 

observed for EN590 and B100 increased. The exhaust soot concentration and 

mass flow rate increased for both the mineral fuels but was reduced for the 

aborted 16.5:1 B100 experiment due to the rapid coking of the injectors at 16.5:1 

which restricted fuel injection, Appendix 9. 

Consequently, the mass of soot collected at low compression at the exhaust 

manifold was higher for both mineral fuels but reduced for the B100 fuel, 

reinforcing the importance of maximising the exhaust soot concentration to make 

the ceramic thimble collection apparatus viable in this work. The rate of the 

exhaust soot collection in the ceramic thimble apparatus was higher in the 16.5:1 

experiments in general and this caused a reduction in the mass of sample drawn 

through the thimble as indicated by the reduction in the rate of collection of 

condensed water. This further emphasises the conflicting characteristics of this 

soot collection methodology. 

The comparison between PC9 and B100 fuels to EN590 in the second and 

third parts of Table 4.11 shows that for both these fuels at both compression 

ratios, the AFR was lower compared to EN590. The exhaust soot concentration 

for the PC9 fuel experiments was between 16.6 and 18.6% higher than the 

equivalent EN590 experiments and in the case of the B100 fuel the concentration 

was between -84.4 and 89% lower during the soot collection experiments. This 

significant disparity between the fuels emphasises the difficulty experienced with 

collecting sufficient soot mass across all experiment conditions. 

Table 4.12 reveals that there was variation in some of the important 

experimental parameters across the six experiments, the more critical being the 

fuel inlet temperature and IMAT disparities across the compression ratio 

reduction. The IMAT had to be lowered for the low compression experiments to 

reduce the stress on the turbocharger as two turbochargers had failed during the 

19.5:1 experiments. As explained previously, the fuel inlet temperature reduced 
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with compression ratio reduction as less heat energy was absorbed into the 

return fuel. 

Finally, Table 4.13 presents the gaseous emissions measurements for the 

rated power condition and it can be observed that the trends in the individual fuel 

responses to compression ratio reduction generally followed those summarised 

for all operating conditions in Section 4.2 earlier. The consistent pattern across all 

fuels with reduced compression included reductions in CO2, CO and NOx with an 

increase in O2. Importantly for the later soot analysis, the HC emissions were 

observed to reduce with the reduction in compression ratio for the mineral fuels 

but to increase significantly for the B100 fuel. Thus in summary, the emissions of 

the two mineral fuels were observed to have similar responses to the reduction in 

compression ratio. The B100 fuel, although exhibiting the same response 

direction for all but HC emissions, had response magnitudes that were quite 

different. Hence, when comparing PC9 and B100 to EN590, the differences were 

more significant for the biodiesel fuel. 

4.3.2 Fuel Soot Factor Definition and Calculation 

A non-dimensional parameter has been utilised in this work to characterise 

the ‘sooting tendency’ of each fuel at a specific operating condition and this is 

referred to as the Fuel-Soot-Factor (FSF). The definition of the FSF is shown in 

Equation 4.1: 

𝐹𝑆𝐹 =
𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡 𝑠𝑜𝑜𝑡  𝑔 ℎ⁄  

𝑓𝑢𝑒𝑙 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤  𝑔 ℎ⁄  
                  Equation 4.1 

The FSF describes simply the fraction of the fuel which combusts to produce 

soot as measured by the AVL 415 smoke meter, Section 3.2.2.5. It is designed to 

account for the change in fuel mass flow across the three fuels investigated due 

to their respective density differences. For all six rated condition soot collection 

experiments the FSF has been computed and these results are summarised in 

Table 4.14 which is located at the end of this chapter. 

The data of Table 4.14 shows that the PC9 fuel produced more soot at both 

compression ratios in proportion to the fuel consumption rate than was observed 

for the other two fuels. The FSFs for the two mineral fuels were quite similar in 

contrast to the significantly lower FSF (factor –10) for the B100 fuel. As 

presented in Table 4.14, the B100 measured exhaust soot concentration was 

lower by a factor of 8 compared to EN590. Thus, the inclusion of the 

consideration of the higher B100 fuel consumption rate (due to its higher density) 
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means that the fuel effectively had an even lower soot producing tendency than 

the measured soot concentration alone revealed. 

The FSFs detailed in Table 4.14 are utilised later in Chapter 5 and Chapter 6 

to better understand the overall soot bulk elemental results by taking into 

consideration the fuel rate and exhaust soot concentration both of which are 

highly associated with soot bulk inorganic concentration (refer to Section 5.4). 

4.3.3 Cylinder Pressure Combustion Parameters 

Cylinder pressure measurements (Section 3.2.2.4) were taken for all the 

engine operating conditions investigated according to the experimental design 

described in Section 3.1.5.2. A summary of the fundamental combustion 

parameters derived from this data for the engine operating conditions of the soot 

collection experiments is presented in Table 4.15 and this also includes the 

comparison of the low and high IMAT experimental configurations. 

This data illustrates firstly that there was a roughly 17.5% reduction in the 

average peak cylinder pressure (data averaged over 50 engine cycles) with the 

reduction in compression ratio, this reduction in pressure correlates with the 

compression ratio reduction assessment presented previously in Section 3.3.5. 

Importantly, the change in IMAT from low to high was observed to not have any 

significant and consistent influence on cylinder peak pressure or the crank angle 

position of peak pressure at both engine compression ratios. This is likely linked 

to the associated reduction in MAF with low to high IMAT change, Table 4.1. 

The reduction in compression correlated with retardation of the crank angle 

position of the maximum pressure rise rate by around 8 degrees from 351.3 to 

359.4 crank angle degrees and there was also a slight reduction in the maximum 

pressure rise rate of about 10%. Together these changes occurred due to the 

retarded start of auto-ignition that resulted from the reduced in-cylinder 

temperature and pressures at a given crank angle during the compression phase. 

At the high engine speed and engine power conditions of the soot collection 

tests, there was little or no sensitivity in regard to the coefficient of variation of 

combustion to the reduction in compression ratio regardless of IMAT condition. 

IMAT did however influence the maximum rate of heat release (J/degree crank 

angle) with a reduction in the maximum rate of heat release across the three 

fuels of 7.4% at 16.5:1 and a reduction of 4.2% at 19.5:1 compression ratio. 

These reductions were likely the result of the reduction in MAF with the increase 
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in IMAT, Table 4.1, which would have slowed the diffusion process in the cylinder 

leading to a slower rate of heat release. 

Estimations for the average in-cylinder temperature during the closed section 

of the engine cycle are also presented in Table 4.15 and provide a quantitative 

estimate of the magnitude of the change in average in-cylinder temperature with 

the compression ratio and IMAT changes e.g. 

 

16.5:1 compression ratio, IMAT low to high: 

7.5% increase in average closed cycle in-cylinder temperature 

19.5:1 compression ratio, IMAT low to high: 

6.0% increase in average closed cycle in-cylinder temperature 

Low IMAT, change from 16.5:1 to 19.5:1 compression ratio: 

3.6% increase in average closed cycle in-cylinder temperature 

High IMAT, change from 16.5:1 to 19.5:1 compression ratio: 

2.3% increase in average closed cycle in-cylinder temperature 

 

The above result derived from Table 4.15 is important as it indicates that in 

respect to in-cylinder temperature, the change in IMAT resulted in roughly double 

the increase in in-cylinder average temperature compared with the change in in-

cylinder temperature associated compression ratio. However, on the contrary, 

IMAT failed to change the peak cylinder pressure (as discussed earlier). 

Since the exhaust soot was collected under high IMAT conditions in this work, 

the reduction in compression can be seen to have reduced the average in-

cylinder temperature by 2.3% and the peak cylinder pressure by 17.5% and 

these findings are important in respect to the soot discussion in Chapter 6. 

4.4 Concluding Remarks 

The investigation of IMAT and engine speed and torque revealed that the 

highest exhaust soot concentration occurred at 4000 rpm maximum torque 

(engine rated power) with greater than 40°C IMAT. To minimise fuel cost and the 

duration of individual tests, this operating point was selected as the operating 

point for the fuel and compression ratio exhaust soot collection tests, Section 

3.1.5.3. 
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With increased IMAT the measured HC emissions generally reduced which 

likely resulted in a reduction of the SOF component for the soot in the exhaust. 

Thus, the soots collected from the fuel and compression ratio exhaust soot 

collection tests described in Chapters 5-7 are postulated to have had lower SOF 

than would generally be observed for soot sampled from the engine used in this 

work with the exception of the B100 soot. This high IMAT also reduced the AFR 

through reduced MAF and this caused an increase in exhaust soot concentration 

due principally to a lower availability of free oxygen molecules in-cylinder 

resulting in a greater incidence of locally rich equivalence ratio in-cylinder during 

the initial soot forming conditions around auto ignition. A reduced exhaust oxygen 

concentration also likely contributed but less so as the soot was sampled from 

the exhaust manifold when the soot was relatively ‘young’. 

The increase in exhaust soot concentration with increase in IMAT for the 

B100 fuel was somewhat lower than the increase observed for the two mineral 

diesel fuels. It is thought that this is related to the different physiochemical 

properties of the B100 soot (see Chapters 5-9) that enable it to more readily 

oxidise in-cylinder and in the exhaust following formation; the reduction in AFR is 

therefore postulated to have impeded the B100 soot oxidation process less than 

was the case for the mineral diesel soots. 

The comparison of PC9 and B100 fuels to the baseline EN5690 fuel showed 

that generally the two mineral fuels (PC9 and EN590) resulted in similar engine 

performance and emissions compared to the much greater differentiation 

observed between the B100 and EN590 fuels. The majority of the significant 

engine performance parameter changes between the B100 and mineral diesel 

fuels (BMEP, BSFC, exhaust temperature etc.) derived from the B100 fuel’s 

combination of higher fuel density and lower energy density. Such were these 

changes that the AFR was between 5-12% lower with the B100 fuel compared to 

EN590 and yet there was an 80-90% reduction in exhaust soot concentration. 

This observation combined with the work presented later in Chapters 5-9; leads 

to the postulation that the divergent AFR and exhaust soot concentration 

changes for B100 soots vs. the mineral diesel soots are explained partly by the 

much higher oxidation rate of the B100 soot in the cylinder and exhaust in 

addition to a lower soot formation rate during combustion. This higher rate of 

oxidation is attributed later in this work to the quite different physiochemical 

properties of the B100 soot that were observed. 
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The B100 fuel by comparison to EN590 was also observed to have a >30% 

overall increase in HC emissions which was exacerbated at high loads. This 

observation was attributed to the higher density of the fuel combined with a factor 

two higher viscosity which together impaired the fuel atomisation and likely 

caused much greater fuel spay impingement. This observation is very important 

as it links to key B100 soot physiochemical properties discussed in Chapters 5-9 

and also the fuel injector coking issues documented in Appendix 9. 

The reduction in compression ratio resulted in a general increase in AFR of a 

few percent that stemmed from an increase in MAF and which in turn derived 

from the increase in cylinder volume. The reduction in compression was 

observed to reduce the estimated average in-cylinder temperature by 2.3% and 

the peak cylinder pressure by 17.5%; thus the influences on exhaust soot 

discussed in Chapter 6 are likely dominated by effects of peak and average cycle 

pressure reductions rather than temperature changes. 

With the compression ratio reduction there was a change in exhaust soot 

concentration which was coupled to IMAT but not the observed AFR change. 

Indeed, the IMAT appeared to have an isolated influence on the cylinder charge 

density in parallel with the compression ratio reduction such as to cause opposed 

effects from the compression ratio change on exhaust soot concentration. This 

likely stemmed from the insignificant changes in peak cylinder pressure observed 

with changes in IMAT. 
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Table 4.13: (Part 3 or 3): % Change of Engine Performance and Emissions 

Summary for all Six Rated Condition Soot Collection Tests 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.14: Fuel Soot Factor Computation for all Six Rated Condition Soot 

Collection Tests 

 

 

 

 

Table 4.15: Cylinder Pressure Combustion Parameters at Rated Engine Power 

(Including Low and High IMAT Comparison) 

 

 

 

 

 

 

Part C: 4000rpm Soot Collection Experiments  - Compression Ratio % Change Analysis

CO2 CO O2 NOx THC CO2 CO O2 NOx THC

(% Vol) (ppm) (% Vol) (ppm) (ppm) (g/kWh) (g/kWh) (g/kWh) (g/kWh) (g/kWh)

EN590 -18.5 -40.2 14.9 -23.1 -16.4 -8.8 -32.2 29.8 -13.1 13.5

PC9 -22.2 -36.5 14.0 -26.9 -52.1 -13.7 -29.5 26.4 -19.0 -46.9

B100 -9.8 -23.3 21.4 -17.5 579.9 -2.0 -16.6 32.0 -10.2 639.4

Part C: 4000rpm Soot Collection Experiments  - 19.5:1 Fuel % Change Analysis, Relative to EN590

CO2 CO O2 NOx THC CO2 CO O2 NOx THC

(% Vol) (ppm) (% Vol) (ppm) (ppm) (g/kWh) (g/kWh) (g/kWh) (g/kWh) (g/kWh)

EN590 NA NA NA NA NA NA NA NA NA NA

PC9 4.4 7.4 -8.7 3.1 -9.1 2.0 6.2 -10.1 1.6 7.7

B100 -12.2 -56.8 -0.7 5.7 53.9 -7.2 -53.8 5.8 12.7 97.2

Part C: 4000rpm Soot Collection Experiments  - 16.5:1 Fuel % Change Analysis, Relative to EN590

CO2 CO O2 NOx THC CO2 CO O2 NOx THC

(% Vol) (ppm) (% Vol) (ppm) (ppm) (g/kWh) (g/kWh) (g/kWh) (g/kWh) (g/kWh)

EN590 NA NA NA NA NA NA NA NA NA NA

PC9 -0.3 14.1 -9.4 -2.0 -47.9 -3.5 10.4 -12.4 -5.2 -49.6

B100 -2.8 -44.5 4.9 13.5 1152.1 -0.3 -43.1 7.6 16.5 1184.5

Fuel Rate MAF AVL415 Soot FSF FSF Normalised FSF

Description (kg/h) (kg/h) (g/h) (%)

19.5:1 EN590 21.5 426.3 38.04 13.2 0.000613 0.061255 0.762

19.5:1 PC9 22.6 439.4 44.36 15.9 0.000703 0.070341 0.875

19.5:1 B100 23.5 444.2 5.92 2.1 9.15E-05 0.009146 0.114

16.5:1 B100 23.8 456.5 4.44 1.6 6.87E-05 0.006871 0.085

16.5:1 EN590 21.9 453.1 40.47 15.0 0.000682 0.068244 0.849

16.5:1 PC9 21.9 449.0 47.99 17.6 0.000804 0.080371 1.000

     3)

Mean 

calculated 

Peak 

Pressure

 Mean CA 

for Peak 

Pressure

Maximum 

Pressure 

Rise rate

CA of 

Maxium 

Pressure 

Rise rate

Mean 
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IMEP

COV 

IMEP

Est. peak HR 

for the main 

combustion 

phase

Ave. Cyl. 

Temp for 

Closed 

Cycle

(bar) (CAD) (bar/CAD) (CAD) (bar) (%) (J/deg) (deg C)

EN590 127.43 371.96 4.02 360 17.27 0.80 62.69 1149.0

PC9 129.38 371.89 4.52 360.5 17.66 0.85 64.20 1157.3

B100 131.85 370.75 3.99 358.5 16.76 0.82 60.57 1126.4

EN590 127.26 371.03 3.37 358.5 16.81 0.95 58.70 1219.3

PC9 130.31 370.34 3.51 358 17.17 1.12 56.24 1242.9

B100 129.78 370.86 3.41 361 16.43 0.85 58.73 1229.4

EN590 157.17 370.15 4.15 349.5 18.91 0.71 65.60 1195.2

PC9 158.44 370.51 4.42 359.5 19.05 0.84 68.06 1197.5

B100 157.13 370.43 4.24 350.5 18.38 0.85 65.67 1170.0

EN590 154.36 369.92 4.16 349.5 18.08 0.83 62.40 1275.1

PC9 157.51 370.13 4.15 349.5 18.41 0.87 64.84 1281.9

B100 157.71 370.13 4.19 349.5 18.13 0.77 63.71 1222.4

1
6
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:1

1
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Low IMAT
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Chapter 5 

5 Soot Physiochemical Properties for Mineral and 

Biodiesel Fuels 

5.1 Introduction 

This chapter presents the results and analysis for the soot sampled from the 

engine exhaust system with the engine fuelled with a total of three different fuels 

at rated engine power. The aim of this chapter is to understand how the 

fundamental differences between the fuels affected the soot physiochemical 

properties. The samples were collected during the experiments described in 

Section 3.1.5.3 and the majority of the soot samples discussed were collected at 

the exhaust manifold with the ceramic thimble sampling system Section 3.5.1. 

5.2 Data Selection and Grouping 

As a consequence of the constrained mass of soot which could be collected 

with the ceramic thimble collection method; it was not possible to undertake all 

eight physical and chemical soot analysis techniques employed in this work for 

any one of the individual ceramic thimble soot samples. Therefore, in this chapter 

results are drawn from samples taken at different compression ratios and also 

sample location to facilitate the consideration of fuel type on all of the soot 

physiochemical properties investigated. The result sets selected and discussed in 

this chapter are summarised in Table 5.1. 

Table 5.1: Fuel-Soot Analysis, Data Selection and Grouping 

 

 



5 Soot Physiochemical Properties for Mineral and Biodiesel Fuels 
5.3 Soot Surface Elemental Composition 

 

167 

Table 5.1 illustrates that the discussion in this chapter largely focusses on the 

samples from the 19.5:1 compression ratio configuration which was the base 

engine compression ratio. Therefore it is worth noting that the fuel-soot results 

and analysis for this compression condition have relevance to previous Lubrizol 

internal research and broader published results for the VW 1.9 TDI engine. 

5.3 Soot Surface Elemental Composition 

Table 5.2 summarises the soot surface carbon, oxygen, sulphur and chlorine 

as well as the ratios of surface oxygen/carbon and sulphur/carbon for the three 

fuels investigated. 

Table 5.2: 19.5:1 Exhaust Manifold Soot Surface Elemental Composition (XPS) 

 

Note: In Table 5.2, ‘CT’ denotes the soot sample was collected with the 

ceramic thimble system (Section 3.5.1) at the exhaust manifold and this notation 

is used throughout this work in the soot physiochemical results presentation. 

Table 5.2 reveals that the three fuels were found to produce soot with 

markedly similar surface elemental composition with the dominant element being 

carbon, typically constituting between 88-94% (all samples) of the surface 

elements. The coefficient of variation in carbon content was 2.1% and largely 

driven by an apparent association of the carbon and sulphur content in the 

surface of the soots from the mineral PC9 fuel. 

The next most significant surface element was oxygen with the observed 

content in the range 5.9-9.9% (all samples). Thus, the oxygen content was 

observed to be slightly more consistent across the three fuels than the carbon 

content. Table 5.2 details the oxygen/carbon (O/C) ratio for the soot and shows 

that the highest O/C ratio is observed for the mineral PC9 fuel. The degree of 

sensitivity of the O/C ratio to fuel type is clear with a coefficient of variation of 

14.7%. The O/C ratio for the mineral EN590 fuel and the biodiesel fuel were both 

very similar. The surface oxygen content is thought to be closely associated with 

the local equivalence ratio during combustion and the free oxygen available in 

the exhaust gases when soot undergoes oxidative reactions [117] – specifically 

for low (<10ppm) sulphur fuels like those investigated in this work. 

Description ratio precision ratio precision

19.5:1 CT, EN590 92.5 7.5 0.0805 0.0118

19.5:1 CT, PC9 88.3 9.9 1.545 0.3 0.1121 0.0127 0.018 0.0059

19.5:1 CT, B100 92.0 8.0 0.0865 0.0119

O/C S/Cwt% C wt% O wt% S wt% Cl
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The PC9 fuel sulphur content was 497 ppm, Appendix 1 (Table A1.1), a factor 

of 10 greater than the EN590 and B100 fuels (Section 3.1.1.3) and this was 

observed to influence the surface composition of the soot from this fuel 

significantly at 19.5:1. The sulphur present on the PC9 soot surface appeared to 

displace carbon and increase the oxygen fraction observed on the surface. This 

is in agreement with Kittelson et al. [24] (Section 2.4.3), and aligns with the 

surface acidity findings presented later in Section 5.6. Indeed, this link is 

extended further in later Chapters of this work to produce an improved 

understanding of the relationship of surface acidity to soot surface O/C ratio for 

diesel exhaust soots, Chapter 9. Consequently, the surface elemental 

composition of the EN590 and B100 fuel soots appeared to have greater 

similarity than the mineral EN590 and PC9 soots. This finding of alignment 

between the surface elemental composition of the EN590 and B100 soots 

contrasts with the findings from the other physiochemical properties discussed 

later in this chapter. 

Chlorine was detected at 0.3% weight in the surface of soot from the PC9 fuel 

experiment and was not observed for any other soot samples in this work. 

Identifying a source for this isolated case was important due to the PC9 soot also 

having the highest O/C ratio which could therefore be co-related. The only fuel 

reported in the fuel composition summary, Appendix 1 (Table A1.1), to have 

chlorine was EN590 fuel which had 3 ppm chlorine and thus the PC9 fuel did not 

appear to be a source attributable for the chlorine. Two other possible sources 

were considered to be the lubricant and sample contamination. The lubricant 

composition, Appendix 2 (Table A2.1), does not include chlorine and since there 

was no chlorine detected in any other samples, it is postulated that the most 

likely source was sample contamination. The means through which the sample 

contamination may have occurred is unknown; however it was more likely to 

have been at a stage after the sample was sealed up following removal from the 

soot collection apparatus since the chlorine was not detected in any other soot 

sample. 

The effect of this chlorine on the PC9 soot results is not certain, however it is 

more likely the chlorine would have behaved akin to the sulphur from the fuel and 

been adsorbed onto the surface of the soot rather than strongly bonded like the 

oxygen molecules. Combined with the source of the chlorine likely having been 

external sample contamination, it is postulated that the effect in the sample XPS 

analysis was to reduce equally the wt % concentrations of the other elements 
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thus leaving the O/C unaffected. Thus, the high O/C ratio of the PC9 soot relative 

to the other soots is believed to be primarily associated with the adsorbed 

sulphur compounds which is intuitive given that the fuel borne sulphur typically 

oxidises to form sulphates such as SO2 and SO3 [24, 30, 31]. 

Since the soot samples detailed in Table 5.2 were collected at the exhaust 

manifold, the soot surface composition observed for the soots is assumed to be 

representative of the surface at the end of combustion and thus describe 

relatively young soot. This point is important as soot evolution in the exhaust will 

tend to result in the chemisorption of oxygen to the surface through oxidation 

[118] (Section 2.4.1.1 and Section 7.3) and thus result in the increase of the 

surface O/C ratio. Consequently, for the soots detailed in Table 5.2 it is expected 

that the results are generally representative of soots which have not undergone 

significant exhaust oxidation and thus the reported carbon content is considered 

high for typical exhaust sampled diesel exhaust soot. This conclusion is 

emphasised by the low AFR of the experiments, Table 4.10, which would have 

limited surface oxidation due to the relative paucity of free oxygen molecules at 

the end of combustion. Indeed, in respect to the surface elemental summary 

presented in Section 2.4.1.1, the surface O/C results of Table 5.2 are all at or 

below the reported mean O/C of 0.091 and agree well with the findings of 

Bardasz et al. [115, 211] in which the soot was also sampled from the exhaust 

manifold using a similar technique. 

5.4 Soot Bulk Elemental Composition 

Table 5.3 presents the percentage weight of inorganics for the bulk 

composition of the sampled exhaust soot and is also presented in the form of the 

percentage contribution of each element to the total sample inorganics Table 5.4. 

Table 5.3: 19.5:1 Exhaust Manifold Soot Bulk Elemental Composition (% weight) 

(ICP-MS, Corrected)
8
 

 

 

 

                                                
8
 Table 5.3 and Table 5.4 present corrected ICP-MS results; this involved negating foreign element 

contamination which was identified in some samples (Refer to Appendix 8). 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.000 0.016 0.001 0.001 0.033 0.000 0.000 0.185

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 0.000 0.002 0.282 0.001 0.028 0.000 0.000 0.444

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.000 0.017 0.105 0.000 0.000 0.734

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)
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Table 5.4: 19.5:1 Exhaust Manifold Soot Bulk Elemental Composition (% 

weight/Total % weight) (ICP-MS, Corrected)
 

 

Analysis of the soot bulk inorganic contaminants was important as it indicated 

the composition of the soot and thus provided insight into the formation process 

for the soot and to what extent the sampled soot was contaminated with 

elements other than carbon and oxygen. The soot bulk inorganic contaminants 

could have originated from the fuel, lubricant, metallurgy of the engine and fuel 

system, atmosphere and sample contamination resulting from the collection 

method or sample handling procedure. These latter two sources proved to be an 

issue in the work reported herein and the results presented in Table 5.3 and 

Table 5.4 represent ICP-MS results that have been corrected for specific 

inorganic elements that could be isolated to known foreign contamination of the 

samples. The reader is advised to refer to Appendix 8 for the details of the ICP-

MS data corrections performed after reading Section 5.4 in entirety to help 

understand why result correction was required and the corrections that have 

been made. In the proceeding discussion, reference is made to Appendix 8 

where it is considered appropriate that the reader consider the corrections 

applied to the ICP-MS data. 

Considering first the total weight of inorganics for each soot sample from 

Table 5.3, it is clear that there was general differentiation in the soot sample 

inorganics concentration between all three fuel soots and this is illustrated in 

Figure 5.1. 

 

Figure 5.1: 19.5:1 Exhaust Manifold Bulk Total % Weight Inorganics (% weight) (ICP-MS, 

Corrected) 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 44.865 1.622 18.378 1.081 6.486 0.000 8.649 0.541 0.541 17.838 0.000 0.000 100.000

19.5:1 CT, PC9 17.568 0.450 9.685 0.450 1.351 0.000 0.450 63.514 0.225 6.306 0.000 0.000 100.000

19.5:1 CT, B100 37.738 2.044 23.297 0.681 1.362 11.308 6.948 0.000 2.316 14.305 0.000 0.000 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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Comparison between the two mineral diesel fuels total inorganics in Figure 

5.1 shows that the PC9 soot had an appreciably larger concentration of 

inorganics at the exhaust manifold than was the case for the EN590 soot. The 

concentration of inorganics in the B100 soot was greater still. To understand 

what was driving these differences, it is first necessary to consider the individual 

element contributions to the soot inorganics. The individual element wt % data 

from Table 5.3 is presented in Figure 5.2 and this reveals immediately that the 

increase in total inorganic contaminate of the mineral PC9 fuel soot relative to 

that of the mineral EN590 fuel soot was due to the presence of significant sulphur 

in the PC9 soot. The source of the PC9 soot sulphur was clearly the PC9 fuel 

itself as the concentration of sulphur in the fuel was 497 ppm, a factor of 10 

greater than for the EN590 and B100 fuels, Appendix 1 (Table A1.1). 

 

Figure 5.2: 19.5:1 Exhaust Manifold Bulk Inorganic Contaminants (% weight) (ICP-MS, 

Corrected) 

Looking across all metals for the results reported in Table 5.3 and depicted in 

Figure 5.2, it is clear that there were three principal metals that constituted the 

bulk of the metal based inorganic content in all the 19.5:1 exhaust manifold soot 

samples and these were (Ca, Fe, Zn). Calcium was found both in the fuel, 

Appendix 1 (Table A1.1), and the lubricant, Appendix 2 (Table A2.1), and was 

therefore likely to have been contributed to by both sources. The Iron likely 

originated from both the engine and to a smaller extent the sampling system. For 

the two mineral diesel fuels, the percentage weight contribution of these metals 

was roughly equivalent but was found to be substantially higher for the B100 soot 

sample. Indeed, Referral to Table 5.3 and Figure 5.2 reveals that the increased 
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level of biodiesel soot contamination was observed across all the principle 

inorganic elements (Ca, Cu, Fe, Mg, Na, P, Si, Zn). 

As the overall concentration of inorganics across the three fuel soot samples 

was so different, the analysis of individual elemental contributions as wt % 

(Figure 5.2) of the sample was limiting and even slightly misleading. It is far more 

useful to consider the elemental contributions to inorganics as a percentage of 

the total inorganics for each sample and this is the data from Table 5.4 which is 

presented in Figure 5.3. The most notable observation from this figure is how 

significant sulphur was in respect to the contribution to the PC9 soot total 

inorganics, constituting some 63.5%. Figure 5.3 illustrates that this was a singular 

isolated result for the three fuel soots with no other single element contributing so 

uniquely. 

 

Figure 5.3: 19.5:1 Exhaust Manifold Bulk Inorganic Contaminants (% wt/total % wt) 

(ICP-MS, Corrected) 

Ignoring the unique PC9 sulphur concentration, Figure 5.3 depicts that the 

most significant inorganics for the three fuel soot samples were (Ca, Fe, Zn) in 

order of their contribution to the total sample inorganics and as outlined earlier 

these had a combination sources including the fuel, lubricant and engine 

metallurgy. The next most prominent inorganics were (Na, P, Mn) but the 

contributions these elements made to the total soot inorganics were sensitive to 

the fuel indicating that these inorganics primarily derived from the fuels 

investigated. Finally, there was a consistent low level contamination from the 

three elements (Cu, Mg, Si) for all three soots with the concentration in the PC9 

soot lower for each element due to the far larger contribution of sulphur in this 

soot. As these three elements were common to all three soots and at a low 
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concentration, it is postulated that they derived mostly from the engine and fuel 

system metallurgy with some further addition from the fuels depending upon the 

concentration in the fuels. The available fuel compositional information, Appendix 

1 (Table A1.1), was taken from fuel sample analysis results and does not provide 

sufficient information to uniquely attribute each low level soot inorganics 

contaminate so this is not done herein. 

Importantly, although not specific to the soot inorganics discussion, Figure 5.3 

confirms that the ceramic thimble material which was alumina oxide (Al2O3) 

(Section 3.5.1.1) showed no evidence of having contaminated the soot bulk 

element analysis as there was no aluminium detected in the exhaust manifold 

ceramic thimble samples. This was an important result as contamination by 

thimble material was an issue encountered previously by Lubrizol and it was 

found in this work that such an issue had been successfully avoided through a 

detailed validation of the soot collection method and careful handling of the brittle 

ceramic thimbles. Additionally, the selection of thimble used in this work was also 

important Section 3.5.1.1. 

It is clearly evident from Figure 5.3 that the unique contribution of sulphur to 

the inorganics to the PC9 soot resulted in the other contaminates, particularly 

(Ca, Fe, Zn), appearing to mirror the observations of the EN590 and B100 soot 

but with a lower concentration in each case. To address this finding, it is 

therefore appropriate to repeat the wt %/total wt % calculation of Table 5.4 but to 

first negate sulphur for all three soots so as to enable the evaluation of whether 

the other bulk inorganics elements of the PC9 soot essentially followed the 

pattern of concentration of those elements for EN590 and B100 soots. The result 

of this calculation is presented in Table 5.5 and the data from which is illustrated 

in Figure 5.4. 

Table 5.5: 19.5:1 Exhaust Manifold Soot Bulk Elemental Composition with Sulphur 

Contribution Negated (% wt/total % wt) (ICP-MS, Corrected)
 

 

Figure 5.4 shows clearly that the individual element contributions (Ca, Cu, Fe, 

Mg, Zn) to the total soot sample inorganics were actually very similar across the 

three fuel soots when PC9 sulphur was neglected. Indeed, caparison with Figure 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 45.109 1.630 18.478 1.087 6.522 0.000 8.696 0.000 0.543 17.935 0.000 0.000 100.000

19.5:1 CT, PC9 48.148 1.235 26.543 1.235 3.704 0.000 1.235 0.000 0.617 17.284 0.000 0.000 100.000

19.5:1 CT, B100 37.738 2.044 23.297 0.681 1.362 11.308 6.948 0.000 2.316 14.305 0.000 0.000 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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5.3 reveals just how significantly the sulphur content of the PC9 fuel biased the 

overall inorganic signature of the PC9 soot. 

 

Figure 5.4: 19.5:1 Exhaust Manifold Bulk Inorganic Contaminants with Sulphur 

Contribution Negated (% wt/total % wt) (ICP-MS, Corrected) 

Figure 5.4 also confirms that the elements (Mn, Na, P, Si) had quite different 

concentrations across the three soots, thereby strengthening the earlier 

postulation that these elements largely derived from the inorganic content of the 

fuels experimentally investigated. 

There was a notable concentration of sodium in the B100 soot, Figure 5.4, 

and since one of the catalysts commonly used in the transesterification process 

for biodiesel is NaOH (sodium hydroxide), it is postulated that a residue of this 

compound remained in the B100 fuel and thereby sodium became entrained 

within the soot which was collected. As an example of the plausibility of this, 

Gangwar et al. [266] reported a similar finding when investigating the soot 

produced from a vegetable oil. Appendix 1 (Table A1.1) confirms that for this 

19.5:1 compression soot sample, the B100 fuel investigated was reported to 

have 0.5 ppm sodium. (Note: the reader is advised to refer to Appendix 8, 

Section A8.2.1 to see that sodium was also originally found in the EN590 and 

PC9 soot samples discussed in this section but the concentration was so 

significant in both cases that the sodium was attributed to foreign contamination 

of the samples and was thus negated when correcting the results to prepare 

them for discussed in this section. Since the B100 sodium concentration was so 

much lower and attributable to the fuel, it was not corrected for and remains 

unchanged as discussed herein.) 
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Phosphorus was present in the fuels but at a very low concentration and was 

only reported for the biodiesel fuel where it was measured to be (<0.5 ppm), 

Appendix 1 (Table A1.1). Phosphorus was detected primarily in the EN590 and 

B100 soot samples, being higher in wt % concentration in the latter, Figure 5.2. 

However, referral to Figure 5.4 reveals that in respect to the concentration of 

phosphorous to the total inorganics in each sample; the phosphorous 

concentration in the EN590 and B100 soots was actually similar. The 

concentration of phosphorus was far lower in the PC9 soot sample by 

comparison even with sulphur negated, Figure 5.4. Indeed, this relatively low 

PC9 phosphorus concentration was one of the main distinctions between the 

three soots inorganics once fuel mass flow, lubricant consumption and exhaust 

soot concentration were accounted for. 

In addition to the fuel, phosphorus can also originate from the lubricant, 

Appendix 2 (Table A2.1), as it is a component of the Zinc Dithiophosphate 

(ZDDP) compound used as an anti-wear additive. The cause for the much lower 

concentration in the PC9 soot could therefore simply be attributed to a lower 

lubricant consumption rate in this experiment. However, Table 4.10 Part A shows 

that the lubricant consumption rate for the PC9 experiment was the highest of the 

three 19.5:1 compression ratio experiments. Thus, the more likely cause for the 

lower concentration would be a relatively low concentration in the fuel but this is 

unfortunately unknown, Appendix 1 (Table A1.1). The underlying explanation for 

the lower concentration of phosphorus in the PC9 soot is therefore an important 

distinction in the soot samples. 

It is postulated that the concentration of phosphorus is related in some way to 

the very high sulphur concentration in the PC9 soot. This derives from the work 

of Covitch et al. [138] and Ripple et al. [165] of Lubrizol (as a reference they 

utilised the ceramic thimble soot collection method which is applied in this work). 

They reported that fuel sulphur influenced significantly the surface acid 

functionality of soot and that this in turn resulted in large changes in the fraction 

of soot absorbed into the lubricant. This was because the higher concentration of 

sulphur acted to increase soot surface acidity leading to the soot being more 

oleophilic. Thus, it is postulated that the high concentration of sulphur in the PC9 

soot could have acted to subtly change the interaction with the lubricant 

molecules (i.e. the physiochemical process) and this then limited the phosphorus 

which became entrained in the PC9 soot collected form the exhaust manifold. 
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Since lubricant-soot interaction is a potential source of inorganics for the soot 

which forms in the cylinder, it is sensible to consider the lubricant inorganic 

concentrations reported in Appendix 2 (Table A2.1) and compare against the 

change in inorganics presented earlier in Figure 5.4. This comparison is 

presented in Figure 5.5. 

 

Figure 5.5: 19.5:1 Exhaust Manifold Bulk Inorganic Contaminants with Sulphur 

Contribution Negated and Including Lubricant Element Concentration (% wt/total % wt) 

(ICP-MS, Corrected) 

Figure 5.5 reveals that three of the main lubricant inorganic elements are all 

present in the three fuel soots with the correlation between (Ca, Zn) being 

particularly strong. As detailed earlier, the phosphorous correlation is not 

consistent for all fuel soots and is an indication of the preferential or non-

preferential entrainment of phosphorous. The most significant difference is the 

sulphur concentration; obviously in the case of the EN590 and B100 soots there 

was negligible sulphur present in the samples which contrasted with the >40% 

concentration in the lubricant (the PC9 fuel sulphur concentration was very high 

and makes it difficult to separate fuel and lubricant sulphur for this soot so it is 

ignored here). It thus appears that the similar and yet gross differences between 

the concentrations of (Ca, P, S, Zn) in the soot and lubricant indicated that the 

entrainment of lubricant inorganics into the soot is a somewhat complex process. 

The specific cause for the apparently low entrainment of lubricant sulphur into 

the soots could not be attributed with the information available but it is postulated 

that the findings of Covitch et al. [138] and Ripple et al. [165] as highlighted 

previously could be contributing to the mechanism behind this. 
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Note: the reader is encouraged to refer to Appendix 8 (Section A8.2.3) at this 

point as sulphur was detected in the exhaust manifold B100 soot at 19.5:1. 

However, the concentration was so significant that it was attributed to foreign 

contamination of the sample and the result was negated to produce the corrected 

ICP-MS data discussed herein. 

Figure 5.5 illustrates that the concentration of iron ranged from 18-27% and it 

is believed that the iron originated principally from the engine metallurgy. Thus, 

two points can be developed from this. Firstly, the contribution of iron from the 

engine metallurgy to total soot inorganics at the exhaust manifold was important. 

Secondly, between the three fuel soots examined, iron appeared to contribute 

roughly equally to each suggesting that in-cylinder, the processes governing the 

entrainment of metals from the engine metallurgy into the soot were insensitive to 

the fuel used for the conditions investigated. 

The negating of PC9 sulphur discussed earlier assisted with the assessment 

of the individual element contributions to the soot inorganics and it is appropriate 

to reassess the summation of total wt % of inorganics with sulphur negated to 

understand the non-sulphur inorganics total concentration for the three soots, this 

result is presented in Figure 5.6. 

 

Figure 5.6: 19.5:1 Exhaust Manifold Bulk Total % Weight Inorganics with Sulphur 

Negated (% weight) (ICP-MS, Corrected) 

Figure 5.6 compared with Figure 5.1, clearly shows that the negating of 

sulphur results in the contribution of total inorganics for the EN590 and PC9 

soots appearing very similar. However, it is observed that in the case of the B100 

soot, the wt % of inorganics was greater by a factor of 4.2 than observed for the 
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two mineral soots and it is postulated that this is because of the relationship of 

total inorganics to fuel rate, engine metallurgy and lubricant consumption rate. 

Each of these is postulated to contribute to the overall inorganic content of the 

soot with the exhaust soot concentration then determining the ratio of inorganics 

to the carbonaceous soot part. 

The greater concentration of inorganics in the B100 soot in comparison to the 

mineral soots, as indicated in Figure 5.6, is potentially important in regard to soot 

porosity and oxidation potential. Boehm [118] states that the presence of foreign 

elements in the surface of the soot most likely increases the concentration of 

surface irregularities in the crystalline structure of the soot, with such irregularities 

having the potential to increase soot porosity. Later in Section 5.5.2 it will be 

shown that the B100 soot was observed to have quite distinct morphological 

characteristics and these could therefore certainly have been influenced by the 

somewhat greater extent of inorganic contamination of the B100 soot. 

It is postulated in this work that the contribution of the fuel and lubricant to the 

concentration of inorganics in the soot should be relative to the respective 

differences in fuel consumption and lubricant consumption rates between 

experiments. For example, the density of the B100 fuel was approximately 6% 

greater than the densities of the two mineral diesel fuels and thus from Table 

4.10 Part A the mass flow rate for the B100 rated power experiments was on 

average 7.6% greater. Thus, during the B100 combustion the simplifying 

assumption is that there was ~7.6% more fuel derived inorganics present in the 

cylinder during each cycle relative to the experiments with the other two fuels (the 

individual relative concentrations of the twelve ICP-MS inorganics in each fuel 

would have had an influence on this but is not accounted for due to insufficient 

information on the fuel inorganic composition). In respect to the lubricant 

consumption also reported in Table 4.10 Part A; the simplifying assumption is 

that the higher the lubricant consumption, the greater the concentration of total 

inorganics in the soot. The engine was refilled with an identical mass of fresh 

lubricant from the same batch for each experiment (Section 3.1.5.3) to minimise 

variances between the experiments and the implementation of this procedure 

strengths the above assumption. 

Table 4.10 Part A reports that there was a very significant difference in AVL 

415 (mg/m3) exhaust soot concentration (Refer to Section 3.2.2.5 for details 

concerning the exhaust smoke measurement) and it is assumed in the work 

reported herein that that since the AVL 415 provides a measure of the 
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concentration of just the carbonaceous soot concentration [194]; then the 

concentration of ICP-MS total inorganics should scale in proportion to the 

exhaust soot concentration reported by the AVL 415 since the carbonaceous 

fraction of soot is typically the most significant at 50-80% or more of the bulk, 

Section 2.4.1.2. 

Thus, with these combined assumptions, a process was undertaken to scale 

the ICP-MS wt % concentration data presented in Table 5.3 to account for the 

relative differences in fuel rate, exhaust soot concentration and lubricant 

consumption. The first step in this process is to use the normalised Fuel Soot 

Factor (FSF) defined in Section 4.3.2 to scale the ICP-MS data for each soot 

sample to account for the differences in fuel mass flow rate and exhaust soot 

concentration and to this end the normalised FSF for the 19.5:1 compression 

ratio experiments detailed in Table 4.14 has been applied to the results 

presented earlier in Figure 5.6 to produce the result in Figure 5.7. 

 

Figure 5.7: 19.5:1 Exhaust Manifold Bulk Total % Weight Inorganics with Sulphur 

Negated x normalised FSF (% weight) (ICP-MS, Corrected) 

Before the result in Figure 5.7 is considered in detail, it is important to reflect 

on two points regarding the data analysis methodology from which the result 

derives. Firstly, since the AVL 415 smoke meter sample probe was not located in 

close proximity to the soot sample positions used in this work (Section 3.2.2.5); 

the simple approach of multiplying the bulk inorganics by the FSF factor was 

used rather than a more precise quantitative approach. A more precise approach 

would have required the measurement of carbonaceous soot fraction at the point 

where the soot was sampled from the exhaust to remove any effects from the 
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loss of carbonaceous soot fraction as the soots evolved in the exhaust (Chapter 

7). However, this was not technically feasible in this work. 

Secondly, the same normalised FSF scaling value has been applied to each 

element in the individual soot sample ICP-MS results as there was insufficient 

information and knowledge concerning the contribution of individual elements 

from the fuel and the lubricant to the soot inorganics to scale elements uniquely. 

i.e. if the normalised FSF was 0.5, then the wt % each element in a given soot 

sample was multiplied by 0.5 to adjust the overall inorganics to account for the 

FSF reported scaling between experiments. 

Figure 5.7 illustrates that when the % wt of total inorganics is scaled by the 

normalised FSF, the accounting of exhaust soot concentration and fuel flow rate 

results in scaled total wt % of inorganics for the two mineral fuel soots being 

comparatively close. However, it is also observed that the B100 total inorganics 

concentration was actually lower than for the two mineral fuel soot and therefore 

opposite to the indication given by the original ICP-MS results, Figure 5.6. This 

significant shift for the B100 soot was largely a consequence of the ~80% lower 

exhaust soot carbonaceous fraction for the B100 fuel compared to the two 

mineral diesel fuels. 

The alignment between the scaled ICP-MS results for the two mineral diesel 

soots in Figure 5.7 implies that with PC9 sulphur neglected, the two mineral fuels 

produced soot with roughly equal concentrations of non-sulphur inorganics at the 

same engine operating condition. Thus, for both fuels the processes that result in 

the entrainment of inorganics into the soot must have been quite similar. For the 

B100 soot, by contrast, it would appear that the processes regulating the 

entrainment of inorganics were somewhat distinct from those occurring for to the 

mineral soots. 

However, the result presented in Figure 5.7 does not account for the 

aforementioned assumed contribution from the lubricant and referral to Table 

4.10 Part A shows that rather interestingly the lubricant consumption rate in the 

19.5:1 B100 soot collection experiment was somewhat lower than for the two 

equivalent mineral fuel experiments and this is illustrated in Figure 5.8. 
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Figure 5.8: Lubricant Consumption Rate for 19.5:1 Rated Engine Power Exhaust Soot 

Collection Experiments 

Multiplication of the FSF scaled wt % data from Figure 5.7 with the respective 

lubricant consumption factor from Table 5.6 leads to the result presented in 

Figure 5.9. 

Table 5.6: Normalised Lubricant Consumption Factors for the Rated Engine Power 

Exhaust Soot Collection Experiments 

 

The result derived and then presented in Figure 5.9 is very useful as it shows 

that at the exhaust manifold in the experiments reported in this work; the wt % 

inorganics were found to be roughly proportional to the fuel consumption rate, the 

oil consumption rate and the concentration of carbonaceous soot in the exhaust 

gas. Thus, this result supports the aforementioned postulation for this 

relationship. From this it is therefore possible to conclude that for the rated 

engine power experiments at 19.5:1 compression, the effective contribution of 

inorganics (with PC9 sulphur neglected) to the bulk soot composition was close 

across the three fuels investigated once known uncontrolled contributing factors 

had been accounted for. 
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Figure 5.9: 19.5:1 Exhaust Manifold Bulk Total % Weight Inorganics with Sulphur 

Negated x normalised FSF x Lubricant Consumption Factor (% weight) (ICP-MS, 

Corrected) 

Thus, it can be asserted that from the results and analysis presented herein 

that the bulk inorganic content of diesel engine soot is sensitive to the 

concentration of the same inorganics in the fuel and lubricant, thus an elevation 

in an element in the fuel or lubricant will lead to an elevation of the concentration 

of that element in the soot bulk (i.e. PC9 fuel sulphur). Therefore, this work has 

shown that a large change in the concentration of a single element in the fuel or 

lubricant (i.e. sulphur) can also markedly change the bulk chemistry of the soot 

and thus possibly influence the oxidation and surface chemistry of the soot. 

5.5 Soot Morphology 

Presented in Table 5.7 are the complete morphological results for the soot 

collected at 16.5:1 at the exhaust manifold for the three fuels investigated. For 

reference: 1 Å = 0.1 nm, thus 256.73 Å = 25.673 nm i.e. mesopores, Section 

2.4.2.2. 

Table 5.7: 16.5:1 Exhaust Manifold Soot Morphological Characteristics 

 

 

BJH Adsorption N2 Pycnometry Primary Particle Diameter

Description Suface area (SBET) (m
2/g) Error Average pore diameter (Å) Density (ρ) (g/cm3) Error Dpp = 6/(ρ SBET) (nm)

16.5:1 CT, EN590 262.4843 1.3344 116.156 1.9902 0.0117 11.486

16.5:1 CT, PC9 335.8769 1.9077 140.194 2.0011 0.018 8.927

16.5:1 CT, B100 35.6094 0.1757 256.73 2.8907 0.0243 58.289

BET Method
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5.5.1 Surface Area 

The surface area data in Table 5.7 details how the mineral diesel fuel soots 

were broadly similar with the surface area of the biodiesel fuel soot being 

distinctly lower. The range of the surface area measurements was large because 

of the very low relative surface area measured for the B100 soot. This distinction 

in the physical attributes of the B100 soot extended across all the soot 

morphological parameters considered. Proposing an explanation for this 

observation therefore requires the other morphological results to be considered. 

5.5.2 Porosity 

Similar to the surface area measurements, the porosity measurements found 

similarity between the mineral diesel fuel soots but the B100 soot had an average 

pore diameter roughly double that of the mineral soots. 

This B100 porosity distinction combined with the very low surface area could 

simply be explained by the B100 soot having had significant levels of absorbed 

HCs which intuitively would act to increase the size of the individual soots and 

possibly encourage larger agglomerate structures, each of which would act to 

reduce the surface area and porosity - thus neatly fitting the general B100 soot 

morphology observations. The plausibility of this hypothesis is supported by the 

very significant levels of HC emissions observed for the B100 fuel combustion 

which were reported in Table 4.10 Part C. 

One issue with this hypothesis was that the engine exhaust gas temperatures 

were in excess of 500°C, Table 4.10 Part B, and thus it could be argued that the 

adsorption of SOF onto the soot surface would be unlikely as any SOF would 

remain in the vapour phase. Though this was the case, when the soot was 

collected at the exhaust manifold, the temperature in the sample line from the 

exhaust manifold reduced to typically 150°C, Table 4.10 Part B, at the ceramic 

thimble so the condensation of HCs onto soot either prior to or in the ceramic 

thimble was highly likely. Direct supporting evidence for the actual adsorption of 

greater SOF onto B100 soot comes from the observation of a greater proportion 

of lighter compounds released in the low temperature segment of the 

thermogravimetrical analysis of the B100 soot compared to the two mineral fuel 

derived soots (refer to Section 5.8). 

So it is probable that the B100 soot therefore had greater adsorbed SOF but 

the sample preparation for the N2 adsorption tests should have removed any 
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condensed molecules. Due to there being no data to verify if all SOF was 

removed, there remains a possibility SOF could have influenced the B100 soot 

N2 based morphology examinations. Therefore, two scenarios are proposed that 

must be considered when interpreting the soot morphological results herein: 

Scenario 1: All adsorbed SOF was successfully removed from the soot 

samples prior to the N2 adsorption measurements through sample pre-

treatment and thus the findings reported herein represent the true dry soot 

morphological characteristics and can therefore be used to infer the structural 

differentiation between the soots. 

Scenario 2: The measured adsorbed SOF actually persisted on the surface 

of the soot samples and influenced the N2 adsorption measurements, 

particularly in the case of the B100 soot samples, therefore causing some of 

the apparent fundamental differences in the soot morphology results. 

Ascribing the distinct B100 soot morphological characteristics to SOF 

adsorption alone as per scenario 2, though a possibility, it is considered to be 

unlikely given the findings from literature which describe a fundamentally different 

morphology for B100 soot e.g. Song eta al. [16]. Additionally, this adsorbed SOF 

assignation fails to align with the physiochemical findings reported in later 

chapters which collectively point to the B100 soot being distinct from the mineral 

fuel soots in respect to surface and bulk compositions (e.g. Section 7.5). The 

B100 soots are therefore considered to have been genuinely morphologically 

district as per scenario 1. Explanations for the morphological findings assuming 

dry soot are therefore discussed in the following section when the differences in 

soot density are also included. 

As a consequence of the concerns raised about the risk of impact on results 

from adsorbed SOF, it is recommended that in future work where the N2 

adsorption techniques are used; the preparation methodology of exhaust soot 

samples also needs to be included as an additional factor to ensure isolation of 

any possible confounding between adsorbed SOF (which is almost certainly 

going to be present on engine exhaust soot) and N2 adsorption based 

morphological results. 

5.5.3 Density 

Measurements for the soot density reported in Table 5.7 revealed that the 

density of the two mineral diesel soots were very close, differing by 0.0109 g/cm3 
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or 0.6% of the EN590 soot density. This result is at the very upper end of the 1.7-

1.8 g/cm3 range found in Section 2.4.2.3 to be frequently reported in literature for 

soot. The B100 soot was observed to have an even higher density which was 

indicative of either a somewhat different soot structure and or bulk elemental 

content. 

Considering first the soot structure; the substantially different surface area 

and porosity of the B100 soots when considered using Equation 3.6 (Section 

3.6.4.2) (pore volume is proportional to BET surface area and average pore 

diameter); point to the B100 soots as having a much smaller pore volume relative 

to the two mineral fuel soots. This could be indicative of the B100 soot having 

less open voids accessible from the surface due to much higher soot oxidation 

and also potentially an overall lower incidence of trapped internal voids. A 

reduced number of trapped internal voids would likely lead to a higher soot 

primary particle density. 

This postulation is intriguing when compared to findings in literature from 

Song et al. [16] which describe B100 soot as having a hollowed out internal core 

with an intact outer shell. Such a characteristic should in principle lead to a high 

primary particle density if it is assumed that the oxidation of the soot had acted to 

reduce trapped internal voids through hollowing of the soot core (assuming that 

the N2 molecules used in the N2 adsorption measurement could permeate 

through the outer shell into the hollowed core). 

Considering the impact of the bulk composition of the soot, it was shown in 

Section 5.4 that the distribution of inorganic elements was quite similar to the 

EN590 soot (Figure 5.3) though the total concentration in the soot of all reported 

inorganics was somewhat greater for the B100 soot, Figure 5.1. Consequently, it 

is appropriate to consider in greater detail the potential influence of the bulk 

inorganics on soot density. Table 5.8 presents the elemental density for each of 

the twelve ICP-MS reported elements and additionally the elemental density for 

carbon and oxygen. 

The ICP-MS element densities in Table 5.8 are left aligned for elements with 

densities below that of elemental carbon and right aligned for element densities 

above. Comparison of Table 5.8 with Figure 5.2 reveals that for the elements 

(Ca, Fe, Zn), which were the highest concentration elements, calcium has a 

slightly lower density than carbon whilst iron and zinc are somewhat higher in 

density. Thus, depending upon the distribution of inorganic contaminates and the 
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total contribution to the soot mass, in principle the bulk inorganics would 

influence the soot density. Since Table 5.3 shows that the corrected ICP-MS 

results report a total mass of inorganics from just 0.185 to 0.734 wt % for the 

three fuel soots, then the potential contribution of inorganics to soot density is 

actually small. This would appear to be reflected in the fact that Table 5.7 shows 

a range of soot density from 1.9902 to 2.8907 g/cm3 which has a median of 2.44 

g/cm3 and Table 5.8 which reveals elemental carbon has a density of 2.267 

g/cm3. i.e. the measured soot densities were relatively close to that of pure 

carbon. 

Table 5.8: Elemental Density for ICP-MS Reported Soot Inorganics
9
 

 

However, the lowest measured density was for the EN590 soot which 

correlated to the lowest concentration of inorganics and the highest density soot 

was the B100 soot which had the greatest concentration of inorganics. Together 

therefore, the ICP-MS inorganics and N2 pycnometry derived density appear to 

provide broadly supportive evidence that the inorganic content of soot is an 

important forcing factor behind soot density though there is insufficient 

information to quantify the effect precisely. 

In the absence of any evidence that residual SOF was present on the surface 

of the soots when the N2 adsorption measurements were performed; it is more 

likely that the higher B100 soot density derived from both soot bulk inorganic 

differences and actual soot structural differences. It is postulated that the bulk 

inorganic differences don’t explain all variation in density due to the small 

                                                
9
 Measured at standard temperature and pressure (100.00 kPa and 0°C). 

Element
Density 

(g/cm^3)

Calcium 1.54

Copper 8.933

Iron 7.874

Magnesium 1.738

Manganese 7.44

Sodium 0.971

Phosphorus 1.82

Sulphur 2.067

Silicon 2.3296

Zinc 7.134

Aluminium 2.698

Cadmium 8.69

Carbon 2.267

Oxygen 0.001429

Hydrogen 0.00008988
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contribution of inorganics to total soot sample weight and thus soot structure and 

hence voids are very important. 

To recap; the review of literature revealed that in the case of biodiesel soot 

oxidation, observations have been reported which show via TEM that biodiesel 

soot oxidises in some situations completely differently to mineral soot. For 

example, Song et al [16] (Section 2.4.2.2) described how biodiesel soot appeared 

to oxidise - not from the loss of graphene planes from the surface but from a 

hollowing of the soot core. This was attributed partly to the more amorphous core 

structure of the B100 soot (compared to soots produced from Fischer-Tropsch 

fuel) which enabled oxidation conceivably via oxygen present in the soot core 

which originated from the fuel. 

Thus, from the reported morphological data, several possibilities in terms of 

models to explain the soot morphological differentiation can be proposed, two of 

the more likely include: 

B100 Soot Model 1: The B100 soots had undergone far more oxidation than 

the mineral soots when sampled due to an inherent higher rate of oxidation 

for the B100 soots (supported by findings presented in Chapter 7) and that 

this oxidation had opened up the small surface pores and internal voids in the 

soot thus creating a soot similar to that described by Song et al. [16] with 

internal voids that were connected to the surface allowing the N2 molecules 

to enter. Thus, the B100 soot had very few trapped voids thereby giving rise 

to the relatively high density measurement. Since the pores were opened up, 

the total pore volume and soot surface area would be low as was observed. 

However, the soot reported in Table 5.7 was sampled from the exhaust 

manifold so such extensive oxidation and physical transformation could be 

argued against as the soot was ‘young’. 

B100 Soot Model 2: Alternatively, the B100 soot primary particles could have 

had a far more regular graphene plane internal arrangement with fewer 

isolated internal voids than was the case for the mineral fuel derived soot. 

This was then combined with a low surface porosity which also resulted from 

the highly regular arrangement of the graphene planes. This would in 

principle give rise to soots with small surface area, low pore volume and 

higher density as observed but if this is how the B100 soots were structured 

physically, then it is opposite to the description derived from TEM 

micrographs by Song et al. [16]. 
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Clearly, these are two almost opposite models for the B100 soot structure 

which attempt to explain the observed results and each are not ideal. However, a 

quite different explanation can also be devised in which the B100 soot at the 

exhaust manifold can be assumed to have been highly agglomerated due to the 

earlier proposed high SOF fraction acting to bind the primary soot particles 

together. Several sources in literature report that biodiesel fuels produce a higher 

SOF fraction compared to conventional mineral diesel fuels [266, 296, 306] and 

Song et al. [17] suggest that higher SOF may result in a much tighter aggregate 

soot structure which would also act to reduce the isotherm-BET determined 

surface area, so this postulation is also feasible. 

For example, when the soots were examined using the N2 adsorption 

techniques, the highly agglomerated primary particles presented a low surface 

area and porosity as significant areas of the primary particles were touching and 

could not be exposed to the N2 gas. In this way, tightly packed primary particles 

would have acted like a much larger singular particle which may explain why the 

estimated particle size was so large, Table 5.7. Then as these B100 soots 

oxidised in the exhaust and passed through the oxidation catalyst the SOF was 

removed and the tight aggregate structure broke apart increasing the exposed 

surface area and then the physical oxidation processes of soot model one 

proceeded to open up the surface pores thus reducing the pore volume. 

One issue with this proposal is the very high exhaust temperatures at the 

confluence point of the exhaust manifold where the soot samples were sampled 

from. Table 4.10 Part B details how the exhaust temperatures were in excess of 

530°C during the rated engine condition soot collection experiments and thus at 

such a temperature the presence of absorbed volatiles would have been 

negligible if not non-existent as shown by Ishiguro et al. [131]. However it is 

possible that as the soot was transported from the exhaust manifold down the 

sample line to the ceramic thimble, volatiles were able to condense and then 

adsorb onto the soot surface. This is possible because the average ceramic 

thimble temperature when the soot was collected was 153.5°C for these 

experiments; ‘CT Temp’ in Table 4.10 Part B. 

Thus, although the available morphological descriptions are very informative, 

they allow for quite different soot primary particle structure models and alternative 

non-structural explanations for the morphological distinctions between the soots. 

It can be concluded therefore that there is insufficient information to be 

completely confident of the correct model etc. to describe the B100 soot structure 
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observed in this work. More information is therefore required to investigate the 

morphological findings and possibly the most applicable method in this regard 

would be the use of TEM which would in principle provide more information on 

the internal graphene plane arrangement (i.e. core soot structure) in addition to 

giving a direct measure of soot primary particle size [16, 17]. 

5.5.4 Primary Particle Diameter 

Primary particle diameter was calculated as described in Section 3.6.4.4 from 

the measured soot surface area and density and unsurprisingly the two mineral 

diesel soots were determined to have very similar primary particle diameters with 

the B100 soot primary particle diameter being estimated as much larger. The 

estimated diameters for the mineral diesel soots were smaller than the diameters 

reported in literature (15-30 nm) from direct measurement, as detailed in Section 

2.4.2.4, and this was evidence of the limitations of the simplified assumptions of 

the calculation method which assumed a non-porous spherical particle. With both 

large surface areas and small average pore diameters, these soots almost 

certainly had significant porosity which caused the underestimation. Furthermore, 

the fact that the measured soot density aligned to the reported soot density in 

literature (Section 2.4.2.3), adds weight to this finding. 

The large 58.3 nm estimation for the B100 soots (large for the exhaust 

manifold, Section 2.4.2.4) were more difficult to judge in terms of relevancy as 

the surface area was much smaller due most likely to the much lower observed 

soot porosity. The primary particle diameter estimates have therefore proven to 

be less reliable than hoped, pointing to the need to combine the estimate in this 

work with a direct measurement method such as TEM to achieve a fuller picture. 

5.6 Soot Surface Acid Functionality 

The results from the surface acidic functionality measurements are presented 

in Table 5.9 and are defined for both the total and carboxylic acid concentrations. 

The surface acidity could not be determined for the B100 fuel because the 

significant -80% reduction (Table 4.10 Part A) in exhaust soot concentration 

greatly reduced the total soot mass that could be collected for this fuel (also refer 

to Section 3.5.1.2). 
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Table 5.9: 19.5:1 Exhaust Manifold Soot Surface Acid Functionality (Boehm titration) 

 

Table 5.9 shows that the surface acidity of the PC9 soot was more 

concentrated for both carboxylic and total acidity. It can also be observed that the 

ratios of carboxylic to total acidity were 29.1% for EN590 and 64.4% for the PC9 

fuel soot. The greater ratio of carboxylic acidity for PC9 soot indicated a probable 

link with the higher surface sulphur and oxygen concentration for the PC9 soot 

since both were somewhat higher for the PC9 soot relative to EN590, Table 5.2. 

This sulphur observation is supportive of the findings from literature such as 

Kittelson et al. [24] which state that the surface acid concentration is proportional 

to the fuel sulphur. The agreement with the higher oxygen content is supported 

by the findings of Studebaker [163] which describes a proportional relationship 

between soot surface oxygen concentration and surface acidity. Generally 

speaking, the data presented in Table 5.9 is suggestive of a link between the 

proportion of carboxylic component and the total surface acidity. This link has 

also been observed for other experiments reported later in Chapter 6 and 

Chapter 8 and is discussed in far more detail in Chapter 9 which considers all the 

soot surface acidity findings of this work in greater detail. 

It is worth considering that the results reported in Table 5.9 are for soots 

sampled from the exhaust manifold and with the engine operating at maximum 

power with low AFR, Table 4.10 Part A. Since the preceding observations 

indicate that the surface acidity is strongly coupled to surface oxygen 

concentration, it would be assumed that the low AFR combined with the soots 

being relatively young would have limited the potential chemisorption of oxygen 

such that the surface acid concentration for these soots would be low. However, 

referral to Table 2.8 reveals that the mean concentration observed in literature is 

around 0.89 mmol/g so the soots did not have an especially low acidity as they 

had surface acidity between 0.621-1.163 mmol/g. It is therefore possible that the 

high temperatures and pressures of the engine operating condition encouraged 

large concentrations of NOx (which is reported in Table 4.10 Part C) and it was 

this which reacted with the soot to form the surface functional groups [116]. 

Description

19.5:1 CT, EN590 0.621 0.083 0.181 0.008

19.5:1 CT, PC9 1.163 0.010 0.749 0.001

19.5:1 CT, B100 NA NA NA NA

Boehm Titration

Total surface 

acids (mmol/g)

stdev 

(mmol/g)

Surface carboxylic 

acids (mmol/g)

stdev 

(mmol/g)
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Indeed, it is reported by Boehm that it is the surface oxides that are created at 

high temperatures that tend to be acidic in nature [118]. Therefore it is postulated 

that a combination of processes related to the high combustion temperatures for 

the engine operating condition used to collect these soot samples, resulted in the 

soots having sufficient surface oxygen content (Table 5.2) such as to drive the 

levels of surface acidity observed even though the engine was operating at a 

very low AFR of typically 19:1 to 20:1, Table 4.10 Part A. 

The surface acidity of the soot reported in Table 5.9 was higher than the 

typical acidity Lubrizol had observed for lubricant drain soot (<0.5mmol/g). The 

lubricant from the engine soot collection experiments reported in this work was 

sampled (Section 3.1.5.3) but the concentration of soot in the end-of-test 

samples was too low to permit analysis of the soot suspended in the lubricant. It 

is postulated that the lower surface acidity of the soot suspended in the lubricant 

as indicated by Lubrizol, is likely due to the soot being drawn into the engine 

lubricant (through thermophoretic deposition and turbulent deposition) inside the 

cylinder and consequentially the soot has had less time to oxidise and absorb 

oxygen molecules onto the surface; especially if it becomes entrained in the 

lubricant during combustion thus sealing the soot surface to further reactions. 

These observations therefore indicate that a comparison of soot surface acidity 

between soot from the lubricant and the engine exhaust manifold from the same 

engine test; could be an interesting future study to test the surface O/C ratio and 

surface acidity relation indicated in Table 5.9 and discussed in greater detail in 

Chapter 9. 

5.7 Soot Polycyclic Aromatic Hydrocarbon Profile 

A total of sixteen PAH were investigated in the soot samples and the results 

are presented across Table 5.10 and Table 5.11. 

Table 5.10: 19.5:1 Exhaust Manifold Soot Polycyclic Aromatic Hydrocarbon Profile 

(Naphthalene to Fluoranthene) (GC-MS) 

 

 

 

Description

19.5:1 CT, EN590 2.990 0.297 0.104 0.048 0.022 1.659 0.000 0.045

19.5:1 CT, PC9 0.031 0.005 0.003 0.000 0.002 0.096 0.000 0.010

19.5:1 CT, B100 0.000 0.000 0.000 0.000 0.002 0.010 0.000 0.003

Naphthalene
PAH (µg PAH/g)

1-

methylnapht

halene

2-

methylnaphth

alene

Acenaphthylene 

or biphenylene

Acenaph

thene
Phenanthrene Anthracene Fluoranthene
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Table 5.11: 19.5:1 Exhaust Manifold Soot Polycyclic Aromatic Hydrocarbon Profile 

(Pyrene to Benzo-perylene) (GC-MS) 

 

The PAH results for the soot samples from the exhaust manifold for the 

19.5:1 experiments (Table 5.10 and Table 5.11) proved to be the most valuable 

set of PAH results as they encompassed all three fuels and sufficient PAHs were 

recovered from the soots to enable a comparison of the individual PAH 

concentrations in the soot. The first observation was that when the individual 

PAH concentrations were summed for each fuel, there was a very large range 

across the fuels as illustrated in Figure 5.10. 

 

Figure 5.10: 19.5:1 Exhaust Manifold Soot Total PAH for EN590, PC9 and B100 fuels 

(GC-MS) 

The EN590 total PAH was a factor 32.4 times that of the PC9 soot and the 

PC9 soot PAH was a factor 7.7 times that of B100. Referral to Appendix 1 (Table 

A1.1) shows that the total aromatic content of the EN590 fuel was 19.25 vol % 

and for PC9 fuel it was 32.6 vol %; whilst for the B100 fuel, aromatics were not 

detected which is postulated to be the reason why the B100 PAH concentration 

was so low. Thus, the EN590 and PC9 soot measured PAH concentrations were 

opposite to the relative concentrations of PAH in the original fuels. To summarise 

from Section 2.4.4: PAH are largely concentrated on the surface of soot as they 

condense from the exhaust matter [25]. PAH derive from the original fuel and 

pyrosynthetic reactions during combustion [173, 175, 178] and also the lubricant 

[23, 28, 176, 177]. Thus, there may be several potential explanations for the 

Description

19.5:1 CT, EN590 0.000 0.014 0.006 0.000 0.027 0.000 0.000 0.000 5.212

19.5:1 CT, PC9 0.001 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.161

19.5:1 CT, B100 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.021

Pyrene total
PAH (µg PAH/g) Benz(a)anth

racene
Chrysene

Benzo(b)fluorant

hene

Benzo(k)

fluoranth

ene

Indeno(1,2,3-

cd)pyrene

Dibenz(a,h)a

nthracene

Benzo(g,I,h)

perylene
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observed PAH concentrations for the EN590 and PC9 soots contradicting the 

original PAH concentration in the fuels. 

It is postulated that the somewhat higher concentration of PAH for the EN590 

soot is indicative of a physical process having either limited the pyrolysis of PAH 

for the PC9 fuel during combustion or alternatively had constrained the 

adsorption of PAH onto the PC9 soot surface. At this point it is important to note 

that the relative concentration of PAH increased somewhat for the PC9 soot as it 

evolved in the exhaust to the extent that it exceed the EN590 total concentration 

in the DPF soot samples, Section 7.7. As this correlated with changes in the 

surface sulphur concentration for the PC9 fuel, it is argued in Section 6.6 and 

Section 7.7 that these changes in total PAH reflected the differences in the 

physical processes that lead to the adsorption of the PAH on the soot surfaces. 

These physical processes, both in-cylinder and in the exhaust, appeared to be 

sensitive to fuel sulphur content. Thus, it is believed that the relative PAH 

concentrations in Table 5.11, being opposite to the relative PAH concentrations 

in the fuels, derived from the greater sulphur content of the PC9 fuel influencing 

the PAH adsorption onto the soot surface. 

It could be argued however that the EN590 and PC9 PAH observations may 

have been the result of different PAH profiles for the two mineral fuels that 

resulted in the EN590 and PC9 discrepancy. i.e. an initially different PAH profile 

for each fuel lead to different pyrosynthetic reaction pathways leading to different 

total PAH concentrations. As will be shown in the second part of this section, the 

PAH profiles for both EN590 and PC9 soot were dissimilar in some specific 

respects suggesting that the pyrosynthetic reaction pathways and/or original fuel 

PAH profiles, did potentially contribute to the differences total PAH concentration 

in the soots. 

As result of this significant difference in the total PAH, it is necessary to take 

the data in Table 5.10 and Table 5.11 and calculate the individual PAH as a 

percentage of respective soot sample total PAH and this result is presented in 

Figure 5.11 for Table 5.10 data and Figure 5.12 for Table 5.11. 

Together Figure 5.11 and Figure 5.12 reveal that the PAH profiles for all three 

fuel soots were different although the general shape of the two mineral fuel soots 

profiles did agree. Naphthalene, a relatively low molar mass PAH and which is 

the PAH generally observed when PAH are present in fuel [175], was found to be 

high for the two mineral fuel soots but was not present for the B100 soot and 
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therefore indicated that for the B100 soot the PAH must have formed through 

pyrosynthetic reactions rather than originating from the fuel [173, 175, 178]. 

 

Figure 5.11: 19.5:1 Exhaust Manifold Polycyclic Aromatic Hydrocarbon Profile 

(Naphthalene to Fluoranthene), (% of total PAH µg/g) (GC-MS) 

 

Figure 5.12: 19.5:1 Exhaust Manifold Polycyclic Aromatic Hydrocarbon Profile (Pyrene to 

Benzo-perylene), (% of total PAH µg/g) (GC-MS) 

Phenanthrene was observed consistently as one of the high relative 

concentration PAHs for the three fuels with Benz(a)anthracene being the other. 

The PAH molar mass range of the mineral fuel soot was greater than observed 

for the B100 soot with the B100 soot PAH mostly concentrated between 

Acenaphthene and Chrysene. This limited range of PAH in the B100 soot likely 

resulted from the lack of PAH in the B100 fuel such that the pyrosynthetic 

reactions were less complex compared to those for the two mineral fuels. 

To help study the PAH profile for the three fuels more comprehensively, two 

additional approaches of data analysis were utilised. The first was to group the 
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PAH concentrations by the number of carbon and hydrogen atoms and then sum 

any like PAHs together. This was then used to create a plot of hydrogen verses 

carbon to produce a ‘staircase’ type pattern as described by Dobbins [25]. Each 

point on the plot was then scaled in size to represent the concentration of that 

PAH group in the sample. The result of this for the 19.5:1 exhaust manifold soot 

sample is presented in Figure 5.13. 

 

Figure 5.13: 19.5:1 Exhaust Manifold Soot PAH H-C Diagram (GC-MS) 

Figure 5.13 shows there were some key differences between the PAH 

content of the two mineral and the biodiesel soots. The two mineral soots had 

high concentrations of PAH at C10H8 and C14H10 with concentrations generally 

much lower across a series of other PAH with 11 to 20 carbon atoms and 8-12 

hydrogen atoms with the PC9 soot PAH encompassing a slightly narrower range. 

For the B100 soot the distribution of PAH was different in that it was largely 

limited to PAH of 10 and 12 hydrogen atoms with the bulk of the PAH having 10 

hydrogen atoms. The B100 PAH distribution also appeared less concentrated 

with a more even distribution across fewer PAH than for the mineral fuels. 

Interestingly, the B100 PAHs were low in concentration at C10H8 in comparison to 

the mineral diesel soots. From Figure 5.13 it can also be observed that there was 

a clear favoured concentration of PAH with 10 hydrogen atoms for all three fuels 

whereas there was no similar carbon atom number preference. There were also 

preferences for 8 and 12 hydrogen atoms but these were less significant. 

The second method to assist with characterising the PAH profile was to group 

PAH by molar mass and then sum the PAH concentrations for like molar mass 

and then plot the result against molar mass. The final determined concentrations 
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for each PAH by molar mass are presented in Figure 5.14. Frequently in 

literature this result is presented as the raw mass spectrum from a sample so the 

result illustrated in Figure 5.14 can be readily compared to results from literature. 

 

Figure 5.14: 19.5:1 Exhaust Manifold PAH Molar Mass Profile (GC-MS) 

Figure 5.14 expands on what was presented in the carbon and hydrogen 

‘staircase’ presentation of Figure 5.13 with the two mineral fuel soots having high 

concentrations of PAH at low molar mass 128 and a second high concentration 

at a medium molar mass of 178. In contrast, the majority of the B100 PAHs were 

between molar masses 154 to 228 with the similar peak concentration at 178. 

This very strong concentration of PAH of molecular mass 178 (Phenanthrene) 

for all three fuel soots is a very interesting observation. Indeed, this result is 

repeated throughout the results of this work, see Section 6.6, Section 7.7 and 

Section 8.8. Phenanthrene is believed to be what is called a ‘stabilomer specie’ 

(Section 2.4.4), that is a PAH which has been shown to be very stable at 

temperatures typical of hydrocarbon flames [25, 180]. The review by Dobbins 

[181] specifically identifies alkylated phenanthrenes as a dominant PAH for 

hydrocarbon flames. This work herein therefore indicates that Phenanthrene is a 

stabilomer specie for both mineral diesel and biodiesel fuel combustion. 

The low mass zone 128-142 depicted in Figure 5.14 is the signature of 2-3 

ring PAH components (naphthalene, 1-methylnaphthalene, 2-methylnaphthalene) 

which from fuel analysis results reported in literature are the common original fuel 

borne PAH [25, 178] and this observation was therefore in agreement with this as 

the B100 had no aromatics whereas the EN590 and PC9 fuels both contained 
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16.9% and 32.6% volume aromatics respectively, Appendix 1 (Table A1.1). This 

result implied these were PAH which survived combustion whereas the other 

PAH observed derived from pyrosynthesis during combustion. 

Curiously, the low mass PAH concentrations of the mineral diesel soots were 

opposite in relative concentration to the original fuel aromatics with the PC9 soot 

PAH also having a higher overall concentration of medium molar mass, Figure 

5.14. This is a strong indication that the pyrosynthetic reactions for these two 

fuels were indeed somewhat different, possibly due to different original PAH 

profiles in the fuels. It could therefore be argued that these potential differences 

in the pyrosynthetic reactions singularly account for the large difference in total 

PAH concentration, Figure 5.10. However, knowledge of the significant increase 

in PC9 soot total PAH concentration i.e. it exceeded that of the EN590 soot with 

reduced compression and exhaust evolution (Section 6.6 and Section 7.7); 

suggests that the earlier postulated sulphur related processes must also have 

been involved as the profile differences in Figure 5.14 are not thought to be 

significant enough to explain all the PAH results reported herein. 

A similar set of PAH molar masses to those illustrated in Figure 5.14 were 

reported by Moldonova et al. [327] in the hot exhaust of a large diesel ship 

engine. Moldonova et al. also reported a concentration at 302 molar mass 

whereas the analysis in this work only extends to 276. Therefore there may have 

been additional PAH at molar masses which were not investigated herein and 

therefore it is important to note that the total concentration of PAH reported in 

Table 5.11 may not be the complete picture for this fuel comparison. 

Lubrizol stated in a private communication that overall PAH concentrations 

reported in this work were very low in comparison to those the company had 

previously observed in carbon black and diesel soot drains. Lubrizol also 

commented that pyrene was a common PAH found in lubricant absorbed soot 

and that the soot sampled in this work was observed to have a relatively low 

pyrene component by comparison. 

It is thought that the generally very low PAH concentration for the PAH 

samples discussed in Chapters 5, 6 and 7 result from the engine conditions and 

sample location. The engine was operated at rated power with exhaust manifold 

temperatures of 530-650°C at the point where the soot was sampled. Since PAH 

are largely concentrated on the surface of soot through condensation of exhaust 

matter [25] (Section 2.4.4); the conditions would have constrained the amount of 
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PAH that could have condensed onto the soot as the sample cooled down in the 

sample line between the exhaust manifold and the thimble, Figure 3.24. This is 

also a possible indication that the soot surface SOF concentration for the soot 

sampled at the exhaust manifold in this work was also generally low, which 

strengths the earlier discussion of this topic in Section 5.5.3. 

5.8 Thermogravimetrical Analysis 

Presented in Table 5.12 are the thermogravimetrical results for the 16.5:1 

DPF sampled soot where ‘DPF’ denotes the origin of these samples. Note: the 

limited soot sample mass for the exhaust manifold samples meant it was 

infeasible to undertake the thermogravimetrical analysis on these samples. 

Table 5.12: 16.5:1 DPF Soot Thermogravimetrical Analysis (TGA) 

 

Thermogravimetrical analysis of the DPF collected soot detailed in Table 5.12 

shows that the two mineral fuels were very similar across the 300-1000°C 

temperature range being composed of around 85% soot. The biodiesel soot by 

contrast was composed of 50% soot and 41.5% ash, Figure 5.15. 

 

Figure 5.15: 16.5:1 DPF Soot % weight Loss at Different Temperatures (TGA) 

A contributing factor was the very low soot concentration in the exhaust gas 

for the biodiesel fuel which necessitated a collection period of 2 hours vs. the 20 

min for both mineral fuels. Thus, the proportions of inorganic matter to 

RT to 300 oC 300 to 400 oC 400 to 700 oC 700 to 1000 oC Residue at 1000 oC

Description Oil Residue & Lighter Ends Polymers & 'Sludge' Mostly Traditional 'Soot' Additional Carbonaceous Content Non-combustible 'Ash'

16.5:1 DPF, EN590 1 0.5 84.1 0.4 14

16.5:1 DPF, PC9 1 0.6 85.4 0.2 12.8

16.5:1 DPF, B100 3.1 1.9 49.9 3.6 41.5
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carbonaceous matter in the B100 soot would be inherently high as was 

discussed previously in Section 5.4. 

Table 5.12 also reveals that for temperatures up to 300°C the percentage of 

mass lost for the B100 soot was over three times that of the two mineral fuel soot 

samples which indicated the B100 soot had a higher proportion of lighter SOF. 

This finding supported the prior reasoning in Section 5.5.2 where condensed HCs 

were identified as a potential cause for the large disparity in the soot morphology 

observed at the exhaust manifold between the mineral and B100 soots. The 

conclusions in Section 4.4 attribute the higher B100 HC emissions to physical 

fuel properties such as density and viscosity which were quite different to the two 

mineral fuels, Appendix 1 (Table A1.1). This finding of a greater biodiesel fuel 

SOF fraction is reported in studies in literature which compare mineral and 

biodiesel soot SOF [306]. 

Interestingly, it is also reported in literature that biodiesel based fuels result in 

exhaust volatiles with higher molecular weights and higher boiling points than for 

mineral fuels [326] for which there is potential evidence in Figure 5.15. Therefore 

it is possible that more of the B100 fuel volatiles condensed onto the soot earlier 

in the sampling system sample line than occurred for the mineral fuels, thus 

further increasing the B100 soot fraction of volatiles at the ceramic thimble and 

DPF. Additionally, the reduced B100 carbonaceous soot mass would almost 

certainly have encouraged greater SOF adsorption on individual particles subject 

to the temperature and saturation conditions in the sampling system [6, 24]. 

Referral back to the soot total bulk inorganics with the sulphur negated, 

Figure 5.6; shows an overall distribution of the relative non-sulphur bulk 

inorganics across the three soots which correlate closely with that of the residue 

at 1000°C in Figure 5.15 i.e. the ash or non-combustible component of the soot. 

This is to be expected as the samples described in Figure 5.15 were collected 

using a DPF located in the exhaust approximately 5m downstream (Section 

3.5.2) of a diesel oxidation catalyst and thus PC9 soot sulphur would have been 

greatly reduced through reactions which transformed the sulphur into sulphur 

compounds (H2SO4). This finding is considered in more detail throughout Chapter 

7 where soot evolution in the exhaust is discussed. 
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5.9 Concluding Remarks 

The XPS surface elemental composition analysis revealed that the three fuels 

produced soot with markedly similar surface elemental composition with the 

dominant element being carbon followed by oxygen. Sulphur was detected only 

on the surface of the PC9 fuel soots and correlated with the 497ppm fuel sulphur 

content. Sulphur on the surface of the PC9 fuel soot appeared to increase the 

surface O/C ratio and this correlated with a higher carboxylic and total surface 

acidity suggesting a strong link between soot surface oxidation and surface 

acidity which is modulated through adsorption of sulphur from the fuel. 

The ICP bulk elemental composition results revealed a similar total 

percentage weight of inorganics in the samples once the effects of fuel rate, 

lubricant consumption rate and exhaust soot concentration were accounted for. 

This indicated a strong sensitivity to each of these factors. The main 

contaminating inorganic elements in all three samples were (Ca, Fe, Na, S, Zn) in 

order of concentration indicating fuel, lubricant and engine metallurgy as sources. 

Commonality between the mineral soot morphological characteristics 

contrasted with the distinct B100 soot morphology. A structural model was 

proposed describing B100 soot with a partially hollowed out core in which internal 

voids and pores are opened through more aggressive oxidation to produce a low 

surface area, high pore volume and high density. These morphological 

distinctions are postulated to be strongly linked to the higher XPS surface O/C 

ratio of the B100 soot and greater concentration of inorganic elements. 
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Chapter 6 

6 Soot Physiochemical Properties for High and 

Low Compression Ratio 

6.1 Introduction 

This chapter presents the results and analysis for soot produced with three 

different fuels at rated engine power. The aim of this chapter is to understand 

how the reduction in geometric compression ratio from 19.5:1 to 16.5:1 affected 

the soot physiochemical properties across the three fuels investigated. The 

samples were collected during the experiments described in Section 3.1.5.3 and 

samples from both the exhaust manifold with the ceramic thimble sampling 

system Section 3.5.1 and the DPF Section 3.5.2 are utilised in this chapter. 

6.2 Data Selection and Grouping 

The data selection for the analysis of compression ratio influence on exhaust 

soot was complicated by the constraint of having to distribute all nine soot 

analysis methods across both the high and low compression ratio soot samples 

at the exhaust manifold. The isolated comparison of compression ratio for the 

exhaust manifold soot therefore was limited to the surface and bulk element 

results. For a more broader consideration of the effect of compression ratio, the 

16.5:1 DPF soot sample surface acidity and PAH results are also considered but 

this comparison was complicated by the soot evolution in the exhaust which is 

discussed in Chapter 7. Consequently, the results discussed in this chapter are 

grouped as detailed in Table 6.1. 

Table 6.1: Compression Ratio and Soot Analysis, Data Selection and Grouping 
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6.3 Soot Surface Elemental Composition 

Table 6.2 summarises the soot surface carbon, oxygen, sulphur and chlorine 

as well as the ratios of surface oxygen/carbon and sulphur/carbon for the three 

fuels investigated. All soot samples were collected at the exhaust manifold with 

the Ceramic Thimble (CT) apparatus, Section 3.5.1. 

Table 6.2: 19.5:1 and 16.5:1 Exhaust Manifold Soot Surface Elemental Composition 

(XPS) 

 

Note: The estimated error for the surface elemental analysis was (+/-0.5%) 

for each element and this must be considered when the changes in the 

measured surface elemental composition with compression ratio fall within this 

boundary, the error is included in the figures in this section as a reference. 

Figure 6.1 details the change in surface carbon content with the reduction in 

compression ratio and clearly the surface carbon concentration increased for all 

soots, with the increases in the two mineral fuel soots being the greatest. 

 

Figure 6.1: 19.5:1 to 16.5:1 Soot Surface Carbon Change for EN590, PC9 and B100 

fuels (XPS) 

Figure 6.1 illustrates that the increase in the B100 soot surface carbon 

concentration only just exceeded the error bounds and therefore the change in 

the surface composition of the B100 soot to the reduction in compression ratio 

was somewhat less relative to that observed for the mineral fuel soots. 

Description ratio precision ratio precision

19.5:1 CT, EN590 92.5 7.5 0.0805 0.0118

19.5:1 CT, PC9 88.3 9.9 1.545 0.3 0.1121 0.0127 0.018 0.0059

19.5:1 CT, B100 92.0 8.0 0.0865 0.0119

16.5:1 CT, EN590 94.1 5.9 0.0627 0.0114

16.5:1 CT, PC9 91.6 8.4 0.050 0.0917 0.0120 0.001 0.0055

16.5:1 CT, B100 92.4 7.6 0.0823 0.0118

O/C S/Cwt% C wt% O wt% S wt% Cl
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Figure 6.2 presents the associated change in surface oxygen concentration 

with the reduction in compression ratio and illustrates that there was a consistent 

reduction observed for all soots. Interestingly, whereas the increase in carbon 

was somewhat higher for the PC9 soot compared to the EN590 soot, the 

reduction in oxygen was observed to be very similar. For this to occur clearly 

other surface element concentrations also had to change, these were sulphur 

and chlorine and are discussed later. 

 

Figure 6.2: 19.5:1 to 16.5:1 Soot Surface Oxygen Change for EN590, PC9 and B100 

fuels (XPS) 

The surface carbon and oxygen changes presented in Figure 6.1 and Figure 

6.2 resulted in a general reduction in the surface O/C ratio for all soots in 

response to the reduction in compression ratio and this is captured in Figure 6.3. 

With the exception of the mineral PC9 fuel for the 19.5:1 experiment, there was 

little or no sulphur or chlorine found in the soot surface. Thus, the change in the 

surface O/C ratio for all the other experiments reflected directly the change in the 

carbon/oxygen ratio alone. 

Figure 6.3 details how the surface O/C reductions observed for the two 

mineral diesel fuels were similar with the EN590 fuel surface O/C reducing 22.1% 

and in the case of the PC9 fuel the O/C ratio reduced 18.2%; the biodiesel soot 

by contrast showed a reduction of only 4.9%. For the B100 soot the reduction 

was within the measurement error and thus the observation was less certain for 

this soot. The reduction in the soot surface O/C ratio was the inverse of the 

change in the AFR for these experiments which Table 4.11 Part A detailed as 

having increased by 4.1% for EN590, 5.4% for PC9 and 1.2% for the B100 

experiments. 
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Figure 6.3: 19.5:1 to 16.5:1 Soot Surface O/C Ratio Change for EN590, PC9 and B100 

fuels (XPS) 

Additionally, the exhaust O2 measurements for these experiments showed 

increases of 14.9, 14.0 and 21.4% for EN590, PC9 and B100 fuels respectively 

and reductions in NOx of 23.1, 26.9 and 17% respectively. Consequently, the 

surface O/C reduction for all soots with the compression ratio reduction was 

opposite to the exhaust O2 concentration change but did align with the reduction 

in NOx. The exhaust soot were all sampled at the exhaust manifold and therefore 

the residence time of the soot in the exhaust gas as it exited the cylinder was 

very short and thus the effects from surface oxidation processes as soot evolves 

in the exhaust (Chapter 7) would have been small for these samples. These 

findings indicated that the concentration of exhaust O2 was not the primary factor 

governing the soot surface O/C ratio for the young soot sampled at the exhaust 

manifold. Rather, it indicated that another factor likely relating to the conditions 

in-cylinder and therefore associated with the compression ratio reduction was 

responsible. This was most probably the aligned reduction in NOx. 

Consequently, it is useful at this point to refer back to Section 5.6 where it 

was recognised that the fairly high acidity of the 19.5:1 exhaust manifold soot 

was related to the also high surface O/C ratio for this soot. This however failed to 

align with the low AFR of ~ 19:1 for the experiments and the fact that the soot 

was relatively young, thus limiting the time for surface oxidation to occur. It was 

therefore postulated that the high temperatures of the operating condition had 

caused very high concentrations of NOx and it was the NOx which was reacting 

with the soot surface. The high cylinder temperatures were thought to be acting 
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such as to increase the rate of the NOx-soot reaction to form the surface 

functional groups. 

If this postulation is valid, then the reduction in compression ratio must have 

acted to reduce the in-cylinder peak temperatures. Consequentially, closed cycle 

thermodynamic analysis of the cylinder pressure data (Section 3.3.5) was 

conducted and the results are presented in Figure 6.4. This shows the relative 

peak cycle temperature estimates for the six soot collection experiments. 

The results presented in Figure 6.4 confirm that the in-cylinder peak 

temperatures indeed reduced with the reduction in compression ratio (the reader 

is also encouraged to review the average closed cycle temperatures presented in 

Table 4.15). It is therefore postulated that the reduction in compression ratio 

acted to reduce the peak and average in-cylinder temperature and this in turn 

both reduced the formation of NOx (-23.1, -26.9 and -17% for EN590, PC9, B100 

respectively) and also reduced therefore the reaction rate between the NOx and 

the soot; thereby resulting in the observed lower surface O/C ratio in the 16.5:1 

compression soot samples Figure 6.3. 

 

Figure 6.4: Cylinder Pressure Closed Cycle Analysis Estimated Peak Cylinder 

Temperature 

Additionally, Figure 6.4 illustrates that the reduction in estimated in-cylinder 

peak temperature was greatest for the two mineral diesel fuels with the reduction 

in compression ratio with the reduction for the B100 fuel being far lower (the 

reduction was less significant due to a higher initial IMAT for the B100 16.5:1 

experiment compared to the IMAT used in the two 16.5:1 mineral fuel 
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experiments, Table 4.10 Part B). Thus, the change in estimated in-cylinder 

temperature correlates to the reductions in surface O/C ratio for the three soots 

as indicated in Figure 6.3, therefore strengthening the postulation of the 

compression ratio induced change in the in-cylinder peak temperature being the 

primary factor responsible. It is likely therefore that this smaller reduction in in-

cylinder temperature for the B100 fuel contributed to the smaller reduction in 

B100 NOx and soot surface O/C ratio, Figure 6.3. However, it is postulated that 

since the reduction in the B100 soot O/C ratio was far less significant compared 

to the equivalent mineral soots, that additional factors such as the soot 

morphology also contributed to this result (such as surface area and soot 

structure). 

It is worth noting that in Section 4.3.3 it was determined that the compression 

ratio reduction resulted in a 17.5% average reduction in peak cylinder pressure 

and only a 2.6% average reduction in average cylinder temperature, Table 4.15. 

Thus, the forgoing analysis indicates that the smaller scale change in the in-

cylinder temperatures was in fact the most significant factor in the changes to the 

soot surface composition. 

Thus, to summarise; it is postulated that a reduction in compression ratio will 

act to reduce cylinder temperature and NOx formation and this in turn will result in 

soots with a lower surface oxygen concentration at like-for-like engine operating 

conditions – somewhat regardless of the AFR change. Following from the earlier 

discussion in Section 5.6; soots from lower temperature combustion will also 

have reduced surface acid functionality which from literature is reported by 

Covitch et al. [138] and Ripple et al. [165] to make soot more oleophilic i.e. 

potentially more soot will be absorbed into the oil and or interact with the oil 

during combustion. 

In addition to the aforementioned O/C ratio findings, sulphur and chlorine 

were also observed on the surface and both changed with the engine 

compression ratio. Sulphur was observed on the surface of the PC9 soot alone 

and appeared therefore to be related directly to the sulphur content of the PC9 

fuel which was 497 ppm relative to 6 ppm for the mineral EN590 fuel and < 10 

ppm for the biodiesel fuel, Appendix 1 (Table A1.1). Significantly, the 

concentration of surface sulphur for the mineral PC9 soot was observed to fall by 

96.8% with the reduction in compression ratio. 
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This significant reduction in surface sulphur concentration aligned with the 

O/C ratio reduction and therefore suggested it was coupled to the same 

temperature based processes that were reducing the adsorption of oxygen 

molecules on the soot surface. Referring to Figure 6.1 and Figure 6.2, it is clear 

that the carbon content of the PC9 soot surface grew significantly with the 

reduction in compression ratio to offset the reduction in surface sulphur; with 

surface oxygen concentration reducing approximately equally to the reduction 

seen for the EN590 soot. Thus, it appeared that the reduction in sulphur for the 

PC9 soot did not result in the loss of additional oxygen. 

This is an important observation as it was postulated in Section 5.3 that the 

PC9 surface sulphur alone was acting to inflate the surface oxygen concentration 

of the 19.5:1 soot. The substantial reduction in sulphur at 16.5:1 however does 

not appear to have resulted in a more significant reduction in surface oxygen for 

the PC9 soot with compression ratio change, Figure 6.2, and thus the sulphur-

oxygen proportionality relation advised in Section 5.3 would appear to be more 

complex. As sulphur adsorbed onto the soot surface is typically in the form of 

sulphates [24], it would appear that the same temperature driven processes that 

reduced the soot surface oxygen concentration also acted to reduce the sulphur 

adsorption, likely due to the processes being linked chemically. 

There is however a further possibility which relates to the observation of the 

measured concentration of HCs in the exhaust with the PC9 fuel at 16.5:1 

compression being roughly half of what was observed at 19.5:1, Table 4.10 Part 

C. With a lower concentration of volatiles in the exhaust, it was possible that 

there was a reduced concentration of these volatiles condensing onto the soot in 

the sample line at the lower compression ratio and this therefore potentially 

reduced the sulphur surface deposition. However, as the reduction was only 50% 

compared to the 96.8% for the surface sulphur, this is thought not to be a full 

explanation on its own. Importantly, referral to Table 6.3 in the following section 

shows that sulphur comprised 1% of the PC9 soot bulk inorganics at the 16.5:1 

compression ratio but the surface concentration was just 0.05%, Table 6.2. Such 

a discrepancy is better explained by the earlier in-cylinder processes postulation 

rather than a simple reduction in adsorbed SOF. Consequently, the hypothesis 

for in-cylinder temperature driven processes being responsible, is the more likely 

scenario. 

Finally, chlorine was detected on the surface of the 19.5:1 PC9 soot at 0.3% 

weight but at 16.5:1 no chlorine was detected. As detailed in Section 5.3 this 
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observation of chlorine was not repeated in any of the other soot samples so its 

origin and cause were not clear though it was concluded to most likely have been 

the result of sample contamination during sample handling after the engine 

experiment. It was also postulated in Section 5.3 that the chlorine simply acted to 

reduce equally the surface concentrations of carbon, oxygen and sulphur. In light 

of the aforementioned sulphur and O/C ratio observations (i.e. no significant O/C 

reduction even though sulphur reduced significantly) with the reduction in 

compression ratio, it is possible however that the chlorine acted to positively bias 

the oxygen concentration in the 19.5:1 PC9 soot sample rather than sulphur but 

there is no way to know this for certain with the available information. 

In conclusion, the compression ratio reduction effected important changes in 

soot surface chemistry, these were largely through what is postulated to be 

temperature driven physiochemical processes that occur in-cylinder during soot 

formation and oxidation. 

6.4 Soot Bulk Elemental Composition 

Table 6.3 presents the percentage weight of inorganics for the bulk 

composition of the sampled exhaust soot for both high and low compression 

ratio; this data has been converted to the percentage contribution of each 

element to the total sample inorganics and this result is presented in Table 6.4. 

Table 6.3: 19.5:1 and 16.5:1 Exhaust Manifold Soot Bulk Elemental Composition (% 

weight) (ICP-MS, Corrected)
10

 

 

Table 6.4: 19.5:1 and 16.5:1 Exhaust Manifold Soot Bulk Elemental Composition (% 

weight/total % weight) (ICP-MS, Corrected) 

 

                                                
10

 Table 6.3 and Table 6.4 present corrected ICP-MS results; this involved negating foreign element 

contamination which was identified in some samples (Refer to Appendix 8). 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.000 0.016 0.001 0.001 0.033 0.000 0.000 0.185

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 0.000 0.002 0.282 0.001 0.028 0.000 0.000 0.444

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.000 0.017 0.105 0.000 0.000 0.734

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.000 0.056 0.000 0.000 0.438

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.000 0.077 0.000 0.000 1.660

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.000 0.560 0.000 0.000 6.364

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 44.865 1.622 18.378 1.081 6.486 0.000 8.649 0.541 0.541 17.838 0.000 0.000 100.000

19.5:1 CT, PC9 17.568 0.450 9.685 0.450 1.351 0.000 0.450 63.514 0.225 6.306 0.000 0.000 100.000

19.5:1 CT, B100 37.738 2.044 23.297 0.681 1.362 11.308 6.948 0.000 2.316 14.305 0.000 0.000 100.000

16.5:1 CT, EN590 57.078 0.000 15.068 5.251 0.000 0.000 9.817 0.000 0.000 12.785 0.000 0.000 100.000

16.5:1 CT, PC9 19.277 0.000 6.627 1.265 0.000 0.000 4.337 63.855 0.000 4.639 0.000 0.000 100.000

16.5:1 CT, B100 45.255 0.000 16.970 5.500 0.000 7.071 16.185 0.220 0.000 8.799 0.000 0.000 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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The total percentage weight of inorganics was observed to change with the 

reduction in compression ratio and this is detailed in Figure 6.5 for the six 

experiments defined in Table 6.3. The relative total inorganics between the 

different fuel soots was quite different at the two compression ratios, with the 

relative difference between the two mineral soots increasing at reduced 

compression. 

 

Figure 6.5: 19.5:1 and 16.5:1 Exhaust Manifold Soot Total % Weight Inorganics (ICP-

MS, Corrected) 

The most dramatic change however was the increase in the B100 soot total 

inorganics and this is illustrated in addition to the factor change in inorganics in 

Figure 6.6. 

 

Figure 6.6: Soot Total % Weight Inorganics Change between 19.5:1 to 16.5:1 Rc at the 

Exhaust Manifold (ICP-MS, Corrected) 
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Figure 6.6 also describes how in the case of the mineral EN590 and PC9 

soot, the total inorganics increased by factors of 2.4 and 3.7 respectively with the 

reduction in compression ratio. Relative to this, the biodiesel soot sample total 

inorganics increased by a factor of 8.7, thus twice that observed for the two 

mineral fuel derived soots. 

Further analysis of Table 6.3 reveals that at 19.5:1 compression, the PC9 

soot total inorganics were a factor 2.4 greater than those of the EN590 soot and 

at 16.5:1 compression this factor increased to 3.8. The difference in the mineral 

soot total inorganics at 19.5:1 compression was identified in Section 5.4 to be 

principally related to the sulphur from the PC9 fuel. With the reduction in 

compression it also appears that again PC9 fuel sulphur is largely responsible for 

the differentiation between the EN590 and PC9 soot. The effects of the engine 

compression ratio reduction are best illustrated through the calculation of the 

change in contribution of each element to the total sample inorganics. This is 

computed from Table 6.3 by simply subtracting the individual element wt % 

concentration at 19.5:1 from the value at 16.5:1 i.e. for EN590 Ca (0.250-0.083 = 

0.167 wt %). These processed results are presented in Figure 6.7. 

Figure 6.7 clearly illustrates that the B100 soot experienced by far the most 

significant change across all principle soot inorganic elements and that the 

observed increases for each element appeared to mirror the individual element 

increases for EN590 and PC9 soots with approximately the same scaling factor 

for each element i.e. no one particular element appeared to be responsible for 

the significant increase in total soot inorganics for the B100 soot. 

 

Figure 6.7: Change in Soot Inorganic Elements (% wt) at the Exhaust Manifold Between 

19.5:1 to 16.5:1 for EN590, PC9 and B100 fuels (ICP-MS, Corrected) 
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To be more precise concerning how the individual element concentrations for 

each soot changed with compression ratio reduction, it is necessary to calculate 

the individual elemental wt % change as a percentage of the total change in 

inorganics in the sample i.e. for Ca in the EN590 samples from Table 6.3; (0.250-

0.083)/(0.438-0.185) x 100 = 66%. This calculation therefore qualifies the extent 

to which the change in concentration of each element with the reduction in 

compression contributed to the total inorganic change for that fuel. The results for 

all three fuel soots are presented in Figure 6.8. 

 

Figure 6.8: Change in Soot Inorganic Elements (% wt/total % wt) at the Exhaust Manifold 

Between 19.5:1 to 16.5:1 for EN590, PC9 and B100 fuels (ICP-MS, Corrected) 

Figure 6.8 illustrates that for both the EN590 and B100 soots, the increase in 

total inorganic fraction of the soot samples was composed of increases in (Ca, 

Fe, P, Mg, Zn) in order of significance and that the increases in the individual 

elements were similar in magnitude for both fuels, implying a related mechanism 

was behind both. For the PC9 soot, the increase in soot bulk sulphur was by far 

the biggest component of the change in inorganics for this soot and acted to 

reduce the relative contribution from the other elements; thereby making 

comparison with the EN590 and B100 bulk elemental change difficult without first 

negating the sulphur influence for the PC9 soot. Since PC9 fuel sulphur was 

approximately 100 times higher at (497 ppm) versus (<10 ppm) concentration in 

the other two fuels, Appendix 1 (Table A1.1); attributing PC9 soot sulphur to the 

high concentration in the fuel was logical. 

From Table 6.4 it is observed that the contribution of sulphur to the PC9 soot 

total inorganics at 19.5:1 was 63.5% and then this increased slightly to 63.9% 
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with the reduction in compression ratio. This contrasted with the 96.8% reduction 

in surface sulphur discussed previously in Section 6.3. Indeed, from Table 6.3 it 

is clear that at 19.5:1 compression the PC9 soot sulphur was roughly 0.28% of 

the soot bulk compared with 1.5% concentration at the surface. In contrast at 

16.5:1 compression, the sulphur was 1% of the soot bulk and yet the surface 

concentration was 0.05%. These contrasting observations are somewhat difficult 

to reconcile as they clearly point to complex processes occurring during soot 

inception, formation and oxidation in the cylinder. 

A postulation that potentially explains these observations is as follows: the 

reduction in compression ratio acted to increase the entrainment of inorganics 

(as indicated in Figure 6.5) early in the soot formation process (possibly due to 

the lower reaction temperature and pressure and thus impaired fuel atomisation 

and fuel mixing). This then resulted in the subsequent reduction in free sulphur in 

the cylinder later in the soot formation oxidation process. i.e. at the lower 

compression ratio the fuel derived sulphur remained bound to the HCs of the fuel 

and/or the other inorganic matter and hence less well distributed in the cylinder. 

This therefore meant there was a greater probability the fuel sulphur was 

localised to the soot precursors (possibly even acting as precursor molecules) 

and then remained chemically bound to these soot precursors as they developed 

thus entraining the majority of the fuel borne sulphur into the soot bulk. As the 

combustion proceeded there was then far less sulphur free within the cylinder 

and the temperatures of the reactions were also lower so the chemisorption of 

sulphates onto the soot was reduced leading to the lower soot surface sulphur 

and oxygen concentration and the higher carbon concentration, Section 6.3. 

Additionally, the monitored exhaust temperatures (Table 4.10 Part B) failed to 

exhibit any consistent change with compression reduction and therefore there 

was unlikely to have been any significant change in the condensation of volatiles 

onto the soot in the sample line with the compression ratio reduction; thus 

supporting the above hypothesis that the changes in PC9 soot sulphur must have 

occurred in-cylinder. 

Therefore with the available information the proceeding hypothesis seems a 

valid explanation and suggests that lower engine compression can be used as a 

tool to influence soot surface reactivity through management of the temperature 

based reactions and also any fuel borne sulphur. Indeed, these are some of the 

most interesting findings from the compression ratio investigation and point to a 

potentially interesting avenue for further future research. 
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There were two metal elements in the soot bulk inorganics which appeared to 

have very specific responses to the compression ratio reduction for all three 

fuels; these were (Cu, Mn) Figure 6.8. For both elements the reduction in 

compression appeared to result in the concentrations of these elements 

decreasing to the point that they went below the detection threshold of the ICP-

MS measurement, Table 6.3. It is likely therefore that this was because these two 

elements did not increase in concentration like the other elements with the 

compression ratio reduction but instead they remained unchanged in 

concentration and thus became far less significant in the soot samples. It is 

postulated that these two metals may therefore have come from the fuel system 

as firstly the fuel rate did not change significantly across the experiments, Table 

4.10 Part A, and secondly the elements which increased in concentration 

appeared to derive from the lubricant and engine cylinder metallurgy (as 

discussed later in this section); so (Cu, Mn) must have derived from elsewhere. 

To confirm if PC9 soot behaviour followed that of the EN590 and B100 soots, 

the PC9 data presented in Figure 6.8 was re-evaluated with the sulphur 

component negated in both the 19.5:1 and 16.5:1 sample groups and the results 

from this analysis are presented in Figure 6.9. With sulphur isolated, Figure 6.9 

indicates that the individual elemental contribution to the increase in inorganic 

content in the soot was actually broadly similar across the three fuels 

investigated. 

 

Figure 6.9: Change in Soot Inorganic Elements (% wt/total % wt) (with Sulphur Negated) 

at the Exhaust Manifold Between 19.5:1 to 16.5:1 for EN590, PC9 and B100 fuels (ICP-

MS, Corrected) 
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Although the result in Figure 6.9 is therefore very useful, it does not account 

for the large differences in the total inorganics concentration following engine 

compression ratio reduction as was illustrated earlier in Figure 6.5. Rather, the 

result of Figure 6.9 implies that this broad increase in organics resulted from 

approximately equal contributions in each element across the spectrum of 

elements analysed. 

It was shown previously in Section 5.4 that differences in fuel consumption, 

exhaust soot concentration and lubricant consumption could be used to explain 

the different concentrations of the total inorganics in the three fuel soots at 19.5:1 

compression. Indeed, a methodology was presented that detailed how the total 

inorganics of each sample could be scaled in proportion to the differences in 

these factors across the 19.5:1 experiments to result in almost equalisation of the 

sample total wt % of inorganics. Thus, following the same methodology; referral 

to Table 4.11 Part A reveals that the fuel rate, exhaust soot concentration and 

lubricant consumption rate all changed with compression ratio reduction and that 

the changes observed were not consistent across the three fuels and 

compression ratio reduction. The implication of this is that the initial result 

presented in Figure 6.5 is masking information about the actual mechanisms 

behind the changes in soot total inorganics with compression ratio reduction. To 

confirm this, data processing like that utilised in Section 5.4 is required. 

The first step is to consider the differences between fuel consumption and 

exhaust soot concentration; this is captured in Table 4.14 as the normalised FSF 

for each experiment. These normalised FSF factors have been applied to the 

data in Table 6.3 (summarised in Figure 6.5) to scale the ICP-MS results to find 

the estimated change in total inorganics following the reduction in compression 

ratio with the effects of fuel rate and exhaust soot concentration negated, Figure 

6.10. 

Before the result in Figure 6.10 is considered in detail, it is important to reflect 

on two points regarding the data analysis methodology from which the result 

derives (for consistency this is repeated from Section 5.4). Firstly, since the AVL 

415 smoke meter sample probe was not located in close proximity to the soot 

sample positions used in this work (Section 3.2.2.5); the simple approach of 

multiplying the bulk inorganics by the FSF factor was used rather than a more 

precise quantitative approach. A more precise approach would have required the 

measurement of carbonaceous soot fraction at the point where the soot was 

sampled from the exhaust to remove any effects from the loss of carbonaceous 
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soot fraction as the soots evolved in the exhaust (Chapter 7). However, this was 

not technically feasible in this work. 

Secondly, the same normalised FSF scaling value has been applied to each 

element in the individual soot sample ICP-MS results as there was insufficient 

information and knowledge concerning the contribution of individual elements 

from the fuel and the lubricant to the soot inorganics to scale elements uniquely. 

i.e. if the normalised FSF was 0.5, then the wt % each element in a given soot 

sample was multiplied by 0.5 to adjust the overall inorganics to account for the 

FSF reported scaling between experiment. 

 

Figure 6.10: 19.5:1 and 16.5:1 Exhaust Manifold Soot Total % Weight Inorganics x 

Normalised FSF (ICP-MS, Corrected) 

The comparison of Figure 6.10 to Figure 6.5 leads to two fundamental 

observations for the compression ratio reduction influence on soot inorganics: 

1) There was a step increase in the total wt % of inorganics in all soot 

samples with the reduction in compression ratio that was independent 

of the fuel rate change and exhaust soot concentration change. 

2) The PC9 fuel had by far the greatest concentration of inorganics at 

both the compression ratios investigated and from Table 6.4 the major 

inorganics contaminate in the high and low compression PC9 soot 

samples was sulphur (65.5 and 63.9% of total inorganics at 19.5:1 and 

16.5:1 respectively). 

Thus, repeating the calculation steps which yielded Figure 6.10 but with 

sulphur isolated was the next logical step prior to considering the effect of 

lubricant consumption. This result is presented in Figure 6.11 and illustrates that 

with sulphur negated, the EN590 and PC9 soot total inorganics at 19.5:1 
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compression were effectively very similar but at 16.5:1 they remained quite 

distinct. The total inorganics for the B100 soot also remained distinct at both 

compression ratios, so there were clearly additional factors that needed to be 

accounted for. 

 

Figure 6.11: 19.5:1 and 16.5:1 Exhaust Manifold Soot Total % Weight Inorganics 

(with Sulphur Negated) x Normalised FSF (ICP-MS, Corrected) 

It was found in Section 5.4 that the inclusion of oil consumption in the scaling 

of ICP-MS data resulted in the total concentration of the scaled inorganics at 

19.5:1 for the three soots being almost identical, Figure 5.9. Thus it is important 

to also include oil consumption here to confirm that the apparent step increase in 

concentration of inorganics with reduced compression ratio, which is implied from 

the result presented in Figure 6.11, is not solely attributable to a change in oil 

consumption rate. Lubricant consumption rate was found to be influenced by the 

reduction in compression ratio and for clarity Table 6.5 and Figure 6.12 present 

and illustrate the lubricant consumption data taken from Table 4.10 Part A. 

Table 6.5: 19.5:1 and 16.5:1 Soot Collection Experiment Lubricant Consumption 

Summary 

 

Table 6.5 includes a normalised non-dimensional factor ‘Lubricant 

Consumption Factor’ to represent the difference between the least to greatest 
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lubricant consumption rate across the six soot collection experiments. It is 

calculated for each experiment by equating the factor to 1 for the lowest lubricant 

consumption rate, i.e. 13.3 g/h for the 16.5:1 B100 experiment, and then dividing 

13.3 by the lubricant consumption for each of the other experiments in turn. 

 

Figure 6.12: 19.5:1 and 16.5:1 Soot Collection Experiment Measured Lubricant 

Consumption Rate 

It is therefore assumed (as originally discussed in Section 5.4) that the 

greater the measured rate of lubricant consumption, the greater the concentration 

of lubricant derived inorganics in the soot. Thus, multiplying the ‘Lubricant 

Consumption Factor’ from Table 6.5 with the normalised FSF and total wt % 

product result presented earlier in Figure 6.11; leads to the result presented in 

Figure 6.13. 

 

Figure 6.13: 19.5:1 and 16.5:1 Exhaust Manifold Soot Total % Weight Inorganics (with 

Sulphur Negated) x Normalised FSF x Lubricant Consumption Factor (ICP-MS, 

Corrected) 
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Thus, Figure 6.13 repeats the finding from Section 5.4 (Figure 5.9) for the 

19.5:1 compression ratio, specifically that equating for all suspected sources of 

inorganics and the soot carbonaceous fraction leads to equalisation of the total 

inorganics in the samples, thus providing further confidence in these postulated 

relationships and the methodology used to account for them in the ICP-MS data. 

However, at the lower 16.5:1 compression, it is observed that although the total 

inorganics of the EN590 and PC9 soots are similar, the scaled B100 soot total 

inorganics concentration is more than double by comparison. 

The commonality illustrated in Figure 6.13 between the total inorganics in the 

two mineral fuel soots at each compression ratio gives confidence that there was 

indeed a step increase in inorganic concentration in the soot that resulted from 

the reduction in compression ratio - as was suspected earlier from the interim 

result Figure 6.11. Therefore, this finding suggests that there must remain an 

additional factor or mechanism not accounted for in the proceeding analysis 

which when combined with the reduction in compression caused the observed 

increase in soot inorganic concentration. Further, this factor or mechanism was 

clearly far more significant for the B100 soot suggesting that something 

associated with the B100 fuel amplified the effect. 

The factor 2 higher 16.5:1 B100 total sample inorganics following ICP-MS 

result scaling is postulated to have several possible root causes: 

1) There was an error in one of the factors (most likely lubricant 

consumption rate since fuel rate and exhaust soot concentration were 

averaged for the entire experiment). 

2) The B100 fuel and the soot at 16.5:1 compression behaved somewhat 

differently in response to the compression ratio reduction through some 

mechanism not applicable to the mineral fuel soots. 

3) There was a combination of 1 and 2. 

It is believed that scenario 3 is the most likely and that a specific set of 

circumstances occurred for this experiment which stemmed ultimately from the 

physical properties of the fuel. 

Firstly, the B100 fuel used in this work was ~6% more dense and had double 

the viscosity of the mineral fuels, Appendix 1 (Table A1.1). Thus there was a 

higher mass of fuel in the cylinder in each combustion cycle and combined with 

the higher viscosity likely meant there was greater fuel penetration and thus likely 

fuel impingement on the cylinder walls. This could then have resulted in fuel 
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dilution of the lubricant, which if sufficiently excessive could then have masked 

any actual increase in lubricant consumption. 

To recount, lubricant consumption rate in this work was measured by 

regularly checking the engine lubricant level and then adding fresh lubricant to 

maintain the level, the lubricant added was then used to compute the 

consumption rate. Consequently, the very low lubricant consumption rate for the 

16.5:1 B100 experiment, Figure 6.12, was a strong indicator for excessive fuel 

dilution of the lubricant. It is therefore possible that when using the factor of 1 for 

the ‘Lubricant Consumption Factor’ for the 16.5:1 B100 experiment, Table 6.5, 

that the true factor was somewhat lower, therefore explaining the much higher 

apparent concentration of total inorganics relative to the other samples as 

described by Figure 6.13. Further, the additional 16.5:1 B100 experiment 

observations: 1) the extremely high 600ppm HC emissions (Table 4.10 Part C) 

and 2) the extreme injector coking for this experiment, Appendix 9; add 

supporting evidence to the postulation that this experiment observed significant 

wall wetting and thus likely fuel dilution of the lubricant and other possible 

mitigating factors that could contribute to the result of Figure 6.12 and Figure 

6.13. 

It is useful therefore to now consider whether there is any additional 

information in the individual element contributions to the total inorganics which 

might assist the understanding of the preceding 16.5:1 B100 experiment finding. 

Referring again to the distribution of elements that comprise the total inorganics 

in the soot samples in Table 6.3; it is possible to re-calculate from this table the 

contribution of each element to the total soot sample inorganics for each sample 

but with sulphur negated to enable the comparison across the three fuels at each 

compression ratio without the masking effect of sulphur. This result is presented 

in Figure 6.14 for 19.5:1 compression and Figure 6.15 for 16.5:1. Figure 6.14 and 

Figure 6.15 also incorporate the equivalent wt % of the lubricant inorganic 

component; taken from Appendix 2 (Table A2.1) to assist the result interpretation. 

Comparison of Figure 6.14 and Figure 6.15 reveals that at both compression 

ratios, the contribution of individual elements to the total wt % inorganics was 

quite similar in terms of the broad pattern. Indeed, there was no specific element 

or series of elements which explain the relatively higher concentration of 

inorganics in the 16.5:1 B100 sample. Rather, it is observed that the 

concentration of elements matches closely the general pattern across the six 

experiments. It is also observed that the concentration of primary soot inorganics 
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(Ca, P, Zn) match fairly closely to the relative concentration of these elements in 

the lubricant. 

 

Figure 6.14: 19.5:1 Exhaust Manifold Bulk Inorganic Contaminants with Sulphur 

Contribution Negated and Including Lubricant Element Concentration (% wt/total % wt) 

(ICP-MS, Corrected) 

 

Figure 6.15: 16.5:1 Exhaust Manifold Bulk Inorganic Contaminants with Sulphur 

Contribution Negated and Including Lubricant Element Concentration (% wt/total % wt) 

(ICP-MS, Corrected) 

If the change in the concentration of each element in the total inorganics of 

each sample is now considered between 19.5:1 and 16.5:1 compression i.e. the 

data in Figure 6.14 is subtracted from the data in Figure 6.15 for each element in 

turn, then this leads to Figure 6.16. Figure 6.16 shows that across all six soot 

samples, the compression ratio reduction acted to increase the relative 
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concentration of (Ca, Mg, P) in the 16.5:1 soots and reduce the relative 

concentrations of (Cu, Fe, Mn, Na, Zn).11  

 

Figure 6.16: 19.5:1 to 16.5:1: Change in Exhaust Manifold Bulk Inorganic 

Contaminants with Sulphur Contribution Negated and Including Lubricant Element 

Concentration (% wt/total % wt) (ICP-MS, Corrected) 

Taken together, Figure 6.16, Figure 6.13 and the earlier Figure 6.9; explain 

that the reduction in compression ratio resulted in an increase in the overall 

concentration of inorganics for all soot, Figure 6.13, and that this increase was 

driven by the further addition of (Ca, Fe, Mg, Na, P, Zn) with the small loss of 

(Cu, Mn) Figure 6.9; irrespective of the fuel. 

The addition of increased Ca was the most significant change followed by 

approximately equal addition of (Fe, P) and then slightly lower addition of (Zn, 

Mg), Figure 6.9. These changes which occurred through the reduction in 

compression ratio then changed the pattern of distribution of elements in the soot 

samples according to Figure 6.16 with (Ca, P) increasing in proportion to the 

other inorganics and (Fe, Mn, Zn) reducing in proportion. However, these 

changes importantly did not grossly change the distribution of elements in the 

soot inorganics, Figure 6.14 and Figure 6.15. 

Thus, as the increase in the concentration of soot inorganics was found to be 

predominantly forced by the addition of more Ca and then (Fe, P, Zn), Figure 6.9; 

it is postulated that the reduction in compression ratio primarily increased the 

relative entrainment of the lubricant derived inorganic contaminates (Ca, P, Zn) 

into the soot which then resulted in a proportionally smaller increase in metals 

                                                
11

 The small reduction in Si is ignored here as this derives from the contamination issues outlined in 

Appendix 8, Section A8.2.2. 
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from the engine metallurgy (Fe, Mg). Secondly, these increases occurred even 

after factoring in the changes in lubricant consumption so the mechanism was 

not governed by lubricant consumption rate but by the mechanisms of the soot-

lubricant interaction occurring at lower compression during combustion. 

The postulation of increased soot-lubricant (hence cylinder wall) interaction at 

the lower compression was supported by several other additional observations. 

Firstly, the lower measured peak cylinder pressure, Figure 6.17 (a), which details 

the observed lower in-cylinder charge density which would have caused 

increased fuel spray tip penetration due to a much weaker ‘wall’ of gas phase 

molecules for the fuel molecules to diffuse through. Increased fuel spray 

penetration would in principle result in the soot forming regions of the spray to be 

generally closer in proximity to the cylinder wall. Lower cylinder gas pressure 

would also have reduced the piston ring force and thereby possibly increased the 

level of residual lubricant on the cylinder walls on the expansion stroke. 

A further consideration is that the reduced gas ring pressure would also likely 

have resulted in increased blowby and on the engine used in this study the 

crankcase breather returned to the engine air intake so increased blowby could 

have caused increased mixing of lubricant molecules into the combustion thereby 

further amplifying the postulated soot-lubricant interaction at the lower 

compression ratio. 

 

 

 

 

 

 

 

 

Figure 6.17: Peak Cylinder Pressure and Duration of Combustion for the Six Rated 

Engine Power Soot Collection Experiments 

The longer duration of combustion, Figure 6.17 (b), could also have increased 

the residence time of any developing/evolving soot in the region of the cylinder 

wall during combustion. This increased soot-lubricant interaction could then have 

resulted in the increase in proportion of both lubricant and engine metallurgy 

(a) (b) 



6 Soot Physiochemical Properties for High and Low Compression Ratio 
6.4 Soot Bulk Elemental Composition 

 

223 

derived inorganic contaminates in the soot, to concentrations greater than 

observed at the higher 19.5:1 compression ratio. 

In respect of the factor 2 higher scaled total inorganics result presented in 

Figure 6.13 for the 16.5:1 B100 soot; it would appear that this proposed increase 

in soot-lubricant interaction must have been somewhat more extensive than that 

which occurred for the two mineral fuels at 16.5:1. This conclusion is supported 

by the observation of extreme HC emissions for this specific experiment, Table 

4.10 Part C, and also it is thought, the significant injector coking that is reported 

in Appendix 9. A compelling additional observation was the evidence of 

significant wall wetting from unburned fuel on the inside of the exhaust manifold 

for the B100 fuel at 16.5:1 compression (Figure A9.4); so it is possible this 

unburned fuel acted to exacerbate the entrainment of inorganics into the soot. 

The specific facets of the B100 combustion at 16.5:1 compression are 

captured via the following conjecture; firstly it can be postulated that there was 

impaired B100 fuel atomisation which stemmed from the reduction in 

compression which reduced the in-cylinder charge density which in turn when 

coupled to the factor 2 higher viscosity of the B100 fuel and 6% high density, 

caused increased mass of fuel contacting the lubricant film on the cylinder wall 

[87]. This then reduced the fuel conversion efficiency which caused a reduction in 

the soot carbonaceous concentration relative to the B100 19.5:1 experiment. The 

increased fuel dilution of the lubricant then encouraged more lubricant to 

combust in the cylinder which increased the concentration of lubricant 

contaminants (Ca, P, Zn, S) in the cylinder which were then in turn entrained in 

the soot as it formed. (The soot collection experiment summary presented in 

Table 4.10, details the measured parameters that support this conjecture). 

This postulated increase in lubricant-soot interaction is therefore believed to 

have been the outline mechanism behind the general increase in concentration of 

soot bulk inorganics for all soots with the reduction in compression ratio. The 

details of this mechanism are however harder to define as accounting for the 

change in lubricant consumption in particular failed to explain the inorganics 

concentration change which is illustrated in Figure 6.13. 

Additionally, there was a distinct lack of sulphur present in the EN590 and 

B100 soot when sulphur was the element of greatest concentration in the 

lubricant, Appendix 2 (Table A2.1). Thus, a further finding from this work is a 

highly likely preferential entrainment into the soot of specific elements from the 
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fuel and lubricant and possibly even the engine metallurgy; though the 

mechanisms governing this remain unknown due to insufficient information. 

Consequently, a full description of the fundamentals of the mechanisms 

occurring within the postulated greater soot-lubricant interaction with lower 

compression ratio cannot be proposed in this work as this requires more 

information about the fuel, lubricant and soot interaction at the cylinder wall. This 

would therefore be a suitable investigation for future research. 

6.5 Soot Surface Acid Functionality 

The results from surface acidic functionality measurements are presented in 

Table 6.6 and are defined for both the total and carboxylic acid concentrations. 

The data for this analysis is drawn from across the exhaust manifold and the DPF 

soot samples as there was insufficient soot mass to determine the soot surface 

acidity for the 16.5:1 exhaust manifold soot samples. Consequently, it is 

necessary in this discussion to separate out the change in acidity caused by the 

reduction in compression ratio from the change caused by the soot evolution in 

the exhaust which is discussed in Chapter 7. Additionally, as stated in Section 

5.6, the B100 surface acidity data was unavailable for the 19.5:1 exhaust 

manifold soot sample. 

Table 6.6: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Surface Acid 

Functionality (Boehm titration) 

 

The results detailed in Table 6.6 indicate that in the case of EN590 soot the 

surface acidity reduced in both carboxylic and total acidity by only 3.2% and 6.6% 

which contrasted with the significant 50.6% and 72.4% reductions in both 

carboxylic and total acidity for the PC9 soot. Thus, the percentage of 

carboxylic/total acidity for EN590 and PC9 soot changed from 29.1% and 64.4% 

at 19.5:1; to 28% and 36% at 16.5:1, thus becoming closer. Interestingly, the 

percentage of carboxylic/total acidity for the 16.5:1 compression B100 soot was 

37% and thus similar to that observed for the PC9 soot at the same conditions. 

Description

19.5:1 CT, EN590 0.621 0.083 0.181 0.008

19.5:1 CT, PC9 1.163 0.010 0.749 0.001

19.5:1 CT, B100 NA NA NA NA

16.5:1 DPF, EN590 0.601 0.045 0.169 0.004

16.5:1 DPF, PC9 0.575 0.004 0.207 0.004

16.5:1 DPF, B100 0.850 0.005 0.311 0.016

Boehm Titration

Total surface 

acids (mmol/g)

stdev 

(mmol/g)

Surface carboxylic 

acids (mmol/g)

stdev 

(mmol/g)
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This indicates that both soot surface O/C ratio and surface sulphur contribute to 

soot surface acidity rather than O/C ratio alone, as the two O/C ratios for these 

soots were quite different, Section 6.3. 

These observations imply that soot surface acidity reflects to a degree the 

O/C ratio and sulphur changes in the soot surface elemental composition 

between these two sets of soot samples. Therefore this supports the earlier 

findings of Chapter 5 and also the findings discussed in the next chapter for the 

soot evolution in the exhaust. Consequently, the change in surface acidity 

detailed in Table 6.6 appear to be indirectly linked to both compression ratio and 

soot evolution in the exhaust by the more fundamental driving physiochemical 

changes such as O/C ratio and surface sulphur concentration. For example: 

1. The reduction in the in-cylinder temperature for the compression ratio 

change was postulated to have effected changes in the O/C ratio, Section 

6.3. 

2. The oxidation catalyst reactions in the exhaust are postulated to have 

resulted in physiochemical changes as indicated by the surface 

compositional change (Section 7.3) and soot morphological change 

(Section 7.5); specifically in regard to PC9 soot surface sulphur 

concentration. 

For the B100 soot it was only possible to compare the surface acidity with the 

other two soots at 16.5:1 compression; however it was possible to use the 

already established relationship between surface O/C ratio to infer the likely B100 

surface acidity at 19.5:1 compression. For example; it can be assumed that the 

total surface acidity for all soots reduced with the reduction in compression ratio 

due to the reduction in surface O/C ratio for all three soots, Section 6.3. Since the 

reduction in surface O/C ratio was more pronounced for the two mineral soots, it 

can also be assumed that the reduction in surface acidity for both of these soots 

was greater than that for the B100 soot. 

The results reported in Table 6.6 support this conjecture as both the mineral 

soots had lower surface acidity at 16.5:1 compression at the DPF. Referral to 

Figure 7.1 in the following chapter shows that the change in the O/C ratio for both 

the mineral soots as they evolved in the exhaust was small relative to the B100 

soot for which the O/C ratio increased significantly. Consequently it can be 

assumed that the surface acidity of the B100 soot at 16.5:1 compression, Table 
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6.6, was the highest due to the extensive oxidation of this soot in the exhaust 

rather than it being caused by the reduction in compression ratio. 

From this postulation it can be surmised that the soot surface acidity for the 

B100 soot at 19.5:1 compression reduced slightly with the reduction in 

compression due to the small reduction in O/C ratio and it then increased 

somewhat as the soot evolved in the exhaust. Therefore, the B100 soot surface 

acidity at 19.5:1 compression was most probably less than 0.850 mmol/g and 

likely just slightly greater than the EN590 soots acidity of 0.621 mmol/g due to the 

slightly higher surface O/C ratio of the B100 soot at the same conditions, Table 

6.2. This consequently defines a relatively small range of 0.621<0.850mmol/g for 

the B100 soot surface acidy at 19.5:1 compression at the exhaust manifold. 

The above reasoning, which is based upon the assumption of a strong 

proportional relationship between the soot surface O/C ratio and surface acidity 

and also surface sulphur and surface acidity, is very important. It is shown later in 

Chapter 9 that this reasoning is based upon fundamental relationships which 

confirm how the above reasoning is a robust prediction of the behaviour of 

surface acidity with the reduction in engine compression ratio. 

6.6 Soot Polycyclic Aromatic Hydrocarbon Profile 

A total of sixteen PAH were investigated in the soot samples and the results 

are presented across Table 6.7 and Table 6.8. These results are similar to the 

surface acidity results in that they are for soots taken from both the exhaust 

manifold 19.5:1 compression ratio samples and the DPF 16.5:1 compression 

ratio samples. Consequently, it is necessary in this discussion to separate out the 

change in PAH caused by the reduction in compression ratio and the change 

caused by the soot evolution in the exhaust as discussed in Chapter 7. 

Table 6.7: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Polycyclic Aromatic 

Hydrocarbon Profile (Naphthalene to Fluoranthene) (GC-MS) 

 

 

Description

19.5:1 CT, EN590 2.990 0.297 0.104 0.048 0.022 1.659 0.000 0.045

19.5:1 CT, PC9 0.031 0.005 0.003 0.000 0.002 0.096 0.000 0.010

19.5:1 CT, B100 0.000 0.000 0.000 0.000 0.002 0.010 0.000 0.003

16.5:1 DPF, EN590 0.000 0.000 0.000 0.770 2.800 1.330 0.000 0.000

16.5:1 DPF, PC9 0.000 1.990 1.440 0.520 1.960 1.870 0.000 0.000

16.5:1 DPF, B100 NA NA NA NA NA NA NA NA

PAH (µg PAH/g)
Naphthalene

1-

methylnapht

halene

2-

methylnaphth

alene

Acenaphthylene 

or biphenylene

Acenaph

thene
Phenanthrene Anthracene Fluoranthene
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Table 6.8: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Polycyclic Aromatic 

Hydrocarbon Profile (Pyrene to Benzo-perylene) (GC-MS) 

 

Figure 6.18 outlines the total PAH concentration (µg PAH/g) from Table 6.8 

for the six soot samples. The absent result for the B100 soot at 16.5:1 is due to 

sample mass limitations and thus it is not possible to be certain of the 

relationship of B100 PAH relative to the mineral fuel soots with the reduction in 

compression ratio. However, the 19.5:1 B100 soot PAH results suggest that the 

concentrations of PAHs in the B100 soot were generally very low by comparison; 

so relative to the EN590 and PC9 soots, any effects would have been very small. 

As reported in Section 5.7, the B100 total PAH concentration is attributed to there 

being no aromatic content in the original fuel, Appendix 1 (Table A1.1). 

 

Figure 6.18: Total PAH for 19.5:1 Exhaust Manifold and 16.5:1 DPF Soot for EN590, 

PC9 and B100 Fuels (GC-MS) 

Figure 6.18 clearly illustrates how the total PAH concentrations observed for 

the EN590 soot varied little with compression ratio and soot exhaust evolution, 

contrasting with the total PAH for the PC9 soot which increased significantly. At 

19.5:1 compression at the exhaust manifold the total PAH for the mineral EN590 

fuel was measured to be a factor of 32.4 greater than observed for the mineral 

PC9 fuel but at the lower compression at the DPF, the PC9 fuel soot total PAH 

was greater by a factor of 1.59. Therefore there was a 6% reduction in the total 

Description

19.5:1 CT, EN590 0.000 0.014 0.006 0.000 0.027 0.000 0.000 0.000 5.212

19.5:1 CT, PC9 0.001 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.161

19.5:1 CT, B100 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.021

16.5:1 DPF, EN590 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.900

16.5:1 DPF, PC9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.780

16.5:1 DPF, B100 NA NA NA NA NA NA NA NA NA

total
PAH (µg PAH/g)

Pyrene
Benz(a)anth

racene
Chrysene

Benzo(b)fluorant

hene

Benzo(k)

fluoranth

ene

Indeno(1,2,3-

cd)pyrene

Dibenz(a,h)a

nthracene

Benzo(g,I,h)

perylene
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PAH for the EN590 fuel soot and a 4732% increase in the total PC9 soot PAH 

content. 

Since the PAH originated from the base fuel and pyrosynthesis during 

combustion (Section 2.4.4), the increased DPF PC9 soot PAH concentration 

suggests this was the result of the compression ratio reduction and/or a 

significant change in non-PAH related components in the soot as the soot 

evolved in the exhaust. In Section 7.4, analysis of the PC9 bulk inorganics 

reveals a significant reduction occurred in the PC9 soot bulk sulphur content 

between the exhaust manifold and DPF due to oxidation in the oxidation catalyst. 

The sulphur which was released from the bulk of the soot was observed to 

increase the concentration of sulphur on the soot surface, Section 7.3, indicating 

that sulphur released from the soot bulk then partially condensed onto the soot 

surface between the oxidation catalyst and DPF. It is therefore postulated that 

part of the 4732% increase in PAH for the PC9 soot in Figure 6.18 is attributable 

to the condensation/adsorption of material released in the oxidation catalyst 

reactions in the exhaust system. 

To ascribe all of the increase in PC9 soot total PAH to the soots evolution in 

the exhaust however cannot be valid as the other feature of the results presented 

in Figure 6.18 is that, relative to the EN590 soot at 19.5:1 compression at the 

exhaust manifold, the PC9 soot had an extremely low PAH content. In the 

previous discussion in Section 6.3 it was postulated that the reduction in 

compression ratio changed the processes by which the PC9 fuel sulphur was 

entrained within the soot and adsorbed onto the surface as the surface sulphur 

reduced 96.8% with the reduction in compression ratio. Therefore, it is intuitive to 

assume that a further linked process also acted to do the opposite and constrain 

the adsorption of PAH onto the soot surface at 19.5:1 compression. 

The low PAH concentration for the PC9 soot at 19.5:1 compression ratio at 

the exhaust manifold was opposite to the high surface sulphur content, then at 

the DPF the situation reversed with the surface sulphur concentration lower, 

Section 7.3, and the PAH concentration significantly increased. It is therefore 

postulated that either the processes which changed the sulphur adsorption on the 

PC9 soot surface also regulated the PAH adsorption or alternatively the sulphur 

itself when adsorbed at sufficient concentration on the soot surface acted to 

inhibit the adsorption of PAH. 
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Therefore in summary; it is very likely that the reduction in compression ratio, 

due to its associated reduction in PC9 soot surface sulphur concentration, also 

resulted in an increase in the surface PAH adsorption. It is also believed that this 

PC9 soot PAH concentration was further increased as the PC9 soot then evolved 

in the exhaust leading to the very significant increase in total PAH concentration 

as measured in the DPF soot sample, Figure 6.18. 

The forgoing hypothesis of the related sulphur and PAH behaviour for the 

PC9 soot is supported by the relatively stable EN590 soot PAH concentration 

between the 19.5:1 exhaust manifold soot sample and the 16.5:1 DPF soot 

sample, Figure 6.18, and the fact that sulphur was not detected on the EN590 

soot surface. 

The significant change in the total PAH concentration for the PC9 mineral fuel 

soot leads to the direct comparison of individual PAH components (µg PAH/g) 

(Table 6.7 and Table 6.8) being difficult. It is therefore appropriate to look at the 

individual soot PAH profile with the PAH concentration calculated as a 

percentage of total sample PAH for each sample and these results are presented 

in Figure 6.19 for the 19.5:1 compression ratio and Figure 6.20 for 16.5:1. 

Figure 6.19 and Figure 6.20 indicate that the PAH profiles of the two mineral 

fuel soots changed markedly with both the compression ratio reduction and 

evolution of the soots in the exhaust. At high engine compression ratio the 

normalised concentrations of PAH for the two mineral fuels were similar and 

distributed largely between Naphthalene to Phenanthrene. By contrast the B100 

PAHs were concentrated in the group Acenaphthene to Chrysene. In Section 5.7 

it is argued that the limited range of PAH in the B100 soot indicated that the lack 

of PAH in the B100 fuel possibly resulted in less complex pyrosynthetic reactions 

by comparison to the two mineral fuels. 

At the lower engine compression ratio for the DPF soot, both the mineral fuels 

presented a much narrower distribution of the detected soot PAH, focussed 

between 1-methylnaphthalene and Phenanthrene. Thus, there was a distinct 

absence of Naphthalene in these low compression DPF soots. Naphthalene is a 

common PAH reported in fuels and its presence at relatively high concentration 

at the exhaust manifold then contrasting with no Naphthalene being detected in 

the DPF sample, provides a clear illustration of the significant effects 

compression ratio, or perhaps more likely the soot evolution, had on the soot 

PAH profile. 



6 Soot Physiochemical Properties for High and Low Compression Ratio 
6.6 Soot Polycyclic Aromatic Hydrocarbon Profile 

 

230 

 

Figure 6.19: 19.5:1 Exhaust Manifold Soot PAH for EN590, PC9 and B100 fuels (GC-

MS) 

 

Figure 6.20: 16.5:1 DPF Soot PAH for EN590, PC9 fuels (GC-MS) 

The very similar total concentration of PAH for the EN590 soot but the 

significant change in PAH distribution was very interesting in that the mechanism 

driving the considerable change in PAH profile for this soot appeared to not 

change the overall concentration in the soot. For the PC9 soot this was not the 

case and yet the change in distribution was not dissimilar therefore supporting 

the earlier suggestion that the PC9 soot PAH total concentration increased 

because some other significant soot contaminate reduced in concentration i.e. 

sulphur. 
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What was not clear however was the precise mechanism and therefore factor 

(i.e. compression ratio/evolution in the exhaust) driving the PAH profile change 

for the mineral soots for these samples though it was more likely to be the result 

of the soot evolution in the exhaust (possibly oxidation in the catalyst) than the 

compression ratio reduction as the PC9 PAH concentration increase was so 

significant and appeared to relate well to the sulphur concentration reduction 

observed in the exhaust which was driven by soot oxidation in the catalyst. 

Thus in summary; it is postulated that the change in PC9 PAH concentration 

was effected by the same processes and factors governing surface sulphur 

concentration change i.e. both compression ratio reduction and soot evolution. 

The significant PAH profile change however is postulated to be primarily the 

result of the evolution and hence oxidation catalyst reactions experienced by the 

soot in the exhaust. This significant change in PAH distribution illustrated 

between Figure 6.19 and Figure 6.20 would be a very interesting area to study in 

future work. 

6.7 Concluding Remarks 

This chapter has considered the influence the reduction of engine geometric 

compression ratio had on the soot physiochemical properties for three different 

fuels. One of the most significant observations was that there was a general 

reduction in the soot surface O/C ratio, regardless of fuel, in response to the 

compression ratio reduction and appeared to be the inverse of the change in the 

AFR. The change in O/C ratio for all soots was also opposite to the exhaust O2 

concentration change but did align with a reduction in NOx. It is postulated that 

the reduction in compression ratio acted to reduce the peak and average in-

cylinder temperature and this in turn both reduced the formation of NOx and also 

therefore the reaction rate between the NOx and the soot in the formation of 

surface functional groups. The O/C ratio reduction was more significant for both 

mineral fuel soots and this is thought to be the consequence of significant 

morphological distinction of the B100 soot in terms of it gross 

graphitic/amorphous nature and therefore the availability and distribution of the 

surface functional groups which chemisorb O2. 

The compression ratio reduction was associated with a 97% reduction in PC9 

soot surface sulphur concentration at the exhaust manifold which in turn saw the 

surface total acidity reduce by 50%. This reduction in PC9 soot surface sulphur 

did not appear to amplify the reduction in surface oxygen when compared to the 
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EN590 soot and thus the sulphur-oxygen proportionality relation previously 

advocated in Section 5.3 could be somewhat more complex. 

Together, the soot surface O/C ratio and sulphur concentration findings 

implied that lower engine compression can be used as a tool to influence soot 

surface reactivity through influence on the in-cylinder temperature based soot 

formation and oxidation processes. 

The reduction in compression ratio was suspected of causing an increase in 

lubricant consumption for all rated engine power soot collection experiments and 

this was most likely because of increased blowby. This increase in lubricant 

consumption was believed to be a contributing factor to the clear step increase in 

the fraction of bulk inorganic contaminate in all soots. However, it is also 

postulated that the reduction in compression ratio also affected the soot-lubricant 

interaction mechanism by increasing the relative entrainment into the soot of the 

lubricant derived inorganic contaminates (Ca, P, Zn) in comparison to the metals 

from the engine metallurgy (Fe, Mg). 

There was a small change in the concentration of total PAH in the EN590 

soot samples between the exhaust manifold at 19.5:1 and the DPF at 16.5:1; 

however in the case of the PC9 soot there was a significant increase of 4732% in 

the total concentration of PAH. It is thought likely that the reduction in 

compression ratio which caused a significant reduction of PC9 soot surface 

sulphur concentration also resulted in an increase in the PC9 soot surface PAH 

adsorption with further increases then occurring as the soot evolved in the 

exhaust with condensation/adsorption of material released in the oxidation 

catalyst reactions. The PAH profiles of the two mineral fuel soots changed 

markedly with both the compression ratio reduction and exhaust evolution with a 

much narrower distribution of PAH. It was concluded that the soot evolution was 

more significant in the change in PAH distribution than compression ratio.
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Chapter 7 

7 Soot Evolution between the Exhaust Manifold 

and DPF 

7.1 Introduction 

This chapter presents the results and analysis for the soot sampled from both 

the engine exhaust manifold and the DPF in the exhaust at 16.5:1 compression 

ratio with the engine fuelled with a total of three different fuels at rated engine 

power. The aim of this chapter is to understand the processes of evolution of the 

soot in the exhaust through the changes in soot physiochemical properties and 

isolating the differences in this evolution across the three fuels. The samples 

were collected during the experiments described in Section 3.1.5.3. 

7.2 Data Selection and Grouping 

It was infeasible to undertake all soot physiochemical analysis procedures on 

either of the 19.5:1 or 16.5:1 compression ratio exhaust manifold soot samples 

due to limited sample mass, Section 3.6.8. Thus, both the 19.5:1 and 16.5:1 

exhaust manifold soot sample results are required for the analysis in this chapter 

and Table 7.1 summarises the soot sample result grouping used. The main point 

to note is the need to use the 19.5:1 exhaust manifold soot sample results for the 

investigation of the soot surface acidity and PAH evolution in the exhaust and 

thus in these two cases there is also the change in compression ratio to factor 

into the analysis. 

Table 7.1: Exhaust Soot Evolution Analysis; Data Selection and Grouping 

 



7 Soot Evolution between the Exhaust Manifold and DPF 
7.3 Soot Surface Elemental Composition 

 

234 

7.3 Soot Surface Elemental Composition 

Table 7.2 summarises the soot surface carbon, oxygen, sulphur and chlorine 

as well as the ratios of surface oxygen/carbon and sulphur/carbon for the three 

fuels investigated at the 16.5:1 compression ratio at both the exhaust manifold 

and the DPF. In this table CT denotes the soot sample was collected with a 

ceramic thimble and DPF denotes the soot was collected with a DPF, this 

notation is used throughout this work in the results presentation. 

Table 7.2: 16.5:1 Exhaust Manifold and DPF Soot Surface Elemental Composition 

Comparison (XPS) 

 

Table 7.2 is divided into two parts with the upper half detailing the surface 

elemental results for the exhaust manifold soot samples (Section 3.5.1) and the 

lower half detailing the results for the soot sampled approximately 5m down the 

exhaust at the DPF after the diesel oxidation catalyst (Section 3.5.2). 

The PC9 fuel soot had a higher surface concentration of oxygen and a higher 

O/C ratio than the EN590 fuel soot, both at the exhaust manifold and further 

down the exhaust at the DPF. The PC9 soot was also observed to have a lower 

surface carbon concentration than the EN590 fuel, again at both locations in the 

exhaust. The AFR for the 16.5:1 EN590 and PC9 experiments were close, 

measured at 20.7 and 20.5 respectively (Table 4.10 Part A), and thus the 

difference observed in the soot O/C at the exhaust manifold and the change in 

the exhaust was not directly linked to the AFR difference between these 

experiments but more closely linked to the sulphur adsorbed on the surface of 

the PC9 soot. 

This AFR and soot O/C ratio conclusion is strengthened when the surface 

oxygen concentration of the B100 soot is also considered. At the exhaust 

manifold the O/C ratio for B100 soot was higher than observed for EN590 soot 

and closer to that observed for the PC9 soot even though the 16.5:1 B100 

experiment AFR was 7.2% lower (Table 4.10 Part A) than for the EN590 fuel test. 

However, when the B100 soot had reached the DPF, the surface oxygen 

Description ratio precision ratio precision

16.5:1 CT, EN590 94.1 5.9 0.0627 0.0114

16.5:1 CT, PC9 91.6 8.4 0.050 0.0917 0.0120 0.001 0.0055

16.5:1 CT, B100 92.4 7.6 0.0823 0.0118

16.5:1 DPF, EN590 92.8 7.2 0.0776 0.0117

16.5:1 DPF, PC9 92.0 8.0 0.300 0.0870 0.0119 0.003 0.0055

16.5:1 DPF, B100 84.2 15.8 0.050 0.1876 0.0143 0.001 0.0060

wt% C wt% O wt% S wt% Cl O/C S/C
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concentration had increased to 15.8% and the O/C had increased 128%. This 

dramatic increase in the surface oxygen content of the B100 soot indicated that 

the B100 soot underwent far more significant transformation in the exhaust than 

experienced for either of the two mineral diesel fuel soots. These changes in the 

O/C ratio are illustrated in Figure 7.1 with the estimated error included. 

The review of literature in Chapter 2 reported that there has been observed 

an increased rate of oxidisation for biodiesel soot with it being attributed to nano-

scale crystalline structural differences in the soot [18] (graphitic/amorphous soot 

nucleolus and outer shell) or alternatively to the surface oxidative activity [17]. 

Lamharess et al. [112] concluded that the initial morphology of B100 soot is not 

sufficient to explain the oxidation characteristics and that the surface 

concentration and type of oxygen groups are also important. 

 

Figure 7.1: 16.5:1 Soot Surface (O/C) Change from the Exhaust Manifold to DPF for 

EN590, PC9 and B100 Fuels (XPS) 

Figure 7.1 illustrates that for the EN590 and B100 soot, the evolution of the 

surface of the soot in the exhaust included an increase in the O/C ratio but for the 

PC9 fuel it was observed to reduce although the change fell within the error 

bounds of the measurement. This suggests that the oxidative process was similar 

for the EN590 and B100 soot but a factor 1.8 times greater (based on O/C ratio 

change) in the case of the latter, implying that the B100 soot had a far higher rate 

of oxidation. Such a result is supported by many similar observations reported in 

literature [16, 17, 111, 319, 320, 321]. 

For the PC9 soot the reduction in O/C ratio occurred due to an increase in the 

surface carbon concentration and a reduction in the surface oxygen which 
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proceeded in parallel with an increase in sulphur from 0.05 to 0.3, a factor 6 

increase or 500%. Thus, it was logical to assume that sulphur was the causative 

factor for the disagreement in the O/C behaviour relative to the other soots as 

they evolved in the exhaust. However, if a simple model is assumed in which 

oxygenated sulphur compounds (e.g. H2SO4) produced in the oxidation catalyst 

reactions are then subsequently adsorbed on the soot surface, then an increase 

in the soot surface oxygen concentration would be expected. The actual 

reduction in surface oxygen therefore indicates a more complex process 

occurred and it is postulated that this process was also responsible for the 

substantially reduced surface acidity of the PC9 soot at the DPF, Section 7.6 (i.e. 

potential for increased basic surface sites). 

A potential explanation for the fall in PC9 soot surface oxygen was that 

sulphur migrated (possibly through pores in the soot) to the surface of the soot 

and then oxidised with surface oxygen and free oxygen in the exhaust in the 

oxidation catalyst and then finally volatilised. Such a mechanism would cause the 

reduction in bulk sulphur (as per the observations discussed in the proceeding 

section) and also the reduction in surface oxygen which was observed. It would 

be possible to test this in future studies by sampling both before and directly after 

the diesel oxidation catalyst over a wider range of exhaust temperatures. Clearly 

therefore, the PC9 soot surface sulphur and also bulk sulphur (as is discussed in 

the proceeding section) were central to the evolution of the PC9 soot being 

distinct from the evolution of the other mineral fuel EN590 soot. 

The sulphur concentration was also observed to increase on the surface of 

the B100 soot as it was conveyed down the exhaust with the concentration 

increasing from zero sulphur at the exhaust manifold to a very low 0.050% weight 

concentration at the DPF. Sulphur was not detected on the surface of the EN590 

soot across all experiments and since both the EN590 and B100 fuels had (<10 

ppm) sulphur content, Appendix 1 (Table A1.1), the sulphur on the B100 soot 

surface at the DPF appeared to originate from a source other than the fuel itself. 

It was therefore likely that this sulphur was contamination derived from the 

exhaust system or the DPF. Since it only occurred for the B100 soot, it is 

postulated that it may be a consequence of the very high B100 HC emissions 

(Table 4.10 Part C) which possibly encouraged the entrapment of foreign 

contaminates from the exhaust system onto the soot. 

For all the 16.5:1 soot samples, chlorine was not detected though it was 

observed at 19.5:1 for the PC9 fuel soot as detailed in Section 5.3 where is was 



7 Soot Evolution between the Exhaust Manifold and DPF 
7.4 Soot Bulk Elemental Composition 

 

237 

proposed the chlorine was a possible external contaminate of the sample during 

post experimental sample handling and processing. 

In summary, the surface elemental analysis comparison between the exhaust 

manifold soot and soot from 5 meters down the exhaust at the DPF revealed a 

significant change in the soot surface composition with the evolutionary pathway 

being strongly dependent on the original fuel. These observations and findings 

are therefore of potential practical interest to diesel engine aftertreatment 

development, especially when a mineral and biodiesel fuel mix needs to be 

considered. 

7.4 Soot Bulk Elemental Composition 

Table 7.3 presents the percentage weight of inorganics for the bulk 

composition of the exhaust manifold and DPF sampled exhaust soot at 16.5:1 

compression ratio; this data has been converted to the percentage contribution of 

each element to the total sample inorganics, Table 7.4. All elements with a wt % 

> 0.001% (10ppm) are reported. 

Table 7.3: 16.5:1 Exhaust Manifold and DPF Soot Bulk Elemental Composition (% 

weight) (ICP-MS, Corrected)
12

 

 

Table 7.4: 16.5:1 Exhaust Manifold and DPF Soot Bulk Elemental Composition (% 

weight/total % weight) (ICP-MS, Corrected) 

 

The re-representation of the data in Table 7.3 to the elemental percentage 

weight/total percentage weight presented in Table 7.4 greatly assists the analysis 

of the soot transformation in the exhaust as the most significant change in total 

inorganics which was observed in the work reported herein occurred when soot 

transited between the exhaust manifold and DPF. 

                                                
12

 Table 7.3 and Table 7.4 present corrected ICP-MS results; this involved negating foreign element 

contamination which was identified in some samples (Refer to Appendix 8). 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.000 0.056 0.000 0.000 0.438

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.000 0.077 0.000 0.000 1.660

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.000 0.560 0.000 0.000 6.364

16.5:1 DPF, EN590 0.990 0.080 3.420 0.064 <0.001 0.060 0.690 0.250 0.000 2.870 0.130 0.060 8.614

16.5:1 DPF, PC9 0.990 0.080 4.680 0.068 <0.001 0.080 0.510 0.320 0.000 2.250 0.130 0.060 9.168

16.5:1 DPF, B100 5.250 0.840 9.620 0.730 <0.001 0.890 2.300 1.500 0.000 5.300 0.210 1.230 27.870

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

16.5:1 CT, EN590 57.078 0.000 15.068 5.251 0.000 0.000 9.817 0.000 0.000 12.785 0.000 0.000 100.000

16.5:1 CT, PC9 19.277 0.000 6.627 1.265 0.000 0.000 4.337 63.855 0.000 4.639 0.000 0.000 100.000

16.5:1 CT, B100 45.255 0.000 16.970 5.500 0.000 7.071 16.185 0.220 0.000 8.799 0.000 0.000 100.000

16.5:1 DPF, EN590 11.493 0.929 39.703 0.743 0.000 0.697 8.010 2.902 0.000 33.318 1.509 0.697 100.000

16.5:1 DPF, PC9 10.798 0.873 51.047 0.742 0.000 0.873 5.563 3.490 0.000 24.542 1.418 0.654 100.000

16.5:1 DPF, B100 18.837 3.014 34.517 2.619 0.000 3.193 8.253 5.382 0.000 19.017 0.753 4.413 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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The total percentage weight of inorganics in each of the six soot samples 

from Table 7.3 is presented in Figure 7.2 and indicates that the total inorganic 

contaminant in the B100 soot was clearly higher than observed for the mineral 

soots at both sample locations in the exhaust. The factor difference between the 

B100 soot total inorganic contaminant to the average of the two mineral soots 

was 6.1 at the exhaust manifold and 3.1 at the DPF; this indicated that the two 

mineral fuel soots evolved to have a greater relative inorganic content compared 

to the B100 soot as they travelled through the exhaust in addition to the 

substantial increase in inorganics observed in each soot. 

 

Figure 7.2: 16.5:1 Exhaust Manifold and DPF Soot Total % Weight Inorganics (ICP-MS, 

Corrected) 

It is useful to revisit the earlier findings from Section 6.4 to understand why 

the B100 soot inherently had such a higher concentration of inorganic content at 

the exhaust manifold: To recount, it was postulated to have been caused by the 

physical properties of the B100 fuel encouraging the soot forming regions in the 

cylinder to interact in a more significant way with the lubricant film on the cylinder 

wall; this being the result of increased fuel spry penetration into the cylinder 

which arose due to the higher density and viscosity of the B100 fuel, Appendix 1 

(Table A1.1). 

It is postulated that this greater soot-lubricant interaction acted to increase the 

entrainment of lubricant derived inorganics in the soot, however this entrainment 

process appeared to favour some lubricant inorganics elements more than others 

i.e. there was evidence of high concentrations of (Ca, P, Zn) but little or no 

sulphur and yet sulphur was the most dominant of the ICP-MS analysed 

inorganics present in the lubricant, Appendix 2 (Table A2.1). Thus, upon initial 
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analysis of the total inorganics in the DPF samples for the same experiments; it 

was clear that this higher concentration of inorganics in the B100 sample 

persisted as the soot travelled the exhaust to the DPF, Figure 7.2. 

Previously in both Section 5.4 and Section 6.4, a technique was used to 

analyse the soot bulk elemental composition analytically to evaluate the removal 

of the effects of any potential differences in fuel consumption rate, exhaust soot 

concentration and lubricant consumption rate between experiments. This 

involved multiplication of the ICP-MS results of Table 7.4 with the FSF (Section 

4.3.2) and a lubricant consumption factor. However, this methodology has not 

been adopted in the discussion in this section as will be explained. 

It was shown earlier in the analysis of the O/C ratio in Section 7.3 that there 

was a 1.8x greater increase in B100 soot O/C ratio compared to the mineral 

diesel soots indicating that there was increased oxidation and potentially loss of 

carbonaceous material as the soots evolved in the exhaust. This finding was then 

considered against the position in the exhaust where the AVL 415 smoke meter 

measured the exhaust soot concentration, since the AVL 415 measures simply 

the carbonaceous soot part. For the soot collection tests at rated engine 

conditions, the AVL 415 sample probe was located approximately 5 meters 

upstream of the DPF, Section 3.5.2.1, and in fact only 2 meters from the exhaust 

manifold. Thus, if there was any significant oxidation and loss of carbonaceous 

soot part between the AVL 415 sample location and the DPF, then using the AVL 

415 smoke meter measurement in the FSF calculation to adjust the DPF ICP-MS 

results would lead misleading observations. On account of the likelihood of this 

being an issue, the FSF methodology has not been applied to the ICP-MS results 

analysis in this section. 

To understand how the soot total inorganics changed in the exhaust for the 

three fuels, the change in total weight of inorganics (Table 7.3) for individual fuel 

soots between the exhaust manifold and DPF was calculated and was also 

expressed as a factor and the results from this analysis are presented in Figure 

7.3. 
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Figure 7.3: 16.5:1 Soot Total % Weight Inorganics Change between the Exhaust 

Manifold and the DPF (ICP-MS, Corrected) 

Figure 7.3 reveals that the change in the total wt % of inorganics for the two 

mineral diesel soots was quite similar with the change observed for the B100 

soot being significantly higher. However, due to the initially lower concentration of 

inorganics in the EN590 soot compared to the PC9 soot, the increase in wt % 

inorganics constituted a factor 19.7 increase for EN590 soot whereas for PC9 

soot the factor increase was 5.5 and was closer to the factor increase observed 

for the B100 soot. Thus, there was potentially an important difference in the 

evolution of the two mineral soots between the exhaust manifold and DPF which 

is analysed later in this section. 

To understand these observed changes in the soot overall inorganic content, 

the changes in the individual inorganic elements of the soots between sample 

locations need to be considered. Figure 7.4 presents the change in the wt % 

between the exhaust manifold and DPF for each element (Table 7.3) for the three 

different soots. Figure 7.4 illustrates that the percentage change in the individual 

elements was generally positive for all elements apart from the PC9 soot sulphur 

and also that the B100 soot elemental increase was generally greater for all 

elements in respect to the changes observed for the two mineral fuel soots. Apart 

from the PC9 sulphur, the two mineral soots were observed to experience 

increases in concentration at a similar overall level for all elements with only 

subtle differences. 
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Figure 7.4: Change in Soot (% Weight) Inorganics between the Exhaust Manifold and 

DPF at 16.5:1 for EN590, PC9 and B100 fuels (ICP-MS, Corrected) 

The B100 fuel specification, Appendix 1 (Figure A1.1), details that the most 

significant inorganic contaminants of the B100 fuel were in the order of highest to 

lowest: sodium, calcium, phosphorus and magnesium. For all four of these 

elements, increases were observed for the B100 soot. Assuming that in the 

exhaust system the increase in soot inorganics concentration should only arise 

from materials from which the exhaust was made e.g. iron; these increases in 

original fuel borne elements suggest the soot was evolving to loose mass other 

than the inorganics analysed i.e. increases in the concentration of sodium, 

calcium, phosphorus and magnesium through addition of these elements in the 

exhaust system was very unlikely with there being no source. This hinted very 

strongly that the increases in the concentration of soot bulk inorganics occurred 

mostly as the result of the loss of the carbonaceous fraction of the soot and that 

this process occurred for all the soots but was more significant in the case of the 

B100 soot. 

The observed changes in surface O/C ratio reported in Section 7.3 and 

attributed to soot oxidation provide indirect evidence to support this conclusion. 

As the changes in the bulk inorganics were observed to be far more significant 

for the B100 soot and thus similar to the surface O/C change, the observed 

increase in B100 soot inorganic concentration added further evidence in support 

for the postulation that there was an increased rate of B100 soot oxidation 

between the exhaust manifold and DPF relative to the mineral fuel soot. 
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Due to the much higher overall increase in inorganics in the B100 soot, it is 

not possible from Figure 7.4 to ascertain how the postulated oxidation process 

influenced the individual elemental contribution to the soot inorganics. To 

determine this, the changes in element wt % presented in Figure 7.4 were 

calculated as a percentage of the change in total inorganics in each sample i.e. 

for EN590 Ca: ((0.990-0.250)/(8.614-0.438))x100 = 9.05%. The results from this 

analysis are presented in Figure 7.5. 

 

Figure 7.5: Change in Soot (% wt/total % wt) Inorganics between the Exhaust 

Manifold and DPF at 16.5:1 for EN590, PC9 and B100 fuels (ICP-MS, Corrected) 

From Figure 7.5 it can be observed that the three soots evolved in the 

exhaust somewhat differently to how the soots responded to the reduction in 

compression ratio, Section 6.4. First, the two most significant elemental increases 

in the soot inorganics for all soots were (Fe, Zn) and the increases in these 

elements were roughly in the same proportion to the overall inorganics increase 

for all soots but with the PC9 soot observed to have the largest increase in iron. 

This initial result indicates that there were additional processes occurring in 

parallel to the earlier postulated soot oxidation (i.e. carbonaceous part reduction). 

Since the bulk inorganic ICP-MS measurement was performed on the 

collected soot samples as a whole, there was a high probability that the sample 

could contain elements that derived from the environment in which the soot 

transformed in the exhaust. An example of this was the iron, zinc, aluminium and 

to a lesser extent cadmium highlighted in Figure 7.5. The iron and the zinc were 

present at (<20%) of total inorganics for all soots at the exhaust manifold, Figure 

7.6, whilst at the DPF, both iron and zinc increased in their contribution to total 

inorganics to be over 30% for iron and over 15% for zinc for all soots, Figure 7.7. 
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Figure 7.6: 16.5:1 Exhaust Manifold Soot Bulk Elemental Composition (% 

weight/total % weight) (ICP-MS, Corrected) 

 

Figure 7.7: 16.5:1 DPF Soot Bulk Elemental Composition (% weight/total % weight) 

(ICP-MS, Corrected) 

The extent of the increases in concentration of iron and the zinc suggests that 

these elements must have been added to the soot as it evolved in the exhaust 

and must therefore have originated from the exhaust material. The iron can be 

attributed to the steel in the exhaust and the zinc was from the galvanised 

surface coating of the exhaust pipe extension which was required to reduce the 

temperatures at the DPF to limit soot regeneration, Figure 3.31. The other source 

of iron was the DPF which was made of cordierite (Mg,Fe)2Al4Si5O18. The DPF 

material could therefore also be responsible for the increase in aluminium in the 

DPF soot samples as illustrated in Figure 7.7. 
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Comparing Figure 7.6 and Figure 7.7, it is clear that for the majority of 

elements other than iron and zinc, the relative contribution of calcium and 

magnesium to total weight of inorganics reduced as the soot travelled the 

exhaust thus illustrating the significance of the contamination from the exhaust 

system.  

The zinc contamination in the exhaust manifold samples, Figure 7.6, likely 

derived from the lubrication as described in Section 5.4 and Section 6.4. The 

lubricant was also an additional source of calcium and phosphorous. The fact 

that calcium could come from both the fuel and the lubricant was the likely reason 

why the contribution of calcium to the soot total inorganic elements was so 

significant for the exhaust manifold soot (Figure 7.6) and then reduced in 

concentration sharply as the soots gained principally iron and zinc from the 

exhaust metallurgy as the soot evolved in the exhaust, Figure 7.7. 

The contribution of phosphorous to total inorganics for both sample positions 

can be seen from Figure 7.6 and Figure 7.7 to remain similar with a general 

overall loss in the concentration of phosphorous in respect to total inorganics as 

the soots evolved. There was however a larger reduction in phosphorous for the 

B100 fuel and is it believed this occurred as there was an overall greater increase 

in (Ca, Cu, Mg, Na, Cd) for the B100 soot which is discussed later in this section. 

Interestingly, from comparison of Figure 7.6 and Figure 7.7 it is observed that 

the calcium reduced more significantly for the EN590 soot than for the PC9 soot. 

This change was not caused by a significant difference in the actual amount of 

calcium in these soots but was due to the very high percentage of sulphur in the 

PC9 soot at the exhaust manifold which then decreased significantly as the soot 

passed through the oxidation catalyst. The significance of this reduction in PC9 

soot bulk sulphur is illustrated in Figure 7.8. 

Figure 7.8 depicts how the PC9 soot bulk sulphur reduced from 63.9 wt % at 

the exhaust manifold to 3.5 wt % at the DPF, a 95% reduction. This reduction in 

sulphur is postulated to have been caused by the oxidation catalyst reducing 

sulphate or SOF prior to the DPF. This change in PC9 soot sulphur was the 

principle observation which separated the transformational behaviour of the 

mineral fuel EN590 and PC9 soots in the exhaust and also affected the relative 

elemental changes between the two types of soot as observed for calcium and 

magnesium in Figure 7.6 and Figure 7.7. 
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This change in PC9 soot bulk sulphur correlated with the change reported 

earlier in Section 7.3 for the surface sulphur concentration where it was observed 

to increase 500% as the soot evolved in the exhaust between the exhaust 

manifold and DPF. Taken together, it is postulated that these contrasting bulk 

and surface sulphur findings resulted from either sulphur which migrated from the 

interior of the soot or oxidised sulphur compounds (H2SO4) which were 

condensing onto the surface of the soot downstream of the oxidation catalyst. 

 

Figure 7.8: 16.5:1 Exhaust Manifold and DPF Soot Sulphur Content (wt %/total wt %) 

(ICP-MS, Corrected) 

The concentration of sulphur in the EN590 and B100 soot at the DPF 

suggests that both soots had been exposed to additional sulphur when transiting 

the exhaust as the concentration in both soots at the exhaust manifold was 

originally negligible, Figure 7.8. Therefore the earlier postulated reduction in soot 

carbonaceous fraction through oxidation was likely not the sole cause these bulk 

sulphur increases. The increase in bulk sulphur for the EN590 soot however does 

not correlate with the surface sulphur data in Table 7.2 which shows that no 

surface sulphur was detected for either the exhaust manifold of DPF EN590 soot. 

For the B100 soot, the surface and bulk sulphur changes in the exhaust are in 

agreement. 

It is postulated that the sulphur behaviour for the EN590 soot is explained by 

there being some very small almost negligible sulphur contamination from the 

engine cylinder when the soot formed which then increased in proportion of the 

soot bulk inorganics by the oxidation of the soot and carbonaceous part reduction 

as the EN590 soot moved down the exhaust. For the B100 soot, it is thought that 
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the same process occurred but additional sulphur was also adsorbed onto the 

surface of the soot as a result of contamination from the exhaust system. 

Appendix 9 (Table A9.1) shows that in terms of test sequencing, the 16.5:1 B100 

experiment occurred before the EN590 experiment so there was increased 

likelihood of a gradual flushing of the exhaust system of sulphur compounds as 

these rated engine power 16.5:1 tests progressed. The sulphur contamination 

having had originated from the earlier 19.5:1 compression ratio PC9 experiment. 

So significant was the reduction in the bulk concentration of sulphur in the 

PC9 soot as it travelled the exhaust it is important to re-consider the contribution 

this made to the earlier analysis of the change in total soot inorganics presented 

in Figure 7.3. Thus, presented in Figure 7.9 is the change in total wt % inorganics 

of the soots and the associated factor increase this represents for each fuel with 

sulphur negated. 

 

Figure 7.9: 16.5:1 Soot Total % Weight Inorganics Change between the Exhaust 

Manifold and the DPF (with Sulphur Negated) (ICP-MS, Corrected) 

From Figure 7.9 it is clear that the change in soot total inorganics for both 

mineral fuels were actually closer than initially indicated with sulphur ignored, 

Figure 7.3. This suggests that these two soots actually followed a similar 

evolutionary process in respect to the majority of ICP-MS inorganics, other than 

sulphur, but the marginally greater factor increase for EN590 soot suggested that 

there was some differentiation such as a potentially higher rate of oxidation. 

Due to the similarities between the EN590 and PC9 soot total inorganics 

evolution (other than the PC9 sulphur), it was appropriate to review these two 

soots side-by-side in more detail to help provide further insight into the sulphur 
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increase in EN590. With sulphur negated, Figure 7.9 illustrates that there 

remained a proportionally larger factor increase in the non-sulphur inorganics in 

the EN590 soot relative to the PC9 soot. It was postulated that the greater 

increase in non-sulphur inorganics in the EN590 soot sample had several 

possible explanations: 

1. The reduction of the carbon component of the EN590 soot in the exhaust 

was greater than for the PC9 soot 

2. The EN590 soot through some process became entrained with relatively 

more metals from the exhaust system metallurgy 

3. Unburned lubricant was present in the exhaust due to a small leak from 

the turbocharger oil seals (there were several turbocharger failures over 

the course of the work reported herein due to the extended operation at 

maximum engine power and elevated IMAT in the soot collection 

experiments) 

The analysis earlier in Section 7.3 of the change in surface O/C ratio found 

that the O/C ratio for the EN590 soot had increased and the for the PC9 soot it 

had decreased so explanation 1 is likely. The individual element % wt change to 

total sample inorganics presented in Figure 7.5 has been re-calculated with 

sulphur negated leading to the result presented in Figure 7.10. From Figure 7.10 

it can be observed that there is no consistent pattern of increase in % weight 

across all the elements for the EN590 soot relative to the PC9 soot implying that 

there was no significantly higher carbonaceous fraction loss for the EN590 soot. 

Rather, Figure 7.10 reveals that there were increases in (Ca, P, Z) when 

comparing EN590 to PC9. Additionally, the % wt increase in metals (Cu, Mg, Al, 

Cd) were all very similar for both soots whilst (Fe, Zn) were quite different. It was 

thus postulated that the slightly higher increase in concentration of non-sulphur 

inorganics was most likely the result of the presence of lubricant in the exhaust. 

To investigate this, the (PC9 sulphur negated) change in wt % of inorganics 

for both EN590 and PC9 from Figure 7.10 were compared in combination with 

the inorganics profile for the lubricant Figure 7.11. 
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Figure 7.10: Change in Soot (% wt/total % wt) Inorganics between the Exhaust 

Manifold and DPF at 16.5:1 for EN590, PC9 and B100 fuels (with Sulphur Negated) (ICP-

MS, Corrected) 

From Figure 7.11 it can be observed that there was a potential link between 

the differences in the change of inorganics, with the greater increase for the 

EN590 soot aligned to all four principal lubricant inorganic components. Thus, the 

difference in the wt % change of each element for both EN590 and PC9 was 

computed to understand how the differences scaled against the concentrations of 

the lubricant inorganics, this result is presented in Figure 7.12. 

 

Figure 7.11: Change in Soot (% wt/total % wt) Inorganics between the Exhaust 

Manifold and DPF at 16.5:1 for EN590, PC9 fuels (with Sulphur Negated) vs. Lubricant 

Inorganics (% wt) (ICP-MS, Corrected) 
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Figure 7.12: Difference in En590 and PC9 Soot (% wt/total % wt) Inorganics 

between the Exhaust Manifold and DPF at 16.5:1 (with Sulphur Negated) vs. Lubricant 

Inorganics (% wt) (ICP-MS, Corrected)
 13

 

The result in Figure 7.12 confirms that the increases in (Ca, P, Zn) for the 

EN590 soot vs. PC9 soot comparison align well to the primary elements of the 

lubricant. Therefore, EN590 soot could certainly have been exposed to lubricant 

in the exhaust and that this exposure resulted in the differences in the non-

sulphur inorganics evolutionary changes in the exhaust for the mineral fuel soots. 

However, the failure of the elemental increases in the EN590 vs. PC9 soot 

inorganics to match precisely the concentration of the elements in the lubricant, 

Figure 7.12, suggests that the lubricant had not simply been adsorbed by the 

soot but was a more complex process. A more complex process could be 

attributed to the oxidation catalyst reactions prior to the soots reaching the DPF. 

Indeed, it is expected that the process of entrainment of elements from free 

lubricant in the exhaust is quite different to the soot-lubricant interaction occurring 

in the cylinder during combustion due to the different temperature and pressures 

and chemical processes. For example, revisiting the ICP-MS results discussion of 

Section 5.4 and Section 6.4 reveals that although (Ca, Zn) concentration in the 

exhaust manifold soots compared favourably to the lubricant concentrations, 

there was a distinct lack of sulphur (apart from high sulphur PC9 fuel soot) and 

inconsistent phosphorous concentrations. The DPF results comparison for 

EN590 vs. PC9 soot in Figure 7.12 clearly shows a different relationship to the 

lubricant element wt % concentrations. 

                                                
13

 In Figure 7.12 the difference in sulphur % change between EN590 and PC9 is represented as the 

increase in sulphur for EN590 between the exhaust manifold and DPF for clarity. 
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Thus, exhaust lubricant contamination appears to be part of the explanation 

for the sulphur increase for EN590, however the B100 soot was observed to have 

an even greater increase in sulphur concentration as it passed along the exhaust, 

Figure 7.5. To also attribute this to lubricant contamination of the exhaust is 

harder to prove due to the much greater change in inorganics relative the EN590 

and PC9 soots, Figure 7.3. However it is suspected on the basis of the strong 

indication of the influence of lubricant on the EN590 soot and the turbocharger 

being the same unit for these experiments. 

Comparison of Figure 7.10 (sulphur negated) and the earlier Figure 7.5 

(sulphur inclusive), reveals that for the B100 soot there was a characteristic 

increase above that seen for EN590 and PC9 soots in the elements (Ca, Cu, Mg, 

Na, Cd) with very similar contributions of (Fe, Zn). Therefore, relative to the total 

inorganics for each soot, the elements (Ca, Cu, Mg, Na, Cd) all increased in the 

B100 soot more than was observed for the mineral fuel soots. Set against the 

quite similar, by comparison, increase in (Fe, Zn); these observations add 

important evidence that supports the general postulation that the B100 soot had 

a much greater loss of carbonaceous soot fraction than the mineral soots as the 

soots moved from the exhaust manifold to the DPF. Thus, the main constituents 

of the B100 soot at the exhaust manifold (Ca, Cu, Mg, Na, Cd) increased 

somewhat more in concentration as more carbonaceous material was lost but a 

similar proportion of (Fe, Zn) was gained from the exhaust metallurgy. 

To provide quantification of this proposed increased rate of B100 soot 

oxidation and to more clearly illustrate the effect of this increased oxidation in the 

individual element concentrations; the change in wt % calculated from Table 7.3 

for the transition from the exhaust manifold to DPF as shown in Figure 7.4 has 

been scaled by a factor 0.5 and this result is shown in Figure 7.13. 

Figure 7.13 reveals that for roughly the equivalent increase in (Fe, Zn) 

contamination from the exhaust metallurgy; the B100 soot experienced 

proportionally greater increases in (Ca, Cu, Mg, Na, Cd), thus providing a simple 

form of illustration of the necessary increased rate of oxidation of this soot. 

From the earlier Figure 7.5 where the computed change in wt % between the 

exhaust manifold and DPF is presented as a percentage of the total inorganics 

increase in each soot; it is possible to estimate the factor increase between the 

average of the EN590 and PC9 soot response and that of the B100 soot for the 
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distinguishing elements (Ca, Cu, Mg, Cd); doing so leads to ratios of 1.2, 3.8, 3.1, 

7.5 for (Ca, Cu, Mg, Cd) respectively. 

 

Figure 7.13: Change in Soot (% weight) Inorganics between the Exhaust Manifold 

and DPF at 16.5:1 for EN590, PC9 and B100 fuels with B100 multiplied by 0.5 (ICP-MS, 

Corrected) 

These ratios basically describe the factor by which the increases in these 

elements were more pronounced for the B100 soot vs. the mineral fuel soots. 

They therefore provide an estimate for the equivalent factor increase in the loss 

of carbonaceous soot fraction during exhaust evolution between the mineral and 

biodiesel soots and this therefore appears to be in the range 1.2 to 7.5 but likely 

to be somewhere in the middle i.e. around 3-4. This compares to the factor of 1.8 

derived in Section 7.3 from analysis of the O/C ratio change. As both of these 

ratios derive from alternative physiochemical soot property analysis and therefore 

relate to difference physiochemical changes, disagreement in these estimates 

are to be expected but they are nonetheless broadly in agreement. 

An interesting final observation comes from a comparison of the exhaust soot 

total inorganics for each soot at the DPF with the TGA reported ash for the same 

samples (the TGA results were discussed in Section 5.8, Table 5.12). This 

comparison is illustrated in Figure 7.14 and the first observation is that the 

relative proportions of the inorganics match favourably between the two 

measurement techniques. Indeed, the scale factors from the ICP-MS to TGA 

results for the two sets of data are 1.6, 1.4, 1.5 for EN590, PC9 and B100 

respectively. Thus, the two result sets have favourable agreement in respect of 

the relative concentrations of total inorganics between the samples. The average 

factor of 1.5 higher concentration reported by TGA is explained by the TGA 
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analysis capturing all non-combustible components of the soot whereas the ICP-

MS analysis is limited to the 12 elements reported in this study. 

 

Figure 7.14: Comparison of 16.5:1 DPF Soot Sample ICP-MS Total % weight 

Inorganics with the TGA % weight of Ash 

In summary, the much lower initial total percentage weight of inorganic 

contamination of the EN590 fuel soot relative the PC9 was due to the lower 

sulphur content from the fuel. The subsequent evolution of the PC9 soot in the 

exhaust saw the sulphur concentration fall significantly and these sulphur 

changes dominated the relative change in EN590 and PC9 soot total percentage 

weight of inorganics. The B100 soot was observed to have much more significant 

increase in the total weight of inorganics relative to the mineral soots as it 

evolved in the exhaust and this aligned with the higher rate of oxidation implied 

by the change in the O/C ratio. Thus, the total inorganics in the B100 soot 

changed the most due to the greater loss of the carbonaceous soot fraction. 

7.5 Soot Morphology 

Presented in Table 7.5 are the complete morphological results for the soot 

collected during the 16.5:1 compression ratio experiments at the exhaust 

manifold and the DPF for the three fuels investigated. 

Table 7.5: 16.5:1 Exhaust Manifold and DPF Soot Morphological Characteristics 

 

BJH Adsorption N2 Pycnometry Primary Particle Diameter

Description Suface area (SBET) (m
2/g) Error Average pore diameter (Å) Density (ρ) (g/cm3) Error Dpp = 6/(ρ SBET) (nm)

16.5:1 CT, EN590 262.4843 1.3344 116.156 1.9902 0.0117 11.486

16.5:1 CT, PC9 335.8769 1.9077 140.194 2.0011 0.018 8.927

16.5:1 CT, B100 35.6094 0.1757 256.73 2.8907 0.0243 58.289

16.5:1 DPF, EN590 353.4348 2.4715 140.95 2.0846 0.0082 8.144

16.5:1 DPF, PC9 393.3226 2.3225 129.26 2.0623 0.0098 7.397

16.5:1 DPF, B100 235.9619 1.4264 147.132 2.3607 0.0142 10.771

BET Method
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7.5.1 Surface Area 

The surface area data from Table 7.5 is presented in Figure 7.15 and shows 

that the measured surface area increased at the DPF for all three fuel soots. 

 

Figure 7.15: 16.5:1 CT & DPF Soot Surface Area (SBET) for EN590, PC9 and B100 (BET) 

At the exhaust manifold the average surface area of the mineral diesel soot 

was 299.2 m2/g and the biodiesel soot was found to have a surface area 88.15% 

lower at 35.6 m2/g. At the DPF the average surface area of the mineral diesel fuel 

soots was 373.4 m2/g, an increase of 24.8% whilst the surface area of the 

biodiesel soot was 36.8% lower at 236 m2/g. Thus, the surface area of the B100 

soots increased by a factor of 6.6 in the exhaust whilst the mineral soots surface 

areas increased by 1.3 for EN590 and 1.2 for PC9 fuel soots. These significant 

differences in the change of the observed surface area between the exhaust 

manifold and DPF, suggests that the biodiesel soot underwent far more 

significant physical transformation in the exhaust than the two mineral fuel soots. 

It is postulated that this is additional evidence of ‘accelerated’ oxidation of the 

carbonaceous fraction of the B100 soot as asserted earlier in Section 7.3 and 

Section 7.4. 

The proceeding sections identified evidence for oxidation processes 

transforming the soot in the exhaust and it is hypothesised that these processes 

could have acted to reduce the primary particle size of the soot through removal 

of the ordered graphene planes that form the outer shell of the soot particles (i.e. 

the mineral diesel soots) and/or hollowing out of internal voids (i.e. the B100 soot 

models proposed in Section 5.5.3). These processes also potentially influenced 
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the porosity by increasing the size of existing pores and creating new pores. The 

aggregate structure of the soot also likely transformed and all of these physical 

soot changes could have contributed to the change in the surface area. A 

combination of these processes likely resulted in the increase in the mineral fuel 

soot surface area in the exhaust as illustrated in Figure 7.15. 

A further possible mechanism of soot surface transformation that needs to be 

considered was the possibility of absorbed HCs on the soot surface being 

removed as the soot passed through the oxidation catalyst. For example, 

Ishiguru et al. [131] reported a six fold increase in surface area (Table 2.3), which 

is very similar to the 6.6 increase shown in Figure 7.15 for the B100 soot, when 

soot samples were heated up to 550°C and this was attributed to the release of 

the volatile fraction absorbed on the surface of the soots. A similar finding was 

also reported in by Otto et al. [135] and others [130, 132, 133]. 

In the case of the N2 adsorption technique utilised for the BET surface area 

measurement, any residual adsorbed SOF would have filled the soot pores and 

therefore given rise to a low pore volume and surface area measurement as is 

reported for the 16.5:1 B100 soot. In Section 5.5.2 this possibility is discussed in 

detail and here it was concluded that the collective B100 soot physiochemical 

results reported in this work are indicative of a physical dry-soot explanation 

rather than SOF residues on the soot when the N2 adsorption experiments were 

performed. 

Consequentially, the soot surface area increases illustrated in Figure 7.15 are 

postulated to be the result of surface oxidative action and therefore the results 

describe the increase in surface area of the dry largely carbonaceous soots as 

the oxidative processes, primarily in the oxidation catalyst, reduced the 

carbonaceous fraction of the soot. For both the mineral diesel soots this process 

appeared to be similar in terms of the physical changes that lead to the increase 

in surface area (likely overall primary particle diameter reduction) whereas for the 

B100 soot there was clearly an additional action which as is discussed in the next 

section was the change in porosity. 

Clearly, the results in Figure 7.15 are indicative of quite different mineral and 

biodiesel soot morphological transformation in the exhaust and it is postulated 

that this stemmed from differences in the original structural form and surface 

state of the soots they it exited the cylinder. 
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7.5.2 Porosity 

Soot surface oxidative action was postulated in the forgoing section to explain 

the soot surface area transformation and as will be shown in this section, the 

changes which this describes were not universal. For example, the mineral diesel 

soot porosity change illustrated in Figure 7.16 shows that the porosity of the 

EN590 soot, measured by the average pore diameter, increased whilst porosity 

was observed to reduce for both the PC9 and B100 two fuel soots. This suggests 

that physical changes other than porosity also occurred to account for the surface 

area changes summarised in Figure 7.15. 

 

Figure 7.16: 16.5:1 CT & DPF Soot Average Pore Diameter (Å) for EN590, PC9 and 

B100 (BJH) 

The opposed change in porosity for the two mineral diesel soots illustrated in 

Figure 7.16 was the only notable divergence in the change in morphological 

characteristics for these soots as they evolved in the exhaust. Equation 3.6 

shows that the average pore diameter is proportional to pore volume and 

inversely proportional to surface area. Therefore, the increase in pore diameter 

for the EN590 soot equated to a substantial increase in pore volume such that 

the pore volumes of the EN590 and PC9 soots were much closer at the DPF. 

This is interesting as it implies that the pore structures of these two soots evolved 

to become closer and it is possible this was coupled to the reduction in PC9 soot 

sulphur in the soot bulk and 500% increase in sulphur on the surface as 

described earlier in Section 7.4 and Section 7.3. 

One of the most important observations from the porosity results outlined in 

Figure 7.16 was how the B100 soot porosity was much closer to the porosity 
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observed for the two mineral diesel soots at the DPF compared to the exhaust 

manifold. This was also the case with the surface area illustrated earlier in Figure 

7.15. Indeed, the porosity of the B100 soot at the exhaust manifold was a factor 

1.25 greater than the two mineral soot porosity results. Together, these 

observations are indicative of the B100 soot surface being physically distinct from 

the surfaces of the two mineral fuel soots at the exhaust manifold. Then, as the 

B100 soot evolved in the exhaust to increase in both surface O/C concentration 

(Section 7.3) and bulk inorganics (Section 7.4), and in both cases much more 

significantly than the two mineral diesel soots; the B100 soot also evolved 

morphologically such that the differentiation from the mineral fuel soots observed 

at the exhaust manifold was somewhat reduced based on the morphological 

characteristics investigated in the work herein. 

At this point it is appropriate to recall the discussion earlier in Chapter 5. In 

Section 5.8 it was stated that the 16.5:1 exhaust manifold B100 soot had a 

greater fraction of SOF which was characterised by a more significant loss of 

mass in the room temperature to 400°C segment of the thermogravimetrical 

examination and also greater HC emissions, Table 4.10 Part C. As a result, it 

was postulated in Section 5.5 that this increased SOF could have influenced the 

N2 adsorption based morphological examinations of the soot (surface area, 

porosity) and in so doing have been the principal cause of the significant 

morphological distinctions at the exhaust manifold. However, it was concluded in 

Section 5.5 that this could not be the sole cause of the B100 soot morphological 

distinction. 

This conclusion drew upon the observations earlier in this chapter which 

include the increased in both O/C ratio and bulk inorganic concentration 

discussed in Section 7.3 and Section 7.4 respectively. This is because it is 

considered that these other non-morphological soot properties support there 

being a fundamentally different B100 transformation behaviour in the exhaust 

compared to the mineral fuel soots which is not simply the effect of increased 

SOF. It can therefore also be postulated that there must be underlying these 

observations, a B100 soot characteristic at the exhaust manifold that can account 

for these significant evolutionary distinctions of the B100 soot. 

Clearly, the morphological distinctions of B100 soot surface area and porosity 

and also density at the exhaust manifold, rather than being an artefact in the 

measurements caused by potential SOF adsorption, must actually be the key to 

understanding the B100 soot distinction from the two mineral soots. 
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Consequently, the changes in the B100 soot morphology in the exhaust are 

intriguing as they reveal insights into how the B100 soot physically transformed 

and therefore how the B100 soot physically compared to the mineral soots at the 

exhaust manifold and the DPF. 

7.5.3 Density 

Figure 7.17 reveals that in addition to the forgoing surface area and porosity 

distinctions of the B100 soot, the density behaviour between the exhaust 

manifold and the DPF was also unique. The opposite density change for the 

B100 soot is considered very important as it is believed that this provides insight 

into the differences in internal soot core structural transformation in the exhaust. 

 

Figure 7.17: 16.5:1 CT & DPF Soot density for EN590, PC9 and B100 (N2 pycnometry) 

Summarising the results presented in Figure 7.17, it is observed that the 

skeletal density of the PC9 soot increased by 3.1% and this change was 

therefore similar to the 4.7% increase observed for the EN590 soot. However, 

referring back to Section 7.4, it was observed that the PC9 soot also experienced 

a 69.8% reduction in the bulk sulphur content set against an overall increase in 

soot bulk inorganics concentration. This contradictory change in PC9 soot 

sulphur is a possible indication that the PC9 core soot structure was originally 

distinct from that of the EN590 soot and then also evolved differently. This 

postulation is supported by the opposed change in pore diameter for the two 

soots, Figure 7.16. In contrast to the mineral soot density changes, the B100 soot 

density reduced by 18.3%. 
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It is useful at this point to recount that it was highlighted in Section 2.4.2.3 

that Park et al. [152] found the heating of soot to remove volatile components 

resulted in a higher soot density and generally more stable soot density 

measurements. Therefore it is a possibility that any changes in soot SOF fraction 

between the exhaust and the DPF could have influenced the density 

measurement. 

The first step to understand the soot density findings depicted in Figure 7.17 

is to consider the impact of the significant increase in soot bulk inorganics 

concentration that occurred for all three soots as they transited the exhaust, 

Section 7.4. Part of this was attributed to oxidation which acted to reduce the 

carbonaceous fraction and in turn increase the bulk inorganic concentration. This 

was then augmented by the aggregation of iron and zinc from the exhaust 

metallurgy and it was this later process which appeared to be of greater 

significance. Therefore the bulk inorganic fraction increased for all three soots 

and the elements which increased the most were iron and zinc which have a 

much greater elemental density than carbon. 

Consequently, for all soots the loss of carbonaceous fraction and the growth 

of the inorganics fraction should in principle have acted to increase the soot 

density and indeed this is what is observed for the EN590 and PC9 soots. In 

contrast, the B100 soot density falls and yet it has by far the most significant 

increase in inorganics fraction. The only way to reconcile this is to conclude that 

trapped inter-particle voids [141] (Section 2.4.2.2) must have been forming in the 

B100 soot as the soot transited the exhaust (i.e. trapped voids would result in the 

N2 pycnometry method over-estimating the skeletal volume, Section 3.6.4.3, 

thereby giving a lower density measurement). Therefore, the B100 soot structure 

must have evolved such that the soot became more akin to the hollowed out soot 

core with intact outer shell in the form of that described by Song et al. [16]. 

Referring back again to Section 5.5.3, there were two B100 soot physical 

descriptions proposed to explain the differences in the B100 soot at the exhaust 

manifold, these are repeated here for convenience: 

B100 Soot Model 1: The B100 soot had undergone far more oxidation than 

the mineral soots when sampled due to an inherent higher rate of oxidation 

for the B100 soots and that this oxidation had opened up the small surface 

pores and internal voids in the soot thus creating a soot similar to that 

described by Song et al. [16] with internal voids that were connected to the 
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surface allowing the N2 molecules to enter. Thus, the B100 soot had very few 

trapped voids thereby giving rise to the relatively high density measurement. 

Since the pores were opened up, the total pore volume and soot surface area 

would be low as was observed. 

B100 Soot Model 2: Alternatively, the B100 soot primary particles could have 

had a far more regular graphene plane internal arrangement with fewer 

isolated internal voids than was the case for the mineral fuel derived soot. 

This was then combined with a low surface porosity which also resulted from 

the highly regular arrangement of the graphene planes. This would in 

principle give rise to soots with small surface area, low pore volume and 

higher density as observed but if this is how the B100 soots were structured 

physically, then it is opposite to the description derived from TEM 

micrographs by Song et al. [16]. 

It is possible to take both these models and to theorise what would happen to 

these soots as the oxidation processes continues as the soot transited the 

exhaust to the DPF. The main consideration is that the B100 soot density 

reduction demands the increase in trapped internal pore volume. Additionally, it is 

worth noting that Zerda et al. [137] studied the heating of soot to temperatures 

between 400-500°C and report that the decomposition of the soot causes the 

opening or more cavities. Consequently, it can be postulated: 

For soot model 1; the soot is already well advanced in terms of the opening 

of pores and internal voids so for this model to be valid, the soot cannot be so 

significantly hollowed out at the exhaust manifold to enable trapped internal 

voids to further form in the soot. 

For soot model 2; this model is more feasible in that the extensive oxidation 

of the B100 soot in the exhaust acted to create the internal voids in the highly 

regular soot core in addition to creating new pores on the surface thereby 

also increasing the surface area and pore volume. 

Thus, in these two scenarios, model 2 soot is actually moving in the direction 

of the model 1 soot but it is doing so from a quite different initial soot structure 

which better conforms to the overall B100 soot findings. It is therefore postulated 

that model 2 is the more likely candidate for the B100 soot at the exhaust 

manifold and which also fits the observations for the B100 soot evolution. 

However, a quite different explanation can also be devised in which the B100 

soot at the exhaust manifold were highly agglomerated due to the known high 
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SOF fraction acting to bind the primary soot particles together. Thus, when the 

soots were examined using the N2 adsorption techniques, the highly 

agglomerated primary particles presented a low surface area and porosity as 

significant areas of the primary particles were touching and could not be exposed 

to the N2 gas. In this way, tightly packed primary particles would have acted like 

a much larger singular particle which may explain why the estimated particle size 

was so large, Table 7.5. Then as these B100 soots oxidised in the exhaust and 

passed through the oxidation catalyst the SOF was removed and the tight 

aggregate structure broke apart increasing the exposed surface area and then 

the physical oxidation processes of soot model 1 proceeded to open up the 

surface pores thus reducing the pore volume. 

One issue with this alternate proposal is the very high exhaust temperatures 

at the confluence point of the exhaust manifold where the soot samples were 

sampled from. Table 4.10 Part B details that the exhaust temperatures were in 

excess of 530°C for the rated engine condition of the soot collection experiments 

and thus at such a temperature the presence of absorbed volatiles would have 

been negligible or possibly non-existent as shown by Ishiguro et al. [131]. 

However it is possible that as the soot was then transported from the exhaust 

manifold down the sample line to the ceramic thimble, volatiles were able to 

condense and then adsorb onto the soot surface. This is possible because the 

average ceramic thimble temperature when the soot was collected was 153.5°C 

for these experiments; ‘CT Temp’ Table 4.10 Part B. 

Several sources in literature report that biodiesel fuels produce a higher SOF 

fraction compared to conventional mineral diesel fuels [266, 296, 306] and Song 

et al. [17] suggest that higher SOF may result in a much tighter aggregate soot 

structure which would also act to reduce the isotherm-BET determined surface 

area, so this postulation is highly feasible. Interestingly, it is also reported that 

biodiesel based fuels lead to exhaust volatiles with higher molecular weights and 

higher boiling points than for mineral fuels [326] (which agrees with the TGA 

findings Section 5.8). Therefore it was possible that more of the B100 fuel 

volatiles condensed on the soot earlier in the sampling system sample line than 

occurred for the mineral fuels, thus further increasing the B100 soot fraction of 

volatiles at the ceramic thimble and DPF. Additionally, the reduced B100 

carbonaceous soot mass would almost certainly have encouraged greater SOF 

adsorption on individual particles subject to the temperature and saturation 

conditions in the sampling system [6, 24]. 
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Thus in summary, there are several alternate models which can partly explain 

the B100 soot morphological distinctions in comparison to the EN590 and PC9 

mineral fuel soots observed in the work herein. These alternate models arise as 

there is not enough information to rule out specific scenarios. It is therefore 

concluded that to more fully understand the actual physical structural differences 

between the B100 and mineral fuel soots, additional soot morphological 

examination methods such as TEM are necessary. 

However, the results reported herein describe fundamental physical 

differences between B100 and mineral diesel soot which are present at the 

exhaust manifold and therefore instilled right from the initial B100 soot inception 

and formation processes in-cylinder. These differences then absolutely govern 

the behaviours of these soots as they evolve in the exhaust, particularly the 

greater reduction of the carbonaceous fraction in the B100 soot which would 

have in turn been a factor in the greater than 80% reduction in exhaust soot 

concentration relative to the mineral diesel fuels, Chapter 4. Therefore the 

findings of this section support the work reported by Boehman et al. [306] and 

Wal et al. [18] wherein they conclude that there exists a structure-property 

relationship between soot nanostructure and oxidation reactivity. 

7.5.4 Primary Particle Diameter 

As was described earlier, the soot observed at the DPF exhibited higher 

surface area than those at the exhaust manifold. Physically, this was indicative of 

the reduction in primary particle diameter and Figure 7.18 confirms that indeed 

the estimated mean particle diameters for the soots were seen to reduce 

between the exhaust manifold and DPF. 

Again, the primary particle diameter estimations for the two mineral fuels 

were quite similar. In the case of the PC9 fuel these observations when 

combined with the generally increased exhaust soot concentration at the rated 

power condition (Table 4.10 Part A) implied that the total particle number count 

for the PC9 soots was higher than the other fuel soots at the rated power 

condition. 

The factor 6.6 increase in B100 soot surface area in the exhaust system 

between the exhaust manifold and DPF and the factor 1.2 reduction in density, 

combined to reduce the B100 soot mean particle diameter estimation by a factor 

5.4. Thus, at the DPF the morphological results for the three soots suggested 

that the B100 soot had evolved physically such as to be similar to the mineral 
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diesel soots in regards to its morphological description. However, the B100 soot 

retained a distinctly lower surface area so the closer alignment in overall 

morphological results was not necessarily indicative of similar soot structure. 

 

Figure 7.18: 16.5:1 CT & DPF Soot Primary Particle Diameters Est. for EN590, PC9 and 

B100 (spherical particle assumption) 

In Section 2.4.2.4 it was identified that the quoted range in literature for 

primary soot diameters is 15-30 nm, therefore the estimates using the method 

outlined in Section 3.6.4.4 proved to be low at both the exhaust manifold and the 

DPF for the majority of the soots characterised. The primary particle estimation 

method (Equation 3.9) is based on the assumption of spherical non-porous 

particles and thus fails to consider the effects of porosity change and any 

aggregation of the particles. 

As has been discussed through the course of this chapter and also Chapter 5 

and Chapter 6, soot porosity is highly dynamic during oxidation and since 

porosity is not considered in Equation 3.9, the validity its application to estimate 

diesel engine soot particle size can be questioned. Based on the findings of the 

work reported herein, it is advised that Equation 3.9, which is also reported 

elsewhere for soot (e.g. Lapuerta et al. [136], Table 2.7), is not sufficiently 

reliable or accurate for application to diesel engine soot. It is recommended that 

direct measurement methods such as TEM be employed in engine soot research 

to measure soot primary particle diameter. 

In summary, the morphological evolution of the two mineral fuel soots in the 

exhaust appeared to be quite similar with the exception of an increase in the 

average pore diameter for the EN590 soot which acted to align the total pore 
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volume of the mineral soots at the DPF. The B100 soot was in contrast very 

distinct at the exhaust manifold and then evolved such that its morphological 

characteristics became closer to the mineral soots but still remained distinct at 

the DPF. These observations are captured in the presentation of the combined 

morphological characteristics in Figure 7.19 for the three fuel soots. In Figure 

7.19 the circular markers are scaled in diameter to represent surface area. 

 

Figure 7.19: 16.5:1 CT & DPF Surface Area (SBET), Soot Average Pore Diameter (Å) and 

Primary Particle Diameter for EN590, PC9 and B100 

7.6 Soot Surface Acid Functionality 

The data for the analysis of soot surface acidity with soot evolution in the 

exhaust is drawn from across the high compression ratio exhaust manifold soot 

samples and the low compression ratio DPF soot samples as there was 

insufficient soot mass to determine the soot surface acidity for the 16.5:1 exhaust 

manifold soot samples. Additionally, as stated previously in Chapters 5 and 6, for 

the same reason the B100 surface acidity data was unavailable for the 19.5:1 

exhaust manifold soot sample. Consequently, it is necessary in this discussion to 

distinguish the change in acidity caused by the soot evolution in the exhaust from 

the change caused by the reduction in compression ratio, Section 6.5. The 

results from surface acidic functionality measurements are presented in Table 7.6 

and are defined for both the total and carboxylic acid concentrations. 
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Table 7.6: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Surface Acid 

Functionality (Boehm titration) 

 

The results detailed in Table 7.6 indicate that in the case of EN590 soot the 

surface acidity reduced in both carboxylic and total acidity by only 3.2% and 6.6% 

respectively which contrasted with the significant 50.6% and 72.4% reductions in 

both carboxylic and total acidity for the PC9 soot. Thus, the percentage of 

carboxylic/total acidity for EN590 and PC9 soot changed from 29.1% and 64.4% 

respectively at the exhaust manifold to 28% and 36% at the DPF, thus becoming 

closer. Interestingly, the percentage of carboxylic/total acidity for the B100 soot at 

the DPF was 37% and thus similar to that observed for the PC9 soot at the same 

sample location. This indicated that both soot surface O/C ratio and sulphur 

contributed to soot surface acidity rather than O/C ratio alone as the two O/C 

ratios for these soots were quite different, Section 7.3. 

Thus, as was postulated in Section 6.5, these observations implied that the 

surface acidity reflected to a degree the O/C ratio and sulphur changes in the 

soot surface elemental composition between these two sets of soot samples 

(Section 6.3 and Section 7.3). The change in soot surface acidity detailed in 

Table 7.6 appeared to therefore be indirectly linked to both compression ratio and 

soot evolution in the exhaust by these more fundamental driving physiochemical 

changes i.e. the reduction in the in-cylinder temperature for the compression ratio 

change, Section 6.3, and the physiochemical changes in the exhaust as indicated 

by the surface compositional (Section 7.3) and soot morphological (Section 7.5) 

changes. 

In Section 6.5 is was postulated that the surface acidity for the exhaust 

manifold B100 soot in Table 7.6 was most probably less than 0.850 mmol/g (the 

B100 DPF soot surface acidity) and likely just slightly greater than the EN590 

soots acidity of 0.621 mmol/g at the exhaust manifold due to the slightly higher 

surface O/C ratio of the B100 soot at the same conditions and also the low 

surface sulphur concentration of the B100 soot. This postulation was built upon 

Description

19.5:1 CT, EN590 0.621 0.083 0.181 0.008

19.5:1 CT, PC9 1.163 0.010 0.749 0.001

19.5:1 CT, B100 NA NA NA NA

16.5:1 DPF, EN590 0.601 0.045 0.169 0.004

16.5:1 DPF, PC9 0.575 0.004 0.207 0.004

16.5:1 DPF, B100 0.850 0.005 0.311 0.016

Boehm Titration

Total surface 

acids (mmol/g)

stdev 

(mmol/g)

Surface carboxylic 

acids (mmol/g)

stdev 

(mmol/g)
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the proposed proportional relationship between surface O/C ratio and surface 

acidity which is expanded in far greater detail in Chapter 9. 

The observations for the changes in the contribution of the carboxylic acid to 

the total acidity are very interesting. For the EN590 soot, the carboxylic acid 

fraction was 29.1% at the exhaust manifold and 28% at the DPF and the total 

acidity reduced from 0.621 to 0.601 mmol/g. So for this mineral fuel soot there 

was a small reduction in total acidy which hardly changed the relative contribution 

of carboxylic acid following both the reduction in compression ratio and soot 

evolution in the exhaust. This reflects the fact that for this soot there was no 

sulphur observed on the surface at either the exhaust manifold (Section 6.3) or 

DPF (Section 7.3) and that the surface O/C ratio reduced from 0.0805 to 0.0776 

g/mol. 

In contrast for the PC9 soot, the total acidity reduced from 1.163 to 0.575 

mmol/g with the carboxylic fraction reducing from 64.4% to 36%. For this soot, 

the surface sulphur concentration reduced from 1.545 to 0.05 wt % and then 

increased again to 0.3 wt % with the reduction in compression ratio and the 

subsequent evolution in the exhaust. The surface O/C ratio also reduced from 

0.1121 to 0.0870. Thus, for the PC9 soot the reduction in contribution of 

carboxylic acid to the total aligns with the reduction in surface sulphur 

concentration and it is postulated therefore that the carboxylic acid component is 

strongly influenced through the presence of sulphates on the soot surface. i.e. it 

is likely that increases in surface sulphur proportionally increase the carboxylic 

acid and thus the total acidity of the soot. 

However, at the DPF the total acidity for the PC9 soot was lower than that of 

the EN590 soot even though the PC9 soot had a higher surface O/C ratio and a 

surface sulphur concentration of 0.3 wt %. For this soot the carboxylic acid 

fraction was 36% and thus higher than the 28% of the EN590 soot. Thus, for this 

PC9 DPF soot sample, the higher carboxylic acid content did not lead to a higher 

total acidity as was the case at the exhaust manifold. It is postulated that this was 

because the chemistry of the adsorbed sulphur in the PC9 DPF soot was 

different to that if the exhaust manifold soot, possibly being basic rather than 

acidic, which thus reduced the total acidity to below that which is seen with the 

EN590 soot with no surface sulphur present. Support for this postulation can be 

derived from the analysis of Section 7.3 in which it was observed that PC9 

surface sulphur at the exhaust manifold appeared to increase the O/C ratio but at 

the DPF the surface sulphur appeared to reduce the O/C ratio. 
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This different sulphur chemistry could be explained by the surface of the PC9 

soot at the exhaust manifold having been produced in the high temperature in-

cylinder reactions whereas the sulphur on the surface of the DPF soot is likely to 

be from sulphates released when the soot passed through the oxidation catalyst 

in the exhaust. Clearly, from these observations and hypothesis, the presence of 

sulphur in diesel fuel has the potential to significantly change the surface 

functional groups on the soot and that the effect of the sulphur could change with 

the conditions under which it is adsorbed onto the soot. 

Therefore to summarise; the surface acidity changes from the exhaust 

manifold soot to the DPF soot detailed in Table 7.6 are postulated to be the 

culmination of the following processes: 

1. The compression ratio reduction (reduced peak in-cylinder temperature) 

and the resultant reduction of surface O/C ratio for all soots (Section 6.3) 

acted to reduce the surface acidity of all three soots in proportion to the 

reduction in surface O/C ratio (refer to Chapter 9 for the quantitative 

analysis which justifies this). 

2. The compression ratio reduction also acted to reduce the PC9 soot 

surface sulphur concentration by 96.8% and this then caused a significant 

further reduction in surface acidity in addition to the reduction caused by 

process 1 outlined above. As the PC9 soot surface sulphur concentration 

became almost negligible; it is postulated that the PC9 soot surface 

acidity aligned to the acidity of the equivalent EN590 and B100 soot with 

the surface acidy therefore primarily controlled through the surface O/C 

ratio. From Table 6.2; the 16.5:1 PC9 exhaust manifold soot would 

therefore still have had the highest acidity due to it retaining the highest 

surface O/C ratio but it would have been much closer to the other two 

soots. 

3. As these three soots evolved in the exhaust from the exhaust manifold to 

the DPF there would have been a process of chemisorption of oxygen to 

the soot surface, Figure 7.1. However, this process proceeded differently 

between the mineral and biodiesel soots with the B100 soot experiencing 

an increase in surface O/C ratio of approximately 1.8 times that of the 

mineral fuel soots. Consequently, the surface acidity of the B100 soot 

increased more significantly as the soots evolved in the exhaust and this 

appeared to be related to the significant B100 soot morphology changes 

in the exhaust (Section 7.5) which in turn were postulated to derive from a 
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different structural composition of the B100 soot which was established 

during soot inception and formation during combustion. 

4. The PC9 soot evolved in the exhaust to lose about 69.8% of its original 

bulk sulphur content (Section 7.4) whilst at the same time the surface 

sulphur concentration increased by 500% due it was postulated to 

oxidation reactions in the oxidation catalyst and the condensation of 

sulphates onto the soot surface between the catalyst and the DPF. 

Compared to the EN590 soot at the DPF, the PC9 soot had a slightly 

higher O/C ratio and the presence of this surface sulphur but the total 

surface acidity of the EN590 soot was higher and yet the carboxylic 

concentration lower. Thus, the sulphates adsorbed onto the PC9 soot in 

the exhaust did not result in the same significant increase in soot surface 

acidity which occurred when the sulphur was adsorbed into the soot 

surface in-cylinder during combustion. This indicates that the composition 

of the surface sulphur compounds and chemistry were different between 

the exhaust manifold and DPF soots, leading to increases and decreases 

in soot surface acidity respectively. The effect of the high concentration of 

sulphur was however by far the more significant. 

The above reasoning, which is based upon the assumption of a strong 

proportional relationship between the soot surface O/C ratio and surface acidity 

and also surface sulphur and surface acidity, is very important and it is shown 

later in Chapter 9 that this reasoning is based upon fundamental quantifiable 

relationships derived through the work reported herein which detail how the 

above reasoning is a confident explanation of the behaviour of surface acidity 

with evolution of the soot in the exhaust. 

7.7 Soot Polycyclic Aromatic Hydrocarbon Profile 

The PAH results related to exhaust soot evolution, like the surface acidity 

results, are for soot samples taken from both the exhaust manifold at high 

compression and from the DPF at low compression. Consequently, it is 

necessary in this discussion to separate out the change in PAH caused by the 

soot evolution in the exhaust from the change caused by the reduction in 

compression ratio (Section 6.6). A total of sixteen PAH were investigated in the 

soot samples and the results are presented across Table 7.7 and Table 7.8. 
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Table 7.7: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Polycyclic Aromatic 

Hydrocarbon Profile (Naphthalene to Fluoranthene) (GC-MS) 

 

Table 7.8: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Polycyclic Aromatic 

Hydrocarbon Profile (Pyrene to Benzo-perylene) (GC-MS) 

 

The total PAH concentrations (µg PAH/g) from Table 7.8 for the six soot 

samples are illustrated in Figure 7.20. 

 

Figure 7.20: Total PAH for 19.5:1 Exhaust Manifold and 16.5:1 DPF Soot for EN590, 

PC9 and B100 Fuels (GC-MS) 

The limited sample mass for the B100 16.5:1 soot sample precludes that the 

PAH for this sample could not be investigated so it is not possible to be certain of 

the relationship of B100 PAH relative to the mineral fuels soots with soot 

evolution in the exhaust. However, the three 19.5:1 exhaust manifold soot results 

indicate that the concentrations of PAHs in the B100 soot were generally very low 

Description

19.5:1 CT, EN590 2.990 0.297 0.104 0.048 0.022 1.659 0.000 0.045

19.5:1 CT, PC9 0.031 0.005 0.003 0.000 0.002 0.096 0.000 0.010

19.5:1 CT, B100 0.000 0.000 0.000 0.000 0.002 0.010 0.000 0.003

16.5:1 DPF, EN590 0.000 0.000 0.000 0.770 2.800 1.330 0.000 0.000

16.5:1 DPF, PC9 0.000 1.990 1.440 0.520 1.960 1.870 0.000 0.000

16.5:1 DPF, B100 NA NA NA NA NA NA NA NA

PAH (µg PAH/g)
Naphthalene

1-

methylnapht

halene

2-

methylnaphth

alene

Acenaphthylene 

or biphenylene

Acenaph

thene
Phenanthrene Anthracene Fluoranthene

Description

19.5:1 CT, EN590 0.000 0.014 0.006 0.000 0.027 0.000 0.000 0.000 5.212

19.5:1 CT, PC9 0.001 0.013 0.000 0.000 0.000 0.000 0.000 0.000 0.161

19.5:1 CT, B100 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.021

16.5:1 DPF, EN590 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 4.900

16.5:1 DPF, PC9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 7.780

16.5:1 DPF, B100 NA NA NA NA NA NA NA NA NA

total
PAH (µg PAH/g)

Pyrene
Benz(a)anth

racene
Chrysene

Benzo(b)fluorant

hene

Benzo(k)

fluoranth

ene

Indeno(1,2,3-

cd)pyrene

Dibenz(a,h)a

nthracene

Benzo(g,I,h)

perylene
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relative to the EN590 and PC9 soots; thus any change in B100 soot total PAH 

concentration with soot evolution are postulated to have been very small. 

The B100 total PAH concentration was low due to there being no aromatic 

content in the original fuel, Appendix 1 (Table A1.1), as was discussed in 

previously in Section 5.7 and Section 6.6. The key observation from Figure 7.20 

is that the total PAH concentration observed for the EN590 soot varied little with 

compression ratio and soot exhaust evolution, contrasting with the total PAH for 

the PC9 soot which increased significantly. 

At 19.5:1 compression at the exhaust manifold, the total PAH for the mineral 

EN590 fuel was measured to be a factor of 32.4 greater than observed for the 

mineral PC9 fuel but at the lower compression at the DPF the PC9 fuel soot total 

PAH was greater by a factor of 1.59. Therefore there was a 6% reduction in the 

total PAH for the EN590 fuel soot and a 4732% increase in the total PC9 soot 

PAH content. 

Since the PAH originated from the base fuel and pyrosynthesis during 

combustion (Section 2.4.4), the increased DPF PC9 soot PAH concentration 

suggests this was the result of the compression ratio reduction and/or a 

significant change in non-PAH related components in the soot as the soot 

evolved in the exhaust. 

The analysis of the PC9 soot bulk inorganics in Section 7.4 revealed that 

there was a significant reduction in PC9 soot bulk sulphur concentration from 

63.86% to 3.49% of the total wt % of inorganics in the two soot samples between 

the exhaust manifold and DPF at the same compression ratio and this was 

attributed to oxidation reactions in the oxidation catalyst. Parallel to this, in 

Section 7.3, it was shown that the PC9 soot surface sulphur concentration 

increased by 500% between the exhaust manifold and the DPF. It is postulated 

that this was sulphur released from the soot bulk which then partially condensed 

onto the soot surface between the oxidation catalyst and DPF. It is therefore 

postulated that part of the 4732% increase in PAH for the PC9 soot in Figure 

7.20 is attributable to the condensation/adsorption of material released in the 

oxidation catalyst reactions in the exhaust system. 

However, the assignation of all of the increase in the PC9 soot PAH 

illustrated in Figure 7.20 to these oxidation catalyst reactions alone is not the 

complete picture. As was previously detailed in Section 6.6, the PC9 soot at 

19.5:1 compression ratio at the exhaust manifold had an extremely low PAH 
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concentration relative to the EN590 soot and this finding was opposite to the 

relative concentration of aromatics in the EN590 and PC9 fuels, Appendix 1 

(Table A1.1). Further, cross referencing the results depicted in Figure 7.20 with 

the results discussed in previously in Section 7.3; the low PAH concentration for 

the PC9 soot at the 19.5:1 compression ratio at the exhaust manifold was 

opposite to the high surface sulphur content; then at the DPF the situation 

reversed with the surface sulphur concentration lower and the PAH concentration 

significantly increased. In the result discussion in Section 6.3 it was postulated 

that the reduction in compression ratio from 19.5:1 to 16.5:1 changed the 

processes by which the PC9 fuel sulphur was entrained within the soot and 

adsorbed onto the surface. 

Consequently, in Section 6.6 it was postulated that either the processes 

which changed the sulphur adsorption on the PC9 soot surface also regulated 

the PAH adsorption or alternatively the sulphur itself when adsorbed at sufficient 

concentration on the soot surface acted to inhibit the adsorption of PAH. It was 

therefore concluded in Section 6.6 that it was likely the reduction in compression 

ratio also resulted in an increase in the surface PAH adsorption. Thus, it is 

hypothesised that the significant increase in PC9 soot total PAH concentration 

depicted in Figure 7.20 occurred do the additive effects of the reduction in 

compression ratio and soot evolution in the exhaust and the respective PC9 soot 

surface and bulk sulphur changes which followed. 

The forgoing hypothesis of the related PC9 soot sulphur and PAH behaviour 

is supported by the relatively stable EN590 mineral diesel fuel soot PAH 

concentration between the 19.5:1 exhaust manifold soot sample and the 16.5:1 

DPF soot sample, Figure 7.20, and the fact that sulphur was not detected on the 

EN590 soot surface, Table 7.2. 

As a result of the significant change in the total PAH concentration for the 

PC9 soots, Figure 7.20, the direct comparison of individual PAH components (µg 

PAH/g) reported in Table 7.7 and Table 7.8 is not particularly revealing. It is more 

useful to consider the individual soot PAH profile with the PAH concentration 

calculated as a percentage of total sample PAH for each sample and this data is 

presented in Figure 7.21 for the 19.5:1 compression ratio and Figure 7.22 for 

16.5:1. 
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Figure 7.21: 19.5:1 Exhaust Manifold Soot PAH for EN590, PC9 and B100 fuels (GC-

MS) 

 

Figure 7.22: 16.5:1 DPF Soot PAH for EN590, PC9 fuels (GC-MS) 

Comparison of Figure 7.21 and Figure 7.22 reveals that the PAH profiles of 

both mineral fuel soots changed markedly with both the compression ratio 

reduction and evolution of the soots in the exhaust. At the exhaust manifold the 

normalised concentrations of PAH for the two mineral fuels were similar and 

distributed largely between Naphthalene to Phenanthrene. In contrast, the B100 

soot PAH were largely concentrated in the smaller centralised group of 

Acenaphthene to Chrysene. Previously in Section 5.7 it was argued that this 

narrower range of PAH in the B100 soot was the result of the original fuel having 

no aromatic content, Appendix 1 (Table A1.1); which in turn meant all the B100 

soot PAH derived from pyrosynthetic reactions during combustion rather than 
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from the fuel. Thus, concentrations of low molar mass PAH in the B100 soot, 

which are typically associated with the original fuel [173, 174, 179], were low or 

negligible. 

Further down the exhaust at the DPF, the distribution of PAH in the EN590 

and PC9 soot PAH profiles was found to be tightly focussed between 1-

methylnaphthalene and Phenanthrene, Figure 7.22. Thus, there was a distinct 

absence of Naphthalene in these low compression DPF soots. Since 

Naphthalene is a common PAH reported in fuels [181], the lack of any 

Naphthalene at the DPF is a clear indication that the evolution of the soot in the 

exhaust resulted in a significant change in the profile of the soot PAH and 

therefore the changes in PAH distribution between Figure 7.21 and Figure 7.22 

were most likely the result of the reactions precipitated by the oxidation catalyst 

between the exhaust manifold and DPF rather than the compression ratio 

reduction. 

The very similar total concentration of PAH for the EN590 soot but the 

significant change in PAH distribution was very interesting in that it implies the 

reactions driving the considerable change in PAH profile likely did not also 

significantly change the overall concentration of PAH in the soot. In the case of 

the significant change in PC9 soot PAH concentration, Figure 7.20, this indicates 

that the change in concentration must have been forced by some additional 

mechanism and therefore the earlier postulation of a mechanism linked to the 

parallel changes in surface sulphur concentration would appear to be the 

principal mechanism even though the PAH profile changed considerably. 

It was discussed previously in Section 5.7 that the process of grouping PAH 

by molar mass and then summating the PAH concentrations for like molar mass 

was a fruitful methodology in the evaluation of the differences in the PAH for the 

three fuels. Since it is observed from Figure 7.21 and Figure 7.22 that the PAH 

profiles of the mineral diesel soot changed considerably as the soots evolved in 

the exhaust, it is useful to also consider what the same PAH analysis method 

might reveal about this evolutionary behaviour. Presented in Figure 7.23 is the 

result of the application of this PAH molar mass grouping to the PAH results for 

EN590 and PC9 soots at the exhaust manifold at 19.5:1 and at the DPF at 

16.5:1. 
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Figure 7.23: Mineral Fuel 19.5:1 Exhaust Manifold and 16.5:1 DPF PAH Molar Mass 

Profile (GC-MS) 

Figure 7.23 confirms that the DPF soot generally had a somewhat narrower 

molar mass distribution of PAH which was concentrated in the range of 142 to 

178 molar masses. The EN590 soots at the DPF compared to the PC9 soots had 

a slightly narrower molar mass range 152-178 (vs. 142-178) and therefore a 

slightly higher central molar mass. Interestingly for the DPF soot, the PAH 

concentrations at 128 and 142 molar masses which were present at the exhaust 

manifold were not present for the EN590 soot and only atomic mass 142 was 

present for the PC9 fuel soot. These two PAH atomic masses are typical of the 

aromatics present in the fuel, Section 2.4.4, so the disappearance or 

transformation into higher atomic mass PAH illustrates the significant potential for 

PAH profile evolution in the exhaust as the soot matures. Therefore, it is 

conceivable that the soot evolutionary processes could also change the toxicity of 

the soot. Additionally, the compression ratio reduction which is postulated to have 

influenced the total PAH concentration for the sulphur rich PC9 fuel soot 

(discussed in Section 6.6 and alluded to earlier in this section), could therefore 

also influence the toxicity of the soot. 

The final observation from Figure 7.23 reciprocates the finding discussed in 

Section 5.7 that there appears to be a preference for soot PAH of molar mass 

178 g/mol (Phenanthrene). In Section 5.7 this was reported to be common 

observation across the three fuels and the result presented in Figure 7.23 

extends this to also include the evolutionary changes in the exhaust. This 

reinforces the statement in Section 5.7 that Phenanthrene is believed to be what 

is called a ‘stabilomer specie’ (Section 2.4.4), that is a PAH which has been 
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shown to be very stable at temperatures typical of hydrocarbon flames [25, 180]. 

The review by Dobbins [181] specifically identifies alkylated phenanthrenes as a 

dominant PAH for hydrocarbon flames. This work herein therefore indicates that 

Phenanthrene is a stabilomer specie for both mineral diesel and biodiesel fuel 

combustion and which also appears regardless of change in engine compression 

ratio and soot evolution in the exhaust through a diesel oxidation catalyst. 

In summary; it is postulated that the change in PC9 PAH concentration was 

effected by the same processes and factors governing surface sulphur 

concentration change i.e. both compression ratio reduction and soot evolution. 

The significant PAH profile change however is postulated to be primarily the 

result of the evolution and hence oxidation catalyst reactions experienced by the 

soot in the exhaust. This significant change in PAH distribution illustrated 

between Figure 7.21 and Figure 7.22 would be a very interesting area to study in 

future work. 

7.8 Concluding Remarks 

It is clear from the result analysis and discussion presented in this chapter 

that the soot transformation in the exhaust is highly dependent on the original 

structural form and surface state of the soot as it exits the cylinder i.e. the specific 

physiochemical soot properties ‘baked in’ during combustion. 

When the soots were sampled at the DPF the commonality observed 

between the EN590 and B100 soot surface composition at the exhaust manifold 

was no longer observed as the surface O/C ratio of the EN590 soot had 

increased 23.8% whereas for the B100 soot the increase was 128% and had also 

gained a very low level sulphur concentration. By contrast the PC9 soot surface 

O/C ratio had reduced 5.1% Thus, from this it was deduced that B100 soot must 

have undergone a much higher rate of oxidation than the other two soots, 

compared to the EN590 soot the B100 soot O/C ratio increased by a factor of 

1.8. Additionally, the analysis of ICM-MS bulk inorganics concentration change 

as the soots evolved in the exhaust also suggested a relatively higher rate of 

carbonaceous fraction loss which was 3-4 times that of the mineral soots. 

A 5% fall in PC9 soot surface oxygen in the exhaust is believed to have been 

caused by sulphur which migrated (possibly through pores in the soot) to the 

surface of the soot, oxidised with surface oxygen and free oxygen in the exhaust 

in the oxidation catalyst and was then volatilised. Such a mechanism would 

cause the reduction in bulk sulphur and reduction in surface oxygen as was 
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observed. Investigation of this process by sampling both before and directly after 

the diesel oxidation catalyst over a wider range of exhaust temperatures with 

similar medium sulphur fuels as utilised herein is proposed for future work. 

The multi-faceted, even opposed changes in morphological properties during 

the exhaust evolutionary process for all soots made it difficult to develop a full 

physical understanding of each individual soot transformation in the exhaust and 

several alternate models have been proposed in this chapter to explain the key 

observations. TEM is strongly advised as supportive soot morphological analysis 

method in future diesel soot work in combination with the methods utilised herein. 

A complex interplay was observed between PC9 soot surface sulphur and 

surface acidity as the soot evolved in the exhaust which indicated the relationship 

defined in earlier chapters that describes a proportional increase in surface 

acidity with sulphur concentration is incomplete. This relationship is likely 

sensitive to the environment in which the sulphur compounds are formed and 

adsorbed onto the surface of the soot. For example, soot surface sulphates at the 

exhaust manifold which are derived from high temperature in-cylinder reactions 

have a different influence on the soot surface functional groups compared to 

sulphates released and re-adsorbed when the soot passes through the oxidation 

catalyst in the exhaust. 

There was observed a significant PAH profile change as both the mineral fuel 

soots evolved in the exhaust and it is postulated that the oxidation catalyst 

reactions had the primary role. There was also a 4732% increase in the total PC9 

soot PAH content which it is postulated was coupled to the same processes and 

factors governing surface sulphur concentration change. In support of findings 

from previous chapters, Phenanthrene (molar mass 178 g/mol) was found to be 

persistent in the PAH profile of all fuel soots even after oxidation catalyst 

reactions, therefore further increasing confidence that this is a PAH ‘stabilomer 

specie’.
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Chapter 8 

8 Soot Physiochemical Properties for High and 

Low EGR 

8.1 Introduction 

This chapter presents the results and analysis for the soot sampled from the 

engine exhaust system DPF (Section 3.5.2) with the engine fuelled with EN590 

and B100 fuels and operated at a baseline condition of 1400 rpm and 12 bar 

BMEP for the EN590 low EGR condition. This aim of this chapter is to 

understand how the change from low to high EGR affected soot physiochemical 

properties for both the EN590 and B100 fuels. The samples were collected 

during the experiments described in Section 3.1.5.4. 

8.2 EGR Experimental Test Parameters 

The determination of the actual achieved EGR rate for each of the four EGR 

experiments was calculated with Equation 3.1 detailed in Section 3.1.5.4 using 

the measurements of the intake mass air flow, intake pressure and intake 

temperature without EGR and then with. Following this calculation it was 

determined that the low EGR rates for the EN590 and B100 fuel experiments 

were 10% and 12% respectively. At high EGR the stability of the EGR control 

available was improved and for both fuel experiments the EGR rate was 

estimated to be 55%. Consequently, in this chapter ‘low EGR’ is used collectively 

to describe 10-12% EGR rate and ‘high EGR’ is used to describe 55%. 

Table 8.1 presents the averaged engine performance and emissions data for 

the four EGR experiments which were conducted according to the methodology 

in Section 3.1.5.4. It can be observed that the injection duration used for both 

fuels at like EGR conditions was equivalent and that this resulted in lower BMEP 

for the B100 fuel due to the lower heating value of the RME biodiesel. The fuel 

inlet temperature was very similar across all four experiments along with the pre-

EGR valve IMAT and IMAP, ensuring there was good consistency across the 

experiments. The post-EGR valve IMAT saw a very significant increase in 

temperature with the high EGR as the engine was devoid of EGR cooling. 
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The second part of Table 8.1 defines the air and fuel measurements and also 

the emissions measurements for the EGR experiments. The fuel rate for the 

B100 experiments was higher than the equivalent EN590 fuel due to the higher 

density of the B100 fuel, Appendix 1 (Table A1.1). The controllability of the MAF 

was not of high precision and thus there was slight variation in the averaged MAF 

for the like EGR experiments. Very low AFR was observed in the two high EGR 

experiments and consequently the observed mean AVL 415 exhaust soot 

concentrations were extremely high for both fuels. The exhaust emissions 

measurements showed that the NOx emissions were almost eliminated with the 

very high rate of EGR for both fuels and the HCs were significantly increased. 

The concentration of exhaust CO2 increased with the high rate of EGR as the 

MAF and fuel rate reduced leading to a lower AFR. 

Section 4.3.2 introduced the fuel-soot-factor parameter to provide a measure 

of the relative soot producing tendency of the fuels used in this investigation and 

when applied to the data in Table 8.1 yields the averaged FSF data presented in 

Table 8.2. 

Table 8.2: 16.5:1 Low and High EGR Fuel-Soot-Factor (FSF) 

 

 

 

 

From Table 8.2 it can be seen that the EN590 fuel at low EGR was observed 

to have an FSF which is a factor of x5.4 greater than that of the B100 fuel but at 

high EGR the relative difference between the fuels was reduced to x2.7. Thus, at 

high EGR the relative tendency of the B100 fuel to produce soot by this measure 

was higher than at low EGR. e.g. the factor increase in the FSF from low to high 

EGR was x29 and x58.2 for the EN590 and B100 fuels respectively. This was the 

combined effect of the very significant increase in EGR and the reduction in AFR 

detailed in Table 8.1. 

8.3 EGR Sample Collection Parameters 

Table 8.3 presents a summary of the soot collection for the EGR experiments 

and shows how the collection duration varied from just over nine minutes to over 

190 minutes by virtue of the far higher exhaust soot concentration observed at 

high EGR and for the EN590 fuel. 

Fuel Rate MAF AVL415 Mean Soot FSF FSF Normalised FSF

Description (kg/h) (kg/h) (mg/m3) (g/h) (%)

EN590 55% EGR 2.656 37.8 7018 216.6 0.081543 8.154 1.000

EN590 10% EGR 6.059 113.76 183 17.0 0.002805 0.281 0.034

B100 55% EGR 2.816 39.6 2655 85.8 0.030481 3.048 0.374

B100 12% EGR 6.248 105.48 38 3.3 0.000524 0.052 0.006
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Table 8.3: 16.5:1 Low and High EGR Experiment DPF Soot Collection Summary 

 

Table 8.3 reveals that the total mass of soot sample extracted from the DPF 

was higher for both the low EGR experiments. This however was opposite to the 

estimated soot mass for both low and high EGR which is based on the measured 

exhaust soot concentration and exhaust mass flow. It is believed that this 

discrepancy is attributable to the reliability and robustness of the AVL 415 smoke 

meter (Section 3.2.2.5) exhaust soot concentration measurements for the high 

EGR conditions. 

To explain; Table 8.1 details how both the CO and HC emissions were 

extremely high for these two experiments and therefore the composition of the 

sampled exhaust was significantly changed with a possibility that the optical filter 

paper based technique of the AVL 415 is less robust with such extreme exhaust 

gas compositions leading to inaccurate measurements of the carbonaceous soot 

fraction. Indeed, the AVL 415 reported smoke numbers were at the extreme end 

of the device’s range (maximum of 10) (Table 8.1) and the device’s calibrated 

conversion to mg/m3 could be questioned in such extremes. The extent of the 

FSN variation reported in Table 8.1 is attestable to this. 

8.4 Soot Surface Elemental Composition 

Table 8.4 summarises the soot surface carbon, oxygen, nitrogen, sulphur and 

chlorine as well as the ratios of surface oxygen/carbon and sulphur/carbon for the 

two fuels investigated. All soot samples were collected with and then 

subsequently extracted from the DPF Section 3.5.2. 

Table 8.4: 16.5:1 Low and High EGR DPF Soot Surface Elemental Composition 

(XPS) 

 

Description (min) (g/h) (kg/h) (g) (kg) (g)

EN590 55% EGR 9.3 216.6 40.46 33.57 6.27 1.3

EN590 10% EGR 84 17.0 119.82 23.79 167.75 3.3

B100 55% EGR 37 85.8 42.42 52.93 26.16 1.1

B100 12% EGR 197 3.3 111.73 10.74 366.84 2.5

Sample Mass 

Extracted

Collection 

Duration

Exhasut 

Soot 

Exhaust Mass 

Flow

Est. Final DPF 

Soot Mass

Total Mass Flow 

Through DPF

wt% Cl

Description ratio precision ratio precision

16.5:1 EN590, 55% EGR 94.6 5.4 0.0 0.0 0.0 0.0571 0.0113 0.000 0.0000

16.5:1 EN590, 10% EGR 93.1 6.9 0.0 0.0 0.0 0.0741 0.0117 0.000 0.0000

16.5:1 B100, 55% EGR 93.6 6.4 0.0 0.0 0.0 0.0684 0.0115 0.000 0.0000

16.5:1 B100, 12% EGR 89.3 10.2 0.5 0.3 0.0 0.1142 0.0126 0.003 0.0057

S/CO/Cwt% C wt% O wt% N wt% S
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Table 8.4 details how the soots collected for both the EN590 and B100 low 

EGR test conditions matched more closely with the rated power DPF sampled 

soot surface elemental composition (Section 7.3) than was observed for the high 

EGR soots, as would be expected. 

Unusual concentrations of nitrogen and sulphur were observed for the low 

EGR B100 experiment soot sample. The nitrogen observation was particularly 

unusual as nitrogen was not detected in the surface chemistry for any other 

sample investigated in this work. The source of this observation was therefore 

not clear and multiple re-tests with the engine would be required to validate if the 

nitrogen was present in the sampled soot surface (unlikely) or whether this was 

subsequent contamination of the sample (more likely). Unfortunately, due to 

sample mass limitations, repeat XPS tests using another part of the soot sample 

could not be performed. 

A similar observation of sulphur on the surface of the B100 soot was detailed 

previously in Section 6.3 and Section 7.3 for the rated engine condition 

experiments where the soot was also sampled at the DPF having travelled down 

the exhaust. The concentration of sulphur observed for the low EGR B100 soot 

sample was however somewhat higher at 0.3% weight compared to 0.05%. 

As discussed in Section 6.3, the presence of surface sulphur for the B100 fuel 

proved difficult to explain due to the low (<10 ppm) sulphur content of the B100 

fuel, Appendix 1 (Table A1.1), and the lack of any sulphur on the surface of the 

EN590 soot in any of the samples investigated in this work. In Section 6.3 and 

Section 7.3 it was proposed that the sulphur was deposited as an existing 

contaminate from the exhaust system with the measured high HCs emissions 

(Table 4.10 Part C) indicating the potential for a high SOF which potentially could 

have encouraged the entrapment of existing exhaust deposits onto the soot. 

It is possible a similar mechanism may have been behind the B100 soot 

surface sulphur observations at low EGR and strong support for this comes from 

the thermogravimetrical results presented later in Section 8.9 (Table 8.11) which 

detail how a higher SOF was indeed present for the B100 low EGR soot sample 

in comparison to the other EGR soot samples. It is also possible that the same 

mechanism may have occurred for EN590 soot but the resulting sulphur 

concentration was below the XPS detection threshold. This hypothesis however 

contrasts with Table 8.1 where the HC emissions of the B100 and EN590 fuels 

are reported to have been quite similar at low EGR. Since the soot sulphur result 



8 Soot Physiochemical Properties for High and Low EGR 
8.4 Soot Surface Elemental Composition 

 

281 

in Table 8.4 and the soot SOF result in Table 8.11 agree and are derived from 

the same soot sample, then this postulation from Section 6.3 and Section 7.3 

remains the most likely. 

Table 8.11 also reports that the SOF was also higher but to a lesser extent for 

the high EGR B100 soot relative to both the low and high EGR EN590 soot. In 

contrast, Table 8.4 indicates that there was no surface sulphur detected for this 

sample. However, since the proceeding analysis in Section 8.5 shows that the 

carbonaceous fraction of soot was likely significantly higher for the high EGR 

B100 soot, this greater carbon content can be assumed to have suppressed any 

low level surface sulphur concentration. This is indicated by the significant 

increase in surface carbon for the high EGR B100 soot relative to the low EGR 

soot, Table 8.4. 

Figure 8.1 details the surface oxygen and O/C ratio for the soot from the EGR 

experiments and shows that there was both lower oxygen concentration and O/C 

ratio for the high EGR experiments for both fuels. The reduction for both 

parameters with the change from low to high EGR was most significant for the 

B100 soot by virtue of the very high surface oxygen and surface O/C ratio 

observed for B100 soots for the low EGR condition. This high O/C ratio for B100 

soot at low EGR was reflective of the observation for the DPF sampled soot from 

the 16.5:1 experiments at rated engine condition as was discussed previously in 

Section 6.3 and Section 7.3. 

 

Figure 8.1: 16.5:1 Low and High EGR DPF Soot Surface Elements for EN590 and B100 

Fuels (XPS) 
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Therefore, this high O/C was indicative of a high rate of B100 soot oxidation 

between the engine cylinder and the DPF collection location for the low EGR 

soot. Since the O/C ratio for the EN590 soot was much lower, these two sets of 

measurements add further supporting evidence to the much greater rate of B100 

soot oxidation proposed to explain the high O/C ratio observed for B100 soot in 

the exhaust for the rated power experiments discussed in Section 6.3 and 

Section 7.3. 

The observation of the much lower surface O/C ratio for the soot from the 

high EGR experiments is very interesting as this is indicative of the oxidative 

reaction process that the soot underwent in the exhaust being limited or even 

shut down completely.14 Such an observation is very important as it would be of 

interest in exhaust aftertreatment systems design and thus it requires 

explanation. 

To explain this observation it is necessary to refer to the engine performance 

and emissions data for the experiments which is presented in Table 8.1. Three 

parameters from Table 8.1 are important for explaining the restricted soot 

oxidation in the exhaust and these are the AFR and the measured O2 and NOx 

concentrations in the exhaust. The AFR data showed that for the high EGR 

experiments the AFR was about stoichiometry (~14.5) and consequently the 

measured exhaust O2 was very low, between 1.9 to 3.1%. It is thus believed that 

the very low O2 ratio in combination with the very low exhaust NOx concentration 

were the primary causes of the very low surface O/C ratio at high EGR as there 

was essentially little free oxygen available to oxidise the soot both in-cylinder and 

in the exhaust system. 

To illustrate the significance of this change in O/C ratio, Figure 8.2 presents 

the change and percentage change for the two fuel soots. The reduction in O/C 

ratio for the EN590 soot was 21.7% and for the B100 soot the reduction was 

37.3% and the error bars show that in both cases these changes were in excess 

of the measurement error. 

 

 

 

 

                                                
14

 The high EGR O/C ratios were the lowest observed for any soot samples in this work and similar for 

both fuel soots. 
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Figure 8.2: 16.5:1 Low and High EGR DPF Soot Surface O/C Ratio Change for EN590 

and B100 Fuels (XPS) 

8.5 Soot Bulk Elemental Composition 

Table 8.5 presents the percentage weight of inorganics for the bulk 

composition of the sampled exhaust soot for both high and low EGR; this data 

has been converted into the percentage contribution of each element to the total 

sample inorganics and this set of results is presented in Table 8.6. 

Table 8.5: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Composition (% 

weight) (ICP-MS) 

 

Table 8.6: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Composition (% 

weight/total % weight) (ICP-MS) 

 

The change in EGR is observed to have had a significant effect on the soot 

elemental composition, Table 8.5; this is most clearly illustrated by the significant 

reduction in total bulk inorganics for both fuel soots with the increase in EGR. 

This result is illustrated in Figure 8.3. 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

16.5:1 EN590, 55% EGR 0.10 0.00 0.04 0.00 0.00 0.00 0.03 0.00 0.05 0.05 0.00 0.00 0.27

16.5:1 EN590, 10% EGR 0.60 0.00 0.17 0.00 0.00 0.00 0.35 0.00 0.07 0.34 0.00 0.00 1.53

16.5:1 B100, 55% EGR 0.37 0.00 0.14 0.00 0.00 0.00 0.19 0.00 0.15 0.20 0.00 0.00 1.05

16.5:1 B100, 12% EGR 1.18 0.00 0.40 0.00 0.00 0.00 0.67 0.00 0.21 0.67 0.00 0.00 3.13

Bulk Inorganic Contaminants (wt%)

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

16.5:1 EN590, 55% EGR 37.04 0.00 14.81 0.00 0.00 0.00 11.11 0.00 18.52 18.52 0.00 0.00 100.0

16.5:1 EN590, 10% EGR 39.22 0.00 11.11 0.00 0.00 0.00 22.88 0.00 4.58 22.22 0.00 0.00 100.0

16.5:1 B100, 55% EGR 35.24 0.00 13.33 0.00 0.00 0.00 18.10 0.00 14.29 19.05 0.00 0.00 100.0

16.5:1 B100, 12% EGR 37.70 0.00 12.78 0.00 0.00 0.00 21.41 0.00 6.71 21.41 0.00 0.00 100.0

Bulk Inorganic Contaminants (wt%/Total wt% Inorganics)
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Figure 8.3: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels (total wt %) (ICP-MS) 

Figure 8.3 illustrates that in respect to the change in total percentage weight 

of inorganics, it was observed that the concentration of inorganics was highest for 

the B100 soot for both low and high EGR and it therefore follows that this was a 

consequence of the much lower carbonaceous soot fraction at both low and high 

EGR relative to the EN590 experiments, Table 8.1. This effect is thought to have 

been amplified by the higher rate of B100 soot oxidation in the exhaust, as 

outlined earlier in Section 8.4, which is postulated to have further reduced the 

B100 soot relative carbonaceous fraction prior to the DPF. 

Figure 8.4 presents the soot sample percentage weight data from Table 8.5 

for all experiments and makes clear that for all elements, the B100 soot had 

higher concentration of each and that the principal elements were those reported 

in previous chapters i.e. (Ca, Fe, P, Zn). 

An important observation from Figure 8.4 is the presence of the element 

silicon which was not discussed in previous chapters. Silicon however, was also 

observed in the rated engine power soot collection experiments but was one of 

the identified foreign contaminates subtracted from the rated engine power soot 

collection results as detailed in Appendix 8 (Section A8.2.2). Ergo, silicon was not 

discussed in these earlier chapters. Appendix 8 (Section A8.2.2) explains that the 

source of this silicon was identified to be principally a Loctite 5367 silicon sealant 

used to seal up the low compression cylinder head gasket, Section 3.3.4. Since 

silicon contamination was only present for the 16.5:1 compression ratio engine 

experiments, it was therefore observed in all the EGR experiments. This coupled 

to the fact that it was also the least significant inorganic contaminate in the 
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majority of the EGR soot samples, resulted in silicon not being subtracted from 

the EGR soot sample data. 

 

Figure 8.4: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels (wt %) 

The change in the percentage weight of each bulk inorganic element with the 

change from low to high EGR is presented in Figure 8.5. 

 

Figure 8.5: 16.5:1 Low to High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels (wt % change) (ICP-MS) 

Comparison of Figure 8.4 and Figure 8.5 reveals that the reduction in 

concentration of soot inorganics with the reduction in EGR was very similar 

across all elements for the soot from each fuel. It is also clear that there were 

reductions for all elements without exception (including silicon) and taken 
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together these observations gave confidence in the consistency of the results. 

The individual reductions in each element also mirrored the pattern of the original 

concentration of each element in the soot Figure 8.4; this indicates that the 

reduction in total inorganics was caused principally by an increase in the 

carbonaceous concentration in the soot samples with the increased EGR rate, 

rather than any other process. 

Due to the greater reduction in the B100 soot inorganics with the change from 

low to high EGR, it is useful to consider individual elements as a percentage of 

the total inorganics in the sample as is detailed in Table 8.6 and this data is 

presented in Figure 8.6. 

 

Figure 8.6: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels (wt %/total wt %) (ICP-MS) 

The results in Figure 8.6 confirm that the highest contributing inorganic 

contaminate was calcium, with the concentrations of the two next most significant 

elements, phosphorous and zinc, contributing roughly equally. This pattern of key 

contaminating elements is therefore consistent with that observed for the rated 

engine power experiments reported earlier in Chapter 5, Chapter 6 and Chapter 

7. The relative contribution of iron is however much lower than that observed (35-

50%) for the soot collected in the DPF at 16.5:1 for the rated engine experiments 

Figure 7.7. 

The lower contamination of iron and zinc likely results from the combination of 

increased exhaust soot concentration and lower exhaust mass flow rate (i.e. 

potentially reduced abrasion of the surfaces of the exhaust). A shorter length of 
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exhaust from the exhaust manifold to the DPF for the EGR tests was also utilised 

due to the lower exhaust temperatures (Figure 3.30 vs. Figure 3.31) and this also 

likely contributed to the reduced iron and zinc contamination. By comparison, the 

EGR change was observed to only change the contribution of iron in a narrow 

range (<5%) as reported in Figure 8.6 relative to the (15-35%) higher iron content 

reported in Figure 7.7. This observation is useful information which could assist in 

the design of engine exhaust soot collection techniques and experiments beyond 

this work. 

Figure 8.7 presents the change in percentage of each element of the total 

percentage of inorganics in the soot and shows that with the increase in EGR 

there was observed a reduction in (Ca, P, Zn), all of which were components of 

the lubricant, Appendix 2 (Table A2.1). If these reductions were associated with 

the lubricant, then it is postulated that the lubricant consumption rate could have 

been reduced at high EGR; thus having the effect of proportionally reducing the 

(Ca, P, Zn) elements in the environment where the soot formed and evolved. 

Since the engine load was somewhat reduced for the high EGR experiments, 

Table 8.1; then it is possible there was indeed reduced lubricant consumption. 

This is because in literature, lubricant consumption has been reported to increase 

with speed and load [325]. Therefore, attributing the reduction in (Ca, P, Zn) 

element concentration illustrated in Figure 8.7 to a reduction in lubricant 

consumption rate brought about via the EGR rate change, is a viable explanation. 

 

Figure 8.7: 16.5:1 Low to High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels (change wt %/total wt %) (ICP-MS) 
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Opposite to the (Ca, P, Zn) reductions, Figure 8.7 shows that the iron and 

silicon concentrations increased. It is postulated that the increase in iron was 

attributable to an increase in iron contamination from the engine which was most 

likely because of the higher recycling rate of exhaust gas which meant the gas 

was resident longer in the engine thus increasing the concentration of metals 

such as iron in the soot. The silicon change also appeared to reflect the same 

trend as iron due to the same higher recycling of the exhaust which meant more 

silicon contamination. 

At this point it is worth reflecting that the soot for the EGR experiments was 

collected using the DPF (Section 3.5.2) due to the impracticality of collecting 

sufficient soot mass using the ceramic thimble methodology (Section 3.5.1) at the 

low EGR condition with the B100 fuel, as described in Section 3.1.5.4. Thus, in 

respect to the EGR experiment, the bulk soot analysis at the DPF means it is not 

possible to separate the influence of the exhaust system metallurgy e.g. iron from 

the effects induced by the EGR rate change. However, there are several key 

findings that can still be drawn from a more searching analytical analysis the 

EGR bulk inorganic data. 

Since in the EGR experiments the AVL 415 smoke meter sample probe was 

located closer to the DPF (Figure 3.30) than was the case in the rated engine 

power experiments (Figure 3.31); the FSF based bulk inorganic data scaling 

method utilised earlier in Section 6.4 could be employed once more to provide a 

qualitative indication of the relative effects of the fuel and the EGR change on the 

total mass of inorganics, with the fuel rate reduction and the increase in 

carbonaceous concentration isolated. This method involves scaling the bulk 

inorganic % wt data by the FSF for the EGR experiments which is recorded in 

Table 8.2. 

First, the total percentage weight of inorganics of the DPF soot samples 

detailed previously in Figure 8.3 are better grouped into low and high EGR 

categories rather than fuel so that the distinctions of low and high EGR are 

clearer. Therefore, the data in Figure 8.3 is re-presented as Figure 8.8. 

The FSF for the EGR experiments is reported in Table 8.2 and is illustrated in 

Figure 8.9. The FSF presented in Figure 8.9 illustrates that for both fuels, 

significantly more carbonaceous soot formed relative to the amount of fuel 

injected at high EGR. 
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Figure 8.8: 16.5:1 Low and High EGR DPF Soot Bulk Elemental Analysis for EN590 and 

B100 Fuels Total (% wt) (ICP-MS) 

Figure 8.9 also reveals that at both high and low EGR, the EN590 fuel had a 

greater relative sooting tendency than the B100 fuel with the differences in fuel 

consumption rate accounted for (note that the fuel consumption rate for the B100 

fuel was greater due to higher fuel density, Appendix 1 (Table A1.1)). 

 

Figure 8.9: 16.5:1 Low and High EGR Fuel-Soot-Factor (FSF) 

Figure 8.9 illustrates what was discussed earlier in Section 8.2; for the EN590 

soot the FSF increased by a factor of 29 but for the B100 soot it increased by a 

factor of 58.2 due to the very low FSF at low EGR for the B100 fuel. Thus, it 

appears that the B100 fuel was nearly twice as sensitive to the change in EGR in 
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terms of the carbonaceous soot fraction produced during combustion and 

measured at the AVL 415 sample probe. 

However, this single point measurement of carbonaceous soot concentration 

on which the FSF calculation is reliant, cannot account for the effects of any 

changes in the relative rate of oxidation of the B100 and EN590 soots in the 

exhaust. For the EGR experiments this was an important consideration as at high 

EGR the free oxygen in the exhaust was reduced from an average of 6.7% down 

to 2.5% (Table 8.1) and such a change was observed to influence the oxidation 

experienced by the soots in the exhaust based on the change in surface O/C 

ratio discussed earlier in Section 8.4. 

From Table 8.4 the DPF soot surface O/C ratio at low EGR for the B100 soot 

was observed to be 0.1142 compared to that of the EN590 soot 0.0741, i.e. a 

factor of 1.54 greater. At high EGR the two ratios were 0.0684 and 0.0571, i.e. a 

factor of 1.2 and thus the increased rate of oxidation for the B100 soot was 

therefore believed to have been reduced somewhat at high EGR. 

Therefore as the AVL 415 sample probe was located in the exhaust roughly 1 

meter upstream of the DPF, there would have been some loss of the 

carbonaceous fraction between the probe sample point and the DPF and this 

would mean that the carbonaceous fraction at the DPF would be slightly lower 

than what the AVL 415 based FSF suggested and also therefore lower than at 

the exhaust manifold. Unfortunately it was not possible to quantify the effect of 

this and equate into the (FSF x % weight inorganic) result which is discussed 

next. 

It is postulated that this increase in sooting tendency of the B100 fuel and 

reduced oxidation potential are related to structural changes in the B100 soot 

caused by the change in EGR which were distinct from those of the EN590 soot. 

These structural differences, it is believed, are recorded in the soot density 

measurements discussed later in Section 8.6.2. It is thought that the changes in 

the conditions under which the soot formed and evolved in the cylinder resulted 

in these structural differences and these then impacted on the sooting tendency 

of the B100 fuel. 

The scaling of the total percentage weight of soot inorganics to adjust for fuel 

rate is important for the EGR experiments due to the engine losing boost 

pressure at high EGR and causing the ECU cut the fuel injection quantity to 

compensate. For example, from Table 8.1 it can be observed that the increase 
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from 10% to 55% EGR for the EN590 experiments resulted in a reduction of fuel 

consumption of 56%. Therefore, using the FSF to factor out the change in fuel 

rate and also exhaust soot concentration, results in a far more significant 

amendment of the relative contribution of inorganics to the soot sample than 

when the same methodology was applied previously in Section 6.4. 

The total percentage weight of inorganics of the DPF soot samples detailed in 

Figure 8.8 has been multiplied by the FSF of the respective EGR experiment 

from Figure 8.9. The result from this provides a qualitative representation of the 

relative differences in concentration of soot bulk inorganics resulting from the 

EGR rate change alone for the two fuels and this result is presented in Figure 

8.10. In other words, the result in Figure 8.10 is more illustrative of the actual 

effect of EGR change on the concentration of inorganic contaminates in the soot 

than the result indicated by Figure 8.8. 

 

Figure 8.10: 16.5:1 Low and High EGR Fuel-Soot-Factor (FSF) multiplied with Total (% 

wt) Inorganics (ICP-MS) 

Referring back to the original total weight of inorganics data of Figure 8.8, it is 

clear that the total contribution of inorganics to the soot sample was reduced at 

high EGR and was due most likely to the much higher fraction of carbonaceous 

soot in the sample and also for the same reason the B100 organics fraction was 

higher than that of the EN590 soots at both EGR conditions as the measured 

exhaust soot concentration (carbonaceous fraction) was lower, AVL415 mg/m3 

Table 8.1. 
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Compared to Figure 8.8, Figure 8.10 reveals that qualitatively there was 

actually a relative increase in the total inorganic content for both fuels with the 

transition from low to high EGR when other confounding factors are accounted 

for. It is postulated that the relative inorganic concentration could be greater at 

high EGR due to the effects of the greater proportion of recirculated exhaust gas 

present in the cylinder during soot formation. For example, it is assumed that 

there was an increased concentration of inorganic material and carbonaceous 

soot in the cylinder at the start of combustion relative to a lower EGR condition. 

The carbonaceous soot part introduced during induction could have partially 

oxidised and then been replaced by newly formed carbonaceous soot but the 

inorganic material elements (i.e. the metals) would have survived combustion 

and thus increased in concentration in the cylinder in proportion to the EGR 

increase. 

Further analysis of the data presented in Figure 8.10 for the EN590 soot 

samples reveals that the ratio of FSF scaled total percentage weight of 

inorganics between high/low EGR conditions for the two data sets was 5.13 

which was close to the EGR 55/10 % ratio and therefore suggestive that the 

underlying increase in soot inorganic content was proportional to the change in 

EGR rate for the EN590 soot. 

However, for the B100 soot, the same ratio was found to be 19.5 and 

therefore considerably greater. This was possibly related to the effects of the 

increased oxidation of the B100 soot in the exhaust and the apparent increase in 

sensitivity of the B100 fuel to the EGR changes as described previously based on 

the FSF presented in Figure 8.9 and the change in surface oxygen concentration 

presented in Figure 8.2. It is also possible that there was an increase in the 

lubricant consumption rate at high EGR with the B100 fuel. Previously in Section 

5.4 this was observed to contribute to the increase in the contamination of bulk 

inorganics in the soot. 

Although there are several plausible explanations for the much greater 

apparent factor increase in B100 soot bulk inorganics contamination indicated by 

Figure 8.10; it is advised that the earlier concerns raised regarding the inability to 

account for loss of soot carbonaceous fraction in the exhaust between the AVL 

415 probe measurement location and the DPF, do reduce the robustness of the 

FSF approach for the EGR soot data. There is confidence that the general trend 

presented in Figure 8.10 is valid for both fuel soots but the individual factor 

change is less robust. 
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8.6 Soot Morphology 

Presented in Table 8.7 are the complete morphological results for the soot 

collected at 16.5:1 at the DPF for both low and high EGR conditions for the 

EN590 and B100 fuels. 

Table 8.7: 16.5:1 Low and High EGR DPF Soot Morphological Characteristics
15

 

 

8.6.1 Surface Area 

The soot surface area results from the EGR experiments showed a very 

significant influence from the change in EGR from low to high and this is 

illustrated in Figure 8.11 for the data from Table 8.7. 

 

Figure 8.11: 16.5:1 Low and High EGR DPF Soot Surface Area for EN590 and B100 

Fuels (BET) 

With the increase from low to high EGR the soot surface area for both fuel 

soots reduced significantly, by 81.4% for the B100 soot and 82.4% for EN590. 

These reductions were suggestive of much larger primary particle diameters for 

the high EGR soot which likely resulted from the very high relative exhaust soot 

concentration for the high EGR experiments, Table 8.1. This higher 

carbonaceous content would likely have been deposited as successive layers of 

graphene planes around the soot core, thus growing the size of the primary 

                                                
15

 The BJH porosity results for the EGR soot samples are not reported as these results were not available 

for these four soot samples. 

BJH Adsorption N2 Pycnometry Primary Particle Diameter

Description Suface area (SBET) (m
2/g) Error Average pore diameter (Å) Density (ρ) (g/cm3) Error Dpp = 6/(ρ SBET) (nm)

EN590 55% EGR 82.073 0.3947 NA 1.8607 0.0085 39.289

EN590 10% EGR 465.9806 2.3506 NA 2.1498 0.009 5.989

B100 55% EGR 105.2695 0.537 NA 2.2101 0.0081 25.789

B100 12% EGR 567.4451 3.158 NA 1.9999 0.0065 5.287

BET Method
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particles. This then combined with a very low rate of oxidation in the exhaust due 

to the high EGR and low exhaust O2 as the soots travelled down to the DPF. 

Therefore the soot trapped in the DPF at high EGR had a much larger diameter 

and smaller surface area compared to the low EGR soots. 

For the low EGR condition, the surface area was observed for both fuel soots 

to be higher than the equivalent observed surface area for the soots sampled 

from the DPF in the 16.5:1 rated power experiments, (235 to 353 m2/g) Section 

7.5.1. As stated previously, the surface area of soot in general was postulated to 

be a function of the physical diameter of the individual soots, the surface porosity 

and the aggregate form. Since the porosity of the EGR soots was unknown for 

these samples, it was not possible to identify the contribution of the changes in 

these individual factors to the observed changes in soot surface area with EGR. 

However, since the soot collected at rated engine conditions was also from a 

low (<10%) EGR condition, it is possible that the high surface areas of the soot 

from the low EGR experiments were related to the lower engine speed and load 

of the EGR experiments (i.e. 1400 rpm, 170-180 Nm vs. 4000 rpm, +200 Nm). In 

respect to engine speed this is opposite however to the observations of 

Stanmore et al. [139]. Therefore, due to different engine design such a 

generalisation is possibly not robust. 

Furthermore, since soot surface area is frequently reported in literature to be 

sensitive to the temperature of the gas medium to which the soot is exposed 

[130, 131, 132, 133, 135], it is sensible to also consider the exhaust manifold 

temperatures for the rated power (Table 4.10 Part B) and EGR experiments 

(Table 8.1) but these are revealed to be close; 604/593.2°C for EN590 and 

531/548.6°C for B100 respectively. Therefore, temperature does not appear to 

have been a factor in the greater surface area of the EGR experiments. 

Finally, another consideration is the oxygen concentration in the exhaust and 

hence the potential oxidation rate for the soots but again the O2 concentration for 

the rated power experiments (Table 4.10 Part C) was greater than the equivalent 

EGR experiments (Table 8.1); 7.73/5.91% for EN590 and 8.11/7.42% for B100 

respectively. The high surface area of the low EGR experiment soots therefore 

does not have a clear association with any of the principal mechanisms known 

and may thus be something specific to the soot morphology originating from the 

low EGR experiments. 
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At both low and high EGR the surface area of the B100 soot was observed to 

be greater than the equivalent EN590 soot, Figure 8.11, which is opposite to the 

observations for the rated power soot collection experimental results, Figure 

7.15. It is possible to infer from this that there was potentially greater SOF 

adsorbed onto the soot in the case of the B100 soot sampled at the DPF for the 

rated power experiments and indeed a comparison between the TGA results in 

Section 5.8 and Section 8.9 later in this chapter reveals that there was a higher 

SOF for the rated power tests, that is, the % weight of sample mass loss between 

room temperature and 400°C was 5% for the rated power experiment and 3.6% 

for the low EGR experiment. It is therefore believed that this higher SOF fraction 

for the B100 soot collected at rated power acted to both increase the primary 

particle size and fill the pores of the soot thus resulting in the lower surface areas 

for these soots compared to the low EGR soots reported in this section and also 

explaining the reversed relationship in respect to the EN590 soot. 

It is also postulated that the greater surface area of the B100 soot compared 

to soot from the EN590 fuel for both low and high EGR could be related to a 

higher rate of oxidation for the B100 soot in the exhaust. This is because the O/C 

ratio for the B100 soot was greater at both low and high EGR, Figure 8.1. With 

greater oxidation it is postulated that the regular graphene planes that form the 

shell of soot are more amorphous/irregular in nature and therefore possessing 

greater porosity and hence surface area. 

Another possibility is that the greater concentration of inorganic matter in the 

B100 soot bulk, Figure 8.3, also acts to introduce greater non-uniformity or 

surface irregularities into the soot structure [118]. Therefore several plausible 

explanations exist to describe the B100 soot surface area distinctions. 

8.6.2 Density 

The changes in soot density with EGR were observed to be opposed for the 

two fuel soots as illustrated in Figure 8.12, with the density of the B100 soot 

increasing 10.5% with EGR and that of the EN590 soot reducing 13.5%. 

Comparing the low EGR density results with those from the rated power soot 

collection experiments reported in the analysis of the exhaust evolution in the 

exhaust Figure 7.17. Firstly the EN590 soot density is higher than observed for 

the equivalent rated power soot sample and secondly the B100 soot density is 

lower than the rated power equivalent. Thus, the low EGR soot density results 

were almost reversed to the rated condition findings. Soot density thus appears 
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to be quite sensitive to the engine operating conditions but the relationship is not 

clear. 

 

Figure 8.12: 16.5:1 Low and High EGR DPF Soot Density for EN590 and B100 Fuels (N2 

Pycnometry) 

In Section 5.5.3 two models for the B100 soot are proposed to explain the 

observed B100 soot density and these are discussed again in Section 7.5.3. 

These models attempt to explain why it was observed that the B100 soot density 

reduced between the exhaust manifold and DPF for the 16.5:1 rated power 

experiments, Figure 7.17. From the reasoning in Section 7.5.3 it was concluded 

that B100 soot Model 2 offers a better description for the B100 soot observations 

for B100 soot exhaust evolution. 

Model 2 describes the primary particles of the B100 soot at the exhaust as 

having a far more regular graphene plane internal arrangement with fewer 

isolated internal voids than was the case for the mineral fuel derived soot. This 

was then combined with a low surface porosity which also resulted from the 

highly regular arrangement of the graphene planes in the soot outer shell. This 

would in principle give rise to soots with small surface area, low pore volume and 

higher density as observed but if this is how the B100 soots were structured 

physically, then it is important to note that it is opposite to the description derived 

from TEM micrographs by Song et al. [16]. 

Model 2 proposes that isolated internal voids (Section 7.5.3) must have then 

been forming in the highly organised B100 soot core as the soot transited the 

exhaust and oxidised in the high temperatures of the exhaust. These trapped 

voids would result in the N2 pycnometry method over-estimating the skeletal 

volume, Section 3.6.4.3, thereby giving a lower density measurement as was 
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observed in the rated power DPF soot samples. Therefore, the B100 soot 

structure must have evolved such that the soot became more akin to the 

hollowed out soot core with intact outer shell in the form of that described by 

Song et al. [16]. 

This model when applied to the B100 soot observations for low and high EGR 

also appears to provide answers for the somewhat higher B100 soot density 

observed at high EGR. From the analysis of the behaviour of the soot O/C ratio in 

Figure 8.1 earlier, it is concluded that for the high EGR experiments the very low 

exhaust O2 concentration (and likely also NOx), Table 8.1, resulted in significant 

suppression of the soot oxidation process in the exhaust. For soot model 2 this 

would mean that the soot in the high EGR experiments should have a very high 

density due to it possessing a highly ordered soot core with minimal internal 

voids - which is indeed what was observed, Figure 8.12. 

Importantly, this linking of the B100 soot oxidation and density does not 

describe the EN590 soot density change as the reduction in density coincided 

with a reduction in surface O/C ratio and hence the assumed oxidation for the 

EN590 soot was much lower at high EGR but the density of this soot was much 

lower too. These findings suggest that the physical structure of the EN590 and 

B100 soots were different and thus they responded differently morphologically to 

the change in conditions during formation and oxidation but a fully matured 

description of these processes is not possible with the available results. 

Therefore, to more fully understand the actual physical structural differences 

between the B100 and mineral fuel soots and the behaviour with different rates of 

EGR, additional soot morphological examination methods such as TEM are 

necessary. 

Though this is the case, to see the proposed model 2 for the B100 soot carry 

all the way through the observations of the work herein is a very encouraging 

sign that the model has strong validity. Importantly, these very high EGR 

experiments provided an excellent opportunity to evaluate B100 vs. EN590 soot 

behaviour at similar exhaust temperatures to those of the rated engine power 

experiments but with far lower exhaust oxygen concentrations. It is this 

comparison which really solidifies the clear distinctions in mineral and biodiesel 

soot physiochemical and morphological properties and behaviours that is a key 

general contribution of the work herein. 
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8.6.3 Primary Particle Diameter 

The estimated soot primary particle diameter results from Table 8.7 are 

presented in Figure 8.13 and these results describe how the size of primary 

particles was largest for the high EGR experiments due principally to the much 

lower surface areas for these soots as detailed earlier in Section 8.6.1. 

 

Figure 8.13: 16.5:1 Low and High EGR DPF Soot Primary Particle Diameter for EN590 

and B100 Fuels (spherical particle assumption) 

The range of soot primary particle size for the EGR experiments was from 5.2 

to 39.3 nm. In Section 2.4.2.4 it was identified that the quoted range in literature 

for primary soot diameters is 15-30 nm, therefore the estimates using the method 

outlined in Section 3.6.4.4 spanned both below and above the range identified 

from literature. The low EGR diameters were both the smallest two diameters 

observed in the work herein as a consequence of the surface area being the 

highest of all soots. 

The earlier discussions in Section 5.5.4 and also Section 7.5.4 concerning the 

methodology for estimating soot primary particle diameter (Section 3.6.4.4) had 

both concluded that the application of Equation 3.9 to diesel exhaust soot is 

subject to somewhat low robustness due to the clear findings throughout the 

work herein that diesel exhaust soot possess very clear porosity behaviour which 

Equation 3.9 ignores. 

Although porosity information was not available for the EGR experiments, it 

can be assumed from both the significant surface area and O/C ratio changes 

that porosity must also have changed with EGR. Therefore, it is advised that 

Equation 3.9, which is also reported elsewhere for soot (e.g. Lapuerta et al. [136], 
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Table 2.7), is not sufficiently reliable or accurate for application to diesel engine 

soot. Therefore the results of Figure 8.13, whilst likely indicative of the primary 

particle diameter trends with EGR, are likely inaccurate with regard to the precise 

primary particle diameter. It is highly recommended that direct measurement 

methods such as TEM be employed in engine soot research to measure soot 

primary particle diameter. 

In summary, it is useful to combine the three soot morphological parameters 

from Table 8.7 into a single figure to illustrate the overall behaviour of the two fuel 

soots to the change in EGR and this is presented in Figure 8.14; note that the 

size of the circles represent the relative surface area of the soots. Figure 8.14 is 

a concise description of the differences in the soot morphological changes of the 

two fuel soots to EGR. The three clear observations are the opposed changes in 

density, the significant reduction in surface area and increase in primary particle 

size under high EGR rate conditions. Figure 8.14 therefore is very effective 

example of the clear distinctions in mineral and biodiesel soot morphological 

properties and behaviours observed in the work herein. 

 

Figure 8.14: 16.5:1 Low and High EGR DPF Soot Summary Morphology for EN590 and 

B100 Fuels 

8.7 Soot Surface Acid Functionality 

The soot surface acidic functionality results for the low and high EGR 

experiments are presented in Table 8.8 and are defined for both the total and 

carboxylic acid concentrations. 
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Table 8.8: 16.5:1 Low and High EGR DPF Soot Surface Acid Functionality (Boehm 

titration) 

 

The soot surface acidity data detailed in Table 8.8 is summarised in Figure 

8.15 and details one of the most important observations of this work which was 

the absence of surface acidity for the soot sampled in the high EGR experiments 

for both EN590 and B100 fuels. Such a result implied that the surface chemistry 

of the soot produced in high EGR conditions was quite unique as these were the 

only soots observed to possess no surface acid functionality. 

 

Figure 8.15: 16.5:1 Low and High EGR DPF Soot Surface Acid Functionality for EN590 

and B100 Fuels (Boehm titration) 

For the low EGR conditions, the surface acidity was found to be quite similar 

to that observed for the 16.5:1 rated power experiments where the soot was 

collected from the DPF, Section 7.6. For example, the soot surface acidity results 

from the EGR experiments also showed an apparent correlation between the 

carboxylic acid concentration and the surface O/C ratio. i.e. the carboxylic acid 

content of the EN590 low EGR samples was 35.6% of the total acidity and for the 

equivalent B100 samples it was 49.5%. These two ratios and the surface O/C 

ratios for these soots were a little higher than the equivalent ratios for the 16.5:1 

Description

EN590 55% EGR 0.001 0.000 0.001 0.000

EN590 10% EGR 0.407 0.002 0.145 0.001

B100 55% EGR 0.001 0.000 0.001 0.000

B100 12% EGR 0.724 0.048 0.359 0.008

Boehm Titration

Total surface 

acids (mmol/g)

stdev 

(mmol/g)

Surface carboxylic 

acids (mmol/g)

stdev 

(mmol/g)
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rated power soot collected from the DPF. Furthermore, the total acid 

concentration of the B100 low EGR sample was 1.8 times that of the EN590 low 

EGR sample and compared favourably to the 1.5 times higher surface O/C ratio. 

The EGR surface acidity results also provide additional supporting evidence 

for a possible correlation between the carboxylic acid concentration and total 

acidity; with soots with higher surface acidity typically observed to have a higher 

proportion of the total acidy composed of carboxylic acid. 

These very important observations concerning the effect of EGR on soot 

surface acidity and the identification of a possible correlation with the surface O/C 

ratio contributed significantly in the development of fundamental relationships to 

characterise soot surface acidity which are presented in the proceeding chapter. 

Consequently, it can be reiterated that the large exhaust O2 change of the EGR 

experiments proved highly valuable for broadening the scope of understanding of 

exhaust soot physiochemical and morphological characteristics and behaviour for 

the mineral and biodiesel fuels investigated. 

8.8 Soot Polycyclic Aromatic Hydrocarbon Profile 

A total of sixteen PAH were investigated in the soot samples for the low and 

high EGR experiments and the results are presented across Table 8.9 and Table 

8.10. 

Table 8.9: 16.5:1 Low and High EGR DPF Soot Polycyclic Aromatic Hydrocarbon 

Profile (Naphthalene to Fluoranthene) (GC-MS) 

 

Table 8.10: 16.5:1 Low and High EGR DPF Soot Polycyclic Aromatic Hydrocarbon 

Profile (Pyrene to Benzo-perylene) (GC-MS) 

 

The results from the PAH analysis performed on the EGR soots proved to be 

somewhat different in comparison to the earlier reported results for the soot 

Description

EN590 55% EGR 0.000 0.000 0.000 0.000 0.000 2.320 0.720 1.650

EN590 10% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B100 55% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B100 12% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Acenaph

thene
Phenanthrene Anthracene Fluoranthene

PAH (µg PAH/g)
Naphthalene

1-

methylnapht

halene

2-

methylnaphth

alene

Acenaphthylene 

or biphenylene

Description

EN590 55% EGR 2.340 0.920 3.530 0.000 0.000 0.000 0.000 0.000 11.480

EN590 10% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B100 55% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

B100 12% EGR 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Benzo(k)

fluoranth

ene

Indeno(1,2,3-

cd)pyrene

Dibenz(a,h)a

nthracene

Benzo(g,I,h)

perylene
total

PAH (µg PAH/g)
Pyrene

Benz(a)anth

racene
Chrysene

Benzo(b)fluorant

hene
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sampled at rated engine conditions (Section 5.7, Section 6.6 and Section 7.7). 

The main distinction was the lack of any PAH being detected in the soot samples 

apart from the high EGR EN590 soot and that the total concentration of PAH in 

this soot was substantially higher than any of the other soot samples analysed in 

the work herein. 

The results from the rated power experiments reported earlier (Section 5.7) 

indicated that at 19.5:1 at the exhaust manifold that the total PAH concentration 

for the B100 soot was very low (0.021 ppm) compared to the nearly 250 times 

higher EN590 total PAH (5.212 ppm). Thus, comparing these results to the EGR 

PAH soot results of Table 8.9 and Table 8.10 implies that the level of PAH in the 

B100 soot was too low to be detected at the reduced speed and load operating 

conditions where the EGR experiments were conducted. It was therefore not 

possible to conclude if the B100 fuel soot was sensitive to EGR or the different 

engine speed-load operating condition. 

The failure to observe PAH for the EN590 low EGR condition was an 

indication that the PAH for this sample were also below the detection threshold 

assuming there were no anomalies with the gas chromatograph testing which 

was done by a third party (Section 3.6.6).16 Therefore this low EGR EN590 soot 

PAH was the most unusual result observed for all the EGR experiments 

especially as it was at low EGR where the operating conditions were closer to the 

almost zero EGR of the rated power soot collection tests where EN590 soot 

PAHs were found to be relatively abundant. 

The PAH profile for the EN590 soot from the high EGR experiment is detailed 

in Figure 8.16 and shows that the measured PAH were distributed only among 

the mid-molar mass PAH and thus the pattern was similar to that observed for the 

rated power DPF soot also collected at 16.5:1, Section 7.7. However, the 

distribution for the soot from the EN590 high EGR experiment was centred at a 

higher molar mass. The commonality between the PAH profile presented in 

Figure 8.16 to that presented in Figure 7.22 for the rated engine power 16.5:1 

compression ratio DPF samples is important. When compared to the quite 

different PAH profile observed at the exhaust manifold, Figure 7.21 demonstrates 

that there was a clear change in PAH profile that most likely was in response to 

the catalysing reactions of the oxidation catalyst. 

                                                
16

 It proved infeasible to perform a repeat soot analysis due to the low soot mass yields. 
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Figure 8.16: 16.5:1 High EGR DPF Soot PAH Profile for EN590 (GC-MS) 

Figure 8.16 illustrates that Phenanthrene (atomic mass 178) was present, as 

was reported in all preceding PAH results discussion. Therefore this result 

extends this observation to also include low and high EGR combustion regimes. 

This reinforces the statement in Section 5.7 that Phenanthrene is believed to be 

what is called a ‘stabilomer specie’ (Section 2.4.4), that is a PAH which has been 

shown to be very stable at temperatures typical of hydrocarbon flames [25, 180]. 

The review by Dobbins [181] specifically identifies alkylated phenanthrenes as a 

dominant PAH for hydrocarbon flames. This work herein therefore indicates that 

Phenanthrene is a stabilomer specie for both mineral diesel and biodiesel fuel 

combustion and which also appears regardless of change in engine compression 

ratio, soot evolution in the exhaust through a diesel oxidation catalyst and also 

EGR rate. 

Figure 8.17 by virtue of the comparison of three different experimental 

configurations for the same fuel, demonstrates that the PAH profile was highly 

dynamic and difficult to characterise and relate to any specific factor which has 

been investigated in the work herein. 

Ultimately, the analysis of the total PAH concentrations for the EGR 

experiments left unresolved questions as to the processes behind the 

observations, specifically for the EN590 soot, therefore the understanding of the 

coupling between EGR and soot PAH is suggested as an area for potential future 

study. 
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Figure 8.17: EN590 Exhaust Manifold, DPF and high EGR PAH Atomic Mass Profile 

(GC-MS) 

8.9 Soot Thermogravimetrical Analysis 

Summarised in Table 8.11 are the thermogravimetrical results for the 16.5:1 

low and high EGR DPF sampled soot. 

Table 8.11: 16.5:1 Low and High EGR DPF Soot Thermogravimetrical Analysis 

(TGA) 

 

The thermogravimetrical results detailed in Table 8.11 are summarised in 

Figure 8.18 and describe the percentage weight loss from the soots in the 

indicated temperature ranges. Up to 300°C for both low and high EGR, the 

percentage contribution of residue for the EN590 soot was unchanged at 1.2% 

but for the B100 soot this was higher for both low and high EGR and a maximum 

in the latter case. 

This was indicative of the increase in EGR not influencing the amount of 

absorbed HCs or SOF on the surface of the EN590 soot and also that the 

amount absorbed was somewhat greater for the B100 soot. These results also 

showed that the SOF of the B100 soot increased with the increase in EGR and 

this related to the proposed mechanism discussed in Section 8.4 which described 

RT to 300 oC 300 to 400 oC 400 to 700 oC 700 to 1000 oC Residue at 1000 oC

Description Oil Residue & Lighter Ends Polymers & 'Sludge' Mostly Traditional 'Soot' Additional Carbonaceous Content Non-combustible 'Ash'

EN590 55% EGR 1.2 0.3 96.1 0.2 2.2

EN590 10% EGR 1.2 0.5 82.3 11.8 4.2

B100 55% EGR 1.7 0.4 96.7 0.3 0.9

B100 12% EGR 2.7 1.2 87 0.2 8.9
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how the increased SOF may have encouraged the take-up of sulphur 

contaminate from the exhaust onto the B100 soot surface. 

 

Figure 8.18: 16.5:1 Low and High EGR DPF Soot TGA for EN590 and B100 Fuels (TGA) 

The presence of increased volatiles for the B100 soot relative to the EN590 

soot was also observed in the temperature range 300 to 400°C, particularly for 

the high EGR condition, Figure 8.18. Interestingly, in this temperature range 

there was also observed a higher percentage of weight loss for the EN590 soot 

at low EGR although the increase was relatively small. 

Referral to the gaseous emissions measurements for the EGR experiments, 

Table 8.1, shows that the percentage weight lost from the soot up to 400°C failed 

to agree with the EN590 and B100 HC emissions for low EGR where the HC 

emissions were substantially higher for the EN590 fuel low EGR experiment. This 

was an indication that the volatile temperature for HC components in the exhaust 

may have been higher for the B100 fuel and thus it would have been more likely 

these condensed onto the soot. This is suggested by Lapuerta et al. [326] for 

biodiesel fuels where it is also noted that this can also influence the HC 

emissions measurements and therefore the EGR results could have been 

influenced by this effect. 

The soot sample weight loss in the temperature range 400 to 700°C was 

largely due to the combustion of the carbonaceous part of the soot and 

interestingly it was observed that both the EN590 and B100 soot for the high 

EGR experiments lost almost the same percentage weight of sample in this 

temperature range, Figure 8.18. At low EGR the percentage weight loss in this 

temperature range was lower for both fuel soots. These differences between the 
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two EGR conditions reflected the total bulk inorganic analysis of Section 8.5, the 

surface O/C ratio observations of Section 8.4 and also the much higher exhaust 

soot concentration at high EGR detailed in Table 8.1. i.e. there was a much 

higher concentration of carbonaceous soot at high EGR due to the high rate of 

EGR and very low AFR and this therefore resulted in soot forming with a much 

higher percentage of carbonaceous components and lower inorganics. The lower 

exhaust O2 (and likely NOx) then suppressed the oxidation of the soot as 

discussed earlier in Section 8.4 such that a greater proportion of the 

carbonaceous part remained when the soot reached the DPF thereby resulting in 

the TGA observations. 

The TGA results for the residue remaining at the end of the TGA analysis 

showed that the ‘ash’ or residual metals remaining agreed well with the total bulk 

inorganic analysis (Section 8.5) for the low EGR condition with approximately 

double the ash observed between the B100 and EN590 soot which compared to 

a ratio of 2.1 between the total weight of inorganics for these same samples. 

However, in the case of high EGR, the relative EN590 and B100 soot residual 

ash fractions were the inverse of the respective total bulk inorganics with quite 

different low/high EGR ratios for ash and total bulk contaminates. The cause for 

this discrepancy could not be identified from the analysis of the available data 

and it is thought that it may have been the result of the much lower level of 

contaminates in the high EGR samples introducing more measurement 

uncertainty. It is also possible that the the bulk elemental analysis only partially 

considered the totality of contaminating elements present in the soot sample. 

One point of distinction in the EGR TGA analysis results was the high 11.8% 

weight loss for the EN590 low EGR soot in the temperature range 700 to 1000°C. 

A weight loss of this magnitude was not observed for any of the other samples 

analysed in this work in this temperature range and contrasted the more typical 

0.2% weight loss observed for this soot at high EGR and also the lack of any 

sensitivity of the B100 soot with change of EGR to this parameter. It was not 

precisely clear what mechanism was responsible for this isolated result. 

Summarised in Figure 8.19 is the TGA percentage weight loss profile for the 

four EGR experiments and this illustrates very clearly that both the high EGR 

experiments resulted in soot with very similar TGA characteristics principally 

because of the dominance of the carbonaceous soot fraction in the sample. The 

low EGR soot were distinct due to the anomalous high fraction of sample weight 

loss for the EN590 soot between 400-700°C. 
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Figure 8.19: 16.5:1 Low and High EGR DPF Soot TGA Curve for EN590 and B100 Fuels 

(TGA) 

8.10 Concluding Remarks 

In summary, the changes in the soot physiochemical characteristics which 

were observed for the change in EGR proved to be comparable to those 

observed for the compression ratio change but more clearly identifiable enabling 

the mechanisms and processes behind the observations to be elucidated with 

greater certainty. Importantly, the very high EGR rate investigated proved an 

excellent opportunity to evaluate B100 vs. EN590 soot behaviour at similar 

exhaust temperatures to those of the rated engine power experiments but with far 

lower exhaust oxygen concentrations. It is this comparison which really solidifies 

the clear distinctions in mineral and biodiesel soot physiochemical and 

morphological properties and behaviours that is a key general contribution of the 

work herein. 

The FSF for the EGR experiments showed that by this measure the EN590 

fuel had a soot producing tendency equivalent to 5 times the B100 fuel at low 

EGR, however this reduced to just below a factor of 3 for the high EGR condition, 

implying that the B100 fuel under high rates of EGR is relatively more prone to 

producing carbonaceous soot than at low EGR. When FSF was used to scale the 

soot bulk inorganic results it was observed that the increase in relative (fuel and 

exhaust soot concentration effects accounted for) contribution of bulk inorganics 

with EGR rate was somewhat greater for the B100 soot, reinforcing the a general 
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finding that the B100 soot has a more sensitive response to EGR change 

compared to the mineral diesel fuel. 

For the high EGR experiments there was both lower soot surface oxygen 

concentration and O/C ratio for both fuels with the most significant reductions 

observed for the B100 soot. This greater sensitivity in the O/C ratio of the B100 

soot was attributed to the generally greater rate of B100 soot oxidation also 

defined previously in Chapter 6 and Chapter 7. The high EGR soot surface O/C 

ratios for both fuels were the lowest of any observed in the work herein and it is 

postulated that this was due to very low exhaust O2 concentration due to the AFR 

being about stoichiometry (~14.5) i.e. there was very little free oxygen available 

to chemisorb to the soot surface. From the thermogravimetrical analysis a higher 

SOF concentration for the B100 soots was found at both low and high EGR, 

mirroring the observations for B100 soot produced at rated engine conditions. 

This low O/C ratio at high EGR correlated with soot surface acidity being 

observed to be negligible for both fuel soots and this important observation 

therefore indicated a possible minimum O/C ratio required to establish soot 

surface acid functionality and this finding is explored in greater detail in Chapter 

9. 

The concentration of total soot bulk inorganics at the DPF for the EGR 

experiments was lower than observed for the rated power tests and is attributable 

to the higher concentration of carbonaceous soot in the exhaust for the EGR 

experiments. Evaluation of the raw soot bulk inorganics revealed that following 

the increase in EGR there was a general reduction in the concentration of 

inorganics in the soot. This was supported by the TGA results which saw a 

reduction in ash content and increase in the carbonaceous soot fraction. 

Application of the FSF however showed that although the concentration of 

inorganics reduced, relatively more inorganics were entrained when fuel rate and 

exhaust soot concentration changes were accounted for. This was attributed to 

the increased concentration of exhaust products in the cylinder during 

combustion with the carbonaceous part of the recycled soot subject to oxidation 

but the ash part persisting so as to increase the relative concentration in the soot. 

There was a very significant almost identical decrease in the BET soot 

surface area with the increase in EGR which is believed to be an indication of an 

appreciably larger particle diameter for both fuel soots at high EGR due to the 

much larger carbonaceous soot fraction and a low porosity due to the much lower 

surface oxidation indicated by the low O/C ratios. Interestingly, the increase in 
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EGR greatly affected the skeletal density of the soots. The change was opposite 

in both cases with the EN590 soot density decreasing 13.5% and the B100 soot 

increasing 10.5%. This reflected the observations for soot evolution in the 

exhaust from Chapter 7 and further increased the validity of the 2nd of the 

proposed B100 soot models from Chapter 5 by virtue of the ability of this model 

to also account for the B100 soot EGR rate morphological response. 

PAH were only detected for the high EGR EN590 soot sample; in contrast the 

concentration of total PAH in this sample was the highest observed in the work 

herein. The measured PAH were distributed only among the mid-molar mass 

PAH and thus the pattern was similar to that observed for the 16.5:1 rated power 

DPF soot, however the distribution was centred at a higher molar mass. 

Comparison to the quite different PAH profile observed at the exhaust manifold 

demonstrated that there was a clear change in PAH profile that is most likely 

explained by the catalysing reactions of the oxidation catalyst. Phenanthrene 

(atomic mass 178) was observed, therefore reinforcing the statements in forgoing 

results chapters that Phenanthrene is a ‘stabilomer specie’. 
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Chapter 9 

9 Soot Surface Acidity Relationships 

The results discussion of the proceeding Chapters 5-8 established that there 

existed an outline fundamental relationship between the soot surface O/C ratio 

and soot surface acidity which was sensitive to the presence of soot surface 

sulphur. The aim of the present chapter is to explore these relationships in 

greater detail by collating the various soot physiochemical results across all 

experiments and then analysing collectively to find the underlying links between 

different physiochemical properties, ultimately leading to a more fundamental 

understanding of soot surface acidity. 

9.1 The Relationship between Carboxylic Acid and Total 

Acid Concentration 

From collating and analysing the surface acidity data presented across 

previous Chapters 5-8, the first observation is that the contribution of the 

carboxylic acids to total surface acids forms a clear relationship which appears to 

encompass the three fuels, both compression ratios, soot location in the exhaust 

and also the EGR low and high experimental conditions. This finding is presented 

in Figure 9.1 and illustrates an outline second order relationship between the 

concentration of surface carboxylic acid and soot total surface acidity. (Note that 

in Figure 9.1, and indeed all the relevant figures in this chapter, error bars have 

been added to assist the result interpretation). 

Although the data presented in Figure 9.1 is thinly populated and considers a 

broad set of experimental conditions, the R2 confidence level of the quadratic fit is 

reasonable, indicating that this finding could be broadly applicable in respect to 

diesel engine soot. Figure 9.1 also highlights how the presence of surface 

sulphur in the 19.5:1 PC9 exhaust manifold soot sample significantly influenced 

the soot surface acidity; this result being distinct from the others in the study by 

virtue of a far higher carboxylic acid concentration which therefore contributed to 

a higher total surface acidity. 
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Figure 9.1: Relationship of Soot Total Surface Acidity to Carboxylic Acid Part (Boehm 

titration) 

The result from Figure 9.1 suggests that the total surface acidity of soot may 

be constrained principally by the carboxylic fraction when sulphur is accounted 

for and thus the next appropriate step is to consider the percentage of carboxylic 

acids as a function of total acids to understand the nature of this alternate 

relationship. This analysis is presented in Figure 9.2 and reveals an outline linear 

correlation between the fraction of total acidity which is carboxylic. The degree of 

scatter in the available data yields an R2 value of 0.55, so this relationship is less 

robust than that identified in Figure 9.1 but the linear characteristic is evident. 

 

Figure 9.2: Relationship of the Percentage of Total Acids which are Carboxylic to Total 

Surface Acidity (Boehm titration) 

With this linear correlation it is possible to underline the very close interplay 

between these two measures of soot surface acidity but it is only applicable as 
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predictive tool if at least one of the measures of surface acidity is known. i.e. if 

the total surface acidity of diesel soot is known, then the carboxylic acid 

concentration can be estimated both as a fraction of the total acidity and as a 

concentration and vice versa. 

A far more useful capability is to relate the surface acidity to other soot 

surface properties in order to predict soot surface acidity when nothing pertaining 

to surface acidity is known. The usefulness of such a capability is clear from the 

literature review in Chapter 2, which identified a general paucity of diesel engine 

exhaust soot characterisation data in open literature with soot surface acidity 

being one of the least discussed soot attributes. Therefore in the next section, 

relationships between soot surface elemental composition and surface acidity 

and also the morphological properties of soot are investigated to help improve 

understanding of soot surface acidity. 

9.2 O/C Relationship to Carboxylic Acid Concentration 

In Chapters 5-8 it was observed that the soot surface O/C ratio appeared to 

correlate generally with surface acidity. This observation is supported by a 

correlation between soot surface acidity and surface oxygen concentration 

reported by Studebaker [163] in which soots with higher surface oxygen content 

were observed to have greater surface acidity. However, from the results 

presented in Chapters 5-8, it is possible to be more specific and link the surface 

area and surface O/C ratio of the soot to the concentration of surface carboxylic 

acid, which in turn from the proceeding analysis of Section 9.1; confers the 

potential to estimate the soot total surface acidity. 

First, a relationship has been drawn from a comparison of soot O/C ratio to 

soot surface area; the result of this comparison is presented in Figure 9.3 for all 

the different soot samples collected in this work. 

Figure 9.3 reveals that for all but one of the soot samples analysed, there was 

an outline linear relationship between the soot surface area and the surface O/C 

ratio. Therefore, Figure 9.3 implies that soot surface O/C ratio is not just a direct 

function of say the equivalence ratio during combustion but is also governed 

partly by the oxidation processes which the soot experienced following formation. 

This is because soot oxidation processes have been shown previously in 

literature by Ahlstrom et al. [130], Ishiguru et al. [131] and others [132, 133, 135], 

and also in this work principally in Chapter 7; to directly affect physical properties 

of soot - especially surface area and therefore in turn the soot surface O/C ratio. 
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The linear relationship depicted in Figure 9.3 is an intuitive result as a greater 

surface area should in principle increase the population of exposed edges of the 

graphite platelets which are the known sites of the functional groups responsible 

for soot oxidation and acidity [120, 156]. 

 

Figure 9.3: Relationship of Soot Surface O/C ratio to Surface Area (XPS, BET) 

Figure 9.3 emphasises the significant difference in the oxidation pathway of 

the B100 soot produced at rated engine power at 16.5:1 as the soot evolved in 

the exhaust compared to all other soots analysed, Chapter 7. In contrast to this, 

Figure 9.3 also importantly shows that the B100 soot at both low and high EGR 

during the EGR experiments (Chapter 8) did not experience the same 

‘accelerated’ oxidation pathway as the B100 soot sampled at rated power engine 

conditions and instead conformed to the ‘normal’ O/C ratio-surface area pattern. 

This contrast in the B100 soot results was assumed initially to be related to 

the difference in exhaust manifold temperature of these tests. However upon 

closer inspection; for the rated power experiments at 16.5:1, the B100 fuel 

exhaust temperature was 530°C (Table 4.10 Part B) and for the EGR tests it 

ranged from 415 to 550°C for 12-55% EGR (Table 8.1). Therefore in both sets of 

experiments, the B100 fuel exhaust temperatures were essentially equivalent. 

Additionally, since Ahlstrom et al. [130] and Ishiguro et al. [131] detail that the 

temperature of around 550°C is the temperature when carbonaceous soot 

spontaneously undergoes exothermic combustion; then both sets of experiments 

were either only just at or below this temperature. What Figure 9.3 suggests is 

that the concentration of the functional groups responsible for oxidation [116, 

118, 156] were either more concentrated on the surface of the B100 soot or 
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alternatively the functional groups inside of the amorphous soot core [120] were 

exposed and detected by the XPS examination and it was these exposed internal 

sites which were amplifying the soots apparent surface oxygen concentration. 

This latter postulation links back to the proposed B100 soot models in Chapters 

5-8 and therefore the findings from Figure 9.3 provide a further point of support 

for the unique nature of the B100 soot physiochemical properties for which 

postulations have been previously proposed. 

Following further analysis, a second O/C relationship has been identified 

which establishes a link between the {surface area - O/C ratio relationship} 

detailed in Figure 9.3 and the carboxylic acid concentration on the surface of the 

soot. This correlation is presented in Figure 9.4 for data collated from the soot 

results presented and discussed in Chapter 5-8. This relationship describes soot 

surface carboxylic acid concentration as a function of surface O/C ratio and is far 

more complex than the forgoing correlations but also more fundamental. 

 

Figure 9.4: Relationship of Soot Surface Carboxylic Acid to Soot Surface O/C Ratio 

(Boehm titration, XPS) 

Several very interesting and important observations can be determined from 

Figure 9.4. Firstly, the central area of the figure presents the soots which did not 

follow the ‘accelerated’ oxidation pathway of the B100 soot and also had low 

surface sulphur concentrations at or below 0.3 % weight. These soots lying in the 

O/C ratio range of 0.075 to 0.12 appeared to have strongly linear carboxylic acid 

concentration in relation to O/C ratio. This is defined as fundamental observation 

as it encompassed soots from different compression ratios, sample locations and 

from both the rated power/EGR experiments and is therefore a somewhat unique 
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finding. Secondly, below an O/C ratio of approximately 0.075 there are only two 

soots observed, the two high EGR soots, and both of these have negligible 

surface acidity. 

It is worth noting that for the 16.5:1 exhaust manifold soot samples, the 

surface acid functionality was not determined due to limited sample mass which 

meant that the EN590 result in particular which had an O/C of 0.0627 is not 

available to refine the ‘knee point’ identified by Figure 9.4. Such a result would 

have been very advantageous as it may have been possible to identify whether 

the ‘knee point’ is a specific consequence of the very high EGR rates of these 

experiments or whether in this O/C ratio region the carboxylic surface acidity and 

thus soot total acidy becomes suspended due to the surface chemistry in this 

region no longer supporting surface acid sites. 

Consequently, the surface carboxylic acid and O/C ratio relationship in the 

limited region of 0.06 to 0.075 depicted in Figure 9.4 is a very interesting area for 

future research focus to help develop a clearer understanding for why the 

carboxylic acid concentration falls so abruptly in these results. This is likely 

described by an underlying fundamental soot surface physiochemical process 

that could be modelled with the availability of a broader spectrum of data in the 

form of the results that populate Figure 9.4. 

9.3 Soot Surface Acidity with Surface Sulphur 

A further interesting observation derived from Figure 9.4 is that all soots in the 

central group, and also the heavily oxidised B100 soot (highlighted on the far 

right), had surface sulphur concentrations at or below 0.3 % weight. The 19.5:1 

PC9 soot at the exhaust manifold had a surface sulphur concentration x5.2 this 

concentration and the relationship of carboxylic acid to the O/C ratio is entirely 

different for this soot suggesting that the sulphur is introducing considerable 

additional carboxylic functionality. An important contrast to this is the observation 

that the soot from the same fuel but at 16.5:1 compression and extracted from 

the DPF. This soot had a carboxylic acid vs. O/C ratio that placed it perfectly on 

the linear trend of the central group depicted in Figure 9.4. 

This outlying result for the 19.5:1 PC9 soot highlighted in Figure 9.4 and the 

related discussion in preceding chapters, demonstrate conclusively that the 

presence of surface sulphur was associated with the significant changes in PC9 

soot surface acidity and more specifically the carboxylic acid concentration. 
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As an example, the processes such as the oxidation of the PC9 soot in the 

exhaust (Chapter 7) which acted to increase surface sulphur should also have 

increased surface acidity in proportion to the increase in concentration of surface 

sulphur. Consequently, it is believed that the reduction in compression ratio 

which reduced the PC9 soot surface sulphur concentration by 97% should also 

have reduced the surface acidity of the PC9 soot (as measured at the exhaust 

manifold) and when this soot was then transported down the exhaust, the 

oxidation processes in the oxidation catalyst liberated the sulphur from the soot 

core and this then increased the concentration on the surface markedly, which in 

turn increased the surface acidity through sulphur oxygenates. This process, 

according to the result of Figure 9.4, must have occurred in addition to the basic 

processes related to surface area and O/C ratio identified earlier in Section 9.2. 

From collating these observations, it is postulated that the influence of 

surface sulphur on soot surface carboxylic acidity may have a threshold level 

(e.g. 0.3 % weight) below which the sulphur is no longer influential and the soot 

carboxylic surface acidity relates directly to the surface O/C ratio. Future research 

into this postulated threshold level would be very useful to understand more 

precisely how lower soot surface sulphur concentrations influence surface acidity 

since the influence of sulphur is so specific and significant [138]. 

Although not something which was specifically investigated in this work, it is 

worth mentioning related findings in earlier Lubrizol work by Covitch et al. and 

Ripple et al. [138, 165] (work which contributed to the development of the 

research pathway for this work). In these works it was concluded there is a direct 

correlation between fuel sulphur level and sulphur concentration in the soot. 

Covitch et al. ascribed a factor of 1.7 for the increase in percentage weight 

sulphur in soot relative to the associated change in concentration of sulphur in 

the fuel. Further, it was also found that reducing sulphur content in the fuel 

appeared to increase the level of soot contamination of the lubricant suggesting 

that there was an increase in the deposition of soot into the lubricant. Covitch et 

al associated this with the reduction in soot surface sulphur which changed the 

acidity and made the soot potentially more oleophilic thereby more easily being 

absorbed through thermophoretic deposition into the lubricant film on the cylinder 

wall. Consequently, the sensitivity of soot surface acidity to surface sulphur 

concentration identified by the PC9 soot outliner result in Figure 9.4 is of very 

great importance to research field of diesel engine lubricants. 
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In the present work, the lubricant was sampled at 5 hour intervals (Section 

3.2.1.6) to investigate soot loading and rheometry for Lubrizol as a separate 

study to the soot physiochemical investigation. It was found however that the 

soot loading for all samples was too low to reveal if there were any sulphur 

related effects on the soot which influenced the lubricant rheology.17  

In addition to the findings above of Covitch et al. and Ripple et al. [138, 165], 

Kittelson et al. [24] state that the surface acid/sulphate fraction of soot is roughly 

proportional to the fuel sulphur content. Therefore, it can be postulated that the 

PC9 soot outliner in Figure 9.4 has a higher carboxylic surface acidity in 

proportion to the higher surface sulphur concentration of this single sample 

relative to all the other examined soot samples. This conclusion, in addition to the 

earlier postulated threshold of ~0.3 % weight sulphur concentration (below which 

there is no sulphur related increase in soot surface acidity), provides both 

validation and extension of the relationship described by Kittelson at al [24]. 

9.4 Soot Surface Acidity with High EGR 

A final and very important observation from the analysis of the surface acidity 

data presented in Figure 9.4 is that under the conditions of very high EGR 

(~55%), the soot surface O/C ratio remained very low even at the DPF and in 

particular for the more oxidation reactive B100 soot. Thus, it appears that in the 

case of high EGR, the process of soot surface oxidation is impeded and that it 

can be effectively ‘frozen’ or slowed such that it process at a very low rate relative 

to the linear central section of Figure 9.4. 

Understanding fully what are the attribute(s) of these two high EGR 

experiments that fundamentally result in the negligible soot surface acidity is not 

achievable with simply two available experimental results. Since the same 

observation was made for both the EN590 mineral diesel fuel and B100 fuel 

soots, it is highly likely that the negligible surface acidity developed principally 

from the significant reduction in available oxygen (both O2 and NOx) for 

oxidisation both in-cylinder and the exhaust due to the very high rate of EGR. 

This is borne out in the other available soot characterisations which failed to 

reveal any specific soot related property, either physical or chemical, which would 

have impeded oxidation in the manor observed. 

                                                
17

 Standard industry tests such as the Mack T11 which look for soot-lubricant rheological effects require 

the engine to run upwards of 80 hours, some tests also employ artificially increased soot formation [184]. 
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Therefore this observation for the two high EGR soot samples is considered a 

potentially fundamental finding concerning the effect of very high EGR rates (and 

therefore very low combustion equivalence ratio and exhaust oxygen 

concentrations) on soot surface development both in-cylinder and in the exhaust 

with implications for both aftertreatment system and lubricant system fields of 

research. The main uncertainty in the finding is the limited number of data points. 

It is therefore advised that research into this behaviour would be a very 

worthwhile parallel activity to the need proposed earlier in Section 9.2 to better 

understand the effect of soot surface O/C ratio on soot carboxylic acid 

concentration in the region of the ‘knee point’ identified in the linear relationship 

depicted in Figure 9.4. 

9.5 Empirical Equations for Estimating the Surface Acidity 

of Soots 

The forgoing correlations theoretically provide the capability to estimate the 

carboxylic and surface acidity for samples where direct measurement was not 

possible. Two cases where this is applicable are the 19.5:1 exhaust manifold 

sample for the B100 soot and the three exhaust manifold samples at 16.5:1. 

The two empirical relationships utilised to estimate soot surface acidity can be 

defined as follows in Equation 9.1 and Equation 9.2: 

𝑐𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑖𝑐 𝑎𝑐𝑖𝑑  𝐶𝐴 (
𝑚𝑚𝑜𝑙

𝑔
) = 5.274(

𝑂

𝐶
 𝑟𝑎𝑡𝑖𝑜) − 0.244  Equation 9.1 

Equation 9.1 is only applicable in the O/C range (0.075 to 0.12) since it is 

derived from the linear relationship in the central region depicted in Figure 9.4 

and it has an R2 value of 0.9975. The second empirical relationship derives from 

the finding presented in Figure 9.1 which relates the total surface acidity to the 

surface concentration of Carboxylic Acid (CA) and it has an R2 value of 0.9556: 

𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑖𝑑𝑠 (
𝑚𝑚𝑜𝑙

𝑔
) = −2.42𝐶𝐴 + 3.3382𝐶𝐴        Equation 9.2 

Thus, by combining Equation 9.1 and Equation 9.2 it is possible to use only 

the measured soot surface O/C ratio to estimate the carboxylic acid 

concentration and from this the total soot surface acidity with the stipulation that 

the concentration of soot surface sulphur is below 0.3% weight as detailed in 

Section 9.3. 
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The results from the application of Equations 9.1 and 9.2 to soot data 

reported in Chapters 5-8 are detailed in Table 9.1. The results of Table 9.1 can 

be compared to the surface acidity results presented in Chapter 6, Table 6.5 

(reproduced here as Table 9.2 for convenience). 

Table 9.1: Estimated Surface Acidity for Unavailable Soot Surface Data 

 

The estimation for the 19.5:1 B100 sample suggested a carboxylic acid 

concentration just slightly higher than that of the 19.5:1 CT EN590 sample by 

virtue of the slightly higher O/C ratio. The total surface acidity estimation is 

however lower and potentially an indication of the limitation of this part of the 

surface acidity estimation i.e. an R2 value of 0.9556 vs. 0.9975 for the carboxylic 

estimation equation. The estimation however appeared reasonable in relation to 

the 19.5:1 data in general. 

Table 9.2: 19.5:1 and 16.5:1 Exhaust Manifold and DPF Soot Surface Acid 

Functionality 

 

When computing estimates for the 16.5:1 exhaust manifold soot surface 

acidity, it is first necessary to check that for all samples the level of surface 

sulphur is below the 0.3 % weight threshold identified previously so the empirical 

relationships can be utilised with confidence. The estimation for the EN590 

carboxylic and total acidity is comparatively low but reflects the low O/C ratio 

which occupies the region where the high EGR test results suggest a ‘knee point’ 

Description

19.5:1 CT, EN590 0.621 0.083 0.181 0.008

19.5:1 CT, PC9 1.163 0.010 0.749 0.001

19.5:1 CT, B100 NA NA NA NA

16.5:1 DPF, EN590 0.601 0.045 0.169 0.004

16.5:1 DPF, PC9 0.575 0.004 0.207 0.004

16.5:1 DPF, B100 0.850 0.005 0.311 0.016

Boehm Titration

Total surface 

acids (mmol/g)

stdev 

(mmol/g)

Surface carboxylic 

acids (mmol/g)

stdev 

(mmol/g)
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on the carboxylic to O/C ratio correlation, Figure 9.4. Thus, the reliability of this 

estimation is less than for the calculation examples. 

For the 16.5:1 exhaust manifold PC9 soot, the surface acidity is estimated to 

be slightly more than half that observed in the 19.5:1 exhaust manifold sample 

which is in line with the much lower surface concentration of sulphur. The lower 

O/C ratio for the PC9 soot at the DPF indicates that on the basis of Figure 9.4 the 

surface acidity should be slightly less than that at the exhaust manifold and this 

also agrees with the estimated surface acidity finding. 

Finally, for the B100 soot a slightly lower estimated acidity is predicted at the 

lower compression condition at the exhaust manifold compared to at the DPF, 

again because of the lower O/C ratio. The surface acidity change with 

compression ratio for this fuel is much lower than for either the EN590 or PC9 

fuel soots as a result of the O/C changing much less with compression ratio, with 

estimated acidity at each compression ratio being quite similar. 

Although in the preceding estimation of soot surface acidity the measured 

O/C ratio has been used, Figure 9.3 indicates that it is also feasible to first use 

the measured soot surface area to initially estimate the soot surface O/C ratio 

and then utilise this to calculate the soot surface acidity. The empirical relation 

that can be applied to estimate soot surface O/C ratio from surface area is 

presented in Equation 9.3: 

(
𝑂

𝐶
 𝑟𝑎𝑡𝑖𝑜) = 0.00006(𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (

𝑚 

𝑔
)) − 0.618        Equation 9.3 

However, for Equation 9.3 the R2 is low at 0.4247 as a result of this simple 

empirical model not capturing all of the additional factors that also govern O/C 

ratio such as; the conditions in which the soot formed, the age of the soot, the 

composition of the exhaust gas, the exhaust soot sampling location etc. It is 

therefore advised that use of the empirical soot relations in this chapter should be 

restrained to Equations 9.1 and 9.2 and Equation 9.3 is only used when direct 

measurement is not available. 

In conclusion, the projected surface acidity results using the developed 

empirical correlations appear to work sensibly and may find application in other 

work to estimate soot surface acidity when it is not feasible to measure surface 

acidity directly. 
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9.6 Concluding Remarks 

Through a process of aggregating the soot results and findings from the 

earlier Chapters 5-8, it has been possible to build three empirical models to 

estimate soot surface acidity characteristics from alternative soot physiochemical 

properties which include surface O/C ratio and soot surface area. The simplicity 

of these empirical models points to there being fundamental properties of the 

soot formation and oxidation processes that govern diesel engine soot surface 

acidity, irrespective of factors investigated in this work that include 

mineral/biodiesel fuel and geometric compression ratio. 

The findings in this chapter also point the direction of future research to focus 

on the soot surface O/C ratio and the identified proportional relationship to soot 

surface acidity in the range 0.075-0.12 O/C ratio. A possible threshold of 0.3 % 

weight of surface sulphur is also identified in this work, beyond which the surface 

sulphur concentration proportionally starts to increase soot surface acidity 

regardless of the O/C ratio. Finally, at high EGR (~55%), it has been shown that 

the very low combustion equivalence ratio and free oxygen and NOx in the 

exhaust products act to supress the soot surface oxidation processes leading to 

an O/C ratio below 0.06, and soots in this category consistently showed 

negligible surface acidy with the absence of surface sulphur. 
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Chapter 10 

10 Conclusions and Contributions 

The work reported herein provides a reference for the impact of diesel engine 

geometric compression ratio change and low/high EGR (10/55%) on a breadth of 

exhaust soot physiochemical properties and engine performance/emissions for a 

group of three mineral diesel and biodiesel fuels on an otherwise unmodified VW 

1.9TDI engine. Consideration is also given to the changes in the soot 

physiochemical properties as soot matures in the exhaust system between the 

exhaust manifold and a DPF located after a diesel oxidation catalyst. 

10.1 Engine Performance and Emissions 

Prior to the experimental soot collection experiments, a parametric study was 

undertaken to understand the engine performance and emissions with the three 

fuels (EN590, PC9, B100) and the two compression ratios (19.5:1, 16.5:1) 

selected for the soot physiochemical investigation. This determined that the 

highest exhaust soot concentration occurred at 4000 rpm/maximum torque 

(engine rated power) with >40°C IMAT. This operating point was used for the 

soot physiochemical result discussion in Chapters 5-7. 

The comparison of PC9 and B100 fuels to the baseline EN590 found that 

generally the two mineral fuels (EN590, PC9) resulted in similar engine 

performance and emissions whilst there was much greater differentiation 

observed between the B100 and EN590 fuels. The majority of the significant 

engine performance parameter distinctions for the B100 fuel (e.g. BMEP, BSFC, 

exhaust temperature etc.) are ascribed to the B100 fuel’s combination of higher 

fuel density and lower energy density. Such were these changes that the AFR 

was between 5-12% lower compared to EN590 and yet there was an 80-90% 

reduction in exhaust soot concentration. 

The reduction in compression ratio caused a general increase in AFR of a 

few percent that stemmed from an increase in MAF and is attributed to the 

increase in cylinder volume. It was also observed to reduce the estimated 

average in-cylinder temperature by 2.3% and the peak cylinder pressure by 

17.5%; thus the compression ratio influences on exhaust soot discussed in 

Chapter 6 are likely dominated by cycle pressure reductions. 
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10.2 Soot Physiochemical Properties 

All the factors originally highlighted in the aims and objectives were observed 

to influence soot physiochemical properties with fuel generally being the factor of 

most significance followed by EGR and lastly the reduction in compression ratio. 

The measured physiochemical properties of the soots in this work agreed well 

with those outlined in the literature review reported in Chapter 2. 

The PC9 and EN590 mineral diesel soots sampled at the exhaust manifold at 

the same compression ratio were initially observed to have points of commonality 

which distinguished these soots from the B100 soot, Chapter 5. The presence of 

bulk and surface sulphur proved to be the main distinguishing feature of the PC9 

soot. Surface sulphur was found to correlate with an increase in the surface O/C 

ratio and this in turn correlated with a higher carboxylic and total surface acidity 

suggesting a strong link between soot surface oxidation and surface acidity which 

is modulated through adsorption of sulphur from the fuel. 

However, the compression ratio reduction triggered a 97% reduction in PC9 

soot surface sulphur concentration at the exhaust manifold which in turn saw the 

surface total acidity reduce by 50%. This reduction in PC9 soot surface sulphur 

did not appear to amplify the reduction in surface oxygen when compared to the 

EN590 soot and thus the sulphur-oxygen proportionality relation is concluded to 

have additional complexity, specifically at low surface sulphur concentrations of 

<0.3 % weight. 

Further complexities in the PC9 soot surface sulphur behaviour were 

observed as the soot evolved in the exhaust. It is believed that during the 

oxidation catalyst reactions, the PC9 soot sulphur migrated (possibly through 

pores in the soot) to the surface of the soot, oxidised with surface oxygen and 

free oxygen in the exhaust and was then volatilised. This process caused a 

reduction in bulk sulphur and reduction in surface oxygen. The volatilised sulphur 

compounds then condensed onto the surface of the soot as the exhaust gas 

temperature reduced between the oxidation catalyst and the DPF where the soot 

was collected resulting in dynamic changes in surface acidity. 

Therefore the environment where the PC9 soot surface sulphur compounds 

formed and adsorbed onto the surface of the soot could be quite different, 

thereby influencing the impact of sulphur on soot. For example, soot at the 

exhaust manifold which is derived from high temperature in-cylinder reactions is 

postulated to have had a different influence of the soot surface functional groups 
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compared to sulphates released and then adsorbed when the soot passed 

through the oxidation catalyst. Further work is required to understand the 

complexities of these outline findings regarding soot surface sulphur. 

After accounting for differences in fuel rate, lubricant consumption rate and 

exhaust soot concentration, it was observed that the bulk inorganic content of the 

three fuel soots were similar for the rated engine power experiments. This 

confirmed the hypothesis that the concentration of soot bulk inorganics is largely 

tied to these three factors. Principal inorganic contaminates were observed to be 

(Ca,Fe,Na,S,Zn) in order of concentration indicating fuel, lubricant and engine 

metallurgy as sources. 

B100 soot was found to have distinct morphological characteristics and to 

rationalise the observations this thesis has developed a proposal for a B100 soot 

model which is introduced in Chapter 5. This regards B100 soot primary particles 

as having a far more regular graphene plane internal arrangement with fewer 

isolated internal voids compared to the mineral diesel soot when the B100 soot 

first forms and is expelled from the cylinder. This uniform structure with minimal 

trapped voids also possesses a higher proportion of inorganics due to a lower 

carbonaceous fraction and collectively these characteristics endow the B100 soot 

with a higher density. This regular graphene plane arrangement extends to the 

B100 soot outer shell giving the soot a low porosity and surface area. 

From examination in Chapter 7 of the soot transformation in the exhaust, this 

young soot model was extended to account for ageing processes by proposing 

that initially trapped inter-particle voids [141] form in the young B100 soot as it is 

exposed to heat and oxygen in the exhaust. It is thought that this initial process 

causes the N2 pycnometry method to over-estimate the skeletal volume (Section 

3.6.4.3) thereby giving a lower density measurement as was observed when the 

soot was sampled after it had passed through an oxidation catalyst. Therefore, 

the B100 soot structure is postulated to have evolved or aged in the exhaust 

such that the soot became more akin to the hollowed out soot core with intact 

outer shell described by Song et al. [16]. 

The validity of this B100 soot model was strengthened by the finding from the 

high EGR experiment (Chapter 8) that the B100 soot had a relatively high density 

when sampled after the oxidation catalyst. This is because the soot surface O/C 

ratio for the same sample was very low indicating that at high EGR there had 

been significantly reduced oxidation occurring; a finding confirmed by the 
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relatively low proportion of inorganics and negligible surface acidity and 

explained by the low concentration of gaseous O2 and likely also NOx in the 

exhaust. Therefore the proposed model predicts that this young initial state of the 

B100 soot persisted beyond the oxidation catalyst such that the soot when 

collected in the DPF had a high density and low surface area characteristic of 

‘young’ soot - such was observed at the exhaust manifold for the B100 soot 

produced at rated engine power. 

The reduction in compression ratio caused a reduction in the soot surface 

O/C ratio, regardless of fuel and appeared to be the inverse of the change in the 

AFR, Chapter 6. This change in O/C ratio was also opposite to the exhaust O2 

concentration change but did align with a reduction in NOx. It is postulated that 

the reduction in compression ratio, which acted to reduce the peak and average 

in-cylinder temperature, in turn reduced both the formation of NOx and also 

therefore the reaction rate between the NOx and the soot – thereby inhibiting the 

formation of surface functional groups. 

The soot surface O/C ratio reduction in response to compression ratio 

reduction was more significant for both mineral fuel soots and this is thought to 

be a consequence of the significant morphological distinction of the B100 soot. It 

is postulated that one explanation based on the proposed soot model, is that the 

greater proportion of inorganics in the B100 soot increases the potential for more 

local irregularity in the graphene planes of its structure [118]. These local sites of 

discontinuity are reported elsewhere to be distributed over both the inner and 

outer surfaces of the soot [120] and can potentially increase soot reaction rate 

[16, 143] because they are sites for the surface functional groups which 

chemisorb O2. 

Importantly, the reduction in O/C ratio combined with the reduction in surface 

sulphur for the PC9 fuel, demonstrated that engine geometric compression ratio 

can influence soot surface reactivity indirectly via in-cylinder temperature based 

soot formation and oxidation processes. This is an important observation that 

should be considered in the engine design process that defines engine 

compression ratio. This observation is also of potential interest to the disciplines 

of lubricant and aftertreatment research. 

The reduction in compression ratio was also suspected of causing an 

increase in lubricant consumption for all rated engine power soot collection 

experiments and this was most likely because of increased blowby. This increase 
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in lubricant consumption is believed to be a contributing factor to the clear step 

increase in the fraction of bulk inorganic contaminate in all soots. However, it is 

also postulated that the reduction in compression ratio also affected the soot-

lubricant interaction mechanism by increasing the relative entrainment into the 

soot of the lubricant derived inorganic contaminates (Ca,P,Zn) in comparison to 

the metals from the engine metallurgy (Fe,Mg). Further research is required to 

understand the details of this behaviour. 

It is clear that soot transformation in the exhaust is highly dependent on the 

original structural form and surface state of the soot as it exits the cylinder i.e. the 

physiochemical soot properties ‘baked in’ during combustion, Chapter 7. This is 

especially true of the B100 soot which appeared to undergo a much higher rate 

of oxidation compared to the mineral fuel soots with the surface O/C ratio 

increased by a factor of 1.8 relative to the EN590 soot as the B100 soot evolved 

in the exhaust during the rated engine power experiments. This was supported 

by the changes observed in the bulk inorganics concentration which indicated the 

carbonaceous fraction loss was 3-4 times that of the mineral soots. 

There was a small change in the concentration of total PAH in the EN590 

soot samples between the exhaust manifold at 19.5:1 and the DPF at 16.5:1; 

however in the case of the PC9 soot there was a significant increase of 4732% in 

the total concentration of PAH. It is thought likely that the reduction in 

compression ratio which caused a significant reduction of PC9 soot surface 

sulphur concentration also resulted in an increase in the PC9 soot surface PAH 

adsorption with further increases then occurring as the soot evolved in the 

exhaust with condensation/adsorption of material released in the oxidation 

catalyst reactions. 

The PAH molar mass profiles for the two mineral fuel soots also changed 

markedly with both the compression ratio reduction and exhaust evolution with 

the result being a much narrower distribution of PAH. It is concluded that the soot 

evolution was more significant in the change in PAH distribution than 

compression ratio due to the behaviour of the EN590 soot which did not 

incorporate sulphur effects. Furthermore, Phenanthrene (molar mass 178 g/mol) 

was found to be persistent in the PAH profile of all fuel soots even after the 

oxidation catalyst reactions, therefore this is identified as a PAH ‘stabilomer 

specie’. 
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The changes in the soot physiochemical characteristics which were observed 

for the change in EGR (Chapter 8) proved to be comparable to those observed 

for the compression ratio change but more clearly identifiable enabling the 

mechanisms and processes behind the observations to be elucidated with 

greater certainty. 

The FSF for the EGR experiments showed that by this measure the EN590 

fuel had a soot producing tendency equivalent to 5 times the B100 fuel at low 

EGR, however this reduced to just below a factor of 3 for the high EGR condition 

implying that the B100 fuel under high rates of EGR is relatively more prone to 

producing carbonaceous soot than at low EGR. When FSF was used to scale the 

soot bulk inorganic results it was observed that the increase in relative (fuel and 

exhaust soot concentration effects accounted for) contribution of bulk inorganics 

with EGR rate was somewhat greater for the B100 soot, reinforcing the general 

finding that the B100 soot has a more sensitive response to EGR change 

compared to the mineral diesel fuel. 

The concentration of total soot bulk inorganics at the DPF for the EGR 

experiments was lower than observed for the rated power tests and is attributable 

to the higher concentration of carbonaceous soot in the exhaust for the EGR 

experiments. Evaluation of the raw soot bulk inorganics revealed that following 

the increase in EGR there was a general reduction in the concentration of 

inorganics in the soot. This was supported by the TGA results which saw a 

reduction in ash content and increase in the carbonaceous soot fraction. 

Application of the FSF however showed that although the concentration of 

inorganics reduced, relatively more inorganics were entrained when fuel rate and 

exhaust soot concentration changes were accounted for. This is attributed to the 

increased concentration of exhaust products in the cylinder during combustion 

with the carbonaceous part of the recycled soot subject to oxidation but the ash 

part persisting so as to increase the relative concentration of inorganics in the 

soot. 

Through a process of aggregating the soot results and findings from the 

Chapters 5-8 it was possible to develop three empirical models to estimate soot 

surface acidity characteristics from alternative soot physiochemical properties 

which include surface O/C ratio and the soot surface area, Chapter 9. The 

simplicity of these empirical models points to there being fundamental properties 

of soot formation and oxidation processes that govern diesel engine soot surface 
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acidity irrespective of factors investigated in this work that include 

mineral/biodiesel fuel and geometric compression ratio. 

The principal surface acidity model enables estimation of soot surface 

carboxylic acid concentration from the surface O/C ratio limited to the O/C ratio 

range of 0.075-0.12 O/C and for soots with surface sulphur concentration of < 0.3 

% - beyond this, surface sulphur concentration proportionally starts to increase 

soot surface acidity regardless of the O/C ratio. Most interestingly, only EN590 

and B100 high EGR (~55%) soot were observed to have an O/C ratio of <0.06; 

for both of these soots, negligible surface acidy was detected with the absence of 

surface sulphur. It is postulated therefore that there may be a threshold below an 

O/C ratio of 0.06 at which point soot surface acidity ‘switches off’. This finding 

could be an important contribution to both lubricant and aftertreatment research 

disciplines. 

10.3 Soot Sampling Methods 

The ceramic thimble collection system developed in this work was found to 

have a fundamental sampling characteristic which was roughly exponential in 

regard to the concentration of exhaust soot and the rate at which soot accreted in 

the ceramic thimble, Section 3.5.1.2. Therefore the application of this sampling 

method to engines with low concentrations of exhaust soot is challenging. This 

soot sampling methodology proved successful at the exhaust manifold where 

there was high exhaust gas pressure but was not suited to sampling post 

turbocharger. A reduction of >80% in the exhaust soot concentration with the 

transition from mineral diesel to biodiesel fuel exposed the key limitation of the 

ceramic thimble method which was the difficulty in collecting in excess of 2g of 

soot. This was the minimum required to enable all the soot physiochemical 

analysis techniques used in the work herein to be performed on each soot 

sample. 

It recommended that the ceramic thimble sampling methodology reported 

herein should only be considered when certain requirements/conditions exist: 1) 

the required soot sample size is limited to 1-2 g, 2) it is necessary to sample from 

points in the engine exhaust manifold, 3) a high pressure ratio across the ceramic 

thimble can be maintained and controlled as the ceramic thimble plugs. 

A DPF was used for sampling soot post turbocharger but this methodology 

was also found to have some limitations which included: 1) the need to tightly 

control the temperature of the DPF to avoid condensation and oxidisation of the 
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soot, 2) difficulty in extracting reliable soot samples, 3) contamination from the 

exhaust system metallurgy, 4) risk of longer-term build-up of ash deposits in the 

DPF with repeat use, 5) the need to consider the evolution of the soot in the 

exhaust system. 

Consequently, the ceramic thimble method is a very useful and highly 

adaptable technique and is to be preferred for ensuring reliable soot samples 

from a turbocharged diesel engine exhaust manifold when low soot sample mass 

<2g can be tolerated. For post-turbocharger soot sampling or for cases where 

>2g soot is required; a sampling method such as a DPF is a more feasible route 

but soot evolution in the exhaust needs to be separately accounted for and is 

dependent upon the exhaust system configuration (i.e. whether an intermediate 

oxidation catalyst is present). 

10.4 Exhaust Smoke Measurement 

The soot physiochemical observations in the work herein provided evidence 

for a generally higher rate of B100 soot carbonaceous mass loss in the exhaust 

relative to conventional mineral diesel fuels. This highlights a concern with the 

standard approach to measuring exhaust soot concentration with a device such 

as the AVL 415 smoke meter and a single measurement location in the exhaust. 

This is because the higher rate of B100 soot carbonaceous mass loss was found 

to be likely influenced by such things as the levels of exhaust O2, exhaust 

temperature and soot residence time in the exhaust. Thus, depending on the 

location of the single point measurement, the observed differences in exhaust 

soot concentration at like engine operating conditions between mineral and 

biodiesel fuels could appear to change due to changes in the higher rate of B100 

soot carbonaceous mass loss and factors that influence it. It is postulated that 

this is a factor in the diverse results reported in literature regarding the magnitude 

of the beneficial reduction in exhaust soot concentration with biodiesel based 

fuels. 

10.5 Injector Coking with Biodiesel Fuels 

Injector coking was observed to be 2-4 times more significant for the B100 

fuel compared to the two mineral diesel fuels studied. Further, the B100 fuel 

sensitivity to coking increased with the reduction in compression ratio which was 

not the case for both mineral diesel fuels. It is concluded that this was related to 

the factor 2 higher viscosity of the B100 fuel which impaired the fuel atomisation 
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leading most likely to greater fuel impingement as evidenced by the greater HC 

emissions observed. This poor quality combustion was probably exaggerated by 

the lower cylinder charger pressures and temperatures at the lower compression 

ratio. Supporting evidence from literature is found in Argawal et al. [87] and 

others [330, 336-339] which state that the higher viscosity of biodiesel fuel is the 

causative factor responsible for increased injector coking. 

10.6 Contributions 

This thesis has the following contributions to knowledge: 

1. A positive linear correlation has been identified between soot surface 

carboxylic acid concentration and soot surface O/C ratio between an O/C 

ratio of (~ 0.07 to 0.12); this applies to mineral and biodiesel soot with surface 

sulphur concentrations (< 0.3%) weight with the following exceptions: 

a. Surface sulphur concentrations (>0.3%) weight lead to substantially higher 

carboxylic surface acidity than is described by the O/C ratio correlation of 

contribution 1. 

b. At high rates of EGR (~55%) both mineral and biodiesel soot was observed 

to have no surface acidity and this correlated with a soot surface O/C ratio 

(<0.07), this produces a ‘knee’ in the linear correlation of contribution 1. 

2. The reduction in compression ratio reduced the medium sulphur (497 

ppm) mineral fuel soot surface sulphur concentration by 97%. This 

surface sulphur reduction influenced the surface acidity as outlined in 

contribution (1a). 

3. At high rates of EGR (~55%) the low exhaust O2 concentration (1.93-

3.09%) and low NOx concentration (23-24ppm) suppressed the oxidation 

based soot surface O/C ratio increase in the exhaust system and is 

thought to be the causative effect of contribution (1b). 

4. The B100 soot exhaust evolution through oxidation was distinct from that of 

the mineral fuel soot in that it typically increased in surface O/C ratio by a 

factor of 1.2 to 1.8 relative to the mineral fuel soots and had associated 

large changes in surface area, porosity and density. 

5. When PAH were detected, the PAH molar mass profile analysis showed a 

preference for the PAH molar mass 178 g/mol (Phenanthrene, 

Anthracence) for all mineral and biodiesel fuels, speed/load, compression 

ratio, exhaust sample location and EGR condition. 
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Chapter 11 

11 Future Work 

As the work reported herein considered a broad spectrum of diesel exhaust 

soot physiochemical properties there were many potential areas of future 

research interest identified and these have been distilled into just four primary 

research topics which are summarised below. 

11.1 Refinement of the Soot Surface O/C Ratio and 

Carboxylic Acid Correlation 

A potentially very useful relationship was observed which described the diesel 

exhaust soot carboxylic acid concentration in respect to soot surface O/C ratio. 

This relationship was linear down to an O/C ratio of around 0.07 for soots with 

low surface sulphur and which did not experience the high rate of oxidation of the 

B100 soot. At the ratio of around 0.07 a ‘knee’ was observed and the two high 

EGR experiments with O/C ratios below this threshold were observed to have 

essentially no acidity. 

Thus, the clarification of whether this is specifically an EGR related 

phenomenon or a more fundamental link between surface O/C ratio and 

carboxylic acid is needed. An additional observation from this data was that there 

may also be a threshold level of soot surface sulphur between 0.3 and 1.545 % 

weight which leads to greatly increased carboxylic surface acid functionality. The 

confirmation/rejection of this threshold would also be of interest although the 

relevancy of such research will reduce as fuels globally are converging towards 

10 ppm sulphur or less. Such ULSD fuels in this study were observed to have no 

significant sulphur based influences on the soot. 

11.2 Soot Density and Soot Exhaust Evolution 

The results reported herein raised many interesting questions concerning 

soot skeletal density and how it relates to soot structure and reactivity. For 

example, the soot density for the two mineral fuel soots was observed to remain 

very stable even as the soots travelled down the exhaust to the DPF and 

underwent oxidation and addition of iron and zinc contamination from the exhaust 

system. In contrast, the B100 soot density was observed to reduce during the 
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same processes in the exhaust system, likely due to a physically different 

oxidation transformation such as the internal oxidation mode described by Song 

et al. [17]. Therefore, improving the understanding soot density, specifically what 

influences it, would be a valuable area of future research as it appears to be 

coupled to the much higher reactivity of biodiesel soot. 

11.3 Compression Ratio and Soot Surface Sulphur 

The reduction in compression ratio from 19.5:1 to 16.5:1 was observed to 

influence the deposition of sulphur in the soot of the PC9 medium sulphur mineral 

fuel at the exhaust manifold. The reduction in surface sulphur concentration was 

very significant (-97%) and from the surface O/C ratio to surface acidity 

correlation discovered in the present work and also the previous work of Covitch 

et al. and Ripple et al. [210, 165]; this change in surface sulphur can potentially 

affect soots oleophilic tendency and hence absorption into the engine lubricant. A 

useful future area of research would therefore be to investigate what specifically 

occurs in the cylinder during the soot formation process to change the surface 

deposition of sulphur onto soot i.e. is this related to the cylinder charge density 

and temperature during combustion and is there a fundamental understanding of 

soot formation which may be drawn from this. 

11.4 Soot Sulphur Deposition Change in the Exhaust 

The interesting transformation of the PC9 soot in the exhaust suggested 

significant reaction processes occurred in the diesel oxidation catalyst which 

influenced the soot composition, surface chemistry and morphology. The key 

findings of the loss of 94% of the bulk sulphur, the 500% increase in surface 

sulphur, a reduction in surface oxygen and almost unchanged density were a 

very intriguing combination of observations. These could be explored in more 

detail by sampling exhaust soot both before and after a diesel oxidation catalyst 

at different exhaust temperatures to better understand what physical processes 

are driving these observed changes in the soot characteristics. Such knowledge 

would benefit aftertreatment system development. 
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Appendix 1: Experimental Fuel Property Summary 

 

 

 

 

 

Table A1.1: Experimental Fuel Property Summary 
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Figure A1.1: B100 Fuel Batch Elemental Contaminate Comparison 
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Appendix 2: Experimental Lubricant Property Summary 

 

 

 

 

 

 

 

 

 

 

Table A2.1: Lubricant Elemental Composition Summary18 

 

 

 

 

 

 

 

                                                
18

 Due to confidentiality; the listed elements are limited to those which were also investigated for soot. 

Element  (ppm) (% of total)

Ca 1181 30.7

Cu 0 0.0

Fe 0 0.0

Mg 4 0.1

Mn 0 0.0

Na 3 0.1

P 508 13.2

S 1614 41.9

Si 5 0.1

Zn 533 13.8

Al 3 0.1

Cd 0 0.0
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Appendix 3: Production Engine Compression Ratio Survey 

 

 

Table A3.1: 1999 Engine Compression Ratio Data (part 1) [340] 

Engine Description Compression Ratio

Alfa Romeo 155 1.9 19.2

AM General Corp Hummer 20.2

Audi A6 1.9 19.5

Audi A8 19.5

BMW 318tds 1.7 22

BMW 325td 2.5 22.1

BMW 325tds 2.5 22.2

Citroen Saxo 1.5 23

Citroen Xanti 1.9 23

Citroen Xanti 1.9 21.8

Citroen Xm 2.1 21.5

Citroen Xm 2.4 20

Daihatsu Hijet Van 1.2 23

Daihatsu Rocky 2.8 21.2

Daimlerchrysler 3.0 E300 22

Daimlerchrysler 6.6 V8 120BHP 20.9

Daimlerchrysler 6.6 V8 215BHP 19.5

Daimlerchrysler Grand Cherokee 3.1 21

Daimlerchrysler Ram 5.9 17.5

Fiat Ducato 1.9 19.2

Fiat Ducato 2.5 22.5

Fiat Marengo 1.9 20.7

Fiat Punto Van 1.7 20

Fiat Punto Van 1.7 19

Fiat Scudo 1.9 23

Fiat Scudo 1.9 21.8

Fiat Siena 1.7 20.3

Fiat Uno 1.7 20.5

Ford F-1000 2.5 19.5

Ford F-1000 4.3 15.9

Ford Fiesta 1.8 21.5

Ford Focus 1.8 19.4

Ford Galaxy 1.9 19.5

Ford Super Duty F-Series V8 7.3 17.5

General Motors Astra 1.7 22

General Motors GMT800 6.5 19.5

General Motors P-truck 6.5 20.9

General Motors Vectra 2.0 18.5

Honda Accord 2.0 19.5

Kia Sportage 2.2 22

 Lancia Delta 1.9 19.2

Lancia K 2.4 18.5

Lancia Z 2.0 21.5

Mazda Brawny 3.0 21.6

Mazda Capella 2.2 22.7

Mazda Cronos 2.2 21.1

Mazda Familia 1.7 21.7

Mazda Titan 2.2 22.9

Mazda Titan 3.0 21

Mazda Titan 3.5 17.5

Mazda Titan 3.5 17

Mazda Titan 4.0 18

Mazda Titan 4.6 18

Mercedes A 170 19.5

Mercedes C 200 CDI 19

Mercedes C 250 22

Mercedes E 290 19.5

Mercedes E 300 22

Mercedes V 230 22

Mitsubishi Delica 2.5 21
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Table A3.2: 1999 Engine Compression Ratio Data (part 2) [340] 

Engine Description Compression Ratio

Mitsubishi Jeep 2.7 21.5

    Mitsubishi Libero 2.0 22.4

    Mitsubishi Pajero 2.8 21

    Nissan Caravan 2.7 22.2

    Nissan Datsun 3.2 21.9

    Nissan Largo 2.0 22.2

    Nissan Laurel 2.8 22.4

    Nissan Mistral 2.7 22.3

    Nissan Regulus 3.2 22

    Nissan Safari 2.8 21.8

    Nissan Safari Wagon 4.2 22.8

    Nissan Terrano 3.2 22

    Peugeot 106 1.5 23

    Peugeot 205 D Turbo 1.8 22

    Peugeot 306 1.9 23

    Peugeot 306 1.9 21.8

    Peugeot 406 2.1 21.5

    Peugeot Boxer 2.4 24

    Peugeot Boxer 2.4 22

    Renault Clio 1.9 21.5

    Renault Laguna 2.2 23

    Renault Laguna 2.2 22

    Rover Discovery 2.5 19.5

    Rover Range Rover 22

    Rover Rover 100 1.5 23

    Rover Rover 200 2.0 19.5

    Rover Rover 800 22

    Seat Cordoba 1.9 22.5

    Seat Inca 1.7 19.5

    Seat Toledo 1.9 22.5

    Skoda Octavia 1.9 19.5

    Toyota 1.5 22

    Toyota Coaster 3.4 20

    Toyota Corolla 2.0 23

    Toyota Crown 2.4 21

    Toyota Dyna 4.1 18.4

    Toyota Hilux 2.8 22.2

    Toyota Land Cruiser 3.0 21.2

    Toyota Land Cruiser 4.2 22.7

    Toyota Land Cruiser 4.2 18.6

    Toyota Lucida 2.2 22.6

    Toyota Mega Cruiser 4.1 17.8

    Volvo S40 1.9 20.5

    Volvo S80 2.5 20.5

    VW Lupo 1.7 19.5

    VW Passat 1.9 22.5

    VW Passat 2.5 19.5

    VW Polo 1.9 22.5

Average: 20.9
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Table A3.3: 2005 Engine Compression Ratio Data [341] 

Engine Description Compression Ratio

BMW 1 series 118d 17

    BMW 1 series 120d 17

    BMW 3 series 320d 17

    BMW 5 series 525d 17.5

    BMW 5 series 530d 17

    Chevrolet Silverado 17.5

    Chrysler Jeep Cherokee 2.8 17.5

    Citroen C3 1.4 Hdi 18

    Citroen C5 2.0 HDi (110 bhp) 17.6

    Dodge Ram 17.2

    Ford F350 18

    Ford Fiesta 1.4 TDCi 18

    Ford Focus 1.8 TDCi (115bhp) 18.5

    Ford Mondeo 2.0 TDCi (115 ps) 19.5

    Honda Accord 2.2 i-CTDi 16.7

    Hummer H1 6.5 V8 20.2

    Hyundi Matiz 1.5 TD 19

    Mazda 2.0 TD (121 ps) 18.3

    Mercedes-Benz C-Class C200 Cdi 18

    Mercedes-Benz C-Class C220 Cdi 18

    Mercedes-Benz E-Class E320 Cdi 18

    Peugeot 1.4 Hdi 17.9

    Peugeot 2.0 HDi (136 bhp) 18

    Renault 1.5 dci 18.8

    Renault 1.9 dci 18.3

    Renault 2.2 dci 18

    SAAB 9-3 1.9 TID (16 valve) 15.5

    SAAB 9-3 1.9 TID (8 valve) 18.1

    Toyota Avensis 2.0 D4-D 17.8

    Toyota Landcruiser 3.0 D4-D 18.4

    Toyota Yaris 1.4 D4-D 18.5

    Vauxhall 1.3 CDTi 18

    Vauxhall 1.7 CDTi 18.4

    Vauxhall 1.9 CDTi 17.5

    Volvo 2.0 D 18.5

    VW Group 1.9 TDI 19.5

    VW Group 2.0 TDI 19.5

    VW Group 2.5 V6 17.8

    VW Group 3.0 V6 17

    VW Group Lupo 1.2 19.5

    VW Group 1.9 TDI 18

    VW Group 2.0 TDI 18.5

Average: 18.0
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Table A3.4: 2011 Engine Compression Ratio Data (part 1) [342, 343] 

Engine Description Compression Ratio

Alfa Romeo Giulietta 2.0 JTDM 16.5

    Alfa Romeo MiTo 1.3 JTDM 16.8

    Alfa Romeo MiTo 1.6 JTDM 16.5

    Audi A4 2.7 TDI 190BHP 17

    Audi A4 3.0 V6 TDI 240BHP 16.8

    Audi A7 3.0 TDI Quattro S 16.8

    Audi A8 4.2 TDI Quattro 16.5

    Audi Q7 6.0 TDI V12 16

    BMW Series 1 2.0 116D M Sport 16

    BMW Series 1 2.0 118D Sport 16.5

    BMW Series 1 2.0 120D Sport 16.5

    BMW Series 1 2.0 123D M Sport 16

    BMW Series 3 3.0 330D SE 16.5

    BMW Series 3 3.0 335D M Sport Auto 17

    BMW Series 5 3.0 530D SE 16.5

    BMW Series 5 3.0 535D M Sport Auto 16.5

    BMW X6 3.0 XDRIVE40D SE 17

    Chevrolet Cruze 2.0 LT 16.5

    Chrysler 6.7 17.3

    Citroen Berlingo 1.6 HDI 75HP 18.5

    Citroen C3 1.4 HDI 70HP 17.9

    Citroen C4 1.6 E-HDI 110PS 18

    Citroen C5 2.0 HDI 160HP 17.6

    Citroen DS3 1.6 HDI 90HP 18

    Fiat Bravo 1.6 120BHP 16.5

    Fiat Punto Evo 1.3 75BHP 16.8

    Ford 6.7 16.2

    Ford Fiesta 1.4 TDCI 18.1

    Ford Focus Hatchback 1.6 TDCI 115PS 16

    Ford Focus Hatchback 1.6 TDCI 95PS 16

    Ford Focus Hatchback 2.0 TDCI 115PS 18

    Ford Ka 1.3 TDCI 75PS 17.6

    Ford Mondeo 2.0 TDCI 140PS 18.5

    Ford Mondeo 2.0 TDCI 140PS 18.5

    General Motors 6.6 V8 260BHP 16.8

    General Motors 6.6 V8 397BHP 16

    Honda Accord 2.2 I-DTEC Type S 16.3

    Hyundi i30 1.6 CRDI 90BHP 17.3

    Hyundi i40 Estate 1.7 CRDI 17

    Hyundi ix35 2.0 CRDI 184BHP 16

    Hyundi Santa Fe 2.2 CRDI 196BHP 16

    Jaguar XF 2.2D 15.8

    Jaguar XF 3.0D V6 16

    Kia  Rio 1.5 CRDI TX 17.8

    Kia Carens 2.0 CRDI 17.3

    Kia Carnival MPV 2.9 GSE 18

    Kia Sorento 2.2 CRDI 16

    Kia Soul 1.6 TX 17.3

    Kia Sportage 1.7 D 17

    Kia Venga 1.4 CRDI TX ISG 17

    Land Rover Discovery 4 3.0 SDV6 16.1

    Land Rover Freelander 2.2 ED4 15.8

    Land Rover Range Rover 3.0 TDV6 16

    Land Rover Range Rover 4.4 TDV8 16.1

    Lexus IS 2.2 200D 15.8

    Mazda CX-7 2.2 MZR-CD 16.3

    Mazda Mazda3 1.6D Sport 16

    Mazda Mazda6 2.2D 129BHP 16.1

    Mercedes A-Class 2.0 CDI 18

    Mercedes C-Class 2.1 C250 CDI 16.2
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Table A3.5: 2011 Engine Compression Ratio Data (part 2) [342, 343] 

Engine Description Compression Ratio

Mercedes E-Class 3.0 E350 CDI Bluetec 15.5

    Mercedes GL-Class 4.0 GL 450 CDI 17

    Mercedes Viano 3.0 CDI 18

    Mini 1.6 D 16.5

    Mini 2.0 SD 16.5

    Mini Countryman 18

    Mitsubishi Grandis MPV 2.0 DI-D 18

    Mitsubishi Lancer 1.8 DI-D 14.9

    Mitsubishi Outlander 2.2 DI-D 16.6

    Mitsubishi Pajero 3.2 DI-D 17

    Nissan Juke 1.5 DCI 15.2

    Nissan Murano 2.5 DCI 15

    Nissan Note 1.5 DCI 15.2

    Nissan X-Trail 2.0 DCI 173BHP 15.6

    Opel Antara 2.0 CDTI 17.5

    Opel Astra 1.7 CDTI 125PS 18.4

    Opel Astra 2.0 CDTI 160PS 16.5

    Opel Corsa 1.3 CDTI 75BHP 18

    Opel Meriva 1.7 CDTI 130HP 16.5

    Opel Zafira 1.9 CDTI 120PS 18

    Opel Zafira 1.9 CDTI 150PS 17.5

    Peugeot 207 1.4 HDI 70BHP 17.9

    Peugeot 207 Estate 1.6 HDI 92BHP 18.1

    Peugeot 308 1.6 HDI 112BHP 18

    Peugeot 508 2.0 HDI 163BHP 17.6

    Renault Clio 1.5 DCI 90 17.9

    Renault Laguna 2.0 DCI 175 16

    Renault Laguna III 2.0 DCI 180 16

    Renault Megane 1.5 DCI 110 15.2

    Saab 9-3 1.9 TTID 180BHP 16.5

    Saab 9-5 2.0 TTID 190BHP 16.5

    Subaru Legacy 2.0 TD 16.3

    Suzuki Swift 1.25 DDIS GLX 16.8

    Suzuki SX4 2.0 DDIS 16.5

    Toyota Auris 1.4 D-4D DPF 17.8

    Toyota Avensis 2.0 D-4D DPF 125BHP 15.8

    Toyota Avensis 2.2 D-4D 150BHP 15.7

    Toyota iQ 1.4 D-4D 16.5

    Toyota Landcruiser 3.0 D-4D 17.9

    Toyota Landcruiser 4.5 V8 D-4D 16.8

    Toyota Yaris 1.4 D4-D 17.9

    Volvo C30 1.6 D2 115PS 18.3

    Volvo C30 2.0 D3 150PS 16.5

    Volvo S60 2.0 D3 163PS 16.5

    Volvo S60 2.4 D5 215PS 16.5

    Volvo XC90 2.4 DS 200PS 17.3

    VW Golf 1.6 TDI 105BHP Bluemotion 16.5

    VW Golf 2.0 TDI 140BHP Edition R 16.5

    VW Golf 2.0 TDI GTD 18.5

    VW Polo 1.2 TDI 75BHP Bluemotion 16.5

    VW Polo 1.6 TDI DSG 90 BHP 16.5

    VW Touareg 3.0 V6 Bluemotion 16.8

Average: 16.8
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Appendix 4: Steady-State Speed-Torque Operating Points 

 

 

 

 

 

 

Table A4.1: Steady-State Speed-Torque Operating Points for Emissions and 

Performance Parameterisation 
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Appendix 5: Computation of VW 1.9l TDI Engine Geometry 

 

 

 

 

Table A5.1: Computation of Clearance Height for 15:1 to 21:1 Compression 

Ratio Range 
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Table A5.2: Ring Groove Incision (R2-R1), D = 6 mm 
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Appendix 6: Summary of Soot Analysis Methods & 

References 

 

Table A6.1: Popular Soot Analysis Methods Determined by Literature Survey19 

 

Table A6.2: Soot Characterisation Analysis Methods Utilised in this Work 

                                                
19

 Methods highlighted in bold in Table A6.1 and Table A6.2 are those utilised in this work. 
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Table A6.3: Literature Examples for the Analysis Methods Utilised in this Work 

(Part 1)  
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Table A6.4: Literature Examples for the Analysis Methods Utilised in this Work 

(Part 2)  
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Appendix 7: Method Flow Diagram for Chapter 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A7.1: Chapter 4 Parameter % Change Processing Flow Diagram 

Example 
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Appendix 8: Correction of Soot Bulk Inorganic Results 

(ICP-MS) 

A8.1 Introduction 

Following careful examination of the original ICP-MS results, it became clear 

that there were a series of inconstancies which pointed to several of the soot 

samples being contaminated with elements which either had no identifiable 

source (i.e. foreign to the experiment) or were attributable to known 

uncontrollable factors that could not be avoided when the soot was 

experimentally collected from the engine. 

All original ICP-MS results for the soot collected in the fuel, compression ratio 

and sample position experiments (Section 3.1.5.3) are presented in Table A8.1 in 

the form of % weight of the sample. In Table A8.2 the results of Table A8.1 have 

been calculated as a percentage of the total % weight of inorganics in each soot 

sample. 

Table A8.1: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight), Original ICP-MS Results
20

 

 

Table A8.2: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight/total % weight), Original ICP-MS Results 

 

Within the following section, the data from Table A8.1 and Table A8.2 is 

examined to identify contaminates in the original samples which grossly mask the 

                                                
20

 In Table A8.1 and A8.2; CT denotes Ceramic Thimble (soot collected at the exhaust manifold) and DPF 

denotes soot collected in a DPF in the exhaust system (refer to Section 3.5). 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.656 0.016 0.001 0.001 0.033 0.000 0.000 0.841

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.087 0.056 0.000 0.000 0.525

16.5:1 DPF, EN590 0.990 0.080 3.420 0.064 <0.001 0.060 0.690 0.250 0.080 2.870 0.130 0.060 8.694

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 1.050 0.002 0.282 0.001 0.028 0.000 0.000 1.494

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.160 0.077 0.000 0.000 1.820

16.5:1 DPF, PC9 0.990 0.080 4.680 0.068 <0.001 0.080 0.510 0.320 0.080 2.250 0.130 0.060 9.248

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.330 0.017 0.105 0.000 0.000 1.064

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.110 0.560 0.000 0.000 6.474

16.5:1 DPF, B100 5.250 0.840 9.620 0.730 <0.001 0.890 2.300 1.500 0.080 5.300 0.210 1.230 27.950

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 9.869 0.357 4.043 0.238 1.427 78.002 1.902 0.119 0.119 3.924 0.000 0.000 100.000

16.5:1 CT, EN590 47.619 0.000 12.571 4.381 0.000 0.000 8.190 0.000 16.571 10.667 0.000 0.000 100.000

16.5:1 DPF, EN590 11.387 0.920 39.337 0.736 0.000 0.690 7.937 2.876 0.920 33.011 1.495 0.690 100.000

19.5:1 CT, PC9 5.221 0.134 2.878 0.134 0.402 70.281 0.134 18.876 0.067 1.874 0.000 0.000 100.000

16.5:1 CT, PC9 17.582 0.000 6.044 1.154 0.000 0.000 3.956 58.242 8.791 4.231 0.000 0.000 100.000

16.5:1 DPF, PC9 10.705 0.865 50.606 0.735 0.000 0.865 5.515 3.460 0.865 24.330 1.406 0.649 100.000

19.5:1 CT, B100 26.034 1.410 16.071 0.470 0.940 7.801 4.793 31.015 1.598 9.868 0.000 0.000 100.000

16.5:1 CT, B100 44.486 0.000 16.682 5.406 0.000 6.951 15.910 0.216 1.699 8.650 0.000 0.000 100.000

16.5:1 DPF, B100 18.784 3.005 34.419 2.612 0.000 3.184 8.229 5.367 0.286 18.962 0.751 4.401 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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underlying soot bulk inorganic changes that were effected by the factors 

experimentally investigated. The data in Table A8.1 and Table A8.2 will then be 

corrected for these identified contaminates and this revised/corrected data then 

forms the basis of the results discussion presented in the main body of this work. 

A8.2 Identification of Foreign Contaminate 

Considering first the ceramic thimble data presented in Table A8.1 and Table 

A8.2, it was observed that the range in total percentage weight of inorganic 

contaminant across the three fuels at the exhaust manifold for 19.5:1 was 0.841 

to 1.494% and for the 16.5:1 samples this range was a broader 0.525 to 6.474%. 

The other interesting feature of this data was that for the 19.5:1 data set, it was 

the PC9 fuel which had the most significant level of inorganic contaminates but 

that this dramatically shifted to the RME B100 soot sample for the 16.5:1 

samples. These observations are illustrated in Figure A8.1. 

 

Figure A8.1: Exhaust Manifold Soot Total (% Weight) of Inorganics, Original ICP-MS 

Results 

Hypothesis: It is intuitive to believe that the concentration of inorganic 

material in the soot dry carbonaceous fraction sampled at the exhaust manifold 

was principally a function of the fuel consumption rate, oil consumption rate and 

the concentration of carbonaceous soot produced in combustion during a given 

engine cycle. Other metallic elements (principally iron) originate from the engine. 

Considering the results summarised in Figure A8.1, it was clear that the B100 

inorganic concentration observed in the 16.5:1 sample when compared to the 

EN590 and the PC9 at the same compression, conformed to what would be 

expected if the hypothesis for explaining the concentration is valid. i.e. the B100 
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fuel was observed to have a (>80%) reduction in exhaust soot concentration 

relative to the other two fuels (Table 4.10) and therefore the concentration of 

inorganics should have been significantly higher in this sample as was observed. 

At 19.5:1 this was not the case however. Indeed, in the case of the PC9 fuel, the 

exhaust carbonaceous soot concentration was the highest of the three fuels in all 

experiments and thus this fuel should have resulted in soot with generally the 

lowest inorganic contaminate level if sulphur is ignored. 

A8.2.1 Sodium (Na) 

The first step in deconstructing these anomalies was the observation that 

there was a very high concentration of sodium in the 19.5:1 EN590 and PC9 

samples, constituting 78 and 70% of the total inorganics in each sample 

respectively, Table A8.2. So significant was this single element contamination for 

these two samples, that no other samples were observed to have any single 

element contribute more than 50% in all of the other tests. These two mineral fuel 

derived samples were from the first two soot collection experiments performed in 

this work which indicated a possible association. The concentration of sodium 

was negligible in all other soot samples from these two mineral fuels, Figure 

A8.2, indicating it was very unlikely the sodium originated from either of the two 

mineral fuels. 

 

Figure A8.2: Exhaust Manifold Soot Sodium Concentration (wt %/total wt %), 

Original ICP-MS Results 

One plausible explanation for this sodium was that it may have originated 

from the biodiesel fuel which was being investigated as part of the engine 

performance and emissions baseline experiments conducted prior to the soot 

collection experiments (Section 3.1.5.2). One of the catalysts commonly used in 
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the transesterification process for biodiesel is NaOH (sodium hydroxide) and it is 

possible a residual amount was present in the B100 fuel which was used 

originally during the development phase of the experimental system. As an 

example of the plausibility of this, Gangwar et al. [266] reported a similar finding 

when investigating the soot produced from a vegetable oil. Indeed, the fuel 

physiochemical summary in Appendix 1 (Table A1.1 and Figure A1.1) details the 

presence of sodium in the original B100 fuel. 

The main issue with this explanation however is the fact that if the sodium 

was contaminate from the B100 fuel alone, then it would also be expected to be a 

significant contaminate in the B100 soot, and likely more so. Although, sodium 

was observed in all B100 soot samples, which is consistent with sodium being 

present in the B100 fuel, it was only 3-7% of the total inorganic contaminate. 

It is believed therefore that the only plausible explanation for the high 

concentration of sodium in the two 19.5:1 mineral diesel soot samples was 

contamination of the samples occurring following sample collection i.e. during 

sample handling and preparation prior to the ICP-MS soot bulk analysis (Section 

3.6.3). How this may have occurred is not known as the sample analysis was 

coordinated by Lubrizol and undertaken by a third party. 

The non-contaminated base level of sodium in the two afflicted original soot 

samples is not known but can be inferred from the other mineral diesel soot 

samples and these indicate that the normal sodium concentration should be 

negligible, i.e. the 16.5:1 results shown in Figure A8.2. These results reveal that 

there was no sodium detected in these samples and thus the best method to 

address the sodium contamination is to take the data presented in Table A8.1 

and to simply negate the sodium from these two samples. The result from this is 

presented in Table A8.3 and Table A8.4. 

Table A8.3: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight), Original ICP-MS Results with Sodium Contaminate Negated 

 

 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.000 0.016 0.001 0.001 0.033 0.000 0.000 0.185

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.087 0.056 0.000 0.000 0.525

16.5:1 DPF, EN590 0.990 0.080 3.420 0.064 <0.001 0.060 0.690 0.250 0.080 2.870 0.130 0.060 8.694

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 0.000 0.002 0.282 0.001 0.028 0.000 0.000 0.444

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.160 0.077 0.000 0.000 1.820

16.5:1 DPF, PC9 0.990 0.080 4.680 0.068 <0.001 0.080 0.510 0.320 0.080 2.250 0.130 0.060 9.248

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.330 0.017 0.105 0.000 0.000 1.064

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.110 0.560 0.000 0.000 6.474

16.5:1 DPF, B100 5.250 0.840 9.620 0.730 <0.001 0.890 2.300 1.500 0.080 5.300 0.210 1.230 27.950

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)
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Table A8.4: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight/total % weight), Original ICP-MS Results with Sodium 

Contaminate Negated 

 

Observe that for the PC9 soot in the ceramic thimble samples; the sulphur 

contribution with the sodium negated is now 63.5% which is closer to the 58.24% 

observed for the 16.5:1 sample. Thus, the correction for the sodium contaminate 

is essential to correctly interpreting the factor effects on the soot bulk chemistry. 

A8.2.2 Silicon (Si) 

The next foreign contaminate identified in the samples was silicon and this 

was revealed by the significant increase in the concentrations of silicon in the 

soot samples between the high and low engine compression experiments, Figure 

A8.3 (taken from the original uncorrected ICP-MS data, Table A8.2). 

 

Figure A8.3: Exhaust Manifold Soot Silicon Concentration (wt %/total wt %), 

Original ICP-MS Results 

This was a relatively simple foreign contaminate to identify and explain as 

there was a clear source which was the silicon sealant (Loctite 5367) used to 

seal the head gasket on the 2nd of three attempts to seal the thicker head gasket 

assembly used for the low compression engine build, Section 3.3.4. This sealant 

was carefully removed from the engine but clearly traces of it remained which 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 44.865 1.622 18.378 1.081 6.486 0.000 8.649 0.541 0.541 17.838 0.000 0.000 100.000

16.5:1 CT, EN590 47.619 0.000 12.571 4.381 0.000 0.000 8.190 0.000 16.571 10.667 0.000 0.000 100.000

16.5:1 DPF, EN590 11.387 0.920 39.337 0.736 0.000 0.690 7.937 2.876 0.920 33.011 1.495 0.690 100.000

19.5:1 CT, PC9 17.568 0.450 9.685 0.450 1.351 0.000 0.450 63.514 0.225 6.306 0.000 0.000 100.000

16.5:1 CT, PC9 17.582 0.000 6.044 1.154 0.000 0.000 3.956 58.242 8.791 4.231 0.000 0.000 100.000

16.5:1 DPF, PC9 10.705 0.865 50.606 0.735 0.000 0.865 5.515 3.460 0.865 24.330 1.406 0.649 100.000

19.5:1 CT, B100 26.034 1.410 16.071 0.470 0.940 7.801 4.793 31.015 1.598 9.868 0.000 0.000 100.000

16.5:1 CT, B100 44.486 0.000 16.682 5.406 0.000 6.951 15.910 0.216 1.699 8.650 0.000 0.000 100.000

16.5:1 DPF, B100 18.784 3.005 34.419 2.612 0.000 3.184 8.229 5.367 0.286 18.962 0.751 4.401 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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was revealed by the very sensitive ICP-MS analysis. The fact that this silicon 

became entrained within the soot samples proved to be a very interesting if 

unintentional finding. What it highlighted was the very strict level of cleanliness 

and preparation required in the engine experiments to minimise the probability of 

foreign contaminates influencing the soot findings. 

A further interesting observation was the very significant reduction in 

concentration of silicon in the soot sampled at the DPF. It is postulated that the 

soot therefore evolved in the exhaust in such a way as to preferentially remove 

this element. For example, it could have been entrained within the adsorbed SOF 

on the surface of the soot sampled at the exhaust manifold; the SOF should have 

been reduced as the soot moved through the oxidation catalyst prior to the DPF, 

thereby reducing the silicon in the soot sample. 

As the silicon contaminate has been attributed to the sealant used in the 

16.5:1 compression ratio modification and the observation made that it was 

present principally in the exhaust manifold soot samples; the most plausible 

method of removing its effects from the soot bulk inorganic data is to simply 

negate the silicon from all the 16.5:1 exhaust manifold soot samples. However, 

this would confuse later result analysis when the effect of sample location is 

considered, Chapter 6. Thus, to avoid confusion, silicon has been negated from 

all 16.5:1 soot samples. This has been done by subtracting it from the data 

presented in Table A8.3 (i.e. the sodium corrected results) and the result of this is 

presented in Table A8.5 and Table A8.6. 

Table A8.5: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight), Original ICP-MS Results with Sodium & Silicon Contaminate 

Negated 

 

 

 

 

 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.000 0.016 0.001 0.001 0.033 0.000 0.000 0.185

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.000 0.056 0.000 0.000 0.438

16.5:1 DPF, EN590 0.990 0.080 3.420 0.064 <0.001 0.060 0.690 0.250 0.000 2.870 0.130 0.060 8.614

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 0.000 0.002 0.282 0.001 0.028 0.000 0.000 0.444

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.000 0.077 0.000 0.000 1.660

16.5:1 DPF, PC9 0.990 0.080 4.680 0.068 <0.001 0.080 0.510 0.320 0.000 2.250 0.130 0.060 9.168

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.330 0.017 0.105 0.000 0.000 1.064

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.000 0.560 0.000 0.000 6.364

16.5:1 DPF, B100 5.250 0.840 9.620 0.730 <0.001 0.890 2.300 1.500 0.000 5.300 0.210 1.230 27.870

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)
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Table A8.6: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight/Total % weight), Original ICP-MS Results with Sodium & Silicon 

Contaminate Negated 

 

A8.2.3 Sulphur (S) 

The third and final ambiguity identified in the original ICP-MS results, was an 

unusually high concentration of sulphur in the 19.5:1 B100 exhaust manifold soot 

sample. This was identified as a suspect foreign contaminate as it comprised 

over 30% of the total inorganic contaminates of the sample and by contrast the 

sulphur in the 16.5:1 B100 sample was just 0.22% of the total inorganic 

contaminates, Table A8.6 (sodium and silicon corrected ICP-MS results). This is 

result is illustrated in Figure A8.4. 

 

Figure A8.4: Exhaust Manifold Soot Sulphur Concentration (wt %/total wt %), 

Original ICP-MS Results with Sodium & Silicon Contaminate Negated 

One plausible explanation for this excessive sulphur in the 19.5:1 B100 soot 

sample was contamination from residual sulphur that was carried over from the 

previous PC9 soot collection experiment; possibly picked up from residual 

sulphur in the fuel system, engine deposits or sample line from the exhaust 

manifold. This postulation derives from the PC9 fuel soot collection experiment 

being conducted immediately prior to the B100 collection experiment. Thus, 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 44.865 1.622 18.378 1.081 6.486 0.000 8.649 0.541 0.541 17.838 0.000 0.000 100.000

16.5:1 CT, EN590 57.078 0.000 15.068 5.251 0.000 0.000 9.817 0.000 0.000 12.785 0.000 0.000 100.000

16.5:1 DPF, EN590 11.493 0.929 39.703 0.743 0.000 0.697 8.010 2.902 0.000 33.318 1.509 0.697 100.000

19.5:1 CT, PC9 17.568 0.450 9.685 0.450 1.351 0.000 0.450 63.514 0.225 6.306 0.000 0.000 100.000

16.5:1 CT, PC9 19.277 0.000 6.627 1.265 0.000 0.000 4.337 63.855 0.000 4.639 0.000 0.000 100.000

16.5:1 DPF, PC9 10.798 0.873 51.047 0.742 0.000 0.873 5.563 3.490 0.000 24.542 1.418 0.654 100.000

19.5:1 CT, B100 26.034 1.410 16.071 0.470 0.940 7.801 4.793 31.015 1.598 9.868 0.000 0.000 100.000

16.5:1 CT, B100 45.255 0.000 16.970 5.500 0.000 7.071 16.185 0.220 0.000 8.799 0.000 0.000 100.000

16.5:1 DPF, B100 18.837 3.014 34.517 2.619 0.000 3.193 8.253 5.382 0.000 19.017 0.753 4.413 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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although measures were taken such as flushing the fuel system and changing 

the engine oil (Section 3.2.1.6), sulphur contamination from the prior experiment 

occurred. Avoidance of such contamination in a practical engine experiments 

such as those in this work, would have necessitated a full engine disassembly 

and clean between each test which was impractical. 

As per the methodology used for negating the sodium and silicon 

contaminates; the sulphur in the B100 19.5:1 exhaust manifold sample has been 

set to zero in the previously corrected data presented in Table A8.5 to remove its 

masking of the ICP-MS results for this sample. These final ICP-MS soot bulk 

inorganic corrected results are presented in Table A8.7 and Table A8.8. 

Table A8.7: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight), Original ICP-MS Results with Sodium, Silicon & Sulphur 

Contaminate Negated 

 

Table A8.8: 19.5:1 and 16.5:1 Ceramic Thimble Soot and DPF Soot Bulk Elemental 

Composition (% weight/total % weight), Original ICP-MS Results with Sodium, Silicon & 

Sulphur Contaminate Negated 

 

With the principal contaminates identified and negated from the ICP-MS 

results, it is useful to return to the opening part of this appendix entry and 

compare how these corrections have adjusted the total percentage weight of 

inorganics for the exhaust manifold samples. Figure A8.5 illustrates this for the 

final corrected data from Table A8.8. When compared to Figure A8.1 it is clear that 

the corrected ICP-MS data now more closely aligns to the initial hypothesis in 

Section A8.2 concerning the concentration of inorganic material in the soot 

sample. i.e. the total percentage weight of inorganics in the samples is 

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total wt%

19.5:1 CT, EN590 0.083 0.003 0.034 0.002 0.012 0.000 0.016 0.001 0.001 0.033 0.000 0.000 0.185

16.5:1 CT, EN590 0.250 0.000 0.066 0.023 0.000 0.000 0.043 0.000 0.000 0.056 0.000 0.000 0.438

16.5:1 DPF, EN590 0.990 0.080 3.420 0.064 <0.001 0.060 0.690 0.250 0.000 2.870 0.130 0.060 8.614

19.5:1 CT, PC9 0.078 0.002 0.043 0.002 0.006 0.000 0.002 0.282 0.001 0.028 0.000 0.000 0.444

16.5:1 CT, PC9 0.320 0.000 0.110 0.021 0.000 0.000 0.072 1.060 0.000 0.077 0.000 0.000 1.660

16.5:1 DPF, PC9 0.990 0.080 4.680 0.068 <0.001 0.080 0.510 0.320 0.000 2.250 0.130 0.060 9.168

19.5:1 CT, B100 0.277 0.015 0.171 0.005 0.010 0.083 0.051 0.000 0.017 0.105 0.000 0.000 0.734

16.5:1 CT, B100 2.880 0.000 1.080 0.350 0.000 0.450 1.030 0.014 0.000 0.560 0.000 0.000 6.364

16.5:1 DPF, B100 5.250 0.840 9.620 0.730 <0.001 0.890 2.300 1.500 0.000 5.300 0.210 1.230 27.870

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (wt%)

Description %Ca %Cu %Fe %Mg %Mn %Na %P %S %Si %Zn %Al %Cd Total %

19.5:1 CT, EN590 44.865 1.622 18.378 1.081 6.486 0.000 8.649 0.541 0.541 17.838 0.000 0.000 100.000

16.5:1 CT, EN590 57.078 0.000 15.068 5.251 0.000 0.000 9.817 0.000 0.000 12.785 0.000 0.000 100.000

16.5:1 DPF, EN590 11.493 0.929 39.703 0.743 0.000 0.697 8.010 2.902 0.000 33.318 1.509 0.697 100.000

19.5:1 CT, PC9 17.568 0.450 9.685 0.450 1.351 0.000 0.450 63.514 0.225 6.306 0.000 0.000 100.000

16.5:1 CT, PC9 19.277 0.000 6.627 1.265 0.000 0.000 4.337 63.855 0.000 4.639 0.000 0.000 100.000

16.5:1 DPF, PC9 10.798 0.873 51.047 0.742 0.000 0.873 5.563 3.490 0.000 24.542 1.418 0.654 100.000

19.5:1 CT, B100 37.738 2.044 23.297 0.681 1.362 11.308 6.948 0.000 2.316 14.305 0.000 0.000 100.000

16.5:1 CT, B100 45.255 0.000 16.970 5.500 0.000 7.071 16.185 0.220 0.000 8.799 0.000 0.000 100.000

16.5:1 DPF, B100 18.837 3.014 34.517 2.619 0.000 3.193 8.253 5.382 0.000 19.017 0.753 4.413 100.000

#1269 ICP: Bulk Inorganic Contaminants by Acid-digestion ICP (% of Total wt% Inorganics)
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proportional to the combination of measured exhaust soot concentration, fuel 

consumption rate and lubricant consumption rate of each respective soot 

collection test, Table 4.10. (This principal is outlined in more detail in the main 

body of this work where FSF, Section 4.3.2, is combined with the ICP-MS results 

e.g. Section 5.4 and Section 6.4) 

 

Figure A8.5: Exhaust Manifold Soot Total (% weight) of Inorganics, Original ICP-MS 

Results with Sodium, Silicon & Sulphur Contaminate Negated 

A8.3 Concluding Remarks 

The identification of the sodium, silicone and sulphur as foreign elements in 

specific soot samples, illustrated the high sensitivity of the bulk soot elemental 

analysis and the requirement to maintain high standards of cleanliness in the 

soot collection and sample handling to maximise result reliability/reproducibility. 

The final corrected ICP-MS results presented in Table A8.7 and Table A8.8 are 

the results presented and discussed in the main body of this work. These 

corrected results ensure that the developed models that explain the ICP-MS 

findings and associated conclusions are free from the influence of the ambiguities 

identified in this appendix entry. 
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Appendix 9: Injector Coking Observations and 

Investigation 

A9.1 Introduction 

Injector coking is the term used to describe the formation of deposits both 

within and at the exit of fuel injector nozzle holes and is a phenomenon 

commonly observed on modern diesel engines that employ high-pressure small 

nozzle-diameter fuel injection systems [328,329]. Injector coking can impact on 

engine performance by restricting the amount of fuel delivered to the combustion 

chamber and altering the spray pattern [330]. There are three factors that have 

been identified in literature as important in injector coking: 1) the fuel composition 

2) the nozzle tip temperature and 3) the nozzle hole geometry [328]. One of the 

common engine test procedures used to quantify the susceptibility of an engine 

and fuel to coking is to run an engine at rated power for an extended period of 

time as this combines heavy fuelling with high cylinder and fuel injector tip 

temperatures [328]. 

A9.2 Injector Coking Issues Experienced in this Work 

The most severe coking of the injector nozzles in the work reported herein 

occurred during both the RME B100 rated engine power soot collection tests with 

the problem being far more pronounced during the lower compression 16.5:1 

experiment as illustrated in Figure A9.1. 

 

Figure A9.1: 16.5:1 B100 Experiment Injector Coking Induced Torque Loss and Soot 

Concentration Reduction
21

 

                                                
21

 Discontinuities in the torque occur as a result of the experiment being conducted as a series of 

individual 2 hour segments to manage the ceramic thimble soot collection process (Section 3.5.1). 
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The torque loss observed during each soot collection experiment at rated 

conditions is summarised in Table A9.1 and reveals that for all experiments 

where torque loss could be assessed, there was a distinct difference between the 

mineral and biodiesel coking extent. In the case of the mineral fuels the power 

loss was consistent at 0.35 Nm per hour or 3.1-3.3% over the 20 hours of 

operation at maximum power. Whilst for the B100 fuel the loss was at least a 

factor of 1.86 greater. Importantly, in the case of the mineral fuels the reduction in 

compression ratio was observed to not accelerate the rate of power loss unlike 

observed for the B100. Additionally, it was clear that the coking did not worsen 

over time but was specific to each experiment configuration (note that the data in 

Table A9.1 is listed in experimental order). 

Table A9.1: Summary of Injector Coking Induced Torque Loss for all Six Rated 

Condition Experiments
22

 

 

When the engine was stripped down to be adapted to the lower compression, 

the nozzles of the injectors were visually examined for any sign of coking issue. 

This visual inspection at the end of the 19.5:1 program of experimental work 

indicated that there was no significant visible build-up of external deposit on the 

surface of the injector tip apart from the cylinder 2 injector, Figure A9.2. 

 

Figure A9.2: Injector Nozzle Condition at the End of the 19.5:1 Experiments 

                                                
22

 A reliable torque loss estimate for the first 19.5:1 experiment with EN590 was not available due to a 

forced turbocharger replacement which masked the coking based power loss. 
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The existing injectors were therefore not changed at this stage so as to avoid 

concerns over the impact injector change may have on the experimental results. 

The experiments continued with the first experiment at 16.5:1 but there was a 

very significant increase in the rate of torque loss observed compared to the prior 

19.5:1 B100 experiment and this resulted in the exhaust soot concentration 

falling to the point where the soot collection experiment became unviable and 

thus the experiment was ceased at 12 hours, Table A9.1; 8 hours short of the 

planned duration (Section 3.1.5.3). The fuel injectors were then removed from the 

engine and investigated. A visual inspection of the injectors revealed that there 

was now significant external nozzle coking visible on the all the injector tips, 

Figure A9.3 (a), in contrast to Figure A9.2. 

 

Figure A9.3: Comparison of Coked and Cleaned Injectors with B100 Fuel at 16.5:1 

When the exhaust manifold was removed and checked at the end of the 

16.5:1 B100 experiment, a white deposit was seen coating the inside of the 

manifold Figure A9.4. 

 

Figure A9.4: 16.5:1 B100 Post Test Inspection - White Residue on the Inside of the 

Exhaust Manifold 
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Agarwal et al. [335] reported a similar observation and attributed this to traces 

of catalyst (NaOH - sodium hydroxide or KOH- Potassium hydroxide) remaining 

from the transesterification processing of the original biodiesel feedstock. This 

was therefore potentially an additional indicator as to the cause of the significant 

increase in coking for this experiment. 

In order to confirm that the reduction in power and fuel consumption was 

caused by the suspected coking, the injectors were flow tested at Carwood Motor 

Units Ltd of Birmingham [331]. The injectors were first ultrasonically cleaned and 

then evaluated in a Hartridge AVM2-PC Unit Injector test bench using ISO 4113 

fluid. The results were compared to a new injector (supplied by Lubrizol) and it 

was found that at the maximum fuelling test condition there was a lower total 

quantity per injection of 3.64%. A significant variability was also observed in the 

injector response times. 

The cleaned injectors were subsequently re-fitted to the engine and the 

engine peak power checked with the B100 biodiesel fuel. It was observed that 

the torque had recovered from 192.90 Nm to 217 Nm, or an increase of 12.5%. 

However, the coefficient of variation IMEP was observed to be ~5% when 

previously it had been ~1% prior to the injector cleaning. Following these 

findings, new injectors were sourced from Lubrizol and the engine fuel system 

purged of the B100 biodiesel. The remaining tests were completed with the new 

set of injectors and this set experienced roughly the same rate of power loss 

compared to the equivalent 19.5:1 PC9 experiments Table A9.1. 

A9.3 Causes of the Injector Coking 

The torque loss for these two final experiments suggested that the increased 

rate of torque loss observed for the 16.5:1 B100 biodiesel experiment relative to 

the earlier 19.5:1 B100 biodiesel experiment; was not directly attributable to the 

reduction in compression ratio. This implied the reported increase in coking with 

increased injector nozzle temperature [332-334] was not responsible as the 

reduction in compression acted to reduce the baulk gas temperature and thus the 

temperature of the injector tip. 

A review of literature revealed insights that helped to understand these 

observations. Argueyrolles et al. [328] and Leedham et al. [329] both identified 

that coking in general increased with zinc contamination from fuel. Indeed, 

Leedham et al. [329] found that trace amounts of zinc and copper in fuel as low 

as 1 ppm would accelerate the rate of injector coking. Further, Argueyrolles et al. 
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[328] postulated that zinc dithiophosphate from the lubricant contributed to 

injector coking. Leedam et al. [329] specifically observed that the presence of 

zinc in fuel directly affected the area, volume and thickness of deposits that 

formed on the external surfaces of injector nozzle holes. 

From the review of literature it was therefore concluded that the presence of 

zinc in the soot bulk inorganics was an indication that increased injector coking 

was more likely, it was also likely that the higher the level of zinc, the more 

significant the coking issue. Considering this, the ICP-MS results were combined 

with the exhaust soot concentration (Table 4.10) to estimate the mass of soot 

based zinc per engine cycle and the result is presented in Figure A9.5. 

 

Figure A9.5: Estimated Mass of Zn in the Cylinder Soot Per cycle for the Rated Condition 

Experiments (ICP-MS) 

The results presented in Figure A9.5 suggest that at 19.5:1 compression, the 

mass of zinc found in the B100 soot was half that observed for both mineral fuels 

but that this increased significantly at 16.5:1 (this was thought to be through 

increased lubricant consumption). Thus, this agreed with the increase in the 

injector coking observed for this fuel. Unfortunately, the increase in zinc does not 

agree with the unchanged rate of power loss observed for the mineral fuels with 

the reduction in compression ratio. It is therefore concluded that the observed 

changes in soot bulk zinc with compression ratio reduction fail to explain all the 

observations (assuming that the exhaust manifold soot sample zinc concentration 

is representative of that in the cylinder). It is therefore postulated that the lower 

cylinder temperatures at 16.5:1 offset any increased coking potential from the 

zinc increase for the two mineral fuels, EN590 and PC9. 
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It is also possible these findings support the observations of Leedham et al. 

[329]. This is because the increase in soot zinc mass with compression reduction 

(illustrated in Figure A9.5) is believed to largely have come from increased 

lubricant consumption from blowby and the B100 lubricant fuel dilution at 16.5:1. 

Leedham et al. [329] concluded fuel borne zinc and not zinc from the lubricant 

caused accelerated coking. 

A9.4 Concluding Remarks 

Injector coking was observed to be 2-4 times more significant for the B100 

fuel compared to the EN590 and PC9 fuels studied. Further, the B100 fuel 

sensitivity to coking increased with the reduction in compression ratio which was 

not the case for both mineral diesel fuels. It is concluded that the coking 

observations in this work for the B100 fuel must therefore be related principally to 

the fuel properties rather than any change in zinc concentration in the cylinder 

(whether fuel of lubricant borne). Argawal et al. [87] and others [330,336-339] 

state that the higher viscosity of biodiesel fuels causes the increased coking 

associated with such fuels and the viscosity of the B100 biodiesel used in this 

work was approximately double that of the mineral diesel fuels , Appendix 1 

(Table A1.1). 
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‘I am not discouraged because every wrong attempt discarded is a step forward.’ 

Thomas Edison 

 

 

‘When you are going through hell, keep on going. 

Never, never, never give up.’ 

Winston Churchill 
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