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SYNOPSIS 

This thesis describes an investigation into the use of hydrogen 

as a fuel for automotive use. Due to problems of backflash into the 

engine intake when hydrogen is used as the sole fuel, a dual-fuel 

system using petrol and hydrogen together was studied. Using this 

system, a spark-ignited engine has been run at all speeds with a wide

open throttle, and the specific fuel consumption and BTE figures 

indicate a greater part load efficiency than those from a throttled 

engine. The performance and emissions curves of the engine are pre

sented, both at the standard compression ratio of 8.9:1 and at a 

higher compression ratio of 11.7:1. Emissions data indicate reduced 

levels of CO, and NOx at part load due to the very lean mixtures used. 

No problem of backfiring was experienced since the concentration of 

hydrogen was ve ry low. 

A vehicle was modified to run on such a dual-fuel system, and 

details of this modification are also presented. 

A major problem with using hydrogen as an automotive fuel is its 

on-board storage. This is discussed in some detail, wi th particul ar 

reference to the use of metal hydrides as storage media. Metal hydride 

tanks are now commercially available, and a detailed mathematical model 

of such a tank has been developed to describe its behavi our under bottt 

hydriding and dehydriding conditions. In contrast to other hydride 

models previously reported in the literature, this model simulates an 

actual, commercially available containment vessel, rather than that of 

an abstract ideal situation. Thus the model provides a convenient means 

of predicting the time taken to release or absorb given amounts of 

hydrogen. These are calculated from the heat transfer characteristics 

and diffusion properties of particular metal alloys. Comparisons are 

given between the actual operating characteristics and those simulated 

by the model. 

A brief discussion of the reaction kinetics of hydriding certain 

metal alloys is also included. 
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CHAPTER 1 

1.1 GENERAL 

Since the energy crisis of 1973, the price of petroleum products 

has risen sharply. It has also become clear that the amount of oil 

available in the world is limited. There are several means whereby 

petroleum products can be made to last longer, thereby maintaining the 

extensive infrastructure of the oil industry. The two which have 

received most attention are supplementation of petrol with methanol, 

and using petrol derived from coal. However, there are drawbacks with 

both of these ideas. 

The major problem with using methanol-petrol mixtures is one of 

phase separation. If water condenses inside a tank to the extent that 

it constitutes one percent or more of the total fuel, then the methanol 

will separate out from the fuel mixture into the water. This will 

happen whatever alcohol is used. It should be noted(l)* also that 

the improvements shown on fuel economy and exhaust emissions, using 

methanol-petrol blends, are directly related to methanol's leaning 

effect on carburation, and are only significant in older, rich-oper

ating cars. 

The manufacture of oil products from coal is very expensive, and 

necessitates the large-scale hydrogenation of the coal to increase 

the hydrogen/carbon ratio (the Fischer-Tropsch process). Since the 

* Numbers in parentheses designate References at the end of this 
thesis. 
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calorific value of hydrogen is nearly three times that of petrol, it 

is a logical conclusion that the hydrogen should be used directly. 

Another problem with using petrol as a fuel, apart from its rising 

costs and diminishing reserves, is that of atmospheric pollution. 

Awareness of this problem has increased in recent years, and legisla

ti on has become steadily harsher in an attempt to reduce the emi ssi on 

of no xi ous exhaus t gases. 

Hence it appears an alternative fuel to petrol must be found in 

the near future for motor vehicles. A considerable amount of work has 

been done recently(2) on battery design for electric vehicles. Although 

these have proved useful in certain applications, such as urban delivery 

vehicles, their major problem is that of the low power to weight ratio 

of the batteries •. Lead/acid batteries have energy densities up to 50 

watt-hours per kilogram, and even solium/sulphur batteries have energy 

densities of only 130 watt-hours per kilogram, whereas the energy 

density of petrol is approximately 12180 watt-hours per kilogram. 

Allowing for electrical conversion efficiencies of 75 percent and 

petrol conversion efficiencies of 25-30 percent, the penalty of electric 

vehicles is still apparent. Purpose built electric cars today have 

ranges of the order of fifty miles, with cruising speeds of approx

imately forty miles per hour. It must also be remembered that a stan

dard three kilowatt outlet would have to be connected for eight hours 

to charge a battery for only 30-50 miles range. 

A second a 1 ternati ve, whi ch has recei ved far 1 ess attenti on than 

electric vehicles, is that of using hydrogen as a fuel for internal 

combustion engines - thereby making minimal changes to the current 

concept of motor cars. 
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1.2 HYDROGEN AS A FUEL 

There are many advantages in using hydrogen as an automoti ve fuel. 

It is "clean" burning (the major combustion product being water, from 

which hydrogen is obtained), is easily ignited, and has wide flammab

ility limits (4-75% by volume in ai r at ambient temperature and 

pressure)(3). Using a gaseous fuel such as hydrogen, rather than a 

liquid, avoids such problems as fuel atomization and evaporation during 

cold start and warm up, uneven distribution of the fuel to different 

cylinders arising from the existence of a liquid film on the walls of 

the intake manifold and unwanted variations in air-fuel ratio during 

transient conditions such as acceleration and deceleration. 

However, there are some major problems using hydrogen as a fuel 

for general vehi cl e use; in parti cul ar the on-board storage of hydrogen, 

and serious back-firing into the engine intake. Hence, in this thesis 

I have investigated means of overcoming both these problems. 

In the next chapter I have also discussed various means of econ

omically producing and distributing hydrogen as a general purpose 

automo ti ve fue 1 . 

As the most feasible method of storing hydrogen on board vehicles 

appears to be using thermally decomposable metal hydrides, these are 

discussed in some detail, and a mathematical model has been developed 

to simulate both the charging and discharging behaviour of metal 

hydri des. 

Engine back-firing appears to be a fundamental problem when 

hydrogen is used as a fuel, and several theories have been proposed 
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regarding its cause. What is known is that back-firing is predominant 

at rich operating conditions under load. Possible causes of back-

fi ring are discussed in the next chapter. However, the bulk of this 

investigation has centred around the use of dual-fuel mixtures of 

hydrogen and petrol, thus avoiding the problem of back-firing into 

the engine intake, and simultaneously reducing the problem of storing 

hydrogen on-board the vehicle. The investigation was initially carried 

out using an engine and dynamometer on a test bed. However, the re

sults obtained indicated vehicle modification using such a system was 

feasible. The modifications to the vehicle are also presented here. 

1.3 OBJECTIVES OF THIS STUDY 

The objectives of this study were as follows: 

(a) To detennine theoretically which method of storing hydrogen is 

most suitable for general automotive applications, and to deter

mine the requirements of implementing such a storage system on a 

vehicle. As a result of the storage method decided, a means of 

predi cting the rate of hydrogen absorption and desorpti on was 

required. Thus a secondary objective was to develop a model to 

simulate the rate of heat transfer in a hydride bed, and to 

predict the hydride rate kinetics. 

(b) Having developed a mathematical model, to compare other workers' 

hydri di ng and dehydri di ng data wi th those predi cted by the model. 

As a further development of this" to predict the effect of 

changing hydride bed dimensions, and to detennine the most 
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satisfactory hydride for a given set of operating parameters. 

(c) To investigate the effect of wide-open throttle operation using 

a dual-fuel mi xture of hydrogen and petrol, both on brake thermal 

efficiency, and on exhaust emissions. 

(d) To modify a vehicle to operate using such a dual-fuel system, 

and to develop a suitable control system for satisfactory "drive

ability". No detailed measurements of fuel consumption or emissions 

data were possible due to lack of access to a chassis dynamometer. 

6 



7 

CHAPTER 2 

REVIEW OF PREVIOUS WORK 



CHAPTER TWO 

There are four major requirements for an automotive fuel. 

These are: 

i) It must be readily available, or cheap to produce; 

ii) It must be distributed nationwide economically; 

iii) It must be easily stored on-board any vehicle; 

iv) It must perform satisfactorily as an engine fuel. 

The only fuel which meets all these requirements today is petrol. 

However, in certain applications there is already a recognised role 

for hydrogen as an automotive fuel (for operation in mines, and for 

vehicles used indoors) and in some areas, fleet vehicles have been 

converted to run on hydrogen(4), or are in the process of being 

converted. In this survey, each of the above four areas will be 

considered in detail. 

2.1 PRODUCTION OF HYDROGEN 

At present, there are three methods used for large scale produc

tion of hydrogen(S). These are: 

i) Electrolysis. 

ii) From hydrocarbons (such as methane). 

iii) From coke. 

It is also possible that in an era of cheap nuclear power, the 

heat energy of the nuclear source could be used directly to split the 

water molecule into its constituent elements. A variety of thermo-
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chemical cycles are being investigated to find a practical means of 

doing so. Each method of production is discussed below. 

2.1.1 Electrolysis 

As a by-product, hydrogen is formed ins ubs tanti a 1 quantiti es 

during the electrolytic preparations of chlorine and of sodium 

hydroxide from brine. Using a moving mercury cathode, the sodium 

produced forms an amalgam with the mercury. When this amalgam makes 

contact with water, the mercury precipitates as the pure metal, and 

the sodi urn reacts with the water to form sodi urn hydroxi de and 

hydrogen: 

2NaOH(aq) + H2(g) 

Hydrogen is also produced by the direct electrolysis of water. 

However, water electrolysis has not been used extensively for hydrogen 

production because of the high cost of electrical energy compared 

to natural gas or coke. Only where substantial amounts of low-cost 

hydroelectric power or off-peak nuclear power are available have 

economics favoured electrolytic hydrogen. Electrolysis can directly 

produce 99.9% pure hydrogen. All large scale water electrolysis 

plants are built following a multi-module concept. Each module has 

a power rating of 1-2 MW. 

Electrolysis of water occurs when a direct electric current is 

passed between two electrodes inrnersed in an aqueous electrolyte. 

For water to decompose, the voltage across the two electrodes must 
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be greater than that corresponding to the free energy of formation 

(decomposition) of water, plus the voltage needed to overcome elect

rode and ohmic po1arizations. 

With water electrolysis cells using an alkaline or acid electro

lyte, hydroxyl (alkaline) ions or hydronium (acid) ions are required 

for the water to conduct. In alkaline electrolytes the reactions 

associated with electrolysis are: 

cathode 4e + 2H20 ->- 2H2 + 40H -

anode 40H- ->- O
2 

+ 2H
2
0 + 4e 

net reacti on 

Wi th acid electrolysis, the reactions occurring are: 

cathode 4e - 4H+ + ->- 2H2 

anode 2H2O ->- O2 + 4H+ + 4e 

net reacti on 2H2O ->- 2H2 + O2 

Both the cathode and anode must be corrosion resistant in the 

electrolyte at the potentia1s used. They must also be good electronic 

conductors, and cata1yze the evolution of hydrogen and oxygen. All 

large scale electrolysis units in use today have iron cathodes, and 

nickel (or nickel-plated iron) anodes. 
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The electrolyte must not produce any impurities during the 

electrolysis reaction, and must be stable at the voltages used. It 

must also provide a sufficient concentration of hydroxyl or hydronium 

ions for good electrolytic (ionic) conductivity. All systems 

presently in use have an aqueous solution of 20% - 30% potassium 

hydroxi de. 

The electrolytic cell must also have a diaphragm to separate the 

hydrogen and oxygen, both as gases, and dissolved in the electrolyte. 

It must also have ionic conductivity, or absorb the electrolyte to 

have adequate ionic conduction. In all cells the diaphragm is made 

of asbes tos. 

For electrolysis to occur at practical rates, the voltage (V) 

applied to the cell must exceed the reversible cell voltage (Eo). 

The difference V - Eo, is needed to overcome the resistances (electric 

and polarization) associated with the electrolysis process. The 

corresponding energy is eventually dissipated within the cell as 

irreversible heat. The minimum electrolysis voltage (Eo) decreases 

substantially with increasing temperatur~ at 250e, Eo = 1.229 V, 

whereas at 1500 e, Eo = 1.11 V(6). 

Most commercial electrolyzers operate between 700e and gOoe. 

As the temperature is raised above this level, corrosion problems 

begin to limit life. In addition. it becomes necessary to pressurise 

the system to reduce water loss through evaporation. These complica-

ti ons 1 i mit the tempe rature capabil i ty of present technology. 
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The rate of hydrogen generation is proportional to the current 

that passes through an electrolysis cell according to: 

= 4.4 x 10-4 I 

where RG is the rate of hydrogen generation, m3/hour (assuming no 

recombination within the cell), and I is the current in amps. 

Over the past five years, a considerable effort, in terms of 

labour and finance, has been invested in an attempt to make more 

efficient use of electrolytic manufacture of hydrogen. The two 

main areas of improvement have been in advanced alkaline electrolyzers 

and the use of solid polymer electrolytes. 

2.1.1.1 Advanced Alkaline Electrolyzers 

By increasing the temperature of alkaline electrolysis 

from 800e to 1500e, .the reversible cell voltage is reduced, 

and the activation over-voltage is almost negligible at this 

temperature(?), so the overall efficiency of the process is 

increased. By using high temperature alkaline electrolysis, 

in conjunction with improved cathodes and anodes, cell efficien

cies can be increased from 67% up to 78%.(8) 

The major problem in using temperatures above 1000e is 

that asbestos, which is used as a diaphragm in the electrolytic 

cell, is attacked by the caustic solution. However, the 

addition of dissolved silicates to the electrolyte to shift 
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the equilibrium of asbestos dissolution reduces corrosion(7). 

Also. new chemically resistant ion exchange membranes are being 

used. Of these potassium ti tanate looks promising(9). 

2.1.1.2 Solid Polymer Electrolytes 

The use of solid polymer electrolytes can give system 

efficiencies of 85% - 90%(10). The solid polymer electrolyte 

(SPE) is a thin sheet (5 - 10 mm thickness) of a sulphonated 

fluoropolymer. It is a plastic material which serves as the 

sole electrolyte (there are no acid or caustic liquids in the 

system). and also forms a barri er between the hydrogen and 

oxygen chambers. The electrodes are thin catalyst layers 

bonded to the surfaces of the p 1 as ti c sheet, whi ch serves as the 

H30+ conducting electrolyte. However, the SPE is highly acidic 

and severely corrosive to materials which are in direct contact 

with it(7), resulting in expensive current collector and elec

trode materials. Noble metals (platinum, iridium and rhodium) 

are required as catalysts, and acid-resistant metals are 

requi red as current collectors. Although the noble metal 

catalysts are expensive because of their high dispersion, only 

small quantities (eg - 10 to 40 g/m2) are required to achieve 

high cell performance. Current collectors are made from 

titanium, tantalum, or niobium; the selection depends on temp

erature, pressure and current density(6). The advantage of 

SPE systems is their high current density capability (over 

30 kA/m2) at high temperatures (lSOoC) and high pressures 
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(up to 600 psi), all of which contribute to high energy 

efficiencies. There is also an extensive research interest 

into cheaper electrode catalysts with better performance(ll). 

Table 2.1 gives a comparison of present day and predicted 

costs for various types of electrolysis units. 

2.1.2 Hydrogen from Hydrocarbons 

The cracking of hydrocarbons thermally is an important part of 

petroleum refining and produces much hydrogen. Methane, from 

natural gas, may also be thermally decomposed to hydrogen and 

carbon: 

... 
-<-

Temperatures of the order of 850oC, and a catalyst are required 

in this process. The carbon deposits on the catalyst surface leave 

a gaseous product of hydrogen and unconverted methane. It is 

possible to directly produce 95% pure hydrogen using this process. 

The catalys t is conti nua lly ci rcul ated from the reactor to the re-

generator, where air is used to burn the coke formed on the catalyst 

surface. This reaction simultaneously cleans the catalyst surface 

and reheats it to the reaction temperature. 

The process consists of a fluidized bed reactor which containsa 

7% nickel on alumina catalyst and a fluidized bed regenerator. 

The temperature in the regenerator is approximately l200oC, while 
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1980 

Predi cted 
($1980) 

TABLE 2.1 - ECONOMICS OF ELECTROLYSIS 

Conventional Solid Polymer 
Electrolysis Electrolysis 

$18/MBTU $14/MBTU 

$16/MBTU $ll/MBTU 

NB 1 MJ = 947.8 BTU 

1 kgH2 = 119.96 HJ 

15 

Advanced Hi gh 
Temperature 

Electrolysis 

-

$14/MBTU 
(Approx) 



the temperature in the reactor is 850oC. Because the decomposition 

reaction is endothermic. the circulating solids function as a method 

of supplying heat to the reactor. as well as a catalyst for the 

reaction. 

However. the two fluidized beds. and the solids-circulation 

system are expensive. In addition. the replacement of the catalyst 

to make up for attrition is an important cost. Thus the reaction 'of 

steam with methane at 11000C is preferable: 

The objective of steam reforming is to convert as much of the 

steam and hydrocarbon as possible into a mixture of carbon monoxide 

and hydrogen. The carbon monoxide is converted in a subsequent 

water-gas step to carbon dioxide and more hydrogen using an iron or 

cobalt catalyst at 4000C: 

A steam reformer is a furnace operating at one atmosphere pressure 

which encloses packed catalyst tubes operating at 300 psi or less. and 

has a heat exchanger to recover the heat located in the flue(12). 

The cost of producing hydrogen by this process ranges from 

$1.50/MBTU to $6.30/MBTU depending on the cost of the natural gas 

feed (50 cents per thousand cubic feed - $3.00 per thousand cubic 

feet). The hydrogen produced in this manner can be ~p to 95% pure. 
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2.1.3 Hydrogen from Coke 

There are two gasification processes to produce hydrogen from coal 

or coke. The fi rs t is the water gas reacti on where steam is passed 

over coke at temperatures above lOOOoC: 

This reaction is endothermic, and is generally run in alternation 

wi th the passage of ai r to heat the coke to the correct temperature. 

Steam is then passed th rough the bed of hot coke. However, the 

cyclic nature of this process makes the economics unfavourable. 

In the second process, steam plus air (or oxygen) is reacted with 

coke to produce a synthesis gas, containing hydrogen plus several other 

gases, including nitrogen and carbon dioxide. The carbon monoxide is 

converted to carbon dioxide using the water gas process mentioned 

17 

earlier. The carbon dioxide is removed by washing with water under pressure, 

and nitrogen is removed by cooling with liquid air. Coke oven gas 

has also been processed to yield hydrogen by fractional liquefaction. 

The cost of hydrogen produced by gasifi cation of coal is dependent 

primarily on the cost of the coal, and ranges from $2.80/MBTU to $5.20/lrt&T~ 

with the cost of coal ranging from $lO/ton up to $30/ton. Like the 

steam reformi ng of methane, the hydrogen produced is 95% pure. 

2.1.4 Thermochemical Production of Hydrogen 

A thermochemi ca 1 hydrogen producti on process is one whi ch requi res 

only water as a material input and mainly thermal energy, or heat, as 



an energy input. The output of the process is hydrogen and oxygen, 

and perhaps some waste heat. The process itself comprises a series 

of chemical reactions which sum to water decomposition, and the 

products of each reaction must be separated and either recycled or 

sent to the next reaction. 

Interest in thermochemica1 processes arose from the potential 

they offer for lower capital and/or operating costs and higher overall 

thermal efficiency than water electrolysis. 

2.1.4.1 Single-Stage Decomposition 

For the direct decomposition reaction 

equilibrium composition does not shift in favour of H2 rapidly 

enough with increasing temperature to suggest that a single-step 

thermal decomposition process offers great promise in the near 

future(13). At 2000 K and 1 atm, the equilibrium mixture contains 

only 3.6% hydrogen by volume. Hi gh-temperature-gas-coo1ed 

reactors provide heat in the range of 1200-1300 K. In any real 

system using this process, there will be severe practical prob

lems related to the very high temperatures required. 

2.1.4.2 Multi-Stage Decomposition 

One of the earliest decomposition processes studied was 

that using vanadium and ch1orine(14) in the reactions: 
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2 VC1 2 + 2 HCl 

4 VC1 3 ... 

... 

.. 2 HCl + ~02 

The efficiency of this process was approximately 18% when using 

temperatures of the order of 1360 K. The most advanced process 

under investigation is the hybrid "bromine-sulphur"- cycle(15), 

where the first step is electrochemical: 

2H20 + Br2 + 502 ... H2504 + 2HBr (electrochemical) 

One of the major problems wi th thi s parti cul ar process is the 

thermal decomposition of concentrated sulphuric acid at 1000 K. 

Thus it is unlikely to be used to produce hydrogen on a large 

scale. 

Due to practical difficulties in maintaining thermochemical 

cycles, these show less promise as a means of hydrogen production, 

especially when recent advances in electrolytic production of 

hydrogen are consi dered. 



2.2 DISTRIBUTION OF HYDROGEN 

One of the crucial issues regarding the use of hydrogen as a 

fuel is its nationwide transmission. The introduction of synthetic 

petrol before the widespread use of hydrogen as an automotive fuel 

will probably be due to the existing infrastructure of the oil 

i ndus try. 

There are two methods by which hydrogen can be transported in 

bulk, using a gas pipeline system,or by surface transport of liquid 

hydrogen. 

2.2.1 Gas Pipelines 

An experimental study conducted with contemporary gas distribu

tion equipment (ie - for natural gas) in hydrogen service indicated 

no incompatibi1ities in service(16). It was concluded that existing 

in-place components and piping, with the possible exception of meters, 

should be adequate for hydrogen delivery. 

Si nce the ca 1 orifi c value of hydrogen is approximately one thi rd 

that of natural gas, it appears that the energy capacity of the pipe

line will be far lower for hydrogen. However, since the mass flow 

ra te of gas ins i de a pi pe depends upon the square root of the 

density of the gas(l7), and because the density of hydrogen is about 

one ninth that of natural gas, there is a compensating factor of 

one third that results in the given pipe having essentially the 

same energy-carrying capacity for natural gas as for hydrogen. 
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In practice, it has been found(l6) that if piping and operating 

pressures are not changed, hydrogen energy delivery will be about 

eighty to ninety percent of natural gas energy delivery under tur

bulent flow conditions, but may be only forty percent of natural gas 

de 1 i ve ry unde r 1 ami na r f1 ow con diti ons. 

The major hazard associated with pipeline transmission of 

hydrogen gas is leakage, followed by combustion. Due to its small 

molecular size, hydrogen is more likely to leak than any other gas. 

When hydrogen was transmitted in natural gas pipelines, the observed 

overall hydrogen-to-natura1 gas leak ratio was about 3.25(16), and the 

overall energy loss ratio was about 1.04. 

An explosion of hydrogen-air mixtures is very unlikely to occur 

as a result of a pipeline leak. Detonation limits of hydrogen-air 

mixtures range from eighteen to fifty-nine percent by volume(l7). 

Since the hydrogen molecule has a very low mass, it would rise rapidly 
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in air, and unless a leak occurred in a confined region, it is unlikely 

the lower detonation limit would be reached. 

An existing hydrogen pipeline in Germany(18) was extended to a 

total length of about 130 miles in 1954. This transmits fairly pure 

(greater thap ninety-five percent pure) hydrogen at pressures of 15 atm 

(225 psi). Pipe diameters range from 6 to 12 inches, and are buried 

one metre deep. During the 1 as t thi rty years, there have been some 

fires, but no explosions or any problems with hydrogen embritt1ement, 

indicating there are no severe technical problems to be overcome. 



2.2.2 Liquid Hydrogen Transmission 

Hydrogen exists in the liquid state at temperatures below 20.3 K. 

As a liquid, it has a very low density (70 g/1) compared to petrol 

(733 g/l) or water (1000 g/1), resulting in nearly four times the 

vo1 ume for the same energy content as petrol. The theoreti ca1 

energy requirement for the liquefaction of hydrogen is 14.1 MJ/kg, 

which is more than ten percent of the calorific value of hydrogen 

(119.96 MJ/kg). The low temperature requirement can cause significant 

thermal contraction (0.3% in steels)., as well as change the mechanical 

properties of structural materials (eg - tensile strength). To main

tain temperatures below 20.3 K, it is necessary to provide sophist

icated insulation systems as well as pressure relief and venting 

systems. All these factors result in much higher costs than for 

gaseous hydrogen. 

However, long-distance transporation of liquid hydrogen is fairly 

common in the United States, although it is not widespread in Europe. 

In America, transport is by road, rail and by barges at sea(19) . 

Road transport is made in 48,000 litre and 52,000 litre trai1er

mounted Dewars . All these vehi cl es are fi tted with multil ayer i nsu1-

ation, with typical boil-off losses amounting to approximately 1% per 

day. 

Rail cars for the transport of liquid hydrogen are horizontal 

cylindrical Dewars with a storage capacity of 100,000 litres. Barge

mounted Dewars have been built for'thetJS National Aeronautical and 

Space Administration and have a capacity of one million litres. These 
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very large Dewars have loss rates as low as 0.1% per day. 

The two most commonly used insulation systems are evacuated 

perlite and evacuated multilayer insulation(19). The largest vessels 

used for stationary storage are almost spherical in shape. Since the 

heat input is largely a function of the surface to volume ratio, the 

boil-off rate (as a percentage) decreases as the size becomes larger. 

2.3 STORAGE OF HYDROGEN 

There are three basic methods for storing hydrogen on board a 

vehicle: 

i) As a compressed gas; 

ii) As a liquid; 

iii) As a chemical compound - eg, a metal hydride. 

In terms of ease of operation and cost, storage using compressed gas 

at 17MPa (2500 psi) would appear the answer. However, using compari

sons based on the energy equivalent of 15 imperial gallons of petrol 

(68.2 litres or 50.0 kg), it ;s found that 18.2 kg of hydrogen at 

17 MPa would occupy more than 1.2 cubic metres - ie, too large for 

the average vehicle. The storage vessel would weigh nearly 1.5 tonnes. 

The same amount of liquid hydrogen (18.2 kg) would occupy a 

volume of 260 litres, and using data from liquid hydrogen vehicles 

in use(20), this would require a total tank volume of 485 litres, and 

an empty container weight of 156 kg. 
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The liquid hydrogen containers in use are of conventional double

walled vacuum-jacket construction fabricated of welded aluminium alloy 

components. Aluminium foil/fibreglass layers are used as radiation 

shields in the main vacuum space. This construction is necessary 

to keep the temperature below 20.3 K. The tanks in use today(21) have 

boiloff rates of ten percent/day. When no hydrogen is being taken 

from the tank, the heat leaking into the liquid hydrogen causes some 

of it to evaporate. If the tank is closed (unvented) the pressure 

increases at about 3 psi/hr for a nearly full Dewar or about 6.6 psi/hr 

for a nearly empty Dewar until the relief valve is activated (at 65 psi). 

This happens after 10 to 21 hours, depending on the liquid level in the 

Dewar. After the valve opens, or if the tank is left in a vented 

condition, liquid hydrogen will be lost at the rate of 0.77 kg/day. 

This means a full tank of liquid hydrogen would evaporate completely 

in less than 2 weeks, thus causing potential safety problems, partic

ularly in vehicles used on an intermittent basis. The cost factor 

and energy required for liquefaction and storage of liqui d hydrogen 

must also be considered. It should be noted however, that liquid 

hydrogen may well prove to be a viable fuel for particular forms of 

transport - eg, aircraft. Economic and technical surveys on the 

prospects for liquid hydrogen fuelled aircraft have already been 

completed(22) . 

Hydrogen can also be stored as a chemical compound - either as 

a metallic (or saline) hydride, or encapsulated in a molecular sieve 

zeolite. As yet, no hydride or other material has been found entirely 

satisfactory for automotive applications, either for reasons of weight, 



cost, or operating conditions which are difficult to maintain on a 

vehicle. However, these show the most promise of all storage media, 

since hydrogen can be stored at a greater density than as liqui d 

hydrogen. 

2.3.1 Molecular Sieve Zeo1ites 

Fraenke1 and Shabtai(23) have investigated the feasibility of 

using zeolite molecular sieves as hydrogen storage media by intra

crystalline encapsulation. The hydrogen is stored as compressed gas 

in a "bulk container" of zeolite cages. A simplified model for the 

hydrogen encapsulate of Cs 3Nag-A type zeolite is shown in figure 1. 

FIGURE 1 - Proposed model for the hydrogen encapsulate of 
cs 3NagA - type zeolite. 
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The major factors affecting the storage efficiency of zeo1ites are 

the a1uminosi1icate structure of the zeolite and the charge, size and 

content of the exchangeable cation. Of the types so far examined(24) 



26 

the best zeolite is the Linde A-type, and the highest efficiency was 

obtained with an exchangeable cation mixture containing 2.6 Cs+ and 

9.4 Na+ ions per uni t cell. At a temperature of 2000 C and a pressure 

of 60 MPa (8700 psi) this system could encapsulate 85 cm3/g (STP) of 

hydrogen, correspondi ng to 0.76% by wei gh t. Extrapo 1 a ti on to higher 

pressures suggests that some zeolite systems are capable of storing 

one percent by weight of hydrogen. 

Hydrogen encapsulation in zeo1ites appears to be a better form 

of storage than hydrogen as a compressed gas (at 17 MPa or 2500 psi) 

due to the ability to store the gas at pressures which are an order 

of magni tude hi gher, wi thout the need of heavy tanks, and under much 

safer conditions. The hydrogen capacity of zeolite encapsulants is 

comparable with that of alloys such as lanthanum nickel or iron 

titanium, yet zeolites are potentially much cheaper and large-scale 

zeolite production technologies are well known. However, zeolite 

encapsLiants suffer from i nconveni ent vol ume capaci ty for hydrogen 

because of their relatively low densities, and their loading requires 

very high hydrogen pressures. This suggests molecular sieve zeolites 

will be 1 imi ted to s tati onary hydrogen storage. 

2.3.2 Hydrogen Storage Using Hydrides 

There are three basic types of hydride compounds: saline (or 

ionic); metallic; and covalent. This classification is based pre

dominantly on the character of the hydrogen bond. However, in terms 

of hydrogen storage they can be reclassified into two groups - those 

whi ch re1 ease hydrogen by the addi ti on of water to the hydri de, and 
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those which are thermally unstable, and will decompose to evolve 

hydrogen when moderate amounts of heat are supplied. Metallic hy

drides, and some saline hydrides fit into the latter category, whereas 

the hydrides of the alkaline earth metals will evolve hydrogen when 

water is added. The reaction of hydrides with water is discussed in 

the next chapter. 

2.3.3 Therma.1 Decomposition of Hydrides 

The absorpti on of hydrogen by a metal to form a hydride is an 

exothermic reaction, and as the reaction is generally reversible, 

hydrogen can be recovered by raising the temperature above, or 

lowering the pressure below, the temperature and pressure required 

for the absorpti on process. At anyone temperature. the hydri de 

is in equilibrium with a particular pressure of hydrogen - namely 

its decomposition pressure. If the hydrogen is consumed. resulting 

in a pressure drop, decomposition occurs until the evolved hydrogen 

has built up to the decomposition pressure again. Since the form

ation of hydrides is exothermic, energy must be supplied for their 

decomposition. This can be obtained from the waste heat of the 

internal combustion engine. Thus a balance is required between the 

heat produced, and that required, both as to quantity and temperature. 

Hence the hydri de must have an appreci ab le decomposi.ti on pressure 

(preferably at least one atmosphere) at the temperature of operation 

of the hydrogen producing device. 

The equation for the formation of hydrides which undergo 

thermal decomposition is as follows: 
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M + 

and this reaction, when proceeding to the right, is nonnally exother

mic. The behaviour of a metal-hydrogen system is frequently rep

resented by a pressure-composi ti on - temperature di agram, an exampl e 

of which is shown in figure 2. 
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At any particular temperature, hydrogen will dissolve in the metal 

phase as the pressure increases. The beginning of the "plateau 
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regi on" in di cates the appearance of a di s ti nct metal hydri de. Si nce 

the solubi lity of hydrogen in many metals can be appreciable, metal 

hydrides are often non-stoichiometric. Upon the appearance of this 

hydride phase, the hydrogen pressure remains almost constant until 

all the solid attains this composition. Above this "plateau region", 

any further adsorpti on of hydrogen requi res a large increase in 

pressure. The effect of increasing temperature is shown by the 

higher temperature isotherms. As the temperature rises, the misc

ibility gap tends to narrow, accompanied by a consequent reduction 

in the plateau length, until at some critical temperature the 

miscibility gap and the pressure plateau disappear. 

Many hydrogen-metal systems depart from ideal behaviour by ex

hibiting a pressure hysteresis effect in the region of the pressure 

plateau, an effect which is particularly noticeable in the unstable 

hydrides (those with a plateau dissociation pressure of 101.4 kPa -

ie, o!)e atmosphere - at 3000C, or less). This hysteresis is thou9ht(25) 

to be a consequence of the large volume change which occurs upon 

hydriding, and is illustrated for the case of iron titanium in 

figure 3. In general, the equilibrium pressure at any given temp

erature is the dissociation equilibrium pressure, unless specifically 

stated otherwise. 

The idea of using metal hydrides as hydrogen storage media. for 

automobiles was first proposed by Hoffmanet al(26) in 1969. The 
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ATOM RATIO H/(Fe+TiI 

FIGURE 3 - Hysteresis in the FeTi-H System (40°C) 

(C H Waide, J J Reilly, R H Wiswall 1974) 

hydride suggested was catalyzed MgH2 , which is~very attractive in terms 

of the wei ght of the hydrogen stored. Several different types of 

hydride material are now available for.automotiveapplicatms, and 

a summary of their properties is given in table 2.2. 



TABLE 2.2 - PROPERTIES OF METAL HYDRIDES 

Densi ty of %H2 NH2 Temp.oC Hydri de Metal Alloy 
(wt~) * Peq=l** g/ c. c. 

MgH2(10%Ni) 1.4 6.94 6.6 287 

Mg2•4NiH4 2.6 3.84 "6.2 253 

FeTi 5.47 1. 75 6.01 -11.4 

LaNi 5 8.25 1.43 5.4 12 

tt-INi 5 8.1 1.41 3.4 -7.9 

V 4.5 1.98 10.3 27 

CaNi 5 6.65 1.39 2.2 41 

L iA1 0.91 8 7.6 "100 . 

Liquid H2 0.071 100 4.2 -253 

* N x 1022 = No. of H atoms per cubic centimetre 
H2 

Standard 
Entha 1 py 

of Fonpation 
l1Hf 

-78.3 

-64.4 

-28.0 

-31.0 

~20.9 

-25.1 

-31.8 

-28.4 

-
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Cost 
£/kg 
(1980) 

"12.00 

14.10 

12.50 

30.80 

15.6 

-

13.00 

"90.00 

-

** Temperature (oC) at which equilibrium dissociation pressure = 1 atm. 



2.3.3.1 Magnesium Hydride 

The direct sythesis of magnesium hydride (MgH2) from mag

nesium and hydrogen can only be carried out with difficulty, 
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and the uncatalyzed conversion of pure magnesium to magnesium 

hydride is incomplete, even at temperatures above 4000 C and 

pressures up to 300 atmospheres(27). However, by alloying small 

amounts (5-10%) of certain metals with magnesium, intermetallic 

phases are formed which catalyze the magnesium-hydrogen reaction. 

Such catalysts are permanently incorporated into the system 

and a re effecti ve over many hydri di ng-dehydri di ng cycles'. Copper, 

nickel and aluminium can all be used to catalyze the Mg-H 

reaction, but nickel appears to be the most promising. This is 

due to the formation of the intermetallic compound, Mg2Ni, which 

reacts rapidly with hydrogen to form the ternary hydride, M92NiH4(28) 

according to the reaction: 

This hydride appears to have a definite stoichiometric composition, 

i ndi cated by the abrupt termi nati on of the pressure-compositi on 

isotherm at a composition corresponding to M92NiH4(29). The 

hydride is a rust coloured fine powder, stable in air at 200 C 

for short periods, but slowly oxidizes over a period of months. 

A slight reaction occurs with water although it reacts vigorously 

when immersed in mineral acids. 
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The decomposition of magnesium nickel hydride occurs 

rapidly (in approximately four minutes at 2400C(29)) and the 

back reaction is negligible provided the final pressure of the 

system is less than 25% of the equilibrium dissociation pressure. 

However, since the amount of hydrogen (by weight percent) in 

Mg2NiH4 is less than half that in MgH2, the magnesium nickel 

hydride is not as useful as a hydrogen storage medium. 

The major problem in using magnesium hydride (catalyzed 

with ten percent nickel) as a hydrogen storage medium is the 

high temperature required for dissociation (nearly 3000C to give 

an equilibrium decomposition pressure of one atmosphere). 

Magnesium nickel hydride has an equilibrium pressure of one 

atmosphere at approximately 250°C. Thus, the commercially 

available magnesium-nickel storage system is a mixture of Mg2Ni 

and Mg, resulting in a hydrogen capacity of 3.84% by weight(30). 

Another magnesium alloy system which has been studied is 

the Mg-Cu system, since M92Cu reacts with hydrogen as follows(3l): 

This occurs at temperatures above 200°C, and the hydride has an 

equilibrium dissociation pressure of one atmosphere at approx

imately 240°C. However, this system has a hydrogen content of 

approximately 2.7% by weight, which is a significant drop in 

hydrogen capacity for only a marginal drop in stability. 
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Both the magnesi um-ni cke1 and magnesi um copper alloys are 

rapi d1y deacti va ted in the presence of ai r due to the rapi d 

formation of a surface oxide layer. To maintain a high capacity 

of the storage system, it is thus important that only high 

purity hydrogen is used. 

2.3.3.2 Iron-Titanium Hydrides 

At present the iron-titanium and other similar systems 

appear to be the most favourable for hydrogen storage since they 

have high dissociation pressures at low temperatures, as shown 

in the isotherms in figure 4(32). 
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FeTi-H system. Rei11y 1977 
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The starting materials also have the advantage of high abundance 

and low cost. The important intermetallic compound in terms of 

hydrogen storage is FeTi, which reacts directly and reversibly 

with hydrogen to form two ternary hydri des. The reacti ons 

occurri ng a re: 

2.13 FeTiHO. 1 + H2 * 2.13 FeTiH l •04 

and 

2.20 FeTiH1•04 + H2 ~ 2.20 FeTiH1.95 

Exposure of these hydrides to air results in deactivation,and 

although both hydrides have dissociation pressures well above 

one atmosphere at 250C, they will decompose only very slowly in 

air at room temperature. This can be a severe problem, since 

minute quantities of oxygen will substantially reduce the 

storage capacity of i ron-titani urn, and practi ca1 sys terns in 

some cases have only half the theoreti ca 1 hydrogen capaci ty. 

Thus very high purity hydrogen (>99.99995% pure) must be used, 

leading to greatly increased fuel costs(33}. 

Iron-titanium hydrides are already in use as automotive 

hydrogen storage media(34}(4}. However, due to the relatively 

small capacity (1.75% by weight) compared with magnesium alloys, 

the weight of the hydride plus container is considerable. the 

actual capacity of iron-titanium hydride may be much smaller 
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than the theoretical hydrogen capacity due to the formation of 

iron oxides and can be as low as one percent by weight. Daimler 

Benz(34) have a 2.4 ton minibus (with a 2.3 litre engine) running 

on hydrogen. where iron-titanium is used as the storage medium. 

The storage unit occupies a volume of 65 litres ard contains 200 kg 

of iron-titanium hydride. or 3.6 kg of hydrogen. This amount was 

enough to keep the engine running at a constant 1700 rpm for nearly 

three hours. and ga\e the vehicle a range of approximately 130 km. 

The energy content of this amount of hydrogen is equivalent to 

nearly 10 kg of petrol (approximately 13 litres). After running 

the engine. the temperature of the hydride bed was found to be 

760 C. so it had to be cooled considerably using external cooling 

water before it could be recharged. After cooling. up to 75% of 

the total hydrogen capacity was absorbed during the fi rst ten 

minutes. although to fully recharge the hydride took 45 minutes. 

due to the evolution of heat during the recharging process. 

2.3.3.3 Hydrides of the Lanthanide Series 

Many of the rare earth containing intermetallic compound 

systems have the ability to store large quantities of hydrogen. 

Lanthanum nickel hydride (LaNi 5H6) has a 30% higher density of 

hydrogen in the hydride than that of liquid hydrogen(35). 

However the density of lanthanum nickel is fairly high (8.25 g/cc). 

resulting in a hydrogen capacity of only 1.4% by weight. However. 

the reaction kinetics for this hydride-are-very fast. even atroom._ .. __ 

temperature. and lanthanum nickel is less susceptible to poisoning 

than the other hydri des. 
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Duri ng the forma ti on of 1 anthanum ni cke 1 hydri de, the 

alloy expands volumetrically by a factor of approximately 25%(36). 

While expanding, the brittle material breaks up into finer 

particles and thus a large uncontaminated and highly active 

surface is formed. The composition of the hydride is dependent 

on the temperature and pressure of the system. The heat of 

reaction is about 30.2 kJ/gram mole H2, which gives rise to a 

large increase in temperature when the LaNi 5 powder is reloaded 

(which takes place in a few seconds at a pressure of 3MPa (435 psi) 

hydrogen) . 

The major disadvantage of using lanthanum nickel as a 

hydrogen storage media is its high cost, although this has 

reduced markedly during the last five years •. However, Umden 

and Lynch(37) have investigated a rare earth alloy known as 

mischmetal which has the composition 50% cerium, 25% lanthanum, 

18% neodymium, Praseodymium 5%, and other rare earths 2%. This 

is available at a cheaper cost than lanthanum, and when alloyed 

with nickel has similar hydrogen storage properties as LaNi 5. 

Mischmetal nickel, MMNi 5, also has very fast kinetics for 

absorption and desorption of hydrogen, but suffers from a small 

decrease in hydrogen capacity. This is possibly due to the 

presence of cerium, since CeNi 5 does not form a reversible 

hydri de (36) • 

2.3,3.4 Vanadium Dihydride 

Vanadium, niobium and tantalum all react with hydrogen to· 

form a stable monohydride. However, vanadium and niobium 



monohydrides wi 11 react further at room temperature to form an 

unstable dihydride as follows: 

1.92 VHO•95 + H2 ~ 1.92 VH 2 

The rate of decomposition of vanadium dihydride to the 

monohydride is extremely rapid at 400C. It has also been 

found that the presence of impurities in commercial grade 
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vanadium. or the doping of pure vanadium with silicon. substan

tially increases the rate constant(38). Of all the unstable 

hydrides. VH2 has the highest weight percent of available hydrogen 

(1.98%). The major problem with using vanadium hydride as a 

storage mater.ial is its high cost. 

2.3.3.5 Calcium-Nickel Hydride 

Ca 1 ci um-ni eke 1 hydri de. CaNi 5H6' appears to be another 

promising hydrogen storage system in that the metals are relat

i vely cheap and abundant. and the temperatures requi red for 

dissociation pressures of one atmosphere or more are low. However. 

the density of the stored hydrogen is relatively low (1.39% by 

weight) and like magnesium and iron titanium systems. the hydride 

is easily deactivated in the presence of oxygen(39). 

Another hydride system which has been investiga~ and which 

gives higher hydrogen dissociation pressures is the calcium-nickel

mischmetal alloy. where mischmeta~-replaces some of -the calcium 

in the original alloy(40). Although there is a slight increase 



in density compared to the pure CaNi 5 alloy, this is offset by 

a slightly lower density of hydrogen. 

2.3.3.6 Complex Al uminohydri des 
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The complex aluminohydrides are salts of the alanate ion, 

A1H4-, of which lithium aluminium hydride, LiA1H4' is the most 

widespread today. This hydride contains 8% by weight available 

hydrogen, and decomposes at 100oC(4l) according to the reaction: 

2LiH + 2Al + 3H2 

The major problem using this hydride is one of reprocessing, 

since the above reaction is not reversible. However, according 

to Ashby et al(42), lithium hydride reacts with aluminium and 

hydrogen at a temperature of l400C and a hydrogen pressure of 

34.5 MPa (5000 psi), although the reaction will only occur in 

tetrahydrofuran or a hydrocarbon solvent and takes at least 

five hours. The reaction occurring is as follows: 

LiH + Al + 1~H2 

Other similar hydrides with relatively high capacities of 

hydrogen are sodium aluminium hydride, NaA1H4, and magnesium 

aluminium hydride, Mg(A1H4)2. Certain properties of the hydrides 

discussed are summarised in Table 2.2. As can be seen from the 

heats of formation, it does appear that the thermal decomposition 

of lithium aluminium hydride could.become reversible in the 
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presence of an appropriate catalyst. thus reacting in a similar 

manner to magnesium in the presence of nickel. 

2.3.4 Rate Kinetics of Thermal Decomposition of Metal Hydrides 

There are three different types of reaction which can occur in 

a metal-alloy bed. These are: 

(a) The previously unreacted metal reacting with hydrogen to form a 

me ta 1 hydri de. 

(b) The metal hydride dissociating to form the metal. and evolving 

hydrogen. 

(c) The previously reacted metal (ie - a solid solution of hydrogen 

in the metal) reacting with hydrogen to form a metal hydride. 

In each of these three reactions. a different process may be rate

controlling. and for a given reaction. different mechanisms could be 

involved for different metal alloys. 

For both magnesium and iron-titanium systems. surface oxides and 

adsorbed gases will inhibit the initial hydriding reaction and will 

also inhibit the dehydriding reaction. However. other alloys. such 

as lanthanum-nickel. will have a longer useful life as hydrogen 

storage media' due to their resistance to poisoning. 

Since the addition of nickel or copper to magnesium catalyzes 

the hydriding reaction. it seems likely(43) that M92Cu and Mg2Ni 

minimize oxide inhibition by providing a clean unoxidized external 

surface through which the hydrogen gas readily adsorbs. dissociates. 
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and diffuses into the interior of the alloy where bulk diffusion occurs. 

However, it was also found that this surface reaction in hydriding 

magnesium alloys is not the rate controlling factor. The kinetics 

are rate-limited by the diffusion of hydrogen through the growing 

hydride layer, and the dehydriding kinetics are rate limited by the 

diffusion of hydrogen through the growing metal layer. 

The adsorption and desorption mechanism of hydrogen in iron

titanium is also thought to be rate-limiting(44). although diffusion 

occurs more rapidly than in magnesium systems. Although the diffusion 

constant is surprisingly 10w(44), the hydriding time is relatively 

short. This is thought to be due to the very fast diffusion of 

hydrogen along the boundaries of the metal grains by cracking the 

metal particles. The hydrogen can then penetrate into the grains and 

bulk diffusion can take place. 

Van Vucht et al(36) found the hydriding/dehydriding reactions of 

rare-earth alloys of the type LnTmS (where Tm is either Co or Ni) 

were rate-limited by the diffusion of hydrogen into the bulk of the 

metal, whereas Raichlen and Doremus(4S) found the desorption of 

SmCoSH2.6 was limited by the rate of transformation of the hydride 

to the alloy SmCoS. This transformation is similar to allotropic 

transformations in pure materials. since it involves a structural 

rearrangement of the atoms from a hexagonal to an orthorhombic phase. 

It is unusual for such a change to be rate limiting, since the move-

ment of atoms to form the new structure is slight. It may be that the 

strain energy involved in incorporating the hydrogen slows the trans

formation. 



The velocity of the hydri de-meta 1 interface in such trans forma

tions is dependent on the difference, ~T, between the measurement 

temperature and the temperature Tl at which the hydride and alloy 

co-exist at one atmosphere pressure. A general equation for the 

interface velocity is 

\! = B.~T.e-Ea/RT 
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where B is a temperature-independent coefficient and Ea is the 

activation energy for the atomic motion involved. A value of Ea = 50.4 

kJ/mole was found for SmC05(45). This is much lower than the usual 

activation energy for diffusion of atoms in metals or for vacancy motion 

in metals, indicating that allotropic transformation probably does not 

require full atomic or vacancy jumps. 

Van Vucht(36) also found in X-ray measurements that certain regions 

which are completely hydrogenated may exist in equilibrium with regions 

having a much smaller hydrogen content. It was con cl uded that hydrogen 

does not fill gradually and randomly the available interstices and that 

there is a positive interaction between hydrogen atoms, possibly by 
, 

means of a strain that accompanies the filling of an interstitial hole. 

A hydrogen atom may thus induce another atom to occupy a neighbouring 

site. This case of rate limitation by hydride-metal transformation is 

incorporated into the model discussed in chapter four. 

2.3.4.1 Diffusion of Hydrogen 

The diffusivity of hydrogen into a metal is extremely high, 

1015 - 1020 times higher than that of oxygen or nitrogen(46). 



Several techniques may be used to monitor the diffusion of 

hydrogen, either by detecting a change in the expansion of the 
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lattice, or by measuring a narrowing of the resonance line width 

according to proton magnetic resonance theory, or by using quasi

elastic neutron scattering techniques. The main advantage of these 

methods over macroscopic methods (for example permeation experi

ments) is that the diffusing process is observed over a micro-. 
scopic range of some A. The "microscopic" diffusion constant 

determined in this way has to be distinguished from the diffusion 

constant for macroscopic bulk diffusion, as determined by lattice 

expansion, or permeation measurements, which are influenced by 

interaction effects of hydrogen atoms with one another, by surface 

effects, and pipe diffusion effects due to dislocations and grain 

boundari es. 

The temperature dependence of the diffusion coefficient is 

normally given by an Arrhenius equation: 

o = Do e-Ea/ kT 

where Do is a constant and Ea is the activation energy for diff

usion of the proton. The measured values(47} for Do and Ea are: 

Do = (7.2 ± 3.6) X 10-4 cm2/sec and 

Ea = 500 ± 50 meV (8.0 ± 0.8) x 10-20J 



According to quantum mechanical modified rate theory, the pre

factor Do is a constant, dependent only upon temperature, and 

should have the same value for all metal-hydrogen systems. It 

is gi ven by the expression 

Do = 
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where t is the jump distance of the protons. This relationship 

gives a value for Do of Do = 10-3 cm2/sec, and this is in good 

agreement with previously measured results(47). In practice, 

the linear temperature dependence of Do is too weak to be 

detected in the presence of the exponential temperature dependence 

of D. These measurements give a value for D at 300 K of 

D = 2.9 x 10-11 cm2/sec which compares well with that of 

Bowman et al(48) of D = 10-11 cm2/sec found in a nuclear mag-

netic resonance study. 

Recent work by Nomura et al(49) indicated that the rate 

determining step of the reaction might be the diffusion of 

hydrogen through the boundary of the reacted and unreacted 

portions. The rate equation is 

dn = at k' (P - Peq)/t 

where k' = 3.2 x 10-2 ((kgf/cm2)-1), P is the pressure at time t 

and Peq is the equilibrium pressure. Hence the probable driving 

force of the reaction is the difference in concentration of 

hydrogen between the two parts, whi ch is proportional to (P - Peq). 



This result is used later in comparison with the rate of heat 

transfer in the hydride bed, as determined from a mathematical 

model of the hydri ding/dehydri ding processes .(56) 

The equilibrium plateau pressure, Peq, is related to the 

absolute temperature, T, by the van't Hoff equation: 

ln Peq 2 l>H A 
= xRl + C - T + C 

where x is the hydrogen/metal atom ratio, l>H is the enthalpy 

change of the hydriding reaction and C is a constant related 

to the entropy change of the hydriding reaction. 
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In order to define the activation energy for hydriding 

kinetics (as opposed to that for hydrogen diffusion), one must 

consi der the ti me to reach some arbitrary fi xed reacted fracti on, 

60, (generally 50%) at varying temperatures. Assuming (at 

constant temperature and pressure) that 

J " 
(l>HH - Ea) 

exp RT 

where J is the hydrogen-diffusion flux, and l>HH is the relative 

partial molar enthalpy, detennined predominantly by H-metal inter

.actions, then a plot of ln too vs.} gives an activation energy 

for hydriding of (Ea - lIHH). Thus.the activation energy fo/' 

hydriding need not necessarily match that for diffusion. Although 



46 

data are not available for the hydriding of magnesium hydride, 

they are available forttedehydriding(50). The activation energy 

for diffusion is 40.2 kJ/mo1e. whereas the activation energy for 

dehydriding, .when the rate-limiting process is the diffusion 

of hydrogen through magnesium, is 101.8 kJ/mo1e. Thus, the 

activation energy, which defines the temperature dependence of 

the kinetics, is not given simply by the activation energy for 

diffusion, but includes also an entha1py-of-hydrogen-so1ution 

term. 

2.3.5 Modelling Solid-Hydrogen Storage Beds 

In all published mathematical models of hydride beds, numerical 

solutions to heat transfer equations have been used{51 ,52,53,54), 

and idealized hydride containment vessels have been used. In the 

model of Cummings and Powers(51) it is assumed the hydride bed is a 

plate-plate heat exchanger, as is illustrated in figure 5. 

[XI-!AUST GASES 

FIGURE 5 - Plate-plate heat exchanger for storing hydride 
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In practice, this design is not used as a storage system. A model 

based on this design has temperature gradients in two directions, 

(since the exhaust gases are flowing through the bed), thus requiring 

a two-dimensional mathematical model. Since a temperature gradient 

exists along the length of the bed, end effects must be taken into 

account, and thus the hydride slabs must be assumed finite. As there 

are no analytical solutions to the heat transfer equations for a 

finite slab, the problem must be solved by numerical methods. The 

method used was that developed by Murray and Landis(55). Thus the 

bed is divided into a fixed space network of ten "nodes" across the 

hydride, and as the reaction front travels through a segment, the 

temperature of the adjacent node is continuously adjusted. To 

describe the two-dimensional heat transfer situation in the bed, the 

one-dimensional problem in the x-direction was solved at a number of 

locations down the length of the bed. 

Vu, Suuberg and Waide(52) discuss two models both based on 

cylindrical pressure vessel systems. This type of storage vessel is 

most widely used today. The first model investigated was a convection 

model, where hot hydrogen gas is heated externally (no mention is made 

as to how this is done) and is then circulated through a charged hydride 

bed. No practical systems in use operate on this principle, although 

the heat content of the hydrogen released from the bed may be a 

factor i nfl uenci ng further desorpti on from the hydri de. 

Because the hydrogen-release reaction is endothermic, and heat 

is being supplied from one end of the bed, the reaction will travel 
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from the hot end to the cool end. Whether this reaction zone is 

broad and covers the entire bed, or is a narrow band moving from one 

end to anot.her, depends on the relative rates of heat and mass trans

fer and chemical kinetics. The energy balance equations are given 

for both the gas phase and the solid phase, but analytical solutions 

cannot be obtained due to difficulty with the non-linear reaction 

rate term. Numerical solutions were obtained for magnesium-nickel 

and iron-titanium hydrides. 

The second model of Vu et al(52) was a conduction model. Again 

this is based on a cylindrical system, and uses a fluid flow through 

an inner axial passage to provide or release heat during the de

hydriding or hydriding process. This model is similar to that 

developed in chapter four, except the heat conduction is then from 

the outside of the cylindrical tube, not from an inner passage. If 

fluid flow through an axial tube is considered, then temperature 

gradients will exist in both an axial and a radial direction, requiring 
• 

a two-dimensional solution to the heat conduction equation. This model 

assumes constant inlet and outlet fluid temperatures. heat transfer 

from the inner wall only (ie - an insulated outer wall), and that all 

hydrogen is released at the end of the bed or supplied at the entrance 

to the bed. A solution to the heat conduction equation was sought by 

the method of finite differences, but was very time consuming. Since 

the reaction rate is greater than the heat transfer rate, a simplified 

scheme was introduced, whereby the rate of hydrogen release is limited 

by the conduction of heat into the hydride. Thus a numerical solution 

was obtained for the position of the reaction front versus time. 
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However, since none of the three models discussed resemble any 

practical containment vessel, their predicted hydrogen release rates 

can only be used to compare different hydride materials. 

The model of Fisher and Watson(53)(54) is based on a cylindrical 

system with heat transferred to and from the system by water flowing 

in an annular shell around the test bed. A nodal analysis of the bed 

is assumed where material within a given volume is assumed to be 

uniform (having the same temperature and composition as the node). 

A series of boundary conditions is then developed for each node, 

along with energy balance equations. 

The model is used to predict equilibrium pressure-temperature-

composition isotherms at various temperatures for iron-titanium 

hydride, and it correctly predicts the shape and magni tlide of the 

experimental curves. However, events such as maximum pressure and 

temperature are predi cted to occur at times 1 ater than the experi

mentally observed times(54). The model has also been developed to 

predict the behaviour of beds with the same length and containing the 

same amount of alloy as the previous bed, but with internal cooling 

tubes (rather than external cooling). It was concluded that the 

heat transfer surface area is utilized most efficiently when it is 

distributed throughout the bed - ie, 'several internal cooling tubes 

each with the smallest diameter possible. However, from a practical 

design consideration, such a system would be difficult to fabricate. 

2.3.6 Safety of Metal Hydride Systems 

One of the major problems in ensuring a safe hyrogen system is 

to prevent leakage of hydrogen out of the system and to prevent air 
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(oxygen) entering it. By keeping the storage container and transport 

lines at positive gauge pressure it is relatively easy to keep out 

any oxygen. However, there is a problem in keepi ng hydrogen withi n 

the container, since all materials in contact with hydrogen must be 

chosen to minimise enbritt1ement. Aluminium alloys, stable austenitic 

stainless steels, and copper appear to be unaffected by hydrogen. 

The presence of small amounts of impurities in the hydrogen, for 

example methane or other hydrocarbon gases, consi derab1y reduces 

this tendency for embritt1ement. 

Data are rather sparse concerning the safety-related behaviour 

of metal hydrides, although some of the factors known to influence 

their behaviour are particle size, temperature, surrounding atmos-

phere,and the inherent nature of the material itself. If one assumes 

that ai r is the surrounding atmosphere (as would be the case if the 

hydride tank had ruptured) , tren the most important factor affecting 

a particular hydride's behaviour is the particle size. Gibb and 

Messer(57) reported that large lumps of lithium hydride can be heated 

to a red heat without igniting. whereas finely divided lithium 

hydride will spontaneously ignite at room temperature. Similarly 

Lundin and Lynch(58) found iron titanium hydride .ignited only when 

the flame of a propane torch was played over the surface of the 

hydride particles. Such behaviour is attributed to the fact that 

the hydride is deactivated by air, and even though the dissociation 

pressure may be more than one atmosphere, no hydrogen gas is evolved 

until hi gh temperatures (> 400°C) are reached. 



Thus it does appear that metal hydri des are far 1 ess hazardous 

as fuel storage media than most common volatile fuels currently in 

use. 

2.3.7 On-Board Generation of Hydrogen 
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In an effort to obtain increased engine efficiency by using 

hydrogen, yet avoid the problem of on-board storage of hydrogen, an 

attempt has been made to generate hydrogen on-board the vehicle from 

the parent fuel. One of the earliest investigations was the Boston 

reformed fuel car(59). In this case, petrol was reacted with steam 

to produce a "reformed" fuel of carbon di oxi de and hydrogen ups tream 

of the engine. Initial efforts to develop an engine to burn the 

mi xture revealed a poor s tarti ng re 1 i abil ity and carburettor f1 ash

back at high rpm. The basic reaction occurring with steam refonnation 

of petrol is as follows: 

7C02 + 22H2 - heat 

'However, subsidiary reactions are also possible,resulting in the 

formation of coke or carbon monoxide. The main problem with the 

reformation process is that a temperature of the order of 10000 C is 

requi red, so some of the fuel is burnt in the reformer to achi eve thi s 

temperature. The steam requi red for the reaction is condensed from 

the exhaust, compressed to approximately 800 psi, and then super

heated to near 10000C. No details concerning thenna1 efficiency were 

gi ven. 
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However. workers at the Jet Propulsion Lab(60) have also developed 

an on-board hydrogen generator operating on a similar principle. 

A 1 though engi ne effi ci enci es were found to increase by as much as ten 

percent. overal system efficiencies decreased by ten percent. resulting 

in a net loss in fuel economy. In this study. a problem of coking the 

s team reformer was reported. Thi s coul d only be avoi ded by the use of 

a catalyst, which was then found to be subject to poisoning. More 

recent studies(61) concluded "There appear to be no significant incen

tives therefore to go to onboard hydrogen generation with gasoline", 

although it was also mentioned that the picture for methanol is much 

more favourable. 

2.4 HYDROGEN AS A FUEL FOR INTERNAL COMBUSTION ENGINES 

Hydrogen has been used as an engine fuel for more than one 

hundred yea rs. although the fi rs t i nves ti gati on of its effect on the 

performance of an engine was carried out by Ricardo in 1924(62). He 

reported a problem of pre-ignition accompanied by violent firing back 

into the carburettor, which has proved to be a feature of all engines 

run on pure hydrogen. 

2.4.1 Engi ne Back-Fi re 

Engine back-firing, or carburettor flash-back, refers to an 

extreme condi ti on, in whi ch i gni ti on may take place in the intake 

system, or in the combustion chamber before the intake valve has 

closed. resulting in a "firing back" through the intake system. This 

can result in damage to the fuel/air mixing device. and may also 



interrupt or stop engine operation. King et al (63) concluded that 

this "self-ignition" was due to glowing particles of carbon present 

in the residual charge. The source of these finely divided carbon 

nuclei was attributed to pyrolysis of the lubricating oil. They 

reported being able to eliminate the problem by maintaining all 

surfaces (cylinder wall, piston face, etc) scrupulously clean. It 

was later reported(64) that preignition is caused by the presence 

of any hot spot, including the ceramic core of the spark plug, the 

exhaust valve, and pyrolysis of the lubricating oil vapour. Other 

workers(65) have also found hot spots to be a major contributory 

factor to hydrogen back -fi ri ng. The use of cool spark-plugs, and 

sodium cooled exhaust valves reduced the frequency of intake flash

back (64) . 
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Another mechanism for causing intake flash-back was suggested by 

Billings et al (66) and is also mentioned by Lynch(67). The mechanism 

is preignition caused by an induced voltage in a plug adjacent to the 

plug which is firing. Thus the intense current pulses from one spark 

lead were inducing a high enough voltage in an adjacent lead to cause 

an energy pulse across the plug. 

(1.9 x 10-5 J) is much less than 

Since the ignition energy of hydrogen 

that of petrol (28 x lO-5J ), this 

induced pulse can be detrimental when operating an engine on hydrogen, 

and yet is of little significance when operating the same engine on 

petrol. Separation of the ignition cables from one another was found 

to decrease the magnitude and frequency of induced sparks(66), and was 

also found to reduce the frequency of intake flash-back in the present 

investigation. The use of smaller plug gaps also meant less energy 



was requi red to produce a spark, thus reducing the intensi ty of any 

induced voltage. 
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Watson(68) suggests that intake back-firing (induction ignition) 

may be caused by res i dua 1 gas i gniti on when pre-mi xed hydrogen-a; r ; s 

supplied to an engine. To overcome this problem, a specially modi

fied intake valve was used(68)(69) to allow air only into the 

cylinder in the initial charge. This air, by mixing with the 

unscavenged resi dual gas reduces the mi xture temperature, and thus 

avoids residual gas ignition of the hydrogen which is admitted some

what later than the air, as shown schematically ;n figure 6. 

LIFT 

-
_AIR Oftl' 

(lOITHROTILEO) 

TlI1E 

I 

FIGURE 6 - Schematic layout of delayed port admission valve 
and its timi ng di agram 
(H C Watson, 1979) 
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This design of intake valve was also suggested by Swain and Adt(70). 

However, Watson(66) reports that although this system prevented back

firing with a single-cylinder engine, it still proved to be a re

current problem with a multi-cylinder engine. This was attributed 

to the presence of lubricating oil in the cylinder, despite app1fing 

the best available oil control methods. A point which is not 

mentioned however is that the minimum ignition temperature of 

hydrogen/air mixtures is 5720C, whereas that of petrol/air mixtures 

is ~ 2200C. Since the combustion temperatures, and hence residual 

gas temperatures, are similar, if back-firing is caused by residual 

gas ignition, this should be far more prevalent with engines operating 

CJl petro 1 than on hydrogen. Thus, hot resi dua 1 gases do not appear 

to be the fundamental cause of intake f1 ash-back. 

Recent studies at Loughborough(65) indicate that although hot

spots and pyrolysis of oil do contribute to the back-fire problem, 

they are not the fundamental cause. A back-fire cascade effect has 

been i dentifi ed where combus ti on cycles precedi ng the back -fi re cycle 

progressively diminish in peak pressure. The final cycle before back-

fi re shows evi dence of 1 ate burni ng and a low f1 ame speed, although 

a lingering flame was not detected in the cycle after the exhaust 

valve closed, and before the inlet valve opened. The cascade effect 

suggests some residual property inhibits the next combustion cycle. 

To create the cascade effect a chemical species is required which 

wou1 d i nhi bi t the bu1 k hydrogen react; on and, in the process, increase 

its concentration to further hinder the next cycle. Both NO and H02 -

radicals are known to interrupt the combustion sequence of hydrogen 

burning in air. 
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Back-fi ring can be prevented by injecting the fuel di rectly into 

the cylinder(65, 71, 72), although normally rough running and pre

ignition result. Presumably this abnormal combustion includes the 

back-fire mechanism although the aggressive characteristics are 

moderated by occurring only in the cylinder. Direct cylinder injection 

is limited in practical applications due to the possibility of in

complete fuel-air charge mixing in the cylinder resulting in incomplete 

combustion, which can be responsible for poor thermal efficiency and 

high nitric oxide emissions(72). 

There are two methods generally used at present to suppress 

intake flash-back. Finegold et al(73) employed exhaust gas recir

culation (EGR), recycling up to twenty-five percent of the exhaust, 

after substantial cooling. This serves as a "thermal diluent", red-

ucing peak combustion temperatures (and consequently NOx formation) 

and also lowers the temperature of potential hot spot ignition sources. 

Nitri c oxi de concentrati ons were cut approximately in half, although 

the maximum power output was also reduced in proportion to the per-

centage EGR used. 

The second method of reducing flash-back is to inject a spray of 

water vapour into the combustion chamber. This again has the effect 

of reducing peak combustion temperatures, thus lowering the temperature 

of hot spots, and reducing nitric oxide concentrations. Such a method 

has been investigated by several groups(74,75), although a decrease 

in thermal efficiency is also observed. 



Hence, it appears far more basic research on the nature of the 

ignition of hydrogen is required to identify the back-fire problem 

rigorously, and, thus, to suggest the ultimate solution. 

2.4.2 Performance and Emissions Using Hydrogen 
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There are two basic methods of operation using hydrogen as an 

engi ne fuel. In the fi rs t, hydrogen and ai r can be mi xed in the 

stoichiometric ratio, and power output can be controlled by throttling 

the intake - ie, varying the flow rate of the total mix whilst keeping 

it at the stoichiometric condition. However, if this system is used, 

the power output, when compared to petrol operation, is considerably 

reduced. The reason being that at stoichiometric mixtures, hydrogen 

occupies 29.6% of the total fuel/air volume, resulting in a much 

smaller air-flow into the engine. Petrol only occupies approximately 

2% of the fuel/air mixture. 

However, since hydrogen has such wide flammability limits (4% 

to 75% by volume in air)(3), an engine can be operated throughout its 

load range using a wide open throttle, thus controlling the fuel-air 

ratio directly. This is termed "quality-governing", and has the 

advantage of reduci ng the losses associ ated with throttl i ng. It also 

permits operation at the lowest equivalence ratio for a given power 

output, resulting in lower combustion temperatures, leading in turn 

to higher thermal efficiencies. Details of this principle are dis

cussed in chapter nine. Several studies have reported this improve

ment in thermal efficiency. Lucas and Morris(65) found a maximum 

brake thermal efficiency of 24% using a single cylinder CFR engine 
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running on hydrogen at 1800 rpm, compared to only 15% with petrol 

operation. However, the improvement in thermal efficiency is par-

ticularly apparent at part-load due to unthrottled operation, and such 

results are reported by Swain et al(76), with brake thermal efficiencies 

90% higher at 35 kPa (5 psi) BMEP at 1800 rpm. 

A hydrogen engine is capable of higher reaction temperature (and 

energy for a given mass of air) and higher flame speeds. Thus, under 

similar operating conditions a hydrogen engine would be expected to 

produce more NOx emissions. This was found to be the case in studies 

at Loughborough(65), where peak emissions with petrol were 3600 ppm, 

and with hydrogen were 5550 ppm, both at full throttle at 1800 rpm. 

However, as mentioned earlier, both exhaust gas recirculation and 

water injection reduce combus tion temperatures, and hence also reduce 

nitric oxide formation. Also if a hydrogen engine is being operated 

using a wide open throttle at all times, combustion temperatures will 

again be reduced, thus reducing nitric oxide emissions. Finegold and 

Van Vorst(77) found the total oxid~s of nitrogen had a maximum value 

of 420 ppm when an engine was operated using petrol, 30 ppm when the 

engine was operated on a stoichiometric mixture of hydrogen with water 

injection, and 10 ppm when the engine was operated on hydrogen with a 

fully open throttl e (with no water injection or EGR). 

2.4.3 Dual-Fuel Operation 

In order to avoid both the problems of on-board storage of hydrogen, 

and that of intake flash-back, several workers are now looking at a 

dual-fuel mixture of hydrogen and petrol(78,79,BO,8l,82,83,84). 
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As several different techniques are used, each is discussed individ-

ually. 

Workers in the USSR reported modifying a car to use a fuel con

taining five percent by weight of hydrogen(81). The hydrogen was 

stored on-board the vehicle in a 180 kg container of iron-titanium 

hydri de, capable of storing up to 1.5 kg of hydrogen. No details are 

given, however, of actual engine operating conditions, or whether 

power output is controlled by quality governing of the fuel-air 

mixture. Exhaust emissions were reduced to levels below legislated 

values, and petrol consumption was reduced by up to thirty percent. 

A later report(80) indicates increases in thermal efficiency of 

up to one hundred percent at low loads by the use of partial throttling 

at light loads. This was found to prevent poor combustion, which 

occurred at equivalence ratios below ~ ., 0.3. In the present study, 

audible misfires were found to occur at equivalence ratios below 

~ ., 0.4 when petrol/hydrogen mixtures were used, and partial throttling 

was again used to prevent this. It is possible that greater combustion 

chamber turbulence may permit engi ne operation at weaker mi xture 

strengths. 

Work carried out at General Motors in 1974 utilised the idea of 

hydrogen-supplemented fuel, but mainly in an effort to reduce exhaust 

emissions(82). Petrol only was used at mixture strenghs greater than 

~ " 0.8~ and hydrogen was added at weaker mixture strengths. Both 

hydrocarbon and carbon monoxide emissions were reduced wi th such 

operation, but nitrogen oxides were found to have a similar 
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concentration at comparable mixture strengths. A special carburettor 

was also developed to maintain a nearly constant hydrogen fraction 

and stoichiometry for all operating conditions. This gave lower 

nitrogen oxide emissions, but other workers(80) found such operation 

greatly reduced power output. 

The investigation by Varde(84) was primarily aimed at reducing 

the fuel consumption of stationary engines, and he found thermal 

efficiency increased and the lean limit of operation was extended 

with an increasing hydrogen fraction of the fuel. He also found that 

flame speed increased by more than ten percent when a hydrogen flow 

of 10 l/min was added to a slightly weak petrol mixture. However, 

at very lean operating conditions the flame speed decreased. 

It must also be mentioned that other workers(85) are also 

developing vehicles to run on dual-fuel hydrogen petrol mixtures, 

although-no results have been reported to-date. 
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CHAPTER 3 

THE USE OF SALINE HYDRIDES AS HYDROGEN STORAGE MEDIA 
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CHAPTER 3 

3.1 The saline hydrides are those which have an ionic structure, and 

include the hydrides of the alkali metals. Metal hydrides evolve any 

absorbed hydrogen upon thermal decomposition. Sa1inehydrides however, 

evolve hydrogen upon their reaction with water. They were first 

suggested as hydrogen storage media for automotive use by Chatte~jee 

and Som( 86), with parti cu1 ar rega rd to sodi urn hydri de because of its 

high abundance at low cost. More recently, hydrogen generators oper

ating on this principle have been patented(S7). The reaction occurring 

when a saline hydride makes contact with water is as fo110ws:-

• •. (1) 

where M = Li ,Na,K,Rb or Cs. The alkali metal can be recovered by 

electrolysis at 3100C. according to the reaction: 

• •• (2) 

This involves the use of a ~-A1203 (e-a1umina) tube as a diaphragm. 

Without the use of a diaphragm, there is a high degree of back reaction 

between anode and cathode products that occurs when NaOH is electrolysed 

in a non-diaphragmed cell. By using a e-A1 203 tube, molten sodium ends 

up within the tube since e-A1 203 is a sodium 'ion (Na+) conductor. There 

is no di rect contact between the water and sodi urn produced. thereby 

eliminating the secondary reaction. 

• •• (3) 
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The sodium produced by electrolysis would then require further hydro

gen to form the metal hydride again. Chatterjee and Som(85) suggest 

that electrolysis of the fused sodium hydroxide will produce sodium 

and hydrogen according to the half cell reaction 

+ + 2NaOH ~ 2Na + 2H + O2 ... (4) 

However, this reaction cannot occur since any sodium fonned will react 

immediately with the water also produced, as shown in reaction (3). 

The initial investigation of the reaction of sodium hydride 

(and lithium hydride) with water was somewhat cautious, as a large 

amount of water suddenly released on to a metal hydride can cause a 

vigorous, and sometimes violent, reaction. This was determined to be 

due to the i niti a 1 heat of reacti on i gni ting the hydrogen produced. 

However, when an inert atmosphere (argon or nitrogen) was maintained 

above the hydride, no problems were encountered. Both pure sodil'J1' 

hydride and lithium hydride were used, and both proved satisfactory •. 

However, when a 50% oil dispersion of sodium hydride was used, the 

reacti on was too slow to produce a conti nuous stream of hydrogen. 

The apparatus used is illustrated in figure 3.1. A fine spray 

of water was fed into the brass tubev:ia a fine hypodermic tube. ,:By 

controlling the pressure above the water in the boiling tube, the 

flow rate of water to the hydride could be controlled .. This is 

ill us tra ted in fi gure 3.2. Thus, the 'fl ow . rate of water, and hence ... 

the production rate of hydrogen, ·couldbe easily controlled •... 
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FIGU RE 3. 1 - Hydrogen Production Using Saline Hydrides 
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The major problem encountered wi th this method of hydrogen 

production was one of the produced sodium hydroxide forming a solid 

cake if the reaction was stopped for more than short periods. This 

was also reported by Taschek(87). This meant that large amounts of 

sodi urn hydri de cou1 d remai n unreacted if the reacti on had been stopped 

before completion, as would be the case in normal driving cycles. 

The hard 1 ayer so formed prevented the reacti on conti nu; ng further 

by creating an impermeable barrier to prevent water reaching the 

saline hydride. 

This problem could he overcome by suitable design considerations. 

However, since the only means of reprocessing the hydroxide (formed 

by the reaction) is by electrolysis, the use of saline hydrides as 

hydrogen storage media was ruled out as being too expensive for auto

motive use. Working on the equivalent of one gallon of petrol (3.352 kg), 

1267g of hydrogen are required to produce the same amount of energy. 

Calculations show that 15.204 kg of sodium hydride are required to 

produce 1.267 kg of hydrogen by reaction(l) and this amount of hydride 

can be produced by 25.34 kg of sodium hydroxide from reaction (2). The .. 

electrical energy required to e1ectro1yze this amount of sodium hydro

xide is 207.8 x 103 kJ, although another 5.3 x 103 kJ are required for 

fusion of the hydroxide. Thus a total energy of 213.1 .x 103 kJ (98 kWh 

assuming electrolysis effi cienci es _of.60%) i srequi red ,forelectro]ys;s' 

to produce enough sodi um hydri de to gi ve the equi va 1 ent of one imperi a1 

gallon of petrol. 
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CHAPTER 4 

DEVELOPMENT OF MATHEMATICAL MODEL OF HYDROGEN STORAGE SYSTEMS 
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CHAPTER 4 

4.1 RATE OF HYDROGEN EVOLUTION 

The study of hydriding and dehydriding kinetics in metallic alloys 

is an example of simultaneous heat and. mass transfer with reaction 

occurring, although in this instance certain properties (eg - the 

thermal conducti vi ty) also change. Once the hydri de-bed has reached 

thermal equilibrium, anyone of a number of factors may be rate-limit

ing; such as the intrinsic rate of the hydriding/dehydriding reaction, 

or the diffusion of hydrogen out of the hydride particle, depending on 

the particular metallic alloy involved. Also, for a given alloy, the 

rate limiting process for hydriding may not be the same as that for 

dehydriding. Van Vucht et al(36) found the hydriding of samarium 

cobalt, SmC05 , was rate limited by the diffusion of hydrogen into the 

bulk of the alloy (rather than the rate of surface reaction), whereas 

Raichlen and Doremus(45) found the rate of desorption of hydrogen follow

ed the rate of transfonnation of the hydride SmCo5H2•5 to the alloy 

SmCo5 · 

However, for practical applications, where a hydride bed is used 

as a hydrogen storage medium (eg - for automotive use), it is most 

unlikely that the bed will even attain thermal equilibrium. Thus, the 

primary factor limi ting hydrogen release in these cases 'is ,the rate of·", 

heat transfer to the reaction zone(5l) (52) • In this investigation, the 

hydride bed design studied was of the type shown in figure 4.1, produced.· 

by M.P.D. Technology Ltd. The aim of the study was to predi cLthe , 

hydrogen release or absorption rate from ,any metal hydride using a . 
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hydrogen storage system of this design. 

4.2 HEAT TRANSFER TO REACTION ZONE 

For a cylindrical system, such as that shown in figure 4.1, heat is 

conducted radi ally. Thus the general conducti On equati on (wi th no 

internal heat generation) is given by 

H 

at 
= Cl (a 2T + .!. aT + _1 a2T + a2T) 

ar2 r ar r2 ae 2 aZ2 
• " ( 1 ) 
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where Cl is the thermal diffusivity (the thermal conductivity divided 

by the thermal capacity). If the cylinder is assumed to be infini tely 

long, and that axial symmetry exists, then the heat conduction can be 

considered to be in a radial direction only. The cylinder can be 

assumed to be infinitely long provided the heat transfer through the 

ends of the containment vessels is negligible compared with that in 

a radial direction. As the cylinders have insulating caps at one end, 

and a gas space (for hydrogen removal) at the opposi te end, this 

assumption is valid. The heat conduction equation above then reduces 

to 

aT = ex (a 2T + .!.~) 
at ar2 r ar 

... (2) 

Seeking a solution of the separable form, ie, T = R(r).T(t) where 

R(r) and T(t) are functions only -of the indicated variable, then 

equation (2) becomes 



aT dt 
= 1. (d2R + 1. dR) 

R dr2 r dr 
• •• (3) 

/,2 is used to represent the separation constant created because each 

portion of the equation is a function of one of the variables. The 

separation constant is taken to be negative to obtain a negative 

exponential solution in t. 

The two resulting ordinary differential equations, and their 

solutions, are 

dT 2 dt + /, aT = 0 

... (4) 

d
2
R + 1. dR + x2R = 0 

dr2 r dr 
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Since the cylinder is solid, and since no undefined solution can occur 

at r = 0 (the temperature at the centre of the cylinder cannot be 

infinite), B3 must be zero, because Yo is undefined for a zero 

argument. Thus 

.. , (5) 

The constants B and x can then be determined by the i ni ti al and 

boundary conditi ons. 
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For the purpose of this model, it is assumed that the hydride 

vessel is initially at a constant temperature distribution (ambient, 

Ti ) and that its outer surface is suddenly pl aced in contact with a 

convecting fluid of constant temperature. The temperature distribu

tion inside the container is given by the solution of the partial 

differential equation (2). If the temperature at any point inside 

the cylinder is T', and the temperature of the convecting fluid is 

Tf'then a temperature difference variable can be defined as 

T = Tf - T'. The boundary conditions are: 

For t = 0 

For t ~ 0 

T' = T. 
1 

or 

aT h aT h 
: at r = R, ar = k (T f - T') or ar = -f T 

••• (6) 

where h is the thermal film coefficient. The second condition of 

equation (6) leads to 

since 

This gives the following defining relation for the An's: 

... (7) 
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Defining the Biot modulus for the cylinder to be NBr 
, J1 (AnR) _ 

hR 
= T one finds 

the An s are the roots of AnR JO(An RJ - NBr - O. 

Then the solution of equation (2) is 

Upon application of condition (1) of equation (6) 

the Bn's are 

(Tf - Ti ) J: r JO(Anr)dr 

Jo2(AnR) + J, (AnR) 

Thus the final solution is 

which reduces to 

since 

2 
T = 2(T - T.) E he-An "t 

f 1 n=l An 

JO(Anr)J1 (AnR) 

Jo2 (A R) + J1
2 (A R) n n 

· •. (8) 

• •. (9) 

• •• (10) 

• •. (11) 

• .. (12) 



A model of the hydride bed was manufactured (figure 4.2) which 

consi s ted of an outer copper tube, wi th an imer a1 umi ni urn shell, both of 

corrrnercia1 purity. The tube was filled with magnesium powder (99.5% 

pure) and a thermocouple inserted at the centre of the vessel as 

sho.oJn. The vessel was then totally immersed in hot water, and the 
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temperature at the centre of the tube recorded every fi ve seconds. 

From this temperature record, shown in figure 4.3, the value of the 

Biot modulus was determined to be 11, using standard heat transfer 

tables. The first four An values were evaluated using equation (7), 

and a mathematical model, based on the solution of equation (12), was 

made to determi ne the heat transfer for the system. The outer radi us 

of the copper container, shown schematical1y in figure4.4 is set at 

0.01425 m, and is 1.0 mm thick, corresponding to the actual container 

dimensi ons. However, these values were altered when compari son was 

made with other workers (88)( 89) in measuri ng hydri di ng rates. The 

aluminium vessel is assumed to fit tightly into the copper tube, and 

is assumed to be 0.5 mm thick. Thus, the following radii are 

·obtained: Rc = 0.01425 m; Rt = 0.01325 m; and Rh = 0.01275 m. An 

overall value for a (the thermal diffusivity) for the metal container 

is 1.045 x 10-4 m2/sec. Using this value in equation (12), and values 

of A obtained from the solution of equation (7), it can be seen 

(figure 4.5) that approximately one minute is required for the inner 

surface of the hydride container to come to thermal equilibrium with 

the surroundi ng f1 ui d. 

Due to the large difference in thermal conductivity between a 

metal hydride and the metal powder, the reaction front is a narrow 
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FIGURE 4.2 - Model of Hydride Container 
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FIGURE 4.4 - Schematic Diagram of Hydride Container 
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"band passing radially through the hydride bed, and for a given alloy 

the rate of heat transfer is dependent on the temperature difference 

between the external fluid and the metal alloy, or hydride, inside 

the bed. For hydriding, the incoming hydrogen reacts with the metal 

alloy, generating heat, until the temperature inside the bed reaches 

the equilibrium temperature correspondending to the charging pressure. 

In practice, this occurs in a matter of seconds, after which internal 

heat generation ceases. The hydriding reaction then proceeds radially 

inwards at a rate dependent on the difference between this internal 

hydride temperatue and the temperature of the external cooling fluid. 

For the purpose of the model, the time at which the hydriding reaction 

begins is assumed to be after the bed has reached thermal equilibrium, 

i.e. the initial heat generation is neglected. Hence there is no inter-

nal heat generation term in equations (1) and (2) 

For dehydriding, the ambient temperature of the hydride bed is 

cooler than the temperature of the surrounding fluid, although the rate 

of heat transfer will again depend on the difference in temperature 

between the internal temperature of the bed, and that of the external 

fluid. 

In both cases the reaction proceeds radially inwards from the 

outside of the bed to the centre. Due to the difference in thermal 

diffusivities between the hydride and the metal alloy, there is a 

large temperature change across the reaction zone, with effectively 

the coolant temperature on one size of the zone and the internal 

temperature of the bed on the other. Thus, for hydriding, the 
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reaction proceeds radially inwards as heat is rejected to the cooling 

water, through the hydride layer building up inside the tube. Hence 

the thermal diffusivity of the hydride powder fOmEd is important. In 

dehydriding, the reverse is true. In this case, heat is taken from 

the surrounding fluid, and is conducted through a growing layer of 

metal powder to the reaction front, and it is the thermal diffusivity 

of the metal powder which is important. The model developed uses the 

appropriate value of thermal diffusivity combining the value of the 

container with the appropriate value for that of the metal or hydride. 

Us ing these data for a and An' a temperature profi 1 e vs time 

was developed in accordance with equation (12). For dehydriding, 

this depended on the ambient temperature inside the hydride bed, and 

on the temperature of the heating fluid. For hydriding, the temp

erature profi le depended on the temperature corresponding to the 

equil ibri urn hydrogen pressure, and on the temperature of the cool ant 

water. These temperature profiles at various radii insi de the bed 

are shown for dehydriding in figure 4.5, and from these the rate of 

heat transfer was determined. The time taken to reach a given temp

erature at known radii gives the heat transfer rate in terms of area 

reacted per unit time. 

4.3 REACTION KINETICS 

The work of Nomura et al (49), discussed in Chapter two indicates 

the rate equation for hydriding is given by 
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dn = err k' (P - Peq)/t ... (13) 

where k' = 3.2 x 10-2 (kgf/cm2)-l, P is the pressure at time t, and 

Peq is the equilibrium pressure. The equilibrium pressure can be 

calculated from the Van't Hoff equation: 

Peq = exp(TCON/TABS + ENCON) ... (14) 

where TABS is the absolute temperature of the hydride bed, TCON is a 

constant depending on the enthalpy change of the hydriding reaction, 

and ENCON is a constant related to the entropy change. These are 

tabulated for various hydrides in table 4.1. This equilibrium pressure 

(in atmospheres), after conversion to k9/cm2 , can then be used in 

equation (13) to obtain a value for the rate of reaction, taking 

into account both the reaction kinetics and the rate of diffusion. 

By including rate information for diffusion and reaction kinetics 

with that of heat transfer, an overall rate of re.action can be obtained 

in terms of the cross-sectional area reacted per unit time. By knowing 

the length, and total number of hydrogen storage tubes in the contain

ment vessel, the total amount of hydrogen stored can be calculated, 

and hence the actual rate of hydrogen release can be predicted. 

Details of the model, and a listing of the program are included 

in appendi x (vi i) • 
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TABLE 4.1 - HYDRIDING REACTION CONSTANTS 

TCON (A) ENCON (C) 

, 

FeTi -3383 12.76 

Mg (6%Ni) -7736 14.71 

LaNi S -3712 12.96 
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CHAPTER 5 

RESULTS OF MATHEMATICAL MODEL OF HYDROGEN STORAGE SYSTEMS 
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CHAPTER 5 

5.1 INTRODUCTION 

In this chapter. the predicted hydriding and dehydriding rates 

for meta 1 hydri de beds are presented for 1 anthanum pentani cke 1 hydri de, 

and these are compared with the actual resu1 ts measured by other 

workers(88)(89). However. the model can also predict hydriding times 

using different hydrogen pressures and different tube dimensions. 

Similarly. results can be obtained for different alloys, the thermal 

properties of which are given in table 5.1. 

5.2 DEHYDRIDING - HYDROGEN RELEASE 

Fi gure 5.1 shows the predi cted rate of hydrogen re1 ease usi ng 

lanthanum pentanicke1 hydride, LaNi 5-Hx' For the purpose of comparison. 

the copper tube dimensions have been set at an inside diameter of 

2.7 cm, corresponding to the actual dimensions of the hydride bed. 

The temperature of the heating water was set at 500 C. corresponding 

to an equilibrium pressure above the hydride bed of 60 psi (0.41 MPa). 

and the ambient temperature of the bed set to 200C. The value of a 

(thermal diffusivity) used is a = 3.73 X 10-5 m2/sec, which is that 

of the LaNi 5 metal hydride, since for dehydriding heat is conducted 

radially inwards through a growing layer of metal powder to the 

reaction front. The appropriate constants in'the Van't Hoff equation 

(discussed in the previous chapter) are also included to determine· 

the rate of reaction. 
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:he atmosphere, and the other shows the flow rate of 100 1/min, based 

In the fact that the maximum discharge rate is a straight line function, 

;0 the flow at 100 1/min is simply a constant factor times the pred-

lcted maximum flow rate. However, without knowing the partial pressure 

If hydrogen in the bed with a restricted flow rate, it is not possible 

:0 calculate the rate of hydrogen release to correspond to a particular 
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atmosphere, and the other gives a restricted flow rate such as might 

be expected in practical applicatiClns. 

The hydrogen release rate of 100 l/min is computed from the 

maximum release rate (484 l/min), which in turn is detennined from 

the total hydrogen capacity Cif the bed. 

5.3 HYDRIDING - HYDROGEN ABSORPTION 

The results predi cted by the computer model for hydrogen absorp

tion are shown in figure 5.2. Again these are for lanthanum penta

nickel hydride, LaNi 5 - Hx ' but for the purpose of comparison, the 

copper tube dimensions have been set at an internal diameter of 2.0 cm. 

This corresponds to the tube used by Lynch(89) in the measurements 

with whi ch these predi cted results are compared. Several hydri di ng 

curves are presented, each corresponding to a particular hydrogen 

charging pressure, and hence to a particular equilibrium temperature. 

In all cases, the temperature of the cooling water is set to 2SoC. 

The model can also predict hydriding times using different 

hydrogen charging pressures and different tube dimensions •. Similarly, 

results can be obtained for different alloys ,'the thennalproperties 
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of which are given in table 5.1. One of the major problems found in 

this study of modelling hydriding is the lack of published data on 

thermal conductivities and thermal diffusivities of both the metal 

alloys and of the hydride powders. The information shown in table 5.1 

has been collected from a variety of sources as indicated, or calculated 

from other information where appropriate, and has not been published 

collectively. However, if reliable predictions are to be made of the 

heat transfer in metal hydrides for the purpose of determining rates 

of hydrogen release, accurate information concerning the thermal 

properties of the particular hydri des must first be made available. 

Using the values of thermal diffusivity given in table 5.1, the 

predi cted dehydri di ng rates of i ron-titani urn hydri de and 1 anthanum 

pentanickel hydride are compared in figure 5.3. In both cases, 

temperature differences and tube dimensions have been chosen to 

simulate those actually used in a real system. Hence there is a 

difference between these predicted values and those given in 

figure 5.1. As can be seen, the predicted hydrogen evolution rate 

using lanthanum nickel hydride is significantly faster than that 

using iron-titanium hydride. 



Thermal Data of Metal Alloys and Their Hydrides 

Mg* Mg*Hx FeTi FeTiHx LaNi5 

ks BTU/ (hr-ft-of) 99.0 0.8 30.8 0.919 37.8 

J/(m-s-oK) 171 1.38 53.3 1.59 65.4 

Pp lbm/ft 3 65.4 52.3 236.9 189.5 300.3 

kg/m3 1048 838.4 3794 3035 4810 

Cp BTU/(lb-oF) 0.242 0.319 0.115 0.152 0.087 

J/(kg_oK) 1013 1336 480 633 364 

a ft2/ hr 6.26 4.8 X 10-2 1. 13 3.19 x 10-2 1.45 

m2/sec 1.61 X 10-4 1.24 X 10 -6 2.92 X 10-5 8.23 X 10-7 3.73 x 10-5 . 

TABLE 5.1 - THERMAL PROPERTIES OF METAL HYDRIDES (continued p 89) 

* containing 6% nickel by weight 

LaNi5Hx 

0.735 

1.27 

240.2 

3848 

0.115 

481 

2.66 X 10-2 

6.86 X 10-7 

00 
00 



where ks is the thennal conductivity of the material at 200 C. 

Pp is the density of the powder (assuming 40% voids). For the 

hydride, an expansion factor of 20% is assumed .. 

Cp is the heat capaci ty of the powder. 

Cl is the thennal diffusivity, defined by Cl --t
- P"p 

refs: P D Goodell(90) 

D L Cummings and G J Powers(5l) 

Handbook of Chemistry and Physics(9l) 
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CHAPTER 6 

DISCUSSION OF MATHEMATICAL MODEL RESULTS 



CHAPTER 6 

The rate of heat transfer, which is proportional to hydrogen 

release, is approximately 0.5 x 10-6 m2/s (ie - 0.5 x 10-2 cm2/s) 

for dehydriding. However, the work of Nomura et al(49) indicates an 
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initial rate of reaction (involving both the instrinsic rate of reaction 

and the rate of hydrogen diffusion) of 21.3 cm2/s. Thus for practical 

storage systems, it is the rate of heat transfer whi ch is the rate

limiting factor, and the fraction reacted is plotted against time in 

figure 5.1. This gives a maximum rate of hydrogen release from the 

bed, assumi ng no res tri cti on above the hydri de - i e, the hydrogen is 

vented into the atmosphere, as well as a restricted flow rate such as 

might be expected in practical applications. 

In figure 5.1 the predicted rate of hydrogen release is compared 

with that measured by the Ergenics Division of MPD Technology(88). 

This indicates a slightly faster predicted rate of hydrogen release 

than that measured, which could be due to a number of factors. The 

most likely of these is marginally better heat transfer characteristics 

in the model ill us trated in fi gure 4.2. However, the hydrogen release 

rate of 100 litres per minute is computed from the maximum release 

rate (484 litres per minute), which in turn is determined from the 

total hydrogen capacity of the bed. If this capacity differs from 

the 2500 litres quoted, the predicted release rate will also differ. 

Similarly, any discrepancy in tube dimensions could also be a contrib

utory factor. 

The hydriding curve is compared in figure 5.2 with that of 

Lynch(89). The difference in shape of these curves with those 



measured is possibly due to differences in determining the fraction 

reacted; In both cases this is done by temperature measurements at 

given radii throughout the alloy. However, the model predicts the 

volume fraction reacted. It is not clear if this is the case with 

Lynch's data. The model does not take into account heat conduction 

by the hydrogen gas whi ch is re 1 a ti ve 1y ins i gnifi cant compared to 

that through the alloy. However, this may be one of the factors 

i nf1 uenci ng the shape of the hydri di ng curve. 

The model can also be used to predict hydriding times using 

different hydrogen pressures and different tube dimensi ons. Alter

nati ve 1y, it can be used to predi ct dehydri di ng times us i ng different 

temperatures for the surrounding heating fluid. Similarly results 

can be obtained for different alloys, the thermal properties of which 

are given in table 5.1. 

Figure 5.3 shows the maximum dehydriding time of both iron

titanium hydride and lanthanum nickel hydride. The rate of hydrogen 

evolution is significantly faster using lanthanum nickel. This is to 

be expected since the thermal diffusivity of lanthanum nickel is 

approximately 28% larger than that of iron-titanium, leading to an 

increase in the rate of heat transfer. 

For dual-fuel operation, the tube dimensions could be much 

larger (ie - tube diameters of up to 5.0 cm). This would result in 

a slower heat transfer rate, and a slower rate of hydrogen evolution. 

However, this would not be a problem as the hydrogen consumption rate 

is low for dual-fuel operation (approximately 7.0 x 10-5 kg/s). The 
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advantage of such tube dimensions would be greater hydride/container 

weight ratios resulting in lighter hydrogen storage units and with 

larger storage capacities. 

One of the major problems found in this study of modelling 

hydriding and dehydriding processes is the lack of published data on 

thermal conductivities and thermal diffusivi ties of both the metal 

alloys and of the hydride powders. Thus, any predictions of hydrogen 

absorption or release rates are limited to the alloys whose properties 

are listed in table 5.1. 
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CHAPTER 7 

EXPERIMENTAL DETAILS 



CHAPTER 7 

Two engines were used in this investigation. All basic results 

were obtained with a BL Cars 1275 cc "A series" engine. However, when 

a vehicle was converted to run on a dual-fuel mixture of hydrogen and 

petrol, a Ford Transit 2.0 litre a.H.C.engine, identical to that in 

the vehicle, was also used. The details presented in this chapter 

concern the BL Cars engine only. Relevant parameters of the Ford 

Transit engine are presented in Chapter ten. 

7.1 THE ENGINE 

A BL Cars 1.275 litre "A series" engine was used in this study. 
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This is a four cylinder spark ignition engine with a compression ratio 

of 8.9:1, details of which are given in table 7.1. No modifications 

were made to the combustion chamber to enable it to run in a dual-fuel 

mode. However, the compression ratio was increased to 11.7:1 for some 

of the results presented in the next chapter. This was achieved by 

replacing the pistons. The original pistons were dish-shaped (ie -

slightly concave), whereas the high-compres'sion pistons were flat, 

resulting in a smaller combustion volume. Details of combustion 

chamber dimensions are presented in table 7.2. 

The engine was mounted on a test bed and connected to a Heenan 

and Froude Dynamatic Dynamometer, which was used to load the engine 

and allow measurement of the power output. A photograph of the engine 

test rig is shown in figure 7.1. 
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TABLE 7.1 - DETAILS OF TEST ENGINE 

BL Marina 1275 cc Engine 

Type Spark Igni tion 

Number of Cylinders 4 In-l i ne 

Capaci ty 1275 cc 

Bore 70.61 11111 

Stroke Sl.2S 11111 

Compression Ratio S.9: 1 

Fi ri ng Order 1-3-4-2 

Ignition Timing SO BTDC 
(Stati c) 

Fuel System SU Carburettor 
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TABLE 7.2 - COMBUSTION CHAMBER DIMENSIONS 

Actual Bore 7.055 cm 
Di ameter 

Total Chamber 8.202 cm 
Length 

Clearance Length 0.0925 cm 
Above Piston 

Clearance Volume 3.62 cm3 

Gasket Vo1 ume 3.80 cm3 
per Cy1 i nder 

Head Vo1 ume 22.10 cm3 
per Cy1 i nder 

Total Cylinder 346.52 cm3 
Volume 

Total Combustion 29.52 cm3 
Volume (Compression) 

Compression Ratio 346.52/29.52 
(High Compression) 

= 11.7:1 

Dish Volume 10.34 cm3 
per Piston 

Compression Ratio 356.86/39.86 
(Standard Compression) 

= 8.9: 1 
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Figure 7.1 Test Engine 
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7.2 INSTRUMENTATION 

The main parameters measured during the work were fuel flow rates 

of both petrol and hydrogen, and engine load and power output. In 

addition, exhaust temperature and emissions, air flow rate, coolant 

flow rate and temperature, inlet manifold depression and ignition 

timing were also recorded. All the variables (except petrol flow 

rate and coolant flow rate) were continuously displayed and manually 

noted duri ng the tes ti ng. 

The air flow rate was measured using a viscous flowmeter in con

junction with a vertical manometer. An accurate determination of the 

air flow rate into the engine was required to calculate both the 

volumetri"c efficiency of the engine, and the equivalence ratio. 

Details of viscous flowmeter construction are given by Greene and 

Lucas(92). The meter had previously been calibrated against a stan

dard nozzle, the results giving a linear relationship between air 

flow and the pressure drop across the flowmeter. This relationship 

is given by 

v = CXllH 

where 
. 
V = volume flow rate (115) 

C = flowmeter constant 

llH = pressure differential (mm H20) 

The value of C for the flowmeter used was 0.460 llslmm H20. The 

engine results reduction program, discussed in appendix (V) converts 



the volume flow rate into the mass flow rate, after correcting for 

the ambient temperature and pressure. 

The petrol flow rate was measured using a 50 ml pipette and 

3 way valve arrangement in conjunction with automatic electronic 
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timing. This equipment is also discussed in detail by Green and 

Lucas(92). The time for consumption of 50 ml of petrol is recorded, 

and this is related to the mass flow rate by the following expression: 

where m = 

50 x Pf 
m = t x 106 kg/s 

mass flow rate of petrol (kg/s) 

density of petrol (740 kg/m3) 

time for consumption of 50 ml petrol (seconds) 

The hydrogen flow rate was measured using a choked sonic nozzle, 

details of which are given in appendix (i). The mass flow rate is 

given by: 

m = k.fQ.. 
vIo 

where m = mass fl ow ra te of hydrogen (kg/s) 

k = constant, dependent on which nozzle is used 

Po = absolute pressure (p.s.L) 

To = absolute temperature (K) 



102 

The engine speed was measured using a magnetic pick-up from a 

50-tooth wheel attached to the dynamometer shaft. The signal obtained 

was converted to a d.c.voltage, which was then fed to an analogue 

meter. Calibration checks indicated the speed (in rpm) was correct 

to within 0.5%. 

The engine load was indicated by a balance attached to the load 

arm on the Heenan and Froude Dynamometer. This dynamometer is of the 

eddy-current type, which is known for its accuracy of torque measure

ment. The principle of operation is discussed in detail by Greene 

and Lucas(92). One of the major advantages ,of this type of dyna

mometer is that engine speed does not change with varying throttle 

position, thus facilitating constant speed measurements. The load 

reading can be related directly to torque (and hence brake power) by 

the followship relationship: 

Torque = W x 17.80 Nm 

where W = indicated load (lbf). 

The ignition timing was manually adjusted to give the minimum 

advance requi red for bes t torque (M. B. T.) by rotati ng the body of the 

distributor. The centrifugal advance weights were locked into a fixed 

position at all times, and the vacuum advance mechanism was disconnected. 

A timing light illuminated a mark engraved on the pulley attached to 

the crankshaft. This could then be aligned with marks fixed to the 

engine block, each mark corresponding to five degrees ignition advance. 

The timing light was disconnected after each adjustment to avoid elect-

rical interference to other instruments. 
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The exhaust emissions were analysed to determine the concentrations 

of carbon monoxide, carbon dioxide, nitrogen oxides (as NO) and unburnt 

hydrocarbons (as hexane) in the exhaust using four non-dispersive infra

red gas analysers manufactured by The Analytical Development Company 

Ltd. Details of these instruments are given in appendix (ii). The 

exhaust sample, taken continuously from a tapping approximately 16 cm 

downstream from the, exhaust valves, was cooled, dried and filtered (to 

remove particu1ates) before being ana1yzed. All the ana1yzers used 

measure exhaust emissions as percentages by volume. To obtain an out

put in more useful units (g/BHP-Hr) the readings were converted using 

the exhaust analysis reduction program discussed in appendix (vi). 

The exhaust temperature and coolant temperature were measured 

using Chrome1/A1ume1 thermocouples in conjunction with Comark Type 

1601 electronic thermometers. The exhaust thermocouple was again 

installed approximately 16 cm downstream from the exhaust valves, 

and the coolant thermocouple was installed in the coolant pipe approx

imately 14 cm downstream from the engine. 

The coolant flow rate was measured by directing the water flow 

from the engine into a bucket for sixty seconds, and then weighing 

the contents. The water supply in this case was taken directly from 

the mains with no recirculation. The thermostat had previously been 

removed to ensure steady state conditi ons. 

The depression in the inlet manifold was measured using a mercury 

manometer. The main purpose of these measurements was to accurately 

indicate throttle opening at any given speed. 



7.3 MODIFICATIONS TO INLET TRACT 

Changes were made to the inlet system to accommodate various 

petrol, hydrogen, and air flow rates. Initially, the flow rate of 

petrol was controlled by a vacuum pump attached to the float chamber 

of the carburettor. By regulating the float chamber pressure, the 

flow of petrol could be maintained at any particular value. However, 

difficulties were encountered in controlling very small petrol flow 

rates, resulting in engine surge. This problem was overcome by the 

use of a high pressure pump and needle valve, shown in figure 7.2. 
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In this case, petrol flow could be accurately controlled by the use of 

the needle valve located upstream from the carburettor jet. Another 

modification to the carburettor was a tapping into the top of the 

piston, so that it could be held fully up during dual-fuel operation. 

The main cause of the increase in efficiency when the engine uses 

hydrogen and petrol is that there is no throttling of the air. 

However, a ~Ii de-open throttle does not necessarily ensure that the 

carburettor piston is fully open, especially at low engine speeds, 

hence the air-flow could have been restricted. 

The hydrogen was fed into the air inlet through a tapping upstream 

of the carburettor, as illustrated infigure 7.1. The hydrogen was 

admitted as far upstream as possible to ensure good mixing of the 

hydrogen/air mixture before entering the combustion chamber. 
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Figure 7.2 Petrol Pump System 
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CHAPTER 8 

ENGINE TEST-BED RESULTS 



CHAPTER 8 

8.1 INTRODUCTION 

The mai n objecti ve of the engi ne tes t-bed i nves ti gati on was to 

compare the performance of an engine running on a dual-fuel mixture 

of hydrogen and petrol at wide open throttle with that of the engine 

using petrol only. In order to do this, several parameters were 

measured, as discussed in the previous chapter. Both engines were 

operated on dual-fuel mixtures, but the results presented are for 

the BL Cars 1275 cc "A series" engine unless otherwise indicated. 
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The reduction of the actual engine data was achieved using the program 

listed in appendix (v). The basic nerformance curves are shown for 

this engine in figures 8.1-3. 

The system investigated was that of an engine, having a wide open 

throttle, running on hydrogen alone at idle, with the petrol fraction 

of the fuel increasing from zero with load. As hydrogen has such wide 

flammability limits, and a high flame speed, it was possible to run 

the engine using a wide~open throttle at almost all operating condi tions, 

with the exception of low loads. This was due to the lean extinction 

limit of the hydrogen-petrol mixture having been reached. Wide open 

throttle operation could be achieved at low loads by increasing the 

flow rate of hydrogen. Thus the engine efficiency became comparable 

to that of a diesel engine, as will be shown. 

Since the flame speed of hydrogen is much greater than 

petrol (291 cm/sec for hydrogen, 38 cm/sec for petrol (84)r, 

that of 

the dua1-

fuel mixture burns significantly faster than petrol alone. This is 

I-:-N-;;-~etail~ of th~ me~~~r~ment are given in ref. 84 but it is assumed 
these are laminar flame speeds in a tube at ambient temperature and 
pressure. 



indicated by the smaller ignition advance required for best torque, 

as shown in figure 8.4. Thus the combustion process approaches the 

constant volume process of the Otto cycle. However, the flame 

velocity decreases significantly as the mixture ratio decreases 

from the stoichiometric. 

8.2 TORQUE CONSUMPTION LOOPS 
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To investigate the specific fuel consumption throughout the load 

range, the engine was initially run on petrol only to provide a set 

of base figures. The engine was taken throughout its load range, 

using the throttle and petrol only as its fuel, at a number of 

fixed engine speeds. At each throttle setting, the petrol flow 

was adjusted to give a mixture slightly weaker than that required 

for maximum torque; a mixture strength corresponding approximately 

to the most economical mixture strength. With dual-fuel operation, 

the hydrogen flow was set at 0.0695 g/sec to maintain the engine 

at idle (850 rpm, no load) with a fully open throttle. The petrol 

flow rate was then altered to give the maximum torque at the set 

engine speed. Then, with the hydrogen flow rate maintained at 

its constant value, the petrol flow rate was progressively reduced 

to take the engine throughout its load range. The specific fuel 

consumption is compared at different engine speeds in figures 

8.5-9. In all comparisions of fuel consumption, the petrol energy 

equivalent to the hydrogen has been used. This is defined as 

PH2 = m H2 x 2.746 

where 2.746 is the ratio of the mass heating values, and PH2 is 

the energy equivalent of the mass flow rate of hydrogen mH2 . At all 
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times ignition timing was set to the minimum advance required for best 

torque (M.B.T.). The brake thermal efficiencies at the given engine 

speeds are also compared in figures 8.10-14. 

Figures 8.15 and 8.16 are curves of energy balance against load 

for petrol and for the dual-fuel mixture respectively. Figure 8.17 

shows the effect of changing the ratio of specific heats on engine 

efficiency. Details of the calculations used in determining these 

parameters are given in appendix(iii). 

The effect of a much greater flow rate of hydrogen was also 

investigated. In this instance, the flow of hydrogen was increased 

to such an extent that a given engine speed was maintained with no 

load using hydrogen alone at a wide open throttle setting. The flow 

rate of petrol was then increased to take the engine throughout its 

load range. These results are shown in Fi gure 8.18. 

8.3 EXHAUST EMISSIONS 

The exhaust emissions were monitored by non-dispersive infra-red 

instruments, discussedin A~ndix (ii). These were measured in conjunction 

with the torque consumption curves, initially using petrol only, and 

then with a hydrogen petrol mixture at wide open throttle. The instru

ments used gave the emission level of carbon dioxide, carbon monoxide, 

hydrocarbons (as hexane) and nitrogen oxides (as NO), all as concen

trations. To obtain meaningful information, these were then converted 

to grams per brake horsepower hour for comparison, using the method 



discussed in appendix (vi). A listing of the conversion program is 

also given. 

The emissions of carbon monoxide at engine speeds of 1500 rpm 

and 3000 rpm are plotted in figures 8.19 and 8.20 respectively. 

Similarly, the emissions of hexane at engine speeds of 1500 rpm and 

3000 rpm are plotted in figures 8.21 and 8.22. The emissions of 
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nitric oxide, again at engine speeds of 1500 rpm and 3000 rpm are 

plotted against torque and equivalence ratio in figures 8 .. 23 and 8.24. 

8.4 DIRECT INJECTION INTO CYLINDER 

In order to reduce the flow of hydrogen still further, a system 

was des i gned whereby the hydrogen cou1 d be injected di rect1.v into the 

cylinder through the spark plug, as illustrated in figure 8.25. Since 

the spark plug is recessed slightly, a hydrogen rich pocket will exist 

in the vicinity of the electrode. The firing of this mixture should 

ignite the weak petrol-air charge in the remainder of the cylinder. 

When th~ system of injection was operated, combustion was audibly 

very rough, and this was attributed to poor mixing. Other workers have 

also noted i ncomp 1 ete fuel-ai r charge mi xi ng in the cy1 i nder resulti ng 

in incomplete combustion when direct injection techniques were used(72). 

They also encountered great difficulty in devising an injector that 

could deliver the required amount of hydrogen in the time available 

at speeds above 3000 rpm using a low (30 psi) hydrogen pressure. 

However, if direct cylinder injection through the spark plug was used 

for dual-fuel operation, high hydrogen flow rates would not be required, 

and such a system may well prove viable. 
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. Figure 8.2 B.M.E.P. VS. Engine 
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Figure 8.7 
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Figure 8.21 
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Figure 8.22 
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CHAPTER 9 

DISCUSSION OF ENGINE TEST-BED RESULTS 
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CHAPTER 9 

The major result ill us trated by thi s i nves ti gati on is the i n

crease in engine efficiency at part-load when dual-fuel mixtures are 

used. This is shown by the decrease in specific fuel consumption when 

hydrogen/petrol mixtures are used (figures 8.5-9), or conversely by 

the increase in brake thermal efficiency shown in figures 8.10-14. 

Increased eng; ne effi ciency is due to the use of much 1 eane r 

mixtures, as well as a higher flame speed for the dual-fuel mixture. 

Under normal petrol operation with the carburettor, the mixture 

strength is very close to stoichiometric, resulting in maximum com-

bustion temperatures throughout the load range. Thus heat loss to 

coo 1 ant wi 11 be subs tanti ally the same at low loads as at hi gh loads, 

resulting in a significantly greater fraction of the fuel energy being 

lost to coolant at low loads. However, with dual-fuel operation at 

wide open throttle, the mixture strength is much leaner at low loads 

resulting in lower combustion temperatures. Hence the heat loss to 

coolant is lower and the thermal efficiency higher for hydrogen

petrol mixtures compared to carburetted petrol operation. The lower 

combustion temperatures would also result in a lower energy loss to i 

--

exhaust,indicated by a lower exhaust temperature, but for an increase 

in air flow rate. These are indicated in the energy balance curves 

shown in figures 8.15 and 8.16. 

It has also been indicated(93) that lean mixture operation will 

result in an increase in efficiency due to a change in the ratio of 

specific heat. The reduced cycle temperatures lead to much higher 

values of y, the ratio of specific heats. 



The increase in air/fuel ratio due to lean mixture operation 

also results in higher values for the ratio of specific heats. (94) 

Since the air standard efficiency for the Otto cycle is defined by 

Efficiency = 1 - 1 y-l ' where rv is the compression ratio, 
rv 

an increase in y leads to an increase in efficiency. Figure 8.17 

indicates the increase in efficiency at part load resulting from the 

change in the ratio of specific heats. The effect of the increase 
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in air/fuel ratio, and the lower cycle temperature are both indicated. 

The maximum power output of the engine is slightly lower (1-2%) 

when running on dual-fuel mixtures, due to the displacement of some 

of "the incoming air by hydrogen. At stoichiometric mixtures, the 

petrol vapour occupies approximately two percent of the chamber 

volume, whereas hydrogen occupies nearly thirty percent of the 

volume. 

As can be seen in figures 8.5-9, there is a marked increase in 

specific fuel consumption at equivalence ratios less than ~ = 0.5 

corresponding to low load operation. An engine will run satisfact

orily on pure hydrogen at equivalence ratios as low as ~ = 0.3, but 

as the petrol fraction is increased, so the lean extinction limit 

also increases. Two methods were used to operate the engine at low 

loads. The first was to increase the hydrogen flow rate slightly to 

0.089 g/sec, resulting in a lower lean extinction limit. Thus the 

specific fuel consumption is less at low loads than when using a 

smaller hydrogen flow rate, as illustrated in figure 8.6. However, 
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the maximum torque at any given speed is reduced still further, again 

due to displacement of the intake air by the increased flow of hydrogen. 

The second method of operating at low loads was to slightly close the 

throttle. Again this resulted in a reduction in maximum power output, 

but the improved combustion at low loads resulted in an improvement 

in specific fuel consumption compared to wide open throttle operation. 

In practice, better specific fuel consumption is achieved with a 

partially closed throttle at low engine speeds (corresponding to low 

road load), than with a wide open throttle, as illustrated in figure 

8.3. It is to be emphasised that the throttle opening at a given load 

setting is much greater when running on dual-fuel mixtures than with 

standard carburettor operation using petrol only. 

The sUbstantial improvement in thermal efficiency can be seen in 

figures 8.10-14, and reductions in specific fuel consumption of up to 

thirty percent are illustrated in figures 8.5-9. As all these 

results are compa ri ng equi valent fuel energi es, any compari son of 

specific fuel consumption on a mass basis will indicate an even 

.greater fuel saving. 

Figure 8.18 shows the effect of greatly increasing the hydrogen 

flow rate. Operation throughout the load range using a dual-fuel 

mixture was possible at a wide open throttle setting. The torque 

consumption loops at various throttle angles, using petrol only, are 

also shown for comparison. These were obtained by altering the petrol 

flow rate at each throttle setting, going from a very rich mixture 

to one so weak the engine was on the verge of stalling. 



Another means of improving the performance of the engine by 

utilizing hydrogen's combustion properties was to increase the com

pression ratio from the standard 8.9:1 up to 11.7:1, using different pistons. 

As the flame speed of hydrogen is greater than that of petrol, this 

could be done without encountering the problem of knock. However, 

for hydrogen petrol mi xtures, occas i ona 1 "pi nki ng" di d occur, 

depending on ignition timing. The improvements in specific fuel 

consumption and thermal efficiency when the higher compression ratio 

was used are shown in figures 8.6 & 8.11 respectively. Using the 

higher compression ratio, one had the additional advantage of no 

decrease in maximum power output at full load. The use of a higher 

compression ratio also resulted in increasing the air standard 

efficiency of the engine. The combination of these factors resulted 

in brake thermal efficiencies of up to thi rty-one percent, compared 

with approximately twenty-seven percent when a lower compression 

ratio was used ~Ii th petrol alone. 

Another significant advantage observed when dual-fuel mixtures 

were used is that of reduced noxious exhaust emissions during part

load operation. Other workers (95)(96) have also shown mixtures of 

hydrogen and petrol produce significantly less noxious gases. 

However, these mixtures have been those produced from the parent 

fuel on board, or the hydrogen petrol mixture has been throttled to 

take the engine through its load range. Consequently, the exhaust 

emissions were monitored in this study to determine if wide open 

throttle operation also resulted in a decrease in emissions. 
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Figures 8.19 & 8.20 show the carbon monoxide emissions of petrol 

compared with those of the dual-fuel mixture at engine speeds of 

1500 rpm and 3000 rpm. In both cases the level of output is con

siderably less,when dual-fuel mixtures are used, the main reason 
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being the mi xture strength is much weaker since a wi de open throttl e 

is being used at all times. This results in almost complete oxidation 

of any carbon monoxide produced during combustion by the large excess 

of oxygen presen t. 

The hydrocarbon output, measured as hexane, is plotted in figures 

8.21 & 8.22. There is no significant difference in hexane level between 

dual-fuel and petrol operation throughout rnost of the load range. 

However, at low loads the hydrocarbon level is much greater when 

hydrogen petrol mixtures are used, due to the lean extinction limit 

of the mixture having been approached, resulting in some engine 

misfire occurring. It is also possible that as the combustion temp

eratures are lower, a greater quench layer will exist inside the 

chamber, thus contributing to increased hydrocarbon emissions. As 

the exhaust temperature is lower with dual-fuel operation, there will 

be less after-burning of hydrocarbons in the exhaust. This is un

,doubtedly also a contributing factor to the hydrocarbon increase. 

Figure 8.23 & 8.24 show the nitric oxide emissions, again at 

engi ne speeds of 1500 rpm and 3000 rpm. In both cases the peak of 

the ni trogen oxi de curve occurs s 1 i gh tly on the 1 ean si de of the 

stoichiometric mixture, corresponding to the maximum combustion 

temperature. However, the combustion temperature of the dual-fuel 

mi xture is much cooler away from thi s peak than the correspondi ng 

load setting with throttled operation using petrol. This results 

in much lower values of nitric oxide at part-load operation with 

hydrogen and petrol. The slight increase in peak NO x emissions 



when dual-fuel mixtures are used is due to the increase in maximum 

cycle temperature, possibly enhanced by a faster combustion rate. 
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The emission levels of hydrogen petrol mixtures were also 

measured with the engine at a compression ratio of 11.7:1. These 

results were almost identical to those at the lower compression ratio, 

wi th the excepti on of a reduced ni trogen oxi de peak. The reason for 

this is a lower combusti.on temperature caused by a smaller ignition 

advance. If the ignition timing was set to the minimum advance 

required for best torque, slight pinking was observed, so a some-

what retarded setting was used, resulting in reduced cycle temper

atures. 
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CHAPTER 10 

MODIFICATIONS TO VEHICLE TO RUN IN DUAL-FUEL MODE 



CHAPTER 10 

The test-vehicle, illustrated in the frontespiece, was designed 

to be operated either in the dual-fuel hydrogen-petrol mode, or on 

petrol only using the carburettor as normal. As a consequence, many 

design changes were made which would not be necessary on a vehicle 

operating solely on a dual-fuel basis. Only those changes required 

for dual-fuel operation will be discussed here. 

10.1 HYDROGEN STORAGE SYSTEMS 
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For all initial work, hydrogen was stored as a compressed gas in 

a cylinder in the rear of the vehicle. The cylinder contained 7221 

litres or 627 grams of hydrogen, at a pressure of 17 MPa (2500 psi). 

For reasons of safety, and for rapid replacement, the cylinder was 

secured in a specially manufactured rack, securely bolted to the floor 

of the vehicle. The hydrogen was fed through a standard pressure 

regulator, capable of withstanding pressures up to 27.2 MPa (4000 psi) 

and then through a flame trap and a cut-off solenoid. The flame-

trap isolates the cylinder shoul d a sudden pressure-pulse be detected. 

This would be the case if a hydrogen flame was travelling in the line. 

The cut-off solenoid operates in a normally closed position, and is 

only opened if a pulse is received from the engine. Details of the 

circuit are given in figure 10.1. Thus, the solenoid will only allow 

hydrogen to flow if the engine is running. In practice, at speeds 

above 80 rpm hydrogen begins to flow, which allows the starter motor 

to draw hydrogen th rough to the engi ne. 
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A similar safety system is intended for use with hydrogen stored 

in mischmeta1-nicke1 hydride beds. An example of the hydride beds 
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used is illustrated infigure 10.2. A heat exchange unit was manufact

ured to utilize cooling water from the engine to beat the hydride uptoa 

temperature of approximately 50oC. This corresponds to a dissocation 

pressure of 0.46 MPa (66 psi) whi ch can then be reduced to a conven

ient working pressure using a regulator. Figure 10.3 shows the 

hydride bed installed in the vehicle. 

The hydrogen was fed into the engine at a constant rate through 

a brass adaptor fitted into the intake tract immediately downstream 

from the carburettor. The adaptor had six inlet holes drilled cir

cumferentially to allow a uniform stream of hydrogen from all directions 

into the air tract. 

The hydrogen pressure in the bed could be controlled by a thermo

stat valve in the coolant line. Thus the bed could be regulated at 

a particular temperature, corresponding to a particular dehydriding 

pressure for the hydride. 

10.2 DUAL-FUEL OPERATION 

Due to the difficulties involved with controlling petrol flow 

rates using a needle valve on a moving vehicle, an electronically 

controlled injector was used for this purpose. As there is a much 

greater air-flow rate at all engine speeds, a normal carburettor was 

not satisfactory for controlling petrol consumption, especially so as 

the petrol flow rate is related to engine load as well as engine 

speed when the vehicle is operating in a dual-fuel mode. Similarly, 



ST·90 

FIGURE 10.2 

ST-90 Hydrogen Storage Unit 

Ref: Ergen;cs (88) 

147 



. '.;.; 

-.' - # 

Figure 10.3 Installed Hydride Bed 

, .' 

- . - ,=---------..--
--- -",-~--'-'-~ .... :-;:~-~ 

; .. ,- . 

-- ~-., ,--. , 

-~~-.. -- -



149 

a needle valve controlled by accelerator pedal position would deliver 

too much petrol under high load operation' at low engine speeds. 

The electronic control system used was designed to give an in

creasing petrol flow rate with increasing engine speed and with 

increasing load, but the maximum amount of petrol at any given speed 

was governed to allow a maximum mixture strength of 0 = 1.2. The 

amount of petrol admitted at any engine speed had previously been 

measured at wide-open throttle conditions throughout the speed range 

with petrol only operation using an identical engine on a test-bed. 

The control unit for the injector was then designed to allow no more 

than the maximum petrol flow rate at each engine speed. This was 

achieved by using an electronic pulse from the engine to open the 

injector. Thus, it opened twice as frequently at 4000 rpm than at 

2000 rpm. The injector opening time was controlled by a variable 

potentiometer. This in turn was operated by the accelerator pedal. 

Hence at any given engine speed the petrol flow rate could be varied 

from zero to a pre-set maximum. This maximum could also be varied 

by another potentiometer, fixed to the vehicle's instrument panel, 

should the mixture be too rich or too weak. A circuit diagram for 

the control system is given in figure 10.4. 

10.2.1 Circuit Description of Injector Control Unit 

The pulse generation and control section of the circuit produces 

a.negative going pulse on arrival of each positive going pulse from 

the contact breaker points via the limiting circuit. The duration 

of this negative pulse (and hence injector opening time) is controlled 
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by "accelarator" and "trim" controls via Ql' a field emitting 

transistor, shown in figure 10.4. 

The pulse enable circuit incorporates a micro-switch attached 

to the accelerator potentiometer, to ensure the injector does not 

deliver any petrol (by keeping the injector closed) when the accel

erator petrol is not depressed. This circuit also has components 

to supress spurious triggering during operation of the switch, and 

to stop interference pick-up on the open switch contact. 
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The function of the output isolation part of the circuit is to 

enable the pulse from the pulse generator to be passed to the injector 

drive circuit (which is attached directly to the engine battery 

supply) without picking up interference. 

The drive box circuit takes the negative going pulse from the 

output isolation circuit and converts it to a positive going pulse 

app'ea ri ng a t the injector. The current requi rements of the injector 

are high (approximately 1.5 amps on opening) and a Darlington pair 

device is employed as Q2' 

The diodes across the injector and Q2 are to prevent the appear

ance of reverse voltages when the injector closes. A ballast resistor 

is also incorporated in the circuit to limit the surge current when the 

injector is turned on. 

The voltage regulator part of the circuit provides a steady 

voltage supply of approximately 6.8 volts regardless of the engine 

battery condition, provided that this does not fall below 9.0 volts. 



This circuit also inhibits the transmission of interference voltages, 

from other devi ces, pi cked up on the engine supply rails to the 

remainder of the circui ts. The "power on" LED indicates that the 

regul ated supply is present. 

The voltage and current limiting section of the circuit is 

required since the voltages occurring at the secondary of the 
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engine coil are far in excess of those that could be supplied direct

ly to the controlling circuitry. The components in this section of 

the circuit are arranged to limit the signals appearing at the trigger 

input of the pulse controller, and also to inhibit spurious trigger

ing from interference. 

10.2.2 Petrol Supply 

Si nce much of the opera ti ng regi me of the vehi cl e is with a 

wide-open throttle, a vacuum pump was requi red to operate the servo

assist mechanism of the brake-boost due to a lack of inlet manifold 

depression. The installation of an engine-driven vacuum pump necess

itated the removal of the petrol pump. This was replaced with a high 

pressure electric pump, similar to that mentioned in chapter seven. 

A high pressure petrol pump (up to 40 psi) was also required for the 

petrol injector to provide an adequate vapour spray. A pressure 

regulator and a petrol filter were also incorporated in series with 

the petrol pump. 

At low loads, the hydrogen/petrol flow was too low to maintain 

good combustion using a wide-open throttle. Thus a system was devised 

whereby the throttle opened progressi vely at load loads, and was fully 



open at approximately one quarter full load. This concept is 

discussed in detail in the previous chapter. 

The petrol injector was mounted in the base of the inlet mani

fold so petrol was sprayed up into the inlet tract in a direction 

opposite to that of air flow. It was then found that this mode of 

operation was not as efficient as the original carburettor, as can 

be seen from figure 10.5. This shows the specific fuel consumption 

throughout the load range of the engine at a constant speed of 

2500 rpm. One curve is with petrol only using the conventional 

carburettor, and the other is that obtained with the injector in 

the manifold. As can be seen, this is approximately thirty percent 

less efficient. 

The reason for this decrease in efficiency is beneved to be due 

to the strong spray of petrol from the injector condensing on the 

walls of the air intake tract, thus leading to poor petrol distribu

tion between cylinders, and a variation in petrol flow from cycle 

to cycle. Suggested improvements are given in Chapter twelve. 

10.3 VEHICLE OPERATION 

Due to lack of access to a chassis dynamometer, 

preliminary measurements of fuel consumption were carried 

out at 30 + 2 indicated miles per hour in both directions 

along an apparently flat stretch of road. The total 

distance of the test was 3.13 miles. Before modification 
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(i.e. when the vehicle was operated using petrol only 

through the carburettor, although fitted with the hydrogen 

storage system), the engine used 0.284 kg petrol during the 

test.When operating in the dual-fuel mode, the engine 

consumed 0.288 kg petrol, plus 0.0263 kg hydrogen. This 

correspondends to an increase of 26.7~ in total fuel 

energy used. This disappointing result is attributed to 

the characteristics of the single injector petrol injection 

system used. 

Long distance tests were performed to estimate the 

total range of the hydride bed. For satisfactorily smooth 

operation at idle, the hydrogen flow rate was set to 0.07g/s. 

This flow rate also ensured smooth operation during urban 

driving (at speeds ~ 30 m.p.h.), whereas a reduced flow rate, 

although enabling the engine to idle, caused the engine to 

falter, and in extreme cases, stall. Thus, when the flow of 

hydrogen from the hydride pack fell below 0.07g/s, the 

storage system was deemed to be empty. The total time of 

operation using the three hydride units shown in figure 

10.3 was approximately 2 3/4 hours, indicating a total 

hydrogen storage capacity of approximately 0.7 kg. 

It was noted during operation that the equilibrium 

dissociation pressure of the hydride rose to 240 p.s.i. 

gauge, indicating a dehydriding temperature of 72°C. It 

is not appropriate to use the model de~eloped in chapter 4 

to predict the maximum flow rate from the vehicle's hydride 

bed because its properties are different from those assumed 

in the model. However, use of the model predicts a maximum 
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rate of hydrogen evolution of some ten times that required 

\: by the vehicle, and the higher reaction temperature on the 
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vehicle indicates the actual on-board hydrogen generation 

rate will be greater still - i.e. more than adequate for 

dual-fuel operation. 

The most significant drawback with regard to "drive-

ability" of the vehicle was a reduction in the amount of 

engine braking. After the throttle pedal was released, 

a delay of 2-3 seconds was observed before the engine 

speed dropped. However, apart from this effect, the 

vehicle performed in a similar manner when operated in a 

dual-fuel mode as it had when operated on petrol as the 

sole fuel. 

Thus, although the vehicle used significantly more fuel 

when running on a hydrogen/petrol mixture, it has been 

shown that a vehicle can be operated using such a dual-fuel 

mixture, with the hydrogen stored in a metal hydride. It is 

hoped that in the near future, the use of a multi-injector 

fuel injection system will enable significant savings in total 

fuel consumed to be made. 
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CHAPTER 11 

CONCLUSIONS 

(1) Saline hydrides are not suitable as hydrogen storage media 

for automotive applications due to the expense and difficulties 

involved in reprocessing. However, for certain applications 

(eg - military) they would provide a very compact storage system 

for generating relatively small amounts « twenty litres) of 

hydrogen. 

(2) The best practical method of on-board storage of hydrogen 

(3 ) 

is by using metal hydrides which undergo thenna1 decomposition. 

These offer the greatest vo1 umetri c density of hydrogen stored, 

and are safer than other storage systems. 

The mathematical model developed indicates de-

hydriding (ie - hydrogen desorption) rates for metal hydrides, 

and can be used to compare desorption rates of different hydrides. 

It can also be used to predict the effect of differing hydride 

container dimensions, and to give an indication of the rate of 

hydrogen absorption (ie - hydriding times). However, the heat 

requi rements predi cted for vari ous hydri des wi 11 only be accurate 

if the waste heat recoverable from the engine exceeds the heat of 

reaction of the hydride. For dual-fuel operation, where hydrogen 

consumption rates are lower than those for hydrogen only 

operation. cylinder dimensions could be larger without incurring 

any penalty to the rate of hydrogen production. These would 



result in greater hydride/container weight ratios thus giving 

more compact, 1 i ghter hydrogen storage units. Of the low 

temperature hydrides (those which have hydrogen desorption 

pressures of one atmosphere at temperatures below 2SoC) for 

which thermal conduction data are available, the best, regarding 

hydrogen reaction kinetics, are those of the RENiS - H type, 

where RE is lanthanum or a combination of rare earth metals. 

These hydrides are also less susceptible to poisoning by im

purities in the hydrogen gas. 

(4) Dual-fuel operation using both hydrogen and petrol offers 

a means of avoiding the problem of flash-back into the intake 

manifold, and reducing the problem of on-board storage of 

hydrogen. Dual-fuel operation also results in greater part

load thermal efficiencies due to wide-open throttle operation 

being possible throughout the load range, and a reduction in 

carbon monoxide and nitric oxide exhaust emissions at part-load. 

(S) A vehicle can be operated satisfactorily in the dual-fuel 

mode, with suitable modifications to the intake system, using a 

me ta 1 hydri de as the hydrogen storage medi urn. 

lS7 
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CHAPTER 12 

FUTURE WORK 

(1) Hydrogen absorption and desorption rates should be measured 

for a variety of selected hydrides, with particular regard to 

measuring thermal conduction properties. 

(2) Hydrogen injection directly into the cylinder should be 

investigated further to determine if satisfactory operation of 

the injector. system is possible over a long term. 

(3) A detailed study of the combustion process using hydrogen/ 

petrol mixtures should be carried out. This would involve the 

measurement of flame speeds and maximum cycle pressures and 

temperatures under varying operating condi tions. 

(4) A microprocessor controlled ignition system should be dev-

eloped to ensure optimum spark timing for varying hydrogen/petrol 

mixtures at differing loads and engine speeds. 

(5) The petrol injection control system should be optimized to 

give better fuel consumption. This would involve measuring the 

air flow, engine speed, and driver requirements to ensure the 

ideal petrol flow rate. The actual injector system should also 

be modifi ed to have four injectors, one for each cyl i nder, thus 

avoiding the problem of petrol condensation in the intake tract, 

and uneven distribution of fuel to different cylinders. 
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APPENDIX (i) 

THE MEASUREMENT OF HYDROGEN FLOW RATES USING A CHOKED SONIC NOZZLE 

To accurately measure the mass flow rate of hydrogen, a series of 

choked sonic nozzles was used. These had previously been manufactured 

and calib'rated by L E Morris(97). As any given nozzle is only effect-

i ve for a gi ven ups tream pressure range, three soni c nozzl es were 

constructed to cover the range required. The throat diameters used 

are 0.005"; 0.020"; and 0.025". The entry profile to the throats is 

shown schematically in figure 1, and is as near as possible to a quarter 

circle. The parallel section of the throats was kept to less than the 

throat diameter, ie 

upstream 
pressure 

P1 

direction 

of gas flow 

quarter--.. 
cjrcle 

x< y 

. . -- -.-
• • 
~x~ y 

----~:- __ -'- -

downstream 
pressure 

P2 

Figure A(i}.1 Schematic diagram of 

nozzle throat 
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Principle of Operation 

When the ratio of the absolute downstream pressure. P2' to the 

absolute upstream pressure. Plo is reduced below a certain critical 

value (Pc = 0.528 for hydrogen). the velocity of the gas flow through 

the nozzle is equal to the velocity of sound under the conditions 

prevail i ng at the throat. 

Further reduction of the downstream pressure. wi th the upstream 

pressure fi xed. causes no increase in the flow through the nozzle 

because the pressure at the throat is no longer dependent on the down

stream pressure. but is equal to a constant fraction of the upstream 

pressure. The nozzle is then said to be choked. 

Thus when P2/Pl < Pc (the critical pressure ratio). the mass flow 

rate of the gas is a function of the upstream temperature and pressure 

only(98) (this is actually true.only for well rounded nozzles). 

Po 
ie - m = K /TO 

A photograph of the choked soni c nozzl e meter is shown in fi gure 2. 

The upstream hydrogen pressure is measured i",psi using a USG test gauge. 

and the upstream temperature is measured using a Comark 3501 digital 

thermometer. As long as the critical pressure ratio is exceeded. the 

following constants app1y:-

Sonic nozzle no 1 = 1.175 x 10-5 (hole size 0.020" ) 

Sonic nozzle no 2 = 2.186 x 10-5 (hole size 0.025") 

Sonic nozzle no 3 = 0.402 x 10-5 (hole size 0.005"). 
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Figure 2 Choked Sonic Nozzle Meter 
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These values for the constants give a mass flow of hydrogen in kg/s 

when the absolute upstream pressure (Po = Pgauge + Pambient) is in 

pounds per square inch, and the absolute upstream temperature (To) is 

in degrees Kelvin. 

The engine reduction program listed in appendix (v) uses these 

constants, and the only inputs required are the nozzle number (or 

combination of nozzles), the upstream gauge pressure in psi, and the 

upstream gauge temperature in degrees Celsius. Since the downstream 

pressure, P2, is essentially atmospheric (14.7 psi absolute), then, to 

maintain choking conditions, the minimum value of the upstream pressure, 

Pl , is 27.8 psi absolute, or = 13 psi gauge pressure. 

ie 

14.7 < 0.528 
"l 

Pl ~ 27.8 psi absolute 

Advantages of Choked Soni c Nozzles 

There are several advantages to be found using choked sonic 

nozzles, quite apart from their high accuracy. They are not affected 

by pressure pulsations downstream from the meter (due to pressure 

pulsations i,n the inlet manifold) so no damping capacity is required, 

as opposed to the situation if pressure difference devices are used. 

Variable orifice meters are also affected by pressure pulsations, and 
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no allowance can be made for changes in ambient conditions. 

Since the flow velocity through the sonic nozzle is fixed at the 

local velocity of sound. the sonic nozzle is an effective flame trap. 

as the fl ame speed of hydrogen-ai r mi xtures is much 1 ess than the 

velocity of sound. As an added safety precaution. a flame trap is 

positioned immediately downstream from the hydrogen cylinder. This 

unit isolates the cylinder if a sudden pressure pulse is detected in 

the hydrogen line. as i'S mentioned in Chapter ten. 

Sonic nozzles also have the advantage of being extremely cheap 

and very robust. Thei r only di sadvantage 1 i es in the small si ze of the 

orifice which means any accumulated dirt in the line can block the 

nozzle. 
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APPENDIX (ii) 

EXHAUST GAS ANALYSIS EQUIPMENT 

The non-dispersive infra-red ana1yzers used are discussed in some 

detail in the instruction manuals produced by the Analytical Develop

ment Co Ltd(99}. The ana1yzer output is calibrated in terms of gas 

concentration (by volume), but the calibration is not absolute. This 

is established by standardizing with a known gas mixture at one point 

on the calibrated scale. The detector responds to low energy infra-red 

radiation. Howeyer, since it is filled with a pure sample of the type 

of gas to be measured, it can only respond to energy in that regi on of 

the infra-red spectrum corresponding to the absorption band peculiar 

to that gas. When the gas to be measured enters the analyzer, it passes 

through a cell in the path between the radiation source and the detector, 

and, according to the concentration present, absorbs some radiation and 

thus reduces the level of energy reaching the detector. Since water 

vapour and nitric oxide absorb infra-red radiation at similar frequencies, 

it is essential that all water vapour is removed from the exhaust gas 

before it enters the ana1yzers. The detector is symmetrical about its 

centre line, being divided by a pressure sensitive diaphragm into two 

chambers. Infra-red energy reaching the gas in the cells is absorbed 

by molecular vibration at the frequencies characteristic of that gas, 

and then converted to translational energy which heats the gas. Since 

the chambers are sealed, the heat causes the gas pressure to rise and 

act upon the diaphragm. Insulated electrodes forming capacitors on 

either side of the diaphragm are connected to an electronic bridge 

circuit to detect diaphragm movement and hence the difference in energy 

received between the detector cells. 
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APPENDIX (iii) 

CALCULATION OF THE EFFECT OF CHANGING THE RATIO OF SPECIFIC HEATS ON 

IDEAL ENGINE EFFICIENCY 

Determination of Ideal Engine Efficiency 

The expression used for calculating the specific heat of the 

different exhaust constituent gases was that given by Lucas(94): 

n Cp = 1 + mT + F 

Although sixth order polynomials can also be used to determine Cp' 

the above expression was deemed sufficiently accurate to illustrate 

the principle of greater engine efficiency at lean mixture strengths 

due to a change in the ratio of specific heats. As this derivation 

is covered in detail by Lucas, essential calculations only will be 

dealt with here. 

Given that 1 kg of the fuel (petrol only, or hydrogen/petrol 

mixture) contains A kg of carbon and B kg of hydrogen, and that a 

is the air/fuel ratio by weight, the above expression becomes 

= (C + O.2392a) + (0 + O.00003193a) Te - (E + 620a) 
T2 

(1 + a) 

where T is the temperature of the exhaust gas stream in degrees Kelvin, 

and the coefficients 



C = 0.2842A + 1.860B 

D = 0.00009167A + 0.000980B 

E = 13833A - 10000B 

The gas constant of the exhaust gases is given by 

R = (1~~) (~ + 0.03467a) 

from which the specific heat at constant volume of the exhaust gas 

stream is 

R 
= (Cpe - llliO) Chu/lbK 

and the ratio of specific heats is given by 
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Since the carbon/hydrogen ratio of petrol is constant. and the ai r/ 

fuel ratio is nearly constant at all loads. a value for y of 1.249 

at 20000 K was calculated. Applying this to the formula 

Ideal Efficiency 1 = (1 - --:y:r) x 100 
r 

where r is the compression ratio of the engine (8.9:1). a value of 

42.0% is obtained for the ideal efficiency of the engine using petrol. 

By inserting the appropriate values for y in this expression. the 
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ideal efficiency can similarly be found for the dual-fuel mixture. 

The values of the various constants for the dual-fuel mixture 

throughout the load range at 2500 rpm are tabulated in table 1, and 

illustrated in figure 8.17. The effect of temperature on the ratio of 

specific heats is also illustrated. 



AIR PETROL HYDROGEN AIR/FUEL CARBON HYDROGEN FRACTION FRACTION GAS ENGINE 
LOAO FLOW FLOW FLOW RATIO CONTENT CONTENT OF C OF H , 

CONSTANT Cpe Cve y EFFIC-
OF FUEL IN FUEL IN FUEL IENCY 

Nm kg/' kg/, kg/' a kg/' kg/, A B C D E R Chu/lbK Chu/lbK % 

81.66 0.0302 1.52 x 10-3 6.92x 10'5 19.00 1.30 x 10-3 2.88 x 10'4 0.819 0.181 0.569 0.000252 9519.2 91.85 0.341 0.271 1.258 43.1 

77.19 0.0303 1.35 x 10-3 6.92 x 10-5 21.35 1.15x10-3 2.64 x 10-4 0.813 0.187 0.579 0.000258 9376.2 97.89 0.338 0.268 1.261 43.5 

73.07 0.0304 1.25x 10-3 6.92x10'5 23.04 1.07 x 10-3 2.49 x 10-4 0.811 0.189 0.582 0.000260 9328.6 97.84 0.336 0.266 1.263 43.7 

66.99 0.0311 1.14 x 10-3 6.92 x 10-5 25.72 9.76 x 10-4 2.34 x 10-4 0.807 0.193 0.588 0.000263 9233.2 97.80 0.333 0.263 1.266 44.1 

63.23 0.0312 1.06 x 10'3 6.92 x 10-5 27.63 9.07 x 10-4 2.22xl0-4 0.803 0.197 0.595 0.000267 9137.9 97.80 0.332 0.262 1.267 44.2 

57.68 0.0315 0.976x 10-3 6.92xl0'5 30.14 8.35 x 10-4 2.10 x 10-4 0.799 0.201 0.601 0.000270 9042.6 97.77 0.330 0.260 1.269 44.5 

53.56 0.0318 0.918x 10-3 6.92xl0-5 32.21 7.86xl0-4 2.02 x 10-4 0.796 0.204 0.606 0.000273 8971.1 91.75 0.328 0.258 1.271 44.7 

39.05 0.0323 0.e28x 10-3 6.92 x 10-5 36.00 7.07x 10-4 1.89 x 10-4 0.789 0.211 0.617 0.000279 8804.2 97.74 0.327 0.257 1.272 44.8 

TABLE 1 . CALCULATIONS FOR DETERMINATION OF SPECIFIC HEAT OF EXHAUST AND IDEAL ENGINE EFFICIENCY 
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APPENDIX (iv) 

ENERGY BALANCE RESULTS 

The determination of energy utilization is based on the method 

given by Greene and Lucas(92). The total energy output in an engine 

is gi ven by 

. . . 
Efuel = Brake Power + Ecoolant + Eexhaust + Eradiation etc 

. 
The fuel rate of energy input Efuel is given by the mass flO\~ rate of 

the fuel multiplied by its lower calorific value. For petrol this is 

43681 kJ/kg and for hydrogen 119960 kJ/kg. 

The rate of energy flow to coolant is given by the expression 

. . 
Ecoo1ant = M x C x (T c - T ) kW 

c Pc out cin 

. 
where Mc is the coolant mass flow rate (kg/s). C is the specific 

Pc 
heat of the coolant (4.19 kJ/kg K for water). T is the outlet cout 
temperature of the coolant (K). and T is the inlet temperature of cin 
the coolant (K). 

The rate of energy flow to the exhaust; s gi ven by 

.. . 
Eexhaust = (Mair + Mpetrol + MhydrOgen) x Cpexhaust x Texhaust 

. . 
- M. x C x Tal'r - M 1 x C x Tpetrol al r Pai r petro Ppetro1 

. 
-M xC xT 

hydrogen Phydrogen hydrogen 
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where Texhaust' Tair , Tpetrol' and Thydrogen are the temperatures of 

the respective constituents, and Cp are their respective specific 

heats. The specific heat of air is 1.00 kJ/kg K, that of petrol is 

2.240 kJ/kg K, and that of hydrogen is 14.24 kJ/kg K. The specific 

heat of the exhaust gases is a function of fuel composition, air/fuel 

ratio, and exhaust temperature. Details of its determination are 

given in appendix (iii). 

Table (iv.l) gives the various energy losses for the case of 

both dual-fuel operation and petrol operation at 2500 rpm. 



181 

TABLE (iv.l) - RESULTS OF ENERGY BALANCE TEST 

Engine Speed 2500 rpm 

Hydrogen/Petrol (WOT Opera ti on) 

>, 
ou 

'" '" +' +' 
Ol r; ",+, ",+, ",Cl! l- o <= 0", 

~~r= Cl! Cl! U ~<= .... ....Jro .... ....J:::l 
::> <=Cl!Cl! Cl!roCl! 0 ~ 0 ro O....J 0 

E":oE UJ+'", """ E·~ >,0 >,.c: .~ 

>,+' ro ....... to u~ QJO)O~ Q)cnx~ ~c:nro~ 0 ~ 0:: "" s... CUor- +'l-u +'l-UJ 
I- Cl! "'" co.c: .... roCl! roCl! "' s.,.o,-

::> ........ 0::<=0 0::<=0 0:: Cl! "0 
lJ.. UJ UJ+' UJ +' '" ro UJo:: 

85.82 90.91 24.64 20.6 26.72 28.04 
84.22 77.80 28.26 24.1 31.21 16.43 
77 .09 66.45 30.33 25.7 33.64 10.33 
71.75 62.07 30.16 25.8 32.98 11.06 
66.77 58.13 29.98 26.1 33.41 10.51 
62.32 54.20 30.03 26.5 33.14 10.33 
58.23 51.32 29.58 25.8 32.93 11.69 
48.97 47.30 27.01 25.7 33.06 14.23 
36 .87 44.59 21.56 24.1 33.03 21.31 

Petrol Only (Throttled Operation) 

>, '" '" B.l;l 
Ol r; ",+, ",+, ",Cl! l- 0<= 0", 

"' Cl! U ~ <= .... ....Jro .... ....J:::l .... "'<= 
::> <=Cl!C1! ",roCl! 0 ~ o ro 000 
CTE w+'", """ !:.~ >,0 >,.c: ....J.~ 
l-z: ro ....... '" u,"" Q}c:no~ .sc:nx* QJ ~..., ~ 
0 ~ 0:: "" s... Wor- +'l-u l-w +' Ol ro 
I- Cl! "'" co .<: .... ro", ro Cl! to s...r-

::> ........ 0::",0 0::<=0 0:: Cl! "0 
lJ.. W w+' w+' ",ro 

wo:: 

87.97 100.47 22.85 17.8 22.47 36.88 

87.96 82.99 27.67 23.1 29.59 19.64 
83.66 76.88 28.35 24.4 30.67 16.58 

75.26 71.64 27.46 21.8 29.26 21.48 
65.62 65.96 25.97 23.5 26.90 23.63 

58.49 59.84 25.32 24.4 26.12 24.16 

45.49 50.67 ?3.53 30.4 24.59 21.48 

36.41 41.45 22.97 35.1 24.97 16.96 
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APPENDIX (v) 

COMPUTER PROGRAM FOR REDUCTION OF ENGINE RESULTS 

A program was developed to obtain useful data from various 

engine performance parameters, and a listing is given later in this 

appendix. The program is specifically for four cylinder spark igni

tion engines, and is designed for the fuel to be petrol or hydrogen, 

or both. Input parameters are in two sets, the first designating 

ambient conditions and engine volume. Also included are an air-flow 

calibration factor, and a dynamometer constant. This constant is 

gi ven by the manufacturer such that 

Brake Power = Load (lb) x Speed (rad/s) kW 
C 

where C is the dynamometer constant. 

The second set of input parameters are those for the engi ne' s 

operating conditions. These are engine speed; load; time for con

sumption of 50 ml of petrol, depression in the viscous air-flow meter, 

hydrogen gauge pressure, hydrogen inlet temperature, and a constant 

depending on the combination of sonic nozzles used. There is also 

the facility for the input of two dummy variables, which are not 

operated on in the program. 

The output parameters are engine speed, volumetric efficiency, 

brake power, torque, specific fuel consumption, brake thermal efficiency, 

mass flow rate of air, brake mean effective pressure, mass flow rate 
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of petrol, mass flow rate of hydrogen, the absolute pressure and 

temperature of hydrogen upstream from the sonic nozzle, and the 

equivalence ratio. In all cases, corrected values are given, taking 

into account ambient conditions. 

The specific fuel consumption of hydrogen is converted to its 

equivalent specific petrol consumption, since the calorific value 

of hydrogen is 2.746 times that of petrol. 



LISTING OF WLREN 14:00 09 JUL 82 

INTEGER*2 ITEN(10).OFIL(10) 
$INSERT SYSCOM>A$KEYS 
$INSERT SYSCOM>KEYS.F 

CALL RNAM$A('ENTER INPUT FILE NAME',21.A$FUPP,ITEN.l0) 
CALL SRCH$$CK$READ.ITEN,10.1,TYPE.IC) 
CALL ERRPR$CK$NRTN.O.O.O.O.O.O) 
CALL RNAM$AC'ENTER OUTPUT FILE NAME',22.A$FUPP,OFIL.l0) 
CALL SRCH$$CK$WRIT.OFIL,10.2,TYPE.CODE) 
CALL ERRPR$CK$NRTN.O.O.O.O.O) 

lM 

C THIS PROGRAM GIVES ANALYSIS OF'S.I. ENGINE DATA USING HYDROGEN 
C AND PETROL AS FUEL. TO BE USED FOR FOUR ,CYLINDER ENGINES ONLY. 

READ (5.*)ITIT 
202 FORMAT (' BL ENGINE RUN NO. ' ,14) 

WRITE (6.202) ITIT 
WRITE (6.203) 

203 FORMAT (IHOII) 
N24 = 4 

C N24 IS THE STROKE NUMBER OF THE ENGINE 
READ (5.*) PA.TA,SV.C.A 

C PA IS THE AMBIENT PRESSURE IN MILLIBARS 
C TA IS THE AMBIENT TEMPERATURE IN DEGREES CELSIUS' 
C SV IS THE SWEPT VOLUME IN LITRES 
CA IS THE AIR FLOWMETER CALIBRATION FACTOR 

WRITE C6.205) C, 
205 FORMAT (5X.'DYNAMOMETER CONSTANT (S.I.) = ' ,Fl0.4) 

PA = PA I 1.33324 
C PA IS NOW IN MM OF HG 

WRITE (6.206) PA.TA.SV 
206 FORMAT (5X,'AMBIENT PRESSURE (MM HG) =' .F9.2/5X,'AMBIENT TEMPER', 

l'ATURE (DEG C) =',F7.2/5X.'SWEPT VOLUME (LITRE) =',F9.4111) 
WRITE (6,207) 

207 FORMAT (30X.21HSPARK IGNITION ENGINE) 
WRITE (6.208) 

208 FORMAT (lHOII) 
WRITE (6.209) A 

209 FORMAT (4X,40HVISCOUS FLOWMETER - CALIBRATION FACTOR =.Fl0.411) 
WRITE (6,208) 
RHO = PA * 0.1333224 f 0.287 I (TA + 273.15) 

C RHO IS THE DENSITY OF AIR (KG.fCU.M) 
WRITE (6.210) 

210 FORMAT (119H SPEED VOL.EFF BP TORQUE SFC B.TH.E. AIR 
1 BMEP MPET MH2 IMP IGN PABS TABS EaR) 

WRITE (6,211) 
211 FORMAT (115H RPM PERCENT KW NM MILLIO/J PERCENT KO/S 

1 KN/SQM KGfS KO/S MMHO DBTDC PSI DEGK) 
WRITE (6.208) 
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RPM = 3.1415926 I 30 

10 READ (5.*) R.W.TF.DPAIR.DEP.CSUCT.PG.TG.INN 
C R IS THE ENGINE SPEED IN RPM 
C W IS THE DYNAMOMETER LOAD IN LBF 
C TF IS THE TIME FOR CONSUMPTION OF 50 ML OF PETROL IN SECONDS 
C DPAIR IS THE PRESSURE DROP ACROSS THE VISCOUS FLOW METER IN MM H20 
C DEP IS THE INLET MANIFOLD DEPRESSION IN MM HG 
C CSUCT IS THE SPARK ADVANCE IN D.B.T.D.C. 
C PG IS THE GAUGE PRESSURE ON THE CHOKED NOZZLE METER 
C TG IS THE UPSTREAM GAS TEMPERATURE OF HYDROGEN 
C INN IS THE NOZZLE COMBINATION NUMBER 

SUM ~ R + DPAIR + W 
IF (SUM.EO.O.O) GO TO 2 
R = R * RPM 

C R IS NOW IN RAD/SEC 
F = 760.0 1 cPA - DPAIR I 13.6) * SORT«TA + 273.15)1 293.15) 
WAIR = A * DPAIR *RHO I 1000.0 

C WAIR IS THE MASS FLOW RATE OF AIR IN KG/SEC 
RHOl = RHO 
TW = SV * R * RHOl 1 N24 13141.5926 

C TW IS TH. AIR IN KG/S 
VOLE = WAIR 1 TW * 100.0 

C VOLE IS THE VOLUMETRIC EFFICIENCY OF THE ENGINE IN PERCENT 
RZ = R 1 RPM 

C RZ IS THE ENGINE SPEED IN REV/MIN 
WAZ = WAIR 
TWZ = TW 
T = W 1 C * 1000 

C T IS TORQUE 
BP = W * R IC 

C BP IS BRAKE POWER 
BMEP = BP * N24 * 3.1415926 1 R 1 SV * 1000.0 

C BMEP IS THE BRAKE MEAN EFFECTIVE PRESSURE 
BMEPZ = BMEP * F 
BPZ =BP * F 
TZ= T * F 
TABS = 273.15 + TG 
PAM = PA * 1.333224 
PABS = PAM/1013.25 * 14.6959 + PG 
GO TO C51.52.53.54.55.56.57.58).INN 

51 SH2 = 1.172/100.0 * PABS/SQRTcTABS) 
GO TO 60 

52 SH2 = 2.186/100.0 * PABS/SQRTCTABS) 
GO TO 60 

53 SH2 = 0.402/100.0 * PABS/SQRTCTABS) 
GO TO 60 

54 SH2 =3.763/100.0 * PABS/SQRTCTABS) 
GO TO 60 

55 SH2 = 3.361/100.0 * PABS/SQRTCTABS) 
GO TO 60 

56 SH2 = 2.588/100.0 * PABS/SQRTCTABS) 
GO TO 60 

57 SH2 = 1.577/100.0 * PABS/SQRTCTABS) 
GO TO 60 

58 SH2 = 0.0 
GO TO 60 

60 PH2 = SH2 * 2.746 
C PH2 IS THE ENERGY PETROL EQUIVALENT OF THE MASS OF HYDROGEN SH2 (0) 

SFC = (0.74 * 50.0 I TF + PH2)/BP 
BTE = 100000.0/SFC/43850.0 
SFCZ = SFC 
WH2 = 5H2 I 1000.0 



WPET = O.74/20.0/TF 
C WH2 IS THE MASS OF HYDROGEN IN KG/SEC 
C WPET IS THE MASS FLOW RATE OF PETROL IN KG/SEC 

AH2 = WH2 * 34.1 
APET = WPET * 14.7 
EQR = (AH2 + APET)/WAIR 
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C EQR IS THE EQUIVALENCE RATIO (STOIC. MASS OF AIR REQUIRED/MASS AVAILABL 
WRITE (6,212) RZ,VOLE,BPZ,TZ.SFCZ,BTE,WAZ.BMEPZ,WPET,WH2,DEP.CSUCT 

1.PABS,TABS.EQR 
212 FORMAT (F7.1.F7.2,F8.2,F7.2,F9.4,F9.2.F8.4,F8.2,2Ell.3,lX,F8.1,F6. 

11.2F7.1.F6.2) 
GO TO 10 

2 WRITE (6,203) 
CALL SRCH$$(K$CLOS.O.Q,l.TYPE,CODE) 
CALL SRCH$$(K$CLOS,O,O,2,TYPE,CODE) 
CALL EXIT 
END 
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APPENDIX (vi) 

COMPUTER PROGRAM FOR CONVERSION OF EXHAUST EMISSIONS DATA 

Thi s program converts the units in whi ch exhaust emi ss ions are 

measured (either parts per million or percentages by volume) to grams 

per brake horsepower. hour. This is done using the total mass flow of 

air, hydrogen, and petrol into the engine, assuming an average mole-

cular weight for air of 28.96 g, and for petrol 110.3 g. This 

corresponds to a molecular formula for petrol of C7.8SH1S.76' 

The basic combustion equation is as follows: 

m C7.8SH1S.76 + n H2 + x °2 + 79 
2T x N2 ... 

7.8S m CO2 
{ lS. 76 m n} H2O 79 + -2- + + 2T x N2 + 

x {!!. + lS.76 m + 7.8S m} 02 - 2 4 

From the input mass flows,tile amounts of oxygen remaining, nitrogen 

remaining, and carbon dioxide produced can be calculated. All water 

produced is absorbed from the exhaust stream before measurement 

occurs, as discussed in appendix (ii). Thus an approximate total 

number of moles of dry gas per unit time in the exhaust stream can 

be calculated. USing the measured concentrations by volume of the 

exhaust constituents, approxiamte mass concentrations can then be 

calculated. This process was found to give exhaust gas concentrations 

correct to withi n fi ve percent, whi ch is a greater accuracy than the 

exhaust analysis instruments will measure. 



The mass outputs per second are then divided by the power 

output (in brake horsepower) multiplied by 3600 to give an output 

in grams per brake horsepower hour. 

l~ 
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INTEGER*2 ITEN(10),OFIL(10) 
$INSERT SYSCOM)A$KEYS 
$INSERT SYSCOM)KEYS.F 

CALL RNAM$A('ENTER INPUT FILE NAME' ,21.A$FUPP.ITEN.I0) 
CALL SRCH$$(K$READ.ITEN.I0.1,TYPE.IC) 
CALL ERRPR$(K$NRTN.O.O.O.O.O,O) 
CALL RNAM$A('ENTER OUTPUT FILE NAME'.22.A$FUPP.OFIL.I0) 
CALL SRCH$$(K$WRIT,OFIL.I0.2,TYPE.CODE) 
CALL ERRPR$(K$NRTN,O.O.O.O.O) 
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C THIS PROGRAM CALCULATES EXHAUST EMISSIONS IN GRAMS PER BRAKE HORSEPOWER 
C HOUR FROM GAS ANALYSER FIGURES. 

AMWHEX = 86.18 
AMWPET = 110.3 
AMWC02 = 44.01 
AMWCO = 28.01 
AMWNIT = 28.0134 
AMWOXY = 31.9988 
AMWNO = 30.01 
AMWHYD = 2.0158 
AMWAIR = 28.964 
WRITE (6.100) 

100 FORMAT (1H.' HEXANE CARBON MONOXIDE CARBON DIOXIDE N', 
1'ITROGEN OXIDES BHP BP EQR PC02 CPC02') 

300 READ (5,*) WAIR,WPET,WH2.PHEX,PC02.PCO,PNO,BP,EQR 
IF (WAIR.EQ.O.O) GO TO 400 
BHP = BP * 1.341 
AMOAIR = WAIR / AMWAIR 
AMOOXY - 0.21 * AMOAIR 
AMONIT z 0.79 * AMOAIR 
AMOPET = WPET / AMWPET 
AMOHYD - WH2 / AMWHYD 
RMOXY = AMOHYD / 2.0 + (15.76 /4.0 + 7.85) * AMOPET 
REMOX = AMOOXY - RMOXY 
IF (AMOOXY.LT.RMOXY) REMOX = 0.0 
PROC02 - 7.85 * AMOPET 
REMN IT - AMON IT 
TOT MOL - REMOX + PROC02 + REMNIT 
ACTHEX - PHEX / 1000000.0 * TOT MOL 
ACT CO -PCO / 100.0 * TOTMOL 
ACTNO = PNO / 1000000.0 * TOTMOL 
ACTC02 = PROC02 - ACTCO - 6.0 * ACTHEX 
ACTNIT = REMNIT - 0.5 * ACTNO 
ACTOXY - REMOX - 0.5 * ACTNO 
TMOL - ACTHEX + ACTCO + ACTNO + ACTC02 + ACTNIT + ACTOXY 
CPC02 = ACTC02 / TMOL * 100.0 
GHEX ,. ACTHEL*.AMWHEXJ. BHP * 3600.0 .. 
GCO = ACTCO * AMWCO / BHP * 3600.0 
GNO = ACTNO * AMWN02 / BHP * 3600.0 
GC02 = ACTC02 * AMWC02 / BHP * 3600.0 
WRITE (6.200) GHEX,GCO.GC02,GNO.BHP,BP.EQR,PC02,CPC02 

200 FORMAT (1X,F8.4,7X,F8.4,12X,F8.4,10X,F8.4,6X,F8.4.3X,F6.2,6X,F4.2, 
13X.F5.2,4X,FS.2) 

GO TO 300 
400 CONTINUE 

CALL SRCH$$(K$CLOS,O,O,1,TYPE,CODE) 
CALL SRCH$$(K$CLOS,O,O,2,TYPE,CODE) 
CALL EXIT 
END 



APPENDIX (vii) 

COMPUTER PROGRAM FOR HYDRIDING MODEL 

The main purpose of the hydriding/dehydriding computer program 

(listed later in this appendix) was to develop solutions to the heat 

transfer equation: 
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JO("nR) Jl ("nR) 

J o{AnR)2 + Jl ("nRJ2 (4.12) 

for differing values of radial position (r) and time (t) for various 

metal hydrides (corresponding to the values of Cl). It also takes 

into account the rate kinetics of hydriding according to the rate 

.equati on 

dn = 
dt k' (P - Peq)/t 

Two slightly different models have been developed. one to represent 

hydriding. and the other dehydriding. From the model illustrated in 

figure 4.2. the value of the Biot modulus for the cylinder was deter

mined to be 11. Thus equation 4.7 could be rewritten as 

and values for "nR were then found using standard tables. Using an 

appropriate value for the container radius. a series of "n's were 

calculated. These were used to determine the radial constants: 



RADF (n) - 1 x -y 

where Jo and J1 are the appropriate Besse1 functions. A series of 

small radii, ranging from 0 (at the centre of the cylinder) up to 

Rc (the inner radius of the container) were evaluated in increments 

of 0.1 x Rc' and the product of these with the series of An's was 

calculated, as was the Besse1 function Jo of the product, thus 

giving a series of values for Jo (AnR). The appropriate value for 

a was calculated from a combination of the values of a for the out-

side container, the aluminium capsule, and the fraction of metal 
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hydri de whi ch had reacted. Hence a value for the time functi on cou1 d 

be calculated: 

where t is the total reacti on ti me in seconds. The temperature 

change duri ng reacti on is thus gi ven by 

4 
T = 2 (Tf - T.) L TF x RADF(n) x Jo (A r) 

, n=l n 

This is plotted against time for each radius, as illustrated in 

figure 4.5. The time taken to reach the reaction temperature (ie -

the temperature corresponding to the particular equilibrium pressure) 

at each radius is then determined, and an appropriate heat transfer 

rate is then calculated from the fraction of the bed reacted per 

unit ti me. 
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Reaction kinetics and diffusion are also taken into account using 

the rate expression given by Nomura et al(49). The equilibrium diss

ociation pressure is calculated from the van't Hoff equation: 

PEQ = EXP (TCON/TABS + ENCON) 

where TABS is the absolute temperature of the hydride bed, TCON is a 

constant depending on the enthalpy change of the hydriding reaction, 

and ENCON is a constant rel ated to the entropy chan;Je. Both are 

tabulated for various hydrides in table 4.1. This equilibrium 

pressure (in atmospheres) is converted to kg/cm2 to use in the rate 

expression 

RDIFF = 0.032 (EQPKC - PAKGCM) x 60 

where RDIFF is the rate of reaction (cm2/s) taking into account both 

the reaction kinetics and the rate of diffusion, EQPKC is the equil

ibrium pressure, and PAKGCM is the ambient pressure in kg/cm2• 

The time taken for heat transfer (through a given area) to 

occur is added to the time taken for the actual reaction to take 

place, thus giving a final reaction rate incorporating heat transfer, 

reaction kinetics, and the diffusion rate. It is this final reaction 

rate which is used in the comparison with measured hydriding or de-

hydriding curves. 

The inputs to the program for hydriding are: TFLUD, the temp

erature of the surrounding fluid; TINT, the equilibrium temperature 
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inside the hydride, corresponding to the recharging hydrogen pressure; 

XALPH, the value of a for the particular metal hydride; PAMS, the 

ambient pressure in psi; TCON, the enthalpy constant in the rate 

expression for the particular hydride; and ENCON, the entropy constant 

for the hydride. 

For dehydriding, the inputs are essentially the same, except TINT 

is the ambient temperature inside the hydride, before hydrogen is 

removed, and XALPH is the thermal diffusivity of the metal powder. 
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C THIS PROGRAM CALCULATES THE TEMPERATURE AT ANY POINT IN AN 
C INFINITELY LONG CYLINDER HAVING AN OUTER TUBE OF COPPER AND 
C AN INNER SHELL OF ALUMINIUM. 

DOUBLE PRECISION X 
DIMENSION R(S) 
DIMENSION DA(4).RADF(4),XV(4) 
DIMENSION YTEMP(1000),XTIME(1000) 
DIMENSION SR(1) 
DIMENSION YFRACT(11).XTIM(11) 

C RADC = OUTER RADIUS OF COPPER TUSE 
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C RADT = INNER RADIUS OF COPPER TUBE / OUTER RADIUS OF ALUMINIUM CAPSULE 
C BRAD = INNER RADIS OF ALUMINIUM CAPSULE / OUTER RADIUS OF HYDRIDE 

BRAD = 0.0100 
RADT = 0.010S 
RADC = 0.0110 
XV(!) = 0.38829 
XV(2) = 3.8519 
XV(3) = 7.0Z62 
XV(4) = 10.181 
IFAIL = 0 
DA(l) = XV(l)/RADC 
DA(Z) = XV(Z)/RADC 
DA(3) = XV(3)/RADC 
DA(4) = XV(4)/RADC 

C. TFLUD = TEMPERATURE OF SURROUNDING FLUID 
C TINT = AMBIENT TEMPERATURE OF HYDRIDE 
C XALPH = THERMAL DIFFUSIVITY OF METAL 
C PAMB = AMBIENT PRESSURE IN P.S.I. 
C TCON IS TEMPERATURE CONSTANT (A) 
C ENCON IS ENTROPY CONSTANT (C) 

READ (S,203) TFLUD,TINT,XALPH,PAMB,TCON.ENCON 

203 FORMAT (6FO.0) 
WRITE (6,211> 

211 FORMAT (lH1/1/11//I/) 
DO SOD J =1,4 
X = DA(J) * RADC 
VALUE = S17AEF(X,IFAIL) 
VAB1 = S17AFF(X.IFAIL) 
RADF(J) = VABl I (VALUE * VALUE + VABl *VAB1) / X 
WRITE (6.201) J.RADF(J) 

201 FORMAT (lH1,' RADIAL FUNCTION ( '.11.' ) = ',Fl0.7) 
SOO CONTINUE 

WRITE (6.202) 
202 FORMAT (lHl,' HEAT TRANSFER IN CYLINDER') 

RFU = 1.0 



DO 600 JSR - 1,11 
SR(JSR) = RFU * BRAD 

600 RFU - RFU - 0.1 
CALL C1051N 
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CALL AXIPLO(0,0.0,0.0,1.1.10.10,0.,1000.,20.,50.,'TIME (SECONDS)', 
*14,'TEMPERATURE' ,11) 

DO 300 JR = 1,11 
JGRA = 0 
ALPHA1=(RADC*RADC-RAOT*RADT)/CRADC*RADC-SR(JR)*SR(JR»*1.092E-4 
ALPHA2=(RADT*RADT-BRAD*BRAD)/(RADC*RADC-SR(JR)*SR(JR»*9.4SSE-S 
ALPHA3-(BRAD*BRAD-SR(JR)*SR(JR»/(RADC*RADC-SR(JR)*SR(JR»*XALPH 
ALPHA -ALPHA1 + .ALPHA2 + ALPHA3 
WRITE (6,204) SReJR),ALPHA 

204 FORMAT (lHO//,20X,'RADIUS = 'Fl0.7,10X,'ALPHA = ',E12.S) 
DO 200 IME - 1,1000 
TEMPS = 0.0 
DO 100 N = 1,4 
X - OACN) * SR(JR) 
IFAIL = 0 
VALUE - S17AEF(X,IFAIL) 
RAOFNO = RADF(N) * VALUE 
EXPF = -DA(N) * DA(N) * ALPHA * IME 
TF = EXP(EXPF) 
TEMPF = TF * RADFNO 

100 TEMPS = TEMPS + TEMPF 
TEMPD = (TFLUD- TINT) * 2.0 * TEMPS 
TEMP = TFLUD - TEMPO 
XTIMECIME) = IME 
YTEMPCIME) = TEMP 
IF eTEMPD.LT.O.OOS) GO TO 700 
WRITE (6,20S) TEMP,IME 

20S FORMAT (SX,'TEMPERATURE = ',F6.3,4X,'TIME = ',14) 
700 IF (TEMPD.LT.O.OOS) GO TO 200 

JGRA - JGRA + 1 
IF (JGRA.EQ.l) NIME = IME 

200' CONTINUE 
FRACT - (BRAD * BRAD - SReJR) * SReJR» / (BRAD * BRAD) 
WRITE (6,701) FRACT,NIME 

701 FORMAT elHO/I,20X,'FRACTION REACTED = 'FS.3,10X,'TIME TAKEN = ',I 
*~5) 

IF (JR.EQ.3) DIFl - SR(JR) * SReJR) 
IF (JR.EQ.3) DTIMl = NIME 
IF (JR.EQ.S) DIF2 = SR(JRi * SReJR) 
IF (JR.EQ.S) DTIM2 - NIME 
YFRACT(JR) = FRACT 
XTIM(JR) = NIME 
IF (JR.GT.4) GO TO 301 
MPEN - JR 
GO Ta 400 

301 IF (JR.GT.S) GO TO 302 
MPEN = JR - 4 
GO TO 400 

302 MPEN = JR - 8 
GO Ta 400 

400 CALL PENSEL(MPEN,O.O,O) 
CALL GRAPOL (XTIME,YTEMP.l000) 

300 CONTINUE 
CALL OEVEND 
CALL Cl051N 
CALL AXIPLO(0,0.0,0.0,1,1.10,10,0.,1000.,0.,1.,'TIME (SECONDS)' ,14 

*,'FRACTION REACTED' db) 
CALL GRACUR(XTIM,YFRACT,11J 



CALL DEVEND 
C RREACT IS RATE OF HEAT TRANSFER 
C PEQ IS EQUILIBRIUM PRESSURE IN ATMOSPHERES 
C EQPKC IS EQUILIBRIUM PRESSURE IN KG/SQCM 
C PAKGCM IS AMBIENT PRESSURE IN KG/SQCM 
C RDIFF IS RATE OF DIFFUSION 
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RREACT = (DIF1 -DIF2) * 3.141593 * 10000.0 I (DTIM2 - DTIM1) 
TABS = TFLUD + 273.15 
PEQ = 2.718282 ** (TCON I TABS + ENCON) 
EQPKC = PEQ * 1.033232 
PAKGCM = PAMB * 0.070307 
RDIFF = 0.032 * (EQPKC - PAKGCM) * 60.0 
EXTIM = RREACT I RDIFF 
FRERA = RREACT I (1 + EXTIM) 
WRITE (6,333) RDIFF,RREACT,FRERA 

333 FORMAT (1HOIIII,' DIFFUSION RATE = ' ,F8.4,2X,'CM/SEC' ,11,' REACTIO 
*N RATE = , ,F8.6,2X,'CM/SEC' ,11,' FINAL REACTION RATE.' ,F8.6,2X,' 
*CM/SEC') 

STOP 
END 




