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ABSTRACT 

Vibrational energy flow (VEF) analysis (VEFA) is used to attain vibrational 

energy flow information within a vibrating structure of interest. Two 

essential pieces of information are provided, the direction of the energy flow 

as well as the magnitude of the energy flow. Once this information is 

available, vibration may be manipulated in order to suppress undesired 

vibrational phenomena. 

The measurement of VEF is an important part in providing VEF 

information from real structures. In the past the measurement of VEF was 

restricted to single point measurements only. However, recent developments 

in advanced laser measurement techniques, such as electronic speckle pattern 

interferometry (ESPI), have gained interest in applying these measurement 

techniques to the measurement of VEF. 

In this research VEF within transversally vibrating beam and plate 

structures was analytically studied and measured in detail. A measurement 

technique, denoted as measurement of VEF using ESPI (VEFESPI) was 

developed. A thorough error and sensitivity analysis of the VEFESPI method 

was carried out to highlight advantages and disadvantages. For validation 

purposes, measurements of VEF under usage of ESPI were undertaken. It 

was shown that VEFcan be measured in beam and plate structures, even 

when a high standing wave environment and noise contamination is present. 

In addition to the measurement of VEF using ESPI, a novel moment 

excitation technique was developed in order to measure moment induced 

point mobility and input energy of an experimental "infinite" beam. It was 

demonstrated that the technique worked well over a wide frequency range. 
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the beam 

p 
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Time-averaged transmitted energy due to infinite waves in 

the beam 

Time-averaged transmitted energy due to internal infinite wave 

loads and respective reflection wave velocities in the beam 

Time-averaged transmitted energy per unit length in the· 

plate in x direction 

Time-averaged complex transmitted energy per unit length in 

the simply supported plate due to force excitation in x direction 

Time-averaged transmitted energy in an infinite beam including 

hysteretic damping 

Time-averaged transmitted energy III a beam based on four 

waves including hysteretic damping 

Active time-averaged transmitted energy in a beam 

Active time-averaged transmitted energy in an infinite 

beam due to force excitation 

Active time-averaged transmitted energy per unit length III an 

infinite plate due to force excitation in x direction 

Active time-averaged transmitted energy per unit length in an 

infinite plate due to force excitation in y direction 

Active time-averaged transmitted energy in an infinite 

beam due to force excitation and hysteretic damping 

Active time-averaged transmitted energy III an infinite 

beam due to moment excitation 

Active time-averaged transmitted energy in an infinite 

beam due to moment excitation and hysteretic damping 
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Active time-averaged transmitted energy based on four waves 

in a beam 

Time-averaged coupled complex transmitted energy III a finite 

beam 

Active time-averaged coupled transmitted energy in a finite 
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Reactive time-averaged coupled transmitted energy in a finite 

beam when 'T] = 0 

(p, )buttff Butterworth filtered transmitted energy 

(p ) Ideal filtered transmitted energy 
x ,deo' 

(px Lact Exact transmitted energy per unit length 

(p" Lact Exact transmitted energy 

(p) VEFESPI computed transmitted energy per unit. length 
x VEFESPI 

(p ) VEFESPI computed transmitted energy 
x, VEFESPI 

Px, Reactive time-averaged transmitted energy in the beam 

Reactive time-averaged transmitted energy in an infinite 

beam due to force excitation 

Reactive time-averaged transmitted energy per unit length in an 

infinite plate due to force excitation in x direction 

Reactive time-averaged transmitted energy in an infinite 

beam due to force excitation and hysteretic damping 

Reactive time-averaged transmitted energy in an infinite 

beam due to moment excitation 

Reactive time-averaged transmitted energy III an infinite 

beam due to moment excitation and hysteretic damping 

Reactive time-averaged transmitted energy based on four waves 

in a beam 

Time-averaged transmitted bending moment energy in the beam 
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u 

u(x) 

U(X)F~ 

U(X)M~ 

U(X), 

U(X)oo 

U (x, t) 

u(x,tk 

Nomenclature 

Time-averaged transmitted energy. per unit length in the 

plate in y direction 

Time-averaged complex transmitted energy per unit length in 

the simply supported plate due to force excitation in y direction 

Reactive time-averaged transmitted energy per unit length in an 

infinite plate due to force excitation in y direction 

Time-averaged transmitted energy per unit length in the 

plate in polar coordinates 

Internal plate shear force per unit length in polar coordinates 

Internal plate shear force per unit length in z direction 

Internal plate shear force per unit length in z direction 

Internal plate shear force per unit length in polar coordinates 

Radius or general displacement 

Surface area or original signal 

Left-hand side link function of the MP technique 

Right-hand side link function of the MP technique 

Left-hand side mirror image of the original signal 

Right-hand side mirror image of the original signal 

Time 

Thickness of beam 

Thickness of damping material 

Temporal period 

Beam displacement 

Displacement vector 

One-dimensional spatial signal 

Infinite beam displacement due to force excitation 

Infinite beam displacement due to moment excitation 

Reflection waved beam displacement 

Infinite waves beam displacement 

Spatial and temporal beam displacement 

Spatial and temporal displacement of simply supported beam 

due to force excitation 
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Spatial and temporal displacement of simply supported beam 

U(X'Y)ESPl 

U+ (X,t)F~ 

u,(x,tt, 

U_ (x, t)F~ 

due to moment excitation 

Measured two-dimensional ESPI beam displacement 

Force excited spatial and temporal infinite beam displacement 

to the right 

Moment excited spatial and temporal infinite beam 

displacement to the right 

Spatial and temporal infinite beam displacement to the right 

Force excited spatial and temporal infinite beam displacement 

to the left 

Moment excited spatial and temporal infinite beam 

displacement to the left 

u_ (x,tt, Spatial and temporal infinite beam displacement to the left 

U (k) One-dimensional wavenumber spectrum 

U (kz, k.) filt . Filtered two-dimensional wavenumber spectrum 

U(kzky;OJ) Two-dimensional wavenumber spf)ctrum 

U, Rotational mechanical work 

v Translational velocity 

v,,( t) Instantaneous translational velocity component 

V Volume of interest 

1I;m Modified output voltage 

w Plate displacement 

w (r, 0, t) Plate displacement in polar coordinates 

W(X'Y)ESPI Measured two-dimensional ESPI plate displacement 

w(x,y,t) Plate displacement in Cartesian coordinates 

w(x,Yjw) Surface function 

w (x, Yj w) ll-spline fitted surface function 

W Total mechanical work 

W, Translational mechanical work 

x Spatial variable 

~x Spacing between two accelerometers or spatial resolution 

Xo Excitation location in x direction 
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Y 

Yo 
y 

y 
Mo,~o 

z 
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1 INTRODUCTION 

1.1 Motivation of Work 

Noise can be annoying. Noise can be hazardous. Noise is a burden of modern 

life everyone has to cope with. The growing environmental impact of noise 

demands counteractive measures that diminish noise exposure, which may 

result in serious illness or at least in an additional level of stress. 

Noise is caused by dynamic processes due to the presence of vibration. 

Vibration processes are numerous and an inherent part of modern societies. 

Everybody experiences vibrations and its causes every day. In addition to the. 

human factor of discomfort, the occurrence of noise may result in fatigue 

damage and, hence, system failure of structures. Quite often both the human 

factor and the structural factor are involved in serious problems related to 

noise phenomena. A prominent example is the squealing noise of train wheels 

that sometimes produce a strong noisy sound while braking. Not only is the 

squealing train wheel sound painful to the human ear, the vibrational 

interactions between the wheel and the brake also cause undesirable damage 

due to fatigue and, hence, passenger safety is at risk. 

The generation and transmission process of vibrations can generally be 

divided into a source and a receiver, or a number of each. Both, the 

generation and transmission processes are fairly complex. There are two 

approaches to reduce noise. The first approach is the most obvious one, the 

minimisation of vibrations at the source. The second approach is the 

minimisation of vibrations between the source and the receiver, while 
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1 Introduction 

transmitting. Noise can be transmitted within different mediums. It can be 

transmitted within structures, in this case structure-borne processes are 

considered. Noise can also be transmitted through air, hence, airborne 

processes are present. These two processes are the most common. Noise can 

also be transmitted through water and soil, or a mixture of all. Within this 

research, structure-borne processes are considered only. 

To increase or maintain comfort and safety, undesired vibrations need 

to be minimised simply through control. The control mechanism can be 

passive or active. Effective control of vibration is achieved most often by 

analysing and understanding the vibrational behaviour of a certain structure. 

Once the vibration phenomena is analysed and understood, the control of 

vibration using appropriate countermeasures can be undertaken efficiently. 

Thus, it is essential to develop techniques, analytical or experimental in 

nature, which can cope with this objective. 

Vibrations can be felt as well as heard. The interactions between 

vibration and acoustics are analysed in the field of vibroacoustics. Many 

analysis techniques have been developed over the years to serve different 

purposes. Their usage relies mainly on the range of frequencies considered, as 

well as the quantity of interest to be determined. Figure 1.1 displays a 

selected range of techniques, which are most commonly used in vibroacoustic 

analysis. 

The finite element method (FEM) and the boundary element method 

(BEM) are well known and well established techniques. Both techniques are 

suited for low frequency range analysis .. With low frequency range an area in 

the frequency response function (FRF) is meant where the modal overlap is 

small, i.e. the frequency gap from one resonant frequency to a surrounding 

resonant frequency. 

Techniques to cope with vibration phenomena in a mid or high 

frequency range are also available. Modal analysis (MA) is a common 

technique to determine so-called modal parameters of a vibrating system, e.g. 

resonant frequencies, modal damping, and relative modal displacement shape. 

Noise path analysis (NPA) can be used to predict dominant paths of 

vibrating structures, which may result in undesired sound radiation. 
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At the high frequency range, techniques such as the statistical energy 

analysis (SEA) or energy mean mobility approach (EMMA) may be used. 

These techniques can be characterised as energy based methods, since the 

primary variable employed here is energy. Energy as the primary variable is 
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Figure 1.1 Examples of vibroacoustic analysis. 

chosen because the high modal overlap at high frequencies makes it rather 

difficult to distinguish between certain modes. In contrast, at low frequency 

range displacement, force and velocity are the primary variables. It is not the 

objective here to explain these techniques in detail as most literature sources 

do this. However, it is the intention to remind the reader that a huge number 

of techniques are available. 

In Figure 1.1, vibrational energy flow (VEF) analysis is shown as a 

vibroacoustic analysis applicable in the mid frequency region. VEF analysis 

(VEFA) is used within this work. It employs the well known quantity energy 

and in the case of energy transmission per unit time, power. Energy and 
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power are universal measures applicable within almost every discipline. 

Electrical power, mechanical power or vibrational power all are given in units 

of Watts. This quantity is easy to understand and multidisciplinary. 

VEFA provides energy flow information within a structure of interest. 

Energy-based quantities are derived as vector quantities containing two 

essential pieces of information, energy magnitude, and energy flow direction. 

Because of the vector property, it is possible to construct energy flow maps, 

which contain arrows that visualise the energy flow within a structure. Once 

this information is available, paths of high energy flow can be identified and, 

hence, manipulated in order to suppress undesired sound radiation. 

VEF can also be used to develop abstract models, which allow a better 

understanding and handling of complex vibrational processes by employing 

energy balances. Imagine a transversally vibrating plate. The excitation of 

the plate is achieved by electrically powering an electrodynamic shaker. The 

electrical energy is transformed into mechanical energy and this mechanical 

energy is injected into the plate. Further, the mechanical energy is 

transformed into vibrational energy while transmitting through the plate. 

The point of energy injection is known as the energy source. Within the plate 

there might be points or regions, which are able to dissipate the injected 

vibrational energy. These points are called energy sinks. Due to a difference 

in vibrational potential, an energy flow occurs within the plate. Vibrational 

energy dissipation may appear due to the attachment of external dampers, 

internal structural dissipation, . and sound radiation into surrounding 

mediums. Thus, by employing energy based quantities such as input energy, 

transmitted energy and dissipated energy, complicated processes within the 

structure of interest can easily be related to each other simply by applying 

the conservation of energy law. 

VEF A has some advantages over alternative techniques, such as MA 

or SEA. With the aid of a MA, relative modal displacement information can 

be obtained. However, the modal displacement does not give information 

about energy source and energy sinks, since the modal spatial displacement 

distribution is not necessarily proportional to the spatial distribution of VEF 

within a structure. Thus, MA is not suitable when control of vibration is an 

4 



1 Introduction 

objective. SEA divides a structure into coupled substructures where stored 

and transmitted energies are computed. However, no information on the local 

energy distribution within the substructure can be obtained. This information 

is sometimes essential, however, when tackling vibrational problems. 

There is also a major drawback to applying VEF A in solid structures. 

To determine VEF, the structural dynamics of the structure to be analysed 

needs to be known. In the case of simple beam and plate structures, the 

partial differential equations and, hence, internal force and moment 

definitions are well known. However, when the structure is more complex, an 

analytical definition of VEF is hardly possible without introducing erroneous 

approximation methods. Thus, VEFA is still restricted to simple built-up 

structures. However, this problem has been overcome recently by combining 

VEF A with the FEM method. 

1.2 Objectives of Thesis 

VEF can be analysed analytically. VEF can also be measured. There are 

numerous measurement techniques available on the market, spanning from 

accelerometer based measurements to the use of holographic interferometry. 

Electronic speckle pattern interferometry (ESPI), an advanced two

dimensional laser measurement technique, is a measurement tool used in the 

past to record modal displacement shapes of vibrating structures. Recent 

developments in ESPI, however, have gained interest in the applicability of 

this measurement technique to indirectly measure VEF. The main advantage 

of using such a system is the possibility to electronically acquire two

dimensional vibration amplitude and phase data. Thus, the recorded ESPI 

data are digitally provided, ready for further processing. Furthermore, most 

ESPI systems are delivered as compact modules and with increasing 

computation efficiency, real time processes could be applicable. 

The aim of this research was to develop a measurement technique to 

measure VEF within beam and plate structures under use of an ESPI 
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measurement system (VEFESPI). Since dominant sound radiation is related 

mainly to flexural vibration, only this mechanism was considered herein. 

The development process can be divided into four stages. In stage one; 

the theoretical base of VEF in beams and plates was set. In stage two, a 

technique was selected, which provides the spatial. derivative information 

obtained from a set of displacement data. This information is essential as it is 

required by the VEF definitions set in stage one. An elaborate investigation 

in terms of VEF computation accuracy and VEF computation sensitivity was 

carried out in stage three. Here, the measurement method was investigated in 

detail using synthetic data. Advantages and disadvantages of the method 

were revealed. Stage four can be seen as the validation of the measurement 

technique as it uses real measured ESPI amplitude and phase data to 

compute VEF from experimental structures. Within this research infinite and 

finite beam and plate structures were analysed and measured. 

However, it should be mentioned that in this research focus was drawn 

to the theoretical fundamentals and the numerical evaluation of the 

measurement with synthetic generated data, i.e. stage one to stage three. The 

reason focus was mainly drawn to the theoretical development and the 

numerical implementation of the measurement technique was that the 

practical validation could only be conducted with an ESPI measurement 

system, which was not state of the art and still at experimental stage. Thus, 

accuracy indications were given only, which are related to the performance of 

the employed ESPI measurement system. Modern systems may be much 

more capable. 

In addition to the VEFESPI measurement technique, another 

measurement technique was developed in this research enabling the 

measurement of moment point mobility and input energy of a moment 

excited "infinite" beam. Although this measurement technique is not related 

to the VEFESPI method, it is part of the overall subject of measurement of 

VEF in structures. 
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1.3 Structure of Thesis 

The dissertation presented here is divided into three parts. Chapters 2 to 4 

deal with the general theory of VEF in beams and plates, as well as the 

introduction of the VEFESPI measurement technique. Chapters 5 to 9 

address the theoretical and practical application of the VEFESPI method on 

beam structures. Furthermore, the measurement technique to measure 

moment point mobility and input energy is presented. Chapters 10 to 14 

present the theoretical and practical application of the VEFESPI method on 

plate structures. 

An extensive literature review is given in chapter 2. Literature sources 

on the theory of VEF, conventional and advanced measurements of VEF as 

well as moment excitation of structures are introduced and briefly 

summarised. Attention is drawn to literature related to the subject of this 

thesis and gaps in published research, leading to the objective of this work. 

Chapter 3 reports a thorough introduction to VEF and energetic 

quantities in beams and plates. General energy based definitions and relations 

are presented and discussed. 

Chapter 4 presents in detail the proposed measurement technique to 

measure VEF in beam and plate structures under use of ESPI. Therefore, 

VEFESPI and its components are described. 

Chapter 5 introduces the theory of vibrational energy in beams, 

especially infinite beams and simply supported beams. The results of this 

chapter are used as reference quantities when validating the VEFESPI 

method numerically with synthetically generated beam displacement data. 

Chapter 6 demonstrates the numerical validation of the VEFESPI 

method for infinite beams and simply supported beams. The computation 

accuracy and the computation sensitivity of the VEFESPI method in beam 

structures are taken into account. Hence, a fundamental feasibility 

investigation is carried out herein. 

Chapters 7 and 8 present the measurement methods of vibrational 

energy in beams. The ESPI method is introduced briefly and the 

experimental beam apparatus employed during the beam experiments are 
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displayed. Furthermore, all the techniques used to measure point mobility, 

vibrational input power (VIP), and VEF in beams are reported in chapter 8. 

The measurement theory of the proposed moment excitation measurement 

technique is given here in detail. 

Chapter 9 provides detailed results obtained on the ESPI based VEF 

measurements conducted on an "infinite" and simply supported beam. 

Furthermore, experimental validation of the proposed moment excitation 

measurement technique is given. 

Chapter 10 introduces the theory of VEF in plates. Input and 

transmitted energy expressions are presented for infinite plate and simply 

supported plate structures. Also here, the results of this chapter are then 

used as a reference quantity when validating the VEFESPI method 

numerically with synthetic data. 

Chapter 11 presents the numerical validation of the proposed 

VEFESPI measurement technique on infinite plates and simply supported 

plates. Also here, synthetic data are used and numerical VEFESPI 

computation results are compared with exact analytical solutions presented in 

chapter 10. 

Chapters 12 and 13 provide information on the measurement of 

vibrational energy in plates. The experimental apparatus used throughout the 

"infinite" and simply supported plate experiments are displayed. All the 

measurement techniques used to compute point mobility, energy input, and 

transmitted energy employed during the experimental stage are given in 

detail. 

Chapter 14 reports on the results obtained during the measurement of 

ESPI based VEF in an "infinite" and a simply supported plate. Furthermore, 

the gained results are discussed in detail. 

Chapter 15 concludes on the results and cognitions obtained within 

this research. General conclusions on the measurement of VEF in beams and 

plates are given. An outlook of further work suggests actions that may be 

undertaken in order to improve the measurement of VEF in structures llsing 

ESP!. 
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2 LITERATURE SURVEY 

2.1 Introduction 

In this chapter literature related to the subject of this research is surveyed. A 

vast amount of literature can be found on vibrational power flow and its 

measurement techniques carried out over the last four decades. The most 

essential studies of conventional, typically accelerometer based, vibrational 

energy flow (VEF) measurements as well as more advanced, typically 

wavenumber based, VEF measurements are considered in greater detail. Less 

attention has been drawn to case studies derived from these fundamental 

researches. However, a few were included in this literature survey. 

A literature review on the second subject of this thesis, moment 

excitation of structures, is also presented herein. However, focus has been 

drawn only to a few selected papers, which the author considers as the most 

important in relation to the moment excitation research conducted herein. 

2.2 Introduction to Vibrational Energy Flow and 

Structural Intensity 

Mechanical structures exposed to external excitation within its elastic 

boundaries result in assumed linear stress-strain relations forcing the 

structure to a certain response (displacement, velocity or acceleration). 

Internal forces and moments occur within the structure due to elastic 
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deformation. Work is done when forces and moments move through the so

called displacement cycle [1, 1998J. In the existing literature many terms are 

related to vibrational power flow analysis (VP A). These are mainly 

vibrational energy flow, vibrational power flow, structural intensity, 

divergence of structural intensity and vibrational energy densities of any 

kind, such as total energy density, potential and kinetic energy density. The 

energy density quantities are important to carry out local energy distribution 

studies. 

When vibrational power flow is mentioned, vibrational energy 

transmission is meant. The term vibrational power flow is somehow not 

correct in a physical sense, since it is not vibrational power that is flowing 

through a structure but vibrational energy that is flowing through a structure 

per unit time. However, a vast number of researchers use the physically 

wrong expression power flow, though. Within this work the expression 

vibrational energy flow per unit time is used instead, which is equivalent to 

vibrational power not vibrational power flow. 

Another widely used important quantity IS structural intensity (SI). 

This quantity is defined in a physically correct sense as vibrational energy 

flow per unit time per unit cross-sectional area, which is equivalent to 

vibrational power per unit cross-sectional area. The cross-sectional area is 

located perpendicular to the VEF direction. Most often this quantity is used 

in VEF analysis (VEFA) for beam and plate vibration equally, which is not 

entirely correct. From the occurring internal forces and moments within a 

beam that may be vibrating in flexure, vibrational power expressions can be 

derived directly. Often the derived vibrational power or VEF is wrongfully 

denoted as SI. However, herein the term VEF or transmitted vibrational 

energy (TVE) is preferred. 

In terms of flexural plate vibration, energy flow equations derived from 

the arising internal forces and moments yield to a quantity, which is 

vibrational energy flow per unit time per unit width of cross-sectional area. 

In the existing literature this quantity is often denoted as SI of a plate. 

Sometimes this quantity is denoted as intensity resultant. Within this thesis 

the expression VEF per unit width or TVE per unit width is preferred 
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instead. Quite often VEF within a structure is computed as a complex 

quantity. The real part of it, which in a physical sense is the true TVE, is 

often denoted as active VEF or active SI. The imaginary part, which is less 

clear in a physical sense, is often denoted as reactive VEF or reactive SI. 

In the following the term power flow and its derivatives will be used 

within the literature survey, since the surveyed literature sources use these 

terms. It will be however, dropped at the following chapters of this thesis. 

2.3 Theory of Vibrational Energy Flow 

Locating energy sources and sinks, ranking paths of high transmitted energy 

that may cause strong sound radiation and identifying the resulting potential 

areas of vibration control are the main objectives of VEF A. There are many 

approaches in order to reduce vibration in structures. One can be the 

isolation or minimisation of unwanted vibration induced by machines and 

passed on to structures [2, 1991J. Another approach may be the manipulation 

of vibration in order to achieve predefined performance measures often used 

III sound design of products. All approaches presume a complete 

understanding of the dynamic process itself. In the past vibration has been 

defined in terms of modal behaviour of the structure. However, the modal 

amplitude distribution is not proportional to the net energy flow. A more 

effective way of describing a dynamic process is the use of the universal 

quantity power. 

There are numerous publications dealing with theory of VEF A and the 

measurement of energy flow in structures such as beams, plates, pipes, or 

shells. A good general introduction to the topic VEF A can be found in 

reference [3, 2005J. The authors gave a critical review about the research 

undertaken within the field of VEFA. A categorisation of VEF measurements 

into three groups was given. These groups were denoted as contact methods, 

non-contact methods and computation methods. A similar approach is used 

here in sections 2.4, 2.5, and 2.6 of this chapter distinguishing between. the 
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conventional VEF measurement techniques, advanced VEF measurement 

techniques and FEM based VEF computation, respectively. 

Earlier work on VEFA was reported by Noiseux in 1970 [4, 1970]. He 

proposed mechanical intensity, defined as power per unit width of cross' 

section, flowing through a structure. One and two-dimensional intensity 

formulations were derived. The structures have been assumed to be lossless, 

uniform and only in flexural vibration. Since Euler-Bernoulli theory has been 

applied, shear deformation and rotational inertia were neglected. Using 

biaxial accelerometers and assuming that the shear component of intensity in 

the farfield region is equal to the moment component of intensity the moment 

component has been measured only, since it was easier to acquire. 

Goyder and White studied vibrational power flow from machines 

through isolators into built-up structures [5, 1980]. An introduction to power 

flow analysis was given considering several types of built-up structures. 

Mobility and power expressions were derived when exciting by a point force 

or torque an "infinite" beam and "infinite" plate. It was shown that the 

beam carries all the power away from the point of excitation. Also, the 

transmitted flexural power in an infinite beam is independent of distance and 

is equal to half the input power. The input power of an infinite plate is 

independent of frequency when excited by a harmonic point force and is 

proportional to increasing frequency when excited by a unit torque. The 

motion at the driving point of a foundation composed of.a beam stiffened 

plate has also been investigated and was largely controlled by the beam. It 

was pointed out that flexural wave power radiates into the plate from the 

beam's excitation point whilst power transmitted by torsional waves in the 

beam does not radiate into the plate [6, 1980]. Vibrational power flow 

through isolators into the supporting foundations was also studied and it was 

concluded that power reduction can be achieved if the resonance frequency of 

the machine mass on the stiffness of the isolator is less than the excitation 

frequency [7, 1980]. Two stage isolation systems resulted in an increased 

power flow reduction. However, when dealing with broadband excitation the 

isolator will not be effective because resonant frequencies are included in the 

broad band excitation frequency range. 
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Walsh and White derived vibrational power transmission in a curved 

beam with constant curvature [8, 2000J. Four sets of power transmission 

equations have been presented using four different theories of wave motion, 

whereas one was based on the reduction of Love's thin shell equations, one 

was based on the reduction of Fliigge's thin shell theory, and both were 

extended to corrections for rotary inertia and shear deformation. It has been 

demonstrated that three main frequency regions for predominantly 

extensional and flexural waves may be classified. One region below the ring 

frequency, one region above the ring frequency and one region above the 

shear wave cut-on frequency. It could be shown that rotary inertia and shear 

deformation can be neglected up to frequencies where the wavelength 

approaches the thickness of the curved beam. 

W ohlever and llernhard studied mechanical energy in rods and beams 

III analogy to the flow of the thermal energy model [9, 1992J. The authors 

showed that the rod was behaving approximately according to the thermal 

energy analogy. However, the beam solutions differed from the thermal 

analogy unless locally space-averaged energy and power was considered. 

Approximation models for longitudinally vibrating rods and transversally 

vibrating beams were derived relating the time-averaged local power to the 

time-averaged energy density. However, Caracterra and Sestieri have 

demonstrated later on that the thermal heat analogy is generally not 

applicable to vibration in mechanical systems. This is because energy 

transmission among finite sub-structures cannot be extended into a 

differential level using the thermal analogy to describe energy transmission 

within elemental volumes [10, 1995J. 

llouthier and llernhard modelled the energetics of transversally 

vibrating plates using the combination of three different relationships, namely 

the energy balance equation, a dissipation energy model and an 

approximation of energy propagation in the farfield [11, 1995J. The relation 

between energy density, input power density and dissipated power density in 

infinite plates were derived using the asymptotic expansion of the Hankel 

function of the farfield. It was shown that the presented energy expression is 

an excellent approximation in the farfield. In the case of finite plates a plane 
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wave farfield approximation was employed. After a spatial smoothing a 

relationship between energy density and intensity of the finite plate could be 

found. Comparison results to classical energy computation using modal 

descriptions revealed that the approximated quantities were in better 

agreement when internal damping increased. A rather similar study of 

transversally vibrating finite orthotropic plates was carried out in reference 

[12, 2003]. It was found that the approximate solutions agree well with the 

classical modal based energy distribution solutions at global and local levels. 

I3obrovnitskii derived an exact expression of the energy conservation 

law and vibrational power in thin plates when vibrating in flexure [13, 1996]. 

A correction to reference [14, 1995] was given where scattering of flexural 

waves by circular inhomogeneities was investigated. The full energy density is 

defined as the sum of potential and kinetic energy density. Since three 

independent mechanisms cause energy transportation through a plate's cross 

section, effective shear force, bending moment and twisting moment 

components need to be taken into account when defining power quantities in 

plates. Thus, the initial power flow expression of reference [14, 1995] was 

corrected to one containing effective shear force (Kirchhoff-Kelvin edge 

condition), bending moment, and twisting moment terms. It was shown that 

the local energy conservation law as well as the integrated energy 

conservation law is valid, whereas the local energy conservation law of 

reference [14, 1995] fails. 

It is widely accepted that evanescent waves do not transmit energy 

due to their exponentially decaying nature in space. However, I3obrovnitskii 

showed in [15, 1992] and Kurze in the following discussion [16, 1993] that 

evanescent waves can transmit energy. I3obrovnitskii demonstrated that two 

opposite evanescent waves (incident and reflected) at one end of a semi

infinite beam, which are neither in phase nor in counter phase, produce a 

uniform flow of energy along the structure. Although the net power flow 

through the beam's cross section was zero in this example this phenomenon 

has significance in many engineering structures where. discontinuities or 

constraints occur. 
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The modelling of diffuse wavefields was investigated by Langley and 

Shorter in 2002 [17, 2002J. The authors have shown that diffuse wavefields 

can be modelled by using a summation of statistically independent outgoing 

and incoming cylindrical bending waves. These waves can be described in 

terms of nth-order Bessel functions of the first kind or Hankel functions of the 

first and second kind. It has been reported that each cylindrical wave carries 

the same amount of power. These relations also hold true for diffuse 

longitudinal and diffuse shear waves in a plate. 

Lande and Langley derived energy flow expressIOns of cylindrical 

bending waves in thin plates [18, 2005J. Inspired by Bobrovnitskii's results 

that evanescent waves can transmit energy, the interaction of energy flow 

related to evanescent cylindrical bending waves as well as cylindrical 

propagating wave components was investigated. If the displacement of a thin 

plate is composed of outgoing and incoming propagating wave components, 

which are defined by Hankel functions of order n of the first and second kind, 

energy flow is independent of the radius of consideration and there is no 

interactive energy flow between both wave components. Using modified 

Bessel functions for a description of the evanescent field showed that energy 

flow can occur through interaction of the two waves, if certain conditions are 

fulfilled. Using Hankel functions for the evanescent field description, the 

Hankel function of order n and of the second kind was the only one that 

permitted energy flow. 

Xiong et al. [19, 2005J developed a damping based power flow mode 

method that is a derivate of the mobility based power flow mode method 

proposed in extended form in reference [20, 2003J for multi-excitation 

systems. Motivated by the conclusion that time-averaged power flow is equal 

to the power dissipated within a system [21, 1999J damping is chosen to be 

the primary quantity for power transmission definition. Reference [21, 1999J 

gave a thorough definition of power flow in mechanical continuums using the 

concept of an energy flow density vector. The damping based method utilises 

a characteristic damping matrix of the system to determine time-averaged 

transmitted power. The eigenvalues and eigenvectors of the characteristic 

damping matrix represent energy dissipated per unit power flow response. In 
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contrast to this, the mobility based power flow mode approach uses a 

characteristic mobility matrix. The eigenvalues and eigenvectors of this 

quantity represent the energy dissipated per unit power flow excitation. 

Transmitted power is predicted from the product of response vector and 

damping matrix eigenvalues and excitation force vector and mobility matrix 

eigenvalues, respectively. 

Pavic investigated the importance of structural damping in mechanical 

systems in reference [22, 2005]. General relationships have been derived for 

local and global perceptions. It was concluded that on a global level the 

temporal mean total vibrational input power is proportional to the product of 

loss factor and global potential energy, assuming the damping is isotropic and 

uniformly distributed. If the damping is not uniformly distributed over the 

structure, volume integration of the product of loss factor and potential 

energy can be carried out. Identified relations on a local level are that the 

mean intensity divergence (spatial partial derivative of stress velocity 

intensity) is proportional to the product of internal material damping and 

potential energy density. In case the intensity is a complex quantity the 

imaginary part of the intensity divergence is proportional to the mean 

Lagrangian energy density, which means the difference between kinetic and 

potential energy density at the point of interest. 

Two following articles of Pavic are also mentionable. As a subsequent 

study of reference [22, 2005], Pavic studied the energy characteristics of 

damped semi-infinite rods and beams [23, 2006]. Energy density and energy 

flow equations were presented and discussed when considering force and 

moment excitations.It has been shown that an acoustically long finite beam 

can approximate an equivalent semi-infinite beam well. Also, at the 

excitation location the potential energy is discontinuous for a rod or a 

moment excited beam. A computational study on a damped beam-plate 

system [24, 2006] gave an example of vibrational energy and vibrational 

energy flow in a beam attached to a plate. 
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2.4 Conventional Vibrational Energy Flow Measure

ments 

Noiseux's attempt to measure vibrational power was limited by the lack of 

measurement equipment at that time. In 1976 Pavic introduce<;! a wave 

intensity measurement method using an array of 4 (one-dimensional 

structure) or 8 (two-dimensional structure) velocity transducers measuring in 

the far and nearfield [25, 1976]. Using a finite difference approximation to 

obtain the spatial derivatives, the power flow distribution in the structure 

when in flexure was determined. A complete description of structural wave 

intensity for both, one and two-dimensional structures employing the Euler

Bernoulli theory was derived. 

Verheij proposed in 1980 the cross-spectral density method to measure 

one-dimensional power flow for bending, longitudinal, and torsional waves 

[26, 1980]. The cross-spectral density method uses the theory of Fourier 

transform and applies frequency domain signal processing rather than time 

domain processing as used in Parvic's work [25, 1976]. The acceleration as 

the measured quantity is used instead of displacement or velocity. Employing 

a finite difference approximation to obtain spatial derivatives of the lateral 

acceleration, cross-spectral density formulations have been derived. Thus, 

readily available accelerometers can be applied for power flow measurements 

by using widespread multi-channel fast Fourier transform (FFT) analyser. 

The cross-spectral density method is widely employed as the standard power 

flow measurement technique. 

Vibrational power flow outgoing from a source through a spring-like 

vibration isolator with complex stiffness to a finite beam (free at one end and 

arbitrary terminated at the other) was studied by Pinnington and White [27, 

1981]. It was found that for force excitation, power is input to a structure at 

its resonant frequencies and for velocity source excitation power is input to a 

structure in the region of the anti-resonant frequencies. A finite beam model 

has been derived for beam mobility field taking reflection coefficient and 

damping attenuation into account. This model is. used to derive simple 
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expressions for peak and average power transmission from a mass to a finite 

beam via spring-like isolators. Two measurement methods considering power 

input and power transmission have been used to verify the derived mobility 

model. 

The finite difference approximation technique introduces errors to the 

power flow measurement, since the spatial derivatives are approximated by 

finite differences. The true value is underestimated and the error of this 

underestimation increases with increasing accelerometer spacing ~. Thus, the 

spacing should lie in the range between 0.15 and 0.2 of a wavelength. To 

avoid errors due to underestimation, Redman-White suggested a correction 

factor [28, 1984]. Applying this factor to the power flow measurement 

procedure compensates for the finite difference approximation error. Different 

error sources were investigated and recommendations for reliable power flow 

measurements were suggested. 

Additional to the error introduced by the finite difference 

approximation further error sources need to be taken into account when 

measuring power in structures. Ming and Craik [29, 1997] investigated three 

types of bias errors in one-dimensional structures assuming that physical and 

material properties of the test structure are exactly known. It was shown that 

shear deformations and rotary inertia resulted in a large bias error at high 

frequency when using the Euler-I3ernoulli wave theory. At frequencies far 

below a critical frequency where the decaying bending wave component 

became a travelling component, shear deformations and rotary inertia may be 

neglected. The presence of incoherent longitudinal waves during the 

measurement of bending wave power flow resulted in a non-bias error when 

measuring with biaxial accelerometers. However, when the longitudinal waves 

are coherent, the bias error increases with increasing longitudinal to bending 

wave power ratio, especially when employing the two-accelerometer power 

flow technique. Also, when measuring longitudinal wave power the presence 

of bending waves can be crucial to accuracy. Large bias errors may occur 

when the bending waves are incoherent with longitudinal waves and, thus, 

the error increases with increasing bending to longitudinal wave power ratio, 

the distance to beam thickness and the coherence. 
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Linjama and Lahti formulated a comprehensive derivation of cross

spectral density formulations when measuring the bending wave intensity in a 

beam including both, the near and the farfield [30, 1992]. The cross-spectral 

density method was extended utilising frequency response functions to 

estimate three cross-spectral densities required to predict the total bending 

wave intensity for the near and the farfield. With this method only two pairs 

of transducers were needed to predict the entire power flux including near

and farfield. However, one pair of transducers was needed when measuring in 

the farfield only. This method also cancelled phase errors of the 

instrumentation, since the cross-spectral density components were estimated. 

Good results were reported under controlled laboratory conditions. 

Since the structural impedance and intensity are closely related to 

each other, Linjama and Lahti also investigated the measurement of the 

mechanical impedance and the reflection coefficient in beams [31, 1993]. Two 

methods were introduced to determine the reflection coefficient of bending 

waves in the farfield. One method was based on a finite difference 

approximation and the other was based on a direct analogy of the technique 

to measure the reflection of sound waves in ducts. The impedance may be 

estimated using three techniques. They are. based on the finite difference 

approximation, the well known wave impedance, or the estimated reflection 

coefficient. 

ilauman analysed five different estimation techniques to measure 

power flow in a damped beam using a finite difference approximation [32, 

1993]. Two, three and four-position linear transducer configurations as well as 

single-position and three-position linear/rotational transducer configurations 

were taken into account. Effects on transducer spacing and transducer 

positioning were also included in this investigation. It has been found that all 

measurements based on farfield assumptions (two and three-positioning linear 

and single positioning linear/rotational transducer) performed reasonable 

well, even when locating the transducers within the nearfield. The three

positioning linear transducer technique delivered best results. Further, it has 

been pointed out that the four-position linear and three-position 

linear/rotational transducer technique, formulated to consider full field 
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conditions (near and farfield) delivered no acceptable results. It was assumed 

that positioning errors had been introduced. Since the single point 

linear frotational transducer method was easily extendable to two dimensions 

and did not introduce positioning errors plus enabled direct and quick 

measurements, this method was proposed to be the most practical in situ 

measurement technique. 

Walsh and White measured vibrational power transmission in an 

experimental "semi-infinite" curved beam with constant curvature using a 

finite-difference approximation [33, 2001]' An array of six accelerometers can 

be used to measure transmitted power, four in radial direction and two in 

circumferential direction. When exciting the beam in radial direction and 

when flexural waves are predominantly the main energy carrying mechanism, 

the traditional four accelerometer technique can be used. When exciting in 

the circumferential direction and extensional waves are the predominately 

energy carrying mechanism then straight beam extensional and curved beam 

extensional power components may be summed up'. 

2.5 Advanced Vibrational Energy Flow Measure

ments 

Accelerometer based power flow measurements and the usage of a finite 

difference approximation suffer from some drawbacks. Most mentionable are 

the influence on the structure's dynamic response due to added transducer 

masses, unwanted phase mismatch between two or more transducer channels 

and the errors of the finite difference approximation while determining spatial 

derivatives. Thus, alternative measurement and processing techniques are 

desired in order to reduce the conventional accelerometer based method 

errors. 

An alternative approach to the finite difference approximation is the 

wavenumber domain approach that was suggested by Williams, Dardy, and 

Fink in references [34, 1985; 35, 1985]. This approach was applied by a 
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method called structural intensity from the measurement of acoustic pressure 

(SIMAP), which is an outgrowth from nearfield acoustic holography (NAH) 

[36, 1985]. The acoustic pressure in a plane close to the surface of a vibrating 

underwater plate was measured. However, this method can be applied to any 

surrounding medium (e.g. air). From this two-dimensional pressure 

information, the normal surface velocity of the plate has been extracted, 

which is required for SI determination. To obtain the spatial derivatives of 

the· plate's surface velocity a technique relying on the spatial Fourier 

transform has been applied and was denoted as a wavenumber domain 

approach. The wavenumber domain approach employed a derivation process 

of the transformed velocity signals in the wavenumber domain. After 

employing an inverse Fourier transform the spatial derivatives are found. 

SIMAP also provides the user with additional vibrational power and energy 

quantities such as acoustic intensity, injected power, radiated power, and 

energy densities. 

The concept of the wavenumber domain approach to compute spatial 

derivatives of a structure's surface displacement or velocity was analytically 

applied to a beam in flexure by Unglenieks and I3ernard [37, 1993]. Here, the 

wavenumber domain approach was addressed as spatial derivative (SD) 

technique [37, 1993]. Other references denote this technique k-space method 

[38, 1996]. The authors also investigated a second technique denoted as a 

travelling wave technique and carried out an error analysis for both 

techniques. It could be shown that the primary advantage of employing the 

SD"technique, in contrast to the finite difference approximation technique, is 

the ability to handle noise corrupted data. Problems using the SD-technique 

arose due to spatial leakage when a non-integer number of periods from the 

signal are to be analysed. 

The need of alternative power flow measurement techniques led to the 

development of several other techniques. Most mentionable is the near field 

acoustic holography [34, 1985; 35, 1985; 36 1985]. An outgrowth of NAH is 

the broadband acoustic holography from intensity measurement (I3AHIM) 

method, introduced by Pascal et al. [39, 1990]. The authors proposed a 

method, which determined SI in plates using near field acoustic intensity and 
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quadratic pressure measurements under broadband frequency excitation. The 

Fourier transformed pressure field phase gradient, obtained from the 

measured acoustic intensity and the measured quadratic pressure modulus, 

formed a recalculated complex pressure expression. NAH can now be 

employed to calculate the spatial Fourier transformed plate velocity, required 

for further intensity calculation of the plate to predict the energy flowing 

through the structure. 

Another approach to measure the surface deformation of vibrating 

structures is the use of an optical measurement apparatus using 

monochromatic laser light. Laser Doppler vibrometry (LDV) as a potential 

non-contacting optical measurement tool for power flow measurements has 

been widely studied. Hayek, Pechersky and Suen measured near and farfield 

SI using a scanning laser vibrometer on a vibrating beam, free at one end and 

terminated by a sand-filled box at the other (i.e. a semi-infinite beam) [40, 

1990J. The finite difference approximation method was used to determine 

spatial derivatives of the surface velocity. A LDV scans the surface of a 

structure pointwise over a certain mesh size. Amplitude and phase of the 

structure's response to excitation (velocity) are measured and stored in a 

computer ready for post-processing. The acquired amplitude and phase are 

used to construct a complex vibration velocity field needed for power flow 

determination. 

Kojima et al. measured SI in a U-shaped shell using two laser 

vibrometers and compared the measured results with SI results obtained from 

the finite element method (FEM) [41, 1998J. The two laser vibrometers were 

used to detect out-of-plane and in-plane deformation, which were defined in 

derived SI formulations of curved shells. A ratio 0.£ curve radius and bending 

wavelength has been introduced in order to show the amount of curve-term 

intensity in relation to the total intensity. It has been concluded that in case 

of large ratios the intensity of the curved structure can be measured with one 

laser vibrometer only, since in-plane deformations can be neglected. 

Morikawa, Ueha, and Nakamura numerically and experimentally 

applied a scanning laser vibrometer to a finite damped beam and damped 

plate [38, 1996J. Here, the wavenumber domain approach was used to obtain 
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the spatial derivatives. Since noise in the acquired signal will be amplified 

during the derivation process in the k-space or wavenumber domain, the 

authors removed these noise components under usage of a low-pass filter. 

Filter parameters such as filter shape and cut-off wavenumber have been 

investigated in an error analysis. It was shown that the k-space method 

produced better results than the finite difference approximation. 

Blotter and West introduced a three-step experimental power flow 

method [42, 1996J. This method utilised a scanning laser Doppler vibrometer 

to acquire the dynamic response of the structure at three different laser 

vibrometer positions. With the recorded data a continuous 3D complex

valued velocity field model was constructed using quintic I3-splines. To 

obtain spatial derivatives, a 9x9 Jacobian matrix was computed and inverted. 

Having the inverted J acobian matrix, all the complex-valued generalised force 

terms can be determined (shear force, bending moment, twisting moment). 

Calculating the dot product between the force terms and velocities 

(transverse velocity, angular velocity) the vibrational power flow in a simply 

supported thin steel plate at three frequencies has been determined. It was 

demonstrated that at resonant and off-resonant frequencies energy 

transmission can be identified using this method. 

Zhang and Mann III [43, 1996J investigated two different intensity 

formulations. One was earlier introduced by Pavic [25, 1976J and one was 

introduced by Romano [44, 1990J.· I30th formulations were applied to a 

viscoelastic damped plate using a laser vibrometer. Romano's intensity 

formulation relied on the three-dimensional elasticity definition. This 

formulation was simplified here by using the assumptions of Mindlin's plate 

theory (1951) [45, 1951J. Thus, longitudinal forces and in-plane shear forces 

corresponding to longitudinal and in-plane shear waves have been taken into 

account. The classical plate theory did not produce good results for sharp 

transients or at high frequency modes. A force distribution expression was 

used to identify vibration sources, based on Mindlin's plate equation of 

motion. The authors also investigated signal processing techniques such as 

windowing in the spatial domain and filtering in the wavenumber domain to 

overcome difficulties when analysing discrete data using a FFT. It could be 
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shown that at low frequencies both formulations produced almost identical 

results. Further;more, the effect of windowing may be corrected, whereas the 

effect of filtering cannot be corrected. 

Nejade and Singh applied a two-dimensional spatial Fourier transform 

In combination with a k-space filtering procedure to compute flexural 

intensity from a grid of lightweight accelerometers III finite plates with 

arbitrary boundary conditions in 2002 [46, 2002]. The authors employed a 

wavenumber domain filtering procedure, which was related to the well known 

modal superposition principle to remove noisy spectral components. Not all 

the vibration modes were included in the intensity calculation, since many 

modes contained unwanted information such as uncorrelated noise. Therefore, 

an ideal band-pass filter, centred at the wavenumber of the vibrating 

structure, was applied. Reactive and active flexural intensity maps were 

studied. Based on experimental results it was concluded that the reactive 

bending moment and shear force intensity components represented the 

deformation shape of the vibrating structure. Calculated active intensity 

components were used to detect source, absorption locations and transfer 

paths of energy. The shear force component has been identified as the most 

useful quantity to identify sources, since moments on the point of excitation 

are negligible. It was also concluded that at resonant frequencies of 

undamped plates where high standing waves were present, energy source 

localisation may be hampered. 

Pascal et al. employed a two laser vibrometer system to measure SI in 

plates, whereas no reference signal was used [47, 1993]. The focus on this 

work was drawn to develop a measurement technique suitable for industrial 

application.. Below the critical frequency of the plate, processing of 

evanescent waves is not an easy task, if one is interested in measuring 

intensity quite close to points of excitation locations or discontinuities. The 

technique proposed in this paper used the same principle as the BAHIM 

method. Thus, the complex velocity was obtained from the inverse Fourier 

transformed phase gradient of the velocity field and the modulus of the 

measured velocity by the two laser vibrometers. The finite difference 

approximation technique was then applied to find the first spatial derivative. 
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Another non-contacting laser based measurement method is the usage 

of holographic interferometry (HI). HI is a measurement technique, which 

utilises monochromatic laser light to construct a hologram that is based on 

the principles of interference and producible in a Michelson interferometer. 

However, whole-field measurements rather than point wise scanning (LDV) 

measurements can be carried out. Pascal et al. applied HI to measure SI in 

an aluminium plate by measuring the flexural complex velocity of the whole 

vibration field [48, 1993]. Double-exposure and double-reference 

interferometry were employed to measure the velocity magnitude and the 

phase using a pulsed ruby laser. Two almost identical temporal exposures 

were recorded on the same photosensitive medium. The laser light reflected 

by the specimen interfered with the reference beam light for each exposure. 

The velocity information was then obtained due to an optical path change 

between the two exposures, assuming the surface state of the specimen had 

altered. Taking two holograms at one period in time, the complex vibrational 

field was found [49, 1995]. 

In high standing wave vibration fields the finite difference 

approximation method reduces its accuracy, since non-propagating wave 

components that form the standing wave field, result in measurement errors 

[49, 1995]. Using the k-space method in combination with HI it was possible 

to measure very weak energy flows close to the structure's resonant modes. 

For comparison reasons an energy transfer indicator was employed to 

compare measured intensity with the theoretical intensity present in an 

infinite plate due to flexural wave propagation. A 2D-FIR filter was used to 

reduce measurement noise that contaminated the signal prior to 

downsampling the image to 32 or 64 points [50, 1996]. Additionally, a low

pass filter was applied in the wavenumber domain to minimise the noise 

amplification during the derivation process. 

It is well known that discontinuities in signals to be processed by a 

FFT result in a spectral leakage effect. The signal discontinuities may occur 

due to a non-periodic signal truncation. However, the computation of SI relies 

on the exact determination of the spatial derivatives obtained from the 

inverse transformed spectral derivatives. Thus, truncated signals will 
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introduce errors into the computation. Pascal et al. introduced a novel mirror 

processing technique to overcome the problem of leakage in 2002 [51, 2002]. 

This mirror technique created a continuous and periodic signal from the 

acquired original signal simply by mirroring the original signal at its ends. To 

ensure a smooth connection to either side of the original signal while 

mirroring, a link function (linear and cosine based) was employed. It has been 

demonstrated that this technique produced better results than applying 

either the spatial Fourier transform directly or padding the signals by zeros. 

Numerical examples were given for a free-free beam measured by using a 

scanning laser Doppler vibrometer. 

Theoretical estimation of SI in naturally orthotropic plates has been 

carried out by Mandal et al. [52, 1998]. A two-transducer measurement 

method, which employed one cross spectra only, similar to the conventional 

two-accelerometer measurement technique of isotropic structures, was 

presented to predict SI at a single point within the structure. As an extension 

to this study, Mandal et al. investigated theoretically structure borne power 

transmission in thin naturally orthotropic plates [53, 2003]. Stress-strain 

relations were defined by using Young's modulus and the Poisson ratio in the 

x and y directions of the plate. Vibrational power expressions were derived 

using the complex power method. Employing the frequency response 

technique, as proposed by Linjama and Lahti [30, 1992], it was demonstrated 

that 15 cross-spectra of accelerometer signals are required to measure 

vibrational power in thin orthotropic plates when including the nearfield. 

This study has been extended by measuring the.vibrational energy transfer in 

naturally thin orthotropic plates lising the two-accelerometer method [54, 

2005]. It could be shown that the two-accelerometer method can be used 

when measuring SI in thin orthotropic plates. The author applied the method 

of elastic equivalence [55, 1976] to quantify vibrational power flow in 

naturally orthotropic plates. In addition to this, experimental study on quasi 

longitudinal waves was carried out in 2006 [56, 2006]. Also here, the two

accelerator method and the method of elastic equivalence were employed in 

order to measure quasi-longitudinal wave power in rectangular and 

trapezoidal corrugated plates. 
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2.6 Vibrational Energy Flow Measurements Using 

ESP I 

Petzing et al. measured surface intensity using electronic speckle pattern 

interferometry (ESPI) [57, 1996]. The surface intensity was predicted by 

measuring the vertical in-plane surface displacement on a resonant aluminium 

alloy beam free at one end and anchored in a damping sand box at the other 

end. The results were compared to vibrational power measurements using 

strain gauges and accelerometers. A close agreement has been found. The 

authors concluded that ESPI may be a potential measurement tool to 

measure vibrational power, especially when dealing with two intensity 

dimensions. 

Alves et al. measured intensity in a free-free plate using a double 

pulsed ruby-laser to illuminate the vibrating object [58, 2000]. Amplitude and 

phase were determined by using a system of transcendental equations that 

corresponded to the acquired measurement information at two instants in 

time. Spatial derivatives were computed by employing regressive discrete 

Fourier series [59, 1992] in the wavenumber domain. A smoothing technique 

to smooth measured ESPI data using the two-dimensional discrete Fourier 

series was applied and noise spikes were filtered out by using a median filter. 

Measured structural intensity maps have been presented in terms of active 

and reactive intensity of the shear force, bending moment and twisting 

moment. Results were compared with computed intensity using finite element 

modelling. Despite good agreement at some cases no comparison to 

conventional measured power data were given nor were the measured and 

computed results compared in an example. 

Chambard et al. applied TV-Holography to different mechanical 

structures (clamped plate, washing machine and cylinder) [60, 2002]. With 

the use of a special software called VIP ART software [61, 2000] amplitude, 

phase, intensity, divergence and force distribution maps have been produced. 

This software was developed to determine SI and acoustic radiation of planar 

structures. Data input from holographic and scanning laser vibrometer 
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measurements was also possible. Image processmg of holographic data 

enabled the correction of amplitude and phase if geometrical distortions were 

present. The wavenumber spectrum of a two-dimensional Fourier transform 

was used to compute spatial derivatives and SI divergence required for 

determining vibrational energy flow, energy sources and energy sinks. 

Acoustical radiation calculation can also be calculated by the program. It was 

shown that TV-holography is a new and valuable tool for engineers working 

in the field of vibration and noise, targeting structural behaviour 

improvement. 

Eck and Walsh applied ESPI to measure vibrational power in a 

heavily damped beam using the SIMESPI method [62, 2003; 63, 2004 and 64, 

2006]. A continuous 150 mW frequency doubled Nd:Yag laser was applied by 

a stroboscopic pulse that was synchronised to the excitation frequency of the 

structure. At a frequency rate of 25 Hz, the surface displacement of a 

transversally vibrating beam has been recorded at three different excitation 

frequencies. The wavenumber processing technique of the measured beam 

displacement was employed to determine the spatial derivatives required for 

energy flow computation. Comparisons with conventional acquired input 

power and transmitted energy data using transducers were made. It has been 

shown that measurements at local minima and local medium magnitude of 

the frequency response function showed a good agreement to the conventional 

measured vibrational power. However, at local maxima of the frequency 

response measurement errors occurred, mainly due to parasitic torsional 

motion within the beam. 

2.7 Vibrational Energy Flow Measurements of 

Engineering Structures 

VEF A is still restricted to built up structures such as beams and plates 

having different boundary conditions or different material properties. 

However, there are also a few applications to "engineering structures. 
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Kwon and Ih [65, 1998J measured vibrational power flow in a two-span 

belt-pulley system using two closely spaced laser velocity sensors. Vibrational 

power flow was obtained in the farfield only using a finite-difference 

approximation of the measured velocity signal. It has been concluded that 

the total vibrational power is the sum of true power flow and the power flow 

related to the belt motion. 

Lee and Kim applied the concept of vibrational power flow analysis 

and multi-dimensional transfer path analysis to a compressor system, which 

was mounted in an air conditioner chassis [66, 2004J. Three major paths of 

high energy flow were identified and their individual contributions to the 

total power were investigated. Sound pressure level measurements were 

compared with acceleration level measurements on the structure surfaces and 

it was shown that VEF A can be used to qualitively predict the level of noise 

radiation. 

Hussein and Hunt applied a power flow method to evaluate the mean 

power flow generated by underground railways, which radiated sound into 

nearby buildings [67, 2006J. An infinite train that moved with constant speed 

within a thin shell, which represented the tunnel surrounded by an infinite 

medium was used in the modelling process. A track model and a tunnel soil 

model were derived. Wavenumber-frequency domain coupling between Euler

Bernoulli beams (track system) and a thin shell (tunnel) embedded within an 

infinite medium (soil) was employed in order to investigate different effects of 

different model parameters on power flow. 

Lee measured vibrational power through 18 isolators located on 

different positions in a passenger car to identify high power transmission 

paths generating a booming noise in the back [68, 2004J. Vibrational power 

expressions of isolators were derived using an isolator apparent mass matrix 

and cross spectrum information between source and receiver accelerations. 

Acoustic transfer function measurements and experimental modal analysis 

were used to visualise the relationship between vibrational power of the 

isolators and interior noise. The transmission path identified as the major 

power path generating the booming noise was then modified and a decrease 

in interior sound pressure level could be achieved. 
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2.8 Vibrational Energy Flow from Finite Element 

Method 

Computing vibrational power or SI with the aid of the finite element method 

(FEM) has been a concern to many researchers. The advantage of this 

method is that the structural response information of vibrating complex 

structures can be obtained numerically for each discretised structure element. 

Element forces and motion quantities, such as displacement and velocity, can 

be used to calculate vibrational power at each grid point. This information 

enables the localisation of vibrational power or SI in magnitude and direction 

in the structure itself. 

Outgoing from studies referenced in [69, 1990], Hampric determined 

vibrational power and SI of a simple truss structure and a beam-stiffened 

cantilever plate at low frequencies [69, 1990]. Vibrational power flow and 

input power equations due to lateral, longitudinal, and torsional structure 

motion were derived. An analytical FEM study of the simple truss structure 

revealed different flow scenarios at different frequencies between the truss 

members. Also, different power flow pattern at different frequencies of the 

beam-stiffened cantilever plate were revealed. 

Continuative from [69, 1990], Hambric and Taylor applied a FEM 

power flow analysis to real structures [70, 1994]. A straight steel beam 

excited at one side and attached to a rigid rubber mount at the other side 

was investigated. Rubber mounts with different end impedances were used. 

The different termination impedances symbolised different damping levels at 

the beam's end. Two cases, low and high damping were considered. The 

measured beam termination impedance was then used as an input to the 

FEM model to characterise the boundary condition of the rubber mount. 

Comparison to conventional measured flexural power using three 

accelerometers was made. It has been concluded that FEM based power flow 

predictions can be carried out if the boundary condition input to the FEM 

model is accurate enough. 
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Gavric and Pavic used the normal mode approach to compute SI 

under use of the FEM [71, 1993]. SI expressions of beam, plate and shell 

structures were derived using variables often employed in finite element 

computation such as internal forces and moments as well as translational and 

angular displacements. A dissipation free simply supported plate with an 

attached viscous damper was investigated in order to estimate the 

convergence of the modal superposition principle. It has been shown that a 

large number of modes are required to achieve a good approximation of SI, 

particular at discontinuities, sources and sinks. Therefore, modal analysis 

cannot be used directly for SI predictions, since this procedure is limited to 

lower modes. However, the problem was overcome by using a swept static 

solution to provide additional mode information. 

Li and Lai employed the FEM to calculate SI and surface mobility in 

a simply supported aluminium plate [72, 2000]. The full method for harmonic 

response solution was applied rather than using the mode superposition 

approach. This method used full matrices of the system to be analysed 

without any simplifications. The first and third bending modes were 

investigated. SI plots of both modes were presented for three different 

scenarios. The scenarios were a point force excitation of a lossless plate 

having an attached damper, a point force excitation of a non-lossless plate 

without viscous damping and a force excitation of a non-lossless plate over a 

finite area. It has been shown that the excitation locations as well as energy 

sinks and the position of the attached viscous damper could be identified in 

the SI plot. However, the root-mean-square (rms) velocity distribution from 

FEM prediction did not give any identification about energy sources and 

sinks. Furthermore, it was demonstrated that the FEM determined surface 

-mobility agreed well'with the analytically determined mobility. 

XU et aL investigated vibrational power flow behaviour in a beam 

stiffened plate system under usage of the FEM [73, 2005]. A simply supported 

rectangular steel plate, stiffened by an unsymmetrical eccentric flat stiffener 

was analysed. It could be shown that the stiffener had the effect of localising 

the amount of energy flux in the plate at the stiffener position as well as 

changing the directions of the flow itself in the stiffener vicinity. It has been 
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shown further that the total power flow was depending on the natural 

vibration frequency of the whole plate-beam structure. Also, the relative 

percentage of power flowing through the plate and the stiffener was 

depending upon the ratio of the two structure flexural rigidities. 

Mace and Shorter employed the FEM to create an energy flow model 

that can be efficiently computed [74, 2000]. Two approaches a global and a 

local approach were presented. The latter one can be related to the procedure 

used in statistical energy analysis (SEA) where the FEM based analysis is 

performed on a subsystem level. This information was then coupled with each 

other in order to gain global energy information of the complete system. 

Damping was included in terms of applying the loss factor approach. A 

numerical example of a coupled three plate structure was presented. 

SI in plates using a range of springs and dampers has been of interest 

in [75, 2004]. A simply supported plate was investigated using the FEM. It 

could be shown that VEF for single as well as multiple damper positions was 

identified, enabling control of VEF. When using dampers with a large 

damping coefficient, a damper with less damping coefficient located in the 

proximity of this damper had less effect in dissipating vibrational energy. 

Lee et al. applied the FEM in combination with the SI technique to 

detect cracks in a simply supported plate [76, 2006]. The detection process 

was due to changes in intensity pattern at vicinity of the crack. Different 

crack positions and damper locations have been investigated. It was found 

that cracks can be detected with the aid of the SI technique if the location of 

the crack was not parallel to the intensity flow. Smaller cracks were more 

difficult to detect than larger ones. It was also shown that intelligent 

positioning of dampers close to the crack tips may divert the energy flow 

around the crack. Thus, this method may be used to protect the structure on 

a temporary basis from further damage. 
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2.9 Miscellaneous Applications in Vibrational Energy 

Flow Analysis 

Wang et al. applied a least-square J3-spline approximation to a vibrational 

velocity field to determine SI [77, 2006]. This method can be seen as an 

alternative to the SD-technique. It was demonstrated that the use of D

splines resulted in a Iow-pass filtering, similar to the k-space filtering 

procedure, to remove unwanted noise components. It was also'shown that the 

J3-spline approximation technique did not require periodic and equally spaced 

velocity data. However, this requirement is essential when using the spatial 

Fourier transform to compute spatial derivatives.- The D-spline method was 

applied on a simply supported aluminium plate that was excited by two 

shakers. 

Arruda introduced a regressive discrete Fourier series method (RDFS) 

as an alternative to the two-dimensional spatial Fourier transform [59, 1992], 

which is suitable for SI computation. This method was employed to smooth 

data used for partial spatial derivative computation from measured data 

contaminated by noise. The RDFS method estimated coefficients using the 

two-dimensional discrete Fourier series of data having an arbitrary period 

and an arbitrary frequency resolution in a least-square way. It was shown 

that the RDFS method is computationally more efficient and precise than the 

smoothing process using a common 2D FFT. It has also been shown that this 

method may also be applicable to data that are non-equally spaced and 

stored in a non-rectangular form. 

Energy source localisation using the reactive SI has been a concern in 

a study of Alves and Arruda [78, 2001]. It was demonstrated that using the 

divergence of the reactive SI in combination with the potential and kinetic 

energy densities, the source of a vibrating aluminium beam (simulated 

numerically using FEM) could be localised in a reverberant environment. 

Usually in high reverberant structures active SI is hard to measure, since the 

net energy flow tends towards zero due to high discontinuity reflections. 
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Control of vibrating structures in either a passive or active way is of 

great concern to many researches in order to suppress unwanted vibration, 

especially at resonant frequencies. The SI method can be employed as a 

control input measure once the dominant paths of a vibrating structure are 

identified. 

Fuller and llurdisso suggested the use of a feedforward controller 

applied in the wavenumber domain to minimise sound radiation by 

minimising the appropriate structural wavenumber component of the spectral 

acceleration [79, 1991]. 

Arruda presented extended results on the active control of power flow 

in plates outgoing from previous studies referenced in the same publication 

[80, 1998]. The principle of these studies was to use controlling forces to 

dissipate input power as a measure to reduce vibrational power transmission. 

Mace et al. introduced a real-time measurement method to measure 

near and farfield wave components in a beam. The measured wave 

components were estimated by digital filtering, designed in the frequency 

domain by employing a wave decomposition approach [81, 1998] and 

implemented in time domain as finite impulse response (FIR) filters [82, 

2005]. 

Liu and Lu applied the SI method to attenuate the interior noise level 

of a simple box using passive and active control methods [83, 2006]. The SI 

method was used as a measure to detect dominant paths, which can then be 

manipulated in magnitude using dampers or controlling forces. The results of 

numerical simulations were presented using the FEM. 

Wu and White presented a wave based approach to analyse 

vibrational power transmission applicable to a finite multi-supported beam 

with different support and end conditions [84, 1995]. Input power and 

transmitted power expressions were derived and different scenarios such as 

excitation location or internal damping magnitude were investigated. A 

subsequent paper extended this study by investigating the manipulation of 

vibrational power using a hysterical damped single degree of freedom (SDOF) 

mass-spring system, known as a neutraliser [85, 1995]. 
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A similar study has been carried out by El-Khatib et al. in 2005 

investigating the influence of a tuned vibration absorber (TV A) to minimise 

vibrational energy transmission or maximise vibrational energy absorption 

[86, 2005]. Near and farfield positions of the TVA were taken into account 

and the influence of different tuning parameters was analysed. 

Zhu et al. studied the vibrational power flow behaviour of an infinite 

open cracked Timoshenko beam in dependency upon different geometrical 

parameters. The numerical study was compared to perfect beam structures. 

It has been found that the vibrational power flow method can be used as 

crack identification procedure however, the method is not very sensitive to 

small cracks. 

Wang et al. focused on the study of a coupled plate-cylindrical shell 

system using VPFA [87,2004]. Receptance functions for both structures were 

determined using modal analysis. The coupling of both structures was carried 

out using dynamic information from the externally excited substructures and 

reactions at the interface. Power flow results have been presented within the 

substructures and at the interfaces. The proposed method enabled simple and 

efficient calculations at higher modes, since the modes are defined by 

hyperbolic and trigonometric functions, which had continuous derivatives. 

2.10 Moment Excitation of Structures 

Moment excitation has been neglected within power flow analysis over the 

last decades as it was assumed that power input to structures due to moment 

excitation is more essential in the high frequency region [88, 1996]. However, 

recently it has been shown that moment induced power at low frequencies is 

important to be included in analysis when sources are in proximity of 

discontinuities [89, 1993; 90, 1999; 91, 1999]. Also, difficulty in measuring the 

moment and its appropriate rotational response was one reason to exclude 

moment excitation in structural analysis. Here, problems arose in the attempt 

to induce a pure excitation moment to a structure. The then measured 

moment point mobility differed from the true moment point mobility due to 
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the presence of non-zero cross mobility terms. [92, 1998; 93, 1995J. However, 

with the knowledge of these non-zero mobility terms the measured moment 

point mobility can then be corrected in order to obtain the true mobility. 

Petersson investigated the acoustic power transmission in a combined 

moment and force excited beam and frame-like structure [89, 1993J as well as 

plate-like structures [94, 1993J. Spatial variations near discontinuities were 

the focus of the' work. Complex eccentricity, allowing for a phase shift 

between force and moment has been used to express the moment itself. Since 

force and moment derived quantities are dimensionally incompatible, 

transmitted power has been used as a comparison measure. Therefore, force 

and velocity expressions needed to be known. Asymptotic expressions of 

point- and cross-mobilities due to force and moment excitation were 

presented. Numerical results have shown that moments are important to 

include in the power transmission analysis at all frequencies if the translatory 

motion at discontinuities is constraint. On the other hand moment induced 

transmitted power can be neglected if the discontinuities are free from 

translatory constraints. 

Two giant magnetostrictive rods used as a moment actuator was 

proposed by Petersson [95, 1987J. The use of two electrodynamic shakers to 

induce a moment to a structure was restricted due to physical shaker 

dimensions and a difficulty in matching the exact phase between the two 

shakers. Problems with stability, heating the coils due to the high current 

required to generate the magnetic field were the drawbacks of this technique, 

which may also be applied to other forms of excitation. 

Jianxin and Gibbs [92, 1998J demonstrated that in principle a twin

shaker excitation system cannot induce a pure excitation moment to a 

structure. The reason for this is that the magnitudes of the shaker forces are 

mainly driven by the structure response. Furthermore, a correction is difficult 

to make, since the shakers do not match with each other. Therefore, true 

moment mobility cannot be determined directly from measured data. The use 

of magnetostrictive rods overcomes the matching problem of twin-shakers. 

However, the measured mobility may be corrected in order to obtain true 

moment point mobility. 
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Vibrational power transmissions to machinery supporting structures 

subjected to multi-excitation systems has been of interest in Koh's and 

White's study [88, 1996J. Since mobility can be related to power in relation 

with force, the authors have derived driving point mobility functions of 

uniform beams and rectangular plates. Measured mobilities on a clamped

simply supported beam and clamped-free-simply supported-free rectangular 

plate were compared to theoretical solutions. The theoretical response of the 

plate has been derived using the Raleigh-Ritz method. It was found that for 

finite beams and rectangular plates the driving point coupling mobility 

always exists. Exceptions occurred when the exCitation point was located at 

the same position of mode shape symmetry. High frequency behaviour of 

finite structures in terms of moment and force exCitation was in good 

agreement with theoretical finite structures when using higher hysterical loss 

factors. However, difficulties occurred with the measurement of rotational 

response at lower frequencies and the measurement of moment excitation. 

Especially the latter one raised questions of measurement accuracy. Mass 

load issues have also been of real concern. 

VEFA and control schemes of structures was the subject in references 

[96, 1996; 97, 1996J when exposing the structures to multi-excitation. It has 

been shown that in situations in which the driving point coupling mobility 

exists (see [88, 1996]) all three mobilities contribute to vibrational power. The 

real part of the driving force mobility and moment mobility was always 

positive. However, the real part of the driving point coupling mobility can be 

both positive and negative depending on the mode shapes of vibration. If this 

real part is negative vibrational power will be diminished and this 

cancellation effect was employed as a basis for the proposed vibration control 

technique. 

Moment excitation of structures raises problems in accurate measuring 

of the different dynamic quantities. Sanderson and Fredo investigated 

moment excited beam structures using a T and I-shape exciter configuration 

[93, 1995J. A method was derived to investigate the effects of loading due to 

moment exciter mass and transducer mass. Different force and force-moment 

ratios were derived in order to assess the quality of the measurement such as 
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the exciters adjustment or the quality of excitation. It has been shown that 

two main bias errors when measuring moment mobility with T and I-shape 

configurations occurred. One error was caused by wrong moment 

measurement due to exciter inertia. The other was caused by unwanted 

excitation and, thus, errors occurred in the rotational velocity measurement. 

The latter one can be divided further into the measurement object's 

sensitivity due to false excitation and the quality of moment excitation. iloth 

are represented by different mobility and force-moment ratios. These errors 

mainly arose due to adding mass of the moment exciter, which introduced 

unwanted force excitation (especially at resonant frequencies) and differences 

between the exciting force couple to form the moment. Errors in measuring 

the moment can be tackled at best by subtracting the rotational inertia term 

of the moment exciter configuration or using a proper design to keep the 

inertia very low. At low frequencies rotational inertia loading may be 

neglected. It has also been shown that the I-shape exciter configuration was 

the better choice when exciting structures by a moment. 

Measurement of moment mobility using a T and I-shape exciter 

configuration has been carried out by Sanderson [98, 1995J using direct two

channel measurements. Two dynamic exciters were used to apply a moment 

to a free-free steel and L-shaped steel free-free beam structure. As shown in 

theory, the bias error due to the exciter, rotational inertia was compensated 

simply by subtracting the inertia term from the measured moment. Upper 

frequency limits were driven by the moment exciter resonance frequency. It 

has been demonstrated that. I-shape configurations are slightly better in 

moment excitation measurements due to a lower mass and the direction of 

the applied force. However, both configurations can produce significant 

measurement errors, which are mostly caused by the total mass attached to 

the vibrating structure. 

Champoux et al. applied an almost pure moment excitation to a 

simply supported aluminium plate [99, 2003J. The authors employed two 

impact hammers to generate a force couple, separated by a certain distance 

and were acting parallel to each other and in opposite direction. Theoretical 

investigations have been undertaken to investigate the limits and validity of 
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this approach. The coupling between plate and impact hammers was studied 

in theory using a plate-hammer model. The impact hammers were driven by 

two electric motors. These motors were controlled by a digital signal 

processor. The theoretical calculated quantities translational moment 

accelerance and rotational moment mobility were coin pared to the equivalent 

experimental quantities. An almost identical force impact had been achieved. 

It was realised that .different force separation distances may be taken into 

account to measure a wide range of frequency, since large force separations 

excited Iow frequency modes better and vice versa. 

Yap and Gibbs measured force [90, 1999J and moment [91, 1999J 

induced power at the interface of machine and receiver using the reciprocal 

method. The principle of reciprocity states that source and receiver positions 

are interchangeable. Under use of this principle power equations using 

transfer mobilities of excitation and selected remote points were derived. 

Therefore, the necessity to measure force and moment at point of contact 

between machine and receiver could be excluded. This exclusion was 

necessary as most interfaces could not be disconnected to directly measure 

force, nor was a moment transducer available. Since the moment could not be 

measured at the footage of the machine, reciprocal relationships were used to 

replace moment cross-transfer mobilities by associated force cross-transfer 

mobilities. Applying this indirect method measurement of a centrifugal fan 

connected to a concrete plate were carried out for single-point force and 

multi-point force contact [90, 1999J as well as for single-point force and 

moment contact [91, 1999J. It was shown that away from discontinuities the 

transmitted power is mainly dominated by the vertical input force at Iow 

frequencies. At higher frequencies moment induced power became more 

important. However, in proximity to discontinuities moment induced power 

became also essential at Iow frequencies. 
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2.11 Summary and Conclusions 

This literature survey has introduced the most important research carried out 

in the field of VEFA, which is related to the work undertaken within this 

thesis. Additional to the references given above a huge amount of VEFA 

literature can be found from published proceedings of the international 

congresses on intensity techniques hosted four times in Senlis (France) by the 

Centre Technique des Industries Mecaniques (CETIM) [100, 1993]. 

Section 2.3 has introduced the theory of VEF briefly. Some of the 

most important publications were summarised. Because a huge amount of 

literature on the theory. of VEF can be found, this section gives only a short 

introduction into the subject. However, the basic theory of VEF is developed 

in detail in chapter 3. 

Different types of measurement techniques to measure VEF, 

considered as a main objective within this work, were introduced within 

section 2.4 to section 2.6. VEF measurements are categorised here into three 

groups namely conventional VEF measurements using accelerometer probes, 

advanced VEF measurements introducing NAH, BAHIM and LDV based 

measurements and previous work done on ESPI based VEF measurements. 

Additional to the measurement technique the use of FEM based VEF 

methods were highlighted. FEM based VEF computation is considered as an 

alternative to the VEF measurement techniques, which still are restricted to 

simple build-up structures such as beams, plates, shells, or pipes. Thus, FEM 

based energy computation may be a potential tool in many engineering fields 

especially on a pre-development stage of products subjected to vibrational 

environments. 

Some case studies on VEF related measurements on real engineering 

structures were also reported. Additionally, miscellaneous applications of 

VEF A were presented in order to give a more complete overview about the 

work done within this research area. 

It should be mentioned that almost every study reporting on VEF in 

beams and plates did not include an error analysis, energy balance or 

sensitivity study. Most conclusions found in the literature were restricted to 
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subjective comments such as the measurement of VEF was feasible, 

applicable or seemed to work well. An objective validation of these subjective 

conclusions were .often neglected. Therefore, within this thesis attention was 

mainly drawn to the theoretical and numerical implication of the' 

measurement technique to be proposed. Thus, an error and sensitivity 

analysis was taken into account for each type of structure to be investigated. 

Further, literature reporting on the VEF measurement using ESPI was 

restricted to case studies only . No reference was found that studied the 

application of ESPI to measure VEF in structures on a fundamental level. 

It was also shown within this literature survey that the application of 

the k-space technique has certain advantages over the finite difference 

approximation, especially when two-dimensional signal processing is required. 

Hence, this method was chosen as an essential part of the VEF measurement 

technique proposed within this research. 

Section 2.10 reported on literature, which investigated the subject of 

moment excitation of structures. Because this subject was almost neglected in 

the past only a few essential publications were found. However, most 

proposed moment excitation measurement techniques are either fairly 

complicated or potentially erroneous. Thus, focus was drawn within this 

research to develop a novel, simple and easy to implement moment 

measurement technique. 
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3 DEFINITION OF VIBRATIONAL 

ENERGY FLOW AND ENERGETIC 

QUANTITIES 

3.1 Introduction 

The aim of this chapter is to introduce the concept of vibrational energy flow 

(VEF) and its related quantities used throughout this work, for one

dimensional (beam) and 'two-dimensional (plate) structures. Thus, in section 

3.2 general energy based balance equations are presented in order to point 

out relations between vibrational energy flow, structural intensity (SI), 
I 

energy dissipation, and vibrational input power (VIP). Section 3.3 introduces 

a practical general mechanical power definition applicable to most vibration 

scenarios in VEF analysis (VEFA). The general definition of SI as an 

essential measure in VEFA is introduced in s~ction 3.4.. Input power and 

VEF expressions derived from internal forces and moments occurring during 

transverse harmonic force excitation of beam and plate-like structures are 

presented in the remaining sections. 

3.2 Vibrational Energy Relations 

In the existing literature a huge amount of vibrational energy and vibrational 

power based definitions are used. So far no standardisation of energy based 
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expressIOns has been achieved. There is now a huge amount of literature 

sources available that provide energy based quantities and its derivatives on 

a fundamental level. Most mentionable are references [9, 11, 19, 21, 22, 101, 

and 102]. The energy balance of different types of energy densities within a 

structure present in a given volume of interest can be written as [11]: 

(3.1) 

Here, e", is the total energy density (energy per unit volume), V is the 

-volume, A is the cross-sectional area, t denotes the variable time, a is the 

stress tensor, U is the displacement vector, ;r,,, denotes the input power 

density (energy input per unit time per unit volume) and Ttdi .••• represents 

dissipated power density (energy dissipated per unit time per unit volume). It 

can be noted from equation (3.1) that the sum of total energy density flow 

(energy density rate) and dissipated power density is equal to the sum of 

energy intensity flow and input power density that is injected into the 

system. The first integral on the right-hand side of equation (3.1) represents 

an energy density flow within the region of interest and its kernel is known as 

SI. This quantity is introduced later in section 3.4. Taking into account that 

the outflow of SI is negative and using the divergence theorem of the SI 

equation (3.1) can be rewritten as: 

ae ~ 
---.!!!L=7r -7r. -\7.[. at In dU8 

(3.2) 

Herein, I = if ail / at denotes the SI vector and \7.[ represents the 

divergence of the SI, defined later on by equation (3.19). This equation is 

known as the power balance equation for all elastic media and is true for 

steady state or transient analysis [11]. In the case of a steady state analysis 

spatial variation is considered only. Thus, the temporal differential of the 

total energy' density is zero. Taking this into account equation (3.2) 

rearranged can be reduced to: 

43 



3 Definition Of Vibrational Energy Flow And Energetic Quantities 

'lrin = 'V ·1 + 'lrdi ,9,'i' (3.3) 

The power balance shown in equation (3.3) states that the power input 

density supplied by an external source is equal to the energy flow (although 

here divergence of SI is shown) moving out of the volume through the volume 

boundaries and power density dissipated within the volume. This is a very 

important definition. If equation (3.3) is applied to infinite structures, often 

the dissipation process is neglected and, hence, input power is equal to the 

outflow of energy. If equation (3.3) is applied to finite structures that have a 

small or negligible energy outflow, the outflow divergence of SI can be 

neglected and, thus, only the dissipation process becomes essential. 

The dissipation process within the volume can be seen primarilr as a 

conversion of vibrational energy flow into heat. There are also losses due to 

sound radiation into the surrounding medium. Within this work a hysteretic 

damping approach is used to account for structural losses. The structural loss 

factor is defined in reference [103J as: 

1 rr 
T/ = - -!!i!!. . 

27r e.,.e.v 
(3.4) 

Here, e~" is the reversible mechanical energy density. Due to the ratio of 

dissipated energy and reversible energy density, the loss factor indicates the 

fraction of energy lost during one cycle of vibration. Another definition of the 

loss factor, quite similar to (3.4), is given in reference [lJ as: 

1 energy dissipated per cycle 
T/ =-

2rr max energy stored during the cycle 
(3.5) 

It can be seen from equations (3.4) and (3.5) that the structural loss factor 

defines the amount of energy lost during one cycle of vibration. Thus, 0 :s; 7l:S; 

1. In statistical energy analysis (SEA) it is often assumed that the energy 

injected into an isolated subsystem is equal to the energy dissipated within 
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the isolated subsystem. Further, it is also assumed that this dissipated energy 

is proportional to the total energy such that [104]: 

(3.6) 

In equation (3.6), m is the corresponding circular frequency that accounts for 

energy dissipated per cycle of vibration. Equation (3.6) shows a simple 

relationship between dissipated energy density and total energy density. It 

can be noted that the dissipated energy density is proportional to the product 

of total energy density, circular frequency, and structural loss factor. 

However, for many structures the total energy density is not distributed 

uniformly across a vibrating structure. Thus, equation (3.6) cannot be 

applied at a local level [22]. Time-averaged energetic quantities such as 

potential and kinetic energy density are derived within this thesis on a local 

basis providing information about their spatial distribution across the 

structure. Pavic presented in [22] a fundamental relationship that relates the 

complex divergence of SI with the energy densities of finite hysteretically 

damped structures as: 

(3.7) 

Here, j is the complex unity, i.e. j = v-I and the chevrons (), denote time

averaged quantities. The hysteretic loss factor 11 in equation (3.7) is assumed 

to be constant within the volume if interest. In this thesis divergence of SI is 

a complex scalar field, whereas SI is a complex vector field. From equation 

(3.7) it can be seen that the real part of SI divergence is proportional to the 

product of structural loss factor and potential energy density. The imaginary 

part of SI divergence is proportional to the Lagrangian energy density, which 

is defined as: 

(3.8) 
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Herein, ekin is the kinetic energy density and e,m' is the potential energy 

density. The sum of both is simply the total energy density e,o,. Pavic also 

presented a relationship between the total time-averaged complex input 

power to SI and to the divergence of SI as: 

(Pin), = - J (1), dS = - J (\1.1), dV . (3.9) 
s V 

Here, S is the surface perpendicular to the direction of energy injection (see 

Figure 3.). It can be seen from equation (3.9) that the surface integral of SI 

and the volume integral of SI divergence are equal to the time-averaged input 

power. The negative sign in equation (3.9) accounts for outgoing flows. 

Hence, the sum of time-averaged input power and one of the SI based 

integrals is zero. If one substitutes equation (3.7) into the SI divergence 

integral of equation (3.9), the local energy density quantities may be 

transferred to global energy quantities and, thus, related to input power. 

Within a volume that contains no vibrational outflow of energy across its 

boundaries it has been shown in [105] that the real part of the complex, time

averaged power (Pin), is equal to the time-averaged dissipated power as: 

(3.10) 

Further, Alfredsson also showed that the imaginary part of (P "') in an 

outflow-free volume is proportional to the negative Lagrangian density I, 

given by: 

~{(Pin),} = 2jw f((e<in), - (e,>o,),)dV. (3.11) 
v 

Using equations (3.7), (3.9), and (3.10) it can be shown that time-averaged 

dissipated power within a structure is proportional to the product of 

potential energy, the structural loss factor, and angular frequency as: 
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(!7,,,,, ), = 2wTJ J (et"" )' dV. (3.12) 
I' 

Eqlla tion (3.12) displays a simple relationship between d i sipated power a nd 

potent ial energy if hy teret ic damping is regarded. If one a pplies equation 

(3.2) to a loss less and load free vo lu me e lement , it can be realised that the SI 

d ivergence is equal to the temporal cha nge in total energy density , i.e. 

ae,o, / at = \1·7 . However , with in thi s t hesis a steady st a te a nalysis is 

n dm 

fl m 

fl dus 

v·j ----------
lldus 

D dlS.f 

Figure 3.1 Energy balance 011 a steady state element volume. 

employed . The temporal d eri vative of the instantaneous total energy density 

is then zero and , t hus, in a loss less and load free volume, t he d ivergellce of SI 

becomes zero. A contrast to th is non-zero d ivergence of SI can be fou nd if a 

source of energy supply is located within the volume of interest or if a source 

of energy dissipation is located with in th e volume of interest as indicated by 

equation (3.3) tha t defines the complete power balance of a volume in s teady 

state motion. Thus, SI divergence can be uscd to locate energy sources 

(poin t s of energy input) and energy sinks (poin ts of energy d issipa tion ). The 
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energy sinks may arise due to local damping or local radiation. Figure 3. 

displays the power balance shown in equation (3.3). 

3.3 Defmition of Mechanical Power 

Mechanical work is done when a constant force F or a constant moment M 

act on a certain mass m and provoke a displacement r or a rotation rp of the 

mass. Herein, r is denoted as the translational displacement vector, and rp is 

denoted as the rotational displacement vector. Forces and moments can be 

seen as external or internal quantities. The differential of mechanical work 

due to forces is given by d W, = IFdrand due to moments is given by dU, = 

IMdrp. The summation accounts for the number of forces and moments to be 

considered that act on the mass m. Note, the subscript t denotes translational 

quantities, and the subscript r denotes rotational quantities. Integrating and 

summing the appropriate work's differentials defines the general total 

mechanical work as: 

W = 2:.J Fndrn + 2:.J Mkd'Pk· 
n R,. k <PI; 

(3.13) 

It is evident from equation (3.13) that the sum of two integral expressions 

may form total mechanical work. Using the first integral sum kinetic energy 

and potential energy due to forces may be derived depending upon the 

direction of action. The second integral sum can be related to rotational 

motion. One or both terms may be considered in a vibration system 

depending on the structure to be analysed. 

Mechanical power P is defined as mechanical work per unit time and, 

thus, P = d W/dt. Differentiating equation (3.13) with respect to time 

instantaneous mechanical power is given by: 

P(t) = 2:. F,.(t)vn (t) + 2:.Mk (t)wk (t). (3.14) 
n k 
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Herein, vn(t) is the nth translational velocity component and mk(t) is the Afh 

rotational velocity component. In practice it is not useful to deal with 

instantaneous quantities. More often time-averaged quantities are employed, 

since a particular instant in time may not be of great interest. Hence, a time

averaged quantity needs to be defined. The time-averaged mechanical power 

of a time-depending signal is given as: 

P = (P(t»), = }~{~[2:J Fn (t)vn (t)dt + 2:J Mk (t)wk (t)dt)}. (3.15) 
TnT k T 

Also here, the chevrons in equation (3.14) indicate time-averaged mechanical 

power. Equation (3.14) is a general expression of time-averaged mechanical 

power within a vibrating mechanical system. If the instantaneous time signals 

are sinusoidal, the limit of the integral can be neglected, since the period T is 

of finite length. When dealing with random time signals the limit needs to be 

taken into account. To derive power expressions for vibrating continuums as 

investigated herein the internal vibration mechanisms need to be analysed by 

defining internal forces and internal moments and their respective velocities. 

3.4 Definition of Structural Intensity 

The term SI is widely used in vibrational energy flow analysis (VEFA). 

Within this section a brief fundamental definition of SI is given. The integral 

product of the first right-hand side term in equation (3.1) can be identified as 

SI. In general the instantaneous field intensity vector is given by [44]: 

- ~au I =-a-. at (3.16) 

The intensity vector I physically means energy transmission per unit time 

through a unit area of the structure. It can also be seen as the product of 
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energy density e and its propagation velocity. The negative sign states 

intensity flow out of the structural volume. The partial temporal derivative 

ail / at denotes the velocity vector v at a certain point in the medium. The 

stress tensor is defined as [44J: 

~ 

~ = A [V' . il]§ + 11[V'il + ilV']. (3.17) 

~ 

Here, A and 11 are the Lame constants of the lossless material and § is the 

identity tensor. A positive value of the SI indicates energy transmission from 

the outside to the inside of the medium. Using a three-dimensional Cartesian 

coordinate system, equation (3.15) can also be written as: 

(J,T.X O'xy eT" 

IH I(x,y,z,t)=- 0' yx eT" (Jy:r: 

O'u eT 'y 0'", 

(3.18) 

The 3x3 matrix in equation (3.18) contains the stress components of the 

stress tensor on a three-dimensional solid element. The 1x3 vector denotes its 

corresponding velocity components in the x, y and z direction, respectively. 

The stress components 0:"" 0:" and 0:" represent normal stress components 

and the remaining components denote tangential (shearing) stress 

components. The unit of SI, as defined by equation (3.18), is Watts/m2
• In 

equations (3.2) and (3.3) the divergence of the SI has been used, which is 

given by: 

(3.19) 

The divergence of SI is a scalar field, which defines the strength of SI at each 

point due to summation of the SI slope for each direction to be considered. 

As mentioned before divergence of SI is an important indicator to visualise a 
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surface density of injected and dissipated energy flow in a structure [106]. 

Thus, with the computed rate of VEF or SI change points of energy supply 

or energy dissipation can be identified. 

3.5 Vibrational Input Power 

Vibrational energy injected into a structure per unit time is denoted here as 

vibrational input power (VIP). Points of vibrational energy injection are 

known as sources. VEF occurs if the structure dissipates the injected power 

in some way at some point. Usually vibrational energy is dissipated by 

internal and external damping mechanisms. Internal damping mechanisms 

could be of hysteretic or of viscous nature. External damping mechanisms 

may be achieved by attached dampers somewhere on the structure or at the 

boundary. Points of energy dissipation are known as sinks. General VIP can 

be defined according to the dot product of equations (3.14) and (3.15) given 

in section 3.3. An applied load (force or moment) may induce energy to a 

system by forcing the structure to a certain velocity response at an excitation 

location. Thus, the dot product between load and its appropriate velocity 

components at the excitation location is defined as input power. Load can be 

a force or a moment. Velocity response can be lateral velocity or rotational 

velocity. Using equation (3.13) the general total instantaneous input power 

injected into a system under applied sinusoidal varying loads is: 

P.n (t) = I: P(rn.,t )v(rn., t) + I: M (rn" t)w (rn" t). (3.20) 
n k 

Here, the subscript 0 represents excitation location quantities. In equation 

(3.20), 1'0 is the excitation location vector. The input power is strictly a real 

valued expression. However, in this work structural response measures are 

presented by complex quantities. Assuming a complex displacement solution 

and a complex, sinusoidal varying load, one may write equation (3.20) as: 
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P.n (t) = L1R{Fo"ejW'}1R{1!o"ejwt } + L1R{Mo,ejW'}1R{!;,!o,eJW'}. (3.21) 
n k 

The under bar of expressions En,,, 1!0,,, Mt. and ,@tk denote complex amplitudes 

and 9t denotes the real part of the complex quantities. Using equation (3.21) 

and relation (A2.1O), the time-averaged total input power at the excitation 

location is given by: 

p =.!." 1R (F v·) + .!. " 1R (M w·). 
In 2 ~ _0"_o,, 2 Y -Ok-Ok 

(3.22) 

Here, the asterisk * denotes a conjugate complex quantity. Note, the 

conjugate complex operation is commutative. Equation (3.22) is the general 

input power description of the time-averaged input power using multiple 

force and moment excitation. The usual chevron notation is dropped. Usually 

most structures are loaded only by one type of load. 

It is well known that the mobility at the excitation location may be 

used to define input power when a force load is applied. This is presented as 

[103]: 

(3.23) 

Similarly, input power due to moment excitation may be written as: 

(3.24) 

Herein, Yt:" .• , is the complex force point mobility and Y Mo,"" is the complex 

moment point mobility. Most measurements in structural dynamics are 

carried out using an n-channel FFT analyser, which provides with different 

types of spectral density quantities such as auto spectral density and cross

spectral density. By employing the one-sided auto spectral and cross-spectral 

52 



3 Definition Of Vibrational Energy Flow And Energetic Quantities 

densities of the force and its velocity component, equation (3.23) can be 

rewritten as [107]: 

) {G(F"vo)} {( )} P,n(W)F=G(F,F~G(F,F) =~ F"vo . (3.25) 

Also here, the subscript 0 denotes excitation location quantities. Similarly, 

the moment input power is given as: 

(3.26) 

G(F,F) and G(M,M) are the auto spectral densities of the force and 

moment, respectively. Note, the input powers P,n (W)F and P,n (W)M are in 

units of Watts/Hz and, hence, the spectral density quantities too. G(F;"vo) 

and G(Mo,wo) are the cross-spectral densities between force and moment and 

respective velocity components. However, in practice most response 

quantities are acquired as accelerations. Using the temporal relation between 

. velocity and acceleration v = afjOJ, equations (3.25) and (3.26) may be 

rewritten as: 

(3.27) 

(3.28) 

All the given spectral expressions define the input power as a function of 

frequency, since all the employed spectral densities are functions of frequency. 
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3.6 Vibrational Energy Flow and Energetic Quanti

ties in Beams 

3.6.1 Vibrational Energy Flow 

Sound rad iation due to fl ex m a l wave motion is considered to be the most 

effective mecha nism [103J. T hus, main ly lateral force excitat ion is considered 

withi n t his t hesis. F igure 3.3 illus trates la teral load excitat ion of a beam, 

forcing the structure to a f1 exural response. The applied load can be a 

d istribu ted force or an applied moment . The derivation of t he beam's parti a l 

z 
x • 
r~ 

y 

Figw'e 3.2 Flexural beam vibration. 

different ia l equat ion of motion and its dynamic q llantit ies can be found ill 

detail in Append ix AI. Ell ler-13ernoulli bending theory is used to deri ve 

vibrational energy transmission in a beam. 

Flexllral wave propagation in a beam is caused by t he occurrence of 

interna l shear forces and internal bending momen ts as a stress-strain reaction 

to ext erna l lateral load excitation. The shear force and bending moment that 

act on a small element are described by partial derivat ives of the beams 
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lateral displacement u(x,t). From Appendix AI, the bending moment is given 

by [103]: 

(3.29) 

Note, the negative sign is due to the fact that the normal stress 0'", arises 

opposite to the positive x direction. Taking moment equilibrium of the small 

beam element, the shear force Fs can be found to be [103]: 

F. =El a3u (x,t) 
sax' . (3.30) 

Having defined the internal forces and moments due to flexural wave 

propagation in beams, the number of force and moment components in 

equation (3.3) is thus, one. When a beam is vibrating in flexure the shear 

force causes the lateral velocity motion ou(x,t)/ot. On the other hand the 

bending moment causes element rotation, which results in an angular velocity 

component ou2 (x, t)/ot/ox. If one substitutes equations (3.29) and (3.30) into 

equation (3.15) by using the previously given velocity expressions, complex 

VEF within a beam can be written as: 

p = EI(JT 
l)3U(X,t) au(x,t) dt _JT a2

u(x,t) a
2
u(x,t) dt). 

x T 0 ax" at () ax2 axOt 
(3.31) 

In equation (3.31) a time-harmonic load excitation and a complex beam 

displacement was assumed. Equation (3.31) may be simplified to: 

(3.32) 
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Using relation (A2.10) given in Appendix A2, the complex, time-averaged 

VEFwithin a beam is given by: 

p = El (03U(X,t)(OU(X,t))' _ 02U(X,t)(02U(X,t))'). 
x 2 ox" ot ox2 oxot 

(3.33) 

The real part of equation (3.33) is addressed in this work as the active VEF, 

i.e. px• = ~{p,,}, where \R denotes the real part. This part is the most 

interesting one, since it represents the net energy flow in the beam. The 

imaginary part is denoted in this work as reactive VEF of a beam, i.e. 

P", = ~ {P,,}, where 3 denotes the imaginary part of the time-averaged 

complex VEF. Physically, the meaning of the 'reactive VEF is less obvious. 

3.6.2 Energetic Quantities 

In sections 3.2 and 3.4 SI, the divergence of SI and energy based quantities 

were derived as density quantities of a three-dimensional volume element. 

However, the beam's internal forces and moments are not derived as force 

and moment density quantities. The derived VEF in a beam has units equal 

to vibrational power (Watts). Thus, definition of SI in a beam is also in units 

of Watts. If one substitutes equation (3.33) into equation (3.19), the 

divergence of VEF in a beam can be found to be: 

(\l.p) = El (o.U(X,t)(ou(x,t))' _ 03U(X,t)(02U(X,t))'). 
x t 2 ox· ot ox" oxot (3.34) 

It can be seen from equation (3.34) that up to the 4th order spatial 

derivatives are required in order to determine the divergence of VEF (in 

W Im) in a beam. The time-averaged kinetic energy density (in J Im) of a 

beam is simply defined as: 
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(e. ) =.!. A ou(x,t) [OU(x,t))' 
"n, 4 P at at (3.35) 

Herein, p is the mass density and A is the cross-sectional area of the beam. 

The time-averaged potential energy density (in Jjm) in a beam is given by: 

(e ) = ElO'U(X,t)(o'U(X,t))' 
po' , 4 ox' ox' (3.36) 

Summing equations (3.35) and (3.36) the time-averaged total energy density 

(in Jjm) in a beam can be written as: 

() 1 [, 'O'U(X,t)(o'U(X,t))') e'o,,=-pAwu(x,t)u(x,t) +El, ,. 
4 ox ox 

(3.37) 

3.6.3 Energy Balance 

Some simple energy balance of infinite and finite beam structures employing 

equation (3.3) will be given next. Most of the experimentally determined 

energy based data are energy densities and, hence, density expressions are 

employed for energy balance. Equation (3.3) states that input power is equal 

to the sum of energy outflow through the structure's boundary and the 

vibrational energy dissipated within the structure. Within this work both 

infinite and finite structures are investigated. Infinite beam structures do not 

have any boundaries. Supplied energy is flowing from the point of excitation 

towards the infinite ends. If one· assumes that the VEF is much higher than 

the internal dissipation and, hence, neglects intermll energy dissipation, one 

can find a simple energy balance within infinite beam structures from 

equation (3.9) as: 

(Pin), = -(1),. (3.38) 
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Equation (3.38) states that the input power is equal to the determined VEF. 

A true actual VEF (active VEF) balance can be obtained by taking the real 

parts of equation (3.38) assuming complex quantities. In contrast to VEF in 

infinite beams, finite structures are assumed in this research to have 

adiabatic boundaries, which means no energy is flowing out of the structure 

nor is energy dissipated at the boundary. Hence, the SI divergence term in 

equation (3.3) can be set to zero and equation (3.10) holds true stating that 

the real part of input power is equal to dissipated power. Substituting 

equation (3.7) into equation (3.9) one can obtain energy balance within a 

hysteretically damped finite beam as: 

(Pin), = 2W7J!(e"",),dx+2jw!((ehn ), -(elm,).)dx. (3.39) 
L L 

Here, L is denoted as the beam length. Of course there is VEF within the 

structure. However, all the energy flowing away from the external energy 

source per cycle is dissipated within one cycle of vibration. Due to the modal 

behaviour of finite beams net VEF in a finite structure only appears due to 

internal damping mechanism, assuming no external damping process is 

added. From equation (3.10) it can be seen that the dissipated power is equal 

to the real part of the left-hand side expression in equation (3.39), which is 

given by: 

~{(Pin).} = 2wry! (elm,), dx. (3.40) 
L 
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3.7 Vibrational Energy Flow and Energetic Quanti

ties in Thin Plates 

Thin plates are defined as structures having a much larger length and width 

than thickness, i.e. h« L, and h« Ly, where LT is the plate's length, Lv is the 

plate's width and h is the plate's thickness. Also here, the plate is considered 

to be homogeneous and isotropic. Euler-BernoulIi theory is employed to 

derive the partial differential plate equation of motion as well as the dynamic 

quantities. The derivation of it can be found in Appendix A3. 

It is well known that a thin plate, although being a three-dimensional 

structure, is treated as a two-dimensional vibration problem. Since the plate's 

thickness is considered to be thin in comparison to its length and width, the 

dynamic quantities derived in Appendix A3 are quantities per unit length 

due to moment integration over the plate's thickness rather than the plate's 

cross-sectional area. Thus, the presented vibrational energy expressions are 

derived as vibrational energy flow per unit time per unit length. This 

quantity is denoted as SI in most literature though it is not SI as per given 

definition in section 3.4. In this work it will be deilOted as VEF per unit 

length or simply VEF. Since infinite plate structures are considered in this 

work also, VEF per unit length expressions are presented in Cartesian and 

polar coordinates. 

3.7.1 Cartesian Coordinate Based Vibrational Energy Flow 

A thin plate under lateral load excitation responds internally by shear forces 

0., and Qy, internal bending moments M" and Myy as well as internal twisting 

moments Mxy and Myx' Bending moments arise due to the occurrence of 

normal stresses. Twisting moments arise due to the occurrence of horizontal 

shearing stresses in the ar-z and y-z plane, respectively. Shear forces arise due 

to the vertical shear stresses in the ar-z and y-z plane, respectively. From 

Appendix A3, the bending moments per unit length about the y and ar-axls 

are given by: 

59 



3 Definition Of Vibrational Energy Flow And Energetic Quantities 

(
8'W a'w) M", = -D --, + //--, , ax ay (3.41 ) 

(
8'W a'w) 

My. = -D ay' +// ax' . (3.42) 

Here, the two-dimensional plate displacement is denoted as w, // is Poisson's 

ratio and D is the flexural rigidity of the plate given as [108]: 

Eh3 

D = -,----..,-,.-
12(1-1/') 

(3.43) 

The negative sign in the moment equations are due to negative strain (see 

Appendix A3). Herein, the displacement w is a function of two-dimensional 

space and time thus, w(x,y,t). The twisting moments per unit length can be 

found to be [108]: 

. a'w 
M'1I = -M"x = D(1-1/)--. axay (3.44) 

From Appendix A3, the shear forces per unit length in the z direction are: 

(3.45) 

Q =-D- --+- =-D-(V' w). a (8'W a'w) a, 
• ay ay' ax' ay (3.46) 

Note, the negative sign in equations (3.45) and (3.46) is because of moment 

equilibrium on the plate's infinitesimal element. Thus, the shear forces act in 

the opposite direction to that displayed by Figure 3.3. To define the time

averaged VEF per unit length one may employ equation (3.14). 
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aw 
ay 

Jf--+-+ x 

z 

...... 
" 

Mxy 

p dxdy 

aM 
M + -1!J!...dy 

1111 ay 

aM 
M + ------'L dx 

.JV.~~--= ox 

Figure 3.3 Sign convention of forces and moments on an infinitesimal plate element. 

With the number of forces being one and the number of moments being two, 

time-averaged VEF per unit length in the x and y directions are given as: 

P -(-Q aw) \M~) (M (-~)) 
x - x at ,+ xx axat ,+ xy ayat " 

(3.47) 

P -(-Q aw) \M~) \M~) 
11 - x at t + IIY ayat t + YX axat t' 

(3.48) 

Herein, the over bar denotes quantity per unit length in order to distinguish it 

from the respective quantities in the beam. Note, the quantity P, and p., 
respectively is of two-dimensional nature. However, herein the mathematical 

more correct notation P, (x,y) and Py (x,y), respectively is dropped due to 

shortage reasons. It can be seen that the product of shear force, bending 

moment and twisting moment in combination with their respective velocities 

form a VEF per unit length expression. 
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If one assumes a time harmonic varying load and substitutes equations 

(3.41) to (3.46) into equation (3.47) and (3.48), respectively, and takes 

relations (A2.1O) and (A2.ll) into account, time-averaged VEF per unit 

length in the x and y direction, respectively, may be found to be: 

a'w ( a'w )' -(I-v)-- --axay ayat 

(3.49) 

a (V" )(awl' (a'W a'w)( a'w)' 
_ D ay W at - ay' + // ox' ayat 
P,,=- , 

2 a'w ( a'w ) -(1-1/)-- --axay axat 

(3.50) 

Also here, the real part of equations (3.49) and (3.50) is denoted as active 

VEF per unit length (in W Im) and the imaginary part is denoted as reactive 

VEF per unit length (in W Im). Equations (3.49) and (3.50) can be seen as 

complex vector fields that contain two-dimensional information of active and 

reactive energy flow of the plate in the x direction and y direction, 

respectively. The complex VEF shown in equations (3.49) and (3.50) is often 

denoted as the plate's SI. 

As mentioned before, due to the complex displacement input a 

complex energy transmission per unit length is assumed and, hence, the 

plate's time-averaged VEF per unit length vector field is given as: 

P- . => -l~{P'}+ fS{P,}) 
~{p,} + j'-S{p,} 

(3.51) 

Herein, j is the complex unity, i.e. j = v-I and the arrow denotes a vector 

quantity. Note, although Px and Py are both two-dimensional complex 
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vector fields the subscript is used only to indicate the direction of the energy 

that flows into the x and y direction, respectively. 

3.7.2 Cartesian Coordinated Based Energetic Quantities 

The plate's energetic quantities may be found in a similar manner to that, as 

demonstrated in section 3.6.2. Since the plate is simplified to a two

dimensional structure, the units of the energy based quantities are different 

to units used in section 3.2. If one substitutes equation (3.49) into the spatial 

x-derivative of equation (3.19) the spatial x-derivative of the divergence of 

the plate's VEF is: 

(8
4
w 8'w )[8W)' (8"w 8"w)( 8'w )' 

8x' + 8x'8y' 8t + 8x" + 8x8y' 8x8t 

8P D (8
3

W 8
3

w )( 8'W)' (8'w 8'w)( 8
3

w ) -" =- -+v - - -+v- -. (3.52) 8x 2 8x" oxoy' 8xat ox' oy' 8x'8t 

(I-v) 8
3
w (8'w)' -(I-v) o'w ( o"w )' 

8x'8y 8yot oxoy oxoy8t 

It can be seen from equation (3.52) that also for the plate up to 4th order 

spatial derivatives need to be determined. Due to differentiating of a 

functional product, expression (3.52) is substantially larger than equation 

(3.50). Analogously, the divergence component of the spatial y-derivative of 

the divergence of the plate's VEF can be found by substituting equation 

(3.50) into (3.19), as: 

(04W 8'w )[8W)' (03W 8"w)( o'w )' 
oy' + ox'oy' at + 8y" + oy'ox 8y8t 

oP D (03W 03W )( o'w)' (o'w o'w)( 8"w ) --y -- --+v -- - --+v-- - (353) oy - 2 oy3 8y8x' oy8t oy' ox' oy'8t . . 

(1 _ v) o"w (o'w)' _ (1 _ //) o'w ( 8
3

w )' 
oy'ox ox8t 8xoy 8x8y8t 
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The complete divergence of the plate's VEF is simply the summation of 

equations (3.52) and (3.53) that yields to a two-dimensional scalar field (in 

W Im'), given by: 

= aP aP 
V·P=--' +--'. ox ay (3.54) 

It can be realised that the plate's divergence takes only :n- and y-components 

into account. Equations (3.52) and (3.53) combined can be reduced to a more 

simple form using the plate's lateral velocity component as [39]: 

= D (. ') V· P = -'S V vv . 
2w 

(3.55) 

Here, V' is the double Laplacian and v is the plate's transverse velocity 

component. Analogously to the beam, the time-averaged 

density (in J 1m2
) of a plate may be written as: 

( ) ph aw (aw)' 
e"" , = 4 at at . 

kinetic energy 

(3.56) 

The time-averaged potential energy density (in J Im') in a plate is defined as: 

a'w (a'W)' a'w (a'W)' -- +-- + 
D ox' ox' ay' ay' 

(ero
,), = 4" 02 (a' )' a' (a' )' 2v~ ~ +2(1-1»~ ~ ox' ay' axay axay 

(3.57) 

Summing equations (3.56) and (3.57), time-averaged total energy density (in 

J Im') in a plate can be written as: 
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ph 8w (8W)* + 8'w (8'W)* + 8'w (8'W)* + 

( ) 
= D D 8t at 8x' 8x' 8y' 8y' 

e,o' , 4 8'w (8'W)* 8'w ( 8'w )* 
2//- - +2(1-v)----

8x' 8y' 8x8y 8x8y 

(3.58) 

3.7.3 Energy Balance 

Analogously to the procedure in section 3.6.3, the energy balance of an 

infinite plate structure can be found by neglecting the dissipated energy and 

employing equation (3.9) as: 

(Pin), = -f (1), dl. (3.59) 

Here, I is a closed contour on the plate's surface. Equation (3.59) states that 

the line integration of the plate's VEF at each position in the plate is equal 

to the vibrational input power. Because of the derivation of internal forces 

and moments within the plate in units per width contour integration needs to 

be carried out. Also here, the real part of equation (3.59) represents active 

energy flow. In the case of finite plates the input power is related to the 

kinetic and potential energy densities as: 

(Pin), = 2W7/ J (epn,), dxdy + 2jw J ((e"n), - (el'''' ),)dxdy . (3.60) 
s s 

Herein, S is the surface area that is enclosed by the contour line. Taking the 

real part of equation (3.60), dissipated vibrational energy is balanced with 

vibrational input energy as: 

~{(Pin),} = 2w7]J (epo,), dxdy. (3.61) 
s 
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3.7.4 Polar Coordinate Based Vibrational Energy Flow 

Flexural vibration in circular and infinite plates results in circular wave 

motion. The Cartesian coordinates x and y are a function of the radius rand 

the angle B, which is measured between the radius r and the :v-axis. The 

two-dimensional Cartesian Laplace operator V' = 8'j8a?+O'j8y' can be 

written in polar form as [109]: 

, a' 1 0 1 a' 
V' =-+--+---. or' r ar r' aB' (3.62) 

Using the Laplace operator V' of polar coordinates the radial shear force Qr 

and the angular shear force Qo are given by [110]: 

Q = -D- --+--+--- = -D-(V' w) a (a'w 1 aw 1 a'w) a, 
r or or' r or r' aB' or ' (3.63) 

1 a (a'w law l o a'w) 1 a ( , ) Qo = -D-- --+--+--- = -D-- V' w . 
r aB or' r or r' aB' r aB (3.64) 

Analogously to the bending moment definition of Cartesian coordinates, the 

bending moments Mr and Mo are given in polar coordinates as [110]: 

M =-D -+1/ --+---(a'w (law 1 a'w)) 
r or' r or r' aB' , (3.65) 

(
law 1 a'w a'w) Mo =-D --+---+v--. 
r or r' aB' or' (3.66) 

The twisting moment of a plate in polar coordinates is defined as [110]: 

a (law) Mr, = D (1 - v) ar -:;: aB . (3.67) 
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When considering the above eq~ations that show polar quantities it can be 

realised that the number of forces in each direction is one and the number of 

moments is two. If one substitutes equations (3.63) to (3.67) into equation 

(3.47) and (3.48), respectively, and assumes sinusoidal varying load and takes 

relations (A2.10) and (A2.11) into account the time-averaged VEF per unit 

length in the radial and angular directions can be found to be: 

(3.68) 

(3.69) 

3.8 Discussion 

Within this chapter an introduction to the theory of VEF in simple beam 

and plate-like structures and their energy related quantities has been given. 

The general energy balance, given by equation (3.1), of a three-dimensional 

body element was presented. This important equation outlined that the total 

energy flow within the body volume is equal to the sum of mechanical 

intensity (SI) flowing per unit cross-sectional area plus the injected energy 

flow minus the flow losses occurring within the volume of interest. Further, a 

general energy balance, given by equation (3.3), was presented when a steady 

state motion of the body is regarded. 

In order to apply. a simple energy balance on real finite structures 

information about the dissipation within the structure is desired. Hence, a 

67 



3 Definition Of Vibrational Energy Flow And Energetic Quantities 

simple relation has been derived, using equation (3.12), which states that the 

time-averaged dissipated energy flow is proportional to the product of loss 

factor and time-averaged potential energy. Thus, the dissipated VEF within a 

finite structure can be obtained from the knowledge of the loss factor and the 

potential energy. 

SI and the divergence of SI were introduced briefly. It has been 

pointed out that the SI is a vector field that contains information about the 

magnitude and direction of vibrational energy flow at each point in the 

volume. Divergence of SI can be used to localise energy sources and sinks. 

Energy sources are points of energy inflow into a structure and energy sinks 

are points of energy outflow out of the structure due to energy dissipation or 

sound radiation. Since the outflow is defined as negative in this work, 

divergence of SI less than zero indicates energy sinks. 

A general definition of mechanical power from the dot product of 

forces and moments with their respective velocities was also derived. This 

practical and useful expression, as shown by equations (3.14) and (3.15), was 

then applied to define time-averaged VEF in rectangular beams and 

rectangular plates. In beams flexural VEF is caused by a one-dimensional 

lateral and rotational velocity response due to the occurrence of an internal 

shear force and bending moment, respectively. Flexural VEF in plates is 

caused by the two-dimensional lateral and rotational velocity response due to 

the occurrence of a shear force, bending moment and twisting moment, 

respectively. 

The integration of SI over the structure's cross-sectional area would 

provide vibrational power information. The generally defined SI or VEF per 

unit cross-sectional area was presented in sections 3.1 and 3.4 as a quantity 

that depended on three spatial variables and time. Within this work mainly 

time-averaged VEF and energy based measures are employed. Thus, the VEF 

expressions were presented as the temporal mean value of the instantaneous 

flow. In rectangular beams the derivation of SI yielded directly to vibrational 

power due to the fact that the forces and moments on the infinitesimally 

small beam element were not derived as density functions by means of unit 

force and moment per area. The derivation of SI in a plate led to vibrational 
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energy flow per unit length due to the fact that internal forces and moments 

were derived as density function per unit length only. Although the 

derivation of VEF in beams and plates is comparable to SI, as shown in the 

energy balance. equation (3.1), the expression SI is not used in this work due 

the difference in units between generally defined SI and VEF derived for 

beams and plates. 

The application of the energy balance, as shown by equation (3.3), 

generally requires a volume integration of the respective energy flow densities 

in order to transfer local energy quantities to a global energy level. Within 

this thesis, total vibrational input power to a structure is always considered. 

Thus, energy balance will be carried out on a global level. The equations 

presented in sections 3.6.3 and 3.7.3 have shown that from the knowledge of 

the locally distributed potential energy density and the hysteretic loss factor 

a global energy balance can be established. In the case of finite beam 

vibration the potential energy density needs to be integrated along the beam 

length and in the plate's case integration along the plate's surface needs to be 

carried out. 
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4 VIBRATIONAL ENERGY FLOW 

DETERMINATION METHODS 

4.1 Introduction 

Vibrational energy flow (VEF) can be determined in numerous ways. The 

procedure of VEF determination can be divided into three stages. In stage 

one the .structure's response to an excitation load is acquired. Usually 

displacement, velocity, or acceleration information will be employed. This 

information ~an be measured on a real structure or synthetically generated 

within a numerical analysis. 

Stage two provides partial spatial derivatives required for VEF or 

energetic quantity computation. If the data to be processed are contaminated 

by noise, the application of filtering is also included at this stage. Therefore, 

section 4.2 introduces different techniques to compute spatial derivatives 

from a set of tabulated data. Section 4.3 introduces spatial domain and 

wavenumber domain filtering in order to reduce errors in VEF computation 

due to noise contamination. 

The final stage utilises the determined spatial derivatives to compute 

vibrational energy (VE) based quantities using the VE expressions derived in 

chapter 3. The herein proposed measurement method, called vibrational 

energy flow measurements using electronic speckle pattern interferometry 

(VEFESPI), is presented in section 4.4 using methods introduced previously. 
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4.2 Numerical Determination of Spatial Derivatives 

4.2.1 Numerical Differentiation Using Finite Differences 

The most common method to determine spatial derivatives from tabulated 

data is the use of finite differences. A short introduction can be found in 

Appendix A4. Within this work the numerical determination of spatial 

derivatives using finite differences will be addressed as finite difference 

approximation. Herein, this technique is used to approximate spatial 

derivatives required to measure VEF with the aid of accelerometers. From 

Appendix A4 it can be seen that at least 4 points are required to find spatial 

derivatives up to the third order. Figure 4.1 displays the setup of 4 

accelerometers. The spatial distance is denoted as h, the transverse 

CD ----------- a; 

h 1 
CD ----------- x, 

...................................... ~!..~ ... t .................................................... . 
h/2 ! 

CD 
a, U 

----------- X
J x 

hI 
CD 

Figure 4.1 Four accelerometer setup. 

displacement is denoted as u and the transverse acceleration is denoted as a. 

The spatial derivatives of the transverse displacement using the finite 

difference approximation can be found by employing the central difference 
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based equations given in Appendix A4. Thus, using equation (A4.1O) the first 

spatial derivative of the displacement u( x, t) is given by: 

ou (x, t) "" (u" - u,). 
ox h 

(4.1) 

Since only beam VEF has been measured, the method is demonstrated for a 

one-dimensional displacement function only. However, it can easily be 

extended into two dimensions simply by adding another variable. 

Analogously, using equation (A4.14) the second derivative can be found as: 

o'u(x,t) ~ (u4 - U" - u, + Ul) 
ox' ~ 2h' . 

(4.2) 

Employing equation (A4.17), the third spatial partial derivative is given as: 

03U (x, t) ~ (U4 - 3u" + 3u, - u,) 
ox" ~ h" . (4.3) 

The approximated displacement at position x = 0 simply is: 

(4.4) 

Note, to substitute the acceleration into the above given equations, the 

displacement has to be temporal differentiated twice. However, in practice 

often velocity signals are substituted into the spatial partial derivatives, since 

force and moments are multiplied with their appropriate velocities in order to 

obtain VEF. The practical use of these derivatives to measure one

dimensional VEF using measured spectral quantities will be presented in 

section 8.2.3. 
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4.2.2 Numerical 

Transform 

4 Vibrational Energy Flow Determination Methods 

Differentiation Using Spatial Fourier 

It has been pointed out III Appendix A4 that the finite difference 

approximation technique introduces errors when computing spatial 

derivatives from tabulated data due to the truncation of the Taylor series. 

Additionally, the technique is fairly cumbersome if more than one point of 

spatial derivatives is required. Thus, a different technique is employed within 

this research, which utilises the spatial Fourier transform (8FT) and 

wavenumber domain processing in order to obtain spatial derivatives. In this 

work this technique is addressed as k-space derivation (K8D) method. This 

method is sometimes denoted as wavenumber technique or spatial derivative 

(8D) technique. 

As mentioned, the K8D method utilises the 8FT to transform spatially 

sampled data into the wavenumber domain to detect the wavenumber 

content of the signal. This procedure is similar to the temporal Fourier 

transform. Mathematically, the forward two-dimensional SFT is given by: 

( .) _ {( .)} _ 1 Joo Joo ( .) -;(k,x+!;1I) U kx,ky,w - F u x,y,w - 47[2 U x,y,w e dxdy. (4.5) 
-00 -00 

Analogously, the inverse two-dimensional 8FT can be expressed as: 

( .) - F-1 {U (k k· )} - Joo Joo U (k k· ) ;(k,x+k·y)dk dk u x,y,w - xl y,W - xl y,W e x y' (4.6) 
-00 -00 

Herein, F denotes a forward Fourier transform (FT) and F- 1 denotes an 

inverse (backward) FT. In practice the above shown equations are evaluated 

numerically by a fast Fouriet transform (FFT) algorithm [U1]. 

Spatial derivatives from tabulated data of the original signal are 

obtained by applying the K8D method. The K8D method can be divided into 

three steps, as shown in Figure 4.4. At the first step the spatial tabulated 
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data are transformed into the wavenumber domain by applying a forward 

FFT. Within the wavenumber domain step two is employed. Herein, a 

multiplication of the wavenumber spectrum U(k,ky;OJ) with the product of 

complex unity j = "-1 and the respective wavenumber vector Kx and Ky is 

carried out. The use of the wavenumber vector Kx and Ky depends on which 

coordinate needs to be differentiated. This simple multiplication procequre 

results in spectral derivatives. 

An example of spectral differentiation is given next with aid of Figure 

4.2 and Figure 4.3. Figure 4.2 displays a simple one-dimensional spatial sine 

function u( x) = sine A;,x), with ku = 201t being the wavenumber and U( k) being 

the wavenumber spectrum. Here, x is the spatial distance and k is the 

wavenumber. Figure 4.3 displays the spatial derivative of u( x), i.e. g( x) = 

A;,cos(kux) and G(k) it's respective wavenumber spectrum. Substituting u(x) 

and g(x) into equation (4.5), one can obtain their spectra as: 

(4.7) 

(4.8) 

As evident from equations (4.7) and (4.8), G(k) = -jkuU(k) for k < 0 and G(k) 

= jku U( k) for k > O. Thus, the left-hand side of the spectrum is multiplied by 

-ku and the right-hand side of the spectrum is multiplied by ku. Herein, t5 is 

the Dirac delta function. In practice the multiplication of the spectrum is not 

just carried out at the two wavenumber components of interest. It is carried 

out over the entire wavenumber vector K containing positive and negative 

wavenumber components of the signal to be processed. Of course the same 

relation holds for complex signals to be processed. Thus, spectral derivatives 

can be obtained simply due to the above described spectral multiplication 

process. Transforming these spectral derivatives back into the spatial domain 

will complete step three and one can obtain spatial derivatives. 
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Figure 4.2 Spectral derivation process: (a) sine wave ",(x) = sin(I.i'x) with /:;, = 2011 , 

(b) wavenumber spectrum U(k) of ,,(x). 
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Figure 4.3 Spectral derivation process: (a) cosine wave g(x) = d,,(x)/dx = /:;,cos(/:;,x) 

with /:;, = 2011 , (b) wavenumber spectrum G(k) of g(x). 
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T he entire KSD method can be mathematically expressed for two

d imensiona l differentiation as: 

8m8 u 

8 '''8 " [u(x,y)] = F 1 {UKJ"' (jK,)" F{u(x,y) }}. 
x y 

(4.9) 

Equat ion (4.9) contains wavenumber vectors denoted by K, and r<, required 

to differentiate numerically. The order of the respective patia l deri vat ive is 

driven by in teger In and n, respectively. Also here, when dealing with one

d imensional funct ions equation (4.9) can easily be reduced to onc variable 

/ / 

Spatial sampled data 
/ 

------------- ~-------------

/ / 
Spatial fast Fourier 

transform (FFT) V 
'------_....¥ 

~/_-------~/ 
Determination of spectra l derivatives 

in wavenumber doma in '--_________ V 

~/-----____r/ 
Inverse fast Fourier 

v 
------~------- -----~~~--- -------~-------

transform (IF FT) 

/ / 

Spatial derivatives of sampled data 
/ 

Figure 4.4 Illustration of the KSD method. 
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only simply by setting the other variab le equal to zero. The above 

demon strated KSD method is more accurate than the finite differell ce 

approximation [37]. A drawback of this method stems from the propcrty of 

the Fourier transform when transforming non-periodic signa ls [51], which a re 

often present with in a set of measurements. In t hi s case spectral leakage will 

affect the accuracy of the spectrum and , thus, the leakage error wi ll be 

amplified when multiplying in the wavenumber domain to compute spectral 

derivatives. Figure 4 .4 displays the stages of the KSD technique. 

4.2.3 Numerical Differentiation Using B-Splines 

An a lternat ive met hod to find spatia l deri vatives is the use of 13-Splines. T his 

technique has been used by Fuller [79] and la ter in more detai l by Wang [77]. 

The main idea is to interpolate a cnrve or surface by a set of piecewis 

poly nornials known as sp liues. As the curve or surface is t heu ciescribed by 

the approximation function one can obtain derivatives from it . 

One cou ld argue tha t for th is techniq\le simple polynom ia ls might be 

aciequate. However, when approximat ing tabulated data with a high number 

of poin ts, complex curve sha ped polynomial function s tend to oscillate 

heav ily as the number of degrees is increased in order to achieve a better 

curve fit . Using a set of piecewise polynom ial segments joined together ulld r 

predefined condit ions and keeping the po lynomia l order low can compensat c 

for th is drawback . Thus, a much greater fl exibility can be achieved when 

interpolating complex curves and snrfaces . T he area of spline funct ions is 

fairly vast. Introducing its entire scope would be inappropriate for thi s work. 

T here are several textbooks such as [112, 11,3] avai lable . 

However, t he basic mathematicaJ descriptions used 1Il approximating 

two-dimensional surfaces and its d erivatives in order to obtain VEF will be 

introduced briefly . The least square criter ion of scattered surface data (i.e. 

measured two-dimensiona l ESPI displacement data contam inated by opt ical 

no ise) in a rectangular approximat ion domain is given by [112]: 

Y = L:L: (w(x,y;w) - w(x, y;w))' . (4.10) 
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Herein , the squa red residual error Y needs to be minimised. T he fitted 

surface function w(x,y;w) fitted by 13-splines is given by [112]: 

H Ii 

w(x,y;w) = L L (c,.,N,.!" <x) M,.It 1 (y)). (4. 11) 
j J.: J= f 

The above shown ten or prod uct spl ine is fi tted in t he two-dimensiona l space 

R = [a, b] x [c,d], where a, b, c and cl are t he spa tial d imensions. N,,,.+ , and 

M,.I+1 are the normalised 13-spline functions of degree I.; and I, respecti vely. 

The spline knots are d efin ed as A" i = D, ... g + 1 and P" j = D .. . ,h + 1, 

respecti vely with ~I = a, A,,+I = b, J.l..1 = c a nd PIo+I = cl. The 13-spline 

coeffi cients c'J need to be computed. Olles the two-dimensional tensor 

product spline has been determined, deri vati ves of t he spatial approximation 

funct ion can be computed. Derivatives from 13-spline functions are cont inuous 

lip to (k-1)'" a nd (1-1)'" order , respect ively [77]. In order to obtain smooth 

derivatives in practice, (1.;-2),10 a nd (1_2)'1' orders are chosen , respect ively. 

Thus, to obtain smooth 3,,1 order derivatives from interpolated 13-spline 

surface data a fi ve d egree 13-spline function is a t least required. 

4.3 Filter Methods 

As previously mentioned, da ta acq uired by a non-con tacti ng optical 

measurement method , such a· ESPI, onta in optical noise. It can be . ell 

from equat ion (4.9) that especia lly the high frequency noise components may 

be amplified in the wavenumber domain due to t he multiplication process 

between spectra l noise amplitude and wavenllmber of power 1L. Thus , t he 

spatial derivatives computed by the KSD method are poten tially very 

erroneous. In order to minimise the effect of noise data filtering eit her in 

spat ial domain or wavenumber domain is indispensable. 
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4.3.1 Spatial Domain Filtering 

Spatial domain filtering can be carried out by interpola ting sampled data 

with different in terpolation techniques, such as the previously descri bed ll

spline approximation method. If the sampled dat a contain noise, they can be 

smoothed by a n interpolation technique. Wang et a !. demonstrated In 

reference [77] that t his smoothing process i similar to a low-pass filter ing In 

the wavenumber domain . It has been shown that t he discrete eva luatiou of 

the fun ct ion to be approximated is equal to a discrete con volut ion between 

the sampled data and a card ina l spline function that is evaIuated a t integer 

values. T he frequency response of this cardinaI spline converges to an ideal 

Iow-pass fi lter as the degree of t he spline funct ion tends to infinity. Th us, 

spatially sampled data can be fil tered without tra nsforming data in to other 

domains. 

4.3.2 Wavenumber Domain Filtering 

Since the I< SD method employs a FT as part of the spati a l der ivati ve 

computa tion , it is practical to remove undesired noise components in the 

wavenumber domain . Usually the I'iItered wavenum ber spectrum U(k" k.),,,, is 

simply manipulated as: 

U (k k) = U (k k) F (k k). .1'1 If f lU .1" Y ;r l Y 
(4 .12) 

Herein , U(k"k,) is the waven um ber spectrum of the sampled data to be 

filtered and F(k"ky) is t he fil ter function multiplied within the spectra l 

domain . For each filt er the design of Iv-space fi lter characteri sti cs underl ies 

some requirements. The filter has to be of two-dimensional nature, since the 

recorded data with in this work for VEF computat ion are two-dimensional. 

The fi lter should allow adjustments to be made in the x a nd y d irectio n 

separately. Thus, t he fil ter design should enable shape alterations between a 

circular and a n oval filter sha pe t hat depends n t he respective spat ia l 
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frequency componcnts 111 the x and y d irections. Also an a lteration 1Il filter 

slope is desirable. 

The simplest filt er to be employed in spectral fil ter desigll is the use of 

a n ideal fil ter. Within thi s work the ideal lilter is progra mmed as a n 

a lgor ithm . T he d iscrete noise contaminat ed wavenumber spectrum U(k"ky) i 

searched element wise for components that are sma ller or equa l to the 

product of a carefu lly selected constant C and the maximum magnitude of 

the wavenumber spectrum , i.e. Cl U(k" ky)I"",x' If t hi s cond ition is sat isfi ed, 

the particular wavenumber spectrum component is simply multi plied by zero . 

Vice versa, the part icular wa venumber spectrum component is mu lt ip li ed by 

one. 

T hus, the ideal filt er process acts like a multipl ication of t he 

wavenumber spectrum with zeros and ones at specifically defin d posit ions. 

This filter can be implemented as: 

(4.13) 

Herein , C is a con tant between 0 ~ C ~ 1 and C E IR. The filtering process is 

app lied , as shown in equation (4 .12). T he advantage of t hi s method is its 

straigh tforwa rd implementat ion at d ifferent progra mming platforms. T he 

opt imum cut-off point can be found by runn ing a n automated tri a l a nd error 

computa tion to find the opt imum lilter pa rameter C to remove a suffi cient 

a moun t of noise and retain a sufficient a moun t of signal information in the 

spectrum. This is the main obj ect ive of Iv-space fil teri ng employed for VEF 

measurements . 

Another filter type wi lely u ed by research community is the so-called 

oval filt er given as [43J: 
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F(k k) = T' , 

1 [I ~) 
l - - e S , fm ' K, < 1(, 

2 

1 [I ~:) 
- e S , fOT K, > K, 
2 

(4. 14) 

Here, K, = )K; + K~ is the rad ia l wavenllmber vector , K, = ) K:' + [(;, 

the radial cut-off wavenumber a nd t he condition (K;, / a~ + K,~ / a:) = 1 

need s t o be satisfi ed. Note, the lower case let ter k is used In th is work to 

define the wavenumber as a variable and capital K is used 111 th is work to 

defin e a discrete wavenumber quantity (vector). The parameter S contro ls 

the filter s lope. Adjustments of the filt er in the x and y dircc tions can be 

made simply by ma nipula ting the two quantities a, and ay. T his filt er 

involves a tri al and error in process in order to find the optimum filter sha pe. 

An alterna ti ve filter type may be the implementation of a n oval 2]) 

Dutterworth filter . Also here, its adva ntage is a much easier implementat ion 

within software packages. The oval Dutterworth filter shape is given by: 

(4. 15) 

It can be seen by equation (4. 15) that the oval Dutterworth filter is the 

magnitude of the well known two-dimensional Dutterwort h filter . T he 

coordinates X and Y are the filter length in the K, and Ky direction , 

respectively, and n is the ord r of the filt er that cha nges the filt er slope at 

the cut-off freq uencies k" and k . . Figure 4.5 displays t he oval 2]) , , 

Dutterwor th filter in the spectral domain with a fil ter slope of n = 8. Clearly , 

the low pass filter shape can be seen . It can al 0 be noted that due to X a nd 

Y adj ustments a n oval sha pe can be produced. It will be shown in chapter 11 

that this procedure becomes very useful if a two-di mensiona l finite plate 

81 



4 Vibrational E nergy Flow Determination Methods 

.. ' .... 
. ...... . 

1 

o 

-500 
k x 

Figure 4.5 Oval 20 Butterworth fi lter. 

d isplacement wit h different mode shapes in the x a nd y direct ions is required 

to be fi I tered . 

4.4 Vibrational Energy Determination Method 

With the information given in the previo1ls sections n complet e Ilow char t of 

t he VEF method can be drawn in order to visuali se the VEF computation 

process. Figure 4.6 d isplays each step of the VEF determi nation method 

employed in this research. 

Spatial di splacement data are sampled with the a id of a n ESPI 

ystem. T his system is introduced in cha pter 7 in letail. After t runcating t he 

recorded displacement data to a useab le size, a 2D FFT is applied in order to 

t ran form the samples in to the waven llm ber domain or /v-space. In t he 

wavenumber domain unwanted opt ical noise components are filtered out by 

empl ying a two-dimensional filt ering technique as in troduced above. After 

the /v-space filt ering desired pectral derivatives arc then obtained simply by 
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Figure 4.6 VEFESPI method. 

multiplying the wavenumber 'pectra by the complex un ity of order n a nd m, 

respectively, wit h its appropriate wavenu mber component vectors of order n 
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a nd rn, respectively. The filt ered spectral derivatives of order nand 7Il. are 

then transformed back into the spatial domain by employing an inverse 2D 

fast Fourier tran form (IFFT). Once in the spatial domai n the desired spatial 

derivatives are nsed to calculate t he energy bascd quantities such as VEF , 

t he d ivergence of VEF, kinetic energy density , potential energy density , and 

total energy density. 

4.5 Summary 

This chapter presented the procedure to obtain VEF a nd energy based 

quantities essential in VEF analysis. As shown in chapter 3, a ll vibrat iona l 

energy based qnantities are described by parti al deri vatives of the structural 

transverse displacement. T he determinat ion of these derivatives rrom sampled 

data is one or t he primary objectives of the VEF determinat ion method . If 

the data in stage one are acquired by ESP], the method wi ll be addressed as 

VEFESPI method . Throughout this work the KSD method is employed. It 

has the advantage that onee accurate spectra are determ ined deri vatives of 

each order can be obtained easily. It employs the forward and backward FFT 

a too l, which may be round in a lmost every software package. Thus, the KSD 

method can be implemented on ma ny platforms. In contrast , applicat ion of 

the B-spline method demands some mathematical knowledge prior to 

implementation. Furthermore, k'" and t" degree tensor prodnct splines need 

to be created in order to find (k-2)'" and (1-2)'" order smooth deri vatives. 

Thus, with ascending deri vative order t he determinat ion of spatial deri vatives 

becomes more delicate when B-splines are employed. T he advantage of this 

method is that the interpolat ion of the noisy samples can be compared to a 

filtering proce s because or t he data smoothing. T hus, add itiona l filtering of 

the data does not need to be carri ed out. Also the computation of VEF from 

non-periodic input data can be carri ed out without expect ing VEF 

computation errors d ue to spectral leakage. 

F il tering of data acqu ired by a n optical system is indispensable. 

Hence, a filt ering procednre in the wavenllm ber domain is carri ed out in t his 
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work . T wo filt er mechanism , the ideal 2D Iv-space filter and the oval 2D 

nutterw rth /;,~space fi lter are employed in order to remove un wanted noise 

components within the wavenumber doma in . The ideal 2D k-space filt er has 

the advantage of an easy implementation . However , d ue to its sharp fil ter 

slope a t the cut-off frequency locat ion false frequencies components a re 

introduced once the spectra l derivatives are t ransformed back in to spa tia l 

doma in (Gibb's phenomenon). Employing an oval 2D nutterwor t h k-space 

fi lter with a much smoother fi lter slope may d iminish thi s problem. 
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5 THEORY OF VIBRATIONAL 

ENERGY IN BEAMS 

5.1 Introduction 

The alln of this chapter IS the analytical study of vi brat iona l energy of 

uniform , linear-ela t ic a nd isotropic beam structmes t hat are assumed to be 

either lossless (infinite case) or hysteret ically damped (finite case). In this 

study a harmonic load excitation is assumed and the solution to the harmonic 

load excitat ion is presented Llsing a steady state wave-based a pproach. T he 

wave-based method takes evanescent and travelling waves into accoun t. T he 

Euler-13ernoulli beam theory i employed. 

Along with the wave-based solution of the partial differential beam 

equation spec ific analytical vibrationa l energy flow (VEF) expressions a re 

derived for infinite and simply supported boundaries when exci ting the 

structure with two different load forms, point force excitation , a nd momen t 

excitat ion . Thus, section 5.2 presents a genera l four-wave VEF equation 

employing complex wave a mplitudes to define vibra tional net energy 

transport . This so lution is then applied to t he specia l boundary cases. Hence, 

section 5.3 presents time-averaged vibrat ional input power (VIP) and VEF 

expres ions of an infinite beam using prior determined complex wave 

amplitudes. The same procedme is carried out for a simply supported beam 

in section 5.4. Section 5.5 introduces the theory of unconstra ined layer 

damping on beams. lVlost of t he presented expressions herein are derived from 

origina l work on the study of the beam. 
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5.2 Four-Wave Vibrational Energy Flow 

T he derivation of a genera l wave-based expres ion of VEF in a beam is Ilseflll 

when invest igating beam structures t hat have d ifferent boundary cond it ions. 

It is then easier to subst it llte the appropriate complex wave amplitudes into 

the general VEF expression , once they a re determined by the particlllar 

solution of the beam 's differential equation of motion . Consider Fig1ll'e .5.1, 

where a transversely vibrating finite beam is howlI hav ing four wav 

components in it. By applying a wave-based approach it i ev ident from 

Figure 5 .1 tha t a near field wave component A+e-'" and a travelling 

/ 

/ 
\.:'+e-k:rW\/!+e-

Jkr B_eJk(T-~ A_l7 
1/ 

~, 
x 

L 

Figure 5.1 Four wave components in a rectangular bea,m. 

component B+e-'''' arise at the left-hand side discontinuity , which might be 

driven by an excitation force Fo. Because t he beam is of finite na ture 

refl ections occur at the right-hand discontinuity. Thll , A e"lr L) and /J el'I.' L) 

a re the reflection components heading towards the excitation location . All 

four waves superimpose wit h each other and form the beam disp lacement . 

Thus, the general beam displacement may be as Ilmcd as [1 J: 
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Here, A+ and A_ are complex, evanescent wave ampli t1ldes 13+ a nd B are 

complex , travelling wave amplitudes , the 'ubscript + denotes waves 

travelling in to the positive x direction a nd the subscript - denote wave 

components travelling into the negat ive x d irection . Equat ion (5.1) can a lso 

be seen as the general solution of the beam 's partial differentia l cq1lation of 

motion given in eq1lation (AI. ). 

To derive t ime-averaged VEF expressions one can substitute eqnation 

(5. 1) into eq uation (3.33). Note, the temporal term e,·1 was omitted. By 

doing so the real part of the complex , time-averaged VEF ill a rectang1lla r 

bea m is given by: 

(5.2) 

T he asteri sk * denotes complex c01ljugate of the respect ive complex wave 

amplitude and t he subscr ipt 4 W denote four wave-based quantity. 

Analogously , the imaginary part of the t ime-averaged VEF in a rectangular 

beam can be found to be: 

(p) = jEl k"w 
.fr -1'" 

e ", [COS(k(X - L») {A, 13:} + cos (k.7;)'-S {D, A; } - ] _ 

si n (k (x - L») ~ { A ID} - si n (k.'h ) ~ { 13 I A I } 

~~ + 
[

cOS(I.."t) '-S {A 13; } + cos (k(x - L») {13 A'} + ] 

si n (k.'h ) ~ {A 13:} + in (k( X - L») ~ {D A' } 

e '" [COS(k(X - L»)~ {A, D.' } + cos (kx)~ {D, A.:} +]_ 
sin (k(x - L») {A ,D } +sin (k.'h)'-S {13 IA, } 

e'1r L) [cos (I.."t ) ~ {A 13.:} + cos (k( 1; - L») ~ {13 ~' } - ] 
sin (kx) {A 13 , } - sin(k (x - L))'-S{D A } 

.(5.3) 

Herein , 91 denotes the real part and 3 denotes t he imagina ry part of a 

complex quantity. Equations (5.2) and (5.3) di splay the net VEF in a beam if 

four wave components a re present . Expression (5.2) is known as the acti ve 
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VEF. This part gives information about net energy transmitted through the 

structure. Equation (5.3) is known as the reactive VEF and thi part gives 

information about energy storcd in the beam in dependency upon the amount 

of standing wave forming the disp lacement. From equa tion (5.2) it becomes 

evident that the act ive net energy fl ow is contributed mostly by the 

difference of squared wave magnitude IB+12 = B+B: and squared wave 

magnitude IB} = B_B~ . It is a lso shown that the nearfield components A+ 

and A_ can contribute to energy flow if they have a significant imaginary 

part , the beam length is short , or the frequency given by the wavenumber k 

is low. Of course both nearfi eld com ponents need to be present . 

5.3 Infinite Beam Analysis 

The concept of infinite structures is pure hypoth · ti cal. It is often used in 

analytical dynamic analysis to simplify the solution by neglecting refl ec tions 

from the boundaries. Hence, the structnre boundaries are extended 

theoretically to infinity. The advantage of thi s procednre is that a simple and 

fast insight in to the physical behaviour of any vibmt ing structure can be 

obtained . In practice, infinite tructures are simula ted by a very hig h 

boundary damping. Thus, a lmost the entire vibrational energy injected into 

the system at the excitation location is dissipated at the end of the tructure. 

Within this analysis interna l structura l damping, usua lly modelled by a 

hysteretic damping model , is neglected , since the damping at the boundary IS 

considered much higher than t he il)ternal structural damping. 

Within this ection a fully infinite beam is a nalysed when excited by a 

point force or a moment . Simple results of transverse beam d isplacement are 

derived in section 5.3.1. From these results VIP expressions are presented in 

section 5.3.2. In section 5.3.3 VEF expressions arc d erived employing the 

derived four wave-based VEF equations. 
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5.3.1 Forced Vibration 

T he so lution of the beam " inhomogeneous part ia l d ifferentia l equation of 

motion (Al.8) is the response o f the beam to a n applied load. In thi s research 

a harmonic excitation is assumed. T he inhomogeneous differentia l beam 

Ma F:_\ .- ' - ' - '- ' - . i P, .. . .. . Ma 

eq uation can be solved by 

uSl11g different techniques. 

Apply ing a finite F ourier 

transform [108], uSl11g a 

moda l a pproach [114] or 

ut ilising the Laplace 

transform [108] arc just a 

few of them. In t hi s work a 

Figure 5.2 Positive sign conventions. wave-based approach IS 

em ployed. T h is approach IS 

relatively new . It has the advantage of a s imple im p lementa tion 111 

computational sys tems. Wave-based a nalysis uses exponential travelling a nd 

decay ing waves to descr ibe the beam 's response to a harmonic load. The sign 

conventions are shown in Figure 5.2 . 

5.3.1.1 Point Force Excitation 

Consider a fully infini te beam , excited m the midd le by a harmonically 

varying load, as shown in F igure 5.3. It is convenient to distinguish between 

a positive and a negative bcam displacement location . Thus , t he beam 

disp lacement is given by [1]: 

( t) - (A k, B -Jh ) J"" f > 0 u+ X, 'X - +e + +e e or X _ ) (5.4 ) 

(5.5) 
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Figure 5.3 "V",ves in a point force 01' moment excited infini te beam. 
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+ 00 
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T here are 4 unknown complex wave a mplitudes and, thus, 4 boundary 

condit ions need to be defined at the excitat ion location, x = O. Two boundary 

conditions can be related to the geometr ical condition on the beam at the 

excitat ion locat ion given by: 

(5.6) 

(5 .7) 

Further , two more boundary conditions can be derived. One is rel a ted to t he 

equilibrium of the in ternal bend ing moments at the excitation location x = 0 

and one is related to the equilibrium of the interna l shear forces with the 

applied excitation force at the excitation location 1; = O. Thus: 

82
2/_ (0) f - El ~ 

- 8x2 ' 
(5.8) 
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o"u+ (O)F, 

ox" 
o"u (0),:.. 

o~C" 
Po 
El 

(5.9) 

A complete derivation of this a na lysis can be found in Append ix A 7. From 

Appendix A 7, the complex wave amplitudes a re found to be: 

P-o 

A, 4 Elk" 
jFo 

/J , 4 Elk" (5.10) 
C P-o 

D 4 El/';" 

.iP" 
<I Elk" 

If one substitutes equation (5. 10) into equation (5.4) and (5.5), respecti vely, 

the infinite beam's response to a harmonically varying point force can be 

found to be [ll: 

P" ., (e kr + je )kr )e)·t for x ~ 0, 
4 Elk' 

u (x t) = - p,' . (ela + je)"' ) e)·1 for x :;; o. 
' F~ 4 El k" 

Here, the fl exural wavenumber k is given as /,;'1 = pAaJ/ (EI ). 

5.3.1.2 Moment Excitation 

(5. 11) 

(5.12) 

If the load is considered to be a harmonically varying moment, the transvcrse 

displacements u , (0, t)x and II (0, t)~ a t t he exc itati n locati n x = 0 must 

be zero. Also, t he slope of both d isplaccments at the excitation locat ion must 

be equal. The first two boundary conditions are sati fi ed by equations (5.6) 

and (5 .7) . Furthermore, the sum of the internal bending moments on eithe r 

side a t t he excitat ion location x = 0 must be equal to the applied moment 
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a nd the internal shear forces on either s ide of x = 0 must be in equilibrium . 

Thus, the two remaining boundary conditions of a n infinite beaIII under 

moment excitation can be formulated as: 

8"u+ (0) ,/ El ,~ 

8x" 

8' 1£_ ( O)~/~ 
8x' 

8" (0) = El u_ M .... 

8x" 

(5.13) 

(5. 14) 

A derivation of the wave a mplitudes can be found in Appendix AS. From 

Appendix AS t he desired wave ampli t udes are given by: 

M" 

A , 
4 El k' 

Mo 
[J , 4 El k' 

(5. 15) 
C M" 

D 4 Elk' 
Mo 

4 Elk' 

Subst ituting equat ion (5. 15) in to (5.4) aud (5.5), respectively t he beam 's 

response due to a n applied moment may be defined as [103J: 

( . t) - Mo ( '" _ l"' ) lw' f · >0 U I X, AI - 2 e e e) or x - 1 

~ 4 Elk 
(5. 16) 

( t) - _ M" ( '" _ lkr ) l~' c . < 0 U X, \f - 2 e e e , 10 1 X - . 
,~ 4 El k 

(5.17) 
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5.3.2 Vibrational Input Power 

In section 3.5 VIP expressions were presented. It has been shown that input 

power to a structure can be determined from the knowledge of the real part 

of the point mobility. Mobility functions are defined as the ratio of velocity 

response due to an applied load and the load itself. Mobility functions 

describe the dynamic response at any point in the structure due to the 

applied load. If the response at the excitation location is of interest, then 

point mobility functions are employed. If spatial positions away from the 

excitation location are of interest, then transfer mobility functions are 

employed. With the determined transverse beam displacement of the infinite 

beam the VIP due to point force and moment excitation can be found simply 

by substituting the point mobility of the respective structure into equation 

(3.23) and (3.24), respectively. Due to the energy balance of infinite 

structures the input power must be equal to the transmitted energy if 

internal losses are neglected. 

5.3.2.1 Point Force Excitation 

Point mobility of a structure due to a harmonic point force at excitation 

location :zv is defined as: 

(5.18) 

Substituting equation (5.11) and (5.12), respectively, into definition (5.18) 

and setting :11, = 0, the point force mobility of an infinite beam can be written 

as: 

y = (1- j)w 
F~ 4Elk"' 

(5.19) 
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Substituting equation (5.19) into equation (3.23) vibrational input power to 

an infinite beam is given as: 

(P) _ F'o'w 
on F~ - 8Elk"' (5.20) 

5.3.2.2 Moment Excitation 

Moment point mobility of a structure due to a harmonic moment at 

excitation location a;, is defined as: 

(5.21) 

Substituting equation (5.16) and (5.17), respectively, into expression (5.21) 

and setting a;, = 0, the moment point mobility of an infinite beam can be 

written as: 

(1+ j)w 

4Elk 
(5.22) 

Note, the negative sign of equation (5.17) changes with clockwise moment 

excitation and is a result due to the employed sign convention. Since power 

input to a structure cannot be negative, the minus sign is neglected for input 

power definition. Substituting equation (5.22) into equation (3.24) VIP to an 

infinite beam due to moment excitation is given by: 

(P) = M~w 
on M~ 8Elk' 

(5.23) 
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5.3.3 Transmitted Vibrational Energy 

With the determined complex wave amplitudes the transmitted vibrational 

energy due to point force and moment excitation can be found simply by 

substituting the wave amplitudes into the general four-wave VEF equation 

derived in section 5.2. The right-hand side and the left-hand side of the beam 

are considered separately. 

5.3.3.1 Point Force Excitation 

Substituting the wave amplitudes of equation (5.10) into equation (5.2) and 

setting B_ = A_ = 0, the active transmitted energy within a point force 

excited infinite beam to the right (+) and left (-) can be found to be: 

= ± F.,'w . 
16Elk3 

(5.24) 

Analogously, substituting the wave amplitudes given by (5.10) into equation 

(5.3) the reactive VEF to either sides (upper sign for x > 0 and lower sign for 

x < 0) of the infinite beam is given by: 

jF,'w e~!' 
(px ) = 0 3 (± cos (kx) + sin (kx)) . 

, F~ 16Elk 
(5.25) 

5.3.3.2 Moment Excitation 

The same method, as described above, can be employed to find the 

transmitted vibrational power when applying an excitation moment simply 

by substituting the wave amplitudes given by equation (5.15) into equation 

(5.2). Thus, moment induced active VEF is given to the right side (+) and to 

the left side (-) of the infinite beam as: 
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M'w 
(p) _± 0 

'. M~ 16Elk 
(5.26) 

Substituting the wave amplitudes of equation (5.15) into equation (5.3), the 

reactive VEF to both sides of a moment excited infinite beam is: 

jM'we~h 

(p.) = 0 (sin (kx) =t= cos(kx)). 
.~ M~ 16Elk 

(5.27) 

. 5.4 Simply Supported Beam Analysis 

In contrast to the infinite beam analysis, the response of a finite beam is 

dominated by reflections at the boundary locations. Since the boundaries of a 

finite beam are considered here to be lossless, internal dissipation of 

vibrational energy is the primary energy dissipation procedure. 

The internal dissipation process is modelled within this work by a 

hysteretic damping approach [1, 103J. A hysteretic damping model employs a 

loss factor, which is defined as the ratio of dissipated energy (energy loss) and 

reversible energy and, thus, the loss factor indicates the amount of energy 

lost during one cycle of vibration [103J. To include damping the Young's 

modulus becomes a complex quantity. If one employs a wave-based approach, 

the wavenumber also changes into a complex quantity. Thus, exponential 

travelling waves, considered to be the primary energy transport component, 

are now multiplied by an evanescent wave component, which exponentially 

reduces the wave amplitude with increasing distance. Since the square of the 

wave amplitude is proportional to the vibrational energy transported through 

a volume, the VEF is diminished over distance too. 
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5.4.1 Forced Vibration 

In t hi s section , t he VEF due to harmonic poin t force a nd m ment excitation 

of a simply supported-simply supported beam is in vestigated . As mentioned 

before t he boundaries of t he sim ply supported beam are considered to be 

lossless. Also, t he beam is assumed to be rect angular , uniform , a nd isot ropic. 

At t he time t = 0, t he exciting .load generates infinite wave components 

traveIJing a way from the excita t ion locat ion . If one considers t he t ime within 

one cycJe, i.e. 0 $; t < 21r / w, then t he t raveIJing in fini te wave component s a rc 

renected a t both ends of the beam causing a rise of refl ect ed wave 

components, which are now t r ave.l towards each ot her a nd event ua IJy 

superimpose, to create a so-ca IJ ed standing wave environment. IF onc assumes 

no in ter nal materia l losses wit hin the stntcture, consequently t here is no net 

energy now , stnce t he superimposed wave fi eld does no t p ropagate. 

Figure 5.4 \ ;Vaves in a point force or moment excited simply supported beam . 

Furt hermore, no additional energy can be injected into the structure as soon 

as t he second cycJe commences, since the previou injected energy is sti IJ 
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stored within the beam. Thus, if one analyses a finite structure by neglecting 

internal material losses the point mobility of it is purely imaginary. Hence, 

according to equations (3.23) and (3.24), no energy can be injected into the 

structure because the VIP equations employ the real part of the point 

mobility only. It is clear from here on that damping must be included in 

order to account for real finite beam behaviour. When adopting a hysteretic 

damping model a complex Young's modulus, E = E(l + fT7), is employed. 

This complex modulus results in a complex, flexural wavenumber as: 

. ( pAw' )± 
!s. = El (1+ jl1) 

(5.28) 

A good approximate solution to the fourth root of the denominator in 

equation (5.28) can be found by assuming a small loss factor, i.e. 17 < 0.25. 

The four roots may then be approximated by k(1-jl1/4), -k(1-fT7/4), 

k(11/4 + j) and -k("1/4 + j), where k is the real positive wavenumber [lJ. 

From the four possible solutions the complex wavenumber used in this thesis 

is defined as: 

(5.29) 

If one substitutes equation (5.29) into the general wave equation of a finite 

beam equation, as shown by equation (5.30), it can be realised that the 

exponential travelling components will now also decay exponentially to some 

extent while travelling and the exponential decaying components will now 

also propagate to some extent while decaying. Due to the exponential decay 

of the travelling waves the net energy flow within the structure is not zero 

anymore. Energy can now be injected during each cycle, which is equal to the 

energy dissipated within the structure during that cycle. It can also be 

realised that the energy relations are much more complex, since both type of 

waves may transport vibrational energy. 
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5.4.1.1 Point Force Excitation 

The transverse beam displacement is considered herein as a superposition of 

an infinite beam displacement and reflections caused by the beam's simply 

supported boundaries. Thus, the wave model is formed by an infinite beam 

response and the reactions at the beam's end. Mathematicall:y the transverse 

finite beam displacement may be expressed as [1]: 

The infinite beam displacement is related to a finite beam in dependency 

upon the position x and the excitation location 4' and is given by [1]: 

2 

U(X)F~ = L:Kne-~"I."o-xl . (5.31) 
f/=1 

Herein, K,. is the nearfield wave amplitude for n = 1 and the farfield 

an;tplitude for n = 2. Furthermore, 1£, = Is. and 1£2 = jls.. The reason why only 

. two wave amplitudes are employed is that they are identical for the left- and 

ride-hand side of the excitation location. It is more convenient to relate the 

infinite beam response in finite structures by using equation (5.31). 

As mentioned before the beam displacement is a superposition of 

infinite waves and reflection waves that occur at x = 0 and x = L. A 

complete derivation of the transverse finite beam response can be found in 

Appendix A9 The boundary conditions at the excitation location are exactly 

the same, as shown by equations (5.6) to (5.9). The remaining boundary 

conditions at x = 0 can be found to be: 

u(O)" = 0 , (5.32) 

El (iu(O) •• = 0 . 
- {)x2 (5.33) 
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Analogously, the boundary conditions at x = L can be written as: 

u(L)., = 0 , (5.34) 

o2u(L) . 
El " = 0 - ox2 (5.35) 

Equations (5.32) to (5.35) display the classical simply supported boundary 

conditions of zero displacement and zero bending moment, respectively. By 

substituting the general wave-based solution shown by equation (5.30) into 

the above given boundary equations one may create a matrix -equation as 

demonstrated in Appendix A9. Here, equation (5.31) is regarded. The 

solution of this matrix equation yields to the exponential wave amplitudes of 

a simply supported point force excited beam. Thus: 

-1 

-J 

A+ 
j(e-jMLIT,) _ eJ!i(L-xo») 

B, (e 2J;L -1) 
B (e- !;(L I Xo) _ e!;(L--",») 

A Po (e- 2!;L -1) 
C 4EIls." -1 

(5.36) 
-

D_ -J 

D+ j (e j!;(2L .X,,) _ e J&~o ) 

C+ (e 2J!;L_l) 

(e!;(2L-.Xo) _ e-&~") 

(e- 2;L -1) 

If one substitutes the complex wave amplitudes (5.36) into equation (5.30) 

under consideration of equation (5.31), the transverse displacement of a point 

force excited simply supported beam can be written as: 
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(5.37) 

5.4.1.2 Moment Excitation 

As shown in equation (5.15) the right-hand side and the left-hand side 

amplitudes are equal in magnitude but different in sign. Thus, the infinite 

beam displacement of a moment excited beam, related to the finite beam 

vibration, may be written as: 

2 

U(X)M~ = 2:)_1)',-1 sig(x - xO)F.,e-'oIX"-xl • (5.38) 
11.=1 

Herein, sig( :v-:zu) is a function similar to the well known signum function 

sig(x). However, sig(:V-3iJ) is defined in this work as: 

Sig(X-XO)={ 1 
. -1 

forx 2: Xo 

for x::; Xo • 
(5.39) 

Here, F" is the nearfield wave amplitude for n = 1 and the farfield amplitude 

for n = 2. Furthermore, the wavenumber relations are 1:£1 = 1:£ and 1:£2 = j1:£. 
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From Appendix AI0, the complex, exponential wave amplitudes are given by: 

1 

-1 

A+ 
(e J&(LI.",,) + e JML""")) 

B+ 
(e 2J&L - 1) 

B (e.' &(L I.",) + e &(L-X,,)) 

A Mo (e 2&L_l) 

-
4EIl£' 

(5.40) 
C_ -1 

D 1 

Dt (e-J&(2L xn )+ e- J&",) 
C+ (e 2J&L_l) 

(eo' &(2L-x.) + e -C"n ) 

(e 2&L_l) 

A complete derivation of the moment excited beam response is given in 

Appendix AI0. The boundary conditions, when exiting by a moment, were 

satisfied by equations (5.10) and (5.12), equations (5.13) and (5.14), and 

equations (5.32) to (5.35). Substituting equation (5.40) into equation (5.30) 

under consideration of equation (5.38), the beam response was found to be: 

(5.41) 
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5.4.2 Vibrational Input Power 

5.4.2.1 Point Force Excitation 

The derivation of the point mobility of a point force excited simply supported 

beam is given in Appendix All. From there the point mobility YF.. is given 

by: 

Y = JW 
F.. 4EI!s.3 

(
sin (2!s.xo) + sin (2!s. (L - xo)) - sin (2!s.L)) _ 

1 - cos (2!s.L) 

(
sinh(2!s.xo) + sinh(2!s.(L - xo)) - Sinh(2!s.L)) 

1- cosh (2!s.L) 

. (5.42) 

It can be seen that YFu is a rather complicated complex expression with 

complex arguments in each sinusoidal and hyperbolic term. Any further 

rearrangement of equation (5.42) into real and imaginary components would 

yield to a large expression that will not be shown in this work. If one 

substitutes equation (5.42) into equation (3.23), time-averaged VIP to a 

hysteretically damped simply supported beam excited by a point force is 

defined as: 

(p) = Fo'w lR 
m F_ 81 

(
sin (2!s.xo) + sin (21£(L - xo)) - sin (2!s.L))_ 

j 1 - cos (2!s.L) 

Ek
3 

(sinh (2!s.xo) + sinh (2!s. (L - xo)) - sinh (2!s.L )) 
1 - cosh (2!s.L) 

. (5.43) 

Without damping the first fraction of equation (5.43) denotes travelling wave 

components and the second fraction denotes evanescent wave components, 

which are purely imaginary in that case (see equation (Al1.7) in Appendix 

All). However, due to the hysteretic damping each argument is now complex 

and, thus, undamped pure imaginary terms become complex by having a real 

part, which allows for power input. As mentioned previously, if one neglects 
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internal damping the energy input to a beam is zero, since the point mobility, 

given by equation (Al1.7), is purely imaginary. 

5.4.2.2 Moment Excitation 

Vibrational power input of a moment excited simply supported beam can be 

derived, as shown above. From Appendix A12 the moment point mobility is 

given as: 

[ sin(2~Xo) + sin(2~(L - xo)) + Sin(2~L))+ 
. . 1 - cos (2kL) JW -YAt =--

• 4EI~ [sinh(2~xo)+sinh(2~(L-Xo))+sinh(2~L)) 
1 - cosh (2~L) 

(5.44) 

Substituting equation (5.44) into the input power equation (3.24), time

averaged VIP of a moment excited simply supported beam can be found as: 

(P) = M~wR 
on M. 81 

[
Sin (2~xo) + sin (2~(L - xo)) + sin (2~L ))+ 

j 1- cos (2I£L) 

Ek [sinh (2~o) + sinh (2~ (L - xo)) + sinh (21£L )) 
1- cosh (2I£L) 

. (5.45) 

Also here, the input power term is a rather complicated expression. It can be 

seen from equation (5.45) that the argument of each sinusoidal and 

hyperbolic term is fully complex. Thus, each term allows energy input to 

some extent. 

5.4.3 Transmitted Vibrational Energy 

Since the beam displacement of a finite bimm is composed of the infinite 

beam response and its reflections, it can be realised that VEF in a finite 

beam is formed by infinite waves and reflection waves. The simply supported 
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beam displacement as the summation of both wave groups simply can be 

written as: 

u(x,t) = (u(x)", + u(x),) e;wt. (5.46) 

Herein, u(x)", is the infinite waves response and u(x), is the reflection waves 

response. If one substitutes equation (5.46) into the she~r force term of 

expression (3.33), the following shear force term can be obtained: 

03U (x, tt (au(x,tt)' + a3u{x,t), (au(x,tt)' + 
El ox3 at ox3 at 

p--
x, 2 a3u(i,tt (au(x,t),)' + 03U(X,t), (au(x,t),)' 

ox3 at ox3 at 

(5.4 7) 

Analogously, the time-averaged bending moment VEF component can be 

found by substituting equation (5.46) into the bending moment term of 

equation (3.33): 

o'u (x, t)", (a'u(x,tt)' + o'u(x,t), (a'u(x,tt)' + 
El ox' axot ax' axot 

p =-=-
XM 2 o'u (x, t)", (o'u(X,t),)' + a'u (x, t),. (a'u(x,t),)' 

ax' axot ox' oxot 

(5.48) 

From equations (5.47) and (5.48) it can be seen that two uncoupled and two 

coupled VEF terms arise. The uncoupled VEF terms occur due to a pure 

VEF product of each wave group and they are denoted as (1~ to and (p, t . 
The coupling arises due to a mixed VEF product between both wave 

groups. Thus, coupling is defined as the VEF product of the shear force or 

bending moment component of the infinite waves group and its appropriate 

velocities components of the reflection waves group, denoted as (p, to, and 

(px ), '" ' respectively. 
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Thus, the VEF within a finite beam can be defined as: 

(5.49) 

Here, the coupled term is given by: 

(px) =(px) + (px) . 
C ,r,OO CO,r 

(5.50) 

5.4.3.1 Four-Wave Vibrational Energy Flow Including Damping 

The uncoupled transmitted energy (pxt and (PX)r' respectively can be 

determined simply by substituting the respective wave group into the general 

four-wave VEF expression. However, the expressions given in section 5.2 do 

not include damping. From section 5.2 the damped four-wave VEF can be 

obtained simply by substituting a complex wavenumber into equation (5.1) 

and using this definition to derive VEF due to the four wave presence. The 

derivation of this procedure is given in Appendix A13. Using the following 

sim plifications: 

(5.51) 

(5.52) 

(5.53) 

(5.54) 
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the four-wave-based VEF of a hysteretically damped beam is given by: 

(1 + Fi) (n j n; e 2k
"j - nn' en;,,) + 

2(1) + j1)2)e k"(XX) -_ " [COS(k(X + x»)~{n.jn:}-) 
sin(k(x + X»)~{nfn:} 

. __ . _ __[COS(kx1))~{A+A'}+) 
2(1 + J'T/)e k(x-x) cos (kx'T/) . _ { '} + 

sm(kx'T/)~ A,A_ 

2(1) - j)e-k(X x) sin (kx1)) + 
[

COS (kx1)) ~ {At A:} +) 
sin (kx1))~ {A, A:} 

(1) + j1)2)(A,A;e- 2kx - AA'enx ) + 

_ [D~+A. cos(kx(1+ 1)))-) 
e kx"(1)-l) + 

DD+A. sin (kx (1 + 1))) 
(1)-j)e'" 

eH" C + 1) [DA,B_ sin (k (x - X1)))-) 
'T/ D ,4B_ cos (k (x - x1))) 

_ [DB. A.. cos(k(x - x1))) +) e kx'(1)+l) + -

. D~ A.. sin (k (x - X1))) 
(1)-j)e kX 

+ 

__ [D A..B cos (kx (1+ 1))) +) 
ekx, C -1) -

'T/ D.tB_ sin (kx (1+ 1))) 

+ 

(5.55) 

Here, the simplification x = (x - L) is employed and the constant C41V is 

defined as: 

C _ §l.Ik'w (1 - j1))3 
4IV - 1 + 'T/2 

(5.56) 

If no damping is included, expression (5.55) may be reduced to equations 

(5.2) and (5.3). From (5.55) it can be seen that the damped VEF is a much 

more complex expression. This is due to the fact that each exponential VEF 
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term in equation (5.1) is now fully complex and contains travelling as well as 

evanescent parts. 

To derive VEF expressions of a simply supported beam the infinite 

beam response u( x)", is defined in this work as: 

() C · leX + C ·}l" U X ()Cl = le - 2e - . (5.57) 

Herein, the simplification x = Ix. - xl is used. The near- and farfield wave 

amplitudes of the infinite beam response are Cl and C2, respectively. The 

infinite waves amplitude are given by equation (5.10) and (5.15), respectively 

for both types of excitation. Note, equation (5.31) and (5.38), respectively 

need to be applied when employing the infinite beam response in the simply 

supported beam VEF analysis. 

The reflection waves beam response u(x), is given as: 

(5.58) 

To derive VEF due to the infinite waves, two wave components need to be 

substituted into equation (5.55), only. To derive VEF due to the reflection 

waves, four wave components need to be substituted into equation (5.55). 
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5.4.3.2 Coupled Vibrational Energy Flow Including Damping 

As shown in equations (5.47) and (5.48) two different forms of coupled VEF 

arise in a finite beam given by: 

(px ) = (Px ) + (Px ) • c r,oo oo,r 
(5.48) 

As mentioned previously (Pxt", appears due to the complex product of 

internal shear force and bending moment of the reflection waves and the 

appropriate infinite wave velocity components given by: 

(p,) = El (03U(X,t), (OU(X,tt)' + o'u(x,t), (o'U(X,t)oo)'). (5.59) 
. ',00 2 ox" at ox' oxot 

Vice versa, the complex product of internal shear force and bending moment 

of the infinite waves and the appropriate reflection wave velocity components 

may be written as: 

(p
x

) = EI(03U(X~tt (OU(X,t),)' + o'u(x,tt (o'U(X,t),)'). (5.60) 
00,' 2 ox" at ox' oxOt 

A complete derivation of both quantities is presented in Appendix A14 for 

the damped and undamped case. Usually only travelling waves transmit 

energy across the beam. However, as mentioned before in the case of damping 

each wave component is now capable of transmitting energy to some extent 

because each exponent in the exponential definition is complex having a real 

part (evanescent component) and an imaginary part (travelling component). 

Thus, it can be realised that the definition of transmitted energy in a finite 

beam is fairly complicated, since all eight wave combinations are included. 

From Appendix A14 the coupled VEF (Pr-), can be written as: 
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., [cOS(k(X-X»)!R{C;D+}+] 
(Slg(X) +1) -

__ sin(k(x - X») \3< {C;D+ } 
(1 + m)e-',I*I + 

[
COS(k{X - :i3))\3<{C;D+}-] 

ij(sig(x)-l) 
sin(k(x - X») !R {C;D+ } 

., [cOS(k(X H»)!R{C;B_ }-] 
__ . (Slg(X) -1) sin(k(x H») \3< {C;B_ } -

(1 + m)e-'·,INI + 
- .' [cOS(k(X + x») \3< {C;B_} +] 
T/(Slg(X) + 1) 

sin(k(x H»)!R {C; B_} 

_ ., [cOS(kij(X+X»)!R{C;A_}+] 
T/(Slg(X) -1) + 

sin (kij(x H») \3< {C; A_} 
(l+m)e-k(x-'1 + 

., [COS (kij(x + X»)\3<{C;A_}-] 
(Slg(X) +1) sin (kij(x H») !R {C;A_} 

_ ., [cOS(kij(X-X))!R{C;C+}-] 
T/(Slg(X) + 1) -

sin(kij(x - X» \3< {C;C+} 
(1 + jij)e-'lx+'1 + 

[
cOS(kij(X - X») \3< {C;C+ } +] 

(1- sig(x)) 
Elk3w sin(kij(x - x»)!R{C;C+} 

(p) - -
_x c =1+r,2 

(5.61) 
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Here, the simplification x = (x - xo) is applied. A much simpler expression 

can be found in the undamped case of 7) = O. In that case expression (5.61) 

can be reduced to a real part (active VEF) as: 

(sig(x) + 1) + [~{C;D' }cos(k(x - x» +) 
~ {C;D, }sin (k(x - x» 

P = Elk'w sig x-I + [~{C;B }cos(k(x + X»)-) 
( .t. ((») ~{C;B}sin(k(x + x» 

(5.62) 

e~'" [eki 
(1+ sig(x») ~ {c; A_ }-] 

e" (1- sig (x») ~ {C;C+ } 

The imaginary part of the simplification of equation (5.61) (reactive VEF) is 

given by: 

~ {C;D+ }(sig(x) cos (kx) - sin (kx») + 

_ ~{C;D+ } (cos (kx) + sig(X) sin (kx») + 
e-h + 

~ {c; B_ }(sig (x) cos (kx) - sin (kX») -

~{C;B_ }(cos(kX) + sig (x) sin (kx») 
(P,) = jElk3w (5.63) 

<;. -h [~{C;C+ }(cos (kX) - sig (x)sin (kX») -) 

e ~{C;C+ } (sig(x) cos (kX) + sin (kx») -

e'~ [~{ C;A_} (cos (kX) + gig (x)sin (kX») +) 
~ {C;A_ }(sig(x) cos (kx) - sin (kx») 

5.4.3.3 Point Force Excitation 

VEF in a simply supported beam is the sum of three terms given by: 

(5.64) 
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Herein, (P,t is the uncoupled transmitted energy due to the infinite waves, 

(px)r is the uncoupled transmitted vibrational energy due to the reflection 

waves, and (Pxt is the coupled transmitted energy due to coupling of both 

wave groups. To derive transmitted infinite wave energy flow within a 

hysteretically damped simply supported beam the damped infinite wave 

amplitudes given in equation (5.36) may be substituted into equation (5.55) 

by setting A_ and B_ equal to zero. Thus, equation (5.55) reduces to: 

l3y setting A_ = 0 and B_ = 0 the active VEF is given by: 

The reactive VEF can be found to be: 

In equations (5.66) and (5.67) the following substitutions are used: 

1 -, - -:I 
-1] e-'kxii + 1] -1] e-'kx 

(1+1)')' (1+1)')' 

2 (1)' + 1)(1)' _1))e-kX
(1+;;) [cos (kx (1 + 1))) +) , 

(1- 31)')' + (31) _1)3)' sin (kx(1+ 1))) 
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2- 2- ' 
~_17!....-,-;;- 2ki;; 77 2ki' 
-:- 2 e + 2 e -
(1 + 71' ) (1 + 71' ) 

(71 + 1)(71 _ I)' (712 
+ l)e H(1I;;) [[cos (kx(1+ 71)) 11 

(1- 3712)' + (371 - 713)2 +sin (kX (1+ 71)) 

(5.69) 

ote, to obtain positive VEF to the right a nd negative VEF to t he left of the 

excitation location the sig function is employed a nd x is s llbstituted by 

x = Ixo - xl· The factor C F~ i given as: 

JC.2W C - 0 

F~ - 16Elk3 (1 + 1617') 
(5.70) 

If no damping is considered , equations (5.66) and (5.67) and its subst itutions 

reduce to equation (5.24) and (5.25) , respect ively, by hav ing the same 
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Figure 5.5 Transmi tted infinite wave energy along a force excited simply supported 

beam at different damping levels: (a) active VEF, (b) reactive VEF. 
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magnitude, as shown in equation (5.70), without the damping term included. 

It can be realised that the expression that includes damping is much more 

complicated. The first bracket term in equation (5.66) is the square of the 

travelling wave amplitude B+, which is here exponentially decayed by e -2!-xii 

Also, the decaying wave products, as shown by the second and third bracket 

terms in equation (5.68), contribute to energy transmission, something that 

does not occur in the undamped case. Vice versa the travelling term also 

contributes reactive energy transmission. Thus, it has been demonstrated 

that each wave component contributes to active and reactive energy 

transmission but to a different extent. Figure 5.5 displays the infinite wave 

VEF of a simply supported beam at different levels of structural damping. 

Here, x is denoted as the beam length. The geometrical and material 

properties of the beam used are shown in Table 5.1. 

Young's modulus E = 2.07.10" N/m2 

mass density p = 7.85·10" kg/m3 

beam width b = 50.10-3 m 

beam thickness t = 10.10-3 m 

beam length L = 1 m 

Table 5.1 Simply supported beam properties. 

The beam was excited at the 6th mode at the undamped natural frequency of 

fa = 838.3 Hz at a location of :zo = 0.4167 m. This excitation location is 

exactly at the peak amplitude of the mode shape and, thus, a maximum 

amount of energy can be injected into the beam. The material used was mild 

steel. A unity excitation force has been applied, away from the mid-length 

location of the beam. It can be seen that in a range of 10-3 ~ " ~ 10-2 the 

damped transmitted vibrational energy is not significantly affected by 

damping. A horizontal line to either side in Figure 5.5(a) would symbolise 

undamped VEF. It can be seen from Figure 5.5(a) that effects of infinite 

waves damping take place only at very high levels of damping (" > 10-1
). The 
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Figure 5.6 d isplays the VEF d ue to the re fl ect ion waves for d ifferent 

damping settings. It can be seen t hat a s light increase in da mping st ro ngly 

reduces t he transmitted energy due to t he re fl ection wa ves. However , t he 

reactive t ransmitted energy stays nearly unaltered . As expected t he VEF d ue 

to reflection waves is a t most a t t he boundaries, and zero a t the excita tion 

location . 

T he coupled transmitted energy of a simply supported beam can be 

found by substitut ing t he complex wave ampli tudes, given by equation (5.36) 

into equa tion (5.61 ) by using the amplitude substitutions C, = A+ a nd C, = 
B+. Figure 5. 7 displays the energy in a simply supported beam due to the 

coupling of infini te waves a nd reflection waves. It can be scen tha t t he e llergy 

transmission due to wave coupling is simila r in hape to the energy 

transm ission due to t he infinite wa ves. 

F inally the total VEF in a simply supported beam is shown in Figure 

5.8. It can be seen in Figure 5.8 that the act ive VEF is zero at bot h ends due 

to a zero displacement and the assumption of non-dissipati ve boundaries. 

F urther , d ue to an applid off-centre excitation the right-going energy IS 

slightly higher than the left-going energy. T he reason of this behav iour IS 

that t he longer right-hand beam side d issipa tes more vibrat iona l energy and , 

thus, more injected energy is flowing to the right-hand side. T his difference 

increases with decreasing 11,. It can a lso be realised from Figure 5. tha t there 

is a reac ti ve energy flow however , occurs on ly a t the excita t ion location . 

Further , t he magnitude of reactive VEF is much sma ller than the acti ve VEF 

magnitude. 

It can be realised from the a bove shown VEF figures tha t the 

refl ection waves and t he coupled waves are the dominant wave groups for 

total a ct ive energy transmission , whereas t he infini te waves are t he dominant 

wave group for total reactive energy transmission . 
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Figure 5.7 Transmitted coupled wave energy along a force excited simply supported 

beam at different damping levels: (a) active VEF, (b) reactive VEF. 

x 10 

:> 
G 2 
~ 

~ 
"-

01 ~ 

x 
"-
~ 

~ 

" 0: -2 

0 

xlO 
:> 
G 5 
~ • • "-
~ 

x 0 "-
~ 
~ 

E 
~ -5' 

0 

-:1 (a) 

0 .2 0.4 
x [Ill] 

·5 (b) 

, , 

0.2 0.4 
x [m] 

0.6 O. 1 

0 .6 0.8 1 

11 = 10.2 

2 10· 2 11 = . 

11 = 3.10.2 

11 = 10-2 

11 = 2. 10-2 

11 = 3. 10-2 

Figure 5.8 Transmjtted total wave energy along a force excited simply supported 

beam at different damping levels: (a) active VEF, (b) reactive VEF. 

118 



5 Theory Of Vibrationa l Energy In ileams 

5.4.3.4 Moment Excitation 

VEF due to a harmonic moment excita tion can be determined in the same 

way , as descr ibed above. VEF due to moment excitat ion within a simply 

upported beam call be written generally as : 

(5. 71) 

Also here, the expressions for the reflection and coupled waves energy 

transm ission are too comprehensive to be presented in this work. VEF 

equations of the undamped energy tran mis ion are given in Appendix A16. 

If one substitutes the infinite wave amplitudes A+ and B+, given in equation 

(5.40), into equation (5.65) and ets A_ and B_ equal to zero , one may 

obtain the active infinite waves VEF in a simply supported moment excited 

beam as: 

() 
sig(x)CM ( _) 

P, = ( ' )~ AM +4TJBM . 
• fir .... 1 + 17 ...... .... 

(5.72) 

The reactive infinite wave energy flow is g iven by: 

si" (x) C 
(p) = ' 0 M~ (4-A - B ) 
_ r, M~ J (l+TJ') TJ M~ M~ ' (5. 73) 

In equations (5.72) and (5.73) the follow ing abbreviations arc used: 

A'I = ,~ 
(5. 74) 
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2- 2- ' 17 2/.':;;; 'I] 21(; 
--'-7,e + ,e + 
1+17 l +ry 

(ry + l)(ry _ 1)2 (ry2 + l)e kr(liii) [cos (kx (1+ ry))-) 
(1- ry,)2 + 4ry' sin (kx(l+ ry )) 

(5. 75) 

T he const a nt CM, can be found to be: 

16ETk (1 + 1617') . (5. 76) 

Also here, ry = 0 reduces equa tions (5. 72) and (5. 73) including their 

substitutions (5. 74) and (5 .75) to equation (5 .26) a nd (5.27) , respect ively. It 

can be seen from equations (5. 72) a nd (5.73) t hat both expressions a re fa irly 

similar ind icating tha t each wave form contributes to acti ve and reactive 

energy tra nsport , however , with a different level of strength . The first bracket 

term in equat ion (5 .72) is t he main cont ri butor to active energy t ra nsmission 

in the beam, whereas t he remaining terms contribute less energy flow. In 

terms of reacti ve energy transmission the last bracket term in equation (5.73) 

contributes the most . 

In Figure 5.9 active and reacti ve infini te wave energy transmission due 

to moment excita tion is shown. Also here, the same geometrical and materi al 

beam properties , as shown in Table 5. 1, were used . The harmon ic m oment, as 

a pplied a t :!i, = 0.45 m , dri ves the beam at t he 6'" mode. It can be seen from 

Figure 5. 9 that the beam behaves simil ar to point force excitation however , 

t here is a sign change in reactive energy fl ow. It is ev ident from Figure 5.9 

tha t an equal a mount of energy is flowing t o the right a nd to the left of t he 

beam independent upon t he a mount of damping a nd the excitation location . 

T his behaviour is also true for infinite wave energy transmiss ion within point 

force excited beams. 

T he moment induced energy tra nsport within the beam clue to the 

refl ection waves can be found by substituting the wave a mplit1\des A , B_ , 

C+ and D+ of equation (5 .40) into t he d am ped four-wave defi nition given by 
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equation (5.55). However , here the subst itutions A+ = C+ and B+ = D+ need 

to be taken into accoun t . The result of th is computa tion is shown in Figure 

5.10. 

The coupled wave energy flow can be found by substituting the wave 

amplitudes given in (5.40) into equation (5. 61). The infinite wave ampli tudes 

(a) 

T 
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0 11 =2· 10,2 ~ 
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3 10' 2 ~ 
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Figure 5.11 Transmitted coupled wave energy along a moment excited simply 

supported beam at different damping levels: (a) active VEF, (b) reactive VEF. 

a re regarded as C, = sig(x) A, an I C2 = sig(x) B " T his result IS shown in 

Figure 5 .ll. 

Fina lly , the total vibra t ional energy transport regarded as t he um of 

infinite wave energy flow , refl ec tion waves energy flow and coupled wave 

energy flow is shown in Figure 5.12. It can be seen from F igure 5. 12 that the 

total moment induced transmitted vibrationa l energy behaviour is imilar to 

the point force excited case. Also here, the active energy flow is much higher 

than the reactive energy flow and t he energy input to the r ight is higher at 

excitat ion location than the energy input to the left . 
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Figure 5.12 Transmitted total wave energy along a moment excited simply 

supported beam at different damping levels: (a) active VEF, (b) reactive VEF. 

Note, a ll the a bove presented VEF quantities are functions of t he circula r 

frequency 01. However, due to shortage of notat ion reasons the more correct 

mathematical notation P (w) is neglected within this work. T hi procedure is 

also employed with the VIP quantities , which a rc also a function of 

freq uency. 

5.5 Unconstrained Layer Damping 

Attenuation of the resonant vibration ampli tude of a beam can be achieved 

by attaching a viscoelast ic polymeric damping layer on t he surface of the 

structure. Hence, overall damping will be increased. The in itial form of the 

beam 's complex bending st iffness Er a lters due to the attachment of a 

damping layer. Figure 5.13 displays the cros -section of a beam attached by 

a n unconstrained viscoelastic d amping layer. The sub cri pt n denotes beam 
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properties a nd the subscript D denotes damping layer propert ies. Due to the 

layer attachment t he neutral axis of bending is set a pa rt by the distance Z/J 

from the middle line of t he beam. T his d i tance can be found by ta king 

moments of t he products EA about the neutra l ax is [1]. Due to th is offset the 

Damping Layer 

Beam 

Figure 5.13. Unconstrai ned damping Ill.yer attached to a bell.lll . 

second moment of area r of both struct ures must be determined under 

consideration of the parallel ax is theorem. l3ecause the Young's modulus of 

beam and layer is complex the offset ZD is a complex quanti ty too. T hus , the 

second moments of area for bot h stfllctures change into complex qua ntities . 

However, for (770 - 770)' « 1 it can be showu t hat ~ {L} » '-S {L} a nd , hence, 

the imaginary parts of the complex second moment of area can be ignorcd. A 

thorough deri vation of the combined complex beam-damping layer st iffness is 

given in Appendix A17. 

From Appendix A17 the total bending st iffness due to the attached 

damping layer is given as: 

(EI)oo = (EI) oD (1 + .77700)· (5. 77) 
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T he real part of the total bend ing sti ffness (EI)oD is given by: 

(5. 78) 

Note, that in equa tion (5.78) the second moment of area J incorporates the 

offset from the neutra l axis of bending by employing the para llel axis 

theorem . The combined linear hysteretic loss factor dlle to the layer 

attachment is defined as: 

(5. 79) 

If one neglects the internal damping o f the beam ( TJn = 0) because Tfo » 110 ' 

the above given equations can be red uced to t he expressions deri ved 111 

reference [l J. The derivat ion of vib rational energy in a beam damped by an 

attached unconstrained damping layer can be carried out, as shown JIl t he 

prevIOUS sections. However , the bending sti ffn ess (El) 80 needs to be 

employed instead along with the complex wavenum ber that is given by: 

(5.80) 

The approximate roots for TJOD < 0.25 are given by: 

i£OD "" + -j 1):0 1 = k(l- Fino)· (5 . 1) 

Figure 5.14 d isplay a logarithmic plot of the combined linear hysteretic loss 

factor TJoo in dependency on the th ickness ra t io to/ tn. The loss factor o f the 

damping layer was TJo = 0.12. The loss factor of t he beam was obtai ned !'rom 

an experimental modal analysis undertaken on the undamped beam used for 
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later experimenta l work . For the 6'" mode vibration the modal loss factor was 

mea ured to be Tlu = 6.34·10-:'. It can be noted from Figure 5. 14 that 

neglecting the beam's hysteretic loss factor produces d ifferences in the 

computed comb ined loss factor up to a th ickness ratio of approximately 5. It 

can a lso be seen from Figure 5.14 t hat a substant ia l change in damping can 
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Figure 5.14. Combined linear hysteretic loss factor of an unconstrained layer 

damped beam in dependency on the t hickness ratio to/ tn. 

only be achieved in the range of 1.5 ~ to/ tn ~ 10. At low thickness ratios 0 ~ 

tD/ tu ~ 1 the combined hysteretic loss factor is approx imately equal to the 

beam 's hysteret ic loss factor. Thus, when employing a n experimental simply 

supported beam with a thickness of 10 mm at least a 15 mm thick layer 

should be attached to the beam in order to achieve a noticeable increase in 

damping. However , in practice this is not realisable. It can be realised that 

unconstrained layer dam ping of a beam does not produce a substant ia l 

increase in damping un less unreali stically thick damping layers are attached. 

Figure 5.15 displays the change in fl exural or bend ing stiffness due to a 
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Figure 5.15. Combined flexural sti ffness of an unconstrained layer damped bemll in 

dependency on the thickness ratio tDI tf). 

mineral fill ed viscoelasti c polymer layer attachment . It is evident from F igure 

5.15 tha t the beam" fl ex lIfal stiffness is a pproxima tely constant up to a 

th ickness ratio of tDI to "" 1. At higher th ickness ratios the combined fl cxural 

t iffness of the beam mu t be taken into account . 

5.6 Discussion 

Displacement solutions to the forced beam's part ia l d ifferential equation of 

motion have been presented for infinite and finite, simply supported beams 

by using a wave-based approach. Point force and moment excitat ion were 

considered. A four-wave-based VEF equat ion has been derived that can be 

used as a general tool to derive VEF in t ransversally vibrating beams. Within 

t he VEF analysis (VEFA) t he real part of a ny energy transmission equat ion 

is the mo t in terest ing part , since it physically represen ts the energy flow 
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within the structure. It is evident from equation (5.2) that iF four wave 

componen ts are present within the beam the net VEF is proportiona l to the 

difference of the squared magnitude of the t ravelling waves , IB+12 - In I' . It 
has a lso been hown that the two nearfield components may contribute to 

energy transmission. However, due to the exponential decaying term 2e-'"' 

this is only inl1uential if the beam is acoust ically short . Further , the nearfic1d 

wave amplitudes need to have an imaginary par t. T he reactive energy 

transmission based on 4 waves in a beam is a much more complex expression , 

as shown in equation (5.3). Due to multip lication of the shear force and t he 

bending mome nt with their respective velocity component · a mu lt iple 

combination of cosine and sine fun ctions occurred. However , each sinusoidal 

expression is multiplied by a n exponential decay ing function and , t hus, only 

at the excitat ion locat ion reactive near fi eld energy transmission becomes 

inl1uential assuming the wave a mplitudes are complex. 

T he four-wave VEF equation has been deri ved 111 order to gam a 

simple understand ing of the nature of activc and reactive VEF in beams . The 

respective wave groups responsib le for energy transfer can be identified casily, 

something t ha t is not very conc1u ive when interpret ing spccia l solu tions of 

VEF in infinite and fini te beams. 

T he four-wave VEF equation was then applied to a simple seml

infini te beam displacement to de fine act ive a nd refl.cti ve VEF from prior 

determined complex wave a mplitudes for point force excitation and momen t 

excitation. It has been demonstra ted t ha t at a single excitati n frequency 

act ive VEF in an infini te beam is constant ly di str ibuted a long the beam 

length depending on the magnitude of t he travelling wave component and thc 

excitation frequency. 

VIP expressIOns for both excitation form s have shown that t he 

transmitted vibrat ional energy IS ha lf t he magnitude of t he input power. 

T hus, in infin ite beams the usua l assumption tha t half of the energy supply is 

110wing to the right and half of the energy supply is fl owing to t he le ft can be 

verified. 

If one substitutes the fl exural waven umber I.; = (pA ol/ (Ef )) v, into the 

denominator o f equation (5.20) and (5.23), respect ive ly , one can find that for 
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force excita tion the input power is proportional to 1/ .JW and for moment 

excitation the input power i ' proportional to .JW. T hus, moment excited 

structures can t ra nsmi t much more energy in higher frequency regions tha n 

force excited tructures. The cross over point is at (J) = l. 

The deri vat ion of VEF in a simply supported beam is more complex, 

as demonstrated in section 5.4. Within t hi s work the boundaries arc a sumed 

to be adiabatic. Energy supplied by a n external load cannot fl ow out of the 

beam structure and , thus, the vibrational energy net flow with in the beam is 

zero. However , real finite structures d issipate some energy within the 

structure, denoted here as in ternal los es. In order to regard internal beam 

losses a hysteretic damping model was adopted. This model uses a complex, 

elastic modulus. Since t he clastic modulus is incorporated in the fl exura l 

wavenumber defin ition , a complex wavenumber occurs in the calculation. It 

was demonstrated by equations (All .7) and (A12.4) t hat t he point mobility 

of an undamped simply supported beam is a purely imagillary q ua ntity. 

T hus, undamped finite structures cannot absorb vibrat ional energy from the 

outside once they enter t he second cycle because the real part of the point 

mobili ty IS zero. E mploying a complex, fl exura l wavenumber the poin t 

mobility of the hysteretically damped sim ply supported beam now becomes 

complex and , thus, energy can be supplied continuously to the simply 

supported beam . The amount of energy supply and , thus, interna l net energy 

flow is controlled by t he hysteretic loss factor. 

The simply supported beam displacement was modelled uSll1g a 

superposition of infinite beam waves a nd reflection waves ari sing a t bot h the 

simply supported boundaries due to infinite wave impingement. The 

undamped and forced simply supported beam d isplacement approaches 

infini te am pli t ude at the resonant frequencies. However , the use of a loss 

factor a llowed for a finite forced simply supported beam displacement a t 

resonant excitat ion frequencies. The complex, fl exura l wavenumber 

complicates the VEF expression enormously. Usua lly the displacement is 

formed by pure travell ing waves and pure evanescent waves. However , due to 

the use of a complex wavenumber the evane cent waves now contain a 

travelling com ponent and the travelling waves contain a n evanescent 
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component controlled by the magnitude of the loss factor . Thus, the 

evanescent wave components also contribute to energy transmission t o some 

exten t . 

It has been shown that VEF in a simply supported beam is composed 

of energy now due to the infi nite waves, the re/lection waves a nd a coupl ing 

between both wave groups. T his rela tion can be a pplied to each finite beam 

structure. Because hysteretic damping was considered the fom-wave VEF 

equat ion had to be reformulated in order to account for damping. General 

VEF expressions of infinite wave energy /low , renected wave energy /low a nd 

coupled waves energy now were presented. The two uncoupled energy 

t ransmission mechanism can be calculated from t he presen ted dam ped four

wave VEF equa tion. However, the coupled energy transmission needed to be 

derived separately, using a specially derived coupled VEF equation . 

Due to its long expressIons a na lytical VEF equat ions of a 

hysteretically damped , simply supported beam under point force a nd moment 

excitat ion was not given . However, numerical so lu t ions were presented by 

numerically evaluating equations (5. 64 ) and (5 .71). It can be seen from 

Figures 5.5 and 5. 9 that the act ive infinite wave VEF is spat ia ll y decreasing 

only at high damping, i.e. r; > 10·'. At lower damping values, i.e. r; > 10-' t he 

energy now is a lmost constant a nd, t hus, can be neglected. R eactive VEF is 

only present at the excitation location. However , it has approx imately the 

same peak value as the act ive VEF . 

The act ive re/lected VEF is more sensit ive toward damping, as shown 

in Figures 5.6 a nd 5. 10, where a sign ificant cha nge in VEF occurs for a small 

change in the range of loss factor values. The reactive energy now has less 

damping sensitivity and is much sma ller tha n the active reflected VEF 

component. 

The active total transmitted coupled wave energy , as shown in Figures 

5.7 and 5. 11 , is also damping sensiti ve. In terestingly, the react ive energy 

component is not approaching zero towards the beam ends. 

Finally , the VEF of a simply supported beam excited by a point force 

(Figure 5.8) and a moment (Figure 5.12) reveals that the active energy fl ow 

is decreasing wit h increasing di ta nce away from excitat ion location. At t he 
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beam ends the flow is zero due to t he adiabatic boundaries. In contrast to t he 

infini te beam , t he energy fl ow from t he excitation locatioll is not ha lf t he 

input energy if off-cent re excitation is app lied. In fact more energy is fl owing 

to t he right of the beam a nd less energy is flowing to t he left. Of course t he 

absolute active VEF amp li tude at t he excitat ion location is qual to t he 

energy inject ed in to t he beam. Further , it was shown t hat for total active 

VEF t he coupled a nd reflection waves a re t he dom ina nt wave groll ps, 

whereas for total reacti ve VEF t he in fi ni te waves are t he dominant wave 

grou p. 
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6 NUMERICAL ANALYSIS OF VIBRA

TIONAL ENERGY IN BEAMS 

6.1 Introduction 

This chapter investigates the numerical application of the vibrational energy 

flow determination using electronic speckle pattern interferometry 

(VEFESPI) method introduced in chapter 4 for infinite and simply supported 

beams. The resu lts obtained herein for synthetic ESPI displacement data are 

then compared with the exact a nalytical vibrational energy flow (VEF) 

solutions presented in chapter 5. The numerical derivation of patial parti al 

der ivatives is carried out in th is work by the a ppl ication of the /v-space 

derivation (I(SD) method. Thus, the strengths and weaknesses of this method 

are investigated thoroughly when a pplied to harmonic beam vibration. 

To unveil the effect of filtering the VEFESPI method is subjectcd to 

art ificially generated beam disp lacement signals contaminatcd by norm a lly 

distributed noise. Thus, an error ana lysis in vestigating the effect of altering 

different filt er parameters IS undertaken . The added noisc has diffcrent 

magnitu le levels in order to investigate the behaviour of t he VEFESPI 

method in low , medium , and high noise environments. 

To find optimum filt er para meters when analysing the recorded ESPI 

displacement data later 111 chapter 9, the artificial generated beam 

disp lacement signa ls are contam in ated by measured optical noise that is 

extracted from the respective electronic peckle pattern interferometry 

(ESPI) data. This procedure is carri cd out for both beam structures. Thus, 
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filter parameters are determined , which can then be applied when analysing 

the acquired ESPI data. 

Additional to the problem of signa l conta minat ion throllgh nOise the 

Issue of non-periodic data is investigated too . Hence, three techniques are 

introduced in order to diminish t he effect of spectra l leakage when 

determining VEF in struct lll'es from non-period ic sets of data. T his procedure 

becomes a lso helpful when ana lysing odd-numbered mode sha ped finite beam 

vibration . 

A lt hough vibrat ional energy tra nsmission in a beam l S of one

dimensional natlll'e t he theoretical beam d isplacement here is numerically 

evaluated two-dimensiona lly , since the ESPI system provides two-dimensiona l 

informat ion . In the past VEF predictions from ESPI acquired data has been 

computed by extracting a single line from the ESPI d isplacement data [63, 

64]. As an extension to thi s VEF computat ion of beams is carried out herein 

using a two-dimensional d isplacement input , i.e. including th whole bea m 

width of data. However, since the VEF resu lts do not vary over beam width 

and for better visibility the resul ts are presented in a one-dimen ional way. 

6.2 Numerical InfInite Beam Analysis 

T his section deals with the numerical computation of VEF in an infinite 

beam by employing the VEFESPI method introduced in chapter 4. Here, the 

KSD method is employed in order to determin e spatial der ivat ives from 

tabulated data. Obtained numerical results are then compared with the exact 

ana lytical solutions presented in section 5.3. 

6.2.1 Non-Periodic Data Input 

In practi ce acquired data are often recorded with a non- integer number of 

periods. Further , the occurrence of nearfields due to evanescent waves makes 

periodic data often non-periodic due to its exponentially decay ing propert ies 

with d istance. S ince the KSD method employs the spat ia l Fourier t ra nsform 
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(SFT) , a periodic set of data is essential otherwise leakage wi ll falsify the 

computation of the spatial derivat ives a nd , hence, the accuracy of the 

computed VEF [51]. One could manipula t e one-dimensional beam data by 

truncating the recorded data to an integer number of waves. This procedure 

however, often excludes the nearfi eld component a nd , t hus, evanescent waves 

from t he VEF analysis. Further, when ana lysing odd-num bered mode sha pes 

periodisat ion of data is desired. Within t his work three t echniques are 

introduced and investigated that deal with the non-periodic data problem. 

Two of t hem utilise d ifferent mirroring and reversing techniques 01' the 

origina l data in order to obtain a periodic data sequence. The third 

technique, proposed by t he au thor , simp ly mani pu lates t he VEF result . 

Kocher berger et a l. proposed a periodisation technique, which mirrors 

reverses and shears (transla tional and rot ationa l signa l manipulation) the 

original non-period ic da ta [115, 116]. This met hod is addressed in th is work 

as mirror-reverse-shear (MRS) periodisat ion technique. Its procedure can be 

followed by F igure 6.1. From there it can be seen tha t a n image of the 

original signal, as shown in Figure 6.1(a) , is mirrored , reversed , a nd 

connected ·to the original sequence, as illustrated in 6.1 (b). To ensure a 

periodic sequence the combined signal is finally sheared simply by subtracting 

t he shear line (dotted line in 6.1(b)) from the combined ignal. Thus, the 

signa l is now zero at both ends a nd , hence, periodic in space. 

A second period isat ion technique employed in t his research was 

proposed by P ascal et a l. [51]. However , since th is method is not described 

clearly in reference [51], the a uthor has altered its procedure to his own 

understanding. This method wi ll be addressed III this work as mlrror

processing (MP) technique. The procedure is ill ustrated in Figure 6.2. From 

F igure 6.2 it can be reali sed t hat the original set of data, shown in F igure 

6.1(a), is mirrored abou t the x-ax is and t runcated by ha lf. The half sized two 

mIrror signals are then connected to bo th ends of the original signal, as 

shown in Figure 6.2(b). It can. be noticed from Figure 6.2 (b) that the 

connect ion between the original signal and it mirrored counterpart i not 

perfect as t here appears a gap at both ends. This gap is closed herein by 

altering the left-hand side and right-hand sid e mirrored image with a cosine 
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Figure 6.1 Periodisation of a non-periodic sinusoidal signal using t he i\IRS 

perioclisation technique: (a) original signal , (b) original signa l + m.i rrored and 

reversed signal , (c) sheared origi nal + mirrored and reversed signal. 

link funct ion . T he left-h a nd side lin k fun ction SL (71,)/" ror 71, = 1,2,3, ... ,N /2 

is given by: 

( [ N 1 ]1 n7r 1 SL (71,)/" = S""" (1~)/ " + S (I ) - S""" - - 1 - cos N . 
2 ," , 2 - - 1 

2 

(6. 1) 

Herein , S""" . (71,)/" is t he left -ha nd s ide mirror im age o f t he orig ina l s igna l S. 

Simila rly, the right-ha nd side is given as: 

(6.2) 

fl l/l 
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Here, SL (n)",,,, is the modified right-hand side lin k function , S"m,' (n)"9'" is 

the right-hand side mirror image of the original s ignal S, N is the number of 

data points of the origina l signal a nd n is an integer number. Note, the left 

bracket that contains the cosine function nceds to be permuted. T he new 

continuous periodic signal is shown in Figure 6.2(c). It can be seen that due 
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Figure 6.2 Periodisation of a non-periodic sinusoidal signal uSlllg t he flIP 

periodisation technique: (a) original signal, (b) t runcated mirrored signals + original 

signal , (c) continuously linked mirrored signals + original signal. 

to t he mirrored ignal manipulation t he initial gap a t both ends of the 

original sequence is closed. The reason a cosine fun ction i employed is that 

for higher spatial der ivatives continuity of the link function derivatives must 

be ensured. Due to the mirroring process two redundant points needs to be 

d eleted a nd , thus, both techniques increase the number of data points from N 

to 2(N-1) . 
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6.2.2 Vibrational Ener gy Flow Excluding Noise 

As ment ioned before t he VEF of a beam is calcu lated in this work using two

d imensional d isplacement input . All routines were implemented in t he 

software environment 1ATLAB®. From thcre one-d imensional VEF 

solut ions are extracted simp ly by tak ing out data fro m t he midd le line of the 

beam width. In the following sect ions VEF computation within a n infIn ite 

beam is invest igated numerically. It has been shown in section 5.3 that t he 

evanescent waves do not contribute vibra tional energy flow when an infin ite 

beam i excited in the midd le. However , to invest igate t he in fluence of t he 

nearfield in nu merical VEF analysis the nearfield is included here . The 

materi a l proper t ies of the beam are shown in T ab le 6.1. These are t he same 

properties as t he experimental "in fi nite" beam introd llced in chapter 7. 

Young's modulus E = 2.07.1011 / m2 

mass density p = 7. 5.10:1 kg/ m:1 

beam width b = 60 .10-3 m 

beam thickness t = 10.10-3 m 

Table 6.1 "Infinite" beam properties. 

T he complex , infini te beam d isplacement to t he right i generated by 

numerical evaluation of equation (5. 11 ) using a number of data poin t s in t he 

x d irect ion of Nz = 150 and in the y direction of N. = 50. A uni ty excitation 

~ rce of Po = 1 N and an excitation frequency of f = 83 .3 Hz (k = 6n rad / m) 

was applied. F igure 6.3 d isp lays the complex d isplacemen t of a poin t force 

excited infini te beam. Here , x is the beam length , u(x,y) is the two

d imensiona l t ra nsverse beam displacement a nd u ex) is t he one-d imensiona l 

transverse beam d isplacement , ext racted from t he middle line o f u(x,y). 

It can be noticed from F igure 6.3 that the real par t of the 

d isplacement u(x) becomes non-periodic, with respect to the wavelength 

>. = 1/3 m, due to t he presence of evanescent waves arising at the excitation 
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Figure 6.3 Complex infini te beam displacement to the right : (a) 2D real part , (b) 2D 

imaginary part , (c) ID real part, (d) I D imaginary part . 

location 1il = O. Since this nearfi eld wave is purely rea l ( ee equa tion (5. 11)) , 

the imaginary part does not include a nearfi eld component and , thus , a n 

integer number of waves are present in the imaginary par t. 

If one would determine VEF stra ight from t his displacement , the VEF 

would oscilla te heav ily around the t rue value, as shown in F igure 6.6 . T he 

reason for this behaviour is due to the presence of a near fi eld component and 

subsequent consequences d uring the wavenumber multiplicat ion process in 

order to obta in spa tial derivatives. Figure 6.4 d isplays t he real and imaginary 

part of the wavenumber spectrum of the infinite beam disp lacement to the 

right of the excita tion location . If one substitutes equa tion (5.11) into 

equat ion (4 .5) by setting kg = 0 and cha nges the factor in front of equa t ion 

(4.5) to 1/ 21(, one may obta in the Fourier spectrum of u ( x),>o as : 

F. [ k [ k II p { u (x)x>o } = • 0 3 ,", + j 2rro (kx + kr. ) _ , ' , . 
8rr ETk k + k • k + k 

:J: :1"1) :J: :to % 

(6.3) 
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Here, k, is the excita t ion wavenumber, k, is the wavenumber, li is the D irac , 
delta funct ion. Note, to obtain the true a mpli tude of the spat ia l near field a nd 

farfield equat ion (6.3) needs to be mult ip lied by 21t . It can be seen from 
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Figure 6.4 \'Vavenum ber spectrum of the infinite beam displacement shown in Figure 

6.3: (a) real part, (b) imaginary part. 

equat ion (6.3) and Figure 6.4 t hat t he real part appears solely due to t he 

evanescent wave, which is approximately 20 x less tha n the tra vell ing wave 

a mplitude. T he imaginary par t of the wavenum ber pectrum is composed of 

travelling and evanescent wave spectra. Although the evanescent spectrum 

decreases with increasing wavenumber, as shown by the denomina tor in 

equa tion (6.3), a small fraction still rema ins in t he spectrum for t he real a nd 

imaginary part . During t he spectral d erivat ion process, th is fraction is 

a mp li fi ed by high wavenumber values especia lly for higher order deri vatives. 

Figure 6.5 disp lays the 3"· spectral derivati ve of U(k,) for x > 0 when 

using t he VEFESPI method and also its exact value computed from 

a nalytical data. It can be realised t hat d ue to the multiplication process o f 
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Figure 6.5 KSD determined and exfl.ct solution of the 3'" spectral derivative of the 

displacement shown in Figure 6.3: (a) real part usi ng KSD, (b) imagi nary part using 

KSD , (c) real part exact solu t ion, (d) imaginary part exact solution. 

[( : the initia l curve sha pe of the spec tra l nearfi eld pa rt has a ltered 

dra tically and the a mplitude, especia lly at high wavenumber components is 

a mplified trongly. T he spectral trave lling component , shown a s a spike in 

Figure 6 .5(a) , is a lmost hidden due to the spectral nearfield a mplificat ion . It 

can be rea li sed tha t the same problem appears if a non-integer number o f 

wa ves is included in the signal. Then spectra l leakage occurs a nd the leakage 

a mplification results in undesired spectral amplitlldes e pecially a t high 

wavenum bers . T hus, the KSD method has d ifficulties to produce accura t e 

spa t ia l deriva ti ves a nd therewith suffic iently accura te spa ti a l d eri vative 

informa t ion to calcu late VEF if the disp lacement signal is irregular . T his 

signal irregularity can be due to a presence of a s t rong nearfi elcl o r a non

integer wavelength inclusion or both . Of course one could argue tha t due t o 

the nearfield component the displacement signa l is non-periodic at least 111 

t he real pa rt. llut as shown later , t he same phenomenon appears in a 
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vibra ting simply supported beam excited a t an even-numbered mode 

frequency where an integer number of waves are included in t he sign al. 

Figure 6.6 displays the resulting VEF when the complex displacement , 

as shown in Figure 6.3 , is a nalysed. As mentioned beforehand t he act ive and 

reactive energy flow is oscillati ng about the true VEF value, wh ich was 

calculated from equation (5.24) and (5.25), respectively. It can be reali sed 
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Figure 6.6 Exact and VEFESPI determined energy flow of the infinite beam 

displacement shown in Figme 6.3: (a) active energy flow , (b) reactive energy flow. 

from Figure 6.6 t ha t two wrapping curves can be constructed, which enclose 

the oscillating energy flow (see black dotted curves). One curve includes a ll 

t he odd-numbered VEF samples and t he other includes all t he even

numbered VEF samples. T he sample size of both curves is ha lf the sample 

size of the origina l VEF curve. 

If one interpolates both curves III order to obtain the origina l sample 

size of the determined VEF curve and calculates the mean of both curves, an 

approximate energy flow, (Pr) can be ~ und simply as : 
DIll' 
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(6.4) 

Herein , (?T) is t he interpolated odd-numbered cur ve wrap and (?,) is 
odd e~'t" . 

the in terpola ted even-numbered CHrve wrap. T his method is addressed in th is 

work as the curve wrap (CW) method a nd can be used as a sim pie 

approximation of oscilla ting energy flux due to signal irregula rities. To 

demonstrate t he effect of d imin ishing VEF oscillat ions due to signal 
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Figure 6.7 Periodised infini te beam displacement shown in Figure 6.3: (a) real part 

MP method, (b) imaginary part MP method , (c) real part MRS metbod, (d) 

imagi nary part lVIRS method. 

irregula riti es an three techniques were incorporated in to VEF a ll a lysis a nd 

the same numerica l VEF procedure, as shown above, was carri ed Oll t. Figllre 

6.7 d isplay the use of t he MP a nd the lVIRS techniques to periodi e spa tia lly 

sampled d i placement data. It can be noti ed th at the real part is n w 

periodic in pace. 
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Inserting the above shown two periodi sed complex displacements in to 

the VEFESPI model and approximat ing the VEF from the non-period ised 

complex d isplacem ent by the CW technique one may find t he VEF results, as 

shown in Figure 6 .S. From there it can be realised that there is s till some 

osci llation of VEF from the numerical computed data at both ends of the 

s ignal. However, in a range of 0.1 m < x < 0.9 m a ll three techniques ach ieve 
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Figure 6.8 Exact and VEFESPI determined energy flow of the infinite beam 

displacement shown in Figures 6.3 and 6.7: (a) active energy flow , (b) reactive 

energy flow. 

acceptab ly good active VEF results. Unfort unately , an acceptab ly good 

reactive VEF result IS only met by the VEFESPl + MP and VEFESPI + 
MRS procedure, as it can be seen in Figure 6 .S. There , in the nearfi eld 

region , near the origin x = 0, the CW approximation method fail s . 

Due to the periodisation of the infin ite beam di p lacement a re latively 

sharp connect ion of the origina l s igna l and mirrored parts is produced. It can 

be reali sed by zooming into F igure 6 .S that d ue to that sharp connect ions o f 

the origina l displacement data the VEFESPI + MP and VEFE PI + MRS 
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VEFESPI + l\ !RS + CW 

Exact sol ut ion 

VEFESPI + l\ [P + CW 

VEFESPI + l\ lfl.S + CW 

Figure 6.9 Exact and VEFESPI determined energy flow of the infinite beam 

displacement shown in Figure 6.7: (a) active energy flow , (b) reactive energy flow. 

techniq ue st ill p roduces some energy fl ow oscilla tions. T his effect can bc 

d iminished by applying the CvV approximation to both techniques . The 

result o f th is p roced ure is shown in Figure 6.9. Despite some minor deviation 

at both ends o f the signa l it can be shown that t he init ia l oscillations are 

dimin ished substantia lly and, thus, a 'ufficient ly accurate active a nd reactive 

VEF of an infinite beam can be determ ined numerically using the VEF ESPI 

method . 

F igure 6 .10 d isp lays the relative error made, determined fro m 

VEFESP I computed VEF and exact VEF. Here, t he VEFESPI method in 

combination wit h the MP + CW and MRS + CW technique, re pect ively, 

was considered only. It can be realised that both per iod isation techniques in 

combinat ion wit h the CW method produ ced good active and react ive VEF 

results. T he reason for showing a d ifferen t ax is length of t he re lative 

imagin ary error is that the imaginary values a re approaching zero outs ide t he 

nearfi cld region and , t hus , zero d ivision produces meaningless rcsul ts. T he 
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Figure 6.10 Relative error of VEFESPI determined energy flow and exact solution of 

the infinite beam displacement shown in Figure 6. 7: (a) relative active flow error , 

(b) relative reactive flow error. 

magnitude of the energy flow oscillat ions, as shown in Figure 6. , is 

depending upon the number of data points and al 0 , the number of waves 

included in the signal. The spectral resolution {l, k z is given by: 

(6.5) 

Herein , {l, x is the spatial resolution , i.e. the d istance between the spat ia lly 

sampled points and Nz is the number of patially sampled points within the 

signa l length L x. To obtain the wavenumber vector f(x equation (6 .5) is 

multiplied by: 

(6.6) 
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Here, {N}, = (O, 1,2, ... ,Nr -1). T o reduce the VEF oscillations t he 

magnitud e of KT need s to be reduced . Hence, less a mplification takes place 

during the spectra l d erivat ion process of the KSD method. From equation 

(6.6) it can be realised that there are ma inly two ways in reducing the 

magnitude of KT. Either the number of data points Nr is reduced or the 

spectral re olution to.k, is decreased. By employing t he first option one can 

reduce Nz by keeping Lx constant. The second opt ion can be employed by 

increasing LT a nd keeping Nr constant. However , both procedures resul t in a n 

increase in the spatial sa mpling resolution to.x and , thus, both principles 

cannot be ex tended to infinity , since a t least two sam ple poin ts per Oexural 

wavelength need to be included in the signal. 

With the prior shown relat ions it can be reali ed that a much better 

result of the CW method may be shown if a lesser number of data points 

were used in the example given above. However , recorded ESPI data are 

usually spatially dense. Red ucing the number of data points, by employing a 

re-sampling and interpolation technique, results in a n undesircd d at a 

ma nipula tion . Thus , it is more desirab le to find appropriate ways that deal 

wit h the actual recorded number of data points. lIence, the author has 

employed the MP and MRS techn ique that despite reducing the spectral 

resolution to. kT by half the same wavenumber vector f(z is used, since the 

number of data poin ts is almost doubled. However , since t he spectra l 

resolution to.k, is reduced by ha lf, t he spectral nearfield component is 

multiplied only by half t he wavenumber magnitude and therefore, the 

nearfield amplification , as ·hown in Figure 6.5 , is reduced by half. T hus, one 

may conclude that the 1P a nd MRS technique yield to better resul ts , 

especially in reactive VEF computation by producing a more useful 

wavenumber spectrum. 

Another desired spectrum altera tion can be achieved d ue to an 

lIlcrease of the number of waves tha t a re included in a signa l simply by 

excit ing the structure at higher excitation frequencies. Thus, the ratio of 

evanescent waves and travelling waves will change and the inOuence of the 

relatively dominant nearfield in t he real part of the spectrum wi ll be 
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dim in ished during t he multiplication process, since the travell ing part is 

multiplied by a higher wavenumber magnitude. T hcrefore, high frequency 

displacement signa ls are more useful for VEFESPI a nalysis using the KSD 

technique. 

Finally it is worth to ment ion that t he whole trength of t he MP and 

MRS method lies in the a nalysis of non-period ic data where the CW 

technique on its own fails due to leakage in the wavenumber spectrum a nd , 

t hus, wrong signal amplitude detect ion. 

6.2.3 Vibrational Energy Flow Including Noise 

T he previous section in vestigated the performance of the VEFESPI method 

when signal irregularit ies, such as nearfi eld waves , are present . There is 

another major factor, which need to be considered when measuring VEF 

from recorded ESPI data. T hus, thi s section in vestigates the effect of noise on 

the VEFESPI method. 

As in troduced in section 4.3.2 two two-d imensional filter types arc 

used 111 th is work , an ideal 2D filt er and an oval 2D Butter worth filt er , to 

remove noise in t he wavenum ber domain that wi ll be amplified otherwise. 

This noise amplification process introduces erroneous signal components in to 

the analysis and , thu , fa lsifies the VEF determination . The oval 2D 

Butterworth filter is a low pass fil ter. T his fi lter type can be adjusted to 

select a n appropria te cut-off wavenumber as well as an appropriate filter 

slope. Thc ideal 2D fi lter , which is also employed in t he wavenumber domain , 

works as a comparison algorithm , which sets wavenumber components equal 

to zero if they satisfy a certain cond it ion. 

De pite removing unwanted noise components in the wavenumber 

domain , the question arise how much noise needs to be fil tered out in order 

to achieve an opt imum fi ltering process. Thus, the two d ifferent fi lter types 

are investigat ed here thoroughly in rela t ion to the error made when 

deter m i n i ng VEF from fi I tered data. 
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6.2.3.1 Ideal 2D Spectral Filtering 

In t his sect ion the effect of fi ltering when us ing the 2D ideal filter to compute 

VEF is in vest igated. T he same d isp lacement , as shown in sect ion 6 .2 .2, is 

u ed. However, the signal is contam in at ed by a fa irly large amount of 

normally d ist ri buted noise. T he amo un t of no ise is defined by the signal-to

noise ratio (SNR) introduced in Appendix A18. If the SNU is a pproaching 

infinity the signal is not cont a mina ted by noise at al l. If the SNU is 

approaching zero noise is inc luded on ly. T hus, the less t he SNU t he more 

noise contam inates t he signal. Figure 6. 11 d isp lays t he com p lex , two a nd one

d imensiona.l beam d isplacement contaminated by a fa irly la rge amollnt o f 

noise. As uSllal t he middle line is ex tracte I for furt her a na lysis. It can be 

realised from F igure 6.11 that t he noise will have high wavenumber 

components in the wavenumber domain that are amplified due to the 
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Figure 6.11 Infinite complex beam displacement to the right of the excitation 

location contaminated by normally di stributed noise with S 'R = 108.2: (a) 2D real 

part, (b) 2D imagi nary part , (c) ID real part, (d) lD imaginary part. 
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wavenumbcr mul t iplication process when calculat ing spectral deriva tives. The 

transformed signal components can be seen in Figure 6. 12. The reason why 

t he imaginary noise components are almost in visible is that they a re small in 
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Figure 6.12 vVavenumber spect rum of the infinite beam di splacement shown In 

Figure 6.11: (a) real part, (b) imaginary part. 

compari 'on to the travelli ng wave amplitude. To av id thi s unwanted nOIse 

ampl ificat ion , the wavenumber data need to be filtered. 

T he ideal fi ltering process appl ied in th is work is a fi ltering algorithm 

appl icable within the wavenumber domain. The noise contaminated d iscrete 

spect ra l matrix is searched element wise for components that are smaller or 

equal to a given number. If they a tisfy thi simple condition , the spectral 

matrix component is simp ly set to zero. T hus, t hi s fil tering proce s acts like a 

multiplication of t he spectral matrix with zeros and ones at spec ifically 

defined locations. T he given number is a cer tain a mount of the travelling 

wave a mpli t ude given in percent. Thus, the question an ses at what 

percentage of the travelling wave amplitude is the error made due to the 
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filtering process at minimum? To a nswer t hi s question a relat ive mean 

squared error (ivISE) function is used in this work as [38]: 

(6. 7) 

Here, (p. ) is the VEFESPI computed VEF and (p, ) is t he exact 
• VEFESPI ' ex/Jet 

VEF calculated by equat ion (5.24) and (5 .25) , respect ively. Equation (6.7) is 

applied to d ifferent percentages of the magnitude of t he travellin g wave 

amplitude, IB+I. T his resu lt is shown in F igure 6.13 for the original data and 

the MP a nd MRS periodised data. Note , the imaginary part of the re lat ive 

50 

o 

-50 o 

lOO , 

0 ' 

-100 o 

la 

la 

(a) 

20 30 

o/c of IB +1 [%] 
(b) 

20 30 
% of IB+I [%] 

40 50 

40 50 

VEFESPI + i\ IP 

VEFESPI + MRS 

VEFESPI 

VEFESPI + i\ IP 

VEFESPI + MRS 

VEFESPI 

Figure 6.13 Relative MSE of the infinite beam displacement sbown ID Figure 6.11 

using ideal filtering: (a) real 1\ [SE, (b) imaginary MSE. 

MSE is calculated only for locat ions wit h in the nearfi eld regIon, s ince t he 

imaginary part of VEF out ide the nearfield approaches zero and subsequent 
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zero division will yield t o meaningless resu lts. It can be noticed from F igure 

6.13 that at a certain % of IB+I, I. e. IB+I > 3%, no improvement in MSE 

reduction can be made. This li e III the nature of the fi ltering algorithm 

because all noise components now satis fy the condition , which states that 

wavenumber components tha t a re not b igger than a certain amoun t of the 

travelling wave amplitude are set to zero. It can also be seen from Figure 

6.13 that t he MP a nd MR t reated displacements yield to larger MSE than 

from a na lysing t he origina l non-periodised data. 

F igure 6.14 d isplays the VEF where every spectral ma tr ix component 

below the optimum percentage of 1 B+I is filtered out . Thu , t he real a nd 

imaginary opt imum cut-off points were taken out from t he result shown in 

Figure 6.13 to compute the optimum filt ered act ive a nd reactive VEF. It can 

be seen from Figure 6.14 that the ideal Filtered active VEF computed from 

the non-periodised beam d isplacement is a s traight line that deviates abollt 
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5% from the t rue act ive VEF value . T he reason of the 5% deviation is t ha t 

t he amplitude in t he wavenumber spectrum is not met exactly due to 

superposition of farfield a nd near field spect ra. It can be recogn ised from 

Figure 6.4 a nd to some ext ent in F igure 6 .12 t ha t the imaginary near fi e ld and 

fa rfield wavenumber spectra are superimposed . T his means t ha t at the spatia l 

excita t ion frequency of "0 = 6n t he true travell ing wave a mpli tude a nd the 

nearfield wave ampli t ude are superimposed . Due to t he superposit ion , t he 

travelling wave ampli tude erroneously increases a nd , t hus, a higher VEF i 

computed. Further , the act ive idea l fil tered VEF from the origina l non

per iodised displacement data delivers t he best result . It fa ils however , when 

det ect ing react ive VEF due to fil ter ing out some of the nearfi eld informat ion 

in t he wavenumber spectrum . T hu· , t hi fi lter method is best applied if one 

d eterm ines VEF in t he far fi eld only due to its sharp remova l of noise in the 

wavenum ber domain . 

F inally , a sensitivity st udy is presen ted , wh ich invest igates the effect 

of noise on the ideal filtering technique when compu t ing VEF from an in fin ite 

noise contaminat ed beam di placement. Here, [onr d ifferent levels of noise 

contami nat ion , stretching from a high no ise en vironment (SNR = 13 .7) to a 

low no ise environment (SNR = 6116.3) were a nalysed . T he results of t his 

study are shown in Table 6.2 however, due to brevity reasons on ly for t he 

origina l non-periodised complex bea m d isp lacement . ote, t he travelli ng wave 

amplitude is denoted as [J+ . 

Fo = 1 N; fo = 838. 3 I-Iz; non-period ised d ata 

SNR 13.7 108. 9 1003 6116.3 

Optimum (% of IB+I), ... , [%] 6 6 6 6 

MSE, 9'l (10·log,o(fl » -24.35-25.05-25 .22-25.36 

Optimum (% of 1 [J+I);", .. , [%] 6 6 6 6 

M:SE, :3 (10·log,o(fl » -8. 75 -8. 75 -8. 75 -8. 75 

Table 6.2 Noise sensitivity study of non-periodised beam displacement data fil tered 

with an ideal 2D fil ter. 
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It can be noticed from Table 6.2 t hat t he relative MSE D made during the 

fi ltering process is largely independent on the magnitude of the SNR and, 

t hus, t he ideal filt ering met hod is insensit ive towards d ifferent magnitudes of 

noise when computing VEF from infinite beam d isplacements. 

6.2.3.2 Oval 2D Spectral Butterworth Filtering 

T he oval 2D l3utterworth fi lter is a more commonly used fi lte r. It a llows for 

adjustments of the cut-off wavenum ber k, and of t he filter slope 111 t he 

wavenuml er domain . The cut-off waven umber k, is the point 111 the 

wavenumber doma in where the fi lt er s tarts to remove spectral components. 

Also here, the question arises a t which cut-o ff wavenumber can an optimum 

fi lt ering process be ach ieved? Furthermore, wha t !Ilter s lope i the best in 

order to keep the error in VEF determination proce s as low as possible? 

F igure 6.15 d isplays t he re lative MSE made when !I ltering the beam 

displacement by an oval 2D 13utterworth filter. Here , the wavenumber ratio 
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Figure 6.15 Relative MSE of the infinite beam displacement shown 111 Figure 6.11 

using a Butterworth filter: (a) r"'1.1 USE, (b) imaginary MSE. 
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k, / ko is shown on the :LcaXIS, whcre ko is the wavenumbcr of the excited 

beam. It can be seen from Figure 6.15 that the fi ltered origina l non-pcriodised 

displacement will produce the best act ive VEF resu lt. T he order of the filter 

s lope employed was 5. The SNR was 108.6. T he opt imum cut-off 

wavenum ber of the non-periodised data for active VEF computat ion is 

a round 1.25 ·Ao and for the periodised data around 1.51 ·ko. It can also be 

reali sed t hat the periodisat ion techniques produced a better reactive VEF 

result where the cut-off wavenumbers were located in the lower regions (0.83, 

1.17 , 1.25)·/'0. 

Figure 6.16 displays the active a nd reactive energy fl ow filtered at the 

optimum cut-off wavenumbers for each method in order to obtain th e 

opt imum active a nd reactive cnergy 110w . From Figme 6.16 it can bc noticed 

that the filt ered act ive VEF of t he MP and ]V[R treated displacements 

varies around t he true VEF value. In contrast , the filtered active VEF of t he 
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Figure 6.16 Exact and Butterworth filtered VEF of the infinite beam displacement 

shown in Figure 6.11 using a Butterworth filter at optimum cut-off wavenumbers: 

(a) active energy flow , (b) reactive energy flow. 
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original data is much smoother. By comparing Figl\I'e 6.16 with Figure 6.14 , 

it can a lso be seen tha t the reactive VEF of the Butterworth filt ered da ta is 

lightly more accurate than t he idea l fil tered reactive VEF. T his may be due 

to the fact that the 2D Butterworth filter includes more nearfield information 

with in the filter , since the filter works as a true low-pass fi lter. However , also 

here the reactive VEF can not be d etermined within an acceptable accuracy 

range. The MP and MRS altered d isp lacement data achieve better reactive 

VEF re ults than t he reactive VEF a nalysi of the non-periodic beam 

displacement . 

Finally , a sensitivity study is car ried Ollt in order to invest igate t he 

error made due to a ltering t he filter slope a nd the SNR. Again , for brevity 

reasons only the original non-periodised beam displacement wi ll be employed 

in the investigation . Ta ble 6.3 d isplays the crror made when using different 

fi lter slope orders. As expect ed, the optimllm cut-off wa venumber decrease 

with increa ing filter slope order. However , there is on ly a s light improvement 

in the relative MSE made when calcu lating t hc active VEF. On ly , a 

negligible react ive energy now cha nge ca n be achieved by altering the filt er 

slope. 

Po = 1 ; fo = 838. 3 Hz; non-periodised da t a; S R = 108. 6 

Fi lter slope order 2 4 8 12 

Optimum (kJ".1 [rad/ m] 1.50· "u 125·"" 1.17·"" 1.08·"" 

MSE, ~ (10 · log,o (D ) ) -22 .14 -25.04 -23 .59 -25.13 

Optimum (k, ),,,,,,. [rad / m] 0.67·"u 0.75,,,,, 083· "" 0.92·"" 

MSE, 3(10·log lO(D )) -880 -8.82 

Table 6.3 Fil ter slope sensit ivity study of non-per iodised beam displacement data 

fil tered with an oval 2D Butterworth fil ter. 

Table 6.4 shows t hat t he oval 2D Butterworth filter is insensit ive to 

magnitudes of noise when computing VEF from infinite beam displaeements. 

It has been demonstrated by the above given noise sensiti vity study tha t 
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VEF can be com puted 111 infini t e beam st ruct ures, even t hcn when a high 

noise contamina tion is prcsent . T he reason of the low sensiti vity of the 

VEFESPI method may be due to t he high ra t io of t he t ravell ing wave 

magnit ude and the noise floor magnitude. 

Fa = 1 N; fa = 838.3 I-Iz; non-periodised data; fi lter slope order = 12 

S R 15.2 102 .9 1037.3 6051.8 

Optimum (kJ"nl [rad / m] 1.08·/,;, 1.08· A;, 1.08· ho 1.0 '/'o 

MSE, ~ (10 · log\O(D )) -24.77 -25 .14 -25 .08 -25 .23 

Optimum (k, );,,, •• [rad / m] 0.92 ·A;, 0.9Uo 0.9Un o 92· A;, 

MSE, 3 (10·log\O(D )) -8.82 -8.82 

Table 6.4 I oise sensitivity study of non-periodiscd beam displacement data filtered 

wit h an oval 2D Butterworth filter. 

6.2.4 Vibrational Energy Flow Including ESPI Noise 

In th is sect ion opt imum fil ter para meters, VEF and t he MSE mad e when 

fi lter ing a n ESPJ noise contaminated synthctically generated in fi nite beam 

displacement are presented. 

F igure 6.17 d isplays t he real par t of opt ical noi e and the real par t of 

normally distri b uted noise spatia lly varying over the measurement area. It 

can be seen tha t the opt ical noise form differs to the rando mly generated 

normally di t ributed noise used in the previous sections. ESPI measurements 

of VEF of an infin ite beam have been made in t he farfield on ly. T h u , the 

near fi eld will be excluded here. 

T a blc 6.5 displays the vibrat ion parameters extracted from t he ESPI 

measurement. The shown excita t ion force and excita t ion frequencies are 

used in order to predict VEF from arti fi cia lly genera ted d isplacemen t da ta 

that has been contamina ted by real ESPI noise. T he ESP I noise was 

extracted wit hin the wavenumber doma in simply by delet ing t he t ra velling 
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Figure 6.17 Compmison of noise: (a) extracted ESPI noise of 801 [-[z vi bration, (b) 

normal ly distri buted artificially generated noise. 

wave information therein . After applying a n in verse FFT of the manipu la ted 

wavenumber spectrum , the spatia l di stribution of the ESPI noise was then 

obtained . The S n. was predicted using equa tion (A18. l ). Thus, a VE F 

prediction is given for each excita tion frequency used during the exper imental 

work reported later . In section 6.2 .2 the problem of spectrum altera t ion due 

to the wavenumber multiplication process, used in order to derive spectra l 

deriva t ives, was demonstrated (see Figure 6.5) when the di splacement sign al 

was composed of evanescent and t ravelling wa ves. In this section only 

travelling wa ves are present in the disp lacement signal and , thus, spectral 

altera tion due to nearfield presence can be neglected. However , s ince the 

signal contains noise components, a spectra l a lterat ion due to mult iplicat ion 

of the wavenumber components with the noise components can be expected . 

Figure 6.18 di splays the spectrum a ltera tion d ue to the pre ence of 

noise 111 the signal. It can be reali sed tha t especia lly a t high wavenumbers 

spectra l noise components are strongly amplified. learly , the spectrally 
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Figure 6.18 K D determined and exact solu t ion of the 3'" spectral derivative of the 

ESP! noise contaminated infinite beam displacement at 01 Hz: (a) real part using 

KSD, (b) imaginary part using KSD, (c) real part exact solution, (d) imaginary part 

exact solution. 

t ravelling wave component in F igure 6.18(a) is not vis ible. Additional to t hi s 

the imaginary part now contains high pectral components a lt hough t hi s pa rt 

of t he spectrum should be zero . It can be reali ed tha t t he presence o f no ise 

causes substantial problems and , thus, fi ltering is ind ispensable. Of course the 

problem increases even further if a near fi eld is present in the displacement 

s ignal. 

Excita t ion frequency 801 Hz 1112 Hz 1146 Hz 

Excitat ion force 3.281 2.645 N 5.897 

SNU 60,2 264.4 13505 

Table 6.5 Vibrational parameters of "infinite" beam . 
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F igure 6.19 shows t he real part of t he rela ti ve lvISE made when a nalysing the 

801 Hz beam vibration . Since in the fa rfield the reactive energy flow is 

approaching zero, it was neglected. Compared to F igures 6 .13 and 6.15 it can 

be recognised tha t VE F can be ana lysed with much less error when 

neglect ing the nearfield. It can a lso be realised from Figure 6 .19 tha t the ideal 
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Figure 6.19 Real relative MSE of the ESPJ noise contaminated infini te beam 

displacement at 801 Hz using different types of filter: (a) ideal fi lter, (b) 

Butterworth filter. 

fil ter prod uced bet ter resul ts when t he farfi eld only is considered. 0 

per iodisation technique has been used, since the signa l wa restric ted to two 

in teger wavelengths. 

F igure 6.20 d isplays t he determi ned VE F of both fi lter types a nd the 

relative error in percent made when using t hem . It can be realised tha t the 

ideal fi ltered VEF is exactly the same as t he true VEF . T he oval 2D 

Butterwor t h filter has minor d eviations which , however, a re still in an 

acceptable range. T he reason for the minor dev ia tion is d ue to the low-pass 

techniq ue tha t a llows no ise components to pass t hrough a t low wavenllmbers. 
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It can be seen from Figure 6.20 that t he ideal filte r is perfect to filte r 

di splacem ents that include a n integer number of fa rfi e ld waves. T able 6.6 

di splays the optimum cut-off points at each excitat ion frequency fo r both 
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1 Ideal fi Iter 

Butterworth fil ter 

Ideal fi I tcr 

Butterwort h filter 

Figure 6.20 Exact and filtered VEF of t he ESP! noise contaminated infi ni te beam 

di splacement at SOl Hz: (a) real part of active energy flow, (b) real part of relative 

error. 

filte r type. Also in Table 6.6 , a predictio n of the active VEF a t each 

excitat ion frequency is given that can be compared la te r on with the 

measured VEF d ata. Note, the VEF due to the app lication of the oval 2D 

l3utterworth fi lter is spatially-averaged over the beam di st a nce , s ince this 

value varies with beam di st a nce. It can b e reali sed from Table 6 .6 tha t both 

VEF values are close together. It is intended that the g iven optimum cut-o ff 

points are employed in chapter 9. Not e, the pred ic ted VEF values a re the 

m ean of the spatia lly varying VEF (sce Figure 6.20(a». 
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Excitation frequency 10 [Hz] 801 1112 1146 

Optimum (% of 18+1)","/ [%] 6.67 2.33 5.67 

MSE, 9'l (10· log lO(fl )) -315 .0 -303.21 -308.43 

VEF, (PI )"/,,,/ [W] 5.23·10-1 2.88.10.4 1.41·10-" 

Optimum (kJ .... "/ [rad / m] 1.5·1;;, 1.25·xo 1.25·1;;, 

MSE, 9'l (lO·log,o(fl )) -35.4 -38 .18 -40 86 

Mean ofVEF , l / N. I9'l{ (P,lo,,,,,} [W ] 5.23·10"' 2. 8.10-4 1.41.10.3 

Table 6.6 Optimum "infinite" beam cut-off points and predicted VEF. 

6.3 Numerical Simply Supported Beam Analysis 

T his section invest igates t he effects of nll merica.! energy flow computation in 

a simply supported beam using t he VEFESPI method . In the previous 

sect ions it was shown that t he presence of a neadteld , t he presence of noise or 

the presence of both can cause spectra .! deviation problems, which t hen y ie.!d 

to VEF computat ion errors. The reason a n infini te beam has been pr sen ted 

first is that the cause of the problems can be easi.!y understood , si nce t he 

infinite beam was modelled by a imple two wave model only. 

Young's modulus E = 2.07·10" N/ m2 

mass density p = 7.85·10" kg/ m" 

beam width b = 50.10-3 m 

beam th ickness t = 10.10-3 m 

beam length L = 1 m 

Table 6.7 Simply supported beam properties. 
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Thus, the problems revealed in the infinite beam sect ion can also be related 

to the finite beam analysis although here the beam disp lacement modelling is 

much more complex. The material properties of the beam are shown in Table 

6.7. Again , these are the same properties as the experimenta l s imply 

supported beam , 11 ed during the experiment . 

6.3.1 Vibrational Energy Flow Excluding Noise 

6.3.1.1 Vibrational Energy Flow Using the VEFESPI Method 

In section 5.4.1 it has been shown that the simply supported beam 

displacement is formed by a superpos ition of infinite beam waves a nd 

reflect ion waves. iloth wave groups contain evanescent waves and travelling 

waves. Due to the application of hysteretic damping to solve the problem of 

infinite wave ampli tudes at resonant excitat ion freqllencies both wave types 

brea k into evane cent a nd travelling waves. Thus, the initia l evanescent 

waves break into a la rge fraction of evanescent waves and a small fr action of 

travelling waves driven by the hystcretic loss factor. T he initial travelling 

waves break into a la rge fraction of travelling waves a nd a small [Taction of 

evanescent waves. lloth wave types contribute to energy transfer a nd both 

wave types also contribute to spectral deviat ion due to nearfi eld components. 

Figure 6.21 displays the frequency dependent magnitude of a ll complex 

wave amplitude a ri sing to the right of the excitation locat ion of a 

transversally vibrating simply supported beam at d ifferent hysteretic loss 

factors. Independent upon the exc itation location the left-going a nd right

going infinite wave ampli tudes are the same. However, the left a n I right

going reflection wave amplitudes d iffer slightly from each other if o ff-centre 

excitation is employed. The excitation location a pplied here was off-centre at 

Xi, = 0.4167 111. A unity force of Fo = 1 was a pplied . From F igure 6.21 it is 

noticeable that hy teret ic damping most ly affects the travelling refl ection 

waves on ly, since the magnitude decrease clearly with increasing hy teretic 

10 s factor. It can a lso be noticed from Figure 6.21 that the evanescent 

refl ection wave ampl itudes are smaller tha n the travelling re flect ion wave 

162 



o 
10 

E ............. -5 

+ 10 
..: 

· [0 

10 0 

10 

o 
10 

·20 
10 

10 
[) 

6 Numerical Analy is Of Vibrational E nergy In ileams 

(a) 

= 
1'I= ~,. 1O.3 'I -10 ' 1'1",, :;.10"1 

2 
10 

f 1Hz) 
(c) 

-:-"'-'" 

2 
10 

r 1Hz) 

4 
10 

4 
10 

o 
10 

· [U 

10 11 

10 

u 
10 

· '0 
10 

o 
10 

(b) 

2 
10 

f 1Hz) 
(d) 

• . 

2 
10 

f 1Hz) 

" 
10 

" 10 

Figure 6,21 IIagni tude of complex wave amplitudes to t he right of the excitation 

location for differen t loss factors: (a) infinite evanescent wave, (b) infinite travelling 

wave, (c) reflecting evanescent wave, (d) reflecting travelling wave. 

ampli tudes. Further , the amplitude ratio I Ri ll A_I is increasing exponentia lly 

wit h increasing excita tion frequency. Thus, the influence of the re fl ection 

wave nearfi eld components d ecreases with increasing frequencies. 

Figure 6.22 d isplays the steady state complex, infinite waves 

displacement a nd the complex, reflect ion waves d isplacement . The beam was 

excited at its natural undamped frequency of the 6'" mode with fo = 38.3 Hz 

using a unity force at three different hyst eretic damping settings. Figure 6.22 

shows t hat with increasing damping ma inly the refl ection wave a mplitudes 

were decreased . The amplitude reduction of the infinite waves d isplacement is 

hardly noticeable over the range of different damping applied. At 1] = 5·10·" 

the refl ection waves di splacement is about 60 times larger than the infin ite 

waves di splacement. However, at 1] = 5.10.2 the reflection waves displacement 

is only about 10 t imes larger. Thus, with increasing damping the infinite 

waves d isplacement becomes a more dom inant displacement part a nd, thus, 
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Figure 6,22 Infinite waves and reflection waves beam displacemcnt of a simply 

supported beam : (a) real part infinite waves , (b) imaginary part infi nite waves, (c) 

real part reflection waves, (cl) imaginary part refl ection waves. 

more leakage can be expected in the wavenumber domain when computing 

VEF from finite beam disp lacements. This is easy comprehensible, since at 

higher damping t he reflected travclling waves are morc spa tia lly dampcd. 

F igure 6,23 d isplays the two-dimensional simply supported beam 

displacement a nd the one-dimensiona l row extracted from the middle of the 

beam width , The beam was excited at the 6d
• mode wit h an excita tion 

frequency of ID = 838.3 Hz using a un ity force and a hy teret ic loss factor of 1] 

= 5·10-'. T he reason such a high hyst eret ic loss factor is employed is to 

in vestigate numerical VEF computat ion when a low infinite wave to 

refl ection wave ra tio is present . The displacement is generated by evaluating 

equation (5.37) numerically using a number of data points in x direction of N, 

= 256, and in y d irect ion of Nu = 64. It can be reali sed from F igure 6.23 that 

an integer number of 3 waves is included in the spatial disp lacement signa l. 

Figure 6.24 displays the 3'" spat ia l derivat ive computed by the KSD 
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Figure 6.23 Complex and hysteretically damped simply supported beam 

di splacement at the 6'" mode: (a) 2D real part, (b) 2D imaginary part , (c) ID real 

part , (d) ID imaginary part. 

met hod plus the exact ana lyt ical 3'" order spatial derivat ive. From Figure 

6.24 it can also be seen here that a spectra l deviation between the determined 

3'" order spati a l derivati ve and the exact 3'" order spati a l deri vat ive is 

present . The reason of this dev ia tion can be found when con idering a few 

points . As mentioned before the infinite wave d isplacement contains a non

integer number of waves in the d isplacement igna l. Although the infinite 

wave displacement is about 6 times smaller tha n the refl ect ion wave 

displacement a mall fract ion of leakage a ppears in the wavenumber 

spectrum . Furthermore, each wave group conta ins nearfield waves and t hese 

component are detected in the wavenumber spectrum . ilot h t he infini te 

wave leakage and the nearfield components of each wave resul t in spectra l 

devia t ion especia ll y a t high wavenumbers. T he reason of the smaller spectra l 

deviation compared to the infin it e beam , is th a t the nearfi eld components are 

much smaller than t he travell ing wave components. ince the infinite wave 
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d isplacement become more dominant with increasing damping, thc spectra l 

deviations will become larger too. From F igure 6.24 it can a lso be seen tha t 

the exact spectrum shows some spectral components away from the 

excitation wavenumber. This is lue to the fact that wit h increasing damping 

the spatia l derivatives of the infinite beam displacement start to d evelop a 
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Figure 6.24 KSD determined 1tnd exact solution of the 3'" spectral derivative of t he 

beam displacement shown in Figme 6.23: (a) real part using KSD, (b) imaginnry 

part using KSD , (c) real part exact solution , (cl) imaginary prut exact solut ion. 

discontinuity at excitation location . T hus, the spectrum shown II1 Figures 

6.24(c) a nd 6.24(d) , respectively exhibits some spectra l a mpl itude 

components due to the spat ia l Fourier tran form of t hat di scontinuity at 

excita tion location (G ibb's phenomenon). 

If one computes VEF within t he simply supported beam uSll1g the 

disp lacement , as shown in Figure 6.23 , one wou ld obtain an act ive a nd 

reactive energy flow within the beam as di splayed in F igure 6.25. The exact 

active and reactive VEF was calculated from equa tion (5.64). From F igure 

6.25 it can be realised that the exact active a nd reactive VEF is zero a t the 
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simply supported boundaries because the d isplacement is zero at the e poin t s 

and the boundaries were a llllled to be non-dissipa tive. It can also be noticed 

that the active energy flow is maximum at excitation location and that the 

absolute value of the right-hand side energy flow at that point is larger than 

a t the absolute value of the left-han I side. Thi means more energy is flowing 
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Figure 6.25 Exact and determined VEF of the simply supported beam di splacement 

shown in Figure 6.23: (a) active energy flow , (b) reactive energy tlow. 

to the right of the excitation location than to the left . Further , the sum of 

both absolute energy flow values at excita tion location is eq ual to the inpu t 

energy. The off-centre excitation locat ion of 1iJ = 0.4167 m was chosen to be 

at a peak of the complex beam displacement . Thi ensures maXlITIUm energy 

to be injected in to the beam. 

As expected , the computed VEF osci llates around the exact value due 

to the above mentioned reason. If one would simply apply the CW technique 

in order to compensate the VEF fluctuation as demonstrated in section 6.2 , 

one would obtain a fa irly smooth computed energy flow within the simply 
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Figure 6.26 Relat ive error of determined VEF of the simply supported beam 

displacement shown in Figure 6.23: (a) relative "ctive flow error, (b) relative 

reacti vc flow error. 

supported beam. F igure 6.26 d isplays the rela t ive error made when applying 

t he CW technique in ordcr to compensate for VEF oscilla t ions . Also here , the 

relative error between the VEFESPI determined VEF and the cxact VEF 

solu t ion of the simply supported beam was computed . l3ecause t he react ive 

VEF is approaching zero close to the beam's boundaries th is region is not 

been shown due to zero division . It can be recognised from Figure 6.26 tha t 

the error made is almost neglectable except a round the excitation locat ion 

where the CW technique has some problems to approximate the sharp VEF 

di c nt inuity. However, compared to thc numerical in fi ni te beam analysis t he 

CW technique compensates energy flow oscillations for the simply supported 

beam much better . 

The above analysed beam displacement contained 3 waves within the 

disp lacement signal, since the beam was excited at t he even 6'" mode. 

However, if one excites the beam at odd-numbered mode sha pes, such as the 
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7'" mode, a non-in teger number (3.5·1.. ) of waves will be included in the 

d isplacement signa l. T hus, a considerab le amount of spectral leakage will 

occur . T herefore, t he 7'" mode shape of the beam is investigated next using 

the periodisat ion techniques introduced in sec tion 6.1 in order to diminish the 

effect of spectral leakage. F igure 6.27 d is plays t he 7'" mode simply s1lppor ted 

beam displacemen t. T he excit a t ion &equency was fo - 1141 Hz and the 

excita t ion locat ion was 10 = 0.3571 m . T he excita t ion locat ion was changed 
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Figure 6.27 Complex and hysteretically damped simply supported beam 

displacement at the 7'" mode: (a) 2D real part, (b) 2D imaginary part , (c) lD real 

part , (d) lD imaginary part . 

to the peak location of t he 7'" mode. Also here, a unity force was app lied and 

the select ed hyst eretic loss factor was T} = 5·10·'. If one would compute VEF 

when the beam is vibra t ing a t its 7'" mode using the MP and MRS techniq1le 

to period ise t he displacement , one would still obtain some undesired energy 

oscilla tions. As shown in sect ion 6.2, the determined VEF &om the periodised 

d isplacement is a pproximate further by u ing the C'0l technique. T he 

computed energy flow of th is procedure is sh own in F igure 6.28 . From there 
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it can be realised that the periodisation techniques work well in order to 

determine VEF from t he periodised beam displacement . As a comparison the 

VEF approximated by t he CW technique is displayed too. It can be een tha t 

the reactive VEFESPI+CW energy flow is less accura te at the beam 's ends. 

However , a ll three computed active VEF agree well with the exact value. 

Figure 6.29 d isplays the rela tive error made when analy ing VEF with 

any of the three techn iques. It can be seen that the VEF computed from the 

VEFESPI+CW t echnique increases 111 error towards the beam 's ends. 

Especia lly the react ive energy flow cannot be approximated suffi c iently 

accurate enough. However , VEF determ incd from the MP period ised 

di sp lacement hows a very good agreement with the exact value. All three 

techniques have some problems to detect the sharp energy flow discontinuity 

at excitation locat ion . T his means that the input energy cannot be calculatcd 

without introd ucing error . 

6.3.1.2 Vibrational Energy Flow from Energetic Quantities 

Within the beam a nalysis a second alternative approach is employed to 

compute VEF in fin ite beam structures from measured energy densities. 

Equation (3.39) d isplays the energy balance within a finite beam . It can be 

reali sed from (3.39) tha t the real part o f the time-averaged complex input 

power is proportiona l to the product of circular frequency , hyst eretic loss 

factor , and potentia l energy density. The im agin ary input power 1S 

proportional to the product of circular frequency and Lagra ngian density. 

Defini te in t egration of the energy dens ities a long the beam leng th 

transfers the local energy densities in to global energy quantiti s and , thus, a n 

energy balance between local energy quantities and complex VIP can be 

carried out . However , indefin ite integra tion of the potential and Lagrangia n 

energy d ensity may be employed in order to obtain pa tia l VEF information 

of the finite beam. Because the indefin ite energy density integration i 

underta ken in thi s work in an incrementa l numerical way, thi s method will 

be addressed as incremental energy density integrat ion method (l EDI) . Thus, 

active VEF information from the potentia l energy density may be 
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6 Numerical Analysis Of Vi brat iona l Energy In l3eams 

numerically determined by an incremental integration of the potential energy 

as: 

." ~ {P (x ,, )} = 2W17 J (e,>o' (X»), dx. (6.8) 

" 

Here, n =2, 3,4 ... , N • . Analogously , the reactive VEF may be incrementally 

integrated Ilsing t he Lagrangian energy d ensity as: 

." 
8' {p (x,,)} = 2jw J ((e,," (x»), - (epo, (X»).) dx . (6.9) 

l3y employing the method proposed by equations (6.8) a nd (6.9) the VEF 

determination that originally relied on t he computat ion of spatial derivat ives 

up to the third order, as shown in equation (3.33), is now reduced to a 

second order spatial derivative equa tion , as evident from equation (3.36). 

Figure 6.30 displays t he energy densities of the 6'" mode d isplacement , 

as shown in Figllre 6.23. It can be real ised that the kinetic a nd potent ial 

energy densities are a lmost identical except at t he excitat ion location. IIerein , 

e,,,, is denoted as the kinetic energy density, e,<o' is denoted as the potentia l 

energy density, e,o' is denoted as t he total energy density, a nd I, is d enoted as 

t he Lagrangian energy density . The d ifference o f both can be seen by Figure 

6.30(b). T hi d ifference is proportional to reac t ive energy fl ow. 

Figure 6.31 displays the numerical integrated VEF present within the 

simply supported beam by numerically evaluating eq uations (6.8) and (6. 9). 

Here, a stepwise numerical integration of the potential a nd Lagrangian 

energy densities a long the beam length was carri ed out. It is shown by F igure 

6.31 t ha t t he numerically integrated energy flow matches well with the exact 

olution . Note, here t he VEF oscillations of the spatial derivatives due to the 

near fi eld components of the displacement were compensated by the GW 

technique. However, on ly very small VEF osci llation occurred, since on ly up 

to second order spatial derivatives were employed. 
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Figure 6.30 Energy densities of the simply supported beam djsplacement shown in 

Figlll'e 6. 23: (a) kinetic, potent ial, and total energy density , (b) Lagrangian energy 

density. 

F igure 6.32 d isplays t he rela tive error made when determin ing VEF by using 

equa t ion (6. ) a nd (6.9) , respectively. It can be seen from F igure 6.32 that 

t he rela t ive error madc, when apply ing t he incrementa l energy density 

in tegration technique in combina tion with the KSD method is sm a ll . It can 

also be not iced from F igure 6.32 t ha t in comparison to the result of t he 

conventiona l method , as shown in F igure 6.26, the VEF error a t excita tion 

locat ion was reduced sub tan tia lly and, thus, the sharp VEF d iscontinuity a t 

excita t ion location was computcd much better . The d evia t ion towards the 

beam's ends can be related to zero di vision with in t he relative error 

computat ion proced ure tha t occm s at t he beam 's ends due to the exact VE F 

approaching zero. 

F igure 6.33 illustra tes the rela t ive error m ade when employing 

d ifferent a mount of hyst eretic damping. It is evident from t his ana lysis t ha t 

wit h increasing da mping th e error of t he acti vc and react ive VEF increases 

sligh t ly. However , at a very high structural damping of TJ = 10.1 the error of 

173 



.,' 
x lO 

"> 
5 

:=::.. 
~ 

x 
P- O 

" er 
-5 

0 

.. ; 
x lO 

~ 5 

~ 

x 
P- O 
~ 

E 
~ 

-5 
0 

0.2 

0.2 

6 N umerica'! Analysis or Vibra tion a l Energy In B eam s 

( a) 

0.4 I 0.6 
x [Ill 

(b) 

0.4 [ I 0.6 x m 

0.8 

0.8 

j 

1 

1 

Exnct so lu tion 

2Cilll je dx 
pot 

Exnct sol ution 

2jCiljl dx 
c 

Figure 6.31 Exact and determined VEF from t he incrcmentaJ energy density 

integration method of the simply supported beam displacement shown in F igme 

6.23: (a) active energy flow , (b) reactive energy flow. 
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Figure 6.33 Relative error of determined VEF from the incremental energy density 

integration method of the simply supported beam displacement shown in Figure 6.23 

for different levels of damping: (a) relative active flow error , (b) relative reactive 

flow error. 

computed VEF is st ill acceptable. T hus, VEF in a simply supported beam 

can be computed very well from the in crementa l integration of the energy 

den it ies. 

In case of odd-numbered mode sha pe vibration (non-periodic beam 

d isplacement) t he a bove introduced method can be applied in combination 

with the MP and MRS periodisat ion technique. 

F igure 6.34 di splays the integrated VEF of the 7'" mode beam 

di placement , as shown in Figure 6.27 . As expected, the periodised 

displacements show a much better result. T he relative reactive VEF error 

made when a na lysing the non-period ised beam d i placement is ou tside the 

plott ing a rea, as evident from Figllfe 6.34 (b). The analysis of the non

periodised beam displacement resulted in a potentia l energy density no t being 

zero a t t he beam 's ends and , thus, causing dev ia tions. This prob lem is 
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6.27: (a) relative active flow error, (b) relative reactive fl ow error. 

176 



6 umerica l Ana lysis Of Vibrational Energy In Beams 

diminished simply by integra t ing from the left-h and side and the right-hand 

side of the beam separa tely , rather than in tegrating from one beam side only 

as carri ed out wit h the periodised beam di placements. The rela tive error 

made by the periodised beam d isplacement is with in a n acceptab le ra nge, 

however , increases towards the beam 's ends due to zero division. 

6.3.2 Vibrational Energy Flow Including Noise 

This section deals wit h the a nalysis of VEF in a simply supported beam when 

noise contamination is present . As carri ed out in section 6.2.3 normally 

dist ri buted random noise will be added to the syntheti c simply supported 

beam displacement signal. Both, the ideal 2D filt er and the oval 2D 

Butterworth filter will be investigated. 

It was shown in chapter 3 t hat VEF within a finite structure depends 

on the interna l energy dissipation process on ly if non-diss ipati ve boundar ies 

are assumed a nd losses d ue to sound rad iation are neglected. T hus , 111 

contra't to VEF within an infinite structure, vibrat iona l energy can only be 

injected into a finite structure if t he injected energy wi ll be d issipated 

somewhere in the structure. VEF wit hin a damped fini te beam is also a 

function of t he loss factor 7] , as demonstrated in sect ion 5.4.3 , a nd VEF can 

only be computed if damping is included , since in a pure standing wave 

environment no net energy flow occurs . Hence, the amoun t of d amping 

controls the amount of vibra tional energy to be dissipated or tra nsm itted 

within t he volume of interest. In a sim ply supported structme the 

t ransmitted energy is a t mo t at the excita tion location and zero at t he non

diss ipative boundar ies . T he dissipated vibrational energy behaves vice versa. 

Thu , one can build a hypo thet ical model rela t ing the VEF wit hin finite 

structnres to decayi ng travell ing waves, which cause a decaying energy fl ow. 

It can be reali sed that these hy pothetical decay ing travelling waves are very 

sma ll compared to t he total s tanding wave displacement . If the total 

displacement ignal is conta minat ed by noise t hen t he rat io of the noise floor 

to the amp li tude of t he hy pothetical decaying t ravelling waves is crucia l to 

the accuracy of t he VEF computation of the finite t ructure. If the level of 
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noise wit hi n the disp lacement signal is t he same or even more t ha n the 

ampli tude of the decaying t ravell ing waves, VEF within a finite s t ructure 

cannot be computed . VEF computation is only feasible when t he amount of 

noise is les than t he d ecaying wave amplitude. 

For t his reason , a sensit ivity study on the numerical VEF computation 

of noise contaminated simply supported beam d isplacements at d ifferent 

levels of damping and noise is carried out . To assess the sensitivity of the 

VEFE P I met hod an indicator is introduced , which a llows for the assessment 

of the rat io between structural damping a nd noise conta mination. This 

indicator is t he prod uct of t he los factor and the SNU, i.e. TJ x SNU. 

Two d ifferent levels of damping and noise will be considered. These 

levels are simila r to the a m unt of damping a nd noise to be expected during 

the simply supported beam experiment. Different levels of damping are 

represented herein by different Los factors a nd different levels of noise are 

represented herein by di fferent S U's. Thus , VEF is computed at a loss 

factor setting of TJ = 5·1O-a a nd TJ = 2.5.10-2 a nd at a S R setting of 

approximately SNU '" 50 a nd SNU '" 1000. 

6.3.2.1 Ideal 2D Spectral Filtering 

As demon trated in section 6.2.2 filtering of nOI e contamina ted da ta is 

indi pen ab le if one computes VEF from measured displacements. As 

mentioned , the effect of pectra l noise a mplification in the wavenumber 

domain needs to be reduced . Also here, the relative MSE function, as given in 

equation 6.7, is employed in order to compute optimum filter parameters. 

Figure 6.36 d isplays the 6'" mode displacement of a imply supported 

beam d isplacement that was noise conta mina t ed by a S R of 50. The beam 

was excited at the 6'" mode with a n excitat ion frequency of fo = 838.3 H z 

using a un ity force a nd a hysteretic loss factor of TJ = 5·10-". T he excitation 

location was a pplied off-centre at To = 0 .4167 m . Figure 6.37 displays the 

respect ive wavenumber spectrum . Clearly, two pikes representing the 

superposition of right travelling infinite wave and right travelling reflected 

wave and analogously for the left-ha nd side can be seen. 
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Figure 6.38 d isplay the complex relative M E obtained when determining 

VEF of t he noise contaminated 6'1. mode displacement at two diFferent levels 

of noise by using the ideal filter. It can be seen in comparison to the infinite 

beam MSE that a much larger error occurs when filtering the simply 

supported beam spectrum. As expected the optimum filter cut-off point , % of 

max lAmplitude l, decreases with increasing product of TJ x SNR, since the 

level of noise decreases. 

Figure 6.39 displays the ideal filt ered VEF at the optimum cut-off 

points. It is evident from Figure 6.39 t hat the filtered transmitted energy 

can not be computed at TJ x SNR '" 0.25 where a straight line occurs. At TJ x 

SNR", 5.4 ome improvement in VEF computation can be reali sed however , 

the sharp VEF discontinuity at excitation locat ion cannot be computed. The 

reactive VEF cannot be computed for both settings of TJ x SNR. 

Figure 6.40 displays the complex relative MSE made when computing 

VEF from a beam displacement, as shown in Figure 3.36 , however , damped 

with TJ = 2.5.10-2
. It can be seen from Figure 6.40 that the MSE has slightly 

decreased when comparing to F igure 6.3 . 

Figure 6.41 shows the ideal filtered active a nd reactive VEl". It is 

evident from t his figure that with increasing damping the sensitivity of the 

VEFESPI method decreases. At TJ = 2.5.10-2 & NR = 59 (7] x SNR '" 1.5) a 

much better match in active VEl" could be computed than at TJ = 5·10-" & 

SNR = 10 0 ( TJ x SNR", 5.4), despite the latter combination was determined 

at a higher product of TJ x SNR. Unfortunately a l 0 here , the reactive VEF 

cannot be com.puted well from noise contaminated simply supported beam 

disp lacements when filtering by a n ideal 2D filter. This might be due to the 

fact that the noise floor ampli tude is still much higher t han t he amplitude of 

the decaying nearfi eld waves. However , a Further increase in structural 

damping (7] = 5.10-2
) revealed that the reactive energy flow may be 

computed with a much better match than shown in Figures 6.39 and 6.41. 
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In the previous section it was shown that odd-numbered mode shapes cause 

spectral leakage. Thus, wrong spatial frequencies appear in the wavenumber 

spectrum . It has also been shown that in the ca e of non-noisy data thi s 

effect can be diminished by applying one of t he periodisation technique , 

introduced earlier . T he question , how the periodisation technique have an 

effect on the VEF computation of noise contaminated and periodised odd

numbered mode shapes will be in vest igated next. T hus, a s imply supported 

beam displacement , as shown in Figure 6.27, contaminated by norma lly 

d istributed noise with as R of 109.9 a nd damped at TJ = 2.5,10-2 is studied . 

The odd-numbered mode displacement is periodised by the MP and MRS 

method in order to reduce 'pa tial leakage. The result of the periodisation is 

shown in Figure 6.42. Ideal filt ered VEF of these per iod ised di splacements is 

determined and compare I with VEF computed straight from the 7'" mode 

di splacement without apply ing a periodi ation. Figure 6.43 displays the 
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complex relative MSE made when numerically compll t ing VEF. In 

comparison to F igure 6.40 it can be seen t hat the relative MSE of t he 

reactive VEF is much larger than a na lysing even-numbered mode shapes. 

F igure 6.44 shows the real and imaginary energy flow. It ean be 

noticed t hat odd-numbered mode shape disp lacements cau e a larger error in 

the t ransmitted energy ana lysis t han t he a nalysis of even-numbered mode 

shape displacements. Especially the reactive energy cannot be detected with a 

great deal of accuracy. It can also be realised that t he periodisation of t hc 

non-period ic beam displacement and subsequent ideal fi ltering does not yield 

to sign ificant improvement , as in itially expected. Interest ingly , t he error 

made when analysing the non-periodic and odd-numbered mode sha pe 

displacement is less than the error made using t he period isation techll iques. 

F ina lly, t he above invest igated 6'" and 7'" mode beam displacements 

are also used to compute VEF by using t he incremental energy density 

integrat ion met hod, as shown by equations (6.8) and (6.9). Also here, a 

sensit ivity study is carri ed out by employing different damping a nd SNR 

settings. 

F igure 6.45 d isplays the relative MSE made when computing VEF 

wit hin a low d amped simply supported beam d isplacement , as shown in 

F igure 6.36 , which was contam inated by two d ifferent levels of noise. T he 

IEDl met hod was employed . It can be seen that the act ive MSE is mueh less 

t han the active MSE shown in F igure 6.38. 

Figure 6.46 shows the IEDI eomputed VEF of the beam displacement 

shown in Figure 6.36. It is eviden t from th is figllfe t hat t he integrated active 

energy flow matches very well with the exact solution at each noise level. 

This surprising result can be expla ined by t he fact t hat t he IEDl method 

uti lises 2"" order spatia l der ivatives , whereas t he conven t ional VEFESPI 

method utili es spatial der ivatives up to t he 3'" order as de fined by equation 

(3.33). Unfortuna tely , t he computed react ive VEF is not a good match to the 

exact reactive VEF, but in close region. 

Figures 6.47 and 6.48 d isp lay the MSE made and the IEDI computed 

VEF, respect ively , when analysing the 6'h mode beam displacement , as shown 

in Figure 6.36, however , damped with 7] = 2.5 .10-2
. It can be seen t hat t he 
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6 Numerical Analysis Of Vibrationa l Energy In Beams 

active and reactive energy now computation has improved significantly. Even 

a t the very high noise contaminated beam displacement, the reactive VEF 

could be computed within a reasonable range of accuracy. Also here, the 

active VEF was computed very accurately at both levels of noise 

contaminat ion. Thus, the reactive now sensitivity of the IEDI method 

decreases with increasing structural damping. However , the active now 

ensit ivity of the lED I method is always very low. At each combina tion of 

damping and noise excellent matches of act ive VEF could be obtained. Here, 

the conventiona l VEFESPI met hod failed to provide acceptable result '. 

The IEDI method was a lso applied to the computation of VEF fro m 

odd-numbered mode shape d isplacement, as shown in Figure 6.27, however, 

conta minated by norma lly distributed noise. Analogously to the previous 

given example, the MP and MRS periodisation techniques were employed. 

T he 7''' mode simply supported beam displacement was noise conta minated 

with a SNIl or 109.9 a nd t he structura l damping considered was 1'/ = 2.5·10-'. 

F igure 6.49 displays the complex r elative MSE made when computing 

VEF from a noisy , non-periodic simply supported beam d isp lacemen t . It can 

be realised from Figure 6.49 that the MP a nd MRS periodisation techniques 

reduce the active MSE. It can be seen furth er from Figure 6.49 that t he MP 

t cchnique produced t he lowest react ive MSE. 

F igure 6.50 d isplays the ideal fi ltered VEF when uSll1g the lED I 

method . It can be noticed from Figure 6.50 that the periodisation techniques 

improve the computation of active VEF enormously. In compari son to Figure 

6.44 periodisat ion of the beam d isplacement does yield to a more accurate 

active VEF computa tion when employing the IEDI method. Unfortunately, 

the computation of reactive VEF cannot be under taken within an acceptable 

range of accuracy ror all t hree techniques employed. 

In terestingly, the app lication of the IEDI method reduced the 

sen itivity of t he VEF computation. It should be mentioned that the lEDI 

method is part of the VEFESPI method , since spa tia l derivatives up to the 

2"" order are used. However , subsequently the VEF is computed from 

incrementa l energy density integration along the beam axis rather than 

em ploying equation (3.33). 
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6.3. 2.2 Oval 2D Spectral Butterworth Filtering 

To study the effect of Butterworth filt ering on the computation of VEF 

within noise contam in ated simply supported beams, the same displacements 

as used in the previous section are a nalysed. 

F igure 6.51 displays the com plex relative MSE of the nOIse 

conta minated 6'" mode beam displacement , as shown in F igure 6.36, a t 

d ifferent levels of noise and dam ped with 17 = 5·10-". Here, a n oval 2D 

Butterworth filter was app lied in t he wavenumber doma in . It can be noticed 

tha t the active MSE made is s lightly less than the active MSE made when 

!Iltering by the ideal fil ter . T he reason tha t only cut-off wavenumbers above 

1.0· 1;;, a re shown is that below 1.0·k;) the MSE approaches zero . Since an 

automatic detecting a lgorithm wa employed in the code, min im um ut-off 

wavenumbers below 1.0·/;;) would have been detected. This is a d isadvantage 

of t he logarithmic MSE, which needs additiona l care if posit ive MSE's occur. 

Furthermore, due to strong variations in MSE computation only a small 

plau ible normalised cut-off wavenumber range was investigated. 

F igure 6.52 displays t he respec tive ac t ive and react ive Butterworth 

filtered VEF at 17 = 5·10-"' W hen comparing Figure 6.52 with Figure 6.39 it 

can be noticed that the Butterworth fil t er produces a better filtered active 

energy flow than the ideal filter. T his is due to the fact that the Butterworth 

filter includes the whole spectral nearfi eld inform ation below the cut-off, 

wavenumber , wherea the ideal filter filters out some spectral nearfield 

points, which are located at low wavenumbers. However , a good agreement of 

transmitted energy at excita tion location cannot be obtained. A Iso, t he 

fil tered reactive energy flow at excitat ion locat ion is not in a good agreement 

with the exact solution . However , moving the cut-off frequency to lower 

locations might improve the reactive VEF curve shape. 

F igure 6.53 displays the rela tive MSE made when comput ing VEF 

from the noise contaminated 6'" mode simply supported beam d isplacement , 

damped at 17 = 2.5'10-' . It can be seen that at the increased level of damping, 

the complex rela t ive MSE decrease. Also, the optimum cut-off wavenumber 

has moved to higher wavenumber locat ions . 
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F igure 6.54 d isplays the resp ctive Dutterwor th fil tered VEF. It can be 

reali sed that with increasing T} x SNU the VEF computation accuracy 

increases. In terest ingly, a much better ma tch between exact react ive a nd 

computed reactive VEF occurs, at both levels of damping. It should be 

mentioned that at SNU = 59 a nd T} = 2.5.10-2 a better curve shape match 

between the exact VEF curve and t he computed active VEF curve can be 

obtained, simply by moving t he cut-off wavenumber to a higher posit ion. 

However , the rela ti ve MSE made will increase. In genera l, it can be reali sed 

that the oval 2D Dutterworth fIlter a llows for a more accurate VEF 

computa t ion within a sim ply supported beam . As expected , the sensiti vity of 

the VEFESPI method decreases with increa 'ing dam ping. 

The noise cont aminated 7'" mode simply sup ported beam 

displacement , as part ly shown in F igure 6.42 , will a lso be investigated. Here, 

a SNU of 100.6 and a loss factor of 1] = 2.5.10-2 were employed. As usual 

periodisation is carried out using t he MP and MUS pet'iodisation techniques. 

Figure 6.55 displays the rela t ive MSE m ade when filt ering by a n oval 2D 

Dutterworth filt er. 

Figure 6.56 exhibits the active and react ive transmitted energy within 

the simply supported beam that vibrated transversely a t t he 7'" mode. It can 

be seen tha t a slight improvement of the DlI tterworth filtered active energy 

fl ow compared to the ideal fil tered VEF cou ld be achieved. However , s t ill t he 

react ive energy fl ow is in no good agreement with the exact value. T his is 

due t o the fact that spectral filtering erases valuable nearfi eld informa tion in 

the wavenumber domain especially at k, > k,. Also, the sharp VEF 

di cont inuity a t the excitat ion location cannot be computed accurately. T his 

mea ns an accurate comparison to input energy measurements is hardly 

possible. The use of t he per iodi at ion techn iques did not yield to a ny 

significant improvement in act ive VEF computation if filtering is included. 

This result is in contrast to the conclusions of reference [51]. Of course the 

leakage effect will be greater with fewer waves included in the signa l. 

However , the spectral filtering process erased some spectra l leakage 

components in the wavenumber domain . Thus, the effect of the periodisation 

techniques prior to filtering was less drast ically. 
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Finally , the method of incrementa l energy density integration is also a pplied 

to the Butterworth filtered 6'" and 7'" mode disp lacements. Due to 

complet eness rea ons, a sensitivity study IS a lso carried out by employing 

different da mping and SNR settings. 

Figures 6.57 and 6.59 show the comp lex relative MSE made when 

ana lysing the Butterworth filt ered 6'" mode simply supportcd beam 

displacement by the IEDI method at diffcrent levels of noise and damping. It 

is ev ident from both figures that the relative MSE made is much less than 

employing the conventiona l VEFESPI method (see Figures 6.51 a nd 6.53). 

Especia lly the active VEF error reduces drastically for all products of TJ x 

S R. The IEDl com puted energy flows arc shown in F igure 6.58 and 6.60, 

respectively. It can be noticed that a t each product of TJ x S R good 

agreements between the exact active VEF a nd the computed act ive VEF can 

be achieved . The react ive VEF at TJ = 5·10- :1 & SNR = 59 ( TJ x S R", 0.295) 

strongly dcviates from the exact so lution . However, at the rema ining 

products of TJ x S R a relatively low erroncous reactive energy flow could be 

computed . 

In the following , the l EDI method wil l a lso be a pplied to the 

computa tion of VEF from a non-period ic 7''' mode simply supported beam 

d isplacement , parti a lly shown in Figure 6.42 . 

If one compares Figures 6.61 a nd 6.62 with Figures 6.55 and 6.56, it 

can be realised that the IEDI method in combination with one o f thc 

periodisation t echniques reduces the relat ivc active MSE a nd, t hus, improves 

the VEF computation of odd-numbered mode shape beam displacements. 

This could not be achieved by using the conventional VEF computation 

method where the direct analysis of the non-periodised beam displacement 

yielded to a lmost the same result as applying one of the periodisation 

techniques. However , the reactive energy flow is hard to compute, as shown 

by F igure 6.62(b). 

It was shown herein that the a pplication of the IEDl method reduced 

the noise sensiti vity when computing VEF from noise contaminated simply 

supported beam displacements drastically. Especially the computation of 

active VEF is rather noise insensiti ve. 
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6.3.3 Vibrational Energy Flow Including ESP I Noise 

In sect ion 6.2 .4 it was shown that optical noise acqu ired by the ESPI system 

differs to art ificia l generated normally d istributed noise. Also here, the MSE 

of computed VEF of the experimenta l simply supported beam structures will 

be predicted and possib le optimum fil ter cnt-o ff poin ts are given . T he MSE 

pred iction and the optimum fi lter parameters for each excitation frequency 

are compu ted by superim posing extrac ted measured ESPI noise with an 

synt hetically generated beam displacement as given by equation (5.37) . 

Details about t he beam experiment are presented m chapter 7. The 

measurement parameters are shown in the t a bles below. 

n 6 8 9 11 

fO,1 57 Hz 1467.5 I-Iz 1874 I-Iz 2772 I-Iz 

FOil 0.133 N 0.361 N 0.339 N 0.482 

S R 230.4 367.1 33.8 69 .3 

7]" 6.337-10-" 8.705·10-" .295·10- '1 1.405.10-2 

Table 6.8 Vibration parameters of experimental non-layer damped simply supported 

beam. 

T he excita t ion location of a ll th ree beam structures was t he same as applied 

during the ESPI experiment a t :z;, = 0.583 m . In Tables 6.8 to 6.10 the mode 

n, the excita tion frequency of t he ESPI experiment 10,,, t he mea ttred force 

magn itude, of the ESPI experiment Fo,,, the S R and the modal hysteretic 

10 s factor 1'/" are gIven for each beam damping configura t ion . Herein , t he 

beam was excited with the excitation frequency used d uri ng the ESPI 

experi ment . T he modal loss factor has been acq ui red from an experi men tal 

modal analysis app lied at each beam tructure using 10 measurement points 

t hat were equally distr ibuted over t he beam length [127]. 
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n 6 8 9 11 

/o'l 8335 Hz 1441 I-Iz 1830.5 I-Iz 2745 I-Iz 

F Ori 0.096 0292 0.484 N 2.279 

SNR 92.8 231.5 201.8 485 .6 

TI" 1.657·10-· 9.231.10-3 9.394.10-3 1.252·10-· 

Table 6.9 Vibration parameters of experimental single-layer damped simply 

supported beam. 

n 6 8 9 11 

fo" 821 IIz 1426 I-Iz 1797 2682 Hz 

FOil 0.195 0.282 N 0.391 N 1.911 N 

SNR 95.0 50.3 26.8 47.1 

1]" 1.874·10-· 1.9 2·10-· 1.421·10-· 2.576·10-· 

Table 6.10 Vibrational parameters of experimental double-layer damped simply 

supported beam. 

It Can be seen from Tables 6.8 to 6.10 t hat measurements at four frequencies 

(two even-numbered mode shapes, two odd-nu mbered mode shape) of t hree 

different ly damped beam structures were carried out . T he calculation of VEF 

when using the l EDI method requires t he knowledge of the hysteretic loss 

factor. Usually the loss factor is depend ing upon the mode of vibration a nd 

may spat ially vary across the beam structure. In chapter 7 it ha been shown 

that the simply supported beam rig was designed having pins at one side and 

rollers at t he other . Because of the ro ller configuration t he complete beam 

displacement could not be recorded by the ESP! system. Due to this 

incomplete displacement recordi ng it was decided to truncate each recorded 

beam d isplacement down to an integer number of waves located within the 

ESPI window. Thu , t he even-numbered mode displacements are short one 
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wavelengt h and the odd-numbered mode displacements a rc shor t half a 

wavelengt h of full spat ial in formation . 

As demonstrated in sect ion 6.2.4 , ESPI nOIse was ex trac ted from t he 

recorded ESP I d ata and super imposed with an ar ti fi cially generated simply 

supported beam d isplacement (equat ion 5.37) usin g t he measured force 

magnitude acquired during t he ESP I experi ment . T he measured SNR is 

shown in T ables 6.8 to 6.10. Two methods were employed to compute VEF . 

T he fi rst met hod is t he conventional VEFESPI method by evaluat ing 

equation (3.33). The second method, addressed as t he IEDI method and 

descr ibed earli er on, uses energy densities provided by the VEFESPI met hod . 

T his procedure is defi ned by equa tions (6. ) and (6 .9). T he recommended 

computed cut-off points obta ined from t his a nalysis are shown in Appendix 

A19 . T hese can be employed when comp ll ting VEF from the measured ESPI 

beam d isplacements. 

In t he following t wo figures are presented , which d isplay t he optimum 

fi ltered VEF of the do uble-layer damped 11'" mode beam d isplacement 

computed by t he VEFESP I method and computcd by t he IED! method. 

Both , the ideal and t he B utterworth fi lter were employed to remove spectra l 

noise components. T he unconstrained layer a t tachment was mod elled 

according to t he unconstrained layer t heory in t roduced in section 5.5. It can 

be seen from F igures 6.63(a) and 6.64(a) t hat the IEDI method produced a 

much better VEF result t han the con vent ional VEFESPI computation 

met hod . T his can a lso be not iced by the relative acti ve MSE made from t he 

respective ta bles given in Append ix 19. However, t he react ive energy flow 

cannot be computed accurately enough when employing both techniques. 

It is shown by Figure 6.63(b) and F igure 6.64 (b) tha t wavenum ber 

domain filtering fa lsifies react ive energy flow computat ion . T his might be d ue 

to the spectral removal of nearfi eld components in t he high wavenllmber 

region at kr > k, and the passing of low wavenumber noise component a t kr 

< k,. 

201 



6 Numerical Analysis Of V i brationa l E nergy In Beams 

> 
G 
~ 

x 
P-
~ 

6 
~ 

2 

-3 
xlO 

-, 
x 10 

0' 

-2 

-4 

0.2 

0.2 

(a) 

Exact solution 

Ideal fi lter 

Butterworth filter 

0.4 [] x ill 
0.6 0.8 

(b) 

Exact solution 

Ideal filter 

Buttcrworth filter 

0.4 [] 0.6 x In 
0.8 

Figure 6.63 VEF of ESP! noise contaminated 11'" mode beam displacement using 

the VEFESPI method: (a) active flow , (b) reactive flow. 
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6.4 Discussion and Summary 

This chapter has investigated the numerica l computation of VEF in infinite 

a nd simply supported beams. The KSD technique was employed to compute 

spatial deri vatives from a complex ma trix that contained spatia l informat ion 

of the structure's displacement . 

It was shown above that t he disp lacement of nexnral vibrating 

structures is composed of nearfield and farfield wave components. The 

nearfield wave components are exponential decaying waves and the farfi eld 

wave components are sinusoidal travelling waves. Because the spatial F ourier 

transform is used as part of t he KSD technique the tra nsformed near fi eld 

wave components resulted in broadba nd spectral components. This nearfi eld 

wavenumber spec trum was then amp li fi cd during the spectral derivation 

process by the wavenumber multiplication of the KSD method , as shown by 

equa tion (4.9). T he spectra l amplification is most significant a t the high 

wavenumbers. If one computes spatial derivatives from the spectral 

w ven umber derivatives by cmploying an inverse F ourier transform , thc back 

transformed spectral amplilication will result in erroneous spatial deriva tives. 

Further , these erroneous spatial derivativcs causcd errors in the VEF 

computation. The error made depended on the strength of thc nearfield wave 

componcnt present in the signal. If the nearfi eld wave amplitude is of thc 

same magn itude as the travelling wave ampli tude (e.g. infinite beam), a large 

deviation in the VEF calculation can be expccted. Ana logously, the 

structural damping d ependcnt , relatively small wave ampli tude of the simply 

supported beam caused less VEF deviatio ns. 

The ame phenomenon occurred when t he spatia l signal to be analysed 

was non-periodic in space or contamina ted by spatia l noise. In both cases 

spectral amplificat ion took place and , thu , erroneous VEF computation 

(oscillations) could not be avoided . Non-periodic signal consequences can be 

diminished by periodisation techn iques, which artificially periodise t he non

periodic disp lacement . Two were in troduced here, addressed as the MP and 

MRS method. oise contaminated signa ls were treated by employing a 

wavenum ber domain filtering process in order to remove wavenumber noisc 
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components at k, > k, that otherwise were amplified during the spectra l 

derivation process. Two filtering techniq1les were introduced, a 2D ideal 

filtering process a nd an oval 2D Butterworth filter . The first filter type was 

perfect when filtering di splacement sign als conta ining only travelling wave 

components. The latter one is more applicable to displacement signals also 

containing nearfield wave components . However , in cases where t he nearfi eld 

is not contributing to the active energy flow the applica tion of the ideal 

filtering process will yield better active energy flow results. 

It can be argued that due to t he nearfield wave component the 

displacement signa l becomes non-periodic in space a nd , tints, a form of 

leakage appears in the wavenumber domain. The application of the 

periodisat ion techniques y ielded to bett er results t han analysing the non

periodic beam displacement when the d isplacement was not nOIse 

contaminated. This can be explained by the fact that t he periodisation 

techniques produced, for the KSD method , a better suited wavenumbcr 

spectrum by reducing leakage. Further , t he spectra l resolution /1/';, was 

reduced by half clue to a double signa l length Lr and , thus, less wavenum ber 

domain amplification appeared , as shown by equa tion (6.6). 

VEF oscilla tions due to spectral a mplification can be compensated by 

the CW technique that was proposed by t he a uthor. This technique is s imple 

to implement . However , in practice data acquired by a measurement sys tem 

wi ll conta in noise. Thus, filtering is indi pensable and the CW technique does 

not need to be employed. Due to the filtering process the wavenumber 

spectrum was altered . For a n infini te beam it has been shown that the 

wavenumber spectral filt ering was independent on the a mount of noise 

assuming the noi e a mplitudes are in a realisti c ra nge, encountered in normal 

measurements. Also, due to t he filtering of the waven umber spectrum the 

spectral nearficld components 111 particular were altered. Hence, the 

computation of the spatial derivatives will deviate from the exact solu tion 

and t herefore, the computed VEF is erroneous. However, the spectra l 

amplification process is much less than when a na lysing non-noisy beam 

displacements. 
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It was shown 111 the prevIous sections that for nOIse contam inated 

beam displacements the computa tion of the react ive energy fl ow from 

spectral filtered data is not satisfactory. Especially for the wavenumber 

domain filtering of finite beam structures where t he near fi eld wave 

components also contribute to the active energy flow. 

The numerical analysis of the simply supported beam revealed tha t 

the computation of VEF from noise conta minated simply supported beam 

displacements caused some problems. Two methods were proposed to 

compute VEF. One method was the conventional VEFESPI technique, a l 0 

used to compute VEF in infini t e beams. The second method, addressed here 

as the lED I method, relied on t he incremen tal in tegration of t he respecti ve 

energy densities. It was shown t hat the VEFESPI method is much more noise 

sensit ive than the IEDI method. T hi s noise sensitivity decreased wit h 

increasing damping. T he product of 10 s factor and S R was introduced as 

an indicator sati ·factory VEF computat ion can be carried out . As shown In 

Figure 6.52 , the p roduct of loss factor and SNR should be at least 5, i.e. TJ x 

SNR ~ 5 when I w structllral damping is present, e.g. TJ = 5.10-3
. At higher 

structural damping this number can decrease to one assuming the 

Butterworth filter is employed. 

\lVith the re ults obtained on the numerical VEF computa tion using 

t he VEFESPI method it can be concluded that a n accurate energy fl ow 

com putation from the spat ia l derivatives up to the 3,,1 order is fairly diffi cul t . 

To reduce the order of spat ial derivatives the l EDI method was proposed , 

which can be seen as a part of the VEFESPI method. As mentioned , the 

computation of act ive energy flow with in the simply supp rted beam was 

carri ed out by t he incremental integrat ion of the potential energy density. 

Reactive VEF was determined from t he incremental integrat ion of the 

Lagrangia n energy density. Both energy density quantities were provided by 

the VEFESPl method. It has been shown t hat thi s method produced a much 

better act ive energy fl ow computation from noise contaminated data. 

Interest ingly, it was found that t he lEDl method is much les noise sensit ive 

than the VEFESPI method when numerically computing VEF. T his 
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surpnsmg result may be related to the fact that the IEDI method util ises 

spatial derivatives up to the 2'''' order only. 

It was a lso shown that t he oval 2D Butterworth filter produced better 

results than the ideal 2D fil ter , when compu ting VEF from noise 

contaminated simply supported beam d i ·placements. 

Finally some comments on the analysis of the complete simply 

suppor ted beam d isplacement will be given . One conld argue tha t it is better 

to divide t he simply supported beam di p lacement into a left-hand side and 

right-hand side part , separated at excitation location becanse the infinite 

wave components will then be more appropriately better Fourier 

transformed. However , in practice dividing the simply supported beam 

displacement in th is way would not help much . Although in principle , t he 

infinite beam displacement is better analysed eparately due to t he sign 

change in the exponents jkx and - jkx the d isplacement cannot be truncated 

to a n in teger number of waves if the who le beam needs to be covered. Extra 

progra mming effort is necessary. Additional to this, the nearfield component 

still causes problems. Also, with increasing da mping the infinite bea m 

displacement is then not pure sinusoida l a ny more. A lthough the complete 

ana lysis of the simply upported beam aused errors due to an inclusion of 

non-period ic infinite wave components, t he amplitude of t he infini te waves 

are at least ten times less than t he reflection wave a mplitudes , as shown by 

Figure 6.22. T hus, due to the amplitude d ifference a nd a much easier 

computational implementation t he separation of beam d isp lacement was 

neglected here. 
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7 MEASUREMENT OF VIBRATIONAL 

ENERGY IN BEAMS: EXPERIMEN

TAL APPARATUS 

7.1 Introduction 

This chapter presents the expcrim ental beam appara tu a nd the 

measurement setup used to measure vibrational energy now (VEF) in a n 

experimental "infin ite" beam and an experiment al simply supported beam. 

During the beam experiments, VEF within a force excited "inlinite" a nd a 

force excited simply supported beam was measured u 'ing electronic speck le 

pattern interferometry (ESPl ). Furthermore, measllred moment induced 

point mobility a nd energy input to an "infinite" beam was a l 0 measured. 

F or the sake of completeness a brief introduct ion to ESPI and its 

princip le is given. T he ESPI measurement system used within t his research is 

also introduced brieny. 

7.2 Electronic Speckle Pattern Interferometry 

Electronic speckle pattern intcrferometry , a lso known as TV holography , is 

derived from holographic interferometry (HI). Bot h techn iques are used to 

measurc deformat ions of vibrating st ructures using monochroma tic laser 

light. Employing laser based techniques enables fast, feasible and highly 
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accurate deformation measurements on a structure surface. In comparison to 

accelerometer based measurements ESP I provides a non-contacting and non

destructive technique with the influence of vibra tion a lteration due to added 

masses being avoided. 

T he simplest form of laser based mea urements in VEF is the u e of 

laser Doppler vibrometry (LDV) , which is a single point measurement 

technique that scans the surface point by point. The displacement or velocity 

fie ld is then constructed employing post processing techniques [42J. 

ESPI is a whole-field measurement technique that provides two

dimensional vibration fi eld information traight from t he measurement data. 

In contrast , when employing HI the measured data are recorded on a photo 

plate a nd need to be po t proce sed in order to obta in the d isplacement or 

velocity information . 

7.2.1 Principle of Electronic Speckle P attern Interferometry 

Hologra phic interferometry and electronic speckle pattern interferometry a re 

described in detail in reference [117J. ESPI will be introduced here only 

br iefl y. ESPI was firstly demonstrated by l3utters and Leendertz in 1971 

[1l8J. With increasing performance of computa tional technology and digita l 

recording technology , ESPI ha become a widely used tool in surface 

deformation measurements. 

A rough surface, illuminated by a laser , exhibits a granular light 

pattern , known as the speckle effect. The height variations of the surface 

roughness has to be of the order or greater than the wavelength of the 

illumin ating laser light . T he speckle effect is then a result of random 

interference, resulting from the numerou reflections occurring on the optical 

rough surface. F igure 7.1 di sp lays the speckle pattern of an illuminated 

object. Its ra ndomly varying light intensity appearance can be seen clearly. 

The minimum speckle size is typically in the range f 5 to 100 fl m [119,120J. 

The optical rough illuminated snrface scatters a speckle pattern . Each pixel 

can be seen as a single Michelson interferometer . If the scattered light is 

superimposed with a reference beam, each surface pixel interferes with the 
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Figure 7.1 Speckle effect on a laser illull1inat cl 

sw-face. 

electronically at two different instants in time. 

reference beam light . 

Locating at the point of 

interference a charge coup led 

device (CCD) camera where 

the aperture is adjusted in a 

way that the specklc size is 

comparable to the resolution 

of the camera, the speckle 

effect can be recorded 

electronically. Informa tion of 

surface deformation may 

then be obtained III 

consideration of two different 

images, recorded and stored 

The successive images may be video-signa l-added, video-signal

subtracted, or post processed by the so-called a mp li tude-fluctuation metho I 

[124]. In thi s work the signals com ing from the CCD camera are subtract ed . 

Using conventional continuous laser illumina tion, zero order I3essel fun ctions 

may be used to descri be the light intensity fringes. The time-averaging 

procedure i a pplied to obtain time-averaged correlation fringe. It is 

important that the exposure time should be eq1lal to the vibration period or 

its integer multiple to describe exactly the light intensity I by a zero order 

I3essel fun ction. Single frequency excitation is assumed . T he modified output 

voltage of the two subtracted video signals can be written a [121]: 

(7.1) 

Herein , 10 IS the zero order I3essel function , N is the number of cycles, a is 

the slope of the CCD camera sensitivity, UJ is the angular excitation 

frequency, 10 is the object light beam intensity , and I , is the reference light 
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beam intensity. The random phase resulting from surface roughness IS 

denoted by fP. The inner product of the Bessel fun ction h, is given by [121]: 

h, = 2A7I"(1: cos (0)) . (7.2) 

The illumination angle of the object light is denoted as e a nd A. is the 

wavelength of the laser beam . The amp li tude A can be found as [121]: 

A = >. c;," . 
271"(1 + cos(O)) 

(7.3) 

The value So ' need to be ta ken out of a specia l table. This value can locally 

minimise the brightness eqllations of the m onitor brightness. 

7.2.2 ESPI Measurement System 

The E SPI measurement system employed in thi s work , is composed of a laser 

genera tion uni t a nd the so-called opt ical head, as shown in Figure 7.2. From 

the laser-generat ing unit a n a rmoured fibre cable transmitted the laser light 

to the optical head . This has the adva ntage of carrying out measurements 

independent ly of the position of the laser genera t ion unit . The directiona l 

coupler di vided the laser ligh t in to an object a nd a reference beam. T he 

scattered obj ect light was focused by th e SL11 lens and interfered with the 

reference beam light a t a CCD camera, producing interference frin ges. A 768 

x 768 pixel low light monochrome Koda k high speed CCD camera captured 

the ESP! image opera ting wit h 25 frames per second . The aspect ratio of t he 

CCD camera was 4:3. 

Con ventiona l ESP! system have the effect of integrating out the 

phase informa tion due to t ime-averaging of the correlation fringes [119]. 

Thus, the ampli tude is recorded only, as described by equa tion (7.3). 

However , for VEF calculations measured t ransverse d i placements need to be 

described by ampli tude and phase information . T o obtain phase 
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Figure 7.2 ESP! system employed in this work for vi bration measurements. 

information stroboscopic illumination of continuous laser light in combination 

with a phase stepping a lgorithm is employed . T he stroboscop ic illumina tion is 

achieved by employing a Pockels ccll working as a beam light shutter. The 

triggering process of t he P ockels cell is cont rolled by a PC, wh ich a lso stores 

t he recorded ESPI image for further post signal processing. The st robe pu lses 

have to be synchronised exactly to the excitat ion frequency of the vibrating 

structure to be measured . 

T he phase stepping algor ithm utili ses a cylindr ical piezo-electrical 

transducer (PZT) [119,122]. The continuous 150 mW frequency doubled 

Nd : Yag laser is applied by a stroboscopic pulse that is synchronised to the 

excitation frequency of t he structure. Newer systems a lready employ pulsed 

ru by lasers. A single mode fi bre of the reference beam coming from t he fib re 

coupler (see Figure 7.2) is wrapped around the PZT. Applying a voltage to 

the PZT resul ts in an expa nsion o f t he crystal and , hence, the fibre strains . 

T herefore, the phase of the reference beam can be a ltered as the optical path 

length changes. Usually an applied voltage of a pproximately 5 V results in a 

phase change of 271. Two sets of strobe pulses a re u ed in the phase st epping 

algorit hm , which arc denoted here as subscripts a and p. Figure 7.3 di sp lays 
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Figure 7.3 Timing of stroboscopic illumination (modified from [119]). 

the timing of the stroboscopic pulse illumination . Each rectangle symbolises a 

strobe pulse with very short duration time in compari son to the object 's 

vibrat ion period . The correlation fringe function l a of the intensity due to the 

a pulse can be written as [119]: 

To = l",,,,,)cos(2J(A, (x, y) cos (rP" (x, V)) - 2J(,,4,.) + 1 . (7.4) 

Here, fa is the intensity a t coordinate x and y '" the recorded fringe pattern , 

fmod is the modulation in tensity of the observed speckle, A" is the a mplitude 

of, the vibrating object at pos ition x a nd y, A, is the a mplitude of the 

reference beam and ~" is the phase of t he vibra ting object a t position x and y. 

Capital J('s are constants, defined as J(, = 41t/ A. and J(, = 21t/ A., whereas A. is 

the wavelength of the laser beam. 
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imilarly, t he intensity correla tion function Ip is given by [119J: 

T,j = I ",ocl ~cos (2[(, A" (x, y) sin (<p, (x, y)) + 2f(,A,) + 1 . (7.5) 

The phase of the reference beam is locked, thus, its vibrat ion is couplcd with 

the excitation frequency and strobe pulse. Adjusting now t he a mplitude term 

2f(,A, of t he a bove d isplayed equations a phase step a lteration can be a pplied 

to each correlation fr inge funct ion . Employing phase st eps of 11/ 2 two sets of 

strobe data yield to eight correlation fringe functions, four of each set are 

being Ilsed to calcula te a wrapped phase map. T he phase ma p IPa is defined as 

[119J: 

" - 2j( A (.) (" (. )) - 1 (/'~'70 - I~,o 1 'Po - 1 · 11 X, Y COS 'f'rl X, Y - tan 2 2 . 
1"0 - i n1kO 

(7.6) 

The phase map IPP is given by [119J: 

A. 2 }( A, ( ). (" ()) -I [[1;"0 - [,;00 1 "Pp = I I X,Y Sln "1"11 X,Y = tan 2 2 . 
T#o - I IiI80 

(7.7) 

T he wra pped phase maps IPa and IPP must both now be unwrapped relative to 

ome known point , which is usually a nodal line with zero ampli t ude, since 

the arctangent funct ion delivers resul ts in the ra nge of ± 11 . Figure 7.4 

d isplays the modulat ion intensities controlled by t he piezo crystal. Carry ing 

out the unwrapping process t he phase of the vibrating object can be writtell 

as [119J: 

<p, (x,y) = tan 1 ( :: 1 (7.8) 
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The vibra tion a mplitude A, i given by [1191: 

(7.9) 

It can be seen that the shift in phase is n/ 2 of the four intensit ies. At points, 

where /270 is equal to /'0' the phase of t he vibra t ing object becomes zero. 
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Figure 7.4 lvIoduJation intcn it ies and unwrapped phase. 

7.3 Experimental Beam Apparatus 

T wo different beam apparatus were u ed to simula te an infinite beam and a 

finite simply supported beam , respectively. In ad dition to thi s, a moment 

actuator was designed to a pply moment excitation to a n experimental 

214 



7 Exper imenta l Beam Appa rat us 

"infini te" beam . As ment ioned earlier , V EF of t he force excited "infin ite" 

beam and the simply supported beam using the VE FESP I method as well as 

t hc point mobility and the input encrgy of a moment excit ed "infinite" beam 

was measured . 

7.3.1 " Infinite" Beam Rig 

7.3.1.1 Force Excited "Infinite" Beam Setup 

Infin ite beams are simulated in pract ice using a finite beam that is highly 

d amped at both ends. T hc high damping at bot h ends is achieved using 

Sand 
Foam Wedge 

(~ 
B am 

Figure 7.5 Anechoic termination. 

anechoic termin at ions that 

consist of foam wedges a nd 

sand inserted in a box. T he 

foam wedges a re employed to 

ensure t he sand is dissipat ing 

vibra tional energy a t a ll 

frequencics. Dlle to the high 

damping very low reflection at 

t he beam 's end can be achieved 

and , thus, the fini te beam is 

approxima ted to infinite beam behaviour . Figure 7.5 d i p lays a schematic 

sketch of the anechoic terminat ion. With this a ncchoic termina tion setup 

reflect ion coeffi cients of approximately 0.1 can be achieved [64]. 

Figure 7.6 shows the experimenta l "infinite" bcam setup t o mcasure 

for e excited energy flow under use of E SP! [64]. A 6 m long, 60 mm by 10 

mm cross-section mild st eel beam was embedded in two 1 m long boxes 

containing foam wedges a nd sand to achicve an echoic termination at both 

ends. T he beam was su pended on two thin wires a nd was excited in t he 

middle by an electrodynamic sha ker. To compare injected vibra t iona l cnergy 

with t ransmitted farfield energy (energy bala nce) energy input to t he beam 

structure has been measured by plac ing a forcc tra nsd ucer a nd an 

accelerometer at t he excitation locat ion . T he vibration a mp li t ude and phase 
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was recorded to the right of t he excitation location in a n area that was a t 

least :y. or a wavelength away from discont inuities. This region is caJled 

farfield a nd it is assumed t hat t he spatia lly decaying nearfi eld wave has 

a lready vanished there . Further , to compare ESPI measured VEF wit h 

transmi tted energy measured by t he traditiona l two-accelerometer technique 

[28] a pair of light-weight acceleromet ers were placed within the ESPI 

(a) 

60 mm 

(b) 

10 mm I 

Suspension Wire 

Beam 
' :. '\ 
" , 
\ .... ' - ' 

51 mill 

Anecboic 

Termination 

Eloo' .. d, o=l, 9 ESP I Window (877 mm x 658 mm 

Exciter 

.~.~. .. ... 
....... 

.-' 
/ ...... 

Force Transducer 

. .. ~~ 
.~.~. £,/ 
• 

Accelerometers 

x 

) 

Figure 7.6 Force excited experimental "infini te" beam setup: (a) side view, (b) top 

view. 

window spaced 51 mm apart from each other. T he spacing L\x was chosen to 

be between 0.1 5 a nd 0.2 or a wavelength of the excitation rrequency . All four 

signals were recorded on a multi-channel spectrum ana lyser that provided the 

auto spectra l and cross spectral data necessary to calculate convent ionally 

measured vibrational input energy and tra nsmitted energy. 
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7.3.1.2 Moment Excited " Infinite" Beam Setup 

In addition to the ESPI measured VEF, moment induced point mobili ty and 

vibrat iona l energy input was also measured in an "infinit e" beam. For th is 

reason the "infinite" beam subjected to moment excita tion was set up simi lar 

to t he setup, as shown in Figure 7.6. However , here d ifferent beam and 

anechoic termina tion dimensions were employed . The moment excited 

"infin it e" beam setup is shown in F igure 7.7 where it can be seen that two 

moment a rms 60 mm in length, 50 mm d eep a nd 6 mm thick were welded at 

the centre of the beam . To apply an excita tion moment thc two moment 

• Accelerometers 

Force Transducer 

Anechoic 

Termination 

FigW'8 7.7 Moment excited "infinite" beam setup: top view (not to scale). 

a rms were struck sim ultaneously by the so-called impact fork. T he impact 

fork was suspended within the moment actua tor mecha nism, as shown in 

Figure 7 .. Input energy and transmitted energy at diFferent locations on the 

beam were measured. Accelerometers a, and a, were used to measure the 

rotational velocity and, thus, the point mobility and input energy due to t he 

applied moment . For comparison reasons accelerometers aJ a nd a, were 

employed to measure the energy injected straight into the moment arms t hat 

was later compared to t he moment induced energy input. Accclerometers 0" 

to a" were used to measure transmitted energy in the fa rfield region using the 

two-accelerometer techn ique to compare transmitted energy with the momen t 
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induced input energy (energy balance). Also here, the acceleromet er spacing 

t.x = 28 mm wa chosen to be between 0 .15 and 0.2 of the wavelength of the 

highest frequency to be measured , in th is case 1.6 kHz. All 8 signals were 

recorded on a multi-cha nnel spectrum analyser. The length of the a nechoic 

t ermination restricted the lowest frequency to be measured to approximately 

100 I-Iz. 

To apply the moment a specially designed moment actuator that was 

based on previous investigations [123, 124] was constructed . A photograph of 

the moment actuator is shown in Figure 7.8. T his rig is predominately made 

from 1 inch square steel bar to ensure the rig has sufficient mass to avoid any 

undesired movement when impacting t he beam. The impact fork was welded 

to a sha ft , which runs in bearing unit '. The use of a n impacter held within a 

static frame ensured that the d irect ion of applicat ion of the impact forces was 

consistent between tests, 'omething, which posed d ifficulty when using a n 

impact ha mmer. The two arms of the impact fork were offset s lightly to 

Figure 7,8 Photograph of the moment actuator. 
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7 Experimental Beam Apparatus 

ensure perpendicula r impact of the fork 's arms onto the moment arms of t he 

beam . One force t ra nsducer was placed on each of the fork 's arms to measure 

the applied forces. Steel t ips, screwed onto the force transd ucers, a llowed 

point force impact onto the moment arms of the beam and provided an even 

distribution of the force over the force tra nsd llcer [107J. 

7.3.2 Simply Supported Beam llig 

As an extension to the initial "infinite" beam measurements, force excited 

measurements on a simply supported beam rig were a lso carried Oll t. T he 

beam rig can be employed for bot h force and momen t measurement types of 

excita tion . However , in t he case of moment excita tion it needs to be 

combined with the moment actuator. Therefore, a sim ply suppor ted beam rig 

was designed in order to meet simply supported boundary cond itions for both 

types of excita tion . 

7.3.2.1 Force Excited Simply Supported Beam Setup 

Figure 7.9 shows t he assembly of t he simply supported beam rig. It an be 

reali sed from Figure 7.9 that the rig is welded from different stand ard s teel 

Figure 7.9 Simply supported beam rig including the ESPI beam. 
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profiles. The beam is suspended on the left-hand side by two pins pivoting in 

two bushes and on the right-hand side by two rollers. T he two ro ll ers a llowed 

for length variations of the beam . T he pin design has been chosen to fi x the 

beam 's position at one side and allow fas t beam cha nges during measurement 

of d iHerent specimens. The beams were made from mild steel , 1000 mm in 

length , 50 mm deep , and 10 mm thick. In order to measure beam stl'llctures 

hav ing a different a mount of damping non-layer damped , ingle 

unconstrained layer damped and doub le unconstrained layer dam ped beam 

specimens have been prepared . The thickness of the damping layers was 2.5 

mm and 5 mm , respectively, covering one entire side of t he beam . A m ineral 

fill ed viscoelastic polymer layer materi al was used. T he rig was constructed 

to enS1l1'e tha t it vibration was not in terfering with the transverse beam 

vibra t ion. The rig was loaded with add itional weigh ts to ensure a s ta tionary 

I 
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Drivi ng Point 

Accelerometer 

•••• 
I 

582 mm 

820 mm 
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Force 

~ Transducer 

Accelerometers 
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Figure 7.10 Transducer locations on the simply supported ESP! beam. 
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rIg position during measurement . As carried out during the "infinite" beam 

measurements, conventiona l accelerometer based input and transmitted 

energy measurements were underta ken in order to compare with measured 

ESP! energy flow . Figure 7.10 displays the locations of the accelerometers 

mounted on t he beam. It can be followed from Figure 7.10 tha t the beam was 

excited by an off-centre force, located at :z;, = 0.582 m . Further, transmitted 

energy was measured at the left and the right of the excita tion location using 

the well known four-accelerometer technique [30]. The reason four 

accelerometers have been employed is that the nearfield waves were inchtded 

in the measurements. 

7.3.2.2 Moment Excited Simply Supported Beam Setup 

l3ased on the experIence gathered during t he moment excitation 

measurements of the "infinite" beam a redesigned impact fork may be 

employed in order to measure point mobil ity a nd input energy of a simply 

supported beam subjected to moment excitat ion . Due to the a ltered impact 

fork t he moment arms needed a lso to be shortened in order to increase 

stiffness a nd , thus, increase the frequency range of a ppl ication. Figure 7.11 

Figure 7.11 Simply supported beam rig including the moment excitation beam. 
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d isp lays the simply supported beam rig including the beam specimen with the 

moment arms. Also here, the beam was made from mild st eel, 1000 mm in 

length, 50 mm deep, and 10 mm thick. The moment arms were attached off

centre at a location of x = 450mm from the pin side. The moment arms were 

machined from mild steel 33 mm in length , 50 mm deep , a nd 10 mm t hick . 

Unfortunately, due to t ime pressure no moment ind uced simply supported 

beam experiments were conducted. 

7.4 Summary 

This chapter has introduced the different experimental beam apparatus used 

through this work. "Infini te" and fin ite beam struct ures were measured in 

order to invest igate d ifferent VEF scenarios. T hus, a high energy 

tra nsmi sion environment ("infini te" beam) and low energy t ra nsmission 

environment (simply supported beam) were simulated. Both force a nd 

moment excita tion measurements were carri ed out . Force excited beam 

structures were used to measure VEF with t he aid of ESP!. Moment excited 

structures were employed to measure moment point mobili ty and input 

power . To measure moment excited beam structures t he respecti ve beam rig 

was combined with a specially d esigned moment actuator that enab led 

moment impact on the beam 's moment arms. 

The "infinite" beam rig consisted of two a nechoic term inat ion boxes 

containing foam wedges and sand , the beam specimen itself and wires that 

'uspended the beam wit hin t he anechoic terminat ion boxes. 

T he imply supported beam rig was constructed from simple standard 

profiles that were welded together. A pin-roller com bination was chosen in 

order to meet simply supported boundaries. The pin at one side fi xes the 

position of the beam and the rollcr at the other side a llows for length 

variation of t he beam during measurement . 

In addition to the beam's apparatus employed here, a brief 

introduction to ESPI a nd its principle has been given. The amount of 

literature on this subject is quite vast . Since it is not the objective of this 
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research to invest igate t he performance of the ESP! technique itself, a more 

thorough survey was omitted . The applied ESP! measurement sy tem used in 

th is work has also been in troduced briefly where special focus has been given 

to the phase stepp ing algor ithm applied in order to measure t he vibration 

phase. 

The a uthor would like to tha nk Mr. Mart in Dale who kindly 

supported th is research with the provision of the ESP! system at Land 

Ro ver , Gaydon where t he entire ESPI based measurements were underta ken 

under the direction of t he author. 
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8 MEASUREMENT OF VIBRATIONAL 

ENERGY IN BEAMS: MEASURE-

MENT METHODS 

8.1 Introduction 

The aim of this chapter is to introduce the methods of measuring point 

mobility, vibrational input power (VIP) and vibrational energy flow (VEF) in 

beams. In order to justify the accuracy of the measurement of VEF using 

electronic speckle pattern interferometry (ESPI), conventional transducer 

based measurements have been carried out to compare VEF from both 

conventional and ESPI measurement techniques. 

A novel method to measure moment point mobility at the excitation 

location and moment induced input energy is also presented in the moment 

excitation section. Therefore, the theoretical background of the proposed 

method as well as the practical implementation is given. This includes the 

approximation of the measured angular velocity by a first order finite

difference approximation and its practical measurement implementation using 

measured spectral density quantities. Also, two error appraisal functions are 

presented in order to judge the accuracy of the proposed moment excitation 

method. Some of the information presented herein was extracted from 

references [64J and [107J, especially the description of the moment 

measurement method. As throughout this work, flexural beam motion is 

assumed. 
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8 Beam Measurement Methods 

8.2 Force Excited Beam Measurements 

8.2.1 Point Mobility Measurements 

Point mobility at the excitation location is measured throughout this work 

using a force transducer and an accelerometer at the excitation location. 

Employing the well known H, (1) estimator point mobility is measured as: 

Y
F 

= 1 G(F",aO). 

j27r/ G(F",F,,) 
(8.1) 

Here, G (F",ao) is the cross-spectral density between excitation force and 

driving point acceleration and G(F",F,,) is the auto power spectral density of 

the excitation force. The factor 1/ (j27rj), where f is the frequency, accounts 

for integration of the acceleration in order to obtain velocity. The sp~ctral 

density ratio of equation (8.1) is acquired as a spectrally-averaged frequency 

response function (FRF) using a multi-channel spectrum analyser. 

8.2.2 Vibrational Input Power Measurements 

Measurements of VEF using ESPI has been carried out on a force excited 

"infinite" and simply supported beam. To carry out simple energy balance 

analysis the measurement of vibrational energy injected into a vibrating 

structure is essential. In section 3.5 general VIP expressions were presented 

distinguishing between definitions based on the theoretical point mobility and 

the use of spectral density quantities, such as auto spectral density and cross

spectral density. This section presents the accelerometer and force transducer 

based measurements of VIP using both approaches. 

VIP based on the theoretical point mobility of the respective force 

excited beam structures is given for infinite beams by equation (5.20). Using 

the geometrical and material "infinite" beam properties, VIP of an infinite 

beam can also be written as: 
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(P) _ Po' fAP 
in F~ - 8Ap..}27r f El· 

(8.2) 

Here, Fo is the magnitude of the excitation force, A is the beam's cross

sectional area, p is the mass density of the beam, E is the Young's modulus, 

and I is the second moment of area. VIP of a point force excited 

hysteretically damped simply supported beam using the theoretical point 

mobility was given as: 

J 
Ee 

(
sin (21£xo) + sin (21£(L - xo)) - sin (21£L)) _ 

1- cos (21£L) . 

(
sinh(21£Xo) + sinh(21£(L - x o)) - Sinh(21£L)) 

. 1 - cosh (21£L) 

(5.43) 

Unfortunately, a more simple expression of VIP for a simply supported beam 

cannot be given because of the occurring complex arguments in the sinusoidal 

and hyperbolic functions due to the complex, flexural wavenumber 1£. 

Nevertheless, the real part of the force excited hysteretically damped simply 

supported beam's driving point mobility can be computed easily using 

common software packages. 

An alternative method to determine VIP from measured force and 

acceleration is the use of the imaginary part of the measured one-sided cross

spectral density, displayed again in equation (3.27) as: 

(3.27) 

Here, G(Fo,ao) is the cross-spectral density between the driving force and the 

resulting acceleration. This expression is generally valid for each beam 

structure, is independent on the beam's boundaries and is considered to be 

more accurate than the use of the theoretical driving mobility due to 

variations between the actual and the theoretical point mobility. 
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8 Beam Measurement Methods 

Accelerometer Based Transmitted Vibrational Energy 

Measurements 

In chapter 4, Figure 4.1 displays a typical one-dimensional four accelerometer 

setup. It has been outlined in section 3.6.1 that transmitted vibrational 

energy in a beam is composed of shear force and bending moment energy 

transmission components. If one substitutes the respective approximated 

spatial derivatives given by equations (4.1) to (4.4) into equation (3.33) and 

takes into account that v = a/ jOJ and, G (v, v) = G (a, a) / w', then the 

complex, transmitted vibrational energy can be measured with the aid of four 

accelerometers as [30J: 

P
tr

, =. E~ 3 ((G(a"a,)- G(a"a3)) + j4~{G(a3,a,)} +). (8.3) 

J(2nJ) Llx G(a"a4 )-G(a3,t;) 

Here, Ax is the spacing between any two accelerometers, a. is the measured 

transverse acceleration at locations 1 to 4, v is the transverse velocity, 

G(x,x) is the measured auto spectral density, and G(x,y) is the measured 

cross-spectral density between the accelerometer signals. Equation (8.3) 

enables the measurement of VEF in the near and farfield. The real part of 

equation (8.3) represents net energy flow through the accelerometer location. 

This technique is called the four-accelerometer technique. 

The nearfield waves in a beam usually do not contribute to VEF. 

Thus, VEF can be measured in the farfield, i.e. at least % of a wavelength 

away from discontinuities, by employing only two accelerometers. This 

method is addressed as the two-accelerometer technique and utilises the 

measured cross-spectral density between the two accelerometers, G (a" a,) as 

[30J: 

p _ .JpAEI ~{G(t;,a,)} 
I"~ - 2n'Llx f' . (8.4) 
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Here, a, and a2 are a pair of accelerometers, set apart by Ax and are located 

in the farfield. To compensate for the first order finite-difference 

approximation error, a correction factor kAx/sin(kAx) may be applied [28J. 

The corrected transmitted vibrational energy (p",) is then given as: , " 

(~ ) _ p. ( k!J.x ) 
tr2 er - tr2 sin (kLlx ) . (8.5) 

The accelerometer based measurement of VEF in the "infinite" beam is 

carried out using equation (8.5), since ESPI based VEF has been recorded in 

the farfield only. Due to the presence of a nearfield at the left and right-hand 

side of the excitation location, especially at low excitation frequencies, 

accelerometer' based VEF in a simply supported beam was measured by 

employing equation (8.3). The entire auto spectral and cross-spectral 

densities were recorded by a multi-channel FFT analyser using a spectral 

averaging of 50 measurements. 

8.2.4 Vibrational Energy Flow Measurements Using ESPI 

It was shown in chapter 7 that the ESPI .system provides vibration amplitude 

and vibration phase information. These two quantities are used herein to 

generate a measured time-averaged complex ESPI beam displacement as: 

u (x y) = A (x y) ej~(x.Y) 
'ESP! ' . (8.6) 

Herein, A(x,y) is the measured two-dimensional ESPI amplitude and, tjJ(x,y) 

is the measured two-dimensional ESPI phase. The generated beam 

displacement, as shown by equation (8.6), is used as the input to the 

VEFESPI method, as displayed in Figure 4.6 in chapter 4. 
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8.2.5 Application of the Measurement Methods to a Beam 

The point mobility of the force excited beam is calculated from the measured 

FRF, as displayed by equation (8.1). The FRF function is recorded on a 

multi-channel spectrum analyser employing a spectral averaging of 50 

measurements. 

VIP to the force excited "infinite" ESPI beam was measured using 

equations (8.2) and (3.27). Since equation (8.2) represents the theoretical VIP 

due to a certain measured magnitude of the excitation force, this equation is 

considered to be only an approximation to the real input power. Equation 

(3.27) is seen to be a more accurate calculation of VIP to a beam. VIP to the 

simply supported ESPI beam was measured using equation (3.27). 

The measurement of accelerometer based VEF in the force excited 

"i~finite" ESPI beam was carried out by employing equation (8.5). Measured 

accelerometer based VEF in the force excited simply supported ESPI beam 

was carried out by employing equations (8.3) and (8.5). 

The desired complex, "infinite" and simply supported ESPI beam 

displacement was generated by using equation (8.6). Unfortunately, within 

the ESPI signal window regions away from the beam were also recorded that 

contained only optical noise information. These regions needed to be 

truncated out of the ESPI displacement signal. After the data truncation the 

k-space derivation (KSD) method was applied. The truncated ESPI data 

were transformed into the k-space domain, by numerically applying a 2D 

Fast Fourier transform (FFT) according to equation (4.5). Within the 

wavenumber domain a spectral filtering process was carried out to remove 

unwanted noise components. Within this work two filtering techniques were 

used. An ideal 2D filtering process given by equation (4.13) and an oval 2D 

Butterworth filter defined by equation (4.15) were implemented to remove 

spectral noise. From the filtered spectral displacement data sets, different 

spectral wavenumber derivatives up to the 4th order were determined using 

the right-hand side of equation (4.9). These spectral derivatives were 

transformed back into the spatial domain by applying an inverse FFT by 

numerically evaluating equation (4.6). The determined respective spatial 
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• 
derivatives were then substituted into equation (3.33) to determine VEF in 

the "infinite" and simply supported ESPI beam. The energy related 

quantities have been determined by substituting the respective spatial 

derivative components into equations (3.34) to (3.37). 

8.3 Moment Excited Beam Measurements 

Additional to the ESP I based VEF measurements, a novel method to 

measure the point mobility and vibrational input energy to a beam that is 

subjected to moment excitation was developed in references [107] and [125]. 

The presented method utilises a finite-difference approximation to calculate 

the rotational motion of the beam at the point of excitation. Moment 

excitation was induced by a specially designed impact rig, which applied two 

equal and opposite forces on two moment arms that were perpendicularly 

attached to the beam. 

8.3.1 Finite-Difference Approximation of the Angular Velocity 

The novelty of the proposed method is the use of the finite-difference 

approximation to approximate the angular velocity at the driving point in 

combination with a specially designed impact rig. Figure 7.7 displayed again 

below shows the setup of the "infinite" beam. Herein, the angular velocity is 

not directly measured but approximated by using a finite-difference 

technique. In the proposed method, the measured accelerations IZ:t and a, from 

two closely spaced accelerometers around the point of moment impact are 

used to estimate the translational acceleration a" at a point midway between 

these two accelerometers. The approximation of the angular velocity from 

two translational acceleration points under assumption that a, and a, are 

complex quantities is given as: 

{)(}o "" ~ {~(a, - a1 )} • 

{)t JW Llx 
(8.7) 
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• Accelerometers 

Force Transducer 

Figure 7.7 (repeated) Moment excited "infinite" beam setup: top view (not to scale). 

8.3.2 Moment Point Mobility Measurements 

Using the well known H j (1) estimator the moment point mobility YM can be 

calculated from the ratio of the cross-spectral density between the applied 

moment and the resulting rotational velocity G (M, aB / at) and the power 

spectral density of the applied moment G (M, M). Thus: 

G(M OB) , at 
YM = G(M,M) . (8.8) 

The power spectral density of the applied moment can be calculated from the 

two impact force signals and the distance of the moment arms. Hence: 

d 
M = -(1'; + F,). 

2 
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If it is assumed that the magnitudes of both forces of the applied moment are 

equal, i.e. Fl = F2 = F, then the power spectral density of the applied 

moment is given by: 

G(M,M) = d2G(F,F). (8.10) 

Thus, the cross-spectral density between the applied moment and the 

resulting rotational velocity G(M,8e /8t) at the excitation location can be 

calculated using the cross-spectral density between the applied forces and the 

resulting velocity BB/Bt. Hence: 

G(M 8e) = dG(F 8e). , 8t ' 8t 
(8.11) 

In the approach adopted in this work the rotational velocity 8e / 8t is 

estimated using a finite-difference approximation between two closely spaced 

accelerometers, as given by equation (8.7). Applying equation (8.7) to 

equation (8.11) above, gives: 

G M,- = . {G(F,a2)-G(F,a1 )}. ( 
8B) d 
8t J27rf,1x 

(8.12) 

In the experimental method described later on, the cross-spectral density 

functions are calculated using the physically closest force transducer to each 

response accelerometer. Thus: 

G(M, 8B) = . d {G (F" a2) - G (;;,a1 )} • 

8t }27rf,1x 
(8.13) 

The moment point mobility is then estimated by substituting equations 

(8.10) and (8.13) into equation (8.8) to give: 
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(8.14) 

One error when using the finite-difference approximation is the 

underestimation of the true value due to the first spatial derivative of the 

transverse acceleration a. In reference [28], a correction factor for 

accelerometer based VEF measurements k!>,.x/sin(k!>,.x) is suggested, which 

compensates for the finite-difference approximation error. When applied to 

equation (8.14), this correction factor leads then to the following expression 

for a corrected measurement of the moment point mobility: 

(8.15) 

8.3.3 Input Energy Measurements 

In order to measure energy input to a beam under moment excitation of the 

structure the applied moment and rotational velocity at the excitation 

location need to be taken into account. Analogously to the input energy of a 

force excited beam given by equation (3.27), the energy input to a beam by 

moment excitation can be calculated by taking the real part of equation 

(8.11) as: 

(8.16) 

Applying the finite-difference correction factor k!>,.x/sin(k!>,.x) equation (8.16) 

can be written as: 

(8.17) 
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8.3.4 Consideration of Moment Arm Inertia 

The mass of the moment arms was kept to a minimum to avoid bias errors in 

measuring the moment mobility when using an I-shaped exciter configuration 

[93, 9S]. It was shown in references [93] and [9S] that an I-shaped exciter 

configuration will induce additional force and moment contributions at the 

excitation location due to the translational and the rotational inertia of the 1-

piece. Hence, the true moment M" applied at the excitation location a;, was 

shown to consist of the measured force couple M given by equation (S.9) less 

a contribution from a rotary inertia term JEfo/a!? Thus: 

(S.1S) 

Here, J is the rotary inertia of the I-piece. In references [93] and [9S] this 

correction was applied directly. However, an alternative approach adopted in 

this work is to calculate the magnitude of this proposed correction using the 

finite-difference and spectral density techniques outlined in sections S.3.1 and 

8.3.2 and, hence, determine the frequency range where the mea~ured moment 

M is a good approximation to the actual moment M". Thus, from equation 

(S.18) the following ratio can be fo~med: 

(8.19) 

The quantity Wo/a!?)/ M is now evaluated using the HI (I) estimator with 

the rotational acceleration approximated using the finite-difference expression 

given by the bracket term in equation (8.7). Hence, since equation (8.14) 

represents (aB/at)/ M, the quantity Wo/a!?)/ M can be calculated by 

multiplying equation (8.14) by J21tf The ratio of actual moment to measured 

moment M,,/ M is formed using equation (8.19). This ratio is employed to 

assess the likely error in using the measured moment M as an approximation 

for the actual moment Ma" 
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To achieve moment excitation, the moment excitation rig is aligned 

carefully such that the moment arms are struck by the impact fork at the 

same point in time, ensuring that the impact forces are equal and 

simultaneous. The outline of the impact fork is shown in dotted outline over 

the moment arms of the beam in Figure 7.7. The I-shape exciter arrangement 

has advantage over the T-shape exciter that any extraneous force due to an 

impure force couple is in the direction of Iow mobility. This advantage also 

applies when comparing excitation via the moment arms with direct 

application of the force couple onto the beam. 

8.3.5 Application of the Measurement,Methods to a Beam 

Measurement of the moment point mobility of the beam was undertaken by 

implementing equation (8,15) using the transducer signals F" F" a, and 0." 

as shown in Figure 7.7. The accelerometer spacing ilx was chosen to be 0.152, 

where 2 was the wavelength of the highest frequency to be measured, in this 

case, 1.6 kHz. It can be shown that the theoretical cross mobility of a force 

and moment excited infinite beam will be zero [103J. However, in general a 

moment mobility measurement formed by measuring (BB/Bt)/ M, as 

implemented in equation (8.15), will contain errors due to a non-zero cross 

mobility and extraneous force F because of the rotary inertia of the I-piece. 

Therefore, a calculation of the force to moment ratio F/ M will indicate the 

quality of the applied moment [92, 93, 98]. 

Assuming that any extraneous force due to an impure force couple 

acts in the longitudinal direction of the beam and, thus, can be neglected, the 

unwanted force F acting in the transverse direction at the measurement 

location :I1J will be due solely to the translational inertia of the I-piece [93, 98J. 

Hence: 

a'u 
F=m-. ae 
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8 Beam Measurement Methods 

Here, m is the mass of the I-piece. Thus, the force to moment ratio F/ M is 

given by: 

(8.21) 

The transverse acceleration fPu/af can be calculated using the finite

difference approximation as: 

(8.22) 

Thus, the transverse acceleration to moment ratio (f5'u/af)/ M can be 

calculated using the Ht (I) estimator in a manner analogous to that described 

in 8.3.1 and 8.3.2 for the rotational velocity to moment ratio (aB/at)/ M as: 

(8.23) 

The force to moment ratio F/ M can be calculated using equation (8.21). 

Measurement of the energy input to the structure was calculated 

between the applied moment and resulting rotational velocity using equation 

(8.17). To verify the moment input energy measurement two accelerometers 

a. and a4 were also placed opposite the force impact points on the moment 

arms, as shown in Figure 7.7. The energy input to the moment arms was 

then calculated using the measured force and resulting transverse velocity on 

the tip of the moment arms by employing equation (3.27). Two accelerometer 

pairs (a., 0,;) and (a." 0,;) were also placed in the vibrational farfield of the 

beam shown also in Figure 7.7. These pairs of accelerometers were used to 

measure transmitted energy along the beam by employing the two

accelerometer power flow technique implemented in equations (8.4) and (8:5). 
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8 Beam Measurement Methods 

The acquired signals were processed using a multi-channel spectrum analyser 

with the FFT folding frequency set at 1.6 kHz. The record length used for 

each acquired signal was 2 seconds and an average of 10 impacts was used to 

form the relevant auto and cross-power spectral density functions, which had 

a frequency resolution bandwidth of 0.5 Hz. Thus, the spectral density data 

presented in section 9.3 were scaled by the record length and the resolution 

bandwidth to obtain energy data in units of Joule/Hz [126]. 

8.4 Summary 

This chapter has described the measurement method of previously defined 

VEF and energy based expressions for force excited and moment excited 

beam structures. Force excitation has been applied to "infinite" and simply 

supported beams. ESP I is employed here to acquire the complex beam 

displacement for the force excited beams. The ESPI recorded complex beam 

displacement was then used as an input to the VEFESPI method in order to 

determine VEF from the ESPI displacement measurement. To carry out a 

simple energy balance check VIP was measured using an accelerometer and 

force transducer at the. driving point. To compare ESPI measured VEF with 

measured accelerometer based VEF the well known two-accelerometer 

("infinite" ESPI beam) and four-accelerometer VEF (simply supported ESP I 

beam) techniques were implemented. 

A novel measurement method to measure the point mobility and 

energy input of a moment excited beam was introduced. The method utilised 

a first order finite-difference approximation to determine the rotational 

velocity measured by a pair of accelerometers located at the excitation 

location in combination with a specially designed moment excitation rig. Due 

to the attachment of the I-piece an additional undesired force and moment 

contribution occurs due to the moment arm inertia. These erroneous forces 

and moments were described using an actual moment to measured moment 

ratio, as given by equation (8.19), and a transverse force to moment ratio, as 

given by equation (8.21). Thus, an error appraisal is feasible. 
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9 MEASUREMENT OF VIBRATIONAL 

ENERGY IN BEAMS: EXPERIMEN-

. TAL RESULTS 

9.1 Introduction 

This chapter presents results obtained from 'experimental beam 

measurements. Within this research force excited and moment excited 

structures were investigated. Force excitation is used to measure vibrational 

energy flow (VEF) and energetic quantities under use of electronic speckle 

pattern interferometry (ESP I) for "infinite" and simply supported beam 

structures. 

Moment excitation of beams was the second major objective of this 

research. Within this chapter experimental results of a moment excited 

"infinite" beam are presented under use of a novel measurement technique 

introduced in section 8.3. Thus, recorded moment point mobility and input 

energy results are shown. 

9.2 Force Excited Beam Measurements 

This section is divided into two parts. Section 9.2.1 contains the experimental 

results obtained on an ESPI measured "infinite" beam that was recorded 

during the work of reference [62]. Continuative from [62] the analysis is 
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9 ileam Measurement R.esul ts 

ex tended here to a two-dimensional analysis, whereas in reference [62] one

dimensional VEF analysis only was con idered. Section 9 .2.2 contains 

experimental results obtained from the measured s imply supported ESPI 

beams. Here, t he measured VEF and measured energetic quantit ies a re 

presen ted . 

9.2.1 "Infinite" Beam Measurements 

9.2.1.1 Point Mobility , Vibrational Input Power and Accelerometer 

Based Transmitted Vibrational Energy M easurements 

T he point mobili ty of t he "infini te" beam was measured using the frequency 

response fll nction (FUF) between the acceleration a nd t he force at t he 

drivi ng point . Substituting this quantity in to eq uat ion (8. 1), resulted In the 

measured point mobili ty , as shown in Figure 9.1. Herein , f shown on the 3J

ax is is the frequ ency. It can be seen from F igure 9 .1(a) that the magni tllde o f 
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Figure 9.1 Modulus of the measured and t heoretical point mobility of the force 

excited "infinite" ESP! beam: (a) 10 Hz-6.4 kHz, (b) 750-1450 Hz. 
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9 Beam Mea 'urement Results 

the measured poin t mobi li ty lyFJ o f the "in fin ite" ESPI beam varies around 

the theoretical point mobili ty of the equ ivalent in finite structure, indicating 

that t here i sti ll some modal behav iour with in the "infinite" beam stnIcture 

despite the anechoic termination . evertheless , a good approximat ion of 

infinite beam behaviour was achieved. Figure 9.1 (b) di splays the measured 

and theoret ical point mobility in a frequency range of 750-1450 Hz. Three 

excitation frequencies, 801 I-Iz, 1112 Hz and 1146 Hz were selected out of t hat 

frequency ra nge. As it can be seen from Figure 9.1(b) , these frequencies were 

chosen to represent a local minimum in the FRF at 1112 Hz, a local 

maximum in t he FRF at 1146 I-Iz and a frequency close to the t heoret ical 

infinite beam response a t 801 I-Iz. Table 6.1 displays again the assumed 

properties of the experimenta l ESPI beam . 

Young 's modulus E = 2.07.10 11 N/ m' 

mas density p = 7.85 ·10" kg/ m" 

beam wid th b = 60.10-:1 m 

beam thicknes t = 10·10-" m 

Table 6.1 (repeated) "Infinite" ESPI beam properties. 

Table 9.1 di splays t he vibrational input power (VIP) values measured at the 

driving poin t for all three frequencie ·. T he theoret ical point mobil ity based 

VIP (P' .. ),_p was calculat ed from eq uation (8.2) . T he more accurate VIP 

obtained from the measured cross-spectra l den 'ity between force and 

acceleration at t he driving point (p'..)p" was calculated from equation (3.27). 

It has been shown in sections 5.3.2 and 5.3.3 that the transmitted vibrational 

energy of an infinite beam is half the energy injecte I into the beam . Thus , in 

Table 9.1 ha lf the input power values are given , since transmitted vibrational 

energy has been measured at one side o f t he beam only_ T he transmitted 

vibra tional energy values were measured with in the ESPI window, which wa 

located in the far fi eld of the beam (ee Figure 7.6) . Equat ion (8.4) was 

employed to calculate the two-accelerometer based farfi eld transmitted 
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9 Beam Measurement Results 

energy p" , ' Equat ion (8.5) was used to correct P" , III order to accoun t for 

the finite-difference approximation error. 

P ower quantity [W] 801 IIz 1112 I-Iz 1146 Hz 

Ha lf input power , (P,,,),,I' 5.23·W-" 2. ·10-" 1.41.10-3 

Ha lf input power , (P'..)p" 4.04.10.4 2.45·10'" 1.58·10·:1 

Transmitted energy, P" , 3.46·10-" 2.26·W-" 1.20·10-:1 

Corrected transmitted energy , (p" , la. 4.03·10-" 2.80·10'" 1.49·10-:1 

Table 9.1 Measured input power and transmitted energy (nil values given in Watts). 

9.2.1.2 Vibrational Energy Flow M easurements Using ESPI 

T he force excited "infinite" E PI beam experiment was conducted III 

reference [62] and results were later published in references [63 , 64]. F igure 

9.2 displays the measured amplitude and phase of th "infini te" beam at 801 

Hz, as provided by the ESPI system. With the measured amplitude and 

phase a beam di splacement was generated by employing equation (8.6). It 

can be seen from Figure 9.2 that the measured "infinite" beam d isplacement 

is a two-d imens iona l N , x N, matrix conta ining the complex , "infinite" beam 

displacement information. 

It can a lso be seen from Figure 9.2 that within the a mplitude and 

phase da ta matrice some blank regions occur indicat ing locat ions of low laser 

light illumination and , thus, mlsslllg information about the spatial 

distribution of a mplitude and phase at these points. To avoid blank regIons, 

on ly regions with fully valid information were used in references [63 , 64] by 

truncating the generated ESPl d isplacement down to one measured 

wavelength only . Further , in references [63 , 64] single rows a long the 1}-axis 

were extracted o ut o f the two-dimensional ESPI di splacement matrix in order 

to determine ESPI based VEF using a single-row and multi-row a nalysis. 

This was a quite cumbersome process . 
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Figure 9.2 ESP! image of measured beam displacement at 801 Hz: (IL) amplitude, 

(b) phase. 

However , t he study herein has been ext ended by analysing the data two

dimensionally rather than extracting single rows ou t of the ESPI 

d isplacement matrix. Further , beam regions containing pocket of bla nk data 

were a lso included within the analysis. T hus, t he spatial ra nge of the 

generat ed ESPI disp lacement was increased to two wavelengths. 

Figure 9.3 d isplays the ESPI displacement of the 801 Hz "infini te" 

beam displacemen t. Here, u{x,y) i the ESPI measured two-dimensiona l 

beam d isplacement and x is t he beam length. T he ESP! measurement window 

was truncated at the beam edges to include data within the beam width only . 

It was also t runcated along the beam length to include an integer number o f 

waves , a requ irement of t he F a t Fourier Transform (FFT) , to avo id leakage 

effect s. The one-dimensiona l displacement shown in Figure 9.3{c) a nd Figur e 

9.3{d) is t he extracted row at y = 25·10-;1 m . It can be seen from Figure 9.3 

that especia lly at the beginning and the end of t he ESPI window many blank 

regIOns OCCUI" . Since t hese locations contain zero information , t he 
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Figure 9.3 Complex Md truncated ESPl di splacement of the "infinite" beam at 801 

Hz: (a) 2D real part, (b) 2D imaginary part , (c) ID real part , (d) ID imaginary 

part. 
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Figure 9.4 Complex filtered and truncated ESPl displacement of the "infinite" beam 

at 801 Hz: (a)-(b) 2D ideal filtered , (c)-(d) 2D Butterworth filtered. 
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ESPI d isplacement is furth er contaminated by nOIse that is not re latable to 

the beam vibration proces. T he complex, two-dimensiona l ESPI beam 

di placement , as exhibited by F igures 9.3(a) and 9.3(b), is taken as input to 

the VEFESPI method , as shown by Figure 4.6. Thus, spatial d erivatives of 

t he measured and Iv-space filtered ESPI beam displacement were determined 

and subst ituted into equa tion (3.33). Figure 9.4 di splays the complex and 

filtered displacement. It can be noticed that the wavenumber filtering process 

removes most of the un wanted no ise component . Further , as it can be seen 

from Figure 9.4(a) t hat unwanted tors iona l mot ion of the beam was also 

removed. T his torsional motion occurs from the fact tha t the electrodynamic 

exciter cou ld not be att ached exac tly in the middle of the beam. Figure 9.5 

disp lays t he active VEF of the 801 I-Iz excited "infi nite" beam . Here, the 
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Figure 9.5 Active VEF of the "infinite" ESP] beam at 801 Hz filtered with t he ideal 

filter and Butterworth filter. 

middle line of t he two-dimensiona l VEF matrix is shown only , slllce the 

lII tered VEF is constant ly dist ri buted across the beam width . T he imaginary 

part is not shown , since thi s part is zero due to measurements taken in the 

far fi eld only. The fil ter cut-off points were employed from Table 6.6. It is 

noticeable from Figure 9.5 that the ideal filter produces a straight line and , 

thu', a constant VEF value, whereas t he Dutterworth fil tered VEF i vary ll1g 

over th e beam 's dis tance due to a low frequency noise component passing 

through the low pass filter . 
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9 Beam Measurement R esults 

9.2.1.3 Energy Balance 

Simple energy balance within the "infinite" beam structure a llows for a 

general assessment a bout the accuracy of the measurement. As exp lained 

previously, VIP a t driving point a nd a lso VEF within the ESPI window was 

measured using charge type tran ducers . T hese measurement techn iques are 

widely accepted as s ingle poin t measurement techniques. Equation (3.38) 

display s the simple energy balance within the infinite beam. From equations 

(3 .38), (5.20), and (5.24) it can be realised that half of the VIP should be 

equa l to the transmitted energy. T his simple energy bala nce is used to 

invest igate t he accuracy of the "illfi n ite" ESPl beam measurements. F igure 

9.6 shows the comparison of half o f t he measured VIP (p'" ),." ' the measured 

corrected transmitted energy (p.., L and t he ESPI measured ideal fi ltered 

3 

° 0.1 0.2 0.3 [ jO.4 x m 
0.5 0.6 

0.5(Pi)F~ 

(P " 2) e r 

Ideal fil ter 

Butten vorth fil ter 

Figure 9.6 Compa.rison of measured input power (Pm)"'tl l measured corrected 

transmi t ted energy (P'o'l) a and measured ESP! based energy flo w at 801 Hz. 

and Butterworth f-iltered VEF. Note , (p." )"00 and (p.., L are single values. 

However , for better visibi li ty they are shown against the beam length . It can 

be seen from F igure 9 .6 t hat the ideal filtered and Butterworth filtered ESPI 

based energy values within the experimental "infinite" beam are very close t o 

the transducer measured energy values. 

F igure 9 .7 d isplays the relative difference between the ESP! measured 

VEF a nd the tran ducer measured VIP a nd VEF values. The deviation 
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Figure 9.7 Relati ve difference in percent between ESP! measured VEF and 

transducer measured energy values. 

bet ween the ideal filtered ESPI based VEF a nd transducer based energy 

values is less tha n 1%. The mean value of the l3utterworth filter VEF is less 

tha n 0.3%. T able 9.2 summarises the VEF results and the rela ti ve devia tion 

of each "infinite" beam measurement a t 801 , 1112 and 1146 I-lz. The 

correspond ing figures of the truncated d isplacements and energy bala nces of 

the 1112 Hz and 1146 I-Iz measurements a re shown in Appendix A20. From 

there and from T a ble 9.2 it can be seen tha t the deviations of the 1112 I-Iz 

a nd 1146 Hz E PI measurements are higher than the 801 Hz ESPI 

measurement. Especially for the 1146 Hz resul t, which devia tes about 25% 

compared to the corresponding accelerometer based transmitted energy 

measurement . 

9.2.1.4 Discussion 

The results shown in the previous sect ion a nd in Appendix A20 indicat e some 

deviation between the measured ESPI VEF and the measured accelerometer 

based power values. It can be seen from T able 9.2 tha t the transmitted 

energy (p" ,L is not always equa l to ha lf t he VIP (P''')F,,' T he approxima tion 

that half the input energy is flowing to the right and ha lf the input energy is 

fl owing to t he left of the beam is not always true, since it assume tha t both 

anechoic termination ends are di ssipating the same a mount of energy . 

246 



9 Bcam Measurement Results 

Power qua ntity 801 Hz 1112 Hz 1146 I-Iz 

Ha lf input power , (P'..) FP 5.23·10"" 2.88·10-" 1.41·10-" 

Half input power , (P' '' )F, 4.000-" 2.45·10-' 1.58.10-3 

Transmitted power, P"Q 3.46·10-" 2.26·10-" 1.20·10-" 

Corrected transmitted power , (P"'2)" 4.03.10-4 2.80·10-" 1.49·10"" 

Ideal filtcred VEF , 91{ (Pz),,',.'} 4.06·10'" 3.18·10-' 1.87·10-" 

Butterworth filtered VEF, 1/ Nz I91 {( PT)'''''''} 4.000-" 3 .18.10-4 1.87·10-" 

(1'.&) of 91 {(Px)"".,}/ 0.5(P", )FP -0.4% -29.8% -18.4% 

(1'.&) of 1/N, DH{ (PT), .. ",.,}/ 0.5(P",)pp 0.2% -29.7% -18.4% 

(M:) of 91 {(P,)"" .. ,}/( P,,,, ),.,. -0.9% -13.5% -24.9% 

(t>e) of l /NxI91{(P,), .. ""}/( P,,,,),,, -0.3% -13.5% -24.9% 

Table 9.2 Measured input power and transmitted energy (all power values given in 

Watts). 

It can be seen from Table 9.2 that the rela ti ve d ifference between active 

ESP} measured VEF ~ a nd corrected t ra nsm itted energy (p",)", is al ou t 

0.9% at 801 Hz, -13.5% at 1112 I-Iz a nd - 25% at 1146 Hz revealing a 

overest imation especia lly a t the latter two excita tion frequencies. The 01 IIz 

mea urcment showed a very good agreement. It i evident from F igures A20.3 

a nd A20.5 that the 1112 Hz a nd especia lly the 1146 Hz measurement were 

contamina ted by a considerable amount of torsion d ue to off-centre shaker 

attachment . T he torsional motion could be removed by the 2D filtering, as 

evident from Figure 9.4 . T he 2D filtering process letermines a mcan 

displacement between the lower and higher twisted beam sides. However, if 

the torsional motion is not exactly about t he middle line of the beam wid t h , 

t he resulting displacement ampli tude duc to 2D filtering can be higher or 

lower than the actual ampli tude due to purely fl exural beam motion. Since 

t he square of the d isplacement amplitude is proportional to VEF , a n 
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9 Beam Measurement Results 

unwanted off-centre torsiona l beam motion could be t he reason for 

overest imat ing the ESPI VEF at 1112 Hz a nd 1146 Hz. 

Another crucial poin t to consider is rela ted to the spatia l resolution of 

the ESP! measurements. The spat ia l resolution, or spat ial sampling in terval, 

is defined as t he ratio of measure pan Lx and t he num ber of data points Nz 

included in the measure span , i.e. b.x = Lz / Nz It has been shown by 

equation (6.5) that t he wavenumber spectral resolution !:J. kr is a funct ion of 

!:J.x and LT> respectively. Since t he spectra l resolution is used to defin e the 

wavenumber matrix Kz> as evident from equation (6.6), the determined 

amount of VEF is dependent upon the spectral resolu tion a nd , t hus, the 

correct measuring span . Here, the 'patial resolution of the ESPI system wa 

defined by the number of infini te beam wavelengths included in the signa l 

(2A.) and the number of data poin ts included in the truncated 2,,1 signa l 

length , i.e. b.x = 2>. / NI ' 

Figure 9.8 d isplays the rela tion between t he relat ive a lterations of the 

ESP! measured active VEF Re(b.Pr ) in dependency upon the relative change 
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Figure 9.8 R.elative change of measured ESPI based VEF in dependency upon the 

relative change of wavelength span in percent of the ideal filtered ESPI based VEF 

measurement at 801 Hz. 
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111 measure span 6A of t he 801 I-Iz ideal filtered measurement. Note, the 

rela ti ve change 6A of the active l3utterworth fi ltered VEF is id entical. It 

can be seen t hat a relative change in measure span of 2% yields to a change 

in measured energy flow of 6%. l3y truncating the data by hand it is possible 

that the measure span can be below or above the theoretical va lue of 2A.. 

Thus, care must be taken in order to determine the t rue spatial resolution of 

t he measure span . 

The comparison of the ESPI measured VEF to the accelerometer 

measured energy fl ow IS seen only as an indicator how well the ESPI 

measured VEF matches the accelerometer based measurements, widely 

accepted in VEF analysis. It cannot be uscd cntirely as a judgement in how 

accurate the ESPI measured VEF is, since errors of the accelerom eter based 

measurements are likely to occur . It shall a lso be poin ted out t ha t a better 

energy balance may be employed on a semi-infinite structure because the 

measured VIP is then flowing to one side only and , t hus, can be taken better 

into account. 

T he u 'e of a 2D method rather t han a ID approach , as taken in 

reference [64], simplifies t he a ppl ication of the VEFESPI method enormously 

despite t he fact that ome truncation process stil l needs to be em ploycd. Of 

course t he application of a period isation technique would d iminish the 

truncation effort further. However , the number of d ata points to be analysed 

is then doubled and, t hu , t he computation time would increase furth er . 

9.2.2 

9.2.2.1 

Simply Supported Beam Measurements 

Point Mobility, Vibrational Input Power and Accelerometer 

Based Transmitted Vibrational Energy Measurements 

ESPI based VEF measurements of simply supported beams were conducted 

in t hi s work by employing three d ifferently damped beam specimens. ESPI 

measured vibration ampli t ude and phase of a non-damping layer , single 

unconstrained damping layer and a double unconstrained damping layer 

beam structure were recorded . T he th ieknes of the attached single layer wa 
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9 Beam Measurement Results 

2.5 mm and the thickness of the attached double layer was about 5 mm . 

Both layers were attached to one side only using a mineral fill ed viscoelastic 

polymer materia l. Figure 9.9 d isplays th e measured point mobility computed 

from equa tion (8.1) for a ll three beam specimen. It can be seen from Figure 

9.9 that the attachment of the unconstrained d amping layers had li ttle effect , 

since the peak amplitude at each resonant frequency was only reduced 
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Figure 9.9 Modulus of the measured point mobili ty of the force excited simply 

supported ESP! beams: (a) 10 Hz-3. 2 kHz, (b) 500-3000 Hz. 

slightly. T his confirms t he theoret ical results obtained m section 5.5 

concluding that a substa ntial damping can be achieved only within a 

th ickness ra tio range of 1.5:":: tD / tn :":: la. Here, tD / to was 0.25 a nd 0.5, 

respecti vely. F rom Figure 9.9(b) foUl' resona nt excita tion frequencies were 

selected for each damping configura t ion. T he frequencies were located a t the 

resona nt peak of the 6'h, 8d
', 9'h. and lld, mode. Table 6.7 again d isplays the 

assumed materi al and geometric properties of the experimenta l ESP! beam. 
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Young's modulus E = 2.07·10" N/m2 

mass density p = 7.85 .103 kg/m" 

beam width b = 50.10-3 m 

beam t hi kness t = 10·10-" m 

beam length L = 1 m 

Table 6.7 (repeated) Simply supported ESP l beam properties. 

A shown in section 7.3.2 .1 VIP a t an off-centre excita t ion location of :z;, = 

0.582 m has been measured by subst itut ing the measured cross-spectral 

density between the acceleration a nd force at t he driv ing point in to equation 

(3.27). 

Transmitted vibra tiona l energy was a lso measured on either side of the 

beam employing four-accelerometers a nd substituting the appropriate 

measured spectral densities into equation (8.3). Unfortunately, t he applied 

accelerometer spacing of f!,. x = 3·25·10-" m res t ricted the fo m -accelerometer 

method to a maximum frequency to be measured of the t heoret ical 5'" mode 

only (f!,. x = 0.2), = 80.10-3 m) because a wrong spacing was applied d uring the 

measurement day . However , the two-accelerometer method can be a pplied 

instead using by equation (8.5). It was shown in Figure 6.21 that t he 

nearfi eld of the infinite waves, which occurs at the excitat ion location , is 

much stronger t han the two nearfields that occur at the simply supported 

boundaries. Hence, the nearfield at t he excitation location is the most likely 

evanescent wave part t hat will have influence on the energy transmis ion 

measurements. One requirement of the two-accelerometer method i t hat the 

measurement should be carried ou t in the farfield . Farf'ield conditions are 

present at locations in the beam, which are at least % of a wavelength away 

&om discontinuities , in t hi case the excitation location . T he wavelength of 

the 6'" mode was ), = 1/ 3 m . T hus , the far field is then 0.25 m away from the 

excitation location (0.75·),). The location of the acceleromet er based 

measurements taken a way from the excitation location was 0.259 m to the 
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left a nd 0.238 m to t he right . T hus, t he t wo-accelera t ion met ho 1 can be used 

to measure transmitted energy with a little nearfield influence to be expected 

at t he right-hand side of the 6'" mode excitat ion only. The resu lts of t he fo ur

accelerometer and two-accelerometer t ra nsmi tted energy mea uremen ts are 

shown in Appendix A21. It can be seen from there t hat a t some frequencies 

t he total transmitted energy to t he left a nd right of the excita tion location is 

higher t han the energy injected in to t he simp ly supported beam, e.g. 8'" mode 

of the non-layer damped beam . Redma n-Whi te concluded in reference [28] 

that accelerometer based energy t ran mission measurements carried out on 

transverse beams t hat ha ve st and ing wave rat ios greater than 20 :1 may yield 

to meaningless resul ts . Thus, t he accelerometer based measurements arc 

believed not to be very trust wort hy, since t he simply supported beam 

structu re was highly resonant with st and ing wave ra t ios much greater t han 

20: 1. 

9.2.2.2 Vibrational Energy Flow Measurements Using ESPI 

As ment ioned beforehand 12 measurements were taken from three d ifferently 

damped imply supported beam structures. Due to shortage in space only one 

measured frequency will b shown here a nd t he VEF resul ts of t he rema ining 

frequencies are presented in Appendices A22 and A23 , respectively. F igure 

9.10 displays t he complete measured ESPI a mpli t ude and phase of the 11'" 

mode single-layer damped beam. It can be seen from t hat figure t hat t he 

ESP I signal contains some noise, as ill ustra ted by coloured d ata point 

outside the beam area. T he pin side here is on the right and t he roller side is 

on the left of F igure 9.10. It is noticeable t hat on t he right-hand side the 

d isp lac ment is approaching zero, whereas on the left-hand side non-zero 

deflection is present due to laser light occlusion by t he rollers. Figure 9.11 

displays the two-dimensional and one-dimensional truncated ESPI 

d isplacement generated from the measured ESPI amplitude and p hase by 

numerically evaluating equat ion (8.6). As usual the one-d imensional beam 

displacement is ex tracted from t he middle li ne of the beam 's width . It can be 

seen that a quar ter wave is t runcated to eit her side of the beam reducing the 
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Figure 9.10 ESPI image of t he single-layer damped sim ply supported beam vibrati ng 

at t he 11'" mode and 2745 Hz: (a) amplitude, (b) phase. 
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Figure 9.11 Complex ESP] displacement of the single-layer damped simply 

supported beam vibrating at t he 11 '" mode and 2745 Hz: (a) 2D real part, (b) 2D 

imaginary part , (c) ID real part , (d) ID imaginary part . 
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signal spa n in t he x direction from 5.5 to 5 wavelengths. Further , it can be 

seen from Figures 9 .11 (a) and 9.11(b) that add it iona lly to fl exural vibration 

torsional motion is present in the measured ESPI di splacement . 

Figure 9 .12 displays the ideal filt ered and Butterworth filtered 11 '" 

mode single-layer damped beam d isplacement from which spa tia l derivati ve 

were computed with a id of the T<SD method. It is shown in Figure 9 .12 t ha t 

the initia l torsiona l motion of the beam could be reduced (ideal filter ) or 

completely filt ered out (Butterworth fil ter ). It can a lso be reali sed from 
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Figure 9.12 Complex filtered ESPI displacement of t he single-layer damped simply 

supported beam vibrating at the 11'" mode and 2745 Hz: (It)-(b) 2D ideal fil tered , 

(c)-(d) 2D Butterworth fil tered. 

Figure 9.12 tha t the oval 2D Butterworth tilter removes the paras itic 

torsional beam motion much better than the 2D ideal filter because the cut

off wavenumber in the y direction can be adj usted more precisely. The 

truncated complex, two-dimensional ESPI displacement , as shown in Figures 

9.11(a) and 9.11(b) , was then taken as the input to the VEFESPI method . 
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9 J3eam Measnrement Results 

Figure 9 .13 exhibits the active and reactive VEF de termined from the 

ideal filtered and J3 utterworth fi ltered 11'" mode ESPI d isplacement da ta. It 

can be noticed from t hi s fi gure t ha t the d iscon t inui ty at t he excitation 

location can be detected. There is a d ifference between ideal filtered a nd 

J311tterwort h filt ered VEF. Also, a negat ive le ft-going flow (downstream) and 

po itive-right going flow (upstream) was detected. I-I wover , as demonst ra ted 

III sect ion ' 6.3.2 and 6.3.3 , the sharp discontinuity at the excitation location 
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Figure 9.13 ESPI measured VEF of the 11'" mode single-layer damped beam 

displacement at 2745 Hz using tbe VEFESPI method: (a) active VEF, (b) reactive 

VEF. 

can not be determined in [,tll detail. It can be seen from Figure 9.13(b) that 

t he reactive energy flow curve shape strongly devia tes from the t heoretical 

curve shape, as shown in section 6.3. 

I n sect ion 6.3 it was a lso demon trated that the incrementa l 

integration of the potentia l energy density a long t he beam length led to 

better results in active VEF computat ion d ue t o the use of more accurate 

second order derivatives only. Thus, the simply upporteci beam 
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di splacement , as shown in Figure 9.11 , IS a lso a na lysed by the alterna tive 

incremental energy density in tegra tion (IEDI) method . The result of thi s 

analysis is shown in Figure 9.14. From there it can be seen that t he 

computed active VEF curve is much clo er to the theoretical VEF curve 

shape. T he sharp energy flow di scontinuity at t he excitation location can be 
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Figm e 9.14 ESPI measm ed VEF of the 11'" mode single- layer damped simply 

supported beam at 2745 Hz using the lED! method: (a) active VEF, (b) reactive 

VEF. 

detected much better than using the conventional VEF determination 

method by evaluating equa tion (3.33). However , as a lready ment ioned in 

sect ion 6.3 the reactive energy flow cannot be computed very well. The VEF 

re ults of a ll frequencies are shown in Appendix A23. From there it can be 

seen t hat the l ED I computed active VEF from the measured ESPI 

d isplacements a t a ll frequencies is very simi lar to the theoret ical active VEF 

curve shape, whereas t he reactive energy curve deviates in most cases. 
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9 Beam Measurement Ilesults 

9.2.2.3 Energy Balance 

A s imple energy balance, a employed in section 9.2.1.3 , is not applicable to 

the simply supported beam , since the VEF is vary ing over space. However , 

an energy relationship between VIP and poten t ia l energy density was given 

by equation (3.40). Th is energy ba la nce o rigina lly st a ted that the rea l pa rt of 

the complex inpu t energy density injected into t he beam i proportional to 

the pr d uct of circula r frequency , loss factor, a nd potential energy density. 

Since t he input energy here is a global measure, the loca lly vary ing potential 

energy density needs to be in tegra ted a long the beam length . This is carri ed 

out in this work numerically. Figure 9.15 d isplays t he ESPI mea ured 

potentia l energy density o f the 11 '" mode sing le- layer d amped beam 

displacement. It can be seen from Figure 9 .15 tha t a quarter wave of 

potentia l energy density is missing o n either side due to t he ini t ia l truncat ion 

of the beam displacemen t. T hus, when in tegrating the potent ia l energy 
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o 
0.2 0.4 [J 0.6 x m 

0. 8 

Ideal fi Iter 
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Figure 9.15 Filtered ESPI measured potent ial energy density of the 11'" mode single

layer damped beam displacement at 2745 Hz. 

density a long t he beam length to compute the total transmitted vibrational 

energy (TTVE) from mea ured energet ic data the missing energy density 

information to t he left and right of the beam length need to be compensated 

for. To compute the acti ve compensated TTVE from measured pot enti a l 

energy density it was assumed t hat 1/ 10 o f the TTVE was missing and , t hus, 

the in tegrated po ten t ial energy density was multiplied by 11/ 10. T he 
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remain ing frequencies were compensated accordingly to their ratio of number 

of wavelengths inc luded in the signal a nd number of wavelengths missing d lle 

to t he signal truncat ion . Also, t he lEDl computed VEF curve shape from the 

ESPI measured energy densit ies, as shown in F igure 9 .14, needed to be 

compensated becau e of t he missing d isp lacement information due to the 

truncation process. For the 11'" mode displacement it was assumed that 1/ 10 

of t he TTVE was not regarded when integrating the poten tial energy density 

from t he left-hand side of t he beam, as shown in Figure 9.15. Fmther , 1/22 

of the TTVE was not regarded when in tegrating the rema ining potenti al 

energy density to the right-hand side of the beam 's end . The remaining 

frequencies were compensated accordi ngly to their ratio of number of 

wavelengths included and number of wavelengths missing in the signal. 

Note , when not considering the entire beam lengt h in t he energy 

balance, equation (3.3) has to be applied instead . However, the computation 

of t he beam 's VEF d ivergence relies on 4'" order spa tia l der ivat ives, as shown 

by equation (3.34) . Furthermore, the VIP has to be known as a den ·ity 

quantity . T he 4'" order spat ial d erivatives from measured data a re considered 

to be very erroneous. Hence, the above descri bed compensation proced ure 

was used instead. 

The Butterworth fi ltered TTVE resu lts obtained from the integra t ion 

of t he ESPI based potential energy density a long t he beam length a re shown 

in Tables 9.3 to 9.5 for each measured beam damping con figurat ion . Note , 

the ideal filtered results are similar to the Butterworth filt ered results. 

n 6 8 9 11 

fo 857 Hz 1467.5 Hz 1874 Hz 2772 Hz 

VIP , (P"' )Fa 1.85·10"" 3.74·10"" 1. 3 J.l 0-" 2.50-10-" 

TTVE, (2 w77!e,>o' dX)b"",, 1.19-10-4 2.16.10-4 4_53-10-' 1.52-10-4 

(.6.&) blllter 35.7% 42. 1% 65 .5% 39.1% 

Table 9_3 Comparison of measured VIP and integrated ESPI measured potent ial 

energy density of the non-layer damped beam (all power values given in Watts). 
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n 6 8 9 11 

fo 833 .5 Hz 1441 Hz 1830.5 Hz 2745 I-Iz 

VIP , (P", )F" 9.08·10-" 2.48.10-4 2.10.10-4 l.95·lO'" 

TTVE, (2 wT/J e"ot dX)b»tt,.,· l.40·1O-' 1.46·10,4 .50·10,5 9.19 .·10'4 

(66) '»tt" -53.6% 41.1% 59.6% 53% 

Table 9.4 Comparison of measured VIP and integrated ESPI measured potential 

energy density of the single-layer damped beam (all power values given in Watts). 

n 6 8 9 11 

10 21 Hz 1426 Hz 1797 Hz 2682 Hz 

VIP , (P",)F" 2.86·10'" 1.67·10,4 1.90.10.4 2.65·10'" 

TTVE, (2w T/J e" ot dX) '»tt" 3.77·10'4 2.16·10'" 1. 3·10,4 2.16·10'" 

(66) butt" -31.7% -29.4% 3.4% 18.5% 

Table 9,5 Comparison of measured VIP and integrated ESP! measured potential 

energy density of the double-layer damped beam (all power values given in \'Vatts). 

In Tables 9.3 to 9.5 the relative difference, 66 = (l -(P",) F.J (2 IlJ T/J e"ot 

dx))·100% , between t he Dutterworth filtered TTVE and t he accelerometer 

measured VIP (P,»)F" is shown. It can be seen that at 7 out of 12 frequencies 

the TTVE within the beam is less than t he measured vibrational energy 

injected in to the beam . It can a lso be seen from the tables above tha t at the 

double-layer damped beam the best agreement between ESPI measured 

TTVE and accelerometer measured VIP is obtained. 

Tables 9.6 to 9.8 exhi bit the accelerometer measured VEF and the 

13utterworth filtered VEF computed from t he lED I method at t he location x, 

= 0.323 m and x, = 0.82 m. It can be seen from the table below that the 

ESPI measured VEF is not at a close match to the accelerometer measured 

VEF. T he initi al presumption that the accelerometer based measurement of 
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transmitted energy in a high standing wave en vironment may y ield to 

meaningless result s can be validate I by t he re ults shown below. 

n 6 8 9 11 

(P,,,, ) ,.,.1'1' - .45·10"' -7. n 10'" -1. 02.10.4 -1.74.10.4 

( Ptr1. ) er- nyM 1.34·10'" 2.15·10'" 5.05·10'" 1.23·10"4 

( P X)bulkr- /I>/f. -3. 8·10" -7.22.10.5 -1.58.10.5 -5.03·10"" 

(PT) built-T-ng"t 2.05.10.5 3.96·10"" 8.97-10'" 2.78·10'" 

Table 9.6 Comparison of VEF measured by the two-accelerometer metbod and t he 

lEDI method within the non-layer damped beam (all power values given in Watts). 

n 6 8 9 11 

(P',Q) ,·,.1,'1' -1.74·10'" -8.91·10'" -5.19·10'" -8.25·10" 

( Ptr1. ) cr-nyht 5.91·10'" 1.66·10"" 9.08·10'" 7.94·10"" 

( P ']') IlI/lIer. left -4.71.10.5 -4. 6·10"5 -2.90·10" -2.95·10" 

( P :r)lwttn-- ng/lt 2.26.10.5 2.59·10"' 1.64·10'" 1.64·10"" 

Table 9.7 Compari on of VEF measured by the two-accelerometer method and the 

lED I method within the single-layer damped beam (all power values given in 

Watts). 

n 6 8 9 11 

(P,,,,) ~. I'I' -4.73·10"" -4 .02·10"" -5.44-10.5 -2.59·10'" 

(Pt,-2 )cr.nYM 1. nlO" 1.02·10'" 9.39 .10.5 1.60·10'" 

(P x) butler· left -1.26.10.4 -7.29·10"" -6.32·10"" -6.93·10'" 

( P:r)bUtle '~ nyltt 6.24 .10.5 3.65·10'" 3.56.10.5 3.86.10.4 

Table 9.8 Comparison of VEF measured by the two-accelerometer method and the 

lEDI method within t he double-layer dam ped beam (all power values given in 

Watts). 
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9.2.2.4 Discussion 

The measuremen t of VEF wit hin a high stand ing wave en viron ment of a 

simply suppor ted beam was reported above. It is evident tha t the herein 

applied thickness ratio range tD/ to of 0.25 and 0.5, re pectively did not yield 

to a noticeab le increase in st ructura l d amping within the beam . T hus, a 

tructu ral damping scenario, as aimed for initially could not be 

experimen tally achieved. T he reason for t he damping scenarios was to 

investigate the appl ication of t he VEFESPI met hod at d ifferent strong 

standing wave en vironments. 

An energy balance was carried out herein in order to assess the 

accuracy of the ESPI measurement u nderta ken in th is work . VIP was 

computed from the measured cross-spectral density of the dri ving force and 

acceleration response at the excitat ion locat ion . In addit ion to the 

measurement of inpllt power , tra nsmitted vibrationa l energy was measured 

on the left-ha nd side a nd right-hand ide of the excita tion location using t he 

two-accelerometer met hod . It is ev iden t from T able' A21.4 to A21.6 that a t 

four frequencies the total of the measured two-accelerometer based 

t ra nsm itted energy is higher than the transducer measured energy injected 

into t he beam , which vio lates the con versat ion of energy la w a nd, hence, 

indicates that t ransmitted energy measurements at t hese fTequencies may be 

erroneous . F urt her , it can be rea lised that d lle to off-centre excita tion of :z;, = 

0.582 m t he energy nowing to the left (downstream) should be slightly higher 

than the energy nowing to the right (upstream) because more energy may be 

dissipa ted at the longer spatial left-ha nd side of the excitat ion location . The 

dist ances of the accelerometer measured transmi tted energy were 

approx imately the same with X, = 0.259 m and X,. = 0.238 m from the 

excita tion locat ion . T hus, t he acceleromet er measured downstream energy 

should be higher t han the upstrea m energy. However , as evident from T a bles 

9.6 to 9.8, t he accelerometer measured downstream now is a t 7 frequencies 

lower t han the measured upstream flow. Due to the experimen tal 

uncertainties of the transmitted energy now and in put power as well as 

upstream nows most ly being higher than dow nstream flows, the 
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accelerometer based transmitted energy measurements are considered not to 

be very trust worthy. In contrast t o this and evident from Tables 9.6 to 9.8, it 

can be seen tha t the ESPI measured downstream flow is always larger than 

the upstream flow. However , a close match bet ween both quantities could not 

be found . 

Because of the accelerometer based transmitted energy uncerta intie 

the energy balance, used as a measure for accuracy judgemen t of the ESPI 

based VEF measurements, was restrict ed to the comparison of meas\lred 

accelerometer based input power and spa tial integra tion of the ESPI 

measured potentia l energy density along the beam length. The compari son of 

transducer measured VIP and T TVE taken from the conventional VEFESPI 

method was neglected due to the fact t hat the sharp discontinuity at the 

excita tion location could not be identined accurately cnough , as evident from 

the VEF ngures shown in Append ix A22. Also, as demonstra ted in section 

6.3.3, the accuracy of the IEDI method was expected to be higher than the 

accuracy of the conventional VEFESPI method . 

The comparison between the transd\lcer measured VIP and the 

TT VE, based on the potent ial energy density integra tion along the beam 

length , is shown by Tables 9.3 to 9.5 for each beam damping conngura tion. 

The quantity D.& in percent is used to ind icate the rela tive difference between 

both measures where zero means no difference at all . 

It can be seen from Tables 9.3 to 9.5 tha t the rela tive difference D.& 

between the VIP and TTVE at a nrst glance is fa irly high , with best 

agreement ach ieved for the double- layer damped beam. However, in the 

following discussion it will be shown tha t t hese high relative differences D.& 

may be related to factors other than the accuracy of the VEFESPI 

measurement method . 

From T ables 9.3 to 9.5 it can be noticed that except for three 

measurements the TTVE was always lower than the VIP. Assuming that a 

low error wa made when measuring VIP with the a id of tran ducers some of 

the energy injected into the system must be lost by different mechanisms, 

other t han t he transverse beam vibration. It is visible from almost each 

measured ESPI disp lacement fi gure tha t during the ESPI experiment a 
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parasitic torsiona l contamination was present . Th is undesired parasitic 

torsional motion can be related to an unwanted off-cen tre attachment of the 

electrodynamic shaker d uring the experiment . Figure 9. 16 d isplays the ESPI 

mea ured simply supported beam disp lacement of the non-layer damped 

beam vibrating at the 9'" mode. It can be seen that here the transverse beam 

(n) 

o 0.2 

·s (b) 

, 10 

o 0.2 

Figure 9.16 Complex simply supported 

beam displacement of the 9'" mode non-

layer damped vibration: (a) real part, 

(b) imaginary part. 

motion is strongly contaminated by 

a torsional motion . Therefore, 

vibrational energy injected into the 

beam at t he excitation location can 

be balanced to the tra n verse beam 

motion as well as thc torsional 

contamination a nd , thus, VIP is 

equal to the amount of TTVE p lus 

the torsional fract ion . However, 

t hi s was not considered by the 

energy balance of equation (3.40) 

and , thus, a lower TTVE can be 

ex pected. O f course not every 

frequency was as strongly 

contam inated as the frequency 

shown in Figure 9.16. However , at 

this particular frequency the highest rel a tive difference of the experiment 

with 65 .5% was obtained. It can be argued furt her tha t due to the 2D 

spectra l filtering process the un wanted torsiona l contam ina tion can be filt ered 

out, as shown in Figure 9.13, but a lower VIP nee Is to be taken into account 

when comparing VIP and TTVE with in the simply supported beam for the 

transverse wave motion on ly. 

One disadvantage of the IED! method is the requirement of the exact 

value of the hysteretic loss factor. T his quantity may a lter with frequency 

and may also be dependent upon the posit ion within the beam. T he spatia l 

dependency of t he loss factor was neglect ed here. A prior modal analysis was 

carried out to determine the loss factor of each mode measured during the 

ESPI experiment using the software package ME'scope 4 [127J . ME'scope 4 
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uses a least squared error curve fitting algorithm to compute an analytical 

description of the prior measured PRF. Prom this informa tion the mode 

shape, the damped na tural frequency and the modal d amping were 

determined . The measured modal loss factor was employed here to compute 

both , the TTVE a nd VEF from the ESPI measured potential energy density. 

Measurements of the modal loss factor are often erroneous, with accuracies 

no better than about 20% due to the complicated, non- linear damping 

mechan ism occurring in real vibrating structures [104]. Por thi s reason a not 

neglectab le relative difference between the transducer measured VIP and t he 

TTVE can a lso be ex pected . 

The simply supported beam rtg was d esigned to use PIl1S at one side 

and rollers at the other in order to sim ulate simply supported bonndary 

conditions. However , at the higher excitat ion frequencies an increased 

boundary movement at t he pin side could be observed where the complete 

left-hand side beam suspension was vibrat ing. Thus, it may have been that at 

the pin side the boundary was not entirely non-dissipa t ive. 

During t he ESPI exp riment the beam was generating a large a ndib le 

amount of sound , especia lly a t the higher frequencies. Although the beam due 

to its small area is less prone to sound radia tion , and only sma ll fract ion of 

the VIP will be radiated away, some small 10 ses due to sound rad iation 

could have been occurred during t he experiment. 

Some additional sources of errors that might also have caused a 

relative difference between t ransducer measured VIP and ESPI measured 

TTVE will be mentioned nex t . As it can be seen by equation (3.27) t he 

measured VIP is depending only on the measurement of the cross-spectral 

density. Material properti es are not incorporated into the computation 

method . However, the com putation of the TTVE from the measured 

energetic dat a required know ledge of the Young 's modulus, the beam mass 

density a nd in the case of the uncon trained layer a ttachment , the Young 's 

modulu of the layer , the mass density of the layer a nd the layer loss factor. 

These quantities were assumed herein and , thus, differences can be expected 

to the true values. The reason why a rela ti ve difference was employed is that 
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9 Beam Measurement Results 

it cannot be ruled out that the transducer based VIP measurements are 

failure free and, thus, some error may also be expected here. 

As mentioned before the ESPl displacement was not recorded entirely 

over the whole beam length. Further, to avoid spectral leakage when 

employing the KSD method, the ESP! measured beam displacement was 

truncated t o an integer number of wavelengths. This procedure additionally 

reduced valuable spatial ESPI displacement information. Hence, the potential 

energy density of the beam was provided only pa rtly because of the signal 

window used in the VEFESPI model. To compensate for the missing 

potential energy density beam sections, the integrated and truncated 

potentia l energy den ity was multip lied by a factor depending upon the ratio 

of number of wavelengths included in the signa l a nd the number of 

wavelengths excl uded due to signal truncation . Th us, the integrated 6'" mode 

potential energy density was multiplied by 3/2 assuming that 50% of 

informati n was mi sing. T his factor reduced with increasing modes to 4/ 3 

for the 8'" mode, 9/8 for the 9t
" mode and 11 / 10 for the 11'" mode. With 

increasing mode numbers and especially at the odd-numbered modes much 

smaller factors were employed a nd, hence, a higher accuracy can be ex pected . 

It has been mentioned that at the 6'" mode 50% of the spatial information 

was missing. The hystereti c damping mecha nism causes a spa tial d ecay of 

wave amplitudes away from excitation location . However, thi s decay was not 

regarded within the multiplication factor a nd , thus, a slight overestimation of 

VIP i unavoidab le, decreasing with increasing mode numbers. Hence, t he 

lower modes are sometimes in a lower agreement than the higher modes , as it 

can be seen in Tables 9.3 to 9.5. 

It should also be noted here that the filter cut-off para meters used for 

the above presented analysis are taken from the theoretica l mean squared 

error analysis carried out in section 6.3.3 and shown in Appendix A19 . 

However , there is some di fference between the true measured ESPI beam 

displacement a nd the numerically generated ESPI noise superimposed beam 

disp lacement due to a not exact ex traction of the measured ESPI noise. 

T hus, employing a filter cut-off trial and error process, especially when using 

the Butterworth filter , could a lter the rela tive difference further by up to 5%. 
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9 Deam Measurement Resu lts 

Further , t he recorded ESPI d isplacemen ts were partly heavily contaminated 

by opt ical noise with a product of TJ x SNR of 0.28 at lowest and 6.1 at 

greatest . A reduct ion of t he optical noise produced by the ESPI system would 

also lead to better agreements between m easured VIP a nd measured TTVE. 

As discussed above an energy balance, as defin ed by equat ion (3.40) , is 

hard to accomplish when dealing wit h real structures. It was shown in section 

6.3 tha t the active VEF can be measured successfully in theory. An error a nd 

sensiti vity study showed that despite disp lacement non-period icity and noise 

conta minat ion , the energy bala nce according to eq lla tion (3.40) produccd 

good resul ts. However , as demonstrated in this section , a s llccessful energy 

balance in real structures was depending on many factors that needed to be 

taking into accoun t but were not incorporated in eq ua tion (3.40). 

As demonstrated in section 6.3.3 and by t he above given cxperimenta l 

findin gs the ESPI based measurement of the react ive VEF did not yield to 

satisfy ing results for both , t he VEFESPl and l ED I computation method. It 

can be realised that due to the wavenumber spectra l filtering procedure too 

much of the exponential decay ing nearfi eld wave information was erased from 

t he wavenum ber spectrum that was t hen used to compute t he spatia l 

derivatives. Even the more insensitive incrementa l energy density integration 

method failed to compute an accurate reactive energy flow. It can be seen 

from F igure 6.30 that the Lagra ngian density is h ighest around the excitation 

location and approximates towards zero at both of the simply supported 

beam boundaries. Th is very fin e difference cannot be detected when fi ltering 

noisy measured ESPI data. Figure 9.17 d isplays the measured Lagrangian 

density of the 11th mode single-layer damped beam. It can be realised that 

due to the filtering there is also a d ifference between the potential and kinetic 

energy d ensity away from excitation location and, th lls, it is hardly pos ib le 

to compute an accurate reactive energy fl ow. 

Within th is section it was experimentally validated that the 

incremental integration of the ESPI measured potential energy density is 

more suitable when measuring VEF in high standing wave environments of 

fini te beams. The conventional VEFESPI method, given by equation (3.33), 

fa iled to produce an accurate VEF measllTement over the beam Icngth due to 
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Figure 9.17 Filtered ESPl measured Lagrangian energy density of t he 11'" mode 

single-layer damped beam displacement at 2745 Hz. 

the employment of 3,,1 order spa t ia l d r ivatives. In contrast, t he IEDI method 

ut il ised a 2"'1 order spati a l der ivative only. The IEDI method was more 

insensitive towards noise contamina t ion and , th us, produced a much more 

accurate VEF curve when measurlllg in high standing wave environments. 

Though the relative differences between accelerometer measured VIP 

and potential energy integrated TTVE seemed to be fa ir ly high at a first 

g lance the author is convinced that due to the above discussed reasons the 

resul ts obtained are reasonable. Unfortu na tely, there is no comparison to 

other method s in the literature that ex perimentally measured energy fl ows in 

high standing wave fi elds because no error analysis was carried out. It has 

been shown further that the accelerometer based measurement of VEF within 

the beam structure produced mea ni ngless resu lts with in h igh stand ing wave 

environments . 

9.3 Moment Excited Beam Measurements 

9.3.1 "Infinite" Beam Measurements 

Figure 9 .1 (a) shows typical time h istories of the two measured force s ignals. 

It can be een in Figure 9.18(a) that t he force signals on each moment a rm 

occur simultaneously and a re of a lmost eqna l a mplitude. Figure 9.18(b) 
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9 Beam Measurement Re ults 

shows the au to-spectra l density of the two impact force signa ls PI and F,. It 

is ev ident from Figure 9.1 (b) that the first zero in the a pplied force spectra 

occurs at approximately 470 I-Iz and that both force spectra are a lmost 

identical , particularly below the first zero frequency at 470 Hz. 

F igure 9.19 displays on a logarithmic frequency scale from 100 I-Iz to 

1000 Hz the amplitude ratio of actual moment to measured moment ignals 

calculated using equat ion (8.19). It can be seen in Figure 9.19 t ha t below t he 

first zero in the applied force spectr a, at 470 I-Iz, t hi ' ra tio is approximately 

1.0 indicating that the measured moment M is a good approximat ion to the 

actual moment M" . However , above 470 Hz, the trend is for t he m ment 

ra tio to increase with increasing frequency. T hus, from equation (8 .1 ) it is 

clear tha t as t he impact forces shown in Figure 9 .18(b) reduce in amplitude 

the applied moment M wi ll reduce in ampli t ude and , hence, the rot ary inerti a 

J of t he moment arms will become a more signi llcant contributor to t he 

actual moment Mcr' 

9.3.1.1 Moment Point Mobility Measurements 

Figure 9 .20 displays logarithmically the modulus of the moment point 

mobi li ty of t he experimenta l "infinite" beam over the frequency ra nge of 

interest , 100 Hz to 1000 Hz. The "corrected" measured point mobili ty data 
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Figure 9.20 Modulus of the measm-ed and theoretical moment point mobili ty of the 

moment excited "infinite" bealn . 
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calculated using equation (8. 15) YM """ are shown as a solid line. Also shown 

in Figure 9.20 is the modulus of the moment point mobility YaM calcu lated 

using equat ion (5.22). It can be seen that the measured point mobility data 

from t he experimental beam follow the trend of the equivalent theoretical 

infinite tructure. T he fluctuat ions of the measured mobility curve over 

frequency are due to the fact that thc experirnental a n echoic terminat ions do 

not work perfectly and, hence, there is some wave refl ection from the ends of 

the beam. T he measured moment point mobility data shown in Figure 9.20 

appear to show a resonance at approx imately 470 Hz. However , sin ce th is 

frequency coincides with the first zero frequency 111 the applied force signal, 

th i effect is probably not due to a resonance in the structure bu t rather is 

attri butable to the biasing effect of noise in the force signal when llsing the 

H,(J) estimator . 

9.3.1.2 Input Energy M easurements 

Figure 9.21 shows the magnitude of ampli tude nltio of ex traneou' force to 
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9 Beam lvIeasurement Results 

applied moment IF/ MJ calculated uSlllg equation (8.21). It can be seen in 

F igure 9 .21 t ha t t his ra t io remains less than 0.75 up to the first zero in the 

applied force signals at 470 Hz. From equation (8 .21) it is clear that as t he 

impact forces, and , hence, t he measured moment N! reduce in amplitude with 

increasing frequency then the transver e inertia term rniPu/at? will become 

increasingly significant compared to t he measured moment. For t he 

experimental "infinite" beam studied in this work t he extraneous force F is 

assumed to have no effect upon t he measured results, since t he cross mobility 

of an infinite beam is zero. However , Figure 9.21 indicates that a correction 

to the measured moment mobili ty, as expressed in equation (3) of reference 

[107], may become necessary if the current tech nique is applied to pract ical 

finite structures wit h non-zero cross mobility terms. 

Figure 9.22 shows a compar ison between the vibra tional energy input 

to the beam due to moment excitation (p ... (f ),, ),., calcula ted using equa tion 

( .17) , a nd the sum of direct vibrationa l energy input to the beam 's two 

moment arms by the two impact forces p ... (f) F1 + P ... (J)f~ calculated using the 
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Figure 9.22 Vibrational energy input to the experimental "infinite" beam measured 

using moment and rotational velocity compared with measW'eci energy calculated 

using force and transverse velocity on the moment arms. 

well known cross-spectral densi ty method , equat ion (3.27) , for both force 

signa ls. It can be seen in F igure 9.22 that both methods indicate similar 

values of input energy over a wide frequcncy ra nge. Since both methods used 
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the same force signals a nd differ only in the response accelerometers 

employed , it can be assumed that the finite-difference a pproximation of the 

rota tiona l velocity incorpora ted into eq1lat ion (8. 17) can be used to 

successfully measure the energy input to a beam by moment excita tion . 

9.3.1.3 Comparison of Input Energy and Transmitted Energy 

Measurements 

Figure 9.23 shows a comparIson of the measured input energy due to the 

moment excita tion (P", (J )"),, and the tra nsmitted vibra t ional cnergy (P,,,,(J ), 

+ P",(J) ,),., calculated using the t wo-accelerometer technique, equa tion (8 .5). 

T he tra n mitted energy was measured on both ides of the excita tion 

location , as shown in Figure 7.7, and then sum med to provide the total 

transmitted energy in the structure (P,,,,(J) ,. + P,,,,(J ),),,. F igure 9.23 indicates 

a close ma tch between the measured input and tra nsmitted energies below 

470 I-Iz. The discrepa ncy bet ween the energy value at a pproximat ely 470 I-Iz 

can be attributed to noise on the input force signal. 

Above 470 I-Iz it can be een in F igure 9.23 th at t he measured 

t ransmitted vibrational energy is slightly higher than the moment input 

energy, which is in confli ct to the energy conservation law. One expla nation 

may be tha t different accelerometers pa irs were used on either side of the 
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Figure 9.23 Comparison of input and t ransmitted energies In the experimental 

"infinite" beam. 

272 



9 Beam Measurement Reslllts 

beam. During t he experiment a pa ir of lightweight ICP accelerometers was 

employed to measure t he energy flowing to the right of the excitation 

location however, a pair of convent iona l charge ty pe accelerometers was used 

to measure the energy flowing to the left of the excita tion location. T he 

charge type accelerometers a re much heavier than the ICP accelerometers 

a nd so may have mass loaded t he struct ure. For these part icular transdllcers 

the ICP accelerometers were a more closely phase ma tched pair t ha n the 

charge type accelerometers. Hence, the ICP accelerometers can be expected 

to produce a more accurate measurement of transmitted energy. Assuming 
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Figure 9.24 Comparison of inpu t and doubled transmitted energy to the right of the 

excitation location. 

that t he transmitted energy, flowing to either sid e of the excitation location 

is ha lf the input energy , the doub led transmitted energy to the right of t he 

beam 2 (P, ,2 (1),)" is shown versus the moment input energy in F igure 9.24. 

It can be een t hat both sets of data are in excellent agreement wit h each 

other, particula rly at frequencies below the firs t zero in the applied force 

spectrum at 470 Hz. 

9.3.1.4 Discussion 

T he above section has presented the ex perimenta l validat ion of a tech nique 

to measure the moment point mobil ity and energy input to an "infinite" 
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beam by moment excitation . The novelty of th is technique is the use of a 

specially designed moment excitation rig to generate an impulsive moment 

combined with a finite di fference based spectral density measurement 

method . 

Preliminary measurements made upon an experimental "infinite" 

beam have shown th is technique can be used to accm ately measure the 

moment point mobility and energy inpu t to t he structure. In particular , t he 

measured momen t point mobility o f t he experimental "infin ite" beam was 

seen to follow the trend line of the corresponding t heoretical infinite 

structure. Further , the energy inp ut to the beam by moment excitation 

measured with the new technique was shown to match (i) convent ional input 

energy measurements made using the cross-spectral density between a pplied 

force and transverse acceleration signals a t t he points of impact on the 

moment arms of the beam ; and (ii ) con ventional transmitted energy 

measuremen ts made using the two accelerometer technique in the vibrat ional 

farfield of t he beam. 

However , it is clear that the dura tion of the moment impact should be 

kept as small as possible so as to a void a zero in the force spectra a t low 

frequencies. At frequencies above the fir st zero in the applied force spect ra it 

was shown t hat t he effect of transla tiona l inertia and rotationa l inerti a due to 

the a ttachment of the moment arms becomes significant . A fur t her 

disadvantage of the proposed technique is the requirement to rigid ly attach a 

moment arm to the structure a nd the need for sufficient access to carefu lly 

locat e the momen t exciter. 

Un for tunately, t ime pressure did not a llow fo r furt her investigation of 

the moment measurement technique on a simply supported beam. 
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10 THEORY OF VIBRATIONAL 

ENERGY IN PLATES 

10.1 Introduction 

The a im of t his chapter is to study vibrati nal energy relations of infinite and 

simply supported pla tes a na lytically. The plate structures are asslllned t o be 

uniform , linear-elastic and isotropic. T he solut ions presented herein are d ue 

to the application of a harmonic poin t force excitat ion . Within the ana lysis o f 

infinite pla tes, it is further assumed t ha t due t o trong vibrational energy 

transmission , internal energy dissipation proce ses wit hin t he structure are 

neglectable. Within the analyt ical a na lysis o f t he simply suppor ted p late a 

hysteretic da mping model i employed in order to account for interna l energy 

dissipat ion . Furthermore, the Euler-Dern oull i plate theory is a pplied whe n 

investigating infinite as well a simply supported pla te'. 

Vibrationa l input power (VIP ) a nd vibrationa l energy flow (VEF ) 

expressions of an infinite plate a nd of a simply supported pla te are presented. 

Most of the e energy expressions were deri ved or iginally as they could not be 

found in any li terature reference. Addit io nally, t he presented unconstra ined 

damping layer theory was extended herein by includ ing the loss fact or of t he 

plate , which usually is neglected in the existing li terature. 

Section 10.2 presents the analysis of VEF and VIP 111 a n infin ite pla te 

uSll1g t he prior determined forced tra nsverse d isplacement response of t he 

plate . Ana logously , section 10.3 presents the analysi of VEF and VIP of a 

simply suppor ted plate from the prior defined t ransverse simply supported 
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p late response. Section 10.4 introduces the theory of an unconstrained layer 

a ttachment to a thin pla te structure. 

10.2 Inf"mite Plate Analysis 

The a nalysis of an infinite structure enables vibrational energy stud ies under 

simplified conditions by ignoring rather complicated wa ve reflcctions a t the 

plate's boundaries. Thus, thc behav iour of structures with a high energy 

outflow from t he excitation location can be stud ied . Since an infin ite pla te is 

ex tended to infinity and , thus, no travelling wave reflection occur tha t may 

form a standing wa ve fi eld, the forced response of the infini te pla te can be 

derived much easier. Practical "infinite" pla te structures may be repre ented 

by finite pla te structures with a very high a mount of energy d issipa tion a t 

the boundaries. 

10.2.1 Point Force Excitation 

T he derivat ion of the complex, transverse, infinite pla te di splacement is given 

in Appendix A24 . From there, the complex, polar , transverse response of the 

infinite pla te to a harmonic point force excita tion is given by [103J: 

(10.1 ) 

Here, D IS the flexural rigidity given as Eh3 / (12 (1 - v' )) , where E is the 

Young's modulus and h is the plate's thickness. Furt hermore, Fo is the 

magnitude of the excitat ion force, IJ is the P oisson ra tio, k is the pla te' 

fl exural wa venumber and l' is the radial d istance from the excitation locat ion . 

It can be seen from equation (10.1) tha t the displacement is formed by the 

difference of two I-Ia nkel fun ctions of second kind a nd of zerot h order. In 

contrast to the arguments of the exponent ial wave-based beam 

displacements, the real a rgument kr of t he Ha nkel fun ction H~') (f .. 1·) 
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physically represents a travelling farfield and t he imaginary argument -jb' of 

the Ha nkel funct ion H6') (- j b ') represents a decaying nearfi eld around the 

exci ta t ion locat ion . 

The I-Iankel function itself is defined as a combina tion of 13essel 

fun ct ions of the first and second kinci [128], whereas the 13essel functions can 

be defined by fairly complicated infinite sum defin itions. It can be noti ced 

that due to the energy conservation within the los less infinite pla te, the 

amplitucie of t he infini te pla t e disp lacem ent must decrease with increasing 

dist a nce away from excita tion location (Sommerfeld rad ia t ion condition). 

10.2.2 Vibrational Input Power 

Analogously to the procedure undertaken in sect ions 5. 3.2 a nd 5.4.2, VIP of 

the infinite pla te i a lso deri ved here by employing equation (3.23). If one 

substitutes the tempora l derivat ive of equation (10.1) in to equation (5.18) , 

the point mobility of an infinite pla t e may be found to be [1031: 

y =~= 1 
F~ 8Dk' 8.,} D ph . 

(10.2) 

Equation (10.2) reveals that the poin t mobili ty of an infinite pla te is a pure 

real quantity and independent on frequency. Substi tuting equa tion (10.2) into 

equation (3. 23), VIP to an infinite pla te, when excited by a tra nsverse 

harmonic poin t force, can be wr itten as: 

10.2.3 

(P) = F;,'w 
'" ':-' 16Dk' 

F,' _ 0 

- 16.,}Dph . 
(10 .3) 

Transmitted Vibrational Energy Using Hankel Functions 

Lande a nd Langley deri ved total transmi t ted vibrational energy (TTVE) 

expre sion for cylindrical bending Wf1ves in pla tes [181. The TTVE represents 
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the total in tegra ted energy, which flows through a closed contour located 

around the excitat ion locat ion . T his quant ity is independent upon the 

distance from t he excit a t ion poin t. In t his s tudy attent ion was focused on t he 

effect s of p la te d isplacemen t modelling using eit her the modified 13essel 

functions or t he Hankel funct ions. F urt hermore, possib le energetic 

in teractions bet ween t ravelling and evanescent waves were in vest igated when 

modelling with t he previou Iy ment ioned functions. An ingoing wave with 

amplitude A,,, and an outgo ing wave with amplitude B" were considered. In 

cases where t he t ravell ing wave component of the plate was described by the 

second order I-Iankel function H,~2) (kl-) it has been shown t hat t he total 

transmitted energy is equal to the input power expression shown in (10.3). 

10.2.4 Transmitted Vibrational Energy Using Asymptotic 

Expansion Functions 

In a nother method to compute VEF in an infin ite p late , and to simplify t he 

vibrational energy derivat ions, the Hankel funct ion d ifference, as shown in 

equation (10.1) , can be approx imated by truncating t he asymptotic 

expansions of the Han kel fu nctions. T hus, for small arguments of Ikrl « 1 it 

can be shown t hat the Hankel funct ion d ifference may be approximated by a 

natural logarithm difference as [129]: 

(10.4) 

For la rge argumen ts I k~ ' I » 1 the Ha nkel function difference may be 

approx imated exponentia lly by [103]: 

(10.5) 
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It can be seen from (10.4) that the approximation of the Hankel funct ion 

d ifference a t small values of IkT'1 is equal to onc and , thus, t he d i p lacemen t 

at T = 0 is equal to Fo / (j8De). However , expression (10.4) cannot be used 

to determine VEF in close vicinity to the excita tion locat ion , since this 

approx imation is a constant va lue equa l to t he displacement amplitude at t he 

excita tion location. Thus, only the approxima tion of the I-Iankel function 

d ifference at IkTI» 1 is employed in thi work in order to determine VEF in 

an infinite plate ana lytically. 

10.2.4.1 Polar Expressions 

If one substitutes equa tion (10.5) into equa tion (10.1), the polar 

approximation of the infini te plate displacement is given by [103]: 

111(T,B,t) "" . Fo 2 ~ 2 (e +r ~) - je ,r]eJW1
• 

J8Dk Tik~' 
(10.6) 

As mentioned beforehand, equation (10.6) is valid for IkTI » 1 only. In 

reference [103] it has been shown that from IkT'1 ~ 4 very sma ll errors can be 

expected . The first exponential bracket term in (10.6) represents a travelling 

wave component and the second exponentia l bracket term represents a n 

evanescent wave component . 

If one substit utes equation (10.6) in to equations (3.68) and (3.69), 

VEF expressions of the infinite plate may be obtained. It can be reali sed tha t 

the infinite pla te di splacement has only radia l and t empora l dependency. The 

d isplacement does not alter angular ly due to usage of the zeroth order Hankel 

function . Hence, t he angular derivat ives are expected to be zero. Thus, 

equation (3.69) and t he angular derivat ives in equat ion (3.6) can be 

neglected in the VEF ana lysis. A complete derivation of VEF from the 

t runcated asymptotic expansion for large values of Ib-I of an infinite pla te is 

given in Appendix A25. From Appendix A25 the active VE F per unit length 

of the infinite plate (p, ) = !R {(r, ) + (p" ) } can be found to be: 
• F.... tt'tHl F", ril l} F", 
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(-p) _ Fo'w [16 4) , - - - 41 ' 
• F~ 512D7r /,; ' r k ,. ' 

(10.7) 

Note, here the overbar denotes VEF per unit length , the subscript a denot es 

an active qua ntity and the subscript " denotes a reactive qua ntity. It is 

evident fTom (A25.3) that the VEF due to the evanescent wave is a pure 

imaginary quantity and , thus, the eva nescent wave contributes only t o 

react ive energy flow . Analogously from Appendix A25 , the reactive VEF per 

unit length of the infinite plate ( P,.lF~ = { ( P'''.'' )F~ + (p"""),;. } is given by: 

(p ) = ' Fo'w [(1 "T )(l + // 4(//- 1)] "T 4 (//- 1)) , J + e , 4 + .\ , + e 4 .\ . 
, F~ 256D7r /';",. k' ,. k ,.' 

(10.8) 

Equations (10.7) and (10 .8) display the act ive and reactive VEF of a n infinite 

pla te in dependency upon the rad ius r when modelling t he point forced 

infinite pla te response by equa tion (10.6). It can be seen that the polar 

defin ition of active VEF, equation (10.7), in an infinite pla te is a fairly simple 

expression . Furthermore, only the travelling wave component is contributing 

to act ive energy flow , as evident when comparing equation (10.7) a nd 

equation (A25.6). The reactive energy tran mi sion IS a more complex 

expression . Interest ingly , t he reacti ve energy flow is composed of not only 

exponential decaying terms but also of t ra velling terms. However , it cannot 

be pointed out which term in equation (10.8) is the error caused by the 

truncated asymptot ic expansion, as an exact reacti ve TTVE was not deri ved . 

A simple energy ba lance can be computed for the infinite pla t e, as 

shown by equat ion (3.59). If one neglects the interna l energy di ssipat ion 

within the structure due to high energy boundary crossing (outflow) being 

present , it can be assumed t hat t he integrated VEF per unit lengt h of the 

infinite pla te around a closed contour is equa l to the real pa rt of the complex , 

time-averaged VIP inject ed into the structure. Thus: 

~ {(P", ).} = 1 (p,,),;. dr . (10.9) 
c 
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It can be seen from (10.9) that at each location within the plate the 

conservation of energy demands equality between VIP a nd total transmitted 

act ive energy. Requirements for energy equality are a closed contour and a 

contour location around the excitati n poin t. When dealing with polar 

expressions, ideally a circle may be chosen as t he sha pe of the contour to be 

integrated . Because the circumference of t he contour t o be integra ted 

increases with increasing rad ial d i t ance from the excita tion location , the 

spatial amplitude of the infinite plate di sp lacement must decrease in order to 

ensure injected energy is equal to the tota l energy fl ux (TTVE) th a t flows 

perpendicular to the normal of the pla te's siHface across the boundar ies of 

t he closed contour . Figure 10.1 di plays a circula r a nd rectangu lar con t our 

shape employed in this work. As mentioned before, polar expressions ideally 
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Figure 10.1 Different integration contours in the VEF field of an infinite plate. 

are int egrated around a closed circle. If one substitutes the acti ve VEF 

expression given by equation (10.7) in to equation (10.9) and t a kes into 

account tha t dr = rdt/i, one may obtain the fo llowing integral expression: 
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, ,. ( ) p = Fow 16 _~ d 
( ")':" 512D7T J k' k"T' I/> . 

o 

(10.10) 

13y solving equation (10.10) the active TTVE is: 

P = 0 1 - --F.'w ( 1) ( "k 16Dk' 4k',·2 · 
(10.11) 

From equation (10.11) it can be noticed th at the firs t term is equal to the 

VIP expre Slon given by equation (10.3) and independent of the radius ,. as 

well as the circular frequency w, wh ich can be cancclled out from (10.11). 

The second t erm can be identified as the error made when using the 

truncat ed exponent ia l asymptotic expansions of the Hankel fun ctions. 

However , it can a lso be seen from (10 .11) that th is error decreases 

quadratically with increasing radius ,. and rat ionally by 1/ w. T hu , for large 

arguments of IkTI, the error introduced by the a pproxima tion can be 

considered to be small. 

10.2.4.2 Cartesian Expressions 

sing the relat ion 1" = x' + y2 the polar d isp lacemen t a pproximation of the 

infinite pla te, as shown by equat ion (10.6), can be written in Cartesia n 

coordinates as: 

F. 
w(x,y,t) "". o , 

J8 Dk 

2 

[ 

-' [k(x' + u')~-"-l .(, ,)1 1 ' ____ ~ 4 . - k 7 +y 1 }wt 
,- I e - Je e . 

7Tk(X' + y2)2 
(10. 12) 

Time-averaged VEF in the x direction that is defined by Cartesia n 

coordinates can be found by substituting equation (10.12) into equation 

(3.49). A complete der ivation of VEF within the infinite pla te, wh n using 

Cartesian coordinates , is given in Appendix A26. From there, the active VEF 

in the x direction only (p) = ~ {(P ) + (Pt ) } is: 
X4 F"" 71'1'fHl F", .t rllu Fc... 
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(10.13) 

ote, herein the quantity (px• )F~ is of two-d imensional nature. However, the 

mathematically more correct notation Pr (x, y)~ is dropped for corn paction . . ~ 

It can be noticed from equation (A26.5) t hat the VEF due to the evanescent 

wave is purely imaginary and, thus, the evanescent wave cont ri butes only to 

reactive energy flow. Furthermore, equation (10. 13) can easily be derived 

from equation (10.7) simply by substituting l' = (x' + y,)y, and x = COS(O)T 

with 0 = 0 into equation (10.7). T he VEF of the infini te p late in t he y 

direction is simply obta inab le by in tercha nging the spatial variable x and y. 

It can be seen from equation (10.13) that only the x in front of the bracket 

term needs to be subst ituted by y in order to find the active VEF in the y 

direction. The react ive encrgy transmission in the x direction within the 

infinite p late based on Cartesian coordi nates deri ved from the t runcated 

asymptotic expanSIOn of the Hankel funct ion 

{(p ) + (p ) } may be written as: ",.",,0> ':'" x '''' " F~ 

1 + e - 2k x +y , 5 + ---'-----'-.-3 + 
. Fo'wx 

= J 256D7r 

[ (' 'll )[ 1+// 4( /1- 1) 1 
kG (x' + y' F k' (x' + y' )'2 

- 'k(<'+tli 4 (11 - 1) 
e , 

k' (x' + y' ) 

d ifference 

(10.14) 

Also here, t he react ive energy flow in the y direction can be found by 

substituting the variab le x in front of t he bracket term by y. Equati ns 

(10.13) and (10.14) rep re ent the t ime-averaged two-d imensional act ive and 

reactive energy flow wit hin t he infin ite pl ate in the x direction. As shown by 

the polar expression , the second bracket term in (10.13) is the error made 

when approxim at ing the infinite plate disp lacement by equation (10.12). 

The total transmitted act ive vibrational energy can be found by 

integra ting expression (10.13) and its equivalent expression for the y direction 
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along a closed square contour , as shown by Figure 10.1. Integrating equation 

(10.13) from point 1, x = r·, and y = - re> to poin t 2, x = r', and y = r'" the 

following integral ex pression can be formed : 

It can be shown that equa tion (10. 13) integrated from point 2, x = r, a nd y 

= r·" to point 3, x = -1', and y = r'" results in zero flow as: 

(10. 16) 

Furthermore, it can a lso be shown that in tegrating equation (10.13) from 

point 3 , x = -r~ and y = reO to point 4, x = -r·, and y = -r·" wi ll y ield to: 

(10.17) 

If one takes the VEF in the y direct ion (p) in to account and defin es the 
11. F" 

act ive TTVE in the x a nd y directions as: 

(10.18) 

it can be demonstrated that due to symmetrical properties of t he Cartesia n 

coordinate based VEF , the TTVE in the x and y d irections is equal and, 
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ote, a square contour integration was assumed. Hence, the total transmitted 

energy within the infinite plate can be determined by using equation (10.15) 

as: 

(10. 19) 

It can be reali sed from equation (10.19) that the fir t term in thi equation is 

equal to the injected VIP , as given by equat ion (10.3) . The second t erm in 

equat ion (10. 19) is the error made due to the asymptotic displacement 

a pproximation. 

If one desires to determine transm itted vibrational energy from polar 

VEF expressions numerically , Cartesian coordinate based integration can be 

carried out only. T hus, due to straight line in tegration 01' a rad ial function an 

error wi ll be in troduced, which need s to be compensated for . If one 

substitutes the relation 1.
2 = x2 + y2 in to equation (10.7) and om its the 

second error term , which arises due to Hankel function approximation , one 

may find the following expres ion: 

P, (x,y)~ . ~ 32De7r ,jX2 + y2 
(10 .20) 

Integra t ing equation (10.20) along a square contour in the sa me manner as 

d escribed above to compute the total energy flow through that square 

contour one may obtain : 

J" - [../2 + 1] F'o'w (P,,)~ = 4 P,. (x,y)F dy=4 In../2 ' 2' 
~ • ~ 2 - 1 32Dk 7r 

- < 

(10.21) 

With the result of equat ion (10.21) a compensation factor can be fou nd to 

compen ate the error made when integrating polar VEF a long a square 

contour . If one divides the first term of equation (10.ll) by the result of 
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equation (10.21), the following correction factor may be employed when 

integra ting polar VEF of an infinite pla te using a square contour as: 

10.3 

(P,,),,--

{(P" ),J 1 .4 21n(.fi + 1] ' 
.fi - 1 

Simply Supported Plate Analysis 

(10.22) 

In contrast to the infinite pla t e, the simply supportcd p late is considered here 

to be a closed rectangular system with adiabatic simply supported boundarie 

a t its edges. It is a sumed furth er , that the plate is simply supported on a ll 

four edges, x = 0, x = Lx> y = 0 a nd y = L,. 

As shown in the previous sect ion , the infini te plate responded to a 

harmonic poin t force excitat ion by creati ng rad ia lly symmetr ic waves, which 

travelled away from the excitation location toward infinity. It can be 

realised that similar to the stand ing wave d isplacement formation process of 

the finite beam the initia lly travelling infinite plate waves are eventually 

refl ect ed at the rectangular edges of the finite pla te. Furthermore, it can also 

be realised that this reflection process is much more complicated due to t he 

rad ia lly two-dimensiona l incidence of the infinite travelling waves. Because of 

the previously mentioned complicated wave scattering process a modal 

approach , rather than a wave-based approach , is employed within thi s 1V0rk 

in order to describe t he sim ply supported pl ate response and , thu s, 

vibrational energy. 

Theoretically, a vibrat ing finite pla te structure exhibits resonant 

behaviour on an infinite number of different frcquencies. A resonant vibration 

situa tion occurs if the excitation frequency coincides with the eigenfrequency 

of the structure. This can be on single frequency excita t ion or broad band 

frequency excita tion . T he eigenfrequencies are dependent on the ma ter ia l 
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used , t he geom etric shape of the structure and the boundary conditions 

employed . Each resonant vibration situat ion is called a mode and each mode 

has its par t icular spatial distribution pattern . In the case of a two

d imensional structure mode sha pes occur in both d irections. 

10.3.1 Point Force Excitation 

The basic concept of t he modal approach is t hat when a structure is excited 

by a certa in excitation frequency, either single or broadband , cach mode of 

t he structure is con tributing with d ifferent st rength to the tota l response of 

t he st ructure . Thus, the modal so lution of the structural response must 

include a ll eigenfunctions, eigenfrequencies a nd the load applied to force the 

plate response. E mploying the well known eigenfunction expansion theorem 

the forced spa ti al plate displacement w(x,y) is given by [129]: 

x "" </! (x y) J w(X,Y)= LL 2 ",,,, 2 2 )J(x, y) </!",,,(x,y) dxdy. 
" - 1 "' - 1 J ph</!",,, (x,y) dxdy (w",,, - w ) S 

(10.23) 

5 

In equa t ion (10 .23) t he eigenfunctions are denoted as I/J",,,. Further , w",,, is the 

eigenfrequency, w is the excita tion frequency and )J(x, y) is t he applied load. 

T he integer variables, m and n, are t he modal numbers in t he x a nd y 

direct ion , respectively. T he most important property of the eigenfunct ions 

their orthogona lity . Furthermore, the eigenfunctions must sati sfy the 

boundary condit ions of the respecti ve structure. It can be seen that the 

st ructura l re ponse, as shown in equation (10.23), is a n infin ite series of mode 

shapes contributing wit h d ifferent st rength to the total plate response. If the 

excita tion frequency W coincides with t he eigenfrequency w"", of a par ticular 

mode, thi s mod e i then the dominant contributor to the tota l structural 

response. 

In the case of simply supported r ctangular boundaries with zero 

d isplacement and zero moment cond it ions at t he edges, it can be shown that 

the following eigenfunctions sat isfy the previously mentioned condition [129]: 
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. [m7rxj. [n7rY ) <p",,, (x, y) = S!l1 ---r:: S!l1 L. . (10.24) 

The simply supported rectangular pla te disp lacement can be found by 

substituting equation (10.24) into (10.23) and solving the integraI 

expressions. The force integraI on the right-hand side may be soIved simply 

by employing a harmonic point force with p(x,y) dxdy = Foe''''' at x = 1iJ and y 

= Yo. From equation (10.23) , it can be een that in case of 0)"", = 0) t he 

response of th is particular mode tends towards infinity , which clead y is not 

t he case in reality. Thus, interna I damping needs to be included. Intern a l 

damping is considered here by empIoying a hysteretic damping proces 

imilar to the beam case. Taking in terna l damping effect s into account , t he 

point forced simply supported rectangular p late displacement can be written 

as [129]: 

. [m7rx j . [n7rx) . [m7r.7;o j . [rmyo) Sill -- Sill -- Sill -- Sill - -

4 li' e ,wl 00 OG L L L L 
( ) C o "" "" x y x y 

'W x,y,t = uu 2. 2 . 
phLxLy ", : 1 ,, : 1 W"", (1 + )1]) - W 

(10.25) 

From equation (10 .25), it is not obvious how the d enominator in (10.25) 

introduces structural damping sim ilar to the exponent ial spatial decay of the 

wave-based a pproach. A good explorat ion of the duality between the modal 

approach and the wave-based approach of two-dimensional structures can be 

found in reference [130]. As a n a lternative to equation (10.25) , a summa tion 

of plane exponentia l travelling waves i often used to model the response o f 

finite p lates [4]. However, th is model is re tricted to farfield vibration only. 

10.3.2 Vibrational Input Power 

Analogously to the previous section , VIP of the simply supported plate is 

also der ived here by employing equation (3.23). Using the temporal 

derivative of equation (10.25), and su bstituting the simply supported 
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rectangular pla te velocity in to equation (5.18) , the point mobility of the 

simply supported plate is found to be: 

. ,(m7rXo) , ,[n7rYo) SIn -- SI ll --

_ 4 jw f'-. f'-. Lx Ly 
Y,~ - uu , . , . 

phL;r. Ly 111 = 1 11 = 1 Will" (1 + J17) - w 
(10.26) 

If one Ilbstitutes equation (10.26) in to equation (3.23) , t he vibrat iona l 

energy input to a simply supported rectangular plate, excited by a point force 

at excitat ion location x = lU and y = Yu , is given by: 

10.3.3 

(p) _ 2wF;,' !R 
"'F.- ILL P}' :r y 

. , (m7rXO ) . , [n7rYo) sm -- SIn --

.f'-.~ Lx Ly 
Juu , ( . ) , . 

III= } 11 = 1 Will" 1 + J1] - W 

Transmitted Vibrational Energy 

(10.27) 

T ransmitted vibrationa l energy within the simply supported rectang ular p late 

can be found by ubstitu ting t he simply 'upported plate d isplacement , as 

shown in equation (10.25) , into equation (3.49) and (3.50) , respectively in 

order to calculate VEF into t he x and y di rections. A complete derivation of 

VEF, based on the eigenfllnction expan ion theorem , is given in Appendix 

A27. From there , the complex VEF in the x di rection is given by: 

(p ) = .iwDC' tttt C""C,,,C,P . x 
x F. 2 "'_ I " _ I ' _ I ' _ I (w;", (1 + j1)) - w' )(w~, (1 - jry) - w' ) 

sin (C",x) sin (C"y) sin (C,x)sin (C,y) x 

[

cot (C", x) (C;:, + C"'C,~ ) - cot (C,x) C, (C,;, + IlC,;) +] 
(1- IJ) cot (C",x) cot (C"y) cot (C,y)C",C"C, . 

(10.28) 
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The complex energy now in t he y direction can be written as: 

(p) = jwDC
2 tttt Co." C .• C",C" x 

g F. 2 "'- 1 "_ 1 k-1 ' _ 1 (w~", (1 + j7)) - w2 )(wZ, (1 - j7)) - w2
) 

sin (C".x ) sin (C"y) sin (Ckx) sin (C.y) x 

[

cot (C"y ) (C: + C.P,:, ) - cot (C,y ) c, (C.: + //C,:,) +) 
(l-l/)cot(C",x)cot(C"y)cot(Ckx)C",C,Pk . 

(10 .29) 

ote, in equation (10.28) and equation (10.29) the under-bar denotes a 

complex , nexural rigidity D = D (1 + j7)). It can a lso be realised from 

equations (10.28) and (10.29) that the employed products of sine functions 

a nd cotangent fun ctions are not dellned at the boundary location x = 0, x = 

LL> Y = 0 and y = L" as well as a t locations where the cotangen t argumen t is 

equa l to an in teger product with n. This unfortunate problem occnrs due to 

simplillca tion of equat ions (A27.12 ) and (A27.15). However , the dellnit ion 

given in equations (A27.12) and (A 27.15 ) ar true for each location within 

the plate. Thus, when employing equations (10.28) a nd (10.29) it has to be 

assumed that VEF at the boundar ies is zero due to zero transverse and 

twisting velocity, as well as zero bending moment. In equations (10.28) a nd 

(10.29) the following substi tutions lVere used: 

k7r 
Ck =- , 

Lx 
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C = 17r 
, L ' 

y 

(10.34) 

. (m7rXn 1 
C"'u = In T ' (10.35) 

(
k7rX ) Ck, =sin L

x

o, (10.36) 

[ 
n7rYo 1 

C, .. =sin T ' (10.37) 

. [17rYO ) C .. = III L, . (10.38) 

It can be seen from equat ions (10.2 ) and (10.29) that VEF in a point forced 

simply supported plate is defined here by a fourfold infini te series conta ining 

products of trigonometric functions and the hysteretic damping approach. It 

can be noticed further tha t a t w"''' = w and w,., = w, t he ma in contribution to 

VEF is given at th is particular resonant mode. It is a lso clear from the a bove 

equations that modes at which W,,'" * w a nd w ... * w, contribu te less energy 

transmission to th VEF. Thus, modes with eigenfreqllencies much greater 

t han the excita tion frequency can be neglected . In practice, the numerical 

evaluation of equations (10.28) and (10.29) can be carried out by t runcating 

the infinite seri e a t a modal frequency of (w",,, = w ... »> w. 

10.4 Unconstrained Layer Damping 

The a ttachment of an uncon tra ined damping layer onto the pla te's surface 

causes a shift ZN of the neutral ax is of bending. T hus, the neut ra l axis of 

bending shifts off the plate's middle plane towards the a ttached layer. 

Attenuation of the plate's resonant vibration amplitudes is then achieved by 
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d issipating vibrat ional energy due to bend ing of the viscoelf1.st ic polymeric 

damping layer. Unlike the unconstra ined damping setup , a constrained 

damping layer attenuates resona nt ampl itudes by d issipating vibrationa l 

energy due to shear deformation of the viscoelastic polymeric d amping 

material , which sometimes is considered to be more effective. 

Due to the layer a ttachment , the origin al fl exural plate rigidity a lters. 

However , the original plate rigidity and the original layer rigidity cannot be 

simply added together , since the neutral ax is of bending has moved . T hus, 

the combined plate-layer structure must be integrated together along the z

ax is in order to obtain t he combined fl exural rigidity. T he derivation of the 

combined flexura l rigidity can be traced back to the work of Oberst in 1952 

[131]. However , in reference [131] it was a sumed that the width of the 

damping layer was small compared to t he fl exural wavelength a nd , thus, 

transversal contractions were neglected . Furthermore, it wa also assumed 

t hat t he hysteretic loss factor of the plate was much sma ller than t he loss 

factor of the damping layer a nd , hence, in ternal dampi ng with in the plate 

was neglected. Mead [1] deri ved a combined fl exural rigid ity of the plate

layer configuration by u mg the beam-layer configuration deri vation 

E D, 1)0 Damping Layer 

1 "- - z = 0 .<:: 

... " 
z 

Figure 10.2. Unconstrained damping layer attached to a plate. 
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procedure (see section 5.5). It was assumed in reference [1] that the p late has 

a unity width . Also in reference [1], the internal plate damping was neglected. 

However , one-dimensional transversa l contraction wi thin the plate- layer 

compound was incorporated. 

Within this sect ion , t he fl exural r igidity req ui red for VEF computation 

o f the simply supported plate, attached by a un iform unconstrained 

viscoelasti c polymeric damping layer , is prcsented. In contrast to the 

literature, internal damping within the plate is considered here. At lower 

th ickness ra tios hD/ hp it will be shown that t he inclusions of the plate 's loss 

factor a pproximates the combined loss factor more accurately. The deri ved 

theory of the unconstrained layer damping of a plate-layer compound is 

pre 'ented in Appendix A28. T he combined complex, fl ex llra l rigidity can be 

written in genera l form as: 

(10.39) 

Herein , D pD is the combined complex , tlexural r igidity , 'IDP is the combined 

hyst eretic loss factor due to plate-layer configuration and t he under-bar 

d enotes a complex quantity. From Append ix A28, t he real part of the 

combined complex , tl exura l rigid ity Dpo is given by : 

D 
_ 1 Apo 

121 - 1," Gpo po - ( ) (10.40) 

Here, the numerator A po and denominator Gpo are defin ed as: 

(10.41) 

(10.42) 
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The abbreviat ions AE" a nd nE" employed in equations (10.41) a nd (10.42) are: 

(10.43) 

(10.44) 

T he combined hy teretic loss factor TJDP of the plate- layer configura tion can 

be written as: 

17~17DEphp " + 1)p1)~EDhD " + [
AE" + ) [AE" + ) 
EphpEohD EohoEphp 

1)0 (Ephp (A EIo - Eph~Eoho) - E~h~ (Eoho - 2llEIo )) + 

1)p (Eoho (AE,. - Eoh~Ephp) - E~h~ (Ephp - 2 nE" )) + 
'\ :J ~ 3 '\ " 

1)pEph; + 17oEDh~ 
(10.45) 

It can be seen from equation (10.45) that t he loss factor of the pla te a nd the 

loss factor of the layer form t he combined loss factor expressions by building 

individual and cross products. If one neglects the plate 's loss factor ( TJp = 0) 

because of 1)0 » 17" , expression (10.45) can be simplified fur t her. 

Figure 10.3 d isplays a logarithmic plot of t he combined linear 

hyst eret ic loss factor TJp/) in dependency upon the thickness ra t io between 

plate and layer . ho/ hp. T he loss factor of the layer was TJo = 0.12. The loss 

factor of the plate used in this analysis was taken to be TJ" = 5.32·10" . Also 

here, t he employed plate 10 s factor was obtained from an experimental 

modal analysis carried out on an undamped simply supported plate. In 

similarity to t he result determined on the unconstrained layer damping of a 

beam , it can be een from Figure 10.3 t hat an exclusion of t he plate's 
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Figure 10.3 Combined linear hysteretic loss factor of an unconstrained layer damped 

plate in dependency on t he t hi ckness ratio hDj hp _ 

5 lO r 

, 
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Figure 10.4 Combined flexuml rigidi ty of an unconstrained layer damped plate In 

dependency on the t hicknes ratio hDj hp _ 
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hystereti c loss factor makes a difference in the combined loss factor 

computation. It can be not iced that up to a thickness ratio of hD/ hp'" 5 the 

loss factor of the plate should not be neglected. Furthermore, as evident from 

Figure 10.3 , a s ubstantial increase in overa ll structural damping can only be 

achieved within a thickness ra t io range of 1.5 :-;; ho/ hp :-;; 10. This result 

coincides wit h t he unconstrained laycr ana lysis of the beam . During t he 

experimental work within this research , a 3 mm thick plate was employed 

and a 2.5 mm th ick layer was attached to the plate 's surface. It can be 

reali sed that the t hicknes ratio is about hD/ hp '" 0.83, which is higher than 

the t hickness ra tio employed during t he simply supportcd beam exper iment. 

Thus, a larger increase in structural damping is expected for the plate 

experiment . 

Figure 10.4 displays t he alterat ion in fi exura l rigidity occurring when 

an unconstra ined layer is attached onto the plate. It can be realised from t his 

fi gure t hat t he increase in fi exura l rigidity can be neglected up to a thickness 

ratio of "Di hp '" 1. 

10.5 Discussion 

T his chapter presented the theoretical study of VEF in infinite and simply 

supported rectangular pla tes. VIP a nd transmitted energy expressions were 

originally deri ved for both plate structures based on t he spatial partial 

der ivat ives of the prior deri ved infini te and simply supported p la te 

disp lacements. Except for t he polar coordinate based VIP a nd VEF 

expressions of the infinite plate [5], no li terature ources were found that 

studied VIP and VEF of the plate structures considered herein. Thus, most 

of t he VIP and VEF expressions were origina lly derived. 

T he vibrat ional energy ana lysis of t he infinite pla te was simplified by 

employing a truncated exponential asymptotic expa nsion expre ion in order 

to substitute fo r the I-Iankel fun ction d ifference within the displacement 

equation. However, this procedure restricted t he VEF a nalysi to locat ions in 

t he plate where the product IkTI was greater t han four . To ensure s ma ll VEF 
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analysis errors, t he di stance T from the excitation location should increase 

with increasing frequency. Th is means, the VEF ana lysis is increasingly 

restricted to the farfield region of the plate as the frequency is increased. 

Since the wave propagation within a n infin ite p late is of a radiaJly 

symmetric nature, polar VEF expressions were derived. It could be shown 

that the TTVE in an infinite plate is equal to t he VIP . This relation is true 

at each locatio n within the infinite plate a suming the internal vibrational 

energy losses are neglected. The TTVE is defined here as the integra ted VEF 

per unit length over a closed contour. 

Due to a comparison of the TTVE and the VlP , the error term of the 

derived acti ve VEF could be identified. This was caused by using the 

truncated asymptotic expansion of the I-Iankel functi ons. Thus, the exact 

VEF within an infinite pla te could be derived and was given by the first 

bracket term product of equation (10.7) . However, when studying VEF 

with in a n infinite plate numerically , by employing the exponential asymptotic 

expansion of the Hankel fun ction d ifference, errors have to be expectcd due 

to the approximation of the IIankel functi on difference. 

When computing act ive TTVE within a n infinite pla te from polar 

expressions-based VEF fi elds by using a square contour integra tion , a 

correction factor needed to be employed In order to correct the erroneous 

TTVE. Thus, in equation (10.22) a correction factor was shown that 

compensated for the error made when integrating a polar quantity along a 

square contour. 

VEF analysis of a simply supported rectangu lar plate was undertaken 

herein using a mode-based approach . This procedure can be considered as a n 

alternative technique to the wave-based approach . Within a finite plate , 

multiple reflections of the initi ally outward travelling rad ially symmetric 

infinite wave occur at the plate's edges. It can be recogn ised that the 

modelling of this reflection process is rather complicated. Employing the 

eigenfunction expan ion theorem for plates to form a modal displacement 

response yielded a rather more compact transmitted vibrat iona l energy 

olution . 
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As mentioned , a moda l VEF solution was presented for the simply 

suppor ted recta ngular pla te. The use of the eigen function expansio n theorem 

yielded a fourfold series using an infinite number of modes excited by the 

excitation frequency. It can be realised tha t the numerical implementa tion of 

t hi s approach would lead to t he considera t ion of an inFi nite number of modes. 

T his is not feasible in reali ty. The infinite series has to be truncated a t some 

point and , thus, errors to some extent will occur during the theoretical VEF 

calcu lat ions. A Iso, the implementation of a fourfold ser ies is a fairly high 

computat ional effort . 

At modes with eigenfrequencies of w",,, = w" = w, t he d enominator in 

equations (10.28) a nd (10.29) becomes the real qua ntity w4 ry' . Without t he 

inclusion of hysteretic damping, the denominator in equations (10.28) a nd 

(10.29) would be zero. However , by including t he hysteretic da mping and 

multiplying the denominator in equa tions (10.28) and (10.29) by the complex 

a nd constant fract ion in front of equations (10.28) a nd (10.29) , VE F at thi s 

particular mode is now a complex qua nt ity. o te, it is assumed t hat the 

excita t ion locat ion was selec ted in a way not t o uppre th is particular 

mode. T hus, act ive as well as react ive energy flow is present . Further , it can 

be reali sed t hat the act ive energy flow in comparison to the react ive VEF is 

reduced by t he multip lication of t he loss factor ,/. 
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11 NUMERICAL ANALYSIS OF VIBRA-

TIONAL ENERGY IN PLATES 

11.1 Introduction 

The alln of th is chapter IS to investigate the numerical application of the 

vibrational energy flow determination IIsing electronic speckl e pattern 

interferometry (VEFESPI) , as in tro luced in cha pter 4. Here, the VEFESPI 

method wi ll be app lied to infinite and rectangular simply 'lIpported plate 

structures. The procedure is analog us to the procedure presented in chapter 

6. The required spatial partial derivat ives a re computed by the k-space 

derivat ion (I{SD) method . T he strengths and weakness s of this method were 

studied in chapter 6 for beam structures. The findings of the beam 

invest igation are also valid for the plate 's strllctural a nalysis. However , two 

dimensions need to be taken into account here. 

To compute errors caused by the VEFESPI method the num rically 

determined vibrational energy flow (VEF) is compared to the exact VEF 

sollltions that were presented in cha pter 10. Therefore, a harmonically point 

force excited , two-dimensional and synthet ic platc response signal IS 

genera ted, which is then taken as an input to the VEFESPI computation 

model. The synthetic plate response can be seen as a sllbstitute of the 

recorded electronic speckle pattern interferometry (ESPl) displacement 

signal. 

Employing the KSD method may yield to computational accuracy 

problems when signa l irregulariti es are present . T he'e signa l irregu larities 
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may be caused by nearfields occurrlllg a t discont inuities (e .g. excitation 

location) or the a na lysis of odd-numbered mode shapes and , thus, non

periodic da ta. To ensure low VEF computa t ion errors when a pply ing the 

K D method , periodisat ion of the displacement signal is desirable. T hree 

periodisation t echniques, which were in troduced previously, wi ll a lso be 

employed here. 

T he presence of noise in the displacement signa l leads to substantial 

errors in VEF calculations d ue to spectra l a mpli t ude amplification of t he 

Fourier tra nsformed noise conta mi nated plate displacement . T his problem 

was in troduced in chapter 6. Analogously , t he effects of spec tral fil ter ing of 

infinite a nd simply supported rectangular pla te displacements will also be 

investigated here . 

When computing VEF fro lTl measured ESPI di splacem ent data 

optimulTl filter para meters are requ ired in order to compute a low error VEF. 

To find optimum cut-off fi lter para meters, ex tracted optica l noise from the 

measured ESPI data is superimposed with t he artificially generated p late 

di splacement. An error a lgorithm is then used to detect t he optimum fil t r 

cut-off points where the error of VEF com putation d ue to noise 

contaminat ion is lowest . 

It has been shown 111 cha pter 6 that t he presence of near field 

components, a non-periodic displacement input or noise conta mination of the 

spa tia l signa l canses VEF computat ion errors d ue to undesired amplification 

of spectral components in the wavenumber domain . Often a combination of 

t he t hree error sources take place. It is clear that t hese phenomena also 

o cur when comput ing VEF in a pla te. However, the prob lems arc now 

rela ted to two-d imensions. T hus , conn teractive measures, a in troduced in 

chapter 6 and applied to beams, are a lso employed here. However, the 

proposed techniques are extended in to two d imcnsions. 

T hus, th is chapter presents a funda mental feasibili ty st udy of the 

numerical computation of VEF in p lates . The novelty of the presented 

material is t ha t an elabora te error and sensiti vity analysis i underta ken , 

which highlights computational problems that may be expec ted when 

comput ing VEF in plates from measure I ESPI d isplacemen t data. 
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11.2 Numerical Infinite Plate Analysis 

This section in vestigat es the numerical VEF determination of a n infinite 

plat e structure by inserting an ar t ificia lly generated infini te plate 

displacement into t he VEFESPl computation model. Effects of signal 

irregularity a nd noi e contamina tion are stud ied and measures to increase 

VEF computation accuracy are introduced . 

11.2.1 Vibrational Energy Flow Excluding Noise 

As ment ioned previously, the poin t force excited infinite plate response is a 

rad ia lly symmetric wave that is travelling away from the excitat ion location 

towards the infinite cnd . It has been shown in sect ion 10.2 tha t the infinite 

pla te di splacement may be described by I-Ia nkel functions of second kind and 

zeroth order , represent ing a travelli ng farfi eld and a decaying near field . T he 

nnmerical implementa tion of the I-Ia nkel function d ifference is problema tic . 

To avoid th i problem a nd to investigate the results given in section 10.2, the 

exponentia l asymptotic expa nsion of the IIa nkel fun ctions, as in t rod uced in 

section 10.2.4. 1, is implemented herein inst ead uSll1 g the software 

environment !VIA TLAI3®. The material properties of t he infinite plate are 

shown in T a ble 11.1. T hese are the same properti es as t he ex per imental 

"infin ite" pla te used dur ing t he E SPI exper iment . 

Young's modulus E = 2.07·10" N/m' 

mass density p = 7. 5·10" kg/ m" 

plate thickness h = 1·10-" m 

P oisson ra tio v = 0 .33 

Table 11.1 "Infinite" plate properties. 

The forced infinite plate response is genera ted by numerica lly evalua ting 

equation (10 .12) using a number of data points in the x and y directions of N, 
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= Nu = 128. As usual a unity excitation force of Po = 1 N is applied. The 

infinite plate d isplacement is in vest igated within a window of LT = Lu = 1 m 

using a n excitation frequency of f = 986. 7 IIz (k = 2011 rad/ m). As mentioned 

before, the exponentia l approximation of the Hankel funct ion is very accurate 

from IkTI ~ 4 on . Therefore, with locations greater than l ' = 1/511 m (6.4 cm) 

equation (10. 12) is a very good d isplacement approximation . 

Figure 11.1 d isplays the real and im aginary part of t he two

dimensioJl a l infinite pla te d isplacem nt as well as the onc-d imensiona l curve 

in the x d irection at y = O. It can be not iced from figures 1l .1(c) - (d) t hat 
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Figure 11.1 Complex infinjte plate displacement at fo = 9 6.7 Hz: (a) 2D real part. 

(b) 2D imaginary part , (c) real part at y = 0, (cl ) imagi nary part at y = O. 

t he amplitude is decaying away from excitation location (Sommerfeld 

rad iation cond ition). It is evident from the polar farfi e ld a pproximation of 

equat ion (10.6) that at T = 0 a singula rity appears, i.e. t he d isp lacement 

approaches infinity. T hi 'ingularity can be seen in Figure 11.1 (a) by the 

sharp spike at the excitation locat ion. 
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Figure 11.2 d isplays the top view Image of the infini te plate 

di splacement , as shown in Figure 11.1. The radia l travelling nature of the 

displacement is clearly visible. T o compute VEF using the I<SD method , 

spectral derivatives of the infinite plate displacement need to be determ ined 

(a) (b) 

Figure 11.2 Top VIew Image of the complex infinite plate displltccmcnt shown HI 

Figure 11.1: (a) real part , (b) imaginary pmt. 

m order to obtain the required spatial partial deri vati ves of the infinite plate 

response. 

It Can be reltlised from equation (10.1) that the pola r infinite plate 

di splacement is a function of the rad ius " only . To compute the wavenumber 

spectrum of uch a one-dimensional polar function the Hankel transform has 

to be applied [132]. The Ha nkel transform i the solution of a n illfinite 

in tegral express ion contain ing the product of the spatial function W(1) to be 

transformed and a Dessel function in its kernel [132]. Its result is a one

dimensional wavenumber spectrum containing complex amplitudes at the 

rad ia l wavenumber k,. The solu t ion of the integral kernel can be very 

complicated. Three main solut ion categories of Hankel transforms can be 

identified: the first class is based on a sinusoidal approximation of the Dessel 

function , using the asymptot ic expansion f the Dessel fun ction ; the second 

class contains a Fourier t ransform based a lgorithm of t he exponentia l 

substituted variab les over a n exponential constructed or sampled grid [133]; 

the t hird cia s computes the IIankel transform using the back projection or 
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the projection sli ce theorem. The projection s lice theorem states that the two

dimensional Fourier transform can be computed by a two-dimensional 

Chebyshev or Abel transform followed by a one-dimensional Four ier 

transform [133, 134]. The back projection slice theorem stat es that the 

inver e two-d imensional Fourier transform can be eva luated by the one

d imensiona l inverse Fourier transform fo llowed by the back projection 

operator [134]. 

However , the VEFESP1 method as a pplied to two-d imensional 

s tructures requires two-d imensional spat ial partial derivatives. It has been 

shown in reference [132] that the Hankel transform is equi valent to the two

d imensiona l Fourier transform. Thus, a two-d imensional Fourier transform 

can be employed in order to compute t he wavenum ber pectrum of t he polar 

infini te plate displacement , evaluated in two dimensions, as shown in Figm e 

11 .2. 

F igure 11 .3 di sp lays the modu lus of the wavenumber spectfllm 
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Figure 11.3 Modulus of 2D FFT spectrum of t he complex infini te piftte displaccment 

shown in Figure 11.1. 
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computed from t he infini te plate d isp in elllent shown in F ignres 11.1 and 

11.2, respectively. It is noticeable that the pectrum is a cy li ndrical function 

having a rad ius of k,' = k; + k; , where k,. is t he rad ial wavenllmber, k, is t he 

wavenumbcr component in the x d irection , a nd kg is t he wavenumber 

component in the y direction . 

It is ev ident from F ignre 11 .2 t ha t d uc to the rad ia l naturc of t he 

d isplacement an integer number of waves cannot bc incl llded in t he 

d isplacement signal d lle to Cartesia n coor li nate usagc. T hus, t he appl ication 

of a non-periodic plate disp lacement cannot be avoided. Fnrthermore, as 

evident from equat ion (10.6) , a nearfie ld com ponent is a lso present. Becallse 

of these two reasons VEF computa tion error d lle to Il ndesired alterat ion of 

the spectra l components in the waven umber doma in , when compll ting 

spectral deri vatives , can be expected. 
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Figure 11.4 VEFESPI determined and exnct solution of the 3'" spectral derivative 

with respect to k, of the displacement shown in Figmc 11.1: (a) 2D modulus -

VEFESPI, (b) 2D modulus - exact solution , (c) ID modulus at kg = 0 - VEFESPI, 

(d) ID modulus at k" = 0 - exact solution. 
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Figure 11.4 d isplays the modu lus of the 3'" spectral derivat ive of the 

wavenumber d isplacement W(k" ky) determined by the VEFESPI method and 

its exact value computed from ana lytical analysis. T he two-dimensional 

derivati ve as well as the one-dimensiona l derivative curve at k. = 0 are 

shown. 

Figure 11.5 d isplays the 3'" spatial deri vative in the x direct ion of the 

infinite plate displacement w(x,y) obtained From t he VEFESPI method a nd 

the exact solution . It can be seen from F igure 11.4 tha t osc illa ti ns arc 

in t roduced to the spectral derivative 8"W (kr,ky ) / 8k; due to signa l lI on

period icity . These oscillat ions occurred due to spectral leakage am p lification 

of the spectral mul tipl icat ion process wh en computing spectral der iva tives. 

When apply ing the inverse Fast Fonrier transform (FFT), these a mplified 

oscillations, in addition to thc a mplified spectral nearll eld components , a lso 
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Figure 11.5 VEFESPI determined and exact s lutioll of the 3'" spntial deri vative 

with respect to x of t he di splacement shown in Figme 11.1 at y = 0: (a) real part -

VEFESPI, (b) imaginary part - VEFESPI, (c) real part - exact solution , (d) 

imnginary part - exact solution. 
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cause osc illa tions wit hin the spa ti a l deriva tive signa l, as evident from Figure 

11.5. However, the effect due to the nearfield is not as strong as in t he case of 

the infinite beam ana lysis. Note, t he figures of t he spatia l partial deri vative 

o"w (x , y) / ox' III F igures 11 .5(a)-(d) arc enlarged because of better 

oscilla tion illustration . Due to t he above ment ioned reasons t he computation 

of VEF, when using the VEFESPI method, will resu lt in errors. In chap ter 6 

VEF oscillations were diminished by either periodising t he non-periodic beam 

d isplacement or computing a non-oscillating VEF by approximating the 

oscillating VEF curve llsing the curve wrap (CW ) mcthod. Two period isat ion 

technique were introduced, namely t he mirror-reverse-shear ( I[RS) and 

mirror-pr cessing (MP) technique, respect ively. However , due to the rad ial 

nature of the infini te plate d isplacement t he period isation techniques cannot 

be employed when a nalysi ng the infinite p late d i placemen t. T hus, VEF 

oscilla tions are reduced by applying the CW method only. However, this 

met hod is extended to a two-d imensional procedure by computing two

dimensiona l VEF curve wraps. 

Figure 11 .6 displays the Cartesia n co rdin ate based VEF per uni t 

width, Pr and p., of the infinite plate disp lacement, shown m F igure 11.1 , 

computed by the VEFESPI method. VEF oscillat ions were reduced by 

em ploy ing the CW techn ique. It can be seen from F igure 11.6 t hat the active 

and reactive VEF per unit width , Pr and Py , are orthogona l to each other . 

It has been shown in cha pter 3 that the VEF per uni t widtl l, Pr a nd Py , arc 

complex, two-d imensional vcctor fi e lds representing the two-dimens ional flow 

of vibrational energy in t he x a nd y direction , respect ively. T hus, both 

components have to be used to construct a n active and reactive VEF ma p , 

which contains arrows that represent t he magnitude and direct ion of the 

energy flow within the plate . 

Figure 11.7 di plays the act ive and reactive VEF map of the infin ite 

plate computed by the VEFESPI + CW method. For better illustration of 

Figures 11.6 and 11.7 the number of data points were red uced to N, = Ny = 

16, simply by averaging the origina l VEF flow maps over di sta nce. 

F urt hermore, the VEF arrows within the location of Ik1'1 :-:; <[ were set to zero , 
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Figure 11.6 Determined VEF in the x a nd y directions of the infinite plnte 

displacement shown in Figure 1l.1 using t he VEFESPI + CW method : (a) nctive 

VEF in x direction , (b) reactive VEF in x direction, (c) nctive VEF in y di rection, 

(d) reactive VEF in y direction . 

( n) 

0.5 . 
, , I I 

, , , 
~, .... ,\\ 
'--'-" ,' ~ ~ ........... , \ 

~ - - - - --..... . 

, , , 

• T • 

O. _____ .._ . 
. -...- - - - - -

----~" /1. \" ', •. -
·~ .. -"/I I \ \' ....... ~.-

''''1 1\ \\' ...... -

I I I \ 

-0.5 1

• 
I I I' 

-0.5 o 
x 1011 

0.5 

o. 
[ 

I 
_O.5 l 

· 0.5 

(b) 

\ \ I I -" \/ " -- .......:. .:.- -- --/,:--. -
'" '" \, .... 

I I \ \ 

o 
x [ml 

0.5 

Figure 11.7 VEF maps of t he infinjte plate displacement shown in Figure 1l.1 from 

t he VEFESPI + CW method : (a) active VEF, (b) reactive VEF. 
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because for t hese regions, eq1la tion (10.6) is not valid. T he magnit1lde of the 

energy flow arrows can be taken from Figure 11.6. 

It can be seen from F igure 11 .7(a) t hat the vibra tiona l energy flows 

radially a nd symmetrically away from the excitation location towards 

in fi ni ty . It can also be not iced tha t with increasing d i ta nce T the magni t1lde 

of VEF is decreasing in order to obey the energy conservation law. 

In terestingly, t he react ive energy is flowing towards the excitation location 

with relative ly large magn itudes aro1lnd the excita tion locntion a nd very 

weak reactive flows in the farfield region . Thus, react ive energy flow OCC1lrs 

significantly around t he excitation location within the infini te plate similar to 

t he infinite beam . 

To letermine the accnracy of t he VEFESPI met hod when corn p1l ting 

VEF within infinite p la tes , a two-d imensional relat ive error distr ibution was 

calculated from the determined VEFE PI energy flow and the exact VEF as: 

(111) 

Note, the rela tive error D. E:y is calc1lla ted accordingly simply by s1l bstit1l t ing 

subscript x with y in eq uation (11.1 ). Figure 11.8 d isplays the relative active 

a nd reactive VEF error d ist ri bution. Note, for better ill ust ration t he n1lmber 

of data points was red uced to N, = N, = 32. F m t hermore, the VEF val ues 

within the region of Ikt'l ~ 4 were a lso set to zero. It can be seen from F igure 

11. that the relat ive error made when computing VEF by the VEFESPI 

method is very low, except a t some poin t s within the rela ti ve react ive error 

maps . T hus, the ew technique can be employed in order to reduce the 

effects o f displacement non-period icity a nd nearfi eld components arising 

within the infini te pla te. 

An a lterna tive method to assess the accuracy of t he VEFE P I + e Vil 

method is the numerical contour in tegra t ion of the two-d imensiona l cnergy 

fi elds p. a nd p" (energy balance). It was shown by eq uation (10.9) that the 

integra tion of the active VEF a round a closed contour is equal to the 
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Figure 11.8 Relative error of VEF of the infinite plate displacement shown in Figure 

11.1: (a) relative active error in x direction , (b) relative reactive error in X direction , 

(c) relative active error in y direction , (cl) relative reactive error in y direction . 

vibra tiona.i input power (VIP ) injected into t he plate str ucture. Th is relation 

holds t rue for each location within the infinite pla te. 

F igm e 11.9 di splays t he comparison of total transmitted vibrational 

energy (TTVE) and VIP . A quadratic Cartesian coordinate based numerical 

contour integration was carr ied out , as shown in Figure 10.1 for ea ch 

numerical location Ik1'l by numer ically eva.iuating eq uation (10 .18) . With a 

sample number of Nr = N, = 12 , 64 squares were integrated numerically. It 

can be seen from F igure 11 .9 t hat around 11.:' ·1 "" 5 the TTVE (P" )F~ with in 

the infinite plate i approximately equal to t he input power (~" )F~ . However , 

at lower locations of 1/;;1"1 only a few points could be used to integrate P, a nd 

P, numerically_ The accuracy therefore decreases at these location s. Tak ing 

th is into account , it can be argued t hat t he approximat ion of t he in fi ni te 

plate di placement , when using equation (10.6) , results in low errors made 

with in the range of 11.:' -1 ~ 4. Furtherm ore, t he VEFESPI met hod in 
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Figure 11.9 Comparison of total transmitted active vibrational energy and 

vibrational input power of t he infinite plate displacement shown in Figure 11.1. 

combination with the C'vV technique pr duced vcry low crror when 

computing VEF within a n infinite plate. 

11.2.2 Vibrational Energy Flow Including Noise 

This sec t ion inves tigates the cffects of spectra l ll ltcring when computing VEF 

from a n infin ite plate d isplacement t hat is contaminated by normally 

distributed noise. As demonstrated previously in chapter 6, two typcs of fi lter 

are al so cmployed herein , an ideal 2D filter and an oval 2D Butterworth 

filt cr . Both filter types are applied wit hi n the spectra l domain pr ior t o thc 

spectral derivat ion process u ing thc K D method . The conclusions gained 

during thc filter analysis in chapter 6 a re a lso a pplicablc to the fil ter ana lysis 

of the p late . 

It has been shown in chapter 6 that the rcactive energy cannot be 

computed accurately enough when dealing with lIoise contam inated beam 

displacement inputs due to the erasure of valuable ncarfield wave information 

in the spectral domain . Thus, at th is point attcn tion is focused most ly on the 

computat ion of activc VEF. To determine optimum filter para meter s, a mean 

squared error (MSE) nmction imila r to equation (6.7) is uscd here. However, 

the active TTVE (P. )F_ within the infinite plate at each numerical location 

Ik"1 is compared to t he VIP (P,,,),,-, given by eq uat ion (10.3) as: 
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(11 .2) 

Here , N = N) 2 = N,/2 is the number of points from each numerical contour 

integrat ion a long IkTI. It can be realised that the one-dimensional MSE 

function in equation (11 .2) incorporates the two-dimensiona l energy fi e lds, Px 

and Py , as shown in equation (10.lS). Thus, the initial two-dimensional 

optimisation problem is now reduced to a one-dimensiona l problem , which 

can be implemented straightforward ly. 

Figllre 11 .10 di splays the infinite plate displacement , shown in Figure 

11.1, however, contamina ted by norma lly di tributed noise with a signa l-to

noise ra tio (SNR) of 110A. Note , here the S R is a two-d imensionnlly 

integrated quantity and can be seen as a n extension to the one-dimensiona l 

theory shown in Appendix A1S. As demonstrated previously , the noise within 
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Figure 11.10 Noise contaminated infinite plate displacement of Figm e 1l.1 with a 

SNR = 110.4: (a) 20 real part , (b) 20 imaginnry part, (c) real part at y = 0, (d) 

imnginary pnrt at y = O. 
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the spa tia l di sp lacement signal is transformcd in to the wavenllmber domain 

and eventually the spectra l amplit1ldes are then a mplified when computing 

pectra l deriva tives, required for VEF computa tion . This procedme has most 

effect a t the high wavenumber locations. To avoid the undesired pect ral 

a lteration process the noise contamina ted wavenumber spectrum will be 

tiltered by using an idea l 20 filter a lgorithm as well as an oval 20 

l3utterworth low-pass filter . 

Figure ll .l1 d isp lays the l3utterworth filte red 3"" order spec tral 

derivati ve with respect to k, of the wavenumber spectrum l-V(k" kg) compared 

to the exact 3'" order spectral deriva ti ve. It can be no ticed from Fig1l rc 11.11 
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Figure 11.11 Buttenvorth fil tered and exact 3'" spect ral deri vati ve of the 

displacement shown in F igure 11.10: (a) 20 - VEFESPI, (b) 20 - exact solution, (c) 

ID at kg = 0 - VEFESPI, (d) 10 at kg = 0 - exact solu tion. 

tha t a small amount of noise remains within the spect r1lm up to the c1lt-off 

frequency point k, . Note, the cut-off Frequency kc is r la ted here to t he radial 

wavenum ber k, as k,= nk" where n i any real number. 
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Figm'e 11 .1 2 Butterworth fi ltered and exact solu tion of t he 3'" spatial deri vative 

with respect to x of the displacement shown in Figure 11 .10 at y = 0: (a) real part -

VEFESPI, (b) imaginary part - VEFESPI, (c) real part - exact solu tion, (d) 

imaginary part - exact solution. 

Figure 11.12 displays the compari son of the 3'" order spat ia l 

d erivat ive. It can be realised from Figure 11.12 that , despite the filt er ing, a 

rather accurate spectral d erivative result can be achieved. 

F igure 11.13 d isp lays t he MSE made when fil t er ing at d ilferent 

a cend ing cut-off points. It is clear from th is tha t the ideal filter has a n 

optimum filter cut-off point of about 2.4% of the max imu m spectra l 

a mplitude modulu a nd the Butterworth filte r produces best results at k, = 

2.2k,.. ote, these opt imum cut-off points are determined for acti ve energy 

flow on ly. Reactive filter cut-off points were determ ined by a trial a nd error 

process, Using the optimum filter c ll t -off points to determine active energy 

fl ow a nd t he tr ia l and error cut-off points to determine reactive energy now , 

VEF is computed u ing the ideal filt ered and Butterworth liltered inflnite 

p late d isplacement. 

From the active and reactive VEF maps for both types of filter , shown 

below in Figure 11 .14, it can be clear ly een that the active VEF now lTIa p 
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Figure 11.13 Relative error of total transmitted energy flow of t he infinite plnte 

displacement shown in Figure 11.10: (a) active l\ ISE ideal filter , (b) active l\ISE 

Butterworth filter. 
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Figure 11.14 VEF maps of t he infinite plate displacement showll in Figure 11.10: (a) 

active ideal filtered VEF, (b) reactive ideal filtered VEF , (c) active Butterwort h 

filtered VEF, (d) reactive Buttcrworth fil tered VEF. 
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d isplays a very accurate active energy flow pa ttern , very similar to t he flow 

pattern shown in the analysis of the non-noise contamina ted infinite p la te. It 

can also be noticed from the F igures 1l .14(b) and 1l .14(d) tha t the reactive 

energy flow computation result is quite d ifferent when the ideal filt er a nd 

13utterworth filter is employed. Here, t he Butterworth fil ter seemed to 

produce a better result , due to the inclusion of more near fi eld informa tion a t 

wavenumbers below the cllt-off lVavenllmber. 

T o assess the accuracy of the active filtering process t he active TTVE 

was compu ted from t he filtered active VEF as described above by a square 

con tOUT integration of PT a nd Pg. T his result is shown in Figure 11.15. It can 

be reali sed from Figm e 11.15 that the oval 2D Butterworth filter produced a 

0.01 

o o 10 
Ikrl 

20 

(p )1' on • 
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(P .)r 
ctJ~idool 

30 

Figure 11.15 Comparison of ideal filt ered !tnd Butterwort l", filtered total transmitted 

active vibrational energy and vibrational input power of the infinite plate 

displacement shown in Figure 11.lD. 

slightly better result than the ideal 2D fil tering algorithm . However , both 

fil ter types can be employed in order to determine acti ve VEF within an 

infinite plate. 

11.2.3 Vibrational Energy Flow Including ESP I Noise 

Within the experimental data analysis, it is desirab le to compute VEF within 

the infinite p la te from measured ESP I d isplacement data by the use of 
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opt im1lm filter cut-off points. Thus, an optim isation process, by n1lmerically 

evaluating equa tion (11.2), for a ra nge of different ascending fi lter cut-off 

points is employed using ex tracted ESPI noise rather than synthetically 

generated and normally distributed nOI se. Extracted optical noise IS used 

because it differs from normally distributed noise and , thus, it best 

approxima tes the measured displacement d ata. The optical noise was 

extract ed from the measured ESPI disp lacemen t data imply by tra ns forming 

the measm ed infini te plate displacement signa l into the wavenumber doma in 

by employing a 2D FFT. vVithin the wavenumber domain the travelling wave 

component was deleted . The spectral noise signal then back transformed is 

superimposed with a non-noi.·e cont amin ated synthetically genera ted inf'inite 

pl ate displacement , using the measured force amplitude that was obta ined 

during the ESPI experiment . T a ble 11.2 di splays th vibration parameters of 

the infinite pla te that were employe I. 

Excita tion frequency 569 .7 Hz 605.6 Hz 99.5 Hz 1194 .4 IIz 1503.2 Hz 

Excita tion force 00529 N 0.0947 N 0.2099 

SNR 9.5 92. 9 79. 1 96.6 75. 1 

Table 11.2 Vibrational parameters of "i nfini te" plate. 

Figure 11 .16 shows the contamina ted infinite pla te d isplacement that was 

conta minated by optical noise, a t an excitation frequency of In = 1503.2 IIz as 

well as the ex tracted ESPI noise. The displacement wa genera ted within the 

same signal window as used when comput ing VEF from measured ESPI 

d isplacement data. It can be seen tha t approxim ately 2 wavelengths are 

included within the di splacement signa l. T he complex , infinite pla t e 

d isplacement , as shown in Figures 1l .16 (a)-(b), is 1Ised as an input to the 

VEFESPI computation method . Optimised fi lter c1l t-off points of the ideal 

a nd I3utterworth filtering process arc th en det ermined by computi ng VEF for 

a range of ascending filter cut-off points. The number of fi lter cut-off points 

used here was 50. 
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Figure 11.16 Noise con tami natcd infmite plate displaccmcnt and cxtracted ESP [ 

noise at 1503.2 Hz: (a) 2D real displacemcnt part , (b) 2D imaginary displaccmcnt 

part, (c) 2D real noise part , (d) 2D imaginary noise part. 
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Figure 11.17 Relat ive active crror of total transmitted energy flow of the infinite 

plate displacemcnt shown in Figure ll.16: (a) active r- rSE ideal filter, (b) active 

r- rSE Buttcnvorth filtcr. 
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F ignre 11 .17 d isplays t he MSE obtained at 50 differcnt filt er cnt-off 

points of the 1503.2 I-Iz excited infinite plate displacement . It can be noticed 

frol11 that figure t hat the opt imum cut-off point for t he ideal filt er is a bout 

7.7% of t he modulus of maximum spectral di splacement a mpli tude. T he 

optimum spatial cut-off wavenumber of the Butterworth fi lter is abont k,= 

2k, .. T he optimum cut-off points when fil tering t he infin ite pla te displacement 

are slightly higher than the determined in fini te beam cut-off points . 

Fignre 11.18 di splays t he computed VEF ma p by employillg the 

optimum ideal fil tered a nd Butterworth filtered cut-off points. Clear ly, t he 
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Figure 11.18 VEF maps of the infinite plate displacement shown in Figure 11.16: (a) 

active ideal filtered VEF, (b) react ive ideal tiltered VEF, (c) active Butterwort h 

filtered VEF, (d) reactive Butterworth filtered VEF. 

rad ia lly spread ing active energy now can be seen . 

F igure 11.19 d isp lays the compa ri son between the energy injected into 

t he plate (VIP) a nd t he TTVE compu ted from the square c ntour 

integra tion of P, and P, . T he optimised filter cut-off points were employed. 

Figure 11.19 clearly shows t hat, at low 1 kl-1 , large deviations between input 
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power and total transmitted energy, as expected , are present . Also, a t la rger 

locations of Ib-I some devia tions between VIP a nd TTVE can be seen . It 

seems t hat the ex tracted opt ical noise cansed more errors when comput ing 

VEF than t he VEF compntation with normally d istribu ted noise. In contrast 

(Pn)p 
<Xl · i,k'il.l 

(P ,.Jp 
co· hutter 

5 
Ikr l 

10 

Figm e 11.19 Comparison of ideal liltered and Butterworth filtered tot,,1 transmi tted 

active vibrational energy and vibrational input power of the infinite plate 

displacement shown in Figure 11.16. 

to the result obtained III t he prevIOus section , here, a red uced difference 

between ideal filt ered a nd Dntter worth fil tered energy flow results was 

obtained . 

T a ble 11.3 d isplays the optimum filter cut-oH poin ts for the ideal fil ter 

and Dutterworth fi lter as well as t he MSE that can be expected. It can be 

noticed from the d isplayed active MSE tha t the ideal fi lt er worked as well as 

the Dutterworth fil ter. 

Excitat ion frequency 10 [Hz] 569.7 605.6 899.5 1194.4 1503.2 

Optimum (% of I W( k" ky) I,,,",) [%] 13.33 12.33 8.0 8.0 8. 67 

Active MSE, 9'l (lO·log lO (ll ),,',",) -9.4 -10.2 -10 .6 -1 1.0 -11 .9 

Optimum (k, )",,' [rad / m] 1.9132 2. 1568 1.8963 1.9352 1.9219 

Acti ve IvISE, 9'l (10·log1o(ll ),,,,, ,,.,) -8 3 -8.6 -10.0 -10.9 -11.0 

Table 11.3 Optimum "infinite" pl"te cut-off points of square t runcated data. 
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11.3 Numerical Simply Supported Plate Analysis 

T he mm of this sect ion IS to inve t igate t he nllmeri cal applicat ion of the 

VEFESPI met hod when applied to simply supported pla te st m ctures. The 

t ra nsit ion from infinite pla te st ruct ures to fin ite pla te structures was made t o 

study t he abili ty of t he VEFESPI met hod when comput ing VEF within two

d imensional high standing wave en vironments. 

T his is based on the assumpt ion tha t t he boundaries 01' t he simply 

supported plat e are non-dissipa t ive. Analogollsly to the infini te p late sect ion , 

effects of signal irregularit ies a nd noise con tamination a re st ud ied and 

measures to increase VEF comput at ion accuracy arc in troduced . 

Furthermore, a sensitivity a nd error analysis is carried out when comput ing 

VEF from noise contaminat ed simply supported bea m d isplaeements. 

11.3.1 Vibrational Energy Flow Excluding Noise 

Wi t hin thi s work the simply supported pl ate d isplacement is defined by using 

a part icular solut ion o f the eigenfunct ion expa nsion theorem . F rom t his 

mod al defi nit ion of t he forced , complex, simply supported pla te displacemen t , 

VIP and VEF expressions arc der ived. In each solu t ion hysteret ic d a mping is 

incorpo rat ed using t he hyst eret ic los factor 71 . 

W ithin this sect ion t he effects of numerica l computa t ion of VEl" as 

well as t he effect s of a non-period ic pla te d isplacement input are in vest igated . 

As carried out p reviously, nu merica lly computed VEl" is compared to exact 

solutions present ed in sect ion 10.3. Devia t ion to the exact VEF soluti n can 

be expect ed due to t he wavenum ber mu lt iplication process in the spectra l 

domain , especia lly a t high wa venumbers, when employing t he KSD met hod 

in order to comp ute spect ral derivatives. T his undesired effect occurs 

especially if near fie ld components arc present . Unfor tunat ely, this effect is 

amplified even fu r t her , if a non-period ic pla te d isplacement is used a a n 

inpu t to the VEl"ESPI method. T he resu lt ing spect ral lea kage will then be 

amplified. 
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Dming the ESP] experiment repor ted in chapter 14, t he simply 

supported plat e wa excited at the middle of t he plate, e.g. L) 2 and Lj 2 in 

order to reduce t he number of modes at which the plate can be excite I. 

T hus , only odd-numbered mode sha pe plate disp lacements were recorded. 

However, an odd-numbered mode shape d isplacement is non-periodic in space 

by ha lf a wavelength. Hence, the effects of cOlTlputing VEF frolTl odd

nUlTlbered mode sha pe d isp lacelTl ents are investigated here. It can be reali sed 

t hat the Fourier transforlTl of an even-numbered mode sha pe d isplacelTl en t 

will produce no spectral leakage. Its VEF cOlTlputat ion is then less criticaJ, 

y ielding to a1lT1ost no VEF oscillat ions. Hence, the computation of VEF fro lTl 

even-num bered mode shape di splacements is omitted here. It has been shown 

in sect ion 6.3 t hat problems in the VEF computa t ion occmred only when 

analysing odd-n umbered mode sha pe displacements. T his behav iom also 

holds true for two-dimensional pla te structmes. 

T able 11.4 d isplays the ma ter ia l properties of the exper imental sim ply 

supported plate employed during the ESP] experiment . All routine used here 

were written within t he software environmen t MATLAn®. 

Young 's modulu E = 2.07·10" N/m' 

mass density p = 7.85·10" kg/ m" 

plate t hickness h = 3·10-" m 

plate length L, = 0 .646 m 

plate width Lv = 0.496 m 

Poisson ratio v = 0.33 

Table 11.4 Simply supported plate properties. 

Figm e 11.20 display t he d isp lacement of a simply supported plate 

gen rated by numerically evaluating equation (10.25) . Here, a un ity 

excitation force of Fo = 1 N was employed . T he plate was excited in the 

middle a t L) 2 and Lj 2 by an excitation frequency of 10 = 429.2 I-Iz. The 

number of data points used here was N, = 64 and Nu = 64 . The hysteret ic 
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Figure 11.20 Complex simply supported plate displacement: (a) 2D real part, (b) 2D 

imaginary part, Cc) real part at y = L,/2, (d) imaginary part at y = Li 2. 
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Figure 11.21 Top view image of the complex simply supported plate di splacement 

shown in Figure 11.20: (a) real part, (b) im n.gi nary part. 

loss factor employed was 17 = 10-2
. For t he numerical computation o f VEF by 
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Il sing t he equations presented in section 10.3, only 11 modes wit hin the 

modal summation were considered . 

Figure 11.21 displays the top vIew Image of the simply supported 

beam disp lacement shown in F igure 11.20. It can be seen from both figures 

that the excita tion frequency coincided with t he undamped na tura l frequency 

of the mode (3 ,3) . By the mode uota t ion , ('1n ,n) , m/2 wavelengths in t he x 

directi on a nd n/2 wavelengths in the y direct ion occm . It can a lso be reali sed 

that a non-periodic number of wavelengths are included in the di splacement 

signal. Hence, leakage will occur and spectra l a mpl ification within the 

wavenumber domain can be expcctcd , wheu computing spcctral deri vatives 

using t he KSD method . 

Figm e 11 .22 d isplays t he mod ulus of t he wavenumber spectrum of thc 

pla te disp lacement shown in Figurc 11.20 computed by cmploy ing a 2D FFT. 

It can be een from this fi gm e that fom spikcs occur withi n t he wavenumber 

domain t ha t can be in terpreted as four travclling wa ves travclli ng away from 

x 10 
1 

-6 

ky [rad / mJ 
-350 

290 

-290 kx [rad/mJ 

Figure 11.22 Modulus of the 2D FFT spectrum of t hc complex simply supported 

plate d; splaccment shown in Figure 11 .20. 
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the excita t ion location a t 90 degrees separation . T hus , the simply su pported 

p la te d isplacement may a lso be approxima ted by a plane-wave model t ha t 

uses four tra velli ng plane waves , which travel a t ±45 d egrees a way from the 

excita tion location [4J . 

Figure 11.23 d isplays t he modulus of t he 3'" spectra l d eri vat ive of t he 

spec tra l d isplacement O' W (kr, k
ll

) / ok; compu ted by t he KSD met hod and 

the exact solution by ana lytically d ifferentiating equation (10.25). Clearly , 

the effect of spectral ampl ificat ion , especia lly at high wavenum bers , can be 
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Figure 11 .23 VEFESPI determined ""cl exact solut ion of the 3'" spectml derivnt ive 

with respect to k, of t he displacement shown in Figure 11.20: (a) 2D modulus -

VEFESP I, (b) 2D modulus - exact solution, (c) ID modulus at kg = 0 - VEFESPI, 

(d) ID modulus at if., = 0 - exact solution. 

seen . If one employs an inverse 2D FFT , it can be realised tha t t he spa ti a l 

derivat ives will a lso devia te from t he exac t so lut ion. 

Figure 11.24 displays the 3'" order spatia l deri vative o"w(x, y) / ox" at 

y = 0, obtained by the VEF ESPI method a nd t he exact analyt ical solu t ion . 

It can be seen from Fignre 11.24 that oscillat ions d ue t o the spectral 
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Figure 11.24 VEFESP I determined and exact solution of the 3'" spatial derivat ive of 

the displacement shown in Figure 1l.20 at y = 0: (a) real part - VEFESP I, (b) 

imaginary part - VEFESPI, (c) real part - exact solution , (cl ) imagi na,ry part - exact 

solution . 

a lteration within t he wavenumber domain occur as previously shown in 

chapter 6. However , here t he problem is of a two-dimensional nature. It can 

be realised t hat t he plate displacement n eeds to be periodised by employing 

t he mi rror-process ing (MP) techn ique or t he mirror-reverse-shear (MU) 

techniq ue. Alternatively , oscillations wit hi n the computed VEF P, a n I p. 

may be diminished by employing t he curve-wrapping (CW) technique. As 

shown previously , a ll t hree methods led to a more accura te resu lt when 

analysing VEF in a beam . 

Figure 11 .25 displays the t ime-averaged active and react ive energy 

flow wit hin t he sim ply suppor ted plate in t he x and y d irect ions computed 

from t he exact so lu t ion. It can be noticed t hat the active VEF in the x and y 

directions differs from each other due to the use of a rectangular plate. T he 

use of a square pla te in combination wit h cen tre excitat ion wo uld produce an 
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Figure 11.25 Computed VEF in X and y direction of t he simply supported plate 

displacement shown in Figure 11.20 from "nalytical data: (a) active VEF in x 

direction , (b) reactive VEF in x direction, (c) active VEF in y direction , (d) reactive 

VEF in y direction. 

equal active energy flow in t he x and y di rect ions. In terestingly, t he reactive 

energy shows the modal behav iour of the p late . No te, for better vis ibi li ty the 

number of data points wa reduced to N, = Nu = 32. 

As evident from Figure 11.24 undesired oscillat ions 111 VEF 

computat ion need to be red uced. T his is accompl ished here by period ising the 

non-periodic plate d isplacement prior to the spatial deri vative computation 

using the MP a nd MRS technique, respective ly. Fur ther , the CW technique 

was a lso a pp lied . Figure' 11 .26 (a)-(b) show t he exact active a nd reac ti ve 

VEF maps determ ined by numerically evaluat ing equa ti n (10.28) and 

(10 .29), respectively. For comparison purposes, computed VEF using the 

VEFESPI method in combina tion with the CW technique is shown in Figures 

10.26 (c)-(d). It can be seen /'rom t hese VEF maps t hat the VEFE PI + CW 

computed act ive VEF coincides well with t he cxact act ive VEF. It can also 
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be seen that the active vibrat iona l energy fl ows mainly in the 1; d irection 

away from excitation location by creating four fl ow vortices towards t he 
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Figul'e 11.26 VEF maps of the simply supported plate displacement showll in Figme 

11.20: (11.) exact active VEF, (b) exact reactive VEF , (c) nctive VEF - VEFESPI + 
CW, (d) renctive VEF - VEFESPI + CW. 

plate's corners. In terestingly , the reacti ve energy flow map shows react ive 

energy nodal lines, which a llows for mode identification . At the position of 

the peaks of the modal amplitudes the reactive energy is flowing towards the 

respective amplitude peaks creating something like energy sinks. It can a lso 

be seen that the reactive VEl" osci llati n could not be entirely dimini hed a t 

t he plate's boundaries and, hence , some deviat ions in the reactive energy flow 

computation from the VEFESPI + CW method ocellr . o te, for better 

visib ili ty the num ber of dnta points was reduced to Nr = Nu = 22. In 

add ition , two points were deleted in Figllres 11.26(e) a nd 11.26(d) due to 

large VEF deviation at the boundaries. 

F igure 11 .27 disp lays the VEF maps computed from the periodised 

simply supported plate d isplacement IIsing the MP and MRS periodisation 

32 



11 N1Imerical A nalys is Of Vibrat ional E nergy In Plates 

techn ique. It can be seen from Figure 11 .27 th fLt the reactive energy flow in 

particular better matches the exact so l1ltion . However , a ll three VEF 
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Figure 11.27 VEF maps of the simply supported plate clisphlcement shown in Figure 

11.20: (a) active VEF - VEFESP [ + ~JJ , (b) reactive VEF - VEFE PT + ~IP , (c) 

active VEF - VEFESPT + MR.S, (cl ) reactive VEF - VEFESPI + MR.S. 

oscill ation red uction a pproaches produced a good match between exac t act ive 

VEF and computed active VEF , as cvident From F ig1lrcs 11 .26 a nd 11 .27. 

In section 11 .2 .1 a contour integration of the two-d imensiona l energy 

fi elds Pz and Py was employcd to determinc the accuracy of the VEFESPI 

method when using the C W technique in order to reduce the effect s o f 

spectral a mplification and , th1ls, VEF oscilla tions. T he result of s1Ich a closed 

contour in tegration at each position Ikl'l was then compa red to input power , 

since the energy outflow of ach closed contour wit hin the infinite plate was 

consta nt and equal to the energy injected into t he strtlcture. T hus, th initia l 

two-dimensional error distr ibution problem ', which had to be determined for 

both vector fi elds Pz and Py were reduced to a one-d imensiona l problem due 
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to the inclusion of both energy fi elds in the contour integration proccss. 

Within th is section a similar approach will be employed in order to red llce 

t he computational effort when assessing t he error made by the numerical 

computation of VEF in simply supported plates. 

To assess the deviation between cxact VEF and VEFESPI compu ted 

energy flow , t he total flow of vibrational energy (TTVE) across perpendicular 

lines parallel to the plate 'S edges will be employed. The TTVE in the x 

direction across a perpendiclllar line is given by: 

L, 

rPr = J P, dy . (11.3) 
o 

ote, the TTVE in the y direction across a perpendiclllar line can be found 

simply by in terchanging x and y. Using eqllation (11.3) , t he relative error of 

TTVE in percent in the x direction is defined as: 

(11.4 ) 

T he complex relati ve error of TTVE in the y directioll can also be found here 

by substitut ing the var iable y ~ r x. Within this work the crossing of TTVE 

at perpendicular li nes in the x and y direct ions is com pllted a t each line a long 

the p late width a nd plat e length , respectively. T hlls, employing an initinl 

number of points of N, = N, = 64 , 64 numerical integrations were carried out 

within the two-dimensional energy fi elds PT and Pg . 

The result of evaluating equations (11.3) and (11.4) for each 

perpend icular line is shown in Figures 11.2 and 11.29, respectively . Note , the 

units of the 2D energy flow [)elds PT and Pg of the simply supported plate 

are in VV / m . Integrat ing a long a line perpend icular to the flow direct ion will 

y ield to TTVE in un its of Watts at that particu lar line pos ition. It can be 

seen from F igures 11.28 a nd 11.29 that the curve shape of the total active 

transmitted energy ~T and ~, is fairly similar to the curve shape of act ive 
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VEF within a simply suppor ted bcam, a s shown for instance in F igure 5.8, 

with a max im1lm energy t ra nsmission a t t he excita t ion locat ion (here :!iJ = 
0.323 m) and zero energy tra nsmission a t t he non-d issipa t ive boundaries. 

Interest ingly, the reactive TTVE is varying sin1lsoi la ll y along the plate width 

-3 (a) 
5x 10 

Exact so lution 
;S / VEFESPl+i\ IP 
~ 

0 x 

/ -& VEFESPl+i\ IRS ~ 

C) 

0:: VEFESPI+ CW 
-5 

0 0.1 0.2 0.3 [ I 0.4 0.5 0.6 
x IT1 

(b) 

,- , I Exact so lution 
~ 0.02 , \ 

~ 
, 

VEFESPl+i\ IP 
~ 0' x 
-e- VEFESPl+i\JRS ~ 

E -0.02 >-< 
I VEFESPl+CW 

0 0.1 0.2 0.3 [ I 0.4 0.5 0.6 
x m 

Figure 11.28 Total transmitted vibrational energy lP, of the simply supported plate 

displacement shown in Figure 11 .20: (a) ftctive IP" (b) reactive IPr 

a nd length , respectively, reflect ing t he modal behaviour of the structure. It 

can also be seen from F igures 11 .28 a nd 11 .29 t hat t he VEFESP I met hod HI 

combinat ion with t he fP , MRS, a nd C W techn ique prod1lced good results 

when red 1lcing VEF oscilla t ions by t hese techniques. However , it can be 

not iced t hat the VEFESPI met hod in combina tion with the C W technique 

deviated a t the b01lnda ri es compared to the exact solut ion . An energy 

balance accord ing to equa t ion (3. 61 ) resulted in a very low rela t ive error of 

- 0.03%. This rela ti ve eITor was determined between t he theoretically 

compu ted VIP using equat ion (10.27) a nd t he sur facc in tegra ted po tentia l 
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Figm e 11.29 Total transmitted vi brational energy ,p, of the simply supported plate 

displacement shown in Figure 11.20: (a) nctive ,p" (b) reactive ,p,. 

energy density using t he right-hand side of equation (3.61). 

FigllTes 11.30 a nd 11.31 d isplay t he complex rela t ive error made when 

comput ing VEF from an odd-numbered mode shape simply supported plate 

d isplacement by numerically evalua ting equa tion (11 .4). It can be reali scd 

that the resulting errors are very small. T he computa tion of reactivc energy 

flow is much more aceura tc than the computation of t he activc energy flow 

with in a simply supported plate, something t hat did not oeCIIT at t he simply 

upported beam a na lysis. However , there are some discontinuities in the 

relative active error curve shapc. These d isconti nui t ies e10se to t he 

boundaries are due to zero cro sing of the exact TTVE value and , hence, zero 

d ivision in equation (11.4) . T hus, it has been shown that VEF oscillat ions, 

occurring dur ing the VEF computat ion of odd-numbercd mode shape 

displacemcnt of simp ly supported plates , can be red \lced by \lsing t he MP, 

MRS , and CW technique. 
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Figme 11.30 Relative error !:le, of t he sim ply supported plate displacement shown in 

Figure 11.20: (a.) relative active flow error, (b) relative react ive flow error. 
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Figure 11.31 Relative error !:le. of the s imply supported plate displacement shown in 
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11.3.2 Vibrational Energy Flow Including Noise 

The aim of t his section is to investigate the effect of spectra l l'il tering when 

VEF is computed from noise contami nated, tlexura l, sim ply supported plate 

di splacements. Thus, an artil'icially generated p late disp lacement IS 

superimposed wit h norma lly d istributed noise. As usual, fil tered VEF IS 

determined by u ing two types of filt ers, the ideal 2D filter and the oval 2D 

TIutter wor th l'ilter . On ly odd-numbered mode shapes are in vestigated, sin ce 

even-num bered mode sha pes were not measured dur ing the ESPI experiment 

a nd t hey resul ted in lesser VEF computation problems, as 'hown in chapter 

6. 

11.3.2.1 Ideal 2D Spectral Filtering 

As demonstrated in section 6.3.2 , numerical computation of VEF from nOI e 

contamin ated displacements f vibrat ing fin ite structures caused a decrease in 

VEF computation accuracy. It can be seen from Figure 11.20(c) that due to 

t he employment of hysteretic damping, the p late's am pli t ude decreased wit h 

increasing di tance from the excitat ion location. The a mount of ampli t ude 

reduction also depends on the loss factor 17, i.e. an increase in loss factor 

(structural lamping) results in a n increase in a mpli tude red uct ion and vice 

versa. VEF wit hin a fin ite structure can be computed on ly if damping is 

included , since wit hin a pure sta nding wave en vironment a zero net energy 

tlow is present . Thus, t he amoun t of damping controls t he amoun t of 

vibrational energy to be d i sipated or transm itted with in t he vo lume of 

interest . In a simply supported structure , the transmitted energy is greatest 

a t the exci ta t ion locat ion a nd zero at the non-dissipative boundaries. T he 

reverse effect is obtained from the dissipated vibrational energy. T hu , one 

can build a hypothet ical model relating the VEF within l'ini te structu res to 

decay ing travelling waves, which cause a decay ing energy flow within the 

structure. It can be realised t hat t hese notional decay ing waves are very 

small compared to t he total stand ing wave d isplacement . If th to ta l 

displacement signal is contaminated by noise, then the ratio of t he noise Il oor 
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to the amplitude of t he notiona l decaying waves is crucial to the accuracy of 

t he VEF computa tion wit hin a fin ite structure. If the level of noise within the 

displacement signa l is the same or even higher thall the amplitude of t he 

decaying travelling waves, VEF within a finite structure cannot be computed. 

VEF computa tion is only feasible, if the a mount of noise is less than the 

decaying wave amplitude. 

For th is reason , numerical VEF computation from noise conta minated 

simply supported plate di splacements will be shown here at two different 

levels of damping a nd noise. Different levels of damping a rc represented 

herein by different loss factors, a nd different levels of noise are represen ted by 

different SNR's. T hus, VEF is computed at loss factors of 17 = lO-a and 17 = 
lO-2 for a simply supported plate, which is excited centrall y by a IInity force 

at an excitation frequency of /" = 714 I-Iz, wh ich is then equal to the 

undamped natural frequency of the (111 = 5, n = 3) mode. T he two hysteretic 

loss factors represent the boundar ies of lam ping to be expected during t he 

simply supported plate experiment . Figure 11 .32 d i plays the p late 

d isplacement at 17 = lO-a with a n SNR of 119. Also here , the SRi 

determ ined from t he two-dimensional integration of the ignal power a nd 

noise power matrix. It can be seen that the signal IS very nOISY , whereas a n 

ampl it ude reduct ion is hardly noticeable. Figure 11.33 displays the top view 

image of the d isplacement hown in F igure 11.32. Also there, the noise 

contami nation is clear ly visib le. 

Analogously to the filtering proc dures demonstrated previously , an 

error assessment fun ction is em ployed herein using t he relat ive lVISE of the 

total now of vibrational energy across perpend icula r lines para llel to the 

plate 's edges. T he relative MSE i determined from the VEFESPI computed 

TTVE a nd from t he exact computed TTVE in t he x and y direct ions. Using 

equation (11.3), the relative MSE fi, in the x direction is given by: 

(11 .5) 
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Figm'e 11.32 Noise contaminated simply supported plate di splacement: (a) 2D real 

part , (b) 2D imaginmy part , (c) real part at y = L,/2, (d) imaginmy part at y = 
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Figure 11.33 Top view image of the complex simply supported plate displacement 

shown in Figure 11.32: (a) real part , (b) imaginary part , ( '7 = 10-"). 
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Note, the relative MSE n. obtained from thc total fl ow of vibrat iona l energy 

across lines perpendicular to the x-ax is can be fonnd simply by in terchanging 

the spatial variab le x by y. 

Figure 11 .34 d isplay the re lative 11SE made when computing ideal 

fi ltered TTVE from the simply supported plate d isplacement , shown in 
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Figure 11.34 Relative i\JSE of idenl fil tered TTVE of t he plate displacement shown 

in Figure 11.32: (a) active i\[SE in x direction, (b) active i\[SE in y direction, (c) 

reactive i\[SE in x direction , (d) reactive MSE in y direction, (71 = 10-"). 

FigllT 11.32, at different filter cut-off po in ts and diffe rent SNU 's. It can be 

d educed that with a decreas ing level of noise the active rela t ive MSE 

decreases, whereas the reactivc MSE stays approximately constant . It can 

a lso be realised that the computation accuracy of act ive VEF in fin ite 

s tructures s trongly reli es on the producl of damping and noise, i.e. 7J x SNU. 

Figure 11.35 displays the opt imum ideal filtered TTVE in t he x 

direction . ote, the ideal filtered TTVE t/I. (not shown) d i plays a simila r 

curve sha pe however , with a lower MSE, as expected from FigllTe 1l.34(b). 
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For reasons of brevity , th is fi gure is excluded here. It can be seen from Figure 

11.35 t hat at TJ x SNR '" 0.12 large deviations between the act ive ideal 

fi ltered a nd the exact act ive TTVE are obtained , whereas at TJ x SNR ., 2.7 a 

much better m atch between both quantities was realised. It is quite clear 

that the higher the product of TJ x SNR the better the accuracy of the act ive 
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Figure 11.35 Exact and ideal filtered total transmitted vibrationnl energy of t he 

simply supported plate displacement shown in Figure 11 .32: (n) active ,p" (b) 

reactive ,p" ( TJ = 10-"). 

VEF computation. Interes t ingly, the computation of the reactive TTVE did 

not depend as strongly on the product of TJ x S R. 

A nalogously to the procedure shown above, the same nllmerical VEF 

computa tion is carri ed out for a simply sllpported plate with t he same 

vibrational para meters but a difference in applied structural damping. Here, a 

ten t ime larger loss factor is employed, i. e. TJ = 10-'. F igure 11.36 d isplays 

t he relative MSE made when comput ing TTVE nllmerically Ilsi ng a loss 

factor of TJ = 10-' at two different levels of noise. It can be noticed when 
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reactive MSE in x direction , (d) reactive MSE in y direction , (mode (5,3), 1] = 10-2
). 

comparing Figllre 11 .36 with Figure 11.34 that the rela tive MSE is lower for 

each product of 1] x SNR when the intern a l structural damping has increased. 

Figure 11.37 displays the optimum ideal filtered TTVE ~,. The curve 

shape o f the opti mllm ideal filtered TTVE ~g is ra ther simila r and excluded 

due to b revity reasons. It can be seen from Figure 11.37 t hat the ideal 

fil tered acti ve TTVE matches much bctter with the exact so lu t ion at both 

noise levels. However , a t a S R of 124, which symbolises a heavily noise 

contam ina ted signal, t he product of 1] x SNR is approxima.tely 1.24 and , 

thus, lower than a t the same scenario of t he previous example. At an SNR of 

2719 the product of loss factor and SNR is 7] x S R", 27.2 . I t can be reali sed 

from F igure 11.37 t ha t at t he prodllct of 7] x SNR > 1 a reaso llab le accurate 

VEF with in a simply suppor ted plate can be compllted at a higher structural 

damping level. However , discrepancies to the exact solu t ion a.re a lways 

present , even in the case where zero noise contaminates the signal (S R = co) 

339 



11 umerical Analysis Of Vibrational E nergy In P lates 

beca use t he spectral fil teriug procedure a lters the wavenum ber doma in a nd 

with it the numerically determined spat ial deri vat ives . 

VEF maps of the exac t solu t ion , t he ideal fil tered VEF at 7J = 10-" & 

SNR = 26 5 and 7J = 10-2 & S R = 103 are presented on the next page to 

·3 
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Figure 11.37 Exact and ideal filtered total transmitted vibrational energy of a 

simply supported plate: (a) active tP" (b) reactive tP" (mode (5 ,3), 1"J = 10-' ). 

illustrate the effect of the relation between loss factor and SNR. It can be 

seen from Figures 11.38 and 11.39 t hat a t 7J = 10-" & SNR = 2685 a nd 7J = 

10-2 & SNR = 103 a similar VEF pattern was computed. It can be reali sed 

that with increasing damping, t he product 7J x SNR Illay dec r ase in order to 

compute a useful VEF pattern , as shown in the figures above. Hence, with 

increasing internal damping within the simply supported plate, the noise 

sensitivity of the VEFESPI method decreases . If the plate is light ly damped 

( 7J "" 10-") , t he product of 7J x SNR should at least be about 3, whereas at a 

structural damping of 7J "" 10-2 the product of 7J x SNR may bc about 1. 

In terest ingly , an energy balance according to equation (3.61) revealed t hat at 
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77 = 10- :1 & SNR = 2685 a nd at 77 = 10-' & SNR = 103 the tota l transmitted 

energy within the plate, obtained from the surface in tegra tion of t he potentia l 

energy density , in compar ison to the theoretical determined VIP was about 

7.5 % and 9.1 %, respectively. Thus, the computat ion of the VEF pattern is 

much more noise sensiti ve than the computation of the active TTVE from 

the VEFESPI determ ined potential energy density . 

It can be een from the filtered reactive energy figures , shown above, 

that the ideal filtered reactive VEF lid not match well with t he exact 

solu t ion . The dev iation of reactive energy flow can be exp lained by t he 

a na lysis of a n odd-numbered mode shape plate displacement , which causes 

leakage in the wavenumber spectrllm and , thus, deviations In VEF 

computation. To reduce t hi s effec t the MP and MRS per iodisation may be 

employcd. 

Figure 11.40 d i p lays t he relative M E made when a na lys ing a simply 

supported plate d isplacement , excited centrally by a unity force at a n 

excitat ion frequency of f., = 714 I-Iz, which forced the pla te to a modal 

response of the mode (5 ,3). The plate was damped with 77 = 10-' and the 

di splacement was conta minated by norma lly d istributed noise with an S R 

of 94 . Figures 11.40(c) and 11.40(d) show that t he relative reactive MSE is 

lower than the reactive MSE shown in F igm es l1.36(c) and 1l.36(d). 

Interest ingly, here t he MSE of the reactive VEF in t he x di rec t ion is lower 

than t he MSE made when computing reactive energy flow in the y direct ion. 

Th is may be d ue to t he inclusion of more waves in t he x d irection because 

the mode employed here was (5,3). However , both periodisat ion techniq ues 

produced a much better computed reactive energy flow map than the 

VEFESPI a na lysis of the non-periodised pla te di splacement , as evident from 

F igure 11.41. 

Figure 11.41 d isplays the VEF maps computed from the MP and JVIR 

periodised plate di splacements. It can be seen from Figure l1.41(c) t hat the 

MRS based com putation of active VEF is not as successful as the MP 

technique. Here, strong oscillations of the active TTVE occurred. 

Furthermore, the computat ion of active VEF from an IvIP period ised plate 
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displacement d id not produce a better resul t than the d irect computa tion of 

active VEF from a non-periodised displacement. 

11.3.2.2 Oval 2D Spectral Butterworth Filtering 

Analogously to the procedure demonstrated in the previous section , the effect 

of computi ng n utterworth filtered VEF from nOIse conta minated simply 

supported p late d isplacements is presented. Also here, four d ifferent 

combinat ions of high and low level noise contamination in combination with 

high and low stTllctllTal damping are invest igated. Thlls, VEF is computed at 

a loss factor of 1] = 10-;) and 1] = 10-2 for a simply upported plate, which 

was excited centra lly by a unity force a t an excitation frequency of JII = 714 

Hz, which forced t hat plate to the modal sha pe of mode (5 ,3). 

F igure 11.42 hows the relative MSE made when comput ing VEF fro lll 

a simply supported plate d isplacement , as shown in Figme 11 .32. Eq lla tion 

(11 .5) was employed to determine t he I[ E . It can be secn from Figure 11.42 

that the rela tive MSE of reactive TTVE does not a ltcr with the var iat ion of 

the SNR. Howevcr, the rela tive MSE of the active TTVE does a lter with the 

variation of the S R. In comparison to Figure 11.34, the nutterworth fil tered 

active a nd react ive MSE is lower than the ideal filtered coun terpart , 

especially a t the higher noise level. In Fignre 11.42 it can also be seen t hat 

t he TTVE in the x and y direct ions has a separa te cnt-off frequency, denoted 

here as k . a nd k , respectively. Dne to the nse of a non-symmetri ca l mode 
I z ". 

shape d isplacement (5,3) the spectral low pass-nutterworth has to be oval, as 

shown in F igure 4.5. T hus, d ifferent cut-off wavenllmbers are req ni red in the 

k, a nd ky direction , re pectively. 

F igure 11.43 displays the n utterworth filtered TTVE in the x 

direction. Also, due to similarity , the TTVE in the y direction is excluded. It 

can be seen from F igure 11.43 that wit h a n increase of the product 1] x SNR 

the accuracy of the VEF computation improves. 

In the following a numerical VEF c mputation IS ca rri ed usmg t he 

same sim ply supported plate d isplacement parameters, with , however , a 

d ifference in app lied structural damping, i.e. 1] = 10-2
. 
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F igure 1l.44 d isplays the rela tivc MSE tha t is mad e whcn TTVE is 

computed from l3utterworth fi I tered da ta. Here a lso , a t a h igh noise noor an 
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Figure 11.44 Relative i\ISE of Butterwort h fil tered total transmitted energy of a 

simply supported plate: (a) active i\rSE in X direction, (b) active i\ISE in y direct ion, 

(c) reactive MSE in x direction, (d) reactive MSE in y direction , (mode (5,3) , TJ = 

10-' ). 

acceptable re nIt can be obta ined d ne to thc increase in damping. 

Figure 1l.45 displays the l3utterworth fi ltered TTVE III the x 

direction . It is evident from thi s fi gure t ha t a reasonab le VEF computa tion 

accuracy can be reali sed at Tt x SNR '" 1. OF course products of Tt x S R ~ 

1 are prefera ble. However , thi s quanti ty is dri ven by the p late's moda l 

structura l loss factor and the noise sensitivity of the measurement sy ·tem , 

which records t he two-d im ensiona l di sp lacemen t in format ion . Thus, the 

prod nct o f Tt x S R cannot be innuenced . 

Figures 11.46 and 11.47 display the acti ve and react ive VEF maps o f 

t he exact solu t ion a nd the I3 n tterworth Fil tered VEF compnted at Tt = 10- :1 & 
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Figure 11.45 Exact and Butterworth fil tered total transmi tted vi brational energy of 

a simply supported plate: (a) active tfin (b) reactive tfi .. (mode (5 ,3) , TJ = 10-2
). 

SNU = 98 a nd TJ = 10- 2 & SNU = 129, re ·pect ively. It can be seen from both 

figures that the Butterworth filtered act ive VEF at TJ = 10-3 & SNU = 2896 

and TJ = 10-2 & SNU = 106 ma tch well wit h the exact solu tion. This again 

ind icate that with increasing da mping wit hin the structure, the noise 

sensitivity of the VEFESPI method decreases. Also here, a n energy ba la nce 

according to equation (3.61) revealed a very low relative error between t he 

smface integrated potential energy d ensity (TTVE within the plate) and t he 

theoretical VIP o r 0.35 % and -0.11 %, respect ive ly . It seems t he magnitude 

or the Butterworth filtered active VEF is more accurate t han the ideal 

fi ltered magnitude of active VEF . 

However, the cornputa tion of the Butterworth filtered reacti ve energy 

now is a lso fairly erro neous. To red uce t he error made when computing 

reactive energy now , the nOli-per iod ic p late d isplacement wa per ioclisecl by 

employing the MP and MUS technique. Figure 11 .48 displays the rela ti ve 

1SE made when computing Butterworth filt ered TTVE from a period ised 
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s imply supported plate d isplacement . Analogously to the procedure 

demonstrated above, a simply supported p late, excited centrall y b y a 1Inity 

force at an excitat ion freq1lency of !o = 714 IIz that is equal to t he undamped 

natura l frequency of the (5,3) mode was analysed. The loss factor o f the p late 
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Figure ll.4B Relative i\ISE of Butterworth filtered total transmitted energy of a 

si rnply supported plate: (a) acti ve MSE in x direction , (b) active MSE in y direction , 

(c) reactive i\ [SE in x direction, (d) reltctive i\.fSE in y direction, ( 71 = 10-2 & SNR = 

104). 

was chosen to be 71 = 10-2
. The di splacement was contam inated by normally 

distributed noise wit h a SNIl of 104 . It ean be seen from Figmes 11.48(c) a nd 

11.48(d) that the re la tive reactive MSE can be decreased when computing 

TTVE from B1ItterIVorth filt ered perioci iseci ci isplacements. In addition , the 

MP periociisation technique produced best results. 

F ignre 11.49 d isp lays t he active and react ive VEF determined from 

the Butterworth filtcred and periodised s imply supported plate d isplacement . 

It is ev ident when comparing Figure 11.49 with the exact VEF sol1ltion 
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Figure 11.49 Butterworth fi ltered VEF maps of a simply supported plate: (a) active 

VEF - VEFESP I+MP , (b) reactive VEF - VEFESP [+i\ [P , (c) active VEF -

VEFESP I+ MRS, (d) reactive VEF - VEFESP I+ MRS, ( 71 = 10-2 &. SNR = 104). 

d isplayed in F igure 11.46 t ha t t he react ive energy flow is a bette r m atch wit h 

the exaet reactive VE F so lut ion . 

11.3.3 Vibrational Energy Flow Including ESPI Noise 

T he a im of t hi s sect ion is to provide opt imised fil ter cut -off points, which 

may t hen be employed dur ing the VEF analysis o f t he ESP ! measured simply 

suppor ted p la t e d a ta . T herefore, ESP! noise was extracted wit hin t he 

wavenumber d oma in from t he Fom ier t ransformed a nd ESP ! measured 

simply s1lpported pla te disp lacement s . T ab les 11 .5 to 11 .7 d isp lay t he 

vibra t ion param eters o f the experimenta l s imply suppor ted plate st rnctures 

obta ined d uring t he ESP ] experimen ts. 
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mode fo P. 0 1}",." S R 

(3,3) 428,7 Hz 00139 N 3,362·10-" 75 ,6 

(5,3) 711 ,6 Hz 0,0344 N 3.445·10-" 55 ,7 

(1,5) 766 ,7 Hz 6,954·10-" 197,0 

(7,1) 896,2 Hz 0,1509 N 6.442·10-" 495,1 

(5,5) 1190,9 I-Iz 0.1275 N 5,317·10-" 98.4 

(9,1) 1461.9 Hz 0,0817 N 3.464·10-" 81.7 

(7 ,5) 1615,2 Hz 0,2215 N 5,558·10-" 96,0 

(9 ,5) 2180,9 Hz 0,3060 N ,393·10-" 25,2 

Table 11.5 Vibration parameters of the experimental non-layer damped simply 

supported pl>lte, 

mode 11) ~J 1Jm." SNR 

(3 ,3) 398,1 H z 0,0994 62.10-2 21.3 

(5 ,3) 660,7 Hz 0,1713 N 1.904.10-2 47,6 

(7,1) 832. 1 Hz 0,2562 2,154.10-2 65 ,6 

(5 ,5) 1105,7 I-Iz 0,5560 N 2, 176,10-2 52,2 

(9,1) 1357,3 Hz 0,4173 1.927,10-2 52.4 

(7,5) 1499,6 H z 0,5398 N 1.417-10-2 136,2 

(5,7) 17733 Hz 0,9970 1.671-10-2 145,0 

(11,1) 2013.8 Hz 0,9520 N 1.836,10-2 78,0 

Table 11.6 Vibration parameters of the experimental single-layer damped simply 

supported plate, 
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mode In Fo 1]",." SNR 

(3,3) 412.1 Hz 0.0525 N 1.080 ·10-' 35 5 

(5,3) 684 .0 Hz 0.1216 1.070·10-' 105.3 

(7,1) 861.4 Hz 0.1239 1.561·10-' 126.0 

(5 ,5) 1144.7 Hz 0.2576 1.00nO-' 159.2 

(9,1) 1405.2 Hz 0.1700 9.347.10-3 69.6 

(7,5) 1552.6 I-Iz 0.3844 N 1.498·10-' 61.8 

(5,7) 1835.9 Hz 0.4784 9.860·10-:1 152.5 

(9 ,5) 2096.3 Hz 0.5983 1.022·10-' 96.3 

Table 11.7 Vi bration parameters of the experimental checkerboard-Iaye r dmnpec1 

simply supported plate. 

It is sh own in the tables above that t he ESPI mea ured pla te di splacements 

were recorded on three differently damped and simply ·upported p late 

structure ·. To simllla te d ifferent s tanding wave environm ents, a non- layer 

covered plate, a fu lly unconstrained layer covered plate, and a partially 

damp d plate, covered with patches t hat were ar ranged in a eheekerboard 

pattern layout, were measured. E ight ESPI measurements at different modes 

were recorded. A Ilslla l, the extracted ESP] noise was superim posed with a 

simply supported plate d i ·p lacement t hat waS synthetically generated. The 

pla te was centra lly excited by t he force magni t ude Fo as measured d uring the 

ESPI experiment . Here, t he theoretical Ilndamped natural frequency III of the 

respecti ve mode was employed using t he simply sllpported plate parameters, 

as shown in Table 11.4. T he measured modal hysteretie loss factors 7)", ... , 

shown in the tables above, were acquired from an experimental modal 

analysis a pplied for each plate structure usmg a lOxlO accelerometer 

measurement grid , which was evenly dis tr ibllted over the plate' surface 

[127]. 

Due to t he design of the simply sllpported plate r ig, in t rod llced later 

in sect ion 12.2.2, the plate displacement cOllld not be fu lly recorded and was 
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excluded approximately 2.5 cm arollnd the edges. Hence, the di splacemellt 

non-period icity due to the excited odd-numbered mode shapes of the plate 

was increa ed even furth er . For thi s reason optimised filt er cut-off points wi ll 

a lso be determined for a sim ply supported plate displacement t rnncated to an 

in teger number of wavelengths included in the signa l. However, t he 

trunca tion procedure will decrease the number of wave lengths to be analysed 

during the experimenta l a na lysis. 

As mentioned previously, ESPI nOIse for each simply supported ESPI 

plate m easurement was ex tracted within the wavenumber domain simp ly by 

deleting t he travelling wave information of the computed waven llln ber 

spectrum . After apply ing an in verse 2D FFT the spatial ESPI noise 

di stribution was obtained. This noise d isplacement was thcn superimposed 

with a syntheti c simply supported p latc displaccment by numerically 

evaluating cquation (10.25). With th is procedurc, optimum filter cut-off 

poin ts for each experimental excitation frcquency were determ ined for thc 

non-per iodic and periodic plate displacements. T he results of these a nalyses 

are shown in Appendix A29. In the fo llowing, two results of the VEF 

com putat ions are presented for a non-periodic plate d isplacement a nd a plate 

disp lacement truncated to an integer number of wavelengths. 

Figure 11.50 d isplays t he non-periodic plate d isplacement as it would 

be in truncated form stra ight from the experimentally acquired ESPl data. 

T he plate displacement was generated synthetically using equat ion (10.25) 

and superimposed by the extracted ESP! noise. T he force a mplitude 

employed here is equal to the force magnitude measured during the ESPI 

experiment and is shown in Tables 11 .5 to 11.7. A single unconstrained 

damping layer was modelled sim ply by a ltering thc complex, fl exu ral pla te 

rigidity according to the unconstrained damping layer theory introduced in 

sect ion 10.4. T he simply supported plate was excited by a n excitat ion 

frequency of 10 = 1773.3 I-Iz forcing the plate to vibrate at its natura l mode 

(5,7). The remaining vibration parameter ' a re shown in Table 11.6. It can be 

seen from Figure 11.50 a nd from Table 11.6 t hat the disp lacement was 

contaminated by noise with an SNR of 1'15. 
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Figure 11.50 ESPI noise contaminated , single layer damped , simply supported plate 

displacement : (a) 2D real part , (b) 2D imaginary part , (c) real par t at y = L,/2, (d) 

imaginary part a t y = £,/2, « mode (5,7) & '7 = 1.67.10-2 & SNR = 145). 
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Figure 11.51 Butterworth filtered ancl exact VEF maps of the simply supported 

plate displacement shown in Figure 11.50: (a) exact active VEF, (b) exact reactive 

VEF, (c) active VEF · VEFESPI , (d) reactive VEF· VEFESPL 
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Figure 11.51 d isplays t he VEF pattern determined from the exact non-nOIse 

conta minated plate displacement and t he 13utterworth filtered ESPI noise 

conta minated p late d isp lacement . Figure 11 .52 shows the exact and fil tered 

TTVE in t he x direction . It can be seen from both figures that a good match 

between exact active VEF and filtered act ive VEF can be ach ieved despite 
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Figure 11.52 Exact ftnd Butterworth filtered total t ransmitted vibrational energy of 

the simply supported plate displacement shown in Figure 11.50: (a) active 1/>" (b) 

reactive tPr 

analysing t he non-periodic plate d isplacement. However , t he reac tive energy 

fl ow pattern does not match well . T his problem increases wit h decreasing 

number of modes. T hus, a t runcat ion to a n in teger number of wavelength s 

within the p late d isplacement was carr ied out . 

Figure 11.53 d isplays t he integer wavelength truncation of the pla t e 

di splacement shown in Figure 11.50. T his procednre will a lso be employed 

when a nalysing the experimental simply supported p late da ta. 

Figure 11 .54 shows t he VEF pattern of t he exact so lu tio n a nd the 

Butter worth fil tered VEF computed from the d isplacement shown in Figure 
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(b) imaginary part. 
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Figure 11.54 Butterwortb fil tered and exact VEF maps of t he simply supported 

plate displacement shown in Figure 11.53: (a) exact active VEF, (b) exact reactive 

VEF, (c) active VEF - VEFESPI, (d) reactive VEF - VEFESPI. 
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11.53. It can be noticed by comparing Figure 11 .54(d) with Figure 1l .51 (d) 

that the ilutterworth filtered reactive VEF matches much better with the 

exact so lut ion. Also here, the act ive VEF patterns match well with cach 

other . 

F igure 11 .55 d isplays the TTVE computed from the exact VEF and 

ilutterworth filtered VEF of t he period ically truncated simp ly upported 

plate displacement shown in Figure 11.53. It is evident t hat the computation 

of the reactive TTVE from ESPI noise contaminatcd d isplaccment data tha t 
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Figure 11.55 Exact "nd Buttenvortb fil tered total transmitted vibrat ional energy of 

the simply supported plate displacement shown in Figure 11.53: (,,) active tPr> (b) 

reactive lA. 

are truncated to an integer number of wavelengths clearly increases in 

accuracy. Also, the accuracy of t he activc TTVE curve sha pc has s lightly 

improved. T hus, t he truncation of the ESPI recorded experimen tal simply 

supportcd plate d isplacement to a n integer number f wavelengths is 

expectcd to incrcasc the computat ion of energy fl ow. Note, thc TTVE in t he 

y d irection has not been shown herc due to a simila r cnrve shape. 
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11.4 Discussion and Summary 

Within thi s chapter the numerical computation of VEF and energy fl ow 

rela ted quantities in infinite plates and finite sim ply supported pla tes was 

studied . VEF and energy flow related qua ntities were determined from 

synthetically generated pla te displacements using the VEFESPT method. T o 

assess the accuracy of the VEFESPI method under different circumstances, 

the numerica lly determined energy quant iti es have been compared to exact 

VEF solutions given in chapter 10. Spatial deri vati ve required for VEF 

computat ion were calcula ted using the KSD technique. 

13ecause experimenta l da ta is contaminated by nOIse, the effect of 

spectra l filtering has been investigated in deta il. Furthermore, the reduction 

of leakage , occmring due to the a na lysis of non-periodic pla te displacements, 

was ta ken into account . 

In section 11 .2 an infini te plate was investigated . The point force 

response of an infinite pla te may be ana lytically de cribed by a set of I-Ia nkcl 

functions of econd kind a nd zeroth order , representing a travelling farfl eld 

a nd a decaying nearfi eld . T o simplify the VEF ana lys is, t he I-Iankel fu nctions 

were a pproximated by t he exponential a sy mptotic expansion of the lIankel 

functions. The asymptotic expa nsion ex pressions a rc fa irly accura te for 

locations of [kT[ greater tha n 4 . 

T he computa tion of VEF within a n infini te plate from synthetic non

noise contaminated di splacement data resulted in VEF 0 cilla tions due to the 

a na lys i ' of a non-periodic, rad ia lly symmetric, exponentially decaying 

displacement tha t was t runcated to a Cartesian coordinate based 

d isplacement matrix . However , these undesired oscillations could be 

compensa ted for , using the CW technique as well as the MP and 1RS 

periodisation techniques. It should bc mentioncd tha t a lthough the MP a nd 

lVIRS technique deli vered very good results, its application increased the 

computation t ime significant ly. Thus, when dealing with a high number of 

data points during numerical VEF analysis, the CW technique p rforms 

much fa ter. Furthermore, the CW technique is a lso easier to implemen t 

within a software environment. 
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VEF within a pla te structnre is determ ined herein from two complex

valued VEF fi elds denoted as Pr and P" which contained t he two

dimensional information of energy now in the x a nd y direction , respectively. 

With th is informat ion it is pos ible to construct so-called VEl" maps 

exh ibit ing the magnitude a nd d irection of VEF with in the plate structure. 

Active VEF within a n infini te p la t e t ravelled radia lly symrnetrically 

away from t he excitation location a nd decreased in a mplitude with increasing 

distance from the excitation location (Figttre 11.7). In contrast , reactive VEF 

travelled toward s the excitation location . 

Energy balance within t he infini te plate were carried out by 

integrating the VEF fields in the x and y d irections along a closed square 

contour that was located arouud the excitation locat ion wit h d istance of lk1l 
It has been shown t hat the computed act ive TTVE obtai ned fro m t he 

contour in tegration is constant at each rad ia l d istance away from the 

excitation location and equa l to the VIP (Fignre 11.9). T he TTVE was a lso 

used here as a quantity to assess the error that was made during the 

numerical infini te p la te VEF computat ion . T hi proccdur had the advantage 
- -

that the two VEF fields, P, and p. , could be combined with one error 

appraisal quantity only. 

T he effect of noise conta mination on the computat ion of VEF within 

an infin ite plate was also in vestigated. Thus, synthetic di splacement data wa' 

superim posed with norma lly distributed noise and noise extracted from the 

experimental ESPI data. As usual, a spectral filtering was carri ed out by 

applying the ideal 2D fi lt er ing procedure as well as the oval 2D B utterworth 

filter. It ha been hown t hat due to t he a lteration of the wavellumber 

domain during the spectra l fi ltering , the VEF compu tation accuracy reduced. 

However , employing the optimised filter cut-o ff poin ts could reduce t he error 

to an acceptable range. Th us, a evident from t he VEF maps of the spectral 

fil tered infinite plate d isp lacement ·, as shown in Figures 11.14 a nd 11 .18, a 

good VEF pattern can sti ll be rcconstructed. However , the accuracy of the 

energy balance was reduced, a evident from Figures 11.15 a nd 11.19. This 

reduction in the accuracy of cornputation depended on the magnitude of the 

noise noor , which contaminated the disp la ement signal. 
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In contrast to the numerica l infini te pla te ana lysis, VEF wit hin a 

finite structllfe, namely a simply supported plate, was also invest igated 

numerically. T he simply supported plate represented a fi nite structure t ha t 

contained a high a mount of stand ing waves. Due t o t he high sta nding wave 

ratio, very weak net energy flows could be expected a nd, thus, t he effects of 

d isp lacement d iscontinuit ies and especia lly noise conta mina t ion a re much 

stronger when a na lysing a fin ite structure. 

T he simply suppor ted plate displacement was synthetically generated 

by numerically evalua ting equa tion (1 0.25). From there it can be reali sed 

that a modal approach was used to describe the simply supported plat e 

re ponse to a harmonic point force excitat ion by using an infini te number of 

excited modes cont ributing with a d ifferen t a moun t of strengt h to t he 

displacement forma tion . However, in practice only a finite num ber of modes 

can be considered . T hus, wit hin this work on ly 11 modes (m, = 11 , n = 11 ) 

wcre taken in to accoun t , to keep t he com puta t ion ti me within a reasona b le 

range. 

The numerical computat ion of VEF from a non-nOi SY, non-per iod ic 

simply supported pla te d isplacement a lso revealed VEF oscilla t ions. T hese 

undesired VEF oscillations were caused by t he spectra l a mpli fi cation o f 

spectra l leakage components especia lly a t high wavenumber components . T o 

reduce the effect of leakage d ue to igna l irregular it ies t hrce techniques , 

namely the CW , MP and MIlS technique were employed. It has been shown 

that the VEF pattern as well as t he TTVE wit hin t he p la te cou ld be 

computed wit h very high accuracy. T he rela ti ve error , between t he 

theoret ical VIP and the integrated potent ial energy density (act ive TTVE), 

was a bout - 0.03% when emp loying the MP and MIlS technique. 

It can be realised from the VEF ma ps shown in Figures 11.26 a nd 

11 .27 that the reactive VEF pat tern of a fin ite structure is much more 

distinct ive t ha n t he reacti ve energy now pattern of an infini te str l.l ct nre. 

Also, t he ampli tude of t he total transmitted react ive energy is much higher 

t h" n t he act ive flow a mplitude o f an equivalent infini te pla te structure. It can 

be seen from F igures 11 .28 a nd 11 .29 that t he react ive TTVE in the x a nd y 

d irection , respect ively, is much higher tha n t he ac ti ve TTVE. T hus, finite 
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pla te st ructures with a high stand ing wave rat io havc a very high reacti ve 

VEF and a di stinctive reactive VEF sha pe. Furthermore, it can be seen from 

these figures t hat the react i ve VEF ma ps can be related to t he modal shape 

of the d isplacement , whereas the active VEF pattern cannot be rela ted to the 

modal displacement shape. 

VEF oscillat ions from non-nOISY, non-peri d ic simp ly sll pported p late 

disp lacements were reduced using the C W techniqlle as well as the MP and 

MllS periodisation technique. The latter two techn iques per iodised t he initia l 

non-periodic plate di splacement . It can be seen from Figlll'es 11.30 and 11.31 

that t he MP and MllS technique prodllced bettcr results. However , the CW 

techniqlle is much easier to implement. Furthermore, the app lication o f t he 

]\I[P and 'IllS techn ique increased the compll tation time. 

T he nllmerical compllta tion of VEF within a finite p la te from noise 

conta minated d i placements revealed a large noise sensiti vity of the 

VEFESPI method. Alt hollgh not proven mathematically , a hypothet ical 

model was introduced relating the net energy fl ow within finite structlll'es to 

the spatial decay of the travell ing wave . T hese not ional decaying and 

travell ing waves are very small compared to the total standing wave 

disp lacemen t . IF the no ise magnitude that conta minates the displacemen t 

signal is larger than t he magnitude of the decaying waves, VEF cannot be 

computed. However, if the magnitude of t he noise floor i less than the 

magnit ude of t he small travelling d isp lacement part , VEF call be computed 

by the VEFESPI method . 

To assess the complltabil ity of VEF from nOI SY, simply supported 

p late d isplacements, t he product of loss factor a nd Nll , i.e. 1] x S II wa ' 

suggested as an indicator to obtain VEF in pattern and magnitude by the 

VEFESPI method . It was shown that with increasing internal damping th e 

noise sensit ivity of the VEFESPI met hod decreased . Th us, active VEF could 

be computed at lower products of 1] x SNll. The compu tat ion of react ive 

VEF was not strongly dependent on the noise floor . Problem occurred here 

bllt only d ue to non-periodicity of t he ini t ia l plate d isplacernent. An 

a lterna ti ve ind icator to assess the computability of VEF from noisy finite 

structure displacernents may be the s ta nd ing-wave ra tio (SvVll). However , 
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the product of T} x S R was preferred here, Since the loss factor was 

measured by a n exper im ental modal ana lysis a nd wavenlll11 ber dom ain 

manipulation a llowed for easy extract ion of the ESP I noise. 

Figure 11.56 di splays the minimum MSE made when computi ng VEF 

from a simply supported p la te d isplacement excited a t the mode (3,3) , noise 

contam inated by different levels of noise ancl structuraJJy damped a t T} = 10-" 

and T} = 10-', re pectively. T he loss raetor range employed in t hi s analysis 

represents the range of the loss factor to be expected during the simply 

supported pla te experiment . It is eviden t from Figure 11.56 that the higher 

the product of T} x SNR t he lower the er ror made when computing VEF. The 

minimum MSE fL was computed using equation (11.5). It is evident from 

Figure 11.56(b) that computation of reactive VEF within a simply supported 

pla te is less erroneous a nd more insensit ive to noise contamination th a n t he 

com putat ion of active energy flow. Here, the c mputation accuracy increased 
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Figure 11.56 Computed MSE of periodised simply supported plate displacement 

using the wIP technique, excited at the natural (3,3) mode In dependency on the 

product of 1] x SNR: (a) active !\lSE, (b) reactive !\lSE. 
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with increasing internal damping . From F ignre 11.56(a) it can be seen t hat at 

a prod uct of TJ x S TR ~ 3 no significant reduction in MSE can be achieved . 

Also, the computa t ion accuracy increased with increasing loss fact or and , 

th us, with increasing da mping t he sensiti vity of the VEFESPI method 

decrea ed . 

When comput ing VEF from simply supported pla tc displacements 

higher modes were more in en itive to wards error due to the inclusion of 

more spat ia l information in t he displacem ent signa l. 

Interestingly, the active TTVE curve sha pcs of a simply suppor ted 

plate, as shown in the figures above, were similar to the VE F curves present 

in the simply supported beam with m aximum energy tra nsmitted at the 

excitation location a nd zero energy now a t the non-dissipative boundaries. As 

mentioned previously, th is CllTVC can be seen either as TTVE or energy 

dissipa ted within the structure. 

Fina lly, a n energy balance was carri cd on t by uSIng 'y nthetic 

displacement da ta contamin a ted by extracted ESPI noise t o pred ict the 

rela t ive rror t hat may be made when a nalysing t he experimental sim ply 

supported pla te dat a. The pla te was centra lly excited by a poin t force using 

the measured experimenta l force magni t ude. To red uce t he leakage efFect, 

periodically truncated simply supported plate displacement were a na lysed 

only . 

mode to TJ X R ( ~" )F. 2w"T] J (epo' ) , dxdy 
s 

D.li 

(3,3) 428.7 Hz 0.25 5.64.10- 0 W 5.52.10-6 W 2.16 % 

(5 ,3) 711 .6 Hz 0.19 2.03·10-" W 1.99·10-" W 2.07 % 

(5 ,5) 1190.9 Hz 0.52 1.08·10-" W 1.06·10-" W 1.99 % 

(7,5) 1615.2 Hz 0.53 2.60·10- ' W 2.56·10-' W 1.53 % 

(9 ,5) 2180.9 Hz 0.21 2.97·10-" W 3.09·10-" W -4 .13 % 

Table 11.8 Comparison of the theoretical inpu t power (P, ,, ),';, wi th the total 

transmi tted energy wit hin the plate computed from the integrated potential energy 

density of the non-layer damped simply supported plate. 
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m ode io 7] x SNR (~., ) f~ 2W17 J (e,,,,, ), dxdy 
s 

(3,3) 398. 1 I-Iz 0.40 4.85·10-" W 4.80·10-" W 0.99 % 

(5 ,3) 660.7 Hz 0.91 8.58.10-5 W .49·10-" W 0.99 % 

(5,5) 1105.7 I-Iz 1.14 4.91-10-.1 W 4.91 ·10-< W 001 % 

(7,5) 1499.6 Hz l. 93 7.4 .10- 1 W 7.65.10-.1 vV -2.17 % 

(5,7) 1773.3 Hz 2.42 l. 24-10-:I W l. 23·1O-:I W 1.19 % 

Table 11.9 Comparison of t he theoretical input power (P, ., ),';. with the total 

transmitted energy wi thin the plate computed from the integrated potential energy 

density of the single- layer damped simply supported plate. 

m ode i ll 7] x SNR 

(3 ,3) 412. 1 Hz 0.3 

(5 ,3) 6840 Hz 

(5 ,5) 1144.7 Hz l.60 

(7,5) 1552.6 Hz 0.93 

(5 ,7) 1835.9 IIz l.50 

(9 ,5) 2096.3 Hz 0.98 

2.26.10- 1 W 

3. 2.10-.1 W 

9.60.10- 1 W 

2W17 J ( e,,,,, ), dxdy 
s 

2.36.10-5 W 

7.700-5 W 

2.21·10-< W 

3.91.10-.1 W 

4.78.10-.1 W 

l.01·1O-:I W 

l.97 % 

l.96 % 

2.10 % 

-2.36 % 

341 % 

-5.55 % 

Table 11.10 Comparison of the theoretical input power (P''' )F. with the total 

transmi tted energy within the plate computed from the in tegrated potential energy 

density of the checkerboard-layer damped simply supported plate. 

Note, t he damping layer attachment was modelled uSlI1g the unconst rained 

layer t heory in t roduced in sectio n 10.4. Furtherm re, a lso shown is the 

product of 7] x SNR a t which the relati ve errors may be expected . 

T he theoretical in pu t power (P, ., )F. was computed us ing eq ua t ion 

(10.27). T he potent ia l energy density (e ) was provided by t he 
1>0'· , 

13utterworth filtered VE F ESP I data . It can be seen from t hese tab les above 

tha t t he ex pected rela t ive error com pllted as : 
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.dE = 
2w!) J (e,m'.), dxdy 

1 - s 

(I=:" k 
100%, (11.6) 

is with in a range of ± 5%. It can a lso be secn from the tab les above tha t the 

energy balance within a plate is less sensit ive towards noise con tam ination , 

since at d ifferent products of 7] x SNl1 similar low errors were made. 

However , as shown in sect ion 11.3.2, the computat ion of VEF pattern is 

much more sensitive towards the a mount of noise contamination. Thus, the 

accUTacy of the energy ba lance can be expect ed to be higher t han t he 

accUTacy of t he VEF pattern computation d ue to the use o f second order 

spa tia l deri vati ves when in tegrat ing the potent ial energy density. 

Fina lly, it can be concluded that VEF can be computed trI plate 

structures even when a high standing wave environment or nOIse 

contamination is present . T he computnt ion of VEF from noise contamin ated 

plate displacements that contained a low SvVl1 was less critical. Howevcr , 

when dealing wit h noise contaminatcd pla tc d isplaccments hav ing a high 

SvVl1, t he VEFESPI method was much more sensit ive to noise. As expected , 

th is sensiti vity is a fun ction of the trnctural damping !) a nd the amount o f 

noise contamination , i.e. SNl1. Hencc, t he product of 7] x S 11 was suggested 

as an ind icator of the VEF computability of the VEFESPI method. It was 

shown that the computat ion of the correct VEF dircction was much more 

sensitive to the product of 7] x SNl1 than the computa tion of TTVE. 
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12 MEASUREMENT OF VIBRATIONAL 

12.1 

ENERGY IN PLATES: EXPERIMEN

TAL APPARATUS 

Introduction 

The a im of this chapter is to present thc experimcntal pla te apparatus IIsed 

within thi re earch to measure vibrationa l energy now (VEF) in a force 

excited experimental "infinite" a nd a force excited exper imenta l simply 

supported plate. Purthermore, the measurement setup employed during the 

experiment is introd uced in detail. Also here, ind irect vibrational energy 

measurements wit hin t he plat e structures were carri ed out using con ventiona l 

tra nsducer based meaS\lJ'e rnents as wel l as elect ronic speckle pattern 

in ter ferometry (ESPI). Conventional transducer based measurements were 

undert aken to obtain energy based reference q llantities, which are then uscd 

as a compari son measure to ESPI based VEF measuremcnts. T he ESPI 

measurement system employed during the plate experiments is the same as 

in t roduced in sect ion 7.2.2 . 

12.2 Experimental Plate Apparatus 

In analogy to the beam measurements described previously , VEF in a force 

excited experimenta l "infinite" pla te as well as a force excited experimenta l 
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simply s1lpported pla te were measured . T he experimental "infinite" plate 

ideali ses finit e structures with boundaries that d issipate almost a ll vibrational 

energy flowing towards the boundaries. Hence, la rge energy flows within the 

plate away from energy sources may be expected. In contrast, the 

experimental s imply supported plate idealises a finite structure with almost 

no energy dissipation a t the bounda ri es and, thus , very low net energy 

transmis ion within the plate may be expe t d d ue to the presence of a high 

stand ing wave environment . 

12.2.1 "Infinite" Plate Rig 

To measure VEF withill a force excited experimental "infIn ite" plate a 

specially designed rig, as shown in Figure 12. 1, was b1lilt . T he rig was made 

predominately from high density fibreboard (IIDF). The rig consisted of an 

upper and lower fra me, wh ich enclosed the rectangular plate specimen . The 

rectangular plate was made from mild steel , 1300 mm in length , llOO mm in 

width a nd 1 mm in thickness. The 1Ipper and lower frame was further divided 

illto an outer a nd an inner frame. The oll ter frame was 1500 mm in length , 

Figure 12.1 Experimental "infinite" plate rig including the ESP! plate. 
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a nd 1300 mm in width and 120 mm in heigh t . T he inner frame had 

dimensions of 700 mm in length , 525 mm in wid th and 120 mm in height. 

Thus, a region of 700 mm by 525 mm of the pla te was illuminated by the 

cont inuous 150 m W frequcney doubled N I:Yag laser addressed herein as 

ESP! window . During the experiment , t he plate specimen was covered at onc 

side by a reflect ion sheet to improvc t he rc llec t ion of t he incident lase r light . 

Bet ween t he inner and outer frames, kiln d ried sand and foam wedges were 

inserted in order to provide an anechoic terminat ion, as shown in F igure 7.5. 

The a lignment of the foam wedges is shown in Figure 12.2. T he ESP ! plate 

was embedded bet ween t he inner and outer frame stre tching 192 mm in to the 

a nechoic termination regIOn . T he le ngt h of 192 mm ensured t hat 

a pproxima tely onc spatial wavelength of the lowes t frequency to be measured 

was covered in sand . Usually hf1,lf a wa velengt h embedd ing is reqni red 

minima lly. T he lowest freqnency to be measnred was abont 400 Hz due to 

limita t ions of the ESPI m asurement syst m . Th d imensions of the in ner 

frame were chosen to be of a ratio of 4:3, exactly t he ame as t he aspect ratio 

of t he CCD camera. T he rig was designed so t ha t the ESPI dis placement 

images of t he "infinite" ESP I p la te specim n were recorded from t he top a nd 

Laser Cone 

,."...., 
'. 

F oam Wedge Accelerometer 
" ...... 

Optical Head 

Force T ransducer Sa nd 

. . . . . .: ~ .:.~. . . . . . . 
.;. : : : : ::. : 
''; : 

P la te 

Figure 12.2 Cross-sectional view of the force excited experi mental "infin ite" plate 

setup. 
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with in the inner frame, as shown in Figure 12.2. T his Fi gure a lso di splays the 

experimental setup of t he "infini te" plate. 

From Figure 12.2 it can be seen t hat t he plate was excited at the 

bottom of the horizontally lying plate. The horizontal plate alignment 

ensured a n effective anechoic termination process a nd easy acces' I' the 

opt ical head to the plate specimen. Howevcr , connecting the electrodyna mic 

sha ker to t he plate was rather complicated and time consuming. Also, 

checking was undertaken to ensure no vertical I end ing of the horizontal plate 

occurred due to its own weight , or the sha ker attachmen t in its initia l. non

exci ted posi t ion . 

T he plate was excited off-centre a t a position 10 = 550 mm a nd Yo = 

600 mm , measured from t he left bottom corner of the plate. At t he d ri ving 

point (excitat ion locat ion) vibrat iona l inpllt power (VIP) measurem ents were 

carried Ollt in order to measure t he energy injected into t he plat e Ils ing an 

accelerometer and a force transducer at tha t location. These sig na ls wcre 

recorded on a multi-channel spectrum (LMS) ana lyser , which provided the 

requ ired auto spectral and cross-spectral densities for furth er VIP 

computation . 

12.2.2 Simply Supported Plate Rig 

To achieve simply s1lpported boundary cond it ions, a simply supported plate 

rIg was designed tha t a llowed rotationa l edge motion while rest ri ct ing the 

plate's ed ge di placement . Figures 12.3, 12.4 and 12.5 display the simply 

supported plate rig at different views. T he rig frame was predomina tely made 

from d ifferent standard steel profil es, ensuring a high mass compa red to the 

plate specimen. It can be seen from Figures 12.4 a nd 12.5 t hat t he pla te was 

simply supported I e tween two frames made from IlDF materia l. The edges of 

the I-IDF frame a re chamfered hav ing a radius of 23.5 mm. A m ild s tee l pla te 

647 mm in length , 497 mm in width and 3 mm in thickness was embedded 

hori zonta lly. Also here, the forced plate d i 'placement was recorded from the 

top by the ESPI system . The outer dimensions o f t he rig were 812 mm in 

length , 662 mm in width and 236 mm in height. During the ex periment, 
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Figure 12.3 Experimental simply supported plate rig including the ESP] plate. 

• • 

Figure 12.4 Explosion VIew of half cut experimental simply supported plate rIg 

including the ESP! plate. 
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transverse disp lacements of three d ifferently da mped pla te specImens were 

measllred . The damping was achieved by a ttaching an unconstra ined 

damping layer to the plate's surface by using a minera l fi lled viscoelastic 

polymer layer . A non-layer damped pla te , a single-layer da mped pla te, and a 

partially damped plate were measured . The surface of the single- layer 

damped p late was fully covered by the 1lnconstrai ned damping layer. A 

checkerboard pa ttern of attached damping ma teri al pa tches was employed to 

partia lly reduce the vibration ampli t llde of the plate. Beca1lse the rrDF 

frames were fastened by hexagon bolts, a fast plate cha nge cou ld be 

guaranteed . The p late was excited from the bottom , exactly at the centre of 

the pla te. The centre excita t ion allowed even mode cancella t ion in order to 

reduce the selection of the excita tion freq1lencies applied d1lri ng t he 

experiment . A t the driving point an accelerometer and a force transducer 

Acceleromet er 

P la te Force Tra nsducer 
Shaker ,-.l.l..--, 

Figure 12.5 Side view of hal f cut experimental simply supported plate rig includ ing 

the ESPI plate. 

were a ttached t o measure the vibrationa l energy injected into the pla te. 

These signals were recorded on a multi-channel spectrum (LlVIS) ana lyser 

t hat provided the required auto spect ral and cross-spectra l densities for 

fmth er VIP computation . To ensure that the pla te vibrations did not 

371 



12 Experimcnta l P late A pparatlls 

interferc with a n undesired rig vibration , thc rig was loaded with additional 

weights at its corners to ensure a st ationary position dur ing the cxpcrimcnt . 

12.3 Summary 

T his cha pter has briefly presen ted the experimental equipment employed 

throughout the "infinite" plate and simply supported plate cxpcriment . 

Herein , transver e pla te di splacements are recorded with the a id of a n ESPI 

system. 

T he "infinite" pla t e rig was designed to embed the plate hori zontally 

within an aneehoic t errnination region, to d issipate vibrational energy 

injected into the plate with the aid of an electrodynamic shaker. During thc 

experiment it had to be ensured th at the non-excitcd plate Wfl.S positioncd in 

an exact hori zonta l and evcn level. 

The simply supported rig was dc 'igned to also embed t hc pla tc 

spccnTIen hori zontally. However, here the simply supported bOll ndary 

conditions were ach ieved by suspcnding the pla te bctwecn two cha mfered 

frames, made from I-IDF materi al. Furthcrmore , a nd in contrast to the 

"infinite" plate rig, the cham fered I-IDF fra mes had to ensllrc non-d issipative 

simply supported boundary conditions. The rig was designcd to be rigid 

compared to the transverse vibration of thc plate . A lditional weights during 

the experiment were used to ensure a stationary exper iment . 

T he author would like to ack nowlcdgc tha t the mcasuremcllts were 

undertaken at the Applied Optics La boratory at Land Rovcr at Gaydon 

IInder the direction of the a uthor. 
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ENERGY IN PLATES: MEASURE-

MENT METHODS 

13.1 Introduction 

The a im of this chapter is to introduce thc methods of measurlllg point 

mobility, vibrational input power (VIP) and vibrational energ ' now (VEF) in 

an experimental "infin ite" plate and an ex perimenta l simply supportcd plate, 

using the a pparatus introduced in chapter 12. Since the measurement 

methods employed during the plate experiments arc similar to the met hods 

employed during t he beam experiments, a br ief introducti n will be given 

only. 

Dming the p late experiments t wo-dimensiona l VEF was measured 

indirectly from the transverse out-of plane plate displacements that were 

recorded by an electronic speckle pattern intcrfcrometry (ESPI) system. T 

assess the accuracy of the ESPI based VEF measuremen t (VEFESPI) 

method , conventional transducer based VIP measurements at the excita tion 

location were a lso carri ed out. The measured input power was then used as a 

reference quantity in a simple vibrational energy bala nce analysis carried out 

in combination wit h measured VEFE PI ba ed qua ntities. 
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13.2 Force Excited Plate Measurements 

13.2.1 Point Mobility Measurements 

Measurement of the point mobi li ty of p lat es is carried out in thi s re 'earch 

ana logously to t he measurement of poin t mobility of a beam by a ttaching a 

force tra nsducer a nd an accelerometer at the excita tion location and 

measuring t he well known H, (J ) est ima tor . As shown in sect ion 8. 2.1, th e 

measurecl poin t mobility of pla tes can be computed as: 

(8. 1) 

Here, G (E;" ao) is the cross-spectral density between t he excita tion force a nd 

clriving point acceleration and G(F;" Fo) is the auto power spectral density of 

the excita t ion force. T he ra t io G(F;"ao)/G(F;), F;,) is measured by a mult i

channel spectrum ana lyser using spectra lly-averaged frequency response 

functions (FUF). P oint mobili ty measurements can be used to compute VIP 

bu t can also be used t o assess the operat iona l range of t he respect ive 

employed p late apparatus. T able 13.1 d isplays the opera t ional para meters 

employed d uring t he measurement of the poin t mobility in a n "infinite" plate 

and a simply supported pla te. 

F requency range 

Frequency resolu t ion 

umber of average 

"In fini te" pla te Simply supported p la t e 

0- 6400 Hz 

2 Hz 

15 

0 - 4096 Hz 

0.5 I-Iz 

30 

Table 13.1 Operational parameters employed d\ll'ing the point mobility 

measurements. 
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13.2.2 Vibrational Input Power Measurements 

One advantage of measuring VEF with an ESPI system is t hat two

dimensional energy flow informat ion can be obtained for a large region within 

t he plate. However , it is t oo cum bersome to make a VEF comparison 

between measured ESPI based VEF and measured accelerometer based 

t ransmitted energy. 

To assess the accuracy, t he measured ESPl based VEF is compa red 

wit h conventional measured transducer based VIP. Thus, the measured 

amoun t of energy injected into t he plate st ructure is used herein to assess the 

accuracy of the ESPI based VEF qua ntities using simple energy bala nce 

analysis for both structures, "infinite" plate a nd simply supported plate. 

Usually, VIP is measured using t he imaginary part of the measured 

one-sided cross-spectra l density between the driving force and the result ing 

accelerat ion , as displayed by Equation (3.27). However , d uring the "infin ite" 

pla te experiment a n erroneous force signal was recorded. T hus, the imaginary 

part of the measured one-sided cross-spectral density between the d riv ing 

force a nd the resulting accelerat ion cannot be used to compute measured 

VIP. An a lternati ve approach is employed instead using the impedance of the 

theoretical infinite beam . From equation (10.2) t he t heore tical poin t mobili ty 

of a point force excited infini te beam is given by: 

1 
Y . = -

f~ 8h' 
12(1-1/') 

Bp 
(13.1) 

It is well known t hat the theoretical mechanical impedance is in verse 

proportional to t he t heoret ical mecha nical mobili ty [103]. Sim ilarly to 

equation (3.23) a nd by employing the mecha nical poin t impedance , VIP to a 

structure can be writ ten as: 

(13.2) 
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Here, Vo i the point velocity of t he s tructure a t the excitation locat ion ~;J and 

Z E".", is the theoretical poin t impedance. Using equations (13.1 ) and (13.2) 

a nd taking into account that YF, = (ZF, ) ) , VIP to an infinite beam can be 

written as: 

12(1 - 1/ 2) . 
Ep 

(13.3) 

Equation (13.3) d isp lays the equa t ion to measure VIP of a n "infini te" plate 

by using t he measured point velocity Vu at the excitat ion location . T his 

quantity is obta ined from the measured a uto spectral density of the d riving 

point acceleration as Ivol2 = (j27rj) ) G(ao,ao) , where G(a",o,lJ) is t he a1l to 

power spectral den ity of t he d ri ving point acceleration . 

VIP to t he sim ply s1Ippor ted beam is measnred herein by using 

equat ion (3.27) as: 

(3.27) 

Here, G(F;"ao) is the cross-spectra l density of the dri ving force a nd d riv ing 

acceleration . Table 13.2 displays the operational parameters employed d uring 

the VIP measurement. 

Frequency range 1Hz) 

Frequency resolution 1Hz) 

Number of averages 

"Infinite" p late Sim ply supported plate 

0- 4096 I-Iz 

0.25 I-Iz 

50 

0 - 4096 Hz 

0.5 IIz 

30 

Table 13.2 Operational parameters employed during the input power measurements. 
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13.2.3 Vibrational Energy Flow Measurements Using ESPI 

Ana logously to the description gIven III section 8.2 .4 , the transverse t ime

averaged ESPI measured complex plate d isplacemen t is genera ted as: 

( ) - A (. ) ,I>(x., ) w x, y ESPI - X, ye. (13.4) 

Herein , A(x,y) is the measured t wo-d imensiona l ESPl a mplit1lde of t he plate 

and Ij;( x,y) is the measured two-d imensional ESPI phase of t he plate. T his 

generated complex p late displacement is t hen taken as t he input to the 

VEFE P I method in order to deter mine spat ial derivat ives and subsequent ly, 

VEF from t he ESPI recorded t ra nsverse plate di splacement . 

13.2.4 Application of the Measurement Methods to a Plate 

T he point mobili ty of the "infinite" a nd simply supported pla te was 

mea ure I by using equation (8. 1). During the point mob ili ty measurements of 

the "infinite" pla te, problems occurred wh ile using a n electrodynamic sha ker. 

T he author believes t hat these problems may ha ve occurred d ue the use of a 

very th in plate, lying horizonta lly III t he r ig. Thus, point mobili ty 

mea urements of t he "infin ite" plate were carried out using a n impact 

hammer rather t han an electrodynamic sha ker. The point mobil ity 

measurement of the simply supported plate was cond ucted 11 mg a n 

electrodynamic sha ker. 

VIP to t he force excited "infinite" p la te was measured lIsing equation 

(13.3). VIP to the force excited simply supported p late was measured 1Ising 

the well known cross-spectral d ensity based expression shown by eq 1lat ion 

(3.27). 

VEF within an "infin ite" and sim p ly supportcd pla te i meas1l red in 

thi s research ind irect ly by lISlllg ESPI rec rded tran verse plate 

displacements. T h1ls, the transverse ESPI pla te d isp laceme1lt was ge1lera ted 

by employing equation (13.4) from prior acq1l ired ESPI a mplitude an I ESPI 

ph ase informa tion . The genera ted complex, two-d imensiona l ESPI 
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di splacement was then taken as the input to the VEFESPI m ethod, as 

described 111 chapter 4. Unfort unately, t he genera ted ESPI d isplacement 

contained recorded regions tha t included no d isplacement inFormation due to 

a laser ill umina tion larger tha n the ESPI window of the respecti ve pla t e 

structure. These regions required spa ti a l t runcation. Furt her , the "infinite" 

pla te da t a were truncated symmetrically a round the off-centre exc ita tion 

location to ensure a symmetric number of wavelengths included in t he signal. 

After t he d isplacement t runcation , the k-space derivation (KSD) method was 

employed as a part of the VEFESPT method. Thus, spect ral derivati ves were 

computed by employing a 2D 

equation (4 .5) , to t ra nsform 

fast Fourier tra nsform (FFT), accord ing to 

the spa ti a l displacement dat a into the 

wavenumber d omain . T he spectral deri vation process wit hin the wavenumber 

dom ain was carr ied out , as shown in the bracket term on t he right-hand side 

of equation (4 .9). Of course, spectral noise components were removed within 

th e wavenum ber doma in prior to the spectra l derivat ion process by 

employing either the ideal 2D fi ltering process or the oval 2D Butterwor t h 

fi lter. After a pplying thc inverse 2D FFT of t he fil te red and spectrally 

deri ved wavenumber data, spati a l derivati ve components of d ifferent orders 

were subst ituted into equation (3.49) a nd (3.50), respecti vely, to compute 

VEF of the "in fini te" a nd simply supported p la te in the x and y directions. 

13.3 Summary 

T his chapter briefl y pre ented t he measurement methods used to measure 

point mobil ity, VIP and ESPI based VEF of "infinite" and simply supported 

pla te structures. T ra nsducer based VIP measuremen ts were cond ucted to 

assess the accuracy of the VEFESPI method using simple energy balance 

a nalysis, as described in cha pter 3. P oint mobi li ty measurements were carried 

out to assess t he opera tional ranges of t he respecti ve plate appara tus. The 

ESPI recorded complex pla te d isplacement was used as a n input to the 

VEFESPI method in order to determine VEF indirect ly from ESPI measured 

d isp lacement informa tion . 
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ENERGY IN PLATES: EXPERIMEN-

TAL RESULTS 

14.1 Introduction 

Th is cha pter presents results obtained from t he measurement of vibra tiona l 

energy in a force excitcd exper imenta l "infinite" p late and a force excited 

experimental simply supported plate. Vibra tional energy fl ow (VEF) has been 

measured indirect ly from electronic speckle pattern interferometry (ESPI) 

recorded pla te displacements. Energy balances between ESPI measured 

energy quantitie a nd transducer measured vibrationa l input power (VIP ) 

qua ntities a re carri ed 01lt in ord er to assess the accu racy of the VEF 

measurement technique using ESP! (VEFESPI). 

14.2 Force Excited Plate Measurements 

Analogously to section 9.2, this section is divided into two parts presenting 

results obtained from force excited plate measurements. Section 14.2. 1 

contain t he results obtained on a force excited experimenta l "infini te" pla te . 

S cti 11 14.2 .2 presents results obtained from t he measurement of a force 

excited experimental simply supported p late. In both sect ions VEF maps 

from ESP! measured displacemen t data and energy bala nces are shown . 
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14.2.1 "Infinite" Plate Measurements 

14.2.1.1 Point Mobility and Vibrational Input Power Measurements 

As mentioned previously, problems occurred during t he poin t mobili ty 

measurement o f t he "infinite" plate when using a n electrodynam i sha ker . 

T hus, a n impact hammer was employed to measure poin t mobili ty of the 

"infini te" plate, instead of using an e lectrodyna mic exciter to excite the 

st ructure. Figure 14.1 d isplays the theoret ical point mobi li ty computed from 

equa t ion (10.2) a nd the measured point mobility compu ted from eq ua tion 

(8. 1). Here, f shown on t he x-axis is denoted as the frequency. It can be seen 

from F igure 14.1(a) that with increa ing frequency the measured poin t 
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Figure 14.1 i\Iodulus of the measurcd and t heoretical point mobility of thc force 

excited "infini e" ESPl plate: (a) 10 Hz-6.4 kHz, (b) 500-3200 Hz. 

mobility curve drops in a mpli tude compared to the t heoret ical poin t mobi li ty 

solution . Since t he accuracy of impact ba ed measurements depends on t he 

time of impact a nd , th us, the frequency location of the first zero III the 
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14 Experimental Results of Pla te Measurements 

applied force spectra, impact measurements at high frequenc ies are 

considered to be not very accuratc. From the t heorctical solu tion it can bc 

realised that the point mobility of an infini te plate is independent upon 

frequency. Also, at the lower frequencies some resonant plate behav iour is 

still present indicating a lower d egree of damping achieved by the a nechoic 

termination a nd , thus, undesired re f-l ections occur on the plate's boundaries. 

Howevcr , th is rcsult is not surpri sing, since the rig was designed to effect ively 

dissipa te vibrat iona l energy at frequencies greater than 400 IIz. T his effect 

can be seen in Figure 14.1(b) where the theoret ical infinite p la te point 

mobi li ty matches well with the measured "infin ite" plate poin t mobility 

within the frequency range where the E PI measurements were conducted . 

At five selected excitation frequencies, 10, experimenta l "infinite" plate 

disp lacements were recorded using the E PI system , introduced in sect ion 

7.2.2. The excitation frequencies fo as well as t he computed vibrationa l input 

power values are show n in Table 14.1. 

fo 569 .7 Hz 605.6 IIz 899. 5 lIz 1194.4 I-Iz 1503.2 IIz 

( P,")f~ 1.49.10-5 4.79·10-' 1.73-10"" 2.45·10-' 2.35 ·10'" 

Table 14.1 Measured vi brational input power (all power values given in units of 

Watts). 

It can be seen that the VIP qua ntit ies (P,..)F~ ' computcd from equation 

(13.3) , are very low power val ues especia lly at the lower frequencics , 

ind icating a low vibrationa l energy input into t hc plate structure. Note, th 

measured point mobility, as shown in Figure 14 .1, is not the point mobi li ty 

measured during the ESPI experiment . During the ESPI experiment a shaker 

was attached to the experimenta l "infinite" pla te a nd the measured point 

mobility cur vc constant ly decreased with increasing frequency. Th is 

unexpected point mobili ty curve shape might be due to the a ttachment of a 

relatively large force transducer attachmen t area in relat ion to a very sma ll 

plate thickness. The excitation frequency of the 569.7 Hz measurement was 
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14 Experimental Resu lts of P late Measurements 

select ed to be located at a local mll11m Um of t he frequency response funct ion 

(FRF). T he excita tion frequencies of 605.6 IIz a nd 899 .5 Hz were selec ted to 

represent a local maximum of t he FRF. The rem aini ng two frequencies were 

located close to t he t heoret ical in fi nite pla te response. T able 11.1 d isplays 

again the assumed properties of the exper imental ESP! plate. 

Young's modulus E = 2.07.10 11 / m' 

mass density p = 7.85·1 0" kg/m" 

pla te th ickne s h = 1·10-" m 

P oisson ra t io v = 0.33 

Table 11.1 (repeated) "Infi nite" ESP i pi"'te properties. 

14.2.1.2 Vibrational Energy Flow Measurem ents Using ESPI 

Due to shor tage in t hesi space t he graphica l resul ts o f the measllrement of 

VEF within t he "infinite" plate are presented for t wo excitation frequencies 

only . T he ent ire measurement resul ts of t he "infini te" p late experiment a re 

shown in Appendix A30. 

A na logously to t he ESPI based VEF computation procedure descr ibed 

111 sect ion 13.2 .4 , the ESP! measured amplitude and ESP! measnred phase 

were used to generate the d esired complex ESP l displacemen t of thc 

exper imental "in fini te" pla te, using equa tion (13.4). F igure 14.2 displays t hc 

a mplit ude a nd phase at 1503 IIz, as acqu ircd and provided by t he ESP ! 

system. Here, it can be seen t hat withi n t he ESP! window some b la nk regions 

app ar (dark b lue) ind icating a low laser light illuminat ion . Wi t hi n these 

regIons, tra nsverse d isplacement informa tion is missing a nd t he ini t ial 

recorded ampli tudc a nd phase ma tri ces need to be truncated in ord er t o 

provide the VEFESP I method wit h as much usefu l inForma tion as possible. 

Clcarly, From t he recorded ESP! p hase shown in Figure 14 .2(b ), it can be 

realised t ha t a rad ia Jly symmetric wave is t ravelling away from thc excitation 
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14 Experimental Results of Plate Measurements 

locat ion . Thus, the rig worked well at t his particu lar excitation frequency. It 

can be realised from the displacement figures shown in Appendix A30 t hat 

the operationability of the rig increased with increasing excitation frequency. 

Figures 14.3(a)- (b) display t he recorded and truncated two

dimensional transverse ESPI di splacement. Figures 14.3(c)-(d) show a cross

sec tion of the transverse ESPI d isplacement a long y = O. The one

dimensional displacement curve at y = 0 is presented to poin t out the effect 

of optical noise, which clearly can be seen . 

Figure 14.4 shows the top view ESPI Image of the t runcated ESPI 

displacement at 1503 Hz. It can be noticed that t he displacement is 

symmetrically truncated around the exci tation location. Furthermore, 

(a) (b) 

-0.1 o[ 1 0.1 x m 
-0.1 o[ 1 0.1 x m 

Figm·e 14.4 Top view image of the complex "infinite" plate displacement shown III 

Figure 14.3: (a) real part , (b) imaginary part. 

approx imately two waves are included within the tr llncated ESPI ignal. Also 

here, the rad ially symmetric wave propagation can be recogn ised. 

The truncated plate displacement , as shown in Figures 14.3 and 14.4, 

is used as an inpll t to the VEFESPI method. Thus, spatial derivative were 

determined from measured data, which were then substituted into eq uat ion 

(3.49) and (3.50), respect ively. With in the wavenull1ber doma in , a spectral 

filtering of the pla te disp lacement was carried Oll t prior to the spectral 

derivation process , using the ideal 20 fil tering process a nd the oval 20 
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Butterwor t h filter . Figure 14.5 d isp lays the complex, "inFinite" plate 

displacement at 1503 IIz, fi ltered by the previously mentioned two filter 

types, using the optimum filter cut-off points shown in Table 11.3. It can be 
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Figure 14.5 Fil tered complex "infinj te" plate di splacement at 1503 Hz: (a)- (b) ideal 

20 filtered, (c)- (d) 20 Butterworth filtered. 

seen that the noi 'e components are removed. Also, both types of filter 

produced similar results. 

Figure 14.6 shows the filtered active and react ive VEF maps, as a 

result of a pply ing the VEFESPI method to the 1503 I-Iz measllrement . It can 

be noticed from this figure that t he active energy nows radially away from 

the excitation location , as expected. Both filter types a lso produced similar 

VEF results. In contrast to the 1503 I-Iz measurement , the pla te displacement 

recorded at 605 .6 I-Iz contained refl ections. T hese arc visible in Figure A30 .6. 

F igure 14.7 displays the VEF maps obtained From t he ES] I p late 

displacement recorded at 605.6 Hz. It can be not iced from F igure 14.7 that 

the act ive energy also flows rad ia lly away from the excitation location , 
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active VEF - ideal filter , (b) reactive VEF - ideal tilter, (c) active VEF -

BlItterworth tilter , (d) reactive VEF - BlItterworth filter. 
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however , with increasing d istance some domina nt energy fl ow paths arise 

where more vibrationa l energy travels towards the a nechoic termina tion . 

Interestingly , the reactive VEF map IS more d istinctive than the reactive 

VEF map , as shown in Figure 14.6. T his indicates t hat a certain amount of 

the ini t ial travell ing rad ial wave is reflected at the plate 's boundaries and, 

thus, some sta nding waves were created within the experimenta l "infinite" 

plate. Also here, the ideal 2D filter and the oval 2D l3utterworth fi lter 

produced sim ilar VEF results. T he filtering of t he reactive VEF was 

under taken using a tr ia l a nd error procedure, since no para meter opt imisation 

was carried out . Note, the number of data points in Figures 14.6 a nd 14.7 

were red uced for better visibil ity. 

14.2.1.3 Energy Balance 

T he energy ba lance withi n t he experimental "infinite" plate is carried out , as 

demonstrated in sect ion 11.2. It is ev ident from eq uation (10.9) that the 

integration of the act ive VEF a round a closed contour is equal to the VIP 

inject ed in to t he plate. T hus, here t he ESPI measnred VEF in the x a nd y 

directions is integra ted a round the excita t ion locat ion for cach location Ikr'l, 

by numerically evaluat ing equation (10.18). T he resul t of such a contonr 

in tegration is the tota l tran mitted vibrational energy (TTVE) through thi s 

o o 2 4 
6 Ikrl8 10 12 

Figure 14.8 Comparison of total transmi tted ESPI measured active VEF and 

vi brational input power at 1503 Hz. 
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parti cular contour (~, ),'-. . From equat ion (ID.9) it is ev ident that 

~{(P", ) , } = (P,,)F~ ' Figure 14.8 disp lays the result of the contour in tegrat ion 

carried out at each numerical location IkTI within the ESPI measured 

"infinite" plate, at 1503 I-Iz for both fi lte rs. It can be seen from Figure 14.8 

tha t t he TTVE is c lose to t he measllred VIP . F igure 14.9 displays the same 

1 
~ 

·4 
X 10 
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., 

(P )" 
ca..idCi\\ 

(P ~)" 
a:l- hU~lcl' 

7 

Figure 14.9 Comparison of total tmnsmi ttcd ESPI measured active VEF and 

vibrational input powcr at 605.6 Hz. 

properties r r the 605.6 IIz measllrement. It can be noticed from F igure 14.9 

that t he TTVE at each numerical location I k"1 is a lso close to the VIP 

injected into the plate. A t both measllrements it can be reali sed t hat at the 

excita tion location IkTI = 0 t he TTVE is equftl to zero. Th is problem occurs 

100 
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-60 

-100 
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Ideftl lilter 

Buttenvort h fil ter 

Figure 14.10 Relative difference in percent bctween total transmitted ESP l 

measured powcr and measured VIP at 1503 Hz. 
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due to t he numeri cal in tegration at t he excit a tion location, sll1 ce only four 

poin ts were included. Thus, at close locations, i.e. Ikrj < 1, the numerical 

in tegration process leads to la rge errors due to the inclusion of very few VEF 

100 

60 

~ 20 Idea.l fit ter 

'" <I -20 Butterworth ril ter 

-60 

-100 
0 1 2 3 4 

Ikrl 
5 6 7 

Figure 14.11 Relative difference in percent between total transmitted ESP I 

measured power and mensured VIP at 605.6 Hz. 

points. However , in both figures it ean be seen that the ESPI measured 

TTVE is close to the measured VIP. F igures 14.10 and 14.11 disp lay the 

relative d ifference !!.s between the ESPl measured TTVE (!~,)p and the 
~ 

measured VIP (~,,)p_, computed as: 

Lk = (1- (~, )P ... / (P''' )P ... ) ·100%. (14. 1 ) 

It can be noticed by comparing both figures tha t less d ifference between both 

quantities occurred at t he higher excitation frequency. Note, t he rela ti ve 

d ifferences of a ll frequencies are shown in Appendix A30. 

14.2.1.4 Discussion 

T his section has reported on the compu tation of VEF wit hin an exper imental 

"infini te" plate. Five frequencies within a range of 570 I-Iz to 1503 IIz were 

analysed. The energy now within the plate was computed from prio r recorded 

"infi ni te" plate displacements, acq uired with a n ESPI system . Active a nd 
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reactive VEF ma ps were presented for two selected frequencies. VEF 

measurement results of a ll fi ve frequencies arc shown in Append ix A30 . 

F rom t he point mobili ty plot of Figure 14 .1 , a nd the ESP! amplitude 

and E SP! phase maps shown in Appendix A30, it can be realised that the 

experimental "infinite" pla t e rig increased its a nechoic efficiency with 

in creasing frequency. At higher frequencies, infinite p late behavio1lJ' could be 

simulated much better and , thus, a t the excitation frequencies of 899.5 Hz, 

1194.4 IIz and 1503.2 Hz a good "infinite" pla te response was recorded . 

However , a t the excita tion frequencies of 569.7 I-Iz a nd 605.6 IIz some 

reflect ions a t the cmbedded pla te's cdge created a mixture bctween infinite 

and finite pla te response. 

From t he VE F ma p figures presented above a nd in Appendix A30, it 

can be rea li sed tha t the acti ve VEF radia lly fl ows away from the excita tion 

location. However, a t 569 .7 I-Iz a nd 605.6 I-Iz some domina nt pa ths can 

clear ly 1 e detected. T hese dom inant paths a re chiC to a higher amoun t of 

wave rellection at the pla te 's boundaries or a d ifferent a mount of energy 

dis 'ipation with in the a nechoic termin a tion region. This conclusion may be 

underlined by t he consideration of t he reacti ve VEF ma ps, which arc more 

dist inctive a t t hese two frequencies. T his reactive VEF behav iour is ty pical 

for finite pla te structures. At the higher excita tion frequencies a more 

symmetric radia l acti ve energy Ilow could be measured. T his ind icates t hat 

the exp rimenta l plat e vibration was much closer to an infinite pla te 

response. However , a t a ll fi ve frequencies very good VEF ma p were 

computed with a determined VEF pattern , as expccted . 

T he use of the ideal 2D filter a nd the oval 2D llutterwort h fil ter 

yielded to simila r VEF results in active energy fl ow computa tion . However , 

the reacti ve energy Ilow determination differed slightly from each other , 

whereas t he ideal fil ter fa iled to detect t he d istinct ive reactive energy sin k 

about the excita tion location a t frequencies where the experimental pla te 

response was close to the infinite pla te response. At these frequencies t he 

llutterworth fi lter delivered much better results. 

To assess the accuracy of the ESPl measured VEF, the act ive VEF 

maps were integrat ed a long a close I line by using a closed square contour 
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about the excita tion location . Th is procedure was carri ed 01l t at N/ 2 numbers 

of closed contours about t he excitation locat ion , where N is t he number of 

data points with in the active VEF map . To relate t he res1llt of the line 

integrations to an aX IS, a quant ity denoted as Ib·1 was introduced. This 

quantity can be seen as a non-dimensiona l spat ial frequency simi la r to the 

Helmholtz number. T he closed line in tegrat ion res1ll ted 111 the total 

vibrational energy transmi tted t hrough that particular contour . From 

equat ion (10.9) a nd (3.59), respectively, it was t hen ass1lmed t hat t he tota l 

transmitted energy is equal to the input power. Th is relation is true for all 

the contour integrations within the active VEF map. 

Figures 14.8 and 14.9, as well as the figures in Appendix A.30, showed 

the comparison between the ESPI based TTVE and t he tra nsd 1lcer based 

VIP . In t heory both lines should be consta nt over the IkTI range and equa l in 

magnitude. It can be realised from t hese fi gures that at 899.5 IIz, 1194.4 l-lz, 

and 1503.2 Hz a good agreement between both measures was ftchieved, with 

differences being in a range of ± 20%. However, at 569.7 IIz and 605.6 lIz 

larger deviations between both q1la ntities were obta ined. In the fo llowing 

some sources of errors that may have I d to these d iFf rences will be 

expla ined. 

From F igures A30.1 a nd A30 .6 it can be reali sed that especially at 

569.7 I-Iz and 605 .6 Hz a larger amoun t of renect ion wit hin the experimental 

plate d isplacement occurred a nd , t hus, a standing wave environme nt to some 

ex tent was present . However , equa tion (10.9) is on ly true for pure infinite 

wave motion . If larger reflections within the p late are present , eq1la t ions 

(10.9) or (3.59) are not valid. Under this circumstance, the energy bala nce 

shown by equation (3.3) needs to be ta ken into account and the contour 

integra ted TTVE is not equal to the VIP . T his might be ne rea on for a 

larger d ifference between TTVE and VIP a L t hese two freq1lencies. 

T he VIP measurement based O il t he theoretical infini te plate 

impedance is considered here not to be very acc1lrate as it assumes pure 

infinite pla t e behaviour , something t hat is not true for a n exper imental 

"infini te" plate structure. As shown by Figure 14.1 , it can be noticed that, 
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especially at the lower frequencies, deviat ions between t he measurcd poin t 

mobility a nd theoretical point mobili ty occur. 

Measured VIP has been computed here by using equat ion (13.3). It 

can be seen from equat ion (13.3) that materi a l properti es of the p late needed 

to be substituted into t hi s expression . T he material properti es of the plate 

were assumed by the author within t his work. Differences to the plate's trlle 

material properties can be expected. 

l"lIrthermore, as expla ined in section 9.2.1.4 , t he knowledge of the true 

spatial resolution or spatial sampling interval of the ESPI system elllployed 

dllring the ESPI experiment is crucial for VEl" measurements. Here, the 

spatial resolution of the conducted ESPI measurements was determined from 

the length of the ESPl window and the number of data poin ts included in it , 

i. e. 6 x = LzI Nz. Again spatia l resolution errors arc likely to be made by the 

simple assumption 6 x = L,I N, and , as shown in Figure 9. , deviation to the 

true ESPI measured VEl" may be li kely. 

Due to a large number of blank regions present within the acquired 

ESPI ampli tude and phase maps (sce Appendix A.30) , t he usable spat ial 

range of t he measured plate displacement was restricted . Th is res tri ction was 

forced by truncating the data around the off centre excitat ion location. At 

the 569.7 I-Iz a nd 605.6 IIz measurements approx imately onc wavclengt h of 

di splacement data could be included only. In particular , the 569 .7 IIz 

measurement contained a vcry sma ll spat ia l range of data, as shown in 

Figure A30.2 . This small range of spatial data may have resul ted in a furth er 

source of error , s ince at least one wavelength needed t o be included when 

em ploying the l"Ollrier transform . IIowever. at 569.7 I-Iz a full wavelength of 

displacement data could not be identified clearly due to the large a mount of 

standing waves present in t he recorded ESPI displacement signal. 

Finally, a few remarks wi ll be given to the measurement of ESPI based 

VEl" in "infinite" plates. It was demonstrated herein tha t VEl" can be 

measured indirectly from ESPI acquired "infinite" p la te disp lacements. T he 

differences between t he TTVE through a contour of in terest and measured 

VIP are in good agreement at three frequencies (899.5 Hz, 1194.4 IIz, a nd 

1503 .2 I-Iz). The differences between both quantities are ma inly related to the 
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reasons mentioned above. By measuring the in pu t power , usmg the cross

spectra l density between the dr i ~ing force and its accelerat ion respon e, a 

better agreement could have been obtained. Also, the increase in usable 

spatial range of E PI ampli tude and p hase data would have resulted in a 

more accurate VEF computation . Nevertheless, VEF from "infinite" pla te 

d isplacements that include ome standing wave , as present at the 569.7 Hz 

a nd 605.6 I-Iz measurements, can be analysed . However , simple energy 

balances, as carri ed out by evaluat ing equation (10.9) or (3.59), respectively, 

cannot be app lied anymore in order to assess a ny difference between TTVE 

and energy injected in to the plate. 

14_2_2 Simply Supported Plate Measurements 

To measure differently damped imply supported pla te s tTllctures, 

experimen tal measuremen ts were conducted on a non-layer damped plate, a 

plate fully covered by an unconstrai ned layer , and a pla te part ia lly covered 

by unconstrained layer patches attached in a checker board pattern layout . A 

mineral fill ed vi ·coelasti c polymer layer materi a l was used . T he t hickness of 

the attached d amping lay r was 2.5 mm. To sclect resona nt excitation 

frequencies, point mobi li ty measurements of a ll three p la te structures were 

carri ed out . To undertake energy bala nce compa risons, between transd ucer 

measured vibrational energy injected into t he plate and ESPl measured tota l 

t ra nsmitted energy with in the plate, VIP measurements were conducted for 

each selected excitation frequency. 

14.2_2.1 Point Mobility and Vibrational Input Power Measurements 

Figure 14 .12 d isplays the measured point mobili ty for each simp ly supported 

plate structure. Also her , f shown on the x-axis is the frequency. The poin t 

mobility was computed fTom t he measured FRF of each structme by using 

equation (8. 1). It can be een from Figure 14.12 that a red uction in resonant 

amplitude could be achieved by attaching a n unconstrained layer onto the 

plate's surface. In contrast to the simply supported beam ex periment where 
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a lmost no am plitude redlletion was achieved, the increased thickness ra tio of 

hv/ hp = 0.833 has improved the structural d,lI11 ping behaviour . Figure 

14 .12(b) di splays an enlarged point mobili ty plot in the frequency range of 

350 Hz ~ J ~ 2100 Hz. From there t he amplitude reduction due to the layer 

attachment can be seen clefl.rly. T he measured modal loss factors for each 

experimental plate structure , as displayed by Tables 11.15 to 11.17, confirm 

the herein shown damping behaviour . Further , the shift of the resonant 

frequencies due to the increase in damping and layer mass load ing can clearly 
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Figure 14.12 Modulus of the measured poin t mobili ty of the force excited simply 

supported ESPl plates: (a) 10 Hz-3.2 kHz, (b) 350-2100 Hz. 

be seen . From t his figure, resonant excitation frequencies were selected for 

each damping configuration. VIP ha been computed using equatioll (3.27) 

from t he measured cross-spectral density of the d riving force and the driving 

point response fl.ccelera tion. The results of the VIP measurements arc given 

in the Appendix A31. The geometrical and materi a l properties employed 

dnring the experimental ana lysis were the a me, as assumed in Table 11.4. 
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14.2.2.2 Vibrational Energy Flow Measurem ents Using ESP I 

As mentioned in the precious sec tion , 24 ESPl a mplitude and phase 

measuremen ts o f the experimenta l p late d isp lacement were recorded from 

three different ly damped experimental simply supported plate structures . Due 

to the excitat ion force located centra lly , only odd-numbered mode shape 

di splacements were recorded . T he centrc excitation location was applied to 

reduce t he otherwise vast number of modes to be selected from the measured 

point mobili ty . Also here, only one frcquency is presented in detail due to 

shortage in space. VEF maps o f all t he measllTed frequencies a re shown 111 

Appendix A32 . 

F igure 14.13 disp lays the ESPl measured two-d imensiona l amplitude 

and phase map o f the p late that was d ampcd by a full y covered 

uncons trained layer a nd excited at in = 1459 IIz. It can be seen from F igure 

14 .1 3 tha t thc p la te was excitcd at the natural damped mode of (7,5). It can 

(a) (b) 

» 100 

" 
'" 200 
~ 

" '0 300 a. 
~ 

400 ~ 

~ 

Cl 
500 

• 0 • • 0 • , • • • ..., • 
• • 0 • • 
'* , • • • • • 
t 0 • • 0 • 

--". :: ; .~\~ 
• 11 ' . 

• '11 .--~ f~" 
• 11 ., .. 

200 400 600 
Data points in x 

200 400 600 
Data points in x 

0.5 1 1.5 2 2.5 
·7 

X 10 [m] 
-2 o [md] 2 

Figm e 14.13 ESPI image of the measured full y covered single-layer damped simply 

supported plate displacement at 1459 Hz & mode (7,5): (a) amplitude, (b) phase. 

also be not iced t hat the entire plate d isplacement was not comple tely 

recorded due to t he outer boundary desig n of the simply supported p la te ri g. 

Furthermore, missing data poin ts due to insu fficient laser lig h t illumination , 
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as well as the effec t of optical noise contamination, can a lso be seen from 

Figure 14 .13. From the ESPI measured amplitude and phase information the 

complex, fl exural pla te disp lacement was generated Ilsing equation (13.4). It 

can be reali sed from Figure 14. 13 t hat the recorded plate displacement 

needed to be trllncated in order to exclude regions t hat did not include 

spatial d isp lacement informat ion. Wit hin this work two d ifferently trunca ted 

plate di splacements were investigated. To include as much spat ia l 

information as possible, and enabling the ana lysis of mode shapes hav ing only 

ha lf a wavelength included within the ESP I window (m = 1, n = 1), the 

init ia lly recorded p late di splacement was truncated to exact ly the locat ions 

where the ESPI disp lacement recording took place. However , the non

periodicity of the odd-numbered mode shape di splacements is increased even 

furth er . T hus, stronger spectral leakage within the wavenumber d omain can 

be expected . Furthermore, when carrying out the energy ba lance within the 

pla te t he compensat ion of missing ESP] measnred TTVE due to the 

displacement truncation is more complicat ed . Becallse of these reaSOIl S, the 

measured plate displacements with a mode shape number greater than 1 were 

also truncated in a way that only an integer number of wavelengths were 

included in the spatial signa l. Therefore, leakage effects are reduced 

su bstan ti a lly and the com pensation of ESPI measured TTVE due to 

di splacement information exclusion can be realised much easier. 

Figure 14.14 d isplays the ESPI measured simply sll pportcd p la te 

displacement , generated from the ESPI measured amplitude and phase maps 

shown in Figure 14.13. T he d isplacement is non-per iod ically truncated to 

include as much spa tial di splacement information as possible. 

Figm e 14.15 d isplays the same simply supported pla te d isplacement 

however , truncated to an integer number of wavelengths. It can be real ised 

from Fignre 14. 15 that the di splacement is redllced by a quarter of a 

wavelengt h at each side. The sharp drop of di splacement a mpli tude at t he 

excitation location , as shown in F igures 14.14(c)-(d ) and F igures 14.15(c)-(d), 

respectively, is mainly due to the a ttac hment of the accelerometer a t the 

dri ving point. Interest ingly , the redllction in spatial amp li tude due to the 

structural damping can be seen from the y-axis scale shown in Figure 
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14.14(c) and 14.15(c), respective ly. Here, the experimentally determined 

modal loss factor was 777.', = 1.42·10-'. 

F igure 14.16 displays the top view image of the per iod ically truncated 

simply supported plate displacement , as shown in Figure 14.15. The period ic 

t runcation process can be seen in better detail. Interestingly , the real 
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Figure 14.16 Top view image of the complex simply supported periodically truncated 

plate djsplacement ·hown in Figure 14.15: (a) ren.l part , (b) imaginary part. 

d isplacement pa rt a nd Imagmary di sp lacement part d iffer in a mpli t llde and 

mode shape dlle to a phase difference recorded by the ESPI system . The 

complex, two-dimensional plate displaeements shown in F igllres 11.14(a)-(b) 

and Figures 11.15(a)-(b) were taken as the input to the VEFESPI method . 

Also here, t he ideal 2D filtering process a n I the oval 2D Dutterworth filter 

were employed. T hus, IIndesired pectral noise components were removed 

within the wavenumber domain. Th is proced ure is necessary to avoid pectral 

ampli fication occurring d uring the spectral deri vat ion pr cess in order to 

compute the spatial deri vatives reqllired by t he plate's VEF eqlla tions, shown 

in equations (3.49) and (3.50). 

Figure 14.17 d isplays the complex plate displacement , as shown in 

Figure 14.15, however , filt ered by the ideal fi ltering process a nd the 

13utterworth fi lter. It can be seen from this fi gure that the !1exura l pla te 

displacement is substantially smoothed and , thus, most of th e optical nOIse 
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Figure 14.17 Filtered and periodically truncated complex simply supported plate 

displacement at 1459 Hz & mode (7,5): (a)-(b) ideal 20 fil tered, (c)-(d) oval 20 

But terworth filtered. 

components were removed from the d isp lacement signal. Furthermore, both 

the ideal filtering process and the Dutterworth filter deli vered simila r results. 

F igure 14.18 di splays the VEF maps computed from the non

periodically truncated displacement shown in Figure 14.14, determined by the 

VEFESPI method. F igure 14.19 d isplays the same result . However, the VEF 

maps were compu ted from the periodically trunca ted simply supported plate 

displacement , as shown in Figure 14.15. Note, for better visibili ty the number 

of data points were reduced. It can be scell from 'Figllres 14_18 to 14.21 that 

the periodic displacement truncation process affects mostly the computation 

of the reactive energy flow, which seems to have a more accurate VEF 

pattern when analy ing the period ic p late d isplacement. The computation of 

the act ive VEF within the experimenta l plate is rather similar for both 

trunca ted displacements. However , it should be noted that the d ifference 

between b th truncation proced1lres increased with decreasing number of 
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wavelengths included in the signa l, as evident from F igures 14.20 a nd 14.21. 

T hese figure' 'how the VEF maps of the non-periodically truncated and 

periodically truncated simply supported plate d isplacement t hat was excited 

at the mode (5,3). Also here, the plate was damped by a fully covered 

unconstrailled layer a nd , the excitation frequency was Jo = 658 IIz. It can be 

seen from Figures 14.20 and 14.21 that in particlllar the compllta tion of 

react ive energy flow improves a t the lower mode , when truncating the ESPI 

measured simply supported plat e displacement to a n integer number of 

wavelengths. Furthermore, as evident from the VEF maps shown a bove, the 

active as well a the reactive VEF within an experimental simply supported 

plate can be measured when using an ESPI system to acqu ire the transverse 

plate di splacements. Note, a ll VEF maps of the period ically truncated plate 

displacements are shown in Appendix A32. 

14.2.2.3 Energy Balance 

In the previous chapter it was shown that t he VEF pa ttern of a n ESPI 

measured experimenta l simply supported plate can be measured by the 

VEFESPI method. However , the question of how accurate the shown 

magnitude of active and react ive energy fl ow i ', still rema ins. Th is subject is 

investigate I within this sect ion by employing a n energy ba lance. T hus, 

transducer mcasured VIP at the driving point is compared to TTVE 

obtained from spatial integration of t he VEFESPI computed cnergy densities 

by numerically evaluating equation (3.61) . The difference between transd ucer 

measured input power (~" IF'' and t he integra ted potential energy density 

(e,>o' )' is computed as: 

Llc: = (1 - (P, ,, IF'' / 2w)) I (e,,,,. ), clXclY ] ' 100% , (14.2) 

Note, only the periodically t rnncated d isplacements are a na lysed. In the 

previous section it has been shown that t he ESPI displacement is trunca ted 

to either a non-periodic or a periodic spat ia l size. T hus, when employing an 
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energy balance, equation (3.60) is violated , slllce it assumes global energy 

values and , thus, the consideration of the en t ire pla te. J3ecause in t his 

research t ime-averaged and truncated data arc used , equation (3.3) should be 

employed instead. Equation (3.3) requires the knowledge of the input energy 

density. However , during the experiment total VIP was measured only . 

Furthermore, due to the use of the more erroneous 4'" order spat ia l 

der ivatives to compute the VEF divergence , equation (3.60) will st ill be 

employed. Hence, a compensat ion factor was computed here to accoun t for 

the excluded potential energy density information due to t he t runcation 

process. J3 ecause a quarter of a wavelength of energy density informat ion is 

truncated around the plate, the integra ted energy density from the 

period ically trnncated data a rc multiplied by 1+1/ (m-1) when integrating in 

the x direction a nd by l + l / (n-l ) when integrating in the y d irect ion , where 
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Figure 14.22 Butterworth filtered energy densities of the periodically t runcated, 

single-layer dam ped simply supp rted plate at 1459 Hz & mode (7,5): (a) 2D 

potential energy density, (b) top view image of c,oo' (c) 2D kinetic energy density , (d) 

top view ilnage of I",w 
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m and n are the modal num bers. Because these simple compensat ion factors 

can be used , the periodically t runcated d ata are analysed instead . 

Figure 14.22 displays the potential and kinet ic energy density 

computed from the ESPI recorded fully covered single-layer da mped simply 

supported pla te d isplacement, excited at 1459 Hz and mode (7 ,5) . The 

potential energy' density, shown in F igure 14.22(a), is used to compute the 

total transmitted energy within t he pla te by using t he right-ha nd side of 

equation (3.61). Tables 14.2 to 14.4 d isplay the results obtained when 

employing an energy balance accord ing to equation (3.61). ote, only the 

Butterworth filtered d ata are shown , since t he ideal filtered results a re a lmost 

identical. 

mode fo (1':" )F" 2w1) J (e,,",), dxdy /),5 
s 

(3,3) 422.5 Hz 1.39·10-" W 1.45·10-" W - 3. % 

(5,3) 689 Hz 4.77-10-" W 4.23 '10-" W 11 .3% 

(5,5) 1139 Hz 1.37-10-" W 1.36·10-" W 1.0% 

(7,5) 1536 Hz 4.39·10-" W 3.87·10-" W 11 .7% 

(9 ,5) 2040.5 I-Iz 9.22·10-" W 1.11 '10-" W -20.2% 

Table 14.2 Comparison of transducer measured VIP and ESPI measmeci 

Butten vorth filtered TTVE of the non-layer damped experimental simply supported 

plate. 

It can be seen from T ables 14.2 to 14.4 that the relative difference /;5, 

between transducer measured VIP and ESPI measured TTVE, of most 

measurements is in the range of ±30%. Here, the non-layer damped plate 

revealed the best agreement between both measures. A more detailed 

discussion about potent ia l errors in t he experiment is given in the next 

section. 
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mode 10 (P''' )F. 2wT/ J (e,,,,, ), dxdy /'J.E; 
s 

(3,3) 402 Hz 1.08·10-< W 9.04 ·10-' W 16.0% 

(5,3) 658 Hz 1.82·10-< W 1.52·10-< W 16.4% 

(5,5) 1086 H z 7.74·10-" W 6.33·10-< W 18.2% 

(7,5) 1459 Hz 7.92 ·10-" W 4.66'10-< W 41.1 % 

(5,7) 1716 Hz 1.40·10-" W 8. 93·10- ' W 36.3% 

Table 14.3 Comparison of transducer measured VIP and ESP I lIIeas ured 

Butterwort h fil tered TTVE of the single-layer damped experimental simply 

supported plate. 

rn ode 10 (p, ,, ),-" 2W 7) J (e,,,,, ), dxdy /j,s 
s 

(3,3) 404.5 l-Iz 4.80·10-" W 3.77-10-" W 21.4% 

(5 ,3) 669 l-Iz 1.64·10-" W 1.40·10-" W 14.3% 

(5,5) 1111.5 I-Iz 2.95·10-< W 2.4 0·10-" W 18. 7% 

(7,5) 1486.5 I-Iz 7.56·10-< W 7.19·10- ' W 4. % 

(5 ,7) 1750 Hz 4.59·10-< W 3.37·10-< W 26.5% 

(9,5) 2005 .5 I-Iz 1.75·10-:' W 1.10·10-:' W 3. % 

Table 14.4 Comparison of t ransducer measured VIP and ESP) measured 

Butterworth fil tered TTVE of the checker board pattern-layer damped experimental 

simply supported plate. 

14.2.2.4 Discussion 

Th i ect ion has reported on the measurement of VEF wit hin imply 

supported p la tes , using ESPI to exper imentally acq ui re two-dirne ll siollal, 

transverse simply supported plat e d isp lacements. 24 m easurements wer 
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recorded from three differently damped simply supported plate structures. 

During the experiment a non-layer damped plate, a fully covered a nd single

layer damped plate, as well as a checkerboard patt ern-layer damped plate 

were used. Due to simplilication in post measurement analysis, the ESP! 

recorded d isplacement data were t runcated to a non-integer number of 

wavelengths as well as an integer num ber of wavelengths. T he latter 

procedure was used during t he energy balance analysis. Thus, the initial 24 

mea urements were reduced to 16 measurements, since recordings of mode 

shapes wit h ha lf a wavelength , in either t he x or y direction only, cou ld not 

be truncated to a n in teger number of wavelengths. 

T he point mobility plot , as shown in Figure 14 .12, d isplays that t he 

attachment of an unconstrained layer reduced the modal ampli t ude of the 

llexura l vibrating plate specimen. Thus, a damping scenario, as initia lly 

intended , could be achieved. However, t he red uction of modal d isplacement is 

only small. T his agrees with the resul ts found in section 10.4. Due to the low 

thickness ratio of hal hp '" 0.83 , only a small increase in damping could be 

achieved. From Figure 14.l2(b) it is ev ident that the addit ional damping 

shifted t he modal resonant frequency towards lower freq uencies. 

Within this work VEF in simply supported plates was computed 

indirectly from ESP! measured surface d isp lacements by using t he VEFESPI 

method. T he d isplacement information was recorded two-d imensiona lly with 

a high spatial sampling density of 768 x 768 data points. Because t he plates 

were centrally excited , only odd-numbered mode shape d isplacemen ts were 

recorded. Due to t he design o f the simply supported plate rig, the ent ire plnte 

displacement could not be recorded , with sampling data mi ing from 

approx imately 25 mm to each side of the plate's edges. To reduce the effect 

of pectra l leakage due to displacement non-periodicity , the in itia l p la te 

displacement was also t runcated to an in teger number of wavelengths. This 

procedure a lso had t he advantage that a compensat ion factor , required for a 

later employed energy balance analysis, cou ld be der ived easily . 

One of t he main objectives of VEF a naly is is t he visua lisation of VEF 

111 structures. T his procedure is essentia l to detect regions of high a nd low 

VEF. Thus, VEF maps were computed from the ESPI measm ed simply 
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supported pla te d isplacemcnts, Ils ing the VEFESPI method . It has been 

shown by Figures 14.18 to 14.21 and a ll of the VEF maps given 1Jl Appendix 

A32 that the now of vibrational energy can bc detected from most of the 

measured di splacements. To compare the measured VEF pattcrn with the 

analyt ical computed VEF pattern , theoretically determined VEF maps were 

gIven ))'J Appendix A33 for cach mode excited during the experiment . It can 

be seen from the compar ison of the spat ia l VEF distribution that some 

measurements are very close to the analytical VEF pattern . Howcver , there 

are a lso ome measured freqnencies which are not close to eaeh other. The 

differences in VEF pattern are ma inly relatable to t hree points. 

First ly , real structures behave different ly to theoret ical s t fllctures. 

From some ESPI a mplitude fi g)))'es it can be seen that the strong symmetry 

of a certa in t heoretical mode shape could not be simulated preciscly due to 

limita tions of the simply npported rig , as ev ident from Figurc 14.13. In these 

cases, the recorded modal d isplacement shapes differed from the a nalytical 

modal di splacement shapc and a difference in VEF pattern can bc expect ed. 

Secondly, some mcas)))'cmcnts werc acquired at very low values of 7] x 

S R , especia lly the non-Iaycr damped plate measurements . Uere, a t the 

modes (5 ,3) a nd (5,5) a low ngreement in act ivc spatial VEF d istribution 

between experimental a nd a na lyt ical results was obtained despitc a good 

ESPI recorded modal di splacement shape. However, at the modes (3 ,3) , (7,5) 

and (9 ,5) a good agreement was computed. As oncluded in sect ion 11.4 , t he 

sensitivity of t he VEFESPI method decreases with increasing damping. Thus, 

with increasing damping lower values of 7] x SNR may a lso lead to acceptable 

active VEF results. For this reason , some measnrements of the non-layer 

damped plate showed a good active now pattern agreement , whereas active 

now pattern at t he mode (5 ,3) with 7] x S TR '" 0.19 and 7] = 3.5·10-:1 could 

not be mea ured sati sfactory. The predicted values of 1) x S R a re given in 

Tables 11.8 to 11.10 and the measured modal loss factors are given in Tables 

11.5 to 11.7. 

T he agreement JJ1 act ive VEF betwcen experimental and a na lytical 

results of the fully covered , ingle-Iayer d amped pla te and the cheekerboard 

pattern-layer damped pla te was good a t each measured freq nency. In 
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particular the single-layer damped plate at t he modes (5,3), (5 ,5), (5 ,7) as 

well as the checkerboard pattern-layer damped pla te at the mod es (5,5) , 

(5,7), (9,5) showed a good agreement. 

As expected , the react ive energy flow pa ttern could be detected at all 

three plate structures wit hin a satisFactory range. However , the agreement 

bet ween experimenta l and analytical dat a d iverged with increas ing excitation 

frequency, since here more measured wavelengths were included in t he signa l 

to be analysed that differed from the theoretical modal shape. 

Partial da mping, as employed with one plate specimen , has influence 

on the spatia l d istribution of VEF. However, thi s was not regarded when 

computing the a nalyt ical VEF d istribution . T hus, differences between the 

measured a nd analytical VEF of the checkerboard layer damped pla te were 

present , as evident from the meas1ll'ement o f mode (5,3). Here, the primary 

shape of t he a nalytical mode (5,3) can be seen . However, parti a l attachment 

of t he unconstrained layer patches altered t he pattern of t he VEF. 

Th ird ly, the required spectral filtering a lso a ffected the computation of 

the measured VEF. In t his work an ideal 2D filtering process and an oval 2D 

Butterworth filter were employed within the wavenumbcr domain , in order to 

remove undesired spectral noise component ·. Due to t he filtering in the 

spectral domain , the subsequent computat ion o f spatia l deri vat ives , as 

required by the VEF computat ion , natma lly produced altered spatia l 

derivatives. Thus, differences in magnitude and d irection of VEF can be 

expected. Interestingly , the two employed filter shapes produced a lmost 

identical results. 

VEF mea urements are used to measurc vibrat ional energy in terms of 

flow d'irection and flow magni tude. It has a lready been shown that the 

direction of fl ow (spatial di tribution of VEF) in tlnite struct m es can be 

measured using an ESPI system. To assess t he accuracy of t he fl ow 

magnitude an energy bala nce was carri ed out . T herefore, conventionally 

measured VIP was compared with the TTVE within the simply supported 

plate. Because the boundaries of the plate rig were considered as non

dissipat ive , the injected vibrat ional energy s llotdd be equal t o t he tota l 

dissipated vibrat iona l energy wit hin t he p late. Thus, equa t ion (3.61) was 
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employed. T he TTVE within the plate was computed by evaluat ing a surface 

in tegration of the ESPI measured potential energy density. The measured 

VIP was computed from the accelerometer and force transducer mea ured 

cross-spectral density between the dr iving force a nd the driving point 

acceleration, as shown by equation (3 .27). 

Tables 14.2 to 14.4 di splay the result of such an energy bala nce 

computed for a ll three measured pla te structures. The parameter D.Ei 

represents the relative difference between the transducer measured VIP and 

the ESPI measured TTVE. It can be seen that there is a relative d ifference of 

± 30% for most of the measurement . However , at most measurements the 

TTVE is less t han the VIP . It can be seen t hat the rela tive d ifference 

computed for t he non-layer damped p late is lowest a nd in a very close range. 

This contrad icts t he results obtained from the computation of the VEF 

pattern where the non-layer damped plate produced less accurate VEF 

shapes. However, accord ing to the conclusion obtained in section 11.3 , the 

computa tion of the VEF pattern depends very much on the product of 7] x 

SNR in combination with the level of clamping, wherea the rela tive error 

made by ba lancing the VIP and the TTVE is less dependent upon the 

damping. From T ables 11.8 to 11.10, it can be seen t hat the non-layer 

damped plate exper imen t was conducted at very low values of 7] x SNR. 

Further , the measured modal loss factors were lower than t he respect ive 

measured modal loss-factors of the layer damped structure. This indicates 

that the sensitiv ity of the VEFESPI method can be expected to be higher 

when computing the VEF pattern. Th us, when bala ncing the measured VIP 

with the measured TTVE wit hin t he plate, differences are mainly cansed by 

devia tions due to the ideal isation of equation (3.61) a nd the modell ing of the 

damping layer attachment , which obvious ly was excluded when analysing the 

non-layer damped plate. 

As mentioned before, a higher re la tive d ifference for the single- layer 

and checkerboard pattern-layer damped plate may be related to the layer 

attachment modelling. As shown in section 10.4 a nd Appendix A2 , it was 

as umed, in order to implify the modelling of the combined fl exura l rigidity , 

that t he plate and the layer have the same P oisson rat io. T hns, in 
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combination with t he assumed plate and da mping layer properties, 

considerab le computation errors can be expected when computing the 

combined fl exura l rigidity. This argument is strengthened by the fact that 

the combined modal loss factor computed was a lways considerably lower than 

the measured modal loss factor. T hus, it is assumed herein that the devia t ion 

in the combined fl exural rigidity due to the layer a ttachment modell ing is t he 

main reason for a higher relative difference being present for the single-layer 

damped and checker board pattern-layer damp d plate. 

During the ESP! experiment , sound radiation of the excited 

experimental plate was clearly aud i ble. A t om modes, especia lly at the 

higher frequencies, a very loud sound was rad iated by t he vibrating pla te. 

However , losses of the plate due to sound rad iation are neglected in the 

energy balance, as defined by equation (3.61). Figm e 14.23 displays the 

predicted theoretical VIP ( ~u )F.. and theoretical rad iated sound power 

(~."'I)F" of a baffl ed non- layer da mped simply supported pla te. F or t he 

pred iction , the same geometr ical a nd ma ter ia l properti es as the experi mental 

pla te were used . The a na lysis was carried out with a mean force magnitude 
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Figure 14.23 Comparison of VIP and radiated sound power at both sides of a baffled 

non-layer damped simply supported plat u ing a force magnitude of 1';, = O.Vi1 N 

and a loss factor of 17 = 5.22·10-'. 
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and a mean loss factor , averaged from the measured force magni t ude and 

measured modal loss factor. 

Figure 14.24 shows t he rad iation effi ciency. From both figures it can 

be seen t hat the radia ted sound power is more signi ficant at t he higher 

frequencies. Hence, losses d ue to sound rad iation can be regarded as a 

potent ial reason for la rger d iscrepancies occurri ng between t he TTVE a nd 

VIP at t he higher excitation frequencies. T hus, the higher relat ive d ifferences 
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Figure 14,24 Rad iation efficiency of a baffled non-layer damped simply upported 

plate using a force magnitude of FI! = 0.141 N »nd a loss factor of '7 = 5. 22· 10-". 

between the measured VIP and measured TTVE or the single- layer damped 

and checker board pattern- layer damped pla te may be rela ted to some losses 

due to sound rad ia tion . Of course t he a ttachment of an unconstrained 

damping layer reduces the measm ed surface velocity and , hence, th sound 

power radiated. However , t he trend that more injected energy is radiated a t 

higher excitation frequencies remains. 

Further , cognitions gained when d i cussing the simply supported beam 

resu lts can also be related to the measurement or finite plates. The modal 

loss factor was measured here by an experimenta l modal analys is using a grid 

of lOxlO FRF measm ement poin ts on t he p la te's surface [127]. It was noted 

in reference [1 04] that measurements of t he moda l los factor arc often 

erroneous with an accuracy no better than about ±20% due to comp licated, 
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non- linear damping mechani ms occurnng in real vibrat ing structures. 

Furthermore, the material properti es of the plate and especia lly the damping 

layer were assumed herein when calculat ing TTVE, whereas, material 

properties were not regarded when computing the VIP from t he measured 

cross-spectral density. Although it was assumed that the boundaries of t he 

rig are non-dissipative, therc might have been some energy crossing at t he 

boundaries. However , these energy losses are not regarded in equation (3.61). 

Finally, the truncation process and the subsequent corn pensation using a 

compensation factor may also have introduced errors. 

Due to t he above mentioned sources of potential errors, the energy 

balance accord ing to equation (3.61) , wh ich worked well in t heoretical 

analysi , cannot be applied in full practic in order to assess the exact 

accuracy of the VEFESPJ method. However , it can be u ed to check if the 

measured VIP and measured TTVE are in a close range to each other. T his 

certainly has been shown by Tables 14.2 to 14.4. T hus, it can be concluded 

that the magnitude, as well as the spatial distribution of the ESPI mea ured 

VEF within a simply supported plate, can be measured within a n acceptable 

range of accuracy. 

Also, somc regards arc givcn towards thc rclation of vibrat iona l energy 

transmission a nd vibrationa l energy dissipat ion . The act ive VEF maps, as 

shown above and in Append ix A32 , visua lised the measured VEF within the 

simply supported plate. With the aid of the active VEF maps, the amount 

and d irection of actual trans mitted vibrational energy is shown. T his 

quantity represents t he true physical energy flow within the plate. It can be 

seen from Figures 14.18 to 14.21 that although the active spatia l energy flow 

distribution is symmetrical within a simply supported plate , the act ive flow 

pattern cannot be related to the modal di sp lacement shape of t he plate and 

vice versa. However, modal information can be gained from the reactive VEF 

maps, simply by counting t he num ber of react ive energy sinks . 

Figures 14.18 and 14.19 displayed the VEF maps of the single- layer 

damped plate excited at 1459 Ilz and mode (7,5). It can be seen tha t the 

vibrational energy flowed almost radially symmetrically away from the centre 

of the plate. However , energy vorti ces, typical for finite s t rnctures, occurred 
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within the plate showing a rota tion of vibrational energy around a gIven 

location . T he generation mechanisms of VEF vorti ces are exp la ined 111 

reference [135J. T here , it was shown that vortices are gen rated due to 

interference of at least t wo modes, producing a so-called vortex generation 

block. However, sometimes the excitation location cannot be located t his 

easily, especia lly when the excita t ion location is not known or a la rge number 

of energy sources and sinks appear within the VEF field . For a det ection of 

energy sources and sinks, the divergence o f VEF can be used , as also shown 

in reference [78J. 

Figure 14.25 displays the VEF d ivergence computed from t he ESPI 

measured and periodically truncated single- layer d amped simply supported 

plate displacement that was excited at 1459 IIz and mode (7 ,5). Equation 

(3.54) was used to compute the d ivergence from t he two VEF field s PT and 

Pg. T he d ivergence of VEF with in a p late is defin ed as t he sum of the parti a l 

derivati ves of the VEF fields aP, / ax + aP, / ay. T hus, the spa tial rate of 

VEF cha nge can be computed. As stated in section 3.2, a non-zero d ivergence 

of VEF indicates a n increase in VEP if \l P > 0 and a decrease in VEF if 

\l P < O. \l P = 0 occurs a t the non-dis ipat ive simply supported boundary . 

Within the p late \l P IS IIsually non-zero d lle to energy upply a nd 
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Figure 14.25 Butterworth filtered VEF divergence of the periodically t runcated, 

single-layer damped simply supported plate at 1459 Hz & mode (7,5): (a) 20 

clivergence of VEF, (b) con tom plot of VEF cli vergence. 
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sub equent damping. An increase in VEF may occur due to energy injection. 

A decrease in VEF may occur due to energy d issipat ion. From Figure 14.25, 

t he excitation location as an energy supply can be identified clearly in the 

centre of the p late, since this valne is positi ve and largest. 

Furthermore, regions of energy dissipation can a lso be identifi ed from 

Figure 14.25(b) at locations, where 'V P < o. Interest ingly , the energy 

di ssipat ion is ra ther oddly d istribu ted over the plate. It can a lso be noticed 

from F igure 14.25 that t he divergence of VEF is not zero at the edges. This is 

main ly due to t he truncation of the experi mental simply supported plate 

displacemen t . Hence, some energy dis ·ipation is st ill in progress. 

F or comparison reason Figure 14.26 di sp lays the contom plot of t he 

divergence of the non-layer damped plate excited at 1536 Hz and mode (7,.5). 

It can be ·een from this figure that a more symmetrical modal pattern of 
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Figure 14.26 Butterworth filtered VEF di vergence of the periodically truncated non

layer damped simply supported plate at 1536 Hz & mode (7,5): (a) 2D divergence of 

VEF, (b) contour plot of VEF di vergence. 

energy dissipa t ion occurs. It can b as umed that the attachment of a single 

unconstrained layer introduced asymmetri c distributed energy dissipation . 

Unfort unat ely, the computation of the divergence of VEF reqnired 4'" 

order spatial derivat ives. It was shown previously that the computation error 

that occurred when determining t he spatia l derivatives by t he KSD 
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technique, increased with increasing order . T hus, t he computa t ioll of VEF 

divergence can be expected to some extent to be erroneous . The VEF 

divergence can be used to detect t he excitation locat ion as it was shown 

above. A nother quantity to invest ignte t he d issipa tion behav iour of the 

simply supported plate is t he use of the ri ght-hand side of equatiou (3.61). 

The total d issipated energy wit hin the simply supported plate is proportiona l 

to the surface integral of the potent ia l energy density. T he proport iona l 

factor is 2 0)7] . F igure 14.27 displays the integrated potential energy density 

along the y-ax is. This quantity represents the total d issipated energy in the x 

direction . Not e, the curve sha pe of the equi valent quantity in the y d irection 

look simi lar, however, only 5 amplitude peaks would appear. In tegration of 

the curve, as shown in Figure 14 .27, a long the :Lcaxis would yield the TTVE 

within the plate. Since t he bounda ri es a rc assumed to be non-diss ipnt ive, the 

TTVE i equal to t he total di ssipated vibrationa l energy. 

From Figure 14.27 it is ev ident that t he maximum energy 111 the x 

d irection is di ssipated a t locat ions x = aA. / 4, where a is pos itive integer . 
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Figure 14.27 Butterworth filtered total dissipnted energy in t he x djrection of the 

periodically truncated single-layer damped simply supported plate at 1459 Hz & 

mode (7,5). 

From F igure 14.16 it can be noticed that these point are located at the 

peaks of the modal s imply supported plate d isplacement . T hus, ell ergy 
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dissipation is a t maximum a t the peaks of t he modal plate di sp lacemen t. Th is 

information cannot be obtained from the active VEF maps. 

Finally , it ca n be concluded that t he measurements of VEF with in 

different ly damped simply supported plate structure were s uccessfu lly 

conducted usmg an ESPI ·ystem . VEF pa ttern could be d etermined for a ll 

three damping structures, which most ly agreed well wit h their analyt ical 

coun terpa rt. Also, the relative difference between t he t ra nsd ucer measured 

VIP and ESPI measured TTVE were within a reasonable ra nge. With the 

experimenta l results, presented in thi s sect ion , the conclusions gained in 

section 11 .3 could be confirmed. T hus, t he sensit ivity of the VEFESPI 

method increased wit h increasing damping a nd t he energy ba la nce with in 

finite structures is less sensiti ve towards noise a nd damping. 
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15 CONCLUSIONS AND FUTURE 

WORK 

15.1 General Conclusions 

This cha pter concludes the t hesis with genera l result a nd cognitioll s 

obtained on the numerical computation of vibrational energy now (VEF) a nd 

the mea Hrement of VEF under use of electron ic speckle pattern 

interferometry (ESPI) in beam alld p late strnctures. In this di ssertation , 

focus has been drawn to the theoretical an I nllmerical computat ion of VEF 

in beam and plate structures. For validat ion purposes, ESP! based VEF 

measurements were undertaken for each structure considered in theory. 

To assess the performa nce of the vibrational energy flow determ ination 

met hod using electron ic peckle pattern in terFerometry (VEFE PI), in fin ite 

and fini te struct m es were analyse I. These two types repTesented st ructures 

on taining very strong and very weak VEF field s. Generally , t he nlllner ical 

compntat ion and measurement of VEl" within infin ite structures d id not 

in troduce as ma ny problems as the a pplication of the method to finite 

structures. VEF within infinite structures, or structures having a high 

amoun t of damping, can most ly be rela t ed to travelling wave. T hus, a high 

VEF may be expected and measured. Infini te structures were invest igated, 

smce the behaviour of t he VEFESPI method could be invest igated much 

ea ier a nd results obtained could partly be rela ted to finite structures. 

Due to the presence of high stand ing waves, VEF with in fin ite 

stl'1lctures is expect ed to be much weaker. VEF in light ly damped finite 
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strnctures can be related most ly to dissipation processes withi n the strncture. 

However, even a very weak VEF within a finite structure may generate a 

considerable amount of sound , as experienccd during the ESPI exper iments. 

It is t herefore important for each VEF measurement technique, to cope with 

the measuremen t of weak energy Oows. The main problem with the VEF 

measurement with in finite structures is t hat t he magnitude of the generally 

weak travelling waves is within the same range as the magnitude of t he noi e 

Ooor t hat contaminates the d isplacement signal. Thus, a fi ltering due to noise 

contamination was ind ispensable a nd larger errors in VEF computa tion may 

be ex pected . 

It has been d emonstrated , with the aid of the numerical analysis of 

VEF in beam and pla tcs, that the VEFESPI method worked well de pite 

some potential ources of errors. To compute successfully VEF in beams a nd 

plates , attention should be drawn to the following poin ts: 

• Displaeemen t irregulariti es, such as odd-n urn be red mode shape 

d isplacements, strong near field , or simple displacement non

period icity may be compensated by applying periodisation techniques. 

• Real m easured ESPI data contain opt ical noise, which needs to be 

removed. However, filtering docs a ffect the accuracy of the VEl-ESPI 

method due t o erasing valuable d isplacement informat ion. T o obtain 

best results, an optimisation proce's of the filtering is adv isable. 

• When computing VEF in finite structnres, the product of the loss 

factor 1] a nd the signa l-to-noise ratio (SNR) , i.e. 1] x SNR, may be 

used as an indicator to assess the sensitivi ty of t he VEFESPI method. 

Genera lly , the sensitivity of the VEFESPI method decreases with 

increasing structural damping. 

In the chapters investigating the numerical computation of VEF in beam a nd 

plate structures , it was shown that VEF can be determined even when strong 

noise contaminated displacements were present . To validate the theoretical 

resul t , VEF was measured indirect ly from ESPI recorded infinite and finite 

beam and plate d isplacements. It was hown that VEF in an "infin ite" beam 
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and pla te structure can be measured wit hin a n acceptable range of accuracy . 

Although some d ifferences to con vention a l measured vibrationa l inpu t power 

(VIP ) was fo und , the resul ts obtained on the measurement of VEP in finit e 

beams and plat es were good, since the VEF pattern a nd magnitude could be 

determ ined within a reasonable range of accuracy. However , the measurement 

accuracy of VEF wit hin finit e structures using ESPI could not be assessed as 

accurately d ue to t he foll owing poin ts: 

• The modal loss factor used to compute t he tota l t ransmitted 

vibrationa l energy (TTVE) from the measured potential energy 

density was measured and , thus, may conta in a measnrement error of 

± 20% or more. 

• T he spatial reso lution of the ESPI system was predicted from 

theoretical wavelength computation a nd, t hus, may vary III 

comparison with the real value. A correct knowledge of t hi s quantity 

is essentia l due to a high sensitivity of the VEFESPI method towards 

the spatial reso lution parameter. T he attachment of a ru ler on the 

structure to be measured prior to t he measurement may be app lied to 

determine the correct spatial resolution of the ESPI system. 

• Materi a l properties of t he s tructure a nd t he employed d amping layer 

were assumed herein , whereas with in the convent iona l measurement of 

VIP no in formation of materia l properties was needed. 

• Sound radiation a t higher frequencies, as well as VEP d issipation or 

VEP crossing a t t he rig boundaries, was not included in the energy 

balance. 

• T he combined fl exnra l beam stiffness and the combined fl exnra l plate 

rigidity, used throughout the VEF determ ination of the unconstrained 

layer damped structures, were computed from theory. T hus, varia tions 

to t he real structure values may be expected . 

T he app lication of ESP I as a potent ia l tool to measure VEF certa inly has 

advantages over conventional measurement techniques. First ly, t he VEF 

information provided by the method is two-dimensional and spatia lly dense. 

419 



15 Conclusions And Future Work 

From t he ESPI measnrement system , the t wo-dimensional di splacement 

inform ation is provided digita lly for further processing. Measurements can be 

undertaken fast and accura tely, and for small scale structures, in s itu. 

However , there is one drawback of the VEFESPI method. Unfortunately, a 

single frequency can be measured only. T herefore, the frequency ra nge of 

such a sy stem is limited and, thus, broad band frequency based vibra t ional 

phenomen a cannot be measured with one measurement run . Howevcr , in 

combination with simple tra nsducer based mobi li ty measurements, critical 

frequencies may be identified convent ionally. The ESPI system can thcn be 

used to mea sure a parti cula r fr equency . Also, the ESPI system provides 

spa ti a l information only, since the displacement dat a are t ime-averaged. In 

parti cular modern scanning laser Dopp ler vibrometer (LDV) measurement 

systems provide both tempora l a nd spa tia l displacement informa tion that is 

recorded over a wide frequency range. 

F inally , it can be concluded t hat t he fl ow pat tern and the magnitude 

of VEF in highly and weakly da mped structures can be measured providing 

the noise contamina tion is within a reasonable rela tion to the d amping of the 

structure . In th is di sserta tion it has been demonstra ted tha t in theory VEF 

can be indirectly measllred from transverse struct ural li splaeements very well 

even when the displacements are contaminat ed by a considerable a mount of 

noise or signal irregulariti es, such as d isplacement non-periodicity. T he 

measurement of VEF in infin ite structures is less sensit ive to noise 

conta.mina tion. However , filt ering of noise is a lso ind ispensable here. F or 

every VEF measurement technique the measurement of VEF in weakly 

damped structures will cause more problems . It has been shown in theory 

tha t with the aid of the VEF ESPI technique VEF can be measured in finit e 

structures as long as the noise contaminat ion is within a reasonable rela tion 

to the da mping of the structure. The product of the loss factor 7] a nd the 

SNR , i.e. 7] x S R , was proposed as an indicator. Sometimes the loss facto r 

and the SNR are not known , especia lly if commercial engineering structures 

are measured. In this case, both quantities may be ex tract ed from the 

wavenumber doma in prior to the VEF computa tion . Of course ot her 

indicators can be employed , such as the stand ing wave ratio. However , the 
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indicators should be availab le during the measurements. Further , since t he 

sensit ivity of t he VEFESPI method decreased with increasing damping, the 

loss factor is therefore a n obvious quan t i ty to use. 

In thi s research t he measurement of moment point mobility and 

energy input to an "infinite" beam was also in vestigated. It was concluded in 

cha pter 9.3.1.4 t hat this technique can be used to measure moment poi nt 

mobili ty and energy input to a n "infini te" beam. A precisc adjustment of the 

moment actuator was essentia l. T h e adjustment of the moment actuator is 

slight ly ted ious. However , a fter the moment actuator is a ligned correct ly, 

sequential measurements can be undertaken. Further, it was decided not to 

hit the beam direct ly without the use of t he at tached moment arms to avo id 

local beam d eforma tions at t he point of impact. A Iso, t he use of the momcnt 

arms ensured a n evenly d istri buted moment across thc beam wid th and 

undesired d ifferences o f the two opp osite impact forces wi ll act in longitudina l 

beam d irection. 

15.2 Future Work 

T he experiment a l va lidation of the resu lts obta ined in theory on t he 

measurement of VEF revealed some difference· between measured ESP! 

based VEF a nd measured transd ucer based VEF. T he reasons were d iscussed 

in t he respective sections. However , the accuracy of the measurement 

technique is most dependent on t he abil ity of t he ESPI measurement system 

to acquire accura te vibrational amplitude and phase information . Within t his 

research , t he error tolerance of the employed ESPI system was no t known. 

Also , t he ESPI measurements undertaken herein used an ESPI measurement 

system courtesy of Land Rover . This measurement ystem was one of the 

first a mong the practical application of ESPI on commercial engineering 

st ructures. However , modern more advanced ESPI systems may provide even 

more accurate amplitude and phase information , with poten t ia lly less noise 

conta minat ion . Thus, t he use of modern off-th e-shelf systems may improve 

the feasibi li ty of the VEFESPI tcchnique even fur t her. 
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15 Conclusions And Future Work 

With in this work the computa tion of spat ia l derivati ves from 

measured da ta was a n essential pa rt of the VEFESPI method. The uti li sat ion 

of the fast F omier tra nsform (FFT) within the Iv-space d erivation (KSD) 

method and simul taneous spectra l filtering caused some problems, especially 

as signal irregu lariti es and noise contamina t ions were present . An interesting 

a lterna t ive to the KSD method cOll ld be the a pplication of B-spli nes to 

determine spati a l deriva tives from measured d isplacement da ta by 

simultaneously filtering the dat a due to the smoothing properti es of the B

spline approximation techn ique. The a pplication of the B-spli ne technique 

may reduce the problems occurring with signal irregularit ies and spectra l 

filtering, since spatial derivati ves may be computed direct ly from t he 

plecewlse poly nom ials . T hus, non-periodic d isplacement dat a may be 

employed in order to measure VEF . 

The t ime consuming process of da ta prepara tion and t runcat ion may 

be automat ed by more intelligent soft ware codes, a ble to provide the 

VEFESPI method with useful ESP l based d isplacement information straight 

from the recorded ESPI data . Apart from measuring VEF with thc a id of the 

VEFESPI tech nique, thi s method can also very easily be incorpora t ed in to a 

theoretical and a numerical a nalysis o f' VEF in s tructures to pred ict VEF 

from analy tica l displacement computa tion . 

Fina lly, the measurement of moment point mobility and energy input 

to a finite beam may be carri ed out to ex tend the herein proposed im pact 

moment measurement method. In con trast to the measurement of a n 

"infinite" beam structure, high st anding waves and cross mobi lities need to 

be taken into account when measuring the true moment mobili ty and input 

energy. 
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