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Abstract 

Abstract 

Multi-actuator structural testing has traditionally been regarded, from a control 

point of view, as a multi-loop. single-input, single-output problem. This approach does 

not take into account the interaction between. different actuators, due to the dynamics 

of the structure under test, which can be considerable. The result of this is often poor 

laboratory reproduction of the actual service data. 

This project shows that the mass of the structure under test has a considerable 

impact upon the stability of the traditional multi-loop, single-input, single-output 

control system. Where stability is prejudiced, the loop gains have to be reduced to 

maintain stability and this can degrade the performance of the test. In these 

circumstances multivariable control offers the potential for a significant improvement 

in performance. 

Two experimental rigs are used in this project, both exhibit major interaction 

and pose a significant control problem. The first rig consists of a laboratory scale 

cantilever beam excited by two electro-dynamic vibrators with displacements 

measured by Linear Variable Differential Transformers (L VDTs). The second, 

industrial-scale, rig consists of a large steel frame excited by two hydraulic actuators 

with applied force measured by load cells. Multivariable controllers are designed and 

implemented on these rigs based on the frequency-domain Characteristic Locus 

method. The multivariable controllers are shown to demonstrate superior performance 

to traditional multi-loop controllers. 

Mathematical models of the rigs are not required for controller design, instead 

experimental frequency responses are all that are needed. This is a major attraction of 

the Characteristic Locus method since the task.of modelling the dynamics of a multi

channel structural test system is not trivial. However, obtaining the frequency response 

of the second rig is made difficult by the imposition of closed-loop control during the 

identification experiment. A technique is presented to overcome this problem using an 

existing correlation method. 



Introduction 

Chapter 1 

Introduction 

All mechanical structures when introduced into their service environments will 

be subjected to a variety of different conditions and loading forces. The diversity of the 

service loadings and. the complexity of the dynamics of the structure make it 

impractical, if not impossible to determine the strength of the structure by analytical 

methods alone. Laboratory dynamic structural tests (fatigue tests) are used to 

overcome this problem. These tests are intended to reproduce the service conditions of 

the structure in a controlled environment and frequently involve the application of 

multiple forces and the measurement of multiple signals; commonly load, acceleration 

and displacement. Such. tests are termed 'multichannel' and give rise, be definition, to 

multivariable control problems. 

Dynamic testing is performed by applying.known excitations to the structure in 

order to reproduce known service conditions of a controlled variable, such as 

displacement, force, velocity or acceleration., while stress and strain distributions are 

monitored for subsequent analysis and evaluation. Multi-channel dynamic structural 

tests are. frequently used in the aerospace and automotive industries to investigate the 

fatigue and vibration properties of structures. Aerospace applications vary in scale 

from tests involving perhaps 100 actuators on complete aircraft, down to two-input, 

two-output tests on sub-structures. The input signals for these tests are usually 

sinusoidal or. involve a sinusoidal signal to invoke. a transition from one static load 

level to another. Automotive tests also range from the involvement of complete 

vehicles down to sub-components. Tests on complete vehicles have advanced from 

four-input, four-output ("four poster") rigs to twelve or sixteen channel tests with input 

signals which are often random in nature. The structure is loaded or forced either. by 

servo-hydraulic actuators or elctro-magnetic vibrators, with the former method being 

more common in aerospace and automotive applications. 

The fundamental problem encountered in controlling multi-channel tests is the 

interaction between different actuator inputs and outputs due to the dynamics of the 

test structure. Often the multivariable nature of the problem is ignored and individual 
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Introduction 

servo-controllers are used to control each actuator. Naturally this approach does not 

take into account the interaction and can lead to performance problems when the 

interaction is severe. Even when optimal inputs to the actuators, in multi-actuator tests, 

are calculated in order to maximise a displacement severity measure [2], the suggested 

test will run open loop. In the most sophisticated method [3] of multi-actuator dynamic 

testing, iterative numerical methods are used to determine the excitations by 

deconvolution of the measured output, thus producing the required response. Input

output cross-talk, in this case is taken into account, but the calculation of the control 

input is done off-line, and again the test runs opencloop. 

The aims of this proj ect are to address the fundamental issue of the relevance of 

multi variable control systems applied to dynamic structural test systems and to apply 

the frequency domain. control theory of multivariable systems to the design and 

implementation of controllers for dynamic structural. test systems. The dynamics of the 

test structure, actuators and transducers are combined into a multiple-input, multiple

output plant. Structural interaction. and effective decoupling of different inputs and 

outputs are central to the design process. The result is a tighter control scheme, with 

better compliance to performance specifications. The control is based on feedback of 

directly measurable outputs. Mathematical modelling of the structural dynamics of the 

test object (often not a trivial.job) is not necessary. Simple frequency response tests 

will provide all the necessary data for the design process. 

The importance of. the proposed .control strategy is that a systematic approach 

is followed to provide the required system performance and accuracy. Multivariable 

controllers are designed. in. the frequency domain from frequency response data, thus 

mathematical modelling of the structural dynamics of the test object is not necessary. 

This is a major advantage since mathematical. modelling of a structural. test system can 

be a very complex task. The necessary frequency response model of tlhe test system is 

obtained experimentally, although. this is not always straightforward. In some 

situations, the identification experiment must be performed on the closed-loop system. 

A proven technique for identifying the. open-loop frequency response of a 

multivariable plant is extended to be used in a closed-loop test. 

In order to investigate the use of multivariable control systems, two test rigs 

were used. The first was developed in a previous project [4] and consists of a 

laboratory-scale cantilever beam excited by two electro-dynamic vibrators. 

Multivariable controllers have been designed for the rig using both tlhe Characteristic 

Locus method and the Inverse Nyquist Array methods [5,6] and simulations of closed

loop performance were favourable. That work has been extended with digital 

implementation and a recent extension to the Characteristic Locus method has been 
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Introduction 

implemented for the first time. The second rig is an industrial scale test rig in which a 

steel frame is excited by two hydraulic actuators. Two control systems were designed 

and implemented on this latter rig for comparative purposes - two single-loop 

controllers and a multi variable Characteristic Locus controller. 

Results of the work described in this thesis has been presented at several 

international conferences [7-15, 45, 46] and collaboration with British Aerospace has 

proven to be an invaluable insight into the dynamic structural testing industry. 

4 



Dynamic Structural Testing 

Chapter 2 

Dynamic Structural Testing 

2.1 Introduction 

In rare circumstances does the single application of a static load result in the 

failure of a mechanical structure. Conversely, the repeated application of a lower 

magnitude load - perhaps a 'safe' load from static considerations, may ultimately cause 

failure, usually sudden and catastrophic. This is known as fatigue failure and is a 

phenomenon associated with localised high stress levels [1]. The complexity of many 

engineering structures make it impractical, if not impossible, to determine the 

necessary stress distributions for assessing the dynamic strength of the structure 

through computational means. Consequently, spatially distributed dynamic loads are 

applied to the structure in order to asses it's response to dynamic stresses, this is a 

Dynamic Structural Test. Static tests can also be carried out on the structure to check 

static stress calculations but are no substitute for a dynamic test in the determination of 

fatigue performance. 

A brief historical perspective of dynamic structural testing is given in section 

2.2, reporting on the development of dynamic structural testing up to the present day, a 

typical test is described in section 2.3 and the need for dynamic structural testing is 

established in section 2.4. A characteristic of dynamic structural testing is the well 

defined loading that will be applied to the structure during the test. This is closely 

associated with the test application, section 2.5, and leads to the control system 

objectives developed in section 2.6 for single actuator tests and section 2.7 for multiple 

actuator tests. In section 2.8 current control schemes are discussed and finally the 

chapter is summarised in section 2.9. 
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Dynamic Structural Testing 

2.2 A historical perspective 

Metal fatigue has been studied for many years, the earliest publications on the 

subject appearing over one hundred years ago. In the 1956 International Conference 

on Fatigue there was an increasing emphasis on fatigue testing of components and 

structures, although constant amplitude loading was still used in all the reported tests. 

The major transportation industries, aircraft, automobile and railway, were the 

noticeable contributors in these two categories, although the only published tests on 

structures were from the aircraft industry. Until this period, the 1950s, the generally 

adopted method of dynamic structural testing had been the application of constant 

amplitude load cycles to the specimen, component or structure. The so called 

Palmgren-Miner rule, resulting from papers published in 1924 [19] and 1945 [20], 

which hypothesized aJinear accumulation of fatigue damage, was widely accepted and 

predicted, in principal, fatigue cracking due to any combination of differing load 

amplitude cycles. Gassner [21], who had been advocating the need for variable 

amplitude testing for many years, performed a dynamic structural test on a vehicle 

component using a load history with eight discrete levels of magnitude, stepped from 

low load cycles to high load cycles and back to low load cycles, e.t.c. This load history 

was determined from proposed stress probability distributions and Gassner's results 

were two-fold. Firstly, good agreement was found between the dynamic structural test 

performance and the actual service life of the component. Secondly, and importantly, 

Gassner found inaccurate and unsafe predictions from the Palmgren-Miner rule. 

Although since the 1940s the technology for recording and quantifying service load 

histories began to be generally available, it was not until later that the necessity for 

structural testing with a realistic load history was discussed. Moreau and Peterson in 

1955 [22], reporting on the testing of diesel locomotives, comment: 

'It is now possible to predict, with reasonable accuracy, what stresses will be 

induced in • specific axle design by a certain load and the relationship 

between the stress and the number of applications which will cause failure is 

also fairly well established ... There is, however, very little infonn.tion 

available about the loads an axle is actually exposed to in service.' 

However, up until the mid 1960s the fatigue testing machinery available was 

not advanced or versatile enough to allow application of realistic load histories to large 

components or structures. The most common system, known as the Resonance system 

[23], excited a natural frequency of the test structure, the load amplitude was 

controlled via the frequency or amplitude of the exciting force. The disadvantages 

were 

6 



Dynamic Structural Testing 

(i) that the problem of providing the vibration mode required for the 

correct loading conditions was considerable, and 

(ii) the unsuitability of the system for simultaneous loading in several 

directions, a common requirement in tests on large components and 

structures. 

Consequently, load histories were limited to constant amplitude cycles or block 

programmes such as Gassner's. The mid 1960s saw a major breakthrough in dynamic 

structural testing technology, the introduction of the servo controlled electro-hydraulic 

actuator. Electronic feedback control combined with the superior load capacity and 

load deflection capabilities of the electro-hydraulic actuator opened the way to 

applying service recorded load histories. Sophisticated computer generated load 

histories could be produced and displacement, load or strain could be controlled. 

Another important advantage was the suitability of electro-hydraulic actuation to the 

loading a structure in more than one axis. 

2.3 A dynamic structural test 

The scale and complexity of dynamic structural testing is diverse, ranging from 

single-actuator, constant-amplitude tests on material specimens through to l6-actuator, 

multiple-axis tests on car suspension systems and lOO-actuator tests on whole aircraft 

airframes with quasi-static loading (see section 2.5). Figure 2.1 gives an indication of 

this diversity. Possibly one of the most complex tests ever carried out in the UK was 

that on the Concorde at RAE Farnborough [24]; from construction of the test frame to 

the end of testing took some twenty two years with ninety-five hydraulic actuators 

loading the airframe. 

Figure 2.2 shows a typical loading system for a hypothetical wing fatigue test. 

The hydraulic actuators are controlled by servo-valves which convert electrical current 

to fluid flow through the actuator ports, the resulting pressure difference across the 

piston causes a force to be applied to the test structure and a corresponding 

displacement of the actuator ram. Displacement and force are measured by suitable 

transducers and the controller executes an algorithm on the command signals and 

feedback signals to derive the control signals to the servo-amplifiers, which then drive 

the servo-valves to maintain control of the loading on the structure. The hydraulic 

supply is represented simply by the oil reservoir, pump and accumulator, safety 

features such as pressure release valves are commonly used but not indicated in the 

figure. 
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2.4 The need for dynamic structural testing 

The building blocks of fatigue design are material fatigue data obtained from 

specimen tests. From this data, component fatigue performance and, ultimately 

structural fatigue performance, can be accounted for in design. However, the fatigue 

performance of some component types, typically those possessing complex geometries 

or having undergone complex manufacturing processes, bear little resemblance to their 

basic material fatigue data and thus a fatigue test is required, even at the design stage. 

Before a product can be introduced into service, confidence in it's performance 

under fatigue loading, for instance time to fatigue failure, is necessary if not mandatory 

(e.g., civil aircraft worthiness). At the design stage, the probable load history to which 

the product will be subjected may be imprecisely known and design assumptions, 

trade-offs and optimisations (e.g., strength for weight) will have been used. All of 

these factors make a dynamic structural test the only accurate prediction of fatigue 

performance. Subsequent redesigns and developments can be compared sensibly under 

the repeatable and controlled conditions of a dynamic structural test. 

Areas prone to fatigue and the onset and sequence of fatigue failures can all be 

monitored during the dynamic structural test of the prototype, enabling the 

establishment of realistic inspection and repair schedules. It is not uncommon for an 

engineering structure to undergo a major change in operating conditions or a desired 

extension of it's original service life. Edwards [l] reports on extensive fatigue tests 

carried out on DHll2 Venom aircraft for the Swiss Federal Aircraft Factory resulting 

in an extension of service life of up to three times the original life and a reduction in 

cost per flying hour of one half. 

2.5 Load types 

Quasi-static 

Some tests involve the measurement of structural response to changing loads 

where the rate of change of load is not rapid enough to excite dynamic effects such as 

resonance within the structure. This is known as quasi-static loading and is commonly 

found in the testing of aircraft structures. The excursion between static loads 

sometimes follows a low frequency half-sine trajectory as indicated in Figure 2.3. 
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+veload 
half-sine excursion 

I~ 
time 

static load 

-ve load 

Figure 2.3 Quasi-static loading 

Constant amplitude and block programmes 

Engineering components and structures are rarely subj ected to constant 

amplitude load cycles for their entire service life. However, such loading is, for 

historical reasons, used on specimens in single actuator tests to provide basic material 

fatigue data in the form of SIN curves. Figure 2.4 shows a constant amplitude load 

history whose stress amplitude (S) and the resulting number of cycles to failure (N) 

are the ordinates on the SIN curve. Constant amplitude loading is, however, a gross 

approximation of service conditions and variable ainplitude tests are a step towards 

ensuring a realistic fatigue test. Block programmes are the most commonly found 

variable amplitude tests, typically applied to structural components, where the service 

data are analysed and broken down into blocks of load levels. These blocks of load 

levels are then applied to the structural component in a stepped manner to form a 

programme which is then repeated until failure occurs. Introduced in the 1950s, with 

Gassner [21] being a major proponent of this loading scheme, block programme tests 

are still in use today, and are commonly found in acceptance tests of automotive 

components [1]. Figure 2.5 shows a four-level block programme. 
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Random and service-recorded loading 

The block programme test, although being variable in amplitude, may not be 

. representative of service loading since it is generally considered [25] that amplitude, 

number of occurrences and sequencing of load cycles have a major effect on fatigue 

performance. Certain operating environments produce a random service loading which 

can be defined by a probability or stochastic process, from which a temporal signal can 

be synthesized to excite the structure in the dynamic structural test. This is the case for 
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automotive vehicles where the vertical profile of the road surface, which excites the 

vehicular structure through the tyres, may be described by a single-sided power 

spectral density (PSO) [26]. Such sophisticated loading finds application in tests on 

automotive suspension, steering and engine mount assemblies, where commonly up to 

16 actuators are used in multi-axis configurations. Synthesis of the random test signal 

is principally an inverse Oiscrete Fourier Transform applied to the PSD, the process is 

described below. 

Consider that the service loading is described by a stationary stochastic process 

with an N-point discrete-time realisation 

x = x(nh) n n = 0, 1...N- 1 (2.1) 

where h is the sampling period of the sequence, in seconds. A Discrete Fourier 

Transform (OFT) of the sequence yields complex spectra, Xk ' thus 

N -\ 2xnk 
-j-

Xk = L xne N k = O,l...N-I (2.2) 

n=O 

The stochastic process is conveniently described its power spectral density 

(PSO) Sxx (k) defined as the power per frequency interval 

S (k) = IXl 
xx N 

k = O,l...N-I (2.3) 

and by direct analogy to the Fourier transform of a continuous-time signal, is 

defined over negative and positive frequencies. It can be shown that only the first 

N 12 + 1 spectra Xk are unique and correspond to the frequencies below (in Hz) where 

INI2 is known as the Nyquist frequency. 

k = 0,1...NI2 (2.4) 

The remaInmg NI2 - 1 spectra are complex conjugates of the first 

1,2 ... N 12 - I spectra, according to equation (2.5), 

* XN = X -r r ° <r <N12 (2.5) 

and can be ascribed to negative frequencies. However, since negative 

frequencies do not exist in practice, the PSO can be re-defined over positive frequency 

by suitably adjusting the positive frequency contribution. The result is a single-sided 
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PSD, G;u (k), and it is G.
u 

(k) that is used to describe the stochastic properties of the 

random load. Assuming that Xo = 0, i.e. the mean of the sequence xn is zero, and that 

XN/ 2 = 0, i.e. the signal is band limited to a frequency below the Nyquist frequency, 

then 

G (k) = )XJ2 
. xx N k = 0,1...NI2 (2.6) 

Now since the excitation xn is a stochastic process, the computed spectrum 

from a single time record, equation (2.2), will itself be stochastic and is referred to as a 

spectral estimate. The PSD of a stochastic process is therefore determined from 

averaged spectral estimates 

k = 0,I...NI2 (2.7) 

where E is the mathematical expectation operator. The averaging technique 

used (e.g. Bartlett's or Welch's method) does not concern this analysis since the PSD 

is already known and the task is to determine suitable spectra from which a time 

domain sequence can by synthesized. The obvious choice of IXJ from equation (2.7) 

IS 

k = O,l...N12 (2.8) 

and gives a signal whose spectra have completely defined magnitudes. This is 

desirable for dynamic structural testing as it will produce a repeatable test signal. Note 

that the spectra for k = N 12 + 1 . .. N - 1 are obtained from equation (2.5). 

However, in general a real-valued discrete sequence yields complex spectra, 

and since the PSD conveys no phase information, random phases, ak , can be assigned 

to the spectra in equation (2.8) from a uniform distribution over the range 0, 2lt. This 

gives equation (2.9) where, again, the spectra for k = N 12 + 1 ... N - 1 are obtained 

from equation (2.5). 

k = 0,1...NI2 (2.9) 

The discrete-time sequence xn can now be synthesized from an inverse DFT, 

equation (2.10) 
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x = n 

N-I 2nnk 

~ '" X/N 
N L..J k 

k = 0 

n = 0, I. .. N - I (2.10) 

For example, suppose that a loading environment is characterised by a single

sided PSD with a bandwidth of 10 Hz. Following the analysis described above, a 

discrete time sequence is synthesized in Figure 2.6 with N = 1024 data points at a 

sampling frequency of 20Hz. 

'r-~---r----r----.---r.----r---,r---~ : :: 
6 ···i···-------1.-------- l' --------i--'--'-' -~--·-·----·!---··---··f·----·---

: : : : ! i : 
4 -f--- ... '._ ..... ~ ----.. " ~-.---.-- .:-._--- --~--------.: ... 

i ::::: 
: ::':: 

2 t - r ------ ',------ -r----- - . 
[. !: : 
] 

'';'" -

.,2 ~ __ '.- • ..!- -- .i.-. - .. -

... ---+------·_·-1'· - --r----------i-- -----i---------- . ----- ·i·----- ._-

~ ---~-------.- .~----- ------C.------ --~.-----. ---l-------.---~ "-- ------.1.-----. ---
i i i i i i i 

~~~.----~.--r-,~.--r-,~1--r-,~2--r-,~3--~"r---~,5 
lime (sec) 

Figure 2.6 Synthesized random load signal 

Using actual service recorded load histories in the fatigue test will give the 

most accurate prediction of fatigue performance. Acknowledged for some time, this 

has only become feasible with electrohydraulic actuation, electronic control and 

sophisticated computer data processing. The use of service recorded load histories is 

found in a wide variety of engineering structural tests such as those on artillery guns, 

portable bridges used by the military and automotive vehicles. The latter is a 

considerable application area using almost exclusively the Remote Parameter Control 

technique (see section 2.8). 

Standardised load histories 

By standardising load histories for a particular structural form, it becomes 

possible to compare and sensibly exchange fatigue performance data for various 

structures with that form. Obviously, if a sufficient similarity of load histories cannot 
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be established from a considerable number of structures then standardisation is 

irrelevant. Fortunately for transport aircraft, tactical aircraft and helicopters this has, 

up to the present time, never been the case, mainly due to a clear structural form and a 

service environment controlled and well defined by operational requirements. 

However, a load history from a structure such as an aircraft will comprise of a great 

number of simultaneous load signals over many thousands of flying hours; a colossal 

amount of data totally unmanageable to process. By performing a counting algorithm 

on the load history such as peak, level, range, rain-flow or to/from, the characteristics 

of the load history contributing to fatigue damage can be quantified and the data 

greatly compacted. The counting algorithms construct tables of exceedences or 

crossings, or matrices of TolFrom load peaks, termed the load spectrum. Suitable 

analysis of many spectra yields an 'average' spectrum which becomes the standardised 

spectrum, from which a load history can be synthesized. In the structural test, loading 

is commonly quasi-static with half-sine excursions between load cases. Standardised 

spectra are used virtually exclusively in the full-scale testing of fighter aircraft 

(FALSTAFF) [27], transport aircraft (TWIST, Mini TWIST), [28, 29) and helicopter 

rotor blades (Helix, Felix) [30, 31]. 

2.6 Single actuator tests 

Representative excitation of the structure under test will require, in all but the 

simplest of cases, the use of several or more actuators. However, to tackle the MIMO 

control problem thus presented it is instructive to first consider the SISO control 

problem from which general objectives can be established. 

Fatigue performance was earlier characterised in the time-domain and so 

naturally the control problem is a time-domain tracking problem, i.e. the output 

response must follow some desired trajectory. The discussion presented in the next 

section, however, illustrates that the control problem is better suited to formulation in 

the frequency domain, in a manner that is equally applicable to quasi-static, sinusoidal, 

random or service recorded loading. In section 2.6.2 a feedback control structure is 

presented and general principles of design are discussed. 

2.6.1 Control system objectives 

The combined dynamics of the actuator, test frame and test specimen will be 

referred to as the dynamics of the test rig, modelled as a transfer function G (s) . The 

combination of the controller and the test rig will be referred to as the controlled test 
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rig which may be modelled by a transfer function F (s). Tracking performance is 

illustrated schematically in Figure 2.7 where the desired output response is defined as 

r (I) and the actual output response is defined as y (I) . 

r (t) 

time 

disturbance noise 

controUed test rig 

y (s) = F(s) r (s) 

y (t) 

Figure 2.7 Tracking in a SISO system 

time 

Exogenous noise and disturbance signals are also indicated and their effect on 

controller design is discussed in section 2.6.2. The performance objective for steady

state and forced response is stated in equation (2.11) where E is a bound on the 

allowable tracking error. 

r (I) - Y (I) :::; E (2.11 ) 

Although succinct, this statement does not lend itself well to control system 

design with a possibly infinite number of desired trajectories. Consider, however, the 

fact that the all desired trajectories will be well defined by their frequency content and 

will be known in advance of the test. The input-output relationship for the controlled 

test rig is 

y(s) = F(s)r(s) (2.12) 

and in the frequency-domain this becomes: 

yUro) = FUro)rUro) (2.13) 

Quasi-static loading 
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For accurate tracking of a quasi-static signal, comprising of steady-state levels 

linked by half-sine excursions at a radian frequency ro 0' it is obvious that the following 

is required 

y(O) =r(O) } =>iF(jro)i = 1 

y(jro) = r(jro o) LF(jro) '" 0 
ro = 0 ro , 0 (2.14) 

regardless of the sequence and magnitude of the steady-state load levels. 

Sinusoidal loading 

Consider that the sinusoidal loading occurs over a bandwidth from 0 to ro m.x' 

then the above requirement can be extended to equation (2.15) below, which applies 

equally well to purely sinusoidal tests. 

Random loading 

iF(jro)i = I 

LF (jro) '" 0 
OSro Sro m.x (2.15) 

Consider the now the case of random loading as described in section 2.5 where 

the desired output response r (t) is characterised by a double-sided power spectral 

density (PSD) <f> rr (ro). The objective of the test is to reproduce the PSD on the 

structure, the relationship between the input and output PSDs is given by 

(2.16) 

where y ry (ro) is the coherence function. Throughout this thesis attention is restricted 

to linear systems, in which case it can be shown that Yry (ro) is unity. Consequently, 

the resulting control system requirement is given in equation (2.17) where the PSDs 

are bandwidth limited to ro . This is a relaxed requirement to that obtained for max ~ 

sinusoidal testing, equation (2.15), as it places no restriction on the phase of the 

transfer function of the controlled test rig. This stems from the fact that tracking has 

been interpreted in terms ofPSDs which themselves convey no phase information. 

iF(jro)i = 1 (2.17) 
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Service-recorded loading 

Such an approach is not suitable for reproduction of service recorded load 

histories and the following analysis is required. 

Let the Fourier transform of the service recorded load history be R (co), then 

the load history can be obtained from an inverse Fourier transform thus 

r(t) 

00 

= _I fR(co)t!co'dt 
21t 

-00 

(2.18) 

and for accurate tracking it is required that y (I) '" r (t) . Let the Fourier transform of 

the controlled output be Y (co) , then it is clear that equality of input and output Fourier 

transforms is required, i.e. 

Y(co) = R(co) (2.19) 

However, the input transform R (co) will be modified by the frequency 

response of the controlled test rig according to equation (2.20) 

Y(ro) = R(ro)FUro) (2.20) 

Therefore, from comparison of equation (2.19) and equation (2.20), the control 

system requirement is identical to that for sinusoidal testing, equation (2.15), the 

recorded load history is assumed to have a negligt·ble frequency content beyond co . max 

Clearly from the analysis in this section, a simple tracking performance 

objective expressed in the frequency domain is applicable to quasi-static, sinusoidal, 

random and service recorded load excitation; this is stated in equation (2.15). In the 

next section a feedback control scheme is introduced and general principles of 

frequency domain design are discussed. 

2.6.2 Principles offeedback design 

First of all consider the open-loop system G(s) with a disturbance d (5) 

acting on the input and measurement noise n (5) present at the output of the system, 

this is illustrated in Figure 2.8. 

19 



Dynamic Structural Testing 

des) n(s) 

u (s) G (s) }-----.. y (s) 

Figure 2.8 Open-loop system with disturbance and noise signals 

The noise appears immediately in the plant output and the disturbance has a 

direct effect on the plant output, equation (2.21 ).This situation is undesirable as the 

disturbance and noise terms are unwanted. 

y(s) = G(s)u(s) +G(s)d(s) +n(s) (2.21) 

Consider now the feedback scheme illustrated in Figure 2.9, where the 

measured plant output is compared with the reference signal and the resulting error is 

modified by the controller gain K (s) to excite the plant. The output response)l (s) is 

now given by equation (2.22). 

() = G(s)K(s) () G(s) d() I () 
Y s I+G(s)K(s)r s +1+G(s)K(s) s +1+G(s)K(s)n s (2.22) 

des) 

r (s) K(s) G (s) 

n (s) 

yes) 
}---,---.. 

Figure 2.9 Closed-loop block diagram of SISO system 

Tracking 

Ignoring for the present time the noise and disturbance signals, it can be seen 

from equations (2.12) and (2.22) that the transfer function of the controlled test rig is 

F(s) = G(s)K(s) 

I +G(s)K(s) 

20 
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Consequently, the performance objective of equation (2.15) requires that 

G (s) K (s) [1 + G (s) K (s) ]-1 has unity magnitude with approximately zero phase 

over the bandwidth 0 :5 ro :5 ro max 

Disturbance attenuation and noise insensitivity 

The introduction of feedback has attenuated the disturbance that appears in the 

plant output by a factor of G (s) [1 + G (s) K (s) rl and has attenuated the noise that 

appears in the plant output by a factor of [1 + G (s) K (s) ]-1 . This is an improvement 

over the open-loop system since both of these factors are usually made to be less than 

unity by suitable design of K (s) . 

Controller design 

From equation (2.23) the following is obtained, which suggests the obvious 

design approach of specifying F (s), G (s) is assumed to be known, and then 

obtaining K (s) . 

K(s) = F(s)G-1(s) [1-F(s)r l 
(2.24) 

However, the choice of F (s) is essentially arbitrary and if G (s) has poles or 

zeros in the right half plane then unstable modes will be built into the controller. 

Additionally, care must be taken to ensure that the resulting controller is realisable in 

practice (i.e. gain of the controller asymptotically approaches zero at infinite 

frequency). 

A more acceptable approach to feedback design, and indeed the most common, 

is to inject gain into the return ratio, G (jro)K (jro) such that IG (jro) K Uro) I » 1 and 

IK (jro) I » 1. This gives desirable tracking of the reference signal whilst attenuating 

the effects of the input disturbance and the noise, as shown below: 

(1) Tracking of reference signal, equation (2.23), 

IG(jro)K(jro)l» 1 => IF(jro) I = I G(jro)K(jro) I'" 1 (2.25) 
1 +G(jro)K(jro) 

(2) Disturbance attenuation, equation (2.22), 

=> '" 0 
IG (jro)K(jro) I » 1 I G(jro) I 

IK(jro) I » 1 . I +G(jro)K(jro) 
(2.26) 
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(3) Noise insensitivity, equation (2.22), 

IGUro)KUro)l» 1 =>1 1 1 ",0 
I +GUro)KUro) 

(2.27) 

The attractions of working with the return ratio, as opposed to the closed-loop 

transfer function F (s), are that the arbitrary selection of F (s) is removed from the 

design procedure and the design of the controller K (s) is directly based on knowledge 

of the plant dynamics G (s) . 

Stability and shaping near the critical point 

In the discussion thus far the solution to the feedback problem appears to be 

simply 'use a high gain return ratio'. However, stability of the closed-loop must be 

ensured and the phase of the return ratio must be taken into account, this requirement is 

embodied in Nyquist's Stability Theorem, stated below 

Nyquist's Stability Theorem: The closed-loop system is stable if and 

only if the number of anticlockwise encirclements of the - 1 + jO 

point made by the locus of G (s)K (s), as s traverses the Nyquist 

contour, is equal to the number of poles of G (s)K(s) with 

positive real parts. 

Most commonly G (s) K (s) has no unstable poles which means that there 

should be no encirclements of the - 1 + jO point (also known as the critical point) for 

stability of the closed-loop system. Exact shaping of G Uro) K Uro) near the critical 

point can be related to desired closed-loop frequency response characteristics and step 

response characteristics. Many so-called 'classical' design techniques exist for this 

purpose. 

Plant uncertainty and stability margins 

In reality, processes and plants are rarely absolutely linear and time invariant, 

hence there will inevitably be some error in the plant model G (s) . Denote the actual 

plant by G acl (s), then the actual plant may be described by 

G acl (s) = G (s) +.1G (s) (2.28) 
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where IlG (s) represents the error or uncertainty in the model. With a high gain 

return ratio, the approximation in equation (2.25) will, in general, still hold for the 

actual plant, i.e. 

(2.29) 

where the Uro) has been dropped for brevity. Thus, the feedback loop reduces 

the effect of the plant uncertainty on tracking performance. Similarly, the disturbance 

and noise rejection properties of the closed-loop system will be preserved in the 

presence of the uncertainty. The uncertainty may have some bearing upon the stability 

of the closed-loop system, for this reason it is usual practice to specify gain and phase 

margins on the return ratio to allow for the presence of uncertainty. 

2.7 Multiple actuator tests 

Consider the fatigue testing of a four-wheeled road vehicle; at least four 

actuators are required to provide the road excitation through the vehicle tyres or axle 

hubs, and often more actuators are used to additionally simulate braking and sideways 

motion of the vehicle. Another major area of application is the fatigue testing of 

aeronautical structures where spatially distributed aerodynamic loads constitute a 

significant part of service loading; by definition, multiple actuators are required to 

reproduce this loading. Often, several adhesive pads bonded to the aircraft skin are 

connected to each actuator to distribute tensile load more accurately. In all cases a 

control system is required to ensure that the applied excitation follows some pre

defined trajectory. 

To a lesser or greater degree, there will be interaction or cross-coupling 

between non corresponding inputs and outputs in a multiple actuator test, this coupling 

has an impact on the difficulty of the control problem and is described in section 2.7.l. 

Not surprisingly, just as for single actuator tests, control system objectives are well 

suited to formulation in the frequency. domain as discussed in section 2.7.2. Finally, 

the control problem presented by a multiple actuator test can be tackled using similar 

principles to those already established for single actuator tests, these principles are 

discussed in section 2.7.3. 
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2.7.1 Interaction 

In a multiple actuator test, the signals driving the actuators and the resulting 

output responses measured on the test specimen will be cross-coupled through the 

dynamics of the test structure. The combined dynamics of the actuators, test frame and 

the test structure itself are described by a matrix of transfer functions, known as a 

Transfer Function Matrix (TFM), denoted through the remainder of this section by 

G (s) and referred to as the dynamics of the test rig. Let the test rig have I actuators 

and n output responses, e.g. load or displacement, measured at spatially distributed 

points throughout the structure. The actuator driving signals form a vector of I·inputs 

u (s) and the output responses form a vector of n outputs y (s) as below, 

u (s) = [u 1 (s) .. , u/ (S)f 

y (s) = ~I (s) ... Yn (S)f 

the input-output relationship is given in equation (2.31) 

Y (s) = G (s) u (s) 

(2.30) 

(2.31) 

The coupling between non corresponding inputs and outputs can be viewed 

explicitly by writing equation (2.31) in terms of the elements of the input and output 

vectors and the elements of the TFM, this gives equation (2.32) below 

and the general expression for the /h output is 

Y; (s) = gii (s) u; (s) + L gij (s) uj (s) 

j=! 

j~i 

(2.32) 

i = I. .. n (2.33) 

The summation term in equation (2.33) represents the contribution to the /h 
output from all other non-corresponding inputs. This is the coupling or interaction that 

gives rise to the multi variable nature of the MIMO test and is clearly undesirable. The 

extent to which this unwanted interaction is present complicates the control system 

design. In fact, if there was no interaction present the test could be viewed as a set of 

independent single actuator tests for which a set of SISO controllers could be designed 
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using well established classical control techniques. It is, therefore, the very presence of 

interaction that provides the motivation for pursuing multi variable control techniques. 

2.7.2 Control system objectives 

The controlled test rig has multiple inputs and multiple outputs and so is 

represented by a TFM F (s) . The tracking objective of the test is illustrated in Figure 

2.10, where there are n reference inputs and n output responses, e.g. load or 

displacement, forming T the vectors r (I) = h (t) ... r n (t)r and 

y (I) = ~1 (t) ... Y
n 
(t)] respectively. The structure of the control system has not 

been specified, only that r (I) is the reference vector and y (I) is the controlled 

variable, the tracking objective may be formally stated in equation (2.34) where E is a 

bound on the tracking error 

r
l 
(t) 

time 

time 

i = I. .. n 

disturbance noise 

controlled test rig 

y (s) = F(s)r(s) 

YI (I) 

. 

Figure 2.10 Tracking in a MIMO system 

(2.34) 

time 

time 

Implicit in this statement is the necessary objective of minimal interaction 

between non-corresponding inputs and outputs. This objective will be developed 

following the frequency-domain approach adopted in section 2.6.1. 

The input - output relationship of the controlled test rig in the frequency 

domain is given in equation (2.35) 

yUro) = FUro)rUro) (2.35) 
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and the general expression for the ;'h output is given in equation (2.36) where 

1" .. is the transfer function at the ;'h row and j'h column of F. I,] 

YjUro) = fjjUro)rjUro) + 'LfijUro)rjUro) 

Quasi-static loading 

j = I 

j ~ i 

i = L .. n (2.36) 

Consider the tracking of a quasi-static signal ,(t) comprising of steady state 

levels linked by half sine excursions at a radian frequency ro 0' then the following is 

required. 

Yj (0) = rj (0) 

Y j Uroo) ='j Uroo) 
(2.37) 

and so the summation term in equation (2.36), which represents interaction in the 

controlled test rig, must be reduced to zero. The TFM F Uro) then becomes diagonal 

at ro = 0 and ro = roo' the magnitude and phase of the diagonal elements are 

specified in the tracking objective of equation (2.38). 

IFUro)1 =1 

Lfjj Uro) = 0 

Sinusoidal loading 

i = l. .. n (2.38) 

If the sinusoidal excursions occur over a range of frequencies from ro = 0 to 

ro = ro max' then the previous requirement can be extended to that of equation (2.39) 

which applies equally well to purely sinusoidal tests. 

IFUro)1 =1 

L.fjj Uro) = 0 

Random loading 

i = l. .. n 

(2.39) 

O!>ro!>ro max 

When a random load is applied to the structure, the objective of the test is 

usually to ensure that the power spectral density (PSD) of the measured output is 

approximately equal to the PSD of the reference input. Suppose the reference inputs 
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are stochastic processes, then the PSD of the reference vector will be a matrix <I> rr (00) 

given below 

(2.40) 

4> (00) 4> (00) ... 4> (00) 
1',,1 1',,2 'nn 

where 4> is the autospectral density function of r. (t) and 4> is the cross-spectral 
l'u I 'u 

density function of r. (I) and r. (I) . The PSD matrix of the output vector is then given 
I J 

in equation (2.41) 

<I>yy(OO) =E[yUoo)/ Uoo)] 

<I>yy(OO) =E[FUoo)rUoo)r* Uoo)F Uoo)] 
(2.41) 

and assuming that F Uoo) is constant at each frequency point 00 (which is the case for 

a linear system) then 

<I> (00) = FUoo)E[rUoo)r* Uoo)]F Uoo) yy 

<I>yy(OO) = FUoo) <I>rr (00) F Uoo) 
(2.42) 

Writing Cl> (00) explicitly in terms of the elements of FUoo), r Uoo) and 
yy 

<I> rr (00) is extremely unwieldy. However, if interaction is removed from the 

controlled test rig, i.e. F Uoo) is made diagonal, then the following is obtained where 

for brevity /... is written for F [i,jl U 00) and 4> .. is written for Cl> [i,j] (00) 
I) Ij 1'1' 

<I> (00) 
yy 

1114>1/11/114>1/22 ... / 11 4>1'/ nn 

= 1224>2/11/224>2/22 ... / 224>2'/ nn 

For the (i ,j) th element of <I> yy (00) we have 

<I>;? (00) = Cl>!:,j] (oo)/i,i] Uoo)FU,j]* Uoo) 

Expressing the elements of the TFM F Uoo) in polar form thus 
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where e (ID) is the phase of the transfer function F[P,q] (jID), allows <ll[i,j] (ID) to 
pq .ry 

be written as 

and so for approximate equality of the PSDs of the input and output vectors it is 

required that 

IF[i,i] (jID)I::1 i=l...n 

ejj(ID) :: ejj (ID) i ~j 
(2.47) 

Therefore, F (jID) must be a diagonal matrix whose diagnonal elements have a 

magnitude of approximately unity, the phase of the elements must be identical 

although not necessarily equal to zero. Thus the requirement for F (jID) is a relaxed 

version of that derived for quasi-static and sinusoidal tests (where the phases must be 

made approximately equal to zero). 

Service-recorded loading 

Consider now the reproduction of a service-recorded load history and let the 

Fourier transform be R (ID), then the load history can be obtained from an inverse 

Fourier transform thus 

r (I) = _I f R (ID) t/rill dl 
27t 

(2.48) 

and for accurate tracking it is required that y (I) :: r (I) . Let the Fourier transform of 

the controlled output be Y (ID) , then it is clear that approximate equality of input and 

output Fourier transforms is required, i.e. 

Y(ID) ::R(ID) (2.49) 

However, the input transform R (ID) will be modified by the frequency 

response of the controlled test rig according to equation (2.50) 

Y(ro) = F(jID)R(ID) (2.50) 

Therefore; from comparison of equations (2.49) and (2. SO), the requirement 

placed upon the controlled test rig is identical to that for sinusoidal testing, equation 

(2.39). The bandwidth of the recorded load history is assumed to be ID . max 
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Clearly, from this analysis, a simple objective for tracking performance 

objective is expressed in the frequency domain and is applicable to quasi-static, 

sinusoidal, random and service recorded load excitation, this is stated in equation 

(2.39). In the next section a feedback control scheme is introduced and the general 

principles of frequency domain design are discussed. 

2.7.3 Principles offeedback design 

In the discussion of a SI SO system in section 2.6.2, the performance of the 

controlled test rig was determined by the variation of the gain of the return ratio with 

frequency. Tracking, disturbance rejection and noise attenuation could be achieved 

with a large gain, whilst paying due attention to stability. In attempting to extend this 

principle to a multivariable feedback system a significant obstacle is encountered. The 

gain of the return ratio does not have a single value, but rather is bounded between 

upper and lower limits. Consequently, the designer has to be satisfied with shaping the 

upper and lower bounds on the gain of the return ratio in a corresponding manner to 

the principles discussed in section 2.6.2. 

Principal gains 

Consider a matrix G with complex elements and the input - output relationship 

y = Gu, then the 'magnitude' of the input is defined by the vector norm 11 u 11 and the 

'magnitude' of the output is defined by the vector norm Ily 11, the 'gain' of the matrix is 

then 

hll 
M = 

IIGul1 
Ilull 

(2.51) 

However, this 'gain' is not unique and depends upon the direction of the input 

vector u, thus the notion of a single gain is replaced by the idea of a range of gains.If 

the Euclidean vector norm is used, the upper and lower bounds on this range are the 

known as the maximum and minimum singular values respectively of G, i.e. 

11 Gull -
~~W~cr (2.52) 

The singular values, cr i' are the positive square roots of the eigenvalues of G 

(or if G is not a square matrix, then G* T G or GG* T). 
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If G is now replaced by the frequency response of a TFM G (jro) , the singular 

values become functions of frequency and are known as principal gains and equation 

(2.52) becomes 

(2.53) 

Feedback structure 

The feedback structure is the same as that used in the single actuator analysis 

and is shown in Figure 2.11, the output is given by 

y (s) = T (s) r (s) + S (s) G (s) d (s) + S (s) (s) n (s) (2.54) 

where, as in the SISO discussion, S (s) is the sensitivity function and T(s) is the 

closed-loop transfer function, these are given in equation (2.55) below 

S(s) = (J+G(s)K(s))-1 

T(s) = (J + G (s)K (s)) -I G (s) K (s) 

r(s) ---,{:X}---.j 
+ 

K(s) 

d(s) 

+ 
+ 

G(S) 

(2.55) 

n (s) 

+ 
+ h--'" Y(S) 

Figure 2.11 Block diagram of a closed-loop MIMO system 

F or accurate tracking of the desired output response, the principle gains of 

T(jro) need to be close to unity to ensure that the output y(jro) follows the input 

r (jro) and is largely unaffected by the direction of r (jm) . For rejecting disturbances 

and minising the effect of noise, the principle gains of S (jro) need ~o be near zero. In 

the remainder of this section, the following notation will be used: cr (S) denotes the 

maximum principal gain of S (jro), ~ (S) denotes the minimum principal gain of 
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SU(j),: er (1) denotes the maximum principal gain of TU(j) and ~(1) denotes 

the minimum principal gain of T U(j) 

Shaping the return ratio 

For SISO feedback control, closed-loop performance specifications were easily 

converted into requirements placed on the magnitude of the open-loop return ratio. The 

following discussion expresses closed-loop specifications for multi variable systems in 

terms of the principle gains of the open-loop return ratio. Firstly, the following closed

loop specifications are summarised: 

(1) Tracking of reference signal: keep er (1) '" I and ~ (1) '" 1. 

The closed-loop transfer function in equation (2.55) can be written 

-1 
T(s) = 1- [/+G(s)K(s)] (2.56) 

and we require that T(s) ",I or [/+G(s)K(s)r 1 ",0. In other words, we require 

that 

11 [I + G (s) K (s) ] -1 r (s) 11 I fi all () 
[[r(s)[[ « or r s (2.57) 

The maximum principal gain of [1+ G(s)K(s)] -1 is of interest since the 

objective is to minimise the gain of the matrix [I + G (s) K (s)] -1 . Equation (2.57) 

can aI so be expressed as 

-( I ) er « l 
I+G(s)K(s) '. 

(2.58) 

To proceed at this point it is convenient to express equation (2.58) alternatively 

in terms of the the minimum principal gain of the matrix argument. To do this, we 

make use of the following Lemma [32]: 

I 
Lemma I: er(Q) = --

~ (Q-l) 

Applying Lemma I to equation (2.58) gives 
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1 
------« 1 =>a(/+G(s)K(s»» 1 (2.60) 
~(/+G(s)K(s» -

The following triangle inequality (Lemma 2) is required in order to extract 

from equation (2.60) a requirement on the return ratio G (s) K (s) . 

Lemma 2: a (I + Q) s 1 + a (Q) ~(/+Q) s 1 +~(Q) 

Thus, 

1 « ~(/+G(s)K(s» s 1 +~(G(s)K(s» 

~(G(s)K(s»» 1 

(2.61) 

(2.62) 

Hence, for tracking of the reference signal, the minimum principal gain of the 

return ratio should be made large. 

(2) Disturbance rejection: keep a (SG) and ~ (SG) as small as 

possible 

From equation (2.55), the sensitivity matrix is S (s) = [I + G (s) K (s)] 
-I 

and the requirement is to keep S (s) G (s) '" O. This requirement can be relaxed to 

keeping S (s) '" 0 or [I + G (s) K (s) rl '" O. This requirement is identical to that 

derived previously for tracking of the reference signal, i.e., 

~(G(s)K(s» » 1 

(3) Noise attenuation: keep a (S) and ~ (S) as small as possible. 

From equation (2.55), the sensitivity matrix is S (s) = [1+ G (s)K (s)]-I 

and the requirement is to keep S(s) '" 0 or [I + G(s)K(s)] -I", O. This requirement 

is identical to that derived previously for tracking of the reference signal, i.e., 

~(G(s)K(s» » I 

Stability 

The discussion is not complete as stability of the closed-loop multivariable 

system must be guaranteed. Return to Figure 2.10, the objective of the control system 
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is to ensure that the outputs of the plant track desired reference signals, consequently 

there will usually be the same number of reference inputs as outputs of the plant. Thus, 

the return ratio G (s) K (s) will be a square transfer function matrix and the 

characteristic polynomial of the closed-loop system is 

I/+G(s)K(s)1 (2.63) 

Let I1 + G (s)K (s) I have P poles and Z zeros in the c1osed-right-half s plane. 

Then, as s traverses the Nyquist contour, the number of clockwise encirclements of the 

. origin made by the mapping I1 + G(s)K(s)1 in the I1 + G (s)K(s)1 plane is 

N= Z-P (2.64) 

or, the change in argument is 

~arg(I/+G(s)K(s)l) = -2rc(Z-P) (2.65) 

where ~arg (.) denotes the change in argument as s traverses the. Nyquist 

contour. For closed-loop stability Z must be zero. Let A; (s) be an eigenvalue of 

G(s)K(s), then it can be shown that 1 +A;(s) is an eigenvalue of I+G(s)K(s). 

Consequently, since the determinant of a matrix is equal to the product of it's 

eigenvalues, 

(2.66) 

and so 

(2.67) 

Thus, we can infer closed-loop stability by counting the total number of 

encirclements of the origin made by the loci of 1 + A; (s), or, equivalently, by 

counting the number ofencirclements of the - 1 + jO point made by the loci of A; (s) .. 

The frequency dependent eigenvalues A; (s) are referred to as characteristic loci and 

can be shaped by suitable controller design to meet stability and performance 

objectives. This approach to multivariable controller design is known as the 

Characteristic Locus Method and is discussed in chapter s. 
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2.8 Current control schemes 

The simplest method of controlling a multiple actuator test is to treat each 

actuator input and corresponding test variable output as a separate single-input, single

output (SI SO) system and design a controller for each SISO system. This control 

method is known as Sequential Loop Closure and is widely used in aerospace fatigue 

testing, particularly where large scale tests are undertaken employing up to several tens 

of actuators. The attraction of this method is that well understood classical control 

techniques can be used, notably techniques that obviate the need for a plant model such 

as on line PID tuning. Markedly different to this approach is Remote Parameter 

Control (RPC), a technique which emerged in the late 1970s from MfS corporation 

[3], which tackles the problem of interaction in multiple actuator tests. RPC is 

employed almost exclusively in the automotive industry for the fatigue testing of 

suspension systems. Both of these control methods are discussed briefly below. 

2.8.1 Sequential loop closure 

The multivariable nature of the control problem is ignored and the fatigue test 

is treated as a set of decoupled single actuator tests. This is illustrated in Figure 2.12 

where G (s) is a matrix of transfer functions representing the linear dynamics of the 

load actuators, test frame and test specimen, ki (s) are the SISO loop controllers and 

hi (s) are the transducer dynamics. 

The drawbacks of this method are: 

(i) Since commissioning the control system is an iterative process, it 

can be very time consuming. The control loops are 'tuned' 

sequentially with only the necessary reference input excited so as to 

achieve best performance without regard to interaction from other 

loops. Consequently, when two or more reference signals are 

excited, interaction may well destroy the performance of any 

number of control loops. 

(ii) The only means of reducing interaction is to use high gam 

controllers; the interaction can be viewed as a disturbance and 

therefore rejected by employing high gain in the controller. 

However, high gain settings may conflict with stability 

requirements and performance may be compromised. 
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Sequential Loop closure is discussed further in chapter 5. 

r \ (S) 
to\ I .I + '<-;>' IK\ (S)I 
-

r 2 (S) +0 1 .1 
IK2 (S1 

- G(S) 

+~Kn(S): 
-

J H (S)L 
L n 'I 

1 .I 
I H2 (S)I 

1 J 
IH\ (S)I 

Figure 2.12 Schematic ofsequentialloop closure control 

2.8.2 Remote Parameter Control 

Multiple actuator tests for producing sophisticated trajectories such as service

recorded load histories require highly accurate tracking and near zero interaction. With 

sequential loop closure, interaction is a limiting factor which can often render this 

method unsuitable for such tests. Remote Parameter Control (RPC) tackles the 

problem of interaction and is a technique commonly used where the output transducers 

are non-collated with the force inputs. For example, a suspension test where the force 

excitation is applied at the wheel axles and accelerometers measure acceleration in the 

chassis. The philosophy of the control scheme is described below. 

The test structure is loaded by hydraulic actuators acting under local 

displacement feedback servo-control. Only one local feedback loop is shown in Figure 

2.13 for clarity, the displacement is usually measured by a linear variable differential 
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y (5) = T (5) r (5) 

Figure 2.13 Schematic of Remote Parameter Control 

transformer CL VDT). The dynamic response of the complete system from the serve

loop drive signals, r, (5) , to the transducer output signals, Y, (5) , can be modelled by 

a transfer function matrix T(s). Field measurements of the transducer outputs are 

carried out on an identical structure under service loading conditions. The aim of the 

test is to reproduce these field measurements on the laboratory structure. 

First ofal!, the frequency response matrix of the system, TUoo), is identified 

experimentally. The Fourier transform of the drive signal R (00) is then given by 

-1 
R(oo) = T Uoo) Y(oo) (2.68) 

where Y(oo) is the Fourier transform of the field measured output signal. The time

domain drive signal is then determined from an inverse Fourier transform of R (00). 

Excitation with the drive signal will, however, not in general result in the desired 

service recorded load reproduction. This will be due to experimental error in the 

identification of T Uoo) and numerical error in the inversion of T Uoo) , particularly 

at high frequencies where TUoo) can become ill conditioned. To minimise these 

errors the input drive signal is iteratively adjusted until the test output is acceptably 

close to the service-recorded output. 
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The strengths of the RPC method are that experimentally identified frequency 

responses are required, as opposed to a mathematical model, and a high degree of 

automation is introduced into the test. However, when the drive signal has been finally 

adjusted, the structural test proper is executed without any feedback from the output 

signal. However, the process can be 'slow' at times to converge, during which time an 

expensive test specimen may accrue a significant level of fatigue damage. 

2.9 Conclusions 

A historical perspective of dynamic structural testing has been given and the 

need for the dynamic testing of engineering structures has been explained. The scale 

and diversity of testing is very wide ranging. Also, the load pattern produced on a 

structure can vary from simple sinusoidal excitation to reproduction of service 

recorded loading, the latter demanding a sophisticated control scheme. Control system 

objectives for both single actuator and multiple actuator tests have been discussed, 

with formulation in the frequency domain yielding a simple objective which lends 

itself to feedback control system design. Principles of feedback design have been 

discussed for single actuator tests and carried over to Jhe multi variable control problem 

posed by a multiple actuator test. The gain of a matrix is not unique but bounded 

between two values, known as the minimum and maximum singular values of the 

matrix. With this definition of multivariable gain, the principles established for 

feedback design of single actuator tests have been extended to multiple actuator tests. 

Finally, current control systems employed in multiple actuator tests have been briefly 

discussed. 
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Chapter 3 

Test Rigs 

3.1 Introduction 

Two test rigs have been used in the work described in this thesis, both rigs have 

two inputs and two outputs and suffer from significant interaction. However, the test 

rigs are very different in terms of their scale and complexity, type of actuation, 

measured variable and frequency range of excitation. The first test rig described is the 

Beam and Vibrator rig, located at Loughborough University of Technology. This is a 

laboratory scale rig employing electra-dynamic actuation to vibrate a cantilevered 

steel beam up to a frequency of 160 Hz. The controlled variable on the test rig is 

displacement of the beam, measured at two locations. This rig has been developed to 

provide a worst case control problem. The rig is described in section 3.2, the reader is 

referred to [4] for details. 

The second test rig is the Torsion rig, located at British Aerospace, Military 

Aircraft Division, Brough, Hull. This is a large industrial scale test rig in which servo

hydraulic actuators are used to excite the torsional modes of a steel frame, the 

controlled variable on the test rig is the force applied by the actuators. The rig was 

modified to promote a significant control problem and is described in section 3.3. 

The two test rigs differ significantly in the 'shape' and bandwidth of their 

open-loop frequency responses. The Beam and Vibrator rig exhibits a constant gain at 

steady state with three well damped resonant modes; a bandwidth of 160 Hz was 

sufficient to identify the frequency response of the rig. By contrast, the Torsion rig 

exhibits integrator action in its dynamic behaviour, i.e. a type' I' system, with four 

very lightly damped resonant modes; a bandwidth of only 40 Hz was sufficient to 

identify the frequency response of the rig. The difference between bandwidths is a 

reflection of the very different dynamic characteristics of the two rigs. 
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3.2 Beam and Vibrator rig 

The Beam and Vibrator test rig consists of a test frame on which a cantilevered 

steel beam is mounted. The beam is forced into vibration by two electro-dynamic 

vibrators, one located mid-way along the beam and the other located at the free end of 

the beam. The forces applied by the vibrators act in a horizontal plane. The vibrators 

are rigidly fastened to the test frame, their moving coil armatures are connected to the 

beam with "push-rods". Each vibrator is driven by a power amplifier. Displacement of 

the beam is measured at the points where the vibrators are attached, using Linear 

Variable Differential Transformers (LVDTs). A plan view of the rig is presented in 

Figure 3.1 and a side view of the test rig is presented in Figure 3.2. 

angle piece 
cross member 

steel beam 

8"x OS' plate 

.. 

LVDT solid steel block 

vibrator 

0.65 m 
.: 

Figure 3.1 Plan view of Beam and Vibrator test rig 

vibrator 

::gated rubber / j )teel bFeam = 

6" x 3" / r-

chan\nel \ QJ:=::::('2,,-L)=:::=l1 l 
F===~,<~~=~~~====~~~~ 

~ anti-vibtation pad ~ 
Figure 3.2 Side view of Beam and Vibrator test rig 
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3.2.1 Test frame 

The test frame is a mild steel construction weighing approximately 210 Kg, 

forming a rigid reference upon which to mount the vibrators and clamp the 

cantilevered beam. However, steel structures have little inherent ability to dissipate 

energy and so are susceptible to excitation into resonance. In this case, the sources of 

excitation are vibrations from the body of each vibrator and vibrations transmitted 

through the floor upon which the frame is located. Consequently, vibration isolators 

were sought to isolate the vibrators from the test frame and isolate the test frame from 

the floor. Corrugated rubber mats were used to isolate the vibrators from the test frame 

and anti-vibration felt pads were used to isolate the test frame from the floor. 

3.2.2 Vibrators 

The electro-dynamic vibrators used in the test rig are the Ling Dynamic 

systems 403 series model. The housing of each vibrator contains a permanent magnet, 

the armature assembly consists of a copper coil located around the central axis of the 

vibrator, there is a small air gap between the coil and the magnet. The vibrator is 

excited by an electrical current which is fed to the armature coil. The current in the coil 

cuts through the magnetic flux in the air gap (provided by the permanent magnet), 

producing a force which acts along the axis of the vibrator. A flexure arrangement 

provides axial support for the armature whilst restraining lateral and rotational motion 

of the armature. 

Due to the cantilevered clamping of the beam, the beam will rotate in response 

to the application of a force, as indicated in Figure 3.3. This causes problems if the 

vibrator armature is rigidly attached to the beam as it is unlikely that the armature will 

have the lateral flexibility to permit the necessary movement. The solution adopted 

with the test rig was to use a special drive rod to connect the armature to the beam. 

Known as a "push rod", this is a rod which is stiff along it's axis (i.e., the direction of 

excitation), but flexible enough in a lateral direction to accommodate the rotation of 

the beam. 

3.2.3 Beam 

It was decided to configure the test rig so as to present the worst possible 

control problem to the engineer. In pursuing this objective, the choice of the stiffness 

of the beam was investigated by Pratt and Tsavdaras [6] and a value for the stiffness 

determined which promoted the worst case interaction. 
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Figure 3.3 Rotation of beam and "push-rod" solution 

3.3 Torsion rig 

Test Rigs 

The torsion rig is essentially a large steel frame structure in which two hollow 

beams are excited by two hydraulic actuators. The geometry of the frame does not 

permit rigid body dynamics and the beams undergo angular displacement owing to 

their finite torsional stiffness. Each actuator is controlled by a force feedback servo

valve, which is driven by an electrical current supplied from the output stage of a PID 

controller. The force applied by each actuator is measured by a load cell, located at 

either end of the actuator ram. The signal from the load cell is amplified internally by 

the PID controller and compared to the external reference or 'command' signal to 

generate the error signal. 

The controller can be used in two modes of operation: (a) 'internal' in which 

case internal P, P+I or P+I+D action is applied to the error signal, or (b) 'external' in 

which case the error signal is output to an external controller and the external 

controller drives the serva-valve through the final output stage of the PID controller. 

'Internal' is used in frequency response identification (where P action gives sufficient 
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performance for the purpose of frequency response identification), 'external' is used 

when implementing multivariable controllers. A schematic of the rig and control 

system is given in Figure 3.4 

3.3.1 Torsion bar assembly 

The steel frame structure will be referred to as the Torsion Bar Assembly or the 

Torsion Frame, a schematic is given in Figure 3.5. The two long vertical beams, 8 I 

and 82, are pivoted at their bases and connected at their tops by a cross beam, 83; this 

arrangement allows angular displacement of the vertical beams in response to the 

torques applied by the hydraulic actuators. The angular displacements are about the 

polar axis of the beam sections and are due to the firtite torsional stiffness of the beams. 

All beams are constructed of mild steel with hollow cross sections according to 

8S4848:Part 2, as illustrated in Figure 3.6. The geometrical data are summarised in 

Table 3.1 

The lever arms translate the forces applied by the hydraulic actuators to torques 

applied to the vertical beams. The vertical beams are welded into the bottom lever 

arms. The top lever arms, however, are bolted to the vertical beams and can be moved 

to any desired location along the length of the vertical beams. 

At the outset of the work detailed in this thesis, the left hand lever arm was 

rigidly clamped in a stationary position and the vertical distance between centre lines 

of the actuators was 1040 mm. However, in this configuration the Torsion rig 

exhibited natural frequencies beyond the anticipated bandwidth of structural testing 

(10 Hz). The rig was consequently modified to it's current form in an attempt to lower 

it's natural frequencies, thus bringing the undesirable lightly damped resonances of the 

Torsion rig within the bandwidth of the test signals and promoting a more significant 

control problem: The left hand lever arm was unclamped, the top lever arms were 

moved to the positions indicated in Figure 3.5 and alOO Kg mass was attached to each 

bottom lever arm. le., the stiffness of the rig was reduced and it's mass increased, thus 

reducing the natural frequencies of the Torsion Frame. 
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,'-.. ././ 
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Figure 3.6 Cross-section of Beam 

TABLE 3. I Beam geometry 

Mass Radius 
Beam per Area of Momcntof of Elastic Plastic Torsioo.al Torsional 
ref. Size Thickness metre section inertia gyration modulus modulus OJnstant constant 

DxB I J C 

mm mm Kg/m cm' cm' cm cm' cm' cm' cm' 
Bl, ID 180 x 180 16 81.4 104 4607 6.66 512 634 7339 725 

B3 400 x 200 16 142 181 36300 (x-x) 14.2 (x-x) 1815 (x-x) 2285 (x-x) 28835 2011 

11950 (y-y) 8.14 (y-y) 1195 (y-y) 1388 (y-y) 

B4,B5 300 x 200 16 117 149 17700 (x-x) 10.9 (x-x) 1180 (x-x) 1462 (x-x) 19227 1469 

9239 (y-y) 7.89 (y-y) 924 (y-y) 1094 (y-y) 

3.3.2 Hydraulic system 

Servo-valves 

The servo-valves are of the force feedback type and exhibit the square-root 

flow pressure characteristic of sharp edged orifices, the characteristic is illustrated in 

Figure 3.7 and described in chapter 4. The load flow axis is normalised against 

maximum flow·through the servo-valve (which occurs with zero load pressure). The 

serva-valves are specified by the flow rate that occurs with a 1000 psi pressure drop 

across the valve at 'rated' current, with a supply pressure of 3000 psi - this is the. 

'rated' flow of the servo-valve. The pressure of the oil supply to the test rig is 3000 psi. 
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The frequency response of both servo-valves can be adequately described by a 

second order transfer function of the form given in equation (3.1) where qL is the flow 

rate and i is the current. K is a gain constant which will vary with operating point due 

to the non linear flow - pressure characteristic of the valve, this is described in chapter 

4. 

qL (s) 

i (s) 
= 

2 Kro T 

i + 2C,Tror + ro~ 

The relevant data for the servo-valves are summarised in Table 3.2. 

TABLE 3. 2 Servo-valve data 

Location Rated 
OD rig Manufacturer Type Serial No. Rated flow current roT 

USgpm mA radls 

Bottom Moog 76-\03 GB52 \0 15 880 

Top Moog 73-125 E\o2 7.5 15 880 

Actuators 

(3.1) 

~T 

0.9 

0.9 

The actuators used on the rig are both double acting, i.e. equal annulus area 

either side of the piston, the annulus area and stroke length data are summarised in 

Table 3.3. 
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TABLE 3. 3 Actuator data 

Location on 
rig iAnnulus area stroke 

in1 in 

Bottom 12.5664 12 

Top 9.4248 12 

3.3.3 Control system 

The analog PID controller used in controlling the test rig is manufactured by 

Kelsey Controllers Ltd. As described in section 3.3, the controller provides voltage to 

current amplifiers to drive the servo-valves and also provides either analog PID control 

action, or buffering to an external control system. The controller has four channels 

which are designated according to Figure 3.4. A schematic of Channels 3 and 4 is 

presented in Figure 3.8 (note that this Figure is not a circuit diagram), a corresponding 

block diagram is given in Figure 3.10. The set point amplifier provides a DC offset 

from -1 DV to + 1 DV, the input amplifier applies a gain from 0 to 1 to the reference input 

or 'Dynamic Command' and the load cell signal is amplified by the Ix span amplifier. 

Note that the gain of Ix span is not calibrated but is adjusted to give a 10V output at 

maximum load. The servo gain amplifier is the error summer (set point + dynamic 

command - amplified load cell) with a gain from 1 to 20. P, P+I or P+I+D action is 

then applied to the error signal, which drives the output servo-amplifier. A balance 

input can also be applied to the servo-amplifier input to remove any offset from the 

control signal. Finally, a high frequency (approx. 200 Hz) and low amplitude sinusoid, 

known as dither can be added to the servo-amplifier input; this will help to overcome 

stiction in the servo-valve. 

The controller can alternatively be used to supply the error signal to an external 

control system and provide the servo-amplifier drive for an external control system. 

Channels 1 and 2 are configured in this manner and a schematic is given in Figure 3.9, 

a corresponding block diagram is given in Figure 3.11 
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Figure 3.10 Block diagram of controller channel with internal PID action 
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u (s) current drive 

to servo-valve 

Figure 3.11 Block diagram of controller channel configured for external 

control 

3.3.4 Digital Transfer Function Analyser (DTFA) 

This instrument is used to measure the frequency response of a linear system. 

The analyser excites the system with a sinusoidal signal, the magnitude ratio (or gain) 

and phase difference between any two voltage signals in the system are measured by 

the analyser. The frequency and magnitude of the excitation signal are swept over a 

specified range, the magnitude ratio and phase difference of the measured voltages are 

measured at each frequency point in the sweep. The measurement itself is a correlation 

performed over an integer number of cycles of the excitation signal, the measurement 

is discussed in chapter 7. 
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The DTF A is shown in Figure 3.12 measuring the frequency response of the 

command signal to the load applied by the bottom actuator. The command signal to the 

top actuator is set to zero. The process of frequency response identification using the 

DTF A is discussed in chapter 7. 

The DTFA used in the test system is manufactured by Voltech Ltd., model 

TF2000, with an accuracy of to within 1%. 

DIGITAL TRANSFER FUNC170N 
ANALYSER (DTFA) 

f '\ 
I I ] CHI 

P/\/\/\ VvVV VI (I) CH2 

v2 (I) 
~ command signal 

1ClClA amplified load cell olp 
-Q Q Q Q 

bottom actuator{ 
load cell alp 
servo-valve drive CH3 

command signal 

-b amplified load cell olp 

A measures 
top actuato{ 

load cell alp . 
V2 (jro) servo~valve drive CH4 

DTF 

4 CHANNEL PID CONTROLLER 

Figure 3.12 Digital Transfer Function Analyser (DTF A) 

3.4 Conclusions 

Two test rigs have been used to implement multivariable controllers, these 

have been described. The test rigs are very different in many ways, notably in terms of 

their scale and type of actuation .. However, both test rigs have been developed to 

present a genuine multivariable control problem. 
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Chapter 4 

Modelling 

4.1 Introduction 

The purpose of this chapter is to develop an understanding of the dynamic 

behaviour of a structural test rig (employing servohydraulic actuation) through 

modelling. Although not required for control system design, models will be developed 

for SISO and MIMO systems and will be used in the stability analysis detailed in 

chapter 6. Also, an approximate model of the Torsion rig will be developed for 

comparison against the experimentally obtained frequency response presented later. 

The modelling in this chapter is approached by combining three distinct 

elements that form the complete model. These are the servo-valve, the hydraulic 

actuator and the test specimen, described in sections 4.2, 4.3 and 4.4 respectively. 

Attention is restricted to developing linear models and so the non linear flow-pressure 

characteristic of the servo-valve is linearised in section 4.2. In section 4.4, a transfer 

function matrix and a state space model are derived for a test specimen, including a 

simple formula to calculate the required damping matrix for a desired modal damping 

ratio. 

SI SO models for displacement and force (or 'load') output are presented in 

section 4.5 and evaluated for the case of a test specimen with a single degree of 

freedom. MIMO models are presented in section 4.6 for displacement and load output 

and are evaluated for the case of a test specimen with two degrees of freedom. An 

approximate model of the Torsion rig is given in section 4.6.2. 

'Hydraulic' natural frequency and 'hydraulic' damping ratio are commonly 

referred to in the study of hydraulic systems, these terms are explained in section 4.7 

and their variation with operating point is discussed. The validity of the linear 

modelling approach taken in this chapter is considered in section 4.8, with the aid of a 

comparative study between an accurate non-linear model and a corresponding linear 
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approximation. Finally, the pertinent issues in the chapter are summarised in section 

4.9. 

4.2 Servo-valve 

The servo-valve is a crucial element in any servo-hydraulic system, converting 

a low power electrical signal into the motion of a valve, which in turn controls flow 

and/or pressure of a fluid to a high power hydraulic ram. 

Servo-valves can be broadly classified as single stage or two-stage. Single

stage servo-valves consist of a torque motor which directly positions a spool valve. 

However, torque motors have limited power capability which limits the flow capacity 

of this type of servo-valve and stability of the servo-valve itself depends on the 

dynamics of the load [33]. Two-stage servo-valves have a hydraulic pre-amplifier 

which greatly amplifies the force output of the torque motor to a level sufficient to 

overcome, to a great extent, flow forces and stiction forces. AJso, the two-stage servo

valve exhibits more dependable stability. Two-stage servo-valves employ internal 

feedback of the output stage and may be classified according to the type of feedback 

used (spool position, load pressure, load flow). The spool position type offeedback is 

the most common and can be further sub-classified depending on how the positi on of 

the spool is sensed: direct feedback, force feedback and spring centred spool. The 

force feedback servo-valve was used in the Torsion test rig. 

A schematic of a two-stage force feedback servo-valve is shown in Figure 4.1, 

the servo-valve is shown in it's null position. A positive differential current 

causes a torque on the armature, moving the flapper to the left, increasing pressure 

PI (t) and decreasing pressure P 2 (I) on the spool. The spool then moves to the 
p p 

right until the torque on the armature due to the feedback spring balances the torque on 

the armature due to the differential current. In this new steady-state condition the 

flapper has returned to it's initial central position but the spool has taken a new 

position directly proportional to the differential current. 

The relationship between the current and the position of the spool can be 

described by a transfer function relating differential current to spool position, defined 

as gsv (s) , i.e. 
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Figure 4.1 Schematic of a two-stage force feedback servo-valve 

Xv (s) = gsv (s) i (s) (4.1) 

Typically gsv (s) is a heavily damped quadratic lag as given in equation (4.2). 

K
j 

is the gain, Sr is the damping ratio and ror is the natural frequency ofthe response. 

(4.2) 
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4.2.1 Flow-pressure characteristic 

Throughout this chapter, the following assumptions are made with regard to the 

selVD-valve: 

(a) supply pressure Ps is constant, 

(b) return pressure PR is zero, 

(c) the selVD-valve has rectangular, symmetrical ports with a width identical to 

the width of the spool lands (known as 'critically lapped'), 

(d) the oil is incompressible 

(e) there is no leakage across the pistons 

The effects of oil compressibility and leakage can be ignored since they have a 

greater effect in the hydraulic actuator (where they are taken into account in section 

4.3). The spool valve with related ports (supply, return, PI and P2 - Figure 4.1) is 

simply a four-way valve. In appendix 1, the flow-pressure characteristic of the spool 

valve is derived and is shown to be non linear. Fortunately, this characteristic is easily 

linearised, as described below. 

The pressure drop across the load, PL' is defined in equation (4.3). For the 

remainder of this analysis PL will be referred to as the load pressure. 

(4.3) 

Analysis of the pressure drops across the ports of the spool valve gives the 

following result, detail can be found in appendix 1. 

(4.4) 

Equation (4.3) and equation (4.4) are a simultaneous pair which describe the 

pressure at each load port as a function of the supply pressure and the load pressure, 

thus 

(4.5) 

Hence, at zero load pressure, the pressure at each load port is exactly one half 

of the supply pressure. 
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Define qL as the average flow-rate through the valve, given by 

(4.6) 

Then the flow-pressure characteristic of the serva-valve is derived in appendix 

1 and is given in equation (4. 7). Cd is the discharge coefficient of each port orifice (all 

orifices are identical), W is the width of the. orifice and p is the density of the hydraulic 

fluid. 

PL 
1- sgn (x) P 

s 
(4.7) 

By defining xvm as the maximum displacement of the spool valve from the null 

position, x = x/xvm as the normalised displacement of the spool valve, P = PL/Ps 

as the normalised load pressure and q = qL/ (C dwxvmJp/p) as the normalised load 

flow rate, the flow-pressure characteristic can be plotted as in Figure 4.2. It can be seen 

that the flow-rate is linearly related to the position of the spool valve. However, the 

flow rate is a non-linear function of load pressure. 

1.5,---,--,---,--,--.,--;;-=-,.---,,---,--,--, .x x,.,;, 

..... ~ ....... ..: ... -.-.~ .. -....•. -.. -. . . . , . . . . . . 
j i 

Figure 4.2 Normalised flow-pressure characteristic of two-stage force 

feedback servo-valve 

A linear approximation of equation (4.7) can be made by expressing the load 

flow rate as a Taylor series about an operating point and considering first order 

derivatives only. Thus 
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(4.8) 

where 0 denotes the operating point {qLo'xvo,PLo} and Ilqu ~v, I1.PL are 

excursions around the operating point. The partial derivatives are referred to as the 

flow gain Kq and the flow-pressure coefficient Kc respectively, and are evaluated in 

equations (4.9) and (4.10). 

(4.9) 

(4.10) 

Equation (4.8) is more commonly written 

(4.11) 

From equation (4.9) it can be seen that the flow gain has a maximum value at 

the null operating point (zero load pressure, zero flow rate and zero displacement of 

the spool), decreasing as the magnitude of the load pressure increases (at a steady-state 

operating point, xvo and PLo have the same sign). This reduction in gain will degrade 

serve-control performance if the serve-valve is operated far from it's null position. 

Conversely, the flow-pressure coefficient is zero at the null. operating point and 

increases with both the displacement of the spool and an increasing magnitude in load 

pressure. This tends to increase damping in the system (see section 4.7). 

It is convenient to relate the linearised flow-pressure characteristic directly to 

input current and load pressure, combining equations (4.1) and (4.11) gives 

(4.12) 
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The servo-valves used in the Torsion rig are modelled by the quadratic lag 

given in equation (4.2), the manufacturer's details are referenced in chapter 3 and the 

transfer function data are summarised in Table 4.1. 

TABLE 4.1 Servo-valve data at 1000 psi drop across valve witb 3000 psi supplv pressure . 
Actuator location OD 

Torsion rig K.K (m 3,-'A -I) 
, q roT (radls) 1;r 

Bottom 0.042 880 0.9 

Top 0.0315 880 0.9 

The frequency response model of the servo-valve located at the bottom of the 

Torsion rig is illustrated in Figure 4.3 
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Figure 4.3 Frequency response of servo-valve 

4.3 Hydraulic actuator 

A hydraulic actuator converts the flow and pressure of a hydraulic fluid into the 

linear displacement of a piston. Hydraulic actuators are manufactured in a wide range 

of sizes and are capable of applying large forces, up to several million newtons of 

force. Principally, hydraulic actuators are either 'single-acting' or 'double-acting'; the 

distinction being that in the single-acting type, the ram is connected to only one side of 

the piston, whilst in the double-acting type, the ram is connected to both sides of the 

piston. Double-acting actuators were used in the Torsion test rig, a double-acting 

actuator is illustrated schematically in Figure 4.4, 
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The volume of oil contained in the body of actuator is far greater than that 

contained in the body of the servo-valve. Therefore, compressibility of the oil will be 

taken into account in the following analysis, as will leakage effects across the piston. 

Denote the volume of the left chamber as VI (I) with an initial value of VI. Similarly,. 

the volume of the right chamber is v
2 

(I) with an initial value of V2 . Then 

q (I) I 

~~I 

I 
x (I) 

VI (I) = VI +Ax(t) 

v2 (I) = V2 -Ax(t) 

working c.s.a. A 

PI (I) P2 (I) 

VI (t) V2 (I) 

q (I) 2 

It I 
I 

Figure 4.4 Schematic of double-acting hydraulic actuator 

(4.13) 

I 

Denote the flow-rate of oil entering into port X of the actuator, at a pressure 

PI (I), by ql (I). Including the effects of compressibility of the oil and leakage across 

the piston, then ql (I) is given below 

(4.14) 

The first term in equation (4.14) is due to the volumetric displacement of the 

piston and the second term is due to compressibility of the oil, ~ e is the bulk modulus 

of the oil. The final term in equation (4.14) is leakage flow across the piston and is a 

linearised approximation of the fundamental orifice flow equation; K/ is referred to as 

the leakage coefficient. In quality actuators, the leakage flow is very small and· a linear 

approximation is valid. Similarly, the flow-rate of oil exiting from port Y of the 

actuator, denoted by q2 (I) , at a pressure P2 (I) is given by 
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Defining the average flow-rate as 

(4.16) 

and substituting equations (4.14) and (4.15) into equation (4.16) gives 

Now, from equation (4.13) 

(4.18) 

and also 

(4.19) 

With a critically lapped and symmetrical four-way servo-valve controlling the 

actuator, the pressures at portsXand Ywill be as given by equation (4.5). Substituting 

for PI (I) and P2 (I) from equation (4.5) into equation (4.19) yields 

(4.20) 

Now, VI + V2 is the total volume of oil in the actuator, which will be denoted 

by Vo' Substituting equations (4.18) and (4.20) into equation (4.17) gives 

(4.21) 
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4.4 Dynamic representation of the test specimen 

The dynamics of the test specimen can be modelled by a lumped parameter 

system or a finite element system, the former is illustrated in Figure 4.5 where the li 
are applied forces, the Xi are displacements, the Mi are lumped masses and the Ki are 

lumped stiffnesses. Both approaches produce a set of linear differential equations and 

lend themselves well to development of a transfer function matrix or a state space 

model. 

1\ =M\x\ +K\x\-K\x2 

12 = Mi2-K \X\ + (K\ +K2)x2-K2x3 

13 = Mi3-K2x2 + (K2 + K3) x3 

Figure 4.5 A lumped parameter model of a test specimen 

The differential equations can be expressed in matrix form as below where 

f(/) is a vector of applied forces and x (I) is a vector of displacements. 

f(/) = MX(/) +Kx(/) (4.22) 

The matrices M and K contain the mass and stiffness elements of the 

distributed system and thus far, it has been assumed that the vibration of the test 

specimen is undamped. However, in practice there will be some damping present, 

which can be caused by internal molecular friction or sliding friction. Generally, the 

mathematical description of these forms of friction is quite complicated and not 

suitable for vibrational analysis. Therefore, simple viscous damping will be used to 

model the damping forces acting on the structure of the test specimen. It is also 

desirable to introduce the damping in such a way as not to alter the natural frequencies 

of the structure. This is described in section 4.4.1. 

In section 4.4.2 a means of deriving a transfer function model of the test 

specimen is described, the corresponding state space model is determined in section 

4.4.3. The state space model has the added attraction of readily providing the velocity 
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of the structure, this proves useful later in the chapter when building the complete 

model. Finally, mass, stiffuess and damping matrices are determined for the frame of 

the Torsion rig (or Torsion Bar assembly) in section 4.4.4. 

4.4.1 Introducing damping 

Viscous damping is easily introduced into the system of differential equations 

governing the dynamic behaviour of the test structure by adding an additional term 

Cx.(t) to equation (4.22), giving equation.(4.23) below. 

[(t) = Mx(t) + Cx (t) + Kx (t) (4.23) 

Given the mass and stiffness matrices of the test specimen, the objective is to 

construct a suitable damping matrix C. Throughout this chapter it is assumed that the 

vibrational modes of the structure have the same damping ratio 1;;, in which case the 

damping matrix can be obtained from the following result (proven in appendix 2). 

(4.24) 

4.4.2 Transfer function matrix 

A transfer function matrix modelling the dynamics of the structure is obtained 

very simply. Taking a Laplace transform of equation (4.23) gives 

{(s) = (iM+sC+K)x(s) (4.25) 

and defining the required transfer function matrix as G (s) , where 

x (s) = G (s)[(s) , then 

G(s) 
2 -I 

= (s M+sC+K) (4.26) 

4.4.3 State space model 

With knowledge of the mass, stiffness and damping matrices of the test 

specimen, deriving a state space model is straightforward. Define ZI (t) = X (t) and 

Z2 (t) = X (t), then equation (4.23) can be written 

(4.27) 
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(4.28) 

An attractive feature of the state space model is that the velocity of the 

structure is readily obtained as it is the state vector z\' equation (4.29). This proves to 

be useful when evaluating the block diagrams in sections 4.5 and 4.6. 

(4.29) 

4.4.4 Torsion rig 

A schematic of the Torsion rig was given in Figure 3.5. The frame or 'Torsion 

Bar Assembly' essentially consists of two steel beams (Bl and B2 in Figure 3.5) which 

behave as stiff torsional springs under the excitation of the hydraulic actuators. The 

lever arms and hydraulic actuators can be regarded as discrete masses attached to the 

beams. A simple lumped parameter representation of the Torsion Bar Assembly was 

felt to be sufficient to capture it's principle dynamic behaviour. 

A two-degree-of-freedom lumped parameter model of a single upright beam is 

shown below in Figure 4.6, the Reaction Beam is assumed to be infinitely stiff. The 

stiffness elements K[ and K2 represent the torsional stiffness of the beam sections 

above and below the top lever arm respectively. The inertia element 1 [ represents the 

inertia of the beam section above the top lever arm and the inertia of the top lever arm 

itself. Similarly, the bottom inertia element 12 represents the inertia of the beam 

section below the top lever arm and the inertia of the bottom lever arm. 

The torsional stiffness of a beam is given by 

K = GJ 
I 

Nm/rad 
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Figure 4.6 Lumped parameter model of upright beam, Torsion Bar 

Assembly 

where, for mild steel G = 80GN/m 2 and from Table 3.1, the second moment of area 

of the beam cross section is J = 7339x10-
8
m4 From Figure 3.5,11 = 2.013m and 

12 = 1.994m. Thus, from equation (4.30), 

KI = 2.92 

K2 = 2.94 

MNmlrad· 

MNm/rad 
(4.31) 

Denote the inertia of the section of upright beam above the top lever arm as I B 
I 

and the inertia of the top lever arm as IL . Similarly, denote the inertia of the section of 
I 

upright beam below the top lever arm as I B and denote the inertia of the bottom lever 
2 

arm as IL . Then 
2 

(4.32) 

Calculation of I B and IBis straightforward using the following formula 
I 2 

1= plJ (4.33) 

where p is the density of the material, p = 7826.9Kg/m 3 for mild steel, 1 is the 

length of the beam section along the polar axis and J is the second moment of area of 

the cross section about the polar axis. Hence, 
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18 = 1.15 
I 

(4.34) 

Calculation of I L and IL is laborious and is given in appendix 3, the resulting 
I 2 

values are given below 

IL = 2.54 
I 

(4.35) 

IL = 212.6 
2 

It can be seen immediately that the inertia of the bottom lever arm (with an 

additional 100 Kg mass) is far greater than that of the beam section above it. 

Consequently, we can reasonably expect the lumped parameter representation to be 

accurate for the bottom section of the Torsion rig. However, the inertia of the top lever 

arm is not much greater than that of the related section of beam. Therefore, we can 

only expect the lumped parameter representation to be an approximation for the top 

section of the Torsion rig. 

Since we have assumed that the reaction. beam is infinitely stiff, we can make 

use of the symmetry of the Torsion Bar Assembly - The whole assembly can be 

modelled by simply doubling the inertia elements and halving the stiffness elements 

that have been obtained for an upright beam. From Figure 4.6 and equations (4.31), 

(4.32), (4.34) and (4.35),.theequations of motion. of this system then become 

where the inertia matrix and stiffness matrix are 

I - [7.38 0 J 
T - 0 427.62 

KT = r 2.93 -l.47l x l06 

L-l.47 l.47 J 

(4.36) 

(4.37) 

The coordinate system needs to be changed from rotational to translational in 

order to comply with the work detailed in previous sections. The length of arc s 

described by each lever arm is given by the relationship s = re where r is the radius 

of the lever arm from the axis of the upright beam to the attachment point of the 

hydraulic actuator. For small angular displacements, this relationship can be 

approximated by x = re where x is the displacement of the actuator piston. By 

defining a matrix of radii 
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(4.38) 

where r
l 

= 0.45 and r
2 

= 1.42 are taken from Figure 3.5, equation (4.36) can be 

transfonned thus 

where 

{= Mx+Kx 

M = R-1I-rR-1 = [36.94 0 J 
o 212.97 

K = R-1K-rR-1 = [14.67 -2.32lxl0
6 

-2.32 0.73 J 

(4.39) 

(4.40) 

The Torsion Bar Assembly is intrinsically lightly damped, a global damping 

ratio of 0.01 was assumed and a corresponding damping matrix C generated using 

equation (4.24): 

below 

c = [464.63 -69.09l 
-69.09 186.91J 

(4.41) 

A transfer function matrix was detennined using equation (4.26) and is given 

G (s) = Igll (s) gl2 (S)J 
1921 (s) g22 (s) 

2 
(s) = 212.97s + 186.91s + 730000 

gll d(s) 

(s) = 36.94i + 464.63s + 14670000 
g22 d(s) 

( ) 
_ ( ) _ 69.09s + 2320000 

gl2 s - g21 S - d (s) 

(4.42) 

3 4 5 3 9 2 9 12 
d(s) = 7.8669xl0 s + 1.0586xlO s +3.1508xl0 s +2.7609xI0 s+ 5.3499x10 

All transfer functions within the matrix have the same denominator 

polynomial, d(s), and also note that the off-diagonal transfer functions gl2 (s) and 
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g21 (s) are identical. The poles and zeros of the transfer function elements are 

summarised in Table 4.2. The model represents a structure with two lightly damped 

vibrational modes, at approximately 41.3 rad/s and 631.5 rad/s, the complex zeros in 

the diagonal transfer functions represent anti-resonances in these responses. Thus, 

gll (s) exhibits an anti-resonance at approximately 59 rad/s; however, in the case of 

g22 (s) there is a virtual pole-zero cancellation and the higher frequency resonance at 

TABLE 4.2 Poles and zero. of the model of Torsion bar assembly 

Transfer function Poles Zeros 

gll (.) -0.413±j41.293 , -0.439±j58.67 

- 6.315 ±j63 1.5 

gl2(') -0.413±j41.293 , -33640 

- 6.315 ±j631.5 

g21 (.) -0.413 ±j 41.293 , -33640 

- 6.315 ±j631.5 

g22 (s) -0.4 13:l;;4 1.293 , - 6.2891 ±j630.1 

- 6.315 ±j631.5 

approximately 631.5 rad/s will be virtually cancelled by the anti-resonance at 630.1 

rad/s. The resonant and anti-resonant behaviour of the model is illustrated in the 

frequency responses presented in Figures 4.7 to 4.9. 

·r-~~r-~~~~~~TTTITIm-,,~~~~= 
: :: ::! : :::: !:: :::: : ::::::: 
:;: : :::: .. i._i.; .;:.!l.; ... _ ... ' .. '_::::: .......... i.·_ii .. i.H_;; ........ ! .. :.::;:: 

.. , ..... '.' •• -.: .•••• : :..:,.:::.::, ..... ~:, .j:" ~:, ~:,~:,;j:,~:,,, -:::!::: :: ::::::: :: :!::::: :: !HH! 
: :::... • •• "N : ::!::: ;:: :::::: ::: :::::: :::: :::l : ::: ~li 1 ~j~:ilji ~lL;;::: :::::::: : :::::::: : ::::::: 

-20~ o~ • .1' l' U: !.liill, .~, .1818, o'-,-L.l81], .;, ±t±±±i, .;. ±t±±t,fu.;. ±±ili,~ •• 

frequency radls 
(b) g22VOJj 

Figure 4.7 Frequency response of the phase of the Torsion bar assembly 

(gll Uw) and g22 Uw» 
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frequercy radls 

g/20W) andg210w) identical 

Figure 4.8 Frequency response of the phase of the Torsion bar assembly 

(g12 UOJ) and g21 UOJ) ) 

·100 

co -150 
~ 

~ , 

". r .,200 

Figure 4.9 Frequency response of the magnitude of the Torsion bar assembly 

model 

4.5 Linear SISO model 

A schematic of a SISO system is given below in Figure 4.10, where the test 

speCimen IS represented by a single degree-of-freedom mass-spring-damper 
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arrangement. This simple system serves to illustrate the fundamental characteristics of 

a hydraulically actuated structural test system. Based on this schematic, block 

diagrams and transfer functions are derived for both displacement output and force (or 

load) output. The block diagrams, however, are equally applicable to a test specimen 

with multiple degrees offreedom. 

Note that since the flow-pressure characteristic of the servo-valve is linearised 

about an operating point {qLo' Xvo' PLo} , the transfer functions derived in this section 

relate to excursions around the chosen operating point. The notation '6' is used 

throughout to emphasize this point. 

servo-valve 

f(t), x (t) 

actuator 

M 
ram ram 

piston, effective area A 

Figure 4.10 Schematic of SISO system 

Transfer function models are built by combining the relationships described in 

the previous sections regarding the displacement of the spool, the linearised flow

pressure characteristic of the servo-valve, the flow of fluid through the hydraulic 

actuator and the dynamics of the test specimen. The transfer functions are written 

explicitly for the specific case of a single degree-of-freedom test specimen, shown in 

Figure 4.10. 

In developing the models, transfer functions are used throughout arid a block 

diagram is presented below from which the model can be built, using a suitable 

software tool such as MATLAB. The transfer function g (s) relates the displacement 
p 

of the test specimen to the force applied by the actuator, the transfer function 

sg (s) relates the velocity of the test specimen to the force applied by the actuator. p . 

The block diagram is presented in Figure 4.11 and is used for both displacement and 

force output - the final gp (s) block is omitted in the force output system. Also, the 

transfer functions gp (s) and sgp (s) may be replaced by their state space equivalents 

if so desired, equations (4.28) and (4.29). 
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Assuming that the ram is infinitely stiff, then 

~x (s) = gp (s) N(s) (4.43) 

Taking Laplace transforms of the actuator dynamics, equation (4.21), gives 

(4.44) 

where KB = 4~e' Similarly, the linearised flow-pressure characteristic of the servo

valve can be written 

(4.45) 

From equations (4.43), (4.44), (4.45) and including the transfer function 

relating servo-valve current to displacement of the spool valve, the block diagram in 

Figure 4.11 is derived. Note that the state space equivalent of g (s) is given in 
p 

equation (4.28) and that the state space equivalent of sgp (s) given in equations (4.28) 

and (4.29). 

Ll;(s) KB 

sVo +KnK, 
gp(s) 

iUv (s) l!.P, (s) 

!!.X (s) 
A sgp (s) 

Figure 4.11 Block diagram for SISO plant 

4.5.1 Displacement output 

From Figure 4.11 the following transfer function can be derived 

~ gsv (s) 
- =KKaA----
M q A2K a (s) 

s +-
B g (s) 

p 
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where the leakage coefficient and the flow-pressure coefficient are combined into a 

single coefficient Kc.' i.e. 

(4.47) 

and 

(4.48) 

For the specific case of a single degree-of-freedom test specimen, Figure 4.10, 

the equation of motion can be written' by, inspection and a Laplace transform taken, 

giving 

(4.49) 

Substituting equations (4.2), (4.48) and (4.49) into equation (4.46) gives 

<l.< (s) --;----------------:-------
l!.i(s) (s' +2':;r"'r'+0)~) (l +i(~ + K_,_,K_B) +s(K, + K_ul_' + _I'K_,_,K_B) + K_,-:-,K-::-,=-K_B) 

M Vo M MVo MVo MVo 

(4.50) 

.' The poles of this transfer function are listed below in Table 4.3 with the model 

data taken from Table 4. 4, the hydraulic data are taken from the Torsion rig and the 

test specimen characterises a structure with a natural frequency below 10 Hz (i.e. 

within the bandwidth of some structural tests). The servo-valve contributes a pair of 

under damped poles (although with a damping ratio close to unity) as prescribed whilst 

the combination of the actuator and the test specimen gives rise to a pair of very lightly 

damped poles, the latter is described in section 4.7. A simple pole close to the origin of 

the complex plane is also obtained, arising from the integrating relationship between 

the displacement of the piston and the flow rate through of the actuator (i.e. the first 

term in equation (4.21) expressed in integral form). 

TABLE 4.3 Poles of transfer function model of SISO displacement system 

Poles Description 

- 792 ±j383.5 poles of servo-valve 

- 1.05 ±j716.5 second order dynamics due to the combi-
nation of hydraulic actuator and specimen 

-0.005 simple pole due to the integrator like 
action of the hydraulic actuator 
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The frequency response of this transfer function is plotted in Figure 4.12 with 

the data listed in Table 4.4. 

Figure 4.12 Frequency response of a SISO displacement system 

TABLE 4. 4 Model data for SISO system 

K 1 x1O- 13 5 m INs 
ce 

KB 4 X 1.86 x 10 
9 

N/m 
2 

KjKq 
0.042 m3/sA 

A 0.008107 
2 

m 

V 0.002469 
3 

m 
0 

roT 880 rad/s 

t:.T 0.9 

M- 392.34 Kg 

K 3.19x1O 
6 

N/m 
s 

11 706.22 Kg/s 
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4.5.2 Load output 

From Figure 4.11 the following transfer function is obtained 

t!.f(s) 

M(s) 

Modelling 

(4.51) 

As in the displacement-control system, equations (4.2), (4.48) and (4.49) can 

be substituted into equation (4.51) to evaluate the transfer function for the single 

degree-of-freedom test specimen illustrated in Figure 4.10. This gives 

6J(s) 

6i (s) 
(4.52) 

The poles of this transfer function are identical to those of the displacement 

output system, Table 4.3, since both transfer functions have the same denominator. In 

addition, the poles of the transfer function describing the test specimen, equation 

(4.49), appear as zeros in equation (4.52). With the model data taken from Table 4.4, 

the zeros are located at - 0.9 ±j90 and the frequency response of equation (4.52) is 

plotted in Figure 4.13. 

1~r--.-.~~r--',-',',',T .. ~,~,--"~,-",~,,,~ .. r--',-',T,T,~ .. ~ .. 
:: : :::: ::: : : ! : II ::: : : :::: ::: : : : H 

150 _. __ ~ •• A l'- - -r: :::-_. --: ---r' f-::: :::--_ .. 'r- -:-:Tr~:: r--- ':' -:--:-:'! ::: 
:~"""'::c::::: il!:I:::: ::::'::1 i:l:!::: 

~ 100 

. :! :HHi :'. :!:::: ::: 1::11 
.... ~ .. -~-.. -~~~~--·--;---~-""-r ': ~~~ ---;.--':'-~":'~-~;;l.--·-: ·-+-~-~·;.;.V 

!! ! :! n !!! ! ! ! .:. !!! ! ! !!!! . : ! ! !:: 

g' 
~ 

!! :Ull :! :::::: !! ill:::: :.::;! 
!! ! il!: !!! !!! i!: !!! !! 1::: .,! ! ;::: 

,,' 10' 
Frequency (rad/sec) 

,,' 10' 

'Or:", """-;::'::'TI::-:-,:-,",:, ",,7.', =::::, :,J,-:: .. "' .. ", -',:-:, :, T, IT" m .. 
o -···~--·i·- -l-i~-l-!-·----i---.--!--~'/·.i {---··-t---~·'/-·!+ iii··----i----:.-i-i-H-!) 

:: ! : H: ::: : : ::: ::: :: :!! :!: : 1::: 
! .gO 

:: ::::: ::: : :::: ::: :: ::: ::: : :::: : : : ::::: Hr--'T-rTTr m·····r·rrnTfl 
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Frequency (radlsac) 

Figure 4.13 Frequency response of a SISO load system 
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4.6 Linear MIMO model 

Building a linear model of a MIMO structural test system is straightfOlward; 

the basic equations governing operation of the servo-valves and the hydraulic actuators 

are unchanged and now form diagonal matrices, the test specimen is described by a 

transfer function matrix (or a state space model). The coupling in the dynamics of the 

test specimen gives rise to the interaction present in the completed model. 

Consider the general multi-channel test with nv hydraulic actuators exciting the 

test specimen, the fluid flow to each actuator being controlled by a servo-valve. Then 

the transfer functions for all the servo-valves can be combined into a diagonal Transfer 

Function Matrix G $V (s) where 

G (s) = diag (g (s), g (s) ... g (s» 
$V $VI SV2 $V". 

(4.53) 

Similarly, the flow-pressure coefficients K and the flow gains K of the 
Cl q, 

servo-valves may also be combined to form diagonal matrices Kc and Kq where 

K = diag (K ,K , ... ,K ) 
c Cl C2 e". 

(4.54) 
K = diag (K , K , ... , K ) 

q ql q2 q". 

The cross sectional areas of the pistons of the nv actuators may be also 

combined to form a diagonal matrix A where 

(4.55) 

Finally, define Gp (s) as the transfer function matrix representing the dynamic 

behaviour of the test specimen, i.e. tU (s) = Gp (s) I:;.f(s) . 

The block diagram is the same as that developed for the S1S0 system except 

that now the blocks contain transfer function matrices and is shown in Figure 4.14. 

Again, the block diagram is applicable to displacement and force output systems, in 

the latter case the final Gp (s) block is omitted. 
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6; (s) Mv (s) r----, M (s) 

G" (s) 

Figure 4.14 Block diagram for MIMO plant 

4.6.1 Displacement output 

From Figure 4.14, the transfer function matrix relating servo-valve current to 

displacement of the test specimen is 

~(s) = G (s) I +sAdiag (_B_) G (s)A Adiag (_B_)K G (s) oM (s) [ 
K ]-1 K 

p (X (s) p (X (s) q sv 

(4.56) 

where (X (s) is given by equation (4.48). The hydraulic data and the data for the 

Torsion bar assembly (equations (4.40) and (4.41» are summarised in Table 4.5. With 

this data, equation (4.56) is evaluated and the state space model in equation (4.57) is 

obtained. The eigenvalues of the state space model are presented in Table 4.6 and the 

frequency response of the state space model is presented in Figures 4.15(a) and 

4.l5(b). 
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TABLE 4.5 Model data for MIMO system 

K IxlO- 13 5 
m INs 

ee 

K8 4 x 1.86XlO
9 

N/m 
2 

K. K 0.0545 
3 

m IsA 
'I q I 

K. K 0.0727 m 3/sA 
'2 q2 

AI 0.0061 
2 

ID 

A2 0.0081 
2 

m 

V 0.00186 
3 

m 
°1 

V 0.00247 
3 

m 
°2 

roT 880 radls 

(,T 0.9 

M equation (4.40) 

K equation (4.40) 

C equation (4.41) 

TABLE 4.6 Eigenvalues of Torsion rig displacement model 

Eigenvalues 

-2.94 ±j2030 

-0.55 ±j97 I 

-792 ±j384 

-792 ±j384 

-7.39 x 10.3 

-4.98 x 10-4 

-2.74 ±j275 

-0.396 ±j39.6 

76 



Modelling 

Frequency (radls) 

Figure 4.15(a) Frequency response of the magnitude of the Torsion rig 

model, displacement output 
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Figure 4.15(b) Frequency response of the phase of the Torsion rig model, 

displacement output 
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3 , 
-1.58xlO .0, -7.74xIO .0,0,0,0,0,0,0,0,0,0,0 

3 , 
O,-1.58xlO ,O,-7.74xlO ,0,0,0,0,0,0,0,0,0,0 

1,0,0,0,0,0,0,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0,0,0,0,0,0,0 
4 -I -3 

O,O,O,5.23xlO ,-3.01 xlO ,O,O,-7.52xI0 ,0,0,0,0,0,0 
4 -I -3 

O,O,4.04xlO ,O,O,-4.00xI0 ,-5.84xlO ,0,0,0,0,0,0,0 
I -1 4 4 

A = O,O,O,O,O,6.93xlO ,-5.48,6.64xlO ,-7.53xlO ,1.04xlO ,0,0,0,0 
I -I -I 3 3 

O,O,O,O,I.25xlO ,O,I.I6xl0 ,-8.09xI0 ,I.83xlO ,-1.83xlO ,0,0,0,0 

0,0,0,0,0,0,1,0,0,0,0,0,0,0 

0,0,0,0,0,0,0,1,0,0,0,0,0,0 
I -I 4 4 

O,O,O,O,O,6.93xlO ,O,O,O,O,-5.48,6.64xlO ,-7.53xlO ,1.04x10 
I -I -1 3 3 

O,O,O,O,125xlO ,O,O,O,O,O,I.I6xlO ,-8.09xlO ,I.83xl0 ,-1.83x10 

1,0 

0,1 

0,0 

0,0 

0,0 

0,0 

B= 
0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

4.6.2 Force output 

0,0,0,0,0,0,0,0,0,0,1,0,0,0 

0,0,0,0,0,0,0,0,0,0,0,1,0,0 

c: = ~O'O'O'O'O'O'O'O'O'O'O'O'I'~ 
0,0,0,0,0,0,0,0,0,0,0,0,0,1 

D= [~~ 

Modelling 

(4.57) 

From Figure 4.14, the transfer function matrix relating servo-valve current to 

the force applied to the test specimen is 

!l/(s) '" l+sAdiag(_B_)G (s)A Adiag(-B-)K G (s)M(s) [ 
K ]-1 K 

Cl. (s) p Cl. (s) q $V 

(4.58) 

On the Torsion rig, the servo-valves were electrically driven by amplifiers 

excited with an input voltage signal u (s). The forces applied by the actuators were 

measured by load cells, the load cell outputs were amplified to give the measured 

signal y (s) . Define the gain of the servo-valve amplifiers as Kin and the combined 
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gain of the load cells with amplifiers as K out" Then 

i (s) = Kin" (s) 

y (S) = Kou/(s) 

[
1.56 OJXIO-3 
o 5.4 

K = [1.4927 0 JXIO-4 
oul 0 0.9997 

Modelling 

(4.59) 

(4.60) 

Then the model of the force output response of the Torsion rig is given by 

equations (4.58) and (4.59). With the data given in Table 4.5 and equation (4.60), 

equation (4.58) is evaluated and the state space model of the force output response is 

given in equation (4.61). The eigenvalues of the state space model are presented in 

Table 4.7 and the frequency response of the state space model is shown in Figures 

4.16(a) and 4.16(b). 

TABLE 4.7 Eigenvalues of Torsion rig force model 

Eigenvalues 

-2.94 ± j2030 

-0.55 ±j97 I 

-792±j384 

-792±j384 

-7.39 x 10.3 

-4.98 x 10.4 
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Figure 4.16(a) Frequency response ofthe magnitude of the Torsion rig 

model, force output 
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Figure 4.16(b) Frequency response of the phase of the Torsion rig model, 

force output 

A= 

3 , 
-1.58x10 ,0, -7.74xI0 ,0,0,0,0,0,0 

3 , 
O,-1.58x10 ,O,-7.74xlO ,0,0,0,0,0,0 

1,0,0,0,0,0,0,0,0,0 

0,1,0,0,0,0,0,0,0,0 
4 -I -3 

O,O,O,5.23x10 ,-3.01xlO ,O,O,-7.52xlO ,0,0 
4 -I -3 

O,O,4.04xlO ,O,O,-4.00xI0 ,-5.84xI0 ,0,0,0 
I -I 4 4 

O,O,O,O,O,6.93xlO ,-5.48,6.64xlO ,-7.53xlO ,1.04xlO 
I -I -I 3 3 

O,O,O,O,I.25xlO ,O,I.16xlO ,-8.09xI0 ,I.83xl0 ,-1.83xlO 

B= 

-3 
1.56xlO ,0 

O,5.4xI0-3 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0 

0,0,0,0,0,0,1,0,0,0 

0,0,0,0,0,0,0,1,0,0 

c = fo,o,O,O,0,3.81 x~o·.o,o.o,~ 
lo,O,O,0,2.63XIO .O,O.O,O,~ 
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4.7 Hydraulic natural frequency and dam ping ratio 

Most hydraulic fluids, although very stiff, are to some extent compressible. The 

change in volume of the fluid due to a change in pressure is given by equation (4.62) 

[33] where V is the initial volume of the fluid, !!. V is the change in the volume of the 

fluid, !!.P is the change in the pressure of the fluid and ~ e is the bulk modulus of the 

oil. 

(4.62) 

For example, taking V and ~e from Table 4.4, the percentage change in 

volume due to a 100 psi change in pressure is 0.037%. Consequently, the volume of oil 

contained in a hydraulic actuator will behave as a very stiff spring. When the actuator 

is exciting a mass, the result is a lightly damped mass-spring system whose natural 

frequency is known as the 'hydraulic' natural frequency co h' the damping ratio is 

known as the 'hydraulic' damping ratio (,h. This behaviour is observable as a sharp 

resonant peak in the open-loop frequency response of a structural test system at the 

hydraulic natural frequency. In the following analysis, approximate relationships are 

derived for ro h and t:,h for the SISO system illustrated in Figure 4.10. 

The transfer functions for SISO displacement and force output, equations 

(4.48) and (4.50) respectively, have the same cubic denominator, which may be 

factorised thus 

(4.63) 

Direct algebraic determination of ro I' ro hand (,h is extremely unwieldy. 

However, the following approximations can be made [~3], providing that the_ 

inequalities in equation (4.65) are met. Fortunately, the inequalities are usually 

satisfied as K '" 0 and typically KB » K V / A2 ce s 0 

KK ce s 
ro "'--

1 A2 

co ",~aA2 
h MV 

o 

(4.64) 
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From the above approximations, the following observations are made: 

I. Typically Kc. '" 0 and so the pole at s = -ID I is virtually at the 

origin of the complex plane. This gives rise to the integrator like 

behaviour of the open-loop system. 

2. Typically K8 » KsV/ A2 and so the 'hydraulic' natural frequency 

ID h is greater than the natural frequency of the test specimen, 

ID = JK/M. 

3. The hydraulic damping is a function of the position of the spool in 

the servo-valve: from equations (4.10), (4.47) and (4.64) the 

hydraulic damping ratio can be written explicitly in terms of the 

position of the spool valve at it's operating point, xvo' as below 

At the null position (xvo = 0) the hydraulic damping ratio is at a 

minimum, the damping. ratio then increases with the magnitude of 

the displacement of the spool from the null position. The extent to 

which 1;;h can vary is illustrated in section 4.8. 
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4.8 Confidence in the linear model 

For the transfer functions and transfer function matrices previously developed 

to be of use, they must be a good approximation to the actual non-linear system over a 

reasonable operating range. The following study shows that this is the case and the 

following analysis also alerts the reader to the sensitivity of the hydraulic damping 

ratio with position of the spool in the servo-valve. 

4.8.1 Simulation study 

A comparative simulation study is undertaken below based on the SISO force 

output system described in section 4.5.2. To simplify the study, consider that the 

system is excited at a frequency well below roT in which case the position of the spool 

valve is proportional to the serve-valve current, i.e. from equation (4.2) gsv (s) = Kj" 

Then, from equations (4.1) and (4.7) 

qL (t) = Kp (t) (4.67) 

where 

and from equation (4.9), Kq = C at the null position (i (t) = 0, Xv (t) = 0 and 

PL (t) = 0). Note also that at the null position Kc = 0, equation (4.10). 

The block diagram of the linear system is taken from Figure 4.11 and is 

repeated below in Figure 4.17 with all transfer functions written explicitly. The 

corresponding non-linear system is derived from Figure 4.17 by replacing the blocks 

grouped as 'Iinearised dynamics' with equation (4.67).The schematic of the non-linear 

system is shown in Figure 4.18. The model data are given in Table 4.8. 
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.... ------ -- ---- ----- --- -------- --- / 

h (/) 

i (/) 

linearised dynamics 
sA 

Figure 4.17 Block diagram of SISO system, linear simulation 

K,Ci (/) 
PL (I) 

1 - sgn (i (/))-
P, 

non-linear dynamics 
sA 

Figure 4.18 Schematic of SISO system, non-linear simulation 

Sinusoidal excitation and corresponding force output was detennined at the 

null operating point with four different excitation magnitudes, the excitation 

magnitudes are shown in Figure 4.19 in relation to the flow-pressure charactersitic of 

the servo-valve. It can be seen that the excitation magnitudes cover a wide operating 

region. The resulting time responses are plotted in Figure 4.20. There is a steady state 

off-set between the linear and non-linear responses. However, the responses are in 

phase with each other and the peak to peak magnitudes are very close; (a) 0.36% error, 

(b) 0.58% error, (c) 0.65% and (d) 1.2% error. The agreement between the non-linear 

and linear response gives confidence in the validity of the linear model over a wide 

operati ng regi on 
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Figure 4_19 Operating region of the servo-valve flow-pressure characteristic 

covered by the sim ulation study 
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(a) peak servo-valve current = 1.5 mA (b) peak servo-valve current =3 mA 

(c) peak servo-valve current = 7.5 mA (d) peak servo-valve current =15 mA 

Figure 4.20 Time response of linear model and non-linear model 

(solid line - nonlinear. dashed line - linear) 
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TABLE 4.8 Model data for SISO simulation 

K[ Ix1O-
13 5 

m INs 

9 
N/m 2 

KB 4x1.86xlO 

KjKq 
0.042 

3 
m IsA 

K.C 0.042 
3 

m IsA 
I 

K 0 
5 

m INs 
c 

A 0.008107 
2 

m 

V 0.002469 
3 

m 
0 

M 392.35 Kg 

6 
N/m K 3.19x1O 

s 

Il 706.22 Kg/s 

Ps 3000 pSI 

M .. ximumor rated 15 mA 
current of servo~ 
valve 

NOTE: 1 psi = 6894.8 Nm·2 

4.8.2 'Hydraulic' natural frequency and damping ratio 

The variation in the hydraulic natural frequency with operating point for the 

linearised system studied in section 4.8.1 is illustrated in Figure 4.21(a), the 

corresponding approximation from equation (4.64) is shown in Figure 4.21(b). It can 

be seen that the hydraulic natural frequency varies to a slight extent with the operating 

point of the serve-valve current (and hence spool position) whilst it remains virtually 

constant with load pressure. The approximation is accurate to within 1% at all times. 

By contrast, the variation in damping ratio with operating point, plotted in Figure 

4.22(a), is far greater and it is clear that the damping ratio increases as the spool moves 

away from it's null position (i.e. as the current increases). The approximation to the 

damping ratio is determined from equations (4.10), (4.47) and (4.64) and is illustrated 

in Figure 4.22(b). The approximation closely matches the actual damping ratio. 
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Figure 4.21 Variation in hydraulic natural frequency with operating point 
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Figure 4.22 Variation in hydraulic damping ratio with operating point 

4.9 Conclusions 

Linear models have been derived for both SISO and MIMO dynamic structural 

tests employing servo-hydraulic actuation. Furthermore, models have been derived for 

both displacement and force output, based on block diagrams that can be used to build 

models with any number of hydraulic actuators and measured outputs. The question of 

the validity of linear modelling has been considered in light of the non-linear flow

pressure characteristic of the servo-valve, analysis and simulation have both shown 

that the linear approach gives a good approximation to the non-linear system. 
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Chapter 5 

Control Schemes 

5.1 Introduction 

In this chapter two techniques of MIMO control system design are discussed: 

Sequential Loop Closure (SLC) and the Characteristic locus (CL) method. There are of 

course many design methods available for tackling multivariable control problems, the 

motivation for using these techniques in this thesis is described below. 

SLC is by far the most widespread technique in industrial application, with PID 

action commonly used in the individual loop controllers. It is therefore necessary to 

use SLC to provide a bench-mark against which other MIMO control system 

implementations can be judged. The CL method has been used successfully in 

previous research [5 - 7] in simulated control of a small structural test rig. The larger 

scale Torsion test rig described in chapter 3 poses a more challenging control problem. 

However, although a model of the Torsion rig has been developed in chapter 4, it is not 

uncommon in practice to find that no model of the structure and test rig exists. In such 

cases, a suitable model must be obtained by analytical or experimental means. 

Analytical modelling can prove too complex to be a viable option, whereas 

experimental identification, by contrast, is relatively straightforward. The CL method 

lends itself well in this respect since the only requirement is a frequency response of 

the plant. Also, the CL method has the added attraction to the practioner of its 

similarity with widely understood SISO frequency domain design methods. 

A brief description of SLC is given in section 5.2, where the problem of tuning 

loop controllers and the associated problem of input-output pairing is discussed. In 

section 5.3, the CL method is discussed and three important aspects are described: 
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(1) The generalised Nyquist Stability criterion, which leads to the 

conclusion that closed-loop stability can be directly affected by 

compensating the characteristic loci. 

(2) CL control system philosophy. 

(3) Controller design. 

Discretisation of the CL method provides scope for dynamically decoupling 

the plant over it's entire frequency range, the inability to do this is the principal 

limitation in the original CL method. Section 5.4 describes recent advances in this 

area. 

5.2 Sequential Loop Closure 

This is the simplest approach to controlling a multiple-input, multiple-output 

plant. An array of single-loop controllers are designed and each single-loop controller 

is considered as a S1SO system, see Figure 5.1. For a system with n inputs, n S1SO 

control loops are installed. Tuning of the loop controllers proceeds with the closing of 

each feedback loop, in turn - hence the term 'Sequential Loop Closure'. If the plant is 

unstable in the open-loop, then all of the feedback loops are closed before the 

sequential tuning procedure is carried out. 

-

" (s) 
+ ", (s) 

*, (s) 
Y, (s) 

-
+ "2 (s) 

k2 (s) '2 (s) 
Y2(S) 

• G(S) • 

• • 

• • 
un (s) 

Figure 5.1 Sequential Loop Closure 
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This method has three major advantages for the practitioner: 

(1) A model of the plant is not necessarily required, although a model 

may be desirable in determining suitable input and output pairing. 

(2) Widely understood SISO design techniques can be used (e,g. PID, 

frequency response shaping). 

(3) The approach is very pragmatic. 

The method does, however, suffer, from a number of drawbacks. Principally, 

the only way to combat interaction is to use high loop gains in the controllers - this, 

however, will be limited by stability requirements. During the tuning phase, successive 

closing of individual loops may well lead to deterioration in the perfonnance achieved 

with previous loops. The design procedure often turns out to be very ad hoc in practice 

and the whole process of tuning loop controllers becomes iterative and time 

consummg. 

Control loops are usually formed from corresponding input and output pairs, 

although this is not a requirement of the SLC method. Consideration of the choice of 

the most appropriate input-output pairing has been considered [34 - 36] but still 

remains under-developed in the literature. 

5.3 The Characteristic Locus (CL) method 

The Characteristic Locus method was first introduced in the late 1970s by 

MacFarlane and Kouvaritakis [37] and has proven itself to be an effective approach to 

multivariable controller design. The CL method attempts to decouple the plant and 

compensate the characteristic loci of the plant. The great attraction of the method is 

that the compensation of the characteristic loci is very akin to traditional SISO 

frequency domain controller design. Furthermore, the method requires only a 

frequency response for a plant model (as opposed to a parametric model) and good 

controllers can be designed relatively easily with a suitable CAD package (i.e., 

MATLAB [38]). Owens [Owens, D.H., 'Feedback and multivariable systems', Peter 

Peregrinus, Stevenage, 1978] also contributed significantly to this field at the same 

time. 

Central to the CL method is the stabilisation of the plant by suitable shaping of 

the characteristic loci of the plant. In fact, the loci are shaped to meet the generalised 
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Nyquist Stability criterion, described below, which is a generalisation of the Nyquist 

stability criterion for SISO systems. Hence, the similarity between the CL method and 

SISO frequency response shaping. 

Building upon the generalised Nyquist stability criterion, the philosophy of the 

CL method is discussed in section 5.3.2 and the design method is summarised in 

section 5.3.3 for the reader. 

5.3.1 Generalised Nyquist stability criterion [39) 

Consider the closed-loop control scheme illustrated in Figure 5.2 and define 

Q(s) = G(s)K(s) (5.1) 

where Q (s) has n inputs and n outputs. The input-output relationship is 

y (s) = T(s) r (s) , where T (s) is the closed-loop transfer function matrix given by 

-I 
T(s) = (/+Q(s)) Q(s) (5.2) 

res) 
K(s) G(S) 

+ 

Figure 5.2 Closed-loop block diagram 

The poles of the closed-loop system are given by the zeros of det [I + Q (s)], 

so it is therefore required for stability that det [I + Q (s) 1 does not have any zeros in 

the right-half s-plane. Define 

res) = det[1 + Q (s)] (5.3) 

and let res) have P poles and Z zeros in the closed right-half s-plane. Now the net 

change in phase of res) as s takes on all values along the closed contour illustrated in 

Figure 5.3, as it traverses in the direction indicated, is 
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darg «(s» = -2lt (Z - P) (5.4) 

where darg denotes the net change in phase. The path illustrated in Figure 5.3 is 

known as the 'Nyquist' contour and encloses the entire right-half s-plane, deviating 

around any poles of f(s) that fall on the imaginary axis. This result can be expressed 

in a more familiar form as 

N = Z-P (5.5) 

where N is the number of times the locus of f(s) encircles the origin in the f(s) plane 

as s follows the 'Nyquist' contour. IfN is positive, travel along the locus of f(s) is in 

the same direction as travel along the 'Nyquist' contour; ifN is negative, the directions 

of travel are opposite. This is the Nyquist stability criterion for SISO systems if f(s) 

is the characteristic equation of a SI SO system. 

Returning to our multivariable system, the poles of f(s) are the poles of 

Q (s) . Hence, since for stability it is required that Z = 0, the net change in phase of 

f(s) must be equal to 2ltP. 

Imaginary 

real 

s-plane 
i"''---

Figure 5.3 The Nyquist contour 
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Now since a determinant is the product of it's eigenvalues, we have 

[(s) = det [/ + Q (s)] = IT eig (/ + Q (s» (5.6) 

and denote the eigenvalues of / + Q (s) as Aj (s) . It can be shown that 1 + Aj (s) IS 

an eigenvalue of / + Q (s) . Consequently, 

n 

det[/+Q(s)] = IT (I + Aj(s» (5.7) 

i = I 

Hence, for stability, the total number of encirclements of the origin made by 

the loci of 1 + A. (s) , or the total number of encirclements of the (-1,0) point made 
I 

by the loci of Aj (s) , must be equal to -P. This is the generalised stability criterion. 

The graphs of Aj (s) , as s traverses the 'Nyquist' contour, are known as the 

characteristic loci of Q (s) . 

5.3.2 Control philosophy 

The closed-loop control scheme has been illustrated in Figure 5.2. The spectral 

decomposition of the plant G (s) is given below 

G (s) = W(s) A (s) W-I (s) (5.8) 

where W(s) is a matrix whose columns are the eigenvectors of G (s), W- I (s) IS a 

matrix whose columns are the dual eigenvectors of G (s) and 

A (s) = diag {AI (s), 1...2 (s), ... , An(s)} (5.9) 

where the Aj (s) are the eigenvalues, or characteristic loci, of G (s) . Consider now 

that the controller K (s) has the same eigenvectors as the plant, i.e. 

K(s) = W(s)M(s) W-I (s) (5.10) 

where 

(5.11) 
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. The return ratio G (s) K (s) is then given below and K (s) is known as a 

commutative controller since it's structure gives G (s) K (s) = K (s) G (s) 

G(s)K(s) = W(s)diag {vI (s), v2 (s), ... , vn(s)} W-I (s) (5.12) 

where 

Vj (s) = Aj (s) Il j (s) i = I. .. n (5.13) 

Thus, providing that the plant and the controller share the same eigenvectors 

and dual eigenvectors, then the system obtained by connecting them in series has 

eigenvalues which are simply the product of the controller and plant characteristic loci. 

From the generalised Nyquist stability criterion, closed-loop stability requires that, 

together, the loci of the eigenvalues \(s) Il j (s) encircle the (-1,0) point P times 

anticlockwise, where P are the number of unstable poles of G (s) K (s) . Commonly, 

both the open-loop plant and the controller are stable and P = 0. Stability can 

therefore be achieved by designing the characteristic loci of the controller to ensure 

that \ (s) Il j (s) meet this requirement. Performance is obtained through shaping the 

characteristic loci in a very similar fashion to the shaping of the open-loop frequency 

response of a SISO plant. 

Unfortunately, it is quite impractical to build a controller with this structure as 

the elements of the matrices W(s) and W-
I 

(s) are almost always irrational functions 

with no practical realisations. The alternative is to approximate W(s) and W-
I 

(s) 

with rational matrices. The widely adopted approximation is that developed by 

Kouvaritakis [40, 41) which yields constant and real valued matrices A and B at a 

fixed frequency, s = jco 0' such that 

A", WUco o) 

B", W-
I Uco) 

(5.14) 

This approximation is determined using the ALIGN algorithm and is used in 

this thesis. Building the controller with the structure K (s) = AM (s) B will only 

guarantee the desired shaping of the characteristic loci at the single frequency co . This 
o 

will limit the effectiveness of the method and leads to the standard procedure of 

designing three compensators at three very different frequencies; high, medium and 

low frequency. This approach is known as the Characteristic Locus method and is 

described in section 5.3.3. 
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In principle, more compensators could be designed, each for a particular 

frequency of interest. However, this leads to a complicated overall controller and 

furthermore, the component compensators will interfere with each other. Compensator 

interference is explained in section 5.3.3 

5.3.3 Design method 

High-frequency compensator Kh 

A fixed gain controller is designed to decouple the plant at a high frequency 

Cil h' A frequency beyond the desired closed-loop bandwidth is usually selectedin order 

that interference between this step of compensation and the next step is kept to a 

minimum. The controller is a real rational approximation of G-1 UCilh) , obtained 

using the ALIGN algorithm. 

(5.15) 

Medium-frequency compensator Km (s) 

A dynamic controller is designed to shape the characteristic loci of G (s) Kh 

for stability and performance near the (-1,0) point. Km (s) has the commutative 

structure discussed in section 5.3.2 to facilitate the desired shaping, namely 

K (s) = A M(s)B m m m (5.16) 

where A m and Bm are the required real and rational approximations to the 

eigenvectors and dual eigenvectors, respectively, of G UCil m) Kh at a medium 

frequency Cil m' The approximation is usually carried out at a frequency when the 

characteristic loci of G (s)Kh are in the vicinity of the (-1,0) point. M (s) is a 

diagonal controller whose elements are chosen to shape the characteristic loci of 

G (s) Kh in a similar manner to classical SISO frequency response shaping. Simple 

lead, lag or PID compensation is effective. Ideally, Km UCil) should approach I as 

Cil ~ Cil h' so as not to interfere with the compensation achieved with the high 

frequency compensator. 

Low-frequency compensator K, (s) 
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At low frequencies, the control objectives are to reduce steady-state error and 

reduce interaction. Often these can be met with simple integral action in the low

frequency commutative controller, the phase lag introduced usually not having a 

bearing upon stability at low frequencies. If this is the case, the following form can be 

used 

(5.17) 

where A I and BI are the required real. and rational approximations to the eigenvectors 

and dual eigenvectors, respectively, of G (s) KhKm (s) at a suitable low frequency ro I' 

k; is the weighting of each diagonal integral gain. The frequency ro I should be chosen 

so that the compensator has negligible effect upon the magnitude and phase of the 

characteristic loci at frequencies approaching ro m' I.e., it is vital to ensure minimal 

interaction between the different compensators and ideally KI (jro) should approach 1 

as ro ~ ro . The overall controller is given by 
m 

5.4 Direct digital design of the Characteristic Locus 
controller 

(5.18) 

Although effective, the original CL method does have a limitation. It relies on 

constant and real approximations to the eigenvectors of the plant at three distinct 

frequencies - in general, the eigenvectors are neither real or constant, varying with 

frequency. Also, the method relies on the three component compensators not 

interfering with each other - in practice this is difficult to achieve. In recent years, an 

improved characteristic locus approach has been proposed [42, 43] which is 

formulated in the z-plane and uses dynamic approximations to the eigenvectors of the 

plant. This allows the design of a single commutative controller which decouples the 

system over it's entire frequency range and is described below. 

In discrete time, the spectral decomposition of the plant can be written as in 

equation (5.19) where W(z) is a matrix whose columns are eigenvectors of G(z) 

and AG (z) is a matrix of eigenvalues of G (z). Z -I is the delay operator. 

G (z) = W (z) AG (z) V(z) W(z) V(z) = 1 (5.19) 
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The controller is given the structure below 

K(z) = W(z)AK(z) V(z) (5.20) 

and since the controller shares the same eigenvectors and dual eigenvectors as the 

plant, the controller is commutative. The return ratio matrix is then given by 

G (z) K (z) = K(z) G (z) = W(z) AGK (z) V(z) (5.21) 

where the diagonal matrix AGK(z) is the product of the characteristic loci of the plant 

and the characteristic loci of the controller. Exactly as in the original method, the 

characteristic loci of the controller are designed to compensate the characteristic loci 

of the plant in order to meet stability and performance requirements. 

The improvement over the original method lies in finding dynamic 

approximations to W(z) and V(z) over the entire frequency range. The principal 

idea is to write the matrices of eigenvectors and dual eigenvectors as finite impulse 

responses in the delay operator, i.e. 

n n 

W(z) = L w,.z-i V(z) = L V,.z-i (5.22) 

j = 1 ; = 1 

In the general case, the plant model G (z) will have unstable branch points and 

the above sequences can be viewed as a Laurent series in z -\. This implies positive 

powers of z, giving an unrealisable model for the eigenvectors and dual eigenvectors. 

However, it can be shown that in many cases an expansion in negative powers alone 

can give very good approximations, and certainly better than a constant approximation 

[44]. As infinite sequences are impractical, a mechanism is needed for determining the 

best finite approximation to the sequence. Many algorithms have been proposed in the 

literature for this purpose. A time domain algorithm based on the minimisation of a 2-

norm measure of error proposed in [43] has been used successfully [9, 45] and is given 

below. 

The plant model can be written as 

G(z) = 
N(z) 

d(z) 

where d (z) is a common denominator and the numerator can be written as 
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n 

(5.24) 

i = 0 

The approximate spectral decomposition of G (z) may be written as below, 

where Wa (z) and Va (z) are the desired dynamic approximations to the actual 

eigenvectors and dual eigenvectors of the plant model. The matrix 

AN (zf = diag (1..;:) (z» contains the eigenvalues of N (z) . 

(5.25) 

The matrices Wa (z) and Va (z) are sequences, with elements of the form 

(5.26) 

and are written explicitly in terms of their column vectors as below, where Wa (z) and 

Va (z) have m rows and m columns. 

Wa(z) = [w~l) (z), ... , w~m) (z) ] 

Va (z) = [v~l) (z), ... , v~m) (z) t (5.27) 

From the basic definition of eigenvalue decomposition, Ax. = I.. x., the , " . (i) (i) (i) 
follOWIng errors are defined, where e

1 
(z) and e

2 
(z) are vectors and e

3 
(z) IS a 

scalar. 

eii) (z) = N(z) w~i) (z) - w~i) (z) 1..;:) (z) 

(i) ( .) T ( .) ( .) T 
e2 (z) = va' (z) N (z) -I..; (z) va' (z) (5.28) 

(i) ( .) T ( .) 
e3 (z) = va' (z) wa' (z) - 1 

The errors can be written as sequences themselves. The most negative power of 

z in both eii) (z) and ei
i
) (z) will be - (n + n), denote this quantity as 

Pl'P2 = n + nw· In a similar manner, the most negative power of z in ei
i
) (z) will be 

P3 = 2nw· Thus, the errors can be written as 
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(i) ( ) _ (i) (0) (i) ( ) -I (i) (p ) -PI e l z - e l + e l 1 z + ... + e l 1 z 

(i) ( ) (i) ( (i) -I (i) (p ) -p, e2 Z = e2 0) + e2 (1) z + ... + e2 2 Z (5.29) 

(i) ( ) (i) (0) (i) ( ) -I (i) (p ) -P, e3 Z = e3 + e3 I z + ... + e3 3 Z 

where e(i) (q) is the vector of coefficients of z -q in e(i) (z) . From this sequence 
J J 

representation, the coefficients of powers of z are readily extracted to form the 

following vectors 

(5.30) 

The following least squares cost function is defined, the objective IS to 

minimise the function for each eigenvalue-eigenvector set 

i = 1, ... ,m (5.3\) 

The coefficients of w ~i) (z), V ~i) (z) and A.;:) (z) provide the degrees of 

freedom over which the minimisation is to be carried out. An iterative procedure based 

on a gradient search is adopted whereby w ~i) (z), v ~i) (z) and ",t·) (z) are 

calculated in turn, while the other two are kept fixed. 

Although this method allows for compensation of the characteristic loci across 

the whole frequency range, it is undesirable to introduce large gains athigh frequency 

to decouple the system. Therefore, the fixed gain controller Kh , equation (5.15), is 

retained to reduce interaction at high frequencies. In the previous analysis, G (z) is 

replaced by G(z)Kh. 
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5.5 Conclusions 

Two techniques of MIMO control system design have been described: 

Sequential Loop Closure (SLC) and the Characteristic Locus (CL) method. SLC is 

perhaps the simplest approach to the control of MIMO system, employing an array of 

single-loop controllers and relying upon the use of high gain in the control loops to 

combat interaction. However, this approach is limited when stability requirements 

dictate that high loop gains cannot be used. 

The Characteristic Locus method, by contrast, addresses the true multi variable 

nature of the control problem. The CL controller decouples the plant and compensates 

the characteristic loci of the plant in a similar fashion to the frequency response 

shaping of SISO systems. In practice, there is a high degree of similarity, making the 

CL design method attractive to the practitioner. Additionally, the design method only 

requires a frequency response model of the plant, which may be obtained 

experimentally. 

A recent discrete approach to the CL method has been discussed and it has 

been shown that in a discrete formulation, it is possible to decouple the plant over it's 

entire frequency range, thereby improving upon the closed-loop perfOlmance achieved 

with the original CL method. 
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Chapter 6 

Stability Issues and the Relevance of Multivariable 
Control in Multi-Channel Dynamic Structural Testing 

6.1 Introduction 

The fundamental objective in controlling a multi channel dynamic structural 

test is to achieve a desired set of output responses. In practice, classical SISO methods 

are used and the true multivariable nature of the problem is rarely perceived. This is a 

pragmatic approach which often works well, raising the question: Is there a need for 

multivariable control? Indeed, since classical SI SO methods obviate the need for a 

mathematical model of the plant and rely upon widely understood design principles, it 

makes no sense to use multivariable control unnecessarily. This chapter seeks to 

answer this motivating question, by identifying the conditions under which a SISO 

approa9~ is flawed. 

The success, or otherwise, of the SISO approach can be attributed to the simple 

principle of disturbance rejection, this is explored in section 6.2. A qualitative 

comparison is made with multivariable control, leading to the conclusion that the SISO 

approach is flawed when disturbance rejection is compromised by stability 

requirements. This rationale is pursued in sections 6.3 and 6.4 with a detailed analysis 

of the stability of a two-input, two-output test system. From this analysis general 

guidelines are derived, to recommend test conditions under which multi variable 

control would be most suitable [10, 15]. 

6.2 SISO and Multivariable approaches to controlling 
multi-channel tests 

Figure 6.1 shows a SISO test under feedback control. It is well understood that 

good disturbance rejection can be achieved';f a high gain controller can be used, 
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disturbance 

g(s) d(s) 

+ 

r(s) >---~ k(s) y(s) 

Controller Actuator Structure 

'----------1 h (s) 1+------' 

Transducer 

Figure 6.1 Single-input, Single-output system with a disturbance 

providing that the stability of the system is not prejudiced. 

Now consider the general case of a test with multiple inputs and outputs. The 

discussion throughout the remainder of this section applies to the general case and is 

illustrated by way of a two-input, two-output dynamic structural test. The dynamics of 

the structure in a two-input, two-output test can be represented by a transfer function 

matrix (TFM) G (s) where 

(6.1) 

The off-diagonal elements g12 (s) and g21 (s) describe the cross-coupling 

present in the specimen. The open-loop block diagram for this test is illustrated in 

Figure 6.2 and shows explicitly the two inputs and the two outputs. It is clear from the 

Figure that the dynamic coupling in the specimen is responsible for the interaction in 

the system. 

In principal, the SISO approach to controlling this plant is to design a feedback 

controller for the first input-output pair, then, when completed successfully, move onto 

the second input-output pair. In the general case, n actuators are used to control the 

force or displacement at n points on the structure and so n control loops are installed. 

This is the Sequential Loop Closure (SLC) approach described in chapter 5. In practice 

the process becomes iterative, as the successive tuning of each loop controller can 

destroy the performance achieved in previous loops. A further complication arises with 

hydraulic actuation in that all loops must be closed simultaneously before tuning, to 

prevent drift of the actuators. This SLC control scheme is illustrated in Figure 6.3 
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where the transfer function matrix G (s) also incorporates the dynamics of the 

actuators 

s) Specimen y - Actuator Channel) 

gll (s) + 
+ 

Specimen -- Ch 2-- ) 

gl2 (s) 

Specimen 
Ch 1- 2 

g21 (s) 

s) Specimen 
+-:<' 

y 
Actuator Channel 2 

g22 (s) '<..Y 

Figure 6.2 Open-loop test with two inputs and two outputs 

hi (s) 

- Controller u l (s) + Channel I 
gll (s) +-Q9 kl (s) + 

-- gl2 (s) 

g21 (s) 

Controller + 
f(A Channel 2 

g22 (s) 
+ 

+'( )I 
k2 (s) u2 (s) 

-

-' h2 (s) 

Figure 6.3 Two-channel test seen as two SI SO systems 
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It can be seen in Figure 6.3 that the interaction is viewed as a disturbance by an 

individual channel. Thus, providing stability margins are maintained, the interaction 

can be suppressed with high gain controllers. This proviso is crucial to the success of 

SLC. 

Now consider the same test under multivariable control, this is illustrated in 

Figure 6.4. The controller K (s) has the structure 

[

kll (s) kp (S)] 
K(s) = -

k21 (s) k22 (s) 
(6.2) 

The gains kl2 (s) and k21 (s) provide interaction in the controller itself, 

which gives the engineer a greater ability to compensate for the interaction in the open

loop plant. Fundamentally, the multivariable nature of the control problem is being 

tackled in a true multivariable manner. 

hI (s) 

u I (s) 
+0 kll (s) ~ gll (s) + 

+ + 

... kl2 (s) - gl2 (s) 

... k21 (s) ... g21 (s) 

+ + 
/0-, 

~ g22 (s) 
+'<;:>-' 

+'< k22 (s) y W 
- U2 (s) 

h2 (s) 

Figure 6.4 Two-channel test with multivariable control 
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6.3 Stability analysis for SISO tests 

From the foregoing section it is clear that the performance of a SLC scheme 

will suffer when disturbance rejection is poor. This situation occurs when controller 

gains have to be reduced to maintain stability. Consequently, dynamic structural tests 

likely to suffer from poor performance under SLC control may be identified as those in 

which the loop gains are necessarily low to maintain stability. This reasoning, 

however, needs to be extended to be of real use: that is, to relate poor performance 

under SLC control to the relative mass and stiffness of the structure under test. 

Guidelines can then be constructed for identifying dynamic structural tests that stand 

to gain significantly from multi variable control: 

It is instructive to first consider the stability characteristics of a SISO test with 

respect to the mass and stiffness of the specimen. Stability is easily visualised as a 

function of mass and stiffness, and this provides an insight to the corresponding 

behaviour to be expected of a MIMO system 

6.3.1 Displacement control 

The system studied in this section has been modelled in chapter 4, the 

schematic is repeated below and the nominal model data are given in appendix 4. 

hydraulic actuator 

setvo-valve 

i (I) /(t),x (t) 
I • 

ram ram 
M 

piston, effective area A 

Figure 6.5 Schematic of a SISO system 

Likewise, the transfer function has been derived in chapter 4 and is repeated in 

equation (6.3): 
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(6.3) 

The torque-motor contributes a pair of heavily damped poles to the transfer 

function (the quadratic factor (i + 2i;;fi!rS + oo~) in the denominator) and the 

quadratic factor (i + 2i;;hOOhs + oo~) describes a very lightly damped pair of poles, 

referred to as the 'hydraulic' poles, arising from the mass of the structure oscillating 

with the very stiff spring formed by the volume of compressible oil in the actuator. The 

remaining simple pole at s = -00 I can be regarded approximately as an integrator as 

typi call y 00 I '" O. 

The SISO system IS controlled under the scheme in Figure 6.1 with 

g (s) = ~x (s) / ~i (s) . For the remainder of this chapter the gain k (s) h (s) is 

constant, i.e. k(s) h (s) = kh. The pole locations of g(s), with the nominal model 

data, are shown in Figure 6.6 as 'x'. This Figure shows the loci of the poles of the 

closed-loop system as the gain kh is increased. It can be seen that as the gain 

increases, the hydraulic poles move into the unstable right-half complex plane. The 

gain at which the hydraulic poles cut the imaginary axis is the 'critical' gain, when the 

closed-loop system is at the limit of stability. 
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1000 

i i . 'hydraulic' i . r·········r········ T·······iiOTe··········T········· : ···········T 
: : , : : : : 

500 to ........... : ............ '·-·----·····i·····-···-···:·-·-·--···-·-:-···-···-·-·-~· 

~ 
f 

0 

:: ::!: 
:! :;:: 
:: ·-------.--... i-.- ...... -.-.~.- ..... ----.~. 

: : : : · , . . · , . . · . . . · . . . 
.. 00 i---------····!--···-------·: -----·······+--····--····f····--······+····--·····'1-

: : : : 

·'000 
; i i 'hyilraulic' i i i f·---------·'I·········· ·-r·····--·polf--··--·----l'··---····· r-"'-'----'1' 

·1500 
1 l j 1 1 ! : .... _--_ ..... --............................ ~ .......................................... . 

·1500 ·1000 .. 00 o 500 1000 1500 
Real AAis 

Figure 6.6 Root-locus plot of nominal SISO displacement system 

Recall from chapter 4 that the hydraulic natural frequency 00 h strongly depends 

upon the mass of the specimen, whilst the hydraulic damping ratio i;;h is strongly 

influenced by the stiffness. These two quantities are plotted in Figure 6.7 for a model 
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with the hydraulic data given in appendix 4 and a range of mass and stiffness values 

given in tables A4.3 and A4.4 in appendix 4. Since (f) h and ~h are clearly dependent 

upon the mass and stiffness of the specimen, and also describe the location of the 

'hydraulic poles', it is reasonable to suspect that stability will also be affected by mass 

and stiffness. The following study will investigate the nature of the relationship 

between stability and the mass and stiffness of the specimen . 

. 2 
;;; 

f 
1 

Mass Kg o 

Figure 6.7 Effect of mass and stiffness variation upon (f) hand Sh 

Consider the nominal system under closed-loop control with the controller gain 

kh at the critical value, i.e. the closed-loop system is at the limit of stability. Now, 

consider the effect upon stability of changing the mass and stiffness of the specimen 

whilst the controller gain remains constant. A locus of closed-loop pole positions can 

be obtained as the mass of the specimen changes whilst the stiffness is held constant. 

This can be repeated with differing values of stiffness, thus obtaining a family of loci 

to illustrate the stability of system through the movement of its closed-loop poles. Such 

a family ofloci are presented in Figure 6.8, where the poles of the nominal closed-loop 

system, with critical gain, are indicated by stars. 
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Figure 6.8 Root loci of SISO displacement system with changing mass and 

stiffness 

Figure 6.8 shows that the location of the closed-loop 'hydraulic' poles are 

clearly dependent upon the mass and stiffness of the specimen whilst the other closed

loop poles remain virtually stationary. This dependence is shown in more detail in . 

Figure 6.9, where each curve is the locus of a closed-loop hydraulic pole with varying 

mass, the family of curves illustrate the effect on the locus of varying the stiffness of 

the specimen. This figure shows that increasing the mass of the specimen serves to 

move the 'hydraulic' poles toward, and eventually into, the right half complex plane, 

thus degrading stability. Conversely, reducing the mass of the specimen moves the 

hydraulic poles deeper into the left hand complex plane, thus, improving stability. In 

terms of the stiffness of the specimen, reducing the stiffness serves to move the 

'hydraulic' poles closer to the right half complex plane, thereby degrading stability. 

'Conversely, increasing the stiffness of the specimen moves the hydraulic poles away 

from the left hand complex plane, thus improving stability. In summary, the root loci 

indicate that the stability of the system will degrade with increasing mass and 

decreasing stiffness. 

Another important observation is that the movement of the pole positions due 

to changing mass values is far greater than that due to changing stiffness values; note 

the axes scaling in Figures 6.8 and 6.9. In other words, the mass of the specimen has a 

greater impact upon stability than does its stiffness. 
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Figure 6.9 Root loci of SISO displacement system with changing mass and 

stilTness - detail 

The movement of the closed-loop pole locations certainly indicate the nature of 

the relationship between stability and the mass and stiffness of the specimen. This 

relationship is made more apparent when the critical gain of the closed-loop system is 

determined as a function of mass and stiffness. This will provide a surface of controller 

gain for which the system becomes unstable and clearly illustrates the relationship, 

complementing the study of the root loci of the system. The surface for a SISO 

displacement system with wide mass and stiffness variation is presented in Figure 6.10 

(the hydraulic data and mass and stiffness ranges are given in appendix 4, tables A4.1, 

A4,3 and A4.4 respectively) where, for each pair of mass and stiffness coordinates, the 

critical gain is determined. 

'1l 
i 
~ >0.' .. "::" .. 

. 0 

.~ 
u 

3 

Stiffness Nlm Mass Kg 

Figure 6.10 Critical gain surface for SISO displacement system 
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It can be clearly seen that low critical gain (and hence poor relative stability) 

occurs when the specimen has a high mass and that, to a lesser degree, reducing the 

stiffness further lowers the critical gain. I.e., poor relative stability occurs when the 

specimen has a low natural frequency. These conclusions concur with those drawn 

from consideration of the movement of the closed-loop poles of the system. 

6.3.2 SISO Load Control 

The transfer function relating servo-valve current to the force applied by the 

actuator ram has been derived in chapter 4 and is repeated below in a slightly different 

form. 

tJ.x (s) 

M(s) 
= (6.4) 

The denominator is identical to that in the transfer function for the 

displacement system and the numerator contains a quadratic factor due to the 

dynamics of the specimen. Again, the system is controlled under the scheme of Figure 

6.1, this time with G (s) = t.f(s) / M (s) . The root locus plot for this system, with 

the nominal model data.in appendix4 (tables A4.1 and A4.2), is shown in Figure 6.11. 

The open-loop poles are marked by 'x' and the open-loop zeros are marked by '0'. It 

can be seen that as the gain kh increases, the hydraulic poles again move into the right 

half complex plane. The critical gain is the value of the controller gain at which point 

the hydraulic poles cut the imaginary axis, i.e. the limit of stability. 
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Figure 6.11 Root-locus plot of nominal SISO load system 
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As with the study of the displacement system, stability is investigated by 

considering the effect of mass and stiffness variation upon closed-loop pole positions 

and the effect upon the controller gain required to destabilise the system. Attention is 

focused on the relationship between relative stability and the mass and stiffness of the 

specimen, this is explained in the remainder of the section. 

Consider the nominal system under closed-loop control with the controller gain 

kh at the critical value, i.e .. the closed-loop system is at the limit of stability. Now, 

consider the effect upon stability of changing the mass and stiffness of the specimen 

whilst the controller gain remains constant. A locus of closed-loop pole positions can 

be obtained as the mass of the specimen changes whilst the stiffness is held constant. 

This can be repeated with differing stiffness values, thus obtaining a family of loci to 

illustrate the stability of the system through the movement of its closed loop poles. 

Such a family of loci are.illustrated.in Figure 6.12, where the poles of the nominal 

closed-loop system,. with critical gain, are indicated by stars. The range of mass and 

stiffness values are given in appendix4 (tables A4.3 and A4.4). 
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Figure 6.12 Root loci of SISO load system with changing mass and stiffness 

Figure 6.12 clearly shows that the location of the closed-loop 'hydraulic' poles 

are again dependent upon the mass and stiffness of the specimen. The other closed

loop poles, whilst undergoing a degree of movement, are constrained to the left-half 

complex plane and so can be disregarded from a stability point of view. The movement 

of the hydraulic poles is shown in more detail. in Figure 6.13, where each curve is the 

locus of a closed-loop hydraulic pole with varying mass, the family of curves illustrate 
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the effect on the locus of varying the stiffness of the specimen. Consider that the 

specimen has a low mass, then the closed-loop hydraulic poles will be located at the 

extremity of the loci as indicated in the Figure. As the mass increases, the closed-loop 

poles move further to the right in the s-plane, degrading the stability of the system. 

With the model data in appendix 4 (tables A4.1 and A4.2), worst case stability occurs, 

for all stiffness values, when the hydraulic natural frequency is in the range l.Sm r to 

1.7mr . The corresponding mass values can be determined from the approximation in 

equation (4.64), as below. 

(6.5) 

Re-arranging equation (6.5) and inserting the hydraulic model data gives the 

following range of mass that correspond to worst-case stability. 

89Kg <M < 1 13 Kg (6.6) 

The factors of l.Sm r and 1.7mr in equation (6.5) are valid for the model data 

used. With values of mass greater than equation (6.6), the family of root loci are tightly 

bunched - in other words, the stiffness of the specimen has negligible effect upon 

stability. However, when the mass of the specimen. falls into, and below, the range for 

worst case stability, equation (6.6), the family of root loci spread out and the stiffness 

of the specimen has some effect;. in this region, reducing the stiffness moves the 

hydraulic poles further to the right in the s-plane and degrades stability. 

An important observation to make is that. the movement of the pole positions 

due to changing mass values is far greater than that due to changing stiffness values; 

note the axes scaling in Figures 12 and 13. Hence, as in the displacement system, the 

mass of the specimen has a greater impact upon stability than does its stiffness. 

In summary, the. root loci indicate. that the stability of the system will degrade 

as the mass of the specimen increases from zero to the range given in equation (6.6), 

which represents worst case stability .. Simultaneously, a reduction in stiffness will 

further degrade stability. However, as the mass increases beyond the worst case range, 

stability will improve and the effect of stiffness upon stability will be negligible. 
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Figure 6.13 Root loci of SISO load system. with changing mass and stiffness -

detail 

As in the study of the displacement system, the relationship between stability 

and the mass and stiffness of the specimen is more apparent when the surface of 

critical gain is determined for the closed-loop system. With the model data and the 

range of mass and stiffness values given in appendix 4, the critical gain surface in 

Figure 6.14 is obtained. Once again, the surface shows controller gains at which the 

closed-loop system becomes unstable, as a function of mass and stiffness. The surface 

clearly illustrates the stability characteristics of the system and exhibits a prominent 

'valley' at a low value of mass, which occurs in the range given in equation (6.6). The 

behaviour illustrated by the surface agrees with that deduced from the root loci study: 

as the mass increases from zero up to the worst case value, stability is degraded whilst 

at the same time a reduction in stiffness worsens the situation. Beyond the worst case 

value, increasing the mass improves stability and the stiffness no longer has an 

observable effect. The surface also shows that at high values of mass, the critical gain 

is constant and mass now has no effect upon stability. 
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Figure 6.14 Critical gain surface for SISO displacement system 

6.4 Stability analysis for MIMO tests 

A structural test may involve several actuators. To simplify the analysis in this 

section, a test with two actuators is considered and the specimen is represented by a 

two degree-of-freedom mass-spring-damper arrangement as shown in Figure 6.15. The 

damping configuration allows both vibrational modes to have the same damping ratio 

(see chapter 4). 

Figure 6.15 Two degree-of-freedom specimen for a MIMO test 

The masses are excited by two identical hydraulic actuators, the actuators are 

described in chapter 4. Usin~the notation in Figure 6.15, with f(s) = ~l (s) /2 (s)J T 

and x (s) = [Xl (s) X2 (S)J ' the dynamics of the structure are described by equation 

(6.7). 
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f(s) = (iM+sB+K)x(s) (6.7) 

where 

(6.8) 

The specimen now has four parameters that influence stability, Kl' K 2 , Ml 

and M 2 , complicating the task of relating their combined effect to stability. To build 

upon the previous S1S0 investigation it is desirable to normalise these mass and 

stiffness elements as shown below. 

M= m[~~] 
K=k[(I+Y) -~ 

-Y yJ 

(6.9) 

This provides a more useful description of the specimen: homogenous 

variation in the material constants of the specimen, or the scaling of the specimen, are 

reflected in variation in m and k whilst 13 and y are constant; conversely, local 

variations in the structure of the specimen are reflected in variations in ~ and y whilst 

m and k are constant. 

6.4.1 Multivariable displacement control 

The block diagram of the open-loop system has been presented in chapter 4. A 

state-space model of the system can be readily obtained by combining state-space 

representations of the individual blocks. The eigenvalues of the state-space model, 

uasing the nominal model data in appendix S (Tables AS.I and AS.2) , are given 

below. 
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TABLE 6.1 Eigenvalues of the state-space model of the nominal displacement system 

Eigenvalue Description 

-792 ± j383.6 Complex 'servo-valve' pole pair 

-792 ± j383.6 Complex 'servo-valve' pole pair 

-2.58 ±j121 1.7 Complex 'hydraulic' pole pair 

-1.08 ± j 1\ 90.6 Complex 'bydraulic' pole pair 

-0.0121 Real pole close to s-plane origin (i.e. approximate integrator) 

-0.0018 Real pole close to s-plane origin (i.e. approximate integrator) 

-0.93 ±j92.9 Complex pole pair in the response of the specimen, 
2 -I 

x(s) = (s M+sB+K) /(s) 

-2.43 ± j243.2 complex pole pair in tbe response of tbe specimen, 
2 -I 

x(s) = (s M+sB+K) /(s) 

The eigenvalues are very similar in nature to the poles of the SISO 

displacement system; those of the servo-valves, 'hydraulic' poles and 'integrator' 

poles. 

As with the SISO systems, the test is controlled under the scheme in Figure 6.1 

with 6x (s) = G (s) M (s). The gain K (s) H (s) is again constant and the 

individual controller gains are restricted to being identical, thus the gain matrix is 

written 

(6.10) 

The pole locations of G (s) with nominal model data are shown in Figure 6.16 

as 'x', the model data is found in appendix 5. This figure shows the loci of the poles of 

the closed-loop system as the gain c is increased. The behaviour of the pole locations 

is similar to that in the SI SO displacement system and it is the 'hydraulic' poles that 

move into the right half complex plane, resulting in instability. The critical gain is the 

limiting value of c beyond which. the closed-loop system becomes unstable, the pole 

locations at critical gain are shown on Figure 6.l6 as '0'. The figure also shows that 

the poles due to the response of the specimen are unaffected by the gain of the 

controller. 
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Figure 6.16 Multivariable root locus plot of nominal dispalcement system 

Consider the nominal system under closed-loop control with the controller gain 

KH at the critical value, i.e. the closed-loop system is at the limit of stability. 

Furthermore, consider the effect upon stability of homogenously changi.ng the mass. of 

the specimen whilst the controller gain and the stiffness remain constant, Le m varies 

whilst k, ~ and y remain constant in equation (6.9). A locus of closed-loop pole 

positions can be obtained to illustrate the stability of system and is presented in Figure 

6.17, where the poles of the nominal closed-loop system, with critical gain, are 

indicated by '0'. The model data and range in mass values are given in appendix S 

(tables AS.l and AS.3). 
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Figure 6.17 Multivariable root loci of displacement system with varying m 
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Figure 6.17 shows that the poles of the closed-loop system are clearly 

dependent upon the mass of the system and in particular, two pairs of complex poles 

move toward, and into, the right half complex plane as the mass increases. The region 

. containing the unstable loci is shown in more detail in Figure 6.18, the closed-loop 

poles with nominal model data are again marked on the plot with '0'. As in the 

previous case when the controller gain was increased, the 'hydraulic' poles are 

responsible for causing the instability, this time as the mass of the specimen increases. 

Figure 6.18 also show two pairs of complex poles moving along lines of constant 

damping toward the origin of the s-plane: these are the poles due to the response of the 

specimen and will remain stable as the specimen itself is stable. 
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Figure 6.18 Multivariable root loci of displacement system with varying m -

detail 

Let us now return to the nominal system under closed-loop control with the 

controller gain KH still at the critical value,.i.e. the closed-loop system is at the limit 

of stability. Now, consider the effect upon stability of homogenously changing the 

stiffness of the specimen whilst the controller gain and the mass remain constant, i.e k 

varies whilst m, ~ and y remain constant in equation (6.9). The corresponding loci of 

closed-loop pole positions is illustrated in Figure 6.19, where the poles of the nominal 

closed-loop system, with critical gain, are indicated by '0'. The model data and 

stiffness variation are given in appendixS (tables AS.l and AS.4). 
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Figure 6.19 MuItivariable root loci of displacement system with varying k 

Figure 6.19 shows that the poles of the closed-loop system are dependent upon 

the stiffness of the system. However, the dependency is far less than that observed in 

the case when the mass of the specimen was varying (Figure 6.17). The region close to 

the unstable right-half s-plane is shown in more detail in Figure 6.20, the closed-loop 

poles with nominal model data are again marked on the plot with '0'. The 'hydraulic' 

poles move toward, and eventually into, the right-half plane as the stiffness of the 

specimen reduces. However, the penetration.into the unstable right-half s-plane is very 

limited. Thus, a reduction in stiffness is destabilising but not as great as the 

destabilisign effect of increasing the mass of the specimen. Figure 6.20 also show two 

pairs of complex poles moving along lines of constant damping toward the origin of 

the s-plane: these are, again, the. poles due to the response of the specimen and will 

remain stable as the specimen itself is stable. 

The movement of the closed-loop poles certainly indicate the nature of the 

relationship between stability and the mass and stiffness of the specimen. This 

relationship is made more apparent when the critical gain of the closed-loop system is 

determined as a function of mass and stiffness. This will provide a surface of controller 

gain for which the system becomes unstable and clearly illustrates the relationship, 

complementing the study of the root loci of the system. The surface for a MIMO 

displacement system with wide mass and stiffness variation is presented in Figure 6.21 

(the hydraulic data and mass and stiffness ranges are given in appendix 5; tables A5.1, 

A5.3 and A5.4 respectively) where, for each pair of mass and stiffness coordinates, the 

critical gain is determined. It can be clearly seen that low critical gain (and hence poor 

relative stability) occurs when the specimen has either a low stiffness, a high mass or 
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both. I.e., when the specimen has low natural frequencies. These conclusions concur 

with those drawn from consideration of the movement of the closed-loop poles of the 

system. 
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Figure 6.20 Multivariable root loci of displacement system with varying k -

detail 
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Figure 6.21 Critical gain surface. Varying m and k, fixed ~ and y 

A similar investigation can be conducted into the effect of loc~l structural 

changes in the specimen, i.e. variation in ~ or y. For these cases, the root loci plots are 
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omitted but the critical gain surface is presented in Figure 6.22, where, for each pair of 

~ and y coordinates, the critical gain is the gain of the controller at which point the 

system becomes unstable. 

g""'" 

stiffness related mass related 

Figure 6.22 Critical gain surface. Varying ~ and y, fixed m and k 

The stability behaviour is very close to that already determined for 

homogenous variation in mass and stiffness. That is, increasing mass and/or reducing 

stiffness, i.e. reducing the natural frequencies of the structure, serves to degrade 

stability . 

6.4.2 Multivariable load control 

The block diagram of the open-loop. system has been presented in chapter 4. A 

state-space model of the system can be readily obtained by combining state-space 

representations of the individual blocks. The eigenvalues of the state-space model, 

using the nominal model data in appendix S (tables AS.l and AS.2), are given below. 

TABLE 6.2 Eigenvalues of the nominal load system state-space model 

eigenvalue description 

-792 ± j383.6 complex 'servo-valve' pole pair 

-792±j383.6 complex 'servo-valve' pole pair 

-2.58 ±jI211.7 complex 'hydraulic' pole pair 

-\.08 ±jll90.6 complex 'hydraulic' pole pair 

~.0121 real pole close to .-plane origin (i.e. approximate integrator) 

~.OOI8 real pole close to .-plane origin (i.e. approximate integrator) 
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The eigenvalues are very similar in nature to the poles of the SISO 

displacement system; those of the servo-valves, 'hydraulic' poles and 'integrator' 

poles. 

As with the SISO systems, the test is controlled under the scheme in Figure 6.1 

with t!.f(s) = G (s) M (s). The gain K (s) H (s) is again constant and the 

individual controller gains are restricted to being identical, thus the gain matrix is 

unchanged from equation (6.10). 

The pole locations of G (s) with nominal model data are shown in Figure 6.23 

as 'x'. The poles in the response of the specimen are also shown on the figure as '0'. 

This figure shows the loci of the poles of the closed-loop system as the gain c is 

increased. The behaviour of the pole locations is similar to that in the SISO load 

system and it is the 'hydraulic' poles that move into the right half complex plane, 

resulting in instability. The critical gain is the limiting value of c beyond which the 

closed-loop system becomes unstable. 
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Figure 6.23 Multivariable root locus plot of nominal load system 

Consider the nominal system under closed-loop control with the controller gain 

KH at the critical value, i.e. the closed-loop system is at the limit of stability. 

Furthermore, consider the effect upon stability of homogeneously changing the mass 

of the specimen whilst the controller gain and the stiffness remain constant, i.e m 

varies whilst k, p and y remain constant in equation (6.9). A locus of closed-loop pole 

positions can be obtained to illustrate the stability of system and is presented in Figure 

6.24, where the poles of the nominal closed-loop system, with critical gain, are 
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indicated by'·'. The model data and range in mass values are given in appendix 5 

(tables AS.l and AS.3). 
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Figure 6.24 Multivariable root loci of load system as a function of m 

Figure 6.24 shows that the poles of the closed-loop system are clearly 

dependent upon the mass of the system, with significant movement close to the right 

half-complex plane. This region is shown in more detail in Figure 6.25, the closed-loop 

poles with nominal model data (and controller gain at the critical value) are again 

marked on the plot with '.'. Consider that the specimen has a low mass, then the 

closed-loop 'hydraulic' poles will be located at the extremity of the loci as indicated in 

the Figure. As the mass increases, the closed-loop poles decrease in magnitude but 

move further to the right in the s-plane, degrading the stability of the system until a 

worst case stability point is reached. With .the model data in appendix 5, worst case 

stability occurs when the mass of the specimen is at the nominal value. As the mass 

increases beyond this value, the closed-loop poles continue to reduce in magnitude but 

now move back to the left in the s-plane, thereby recovering from the point of worst 

case stability. 
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Figure 6.25 Multivariable root loci of load system as a function of m - detail 

Let us now return to the nominal system under closed-loop control with the 

controller gain KH still at the critical value, i.e. the closed-loop system is at the limit 

of stability. Now, consider the effect upon stability of homogeneously changing the 

stiffness of the specimen whilst the controller gain and the mass remain constant, i.e k 

varies whilst m, 13 and y remain constant in equation (6.9). The corresponding loci of 

closed-loop pole positions is illustrated in Figure 6.26, where the poles of the nominal 

closed-loop system, with critical gain, are indicated by '*'. The model data and 

. stiffness variation are given in appendix S (tables AS.) and AS.4). 
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Figure 6.26 Multivariable root loci of load system as a function of k 
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Figure 6.26 shows that the poles of the closed-loop system are dependent upon 

the stiffness of the system. However, the dependency is far less than that observed in 

the case when the mass of the specimen was varying .. The region close to the unstable 

right- half s-plane is shown in more detail in Figure 6.27, the closed-loop poles with 

nominal model data are again marked on the plot with '*'. The 'hydraulic' poles move 

toward, and eventually into, the right-half plane as the stiffness of the specimen 

reduces. However, the penetration into the unstable right-half s-plane is very limited. 

Thus, a reduction in stiffness is destabilising but not as great as the destabilising effect 

of increasing the mass of the specimen. 
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Figure 6.27 Multivariable root locus of load system as a function of stiffness k 

- detail 

The movement of the closed-loop poles certainly indicate the nature of the 

relationship between stability and the mass and stiffness of the specimen. This 

relationship is made more apparent when the critical gain of the closed-loop system is 

determined as a function of mass and stiffness. This will provide a surface of controller 

gain for which the system becomes unstable and clearly illustrates the relationship, 

complementing the study of the root loci of the system. The surface for a MIMO load 

system with wide mass and stiffness variation is presented in Figure 6.28 (the 

hydraulic data and mass and stiffness ranges are given in appendix 5) where, for each 

pair of mass and stiffness coordinates, the critical gain is determined. The surface 

shows a clear 'valley' which represents a region of worst case stability. The 'valley' 

corresponds directly to the movement of the closed-loop poles in the root loci plots of 

Figures 6.25 and 6.27. Furthermore, the valley is parallel to the stiffness axis, which 
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means that worst-case stability is a function of the mass of the specimen only. For the 

model data in appendix 5, worst case stability occurs when the mass m is in the range 

85 Kg to 181 Kg. This agrees with the root locus study where, with nominal stiffness, 

worst case stability was found to occur when the mass m was at it's nominal value of 

141 Kg. 

.. 

." , 
.,60 ••.... ,,···· 

x 10' 

o 
Sliffness Nlm 

Figure 6.28 Critical gain surface. Varying m and k, fixed P and 1 

A similar investigation can be conducted into the effect of local structural 

changes in the specimen, i.e. variation in p or.1. For. these cases,. the root locus plots 

are omitted but the critical gain surface is presented in Figure 6.29, where, for each 

pair of P and 1 coordinates, the critical gain is the.gainofthe controlleratwhich point 

the system becomes unstable. 
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Figure 6.29 Critical gain surface. Varying P and 1, fixed m and k 
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The stability behaviour is very close to that already determined for 

homogenous variation in mass and stiffness. That is, the surface shows a clear 'valley' 

which represents a region of worst case stability. Again, the 'valley' is parallel to the 

stiffness axis, which means that worst-case stability is a function of the mass of the 

specimen only. For the model data in appendix 6, worst case stability occurs when ~ is 

in the range 0.5 to 1.5. 

6.5 Guidelines for identifying test conditions best suited to 
Multivariable control 

From Figures 6.21, 6.22, 6.28 and 6.29 it is clear that a load controlled test 

suffers from greater stability problems than does a displacement controlled test. In 

both types, it is also apparent that a change to the. mass of the specimen impacts 

directly upon stability whilst a change to the stiffness of the specimen has relatively 

little impact upon stability. 

In the case of a displacement controlled test, stability worsens as the mass of 

the specimen increases, and to a much lesser degree, as the stiffness of the specimen 

reduces. Multivariable control would therefore be most suited to tests where the 

specimen has a large mass. The stability characteristic of the load controlled test, 

however, presents a more challenging control problem. Here, the mass of the specimen 

again causes much more of a problem than does its stiffness. However, the relationship 

between the critical gain.ofthe system (and hence its relative stability) and.themass of 

the specimen is not monotonic. The critical gain undergoes a sharp local minimum as 

the mass increases from zero. In terms of relative stability, the minimum value of the 

critical gain represents a significant worst-case and it is in this region that the test is 

best suited to multivariable control methods. 
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Chapter 7 

Closed-loop Frequency Response Identification 

7.1 Introduction 

Inherent in multivariable controller design is a priori knowledge of a plant 

model. In the absence of an existing model, one of two approaches must be followed in 

order to obtain a suitable model (as linear models have been developed thus far, 

attention will be restricted in this chapter to linear models); either from mathematical 

modelling of the plant dynamics, or from experimental observations of the plant 

excitation and resulting response, i.e. system identification. It is not uncommon to find 

the former method untenable and experimental observation is preferred. For example, 

although a model of the Torsion rig has been developed in chapter 4, this was not 

sufficiently accurate for control system design and an experimental frequency 

response of the rig was required. 

Some plants cannot be operated open-loop due to type 1 (integrating) 

behaviour, economic constraints or safety reasons. In such cases, the identification task 

is complicated by the imposition of closed-loop control. In a previous paper [46], the 

identification of the frequency response of a multivariable plant operating under 

closed-loop control was considered and a correlation technique. used. That work is 

expanded here to demonstrate the suitability of the technique to the closed-loop 

multivariable experiment and several examples are presented. Furthermore, the 

correlation technique is simple and robust in the presence of noise, disturbance and 

harmonics. 

A brief discussion of system identification is given in section 7.2, the technique 

of correlation analysis is discussed in section 7.3 and generalised for the closed-loop 

multivariable experiment in section 7.4. Applied examples of the technique are 

presented in section 7.5. 
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Chapter 7 

Closed-loop Frequency Response Identification 

7.1 Introduction 

Inherent in multivariable controller design is a priori knowledge of a plant 

model. In the absence of an existing model, one of two approaches must be followed in 

order to obtain a suitable model (as linear models have been developed thus far, 

attention will be restricted in this chapter to linear models); either from mathematical 

modelling of the plant dynamics, or from experimental observations of the plant 

excitation and resulting response, i.e. system identification. It is not uncommon to find 

the former method untenable and experimental observation is preferred. For example, 

although a model of the Torsion rig has been developed in chapter 4, this was not 

sufficiently accurate for control system design and an experimental frequency 

response of the rig was required. 

Some plants cannot be operated open-loop due to type I (integrating) 

behaviour, economic constraints or safety reasons. In such cases, the identification task 

is complicated by the imposition of closed-loop control. In a previous paper [46], the 

identification of the frequency response of a multivariable plant operating under 

closed-loop control was considered and a correlation technique used. That work is 

expanded here to demonstrate the suitability of the technique to the closed-loop 

multivariable experiment and several examples are presented. Furthermore, the 

correlation technique is simple and robust in the presence of noise, disturbance and 

harmonics. 

A brief discussion of system identification is given in section 7.2, the technique 

of correlation analysis is discussed in section 7.3 and generalised for the closed-loop 

multivariable experiment in section 7.4. Applied examples of the technique are 

presC'mted in section 7.5. 
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7.2 System identification 

Extensive work over the past twenty years or so has been conducted in the field 

of systern identification, the interested reader is referred to several established texts, 

for exarnple Ljung [47] and Soderstrorn and Stoica [48], and rnany review papers, e.g. 

Godfrey [49], Ljung and Glover [50], Well stead [51] and Unbehauen and Rao [52]. 

The rnain thrust of research activity has been concerned with the identification of 

plants with some assurned rnodel structure, the objective being to identifY the rnodel 

parameters. Such identification rnethods are known as 'parametric' and are based on 

input-output observations of the open-loop plant. 'Non Pararnetric' methods do not 

presurne a rnodel structure and yield constructions such as frequency responses and 

irnpulse responses. Both rnethods suffer frorn difficulties when the plant is operated in 

a closed-loop regirne, the introduction of feedback sornetirnes makes it irnpossible to 

identifY all of the rnodel parameters [47, pp 365-368]. In such circurnstances the 

validity of a parametric rnethod rnust obviously be questioned but non-parametric 

constructions can still be found. Unfortunately, cornparatively little attention has been 

paid to closed-loop identification rnethods. 

Several techniques exist for identifYing open-loop non-pararnetric 

constructions [49, 51], in this paper only frequency response models are considered for 

controller design. The sirnplest technique is to excite the plant with a sinusoid and 

rneasure the gain and phase change between input and output. In the presence of noise, 

disturbance and harmonics this technique is obviously unacceptable. Spectral 

techniques are superior but are cornputationally involved and their application to the 

closed-loop is not straightforward. Correlation analysis is a straightforward technique 

yielding accurate results, known to give very good irnrnunity to noise [49], and is 

further acknowledged as a very robust practical rnethod [51], found at the heart of 

rnany cornrnercially available frequency-response analysers. Indeed it is for these 

reasons that the practitioner is drawn to correlation analysis. Surprisingly, there 

appears to be no rnention in the literature of applying this technique to a multi variable 

plant operating in the closed-loop, although in addressing the same identification 

problern Melo and Friedly [53] have proposed a technique ernploying fast Fourier 

transforms. 

7.3 Frequency analysis by the correlation method 

Godfrey [49] gives a good account of correlation techniques and discusses their 

properties, of which the rnost irnportant is the ability to detect periodic signals in the 
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presence of noise, disturbance and harmonics. This property will become evident in 

the following analysis which begins with the autocorrelation function, Rn ("t) , 

defined below, where x (I) is a stationary stochastic or deterministic signal. 

T 

= lim _1 f X (/)x(/+1:)dl 
T-+",,2T 

-T 

(7.1) 

Consider a linear time invariant plant, g (I) , with a transfer function denoted 

by g (s). Under sinusoidal excitation, the plant output is a time-shifted and 

amplitude-scaled version of the plant input. Consequently, if the plant input is 

u(/) = Usin(co/) then the plant output is Y(/) = ulg (jco) I sin (Cl/+<jlg(CO)), 

where Ig (jro) I is the magnitude of the plant frequency response and <jl g (co) is the 

phase of the plant frequency response. This is illustrated in Figure 7.1 

plant 

u (I) = Usin (CDt) --_"~I g(s) 

Ig (jCD) I magnitude of plant frequency response 

~ g (Ol) phase of plant frequency response 

Figure 7.1 Sinusoidal excitation of a plant 

Consider now the product of the plant input and the plant output, i.e. 

u (/)y (I) = U21g (jCO) I sin (COl) sin (rol + <jl (co)) 
g 

(7.2) 

This bears a strong resemblance to the integrand of the autocorrelation 

function, equation (7.1), leading to the following result which may be interpreted as a 

'correlation' between the plant input and the plant output. 

T 

lim _1 fU(/)y(l)dl = Ig(jco)IR (1:) = 
T-+",,2T uu 

U2 

-lg(jro)1 cos<jl (Cl) 
2 g 

(7.3) 

-T 
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Furthennore, since the plant frequency response IS given by 

Ig Uro) I (cose!> g (ro) + j sine!> g (ro) ) , the correlation of equation (7.3) extracts the real 

part of the plant frequency response. 

In any realistic identification experiment, noise will be present to a lesser or 

greater extent, this is represented by the noise source n (t) in Figure 7.2 where the 

product of the plant input and.the measured output is 

n (I) 

planl 
+ 

u(l)--___ ~ g(s) 
y(t) + A J\ Ym(t) 
~~'\CX')I~~ 

Figure 7.2 Sinusoidal excitation with measurement noise 

Applying the correlation integral to this product, which now contains a noise 

tenn, gives 

T 

lim _1 J U(/)Ym(/)dl 
T->oo2T 

-T 

2 T· 

= U IgUro)1 cose!> (ro) + lim _1 f U (/)n(t)dl 
2 g T->oo2T 

(7.5) 

-T 

where the extracted real part of the plant frequency response is now contaminated by a 

noise integral tenn. However, U (I) = Usin (ro/) and n (I) are uncorrelated, thus the 

noise integral will decay as T increases, which gives rise to the robust noise rejection 

of the method. If the measured plant output is now multiplied by a cosine wave, the 

following product is obtained 

cos (ro/)y m (I) = Ulg(jro) I cos (rot) sin (rot + e!>g(ro» + cos (ro/)n (I) (7.6) 

and integration gives the following result 

T T 

lim _1 f cos (ro/)ym(t)dl = U1gUro)lsine!> (ro) + lim _1 f cos (ro/)n(t)dl 
T->oo2T 2 g T->oo2T 

-T -T 
(7.7) 
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Thus, the imaginary part of the plant frequency response is obtained but as 

before, a noise integral term is present. However, since cos (IDI) and n (I) are 

uncorrelated, the noise integral will again decay as T increases. 

The period of integration in equations (7.5) and (7.7) extends into negative 

time, which, of course, renders the integrals quite useless in any measuring device. 

Consequently, the period of integration is modified to be from 0 to KT, where K is an 

integer number of cycles of the exciting sinusoid and T is the period of the exciting 

sinusoid. The method retains it's noise rejection property with a large number of 

cycles. A further useful property of the correlation (although not relevant to the linear 

approach adopted in this thesis) is that harmonics produced by non-linearities in the 

plant do not affect the measurement. This is shown below for completeness. 

Referring to Figure 7.2, suppose that there is a harmonic component present in 

the plant output, Vsin (NIDI + ~h)' where N is a positive integer. The product of the 

plant input and the measured plant output then becomes 

U(I)Ym(t) = u2
jg(;ro)j sin (ID I) sin (rol+~g(ro» 

+ UVsin (rol) sin (Nrol + ~h) + Usin (rol) n (t) 

and the correlation integral yields 

KT 
1 J U'!gU.,)! 1 . 

- u(t)y (t)dl= {KTcos~ (00)--[slD(41tK+~ (.,»-sin(, (00»]) 
KT m 2KT • 2., • g 

o 

(7.8) 

UV 1 1.. 
+ 2KT{ (N-l)oo [sin([N-1121tK+~h) - sin(~h)) (N+l)., [slD([N+I]21tK+'h) -S1D(<Ph)]) 

KT 

+ .!!.... J sin (00/) n (I) dl 
KT 

o 
(7.9) 

Although equation (7.9) appears cumbersome, many terms equate to zero since 

they are of the form sin (21tP +~) - sin (~) = 0, where P is a positive integer. 

Hence, equation (7.9) reduces to 

KT 

_1 f U (I)y (t)dl = 
KT m 

KT 
u2

j (j )j U 
g CO cos~ (CO) + - f sin (COl) n (I)dl 

2 g KT 
(7.10) 

o o 

which is the same as equation (7.5), with revised integral limits, and the 

harmonic component has no effect on the correlation. Similarly, the harmonic 
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component has no effect when obtaining the imaginary component of the frequency 

response. Equation (7.10), and the corresponding integral used to obtain the imaginary 

part of the frequency response of the plant, are illustrated diagrammatically in Figure 

7.3. Note that both the multiplying sine and cosine functions have unity magnitude. 

noise 

n (t) 

KT 

u (I) = Usin (oot) g (t) _1 J dt 
KT 

Ic(K) 

0 

cos (oot) 

KT 

_I J dt 
KT 

I, (10 
0 

sin (oot) 

Figure 7.3 Schematic of correlation method 

Using the notation found in Figure 7.3, the integrals are summarised below in 

equation (7.11). 

ulgUro)lsincjl (ro) I KT 
I (K) = g + - f n (I) cos (rol) dl 
c· 2 KT 

o 

UlgUro)1 coscjl (ro) I KT 

Is(K) = 2 g +KTfn(t)sin(rol)dt 

(7.11) 

o 

The magnitude and phase of the plant frequency response are then obtained 

from equations (7.11) as follows, paying due regard to the sign of le (K) and Is (K) 

when evaluating the atan function. 

(7.12) 
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7.3.1 Application to a SISO closed-loop experiment 

As discussed earlier, identification from a closed-loop experiment can cause 

significant problems, this is primarily due to input-output noise correlation as a result 

of the feedback path. Figure 7.4 is a block diagram of the closed-loop experiment with 

an input disturbance d (s) and measurement noise n (s); the measured output is 

Y m (s). An output disturbance could also be incorporated into the block diagram 

(directly after the plant) and in the following analysis can be accounted for by 

replacing n (s) with n (s) + dout (s) 

In identifying g U(jJ) the following two approaches suggest themselves and are 

discussed below, 

disturbance noise 
d(s) n (s) 

controller plant 

r (s) --o(X:}--.l k(s) 
u (s) 

g(s) 
+ 

Figure 7.4 Block diagram of closed-loop system 

(i) identification of g U(jJ) from inside the loop 

The frequency analysis is applied to the measured plant input and the measured 

plant output exactly as in the open-loop case. However, the presence of the feedback 

loop results in the disturbance and noise sources appearing in both u (s) and y (s), 
m 

equations (7.13). 

() _ k(s) () 1 d() k(s) u s - r s + s - n (s) 
1 +g(s)k(s) 1 +g(s)k(s) 1 +g(s)k(s) 

y (s) = g (s) k (s) r (s) + g(s) d (s) + 1 n (s) 
m 1 +g(s)k(s) 1 +g(s)k(s) 1 +g(s)k(s) 

(7.13) 

Consequently, the noise measured at the input and the noise measured at the 

output are correlated, as are the disturbance measured at the input and the disturbance 

measured at the output. To proceed with the frequency-response analysis, denote the 

disturbance and noise terms appearing in u (s) as d;<s) and n; (s) respectively. 
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Similarly, denote the disturbance and noise terms in the measured output as d (s) and o 

no (s) respectively. The plant input and the measured output can then be written in the 

time domain, as below, where u' (s) = k (s) [I + g (s) k (s) ]-1 r (s) and * denotes 

convolution. 

u (t) = u' (I) + d j (t) -nj (t) 

Y m (I) = g (t) * u' (I) + do (t) + no (t) 
(7.14) 

The closed-loop is excited by a sinusoid, in which case u' (t) may be written 

U' (co) sin (co t) and time domain expressions for the plant input and measured plant 

output are 

u(t) = U'(co) sin (cot) +dj(t)-nj(t) 

Ym (t) = U' (co) !gUco)! sin (cot + Ij)g (co» + do (t) + no (t) 
(7.15) 

where !gUco)! is the magnitude of the plant frequency response and 4> (co) is the 
g 

phase of the plant frequency response. Applying the correlation integral of equation 

(7.5) to the closed-loop plant input and the measured plant output yields the following 

result. 

T 2 

lim _1 f u(t)Ym(t) = U' (co) !gUco)!cos(1j) (co» 
T-+oo2T 2 g 

-T 
T 

+ lim _1 f U' (co) !g Uco)! sin (co t + Ij) (co» [d. (t) - n. (t) ] dt 
T-+oo2T g I I 

-T 
T 

(7.16) 

+ lim _1 f U' (co) sin (cot) [d (t) +n (t)]dt 
T-+oo2T 0 0 

-T 
T 

+ lim _1 f [d (t) +n (t)] [d(t) -n.(t)]dt 
T~aJ2T 0 0 , , 

-T 

The first term on the right hand side of equation (7.16) contains the real part of 

the plant frequency response, however U' (co) cannot be measured directly and so the 

real part of the frequency response of the plant cannot be accurately determined. The 

remaining three integrals on the right hand side are unwanted and are due to the noise 

and disturbance sources; the first two of these integrals will decay to zero as T ~ 00. 

The final integral, however, will not decay to zero as T increases since the input and 
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output noise terms are correlated, as are the input and output disturbance terms. 

Consequently, estimates of gUm) obtained from inside the loop will suffer from 

reduced accuracy and bias. 

(ii) Identification of gUm) from outside the loop 

The approach yields a frequency-response estimate that is less affected by 

noise and disturbance than the previous approach from within the loop. The approach 

consists of two stages: identification of the frequency response of the closed-loop 

system, rUm), followed by calculation ofgUm) from the closed-loop system rUm) 

and knowledge of k Um) . The frequency-response analysis is applied to the product 

r (t) Y m (t) and r (1) does not contain any noise or disturbance signals since it is 

outside the feedback loop. This is illustrated in Figure 7.5 where the block diagram of 

Figure 7.4 is suitably redrawn. 

r ~ g(s)k(s) 
f(s) = 

1 +g(s)k(s) 

disturbance 

d(s) 

g(s) 

1 +g(s)k(s) 

do (s) 

+ 
+'" '>. 

y' (~'< Y 

noise 

n(s) 

1 

1 +g(s)k(s) 

no (s) 

+ y +", '>. 
I,QI 

Figure 7.5 Identification of closed-loop frequency response 

With sinusoidal excitation, and the transient response of the plant having 

decayed to an insignificant level,. the reference input and the measured plant output 

may be written as in equation (7.17). 

r(t) = Rsin(mt) 

Ym(t) = RlfUm) I sin (mt +q,/m» +do(t) +no(t) 
(7.17) 

where lfUm) I is the magnitude of the closed-loop frequency response and q,/ m) is 

the phase of the closed-loop frequency response. Applying the correlation integral of 

equation (7.5) to the product of the reference input and the measured plant output gives 
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T 

lim _I f r(t)ym(t) = K If(ro) I cos (cI>/ro» 
T-+oo2T 2 

-T 
T 

(7.18) 

+ lim _I f Rsin (ro/) [d (t) + n (I) 1 dl 
T-+oo2T 0 0 

-T 

Contrasting this result against that obtained from identification of g Uro) from 

within the loop, equation (7.16), it can be seen that identification of the frequency 

response of the closed-loop system is less affected by the noise and disturbance terms. 

Furthermore, since these terms are uncorrelated with the reference input, r (I) , the 

noise and disturbance integral will decay to zero as T ~ 00 leading to an unbiased 

estimate of fUro) . Also, the magnitude of the reference input R is known leading to a 

more accurate identification of fUro) than the previous identification of g Uro) from 

within the loop. Consequently, identification of the closed-loop transfer function 

f Uro) is preferred and g Uro) is obtained thus 

The inversion in equation (7.19) may cause numerical problems if fUro) is 

extremely close to unity, this will depend upon the software and computer used to 

perform the calculation .. For example, if the. real and imaginary parts of 1-/ U ro) have 

magnitudes less than I x10-
12 

then the inversion may be inaccurate beyond 3 

significant figures using MA TLAB version 4.0 running under Windows 3.1 on a 486 

personal computer. Such a problem is most likely to occur in the case of a control 

system designed for a tracking application, where. a. primary objective is to make 

fUro) '" I, especially as low frequencies. In the event that difficulties are encountered, 

de-tuning the controller to introduce some steady-state error should alleviate the 

problem. 

7.4 Multivariable closed-loop identification 

A two stage approach has been presented for the identification of a SISO plant 

operating under closed-loop control, the method is easily generalised for any 

multivariable plant with n inputs and I outputs. The block diagram for the 

multivariable closed-loop system is the same as Figure 7.4 with k (s) and g (s) 

replaced by transfer function matrices K (s) and. G (s) respectively, and the inputs 
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r (s) , d (s) and n (s) are now vector valued quantities. The measured output is given 

by 

Ym(s) = F(s)r(s) +P(s)d(s) +Q(s)n(s) 

where the transfer function matrices F(s), P(s) and Q(s) are 

F(s) = (I+G(s)K(s»-IG(s)K(s) 

P(s) = (I+G(s)K(s»-IG(S) 

Q(s) = (I+G(s)K(s»-1 

(7.20) 

(7.21) 

Throughout the remainder of this chapter the following notation is used: 

M[P, q] refers to the element (p, q) of the matrix M, r[P] refers to the p'h element of 

the. vector r. 

With sinusoidal excitation Rsin (cot) on the /h reference input, all other 

reference inputs zero, the measured output in. the time. domain is given in equation 

(7.22), where 4>F(co) is the phase of the closed-loop frequency response F Uco) . 

where 

n 

d!p] (s) = L p[Pq] (s) d[q] (s) 

q=l 

I 

n:] (s) = L Q[pq] (s)n [q] (s) 

q=l 

p = 1...1 
(7.22) 

(7.23) 

Equation (7.22) is very similar to the SISO closed-loop .measured output, 

equation (7.17), where now the output noise and disturbance terms are combinations of 

the multivariable sources, equation (7.23). The reference input and the exogenous 

inputs do'(s), no (s) are again uncorrelated and the frequency-response analysis can 

be applied to identify each element of the closed-loop frequency response matrix 

F Uco) as follows: The open-loop plant and noise source in Figure 7.3 are replaced 

with the closed-loop system of Figure 7.4; then, with sinusoidal excitation 
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Rsin (ro/) on the ;'h reference input, all other reference inputs zero, correlation 

between the ;'h reference input and the p'h measured output yields 

RIF(Pi] Uro)lsincpYi] (ro) I KT 
1 (K) = + - f [d(P] (I) + n (P] (t) ] cos (rot) dt 

c 2 KT 0 0 

o 
(7.24) 

RIF(Pi] uro)1 coscpJr] (ro) I KT 
1 (K) = + -. f [d(P] (I) + n (P] (t) ] sin (rot) dt 

s .. ·2 KT 0 0 

o 

from which 

(
I (K)J cp (Pi] (ro) == atan _C __ 

F 1 (K) 
s 

(7.25) 

The correlation is repeated for all input-output combinations to construct 

F Uro) , the desired plant frequency response is then determined from equation (7.26) 

(7.26) 

It is noted that,. in a similar fashion to the SISO system, the inversion in 

equation (7.26) may cause numerical problems if FUro) is extremely close to the 

identity matrix; this will depend upon the software and computer used to perform the 

calculation. For example, if the elements of the matrix 1- FUro) all have real and 

imaginary parts with magnitudes less than 1 xlO-
12 

then the inversion may be 

inaccurate beyond 3 significant figures using MA1LAB version 4.0 running under 

Windows 3.1 on a 486 personal computer. Such a problem is most likely to occur in 

the case of a control system designed for a tracking application, where a primary 

objective is to make F Uro) '" I, especially as low frequencies. In the event that 

difficulties are encountered, de-tuning the controller to introduce some steady-state 

error should alleviate the problem. 

7.5 Examples 

7.5.1 Simulated identification of a multivariable plant 

The following plant model is taken from Wood and Berry [54] and is used here 

for the purpose of an example only. The plant is controlled with PI action in the 
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feedback scheme of Figure 7.4 (k(s) is replaced by K(s) and g(s) is replaced by· 

G (s) ), the controller settings are taken from Wood and Berry. 

12.Se -s -IS.ge -3s 

G(s) = 16.7s+1 21s+ I 

6.6e -7s -19.4e -3s 

1O.9s+ I 14.4s + I 
(7.27) 

0.2 (I + _1_) 0 
K(s) = 4.44s 

0 -0.04 (I + _1_) 
2.67s 

The closed-loop system and the correlation of Figure 7.3 were constructed in 

SIMULINK [55], the ensuing measurement simulations returning le (K) and Is (K), 

equations (7.24). Forty cycles of excitation per measurement under ideal conditions, 

i.e. zero noise and disturbance, were sufficient to determine the open-loop frequency 

response using equations (7.25) and (7.26) for a number of frequencies in the range 

0.01 to 10 rad/s. The results are presented as circles in the plots of Figures 7.6 and 7.7, 

the continuous lines in Figures 7.6 and 7.7 are the true frequency response. The results 

indicate a very good match from the correlation method. 

To investigate the response of the method to an unanticipated disturbance, step 

inputs were introduced into both plant outputs at each measurement. The step 

disturbances were introduced approximately 100 seconds into the measurement 

simulation, at which point the transient response of the plant due to the sinusoidal 

excitation had decayed to an insignificant level. Again, 40 cycles of excitation per 

measurement were sufficient and the frequency response was measured over a number 

of frequencies in the range 0.01 to 10 rad/s. The results are presented as circles in the 

plots of Figure 7.S and 7.9 where it can be seen that, apart from a small band of 

frequencies near I rad/s, the impact of the step disturbances is negligible. 
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Any practical identification method must perform satisfactorily in a noisy 

environment. To this end, independent white noise sources with zero mean, unity 

standard deviation and whose amplitudes were multiplied by 0.2 were introduced into 

both plant outputs (inside the feedback loop as in Figure 7.4). Again, 40 cycles of 

excitation were sufficient to identify the plant frequency response using equations 

(7.25) and (7.26) over a number of frequencies in the range 0.01 to 10 rad/s. The 

results are presented in the plots of Figure 7.10 and 7.11 where the simulated 

measurements are indicated by circles and the true frequency response is shown by the 

solid lines. It can be seen that the noise has little effect on the identification, other than 

at high frequencies where the signal to noise ratio at the plant outputs will be low. The 

effect of the noise can be clearly observed by contrasting the time traces of the plant 

outputs given in Figures 7.12 and 7.13 - the former is without noise and the latter is 

with noise. 

'1l 
~ 0 ·++HHHr-++;:::: .. 

i i ~~igdill)) ii 
: : ::::::: :: ::::::: 

-60 ::: !!:H! :: ::::::: ::: ::::: 
10~ 10" 10° 10' 

frequency rls 

50"...,..,=,...,...,.,.=....,..,..,.,= , .. , .. ,,' 

,,' 
Solid line is true frequency response, circles are measured frequency response 

Figure 7.10 Frequency response of the magnitude of the muItivariable plant 

in example 7.5.1. Noisy measurement 
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lime (sec)· 

plant excitation: rj(t) = sin(O.It), r2(t) = 0 

Figure 7.13 Time trace of output signals with measurement noise 

Melo and Friedly [53] have also simulated the closed-loop frequency response 

identification of this plant using fast fourier techniques, with step changes in the 

reference inputs providing the necessary plant excitation. The results presented in 

Figures 7.6 to 7.11 are an improvement upon the results of Melo and Friedly and if 

sinusoidal excitation is permissible, the author proposes that the correlation technique 

is preferable. 

7.5.2 Experimental identification of the Torsion rig 

The very real problem of identifying the frequency response of the Torsion rig 

described in chapter 4 motivated the closed-loop identification technique described in 

this chapter. Obviously, if the Torsion-rig could be operated open-loop then the· 

identification would be simplified as the correlation technique could be applied 

directly to the open-loop system. Therefore, the rig was initially operated open-loop 

and several attempts were made to excite the rig sinusoidally. However, the outputs 

(the forces applied by the hydraulic actuators) drifted up to their maximum values. In 

an attempt to cancel out the drift, compensating offsets were manually applied to the 

excitation signals as illustrated in Figure 7.14. Unfortunately, the drift proved to be too 

problematic and open-loop operation was simply not feasible. Additionally, allowing 

the applied forces to drift to their maximum values will stress the rig in an uncontrolled 

manner. Whilst the actuators were rated so as not to damage the rig in this event, in 
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general such extreme loading could invalidate a dynamic structural test or even 

damage a specimen. It was this very real problem that motivated the closed-loop 

identification method discussed in this chapter 

Therefore we now return to the Torsion rig and put the identification method to 

the test in a practical experiment. 

manual offset 

dynamic r f\ f\ f\ 
excitation VV\JIJ 

manual offset 

dynamic -+1'---
excitation 

Torsion rig 

force 

l!\-I..,),J..--..- time 

typical drift to full scale 
in 30 - 60 seconds 

force 

Figure 7.14 Excitation of Torsion,rig under open-loop operation 

The frequency response of the Torsion rig was identified using the closed-loop 

technique described, providing the necessary a priori model for the controller design 

discussed in chapter 8. The frequency response is shown in Figure 7.15 and Figure 

7.16, the type '1' behaviour of the open"loop, system can be clearly observed at low 

frequencies and can be thought of as multivariable integrator action (The dynamics of 

the test rig have been altered since reference [46] to their current form described in 

chapter 3 of this thesis). 
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7.6 Conclusions 

Some plants cannot be operated open-loop for stability, economic or safety 

reasons. The necessary imposition of closed-loop operation creates a problem in 

identifYing the open-loop plant frequency response, a problem which is hardly 

addressed in the relevant literature. A robust and practical method has been presented 

which successfully addresses this identification problem for a MIMO plant. A 

correlation technique is used to perform the frequency response measurements and a 

systematic procedure has been derived to obtain the desired open-loop frequency 

response from a set of closed-loop measurements. The method has been shown to 

perform well in the simulated identification of a multivariable plant and the 

experimental identification of the Torsion rig. 
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Chapter 8 

Controller Design and Implementation 

8.1 Introduction 

In this chapter the design and implementation of several controllers are 

presented for the two test rigs described in chapter 3 - the Beam and Vibrator rig and 

the Torsion rig. In section 8.2 the Beam and Vibrator rig is considered with controllers 

designed according to a Sequential Loop Closure (SLC) method and the Characteristic 

Locus (CL) method. Additionally,. recent extensions to the CL method are 

incorporated. In section 8.3 the Torsion rig is considered and, again, controllers are 

designed and.implemented according to a Sequential Loop Closure (SLC) method and 

the Characteristic Locus (CL) method. Control system performance is summarised in 

section 8.4. 

A 386 OX. 33 MHz personal computer with. a Metrabyte DAS1600 data 

acquisition card was used in the implementation of all control schemes with control 

algorithms written in QuickBASIC. 

8.2 Beam and Vibrator test rig 

In the following. section three controllers. are. presented, based on the design 

principles of Sequential Loop Closure, Characteristic Locus and recent discrete 

approaches to the Characteristic Locus method. The first two controller designs, SLC 

and CL, are based upon the experimental open-loop frequency response of the test rig, 

presented in Figure 8.1. The discrete CL. controller design is based upon a state space 

model of the rig [4]. The test rig has two inputs and two outputs. 
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Figure 8.1 Open-loop frequency response of the Beam and Vibrator rig 

8.2.1 Sequential Loop Closure (SLC) design 

A schematic of the SLC scheme is illustrated in Figure 5, I, PI action is used in 

the loop controllers k; (s) : 

k} (s) = Kt (1 + _1_) 
sT. 

'I 

k2 (s) = K2 (1 + _1_) 
sT. 

" 
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Tuning of the controller parameters can be performed based on experience of 

the dynamics of the rig or by using empirical rules. The latter approach is used, based 

on the tuning rules for PID controllers due to Ziegler Nichols [56]. 

Ziegler Nichols (ZN) tuning rules were developed for SISO systems and 

require either open-loop step tests to be carried out on the plant or the closed-loop 

system to be brought to the limit of stability. The latter is appropriate since the vibrator 

coils can be burned out due to current surges resulting from a step input. Hence, the 

closed-loop system is brought to the limit of stability under proportional control only; 

the value of the proportional gain (k(s) = K) is known as the ultimate gain, Ku' and 

the period of the corresponding continuous cycling is known as the ultimate period P u. 

The tuning rules are given in equation (8.2) 

K = O.6K 
u (8.2) 

In the case of a SI SO system, there will be a unique value for the ultimate gain 

and the ultimate period. However, in the case of a multiple-input, multiple-output 

system with interaction, there will not be a unique set of ultimate gains. Consequently, 

for the Beam and Vibrator rig any pair of ultimate gains (K , K ) will be a 
"1 "2 

coordinate on the stability boundary of the test rig in the two dimensional space 

formed by k] (s) = K and k2 (s) = K , known as gain-space. The gain-space of 
"I "2 

the test rig was determined from consideration of the stability of the characteristic loci 

of G (jro) diag (k], k2) and is illustrated below, from which the stability boundary is 

K = 1.95,0 $ K $ 4.3 
U 1 U2 

(8.3) 

K u, 

Figure 8.2 Gain-space of the Beam and Vibrator test rig 
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To use ZN then, (K , K ) coordinates must be chosen from the stability 
"I U1 

boundary, these will be the ultimate gains, and the corresponding ultimate periods are 

then required. Seven equally spaced coordinates (K , K ) were selected, these are 
"I U2 

marked on Figure 8.2 as A to G inclusive, and the following table of data generated. 

The ultimate period for all the systems was found to be in the range 0.01 to 0.02 

seconds. Tj was derived from the lower value of p" = 0.01 to provide large integral 

gain for reducing steady-state error and reducing interaction at low frequencies. 

TABLE 8.1 Loop controller parameters determined from ZN tuning rules 

system 
K K P K1 K2 T. T. ", ", " " " 

A 1.95 1.08 0.01 1.17 0.65 0.005 0.005 

B 1.95 2.15 0.01 1.17 1.29 0.005 0.005 

C 1.95 3.23 0.01 1.17 1.94 0.005 0.005 

D 0.49 4.3 0.01 0.29 2.58 0.005 0.005 

E 0.98 4.3 0.01 0.59 2.58 0.005 0.005 

F. 1.46 4.3 0.01 0.88 2.58 0.005 0.005 

G 1.95 4.3 0.01 1.17 2.58 0.005 0.005 

The simulated closed-loop frequency responses with these controller settings 

are illustrated in Figure 8.3 (a) through to Figure 8.3(g). The figures show that the 

interaction has been reduced. at frequencies below 100 rad/s. However, all the 

responses exhibit large resonant peaks in the region 200 to 400 radls where the 

interaction is also severe. The nature of these responses serve to illustrate that the use 

of high gain to reduce interaction can reduce stability margins, a disadvantage of the 

SLC approach. The closed-loop performance in all cases was considered to be poor 

and implementation was not carried out. 
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and Vibrator rig, simulated SLC scheme 

8.2.2 Characteristic Locus 

The Beam and Vibrator test rig has been described in chapter 3. Previous 

research [4 - Tsavdaras] had lead to an encouraging Characteristic Locus controller 

design for the rig, although this had not been implemented at that time. The design [4] 

is summarised below, the reader is referred to Tsavdaras for details. The 

implementation was carried out during the course of this work [57]. 

Design 

The Beam and Vibrator rig has two characteristic loci since it has two inputs 

and two outputs. The characteristic loci of the open-loop plant are the eigenvalues of 

its frequency response and are shown in Figure 8.4 overleaf. The aim of the design 

process is to shape the loci to achieve desirable performance of the closed-loop system. 

Herein lies the attraction of the method: the loci are shaped independently in a very 

similar manner to classical SISO controller design in the frequency domain. In fact, the 

gain and phase margins of the loci effect the stability and performance of the closed

loop system in an analogous manner to the gain and phase margins of the open-loop 

frequency response of a SISO system. 
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It can be seen that there is a large imbalance in the magnirudes of the loci. 

Tsavdaras found; through trial and error, that balancing the loci prior to controller 

design simplified the latter stages of controller design; it is noted that this is not part of 

the standard procedure for designing a characteristic locus controller. The scaling 

compensator that balanced the loci is 

K = 10.53 -11 
· l 0 3.8J 

The resulting loci of G (s)Ks are shown in Figure 8.5. 
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Figure 8.4 Characteristic loci of open-loop system G (jro) • Beam and 

Vibrator rig 
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High-frequency compensation Kh 

The objective of the control system design was to improve upon the open-loop 

bandwidth of the rig (in the region 100 radls to 200 radls) and significantly reduce 

interaction over the chosen bandwidth. A target closed-loop bandwidth of 

approximately 300 radls was selected, this being the frequency near which all the 

elements of the open-loop frequency response have similar magnitudes and hence 

represents se:,ere interaction. However, Kh was obtained at a higher frequency of 850 

radls to help minimise the interference that would.result from the medium-frequency 

compensator Km (s). The high-frequency compensator was calculated using the 

ALIGN algorithm [58, 59] available in MATLAB [38] to approximate G-1 (j850). 

K = 11.397 1.4281 
h lO.0699 0.308J 

The resulting characteristic loci of G (s) KsKh are shown in Figure 8.6 . 
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Figure 8.6 Characteristic loci of G (jm) KsKh' Beam and Vibrator rig 

Medium-frequency compensation Km (s) 

Recall from chapter 5 that the medium-frequency compensator has the form 

given below 

(8.6) 

where A m and Bm are the constant approximations to the eigenvectors and dual 

eigenvectors of G(s)KsKh at a chosen frequency s = jmm' The diagonal controllers 
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k; (s) are designed to shape the characteristic loci of G (s) K.Kh to meet stability and 

performance requirements in a similar fashion to SISO frequency response shaping. 

The gain and phase margins of the loci of G (s) K.Kh are summarised in Table 8.2. 

TABLE 8.2 Gain and Pbase margins of loci (medium-frequency compensation) 

gam phase 
locus margm margm 

I 2.5 57 

2 6.7 00 

Locus I has satisfactory margins and does not require compensation. Locus 2, 

however, has excessively large margins which are compensated by the following lag 

compensator 

giving the diagonal controller 

= 12 (I + 0.0003s) 
(I +0.155s) 

diag (k. (s» = [I (I + ~ 0003S)] 
I 0 12~--~'~~ 

(I + 0.155s) 

(8.7) 

(8.8) 

However, when pre-multiplied and post-multiplied by A and B m m 

respectively, numerical difficulties were encountered in the resulting medium 

frequency compensator Km (s) in the way oflarge condition numbers. Consequently, 

diag (k; (s» was modified to 

diag (k; (s» = 

(I+O.Ols) 

(I +OO.ls) 

o 

o 

12 (I + 0.0003s) 
(I + 0.155s) 

(8.9) 

which solved the numerical problems. With A m and Bm calculated using the 

ALIGN algorithm, the medium frequency compensator is 

K (s) = _1_ r 0.00071 + 3.65s + 29.2 0.00061- 0.505s - 56.sl 

m d(s) lo.00021- 0.170s _ 19.1 0.00051 + 0.585s + 53.~ (8.10) 

2 
d(s) = O.OOls +O.l645s+6.451 
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The resulting characteristic loci of G (s) K,KhKm (s) are given in Figure 8.7. 
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Figure 8.7 Characteristic loci of G (s)K,KhKm (s), Beam and Vibrator rig 

Low-frequency compensation K{ (s) 

The structure of the compensator is given. in equation (5.17) and is repeated 

below 

(8.11) 

The diagonal gains k; were taken to be the reciprocals of the respective 

characteristic loci at a suitable low frequency (f)/, A [ and B [ were again calculated 

using the ALIGN algorithm and the low frequency compensator is 

where 

K (s) = ~ fs + 50.855 8.219 l 
{ s l-0.6328 s + 54.5J 

The complete controller is then K (s) = K,KhKm (s) K[ (s) which gives 

1 ~kl1 (s) k12 (S)] K(s) =-
d (s) k21 (s) k22 (s) 
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kll (S) = 0.5591s3 + 196.62i + 1 9646s + 569450 

k12 (s) = 0.6265s3 -37.32i - 16691s - 668660 

k21 (s) = 0.4204s3 - 81.20i - 20l95s -775610 

k22 (s) = 0.7455s3 + 596.13i + 77315s + 2499300 

d(s) = s3 + 164.5i + 6451s 

(8.14) 

and the characteristic loci of the compensated plant G (s) KsKhKm (s) KI (s) are 

shown in Figure 8.8. 
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Figure 8.8 Characteristic loci of compensated Beam and Vibrator rig 

The fully compensated characteristic loci have desirable gain and phase 

margins: locus 1 has a gain margin of2.5 and a phase margin of 43 0
, locus 2 has a gain 

margin of 2 and a phase margin of 64 o. The simulated closed-loop frequency response 

is presented in Figure 8.9. This is an improvement upon all of the SLC schemes shown 

in Figures 8.3(a) through to Figure 8.3(g) and the bandwidth is approximately 300 rad/ 

s. Additionally, interaction from the element [2,1] has been effectively reduced over 

the entire frequency range. However, beyond 200 rad/s the element [1,2] causes severe 

interaction and there are small peaks in the response of the diagonal elements close to 

200 rad/s. 
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Im piementation 

An important decision to be made in discretising the controller is selecting an 

appropriate sampling frequency. Several empirical rules exist for determining the 

sampling frequency,. which generally recommend a figure of five to ten times the 

desired closed-loop bandwidth. The upper figure was chosen and with a bandwidth of 

300 radls this gives a sampling frequency of approximately 500 Hz, i.e. a sampling 

period of2ms. The continuous-time controller in equation (8.14) was discretised using 

Tustin's approximation with a.2ms sampling period, giving 

where 

I [kll (z) kl2 (Z)] 
K(z) =-

d(z) k21 (z) k22 (z) 

k -I -2 -3 
11 (z) = 0.5591 - L3016z + 0.9965z - 0.2502z 

k ( -I -2 -3 
12 z) = 0.6267 - L9669z + 1.9923z - O.6567z 

k
" -I -2 -3 

21 (z) = 0.42 - L4299z + 1.5259z - 0.5213z 

k ( 
-I -2 -3 

22 z) =0.7446-L0746z +0.1954z +0.1516z 

d(z) = 1-2.6977z- I +2.4173z-2 -O.7196z-3 
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In writing the controller algorithm, the coefficients of the TFM elements are 

formed into the following vectors: Cll = [0.5591, -1.3016, 0.9965, -0.2502], 

c I2 = [0.6267, -1.9669,1.9923, -0.6567],c
21 

= [0.42, -1.4299,1.5259, -0.5213] 

,c.,., = [0.7446, -1.0746, 0.1954, 0.1516] and d = [I, -2.6977, 2.4173, -0.7196]. 

In;;rpreting z -I as the delay operator, the controller outputs at the lh sample instant 

can be written as below. 

U = 
I, 

3 

; = 0 

3 

i = 0 

3 

; = 1 

3 
(8.17) 

; = 1 

The notation u
I 

refers to the value of u
I 

at the kth sample instant and the 

notation ci:J refers to the /h element in cll . Clearly, it is necessary to retain the past 

three values of the controller outputs and controller inputs. This is achieved by 

defining arrays which contain the required values. The arrays are updated every 

sampling instant. The control algorithm was written In QuickBASIC for ease of 

programming and is summarised below. 

set-up sequence 

step 1: 

step 2: 

step 3: 

initialise data acquisition board and load controller parameters 

initialise arrays of previous controller outputs and inputs 

set control outputs to zero 

control algorithm 

step 4: sample error signals and convert to binary voltages (AID) 

step 5: convert binary voltages to decimal voltages el' e2 , , 
step 6: compute U I ' u2 ' equations (8.17) , , 
step 7: if either U I or u2 is out of limits, reset controller output to zero and , , 

STOP 

step 8: convert U I ' u2 to binary voltage , , 
step 9: write binary voltage to controller output and convert (DI A) 

step 10: update arrays of previous controller inputs and outputs 

step 11: return to step 4 until STOP is requested. 
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The closed-loop frequency response obtained with the implemented controller 

is presented in Figure 8.10. 
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Figure 8.10 Closed-loop frequency response of Beam and Vibrator rig, 

implemented CL controller 

There is a significant degradation from the simulated analog response, this is 

due to the effect of the discretisation and the. computational delay (which was a whole 

sampling period). 

8.2.3 Discrete Characteristic Locus Design 

This time, since there is no medium-frequency compensator with which to 

interfere, the high-frequency controller Kh was calculated using the ALIGN algorithm 

at a frequency in the region of the desired closed"loop bandwidth. The high-frequency 

controller was obtained at 200 rad/s and is given in equation (8.18) 

K = 1-1.295 0.366l 
h l-0.757 0.931J 

(8.18) 

The Wa (z) and Va (z) sequences were calculated using the algorithm 

described in [60]. Since the branch points of the compensated plant G (z) Kh were all 

stable and fast, only 5 terms were required in each sequence to decouple the system 

very accurately. The appropriate sequences were 
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w (z) = 1-0.9757 -0.10981 + 1-0.0307 -0.087~z-1 + 1-0.0369 -0.133~z-2 
a L-0.1912 -1.001~ L-0.2842 -0.043Ij L-0.2181 -0.0395j 

+ r-0.0120 001I01 z-3 + r-0.0033 0.02351 z-4 

L-o. 1 756 0.0083j L 0.0255 0.026~ 
(8.19) 

V (z) = r-1.0365 0.0594J + r-0.0162 0.1678Jz-I + r-0.0323 0.05531 z- 2 

a L 02332 -1.0236 L 0.2300 -0.0000 L 0.3258 -O.0457j 

+ r-O.OS7I 0.0369l-3 + r-0.0434 -0.0092l-4 
L 0.0985 -0.0743j L 0.0797 -0.076Ij 

The nominal characteristic loci of G (z) Kh are given in Figure 8.11. Note that 

the implementation introduced.a 4ms pure delay into the controller output. This was 

accounted for in the design and is included in the loci plotted in Figure 8.1 I, hence the 

very poor phase margins. Moreover, one of the loci is on the negative real axis at 

steady-state and so a change of sign is required. There is also a mismatch in gain. 

".5 o 0.5 1.5 2 

Figure 8.11 Characteristic loci of G (z) Kh with sample delay, Beam and 

Vibrator rig 

A simple PID controller was designed to compensate each locus, giving the 

diagonal controller 

A () 
- d· (-0.511 +0.049z-

1 
0.166-0.0156Z-

IJ 
K z - lag , 

. 1 -I 1 -I . -z -z 
(8.20) 

The overall controller is then 
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(8.21) 

The characteristic loci of the compensated plant and the simulated frequency 

response of the closed-loop system are given in [61, 62], where it is shown that the 

bandwidth is much reduced from the calculated frequency response of the original 

analog design. This is the expected penalty incurred in discretisation and the 

introduction of a dead time into the system. 

At this point, it is pertinent to examine how well the dynamic matrices Wa (z) 

. and Va (z) have approximated the eigenvectors of G (z) K h . Ideally, the 

characteristic loci of the compensated plant G (z) K (z) should be equal to 

AK (z) eig (G (z) Kh). In [61, 62] it is shown that the error between these two 

quantities is less than 1% over the whole frequency range. Thus, the dynamic 

approximations have successfully decoupled the plant, giving confidence in the design 

of the. simple SI SO compensation of the characteristicloci. 

Im plementation 

Choice of sampling period is an important criterion in any digital control 

system, affecting both control system performance and the hardware cost of the 

project. Long sampling. periods are undesirable since a1iasing will occur at reduced 

frequencies (i.e., the sampling theory of Shanon), thereby degrading performance and 

disturbance rejection. Also, long sampling periods will obviously have a detrimental 

effect upon stability. However, long sample periods will reduce the computational load 

and the speed of AID, D/A conversion, thus reducing the cost of the hardware. Not 

surprisingly, therefore, choice of the sampling period is a compromise between 

performance and hardware coS!. 

To promote the use of the direct digital design of the characteristic locus 

controller it was felt essential that good results should be achievable with the modest 

computational facility described in the introduction to this chapter. Several empirical 

rules exist for determining the sampling frequency, for example [63], which generally 

recommend a figure of five to ten times the desired closed-loop bandwidth. Close 

inspection of the frequency response of the simulated analog system (Figure 8.10) 

reveals a bandwidth of approx. 300 radls (50 Hz), indicating a sampling frequency of 

250 to 500 Hz. With the previously described computational facility, the maximum 

obtainable sampling frequency was 250 Hz per channel (4ms sampling period), 

achievable only at the cost of reducing the entire sampling period to the computational 

delay. This has the destabilising effect of introducing a whole sample delay into the 

controller outputs but was accounted for in the design. 
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The implementation is shown schematically in Figure 8.12. The elements of 

the controller are shown explicitly and indeed were treated explicitly in the control 

algorithm by introducing the internal variables p (z) and q (z) . This greatly reduced 

time spent debugging the control algorithm software and promoted quick development 

of the software. Importantly, this approach makes future modification to the algorithm 

simple. 

+ 
W (z) 

a 

r(z) 
e(z),----f ,----,q, (z)'r----, ,-----," (z )'r----, 

I---<~G(z) 
y(z) 

Figure 8.12 Block.diagram for implementation. of the discrete CL.controller 

Referring to Figure 8.12, e (z) is the output of the feedback comparator, p (z) 

is the output of the Va (z) block, q (z) is the output of the diagonal controller block 

AK(z) and the external controller output is" (z), These vector-valued variables will 

be referred to in the discrete time domain as ek, Pk' qk and "k respectively, where the 

subscript k refers to their value at the klh sample period. 

Now from equation (8.19), Wa (z) and Va (z) may be written 

-I -2 -3 -4 
Wa (z) = Wo + WIZ + W2z + W3z + W4z 

-I -2 -3 -4 
Va (z) = Vo + VIZ + V2z + V3z + V4z 

(8.22) 

Similarly, AK(z) may be written AK(z) = (AKo+AK/I)/(I-z-I). 

Consequently, the controller variables at the klh sample may be written in terms of 

their values at current and previous sample points as in equations (8.23) 

4 

"k=KhL Wiqk_i 

i = 0 

4 

Pk= L Viek_ i 
i = 0 

(8.23) 

The control algorithm requires at any sampling instant the necessary previous 

values of ek, Pk and qk' These are stored in arrays of four, one and four elements 
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respectively. The algorithm is summarised below and comprises of an initial set-up 

sequence, followed by the control algorithm proper. 

set-up sequence 

step 1: 

step 2: 

step 3: 

step 4: 

initialise data acquisition board 

load controller parameters 

initialise arrays of previous values of ek, Pk and qk 

set control outputs to zero 

control algorithm 

step 5: sample error signals.andconvert to binary voltages (AID) 

step 6: convert binary voltages to decimal voltages ek 

step 7: determine Pk' equation (8.23) 

step 8: determine qk' equation (8.23) 

step 9: determine uk' equation (8.23) 

step 10: if u
k 

is out oflimits, reset controller output (D/A) to zero and STOP 

step 11: convert uk to binary voltage 

step 12: write binary voltage to controller output and convert (D/A) 

step 13: update arrays of previous values of ek, Pk and qk 

step 14: return to step 5 until STOP is requested. 

The closed-loop frequency response with the implemented controller is shown 

in Figure 8.13. The bandwidth is approximately 200 radls and interaction from the 

element [2,1] has been. effectively reduced over the entire frequency range. Also, the 

magnitude response of the diagonal elements are desirably flat, rolling off as 200 radls 

is approached. However, beyond approximately 80 radls, the element [1,2] causes 

severe interaction. 

Comparing the frequency response with that obtained from the implementation 

of the continuous-time controller, Figure 8.10, the improvement is significant and is 

derived from two differences in the design of the controller: Firstly, the discrete design 

uses a dynamic approximation to the eigenvectors of the plant and so decouples the 

plant over the entire frequency range, whereas the continuous-time design only 

decouples the plant at three separate frequencies (those used in the design of the high-, 
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medium- and low-frequency compensators). Secondly, the discrete design accounts for 

the computational delay that will be present in the implementation. 
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Figure 8.13 Closed-loop frequency response of Beam and Vibrator rig, 

implemented discrete CL controller 

8.3 Torsion Rig 

The frequency response of the Torsion rig has been presented in chapter 3 and 

the magnitude response is repeated below in Figure 8.14; the simulated SLC control 

schemes and the design of the CL controller were based on this experimental data. 
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Figure 8.14 Frequency response of the magnitude of the Torsion rig 

8.3.1 Sequential Loop closure 

The block diagram for the SLC scheme is shown in Figure 5,1. It is common 

practice in industry to use PlO control action in the individual loop controllers, k; (s) , 

eitherin analog or digital form. The latter form lends itself well to the inclusion offault 

monitoring/test shutdown, gain scheduling and data logging. PlO action was employed 

on this test rig with the transfer function of the loop controller given in equation (8.24). 

The constant a. restricts the bandwidth of derivative action, typically a. = 10. 
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= K (1 + _1_ + _S_T--"d--=-) 
STi 1 +saTd 

(8.24) 

Following common practice, the parameters of each loop controller (K, Ti , Td ) 

were adjusted experimentally from experience of the dynamics of the Test rig. 

Preliminary tuning with square wave excitation. revealed serious closed-loop 

interaction with highly oscillatory step responses. Obviously, this is very undesirable 

as the unrecorded fatigue loading on the. structure should be minimised during the 

tuning of the loop controllers. Consequently, tuning proceeded with sinusoidal 

excitation at 0.1 Hz. The PID parameters of each loop controller were manually 

adjusted, in turn, to achieve the best tracking with minimum steady state error for that 

loop. However, tuning of the second loop controller degraded the performance 

achieved with the first loop controller and vica versa, owing to interaction in the rig. 

Hence, the entire process became a lengthy iterative procedure until a satisfactory 

response was achieved. 

The loop controllers were implemented as in Figure 5.1, the PID parameters 

are given in Table 8.3 below and the closed-loop frequency response with the 

implemented controller is shown in Figure. 8.15 .. The bandwidth of the closed-loop 

system is approximately 2Hz with peaks in the magnitude response of the diagonal 

elements at approximately 1.3Hz. Also, the excitation applied to the bottom actuator 

interacts severely with the force applied by the top actuator, this is the element [1,2]. 

This performance is unacceptably poor. 

TABLE 8.3 PID parameters for SLC control 

controller K Ti(ms) Td(ms) 

channel 1 9.71 13.33 13.33 

channel 2 2.81 13.33 13.33 

The closed-loop system was also excited by a small amplitude square wave to 

observe it's transient response and the presence of interaction. Figlire 8.16 shows the 

force applied by each actuator in response to a square wave demand in the force 

applied by the bottom actuator. The bottom actuator tracks the demand in force, 

although the response is undesirably oscillatory. However, the interaction with the top 

actuator is severe with a peak amplitude approximately five times greater than the peak 

response of the bottom actuator. Figure 8.17 shows the force applied by each actuator 

in response to a square wave demand in the force applied by the top actuator. Figure 
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8.17(b) clearly shows that the interaction with the bottom actuator is substantially less 

than that observed in the top actuator, Figure 8.16(c). The top actuator tracks the 

demand in force but the response is again undesirably oscillatory. 

". " 
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, , 
frequercy Hz 

'0' 

Figure 8.15 Closed-loop frequency response of the magnitude of the Torsion 

rig, implemented SLC scheme 
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Figure 8.16 Response of Torsion rig to a square wave demand in bottom 

actuator force, implemented SLC scheme 
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Figure 8.17 Response of Torsion rig to a square wave demand in top 

actuator force, implemented SLC scheme 

In addition to the experimental tuning, Ziegler Nichols rules were used to 

derive the loop controller parameters. Since the test rig must.be operated in the c1osed

loop at all times, the parameters of the control action are most appropriately 

determined from closed-loop continuous cycling of the plant (with proportional action 

only) at it's limit of stability. The standard tuning rules with derivative action are given 

in equation (8.25). 

K = 0.6Ku T; = O.5Pu 
(8.25) 

The non-unique. nature. of the resulting parameters has been explained in 

section 8.2.1, controller settings derived from two experimental continuous cycling 

tests are presented in Table 8.4. 

TABLE 8.4 PID parameters for simulated SLC control 

K Pu (ms) K T; (ms) Td(ms) u 

Design #1 

channel 1 16.19 26.67 9.71 13.33 13.33 

channel 2 4.69 26.67 2.81 13.33 13.33 

Design #2 

channel 1 5.39 24.00 3.23 12.00 3.00 

channel 2 7.48 24.00 4.49 12.00 3.00 
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Simulated closed-loop frequency responses are shown in Figures 8.18(a) and 

8.18(b). Comparing with the performance of Figure 8.15 it can be seen that the 

bandwidth has been improved and onset of interaction has been delayed but the 

performance is still poor. Thus, sequential loop closure cannot control the rig to an 

acceptable level of performance and implementation was not carried out. 
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Torsion rig, simulated SLC scheme #1 

50'~--,-.. ,_" _, _, _ .. _ .. ,_ .. __ ~ 

! ill]] i i Hnm 
!!!!!! i ill!!!:! 

~ 0 -'1,' !i~:--~-+: :~.-~-+:!!~: 
.g !:::!l !' .i,'::] !: :!iii! 
.1::: • :::::: • :::::, ,::::::: 

t ..so -+ ::;;:~·++HHff. +tH!f:: 
niiiig~}~~!." i i i iiiii 

10° 10t 10' 
frequerq Hz 

·'~o·t 10' 10t 10" 
frequency Hz 

, , 
frequency Hz 
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Torsion rig, simulated SLC scheme #2 
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8.3.2 Characteristic Locus Design [14] 

The desired bandwidth of the closed-loop system was 10 Hz. To lessen the 

effect of interaction with the ensuing mid-frequency compensator, K h was determined 

at 20 Hz. The ALIGN algorithm in MATLAB was used to calculate K h " G- l (j401t) 

and resulted in one of the loci of G (s) Kh lying on the negative real axis at steady 

state. This is undesirable since that locus will have poor gain and phase margins. The 

problem was resolved by negating the elements in the second column of Kh , resulting 

in both loci then lying on the real positive axis at steady state. The modified Kh is 

given in equation (8.26) 

K - [-5.2399 -8.9309l 
h - 114.0641 -18.060~ 

(8.26) 

The characteristic loci of G (s)Kh are plotted in Figure 8.19 and their gain and 

phase margins are given in Table 8.5. The loci approach the origin of the complex 

plane in a relatively smooth manner, but beyond the origin they appear noisy. This is 

because of a diminishing signal to noise ratio in the measured data and the highly 

resonant nature of the frequency response of the Torsion rig beyond 10 Hz, Figure 

8.14. These. 'noisy' regions have been included for completeness and it will be seen in 

the following pages that they have no bearing upon the controller design owing to the 

small magnitude of theJoci at higher frequencies. 

TABLE 8.5 Gain and pbase margins of the cbaracteristic loci of 

. . 
phase margin gammargm 

locus 1 00 85.6° (5.3Hz) 

locus 2 ·00 66.0° (l9.5Hz) 
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Figure 8.19 Characteristic loci of G (s) Kh , Torsion rig 

Although both loci have large gain margins these were considered acceptable 

in view of the likely degradation in stability and. performance that would follow with 

discretisation and the phase lag introduced by ant-alias filtering. Likewise, the phase 

margin oflocus 2. was considered acceptable and it was decided.to compensatelocus 1 

with 20 degrees of phase lag at 5.3 Hz. A suitable compensator is . 

k (s) = s + 50.2655 
1 s+2S.1924 

(8.27) 

The eigenvector approximations Am and Bm were computed at Olm = 1O.61t 

radls and the overall medium frequency compensator Km (s) = Amdiag (k; (s» Bm 

is given in equation (8.28). The characteristic loci of G (s) KhKm (s) are shown in 

Figure 8.20 

1 rs + 50.01 3.91 l 
s + 2S.19l 1.62 s + 2S.4SJ 

(8.28) 
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Figure 8.20 Characteristic loci of G (s) KhKm (s) , Torsion rig 

Low frequency compensation was designed to inject gain into the controller at 

low frequencies, thereby reducing. steady-state error and also reducing interaction at 

low frequencies. The form of the compensation is that given in equation (5.17) with 

the diagonal gain constants chosen to be unity and the approximation matrices A / and 

B/ computed at 0.1 Hz. The resulting compensator is 

K/(s) = !IS+0.61 -0.03J 
s l 0.08 s+ 1.04 

The final CL controller is given by 

where 

I ~kll (s) k12 (S)] K(s) =-
d (s) k21 (s) k22 (s) 

2 
kll (s) = - 5.24s - 280.45s - 188.21 

2 
k12 (S) = - -8.93s - 256.95s - 251.59 

2 
k21 (S) = 114.06s + 5742.80s + 3454.30 

2 
k22 (S) = - 18.06s - 35.52s - 159.07 

d(s) = s(s+25.19) 

177 

(8.29) 

(8.30) 

(8.31) 
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The characteristic loci of the compensated plant are given in Figure 8.21 where 

it can be seen that the loci possess adequate gain and phase margins. The simulated 

closed-loop frequency response is shown in Figure 8.22.and it can be seen immediately 

that the closed-loop performance is much improved compared to any of the SLC 

schemes (Figure 8.15 and Figures 8.18). 
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Figure.S.22(b) Closed-loop. frequency response of the phase ofthe Torsion 

rig, simulated CL controller 

Implementation 

Recall from chapter 4 that the open-Loop test rig can be regarded as a type 'I' 

system and will therefore exhibit, in the closed-loop, almost no interaction at steady

state. Therefore, the. low-frequency stage of compensation was omitted from the 

design procedure and the CL controller is obtained from the product of equation (8.26) 

and. equation (8.28),.givenbelow in.equation (832) 

[
- (5.2399s + 276.5403) - (8.9309s + 247.7576)] 
(1l4.064Is+ 5674.86) -(18.0609+ \3;7522) 

K (s) = K K (s) = (8.32) 
h m . s+25.l924 

The sampling period. for the discretisation. of the. controller was. based on the 

frequency up to which the dynamics of the rig were identified - 40Hz. A sampling 

frequency offive to ten. times this figure gives a sampling. period between 2.5ms and 5 

ms. The minimum sampling period that could be achieved with the computational 

facility available was 3ms, hence the controller was discretised using Tustin's 

approximation with a sampling period of 3ms. The computational facility has been 

previously described and the implementation is illustrated in Figure 8.23. However, 

the closed-loop system suffered from limit cycling. The bandwidths of the anti-alias 

filters and the smoothing filters were varied in an attempt to stop the limit cycling but 

this had no affect. The gain of the controller was systematically reduced, this reduced 
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the limit cycling and eventually solved the problem when the elements of the 

compensator Kh were reduced by a factor of 1.5. 

Anti alias filters Smoothing filters 

computer 

Figure 8.23 Schematic of digital controller implementation 

The experimental closed.loop frequency response achieved with the reduced

gain controller is presented in Figure 8.24. It can be seen that the controller performs 

well with the exception of a resonant peak. in the response of the controlled top 

actuator (element [1,1]). The bandwidths are similar to those of the ideal, Figure 8.22, 

(approximately 6 Hz for the bottom. actuator, element [2,2], and approximately 16 Hz 

for the top actuator, element [1,1]) and interaction has been suppressed effectively up 

t06 Hz. 

The test rig was excited by a sinusoidal demand.in force and the its response 

captured by a digital oscilloscope. Figure 8.25(a) shows the response of the rig to a 

1Hz sinusoidal demand in the force applied by the bottom actuator. The actual force 

applied by the bottom actuator tracks the demand very closely, with only a small phase 

lag (approximately 10 degrees). Notice how the top actuator applies hardly any force -

the interaction between the actuators has been effectively minimised by the 

multivariable controller. Similarly, Figure 8.25(b) shows the response of the rig to a 

1Hz sinusoidal demand in the force applied by the top actuator. The actual force 

applied by the top actuator. again. tracks the demand. very closely, with only a small 

phase lag (less than 10 degrees). This time, notice how the bottom actuator applies 

hardly any force - as.before,.the interaction between the actuators has been.effectively 

minimised by the multi variable controller. 
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8.4 Conclusions 

Controller design and implementation has been presented for two different 

multiple-input, multiple-output test rigs. In both cases the test rig posed a significant 

control problem, with major open-loop interaction, and the performance of a 

Sequential Loop Closure scheme has been shown to be unsatisfactory. By contrast, a 

Characteristic Locus controller has delivered superior performance, the greatest 

improvement being achieved on the Torsion rig. The controller design, for both rigs, 

was based upon experimental frequency response data and a mathematical model of 

the rig was not required. Finally, a new discrete approach to the Characteristic Locus 

design method, which allows dynamic approximation to the eigenvectors of the plant, 

has been demonstrated to provide further improvement upon the traditional 

Characteristic Locus method. 
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Chapter 9 

Conclusions 

Current control schemes for multi-channel dynamic structural tests have been 

reviewed and ideal specifications for control systems have been examined, with loads 

ranging from quasi-static to service-recorded load histories. It has been shown that for 

accurate dynamic testing, interaction between different inputs and outputs should be 

minimised. Furthermore, the frequency response of the controlled system must have 

unity magnitude with zero phase over the bandwidth of the test input signals. 

Fundamentally, a multivariable approach to controller design has been shown to 

directly tackle the problem of interaction whilst the use of an array of single loop 

controllers is limited in this respect. 

In many applications the dynamic structural test is controlled with an array of 

single-loop controllers. This approach can lead to poor performance when loop gains 

are limited by stability requirements and. has motivated an investigation into the 

conditions under which this situation is likely to occur. It is in these situations that 

multivariable control can offer the greatest potential for improved performance. When 

displacement is the controlled variable, multivariable control has been shown to more 

appropriate as the mass of the specimen increases and/or the stiffness of the specimen 

reduces. When load (force) is the controlled variable, relative stability has been shown 

to be very dependent upon the mass of the specimen, undergoing a local and 

significant minimum value as the mass increases from zero. Thus, multivariable 

control is appropriate in the region of this worst-case stability. By contrast, the 

stiffness of the specimen has little effect on stability. 

Two very different test rigs have been used for the design and implementation 

of multivariable controllers. The first consists of a laboratory scale cantilever beam 

excited by two electra-dynamic vibrators, with the controlled variable being the 

displacement measured at the points where the beam is excited. The second rig is an 

industrial-scale test rig in which a steel frame is excited by two hydraulic actuators, the 

controlled variable being the measured force applied by the actuators. Both rigs exhibit 
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significant interaction, in the case of the second rig this is severe, and pose challenging 

control problems. 

Experimental identification of the frequency response of both rigs has provided 

data for multivariable controller design. Identification of the industrial-scale rig was 

made more difficult by the imposition of c1osedcloop control during the identification 

experiment. A robust and practical method has been presented which successfully 

addresses this identification problem, using a correlation technique to perform closed

loop frequency response measurements and a systematic procedure to derive the open

loop frequency response from these measurements. 

The Characteristic Locus method has been used to design multivariable 

controllers for both rigs, based upon experimental frequency response data. In the case 

of the laboratory rig, an existing design [4] was implemented in digital form 

successfully in this project. However, the design did not anticipate the effects of 

discretisation, leading to poor performance when compared to the analog simulation. 

This led naturally to the design of a new controller using a recent discrete formulation 

of the Characteristic Locus method, where such problems will not arise. The design 

was based upon a state space model of the rig. When implemented, the performance of 

the control system was far superior to the previous discretised analog design. 

In the case of. the industrial-scale test rig, the standard approach of using an 

array of single-loop controllers was carried out to obtain a performance bench-mark. 

The performance achieved with. the single-loop controllers was very poor and 

significant interaction was experienced, even in the closed-loop. Using the standard 

Characteristic Locus method,. a multivariable. controller was designed and 

implemented on the rig. Performance of the control system was far superior to the 

bench-mark. This result is extremely important as it has demonstrated, on an 

industrial-scale test rig, that the performance achieved with a multivariable control 

system can be significantly better than that achieved with. the standard array of single 

loop controllers. 

The discrete formulation of. the Characteristic Locus method requires a state 

space model of the plant. Future work should develop the formulation to design 

controllers based on frequency response data identified. experimentally. Also, robust 

techniques should be pursued for identifying the state-space model of a plant from 

closed-loop experiments. This will make available many more multi variable control 

methods, for instance LQG, H aJ' 
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Appendix 1 

Flow-Pressure Characteristic of a Two-Stage Force 
Feedback Servo-Valve 

At the heart of a servo-valve is a four-way valve known as a spool-valve, 

illustrated in Figure Al.l The relationship between the pressure at the ports and the 

flow of fluid through the ports defines the hydraulic characteristic of the valve. This 

characteristic is known as the flow-pressure characteristic of the valve and is derived 

below. 

re;: ~~:P~is~to~n::~=]\ 
supply 

Ps piston 

-qL 

P2 

q 3 Vr--'------L---, 
I piston 
I~ 

t 
load 

~ 

Figure ALl Four-way valve 

In the following analysis it is assumed that (I) the valve ports are matched and 

symmetrical, (2) the fluid in the valve is incompressible, (3) the supply pressure Ps is 
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constant, (4) the return pressure PR is zero, and (5) that there is no leakage across the 

pistons. 

The pressure drop across the load PL is defined below. For the remainder of 

this analysis P L will be referred to as the load pressure. 

(A 1.1) 

The flow of fluid from the hydraulic supply and to the hydraulic return is 

indicated by ql' q2 and q3' q4 respectively in Figure AI. I. Applying the fundamental 

orifice flow equation to the spool valve gives 

ql = C~I (x) J~ (Ps - PI) 

q2 = C~2 (x) J~ (Ps -P2) 

q3 = C~3 (x) J~P2 

q4 = C~4 (x) J~PI 
Since the valve orifices are matched and symmetrical 

AI (x) =A3(x) =A2(-x) 

A2 (x) = A4 (x) =A I (-x) 

Also, since zero leakage is assumed 

AI (xv < 0) = A2 (xv> 0) = 0 

A3 (xv < 0) = A4 (xv> 0) = 0 

Furthermore, since the oil is assumed to be incompressible 

Also 
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Substituting for q I and q3 from equation (A 1.2) into equation (A 1.6), noting 

that Al (xv> = A3 (x) from equation (A1.3), the following is obtained 

(A I. 7) 

Equation (AU) and equation (AI.7) are a simultaneous pair which describe 

the pressure at each load port as a function of the supply pressure and the load 

pressure, thus 

(A 1.8) 

Hence, at zero load pressure, the pressure at each load port is exactly one half 

of the supply pressure. It is desirable to express the load flow as a function of the 

supply pressure and the load pressure: Substituting for ql and q4 from equation (A1.2) 

into equation (AI.S) gives the following, where equation (A1.8) has been used to 

express the pressure at each load port in terms of Ps and P L 

(A 1.9) 

However, for Xv > 0 the orifice area A4 (x) is zero and 

(A 1.10) 

In a similar fashion 

(AI. \I) 

From equation (Al.3) Al (x) = A4 (-x) and so equations (AUO) and 

(A2.ll) can be combined into the following 

(A 1.12) 

Furthermore, since the spool valve has rectangular orifices width a width w, 

then A I (x) = wXv · Thus, equation (Al.l2) can be written 
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Appendix 2 

Decoupling a Damped System 

A2.1 Introduction 

In this appendix.it.is shown how to determine. a viscous damping matrix C for 

a mechanical system such that all of the modes of the system have the same damping 

ratio and the system is decoupled under a linear transformation. The mechanical 

system is described by the matrix equation 

t(t) = MiC (I) + Cx (I) + Kx (t) (A2.I) 

where. t(/) is a vector of forces, x (I) is a.vector of displacements,. M is a diagonal 

matrix of mass elements,. C is a matrix. of viscous damping elements and K is a 

symmetric matrix of stiffness elements. 

A2.2 General result 

First of all consider the original system without damping, i.e. 

t(l) = MiC (t) + Kx (t) (A2.2) 

A generalised transformation x = V q can be. derived from the mass-stiffness 

eigenvalue problem, equation (A2.3),that will decouple the system. A is a diagonal 

matrix whose diagonal elements are the eigenvalues of M"" 1 K and V is a matrix of 

eigenvectors of lIf 1 K 

(A2.3) 
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Applying the transformation to the undamped system of differential equations, 

equation (A2.2), leads to the system of equations given in equation (A2.4), where the 

transformed mass and stiffness matrices are diagonal. Thus the system is decoupled. 

(A2.4) 

The objective is. to introduce damping into the system of equations in such a 

way that the system remains decoupled under the transformation. The transformed 

system with. damping becomes 

(A2.5) 

Firstly some preliminaries. The generalised transformation matrix can be 

written as the product 

(A2.6) 

noting that the eigenvectors constituting the columns of V are normalised such that 

VTMV = I, giving 

(A2.7) 

From equation (A2.6) and equation. (A2.7), the transformed system can. be 

written as 

where 

1 

A=M 2CM 2 

1 

B=M 2KM 2 

Now V KV is diagonal, and from equations (A2.5) and (A2.8) 

<l>T B<I> = VT KV = diag (b) 

:.B = <l>diag (b) <1>-1 
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Comparing equation (A2.l 0) with equation (A2.3) it is clear that <l> is a matrix 

of eigenvectors of B and diag (b) is the matrix of eigenvalues of B. Consequently, 

powers of B (integer or fractional) are easily determined. thus 

(A2.11) 

Hence from equation (A2.7) and equation (A2.II) 

(A2.12) 

which is diagonal. This leads to a general rule for decoupling viscously damped 

systems: 

General rule 

Provided that A is any linear. combination of powers.(integer or fractional) of B 

(A2.\3) 

Then <l>T A <l> will be diagonal and the system will be decoupled, since from 

equations (A2.l2) and (A3. 13) 

(A2.14) 

A2.3 Global Damping ratio 

It is not uncommon in modelling lightly damped structures to specify a global 

damping ratio to be applied to all vibrational modes of the structure. Assuming that 

equation (A2.8) is decoupled then it can be written in the following standard second 
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order form, where ~ is the global damping ratio applied to all modes and W is the 

diagonal matrix of natural (modal) frequencies. 

Comparing equation (A2.8) and equation (A2.1S) yields 

from which 

A = <I> (2~ W) <l>T 

W = <l>T Bl/2<1> 

(A2.IS) 

(A2.16) 

(A2.17) 

and equation (A2.13) is satisfied. Finally, substituting for A and B from equa

tions (A2.9) into equation.(A2.17) and rearranging gives 

(A2.IS) 
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Appendix 3 

Mass Moment of Inertia Calculations for the 

Torsion Rig 

Al.1 Introduction 

For the Torsion rig described in chapter 3 and modelled in chapter 4, the mass 

moment of inertia is required for both the top and bottom lever arms. The inertias are 

determined from the appropriate application. of the formulae in section A3.2 to the 

geometry of the lever arms thus: bottom lever arms - section A3.3, top lever arms -

section A3.4. The calculated inertias are. summarised in section A3.5 

Al.2 Formulae 

b<_ // .... _------

z 

centr~!if.:; :- . ___ _ 
--- ------""'x 

Second moment 

of area of a rectangle 

Ix = 
ab3 

12 
(A3.1) 

Iy = 
ba3 

12 
(A3.2) 

Figure A3.l Second moment of area of a rectangle 
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Second moment 

of area of a triangle 

ab3 

Ix = 12 (A3.3) 

2b (a/2) 3. 
I r = --'--12---'-- (A3.4) 

Figure A3.2 Second moment of area of a triangle 

Perpendicular axes theorem: 

(A3.5) 

Parallel axes theorem (A = area, d = distance between axes): 

(A3.6) 

Mass moment of inertia - rectangular cross section (Iz = second moment of 

area, p = density of material, t = thickness of material): 

(A3.7) 

A3.3 Bottom lever arms 

The two bottom lever arms are identical with the geometry iIlustrated.in Figure 

A3.3. The lever arm is decomposed into three distinct sections for the purpose of 

calculating the mass moment of inertia: the box section.B, the triangular plates PI and 

P2, and the stiffener S. The inertia is calculated for each of these sections and 

summarised in tables A3.1 through to AJ.3 respectively. The total inertia of the lever 

arm is then given by the sum of these component values, plus the inertia of the discrete 

mass located toward the tip of the lever arm,. table A3.4. 
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"'. " ........ . 

~;;: .. = .. ·=··=pi~·at=·~·=p=i"=··=· .. = .. ~ .. ~ ... :::-. 

Z is polar axis of upright beam 
S: thickness of material 29 mm 

.... 

Plate P2 

B, PI and P2: thickness of material 16 mm 

NOTE: (I) Discrete mass M rests ou plate PI, centred on Z3 
(not illustrated) 

(2) All dimensions in mm 

Figure A3.3 Schematic of bottom lever arm 

Z 

Zl 

... Ft 

. Thickness of all plates 16 mm 

NOTE: All dimensions in mm 

Figure A3.4 Exploded view of box section 
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TABLE Al.I Moment of inertia of box section 

Face FI Face F2 Face Fl 
(same as FI) 

a 1.31 m Fig. A3.4 a 1.31 m Fig. A3.4 

b 0.3m Fig. A3.4 b 0.016 m Fig. A3.4 

A 0.393 m2 axb A 0.021 m2 axb 
d 0.382 m Fig. A3.4 d O.4lm Fig. A3.4 

IX! 0.00295 m4 Eq. A3.1 Ixl" 0.447 x 10-6 m4 Eq. A3.1 

In 0.0562 m4 Eq. A3.2 In 0.003 m4 Eq. A3.2 

IZI 0.0592m4 Eq.A3.5 Izl " 0.003 m4 Eq. A3.5 

Iz 0.117 m4 Eq. A3.6 0.117 m4 Iz 0.007 m4 Eq. A3.6 

t 0.016 m Fig. A3.4 t 0.168 m Fig. A3.4 

P 7800 Kg/m3 p 7800 Kg/m3 

I 
ZmG3.r 

14.601 Kgm2 Eq.A3.7 14.601 Kgm2 Iz m=. 
9.173 Kgm2 Eq. A3.7 

Total mass moment of inertia of box section: 
Llzm=. 47.548 Kgm 2 

J .. - .... 

.... 
". 

= 

Z2 

300 

Thickness of all plates 16 mm 

NOTE: All dimensions in mm 

Figure A3.5 Triangular plate 
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Face F4 
(same as Fl) 

0.007 m4 

9.173 Kgm2 

'" 
·· ..... Y2 
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TABLE AJ.2 Moment of inertia of triangular plates 

Plate PI Plate P2 
(same as PI) 

a 0.3 m Fig. A3.5 

b 0.371 m Fig. A3.5 

A 0.056 m2 (a x b)/2 
d 1.037 m Fig. A3.5 

1)(2 1.277 x 10.3 m' Eq. A3.3 

In 2.089x 10-4 m' Eq. A3.4 

IZ2 1.486 x 10.3 m' Eq. A3.5 

IZ 0.062 m' Eq.A3.6 0.062 m' 

t 0.016 m Fig. A3.5 

P 7800 Kglm3 

IZ 7.701 Kgm2 Eq. A3.7 7.701 Kgm2 
millS 

Total mass moment of inertia of triangular plates: 

,Llz = 15.402 
2 Kgm 

/fIon 

discrete mass 

1133 ZJ 

........ ~. 
.. ~ .. . ... 

168 
Stiffener S 

NOTE: All dimensions in mm 

Figure A3.6 Stiffener (bottom lever arm) 
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TABLE AJ.J Moment of inertia of stiffener 

Stiffener S 

a 0.371 m Fig. A3.6 

b 0.029 m Fig. A3.6 

A 1. 706x 10-2 m2 (a x b) 

d 1.223 m Fig. A3.6 

1)(3 7.540x 10-7 m' Eq. A3.1 

IY3 1.234x 10-4 m' Eq. A3.2 

IZ3 
1.242 x 10-4 m' Eq. A3.5 

IZ 
1.622 x 10-2 rn' Eq. A3.6 

t 0.168 m Fig. A3.6 

P 7800 Kg/m3 

I 
Z",tI-U 

21.25 Kgm2 Eq. A3.7 

TABLE A3.4 Moment of inertia of discrete mass 

Discrete mass M 

M 100 Kg 

r 1.133 m Fig. A3.6 

I z 128.369 Kgm2 (Mx r2) 
m~' 

The mass moment of inertia of the lever arm is then given by the sum of the 

I z values in tables A3.1 to A3.4 thus: 
.~, 

I z = 47.548 + 15.402 + 21.250 + 128.369 = 212.6 
m~, 

(A3.8) 

A3.4 Top lever arms 

The two top lever arms are identical with the. outline geometry illustrated in 

Figure A3.7 (not to scale). The lever arm is decomposed into three distinct sections for 

the purpose of calculating the mass moment of inertia: the plates PI and P2, the 

stiffener S and the section of upright beam running through the lever arm, B. The 

inertia is calculated for each of these sections and summarised in tables A3.5 through 
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to A3. 7 respectively. The total inertia of the lever ann is then given by the sum of these 

component values. 

119 

260 ': P2 
• 
PI ................ "j .................... . 

235 

x z 
..................... . ......................................................... -.. 

48 

Beam section B 

,-1--- Stiffener S ----t-t"'" 

NOTE: All dimensions in mm 

39.6 ... 

~ ;..
--! *- .. 

19.8 19.8 

Figure A3.7 Schematic of top lever arm 

To calculate the mass moment of inertia of the plates PI and P2, their geometry 

is simplified to the diamond shape illustrated in Figure A3.8, the diamond is then split 

into four triangles for the calculations summarised in table A3.5. The area occupied by 

the upright beam is taken into account in table A3.5. 

NOTE: All dimensions in mm 
520 260 

y 
260 

.... ·····1························· 

715 

z 

Axes X, XI, Y and YI are in plane of paper. Axis Z is perpendicular to plane of paper 

Figure A3.8 Simplified geometry of plates (top lever arm) 
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TABLE AJ.S Moment of inertia of triangular plate. 

Plate PI Plate P2 
(.ame as PI) 

Second moment of area about X (Ll l ): 

a 0.52m Fig. A3.8 

b 0.235 m Fig. A3.8 

Ix(Ll l ) 5.624 x 10-4 m4 Eq. A3.3 

Second moment of area about X ( Ll2): 
a 0.52m Fig. A3.8 

b 0.48 m Fig. A3.8 

Ix (Ll2) 4.792X 10-3 m4 Eq. A3.3 

Second moment of area about Y (Ll3, Ll4): 
a 0.715 m Fig. A3.8 

b 0.26 m Fig. A3.8 

I y (Ll3) 1.047 x 10-3 m4 Eq. A3.3 

I y (Ll4) 1.047 x 10.3 m4 Eq. A3.3 

Total second moment of area about Z axis: 

I z= I x(Ll l ) + I x<Ll2) + I y(Ll3) + I yCLl4) 
Iz= 7.448X Jo-3 m4 

Second moment of area of square cut-out: 

a 0.180 m Fig. A3.8 

b 0.180 m Fig. A3.8 

IXl 8.748x 10-1 m4 Eq. A3.1 

In 8.748X 10.1 m4 Eq. A3.2 

Iz 1.750X 10-4 m4 Eq. A3.5 

Net second moment of area of plate 

I z= 7.448 X 10-3 - 1.750X 10-4 = 7.273 x 10.3 m4 

Moment of inertia: 

t 0.0198 m Fig. A3.7 

P 7800 Kg/m3 

[ 
ZmQJJ 

1.123 Kgm2 Eq. A3.7 1.123 Kgm2 

Combined mass moment of inertia of plates PI and P2: 

L:Iz = 2.247 Kgm2 
.~, 
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z 

• 
. .... ~ .. ... 
.. - : .... . 

... 

(A3.9) ... 
."lIII... 

X 

NOTE: All dimensions in mm 

Figure A3.9 Beam section 

TABLE A3.6 Moment of inertia of beam section 

Beam section 

a 0.18 m Fig. A3.9 

c 0.016 m Fig. A3.9 

I Z 9.500 x 10-5 m4 Eq. A3.9 

t 0.119 m Fig. A3.9 

P 7800 Kg/m3 

Iz mw, 
0.088 Kgm2 Eq. A3.7 
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Z 

• 
Zl 

• .~Yl 

39.61 

NOTE: All dimensions in mm 

Figure A3.10 Stiffener (top lever arm) 

TABLE A3.7 Moment of inertia of .tiffener (top lever arm) 

Stiffener S 

a 0.201 m Fig. A3.1O 

b 0.059 m Fig. A3.10 

A 0.012 m2 (a x b) 

d 0.230 m Fig. A3.10 

IX 3.440 x 10,6 m4 Eq. A3.1 

In 3.993 x 10,5 m4 Eq. A3.2 

IZl 4.337X 10,5 m4 Eq. A3.5 

Iz 6.782xlO-4 m4 Eq. A3.6 

t 0.0396 m Fig. A3.1O 

P 7800 Kg/m3 

IZ 
mall 

0.209 Kgm2 Eq. A3.7 

The moment of inertia of the top lever arm is then given by the sum of the I z 
MO.J .. 

values in tables A3.5 to A3.7 thus: 

Iz = 2.247 + 0.088 + 0.209 = 2.54 
masl 

(A3.1O) 
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A3.5 Summary of calculated moment of inertias 

TABLE A3.8 Summary of calculated momenb of inertia 

lever arm 

bottom 

top 

212.6 

2.54 

211 

calculation 

(Eq. A3.8) 

(Eq. A3.\O) 
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Appendix 4 

Model Data for SISO Stability Investigation 

TABLE A4.1 Hydraulic parameters 

Parameter Descri pti on Value Units 

Kce = K[+Kp Combined pressure coefficient of I x 10 13 mSN-1s-1 
the servo-valve and actuator 

KB = 4~e Bulk modulus of the oil 4 x 1.8616xlO 
9 Nm-2 

A Effective area of the actuator pis- 0.008107 2 m 
ton 

V, Volume of oil in the actuator 0.002469 3 m 

Natural frequency in the frequency 880 
-1 

roT response of the setVo·valve 
rads 

~T 
Damping in the frequency 0.9 none 
response of the setVo·valve 

KjKq 
Gain of the servo·valve 0.042 m3s-1 A-I 

TABLE A4.2 Nominal specimen 

parameter descri pti on value units 

Ks Stiffness of the specimen 3.178 MNm 1 

M Mass of the specimen 
s 392.3457 Kg 
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TABLE A4.3 Variation in the mass ofthe specimen 

system system 
number Mass (Kg) number Mass (Kg) 

I 0.32 11 32.94 

2 0.51 12 52.35 

3 0.81 13 83.21 

4 1.29 14 132.27 

5 2.04 15 210.23 

6 3.25 16 334.16 

7 5.16 I7 531.14 

8 8.20 18 844.23 

9 13.04 19 1341.9 

10 20.72 20 2132.9 

TABLE A4.4 Variation in the stiffness of the specimen 

system Stiffness system Stiffness 
number (MNm-1) number (MNm-l) 

I 0.0032 9 0.62 

2 0.0062 10 1.19 

3 0.012 11 2.30 

4 0.023 12 4.45 

5 0.044 13 8.58 

6 0.086 14 16.57 

7 0.17 15 32.00 

8 0.32 
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Appendix 5 

Model Data for MIMO Stability Investigation 

TABLE A5.1 Hydraulic parameters 

Parameter Description Value Units 

Kc. = K/+Kp Combined pressure coefficient of 1 xl0- 13 mSN-1s-1 
the servo-valve and actuator 

KB = 413. Bulk modulus of the oil 4 x 1.8616xl0 
9 Nm 2 

A Effective area of the actuator pis· 0.008107 2 m 
ton 

V, Volume of oil in the actuator 0.002469 3 m 

roT 
Natural frequency in the frequency 880 rads 1 
response of the servo·valve 

l,T 
Damping in the frequency 
response of the servowvalve 

0.9 none 

K,Kq Gain of the servo·valve 0.042 3 -I A-I m s 

TABLE A5.2 Nominal specimen 

parameter description value units 

KI 
Stiffness of the specimen 3.178 MNm 1 

K2 
Stiffness of the specimen 3.178 MNm 

] 

M] Mass of· the specimen 140.68 Kg 

M2 Mass of the specimen 140,68 Kg 

Damping ratio of vibrational 0.Ql none 
modes 
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TABLE AS.3 Variation in mass m 

system system 
number Mass (Kg) number Mass (Kg) 

1 7.03 11 85.39 

2 9.03 12 109.60 

3 11.59 13 140.68 

4 14.88 14 180.57 

5 19.09 15 231.78 

6 24.51 16 297.50 

7 31.46 17 381.86 

8 40.38 18 490.15 

9 51.83 19 629.14 

10 66.52 20 807.54 

21 1036.5 

TABLE AS.4 Variation in stiffness k 

Stiffness 
system Stiffness system (MN/m) 
number (MN/m) number 

1 0.16 11 1.93 

2 0.20 12 2.48 

3 0.26 13 3.18 

4 0.34 14 4.08 

5 0.43 15 5.24 

6 0.55 16 6.72 

7 0.71 17 8.63 

8 0.91 18 11.07 

9 1.17 19 14.21 

10 1.50 20 18.24 

21 23.42 
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TABLE A5.5 Variation in 13 or y 

system system 
number 13 or y number 13 or y 

1 0.010 12 0.681 

2 0.015 13 1.000 

3 0.022 14 1.468 

4 0.032 15 2.154 

5 0.046 16 3.162 

6 0.068 17 4.642 

7 0.100 18 6.813 

8 0.147 19 10.000 

9 0.215 20 14.678 

10 0.316 21 21.544 

11 0.464 
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