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Abstract 

The hydrolysis of sodium borohydride (NaBH4) over efficient metal catalysts is a 

promising approach to hydrogen storage. An alkali such as NaOH is often added to 

stabilise the system in practical applications. The concentration of the NaB~ solution 

should be as high as possible to improve energy density of the system. However, the by­

product sodium metaborate (NaB02) would become saturated and precipitate from the 

solution when the concentration of sodium borohydride is over a limit, resulting in piping 

blockage and the decrease of the catalyst efficiency. The theme of this thesis was to 

investigate the maximum NaB~ concentration. Below the maximum concentration, the 

precipitation of the by-product will not occur, and above the maximum concentration, the 

by-product tends to precipitate from the solution. Hydrogen generation rate was then 

investigated up to high concentration. 

The maximum concentration was studied using a thermodynamic approach. The 

relationship between the solubility and the temperature was derived based on the equality 

of the chemical potential of the solute in solution and in its solid state. The solubility data 

ofNaBH4 and NaB02 were obtained by analysing the phase diagrams ofNaBH4-NaOH­

H20 and NaB02-NaOH-H20 respectively. The model parameters were then determined 

by regression of the solubility data and the temperature. Activity coefficients of NaBH4 

and NaB02 were needed during the regression and these were achieved by hydration 

analysis of the phase diagrams. The maximum concentration of N aBH4 was obtained by 

taking the maximum between the water in saturated NaBH4 solution and the sum of the 

water in saturated NaB02 solution and the water consumed for hydrolysis. The maximum 

concentration ofNaBH4 is mainly determined by the solubility ofNaB02. The modelling 

of the maximum concentration was then validated experimentally. 

The rate of hydrogen generation from NaBH4 hydrolysis was then investigated over 

carbon supported ruthenium catalyst over a wide range of concentrations. The intrinsic 

hydrolysis rate is zero-order to NaBH4 concentration, and has a linear relationship with 

the basicity of the solution ( -ln[OH]). The overall kinetics was modelled by building 

diffusion and heat effect into the intrinsic rate expression. Experimental results agree well 

with model prediction. 
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Chapter 1 

Introduction 

1.1 Motivation and Objectives 

With the progress of human society and the population growth, the use of energy and the 

exploitation of energy resources has expanded rapidly. A good supply of energy has 

become an indispensable factor for economic development. The history of humanity is in 

fact the history of the availability and utilisation of energy. Each revolution in new energy 

utilisation brings about significant progress in human society. 

In ancient times, people were able to use the power of water to drive watermills for 

grinding grain and the power of wind energy for pumping water and driving ships. The 

beginning of the industrial revolution in the 19th century in Great Britain saw the use of 

fossil fuels on a large scale. The extensive use of coal and oil has made a great 

contribution to the development of modern industries. Various energy conversion devices 

were then invented to enable the use of fossil fuels to drive automobiles, aeroplanes and 

other means of transport, to generate electricity, to heat and to cook. Nowadays, nuclear 

energy, wind energy, hydro-energy and solar energy are in use. However, fossil fuels still 

play a dominant role in the world, and it will still account for the main part of energy 

sources in the foreseeable future. 

Unfortunately, fossil fuels are not a renewable resource. They will eventually become 

depleted. Moreover, the emission of carbon dioxide and NOx gases has been linked to the 

problem of global warming. These present challenges to the world and have become key 

factors that must be considered for a sustainable development in the 21st century. A 

sustainable energy supply has thus become increasingly necessary. Prof. George A Olah, 

the winner of the Nobel Prize in chemistry in 1994, pointed out in 1991 that "Oil and gas 

resources under the most optimistic scenarios won't last much longer than through the 

next century. Coal reserves are more abundant, but are also limited .... I suggest we should 

worry much more about our limited and diminishing fossil resources" [ 1]. In order to 

tackle the challenge of diminishing fossil fuel reserves and the ever-increasing 

environmental problems, great attempts have been made to improve energy efficiency and 
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to explore clean and renewable energy sources. 

Renewable energy refers to the energy obtained from sources that are essentially 

inexhaustible [2], which includes bio-energy, hydro-energy, geothermal energy, solar 

energy and hydrogen energy. Bio-energy is the energy released from the reaction of 

biomass with oxygen [3]. Biomass is a flexible feedstock capable of conversion into 

solids, liquid and gas (such as methane, carbon monoxide, ethanol and charcoal) by 

gasification method [4]. The bio-fuels obtained can be used to substitute fossil fuels. The 

biomass feedstock can be agriculture and forestry waste, energy crops, landfill and 

sewage gas and municipal solid waste. Solar energy is the sun's radiant energy. 

Geothermal energy is the energy contained as heat in the interior of earth, such as natural 

steam and hot water. The origin of geotherrnal energy is linked with the internal structure 

of the earth and the physical processes occurring there [5]. Wind energy refers to the 

power produced by the flow of air harnessed by humans. 

Strictly speaking, bio-fuels are not clean since the combustion products contain carbon 

dioxide. Geothermal energy, hydropower and wind energy are region-restricted. They are 

not available everywhere. For example, wind energy is distributed mainly in the US, 

Spain, Germany, India and Denmark [6], while hydro-energy is concentrated in the US, 

Brazil and China [7]. The most promising renewable energy sources should be solar 

energy and hydrogen fuel since they are clean. 

Hydrogen is the only universal fuel that can run everything from spaceships to 

automobiles as summarized in Figure 1.1. It can be used in liquid or gaseous form in jet 

engines, internal combustion engines and fuel cells. 
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Figure 1.1 The uses of hydrogen in a liquid or gas form. 

The main problems are how to generate hydrogen from renewable resources and how to 

store it in a manageable form since hydrogen has the minimum density among all the 

gases and hence takes up a lot of storage space for a comparable amount of energy. The 

two aspects of the problem are equally important. At the present time, the lack of practical 

storage methods has hindered the more widespread use of the renewable and 

environmentally friendly hydrogen fuels. Various methods have been investigated for 

hydrogen storage such as high-pressure gas cylinders, liquid hydrogen, adsorption using 

carbon nanotubes and metal hydride compounds. Research so far has proven that the use 

of the hydrolysis of sodium borohydride (NaBH4) is one of the most promising methods 

of producing hydrogen. This is because NaBH4 is a stable compound and the hydrolysis 

reaction can be carried out in very mild conditions[8, 9]. 

The main advantages of using sodium borohydride are as follows: 

High temperature is needed for producing H2 by some methods, but via the hydrolysis of 

NaBH4, H2 can be produced in a more controllable way at a wide and moderate 

temperature range (from -5°C to 1 00°C). NaBH4 is a non-flammable liquid at normal 

pressure. During the hydrolysis, there are no side reactions or other volatile products. The 

generated hydrogen has a high purity (no carbon monoxide and sulphur) with just some 

water vapour. However, there are two main barriers for its commercialisation. One is 
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how to improve its energy density. The other is how to recycle the by-product sodium 

metaborate (NaB02). 

The theme of this thesis is to gain insight into the utilization of the hydrolysis of sodium 

borohydride centred on the concentrated NaBH4 solution. Using concentrated NaBH4 

solution for H2 production is desirable because it can assure the Hz storage density. 

However, if the concentration is too high it leads to precipitation of the by-product, 

NaB02, which leads to pipe blockage and a decrease in catalyst activity. In this thesis, the 

maximum concentration of NaBH4 that can be used in the system is studied 

thermodynamically and kinetically. 

The solution of NaBH4 is not stable at room temperature because hydrolysis occurs and 

hydrogen is released gradually. A base, typically NaOH, is used as the stabilizer. The 

effect of NaOH on optimal concentration of NaBH4 and the hydrogen generation rate is 

also extensively studied in this thesis. 

Experiments are carried out to test the effects of various factors on the rate of hydrogen 

generation, including temperature and the concentration of NaBH4, NaOH and NaBOz. 

Based on the experimental results, an empirical model is obtained to simulate the reaction 

and predict the hydrogen storage density. 

In the rest of this chapter, the basics of energy systems and the background of the research 

are reviewed. The related theories of chemical thermodynamics are introduced in the 

chapters where they are used. 

1.2 Basics of Energy Systems 

1.2.1 Energy and Power 

Energy has various definitions. In physical sciences, energy refers to the capacity of doing 

work: that is to move an object against a resisting force [10). In everyday language, the 

word 'power' is often used as a synonym for energy. But when speaking scientifically, 

power is defined as the rate of doing work, that is, the rate at which energy is converted 

from one form to another, or transmitted from one place to another [11]. The unit of 

measurement of energy in the SI system is 'joule' (J), and the unit of power in the SI 

system is 'watt' (W). 

4 



1.2.2 The Forms of Energy [7, 11] 

Energy can take many different forms. At its most basic level, it can be classified into four 

types: kinetic energy, gravitational energy, electrical energy and nuclear energy. 

Kinetic energy is the energy possessed by any moving object. Thermal energy, or heat, is 

the name given to the kinetic energy associated with the random motion of molecules of 

any matter. 

Gravitational energy, also termed gravitational potential energy or potential energy, IS 

(simplistically) the energy due to position difference with the earth. Gravity is an 

insignificant force at the molecular level. However, a major application of gravitational 

energy is hydro-electricity, in which the potential energy of water is changed into 

electrical energy. 

Electrical energy is the energy associated with the electrical force between atoms that 

constitute matter. Chemical energy can be considered as a form of electrical energy. 

Another form of electrical energy is that carried by electrical currents: organized flows of 

electrons in a material. The third form of electrical energy is that carried by 

electromagnetic radiation (energy). 

Nuclear energy is the energy bound up in the nuclei of atoms. It is released by the fission 

or fusion reactions of nuclei, notably uranium-235 and plutonium-239. The complete 

fission of a kilogram of uranium-235 should produce, in principle, as much energy as the 

combustion of over 3000 tonnes of coal. In practice, the fission is incomplete and there 

are other losses. The heat generated by nuclear fission in a nuclear power plant is used to 

generate high-pressure steam, which then drives steam turbines coupled to electrical 

generators, as in a conventional power station. 

1.2.3 Fuel 

A fuel is a substance which interacts with oxygen and in doing so releases energy and 

changes into different chemical compounds-the combustion products [11]. According to 

this definition, wood is a fuel but sand not. The energy released in this process is tenned 

the energy content of the fuel. 

1.2.4 Energy Services 
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Mankind does not actually need energy carriers such as coal, oil, wood or electricity. We 

need energy services. Unlike energy, energy services are independent of technology and 

can not be easily quantified. For example, when we drive a car, we have used an amount 

of fuel: energy. The energy service in this case might be described as the distance we 

travel. We live in a warm and cosy house; we bum gas, energy, to heat the radiators. For 

heating purposes, the energy service is often described as the room temperature desired 

(12]. 

1.2.5 Primary Energy 

Primary energy is the total energy 'content' of the original resource. Present main 

resources are fossil fuels (coal, oil and natural gas), biofuels (wood, straw, etc.), nuclear 

power stations, hydroelectric and geotherrnal plants and other 'renewables' such as solar 

or wind power. 

The measurement of the consumption of primary energy in the world has two units: units 

based on oil and units based on coal. One tonne of oil equivalent (toe) is the heat energy 

released in the complete combustion of 1000 kg of oil, which is 41.88 GJ (world average 

value). The commonly used unit is millions of tonnes of oil equivalent (M toe), which is 

approximately 4.2 x I 016 J. 

1.2.6 Energy Efficiency 

In the use of energy for various purposes, not all of the energy can be converted to the 

desired work according to the second law of thermodynamics. The concept of energy 

efficiency is thus raised. The conversion efficiency of any energy conversion system 

(often simply called the efficiency) is defined as the useful energy output divided by the 

total energy input, as shown in equation (1.1 ). 

. E 
Ejjiczency = -• x I 00% 

E; 
(1.1) 

where E0 is the energy output and E; is the energy input. In another definition as given by 

the World Energy Council, energy efficiency has the sense of what is usually understood 

with an implicit reference to technological efficiency only: it encompasses all changes 

that result in decreasing the amount of energy used to produce one unit of economic 

activity (e.g. the energy used per unit of GDP or value added) or to meet the energy 
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requirements for a given level of comfort. Energy efficiency is associated with economic 

efficiency and includes technological, behavioural and economic changes. Energy 

efficiency improvements refer to a reduction in the energy used for a given energy service 

(such as heating and lighting) or level of activity. 

1.2.7 Prime Mover 

The prime mover is a device that converts the energy of any natural source into motive 

power: the driving power of machines. Any system designed to obtain continuous motive 

power from heat is called a heat engine. The heat energy comes from the combustion of 

fossil fuel or nuclear reaction. Heat engines can be classified into external combustion 

engines, such as steam turbines and jet turbines for aircraft, and internal combustion 

engines. 

According to the second law of thermodynamics, it is impossible to have a perfect heat 

engine. The efficiency of any heat engine abides by Carnet's law: any other beat engine 

operating with the same input and exhaust temperatures must have a lower efficiency than 

the Camot engine. The efficiency of the Carnot engine is expressed using equation (1.2). 

T. - T. 
Efficiency= 1 2 (1.2) 

7; 

where T1 is the temperature of 'boiler', Tz is the temperature of the 'condenser' into 

which that exhaust is rejected. 

1.2.8 The Grade of Energy 

It is known that heat is the kinetic energy of randomly-moving molecules, a chaotic or 

'low grade' form of energy. We know this process of changing energy into work should 

comply with the second law of thermodynamics: no process is possible in which the sole 

result is the absorption of heat from a reservoir and complete conversion of that heat into 

work. On the other hand, mechanical energy and electric energy have a higher grade, 

because they are due to the ordered movement of particles. 

Therefore, energy sources can be graded in quality. High-grade sources provide the most 

organized forms of energy and low-grade sources are the least organized, or have low and 

negative entropy energy [13]. The higher grades include the kinetic energy of moving 
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matter, gravitational potential energy and electrical energy. These can be converted with 

small losses. Larger losses occur when the lower forms are converted. Regarding heat 

energy, high grade means high-temperature heat, and low grade means low-temperature 

heat. 

1.3 Problems Caused by the Utilisation of Fossil Fuels 

1.3.1 Present Energy Sources 

In order to better understand the problems caused by current energy utilisation, an 

overview is given of the primary energy used by humanity. The evolution of energy 

consumption from 1971 to 200 I in the world is shown in Figure 1.2. 
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Figure 1.2 Evolution of total primary energy supply from 1971 to 2001 of the world (source: International Energy Agency (IEA)[14]). 
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From Figure 1.2, it can be seen that present energy sources include fossil fuels (coal, oil 

and natural gas), nuclear energy, bio-energy and other renewable energies. The rate of 

increase in total primary energy supply is very rapid. The total primary energy supply in 

the world was 6,043 Mtoe in 1973, 9,491 Mtoe in 1998, and 10,165 Mtoe in 2001, an 

increase of 68% in 28 years. 

Fossil fuels include coal, oil and natural gas. They are extremely attractive due to their 

high energy concentration and easy distribution. Fossil fuels are formed after a long 

period of geological processes and originate in the growth and decay of plants and marine 

organisms that existed long ago. The fossil fuels now supply nearly 80% of the world's 

current energy consumption. The fossil fuels have various applications but mainly as fuels 

for means of transport and for electricity generation. 

Nuclear energy accounts for about 7% of primary energy consumption at the present time. 

However, the growth rate in recent years has largely stopped, and may be in decline due 

to the difficulty of disposing of nuclear waste and the public concern over radiation 

disasters (14]. 

The item "combustible renewables and waste" mainly refers to bio-energy, which 

accounts for about 11% and has been stable for the last three decades. 

Hydro-energy from flowing water has been used for centuries for purposes such as 

milling grain and driving machinery. Currently its main use has been in the generation of 

hydro-electricity. It provides about 2.2% of primary energy. 

According to the present pattern of energy consumption, it can be noticed that fossil 

energy (oil, coal and gas) is the most widely used. Although its share decreased slowly 

from 86.1% to 79%, fossil fuel still accounts for the major part of present energy uses. 

1.3.2 Problems by the Use of Fossil Fuels 

1.3.2.1 Air Pollution 

From the above analysis, the share of fossil energy accounts for about 80% of total 

primary energy consumption. The use of coal, oil and gas is mainly through combustion 

to produce heat, followed by conversion of that heat into secondary fuels and motive 

power in various engines. In this process, many emissions are produced, as shown in 
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Table 1.1. These emissions cause an ever-increasing environmental problem. 

Table 1.1 Main emissions from combustion offossil fuels [15]. 

Greenhouse Ozone layer Acid 
Emissions Smog 

Effect Depletion Precipitations 

Carbon dioxide (C02) + ± 

Methane (CH4) + ± 

Nitric oxides (NOx) ± + + 

Ozone (03) + + 

Sulfur dioxide (S02) - + 

Nitrous oxide (N20) + ± 

Note: + stands for positive factor; -stands for negative factor, and± stands for uncertainty. 

As can be seen from Table 1.1, there are two types of emissions that cause air pollution 

from burning fossil fuels. One is the noxious gases released: sulfur dioxide (S02), carbon 

monoxide (CO), nitrogen oxides (NO,, N20), ozone (03) and volatile chemical vapours 

(VOCs). The other is particulate matter (PM) pollution, which has a size of about 2.5 flm. 

1.3.2.2 Noxious Gas Pollution 

Fossil fuels are composed mainly of carbon and hydrogen. An ultimate analysis reveals 

that they also contain other elements such as oxygen, nitrogen and sulphur. During 

combustion, nitrogen can combine with oxygen to produce oxides of nitrogen. These 

compounds (N20, NO, N02, etc.) are known as NOx gases. The nitrogen in NOx mainly 

comes from fossil fuels. However, nitrogen from the air also contributes. Any sulphur 

present in the fuels will readily form sulphur dioxide (S02). The incomplete combustion 

of the fuels will produce carbon monoxide (CO). 

The formation of air-polluting ozone at ground level is the result of a chain reaction 

system initiated by the photolysis of nitrogen dioxide that effectively absorbs ultraviolet 

(UV) radiation reaching the earth's surface as shown in Scheme 1.1, where N02 adsorbs 

radiation to decompose into NO and atomic oxygen. The atomic oxygen then reacts with 

oxygen to form ozone directly, or on mediums such as particles or inert gases (as shown 

Scheme 1.2). 

11 



hv 
N02 - NO + 0 

Scheme 1.1 The reaction for the formation of atomic oxygen. 

0 2 +0+M-03+M 

Scheme 1.2 The formation of ozone. 

where M represents a non-reactive gas or particle. 

The pollution by particulate matter (PM) in the air is mainly due to the various means of 

transport as described by Heywood [16]. The particles to be emitted as PM are born as 

soot nuclei in the highly oxygen-deficient core of fuel sprays. Particulate matter is a 

danger to human health. Fundamentally the danger arises from the size spectrum, many of 

the particles being small enough to bypass the respiratory system's defences e.g. mucous 

filtering. PM may also slow capiliary function and cause bronchitis. Particles smaller than 

5J.1m can enter the trachea and primary bronchi; those smaller than I J.tm can reach the 

alveolae. 

1.3.2.3 Ozone Layer Depletion 

Ozone (03) forms a layer in the stratosphere, which is 15-35 km above the earth's surface. 

This ozone layer acts like a giant sunshade, protecting plants and animals from much of 

the sun's harmful ultraviolet (UV) radiation. A depletion of the ozone layer will increase 

the UV radiation at ground level, which may cause skin cancer, eye cataracts, damage to 

the immune system in animals as well as human beings and have an adverse effect on 

plant growth. 

In recent decades, it has been found that the layer of ozone in the stratosphere is thinning.· 

This thinning is particularly extensive over the poles and a hole has formed above the 

Antarctic. Research indicates that this depletion is caused by the emissions of halon 

(chlorinated and brominated organic compounds) and NO,. 

1.3.2.4 Global Climate Change 

Besides noxious gases, the combustion of fossil fuels emits a large amount of COz, 
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which is known as a greenhouse gas. The accumulation of C02 has reached such an extent 

that global warming has become a most serious problem which has caused climate change. 

The rate of global warming has increased rapidly in recent decades. It is expected that 

global surface temperature could increase by 0.6-2.5°C in the next fifty years. Although 

other gases such as CH4, CFCs (chloroflurocarbons) and N20 also contribute to the global 

warming, C02 accounts for most. 

1.3.3 Immediate Remedies for Control of the Environmental Impact 

1.3.3.1 Policy Approach 

To prevent significant changes to the environment, important policies have been made to 

put in place an effective international mechanism for the reduction of emissions ofthe six 

greenhouse effect gases. This includes the introduction of the Kyoto Protocol in 1997, and 

the six gases are C02, CO, CH4, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) 

and sulfur hexafluoride (SF6). Meanwhile, more and more strict regulations have been 

introduced to enforce emission standards. For example, the EU Emission Standards for 

passenger cars and light vehicles decrease the allowable emissions to a much lower level 

than before. 

1.3.3.2 Technological Approach 

Two aspects of work have been undertaken to reduce the environmental impact of fossil 

fuels from a technological way: combustion of fossil fuels in an environmentally benign 

manner and post-treatment of exhaust gases to minimize their emission to the 

enviromnent. 

The combustion efficiency of coal has been improved mainly by the introduction of 

pulverized fuel boilers, where coal is ground into power of about I 00 J.lm in size. In the 

1970s and 1980s, fluidised bed boilers were developed and represent a great advance. The 

most commonly used process is circulating fluidised bed combustion. Recently, 

pressurized fluidised bed combustion has been developed to improve combustion 

efficiency, where the operating pressure is about I 0 bar. 

In the fluidised bed, most of the sulphur compounds are removed at source by introducing 

limestone particles into the bed. The 802 reacts with the limestone to produce calcium 

sulphate. NOx is reduced by maintaining the bed temperature under I 000°C. The 
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particulate matter produced is removed by post treatment of the flue gas [7]. 

The combustion efficiency of oil has been mainly improved by reforming techniques. 

Fuel reforming is the process of turning the liquid fuel into a gaseous one. This concept 

was brought forward because fuel reforming produces hydrogen-rich gaseous fuel, which 

can not only lower pollutant emissions but also extend the lean limit of conventional fuels 

to achieve higher efficiency. Collier et a! [17] have shown that feeding hydrogen 

containing gaseous fuel mixture to an internal combustion engine is quite successful in 

minimizing emission ofNOx to below 200 ppm. 

Through improving combustion efficiency, the production of noxious gases and 

particulate matter is reduced significantly. To further lower hazardous emissions, post 

treatments of the exhaust are often carried out through catalytic decomposition of NOx to 

Nz and Oz and oxidation of CO to COz. In a stationary source of noxious gas emissions, a 

demonstrated technology for NO removal in the flue gas is commercially available. It is 

known as selective catalytic reduction and uses VzOs-TiOz supported on ceramic or 

metallic monolith as catalyst(s)[18]. Other technologies under development for flue gas 

clean up include the thermal DeNOx, urea injection, NOxSO, the copper catalyst method 

and lean combustion [19]. With regard to mobile emission sources, the three-way catalyst 

in the automobile exhaust line controls NOx, hydrocarbons and CO emissions well. The 

three-way catalysts are able to oxidise carbon monoxide and hydrocarbons and, at the 

same time, reduce oxides of nitrogen [20]. Most strategies for controlling ambient ozone 

concentrations are based on the control of hydrocarbons, CO and NOx via catalytic 

converters. All of these methods have some problems such as catalyst poison, high cost 

and difficulty in control (usually needing a microprocessor). Moreover, the emission of 

C02 is inevitable when fossil fuels are used. 

1.4 Development of Sustainable and Clean Energies 

A once and for all solution to the use of fossil fuels is to develop clean and renewable 

energies to replace fossil fuels. The various renewable energy sources developed so far 

are listed in Table 1.2. It can be seen that there is a long way to go to get the renewable 

energy sources to play a leading role. Even intervention at government level to encourage 

new technologies may have comparatively little impact. This is because good operating 

practice generally develops gradually and it is also necessary to establish a strong 
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manufacturing base. 

Table 1.2 Renewable energy sources and the means of utilization. 

Energy source Energy utilization Availability 

Agriculture and forestry waste Combustion process Now 

Energy crops Combustion process Now 

Landfill and sewage gas Combustion process Now 

Municipal solid waste Combustion process Now 

Direct solar (active and passive) Heating Now 

Geothermal Heating/electricity Now/limited scope 

Hydro power Electricity Now 

Wind power . Electricity Now and developing 

Hydrogen/Fuel cells Electricity Now and developing 

Solar photovoltaic Electricity Now and developing 

Tidal power Electricity Now/limited scope 

Wave power Electricity Medium-/long-term 

Solar-thermal Electricity Medium-/long-term 

Bio-fuels are not clean (their combustion products contain carbon dioxide). Geothermal 

energy, hydropower and wind energy are region-restricted. The most promising renewable 

energies should be solar energy and hydrogen fuel since there are no harmful by-products. 

In this section, solar energy exploitation is briefly introduced. 

Solar energy is free and renewable for the sun should continue to supply power for 

another 5 billion years [11]. The use of solar energy is demonstrated in three options: 

solar thermal, solar photovoltaic and solar power plant [13]. Solar thermal refers to the 

use of solar energy in a collectors such as solar hot water heaters, solar cookers, solar 

dryers, and in solar desalination, which are commonly used in Jordan [21] and in Pakistan 

[22]. Solar power plant is the use of solar energy on a large scale such as the 350 kW 

power plant in Saudi Arab [23]. 
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The conversion of solar energy into electricity is mainly by photovoltaic (PV) cells, which 

are devices that convert sunlight directly to electricity, bypassing thermodynamic cycles 

and mechanical generators. PV stands for photo (light) and voltaic (electricity), whereby 

sunlight photons free electrons from silicon to generate electricity. This phenomenon was 

first discovered by the French physicist Edmond Becquerel in the I 8th century. The 

photovoltaic cells were developed at Bell Labs in 1950, primarily for space applications. 

Photovoltaic cells are made of semi-conducting materials (usually silicon). The use of 

silicon crystals in the photovoltaic cells is expensive. First of all, silicon crystals are 

currently assembled manually. Secondly, silicon purification is difficult and a lot of 

silicon is wasted. In addition, the operation of silicon cells requires a cooling system 

because performance degrades at high temperatures. Therefore, the share of world 

consumption is extremely small. However, it has convinced analysts that solar cells will 

become a significant source of energy by the end of the century. 

Hydrogen energy is universal and clean since its combustion product is only water. It has 

attracted extensive research regarding its production, storage and application. In the 

following sections, a detailed review will be presented on hydrogen, its production and its 

storage. 

1.5 Hydrogen 

1.5.1 Occurrence of Hydrogen 

Hydrogen is the lightest element and accounts for about 73% of the observed mass of the 

universe [24]. It is believed that hydrogen atoms were the first atoms to form in the early 

universe and that the atoms of the other elements formed later from the hydrogen atoms. 

Hydrogen is the tenth most common element on earth, where it is found primarily in 

water and organic compounds. However, since it is so light, hydrogen accounts for less 

than I% earth's total mass. Pure hydrogen gas rarely occurs in nature, although volcanoes 

and some oil wells release small amounts of hydrogen gas. Many minerals and all living 

organisms contain hydrogen compounds. 

1.5.2 Atomic and Physical Properties of Hydrogen 

A hydrogen atom contains one proton and one electron. Pure hydrogen exists as hydrogen 
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gas (hydrogen molecules), in which pairs of hydrogen atoms are bonded together. Data on 

the atomic structure of hydrogen is provided in Table 1.3 and its physical properties are 

given in Table 1.4. 

In the ionic compounds of hydrogen with metals, hydrogen can exist either in the form of 

an anion H- or in the form of cation H+. In hydrocarbon molecules, hydrogen atoms form 

covalent bonds with other atoms. Hydrogen can also behave like a metal and form alloys 

with metals or intermetallic compounds at ambient temperatures [25]. 
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Table 1.3 Atomic structure of hydrogen. 

Atomic Radium o.79A 

Atomic Volume 14.4cm>/mol 

Covalent Radius 0.32A 

Cross Section 0.33*1o·••cm" 

r; ~1:;~,~~ Crystal Structure ~~-2: 
Hexagonal 

Electron Configuration 1 s1 

Electrons per Energy Level I 

Shell Model @ 
Ionic Radius 0.012 A 

Filling Orbital 1s1 

Number of Electrons I 

Number of Neutrons (Stable nuclide) 0 

Number of Protons I 

Oxidation States I 

Valance Electrons 1s1 

Electra negativity (Pauling) 2.2 

Ionisation Potential ( e V) 13.598 

Valance Electron Potential (-eV) 1200 
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Table 1.4 Physical properties ofhydrogen. 

Description 
Tasteless, colourless, odourless and extremely 

flammable gas 

Atomic Mass Average 1.00794(7) 

Boiling Point -252.732 oc 
Density 0.0899 g L'1 at 0°C and I bar 

Enthalpy of Atomisation 217.6 kJ mol'' at 298K 

Enthalpy of Fusion 0.059 kJ mol'1 

Enthalpy ofVaporization 0.449 kJ mol'1 

Auto Ignition Temperature 500°C 

Explosive Limits Lower (LEL): 17%, Upper (UEL): 56% 

Flammable Limits Lower (LFL): 4%, Upper (UFL): 75% 

Flash point -253 oc 
Melting Point -258.975 oc 
Molar Volume 14.1 cm0 mol'' 

Optical Refractive Index 1.000132 (gas), 1.12 (liquid) 

Relative Gas Density (Air= 1) 0.0694 

Specific Heat 14.304 J g-1 K 1 

Vapour Pressure 1570 mmHg at -250 oc 
Critical point - 240.15°C 
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The phase diagram of hydrogen is shown in Figure 1.3. At a temperature of - 262°C, 

hydrogen becomes a solid with a density of 70.6 kg m-3
• At 0°C and I bar, the density of 

the gas is 0.089886 kg m-3
• Hydrogen is a liquid in a small zone between the triple and 

critical points with a density of 70.8 kg m-3 [26]. At ambient temperature, hydrogen gas 

can be described using the Van der Waals equation (1.3). 

(1.3) 

where p is the gas pressure (Pa), V the volume (m3
) , T the temperature (K), n the number 

of moles, and R the gas constant (8.314 J mor1 K-1
). 
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Figure 1.3 Phase diagram for hydrogen [25]. 
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1.5.3 Hydrogen Production 

As reviewed in the previous sections, hydrogen is the most abundant element in the 

universe. However, it mostly occurs in the form of water and hydrocarbons on earth. 

Hence it needs to be produced or, strictly speaking, extracted from other sources in order 

to facilitate its widespread use as a fuel. In the following, the main methods of extracting 

hydrogen are reviewed. 

1.5.3.1 Hydrocarbon Reforming 

The reason for the use of hydrogen as a fuel is to reduce the environmental impact of 

fossil fuels and the concerns over their depletion. Thus it seems ridiculous to produce 

hydrogen from hydrocarbons. However, currently hydrogen is produced by this method. 

On the other hand, a lot of research has shown that the extraction of hydrogen from 

hydrocarbons and the use of this hydrogen to fuel cells to produce energy can reduce 

emissions [27). Hydrocarbon reforming uses heat and chemical reactions to convert 

hydrocarbon feedstocks into hydrogen. The feedstocks include natural gas, petrol, 

alcohols and biomass. So far three processes are used for the reforming. They are steam 

reforming, auto-thermal decomposition and partial oxidation. 

Steam reforming 

Steam reforming is the oldest method for reforming hydrocarbon feedstock to produce 

hydrogen. In this process, a hydrocarbon is converted to synthesis gas (H2, CO and C02) 

by addition of steam in the presence of a nickel-based catalyst. The synthesis gas then 

undergoes a water shift reaction to increase the concentration of hydrogen in the product 

gas. Steam reforming is mainly used for light hydrocarbons because of the problems of 

soot formation with heavier hydrocarbons [28]. The reactions involved during 

hydrocarbon steam reforming are shown in Scheme 1.3. 
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CO + HzO - COz + H2 

Scheme 1.3 Steam reforming of hydrocarbons. 

The objective of a catalytic steam reforming process is to liberate the maximum quantity 

of hydrogen held in water and the feedstock fuel. Carbon in the fuel is converted into CO 

by oxidation with oxygen supplied in the steam. Hydrogen in the fuel, together with 

hydrogen in the steam, is released as free hydrogen. In other words, the resulting 

hydrogen comes from fuel as well as from the steam. The reaction is endothermic, i.e. it 

requires external heat input through a heat exchanger surface. In practice, a steam to 

carbon ratio in the range of 3.5 to 4.0 must be used to suppress soot formation. This has 

the effect of lowering the molar hydrogen output to 50% [29-31]. 

Partial Oxidation (POX) 

Partial oxidation is based on extremely fuel-rich combustion (low air/fuel ratio). This 

technique involves the exothermic reaction of feed hydrocarbons in the presence of a 

small amount of air, such that incomplete combustion should occur. The extent of 

oxidation depends on the amount of oxygen used. The reformation reaction is followed by 

a shift reaction, where steam is used to convert carbon monoxide into hydrogen. POX is 

considered to be the most promising method after extensive reviews and case studies of 

the various reformer technologies [28]. The main reaction involved is shown in scheme 

1.4. 

CmHn+(l/2)m0r-+mCO+ (1/2)nHz 

Scheme 1.4 Partial oxidation of hydrocarbon to convert it to hydrogen. 
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This process can be a non-catalytic flame reaction at high temperature (in the range 

1000°C-1500°C) without catalysts. However, in the presence of a catalyst, the reaction 

temperature can be reduced, and the efficiency of hydrogen production depends on the 

catalyst. 

The main challenge in partial oxidation is the development of efficient catalysts. There 

are mainly two components in the catalysts for POX. The first is one or more transition 

metal(s), especially the precious metals; the second is an oxide of a Group III or Group IV 

element[ 18]. 

Auto-Thermal Reforming (ATR) 

Auto-thermal reforming is similar to partial oxidation in that the hydrocarbon feedstock is 

burned in-situ. However, ATR also resembles steam reforming in that steam is injected, 

and a catalyst is used to hasten the reactions and lower the reaction temperature. The 

steam reforming reaction utilises the heat produced by the partial oxidation reaction. Both 

a platinum based catalyst and a nickel based catalyst are used in this process. The 

reactions involved inATR process are shown in scheme 1.5. 

Scheme 1.5 Reactions involved in ATR process. 

1.5.3.2 Water Electrolysis 

Electrolysis is the process whereby electricity is passed through an electrolyte via 

electrodes in order to cause a non-spontaneous reaction to occur. Hydrogen reacting with 

oxygen to form water is a spontaneous reaction, while the reverse process is non­

spontaneous. In order to produce hydrogen from water, an electrolytic cell is needed. 

Today, water electrolysis is one of the most utilized industrial processes for hydrogen 

production and all the on-site hydrogen generation and pure hydrogen requirements are 

23 



achieved by the electrolysis of water into hydrogen and oxygen. 

1.5.3.3 Photo-Production 

The photo-production method is to use sunlight for the splitting of water to produce 

hydrogen. This is one of the most promising ways and thus has promoted considerable 

research. The photo-production of hydrogen has been a goal of scientists and engineers 

since the early 1970s when Fujishima and Honda [32] reported the generation of 

hydrogen and oxygen in a photoelectrochemical cell using a titanium dioxide electrode 

illuminated with near ultraviolet light. 

Scheme 1.6 The Photo-production of Hydrogen. 

Pure water does not absorb solar radiation. Thus a sensitizer must be involved to induce 

the water-splitting reaction (Scheme 1.6): a molecule or semiconductor that can absorb 

sunlight to reach its excited state. According to the sensitizer, the system for carrying out 

this reaction can be classified into four categories: photochemical systems, semiconductor 

systems, photobiological systems and hybrid systems (a combination of the above 

systems). 

There are three systems to produce hydrogen using this method, based on different 

sensitizers. Photochemical systems use a compound as sensitizer, semiconductor systems 

use a semiconductor as sensitizer and photobiological systems use a bacterium as the 

sensitizer (such as blue-green algae). 

1.5.4 Hydrogen Storage 

Interest in hydrogen as a fuel has grown dramatically and many advances in hydrogen 

production and utilisation technologies have been made. However, hydrogen storage 

technologies must be significantly advanced if a hydrogen based energy system is to be 

established, particularly if the intended use is in the transportation sector. The main 

obstacle in the way of a transition to a hydrogen economy at the present time is the 

absence of a practical means of hydrogen storage. For years the goal of researchers has 
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been to develop high-density hydrogen storage systems that can release hydrogen at 

temperatures lower than I 00°C. A hydrogen economy will flourish when adequate storage 

technology exists, allowing people to tap and trade regional, renewable power sources. 

This cache of stored energy will offer viability to the full range of local and global 

renewable energy sources. 

For practical use, the energy density for any storage methods must reach a high level. For 

example, the US Department of Energy (US DOE) recommended that an energy density 

of 6.5% and 62 kg m·3 must be achieved in order for a hydrogen storage system of 

appropriate weight and size to facilitate a fuel cell vehicle driving a distance of 560 km. 

Storing hydrogen is somewhat difficult due to its low density and low critical temperature. 

Currently, there are a number of technologies available for hydrogen storage and they are 

still rapidly evolving. 

• High pressure gas cylinders (up to 800 bar) 

• Liquid hydrogen in cryogenic tanks 

• Adsorbed hydrogen on materials with a large specific surface area (at T < 100 K) 

• Metal hydrides 

1.5.4.1 Compressed Hydrogen at Higher Pressure 

Storage as a compressed gas is _inexpensive and provides for ease of operation but its 

weight and bulk are the main problem apart from fire/explosion risk. Generally, the 

common gas cylinder has a maximum pressure of 200 bar. New lightweight composite 

cylinders have been developed which support pressures of up to 800 bar, allowing 

hydrogen to reach a volumetric density of 36 kg m·3 [26]. To store a practical quantity for 

vehicles in high pressure vessels would result in a very large and heavy storage system. In 

addition, the storage of any high-pressure gas presents a safety hazard in the event of 

vehicle collision and the safety of pressurized cylinders is an issue of concern especially 

in highly populated regions. Additionally, compression of hydrogen gas, up to say 35 

MP a, consumes nearly 20% of its total energy content. 

1.5.4.2 Liquefied Hydrogen Storage 

Hydrogen can be stored as a liquid at -253°C in a super insulated tank. The volumetric 
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density of liquid hydrogen is 70.8 kg m·3• This method is the most frequently used fuel in 

space travel. For use as a fuel in automobiles, it presents too many problems to be 

practical, such as refuelling and a complex insulating system that is required to keep the 

temperature as low as- 253°C. Moreover, loss rates of 1-2% per day have to be countered, 

and there is a I 0-25% fuel boiling off during refuelling [33]. The cost and energy 

associated with the liquefaction process must also be considered, which consumes nearly 

30% of the total energy contained in the hydrogen. 

1.5.4.3 Slush Hydrogen 

A mixture of about 50% solid and 50% liquid hydrogen at the triple point temperature (-

259°C) and the correspondent vapour pressure (0.07 bar) is called 'slush hydrogen'. Its 

higher density (15% more than liquid hydrogen) and higher refrigeration capacity (18% 

more) as well as its flow behaviour similar to the liquid phase have been considered an 

advantage and this was investigated for space flight in the 1960s and for the planned 

supersonic space shuttle carrier in the 1980s [34]. The idea was abandoned due to, among 

others reasons, the high production costs and the difficult handling caused by the fact that 

the vapour pressure is lower than the atmospheric pressure. 

1.5.4.4 Adsorption 

Adsorption of hydrogen on activated carbon materials or other nano-materials has 

attracted great attention in recent years. The adsorption techniques rely on the affinity of 

hydrogen and substrate atoms. Hydrogen is pumped into a container with a substrate of 

fine particles where it is held by the interactions. 

One of the most exciting advances recently has been t11e announcement of carbon 

nanotube technology [35, 36]. It has been proposed that hydrogen can be adsorbed by 

nanotubes in two ways: physical adsorption and chemical adsorption. Physical adsorption 

occurs in carbon nanotubes by trapping hydrogen molecules inside the cylindrical 

structure of the nanotube or by trapping hydrogen in the interstitial sites between 

nanotubes [26]. The maximum energy density can reach 12.5 kg m·3 at 10 MP a and 300 K 

from a simulation study [3 7). The amount of hydrogen adsorption depends on the 

characteristics of the nanotubes such as their size and surface activity, temperature and 

pressure. Chemisorption of hydrogen on carbon nanotubes occurs by hydrogen 

dissociation and reaction with carbon [38]. The storage capacity of carbon naontube can 
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be improved by doping with some nano-particles [39, 40]. 

It would be appropriate here to mention that there is a great deal of disagreement 

surrounding the capacity of carbons [ 41], and there is a big gap between the energy 

density and its requirement for vehicle use. Up to now, there are no indications that 

carbon nanostructures can adsorb unusually high amounts of hydrogen and that these 

novel materials can be utilized for hydrogen storage in technical applications. 

Zeolite adsorbents are another class of materials for hydrogen storage [42, 43]. Zeolite 

has the structure of a molecular sieve. Hydrogen can be held within its microporous 

media. The best result at the present time is 9.2 ml H2 per gram by using a sodalite zeolite 

[42]. 

Graphite is a new material for hydrogen storage [44]. This type of carbonaceous material 

was ignored previously. However, hydrogen could be stored between two basic planes of 

graphite. By a computer simulation, graphite may store hydrogen with a capacity that can 

satisfy the requirements of US DOE standard. 

1.5.4.5 Metal Hydrides 

Many metals and alloys are able to absorb large amounts of hydrogen to form metal 

hydrides according to reaction (Scheme 1.7): 

Me+x/2H2+-tMeH, 

Scheme 1.7 Formation of metal hydrides. 

where Me is a metal, a solid solution, or an intermetallic compound, MeH, is the hydride 

and x the ratio of hydrogen to metal. 

Metals can be charged with hydrogen using molecular hydrogen gas or hydrogen atoms 

from an electrolyte. The first step is the physisorbed state by Van der Waals force. The 

second step is the chemisorption, in which the hydrogen overcomes an activation barrier 

for dissociation and for the formation of the hydrogen metal bond. The third step is the 

diffusion of the dissociated hydrogen atoms rapidly through the bulk metal to form an M­

H solid solution commonly referred to as a phase, where hydrogen occupies interstitial 

sites in many cases. The negative hydrogen is bonded ionically or covalently to a metal, 
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or is present as a solid solution in the metal lattice. 

Besides binary metal hydrides, group I, 2, 3 light metals, e.g. Li, Mg, B and AI can form 

a large variety of metal-hydrogen complexes, such as BH4-, AIH4-, and derivatives of 

these [26]. These complex metal hydrides are especially interesting for transport 

applications. 

Thermal decomposition or pyrolysis of the metal hydrides is a reversible reaction. The 

metals can adsorb hydrogen and the hydrogen can be released when heat is applied. The 

decomposition of some metal hydrides is shown in Figure 1.4[45]. Work is being done on 

finding cheaper metal alloys which have the ability to absorb large amounts of hydrogen 

and at the same time release the hydrogen at a relatively low temperature. In this respect, 

LiBH4 has been studied extensively [46]. 
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Figure 1.4 Van't Hoff plots of some technically important reversible metal hydrides. 

The hydrolysis reaction is another method to release hydrogen from metal hydrides. Ever 

since World War I!, lithium hydride (LiH), calcium hydride (CaHz) and sodium 

borohydride (NaBH4) have been used as fuel sources in case of emergency [47]. Since 

this reaction can extract hydrogen from water, the energy density is higher than thennal 

decomposition. 
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Most of the reactions between metal hydride and water are vigorous with a large amount 

of heat being released, which may cause an explosion. Therefore this reaction is difficult 

to control except in the case of sodium borohydride. Table 1.4 gives the heat released 

when one gram of hydrogen is produced by the reaction between water and different 

hydrides. It can be seen that the heat generated by the hydrolysis of sodium borohydride 

is only about 50% of that produced by the hydrolysis of other hydrides. It is therefore 

considerably safer compared with other hydrides such as LiH, LiAIH4, NaAIH4 and CaHz. 

Table 1.4 Heat released for I gram hydrogen with different hydrides [ 48]. 

Hydrides NaBH4 LiH LiAl~ NaAIH4 CaHz 

b.W (kJ g-1 H2) -37.1 -54.3 -62.5 -56.2 -58.0 

Another advantage ofNaBH4 as a hydrogen carrier is its high energy density. Assuming 

100% stoichiometric conversion of NaBH4, 37.8 g of NaBH4 (I mol) produces 8 g of 

hydrogen (4 mol), while more reagents by weight are needed for other reductants to 

produce the same amount of hydrogen. Table 1.5 lists the weight of reactants necessary to 

produce one gram of hydrogen. It is shown that the weight of NaBH4 required to 

producing one gram of hydrogen is the least among the reactants except for LiH, while 

the reaction between LiH and water is vigorous and explosion inducing. 

Table 1.5 Weight ofhydrides necessary for generating one gram of hydrogen. 

Metal hydrides NaBH4 LiH LiAIH4 NaAIH4 CaHz 

Weight (g) 4.73 4.00 12.2 14.3 10.5 

Therefore, the hydrolysis of sodium borohydride is the most effective, safe and 

controllable among the various hydrides, which renders it most suitable for generating 

hydrogen on-board. 

1.5.4.6 Comparison of the Energy Density of Different Hydrogen Storage Methods 

Five different hydrogen storage methods have been reviewed in this section. Although 

each method possesses desirable characteristics, no approach satisfies all of the efficiency, 

size, weight, cost and safety requirements for transport and utility use. The comparison 
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between the above methods is listed in Table 1.6, and the volumetric versus gravimetric 

hydrogen density for the various methods is shown in Figure 1.5. 

High-pressure gas cylinders and liquid hydrogen technologies are well established. The 

energy density is low due to the weight of the cylinders. The liquid hydrogen method is 

very complex and not suitable for on-board applications. Although adsorption of 

hydrogen on carbonaceous materials has greatly advanced, there is still a gap between its 

capacity and requirements. It can be seen that only metal hydrides offer a safe and 

efficient way to store hydrogen. Direct thennal decomposition of metal hydrides is a 

reversible reaction. Research is being undertaken to lower the decomposition temperature. 

The hydrolysis reaction is not reversible. However, it can provide higher energy density 

since this reaction extracts one mole of hydrogen from water. Sodium borohydride is the 

most suitable material for hydrolysis due to the lower heats evolved and its higher 

hydrogen content. Extensive research is being performed for its commercilisation. This 

thesis mainly addresses the obstacles of using sodium borohydride as a hydrogen source. 

Table 1.6 Comparison of the current hydrogen storage methods. 

Gravimetric Volumetric 
Temperature Pressure 

Storage method density density Comments 
(mass%) (kg H2m.3) 

("C) (bar) 

High pressure gas 
13 <40 

Room 
800 

Loss ofl-2% 
cylinders temperature per day 

Liquid hydrogen in Size 
70.8 -252 I 

cryogenic tanks dependent 
Usually 

Hydrogen adsorption 2 20 -80 100 carbonaceous 
materials 
Usually at 

Metal 
pyrolysis <18 150 >100 1 elevated 

hydrides 
temperature 

Room Not 
hydrolysis <40 >150 

temperature 
1 

reversible 
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1.6 Summary 

In this chapter, the current situation of world energy supply has been reviewed. Most of 

the problems are associated with the utilisation of fossil fuels, the use of which has caused 

extensive problems from air pollution to global warming. The main approach to this 

challenge is to develop clean and renewable energy. 

Hydrogen is a universal energy. The use of hydrogen energy has therefore been studied 

extensively, from its production to usage. The main barrier hindering its wide application 

is the lack of efficient, low cost, and safe storage technologies for hydrogen. There are 

currently five main storage methods available: high-pressure cylinder, liquid hydrogen, 

slush hydrogen, hydrogen adsorption and metal hydrides. It is believed that the hydrolysis 

of an aqueous solution of sodium borohydride is a safe and efficient way to store 

hydrogen. 

1. 7 Thesis Organization 

The later chapters of this thesis are organized as follows. Chapter 2 reviews NaBH4 and 

its current status as a hydrogen storage method. Chapter 3 and 4 investigate the maximum 

concentration ofNaBH4 from a point of view of thermodynamics. Chapters 5-9 study the 

kinetics of hydrogen generation from NaBH4 hydrolysis over metal catalyst. Chapter I 0 

concludes the thesis and recommends the future work. 
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Chapter 2 

Overview of Sodium Borohydride Hydrolysis for 
Hydrogen Generation 

2.1 Introduction 

The discovery of sodium borohydride by H. J. Schlesinger, H. C. Brown, H. R. Hoeckstra, 

and L. R. Rapp can be traced back to 1942 [1]. It was first synthesized as a consequence 

of the atomic bomb related efforts at the University of Chicago, together with many novel 

compounds containing boron and hydrogen. Soon after its discovery, it was found that this 

compound could be used as a hydrogen generation agent. After that, its chemical and 

physical properties were studied in detail. Extensive research of its synthesis and 

application was mainly conducted in 1950s. In the 1990s, the hydrolysis of NaBH4 has 

been actively investigated due to the strong desire to look for alternative clean energies. In 

this chapter, a detailed review is given of the production, hydrolysis and applications of 

sodium borohydride, as well as the routes for transformation of sodium metaborate back 

to sodium borohydride. 

2.2 Production ofNaBH4 

Over 1 00 methods for the preparation of sodium borohydride have been described, but 

few of these have achieved any practical significance. There are two main technologies to 

produce it: one is the organic process (the Schlesiger method) and the other is the 

inorganic process (Bayer method). 

2.2.1 Organic Process (Schlesiger Method) 

The Schlesiger method to manufacture NaBH4 uses sodium hydride and trimethyl borate 

in a mineral oil medium at about 275°C [2]. The flow diagram of the process is shown 

schematically in Figure 2.1, and the main reaction is given in Scheme 2.1. 
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Scheme 2.1 Organic process for preparation of sodium borohydride. 

In this process, sodium hydride is prepared in mineral oil in a reactor and then transferred 

to another reactor, where trimethyl borate is added to react with the sodium hydride 

forming sodium borohydride. After that, a complex separation procedure is performed to 

recover pure sodium borohydride. The yield is over 90%. 

2.2.2 Inorganic Process 

This process was first developed by the Bayer Company [3], and is referred to as the 

Bayer process. The flow diagram of the Bayer method is shown schematically in Figure 

2.2, and the main reaction is given in Scheme 2.2. 

Scheme 2.2 The main reaction in the Bay er process. 

In this process, the borosilicate (NazB407.?SiOz) is produced by the fusion of borax 

(Na2B407) and quartz sand (Si02). The borosilicate is cooled, ground, and then reacted 

with sodium in an atmosphere of hydrogen at 300 kPa and 400-500°C in a partly 

heterogeneous reaction. The sodium borohydride is extracted from the borosilicate-silicate 

mixture with liquid ammonia under pressure. The yield is over 90%. 
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2.3 Properties ofNaBH4 

In order to better understand the hydrolysis reaction to produce hydrogen from NaBH4, its 

main properties are introduced in this section. The physical and thermodynamic properties 

are listed in Table 2.1 and 2.2 respectively, which were mainly obtained from 

spectroscopic studies [ 4]. 

Table 2.1 Physical properties of sodium borohydride 

Molecular weight 37.84 

Colour White 

Crystalline form (anhydrous) Face centred cubic a- 6.15A 

Melting point 
505°C (1 0 bar H2) 

Decomposes above 400° C in vacuum 

Thermal stability 
Will not ignite above 400°C on a hot plate. 

Ignites from free flame in air, Burning quietly 

Density (g/cmj) 1.074 
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Table 2.2 Thermodynamic properties of sodium borohydride [ 4-7] 

Sodium borohydride 

Free energy of formation - 125.82 kJ mol~ 

Heat of formation - 190.32 kJ mor1 

Entropy 101.41 J mor1 K·' 

Heat capacity 86.40 J mor' K"1 

Free energy of ionisation 
- 23.66 kJ mor1 

NaBH4(s)=Na+ +BH4-

Borohydride ion BH.t" 

Free energy of formation - 119.55 kJ mor1 

Heat of Formation 51.83 kJ mor1 

Entropy 106.59 J mor' K" 1 

Heat of hydrolysis 
-371.18 kJ mor1 

BH4. +H+ + 3HzO(liq)=H3B03+4Hz(g) 

Half electric reaction 
1.24 V 

BH4.+80H"=B(OH)4"+4Hz0+8e· 

An important physical property is its solubility in water, which is related to hydrolysis 

reaction. J ensen [8] has accurately measured the solubility of sodium borohydride in 

water at the different temperatures, and the results are reproduced in Figure 2.3. The data 

presented in Figure 2.3 shows the equilibrium temperature of the two crystal forms 

NaBH4 and NaBH4 2Hz0. The curve below 36.4°C represents the solubility of the 

dihydrate, and above 36.4°C, the solubility of anhydrous NaBH4. 
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Table 5.4 Sieve set and catalyst size 

Sieve aperture (!lm) Average cat a! yst size (!lm) 

600 -
500 550. 

106 -
90 98 

53 -
45 49 

32 -
25 29 

5.4.3 Experimental set-up to monitor reaction rate 

For kinetic research, the change in concentration of NaBH4 with respect to time should be 

monitored. The measurement of the concentration ofNaBH4 is rather difficult due to its 

hydrolysis even at room temperature. In this study, a method for measuring the hydrogen 

volume with time was used, since hydrogen volume and NaBH4 concentration can be 

related using the stoichiometric coefficients in the following reaction scheme. 

NaBH4 + 2Hz0 = NaBOz +4Hz 

A schematic diagram for the experimental set-up is shown in Figure 5.6. The rig consisted 

of three parts: the reaction system, a sytem to monitor temperature and a system to 

measure the volume of hydrogen that is generated. The reaction system consists of a 

three-port reactor and a magnetic stirrer, a water bath that was used to adjust reaction 

temperature and a feeding system. One side-port of the reactor was equipped with a 

thermocouple and another side-port was connected to the water replacement system. The 

middle port of the reactor was used to site a feeding funnel. Since NaBH4 can be 

hydrolysed even at room temperature when contacting water, a special feeding system 

was used as shown in Figure 5.6. NaBH4 and catalyst were added to the reactor first and 

then water was added through the feeding system to the reactor. Once the chemicals come 

into contact, hydrogen is produced and the amount that was generated was recorded. 
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The volume of hydrogen that was produced was measured using a water replacement 

system. The water replacement system consisted of a graduated cylinder full of water and 

a water reservoir that was used to immerse the cylinder. A container was placed onto an 

electronic balance. Before starting the experiment, the water in the reservoir was filled to 

such a level that any extra water would overflow from the cylinder through a slope into 

the container on the balance. The electronic balance was connected to a computer using a 

standard RS232 connector. Software provided by the balance manufacturer was used to 

record the time and the weight of the water displaced from the cylinder. The time interval 

for recording the weight was one second. Both the software and the electronic balance 

were purchased from A & D Company Ltd. (UK). 

In order to monitor the temperature of the reaction system, a thermocouple was put into a 

side port of the reactor. This K-type thermocouple was connected to a data logger, which 

transferred the information to a computer. The data logger and the thermocouple were 

purchased from Pico Company Ltd (UK). 

Before conducting the experiment, the reactor was cleaned using distilled water and then 

dried in an oven for 24 hours. After the temperature was stable, the reactor was put into 

the water bath with a fixed amount of catalyst inside. A pre-determined amount ofNaBH4 

powder was then put into the reactor. After all these were ready, the cork of the feeding 

funnel was opened to let the water flow into the reactor to start the hydrolysis. The water 

that was displaced by the hydrogen production and the overall reaction temperature were 

both monitored by using the computer. When calculating the reaction rate, the saturated 

vapour pressure at room temperature was considered. 

The amount of catalyst that was used was based on the convenience of reaction control. 

Reaction rate for heterogeneous catalysis is proportional to the mass of catalyst. The rate 

data is based on unit mass of catalyst. 

143 



measuring cylinder 

data logger 

hot plate balance 

Figure 5.6 A schematic experimental set-up for the research ofNaBH4 hydrolysis kinetics. 

5.4.4 Analysis of non-isothermal rate data in order to obtain isothermal rate data 

The general analysis process is described briefly as follows and a detailed procedure will 

be described together with results and discussion in later chapters. 

The rate for any reaction can be expressed using equation (5.11). 

(5.11) 

Where r is the reaction rate, E is the activation energy, R is the universal gas constant, T is 

the temperature, C is the concentration of reactant, a is the reaction order, and A is the 

pre-exponential factor. 

To deriving isothermal rate data from non-isothermal rate data, take logarithms of both 

sides, yielding 

E 
lnr =In A +a lnC -­

RT 
(5.12) 

Since A and a are constants for a specific reaction, lnr against liT will have a linear 

relationship when C is fixed. In the following, the determination of the parameters (lnA + 

ulnC) and E/R is given using the illustration in Figure 5.6. 
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Figure 5.6 Schematic graphs showing analysis of non-isothermal rate data to obtain 

isothermal rate data, (a) reaction rate- mNaB02, (b) temperature- mNaB02· 

As shown in Figure 5.6a and b, five runs (a, b, c, d and e) are performed with the same 

initial NaBH4 concentration and the same amount of catalyst but with a different initial 

reaction temperature. The extent of the reaction is indicated using the concentration of 

NaB02. The initial temperature increases steadily from a to e. The reaction temperatures 

and rates are measured simultaneously with time as shown in Figures 5.6a and b 
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respectively. 

At a given NaB02 concentration, such as in the position of the vertical line, five different 

rates (r~, r2, r3, r4 and rs) can be obtained from Figure 5.6a, and the corresponding 

temperatures (T~, T2, T3, T4 and Ts) can be obtained from Figure 5.6b. When the reaction 

rates and the corresponding reciprocal temperatures (1/7) are plotted the result should be 

linear, with a slope corresponding to -EIR, and an intercept on they axis of lnA + alnC. 

Hence equation (5.12) is determined, which can be then used to calculate the reaction rate 

at any temperature when the concentration of NaB02 is mNaB02· In the same way, 

equations for any other NaB02 concentrations can be determined. Reaction rates at these 

NaB02 concentrations can also be determined for any temperature. 1brough this method, 

isothermal reaction rates are obtained for different NaB02 concentrations. 

If five groups of the above experiments are performed, each of which has a different 

initial NaBH4 concentration, then equation (5.12) can be determined at the same NaB02 

concentration in each group. Since initial N aBH4 concentration in each group is different, 

the rate at different NaBH4 concentrations is obtained with the same NaB02 concentration 

and temperature. 

Therefore, the following procedures are used for each group of experiments. 

• Hydrogen release experiments were conducted to obtain VH2- t, and T- t. 

• Transform VH2- t to rH2- t by differentiation. 

• Transform rH2 - t to rH2 - m Naso, , and T - t to T- m Naso, by using equations 

(5.13) or (5.14). 

• Using the relationship rH2- m NaBo, and T- m Naso,, plot lnrH2- I IT. 

• Derive the reaction rate for any temperature at specific NaBH4 or NaB02 

concentrations. 

w~,o - (Po - PH,o )V H, M H,o 1(2RT) 
(5.13) 
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(5.14) 

Where VH2 is the volume of hydrogen released at timet, Tis the reaction temperature, rH2 

is the hydrogen generation rate, w is mass, Po is atmospheric pressure (assumed to be 

101325 Pa), PH2o represents saturated vapour pressure at ambient temperature for 

measuring hydrogen volume, M is the molecular mass, V is the volume, and R is the 

universal gas constant (8.314 J mor1 K 1
). The superscript 0 represents initial value. 

5.5 Summary 

In this chapter, the fundamentals of heterogeneous catalysis are reviewed. When deriving 

intrinsic kinetic equations for the hydrolysis of NaBH4, diffusion limitations must be 

removed including both heat and mass transfer. Due to the extensive heat effect, an 

isothermal heterogeneous reaction is difficult to perform. 

A rig has been designed to monitor the kinetics thorough a water placement method. 

Instead of maintaining constant temperature, a new analysis method is established to 

obtain isothermal rate data from non-isothermal rate data. 
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Figure 2.3 The solubility of sodium borohydride in water. 

Sodium borohydride is used extensively for the reduction of organic compounds. Its broad 

synthetic utility is based on its ability to reduce aldehydes and ketones selectively and 

efficiently in the presence of other functional groups, and to reduce other functional 

groups, e.g., esters, di- and polysulfides, imines and quaternary iminiium compounds, 

under special conditions or with added catalysts or eo-reagents. 

2.4 Hydrolysis of NaBH4 

Sodium borohydride is a white solid, stable in dry air up to a temperature of 300 °C. It 

decomposes slowly in moist air or in vacuum at 400 °C [9]. The aqueous solution of 

sodium borohydride is also stable at normal environmental temperatures and pressures 

provided that the pH of the solution is high, which is usually achieved by adding NaOH to 

stabilize it [I 0, 11]. However, when an acid, a metal salt or a selective catalyst is added, 

NaBH4 starts to hydrolyse to release hydrogen. In the following, the mechanisms for the 

three types of hydrolysis are reviewed respectively. 
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2.4.1 Acid Catalysis 

Acid catalysis can be classified into two types: general acid catalysis and specific acid 

catalysis [12]. 

In a typical acid catalysed reaction A + B = product, a reactive protonated intermediate 

AH+ is formed as shown in Scheme 2.3, where A and B are the reaction substrates. 

kl 
AH+ A + H+ --k.l 

AH++ 
k2 

product B -
Scheme 2.3 The mains steps for acid catalysis reaction. 

If step 2 is the rate-determining step and step I is the acid-base equilibrium, the 

mechanism is called specific acid catalysis. The rate depends only on the concentration of 

specific acid H\ i.e. the pH value of the solution, as shown in equation (2.1). 

(2.1) 

If step 1 is the rate-determining step, the mechanism is called general acid catalysis. The 

rate depends not only on pH but also on total acid concentration since any general acid 

can provide H+ as shown in Scheme 2.4. The rate equation for this type of mechanism is 

shown in equation (2.2). A general case is shown in Table 2.3. 

A+ HX 

Scheme 2.4 General acid catalysis reaction. 

(2.2) 

44 



Table 2.3 Different rate laws for acid catalysed hydrolysis of sodium borohydride. 

Specific acid catalysis General acid catalyss 

rate 
d[Products 1 

rate 
d[Products 1 

dt dt 
d[Substrate 1 d[Substrate 1 

dt dt 
= koru [Substrate 1 = k oru [Substrate 1 

kob' =k0 +kH.[H+1 koru = k0 + kH. (W1 + ~)HA,J (HA1i 

k0 =rate constant for uncatalyzed k0 =rate constant for uncatalyzed 

reaction (s-') reaction (s-') 

k H" = hydroxide ion catalytic k H" = hydroxide ion catalytic 

coefficient (M_, s _,) coefficient (M_, s _,) 

k HA,J =catalytic coefficient for 

general acid HA i (M-' s-1
) 

It has been confirmed that the hydrolysis reaction of sodium borohydride is a general acid 

catalysis not specific acid catalysis [131. Davis and Swain [1 01 studied alkali metal 

borohydrides hydrolysis in dilute buffer solutions. They found that the rate expression was 

first order in hydrogen ion concentration in the pH range of 7. 7 to I 0.1, and the rate is less 

sensitive to hydrogen ion concentration at high pH (12 to 14). The apparent reaction order 

in hydrogen ion concentration decreases to about 0.4. Davis and Bromels [10, 141 found 

that the rate depended upon the ionic strength and upon the anion component of the buffer 

solution. They suggested a mechanism which involved a rate-determining proton transfer 

from a general acid onto the borohyride ion (as shown in Scheme 2.5), in which the 

hydrolysis of the borohydride solution was controlled by the formation of [H+BH4-A;-1*. 

The intermediate hydrolyzed immediately to an aquated borine radical ((BHJ)aq) which 

also hydrolyzed rapidly: 
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fast 
(BH3)aq __.products 

Scheme 2.5 Proposed hydrolysis mechanism for borohydride catalysed by acid. 

Kreevoy's work [1 I, 13, 15, 16] on the hydrolysis ofBH4- by acid has shown that the loss 

of the first hydrogen determines the overall rate, and the reaction is first order to both the 

concentrations of BH4- and H+. In acidic solution, the rate-determining step is the 

formation ofHzBH3. He proposed the mechanism of this reaction as shown in Scheme 2.6. 

H2BH3 - Hz + BH3 

very fast 
BH3 + 3 HzO __. Hz + B(OH)3 

very fast 
OH- + B(OHh B(OH)4-

Scheme 2.6 Proposed reaction mechanism for the hydrolysis ofborohydride 

Wang and Jolly [17], however, suggested HzOBH3, BHz(HzO)z+, HzOBH(OH)z as 

intermediates in low temperature reactions as shown in Scheme 2. 7. 

H20BH(OH)2 -+- B(OH)3 + H2 

Scheme 2.7 Proposed reaction mechanism for the hydrolysis ofborohydride 

No matter what the intermediate is, the hydrolysis of the borohydride is confirmed to be 

first order in both hydrogen ion and borohydride ion. The rate equation can be expressed 

46 



using equation (2.3). 

(2.3) 

Equation (2.3) can be simplified to equation (2.4), where (BH4"), (H30+), (H20) and (HA) 

represent the activities of the corresponding species in the system. 

dH 2 =(BH4)[LkHA(HA;)] 
dt 

(2.4) 

Schlesinger et a! [18] have shown that the rate of hydrogen release slows down rapidly as 

the pH increases due to the increased presence of borate ion. Since the borate ions 

produced are alkaline, acids are therefore not an efficient catalyst. 

2.4.2 Transition Metal Salt Catalysis 

Acid catalysis comprised the majority of the research on the hydrolytic reaction ofNaBH4. 

In the 1950s and 1960s, the search for more practical catalysts led to investigations of 

some first row transition metal chlorides [18], which includes MnCh, FeCh, CoCh, NiCh 

and CuCh. Kaufman [19, 20] conducted detailed research on the effect of these salts and 

concluded that the transition metal salts can accelerate the hydrolysis greater than acids. 

The catalysis by metal salts can be described as an additive combination of acid catalysis 

and metal surface catalysis, the kinetics of which can be approximated by equation (2.5) 

[19]. 

(2.5) 

where kH + is the rate constant for the acid catalysis and kM is the rate constant for the 

metal surface catalysis. 

2.4.3 Metal Catalysis 

Due to the low efficiency of acid catalysis, high efficiency catalysts have been 

investigated to hydrolyse sodium borohydride to hydrogen. The most efficient catalysts so 

far are the transition metals. 
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The advantages of transition metal catalysis over acid catalysis are as following [19): 

• The hydrolysis rate can be controlled by the amount of catalyst used and is usually 

unaffected by changes in solution alkalinity. 

• Minimal foaming of solutions. 

• Possible recovery and reuse of catalysts. 

As early as the 1950s, Schlesinger et al [18) reported that alkaline borohydride solutions 

undergo hydrolysis, in the presence of various transition metal catalysts, to produce 

hydrogen. Based on this data, various metals such as Pt, Ru, Ni, Co and their supporting 

materials have been developed for hydrogen production from borohydride solutions and 

reported in recent years. 

Brown [2 I) examined several metal catalysts for the hydrolysis of sodium borohydride 

solutions and found that Ru and Rh liberated hydrogen rapidly. Arnendola [22) used 

supported high surface area Ru on ion exchange resin beads to catalyse the hydrolysis. 

Wu [23) used carbon supported platinum as the catalyst for the hydrolysis. Richardson [24] 

used Ru as the catalyst without any carrier. Krishnan [25] stated that Co02 can be used as 

an efficient carrier for Pt, Ru and Li for catalysis. 

The mechanism of metal catalysis is not well .understood. Some researchers proposed a 

zero-order reaction mechanism [19], while some others proposed a first-order reaction 

mechanism [24). 

2.4.4 The Factors Affecting the Hydrolysis ofNaBH4 

The pH of the solution has a great effect on the hydrolysis of sodium borohydride in the 

absence of catalyst. The solution temperature also has a significant effect on the 

hydrolysis. Kreevoy and Jacobson [11) proposed the following empirical equation to 

predict the rate of hydrolysis ofNaBH4. 

log(t 112 ) =pH- (0.034T -1.92) (2.6) 

Where t112 is the time it takes for one-half of a NaBH4 solution to decompose (min), pH 

represents the pH value of the solution and T is the temperature (K). 

In the following, the change of the half-life ofNaBH4 solution with NaOH concentration 
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is calculated according to equation (2.6). In all aqueous systems, water maintains an 

equilibrium with the H+ and oH· ions. The value of the equilibrium constant is 

K = 1.0 X 1 o-14 at 25°C. w 

Kw =[W][OH.]=l.Ox10-14 (2.7) 

K 
pH=-1og[W]=-1og w =14+log[OH"] 

[OH·] 
(2.8) 

where [H+] and [OH"] are the concentration of hydrogen ion and hydroxide ion (mol/drn\ 

which can be calculated from the concentration ofNaOH, assuming that the density of the 

solution is approximately equal to that of water. 

[OH"]= [NaOH]"' 10 X WNaOH WNaOH 
MNaOH 4 

(2.9) 

where wNaOH is the concentration ofNaOH in the solution (wt%). 

Combining equations (2. 7) and (2.8), yields 

pH= 13.4 + log(wNaOH) (2.10) 

Substitute equation (2.1 0) into equation (2.6), the relationship between the half-life of 

NaBH4 hydrolysis and the concentrations ofNaOH is obtained. 

logt 112 = 13.4 + log(wNaOH)- (0.034T -1.92) 

= 15.3 + log(wNaOH)- 0.034T 
(2.11) 

The effect ofNaOH on the stabilisation ofNaBH4 solution can be seen clearly by plotting 

logt112 against wNaoH at different temperatures according to equation (2.11 ), as shown in 

Figure 2.4. 
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Figure 2.4 NaOH effect on the stability ofNaBH4 at different temperature. 

From Figure 2.4, it can be seen that the stability of NaBH4 increases with an increase in 

N aOH concentration, while it decreases with an increase in temperature. Table 2.4 lists 

values of the half-life of NaB~ solutions with different NaOH concentration at room 

temperature (25°C). 

Table 2.4 Stability ofNaBH4 in NaOH solution at room temperature. 

WNaOH t112(days) t112(years) 

1 110 0.3 

5 550 1.5 

10 1100 3 

20 2200 6 

2.5 Current Status ofNaBH4 as a Hydrogen Source 

Sodium borohydride has been known as a viable hydrogen generator since 1943 [26]. At 

first, it was used as a convenient hydrogen source when a small amount of hydrogen was 

needed. It was overlooked after World War I! due to its high cost. However, in recent 
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years, it has attracted great attention as an alternative hydrogen storage method. Currently, 

several companies and groups such as Millennium Cell, Toyota Motor Company, and 

Hydrogenics are investing in this research. 

Great efforts have been made to commercialise the sodium borohydride system as a 

hydrogen source. For example, Millennium Cell has established a portable hydrogen 

generator using aqueous sodium borohydride solution with Ru catalyst [22]. In Oak Ridge 

National Laboratory of USA, a 500 W power system based on sodium borohydride 

hydrolysis has been constructed [24]. 

2.6 Transformation of Sodium Metaborate to Sodium Borohydride 

When sodium borohydride undergoes hydrolysis, sodium metaborate is formed (Scheme 

2.8). In this section, the properties of sodium metaborate and possible routes to transform 

it back to NaBH4 are reviewed. 

Scheme 2.8 The hydrolysis of sodium borohydride. 

2.6.1 Properties of Sodium Metaborate 

NaB02 is relatively inert and non-toxic; it is a common detergent and soap additive but is 

toxic to ants and is an ingredient in ant poisons. An anhydrous form can be obtained when 

crystallizing from melts of 1:1 of NazO.B203. The octahydrate, NazO.BzOJ.SHzO, the 

tetrahydrate, NazO.Bz0J.4HzO, and the monohydrate, NazO.BzOJ.HzO, occur in the 

system NazO-BzOJ-HzO. However, there is no evidence for the existence of a dihydrate 

[27]. 

The simple ionic unit (BOz) only exists in the sodium metaborate vapour in the form 

M+(O--B+-0) [27]. The anhydrous solid sodium metaborate is composed of sodium 

ion and trimeric metaborate ion, (B306i", as shown in Scheme 2.9. However, the solution 

of sodium metaborate is a binary electrolytes system, which has been proved by 

cryoscopic results and Raman spectrum of dissolved sodium metaborate [27]. The cyclic 

triborate ions present in the crystals of the solid salts evidently break up on dissolution. 

Therefore, what is referred to as a solution of sodium metaborate is in fact a solution of 
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the binary electrolyte NaB(OH)4 that is usually simplified as NaB02. 

3-

Scheme 2.9 The structure of the trimeric metaborate ion, (B30 6)
3

•• 

A solution of sodium metaborate is highly basic. It can be used as a component of 

photographic developers and replenishers due to its strong buffering ability which can 

control the pH within close limits. It is also a component for the preparation of starch and 

dextrin adhesives, due to the high degree of alkalinity. Sodium metaborate can also be 

used as a stabilizer for textile processing. It can also be incorporated into liquid laundry 

detergents for pH control and enzyme stabilization. 

2.6.2 Routes for Transforming Sodium Metaborate back to Sodium Borohydride 

In order to use NaBH4 hydrolysis in a sustainable way, the by-product must be converted 

back into NaBH4. Little attention has been paid so far to the conversion of NaB02 to 

NaBH4 in the literature. This section gives possible routes for the conversion. 

2.6.2.1 Coupling reaction 

One possible way to convert NaB02 into NaBH4 is to use the reaction expressed in 

Scheme 2.1 0. However, this reaction has a very high positive Gibbs energy ( ll.p-& = 

796.8 KJ.mor\ as shown in Table 2.5 for the relationship between reaction Gibbs energy, 

equilibrium constant for chemical reaction (K) and reaction directions. This indicates that 

direct reaction through this route is impossible. 

Scheme 2.10 A direct reaction to convert sodium metaborate into sodium borohydride. 
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LlG0 (kJ) 

200 

100 

50 

10 

1 

0 

-1 

-10 

-50 

-100 

-200 

Table 2.5 The relationship between ilG0 and Kat 298 K [28]. 

K 

1 X 10"35 

3 X 10"18 

2 X 10"9 

2 X 10"2 

7 X 10"1 

1 

1.5 

50 

5 X 108 

3 X 1017 

1 X 1035 

Significance 

Essentially no forward reaction; reverse 

reaction goes to completion 

Forward and reverse reactions proceed to 

some extent 

Forward reaction goes to completion; 

essentially no reverse reaction 

It is known that some reactions with negative LlG can drive a reaction that is not 

spontaneous as coupling reactions Gust as the combustion of petroleum supplies enough 

free energy to move a car [29]). Therefore, some reactions with very negative reaction 

Gibbs energy are proposed to couple with reaction (2.1 0) to make it possible to convert 

NaB02 back into NaBH4. The potential chemical species for coupling with the NaB02 

conversion reaction should not have any chemical reactions with NaBH4 and the resulting 

NaBH4 should be separated from the reaction mixture easily. Metal oxidation, such as that 

of sodium, silicon and aluminium, satisfY the above criteria and therefore can be used to 

couple with the conversion reaction. The nature of the industrial inorganic method for 

producing NaBH4 can be classified as a coupling reaction. The calculation of the reaction 

Gibbs energy for the overall reaction is given in Table 2.6. 
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Table 2.6 Calculation of possible coupling reaction with reaction 2.1 0. The value of the 

fundamental thermodynamic function was taken from Literature [30] 

Basic reaction Coupling reaction Overall reaction 11,Gfl (kJ.mor1
) 

NaB02 +2H2- 4Na +02 = 2Na20 NaB02 +2Si02+4Na -40.7 
NaBH4+02 Si02 + Na20 = Na2Si03 +2H2= 

NaBH4+2Na2Si03 
Na20 +Si +02 = NaB02 + Na20 +Si -290.5 
Na2Si03 +2H2=NaBH4 

+Na2Si03 
2Mg + 02 = 2Mg0 NaB02 +Mg +2H2 = -341.8 

NaBH4+2MgO 
4Al + Na20 +302 = 3NaB02 + 4Al + -3720.8 
4NaA102 2Na0+6H2= 

NaBH4 + 4NaA102 

As can be seen from Table 2.6, all of the above coupling reactions can be used to drive 

reaction 2.10 to completion. Coupling reactions are possible routes for coverting NaB02 

back into NaBH4. 

2.6.2.2 Electrochemical methods 

From the thermodynamic analysis, it is known that it is impossible to transfer NaB02 into 

NaBH4 without the use of a coupling reaction. In order to make the reaction proceed 

quickly, tricky conditions such as high temperature and hydrogen pressure are needed to 

fulfil the requirements of the coupling reaction. Electrolysis may be an alternative to solve 

the problem. In contrast to the coupling reaction approach, this is a relatively simple 

technology. 

There are two electrode reactions dealing with BH4. preparation in the Handbook of 

Physics and Chemistry [31] as shown in Scheme (2.11) and (2.12). Electrode reaction 

(2.12) may not be suitable for use in the production of borohydride because the 

borohydride ion is readily hydrolysed in an acidic environment. 

Scheme 2.11 Half-cell reaction of boric acid in basic conditions. 
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E0 =-0.481 V 

Scheme 2.12 Half-cell reaction of boric acid in acidic conditions. 

The solution of sodium metaborate is a binary electrolytes system. However, the ions in 

its aqueous solution are not Na+ and BOz·. Actually, the anion in the solution is B(OH)4" 

[32]. Hence, Scheme 2.11 should be written as Scheme 2.13, which can be designed as the 

cathode reaction of an electrolytic cell [33]. Oxygen evolution is the main anodic reaction, 

as shown in Scheme 2.14. The overall reaction is given in Scheme 2.15. A schematic 

diagram of the cell required to produce NaBH4 from a NaB02 solution is shown in Figure 

2.5. The cell contains one anode, one cathode, one semi-permeable membrane. Under an 

external electric power, B(OH)4. is reduced to BH4. in the cathode and oH· is oxidized to 

Oz in the anode. 

Scheme 2.13 The actual half cell reaction of metaborate ion in basic conditions. 

Scheme 2.14 Oxygen-evolution reaction on anode. 

Scheme 2.15 Overall reaction of electrolysis of metaborate ions. 
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Figure 2.5 A schematic diagram of the proposed electrolytic cell for NaB02 

In practice, there are competing reactions on the cathode. Because the cathode reaction 

with the higher reduction potential reacts at the cathode first, water may be reduced into 

hydrogen on the cathode instead of the metaborate ion, B(OH)4-, due to its low standard 

electrode potential, as shown in Schemes 2.16. 

2H20+2e = H2+20H- Eo =-0.8277 V 

Scheme 2.16 Hydrolysis of water on cathode. 

By selecting suitable cathode materials and hydrogen pressure, the electrochemical 

method may be possible. 

2.6.2.3 Raw materials for existing processes 

Sodium metaborate may be changed into the raw materials for the existing processes. For 

an inorganic process, N aB02 can be transformed into borax through the following 

reactions. When contacted with boric acid, sodium metaborate can be changed into borax. 

2NaB02 + 2B(OH)3 -t Na2B407+ 3H20 

Scheme 2.17 Transformation of sodium metaborate into borax using boric acid 

Sodium metaborate can absorb atmospheric carbon dioxide, forming borax and sodium 
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carbonate. 

Scheme 2.18 Transformation of sodium metaborate into borax using C02 

For the organic process, sodium metaborate reacts with strong mineral acids to form boric 

acid, which can react with methanol further to give trimethyl borate. This is the raw 

material for the production of sodium borohydride by the Schlesiger method. The process 

can be expressed as shown in Schemes 2.19 and 2.20. 

Scheme 2.19 Transformation of metaborate into boric acid 

B(OH)3 + 3MeOH ~ B(OMe)3 + 3H20 

Scheme 2.20 Transformation ofboric acid into trimethyl borate 

2.7 Conclusions 

• There are two commercially available methods for producing NaBH4: an organic 

process and an inorganic process. Both processes are commercially available. 

• Three mechanisms are used for the hydrolysis ofNaBH4: acid catalysis, metal salt 

catalysis and metal catalysis. Metal catalysis is believed to be the most efficient. 

• Although there is a significant amount of research and development being focused 

on the use of NaBH4 as a hydrogen source, some important issues remain with 

regard to its utilisation, such as its optimal concentration and conversion of the 

side product NaB02. 

• Three routes to transform sodium metaborate into sodium borohydride have been 

proposed: coupling reaction, electrochemical methods and a raw materials 

approach. 

• From a calculation of Gibbs free energy, direct hydrogen adsorption by NaB02 is 
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thermodynamically impossible due to the high positive Gibbs energy. Direct 

hydrogen adsorption by NaBOz can be conducted by coupling with other reactions 

with high negative Gibbs energy change such as the oxidation reaction of 

magnesium, sodium and silicon. 

• A simple and practical transformation is the electrochemical approach. The key to 

this method is the choice of suitable cathode materials to prevent hydrogen 

evolution. 

• Transformation of the by-product NaBOz into raw materials for the existing 

process of manufacturing NaBH4 is a feasible method. 
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Chapter 3 

Maximum Concentration of NaBH4 in the Absence of 
NaOH 

3.1 Introduction 

As discussed in the previous chapters, the hydrolysis of sodium borohydride is a 

promising method for delivering hydrogen to vehicles and other power systems. Previous 

studies have focused on the kinetics and mechanism of the hydrolysis in dilute solution. 

However, for use as a power source, a concentrated aqueous solution is desirable in order 

to improve the energy density. 

As is known, the by-product NaB02 is produced from the hydrolysis of NaBH4. The 

higher the concentration of NaBH4, the more NaB02 is produced. When the NaB02 

concentration is too high, it tends to precipitate from solution resulting in catalyst 

clogging and a reduction in system efficiency. Hence, knowledge of the maximum 

concentrations of NaBH4 is needed. Below this concentration, the highest energy density 

is not achieved, while above this concentration, precipitation ofNaB02 may occur. In this 

chapter, the maximum concentration of NaBH4 is investigated in the hydrolysis system 

when NaOH is not present. This is a generalised case when NaBH4 is used in its solid 

state. 

The maximum concentration of N aBH4 changes with temperature since the solubilities of 

NaB02 and NaBH4 are temperature dependent. Available solubility data for NaBH4 and 

NaB02 in the literature is limited, hence a modelling approach is used in this investigation. 

In the work, a thermodynamic model is established in order to correlate the relationship 

between solubility and temperature by using the equality of chemical potential for a 

substance in its solution and its solid form. The parameters in the model are determined 

by using solubility data from the literature [1, 2]. The model is then used to predict the 

maximum concentration of NaBH4 in the hydrolysis system, which is validated 

experimentally. 
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3.2 Construction of the Theoretical Solubility Model 

3.2.1 Theoretical Background 

In this work, the relationship between the solubility of a substance and the temperature 

was derived. During derivation, the fact is used that the chemical potential of the 

substance present in its solution must be equal to the chemical potential of the substance 

in its solid state when the dissolution process reaches equilibrium. 

The chemical potential of a substance B (!ls) in a mixture B, C ... is related to the Gibbs 

energy (G) of the mixture by 

(3.1) 

where T is the thermodynamic temperature, p is the pressure, and ns, ne, ... are the moles 

of substance B, C, ... Hence the chemical potential s the partial derivative of G with 

respect to the mole number n1 when pressure, temperature and other components are kept 

constant. The Gibbs energy of a system depends on the composition, pressure, and 

temperature of the system. 

For a pure substance B, The chemical potential f-IB • is given by 

(3.2) 

where Gm • is the molar Gibbs energy, and where the superscript * attached to a symbol 

denotes the property of a pure substance. The superscript 0 attached to a symbol may be 

used to denote a standard thermodynamic quantity. It can be seen that the chemical 

potential is another name for the molar Gibbs energy for a pure substance. Conventionally 

the standard pressure (p" ) is set to be I bar. 

For a perfect gas mixture, chemical potential is related to its standard value as in equation 

(3.3) by integrating the thermodynamic fundamental equation (Maxwell equation) 

(of-!; I op )T =V 
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, RTl P; "·="·+ n-,..., ,...,, 0 (3.3) 
p 

where Pi is the partial pressure of component i. 

In a liquid solution composed of a solvent A and solute B, the chemical potential of 

solvent A in the liquid is /JA, and its vapour pressure is PA· The chemical potential of 

solvent A in the liquid solution must be equal to the chemical potential of the solvent 

present in the vapour at equilibrium. 

iJA = p~ + RTln PA 
p' 

(3.4) 

For pure solvent A with a vapour pressure ofpA•, its chemical potential can be expressed 

using equation (3.5). 

(3.5) 

Combining equations (3.4) and (3.5}, yields 

(3.6) 

Raoult's law for an ideal solution is 

(3.7) 

Substituting this into equation (3.6) 

(3.8) 

The standard state of the solvent is the pure liquid (at 1 bar) and is obtained when XA = 1. 

When the solution does not obey Raoult's law, i.e. if it is a real solution, the activity is 

introduced in order to preserve the form of equation (3.8). 

(3.9) 
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where a A is the activity of A, the effective mole fraction. 

Because all solvents obey Raoult's law (that PAIPA• = xA) increasingly closely as the 

concentration of solute approaches zero, the activity of the solvent a A approaches as the 

mole fraction XA approaches unity. 

(3.1 0) 

A convenient way of expressing this convergence is to introduce the activity coefficient, y, 

by the definition 

For the solute B, the vapour pressure is given by Henry's law 

ps=ksXs 

where ks is an empirical constant. 

In this case, the chemical potential of B is 

J.ln = J.l; + RT!n p! = J.l; + RT!n k! + RT!nx0 
Pn Pn 

By defining a new standard chemical potential: 

• • I ke J.ln = J.ln + RT n-. 
Pn 

Then it follows 

J.ln = J.l~ + RT!nx9 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

The standard state of solute B is a hypothetical state of the pure solute when Henry's law 

still holds. For a real solute, some deviations may occur, and the activity is introduced 

agam. 

J.ln =J.l~ +RT1na9 (3.16) 
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The standard state of solute B remains unchanged in this last stage. As for the solvent A, 

it is sensible to introduce an activity coefficient 

(3.17) 

Because the solute obeys Henry's law as its concentration goes to zero, it follows that 

Ys -tl as Xs -tO (3.18) 

When the solvent is water and the solute is an electrolyte, the solution becomes an 

electrolyte solution. Electrolytes dissociate in aqueous solution but the ions cannot be 

studied separately because the condition of electric neutrality applies. Since this is the 

case, the thermodynamics of electrolytes have to be treated in a different way from non­

electrolytes. In work with electrolyte solutions it is customary to use the molal scale. The 

molality mi is equal to the amount of electrolyte per kilogram of solvent. Thus, the 

molality has the units mol kg·1
• 

For an electrolyte Av+Bv., where V+ is the number of cations and v. is the number of anions, 

electroneutrality requires that 

m+ m_ 
m=-=- (3.19) 

v+ v_ 

The chemical potential for an electrolyte is the sum of chemical potentials of the cations 

and the anions as expressed in equation (3.20) 

(3.20) 

The chemical potentials of the cation and anion are given by 

(3.21) 

J.l_ = J.l: + RTln y _m_ (3.22) 

where J.l+0 and J.L0 are the standard state chemical potentials and Y+ and y. are the activity 

coefficients of the cation and anion. 
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In equations (3.21) and (3.22), the standard values of the molality m0 in the denominator 

are omitted to simplify the notation. Substituting equation (3.21) and (3.22) into equation 

(3 .20), gives 

(3.23) 

A mean ionic molality m± and a mean ionic activity coefficient Y± are defined as 

_ ( v+mv-)1/v± _ m(vv+vv-)1/v± m±- m+ _ - + _ (3.24) 

(3.25) 

where 

(3.26) 

Then equation (3.23) becomes 

(3.27) 

This is the chemical potential expression of an electrolyte in solution. The standard 

chemical potential Jf of the electrolyte is the chemical potential in a solution of unit 

activity on the molality scale. 

3.2.2 Semi-Empirical Model for Electrolyte Solubility and Temperature 

In this section, the relationship between the solubility of an electrolyte and temperature is 

derived. When a solid solute is left in contact with a solvent, it dissolves until the solution 

is saturated. Saturation is a state of equilibrium, with the undissolved solute in equilibrium 

with the dissolved solute. Therefore, in a saturated solution the chemical potential of the 

pure solid solute, p; (s), and the chemical potential of B in solution, p8 , are equal [3]. 

According to the definition given by equation (3.27), equation (3.28) is obtained. 

(3.28) 

Rearranging equation (3 .28) gives 
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lny ± (3.29) 

The difference between the chemical potentials in equation (3 .29) is the mole Gibbs 

energy change of the solute from its solid state to unit activity in its solution on the 

molality scale. This difference is further related to other thermodynamic property changes 

during dissolution as shown in equation (3.30). 

(3.30) 

where L\.G~ 8 , L\.H~ 8 , and L\.3~ 8 are the mole Gibbs energy change, mole enthalpy 
' ' ' 

change and mole entropy change of B of the dissolution of one mol of solid state solute to 

unit activity in solution. 

Substituting equation (3.30) into equation (3.29), gives 

lnm± = (3.31) 

m:,a and t.s:.a can be considered to be constants if the temperature change is not large. 

y ± is a function of temperature and concentration, At higher concentrations it levels off to 

a constant, which can be seen from the calculation of the activity coefficient ofNaB02 in 

the following sections. Due to the lack of the parameters for NaBH4, the activity of 

NaBH4 has not been calculated. If the temperature effect on y ± is negligible, it can be 

assumed constant. In this work, the effect of temperature is shown to have no significant 

effect and this is justified by the good linearity of ln(m±) against liT in the following 

section. 

3.2.3 Calculation of the Activity Coefficient for N aB02 

The Pitzer equations for mean ionic activity coefficient for single electrolyte solutions [ 4] 

can be written as follows. 
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(3.32) 

where r., is the mean activity coefficient when the concentration is in terms of molality, 

(that is, r., =a., I m), a., is the activity of the solute and zM and zx are the charges on 

the cation and anion in the solution corresponding to stoichiometric coefficient v M and 

Vx . The values of vM , Vx , zx , zM and a., are all equal to 1.0 for NaB02. 

Alsov=vM +Vx =2. 

I 1~ 2·th·. gth = 
2 

L..,m1z1 IS e 1omc stren . 

In NaB02 solution, the amount of I is equal to its molality. A~ is the Debye-Hiickel 

coefficient for the osmotic coefficient and is given by 

(
27CN d )1/2( 2 )3'2 

A~ =.!. o w _e_ 
3 1000 DkT 

(3.33) 

where No is Avogadro's number, dw is the density of water and D is the static dielectic 

constant of water at temperature T. k is the Boltzmami's constant and e is the electronic 

charge. 

l11e value of A~ at 25°C is 0.392 and the term b in equation ( 4.33) is an empirical 

parameter equal to 1.2 at 25°C [5]. The parameters BMx and B~x which describe the 

interaction of pairs of oppositely charged ions represent measurable combinations of the 

second virial coefficients. They are defined as explicit functions of ionic strength by using 

the following equations 

B -{3'o) +f3't)f(a It'2) 
MX-MX MX I (3.34) 

B' -{J'IJ f'(a It'2)!1 MX - MX 1 (3.35) 

where 
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f(x) = 2[1- (1 + x)e-x ]I x' (3.36) 

f'(x) = -2[1- (1 + x + 0.5x'Vx]/ x' (3.37) 

where a 1 =2 for ions in univalent type electrolytes. The single electrolyte third viral 

coefficients, CMx, account for short-range interactions of ion triplets and are important at 

high concentrations. They are independent of ionic strength. The parameters C Mx and 

C0 MX, are related by 

(3.38) 

The ion interaction parameters for NaBO, at 25°C are given in the literature [5-7] and are 

listed in Table 3.1, which is valid for molalities below 4, the highest molality ofNaB02 at 

25°C in its saturated solution. 

Table 3.1 The ion interaction parameters for NaB02 at 25°C. 

-0.05289 -0.10888 0.01497 

The calculated results for the activity coefficient ofNaB02 are shown in Figure 3.1. It can 

be seen that the activity coefficient levels off at higher concentrations. This is a 

justification for the assumption that activity coefficient is a constant in saturated solutions. 
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Figure 3.1 The activity coefficient ofNaB02 in water at 25°C. 

3.2.4 Determination of Model Parameters for NaBH4 and NaB02 

In order to calculate the solubility of NaBH4 and NaB02 at any temperature, the 

parameters MI:U,a and !J.S,~,B must be determined using solubility data obtained at 

different temperatures. Since the number of cations and the number of anions in NaBH4 or 

NaB02 is I, V+= v. =1 for both NaBH4 and NaB02. V±= V++ v.= 2 and m±= m. Hence, 

equation (3.3 I) becomes 

(3.39) 

In this work, the solubility data for NaBH4 and NaB02 in water were taken from the 

literature [I, 2] and reproduced in Table 3.2 and 3.3. The solubility data in the literature 

was given as weight percent. For NaBH4, equation (3.54) was used to convert the 
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solubility in weight percent into the solubility in the molality scale. The converted data is 

shown in the third column of Table 3.2. 

WN /M H 
aBH4 NaB 4 X JOOO 

100- WNaBH, 
(3.40) 

where wNaBH, is the solubility of NaBH4, which is expressed as the weight of solute B in 

I 00 g solution. M NaBH, is the molar mass ofNaBH4. 

Table 3.2 The solubility ofNaBH4 at various temperatures. 

Temperature Weight percentage ofNaBH4 Solubility in molality (mol) 

("C) (5) kg-') 

0 27.5 10.027 

7 30 11.329 

10 31 11.876 

16 33 13.020 

25 36.5 15.194 

30 39 16.900 

35 42.5 19.538 

36.5 45 21.628 

38 45.5 22.069 

42 48 24.401 

45 50 26.434 

47 51 27.513 

50 54 31.031 

The calculation of solubility from the weight percentage for NaBOz is more complicated 

than that for NaBH4 because the existing fonn ofBOz' ion in aqueous solution is B(OH)4-. 

Therefore, the molality of NaB02 in its saturated solution is calculated using equation 

(3.41): 
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w o /M o _ NaB 2 NaB 2 1000 mNaBO - X 2 100- WNaBo2 -2 X M H2o X (wNaBo2 I M NaBo2 ) 
(3.41) 

where wN,ao, is the solubility of NaB02 (which is expressed as the weight of solute 

NaB02 in 100 g solution) and M Noao, and M H,o are the molecular weights ofNaB02 and 

H20 respectively. The converted solubility in the molality scale is shown in the third 

column of Table 3.3. 

Table 3.3 The solubility ofNaB02 at various temperatures. 

Temperature Weight percentage ofNaB02 Solubility in molality 

(OC) (%) (mol kg-1
) 

20 20 4.402 

25 21.6 4.931 

30 23.6 5.651 

35 25.6 6.444 

40 27.9 7.463 

45 30.8 8.945 

50 34.1 10.974 

53.6 36.9 13.075 

55 37.2 13.326 

60 38.3 14.294 

65 39.5 15.446 

70 40.9 16.938 

75 42.2 18.490 

80 43.7 20.520 

85 45.4 23.205 

90 47.4 27.043 

95 49.6 32.445 

100 52.4 42.136 

73 



After converting the solubility data for NaBH4 and NaB02 in water into molality, 

ln(ms) was plotted against _!_ as shown in Figures 3.2 and 3.3, where the subscript B 
1 

denotes NaBH4 or NaB02, m is the solubility of B in molality and T is the absolute 

temperature (K). 

T("C) 
50 40 30 20 10 0 

3.6 ..,.--.--.---.--.----.---r--.----,.---.---.---.----.--~ 

3.4 

3.2 

~· 
~ 3.0 

i .s 2.8 

2.6 

2.4 

• 

3.0 3.1 

• • 

3.2 

• 
• 

• 
• 

• 
• 

3.3 3.4 3.5 3.6 

Figure 3.2 The effect of temperature on the solubility ofNaBH4. 
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Figure 3.3 The effect of temperature on the solubility ofNaB02. 

It can be seen that In m8 and _!_ does not exhibit a good linear relationship for both 
1 

NaBH4 and NaB02 solution, though the discrepancy may be attributed to experimental 

error. From equation (3.39), the slope of the line represents 
Ml':n,a 
_....::::::.. and the intercept 

R 

L',S~ B 
represents ' In y ± . The enthalpy change M/~ 8 can thus be calculated from the 

R 

6.80 
slope. The values oftlli~ .• and ;·" -lny 8 for NaBH4 and NaB02 are listed in Table 

3.4. 
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Table 3.4 Parameters for equation (3.39) for NaBH4 and NaB02 solution. 

Species 
!::Jf~ B lili~.a (kJ mo1'1) 

L\S~B 
- R-lny8 (K) 

2R 

NaB~ 1982.3 32.96 9.47 

NaB02 2912.9 48.43 11.37 

3.3 Calculation ofthe Maximum NaBH4 Concentration 

Substituting the parameters for NaBH4 and NaB02 into equation (3.45), the solubility 

dependencies of NaBH4 or NaB02 on the solution temperature are expressed using 

equations (3.42) and (3.43) respectively. 

lnmNaBO, = 

1982.3 +9.47 
T 

2912.9 + 11.37 
T 

(3.42) 

(3.43) 

For one mole ofNaBH4, the water contained in the saturated solution W1 can be calculated 

using equation (3.44). 

1000 
(3.44) 

For one mole ofNaB02, the water contained in the saturated solution W2 can be calculated 

using equation (3.45). 

(3.45) 

The mass of water that is required to react with one mole ofNaBH4, W3, can be calculated 

using equation (3.46) since four moles of water are needed to hydrolyse one mole of 

NaBH4. 

(3.46) 
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where M H,o is the molar mass of water. 

The results shown in Figure 3.4 compare the amount of water contained in a NaBH4 

solution with the amount of water needed to dissolve one mole ofNaB02 and the water 

for the hydrolysis at various temperatures. 

350 

300-
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Figure 3.4 Comparison of the amount of water in NaBH4 saturated solution with that 
required for the hydrolysis and to dissolve the by-product NaB02. 

It can be seen that the amount of water required to hydrolyse one mole of NaBH4 and to 
) 

dissolve the" NaB02 that is produced is significantly larger than the amount of water 

contained in the saturated NaBH4 solution that contains one mole ofNaBH4. Hence, it is 

the water required to hydrolysis NaBH4 and dissolve the by-product NaB02 that 

determines the minimum water required in the system. 

The maximum concentration of the system w can thus be calculated using equation (3.47): 

w 
J *M NoBH, 

(3.47) 

77 



where w is the maximum concentration of NaBH4 (wt%), and M N•BH, is the molar mass 

ofNaBH4 (g mor1
). 

Figure 3.5 shows both the calculated maximum NaBI4 concentration in the hydrolysis 

system and the concentration of saturated NaBH4 solution at various temperatures. Two 

interesting phenomena need to be addressed here. First, the maximum concentration of 

NaBH4 for the hydrolysis system is about half that of a saturated solution of NaBH4. 

Secondly, the maximum concentration increases as the hydrolysis temperature increases, 

which clearly increases the energy density. 
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·~ 
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~ 
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10 

0 

-- solubility ofNaBH
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20 40 60 80 100 

Temperature ('C) 

Figure 3.5 Comparison of the calculated NaBH4 solubility and its maximum 
concentration in the hydrolysis system. 

3.4 Experimental 

3.4.1 Materials 

Sodium borohydride (NaBH4) was purchased from Sigma-Aldrich Company Ltd, being in 

a powder form with a purity of 98%. The ruthenium catalyst used to accelerate the 

hydrolysis ofNaBH4 was purchased from Johnson Matthey Ltd, 3% ruthenium supported 

on carbon. The catalyst was in a pellet form with a diameter of 2 mm. 
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3.4.2 Method 

When the NaBH4 concentration is at its maximum value, the by-product NaB02 will 

precipitate from the solution. Visual observation of the precipitation of NaB02 from 

solution was used to determine the maximum concentration ofNaB~ that can be used. 

A series of NaB~ solutions were prepared in 10 m1 glass vials from low to high NaBH4 

concentration around the theoretical maximum concentration as shown in Figure 3.5. The 

weight of each vial containing reaction mixture was measured. Hydrolysis was conducted 

at the temperature at which the maximum concentration was to be determined. After the 

reaction was finished, the weight of the vial containing products was measured again. The 

water loss due to the evaporation was added to the vial. The water loss was calculated 

using equation (3 .48). 

(3.48) 

Where mt is the weight of the vial before hydrolysis, m2 is the weight of the vial after 

hydrolysis and m3 is the water consumed during reaction, which can be calculated using 

chemical equation. 

The glass vials were then sealed and transferred to an oven, which was set at the reaction 

temperature. After 24 hours, the glass vials was examined visually to determine if there 

was any NaB02 precipitate. The minimum solution concentration in which precipitation 

occurred was considered to be the maximum concentration of NaBH4 solution at that 

temperature. The experimental set up is shown in Figure 3.6 and the experimental results 

are given in Table 3.5. 

Since the interval of the weight percentage between the vials in which precipitation of 

NaB02 did and did not occur was 0.5%, the error for each experimental measurement was 

taken to be 0.5%. 
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2 

4 

Figure 3.6 Schematic diagram for measuring maximum NaBH4 concentration. 1: Support; 

2: thermometer; 3: hot plate; 4: water; 5-12: reaction vials; 13: support for reaction vials. 
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Table 3.5 Experimental determination of maximum concentration ofNaBH4• 

Reaction temperature (°C) NaBH4 concentration(%) Did precipitation occur? 
9.0 X 

10.0 X 

11.0 X 

26 
11.5 " 12.0 " 12.5 " 13.0 " 13.5 " 12.0 X 

13.0 X 

14.0 X 
.... 

35 
14.5 X 

15.0 X 

15.5 " 16.0 " 16.5 " 14.0 X 

15.0 X 

15.5 X 

42 
16.0 X 

16.5 X 

17.0 X 

17.5 " 18.0 " 18.0 X 

18.5 " 19.5 " 56 
20.0 " 20.5 " 21.0 " 21.5 " 22.0 " 20.0 X 

21.0 X 

22.0 X 

70 
22.5 X 

23.0 X 

23.5 X 

24.0 " 24.5 " 
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3.5 Comparison of Modelling Results with Experimental Data 

Experiments were conducted at five temperatures (26, 35, 42, 55, and 70 °C) to observe 

the precipitation ofNaB02 from the reaction system according to the above experimental 

procedure. The experimental data and the calculated line are shown in Figure 3.7. 

It is shown clearly that the maximum concentration of N aBH4 in the hydrolysis system 

increases steadily with an increase in temperature. The experimentally determined 

maximum concentration of NaBH4 increased from 13.5% at 26°C to 24% at 70°C. The 

calculated values are in good agreement with experimental data. 

40 

! 
--Calculated maximum 

concentration 
• Experimental data 

60 

Temperature ("C) 

80 100 

Figure 3.7 Comparison between the calculated and experimental concentration ofNaBH4. 

3.6 Conclusions 

In this chapter, a model was established based on the equality of the chemical potential in 

solution and in solid form in order to calculate the maximum concentration ofNaBH4 in 

its aqueous solution before NaB02 begins to precipitate. The maximum concentration was 

then determined experimentally. The experimental data agrees well with and theoretical 
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calculation and the following conclusions can be drawn. 

• The relationship between the solubility of NaBH4 and NaB02 with temperature 

was satisfied by the equation: 

• The activity coefficient of NaB02 levels off approximately to a constant with an 

increase in concentration. 

• The water required to hydrolyse NaBH4 and to dissolve the by-product NaB02 is 

much greater than is available in the saturated sodium borohydride solution. The 

latter controls the maximum concentration in the hydrolysis system. 

• The maximum concentration ofNaBH4 increases significantly with an increase in 

reaction temperature. 

3. 7 References 

1. Mellor, J.W., Supplement to Mellor's comprehensive treatise on inorganic and 

theoretical chemistry. Vol. 5 Boron-Hydrogen compounds. 1981, London: London: 

Longman. 223. 

2. Mellor, J.W., Supplement to Mellor's comprehensive treatise on inorganic and 

theoretical chemistry. Vol. 5, Boron-Oxygen compounds. 1980, London: 

Longman. 257. 

3. Atkins, P.W., Solubility, in Physical Chemistry. 1990, Oxford University Press: 

Oxford. 226. 

4. Kim, H.-T. and Frederick, W., Evaluation of Pitzer Ion Interaction Parameters of 

Aqueous Mixed Electrlyte solutions at 25C. 1. Single Salts Parameters. Journal of 

chemical Engineering Data, 1988. 33: 177-184. 

5. Pitzer, K.S. and Mayorga, G., Thermodynamics of Electrolytes. 11 Activity and 

Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent. the 

Journal of Physical Chemistry, 1973. 77(19). 

83 



6. Pitzer, K.S. and Kim, J., Thermodynamics of Electrolytes, IV.Activity and Osmotic 

Coefficient for Mixed Electrolytes. Journal of American Chemical society, 1974. 

96. 

7. Song, W. and Larson, M.A., Activity Coefficient Model of Concentrated 

Electrolyte Solutions. AIChE Journal, 1990. 36(12): 1896-1900. 

84 



Chapter 4 

Maximum Concentration of NaBH4 in the Presence of 

NaOH 

4.1 Introduction 

In Chapter 3, the maximum concentration of NaBH4 in the absence of NaOH was 

investigated. In some situations it is convenient to use NaBH4 in solution rather than in its 

solid state since the solution is easier to handle. However, an aqueous solution ofNaBH4 

is not stable. Hydrogen is generated when there is no stabilizer in the solution, even at 

room temperature. This would cause a decrease in the energy density and would also 

bring about safety problems. The hydrolysis of NaBH4 can be slowed by increasing the 

pH of the solution [1-6]. Hence, NaOH is added to the solution in order to stabilise it. In 

practice, various NaOH concentrations have been suggested: 4% (wt) [1], 10 %(wt) [4] 

and 5-10 % (wt) [7]. 

The addition ofNaOH significantly affects the solubility of both NaB~ and NaBOz. In 

this chapter, the maximum concentration ofNaBH4 is discussed when NaOH is present. 

Due to the lack of solubility data, thermodynamic modelling is used. 

4.2 Construction of Models 

When solute B dissolves in water in the presence of a third component, A, (that is, solute 

B dissolves in A's solution) the chemical potential of B in the solution is equal to the 

chemical potential of the solid state in equilibrium considering that solution A is the 

solvent. Hence, equation ( 4.1) can be derived in the same way as described in Chapter 3, 

where component A was not present. 

In m, B = (4.1) 
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where m±,B is the average solubility ofB on the molality scale, llH~.s and L'.S~.s are the 

molar enthalpy change and entropy change respectively when species B dissolves from 

solid state to an activity of I mol kg'1 in solution of A. Since the initial and final states are 

the same as those for dissolution in pure water, the same symbols are used for enthalpy 

and entropy change as in Chapter 3. r~.s is the mean activity coefficient ofB in a solution 

of A. 

The molar enthalpy change and entropy change can be considered to be constant when the 

temperature range is not large. To determine the parameters llH~.s andL'.S~.8 , equation 

( 4.1) is modified by adding -In y ±.s to both sides. y ±.B is the activity coefficient of B in 

the absence of component A. 

lnm±s -lny±B = . . (4.2) 

Rearranging equation ( 4.2), gives 

I I Y±.B 
nm±,B + n--= 

Y±,B 

(4.3) 

For both NaBH4 and NaBOz, v± = 2. Substituting the value into equation (4.3), gives 

I I Yu 
nm±,B + n--= 

Y±,B 

[lH
0 (/';So ) ---''"'-''B:.. + m,B }n y 

2RT 2RT - ±,s 
(4.4) 

y ± 8 is a constant for the saturated solutions ofNaBH4 and NaBOz as shown in Chapter 3. 

' 
Therefore, a plot of In m± 8 +In h and 1/Tshould yield a straight line graph whereby the 

, Y± 

intercept on the y-axis is _____!!!.:!!._-In y ±,s and the slope is 
(

f'>.S
0 

) 

v±RT 

' 

llH,~.s . The ratio of the 
v±RT 

activity coefficients y ±,B can be calculated using the hydration analysis method [8-1 0]. 
Y±,B 
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4.3 Solubility Data ofNaBH4 and NaB02 in NaOH Solutions 

4.3.1 Solubility Data for NaBH4 in NaOH Aqueous Solutions 

4.3.1.1 Description of the Phase Diagram 

The solubility of NaBH4 in NaOH aqueous solutions is not available directly in the 

literature. However, the phase diagram of the NaBH4-NaOH-H20 system is available 

[11]. The phase diagram shows the equilibrium composition ofNaBH4, NaOH and H20 at 

specific temperatures. The solubility of NaB~ in NaOH solutions can thus be derived 

from the phase diagram. 

The isothermal phase diagram of the NaBH4-NaOH-H20 system at 0°C, 18°C, 30°C, and 

50°C was reproduced in Figure 4.1 [11]. As can be seen, the original phase diagram is in 

triangle form. The three vertexes of the triangle phase diagram represent NaB~, NaOH 

and H20 respectively. The three sides of the triangle represent the composition of two 

components: NaBH4-H20, NaBH4-NaOH and NaOH-H20. Any point inside the triangle 

represents the composition of the three components. For the convenience of calculation in 

a model, the triangle phase diagram was transformed into a rectangular phase diagram as 

shown in Figure 4.2. The x-axis represents the weight percentage ofNaOH in the solution 

and they-axis represents the weight percentage ofNaBH4 in the solution. 
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Figure 4.1 Phase diagram of the NaBH4-NaOH-H20 system at 0°C-50°C [11]. 
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Figure 4.2 Phase diagram of the NaBH4-NaOH-H20 system at 0°C-50°C transformed 
from Figure 4.1. 
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The following information can be seen from Figure 4.2: 

• At a given temperature, the solubility line consists of smooth parts and inflection 

points. In the smooth parts, only one crystalline form co-exists with the solution. 

A different smooth part corresponds to a different crystalline form. At the 

inflection point between two smooth parts, two different crystalline forms co-exist 

with the solution. The inflection point between two smooth parts is termed the 

invariant point since the composition and temperature are fixed at this point. For 

example, at invariant point (I) in Figure 4.2, the crystalline states ofNaBH4•2H20 

and NaBH4 co-exist with the NaBH4 in NaOH solution. The temperature at this 

point is 0°C, and the composition is 22.5% NaOH, 22.3% NaBH4 and 55.2% 

water. Table 4.1 lists the invariant points and their composition in the phase 

diagram. There are seven invariant points in total in the phase diagram, which are 

labelled using points (1 )-(7). 

• The line for 0°C is divided into three parts by two invariant points (1) and (2). The 

solution phase consists of NaBH4, NaOH and H20. To the left of the invariant 

point (2), NaBH4 is saturated and NaOH is not saturated in the solution. To the left 

of the invariant point (1 ), the equilibrium solid phase is crystalline NaBH4•2H20. 

At the invariant point (1 ), the equilibrium solid phase consists of two crystals, 

NaBH4•2H20 and NaBH4. Between points (1) and (2), the equilibrium solid state 

is NaBH4. At the invariant point (2), NaOH becomes saturated in the solution 

phase and the corresponding equilibrium crystalline state is NaOH•H20. The solid 

state in the solution is the co-existence ofNaBH4 and NaOH•H20. To the right of 

the invariant point (2), NaBH4 is no longer saturated in the solution phase, and the 

equilibrium solid state consists only of NaOH•H20. At l8°C and 30°C, the 

situations are similar to that at 0°C except for the invariant point compositions. 

• At 50°C, there is only one invariant point (7). To the left of the invariant point (7), 

the equilibrium solid state is NaBH4. At the invariant point (7), NaOH also 

becomes saturated in the solution, and the equilibrium solid state consists of two 

crystals, NaBH4 and NaOH•H20. To the right of the invariant point (7), NaBH4 is 

no longer saturated and the equilibrium solid state consist of only NaOH•H20. 
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• At a specific NaOH concentration, the solubility of NaB~ increases with an 

increase in temperature. 

• At a specific temperature, the solubility of NaBH4 decreases with an increase in 

NaOH concentration. 

Table 4.1 The invariant point compositions on the phase diagram for NaBH4-NaOH-H20 
system. 

Temperature ("C) Invariant point WNaBH, (%) WNaOH (%) Crystalline states 

0 (1) 22.3 22.5 NaBH4•2H20+NaBH4 

(2) 12.3 44.4 NaBH4+NaOH•H20 

18 (3) 29 16 NaBH4•2H20+NaBH4 

(4) 13.9 46.8 NaBH4+NaOH•H20 

30 (5) 35.4 9.1 NaBH4•2H20+NaBH4 

(6) 15 48.5 NaBH4+NaOH•H20 

50 (7) 16.5 50.8 NaBH4+NaOH•H20 

4.3.1.2 Regression of the Phase Diagram for NaBH4-NaOH-H20 

For the convenience of calculation, the relationship between NaOH concentration wNaoH 

and NaBH4 concentration wNaBH, at each smooth part in Figure 4.2 were regressed using 

polynomial equations. The use of the polynomial equation was by observation of the line 

shape and it was justified by the error of the regression. The regressions are shown in 

Figure 4.3. The equations obtained and the errors incurred are listed in Table 4.2. Good 

fits were obtained when the polynomial equations were used for the regression. 
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Figure 4.3 Regression of the phase diagram ofNaBH4-NaOH-H20 using polynomial equations. 
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Table 4.2 The polynomial equations of phase diagram in Figure 4.2. 

Temperature WN,QH (%) Solid state Equations, y= wNaBH, , x= wN,oH Error 
{oq (Rz) 

ooc <15.6 NaBH4•2HzO y = 0.0209x2 - 0.7568x + 29.016 0.99 

ooc 15.6-22.5 NaBH4•2HzO y = 0.1567x2
- 5.9788x + 77.49 0.99 

ooc 22.5-44.4 NaBH4 y = 0.0171x2
- 1.6197x + 50.613 1.0 

l8°C <16 NaBH4•2HzO y = 0.047Ix2
- 1.085x + 34.186 0.99 

l8°C 16-46.8 NaBH4 y = 0.0135x2 
- 1.3286x + 46.802 1.0 

30°C <9.1 NaBH4•2HzO y = 0.0397x2
- 0.7859x + 39.357 0.98 

30°C 9.1-48.5 NaBH4 y = 0.0102x2
- 1.1 084x + 45.112 1.0 

50°C <50.8 NaBH4 y = 0.0101x2
- 1.0991x + 46.439 0.98 

At this stage, there are only four points to regress when the left-hand side of equation 

( 4.4) is plotted against liT at each NaOH concentration. The more points that are 

regressed, the more accurate the parameters that are obtained can be. Another temperature 

point can be obtained by regression of the invariant points. 

NaOH concentration above 25% was not considered, since higher concentrations have no 

practical significance. When N aOH concentration is lower. than 25%, there are four 

known invariant points; (!), (3), (5) and (8) as shown in Figure 4.2. For a given NaOH 

concentration, for example the vertical line at a NaOH concentration of 5%, there are four 

intersections with the four temperature lines. The intersections with 0°C, l8°C and 30°C 

correspond to the solid state NaBH4•2HzO, but the intersection with the 50°C line 

corresponds to the solid state NaBH4. It can be inferred that there is an invariant point 

between 30°C and 50°C, at which these two crystals co-exist. This invariant point can be 

obtained by regressing the four known invariant points. 
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Invariant points have a fixed composition and temperature. The composition and 

temperature for the four known invariant points are shown in Figures 4.4 and 4.5 

respectively. They were then regressed using a polynomial equation. The equations that 

are obtained are given in Table 4.3. 

,-... 45 
~ ..... 
!, 
= 40 

Crystalline States: 
NaBH

4
• 2Hp+NaBH

4 
Q .• ..... 
"' .... 

35 ..... = .. ... = Q 
30 ... ... = ~ 

"' 25 z 

20 
0 5 10 15 20 25 

NaOH concentration (wt%) 
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Table 4.3 The regression of the invariant points for NaBH4-NaOH-H20 with NaOH 

concentration lower than 25%. 

Equation 

Composition y = -1.0026x + 44.856 0.99 

Temperature T = -0.0696x2 -0.0458 +36.356 0.99 

4.3.2 Solubility Data ofNaB02 in NaOHAqueous Solutions 

4.3.2.1 Description of the Phase Diagram 

The solubility data of NaB02 in NaOH solutions are not available directly from the 

literature. A phase diagram for Na20-B203-H20 is available [12], as reproduced in Figure 

4.6. The solubility data for NaB02 can be calculated from this phase diagram. 

As shown in Figure 4.6, the horizontal axis represents the composition ofNa20 (wt%) in 

the solution. The vertical axis represents the composition of B203 (wt%) in the solution. 

The remaining part is water. The ratio data on the lines are the compositions of the solid 

phase equilibrated with the solution. The other data on the line are the temperatures of the 

solutions. For example, the data 1:1:8 represents Na20:B203:H20 = 1:1:8, i.e. 

NaB02•4H20. 

When the ratio ofNa20 to B203 equals to 1:1, it represents the solubility ofNaB02 in 

NaOH solutions. This is the lower right part of the diagram. The phase diagram for 

NaB02-NaOH-H20 is derived by using the following equations to calculate the 

composition forNaB02 and NaOH 

(4.5) 

-w....:s_,_,o-'"''-) 2M 
X NaOH 

Ms,o, 
(4.6) 
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where M Noso, and MNaOH are the molecular weight ofNaB02 and NaOH respectively. The 

derived phase diagram is shown in Figure 4.7. 
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Figure 4.6 Phase diagram for the NazO-Bz03-H20 system from 0 to 100 °C. 
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Figure 4.7 Phase diagram for the NaB02-NaOH-H20 system transformed from Figure 4.6. 
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The phase diagram for NaB02-NaOH-HzO in Figure 4.7 can be interpreted as follows: 

• As in the phase diagram for NaBH4-NaOH-HzO, there are invariant points at 

which two different crystals exist. The invariant points, the compositions and the 

corresponding equilibrium compositions are listed in Table 4.4. In the smooth 

parts, the corresponding solid phases consist of only one crystal. On the invariant 

points, the solid phases consist of two types of crystal. 

• With an increase in NaOH concentration, new compounds N~Bz0s•5Hz0 and 

N~BzOs•HzO are formed. 

• At a specific NaOH concentration, the solubility of NaBOz increases with an 

increase in temperature. 

• As a specific temperature, the solubility of NaBOz decreases rapidly with an 

increase in NaOH concentration. 
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Table 4.4 The invariant points for NaBOz-NaOH-HzO at 0-100 °C. 

Temperature WNaB02 WNaOH Crystalline states Related point 
("C) 

(%) (%) in the phase diagram 

30 8.5 22.6 NaBOz•4HzO+ NaBOz•2HzO (8) 

4.9 39.6 NaBOz•2HzO+ N!4Bz0s•5Hz0 (9) 

3.2 49.2 N!4Bz0s•5Hz0+ NaOH•HzO (10) 

0 52.8 NaOH•HzO (11) 

45 14.7 16.2 NaBOz•4HzO+ NaBOz•2HzO (12) 

8.9 37.5 NaBOz•2Hz0+ N!4Bz0s•5Hz0 (13) 

4.2 51.7 N!4Bz05•5Hz0+ NaOH•HzO (14) 

0 55.9 NaOH•HzO (15) 

56 10.8 30.8 NaBOz•2HzO+NaBOz•l/2HzO (16) 

13.2 37.6 NaBOz•1 12HzO+N<4BzOs•5HzO (17) 

5.1 53.9 N!4BzOs•5HzO+N<4Bz0s•HzO (18) 

3.2 58.1 N!4Bz0s•Hz0+ NaOH•HzO (19) 

0.0 60.9 NaOH•HzO (20) 

60 12.5 28.4 N aBOz•2HzO+NaBOz•li2HzO (21) 

11.2 43.0 NaBOz•1/2Hz0+ N!4Bz0s•5Hz0 (22) 

5.9 53.4 N!4BzOs•5HzO+N<4BzOs•HzO (23) 

2.6 60.2 N!4Bz05•Hz0+ NaOH•HzO (24) 

0.0 62.7 NaOH•HzO (25) 

64 14.2 25.8 NaBOz•2HzO+NaBOz•1/2HzO (26) 

8.3 50.3 NaBOz•l/2HzO+ N!4Bz0s•Hz0 (27) 

1.3 71.7 N!4Bz0s•Hz0+ NaOH (28) 

0.0 73.2 NaOH (29) 

80 20.8 21.0 NaBOz•2HzO+NaBOz•l/2HzO (30) 

8.9 51.1 NaBOz•1/2Hz0+ N!4Bz0s•Hz0 (31) 

1.5 72.8 N!4Bz0s•Hz0+ NaOH (32) 

0.0 74.0 NaOH (33) 

100 32.9 16.9 N aBOz•2HzO+NaBOz•li2HzO (34) 

9.5 52.5 NaBOz•l/2Hz0+ N!4Bz0s•Hz0 (35) 

2.6 74.0 N!4Bz0s•Hz0+ NaOH (36) 

0.0 77.4 NaOH (37) 
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4.3.2.2 Data Regression ofthe System ofNaB02-NaOH-H20 

As with the NaBH4 system, the smooth parts in Figure 4.7 at each temperature were 

regressed using polynomial equations. The equations are expressed using the relations 

between wN,oH and wNaso, . The regressions are shown in Figures 4.8 and 4.9. The 

equations that were obtained are listed in Table 4.5. 

Table 4.5 The regressed equations for NaBOz-NaOH-HzO system. 

Temperature WNaOH Solid state Equations, y= wN,so, , x= wN,oH Error 
("C) !%2 (k) 

30°C <22.6 NaBOz•4HzO y = 0.0322x2 - 1.4366x + 24.461 1.0 

30°C 22.6-39.6 NaBOz•2HzO y = 0.027x2
- 1.8885x + 37.426 1.0 

45°C <16.2 NaBOz•4HzO y = 0.023~ - 1.3483x + 30.556 1.0 

45°C 16.2-37.5 NaBOz•2HzO y = 0.0298x2
- 1.8967x + 38.107 0.98 

56°C <30.8 NaBOz•2HzO y = 0.0352x2 
- 1.9305x + 36.505 1.0 

56°C 30.8-37.6 NaBOz•1/2HzO y = 0.1595x2 
- 1 0.624x + 186.94 0.98 

60°C <28.4 NaBOz•2HzO y = 0.0474x2
- 2.2507x + 38.005 1.0 

60°C 28.4-43.0 NaBOz•li2HzO y = 0.0347x2
- 2.5687x + 57.395 0.98 

64°C <25.8 NaBOz•2HzO y = 0.045x2
- 2.2123x + 40.093 0.99 

64°C 25.3-50.3 NaBOz•1/2HzO y = 0.0152x2
- 1.3814x + 39.537 0.99 

80°C <21.0 NaBOz•2HzO y = 0.0368x2
- 1.8631x + 43.654 1.0 

80°C 21.0-51.1 NaBOz•1/2HzO y = 0.0131x2
- 1.3395x + 43.242 1.0 

100°C <16.9 NaBOz•2HzO y = 0.0677x2
- 2.2083x + 51.419 0.98 

100°C 16.3-52.5 NaBOz•li2HzO y = 0.0202x2
- 1.973x + 57.92 1.0 
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As with NaBH4-NaOH-HzO, the invariant points were also regressed in order to increase 

the number of data points when plotting the left-hand side of equation (4.4) against liT at 

a specific NaOH concentration. For NaBOz-NaOH-HzO, there are two sets of invariant 

points when NaOH concentration is below 30%: NaBOz•4HzO and NaBOz•2HzO co­

existence and NaB02•ZHzO and NaBOz•1/2HzO co-existence. The regressions for the 

former are shown in Figures 4.10 and 4.11 for composition and temperature respectively. 

The regressions for the latter are shown in Figures 4.12 and 4.13 for composition and 

temperature respectively. The equations that were obtained are listed in Table 4.6. 
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Figure 4.10 Regression of the composition of the invariant points for NaB02-NaOH-H20 
with NaOH · concentration below 30% for the co-existence of NaBOz 4Hz0+ 
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Table 4.6 Regression of invariant points for NaB02-NaOH-H20 with NaOH 

concentration lower than 30%. 

Solid state 

NaB02•4H20+ 

NaB02•2H20 

NaB02•2H20 

+NaB02• !/2H20 

Y = WNaB0
2 

X= WNaOH T = t(oC), X= WNaOH 

y = 0.0182x2- 1.6644x + 36.835 T = -0.0576x2 + 0.3631x + 52.148 

y = 0.1 146x2- 6.9968x + 118.14 T = 0.1 7x2- 11.248x + 241.58 

4.4 Hydration Analysis 

4.4.1 Theoretical Background 

The hydration analysis method is used to calculate the ratio of the activity coefficient of 

NaBH4 or NaB02 in the presence of NaOH y~ B to the activity coefficient of NaBH4 or 

NaB02 in the absence of NaOH y ±,B. Hydration analysis is a method of analysing the 

solubility data to explain the ionic processes in ternary saturated solution [8-1 0]. 
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Imagine a binary saturated solution, in which component B is dissolved in water. A third 

component A is added to the binary solution. A ternary solution is thus formed. The total 

amount of water in the ternary saturated solution is split into two parts: one part refers to 

the water that preserves the properties of the water in the binary saturated solution; the 

other part refers to the water that has changed its properties under the influence of 

component A. 

A parameter Pis defined as the mole fraction of water that has changed its properties, as 

shown by equation (4.7). 

(4.7) 

where wH,o is the mass percentage of water in the ternary solution, weff is the mass 

percentage of 'property-unchanged' water in the ternary solution, MH,o is the relative 

2 

molar mass of water (which is equal to 18.02), and ~>1 is the total mole number of the 
0 

solution. 

The dependence of parameter P on the amount of non-saturated component serves as a 

source of information on ionic properties in the solution. From the definition of P, the 

positive values of P indicate that water molecules have moved to the hydration sphere or 

envelope of the added ions. Values of p,Q may be expected when the added ions are 

unable to compete with the component B for attracting water molecules. Negative values 

of Pare expected in two situations: 

a) The added component is a structure-breaking agent with respect to the saturated 

solution of component B. 

b) The addition of component A may lead to ion-pairing, replacing some water 

molecules that had previously been in hydration envelopes. 

In real systems, hydration and ionic interaction occur simultaneously. Both of these affect 

the value of P, i.e. the value of P is the result of two activities: a positive term related to 
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hydration and a negative term related to ion-pairing. For this reason the values ofP cannot 

be used solely as an indication of hydration. In making such a 'hydration analysis', the 

analytical concentration of water is an important factor, and it must be taken into account. 

For the ternary systems of NaBH4-NaOH-H20 or NaB02-NaOH-H20, an interaction 

parameter, I (analogous to solubility product on the molar scale) is defined as 

(4.8) 

where mN,• is the molality of sodium ion, and m
8

• is the molality of the borohydride ion 

BH4. or metaborate ion B02-. 

For a binary solution, equation (4.8) changes into equations (4.9) since the molality of 

Na+ and the molality ofB- are all equal to the molality of the salt. 

I= (m~,aY (4.9) 

where m~,8 is the molality of the NaBH4 or NaB02 in the binary solution. 

In the ternary system, the molality of the sodium ion comes from either NaBH4 or NaB02 

and NaOH. Equation (4.8) becomes 

(4.10) 

where mNaOH is the molality ofNaOH, and m NaB is the molality ofNaBH4 or NaB02. 

It can be seen that I and I' are not equal if the total water are taken into account. When the 

concept of effective water is introduced, NaBH4 or NaB02 can be considered in an 

imaginary environment where NaOH has no influence on the dissolution, since the effect 

ofNaOH has been included into the non-effective water. Therefore, when the 'property­

unchanged' water (effective water) is taken into the calculation of the molalities in the 

ternary solution, I and I' are equal in the same temperature and pressure. Substituting the 

d fi . . f 1 1. moles of solute . . . (9) d (I O) . e mtwn o mo a 1ty, m = , mto equatiOn equatwns an , g1ves 
I OOOg solvent 

106 



Solving equation (4.9) for Weff, yields 

w. 
where ni is the moles of each component, n; = -' . 

M; 

Combining equation (4.12) with (4.7), gives 

p 
• • I 2 

nH 20nNaB - nH20 '\f nNaB + nNaBnNaOH 

n~,s (nH,o + nNaB + nNaOH) 

(4.11) 

(4.12) 

(4.13) 

In order to find the relationship between P and the activity coefficient, the usual 

description of the equilibrium with the aid of activity coefficients was discussed, 

forgetting the hydration analysis for a moment. In NaBH4 or NaB02 saturated solution, 

dissolution equilibrium is shown in Scheme 4.1 

Scheme 4.1 The ionic equilibrium ofNaBH4 or NaB02 in aqueous solutions. 

The equilibrium constant can be expressed using equation ( 4.14). 

(4.14) 

where aNa• and a
8

_ are the activities of the sodium ion and BH4. or B02. respectively, 

a NaB is the activity of solid NaBH4 or NaB02, the value of which is unity, mNa• is the 

molality of the sodium ion, and m
8

_ is the molality of BH4- or B02-. y ±.a is the mean 

activity coefficient. Since the value of the equilibrium constant does not depend on the 

existence of another component, equation ( 4.15) holds. 
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(4.15) 

where y :.8 is the mean activity coefficient of saturated NaBH4 or NaB02 solution in the 

presence of NaOH, m~aB is the molality of NaBH4 or NaB02 in the absence of NaOH, 

mNaOH is the molality ofNaOH, and mNaB is the molality ofNaBH4 or NaB02. 

Rearranging equation ( 4.15), yields 

( 
( )2 Jl/2 Y~ m~aB r:- = {mNaOH + mNaB )mNaB 

( 4.16) 

When using the hydration analysis method, the moles of water and NaB are needed. 

Substitute the molalities with the number of moles into equation ( 4.16), yields 

112 

(
I OOOnN,oH + I OOOnN,s ) I OOOnN,s 

WH 20 WH 20 WH20 

(4.17) 

where n represents the number of moles, w represents the weight of water, the subscripts 

represents the corresponding substances, and the superscript 'o' represents the system 

when NaOH is not present. 

Simplifying equation ( 4.17), yields 

Substituting equation (4.12) into equation (4.18), yields 

Y ± Weff -=--
Y±

, w 
H20 

Rearranging equation ( 4.19), gives 

I 08 

(4.18) 

(4.19) 



(4.20) 

Substituting equation (4.20) into equation (4.7), gives 

(4.21) 

Rearranging equation ( 4.21 ), gives 

Y~ XH,O 
= 

Y± xH,o -P 
(4.22) 

' 
It can be seen that the ratio of 2:!. can be calculated when the value of P is known. The 

Y± 

value ofP can be calculated using equation (4.13). 

4.4.2 Hydration Analysis ofNaBH4-NaOH-H20 and NaB02-NaOH-H20 

In the phase diagram of NaB&-NaOH-H20 (Figure 4.2), each NaOH concentration 

corresponds to a N aBH4 concentration for a specific temperature line. The weight 

percentage of water equals 100% minus the sum of NaBH4 concentration and NaOH 

concentration. The same is the case for NaB02-NaOH-H20 (Figure 4.4). The values of 

nH,o' nN,s and nN.oH in equation (4.13) were calculated from the phase diagrams. The 

values of n~,o and n~,8 were obtained by setting WNaOH = 0 in Figure 4.2 or Figure 4.4. 

The values of P's were then calculated using equation (4.13), which is shown in Figure 

4.14 for NaBH4-NaOH-H20and in Fig 4.17 forNaB02-NaOH-H20. 

After obtaining the values of P for the two systems, they were divided by the molality of 

NaBH4 or NaB02 at that point. The ratio is a measure of the effect ofNaOH concentration 

on unit molality ofNaBH4 or NaB02. The quotient of PlmNaB is given in Figures 4.15 and 

4.18 for NaBH4 and NaB02 respectively. The ratios of y~ 8 /y±B were then calculated 
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using equation (4.20) and are shown in Figures 4.16 and 4.19 for NaBH4 and NaB02 

respectively. 
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NaBH
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0.0 
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NaBH;2H
2
0 1s•c 
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Figure 4.14 Calculated P value for the NaBH4-NaOH-H20 system. 
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Figure 4.15 The effect ofNaOH on P value per unit molality ofNaBH4. 
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Figure 4.16 The values of y ~.8 I y ±.a for the NaBH4-NaOH-H20 system. 
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Figure 4.17 Calculated P value for the NaB02-NaOH-H20 system. 
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Figure 4.18 The effect ofNaOH on P value per unit molality ofNaB02• 

3.0 

2.5 

1.0 

so'c 

lOO'C 
NaB02·112H20 

NaB02 • 2H,0 64,C 
IOO'C 

NaB02·2H20 

i 
4S'C 

4S'C 

30'C 30'C 
NaBO • 4H 0 80 C NaB02• 2H20 

2 2 
NaB02·112H20 NaB02·4H20 

0.5+-~-,---c;-...::.,--~-.--~-.---~-.----. 
0 5 10 15 20 25 

NaOH Concentration (wt%) 

Figure 4.19 The values ofy: B I r ± B for the NaBOz-NaOH·HzO system. 

112 



As shown in Figure 4.15, the value of P/mNaBH4 for the NaBH4-NaO-H20 system is 

between -0.031 and 0.0090. At lower temperatures (0- 30°C), P/mNaBH4 is negative. This 

may be due to the stronger hydrogen bonds between OH- and water than that BH4. and 

water, which leads to structure-breaking of the hydration sphere around BH4" before 

NaOH is added. At higher temperatures (50°C}, P/mNaBH4 is positive. The elevation of 

temperature decreases the role of hydrogen bonds. However, neither negative nor positive 

values are very small. This suggests that the addition of N a OH will not have significant 

effect on the dissolution ofNaBH4. As shown in Figure 4.16, the values of r:BIY±B 

range from 0.72 to 1.25. 

However, for NaBOrNaOH-H20, all the P/mNaB02 values are positive (from 0 to 0.17 as 

shown in Figure 4.18). The original interaction in the solution is between B02" and water. 

When NaOH is added to the solution, OH" may also have interactions with water. Since 

the basicity of oH· is stronger than Bo2·, water from the hydration sphere of B02. will 

move to the surroundings of oH·. This will result in a positive value ofP. The calculated 

values of y :.8 I y ±,B are from I to 2.8 as shown in Figure 4.19. It can be seen that NaOH 

has a significant effect on r :.B I r ±.B for NaB Oz. 

4.5 Determination of Model Parameters 

After y: 8 I y ± 8 was calculated using the hydration analysis method, the parameters in 

' 

equation ( 4.4) can be determined by plotting In m± 8 +In y ±,B against liT at the known 
. y±.B 

temperatures. In this work, the calculation was coded in Excel®. The parameters for any 

NaOH concentrations can be calculated by implementing the model. 

In order to make a comparison, In m± 8 was first plotted against .!_ for N aBH4 or N aBOz , T 

in NaOH solution, as shown in Figure 4.20 and Fig. 4.21. The deviation from linearity is 

obvious, although a good linearity has been achieved when NaOH is not present as shown 

in Chapter 3. This indicates that y :.8 I y ±.B is not a constant when NaOH is present. The 

. 
linearity was much improved, however, when plotting In m±,B +In y ±,B 

r ±.B 
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shown in Figure 4.22 and Fig 4.23. 
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Mf~.B 
In Figures 4.22 and 4.23, the slope of the line represents 

2RT 

represents 
!lS~.B o 
---lny±B' The values of Mlms 

2R ' · 
and 

!lSo 
~-lny 

2R ±,B 

and the intercept 

at various NaOH 

concentrations were calculated for both NaBH4 and NaB02. The results are shown in 

Table 4.6 and 4.7 respectively. The values are very close regardless of the change of 

NaOH concentration. This is because that the standard changes of enthalpy and entropy 

are from a solid state of the salts to 1 mol kg-1 in solution. They have no relationship with 

NaOH. 

117 



Table 4. 7 The values of the parameters for N aBH4 at various N aOH concentrations. 

WNaOH LV/~ NaBH I 2R m· t.S ~.NaBH, I 2R -In r ~ 
' 4 

m,NaBH4 

(K-1) (kJ mor1) (K-1) 

0 1935.6 32.2 9.3275 

1 1886.9 31.4 9.1485 

5 1890.2 31.4 9.1581 

10 1910.4 31.8 9.2237 

15 1954.6 32.6 9.3755 

20 1943.3 32.2 9.3534 

Average 1920.2 32.0 9.2645 

Table 4.8 The values of the parameters for NaB02 at various NaOH concentrations. 

WNaOH LVI~ NaBO I 2R m· t.S~ NaBO I 2R -in r ± 
' 2 

m,NaB02 ' 2 
K-1) K'1 

0 3007.2 50.0 11.660 

1 3006.8 50.0 11.659 

5 2997.9 49.8 11.635 

7.5 3009.9 50.0 11.661 

10 3012.0 50.1 11.664 

15 3021.9 50.2 11.687 

20 3026.6 50.3 11.700 

25 2985.5 49.6 11.582 

Average 3008.5 50.0 11.656 

Substituting the average values of the parameters into equation (4.4) gives the relationship 

between solubility and temperature for NaBH4 and Na802 respectively. 

' 
I I 

r ±,NaBH4 
nm±,NaBH4 + n.:...=="­

r ±,NaBH4 

1920.2 +9.3 
T 

(4.23) 

118 



' 

I I 
Y ±,NaBHO, 

n m±,NaB02 + n ::::: 
Y ±,NaB02 

3008.5 + 11.7 
T 

(4.24) 

In order to get the relationship between ma and Tat a specific NaOH concentration, the 

value of r ~.s I r ±,s must be determined at the NaOH concentration. As shown in Figure 

4.16 and 4.19, the value varies with the change of temperature. The average value over 

temperature was taken and then plotted against NaOH concentration. The graph was then 

regressed into polynomial equations as shown in Figures 4.24 and 4.25 for NaBH4 and 

NaB02 respectively. The regressed equations are given as equations (4.25) and (4.26). 
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Figure 4.24 The change of r ~ 8 I r ± 8 with NaOH concentration for NaBH4. 
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Figure 4.25 The effect of NaOH on the average r:.B ly±.B of NaB02 in its saturated 

solution. 

(4.25) 

y~ fy± =-0.0015w~,QH +0.07WN,OH +1.0 (4.26) 

In the following, the errors introduced by using the average value of r :.B I r ±,B over 

temperature are analysed. It can be seen from Figures 4.16 and 4.19 that the error is small 

at lower NaOH concentrations but becomes larger with an increase in NaOH 

concentration. The error was estimated using equation ( 4.27). The results are given in 

Tables 4.9 and 4.1 0. 

' 
t.ln r±,B 

y±.B 
error = --'----.:::::..c.,,-

And 

1 +I Y±,B 
nm±,B n--

Y±,B 

(4.27) 
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' 
Ll.ln r u 

Y±,B 
= ln(r' ly ) -ln(r' ly ) ±,B ±,B max ±,B ±,B av (4.28) 

Table 4.9 The errors introduced by using the average activity ratios over temperature for 

NaBH4-NaOH-HzO. 

NaOH Maximum Average 
Ll.ln r:.B I Errors at 20°C Errors at 90°C 

concentration , I , I ' ' 
r ±,s r ±.s r ±.s r ±.s Y±.B 

(lnm±B +In Yu =2.75) (lnm±B+Inr±,B =4.01) 
(wt%) ' Y±.B . Y±,B 

(%) (%) 

I 1.03 0.97 0.060 2.2 1.5 

5 1.07 0.97 0.098 3.6 2.4 

10 1.13 0.97 0.153 5.6 3.8 

15 1.16 0.97 0.179 6.5 4.5 

20 1.21 0.97 0.221 8.0 5.5 

Table 4.10 The errors introduced by using the average activity ratios over temperature for 

NaBOz-NaOH-HzO. 

NaOH Maximum Average ' Errors at 20°C Errors at 90°C 
Ll.ln r ±,B 

concentration , I , I ' ' 
r ±,B Y±.s r±.s r ±,B Y±,B 

(lnm±.B+Inr±.B =1.44) (lnm±B +In r±,B =3.42) 
(wt%) Y±.B ' Y±,B 

(%) (%) 

1 1.15 1.10 0.044 3.1 1.3 

5 1.60 1.39 0.141 9.8 4.1 

10 1.95 !.59 0.204 14.2 6.0 

15 2.20 1.71 0.252 17.5 7.4 

20 2.30 1.78 0.256 17.8 7.5 
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The errors increase with both the increase of NaOH concentration and reaction 

temperature. The practical range for NaOH should be less than 5% and the reaction 

temperature should be as high as possible to increase the reaction rate. Bearing this in 

mind, the relative error for using the average value of y ~.B I y ±,B over temperature will be 

less than 5%. This is acceptable for practical application of the model. 

In order to get the relationship between solubility ms and T from equations (4.23) or 

(4.24), the presence of common ions must be considered when calculating the mean 

molality of mixed electrolytes [13]. In both NaBH4-NaOH-H20 and NaB02-NaOH-H20 

systems, the common ion is Na+. The mean molality m± is calculated using equation 

(4.29). 

(4.29) 

where mNaB represents the molality ofNaBH4 or NaB02, m Na+ is the molality of sodium 

ion, m
8

_ is the molality ofBH4. or B02·, and mNaOH is the molality ofNaOH. 

Rearranging equation ( 4.23), yields 

(4.30) 

In practice, the concentration of NaOH is often expressed in weight percentage. The 

relationship weight percentage and molality can be expressed using equation ( 4.31 ). 

mNaOH M N•OH I 000 + mN,aM N•B 

WNaOH I 00 - wN,QH 

where wN,oH is the weight percentage ofNaOH in the solution. 

Solving wNaOH from equation ( 4.31 ), gives 

WNaOH (I 000 + mNaBM NaB) 

(I 00- wNaOH )M NaOH 
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where 

Substituting equation ( 4.32) into equation ( 4.30), gives 

(4.33) 

Solving mNaB from equation ( 4.27), gives the relationship between mean molality and 

solubility. 

- A1 + ~A12 + 4(1 + A2 )m; 

2(1 + A2 ) 

4.6 Calculation of Maximum NaBH4 Concentration 

(4.34) 

The solubility ofNaBH4 in NaOH solution at any temperatures and NaOH concentrations 

can be obtained by simultaneously solving equations (4.23), (4.25) and (4.34); the 

solubility ofNaB02 in NaOH solution at any temperatures and NaOH concentrations can 

be obtained by simultaneously solving equations (4.24), (4.26) and (4.34). The amount of 

water (g) contained in the saturated solution containing one mole of N aBH4 can be 

calculated using equation (4.35): 

(4.35) 

The amount of water (g) contained in the saturated solution containing one mole of 

NaB02 is calculated using equation ( 4.36). 

w
2 

= 1000 (4.36) 
mNaB02 

The amount of water (g) needed to react with one mole of NaBH4 is calculated using 
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equation (4.37). 

(4.37) 

The maximum concentration of NaBH4 in the hydrolysis system is determined by the 

maximum value between W1 and (W2 + W3). The comparison between W1 and (W2 + W3) 

is shown in Figure 4.26. It can be seen that the value of W1 is much smaller than (W2 + 

W3). Therefore, the maximum concentration ofNaBH4 is determined by (W2 + W3). 

The calculated maximum concentration of NaBH4 is shown in Figure 4.27 for various 

NaOH concentrations. It increases with the increase of temperature but decreases with the 

increase ofNaOH concentration. 
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Figure 4.26 Comparison of the quantity of water needed to dissolve 1 mol NaB02 and to 
react with 1 mol NaBH4 with that contained in saturated NaBH4 solution. 
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Figure 4.27 The calculated maximum concentration ofNaBH4 in the hydrolysis system. 

4.7 Experimental 

As in Chapter 3, experiments were conducted to validate the modelling results. The same 

experimental procedure and materials were used except that the solution used in the 

reactions containing 1% or 5% NaOH. The experimental results are listed in Table 4.8 and 

Table 4.9 for 1% and 5% NaOH respectively. 

Since the interval of weight percentage between the occurrence and non-occurrence of 

precipitation ofNaBOz was 0.5% or 1%, the errors in these measurements were 0.5% or 

1%. 
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Table 4.11 Experimental determination of maximum concentration of NaBH4 in I% 
NaOH solutions. 

Reaction temperature (0 C) NaBH4 concentration(%) Did precipitation occur? 

26 9.0 X 

10.0 X 

11.0 X 

I 1.5 X 

12.0 X 

12.5 ..j 
13.0 ..j 
13.5 ..j 

35 11.0 X 

12.0 X 

13.0 X 

13.5 X 

14.0 X 

14.5 ..j 
15.0 ..j 
15.5 ..j 

42 13.0 X 

14.0 X 

15.0 ..j 
16.0 ..j 
17.0 ..j 
18.0 ..j 
19.0 ..j 
20.0 ..j 

56 18.0 X 

19.0 X 

19.5 X 

20.0 ..j 
20.5 ..j 
21.0 ..j 
21.5 ..j 
22.0 ..j 

70 20.0 X 

21.0 X 

22.0 X 

22.5 ..j 
23.0 ..j 
23.5 ..j 
24.0 ..j 
24.5 ..j 
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Table 4.12 Experimental determination of maximum concentration of NaBH4 in 5% 
NaOH solutions. 

Reaction temperature (0C) NaBH4 concentration(%) Did precipitation occur? 

26 6.0 X 

7.0 X 

7.5 X 

8.0 X 

8.5 X 

9.0 ..J 
9.5 ..J 
10.0 ..J 

35 7.0 X 

8.0 X 

9.0 X 

9.5 ..J 
10.0 ..J 
10.5 ..J 
11.0 ..J 
11.5 ..J 

42 10.0 X 

11.0 X 

12.0 X 

12.5 X 

13.0 ..J 
13.5 ..J 
14.0 ..J 
14.5 ..J 

56 13.0 X 

14.0 X 

14.5 ..J 
15.0 ..J 
15.5 ..J 
16.0 ..J 
16.5 ..J 
17.0 ..J 

70 16.0 X 

17.0 X 

18.0 X 

19.0 X 

20.0 ..J 
21.0 ..J 
22.0 ..J 
23.0 ..J 
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4.8 Comparison of Modelling Results with Experimental Data 

In order to validate the model, experiments were conducted at five different temperatures 

for 1% and 5% NaOH concentration respectively. A series of NaB~ solutions were 

prepared from low to high concentration to hydrolyse with a concentration interval of I% 

or 0.5%. The experimental results are given in Table 4. 7 and Table 4.8 respectively. The 

experimentally measured maximum concentrations, together with modelling results, were 

plotted in Figure 4.28. 

The experimentally measured maximum NaB~ concentration increased with the increase 

of the hydrolysis temperature for both 1% and 5% NaOH aqueous solutions. Within the 

experimental error, the calculated maximum concentration ofNaBH4 agrees well with the 

experimental data. The agreement indicates that the modelling method is reasonable. 
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Figure 4.28 Comparison between the calculated and experiment concentration ofNaBH4 

when sodium metaborate is precipitated from the system. 
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4.9 Conclusions 

Thermodynamic modelling was conducted in this chapter to calculate the maximum 

concentration ofNaBH4 hydrolysis in the presence ofNaOH. The modelling results were 

then validated experimentally at two N aOH concentrations. 

• In the presence of a third component, the solubility and temperature meets the 

following relationship. 

' 

I I Yt.B 
nm±.s + n--= 

Y±.B 

Mlo (!:J.So ) _...:""-'''B::... + __!!!.:!_ -In y 
2RT 2RT ±.B 

' 

F N BH h . . I I r ±,NaBH, or a 4 t e equation 1s: n m. NaBH + n = 
' 4 Y ±,NaBH4 

' 

F N Bo h . . J J Yt,NaBH02 or a 2 t e equation 1s: n m±,Naso, + n = 
y ±,NaB02 

1920.2 +9.3 
T 

3008.5 + 11.7 
T 

• The value of y ~ 8 I y ± 8 was calculated using the hydration analysis method. It is 

shown in this study that this is a suitable method for calculation of the effect of 

NaOH on NaBH4 and NaBOz. 

• The solubility data for NaBH4 can be obtained by analysing the phase diagram of 

NaBH4-NaOH-HzO, and the solubility data for NaBOz can be obtained by 

analysing the phase diagram ofNazO-Bz03-HzO. 

• The amount of water in saturated NaBH4 solution was compared with the amount 

of water required to dissolve the by-product NaBOz and to react with NaBH4. The 

former is much less than the latter. 

• The maximum concentration ofNaBH4 in the hydrolysis system is determined by 

the amount of water needed to dissolve the by-product NaBOz and to react with 

NaBH4. 

• The maximum concentration increases with the increase of reaction temperature 
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and decreases with the increase ofNaOH concentration. 
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Chapter 5 

Kinetic Study ofNaBRt Hydrolysis over Metal Catalyst: 
Theory and Experimental Method 

5.1 Introduction 

In Chapters 3 and 4, the maximum concentration ofNaBH4 in its hydrolysis solution was 

studied from the point of view of thermodynamics. In this and subsequent chapters, the 

kinetic aspect of the hydrolysis will be considered. Kinetics are concerned with the rate of 

a reaction, in this case with the quantitative description of how fast hydrogen is generated 

during hydrolysis and the factors affecting this rate. Understanding these factors is 

essential to the rational design and analysis of the performance of a reactor and the 

application ofNaBH4 hydrolysis to a practical hydrogen generation system. 

Most of the previous works in kinetic studies ofNaBH4 hydrolysis were performed using 

protonic acid catalysis [1-3]. Acid catalysis, as reviewed in Chapter 2, are not efficient for 

hydrogen generation. The most efficient catalysts for NaB~ hydrolysis are transition 

metals, which are usually supported on an inert carrier. Unlike acid catalysis, metal 

catalysed N aBH4 hydrolysis is a heterogeneous catalysis. 

In this chapter, the theory of heterogeneous catalysis is introduced first, after which an 

experimental method is established for the kinetic study. In the next four chapters, kinetic 

expression is determined experimentally and an overall kinetic model is derived and 

validated. 

5.2 Literature review on heterogeneous catalysis 

As shown in Figure 5.1, heterogeneous catalysis reactions usually include five steps: 

• Mass transfer (diffusion) of the reactants from the bulk fluid to the external 

surface of the catalyst pellet. 

• Diffusion of the reactant from the pore mouth through the catalyst pores to the 

immediate vicinity of the internal catalytic surface. 
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• Reaction on the surface of the catalyst. 

• Diffusion of the products from the interior of the pellet to the pore mouth at the 

external surface. 

• Mass transfer of the products from the external pellet surface to the bulk fluid. 

boundary layer 

CAs 
diffusion 

Figure 5.1 General steps of heterogeneous catalysis for reaction A~ B. Where CAb is the 

bulk concentration of reactant A, Csb is the bulk concentration of product B, CAs is the 

surface concentration of A, Css is the surface concentration of B and cS is the thickness of 

boundary layer. 

An important factor in heterogeneous catalysis is that the observed rate of reaction may 

include effects due to the rates of transport processes in addition to intrinsic reaction rates. 

The intrinsic kinetics of a heterogeneous catalytic reaction involves three elementary steps 

successively: adsorption of reactant molecules onto the surface and attachment to an 

active site on the catalyst surface, surface reaction, and desorption of product molecules 

from the surface. The active site is used to describe a location on the surface which bonds 

with reaction intermediates, which is usually a defect or crystal edge on the surface of the 

catalyst. The surface reaction may involve a single site mechanism or a dual-site 

mechanism. All species of molecules, free reactants and free products as well as site­

attached reactants, intermediates, and products taking part in these three processes are 

assumed to be in equilibrium. 
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There are various postulated mechanisms for the intrinsic kinetics such as Langmuir­

Hinshelwood kinetics, which involve several arbitrary parameters. In order to prove that a 

mechanism is true, it has to be shown that the family of curves representing the rate 

equation type of the favoured mechanism fit the data much more closely than the other 

possible families of curves, so that all the others can be rejected. It is often rather difficult 

to find a good mechanism. Also, the rate expression from a mechanism is difficult to 

apply when macrokinetics are involved due to the large number of arbitrary parameters. 

However, it is sufficient to use the simplest available correlating rate expression; hence 

first-order or n'h order kinetics to represent the intrinsic reaction. 

Solid catalyst particles are usually porous, with the interior surface accessible to the 

reacting species usually being much greater than the gross exterior surface. The porous 

nature of the catalyst particles gives rise to the possible development of significant 

gradients of both concentration and temperature across the particle, because of the 

diffusion rate of material and heat transfer, respectively. 

To obtain a rate law for the particle as a whole, the variation of concentration (eA) and 

temperature (T) must be taken into account. Since CA and T may vary from point to point 

within a catalyst particle, the rate of reaction also varies. To account for this variation, 

particle effectiveness factor 11 is introduced. 11 is the ratio of the observed rate of reaction 

for the particle as a whole to the intrinsic rate at the surface conditions (cAs and Ts), as 

given in equation (5.1): 

(5.1) 

The effects of concentration and temperature will be considered separately. For isothermal 

conditions, 11 depends on reaction and particle characteristics. 

To obtain an expression for 11 at isothermal conditions, mathematical equations of 

simultaneous diffusion and reaction inside porous catalytic particles at constant 

temperature are typically formulated. The general solution involves the derivation of the 

ordinary differential equations that describe the material balance within the particle 

geometry. This treatment also requires the use ofFick's law for diffusion, which is usually 

assumed to involve only the diffusion of the reactant with an effective diffusivity for the 
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catalyst particle. 

Diffusion in a porous structure may consist of three modes: molecular diffusion (big 

pores), Knudsen diffusion (pore size comparable with molecule free path) and surface 

diffusion (along surface). Since the pore structure is usually not well known, Fick's law is 

used to obtain a phenomenological description of the rate of diffusion along the x 

direction. 

(5.2) 

where De is the effective diffusivity for species A and NA is the molar flux (mol m·2 s'1). 

Taking a spherical shape as an example (as shown in Figure 5.2), the equation that 

correlates diffusion and reaction can be obtained in accordance with the material balance, 

as given in equation (5.3). 

-a_.-----··\._ ... '• 

/~-----·/ ~\ 
.- ' ............ ! 

- ?-::::J' .. I 
"'··, I ·· .............. / 

r 

Figure 5.2 Material balance on a spherical catalyst pellet. 

(5.3) 

The boundary conditions are as follows 
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dC A I dt = 0 at r = 0. 

Where CA is the reactant A concentration at position r, CAs is the surface concentration of 

reactant A, kn is the reaction rate constant, n is the reaction order, and De is the effective 

diffusion coefficient. 

By defining dimensionless variables 

Equation (5.3) becomes 

(5.4) 

By defining Thiele modulus t/Jn, 

Equation (5.4) becomes 

(5.5) 

The Thiele modulus is an important parameter in chemical reaction engineering. It is a 

measure of the ratio of the surface reaction rate to the rate of diffusion through the catalyst 

pellet. For arbitrary reaction kinetics and geometric shape, the Thiele modulus can be 

generalised using equation (5.6). 

( 

n 1 Jl/2 ,~. =L (n+l)kncA; 
'Yn e 2D 

e 

(5.6) 
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where Le is the characteristic length of a geometric shape. The values for some common 

shapes are given in Table 5 .I. 

Table 5.1 Characteristic lengths of various geometric shapes 

Geometric shape Characteristic length 

Flat plates Thickness/2 

Cylinders R/2, R = radius 

Spheres R/3, R = radius 

Any other shape Volume of particle/exterior surface available for reactant penetration 

In the following, a first-order reaction is taken as an example for the solution of equation 

(5.5). For a first-order reaction, equation (5.5) becomes 

(5.7) 

where ljl1 = R ~ and k1 in the above equation is the first-order catalytic reaction rate v-:o. 
constant based on per unit volume of catalyst, which is equal to k1 'Pc· Pc is the density of 

the catalyst, and k1 is the first-order catalytic reaction rate constant based on per unit 

weight of catalyst. 

Through some mathematical manipulation (details can be seen in reference [ 4 ]), equation 

(5.7) is readily solved by combining the boundary conditions. 

(5.8) 

After solving out ljf = CA/CA,, it is now possible to obtain the total reaction rate 

throughout the single catalyst pellet, corresponding to the concentration profile of1jl. This 

may be obtained by integrating the reaction rate in the spherical annulus over the entire 

sphere. For a first-order reaction in a spherical catalyst pellet, the effectiveness factor 11 is 

solved as given by equation (5.9). Other shapes and reaction order can be solved in a 
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similar fashion. Typical curves for effectiveness for various reaction orders and catalyst 

geometrical shapes are shown in Figure 5.3. 
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Figure 5.3 Effectiveness factors for power-law kinetics. For spheres, the abscissa is <j>,, 

while for a flat plate the abscissa is 3$ [5]. 

From Figure 5.3, it can be seen that equation (5.1 0) is true regardless of order n. It is often 

called strong pore-diffusion resistance when <j> is large. 

1 
77 ---+ - as 4> ---+ l arg e 

4> 
(5.1 0) 

So far, it has been assumed that the particle is isothermal. If a temperature gradient arises 

due to a strong exothermal or endothermic reaction, effectiveness Tl will change with 

temperature. The change of Tl with temperature can be obtained by simultaneously solving 

differential equations of diffusion and heat transfer. Figure 5.4 shows typical solution 

curves. The effectiveness may be greater than I when the heat produced can not be 

released immediately from the reaction sites within the catalyst particles, as shown in 
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Figure 5.4. 
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Figure 5.4 Non-isothermal effectiveness factor curve for temperature variation within a 
particle [6]. 

5.3 General consideration for experimental design 

As reviewed above, heat and mass transfer effects frequently impact upon the overall 

performance of the reaction. Accurate kinetic rate equations can seldom be extracted from 

data obtained under the influence of significant heat and/or mass transport limitations. 

Thus it is important that the rate data obtained from kinetic runs be acquired in the regime 

of kinetic control so that the intrinsic kinetics of NaBH4 can be obtained. Effectiveness 

factor can be then built into the kinetic rate expression in order to model hydrogen 

generation in practice when large catalyst particles are used. 

A carbon-supported ruthenium catalyst is one of the most efficient catalysts for NaBH4 

hydrolysis. It has the characteristics of a heterogeneous catalyst. The methodology and 

results can be applied to other catalysts for NaBH4 hydrolysis. In a heterogeneous 

catalytic reaction, heat removal is a difficult factor to overcome in order to obtain 

isothermal rate data. A number of different batch reactors have been designed and three of 

them are shown in Figure 5.5 [7]. The first one is the now famous Carberry reactor, 
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wherein the catalyst is mounted in the paddle or agitator. The next shown is a turbine 

reactor, where a small fixed bed of catalyst is mounted at the throat of the V enturi and the 

reacting mixture is pumped through the impeller. The third is a circulating reactor with a 

fixed bed of catalyst. 

-

Figure 5.5 Stirred batch reactors for studying heterogeneous chemical reactions [7]. 

The main consideration for the above type of heterogeneous reactors is to remove heat 

generated efficiently. Since the contact time for reaction mixture and catalyst is short 

enough for the heat to be removed very rapidly, the reaction system can thus be 

maintained at a constant temperature. However, these reactors will not work for studying 

the hydrolysis of NaBH4, since NaBH4 hydrolysis has a significant rate at higher 

temperatures even without a catalyst. 

Another difficulty in the study of the hydrolysis ofNaBH4 is the effect of the by-product, 

NaBOz. Even for an isothermal reaction, it is difficult to separate the effects of the 

concentration ofNaBH4 and NaBOz. 

In this work, instead of making an effort to control reaction temperature precisely and to 

separate the effects ofNaBH4 and NaBOz, an alternative method was developed. This new 

approach does not involve a new reactor design, but instead uses a new method of 

analysing the non-isothermal rate data in order to obtain isothermal rate data. In the 

following, the rig for monitoring the reaction rate is described and then the method is 

introduced. 
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5.4 Experimental Method 

5.4.1 Materials 

The specifications of the materials used are listed in Table 5.2, and the specifications of 

the catalyst are given in Table 5.3. 

Table 5.2 Materials used in the experiment. 

Materials Appearance Purity (wt%) Supplier 

NaBH4 Powder 98.0 Aldrich 

NaBOz Powder 98.0 Aldrich 

Ruthenium catalyst on carbon Pellet 3%Ru Johnson Matthey 

NaOH Pellet 99.9 Aldrich 

Table 5.3 The specifications of the catalyst 

Item 

Description 

BET surface: 

Bulk density 

Average pro diameter: 

5.4.2 Catalyst Grinding 

Specifications 

steam activated 2mm carbon extrudates (lj>2x5mm) 

1000 m2 g"1 

0.5 g cm·3 

!SA 

The ruthenium on carbon catalyst was received in the form of particles with a diameter of 

2 mm and 3 mm in length. To investigate the intrinsic kinetics, the particles must be fine 

enough so that internal diffusion can be neglected. In this study, the catalyst was ground 

using a pestle and mortar and then sieved using a set of sieves with different mesh 

apertures. Eight different sieves were stacked on top of each other, and the average 

diameters of the catalyst particles trapped in each sieve were assumed to match the 

average aperture sizes of the two adjacent sieves. The sieves set used and the catalyst 

sizes obtained are listed in Table 5.4. The sieve set was purchased from Fisher Scientific 

Ltd (UK). 
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Table 5.4 Sieve set and catalyst size 

Sieve aperture (!lm) Average catalyst size (!lm) 

600 -
500 550. 

106 -
90 98 

53 -
45 49 

32 -
25 29 

5.4.3 Experimental set-up to monitor reaction rate 

For kinetic research, the change in concentration ofNaBH4 with respect to time should be 

monitored. The measurement of the concentration of NaBH4 is rather difficult due to its 

hydrolysis even at room temperature. In this study, a method for measuring the hydrogen 

volume with time was used, since hydrogen volume and NaBH4 concentration can be 

related using the stoichiometric coefficients in the following reaction scheme. 

A schematic diagram for the experimental set-up is shown in Figure 5.6. The rig consisted 

of three parts: the reaction system, a sytem to monitor temperature and a system to 

measure the volume of hydrogen that is generated. The reaction system consists of a 

three-port reactor and a magnetic stirrer, a water bath that was used to adjust reaction 

temperature and a feeding system. One side-port of the reactor was equipped with a 

thermocouple and another side-port was connected to the water replacement system. The 

middle port of the reactor was used to site a feeding funnel. Since NaBH4 can be 

hydrolysed even at room temperature when contacting water, a special feeding system 

was used as shown in Figure 5.6. NaBH4 and catalyst were added to the reactor first and 

then water was added through the feeding system to the reactor. Once the chemicals come 

into contact, hydrogen is produced and the amount that was generated was recorded. 
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The volume of hydrogen that was produced was measured using a water replacement 

system. The water replacement system consisted of a graduated cylinder full of water and 

a water reservoir that was used to immerse the cylinder. A container was placed onto an 

electronic balance. Before starting the experiment, the water in the reservoir was filled to 

such a level that any extra water would overflow from the cylinder through a slope into 

the container on the balance. The electronic balance was connected to a computer using a 

standard RS232 connector. Software provided by the balance manufacturer was used to 

record the time and the weight of the water displaced from the cylinder. The time interval 

for recording the weight was one second. Both the software and the electronic balance 

were purchased from A & D Company Ltd. (UK). 

In order to monitor the temperature of the reaction system, a thermocouple was put into a 

side port of the reactor. This K -type thermocouple was connected to a data logger, which 

transferred the information to a computer. The data logger and the thermocouple were 

purchased from Pico Company Ltd (UK). 

Before conducting the experiment, the reactor was cleaned using distilled water and then 

dried in an oven for 24 hours. After the temperature was stable, the reactor was put into 

the water bath with a fixed amount of catalyst inside. A pre-determined amount ofNaBH4 

powder was then put into the reactor. After all these were ready, the cork of the feeding 

funnel was opened to let the water flow into the reactor to start the hydrolysis. The water 

that was displaced by the hydrogen production and the overall reaction temperature were 

both monitored by using the computer. When calculating the reaction rate, the saturated 

vapour pressure at room temperature was considered. 

The amount of catalyst that was used was based on the convenience of reaction control. 

Reaction rate for heterogeneous catalysis is proportional to the mass of catalyst. The rate 

data is based on unit mass of catalyst. 
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measuring cylinder 

data logger 

balance 

Figure 5.6 A schematic experimental set-up for the research ofNaBH4 hydrolysis kinetics. 

5.4.4 Analysis of non-isothermal rate data in order to obtain isothermal rate data 

The general analysis process is described briefly as follows and a detailed procedure will 

be described together with results and discussion in later chapters. 

The rate for any reaction can be expressed using equation (5. I I). 

(5.11) 

Where r is the reaction rate, E is the activation energy, R is the universal gas constant, T is 

the temperature, C is the concentration of reactant, a is the reaction order, and A is the 

pre-exponential factor. 

To deriving isothennal rate data from non-isothermal rate data, take logarithms of both 

sides, yielding 

E 
lnr=lnA +a lnC -­

RI 
(5.12) 

Since A and a are constants for a specific reaction, lnr against liT wiii have a linear 

relationship when C is fixed. In the following, the determination of the parameters (InA + 

alnC) and E/R is given using the iiiustration in Figure 5.6. 
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Figure 5.6 Schematic graphs showing analysis of non-isothennal rate data to obtain 

isothennal rate data, (a) reaction rate- mNaBOZ, (b) temperature- mNaBOZ· 

As shown in Figure 5.6a and b, five runs (a, b, c, d and e) are performed with the same 

initial NaBH4 concentration and the same amount of catalyst but with a different initial 

reaction temperature. The extent of the reaction is indicated using the concentration of 

NaBOz. The initial temperature increases steadily from a to e. The reaction temperatures 

and rates are measured simultaneously with time as shown in Figures 5.6a and b 
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respectively. 

At a given NaB02 concentration, such as in the position of the vertical line, five different 

rates (r~, r2, r3, r4 and rs) can be obtained from Figure 5.6a, and the corresponding 

temperatures (T~, T2, T3, T4 and Ts) can be obtained from Figure 5.6b. When the reaction 

rates and the corresponding reciprocal temperatures (1/7) are plotted the result should be 

linear, with a slope corresponding to -EIR, and an intercept on they axis of lnA + alnC. 

Hence equation (5.12) is determined, which can be then used to calculate the reaction rate 

at any temperature when the concentration of NaB02 is mNaB02· In the same way, 

equations for any other NaB02 concentrations can be determined. Reaction rates at these 

NaB02 concentrations can also be determined for any temperature. Through this method, 

isothermal reaction rates are obtained for different NaB02 concentrations. 

If five groups of the above experiments are performed, each of which has a different 

initial NaBH4 concentration, then equation (5.12) can be determined at the same NaB02 

concentration in each group. Since initial NaBH4 concentration in each group is different, 

the rate at different NaBH4 concentrations is obtained with the same NaB02 concentration 

and temperature. 

Therefore, the following procedures are used for each group of experiments. 

• Hydrogen release experiments were conducted to obtain VH2- t, and T- t. 

• Transform VH2- t to YID- t by differentiation. 

• Transform rH2 - t to rH2 - m NaBO, , and T - t to T - m NaBo, by using equations 

(5.13) or (5.14). 

• Using the relationship YID- m NaBO, and T- m NaBO,, plot lnrH2- 1/T. 

• Derive the reaction rate for any temperature at specific NaBH4 or NaB02 

concentrations. 

(5.13) 
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(5.14) 

Where VH2 is the volume of hydrogen released at timet, Tis the reaction temperature, rH2 

is the hydrogen generation rate, w is mass, Po is atmospheric pressure (assumed to be 

101325 Pa), PH2o represents saturated vapour pressure at ambient temperature for 

measuring hydrogen volume, M is the molecular mass, V is the volume, and R is the 

universal gas constant (8.314 J mor1 K"1
). The superscript 0 represents initial value. 

5.5 Summary 

In this chapter, the fundamentals of heterogeneous catalysis are reviewed. When deriving 

intrinsic kinetic equations for the hydrolysis of NaBH4, diffusion limitations must be 

removed including both heat and mass transfer. Due to the extensive heat effect, an 

isothermal heterogeneous reaction is difficult to perform. 

A rig has been designed to monitor the kinetics thorough a water placement method. 

Instead of maintaining constant temperature, a new analysis method is established to 

obtain isothermal rate data from non-isothermal rate data. 

5.6 References 

1. Davis, R.E., Bromels, E., and Kibby, C.L., Boron hydrides. Ill. Hydrolysis of 

sodium borohydride in aqueous solution. Journal of American Chemical society, 

1962. 84: 885-892. 

2. Davis, R.E. and Swain, C.G., General acid catalysis of the hydrolysis of sodium 

borohydride. Journal of American Chemical society, 1960. 82: 5949-5950. 

3. Kaufinan, C.M., Catalytic generation of hydrogen from the hydrolysis of sodium 

borohydride: application in a hydrogen/oxygen fuel cell!. 1981, lousiana State 

University and Agricultural and Mechamical College. 166. 

4. Satterfield, C.N., Mass Transfer in Heterogeneous Catalysis. 1970, Cambridge, 

MA: MIT Press. Chapter 3. 

5. Varmice, M.A., Kinetics of Catalytic Reactions. 2005, New York: Springer 

147 



Science+ Business Media. 59. 

6. Levenspiel, 0., Chemical Reaction Engineering. !999, New York: John Wieley 

and Sons. 393. 

7. Weekman, V.W., Laboratory reactors and their limitations. AIChE Journal, 1974. 

20: 833-840. 

148 



Chapter 6 

Preparatory Work for the Kinetic Study 

6.1 Introduction 

As discussed in the last chapter, the NaBH4 molecule must be transported from the well­

mixed, homogenous bulk phase to the surface of a catalyst particle before it can react. 

This is external diffusion. Since the catalyst that is used is a porous material containing 

active sites distributed within its structure, NaBH4 molecules must further diffuse into the 

pores. This is internal diffusion. Inter-phase gradients can exist between the bulk and solid 

phases. Diffusive-convective transport processes link the source of reactants to the sink of 

the reaction. Moreover, in order to obtain an intrinsic kinetic equation, heat that is 

generated must be removed quickly enough so that catalyst particles do not form 'hot 

spots'. Also there must be no temperature gradient within the porous catalyst particles. 

The objective of this investigation is to obtain the conditions at which the effects of heat 

and mass diffusion can be neglected. This is the preparatory work for studying intrinsic 

kinetics. 

6.2 External diffusion 

In order to eliminate the limitation of external diffusion in the reaction rate, the stirring 

rate can be increased until the mass transport rate is greater than the reaction rate. 

Therefore, it is necessary to compare rate data at various stirring rates whilst the 

temperature and the NaBH4 and NaBOz concentrations are fixed. 

Figures 6.1a and 6.1b are the VH2- t and T- t curves respectively for the hydrolysis of 

NaBH4 at different initial reaction temperatures when there is no stirring. Hydrogen 

volume increases as the reaction proceeds and then levels off, indicating that all of the 

NaBH4 is consumed. When the initial reaction temperature is lower, the temperature 

remains nearly constant. However, when the initial reaction temperature is higher, the 

temperature is difficult to control and the reaction proceeds in a non-isothermal way due 
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to a higher reaction rate, which leads to a rapid generation ofheat. 

Figure 6.2 shows the rate of hydrogen generation versus reaction time, which was 

transformed by differentiation of the corresponding VH2- t curves in Figure 6.la. Figure 

6.3 is the relationship between rll2- mNaBO, and T- mNano,, which was transformed by 

using equations (5.13) or (5.14). By measuring rll2 and Tat the same concentration of 

NaB02 (which indicates the same reaction extent), lnrll2 against 1/Twas plotted in Figure 

6.4. It can be seen from Figure 6.4 that lnrll2 and liT have a good linear relationship, 

indicating that equation (5.12) is reasonable. After obtaining the linear relationship, 

reaction rates were plotted against N aB02 concentration at various temperatures, as 

shown in Figure 6.5. 

In the same way, another two sets of experiments were conducted when the stirring rates 

were 390 rpm and 650 rpm respectively. The corresponding figures are shown in Figure 

6.6 to Figure 6.10 for the stirring rate of 390 rpm, and Figure 6.11 to Figure 6.15 for the 

stirring rate of 650 rpm. 
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Figure 6.1 Hydrogen generation from the hydrolysis of NaBH4 at various initial 

temperatures. The hydrolysis was conducted with an initial molality of NaBH4 of 1.32 

mol kg'1, in 10 m! of water with 0.3 g of ground catalyst with a mean particle diameter of 

0.049 mm, without stirring. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 

(1) 

100 200 300 400 
Reaction Time(seconds) 

Figure 6.2 The rate of hydrogen generation versus time at various temperatures, obtained 

by differentiation of Figure 6.la. 
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Figure 6.3 The rate of hydrogen generation versus NaBOz concentration (a) and 

temperature versus NaBOz concentration (b). They were transformed from Figure 6.2 and 

Figure 6.1 b respectively. 
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Figure 6.6 Hydrogen generation from the hydrolysis of NaBH4 at various temperatures. 

The hydrolysis was conducted with an initial molality ofNaBH4 of 1.32 mol kg"\ in 10 

m! of water with 0.3 g of ground catalyst with a mean diameter of 0.049 mm and with a 

stirring rate of 390 rpm. (a) Hydrogen production-time curves; (b) temperature-time 

curves. 
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Figure 6.8 The rate of hydrogen generation versus NaB02 concentration (a) and 

temperature versus NaB02 concentration (b). They were transformed from Figure 6.7 and 

Figure 6.6b respectively. 
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Figure 6.11 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The hydrolysis was conducted with an initial molality of NaBH4 of 1.32 mol kg"1
, in 10 

m! of water with 0.3 g of ground catalyst with a mean diameter of 0.049 mm and with a 

stirring rate of 650 rpm. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 

"' 
60 

~ 
" • 50 ;:: 
! 
.,..-:!' 40 

" • "' • 30 0 ., 
~ • • 20 • 
" c 
!'o 
f .. 10 
~ = 

0 
0 

(1) 
• 

1 00 200 300 400 5()0 
Reaction Time( seconds) 
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Figure 6.13 The rate of hydrogen generation versus NaB02 concentration (a) and 

temperature versus N aB02 concentration (b). They were transformed from Figure 6.12 

and Figure 6.11 b respectively. 

159 



., ... 3.0 3.0 

3.1 mNoll0=0.2 • 3.0 
• mN•ao,"'0.1 3.4 mNoB0=0.3 

3.2 
mN-'=1.12 • mN-:=1.02 

m~<~eo,"'0.4 

"' ~llll,=-1.22 . . ... mNaOH,>:Q.92 
"' ... 2.0 • 3.0 • • 32 

.5 • ... • 3.0 

2.0 • • 3.0 • ., • 2.0 
2.0 .. 2.0 

2.0 2.0 • • • 2.5 
2.4 2.4 2A ,. 3.3 ... 3.1 3.2 3.3 3.4 3.2 3,2 32 3.3 .. 3.1 3.2 .. 3,4 

4,0 <0 .. 3.8 • 
mNooo,=0.6 • • • .. mHABO =0.7 3.0 

mHobO,=D.8 
3.0 

m11180,=0,5 3.0 m*~~~~.,=0.72 .~=0.62 m,..,=D.82 • 3.0 ,. .n-.=0.52 
3A 3.4 ... 3A ... • •• .. .. 

.5 32 • 3.2 3.2 32 

3. • 3.0 • 3.0 • 3.0 • 
2.0 2.0 2.0 2.0 

2.0 2.0 2.0 ... • • 2.4 2.4 2.4 • 
2A 

3.1 32 3.3 3A 3.1 32 3.3 3.4 3.0 3.1 32 u 3A 3. 3.1 32 .. ... 
1/T*103 
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Figure 6.15 Reaction rate versus reaction extent at various temperatures when the stirring 

rate was 650 rpm. 
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Figure 6.16 Comparison of the effect of stirring rate on reaction rate. The catalyst 

particles used had an average size of 0.049 mm. The reaction was conducted using 0.5g 

NaBH4 in 10 ml of water. 

In order to make a comparison, Figures 6.5, 6.1 0, and 6.15 were plotted together, as 

shown in Figure 6.16. At lower reaction temperatures, reaction rate is not affected 

significantly by stirring rate. At higher temperatures, reaction rate increases with an 

increase of stirring rate at the beginning of the reaction. 

When the reaction temperature is low, reaction rate is low. Hence, it does not need a high 

rate of stirring in order to provide a high rate of mass transfer from the bulk fluid to the 

catalyst particles. When the reaction temperature increases, the reaction rate increases 

exponentially. In this case a high rate of mass transfer is required in order to provide 

NaBH4 to the catalyst. Therefore the stirring rate, and thus the external mass transfer, is 

not significant at lower temperatures. 

However, the stirring rate did not show any effect when the concentration ofNaB02 was 

higher than 0.2 mol/kg, i.e. about 10% ofNaBH4 was hydrolysed. This may be due to the 

production of hydrogen gas, which agitated the reaction solution violently. The effect of 

hydrogen gas agitation made the effect of stirring rate on external mass transfer not 
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significant. 

As shown in Figure 6.16, the difference between the reaction rates at above 30°C became 

obvious at a very early stage in the reaction. However, the difference between reaction 

rate at 390 rpm and 650 rpm was very small, less than 10%. Therefore, it can be 

concluded that 650 rpm is high enough to remove external diffusion limitation for the 

reaction. In the following work, the stirring rate was fixed at 650 rpm. 

6.3 Internal diffusion 

Internal diffusion refers to the mass transfer within a catalyst particle. It is affected mainly 

by the size of particle that is used. When the particle size is fine enough, the internal mass 

transfer limitation can be removed. In this section, a particle size is determined for which 

the internal mass transfer rate does not limit reaction rate. In order to investigate this, it is 

necessary to compare the reaction rate at various sizes of catalyst particle whilst the 

temperature and the NaBH4 and NaBOz concentrations are fixed. Also, a sufficiently high 

stirring rate is employed, as per the results of section 6.2, so that the effects of external 

diffusion are removed. 

Five different particle sizes were used for the investigation at a fixed concentration of 

NaBH4 and stirring rate of650 rpm. Figures 6.17 to 6.21 are NaBH4 hydrolysis data when 

the catalyst particle diameter was 2 mm. Figures 6.22 to 6.26 are the experiments when 

the catalyst particle diameter was 0.60 mm. Figures 6.27 to 6.31 are the experiments when 

the catalyst particle diameter was 0.10 mm. Figure 6.32 to 6.36 are the experiments when 

the catalyst particle diameter was 0.05 mm. Figures 6.37 to 6.41 are the experiments 

when the catalyst particle diameter was 0.03 nun. 
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Figure 6.17 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.32 mol kg·1• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst with a mean diameter of2 mm. (a) Hydrogen production­

time curves; (b) Temperature-time curves. 

163 



2.2 

"' (1) • 2.0 
" :J! 1.8 • ;!: 
! 1.6 

"" 1.4 
.!! 
&! 1.2 

• 0 1.0 
"' • " 0.8 • • • r.:J 0.6 
• • 0.4 .. 
0 

" ~ = 
0.2 

o.o 
1200 

Reaction Time(seconds) 

Figure 6.18 rH2 versus time at various temperatures by differentiation of Figure 6.17a. 

2.2 a 

"' • " .. 
" • ;!: 
! 

"" ,!! 
• 
"' • 0 ·= • " • • • r.:J 
• • .. 
0 

" "0 ... = 
Molality of NaBO,(mollkg) 

164 



40 b 

38 

36 

~ 34 

• 32 " • e 30 
• " 28 e • ... 26 

24 

22 

20 (4) 
18 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Molality of NaBO,(mollkg) 

Figure 6.19 The rate of hydrogen generation versus NaB02 concentration (a) and 

temperature versus N aB02 concentration (b). They were transformed from Figure 6.18 

and Figure 6.17b respectively. 
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Figure 6.21 Reaction rate versus reaction extent at various temperatures when the catalyst 

particle size was 2 mm. 
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Figure 6.22 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.32 mol kg-1
• The hydrolysis was performed in 10 m! 

of water with 0.3 g of catalyst with a mean diameter of 0.55 mm. (a) Hydrogen 

production-time curves; (h) Temperature-time curves. 

10 (1) 
<> 
~ 
':f • 
~ e .. = 
.!! • 0: 
= 0 

"' e • = • (!) 

= 
~ 
0 .a 
$ 

100 200 300 400 500 600 700 

Reaction Timc(seconds) 

Figure 6.23 rH2 versus time at various temperatures by differentiation of Figure 6.22a. 
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Figure 6.24 The rate of hydrogen generation versus NaBOz concentration (a) and 

temperature versus NaB02 concentration (b). They were transformed from Figure 6.23 

and Figure 6.22b respectively. 
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Figure 6.25 lnrH2 and 1/T derived from Figure 6.24. 
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Figure 6.26 Reaction rate versus reaction extent at various temperatures when the catalyst 

particle size was 0.55 mm. 
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Figure 6.27 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality of NaBH4 was 1.32 mol kg-1
• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst with a mean diameter of 0.098 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 
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and Figure 6.27b respectively. 
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Figure 6.31 Reaction rate versus reaction extent at various temperatures when the catalyst 

particle size was 0.098 mm. 
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Figure 6.32 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.32 mol kg-1
• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst with a mean diameter of 0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 
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Figure 6.36 Reaction rate versus reaction extent at various temperatures when the catalyst 

particle size was 0.049 mm. 
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Figure 6.37 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 
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and Figure 6.37b respectively. 
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particle size was 0.029 mm. 
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particle sizes. 

The reaction rates at various reaction temperatures for different particle sizes are 

compared in Figure 6.42. The reaction rates increased significantly with a decrease in 
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catalyst particle size. This suggests that the hydrolysis of N aBH4 in the presence of a 

carbon supported ruthenium catalyst has a strong internal diffusion limitation when the 

catalyst particles are large. When the catalyst particle size is reduced to around 0.049 mm, 

the internal diffusion limitation is removed. This trend did not change with reaction 

temperature, as shown in Figure 6.42. 

This indicates that the limiting effects of internal diffusion can be removed by using a 

catalyst particle size of less than 0.049 mm for the hydrolysis of NaBH4 over a carbon 

supported ruthenium catalyst. Therefore, in the study of intrinsic kinetics that is reported 

in the next chapters, 0.049 mm catalyst particles and a stirring rate of 650 rpm are used. 

6.4 Heat transfer effect 

When the reaction is so fast that the heat released in the pellet cannot be removed rapidly 

enough to keep the pellet close to the temperature of the fluid, then non-isothermal effects 

intrude. In such a situation two different kinds of temperature effects may be encountered. 

One is within-particle ll.T. The other is film ll.T, in which the whole pellet may be hotter 

than the surrounding fluid. 

Since fine particles are used in the study of intrinsic rate expressions, within particle ll.T 

can be ignored. The film ll.Tcan be calculated using equation (6.1) [1]. 

L( -r ~· obs )(-M! r) 
ll.Tfilm = ' h (6.1) 

Where ll.H, is the reaction enthalpy change, L is the particle diameter, -r ~·.obs is the 

reaction rate per unit volume of catalyst, and h is the heat transfer coefficient of the 

surrounding fluid. 

The heat transfer coefficient can be calculated using the following correlation [2]. 

Nu= 2 + 0.6Re112 Pr113 (6.2) 

Where the dimensionless variables are defined as follows: 
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hdp 
Nu=-­

k, 

Re 

where p = fluid density, kg/m3 

dp =diameter of pellet, m 

k1 = thermal conductivity, J/K.m.s 

U =free-stream velocity, m/s 

11 =fluid viscosity, Pa.s 

Substituting the values of the above parameters for water, h can be obtained. By defining 

reaction rate and particle radius, the film temperature difference ATr can be calculated. 

The calculation is shown in Figure 6.43 for different reaction rates and particle sizes. 

As shown in Figure 6.43, t:;.Tr depends on both the fluid flow rate around the catalyst 

particles and the reaction rate ofNaBH4. It increases with reaction rate and decreases with 

flow rate (stirring rate). Since the reaction rate is usually less than 2 g ofNaBH4 s·1 m·3, 

the particle temperature varies from the fluid temperature by less than 1 °C, even with no 

stirring. Thus it can be assumed that the film temperature is not significant. 
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Figure 6.43 Dependence of the particle temperature on reaction rate and flow rate. 

6.5 Conclusions 

This chapter detailed the preparatory work that was necessary before beginning to 

investigate the intrinsic kinetics of NaBH4 hydrolysis over a ruthenium catalyst, i.e. to 

negate the effects of heat and mass diffusion on the intrinsic kinetics. Three aspects of 

work have been studied: external diffusion, internal diffusion and heat effect. Through the 

work, the following conclusions have been drawn: 

• When the stirring rate is greater than 650 rpm, the effects of external diffusion can 

be discounted. 

• When the catalyst particle size is less than 0.049 mm, the effects of internal 

diffusion can be discounted. 

• The film temperature difference and temperature gradients within particles are 

small enough to be ignored. 
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Chapter 7 

The Effect ofNaBH4 and NaB02 on Intrinsic Kinetics 

7.1 Introduction 

In Chapter 6, studies were performed in order to determine the conditions that are 

required to allow the effects of mass and heat transfer on the intrinsic kinetics of the 

NaBH4 reaction to be considered negligible. In this and subsequent chapters, the intrinsic 

kinetics are studied under these conditions. The ultimate objective is to obtain an intrinsic 

rate expression without diffusion limitations. The effects of NaBH4 and NaBOz 

concentration are studied in this chapter and the effect of NaOH concentration is studied 

in the next chapter. 

With the hydrolysis of NaBH4, the concentration of NaBH4 decreases and the 

concentration of NaBOz increases with time. Since NaB02 is a base it may affect the 

reaction rate of NaBH4, as it is known that NaOH is used as a stabiliser for NaBH4 in 

aqueous solution. Therefore, it is necessary to investigate both the effects of NaBH4 and 

NaBOz concentration on the rate of the hydrolysis reaction. 

7.2 Experimental Results 

In order to investigate the effect of N aBH4 concentration on the reaction rate, the 

temperature and NaBOz concentration must be fixed while the NaBH4 concentration is 

varied. In order to investigate the effect of NaBOz on the reaction rate, the temperature 

and NaBH4 concentration must be fixed while the NaBOz concentration is varied. The two 

factors can be investigated by designing one set of experiments as follows: 

For each initial NaBH4 concentration, several experiments are performed, each of which 

has a different initial temperature. Through this group of experiments, isothermal rate data 

can be derived for any NaBOz concentration as shown in last chapter. However, within 

this group of experiments, the concentrations ofNaB02 and NaBH4 depend on each other. 

They cannot vary independently since the initial NaBH4 concentration is the same. In 
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order to vary NaBH4 or NaB02 concentration, several groups of such experiments need to 

be conducted, with each group having a different initial NaBH4 concentration. Within 

each group, the initial N aBH4 concentration is the same but with a different initial 

reaction temperature. 

Therefore, at a fixed NaB02 concentration the corresponding NaBH4 concentration for 

each group is different. At a fixed NaBH4 concentration the concentration of NaB02 is 

different. 

In this work, six groups of experiments were conducted. Figures 7.1-7.24 show the six 

groups of hydrolysis experiments. The Vm - t was transformed to rm - t by 

differentiation and to rm- mNaB02 by using equations (5.13) and (5.14). lnrm- 1/Twas 

obtained by simultaneously measuring rm- mNaB02 and T- mNaB02· 
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Figure 7.1 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.32 mol kg-1
• The hydrolysis was performed in I 0 ml 

of water with 0.3 g of catalyst with an average particle size of0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 
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Figure 7.2 rll2 versus time from the hydrolysis ofNaBH4, which was transfonned by 

differentiation of the curves in Figure 7.1a. Initial molality ofNaBH4 was 1.32 mol kg-1
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Figure 7.5 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.59 mol kg-1
• The hydrolysis was performed in 10 m! 

of water with 0.3 g of catalyst with an average particle size of0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 

C' 50 (1) 

" . " u 

"" '1J1 .; 
" 
~ 40 !i (~)~\ 
~ i ~ .. = 
~ j •• 
" 30 f •• ..: ( 

" I 

~ 
t 

t 

" 20 
{, .. 

" " :.:~ " " •• 
" 10 I• 
" .. (5) •• "" l/1 •l 

. 
Q ~ \ 

\.. ~ Jl, ~ 

• \\ L.' = ,. ~t~,_ 
0 

,. 

0 100 200 300 400 500 600 

Reaction Timc(seconds) 

Figure 7.6 rH2 from the hydrolysis ofNaBH4, which was transformed from Figure 7.5a by 
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Figure 7.81111H2 versus 1/T derived from Figure 7.7. Initial NaBH4 molality was 1.59 mol 
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Figure 7.9 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 2.11 mol kg-1
• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst of an average particle size of0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 
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Figure 7.10 rH2 from the hydrolysis ofNaBH4, which was transformed from Figure 7.9a. 

The initial molality ofNaBH4 was 2.11 mol kg-1
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Figure 7.11 The rate of hydrogen generation (a) and reaction temperature (b) versus 

NaB02 molality. They were transformed from Figure 7.10 and Figure 7.9b respectively. 
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Figure 7.13 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 2.64 mol kg·1
• The hydrolysis was performed in 10 m! 

of water with 0.3g of catalyst of an average particle size of 0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature-time curves. 
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Figure 7.14 The rate of hydrogen generation from the hydrolysis ofNaBH4, which was 

transformed from Figure 7.13a. Initial molality ofNaBH4 was 2.64 mol kg·1
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Figure 7.15 The rate of hydrogen generation (a) and reaction temperature (b) versus 

NaBOz molality. They were transformed from Figure 7.14 and Figure 7.13 b respectively. 

Initial molality ofNaBH4 is 2.64 mol kg-1
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Figure 7.17 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 3.17 mol kg-1
• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst of an average particle size of 0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature- time curves. 

120 
C' (1) .. 
y .. 
y 

" 
100 

~ g 
:zf 80 
~ 

~ • "' • ~ 

" 60 
:§ .. 
~ 

" " 40 
" \.? 
= " .. = 20 ~ 

"' 
(5) .. 

::c: 
--4 

0 
0 200 400 600 800 1000 

Reaction Time(seconds) 

Figure 7.18 The rate of Hydrogen generation from the hydrolysis ofNaBH4, which was 

transformed from Figure 7.17a by differentiation. The initial molality ofNaBH4 was 3.17 
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Figure 7.21 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 3.97 mol kg·1• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst of an average particle size of 0.049 mm. (a) Hydrogen 

production-time curves; (b) Temperature - time curves. 
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Figure 7.22 The rate ofhydrogen generation from the hydrolysis ofNaBH4, which was 

transfonned from Figure 7.21 a by differentiation. The initial molality ofNaBH4 was 3.97 
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Figure 7.24 lnrH2 versus lff derived from Figure 7.23. Initial NaB~ molality was 3.97 

mol kg-1• 

7.3 The effect ofNaBH4 

It can be seen from Figures 7.4, 7.8, 7.12, 7.16, 7.20 and 7.24 that lnrH2 and 1/T had a 

good linear relationship. Because of this relationship, the reaction rate at any temperature 

can be obtained by interpolation. When the temperature and the molality of NaB02 are 

fixed, the change in reaction rate with NaBH4 molality was obtained by interpolating the 

lnrH2 - liT curves in the relevant figures. The relationships thus obtained are shown in 

Figures 7.25 to 7.27 for three different temperatures. 

As shown in Figures 7.25-7.27, the concentration ofNaBH4 had no effect on the rate of 

hydrogen generation for a fixed concentration of NaB02, regardless of a change in 

temperature. It can thus be concluded that the hydrolysis of NaBH4 in the presence of a 

ruthenium catalyst is a zero-order reaction with regard to NaBH4 concentration. There are 
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three main steps in the hydrolysis ofNaBH4 on a catalyst surface: adsorption ofNaBH4, 

reaction and desorption of H2. The rate of Hydrogen generation is zero order with respect 

to NaB~, indicating that desorption of hydrogen from the catalyst surface is the rate­

determining step. 
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Figure 7.27 The relationship between rm and the molality ofNaBH4 at 45°C. 

7.4 The effect ofNaB02 

The averages of the hydrogen generation rate for each NaBOz molality at different NaBH4 

molalities were taken from Figures 7.25-7.27 and plotted against the molality ofNaB02 

(shown in Figure 7.28). It can be seen that the reaction rate decreases at the earlier stages 

of the reaction with the increase ofNaBOz concentration and the reaction rate levels off at 

later stages. Since NaBOz is a base, it suggests that the reaction intermediate involves the 

hydrogen ion. 
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Figure 7.28 The relationship between rm and the molality ofNaB02• 

7.5 Conclusions 

In this chapter, the effects of NaBH4 and NaBOz concentration on the reaction rate have 

been studied. At a fixed temperature and N aBOz concentration, the reaction rate is zero 

order with respect to NaBH4 concentration. At a fixed NaBH4 concentration and 

temperature, the reaction rate decreases with an increase in NaB02 concentration. 
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Chapter 8 

The Effect ofNaOH on Intrinsic Kinetics and Rate 
Expression 

8.1 Introduction 

In Chapter 7, the dependence of reaction rate on the concentration ofNaBH4 and NaB02 

was studied. It was found that the reaction is zero order with respect to N aBH4 

concentration but decreases steadily with an increase in NaBOz concentration. In this 

chapter, the effect ofNaOH will be investigated. 

In Chapter 2 it was shown that aqueous solutions of NaBH4 are quite stable when 

maintained at a high pH value. In the absence of a catalyst, the half-life ofNaBH4 at room 

temperature can reach 1.5 years when the concentration ofNaOH is 5% [1]. The effect of 

NaOH is thus an interesting aspect to the kinetics ofNaBH4. 

8.2 Experimental Results 

This chapter details an investigation into the effect of NaOH on the rate of hydrolysis of 

NaBH4 at various NaOH concentrations. The concentration of both NaBH4 and NaBOz 

are fixed and the temperature is held constant. Since it has been shown that the reaction 

rate is independent ofNaBH4 concentration in Chapter 7, it is only necessary to compare 

rate data at fixed temperatures and NaB02 concentrations. The isothermal rate data was 

obtained by the method detailed in chapter 5. 

Figures 8.1-8.25 show five sets of hydrolysis reactions in the presence of various NaOH 

concentrations, from 0.22% to 9.2%. In each set of experiments, five experiments were 

conducted with the same initial NaBH4 concentration. The reaction rates at a fixed 

temperature were then derived from these experiments at various NaB02 molalities, as 

shown in Figures 8.5, 8.1 0, 8.15, 8.20 and 8.25. 
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Figure 8.1 Hydrogen generation from the hydrolysis of NaBH4 at various temperatures. 

The initial molality ofNaBH4 was 1.32 mol kg·1
• The reaction was conducted in I 0 m! of 

water with 0.3 g of catalyst with a mean particle size of 0.049 mm. The NaOH 

concentration was 0.22%. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 
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Figure 8.2 Rate of hydrogen generation from the hydrolysis of N aBH4 at various 

temperatures, transformed from Figure S.la. The NaOH concentration was 0.22%. 
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Figure 8.4 lnrm versus l!f derived from Figure 8.3. The initial molality of NaBH4 was 

1.32 mol kg-1
• The NaOH concentration was 0.22%. 
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Figure 8.5 Reaction rate versus molality of NaBOz at various temperatures for NaOH 
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Figure 8.6 Hydrogen generation from the hydrolysis of NaBH4 at various temperatures. 

The initial molality ofNaBH4 is 1.32 mol kg·1
• The hydrolysis was performed in 10 m! of 

water with 0.3 g of catalyst with an average catalyst particle size of 0.049 mm. NaOH 

concentration was 0.43%. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 
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Figure 8.7 The rate of hydrogen generation from the hydrolysis of NaBH4 at various 

temperatures, transformed from Figure 8.6a. NaOH concentration was 0.43%. 
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Figure 8.8 The rate of hydrogen generation (a) and reaction temperature (b) with NaB02 

molality. They were transformed from Figure 8.7 and Figure 8.6b. Initial molality of 

NaBH4 was 1.32 mol kg·1
• NaOH concentration was 0.43%. 
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Figure 8.9 lnrH2 versus lff derived from Figure 8.8. Initial NaBH4 molality was 1.32 mol 

kg-1
• NaOH concentration was 0.43%. 
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Figure 8.10 Reaction rate versus molality of NaBOz at various temperatures for NaOH 
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Figure 8.11 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 2.64 mol kg-1
• The hydrolysis was performed in 10 mi 

of water with 0.3 g of catalyst with an average catalyst particle size of0.049 mm. NaOH 

concentration was 2.8%. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 
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Figure 8.12 The rate of Hydrogen generation from the hydrolysis of N aBH4 at various 

temperatures, transformed from Figure 8.lla. NaOH concentration was 2.8%. 
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Figure 8.13 The rate ofhydrogen generation (a) and reaction temperature (b) with NaB02 

molality. They were transformed from Figure 8.12 and Figure 8.1 I b. NaOH concentration 

was 2.8%. The initial molality ofNaBH4 was 2.64 mol kg"1
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Figure 8.15 Reaction rate versus molality ofNaBOz at various temperatures for NaOH 
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Figure 8.16 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 2.64 mol kg"1
• The hydrolysis was performed in 10 m1 

of water with 0.3 g of catalyst with an average catalyst particle size of 0.049 mm. NaOH 

concentration was 4.8%. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 
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Figure 8.17 The rate of hydrogen generation from the hydrolysis of NaBH4 at various 

temperatures, transformed from Figure 8.16a. NaOH concentration was 4.8%. 
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Figure 8.18 The hydrogen generation rate (a) and reaction temperature (b) with NaBOz 

molality. They were transformed from Figure 8.17 and Figure 8.16b. NaOH concentration 

was 4.8%. The initial molality ofNaBH4 was 2.64 mol kg·1
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1. NaOH concentration was 4.8% 
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Figure 8.20 Reaction rate versus molality of NaB02 at various temperatures for NaOH 

=4.8%. 
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Figure 8.21 Hydrogen generation from the hydrolysis ofNaBH4 at various temperatures. 

The initial molality ofNaBH4 was 2.64 mol kg-1
• The hydrolysis was performed in 10 ml 

of water with 0.3 g of catalyst with an average catalyst particle size of0_049 mm. NaOH 

concentration was 9.2%. (a) Hydrogen production-time curves; (b) Temperature-time 

curves. 
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Figure 8.22 The rate of hydrogen generation from the hydrolysis of NaBH4 at various 

temperatures, transformed from Figure 8.21a. NaOH concentration was 9.2%. 
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Figure 8.23 The rate of hydrogen generation (a) and reaction temperature (b) with NaB02 

molality. They were transformed from Figure 8.22 and Figure 8.2lb. NaOH concentration 

was 9.2%. The initial molality ofNaBH4 was 2.64 mol kg-1
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Figure 8.24 lnrH2-1rr derived from Figure 8.23. Initial NaB H. molality was 2.64 mol kg· 
1
• NaOH concentration was 9.2%. 
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Figure 8.25 Reaction rate versus molality of NaB02 at various temperatures for NaOH 

=9.2%. 

8.3 The effect ofNaOH on the hydrolysis ofNaBH4 

From Figures 8.5, 8.1 0, 8.15, 8.20 and 8.25, it can be seen that at a specific temperature, 

the reaction rate changes within a very small range in the presence of NaOH when 

compared with the rate in the absence of NaOH, which is shown in Figure 7 .28. In the 

absence of NaOH, the pH value of the NaB02 solution changes significantly, moving 

from neutral (pH= 7) to strongly basic (pH= 12.5 according to the equilibrium B(OHk = 

H3B03 +OH-, K = 1.73 x 10'\ The pH of the solution does not change significantly in 

the presence of NaOH due to the high concentration of OH'. Since the basicity of the 

solution is stable in the presence of NaOH, it is consistent with the previous conclusion 

that the reaction is zero-order with respect to the concentration ofNaBH4. 

8.4 Rate expressions 

In this section, the final rate expression for the hydrolysis of NaBH4 is derived. Since the 

reaction rate is zero order with respect to the concentration ofNaBH4, NaBH4 should not 

be included in the rate expression. The rate is only related to the basicity of the solution 

and the reaction temperature. 

In order to obtain the relationship between the reaction rate and the basicity of the 

solution, the rate of hydrogen generation rm was plotted against pOH. Here pOH is 

defined as lnli[OH']. As shown in Figure 8.26, r112 and pOH have a linear relationship. 
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The relationship between rm and pOH may thus be expressed by using equation (8.1 ). 

rl-12 =A•pOH + B (8.1) 

The parameters A and B for the linear equations at various temperatures and residual 

square root are given in Table 8.1. 
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Figure 8.26 r!-12 versus pOH and their linear regressions. 

Table 8.1 The slopes and intercepts of the regressed equations in Figure 8.26. 

Temperature ("C) A B Error (R2
) 

20 0.4619 2.8219 0.98 

25 0.7025 4.4118 0.99 

30 1.0532 6.7987 0.99 

35 1.5591 10.3340 0.98 

40 2.2781 15.5020 0.97 

It is shown clearly in Table 8.1 that both A and B change with temperature. To find the 

relationships between A and T and B and T, A and B are plotted against T as shown in 
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Figure 8.27. From the trend, both A and T and B and Thave an exponential shape. Hence, 

they are regressed using an exponential equation. The final rate equation is given by 

equation (8.2). 

2.5 

2.0 A=O.og4ge0.0798T 

1.5 

1.0 

0.5 

20 

16 

14 

12 

10 

"' 8 

6 

4 

• 
2 

20 

~=1.0 

25 30 

Temperature ('C) 

B=0.5238eO.OBST 

R2=1.0 

35 

25 30 35 

Temperature ('C) 

40 

40 

Figure 8.27 The regression ofthe coefficients of the rate expression. 

YH2 = 0.0949e0·0798T pOH + 0.5238eO.OSST (8.2) 

Equation (8.2) is the final rate expression for the hydrolysis ofNaBH4 in the presence of a 

carbon supported ruthenium catalyst. It is dependent on the basicity of the solution and 

the reaction temperature. The basicity is measured by pOH. Since pOH is the negative 
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logarithm of the OH" ion concentration, the rate of hydrogen generation decreases with an 

increase in OH" concentration. At the present stage, the physical meaning of the 

parameters A and B is not clear. However, they both change with temperature 

exponentially. This is reasonable for a chemical reaction. Since B increases more rapidly 

than A, the rate of hydrogen generation increases rapidly with an increase in temperature. 

8.5 A Possible Reaction Mechanism for the Hydrolysis of NaBH4 

Figure 8.28 A possible mechanism for the hydrolysis ofNaBH4 over a metal catalyst. 

The reason for this complicated dependence on temperature may be due to the reaction 

mechanism. The hydrolysis of NaBH4 for releasing hydrogen must have involved the 

intermediate of H+. When the basicity of the aqueous solution varies, the activation energy 
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and the pre-exponential factor for the Arrhenius form rate equation may also change. The 

mechanism may involve the steps shown in Figure 8.28. In the above mechanism, the 

hydrogen ion in the water (H/0) attacks BH4·. Step by step, the hydrogen is replaced by 

OH' from the water to form the generally accepted B02- form in water: B(OHk. 

8.6 Conclusions 

In this chapter, experiments were conducted to investigate the effect of NaOH on the 

intrinsic kinetics of the hydrolysis ofNaBH4. The following conclusions can be drawn: 

• The reaction rate depends strongly on the basicity of the solution. This may be due 

to the existence of acid intermediates in the reaction. 

• The reaction rate can be expressed using the following equation, which correlates 

the reaction rate with the reaction temperature and the basicity of the solution. 

rH2 = 0.0949e0
·
0798

T pOH + 0.5238e0
·
085

T 
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Chapter 9 

Modelling Hydrogen Generation from the NaBH4-

NaOH-H20 System for Big Catalyst Particles 

9.1 Introduction 

In Chapters 6-8, intrinsic kinetics were obtained to predict hydrogen evolution without 

heat and mass transfer limitation, where the catalyst particles that were used were very 

small. In practice, catalysts are particles of significant size in order to avoid large pressure 

drops. As shown in previous chapters, strong diffusion limitations occur when the catalyst 

particle size is at the level of practical accessibility such as 2 mm. The aim of this chapter 

is to model hydrogen generation from the NaBH4-NaOH-H20 system when catalyst 

particles of significant size are used. In the modelling, the mass transfer limitations are 

built into the overall kinetic equation. 

Two situations are considered in the modelling. One is the isothermal hydrolysis of 

NaBH4 aqueous solutions, the other is the non-isothermal reaction. The non-isothermal 

reaction is more practical since this can reduce system complexity by controlling the 

system temperature. 

9.2 Model Construction 

9.2.1 General description 

The hydrolysis of NaBH4 is an exothermic reaction and the heat that is generated will 

accelerate the reaction. The faster the reaction proceeds, the higher the temperature is 

raised. However, the temperature cannot exceed the boiling point of the solution because 

water begins to evaporate and the extra heat from the reaction will contribute to phase 

change rather than to an increase in temperature. Evaporation of water from the solution 

will cause the pOH of the solution to increase, resulting in a reduction of the reaction rate. 

In the following, the calculation is described in detail. 

9.2.2 Overall kinetics for the hydrolysis ofNaBH4 

In Chapter 8, the intrinsic kinetics expression (as given by equation (5.16)) was obtained 
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by investigating fine catalyst particle size in which the mass and heat transfer effects have 

been removed. 

rH2 = 0.0949e0·0798T pOH + 0.5238e0·085T (5.16) 

When particle size is increased, internal mass transfer is no longer negligible. This is 

taken into account by using an effectiveness factor 11 as reviewed in Chapter 5. For a zero­

orderreaction, the Thiele modulus$ is defined by equation (9.1)[1]. 

(9.1) 

Where k' is the reaction rate constant based on the volume of total catalyst particles, De is 

the effective diffusivity of reactant in the catalyst particles, Lis the characteristic length of 

a catalyst particle and CAs is the surface concentration of the reactant on the catalyst 

particles. 

The rate data in the research is based on the weight of catalyst particles, which is related 

to k' by equation (9.2). 

(9.2) 

Where k is the rate constant based on the weight of catalyst, and Pc is the density of the 

catalyst. 

In the case of strong diffusion limitation ( $ > 4 or 11 < 0.25), effectiveness factor T] and 

Thiele modulus have the following relationship [1]: 

1 
ry=-

c/1 
(9.3) 

Substitute equation (9.1) into equation (9.3) and L = R/2 for a cylindrical catalyst particle 

(R is the radius of the cylinder), yielding 

(9.4) 
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Rearrange equation (9.4), yielding 

(9.5) 

The effectiveness factor 11 can be measured experimentally using the rate data for 2 mm 

cylindrical catalyst particles and the rate data for 0.049 mm catalyst particles in which 

there is effectively no diffusion limitation as shown in Chpater 6. The effective diffusivity 

can be then calculated using equation (9 .5). It should be noted that the rate data used for 

the calculation should be based on the rate in regard to NaBH4. Equation (9.6) can be used 

for the transformation of rate data in regard to hydrogen volume, to the rate data in regard 

to NaBH4. 

d(nNaBH RT0 14P0 ) RT0 ' =--r 
dt 4Po NaBH, 

(9.6) 

After obtaining the value of effective diffusivity experimentally, effectiveness factor can 

be then calculated using equation (9.4) at any concentration and temperature. Hence, 

reaction rate with diffusion limitation can be calculated. 

9.2.3 Heat transfer coefficient and heat loss 

The heat loss of the reactor is the heat transfer from reactor to environment. The heat 

transfer can be calculated using equation (9. 7). 

Q=K,S,t:,.T,. (9.7) 

where Kt is the overall heat transfer coefficient, S is the heat transfer area, and ,t:,.Tm is the 

average temperature difference. 

The overall heat transfer coefficient can be calculated using equation (9.8). 

I X I I 
-=-+-+­
k kw aA a 8 

(9.8) 

where x is the thickness of the reactor wall, kw is the thermal conductivity of the wall 

materials, aA is the convective heat transfer coefficient of the fluid in the reactor and aa is 
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the convective heat transfer coefficient of the air outside the reactor. 

Fluid in the reactor is extensively stirred. Therefore, the convective heat transfer 

coefficient of the reaction fluid can be calculated using equation (9.9) [2]. 

Nu= 0.023 Re0·
8 Pr0

·
4 (9.9) 

where Nu is the Nusselt number, Re is Reynolds number and Pr is the Prandtl number. 

They are defined as follows: 

aL 
Nu=­

A. 

Re= dup 
J.l 

V 
Pr=­

K: 

where A. is the thermal conductivity of the fluid, T] is the viscosity of the fluid, p is the 

density of the fluid, K is the thermal diffusivity (which is equal to /J(pep)), Cp is the 

specific heat capacity, L is the appropriate dimension and v is the kinematic viscosity of 

the fluid. 

When the reactor is assumed to be in air, the air is in a natural convection state. The heat 

transfer coefficient can be calculated using equation (9.10) [3]. 

(9.10) 

For a sphere, Nuo = n, and for a horizontal cylinder, Nu0 = 0.36n . .f4(Pr) in equation (9.10) 

is defined by equation (9 .11 ). 

[ 

9/16]-16/9 

/ 4 (Pr)= 1+(~:) (9.11) 

Rain equation (6.12) is the Rayleigh number. It is defined by equation (9.12). 
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(9.12) 

where ~ is the coefficient of expansion of the fluid (per Kelvin), !:iT is the temperature 

difference between the surface and the bulk fluid, g is the acceleration due to gravity and l 

is the appropriate dimension (for a sphere or horizontal cylinder, l = rr.D/2. D is the 

diameter) 

9.2.4 Calculation procedure 

At the beginning of the calculation the following data is input. The other calculations are 

described in the next section. 

To: ambient temperature 

Po: atmospheric pressure (assumed to be 101325 Pa) 

t: time (initialised to be 0) 

dWNaBH4: differential amount ofNaBH4 that reacts at each step 

wNaoH: NaOH concentration (wt%) 

WH,o : initial mass of water (g) 

WNaBH,: initial mass ofNaBH4 (g) 

The initial molality ofNaBH4 is calculated using equation (9.13). 

mNaBH4 

The heat generated when dWNaBH4 reacts can be calculated using equation (9.14). 

dWNaBH 
Q 'I:!.H 

37.84 

(9.13) 

(9.14) 

where Mi is the enthalpy change of the hydrolysis reaction of NaBH4, which is 285 kJ 

mor1
• Heat loss Q' in dt can be calculated using the equations in section 9.2.3. 

Temperature change of the solution is calculated using equation (9 .15) 
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t>.T 
Q-Q' 

(9.15) 

where Cp is the heat capacity of the solution. The temperature of the solution is obtained 

using equation (9 .16) 

1 =1 +t>.1 (9.16) 

If T is greater than boiling point of the solution, T is given the value of the boiling point 

and the heat Q is in its entirety used to evaporate water, which can be calculated using 

equation (9 .17). 

(9.17) 

where Ml evp is the enthalpy change of water evaporation. The water remaining in the 

system after dWNaBH4 is obtained by equation (9 .18) 

(9.18) 

The hydrogen that is generated when dWNaBH4 has reacted can be calculated using 

equation (9 .19). 

4MV, 
C; VH, NaBH, RT. I P, 

37.84 ° 0 (9.19) 

The by-product NaBOz that is produced when dWNaBH4 has reacted is calculated using 

equation (9.20) 

dWNaBO, =(dWNaBH, 137.84)x66.22 (9.20) 

where 66.22 is the molecular weight of NaB02• The concentration of NaBOz in the 

system can be calculated using equation (9 .21) 

W NaBO, I 66.22 

WH,O 
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where WNaso, is the accumulated amount of NaB02 in the solution. Equation (9.22) is 

used to calculate the OH' concentration in the solution after obtaining the concentration of 

NaB02. 

-(mNaOH +K)+~(mNaOH +K)2 +4KmNaB0
2 

2 
(9.22) 

where [OH-] is the concentration of OH- in the solution, and K is the equilibrium constant 

for the B02- ions in water (B(OH)4) : B(OHk = H3B03 + OH-. K = 1.74 x w-5_ After 

obtaining the OH' concentration, pOH can be then calculated by using the definition (pOH 

= -ln[OH']). 

Intrinsic reaction rate can be then calculated using equation (5.16). Actual reaction rates 

can be calculated using equation (9.23). 

rH, (real)= rH, (instrinsic)1] w,., (9.23) 

where W,81 is the mass of catalyst. The reaction rate in terms of N aBH4 can be obtained 

using equation (9 .6). 

The time dt needed to reacting dWNaBH4 can be then calculated using equation (9.24). 

dWNaBH 
dt= 4 

rNaBH, (real) 
(9.24) 

The above procedure is repeated until all the NaBH4 is reacted. In the following, two 

cases are discussed: isothermal reaction and non-isothermal reaction. 

9.3 Results and Discussion 

9.3.1 Determination of effective diffusivity ofNaBH4 in catalyst particles 

The effective diffusivity of NaBH4 in big catalyst particles, De, was determined 

experimentally using equation (9.5). The same procedure as in Chapters 6-8 was used in 

this chapter to derive isothermal reaction rates for fine catalyst particles and 2 mm x 3 mm 

catalyst particles. Figures 9.1 and 9.2 show the rate and temperature for fine and large 

particles respectively. The rate data for various NaB02 molalities and temperatures for the 
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two sizes of catalyst particles are listed in Tables 9.1-9.6. The measured effective 

diffusivities for temperatures from 25-75°C are given in the last column of the tables. 

50 • (1) 

• !I 5 e 
'e. 0 

= 
(5) 

,. 
li 

0 2 3 4 

Molality of NaBOimoVkg) 

25 

0 2 3 4 

Molality ofNaBO,(mol!kg) 

Figure 9.1 Rate of hydrogen generation for the hydrolysis of NaBH4 at various 

temperatures when fine catalyst particles (0.049 mm) were used. The initial molality of 

NaBH4 was 3.97 mol kg·1• The hydrolysis was performed in I 0 m! of water, using 0.3 g of 

catalyst. (a) Hydrogen production-time curves; (b) Temperature- time curves. 
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Molality of NaBO,(mollkg) 

15+-~-r~-,r-~.-~-r~-,r-~.-~~~-, 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

Molality of NaBO,(mollkg) 

Figure 9.2 Rate of hydrogen generation for the hydrolysis of NaBH4 at various 

temperatures when the catalyst was in the form of 2 mm x 3 mm cylinders. The initial 

molality ofNaBH4 was 3.97 mol kg-1
• The hydrolysis was performed in 10 ml of water, (a) 

Hydrogen production-time curves; (b) Temperature- time curves. 
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Table 9.1 Derivation of effective diffusivity De at 25°C. 

fH2 fNaBH4 rH2 1'] 
mNaB02 

(m31s gcat) (molls m3cat) 
CNaBH4 

(m31s gcat) De (m21s) 
(mol kg-1

) (mollm3
) 

( fH2 2mm catlfH2 

(fine catalyst) (fine catalyst) (2mm catalyst) fine cat 

0.25 11.05 241.13 3715.00 2.34 0.21 3.65E-10 

0.50 8.77 191.41 3465.00 1.66 0.19 2.48E-10 

1.00 6.80 148.42 2965.00 0.95 0.14 1.23E-10 

1.50 6.34 138.42 2465.00 0.46 0.07 3.65E-11 

2.00 6.18 134.81 1965.00 0.31 0.05 2.18E-11 

2.50 6.08 132.70 1465.00 0.31 0.05 2.94E-11 

2.75 5.89 128.46 1215.00 0.33 0.06 4.17E-11 

3.00 5.27 115.05 965.00 0.29 0.06 4.63E-11 

Table 9.2 Derivation of effective diffusivity De at 35°C. 

fH2 fNaBH4 rm 1'] 
mNaB02 

(m31s gcat) (molls m3cat) 
CNaBH4 

(m31s gcat) De (m21s) 
(mol kg-1

) (mol/m3
) 

(rm 2mm catlrH: 

(fine catalyst) (fine catalyst) (2mm catalyst) fme cat 

0.25 21.00 458.44 3715.00 4.18 0.20 6.12E-10 

0.50 16.58 361.90 3465.00 3.08 0.19 4.51E-10 

1.00 13.74 299.98 2965.00 1.84 0.13 2.27E-10 

1.50 12.85 280.40 2465.00 1.10 0.09 1.04E-10 

2.00 12.60 275.11 1965.00 0.83 0.07 7.63E-11 

2.50 12.62 275.35 1465.00 0.77 0.06 8.77E-11 

2.75 12.07 263.41 1215.00 0.78 0.06 1.12E-10 

3.00 10.88 237.52 965.00 0.72 0.07 1.35E-10 
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Table 9.3 Derivation of effective diffusivity De at 45°C. 

fll2 fNaBH4 fll2 'Y] 
mNaB02 

(m31s gcat) (mol Is m3cat) 
CNaBH4 

(m31s gcat) De (m21s) 
(molki1

) (mollm3
) 

(r112 2mm 

(fine catalyst) (fine catalyst) (2mm catalyst) catlrH2 fine ea 

0.25 38.35 837.07 3715.00 7.20 0.19 9.92E-10 

0.50 30.12 657.42 3465.00 5.49 0.18 7.88E-10 

1.00 26.58 580.06 2965.00 3.42 0.13 4.06E-10 

1.50 24.89 543.35 2465.00 2.49 0.10 2.76E-10 

2.00 24.59 536.78 1965.00 2.09 0.08 2.47E-10 

2.50 25.00 545.75 1465.00 1.81 0.07 2.44E-10 

2.75 23.65 516.29 1215.00 1.73 0.07 2.84E-10 

3.00 21.47 468.52 965.00 1.67 0.08 3.66E-10 

Table 9.4 Derivation of effective diffusivity De at 55°C. 

fll2 
rll2 fNaBH4 

(m31s gcat) 
'Y] 

mNaB02 
(m31s gcat) (mol Is m3cat) 

CNaBH4 
De (m21s) 

(mol ki1
) (mollm3

) (2mm 
( f112 2mm catlfll2 

(fine catalyst) (fine catalyst) 
catalyst) 

fine cat 

0.25 67.50 1473.35 3715.00 11.98 0.18 1.56E-09 

0.50 52.76 1151.57 3465.00 9.44 0.18 1.33E-09 

1.00 49.37 1077.46 2965.00 6.12 0.12 6.98E-10 

!.50 46.33 1011.28 2465.00 5.39 0.12 6.94E-10 

2.00 46.07 1005.54 1965.00 4.96 0.11 7.41E-10 

2.50 47.54 1037.52 1465.00 4.04 0.08 6.38E-10 

2.75 44.50 971.25 1215.00 3.66 0.08 6.78E-10 

3.00 40.63 886.70 965.00 3.67 0.09 9.38E-10 
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Table 9.5 Derivation of effective diffusivity D, at 65°C. 

fH2 fNaBH4 fH2 T] 
mNaB02 

(m31s gcat) (mol Is m3cat) 
CNaBH4 

(m31s gcat) D, (m21s) 
(mol kg-1) (mollm3

) 
(rH2 2mm caJrH2 

(fine catalyst) (fine catalyst) (2mm catalyst) ftne cat 

0.25 114.91 2508.01 3715.00 19.36 0.17 2.40E-09 

0.50 89.41 1951.38 3465.00 15.73 0.18 2.18E-09 

1.00 88.40 1929.40 2965.00 10.57 0.12 1.16E-09 

!.50 83.13 1814.29 2465.00 11.13 0.13 1.65E-09 

2.00 83.16 1814.99 1965.00 11.18 0.13 2.09E-09 

2.50 87.00 1898.86 1465.00 8.58 0.10 1.58E-09 

2.75 80.64 1760.10 1215.00 7.43 0.09 1.54E-09 

3.00 74.04 1615.99 965.00 7.71 0.10 2.27E-09 

Table 9.6 Derivation of effective diffusivity D, at 75°C. 

fH2 fNaBH4 fH2 T] 
mNaB02 

(m31s gcat) (mol Is m3cat) 
CNaBH4 

(m31s gcat) D, (m21s) 
(mol kg-1) (mol/m3

) 
(rH2 2mm catlfH2 

(fine catalyst) (fine catalyst) (2mm catalyst) fine cat 

0.25 189.72 4140.75 3715.00 30.42 0.16 3.58E-09 

0.50 146.98 3207.98 3465.00 25.44 0.17 3.47E-09 

1.00 153.08 3341.24 2965.00 17.70 0.12 1.88E-09 

!.50 144.21 3147.47 2465.00 22.04 0.15 3.73E-09 

2.00 145.09 3166.79 1965.00 24.07 0.17 5.54E-09 

2.50 153.79 3356.68 1465.00 17.47 0.11 3.69E-09 

2.75 141.23 3082.56 1215.00 14.47 0.10 3.33E-09 

3.00 130.36 2845.29 965.00 15.52 0.12 5.23E-09 
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It can be seen from Tables 9.1-9.6 that the effectiveness factor is much less than 0.25. 

Therefore, the reaction of N aBH4 is in the regime of strong diffusion limitation when the 

catalyst particles are 2 mm in size. It is thus reasonable that effective diffusivity can be 

calculated using equation (9.4). De depends both on the concentration of by-product 

NaBOz and on temperature. D. was found to decrease with the increase of NaBOz and 

level off with a further increase of the concentration. The reason for this may be due to the 

blockage of catalyst pores. NaB02 may be saturated in the vicinity of the reaction site on 

the surface of the catalyst's pores. 

The dependence of D. on temperature can be described using equation (9.25). 

D =D e-EIRT 
e eO (9.25) 

where D.o is the pre-exponential factor, and E is the activation energy for diffusion. Take 

the logarithm of both sides, yielding 

E 
lnD =lnD 0 --

e e RT (9.26) 

lnDe was plotted against liT at various NaBOz concentrations as shown in Figure 9.3. It 

can be seen that a good linear relationship between lnDe and 1/Twas obtained, indicating 

the applicability of equation (9.26). The E/R and lnD.o values in equation (9.26) derived 

from Figure 9.3 are listed in Table 9.7. The relationships between lnD.o and mNaB02 and 

EIR and mNaB02 are plotted in Figures 9.4 and 9.5 respectively. For the convenience of 

calculation, the curves were fitted using an index function with the form Jtx) = A-BC', 

where A, B and Care parameters. They were determined using a least-square method. The 

resulting equations are (9.27) and (9.28) respectively. The choice of index is due to the 

characteristics of chemical reactions. 

E I R = 10770.5-8196.3 X 0.40mN,B02 (9.27) 

In Deo = 12.0- 23.9 x 0.42 mN'802 (9.28) 
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Figure 9.3 lnDe versus liT at various NaB02 concentrations. 

Table 9.7 Parameters for diffusion equation obtained from Figure 9.3. 

mNaB02 (mol/kg) E/R lnDeo Regression Residue 

0.25 4740.1 1.7689 1.0 

0.5 5472.1 3.8386 1.0 

1 5669.2 3.7944 1.0 

1.5 9604 15.779 1.0 

2 11494 21.606 1.0 

2.5 10032 16.999 1.0 

2.75 9089.1 14.187 1.0 

3 9812.8 16.717 1.0 

244 



20 

10 

0 

~ 
.o--1 

-101+--~~-~--.-~-.,---~--,----r---,-~-.--~ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

mNaeO, (mol/kg) 

Figure 9.4lnDeO versus the molality ofNaBOz, mNaB02· 
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Figure 9.5 EIR versus the molality ofNaBOz, mNaB02· 
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9.3.2 Heat loss from a round-bottom flask to the surrounding environment 

In this section, the heat transfer coefficient is estimated so that the model can be verified 

experimentally. The reactor is in an open laboratory, surrounded by air. Two situations are 

considered here. 

Reaction solution properties (50°C) [ 4]: 

p = 979 kg/m3
; Cp = 4.20 kJ/(kg K); T] = 4.20 x 104 N s/m2

; v = 3. 75 x10·7 m%;'}..= 0.668 

W/(m K); Pr = 2.29. 

Substitute the above properties into equation (9.9), yielding 

Air properties (25°C) [ 4]: 

p = 1.16 kg/m3
; Cp = 1.007 kJ/(kg K); 11 = 184.6 x 10"7 N s/m2

; v = 15.89 x10·6 m2/s; '}.. = 

26.3 X 1 o·3 W/(m K); 1C = 2.5 X 1 0"6 m2/s; Pr = 0. 707. 

It is assumed that the round-bottom flask is a sphere and the surrounding temperature is 

constant at 25°C. A sphere has a characteristic length L = 1tD/2 = 0.10 m. The Rayleigh 

number is 

VK 

9.81x3.22x10-3 x45x0.0785 3 =
3

_
5

0x106 

16.9x10-6 x24.0x10-6 

Because Ra is less than 109
, the flow of air on the surface of the reactor is larninar and the 

heat transfer coefficient is calculated using equation (9.10), where NUo = 3.14. , f4(Pr) = 
0.342. Substitute the above value into equation (9.1 0), yielding 

as= 6.64 W/(m2 K). 

Glass properties: 

p = 2.50 x 103 kg/m3
; Cp = 480 kJ/(kg K); '}.. = 15.1 x 10"3 W/(m K); K = 3.91 x 10"6 m2/s. 

The thermal conductivity of the reactor material is 100 W/(m2 K). It can be seen that the 
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thermal transfer resistance is mainly due to air. Therefore, the conductive heat loss is 

about 6.64 W/(m2 K). 

9.3.3 Modelling the isothermal generation of hydrogen 

The first case to study in order to verify the model is that of the generation of hydrogen in 

an isothermal reaction when large catalyst particles are used. Figures 9.6-9.8 show the 

model prediction and experimental results for isothermal reactions at 25°C, 30°C, and 

40°C respectively. The extent of the reaction was indicated by the production ofNaB02• 

The experimental data are consistent with the model prediction. 

Unlike fine catalyst particles, with which there is no diffusion limitation, large particles 

saw a rapid decrease in reaction rate. The same trend occurred regardless of the 

temperature change. This indicates that the hydrolysis ofNaBH4 does not proceed in zero­

order reaction with regard to the concentration of NaBH4. This is consistent with 

theoretical prediction [1] . 

• 4 

~ • Experimental 

.s • Model prediction • 

.!! 3 • 
~ •• 
c • 
~ 

• • 
m 2 'I. 
c m 
0> 
c 
m e 1 
'0 , 
"' • • • 0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 

m,..80, (mol/kg) 

Figure 9.6 Comparison between experimental and model prediction. Reaction 

temperature =20°C, NaOH = 0, catalyst= 3g, NaBH4 1.5g in 1 Og of water. 
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Figure 9.7 Comparison between experimental and model prediction. Reaction 

temperature =30°C, NaOH = 0, catalyst= 3 g with a particle size of 2 mm x 3 mm, NaBH4 

1.5 g in 1 Og of water. 
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Figure 9.8 Comparison between experimental and model prediction. Reaction 

temperature =40°C, NaOH = 0, catalyst= 3g with a particle size of2 mm x 3 mm, NaBH4 

1.5g in lOg of water. 

248 



9.3.4 Modelling the non-isothermal generation of hydrogen 

Figure 9.9 shows results from the non-isothermal generation of hydrogen. The reaction 

was conducted in a round-bottom flask in air, hence the heat loss is due to mainly the heat 

transfer from the reactor wall to the air. As can be seen from Figure 9.9, non-isothermal 

hydrolysis proceeded with an auto-acceleration at around 80 seconds. This is due to the 

temperature increase resulting from retained heat, since this was not dispersed to the air 

around the fast at a sufficient rate. The experimental results and model prediction are in 

good agreement. This supports the validity of the model. 

2500 

- 2000 
g 
" 5 1500 

~ 
c: 
~ 1000 
-g, 
:r: 
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0 
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Time (s) 

Model prediction 
Experimental 

200 250 300 

Figure 9.9 Comparison between experimental and model prediction for a non-isothermal 

reaction. NaOH = 0, catalyst= 3g with a particle size of2 mm x 3 mm, NaBH4 = l.Og in 

I Og of water. 

9.4 Conclusions 

In this chapter, heat and mass transfer were built into the intrinsic rate expression obtained 

in Chapter 8 through use of the Thiele modulus. The effective diffusivity of N aBH4 in 

catalyst pores was experimentally measured. The model was then validated through both 

isothermal and non-isothermal hydrolysis of NaBH4. From the study, the following 

conclusions can be reached: 

• When large catalyst particles are used, strong diffusion limitation is observed for 

the hydrolysis of NaBH4, which can be seen from the very low efficiency factor 
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that was obtained experimentally. 

• The effective diffusivity of NaBH4 m catalyst pores depends on both the 

temperature and the concentration ofNaB02. The dependence on the latter may be 

due to local saturation of NaB02 in the vicinity of active sites of the catalyst 

surface. 

• In the region of diffusion limitation, reaction order to N aBH4 is not zero-order. 

The reaction rate decreases rapidly with a decrease in NaB~ concentration. 

• After combining intrinsic kinetics with diffusion limitation, heat generation and 

water evaporation, the model can be used to predict hydrogen generation from the 

hydrolysis of NaBH4. The validation of the model has been performed for both 

isothermal and non-isothermal hydrolysis. 
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Chapter 10 

Conclusions and Future Work 

10.1 Conclusions 

Hydrogen storage is an ongoing problem for hydrogen economy. The use of metal 

hydrides is the most promising and constitutes a significant area of focus for world 

research into hydrogen storage. An attempt in this thesis has been made to glean insights 

into the use of the hydrolysis of sodium borohydride for hydrogen storage. This thesis has 

been centred around the two issues relating to the use of NaBH4: the maximum 

concentration and the rate of hydrogen generation. 

The maximum concentration ofNaBH4 in its hydrolysis system was studied in Chapters 3 

and 4 using a thermodynamic approach, in the presence or absence ofNaOH. 

• The relationship between solubility and temperature was derived 

thermodynamically based on the equality of chemical potential of a solute in its 

solution and in its solid state as shown below: 

(no NaOH) 

' 
In m± 8 +In!.:!:.= 

, Y± 
(with NaOH) 

• The solubility of NaBH4 was obtained by analysis of the phase diagram of the 

NaBH4-NaOH-HzO system. 

• The solubility of NaBOz was obtained by analysis of the phase diagram of the 

NaBOz-NaOH-HzO system, which was derived from the phase diagram of the 

NazO-BzOJ-HzO system by setting NazO:Bz03 = 1:1. 
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o The value of L:L in the presence of NaOH was calculated from phase diagrams 
Y± 

using the hydration analysis method. 

o By plotting the left hand side of the equations against liT, the equations when 

NaOH is absent are 

lnmNaso, = 

1982.3 + 9.47 
1 

2912.9 + 11.37 
1 

o The equations when NaOH is present are 

' 
In m± NaBH +In L:L = 

, ' Y± 
1920.2 + 9.3 

T 

I I Y± 3008.5 +!!.7 nm±NaBO + n-= 
, ' Y± T 

o From the thermodynamic modelling and experimental validation of the model, the 

maximum concentration of sodium borohydride is determined mainly by the 

solubility of the by-product NaBOz at a given reaction temperature and 

concentration ofNaOH. The maximum concentration increases with an increase in 

reaction temperature and decreases with an increase in NaOH concentration. 

The rate of hydrogen generation was studied in Chapters 5-9. Chapters 5-8 determined 

experimentally the intrinsic kinetic expression for the hydrolysis and in Chapter 9 the 

overall kinetic model was established and validated experimentally. 

Four factors were examined that affect the intrinsic rate of hydrogen generation: 

temperature, NaOH concentration, NaBH4 concentration and NaBOz concentration. The 

following conclusions were drawn. 

o The rate ofNaBH4 hydrolysis is strongly dependent on the basicity of the solution 
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and the reaction temperature. 

• The rate of hydrolysis is zero- order with respect to the concentration ofNaBl4. 

• The rate of hydrolysis rate can be expressed using the following equation: 

rm = 0.0949e0
·
0798

T pOH + 0.5238e0
·
085

T 

• When large catalyst particles are used, the rate of reaction is limited by significant 

pore diffusion effects. The magnitude of these effects is dependent upon both the 

reaction temperature and the concentration ofNaB02. 

• A kinetic model that combines both the intrinsic kinetic rates and diffusion 

limitations has been validated experimentally using isothennal and non-isothennal 

reactions. 

10.2 Future Work 

This thesis has focused on the understanding of the sodium borohydride hydrolysis 

reaction, specifically relating to the effects of concentration and temperature. There are 

several directions in which the present research could be extended. 

10.2.1 The Transformation of Sodium Metaborate to Sodium Borohydride 

Recycling sodium metaborate back to sodium borohydride is essential in order to facilitate 

practical usage of this method of hydrogen storage. In Chapter 2, possible routes for this 

transformation were proposed. Experimental work needs to be undertaken in order to 

refine the required operating conditions for the proposed processes. 

10.2.2 Application of the Hydrogen Generation System to Fuel Cells 

A fuel cell is a device that continuously converts the chemical energy of the hydrogen and 

oxygen reaction into electric energy needed to drive motors. When the hydrogen 

generated from the hydrolysis of N aBH4 is used in fuel cells, a detailed design should be 

produced in order to improve the observed energy density. This design might include the 

utilisation of the water produced from the fuel cell system, the design of a suitable feeding 

system for NaBH4, and the design of a suitable reactor for controlled generation of 

hydrogen. Modelling work is also necessary in order to predict the efficiency of the 
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system. 

1 0.2.3 Development of High Efficiency Catalysts for the Hydrolysis of N aBH4 

Development of high efficiency catalysts for the hydrolysis ofNaBH4 is another aspect of 

work that could be performed, since this can improve the conversion efficiency ofNaBH4• 

One possible route is to develop a new catalyst, another would be to develop a new carrier 

for an existing metal catalyst. 
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Abstract 

Hydrolysis of sodium borohydride (NaBH4) is a promising r~~te for on-board hydrogen generation. 

Carbon supported ruthenium is one of the most efficient catalysis. This paper presents an investigation 

of the intrinsic kinetics for the hydrolysis of NaBH4 over the catalyst-. For kinetic analysis, a new 

experimental method was designed to obtain isothermal rate data from'~on~isothermal hydrolysis. It was 

found that the hydrolysis reaction is a zero-order reaction with respect to' NaBH4 concentration. The 

hydrolysis rate decreased with an increase of the basicity of NaBH4 aqueous solution. 
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Sodium borohydride, intrinsic kinetics, hydrolysis, ruthenium 
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1. Introduction 

On-board hydrogen generation is one of the challenging problems for the application of hydrogen 

energ{t~' automobiles. Many methods have been designed to meet the challenge, including pyrolysis of 

metal hyclrides (e.g. LiH, MgH2)/ hydrogen release from hydrogen adsorption materials (e.g. carbon 

nanotubes),2 compressed hydrogen tanks,3 and hydrolysis of metal hydrides.4 Among these methods, 

hydrolysis of NaBH4 has attracted attention due to its stability and the convenience of hydrogen 

production and relativ~ly,lu~h energy density.4
-
8 

The hydrolysis of NaBH4 is shown in Scheme I. One mole of NaBH4 produces four moles of 

hydrogen, half of which is extracted from water. A catalyst is necessary for an efficient hydrolysis. The 

catalysts for borohydride hydrolysis include acids,9 metal halides such as NiCLz, CoC]z, 10 and the most 

efficient transition metal catalysts.10 

Scheme I. The hydrolysis of sodium borohydride 

Acid catalysis is now well understood. However, the ldnetics for metal catalysis has little been 

investigated. Metal catalysts are often supported on carriers for. practical applications. The catalyst 

particles have a porous structure. Complex heat and mass transfe~ I>rocesses are involved in the 

heterogeneous catalytic reaction, which frequently impact upon- the·., overall performance of a 

heterogeneous catalytic reaction. For rational design of a chemical reacior for on-board hydrogen 

generation, the first step is to get intrinsic rate expression and then heat and mass transfer effects are 

built into the intrinsic rate expression to obtain an overall rate expression. 

Accurate kinetic rate equations can seldom be extracted from data obtained under the influence of 

significant heat and/or mass transport limitations. Thus it is important that the rate data obtained from 

kinetic runs be acquired in the regime of kinetic control. 
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In a heterogeneous catalytic reaction, heat removal is a difficult factor to overcome in order to obtain 

isothermal rate data. A number of different batch reactors have been designed. The main consideration 

for design an experiment to obtain isothermal rate data is to remove heat generated efficiently bi 

minimizing the contact time for reaction mixture and catalyst in one cycle such as the well-known 

Carberry ~e~cior.IJ However, the method will not work for studying the hydrolysis of NaBH4 since 

NaB~ hydrolysis has a significant rate at higher temperatures even without the presence of a catalyst. 

Another difficulty is to separate the effects of NaBH4 and NaB02, since the two materials always comes 

together during the reaction: 

In this work, instead of making an effort to control reaction temperature precisely and attempting to 

separate the effects of NaBH4 and NaB02, an alternative method was developed. This approach does not 

involve a new reactor design, but uses a new method of analyzing the non-isothermal rate data to obtain 

isothermal rate data. This paper reports an inv:stigation of the intrinsic kinetics of NaBH4 hydrolysis 

over ruthenium catalyst using this method. 

2. Experimental 

2.1 Data analysis method 

The rate for any reaction can be expressed approximately using equation (1). 

(1) 

where r is the reaction rate, E is the activation energy, R is the ~~iv~rsal gas constant, T is the 

temperature, C is the concentration of reactant, a is the reaction order, and A is the pre-exponential 

factor. To deriving isothermal rate data from non-isothermal reaction, take logarithms of both sides, 

yielding 

E 
lnr=lnA +alnC -­

RT 
(2) 

Since A and a. are constants for a specific reaction, lnr against liT will have a linear relationship when 

C is fixed. Several runs can be performed with the same initial NaBH4 concentration but with a different 

initial reaction temperature, and then a series of hydrogen release curves can be obtained. At a given 

ACS Paragon Plus Environment 3 



Submitted to Energy & Fuels Page 4 of 14 

NaB02 concentration mN,802, reaction rates and the corresponding reciprocal temperatures (1/1) are 

plotted the result should be linear, with a slope corresponding to -E/R, and an intercept on the y axis of 

lnA + alnC. After determination of equation, reaction rate at temperature T can be determined using 

equation (2}at mNaB02· 

If sevei:a! groups of the above experiments are performed, and each group has a different initial 

NaB~ concentraticm, Teaction rate at mNaB02 can be determined in each group for temperature T. Since 

initial NaBH4 concentr~tion in each group is different, NaB~ concentrations at mNaB02 are different. 

Therefore, isothermal ratb gata for temperature T is obtained. 

2.2 Experimental procedure 

2.2.1 Materials 

Sodium borohydride (NaBH4), and sodium hydroxide (NaOH) were both purchased from Sigma­

Aldrich, with a purity of 98.0% (wt) and 99.9 % (wt) respectively. NaB~ was used without further 

purification. Ruthenium on carbon was purchased from Johnson Matthey. The catalyst contained 3% 

(wt) ruthenium. It had a cylindrical shape with a siz'e on2 ~X 3 mm. 

2.2.2 Catalyst Grinding 

The catalyst particles must be fine enough so that internal diffusion can be neglected. In this study, the 

catalyst was ground using a pestle and mortar and then sievec!'~sin~a set of sieves with different mesh 

apertures (Fisher Scientific Ltd). Eight different sieves were stacked on top of each other, and the 

average diameters of the catalyst particles trapped in each sieve were' assumed to match the average 

aperture sizes of the two adjacent sieves. The catalyst size obtained were 550 )l.IIl, 98 )l.IIl, 49 )l.IIl and 29 

)l.IIl respectively. 

2.2.3 Experimental rig 

The measurement of the concentration of NaBH4 is rather difficult due to its hydrolysis even at room 

temperature. In this study, a method for measuring the hydrogen volume with time was used, since 

hydrogen volume and NaBH4 concentration can be related using the stoichiometric coefficients in the 

Scheme 1. 
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A schematic diagram for the experimental set-up is shown in Figure I. The rig consisted of three 

parts: the reaction system, a sytem to monitor temperature and a system to measure the volume of 

hydrogen that is generated. The reaction system consists of a three-port reactor and a magnetic stirrer, a 

water oath that was used to adjust reaction temperature and a feeding system. One side-port of the 

reactor was equipped with a thermocouple and another side-port was connected to the water replacement 
·--:•, 

system. The middle port of the reactor was used to site a feeding funnel. Since NaB I!, can be hydrolysed 

even at room terri~e;~tU~e when contacting water, a special feeding system was used as shown in Figure 

3. NaBH, and catalyst were added to the reactor first and then water was added through the feeding 

system to the reactor. Once the chemicals come into contact, hydrogen is produced and the amount that 

was generated was recorded. 

The volume of hydrogen that was produced was measured using a water replacement system. The 

water replacement system consisted of a graduated cylinder full of water and a water reservoir that was 

used to immerse the cylinder. A container was placed onto an electronic balance. Before starting the 

experiment, the water in the reservoir was filled to stich a level that any extra water would overflow 

from the cylinder through a slope into the container on the balance. The electronic balance was 

connected to a computer using a standard RS232 connector. Software provided by the balance 

manufacturer was used to record the time and the weight of the_water displaced from the cylinder. The 
c 

time interval for recording the weight was one second. Both the software and the electronic balance 

were purchased from A & D Company Ltd. (UK). 

In order to monitor the temperature of the reaction system, a thermocouple was put into a side port of 

the reactor. This K-type thermocouple was connected to a data logger, which transferred the information 

to a computer. The data logger and the thermocouple were purchased from Pico CompanyLtd (UK). 

Before conducting the experiment, the reactor was cleaned using distilled water and then dri~d in an 

oven for 24 hours. After the temperature was stable, the reactor was put into the water bath with a fixed 

amount of catalyst inside. A pre-determined amount of NaBH, powder was then put into the reactor. 

After all these were ready, the cork of the feeding funnel was opened to let the water flow into the 
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reactor to start the hydrolysis. The water that was displaced by the hydrogen production and the overall 

reaction temperature were both monitored by using the computer. When calculating the reaction rate, the 

saturated vapour pressure at room temperature was considered. 

The amount of catalyst that was used was based on the convenience of reaction control. Reaction rate 

for heterogeneous catalysis is proportional to the mass of catalyst. The rate data is based on unit mass of 

·catalyst. 

measuring cylinder 

time: 
TSri'lp(QC) 

: · W~ght(9): 

hot plate balance 

Figure I A schematic experimental set-up for the research of NaBH4 hydrolysis kinetics. 

3. Results and Discussion 

3.1 Removal of diffusion limitation 

Figure 2 shows the comparison of the hydrogen generation rate using three different stirring rates (0 

rpm, 390 rpm, and 650 rpm) at three different temperatures (20°C, 30°~:·~A~ 40°C). At each temperature 

and stirring rate, hydrogen generation rate decreased rapidly with the proceeding of the hydrolysis. The 

reaction rate increased steadily with the increase of the reaction temperature from 20°C to 40°C. At any 

reaction temperature, the stirring rate showed little effect when the concentration of Na~02 was greater 

than 0.2 mollkg, which corresponded to the hydrolysis of 10% ofNaBH4. However, stirrillgrat~showed 

some effect on initial stages of the hydrolysis. At 20°C, initial reaction rate did not change sighlficantly 

with stirring rate. This situation changed at higher temperatures. At 30°C, reaction rate was 13.2 ml/sec 

gcat when there was no stirring. It increased to 13.9 mllsec gcat for a stirring rate of 390 rpm and 14.9 

ACS Paragon Plus Environment 6 



le7of14 Submitted to Energy & Fuels 

ml/sec gcat for a stirring rate of 650 rpm. At 40°C, initial reaction rate was 23 ml/sec gcat when there 

was no stirring. It increased to 27.5 ml/sec g cat for a stirring rate of 390 rpm and to 28.5 ml/sec gcat for 

a stirring rate of 650 rpm. 

8 16 

l.l 

• 
-;:- A. 14 <11 • 
~6 ... ..; 

• A. "' ~ •• a.. 

5 ••• "Ill • =" •• ... 12 

4 20°C 

0.0 0.2 0.4 0.6 0.8 

• stir:O rpm 

• stir:390 rpm 
A. A. stir:650 rpm 

Ill 

• . Ill •• ... 
• ••• ... 

~~oc ~ t 

0.0 0.2 0.4 0.6 0.8 

~ano (mol/kg) 
' 

30 
A. 

• • 
A. • .... • 
• A. I • • A. e • .. • 25 A. ... 

• 
40°C 

0.0 0.2 0.4 0.6 0.8 

Figure 2 Comparison of the effect of stirring rate on reaction rate;· The catalyst particles used had an 

average size of 0.049 mm. The reaction was conducted using 0.5g NaBH4 in 10 ml of water. 

When the reaction temperature is low, reaction rate is low. Hence, it does not need a high rate of 

stirring in order to provide a high rate of mass transfer from the bulk fluid to the catalyst particles. 

Therefore the stirring rate, and thus the external mass transfer, is not significant at lower temperatures. 
;'(; 

At the other hand, the hydrogen gas produced agitated the reaction solution violently. The effect of 

hydrogen gas agitation made the effect of stirring rate on external mass transfer not sigiJiflca~t: When 

the reaction temperature increases, the reaction rate increases exponentially. In this case a high rate of 

mass transfer is required in order to provide NaBH4 to the catalyst. Therefore, stirring rate has a 

significant effect on hydrogen generation rate especially at early stages of the hydrolysis. With the 
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agitation effect of the hydrogen gas produced, the role of stirring rate becomes less important. However, 

the difference between reaction rate at 390 rpm and 650 rpm was very small, less than 10%, even at 

early stages. Therefore, it can be concluded that 650 rpm is high enough to remove external diffusion 

limitati6nfor the reaction. In the following work, the stirring rate was fixed at 650 rpm. 

Internal di~fusion refers to the mass transfer within a catalyst particle. It is affected mainly by the size 

of particle that is used, When the particle size is fine enough, the internal mass transfer limitation can be 

removed. It is thus necessary to determine the particle size for which the internal mass transfer rate does 

not limit reaction rate'. hiorder to investigate this, it is necessary to compare the reaction rate at various 

sizes of catalyst particle whilsfthe temperature and the NaBH4 and NaB02 concentrations are fixed. 

Also, a sufficiently high stirring rate is employed, as per the results of Figure 2, so that the effects of 

external diffusion are removed. 

30 \ 

25 

~ .. 
u 

"' 
20 

u .. 
g 15 
E 
~,. 

~ 
10 

5 

0 

\~ 
• • 

0.0 0.5 1.0 1.5 2.0 

particle size (mm) 

Figure 3 Comparison of the reaction rate at various temperatures for different catalyst particle sizes. The 

reaction was performed using 0.5 g NaBH4 in 10 ml of water. 

The reaction rates at various reaction temperatures for different particle sizes are compared in Figure 3 

for two temperatures (20°C and 40°). At both temperatures, the reaction rate increased significantly with 

a decrease in catalyst particle size. This suggests that the hydrolysis of NaB~ in the presence of a 

carbon supported ruthenium catalyst has a strong internal diffusion limitation when the catalyst particles 
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are large. When the catalyst particle size is reduced to around 0.049 mm, the internal diffusion limitation 

is removed. This trend did not change with reaction temperature, as shown in Figure 3. 

This indicates that the limiting effects of internal diffusion can be removed by using a catalyst particle 

size ofless than 0.049 mm for the hydrolysis of NaBH4 over a carbon supported ruthenium catalyst. 

Therefon(iil'the study of intrinsic kinetics, 0.049 mm catalyst particles and a stirring rate of 650 rpm 

are used. 

3.2 Effect of NaB02 and NaBH4 concentrations 

Figure 4 shows the dependence of hydrogen generation rate on NaBH4 concentration at three different 

temperatures for three different .NaB02 molalities. The rate of hydrogen generation for a fixed 

concentration of NaB02 did not vary significantly with the change of the concentration of NaBH4. This 

trend did not change at different terriperatures. This indicates that the hydrolysis of NaBH4 does not 

depend on NaBH4 concentration, i.e. it is azero:order reaction with regard to NaBH4 concentration. 

There are three main steps in the hydrolysis of NaBH4 on a catalyst surface: adsorption of NaB~. 

hydrolysis reaction of NaBH4 on catalyst surface and desorption of H2 from the catalyst surface. The rate 

of hydrogen generation is zero order with respect to N aBH4, indicating that desorption of hydrogen from 

the catalyst surface is the rate-determining step. 

The dependence of hydrogen generation rate on the conceniratioii of NaB02 at different temperatures 
:!'· -i·:l 

is shown in Figure 5. At the earlier stages of the reaction, the reaction raie decreased with the increase of 

NaBOz concentration and the reaction rate leveled off at later stages. Since NaB02 is a base, it indicates 

that the hydrolysis reaction involves the hydrogen ion. 

ACS Paragon Plus Environment 9 



Submitted to Energy & Fuels Page 10 of 14 

40 • • • • .... • • .... • • .. 40'C .... • .. .. 
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Figure 4 Hydrogen generation r~te ~ersus the molality of NaBH4• 

Since hydrogen generation rate depends on the concentration of base and NaOH is often used as a 

stabilizer for NaBH4 aqueous solutions, it is thus interesting to investigate the dependence of hydrogen 
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generation rate on NaOH concentration. It has been shown that the reaction rate was independent of 

NaBIL, concentration in previous sections. Therefore, it is only necessary to compare rate data at fixed 

temperatures and NaB02 concentrations. Figure 6 shows the dependence of reaction rate on NaOH 

concentr~~6ns at 20°C and 40°C. 

4.5 

• • • • • • • • 22- • • • • • • • • • 
4.0 • 

20- • 
:;:;- • • .. • • • u • • ... ... 
Cl +; .. 16 ... ... ... 

3.5 ... u ... 
CN.OH = 0.28% .. • ;!g 

E 16- • CNoOH = 0.43% 
-; .. 3.0 ... ... ... ... ... ... CNaOH = 2.8% ... ... ... 

14- , 
CNaOH = 9·2% 

" " " " " " " 2.5 

" " " " " " 12 

" 20'C 40'C 
2.0 10 

' 0.2 0.4 0.6 0.6 0.2. 0.4 0.6 0.6 

mN,eo, (mol/kg) 

Figure 6 Reaction rate versus molality ofNaB02 at 20°C and 40°C for various NaOH concentrations. 

At both temperatures, with the increase of NaOH concentration, reaction rate decreased rapidly. For 

example, at 20°C, the hydrogen generation rate decreased from 4.3 rnlfsecgcat at a NaOH concentration 

of 0.28% to about 2.3 mllsec g cat when the concentration of NaOH in6rell~edio 9.2%. However, at a 

specific temperature, the reaction rate changed within a very small range in the presence of NaOH when 

compared with the rate in the absence of NaOH, which is shown in Figure 5. In the ~bsence of NaOH, ._.,. 
. , ... 

the pH value of the NaB02 solution changes significantly, moving from neutral (pH "=' 7) tb strongly 

basic (pH= 12.5 according to the equilibrium B(OH)4- = H3B03 +OH-, K = 1.73 x 10-5
). The pH of the 

solution does not change significantly in the presence of NaOH due to the high concentration of Olf. 

Since the basicity of the solution is stable in the presence of NaOH, it is consistent with the previous 

conclusion that the reaction is zero-order with respect to the concentration of NaBH4. 
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3.4 Intrinsic rate expression 

Since the reaction rate is zero order with respect to the concentration of NaBH4, NaBH4 should not be 

included in the rate expression. The rate is only related to the basicity of the solution and the reaction 

temperature. In order to obtain the relationship between the reaction rate and the basicity of the solution, 

the rate of hyclrogen generation 1H2 was plotted against pOH. Here pOH is defined as lnii[OHT As 

shown in Figure 7, 1"JJ2 and pOH had a linear relationship. The relationship between rH2 and pOH may 

thus be expressed byl!slng equation (3). 
;·.,, 

rH2 = A•pOH + B (3) 

The parameters A and B for the linear equations at various temperatures and residual square root are 

given in Table I. 
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4 ---
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Figure 7 1"JJ2 versus pOH and their linear regressions. 
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Table I The values of A and B of the regressed equations in Figure 7. 

Temperature (0C) A B Error (R) 

20 0.4619 2.8219 0.98 

25 0.7025 4.4118 0.99 

30 1.0532 6.7987 0.99 

35 1.5591 10.3340 0.98 

40 2.2781 15.5020 0.97 

It is shown clearly in Table 4 that both A and B change with temperature. They were regressed using 

an exponential equation. Th7 final rate equation is given by equation ( 4 ). 

1'H2 = 0.0949e0
·
0798

T pOH + 0.5238e0
·
085

T (4) 

Equation (4) is the final rate expression for the hydrolysis of NaBH4 in the presence of a carbon 

supported ruthenium catalyst. It is dependent on the basicity of the solution and the reaction 

temperature. The basicity is measured by pOH: Since pOH is the negative logarithm of the OH' ion 

concentration, the rate of hydrogen generation decreases with an increase in OH' concentration. At the 

present stage, the physical meaning of the parameters A and B is not clear. However, they both change 

with temperature exponentially. This is reasonable for a chemical reaction. Since B increases more 

rapidly than A, the rate of hydrogen generation increases rapidly with an increase in temperature. 

The reason for this complicated dependence on temperature maybe dt!e to the reaction mechanism. 

The hydrolysis of NaBH4 for releasing hydrogen must have involved the intermediate of H+. When the 

basicity of the aqueous solution varies, the activation energy and the pre-exponential factor for the 

Arrhenius form rate equation may also change. 

4. Conclusions 

The intrinsic kinetics for the hydrolysis of NaBH4 over ruthenium on carbon catalys~ has.been 

investigated in this paper. Since NaBH4 can be hydrolysed rapidly at higher temperatures even in the 

absence of a catalyst, the traditional design for obtaining isothermal rate data will not work well by 

minimising contact time between catalyst and NaBH4 solution. A new method for data analysis has been 
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established in this research for obtaining isothermal rate data through non-isothermal reactions. The 

method was then applied to get isothermal rate data. The following conclusions can be drawn: 

• When catalyst particle size reduced to less than 0.049 mm, internal mass transfer limitation can 

be neglected. 

• The hydrolysis of NaB H. over ruthenium catalyst is zero-order to NaBH4 concentration. 

• The reaction rate depends strongly on the basicity of the solution. This may be due to the 

existence. of acid intermediates in the reaction. It also strongly depends on reaction 

temperature. • 
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Abstract 

The hydrolysis of sodium borohydride over carbon supported ruthenium catalyst has been shown an 

effective route for on-board hydrogen generation. After obtalnl~~ the intrinsic kinetics in the previous 
.:'•,,, ··', 

work, mass transfer and heat effect was taken account in this 'pap~r. Effective diffusivity of sodium 

borohydride aqueous solution in catalyst particles was measured experimentally. The effectiveness 

factor was then correlated with temperature and NaB02 concentration. No~-iosthermal hydrolysis of 

sodium borohydride was calculated using the model by incorporation of mass and heat effects into 

intrinsic kinetic equation. Good agreements were achieved between model and experimel:\\al results. 

Keywords 

Sodium borohydride, overall kinetics, hydrolysis, ruthenium, effectiveness factor 
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1. Introduction 

The hydrolysis of NaBH. over ruthenium catalyst is a promising way for on-board hydrogen 

generation. In the previous paper, 1 intrinsic kinetics for the hydrolysis was obtained. In practice, catalyst 

particles are of significant size in order to avoid large pressure drops. Strong diffusion limitations occur 

when the catalyst particle size is at the level of practical accessibility . 
.. ,._, .. ,;. ,, 

The hydroi~sis o,f, I:"aBH4 is a strong exothermic reaction. About 285 kJ heat was generated for 

hydrolysis of one ~o1~?·3 The heat generated, if not removed effectively, will increase the reaction 

temperature. The increasein reaction temperature will lead to an increase in reaction rate. When the 

reaction temperature increases tp to the boiling point of the solution, water will be evaporated, leading 
.. "- '•\; 

to the increase of NaB02 conc~ntratlon. The increase in its concentration results in a higher basicity of 

the reaction system, which will slow down the reaction rate. For calculation of the hydrogen generation, 

the heat effect must be taken into account. 

The aim of this paper is to model hydrogen. generation from NaBH4-H20 system when large catalyst 

particles are used. In the modeling, the mass trillisfer. limitations and heat effect are built into the 

intrinsic kinetic equation. Non-isothermal reaction was then calculated using the model since it can 

reduce system complexity by controlling the system temperature. 

2. Model construction ·; :·. 

2.1 Effectiveness factor 

The hydrolysis of NaBH4 over ruthenium catalyst is a zero-order rea~tlon. The intrinsic kinetics is 

given by equation (1), which was obtained by investigating reaction rate over very fine catalyst particle 

size in which the mass and heat transfer effects have been removed. 

rH2 = 0.0949e0
·
0798

T pOH + 0.5238e0
·
085

T (I) 

where rH2 is hydrogen generation rate, T is the temperature and pOH is defined as the negative logarithm 

of oH· concentration. When the size of catalyst particles is increased, internal mass transfer is rio longer 

negligible. This is taken into account by using an effectiveness factor 11· the ratio of actual to intrinsic 
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reaction rates. Effectiveness factor is often correlated with Thiele modulus. For a zero-order reaction, 

the Thiele modulus ~is defined by equation (2).4 

1/J=L~ vw:c: (2) 

were k" i{~(reaction rate constant based on the volume of total catalyst particles, D, is the effective 

diffusivity of reactant in the catalyst particles, L is the characteristic length of a catalyst particle and CAs 

is the surface concentration of the reactant on the catalyst particles. 

The rate data is often ba'sed on the weight of catalyst particles, which is related to k. by equation (3). 

(3) 

where k is the rate constant based onthe weight of catalyst, and p, is the density of the catalyst. In the 

case of strong diffusion limitation (~ > 4 or,11,< 0.25), effectiveness factor 11 and Thiele modulus have 

the relationship shown in equation (4).4 

1 
1]=-

1/J 
(4) 

Substitute equation (2) into equation (4) and L ,;, D/4for a cylindrical catalyst particle (D is the 
,, .. ·.c-·.:.:,. 

diameter of the cylinder), yielding 

(5) 

In the study, the volume of hydrogen is measured against time. Acc6rctillito the volume of hydrogen 
,_.. __ .. _ . .--.-: 

produced, the concentration of NaBH4 in the solution can be calculated; ~hich is regarded as the 

concentration of NaBH4 on the surface of catalyst particles CAs· D, can be measured experimentally. 

Therefore, effectiveness factor 11 is known. The actual hydrogen generation rate is the' product of 
" 

intrinsic rate and 11· Equation (6) can be used for the transformation of rate data in regard to hydrogen 

volume, to the rate data in regard to NaB~. 

dVH 
r - ' H,- dt (6) 
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where VH2 is the volume of hydrogen, nH2 is the moles of hydrogen, R is the universal gas constant, To is 

the room temperature, Po is the atmosphere pressure, t is reaction time, nNaBH4 is the moles of NaB~ 

when reaction time is t, and I'NaBH4 is the hydrolysis rate based on the change of NaB~. 

2.2 Calculation procedure for taking account of heat effect 

At the begiiming of the calculation the following data is input. 

To: ambient tempe~ature. 

P0: atmospheri~'pressure. 

t: time (initialised to be 0); 

dWNaBH4: differential amounfof NaB~ that reacts at each step. 

wNaoH: NaOH concentration(\Vt%). 

W H,o : initial mass of water (g). 

WNaBH, : initial mass of NaBH4 (g). 

Initial molality of NaB~ is calculated using equation (7). 

mNaBH4 

Heat generated when dWNaBH4 reacts is calculated using equatiori (8) 

dW Q = NaBH4 Mf 
37.84 

(7) 

(8) 

where M/ is the enthalpy change of the hydrolysis reaction of NaBH4, whk6js,285 kJ mor1
. Heat loss 

Q' in dt is calculated using equation (9). 

Q' = KS1'1T,, (9) 

where K is the overall heat transfer coefficient from the reactor to environment, S is the total heat 

transfer area and 1'1Trn is the average temperature difference between environment and the reactor. 

Temperature change of the solution is calculated using equation (10) 

(10) 
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where Cp is the heat capacity of the solution. The temperature of the solution is calculated using equation 

(11) 

T =T + f>.T (11) 
'' 

If T is greater than boiling point of the solution, T is given the value of the boiling point and the heat 

Q is in itsentirety used to evaporate water, which is calculated using equation (12). 

Q f>.WH o =--.··.···. 
' Ml .·.' 

"' 
(12) 

where Ml ovp is the en\halpy change of water evaporation. The water remaining in the system after 
.• 

dWNaBH4 is obtained by equation (13) 

(13) 

The hydrogen that is generated when dWNaBH4 has reacted is calculated using equation (14). 

4~W 
/!,.V = N.SH, RT. I P. 

H, 37.84 O O 
(14) 

The by-product NaB02 that is produced when dWNaBH4 has reacted is calculated using equation (15) 

dWNaBO, = (dWNaBH, /37.84)x66.22 (15) 

where 66.22 is the molecular weight of NaB02, and 37.84 is the molecular weight of NaBH4. The 

concentration ofNaB02 in the system is calculated using equation (16) 

W NaBO /66.22 
m - __:="-'---Naso, - W 

H20 

.• (16) 

.·.·: 

where WNaBo, is the accumulated amount of NaB02 in the solution. Equation (!7) is used to calculate 

the OH" concentration in the solution after obtaining the concentration of NaB02• 

_ - (mNaOH + K) + ~(mNaOH + K)
2 

+ 4KmNaBO, 
[OH ]= 

2 
+mNaOH (17) 

where [OH"] is the concentration of OH- in the solution, and K is the equilibrium constant for the BOi 

ions in water (B(OH)4"): B(OH)4- = H3B03 +OH-. K = 1.74 x 10·5• pOH can be then calculated by using 

the definition: pOH = -ln[OH"]. 
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Intrinsic reaction rate is calculated using equation (1). Actual reaction rates can then be calculated 

using equation (18). 

(18) 

where Wcat is the mass of catalyst. The reaction rate in terms of NaB fit is calculated using equation (6). 

The time dt needed to reacting dWNaBH4 can be then calculated using equation (19). 

dt 
dWNaBH4 

rNaBH, (real). 
(19) 

The calculation is contiiuied until the amount of NaB fit left is less than 0.1% of the initial amount. 

3. Experimental section 

3.2 Materials 

The catalyst ruthenium supported oi1 carbon was purchased from Johnson Mattwey. The original size 

was 3 mm x $2 mm. Sodium borohydrid# \-vas 'purchased from Sigma-Aldrich, which had a purity of 

98%. It was used without any further purificati?ri. For measurement of diffusivity, the catalyst was 

grounded using mortar and pestle and sieved into an average size of 0.049 mm. 

3.1 Measurement of effective diffusivity 

The effectiveness factor 11 was measured using the rate datafql' ~mm cylindrical catalyst particles and 

0.049 mm catalyst particles in which diffusion limitations is notsigrilficant. The effective diffusivity De 
'-.' 

was calculated using equation (20), which is obtained by re-arrangi~g~~uatlon (6). 

(20) 

3.2 Measurement of hydrogen generation rate 

Hydrogen generation rate was measured using water replacement method. The rig wafdescribed in 

detail in the previous paper.' For non-isotheral hydrogen generation, the reaction flask w~; placed in air. 

Hydrogen volume was then measured against time. 
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4. Results and discussion 

4.1 Effective diffusivity 

The measured effective diffusivity with the change of temperature and the molality of NaB02 is 

shown in Figure 1. D. depends both on the molality of NaB02 and temperature. At fixed molality of 

NaB02, D~ increased rapidly with temperature. At a molality of mNaso2 of 0.25 mol/kg, D. increased 

from 3.65 X io·IO m2/s to 35.8 X 10"10 m2/s when the temperature increased from 25°C to 75°C. At a 

lower temperature, D. decreased rapidly with the increase of the molality of NaB02 at first and then 

leveled off with a further increase of the concentration. The reason for this may be due to the blockage 

of catalyst pores. NaB02 was saturated in the vicinity of the reaction site on the surface of the catalyst's 

pores. When the temperature becarrie higher, De did not change significantly with the increase of the 

molality of NaBOz. At higher temperature, dissolution process became faster, and hence local NaB02 

may not be saturated as it produced. This resulted in a constant De regardless of the change of the 

molality ofNaB02 when the temperature was 75°C . 

.. .. .. 
35 .. .. .. 
30 

25°C, 35°C, 45°C • • ... 
25 .. 55°C, <C 65°C, .. 

<C 
~ <4 

"' 20 .. -E 
~ , <C <4 • 15 
c .. 

10 ... ... .. • .. .. , 
5 • ... • • • ... ... ... ... 

• I I I I 0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

mNaeo, ( moVkg) 

Figure 1. Effective diffusivity versus the molality of NaB02 and temperature. 

The dependence of D. on temperature can be described using equation (21). 

D =D e-EIRT 
e eO (21) 
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where D,0 is the pre-exponential factor, and E is the activation energy for diffusion. Take the logarithm 

of both sides, yielding 

E 
lnD, =lnD,0 - RT (22) 

lnD, was plotted against liT at various NaBOz concentrations as shown in Figure 2. It can be seen that 

a good linear relationship between lnD, and liT was obtained, indicating the applicability of equation 

(21). The EIR and!nD,0values in equation (22) derived from Figure 2 are listed in Table I. 

For the convenience ~f calculation, the data in Table I were fitted using an index function. The 

resulting equations are giveri iti equations (23) and (24) respectively. The choice of index was due to the 

characteristics of chemical reactions. 

E I R = 10770.5-8196.3 X 0.40mN,802 

lnD,0 =12.0-23.9x0.42mN""02 

-12 

0~ ~14 

.5 

-16 

0.0028 0.0029 0.0030 0.0031 

1fT (K1
) 

• 0.25 
• 0.50 
.. 1.0 

mNBB0
1 

=:_,·' Y 1.5 

0.0032 

.. 2.0 

.. 2.5 
2.75 

• 3.0 

0.0033 0.0034 

Figure 21nD, versus liT at various NaB02 concentrations. 
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Table 1 Parameters for diffusion equation obtained from Figure 1. 

mNaB02 (mol/kg) iEtR nD,o Regression Residue 

0.25 ~740.1 1.7689 1.0 
'· . 

0.5 . . · · .. 5472.1 3.8386 1.0 
··•'·. 

1 ' : 5669.2 5.7944 1.0 

' 1.5 19604 15.779 1.0 
·', 

2 11494 21.606 1.0 

2.5 10032 16.999 1.0 
'·,,• 

2.75 9089:1. ·, ... 14.187 1.0 

~ 9812.8 
.< < 

16.717 1.0 

....... 

4.2 Modelling of the generation of hydroge11, 

Figure 3 shows the comparison betweel1 experimental hydrogen generation from the non-isothermal 

generation of hydrogen and model calculation; ,The reaction was conducted in a round-bottom flask in 

air. Hence the heat loss is due to mainly the heat tral1sfer from the reactor wall to the air. The overall 

heat transfer coefficient from the reaction to the air wa~· estimated to be about 6.6 W/(m2 K).5
"
7 In th~ 

experiment, hydrogen generation was finished within 150 second~Jrom the 10% NaBH4 solution. It was 

in quite agreement with the model estimation of 160 seconds. As c~'be seen from Figure 3, both of the 

hydrolysis curves had an inflexion point at around 80 seconds (about40'J'9 of NaBH! was consumed), 
~. ' ' ' ! • 

which indicated the maximum hydrogen generation rate. The reason for the auto-acceleration was due to 

the maximum temperature at this point. The temperature began to increase resulting from retained heat, 

since this was not dispersed to the air around the fast at a sufficient rate. When the t~mperature reached 

the maximum, heat loss rate reached the maximum too due to the maximum temperature difference 

between reactor wall and surrounding air. With the increase of NaB02 concentration, rea:.~~on rate 

decreased, leading to the decrease of reaction temperature. The model predicted both the overall 

hydrolysis time and the maximum hydrolysis rate. This supported the validity of the model. 
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Figure 3 Comparison betwe6n ~xperimental and model prediction for a non-isothermal reaction. NaOH 

= 0, catalyst= 3g with a particle size of 2 mm x 3 mm, NaBH4 = l.Og in I Og of water. 

5. Conclusions 

In this paper, heat and mass transfer were built into the intrinsic rate expression through the use of the 

Thiele modulus. The effective diffusivity of NaBH4 in, catalyst pores was experimentally measured. The 

model was then validated through both isothermal and non-isothermal hydrolysis of NaB~. From the 

study, the following conclusions can be reached: 

• When large catalyst particles are used, strong cliffusion limitation is observed for the 
,., 

hydrolysis of NaBH4, which can be seen from the very Jo\'ii'effl,~iency factor that was obtained 

experimentally. 

• The effective diffusivity of NaBH4 in catalyst pores depends on bbth the temperature and the 

concentration of NaB02• The dependence on the latter may be due to local saturation of 

NaB02 in the vicinity of active sites of the catalyst surface. 

• In the region of diffusion limitation, reaction order to NaBH4 is not zero-order. The niaction 

rate decreases rapidly with a decrease in NaBH4 concentration. 

• After combining intrinsic kinetics with diffusion limitation, heat generation and water 

evaporation, the model can be used to predict hydrogen generation from the hydrolysis of 
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NaBIL,. The validation of the model has been performed for both isothermal and non­

isothermal hydrolysis. 
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Generation of hydrogen via the hydrolysis of sodium borohydride (NaB~) solution in the presence of 
metal catalysts is a promising method for hydrogen storage. The concentration of Nab~ should be as high as 
possible in order to improve energy density. On the other hand, NaB02 is produced after the hydrolysis of 
NaBH.s. When the NaBHt concentration is high enough, NaB02 will precipitate from the solution, which 
would block the active sites of the catalysts and bring about the complexity of solution transportation. This 
paper addressed the issue through thermodynamic modeling. A mathematical model was derived first using 
the equality of chemical potential of the solute in solution and in its solid state. The parameters in the model 
were determined using phase-diagram analysis and hydration analysis of the NaB!-4-NaOH-H20 and NaB02-
NaOH-H20 systems. The optimal concentration of NaBI-4 in the hydrogen-generation system was then 
calculated and a comparison of the modeling results with experimental data, which were in good agreement, 
was given. 

1. Introduction 

Interest in hydrogen as a fuel has grown dramatically, and 
many advances in hydrogen production and utilization technolo-­
gies have been made. However, hydrogen-storage technologies 
must be significantly advanced if a hydrogen-based energy 
system, particularly in the transportation sector, is to be 
established. At the present time, the main obstacle in the way 
of transition to a hydrogen economy is the absence of a practical 
means for hydrogen storage. For years, the goal of researchers 
has been to develop a high-density hydrogen-storage system 
that can release hydrogen at temperatures lower than 100 °C. 
A hydrogen economy will flourish when adequate storage 
technology exists, allowing people to tap and trade regional, 
renewable power sources. This cache of stored energy will offer 
viability to the fulJ range of local and global renewable energy 
sources. 

For a hydrogen-storage system to be put into practical use, 
the energy density must reach a high level. For example, U.S. 
Department of Energy recommended that an energy density of 
6.5% and 62 kg m-3 must be achieved in order for a hydrogen­
storage system to be the appropriate weight and size to facilitate 
a fuel-cell vehicle driving a distance of 560 km. Storing 
hydrogen is somewhat difficult because of its low density and 
low critical temperature. Currently, there are a number of 
technologies available for hydrogen storage, such as high­
pressure cylinder, liquification, adsorption on high surface 
carbon materials, and metal hydrides. 

It is believed that metal hydrides are a safe and promising 
way to store hydrogen. Various metal hydrides have been used 
via direct pyrolysis or hydrolysis methods. In the area of 
pyrolysis, LiBI-4 and NaAl!-4 have attracted great attention. I 
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The temperature for pyrolysis is still too high for practical usage 
in the transportation sector, whereas the hydrolysis route is safer 
and easier to handle. In this respect. NaB~ has been extensively 
studied, as shown in Scheme 1. The only byproduct, sodium 
metaborate, is water soluble and environmentally benign. The 
reaction is very fast in the presence of a catalyst, and there is 
no need to supply external heat for the reaction to occur. It is 
reported that Millennium Cell has designed a portable hydrogen­
gas generator using an aqueous borohydride solution. 2 Looking 
for efficient catalysts for the hydrolysis is an aspect of the use 
of the NaB~i< hydrolysis system.'-' 

The concentration of NaB~ in the hydrolysis system is an 
important issue for practical usage. To improve the energy 
density of the system, the concentration of NaBI-4 should be 
as high as possible. However, when the concentration is too 
high, the byproduct sodium metaborate precipitates from the 
solution, which blocks the active sites of the catalyst and thus 
reduces the life of the catalyst. Precipitation of the byproduct 
would also bring about problems in solution transportation, such 
as blockage of the piping system. However, little attention has 
been paid to NaBR4 concentration for hydrogen generation. 

In a previous paper,' NaBH! concentration was studied and 
optimized in the case of neat solution through thennodynamic 
modeling. In practice, 1-10% NaOH is used to stabilize the 
solution.s-to In this paper, thermodynamic modeling is used to 
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Scheme 1. Hydrolysis Reaction of Sodium Borohydride 
NaBli4 + 2H20 ~ NaB02 + 4H2 

optimize the concentration of NaB~ in the presence of NaOH. 
The modeling results are then compared with experimental data. 

2. Thennodynamic Model for A Three-Component 
Solution 

When solute B is dissolved into water in the presenCe of a third 
component A, that is, solute B is dissolved in A's solution, the 
chemical potential of B in the solution is equal to the chemical 
potential in its solid state in equilibrium, considering that the 
solution of A is the environment. 

For an electrolyte Av+Bv_, where V+ is the number of cations 
and V- is the number of anions, the chemical potential for the 
electrolyte in its aqueous solution can be expressed using eq 1. 

(1) 

where the standard chemical potential p,0 of the electrolyte is the 
chemical potential in a solution of unit activity on the molality scale, 
R is the universal gas constant (8.314 J mol-1 K-1), T is the 
temperature (K), and the mean ionic molality m± and mean ionic 
activity coefficient Y± are defined as 

m± = (m~+m~-i'v± = m(v~+v~:")11v± 

r ± = {y~+y~-)1/v± 

V±= V++ V_ 

(2) 

(3) 

(4) 

On the basis of the equality of the chemical potential of a species 
in solution and in the solid state, we obtain eq 5. 

(5) 

where ,u~(s) is the chemical potential of solute B in its solid state 
and r~.B is the mean activity coefficient of B in A's solution. 
Rearranging eq 5 gives 

In Y~.B (6) 

The difference of the chemical potentials in eq 6 is the molar Gibbs 
energy change of the solute from its solid state to the unit activity 
in its solution on a molality scale. which is further related to other 
thermodynamic functions. 

~~~.B = ,U~ - .u;(s) = ~Jf,,,B - T~~~.B (7) 

where 6~1 •8, AJf,11,8 , and ~,,8 are the molar Gibbs energy 
change, molar enthalpy change, and molar entropy change of B 
for the dissolution of one mole of solid-state solute to unit activity 
in solution, respectively. Substituting eq 7 into eq 6 gives the 
relationship between solubility and temperature. 

t,_fl?,,,B ~~1,8 
In m ±.B =- vJ?_T + v±R - ln r'±.B (8) 

For both NaBI-4 and NaB02, V±= 2. When this value is substituted 
into eq 8, the relationship between the solubility of NaB~ and 
NaB02 in NaOH solution is obtained. 

(9) Suda, S.; Sun, Y.·M.; Liu, B.-H. Appl. Phys. A: Mater. Sci. Process. 
2001, 72, 209-212. 

(10)Hua, D.; Hanxi, Y.; Xinping, A.; Chuansin, C.lnt. J. Hydrogen 
Energy 2003, 28, 1095-1100. 
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Mf,,B .6~1B 
ln m ~.• = 2RT + 2R - ln Yu (9) 

When NaOH is not present, the activity coefficient of NaBI-4 and 
NaB02, Y±,B• can be considered as being constant with temperature 
in its saturated solution? However, it is shown in the following 
section that the activity coefficient of NaB~ and NaB02 in the 
presence of NaOH, y' ± B' is not constant when temperature 
changes. This may be due io the fact that the effective water needed 
to dissolve the salts in NaOH solution is affected significantly by 
the temperature because of the interactions between N aOH ions 
with the noneffective water. 11 To determine the parameters, we 
modified eq 9 by adding -In Y±,B to both sides. 

AH,:,,B A~,,B , 
lnm±,B -In Y±.B =- 2RT + 2RT -In r ±,B-In Y±.B 

(10) 

Rearranging eq 9 gives 

Y~ B ~if,, B (~.~'.:, B ) 
In m±.s + In-· = - ZRT + 2Rj. - In y ±.a 

Y±,B 
(11) 

Because AI.t,:,,8 and .6.~1•8 can be considered as being constant 
when the temperature range is not large. the left-hand side of eq 
11 and liT have a linear relationship. The parameters can be 
determined by plotting In m±,B + ln(Y~.B/y ±,B) against liT at 
several known solubilities. The ratio of the activity coefficient in 
the presence of NaOH, r~.B• to the activity coefficient in the 
absence of NaOH, 'Y±,B• can be calculated using the hydration 
analysis method.ll-13 Hence, the solubility of the salts at any 
temperatures can be calculated using eq 11 after obtaining the 
parameters. 

3. Solubility Data of NaBJL,and NaBOz in NaOH 
Aqueous Solutions 

3.1. Solubility Data for NaBJL, in NaOH Aqueous Solo· 
tions. The solubilities for NaBH4 in NaOH aqueous solutions 
are not available directly in the literature. However, the phase 
diagram of the NaB~-NaOH-H20 system is available.14 For 
the convenience of calculation, the triangle phase diagram in 
the literature is transformed into a rectangular phase diagram, 
as shown in Figure 1. 

For different temperatures, the solubility line consists of 
smooth parts and inflection points. In the smooth part, one 
crystalline form coexists with solution. A different smooth part 
has a different crystalline form. At the inflection point between 
two of the smooth parts, the two different crystalline forms 
coexist with the solution. The inflection point between the two 
smooth parts is called the invariant point, because the composi­
tion and temperature are fixed. For example, at invariant point 
I in Figure I, crystalline states NaBif4·2H20 and NaB~ coexist 
with NaBlf4 in NaOH aqueous solutions. The temperature of 
the invariant point is 0 °C. The composition is 22.5% NaOH, 
22.3% NaBH4, and 55.2% water. There are seven invariant 
points in total, as shown by points 1-7 in the figure. 

The line for 0 °C, line a, is divided into three parts by 
invariant points I and 2. Before point 1, the solution is saturated 
with the crystalline state NaBlk2H,O. At point l, crystalline 
states NaBH4·2H20 and NaB~ exist simultaneously. With the 
increase in NaOH concentration, the crystalline state becomes 

(11) Eysseltova, J. Colt. Czech. Chem. Commun. 1994, 59, 2351-2356. 
(12)Eysseltova, J. Coli. Czech. Chem Commun. 1994,59, 126-137. 
(13)Nyvlt, J.; Eysseltova, J. Call. Czech. Chem. Commun. 1994, 59, 

1911-1921. 
(14) Gmelins, L. Handb. Anorg. Chem. 1974, 21. 
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Figure 1. Phase diagram for the NaBH!-NaOH-H20 system at (a) 
0, (b) 18, (c) 30, and (d) 50 'C. 

NaB~. NaOH arrives at its saturated state at point 2 and 
precipitates together with NaBH4 in the state of hydrated crystal 
Na0H·H20. After point 2, NaBH. is no longer saturated, and 
the solution saturated with NaOH has NaOH·HzO as the 
equilibrium solid state until no NaBH4 exists in the system. 

At 18 and 30 °C, the situations are similar to that at 0 °C 
except for the invariant point compositions. At 50 °C, there is 
on1y one invariant point, point 7. Before point 7, the solution 
coexists with the crystalline state NaBlf4. After point 7, the 
solution coexists with the crystalline state NaOH•HzO. At point 
7, the solution coexists with the two crystalline states NaOH· 
H,O and NaBH.. 

To do the calculation. we regressed the smooth parts in Figure 
1 at each temperature to mathematical equations. 

3.2. Solubility Data for NaBO, in NaOH Aqueous Solu· 
tions. There are no systematic solubility data available for the 
NaB02-NaOH-H20 ternary system. However. the phase 
diagram for the Na20-B203-H20 system is available in the 
literature.15 The solubility data for NaB02-NaOH-H20 system 
can be achieved from this phase diagram when the ratioofNa20 
to B20 3 equals 1:1 using eqs 12 and 13. 

(12) 

(13) 

where MNaso2 and MNaOH are the molecular masses of NaB02 
and NaOH. respectively. The obtained phase diagram is shown 
in Figure 2. The interpretation of Figure 2 is the same as that 
for Figure 1. The phase diagram was then regressed using 
mathematical equations in order to perform calculations. 

4. Hydration Analysis for 1'~,8/y±,B 

The hydration analysis method is used to calculate Y~.8/y ±.B· 
Hydration analysis is a method of analyzing the solubility data 
to explain the ionic processes in a ternary saturated solu-

(15) Melior, J. W. Supplement to Melior's Comprehensive Treatise on 
Inorganic and 17Jeoretical Chemistry; Longman: London, 1980; Vol. 5, 
Boron-Oxygen Compounds. 
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Figure 2. Phase diagram for the NaB02-NaOH-H20 system at (e) 
30, (I) 45, (g) 56, (h) 60, (i) 64, Q) 80, and (k) I 00 'C. 
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tion.I1,12.16 Detailed methods can be found in the literature. 
Equation 14 is used to calculate the ratio. 

(14) 

where XH2o is the mole fraction of water in solution, and P is 

(16) Stokes, R. H.; Robinson, R. A. J. Am. Chem. Soc. 1948, 70, 1870-
1878. 
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Figure 5. Relationship between In m8 and (1/1) for NaBI-L in NaOH solution. 

given by eq 15. 

(15) 

where nH2o is the number of moles of water in solution, nNaB is 
the number of moles of NaB~ or NaB(h in solution, and nNaOH 
is the number of moles of NaOH in solution. 

In the phase diagram for NaBH.,-NaOH-HzO or NaBO,­
NaOH-H20, each NaOH concentration corresponds to a NaB~ 
or N aB02 concentration for a specific temperature. The weight 
percentage of water is 100% minus the sum of the NaB~ or 
NaB02 concentration and NaOH concentration. The values of 
nH!C• nNaa. and nNaOH in eq 15 can thus be calculated. The values 
of n~ 0 and n~aB can be obtained by setting WNaOH = 0. The 
ratio tit y~.BIY±.B is calculated using eq 14 and is shown in 
Figures 3 and 4 for NaBH., and NaBOz, respectively. 

5. Determination of Model Parameters 

After obtaining the mathematical forms for NaB~ solubility 
in NaOH solution and Y~.8/y±,B for the NaBH.,-NaOH-HzO 
system, we can calculate the parameters for NaBI-4 in eq 11 
by plotting In m±.B + ln(Y±.siY±,B) against 1/T. The param­
eters for NaB02 in eq 11 can be obtained in a similar way. 
Linearity was achieved when plotting In m±.B + ln(r~.alY±,s) 
against (1/1), as shown in Figures 5 and 6 for NaBii4 and 
NaB02, respectively. 

In Figures 5 and 6, the slope of the line represents 
-(t:J//,,,8/2R7) and the intercept represents (A1;,,,8/2R) - In 
Y±,B· The values of ~.B and Cl:l.S':n.a12R) - In Y± at various 
NaOH concentrations are calculated as shown in Tables 1 and 
2 for NaBH., and NaBOz, respectively. 

As shown in Tables 1 and 2, the values are very close. This 
is reasonable, because the change is from solid state of the salts 

to 1 mol kg-1 of its solution without the presence of NaOH. 
Substituting the parameters into eq 10, gives 

for NaBH, 

for NaBOz. 

I +] Y~.B=_1920.2+ 93 nm;~;,B n T . 
Y±.B 

(16) 

It should be noted that in order to get the relationship between 
ma and T from eqs 16 and 17, the presence of common ions 
must be considered when calculating the mean activity coef~ 
ficient of mixed electrolytes.J7 In both NaBRJ-NaOH-H20 
and NaB02-NaOH-H20. the common ion is Na+. The mean 
activity coefficient m± is calculated using eq 18. 

where mNaB represents the molality of NaB~ or NaB02, mNa• 
is the molality of sodium ion, m8 - is the molality of BH4- ion 
or B02-. and mNaOH is the molality of NaOH. 

To get the relationship between m8 and Tat a specific NaOH 
concentration, the value of r~.8/y ±,B must be determined at the 
NaOH concentration. As shown in Figures 3 and 4, the value 
has a range with the temperature. In this work, the average value 
was taken and then plotted against NaOH concentration to 
regress into mathematical equations so that the value of 

(17) Alberty, S. Physical Chemistry, 3rd ed.; John Wiley & Sons: New 
York, 2001. 
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Figure 6. Relationship between In m8 and (111) for NaB02 in NaOH solution. 

Table 1. Values of the Parameters for NaBH. at Various NaOH 
Concentrations 

WNaOH Ml.n.NaBH /2R (K-l) dS,:,_NoBH I2R - In y~ 
M?,,,Nd\H) 
(kJ mol-1 

0 1935.6 9.3275 32.2 
1 1886.9 9.1485 31.4 
5 1890.2 9.1581 31.4 
10 1910.4 9.2237 31.8 
15 1954.6 9.3755 32.6 
20 1943.3 9.3534 32.2 
average 1920.2 9.2645 32.0 

Table 2. Values of the Parameters for NaB02 at Various NaOH 
Concentrations 

0 3007.2 
I 3006.8 
5 2997.9 
7.5 3009.9 
10 3012.0 
15 3021.9 
20 3026.6 
25 2985.5 
average 3008.5 

11.66 
11.659 
11.635 
11.661 
11.664 
11.687 
11.7 
11.582 
11.656 

Mt.:..NoBO. 

50.0 
50.0 
49.8 
50.0 
50.1 
50.2 
50.3 
49.6 
50.0 

Y~.aiY±,a can be estimated at any NaOH concentration. The 
regressed equations are given as eqs 19 and 20. 

y;,Jy± = 0.97 (19) 

y;,Jy± = -0.Q015w~,OH + 0.07wN,OH + J.O (20) 

where WNaOH is the weight percentage of NaOH in NaB~ 
aqueous solution. 

6. Optimization of NaB~ Concentration 

The solubility of NaBH., in NaOH solution can be obtained 
by simultaneously solving eqs 15, 18, and 19; the solubility of 
NaB02 in NaOH solution can be obtained by simultaneously 
solving eqs 17, 18, and 20. The amount of water (g) contained 
in the saturated solution containing 1 mole of NaB~ is 
calculated using eq 21. 

(21) 

The amount of water (g) contained in the saturated solution 
containing I mole of NaB02 or the weight of water needed to 
dissolve 1 mole of NaB02 is calculated using eq 22. 

(22) 

The amount of water (g) needed to react with 1 mole of NaB~ 
is calculated using eq 23. 

W3 =4MHo 
' 

(23) 

The maximum concentration of NaB~ in the hydrolysis system 
is determined by the maximum value between W1 and (W2 + 
w,). 

The comparison between W1 and (W2 + W3) was calculated 
and is shown in Figure 7. 
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Jt can be seen that the amount of water needed to dissolve 1 
mole of NaB02 and to react with 1 mole of NaB~ is much 
greater than that in the saturated NaBii4 solution. Therefore, 
the maximum concentration of NaB~ in the hydrolysis system 
is detennined by (Wz + W,). The amount of NaOH (g) in the 
solution containing 1 mole of NaBii4 is 

where WNaOH is the weight percentage of NaOH. Equation 24 
is transformed into eq 25 in order to calculate the maximum 
concentration of NaBI-i4 w (wt %). 

The maximum concentration of NaB~ calculated using eq 25 

28 

26 

24 

~ 22 
~ 0 

! 20 • 
"'" 

18 
m • • 16 
~z 

14 --calculation result wN.oH=1% • 12 • -- experiment data WNaOH=S% 
10 • calculation result wN•OH=1% • 8 

experiment data WNJOH=5% • • 
20 40 60 80 100 120 140 

Temperature('C) 
Figure 9. Comparison between the calculated and experimental 
concentrations of NaBH4 when sodium metaborate is deposited from 
the system. 

is shown in Figure 8 for various NaOH concentrations. It can 
be seen that the maximum concentration increases with an 
increase in temperature but decreases with an increase in NaOH 
concentration. 

7. Comparison of the Modeling Results with 
Experimental Data 

The NaBii4 concentration at which NaB02 precipitates from 
the hydrolysis system was measured experimentally. A series 
of NaB!4 solutions were prepared in 5 rnL glass vials (the 
NaBH., powder was purchased from Aldrich). The liquid level 
was then marked. To accelerate its hydrolysis, we put a small 
amount of catalyst into the solutions and conducted the reaction 
at an elevated temperature (the catalyst was ruthenium supported 
on carbon, which was purchased from Johnson Matthew Ltd.). 
After the reaction was finished (no hydrogen coming out), some 
water was added to the marked level of the vials, and the glass 
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vials were then sealed and put into an oven at a predetermined 
temperature. After 24 h, the glass vials were examined visually 
to see the precipitate from the solution. The minimum solution 
concentration that had precipitate was considered to be the 
maximum concentration of NaBH4 solution at that temperature 
(the oven temperature). 

Solutions with 1 and 5% NaOH were used as the reaction 
medium. The experimentally measured concentrations at which 
NaB02 precipitated were plotted together with the rnodeling 
results, as shown in Figure 9, using temperature on the Celsius 
scale. The experimental results are in good agreement with the 
model predictions. 

Shang and Chen 

8. Conclusions 
A thermodynamic modeling method was adopted to calculate 

the maximum concentration of NaB~ in the presence ofNaOH 
and then experimentally validated for a hydrogen storage system. 
The maximum concentration of NaBI4 in the hydrolysis system 
is detennined by the amount of water needed to dissolve the 
byproduct NaB02 and react with NaB~, which increases with 
the increase in reaction temperature and decreases with the 
increase in NaOH concentration in the system. 
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The characteristics of hydrogen generation from concentrated sodium borohydride (NaBH.;) solutions were 
studied in this paper because of its potential application in hydrogen storage. The hydrolysis was conducted 
over a carbon-supported ruthenium catalyst. and the hydrogen generated was measured using a computer­
monitored water replacement method. The effects of the hydrolysis temperature, NaOH concentration, NaBH.t 
concentration, and the byproduct, sodium metaborate, on hydrogen generation behavior have been investigated. 
An empirical model was proposed to represent the hydrogen~generation rate. 

Introduction 

Sodium borohydride (NaB~) reacts with water to produce 
pure hydrogen and a byproduct, sodium borate. The advantages 
and benefits of hydrogen generation from this hydrolysis 
reaction are well-known. It is the least expensive metal hydride 
commercially available, and it is safe to use, handle, and store. 
It requires no or limited equipment investment for the system 
implementation of the reaction. The byproduct of the reaction 
is in the form of an aqueous solution; therefore, it is easy to be 
removed from the system. Also, the hydrogen-storage densities 
of the system with an optimized design can meet the technical 
target of 6% hydrogen capacity (mass %) set by U.S. Depart­
ment of Energy (DOE).1•2 NaB H. has thus been proposed to be 
an effective hydrogen~storage medium for a wide variety of 
applications in both distributed power generation and transporta~ 
tion applications. Recently, extensive research has been per­
formed using NaBI-4 aqueous solution for hydrogen supply, and 
the results have been reported by a number of publications.3- 7 

NaB~ solutions are unstable since the self~hydrolysis 
reactions can occur at low pH conditions. Such instabilities can 
be significantly improved if the pH of the solution is maintained 
above a level of 9.8 One of the most convenient methods for 
achieving such a pH level is to use sodium hydroxide, NaOH, 
as the solution stabilizer. When such a stabilized solution is 
used for hydrogen generation, a selected metal catalyst is needed 
to accelerate the reaction. 

• To whom correspondence should be addressed. E.-mail: 
y.shang @lboro.ac.uk. 
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To use NaB~ to generate hydrogen for power systems such 
as fuel cells, it is essential to control the rate of hydrogen 
evolution from its aqueous solutions. The reaction rate is affected 
by the hydrolysis temperature, NaOH concentration, NaBH, 
concentration, and the byproduct, sodium metaborate. The 
effects of the reaction temperature and NaB!-4 concentration 
have been studied elsewhere for dilute solutions.9- 11 However, 
few systematic reports have so far been found for the investiga~ 
tion of the effects of these factors on hydrogen generation from 
a concentrated NaBJ-4 solution. It is therefore the goal of this 
research to identify these effects. 

Kinetic Experimental Study 

Chemical Materials. The chemical materials used in this study 
were all of reagent grade and were supplied by Sigma Aldrich 
Company, Ltd. Both the sodium borohydride (NaBH4) powder and 
sodium metaborate (NaB02) powder have a purity of 98%. The 
ruthenium catalyst used to accelerate the hydrolysis of NaB~ was 
purchased from Johnson Matthew Ltd. It had 3% ruthenium 
supported on carbon and was in a pellet form with a diameter of 2 
mm. The stabilizer, NaOH, used in the NaB~ solution was supplied 
by Sigma A1drich Company, Ltd. It had a purity of 99.998%. 

Hydrogen Generation. Figure 1 shows a schematic diagram of 
the experimental setup. The rig consists mainly of a three~port 
reactor (1), a water bath (3) that was used to adjust reaction 
temperature, a water replacement system (6) that was used to 
measure the volume of the hydrogen generated, and a replaced water 
measurement system (7 -9). 

There are three ports on the reactor. The left~hand port was 
equipped with a thermometer to continuously monitor the temper~ 
ature of the reactor. The right-hand port was used to guide the 
generated hydrogen gas into the to the water replacement system. 
The middle port was connected to the water addition funnel which 
contains I 0 mL of the reaction medium. 

(9) Davis, R. E.; Bromels, E.; Kibby, C. L. J. Am. Chem. Soc. 1962, 84, 
885-892. 

(10) Davis, R. E.; Swain, C. G. J. At7L Chem. Soc. 1960, 82 5949-
5950. 

(11) Kaufman, C. M. Catalytic Generation of Hydrogen from the 
Hydrolysis of Sodium Borohydride: Application in a Hydrogen/Oxygen Fuel 
Cell; Louisiana State University and Agricultural and Mechanical College: 
Baton Rouge, LA, 1981; p 166. 

10.1021/ef050380f CCC: $33.50 © 2006 American Chemical Society 
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Figure 1. Schematic diagram for the experimental setup. 

Table 1. Hydrogen Generation from NaBH.t Solution under Various Conditions 

NaBH4 
NaB~ molality temp NaOH 

run (g) (mollkg) ('C) (wt%) 

I 0.55 1.45 26 0 
2 0.75 1.98 26 0 
3 0.98 2.59 26 0 
4 1.14 3.01 26 0 
5 1.28 3.38 26 0 
6 1.70 4.49 26 0 
7 0.54 1.43 42 0 
8 0.96 2.54 42 0 
9 1.71 4.52 42 0 
10 2.00 5.29 42 0 
11 0.50 1.32 42 I 
12 1.01 2.67 42 I 
13 1.70 4.49 42 I 
14 2.00 5.28 42 I 
IS 0.48 121 60 I 
16 1.00 2.64 60 I 
17 1.29 3.41 60 I 
18 1.67 4.41 60 I 
19 0.50 1.32 42 5 
20 1.04 2.75 42 5 
21 1.70 4.49 42 5 
22 1.98 5.23 42 5 
23 0.53 1.40 60 5 
24 0.95 2.51 60 5 
25 1.29 3.41 60 5 
26 1.65 4.36 60 5 
27 0.50 1.32 60 0 
28 0.50 1.32 60 7 
29 0.50 1.32 60 10 

The water replacement system consisted of a graduated cylinder 
full of water and a water container that was used to submerge the 
cylinder. Before the experiment was started, the water in the 
container was fi11ed to such a level that any extra water could flow 
out of it from the slope into the container on the balance. The 
replaced water measurement system consisted of a container and 
an electronic balance that was connected with a computer using a 
standard RS232 connector. 

Before starting the experiment, the reactor was cleaned using 
distilled water then dried, and the water in the water bath was 
electrically heated using the hot plate (2) to a stabilized predefined 
temperature. The reactor containing 3 g of catalyst was put into 
the water bath. A predetermined amount of NaB~ powder was 
then put into the reactor. When the system was ready, the cork of 
the feeding funnel was turned on to let the contained water or the 
NaOH solution flow into the reactor to start the hydrolysis. The 
water replaced by the hydrogen produced was then monitored using 
the computer. 

%of initial H2 
measured calcdH2 theoretical generation 
H, (mL) (mL) yield rate (mlJmin) 

1315.4 1426.7 92.2 278.3 
1869.7 1945.5 92.5 391.7 
2470.6 2542.1 97.2 563.3 
2865.9 2957.1 96.9 658.3 
3216.4 3320.3 96.9 738.3 
4194.4 4409.7 95.1 978.3 
1175.3 1196.9 98.2 703.3 
2569.6 2619.9 98.1 1400.3 
4279.6 4409.7 97.1 2500.3 
5035.9 5187.9 97.1 2770.7 
1175.3 1196.9 98.2 501.3 
2569.6 2619.9 98.1 1360 
4279.6 4409.7 97.1 247.5 
5035.9 5187.9 97.1 2659.0 
1230.1 1245.1 98.8 1400.3 
2430.8 2594.0 93.7 2678.3 
3231.6 3346.2 96.6 3396.7 
4000.4 4331.9 93.4 4479.2 
1236.6 1297.0 95.3 442.1 
2520.0 2697.7 93.4 1050.7 
4173.3 4409.7 94.7 1890.9 
4962.4 5136.0 96.6 2248.8 
1374.8 1374.8 100.0 1280.2 
2357.9 2542.1 92.8 2209.8 
3189.8 3346.2 95.3 2934.2 
4028.7 4280.0 94.1 3705.9 
1232.1 1297.0 94.9 1371.0 
1198.5 1297.0 92.4 1004.0 
1292.0 1297.0 99.6 901.5 

Serniempirical Model 

When the kind and amount of catalyst is fixed, the reaction 
rate of NaBI-4 hydrolysis is affected by the reaction temperature, 
the NaOH concentration, the NaBI-4 concentration, and the 
byproduct, sodium metaborate. During the experiment, the 
volume of hydrogen was measured at 20 °C. Table 1 sum­
marized the experimental results. The theoretical quantity of 
the hydrogen generation in the table was calculated using the 
PV = nRT relationship taking into account the saturated vapor 
pressure (which is 3400 Pa al 20 'C). 

Figure 2 shows typical hydrogen generation behaviors at 42 
°C. The water supplied into the system was 10 mL in volume 
and it contained 5% NaOH. Four NaB~ concentrations were 
tested: (I) 0.5, (2) 1.04, (3) 1.7, and (4) 1.98 g. Figure 2a shows 
the accumulated hydrogen production, and Figure 2b shows the 
hydrogen generation rate. Similarly, Figure 3 shows typical 
hydrogen generation behaviors at 60 °C under the same NaOH 
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Figure 3, Hydrogen generation by hydrolysis of NaB~ at 60 °C. 

and NaBI-4 concentrations. It can be seen that the rate of 
hydrogen generation increased quickly to a maximum value in 
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the first one minute or so and then decreased until no hydrogen 
can be further produced. The amount of hydrogen produced 
increased as the NaB~ concentration increased. 

The hydrolysis of a concentrated NaB~ solution in the 
presence of solid catalyst is a complicated process. In the 
literature. nonconsistent mechanisms were reported. and the 
study was conducted in dilute solutions. The reaction mechanism 
in the presence of metal catalysts is still not clear. Second, the 
activity coefficient data of NaB Ha in concentrated solutions is 
not avaHable. Third. pore diffusion resistance exists for such a 
large catalyst partide. The diffusion may not only involve the 
BR,- ion but also the product, hydrogen gas. 

Theoretically, the maximum reaction rate occurs at the 
beginning of the reaction since the concentration of the reactant 
is the highest However, the maximum reaction rate was delayed 
because of the pore diffusion resistance. The size of the catalyst 
has a significant effect on the extent of this delay. The size 
influences wi11 be further studied. 

However, it is impossible to use pure precious metal catalyst 
powder without any support and configuration in practice. It 
has to be supported by a substrate. In this paper, for the 
convenience of calculation. it is assumed that the maximum 
hydrogen generation rate was the initial value of hydrogen 
generation rate. The error caused by this assumption needs to 
be verified further in the future work. 

From runs 1-26. it can be observed that hydrogen generation 
rate increased with the increase of NaB~ concentration at a 
fixed temperature and NaOH concentration. The rate can thus 
be expressed using eq 1 

(I) 

where 1H2 is the rate of hydrogen generation in milliliters per 
minute, mNaB~ is the molality of NaB~. and a is the apparent 
reaction order. 

From runs 15. 23. and 27-29, it can be observed that 
hydrogen generation rate decreased linearly with the increase 
of NaOH concentration at a fixed NaB~ concentration and 
temperature. A rate expression in which the NaOH concentration 
appears in the denominator could explain this dependency, as 
shown in eq 2'2 

(2) 

where WNaOH is the concentration of NaOH in weight percent 
and k, is a proportional constant. 

In a combination of eqs 1 and 2, the rate law of hydrogen 
generation from a basic NaBR! solution can be expressed using 
eq 3. where k is another proportional constant 

(3) 

The equation may be rationalized as follows: when no NaOH 
is added. the hydrogen~generation rate is proportional to the 
molality of NaBI'i4 in the solution. k is the hydrolysis rate 
constant. measuring the hydrogen-generation rate from the 
solutions with a unity molality of NaBR,. This is understandable 
since the reaction sites increase with the increase of the 
concentration of NaBH4. When NaOH is added to the solution 
but its concentration is fixed, the denominator is a constant. 

(12) Fogler, H. S. Elements of Chemical Reaclion Engineering, 3rd ed.; 
Prentice Hall: Upper Saddle River, NJ, 2000; pp 622-623. 
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Figure 4. Regression of initial hydrogen generation rate with the molality of NaBI-L. 

Table 2. Parameters Determined at Various Temperatures and 

26 
42 
42 
60 
42 
60 

NaOH Concentrations 

NaOH 
concentration (%) 

0 
0 
I 
I 
5 
5 

193.0 
538.8 
452.2 

1030.8 
318.0 
93Ll 

1.08 
1.00 
1.09 
!.00 
LIS 
0.94 

k/(1 + kJWNaOH) now becomes less than k, indicating that the 
reaction rate constant becomes smaller, and thus hydrogen is 
generated in a slower rate. Hydrogen generation from the 
hydrolysis involves hydrogen ion. The addition of NaOH makes 
the concentration of hydrogen ion smaller resulting in a lower 
hydrogen-generation rate. In the following, the features of the 
parameters were studied. 

In eq 3, k/(1 + k1wNaoH) is a constant at a fixed temperature 
and NaOH concentration. The parameters k/(1 + ktWNaOH) and 
a. in eq 3 can then be determined by regressing the maximum 
hydrogen-generation rate and the initial NaB~ concentration 
using a power function. The curves obtained are shown in Figure 
4, and the parameters determined are listed in Table 2. 

It can be seen from Table 2 that the order of the reaction 
with respect to NaB~ concentration a. equals 1. To determine 
parameters k and k1. eq 3 was transformed into eq 4 

) ) kl WNoOH -=--+---
rH kmNaBH k mNaBH ' . . (4) 

Therefore, a plot of lfrth versus WNaoH/mNaBft! should yield a 
straight~line graph, whereby the intercept on the y axis is 
1/kmNaoH4 and the slope is kdk, from which both k and k, may 
be detennined. 

In Figures 5 and 6, the regressed lines at 42 and 60 °C are 
shown. Good linearity justified eq 4. The values of k and kt 
yielded are listed in Table 3. It can be seen that k increased 
significantly from 530.1 to 1043.5 when the temperature 
increased from 42 to 60 °C. However, k1 did not change 
significantly with NaBH4 concentration and temperature. From 
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Figure S. Relationship between WNaon/ml\.sl4 against the reverse 
hydrogen-generation rate at 60 °C when the NaB& concentration is 
1.32 mol/kg. 

the above study, the empirical relationship (eq 3) is good enough 
to describe the effect of NaOH concentrations, temperatures, 
and NaBli4 concentrations. 

The change of rate constant with temperature can be 
expressed using the Arrhenius equation (eq 5) 

k = Ae-EIRT (5) 

where E is the apparent activation energy, R is the universal 
gas constant. and T is the reaction temperature. The values of 
E and A were estimated by substituting the k values at 42 and 
60 'C inlo eq 5, where A= 7,47 x 108 and E = 373 kJ/moL 

To integrate eq 3, the relationship between T"H1 and mNaBH.4 

(eq 6) was subslituted 
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Figure 7, Comparison between experimental data and calculated 
hydrogen generation for the hydrolysis of 0.5 and 1.98 g of NaBH. in 
10 mL of water at 42 oc when the NaOH concentration was 5%. 

Table 3. Parameters Determined at Various Temperatures and 
NaBII4 Concentrations 

NaB~ 
molality (mol/kg) temp (°C) k k, 

1.32 60 1043.5 0.052 
1.32 42 473.5 0.084 
2.75 42 531.6 0.086 
4.49 42 571.1 0.069 
5.32 42 520.7 0.044 

where VH1 is the volume of hydrogen produced, To and Po are 
the temperature and pressure, respectively, at which the 
hydrogen was measured, nH1 is the number of moles of hydrogen 
produced, nNaBH.t is the number of moles of NaB~ consumed 
when nH2 is produced, mNaBH.t is the molality of NaBli4, WH2o 
is the mass of water in the solution in kilogram, and t is time. 

Substitution of the values of A and E and integration of eq 3 
allows the hydrogen produced with time to be calculated. The 
calculated results and experimental data are shown in Figure 7 
for the hydrolysis of 0.5 and 1.98 g NaBH. at 42 'C when the 
concentration of NaOH was 5%. The discrepancy occurred 
mainly at the initial stage. This may be caused by the 
transportation effect that results in a later occurrence of the 
maximum hydrogen-generation rate. Moreover, since the byprod­
uct, NaB02, is a strong base, it has an effect similar to that of 
NaOH and slows down the rate of hydrogen generation at later 
stages. 
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Figure 8. Comparison of the hydrogen production by hydrolysis of 
NaBH.t in a saturated NaB02 solution and in water at 42 °C. 
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Figure 9. Comparison of the hydrogen-producing rate by hydrolysis 
of NaBH. in saturated NaB02 solution and in water at 42 °C. 

Effects of NaBOz 

The production of NaB02 has the same effect as that of 
adding NaOH since it is a strong base. In addition to depressing 
the hydrogen generation rate, NaB~ may have other effects 
because of its limited solubility. When NaB02 is saturated in 
the reaction system, it will precipitate from the solution. In this 
section, the effect of the NaB02 precipitation on the hydrogen­
generation rate was studied. To this end, a saturated NaB02 
solution was used instead of pure water. The saturated NaB02 
solution was put into the reaction containing NaBH.t and catalyst 
mixture to allow NaBH. to hydrolyze. 

The hydrolysis of NaBli4 in saturated NaB02 solutions at 
42 °C was compared with the corresponding hydrolysis in water. 
As shown in Figures 8 and 9, the hydrogen-generation rate was 
significantly depressed when an NaB02-saturated solution was 
used as the reaction medium. Since the reaction medium was a 
saturated NaB02-solution, NaB02 precipitated from the solution 
as soon as the hydrolysis started. The decrease of the hydrogen­
generation rate was most probably the result of the blockage of 
the catalyst by the precipitated NaB02. This suggests that the 
concentration of NaB~ in the hydrolysis system is limited by 
the solubility of NaB02 in water. The concentration of NaBli4 
should not be high enough to produce a saturated NaB02 
solution. 
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Conclusions 

In this work, the kinetic features of hydrogen generation from 
the hydrolysis of a concentrated NaBH. solution have been 
investigated. The hydrogen-generation rate increases with the 
increase of temperature and NaBH. concentration. However, 
the addition of NaOH slows down the rate. When the byproduct 
NaB02 is saturated in the solution, the hydrogen generation rate 
is significantly depressed. From the present work, the following 
can be concluded. 

Shang and Chen 

The hydrolysis of NaBH4 is first order to the concentration 
o~ NaBfu, whic? indicates that the hydrogen-generation rate is 
dtrectly proportional to the NaBfu concentration. 

The reaction temperature has no significant effect on the 
depression of the hydrogen-generation rate by NaOH. 

The depression of hydrogen generation rate when NaB02 is 
sat~rated in the reaction system was most probably the result 
of Its blockage of the catalyst active sites. 

EF050380F 



World Jovmat of 

ll'orld JOliiiUil <>f E"J;iooerins 3(3) (2006) 14-25 
Engineering 

Hydrolysis of sodium borohydride-a potential 
compact hydrogen ·storage method 

Y. Shang, R. Chen • and R. Thring 
Dip~rtmmt Qj AcTOMu:icCJ"Qnd Alil<Jiiwtiilt'E'i~, .LotJGhboroUgk Unitmiiy, UiuChborOtJgk,·· 

Lelc.,!mhirt I£ 11 3 TU, UK. 
* CorreJpotufing aut1wr : E~ lnllil ; r • chert @ lhOro • a.c . uk • 

( R""eived 2 Mny 200S; accepted 28 August 2006} 

Abstract 

Hydrogen is the only universal fuel that can power almost everything from spaceships to 
automobiles. The main problems are how to genemte hydrogen from renewable resources and 
how to store it in a manageable form since hydrogen has the minimum density among all the 

· gases . .At the present time, the lack ofpmctical storage methods has hindl'.ned the more 
";despnead use of the renewable and em1ronmentally friendly hydrogen fuels. Research so far 
has proven that the use of the hydrolysis of sodium borohydride (NaBH4) is one of the. most 
promising methods of hydrogen storage. However, there are two main barriers for its com~er~ 
cialisation. One ishow to improve its energy density. TI1eother is how tonecycle the by­
product sodium metaborate (NaB02). In this f'aper, a detailed review is given of the produc­
tion, hydrolysis and applicationsof sodium borohydride, as well as the routes for transforma· 
tion of sodium metaborate. hack to sodium borohydride. 

Key words : Hydrogen storage, Sodium borohydrUle , Sodium metaborate , Hydrolysis 

1. Introduction 
With the progress of human society and the 

population growth. the use of energy and the ex­
ploitation of energy resources has expanded rapid­
ly. A good. supply of energy has become an indis- .· 
pensable factor for economiy development. The 
history of humanity is in fact the history of the 
availability and utilization of energy. Each revolu­
tion in new energy utilization brings significant 
progress in human society. 

In ancient times, people were able to use the 
power of water to drive watermills · for grinding 

!SSN : 1708 - 5284 

grain and the power of wind energy for pumping 
water and driving ships. The beginning of the in• 

· dustrial revolution in the l9'h century in Great. 
Britain saw the useoffossil fuels on a large scale. 
The extensive use of coal and oil has made" a great 

contribution to the development of modern indus­
tries.· Various energy conversion devices. wer~ then 
invented to enahle the use of fossil fuels to drive 
automobiles, aeroplanes and other means of trans· 
port, to generate electricity, to heat and to !'.ook. 
Nowadays, nuclear energy, wind energy, hydro­
energy and solar energy are in use .. However, fos- · 
si! fuels still play a dominant role in the world, 
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and it will still a<:count for the main part of energy 
sources in the foresel".ahle future. 

Unfortunately, fossil fuels are not a renew­
able resource. They will eventually become de­
pleted. Moreover, the emission of carbon dioxide 
and NO, gases has been linked to the problem· of 
global wanning. These present challenges to the 
warld and have become key factors that must be 
considered for a su.~tainable development in the 
21" century. A sustainable energy supply has thus 
become increasingly necessary. 

Hydrogen is the only· universnl fuel that can 
nm everything from spaceships to auiomobilesas 
sUiliiOarized in Figure 1 . The main problems are 
how. to generate hydrogen from renewable re-

1 .. : ::e~~;:w ::ss:~:e ~i~nm::a;:~f;'l:!:: 
all the gases. At the present time, the .lack of 

. practical storage methods. has· hindered the more 
widespread use of the renewable and environmen~ 
tally friendly hydrogen fuels. Various methods 
have been investigated for hydrogen storage such 
as high·pressure gas. cylinders, liquid hydrogen, 
adsOrption using carbon nano-tubes and .metal hy~ 
dride compounds. Research so far has proven that 

Liquid H2 

Hydrogen 

Prodction plant · 

the use of the hydrolysis of sodium borohydride 
(NaB~) is one of the most promising methods of 
hydrogen storage. This is because NaBI{s is a sta· 
ble compound and the hydrolysis reaction can be 

. carried out in mild conditions ( Kim et al . , 
2004 ; Richardson et al . , 2005 ) . 

The . main advantages of using sodium 
borohydride are as follows.: High temperature · is 
needed for producing H2 by some methods, but 

'~a the hydrolysis of NaBH4 , H2 can be produced 
in a more controllable way at a wide and moderate · 
temperature range ( from - 5 'C to. 100 . 'C ) . 
NaBH4 ·is a ·non-flammable compound. at normal .. 

pressure. During the hydrolysis, there are no side 
reactions or other volatile products. The generated 
hydrogen has a high purity (no carhol1monoxide 
and sulphur) with just some water. vapour: How­
ever, there are two main harriers for its commer" · 
cialisation •• One is how to improve its energy den-.· .. · 
sity .. The other is how to recycle the by-product · 
sodium metaborate ( NaB02). In this paper; a. 
detailed review is given of the production, hydro!~· 
ysis and applications of sodium horohydride, as 
well as the routes for mmsfo1111ation of sodium 
metaborate back to sodium borohydride. 

Gaseous H2 

Jet engine 

IC engine 

Fuel cells 

Flame combustor 

Catalytic combustor 

H,'O, generators 

Fuel cells 

Transportation Thennal energy Electric power 

Fig, I , The use• of hydrogen in a liquid or gas fonn. 
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2. Production of sodium borobydride 

The discovery of sodium borohydride by H. 
I. Scblesinger, H . C • Browrt, H • R . Hoeckstra, 
and L. R, Rapp can be traced back to 1942 
( Brown., 1972) • It was first synthesized as a con­
sequence of the atomic bomb related efforts at the 
University of Chicago, together with many novel 
compounds containing boron and hydrogen • Soon 
after its discovery, it was found that this com­
pound could be used as a hydrogen generation a­
gent. After that, its chemical and physical prop­
erties were stodied in detail. Extensive research of 
i!S-S)'i:ithciiis and application was mruilly coni:lucteCI 
in 1950s. In the 1990s, the hydrolysis of NaBH4 

has been actively investigated due to the strong 
desire toiookfor alternative clean energies. Over. 
100. methodS far the preparation of sodium .borohy-

dride have been described, but few of these have 
achieved any practical significance. So far, two 
main technologies have been widely applied, the 
organic process ( the Schlt-.siger method) and the 
inorganic process ( Bayer method) . 

The Schlesiger method. to manufactore 
NaBfit uses sodium hydride and trimethyl borate 

in a mineral oil medium at about 275 'C 
(Schlesinger et al., 1953) .• The flow diagram of 
the process is shown schematically in Fignre 2, 
and the main reaction is given in Scheme I. In 
this process, sodium hydride is prepared in min­
eral oil in a reactor ·and then transferred to another 

. reactor, where trimethyl bOrn!<'; is added to react 
with the sodium hydride forming sodium borohy­
dride. Mter that, a complex separation procedure ·. 
is performed to recover pure sodium horohydride; 
The yield is over 90%. · 

water~-.;,_, 

NaH-oil · 
Isopropyl-amine 
recyle CH,OH oil recycle 

dilute 
NaOH 

recycle 

NaBH,+NaOH in 
water and 

stripper methanol 

NaBH, +NaOH in 
'-:!;:=~~water, product 

Fig. 2. The S<:hlesiger process for pmduction of NaBI4. 

Scheme I . Organic pmcess for preparation of sodi­
um horohydride. 

The Boyer method was first developed by the 
Bayer Company ( Buchner and Niederprum, 
1977) , and is referred to as the Bay er process. 

The flo,v diagram of the Bayer method is shown 
schematically in Fignre 3, and the main reaction 
is given in Scheme 2. In this process, the 
horosilicate (N!lzB40 7•7Si02 ) is produced by the 
fusion of borax ( Na2B40 7 ) and quartz sand 
( Si02 ) • The borosilicate is cooled, ground, and 
then reacted with sodium in an atmosphere of hydro-
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gen at 300 kPa and 400 - 500 '1::: in a partly hetero­
geneous re-liCtion. The sodium borohydride is eA1mCI-

ed from the horosilicate-silicate mixture with liquid 
ammonia under pressure. The yield is over 90% . 

Borosi licate 
glass container 

Extractor 

Na2 Si03 

Ammonia 

Fig. 3. The Bayer proces.• for produ"tion of NaOH;; 

Na2B407• ?Si02 + 16Na + 8Ih -+4NaBH4 
+ 7Na2Si03 

Scheme 2 ~ The main reaction in the BaYer -process. 

3. Properties of sodium borohydride 

In order to better tmderstand the hydro! ysis re­
action to produce hydrogen from NaB~, its main 
properties are introduced in this section. The physi­
cal and theimodynamic properties are listed in Tables 

· I and 2 respectively, which were mainly obtained 

Table 1 
Physical prope.rties of sodium borohydride. 

Molecular weight 

Colour 

Crystaline fonn (anhydrous) 

Melting point 

'11wrmnl stability 

Desity ( gl cm') 

from speciroscoplc stuclies .(Davis et al • , 1949). 
An important physical property is its solubili­

ty in water, which is related to hydrolysis reac­
tion . Jensen ( Jensen) has accurately ·measured 
the solubility of sodium horohydride in watet at 
the different temperatures, and the results are re­
produced in Figure 4. 

TI1e data presented in Figure 4 shows the equi· 
librium temperature of the ·two Cl)'stal forms NaB~ 
and NaBE4 • 2H20. The curve helow 36.4 'C rcpre• 
sents the solubility of the dehydrate, and shove 
36 .4 '1::: , the solubility of arihydrous NaBE4 . 

37.84 

\V1aite 

Face centred cubic a= 6. 15 A 

505'C(IO bar H2 ) 

DecornpoRes aho\'e 400 OC in ''acuum 

\Vill not ignite above 400'C on a hot plate.lgnite.s 
from free Jlnme in air, bunting quietly 

1.074 
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Table 2 
Thermodynamic properties of sodium borohydride ( Da\os et al . , 1949; Johnston und Hullctt, 1953 1 Gunn and Grctm, 
1955 1 StockmayP.r et al . , I 955) . 

Free energy of fonnation 

Heat of formation 

Entropy 

Heat capacity 

Free energy of ionisation 
NaBH,(s) = Na' +BB,"" 

Sodium Lorohydride 

-125.82 kJ mor 1 

-190.32 kJ mo1"" 1 

101.41 J mol"" 1K"" 1 

86.40 J mol"" 1K"" 1 

-23.66 kJ mol"" 1 

----------------"----·-----·-·-----------
Borohydride ion BH4"" 

-------------------.------·-·------·---""------
f:n~e entlrgy of fo1'11Ul.tion 

. Heat of formation 

Entropy . . . . 

Ht:at of hydrolysis 
lll'!i + H' + 3H20(liq) = H3 BO; + 4H2(g) 

Half electric reaction 
BR."" + SOW = B( OH),- + 4H20 +Se-

c 55 
0 ·g 

] 50 

. 

-199.55 kJ mol"" 1 

51. 83 kJ mol"" 1 

-371.18 kJ mol"" 1 

1.24 V 

1 45+--------­

"" 8 40 -!-------:::/---·----·----·-.. -·---·-· 

.5 
:i 35 
l!l 

z 30t--:;;'F==---------------

~ 
25+-------~--------~------~ 

0 20 40 60 
Temperature 'C 

Fig. 4. The solubility of sodium borohydride in water. 

Sodium borohydride is used extensively for 
the reduction of organic compounds. Its broad 
synthetic utility is based on its ability to reduce 

aldehydes and ketonP-s selectively and efficiently 
in the presence of other functional groups, and to 
reduce other functional groups, e. g. , esters, di-

I 
l 
I 
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and polysulfides, imines and quaternary iminiium 
compounds, under speCial conditions or. with 
added catalysts or co-rengents. 

4. Hydrolysis of NaBH4 

Sodium borohydride is a white solid, stable 
in dry air up to a temperature of 300 'C . It de­
composes slowly in moist air or in vacuum at 
400 'C ( Kro5chwitz, 1995). The aqueous solu­
tion of sodium borohydride is alsa stable at normal . 
environmental temperatures and pressures provid­
ed that . the pi{ of tl1e .. solution_is. high •. which is 
usually achieved by adding NaOH ·to .stabilize ·it 
(Davis and Swain, 1960; Kreevoy and Jacobson, 
1979). However, when an acid,a metal. salt or a 
selective catalyst is added, NaBH.t startS to hy­
drolyse to release hydrogen. ln the following, the 
mechanisms for the three typ~ ·of hydrolysis are 
reviewed respectively; 

.4. 1. ·Acid catalysis 

Acid catalysis can he classified into two 
types: general ac:id catalysis and specific acid 
catalysis (Miller, 2004) , 

In a typical acid catalysed reaction A + B = 

Table 3 

product, a reactive protonated intennedinte AH + 

is fonned as shown in Scheme 3 , where A and B 
are the reaction suhstrates. 

. kl 
A+H~~AJJ• 

J,- I 

k, 
All~ +B -product 

Scheme 3. The main.! steps for acid cmal)~u rtactiqn • 

' ' . ' . " ' ' 

If step 2 is the rate-determining Mop and step 1 
is the acid-base equilihrium , the mechanism is cailcd 

· ijiCciflc. acid ixilal.ysis; 11ie iOie depentli only on the 
concentrationqf specific acid H + , i. e. d1e pllmlue 
of dw solution , as slwwn in equntion ( 1 ). 

rate= k2[AH+ ](B)= ~1 k2[A][B](W) (1) 
-1 .· . 

If ste~ I is the. rate-detennini~g step; the. 
mechanism is called generaladd catalysis; The 
rate depends not only mi pH but also on total'aCid 
concentration since any general acid can provide 
W as shown in Scheme 4. The rate e~atio~ for 
this type of mechanism is shown in equation (2). 
A general case is shown in Table 3. 

Different rate laws for acid calulysed hydrolysis of sodium horohydride. 

Sped!ic acid <'-'llalysis 

d [ Products) 
rot;, = rh 

_ £![ Suhstnite] 
- dt 
= k:W, [ SuLstrate] 

= k,~, = k0 + k11 • [H'] 
k0 =rate constant for uncntnl)7.ed reaction (s" 1

) 

k"• = hydroxideion catalytic coefficient (M· 1s-t) 

Scheme 4. General acid catalysis reaction. 

reate = kt[A][W] + k3[A][HX] (2) 

General aeid catulyss 

d [Products] 
rate = & 

_ .4I Substmte] 
- dl 
= k,.,[Suhstrate] 

k"', = k0 + kn• [H•] = E k11,,1 [HA]; 
ko = rate constant for uncatalyzed 

reaction (s ·I) 
k11 • = ltydroxiddon catnlytie 

coefficient (M • 1 S • 1 ) 

k 1/A. J = cnta1)1ic coefficient for 
gen<>ral add HA·(M" 1S" 1) 

It has been confirmed that the hydrolysis re­

action of sodium borohydride is a general acid 

catalysis not specific acid catalysis ( Ahts et al. , 
1975) , Davis and Swain ( Davis and Swain, 

1960) studied alkali metal borohydrides hydrolysis 
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in dilute buffer solutions. They found that the rate 
expression was first order in hydrogen ion concen­
tration in the pH range of 7 . 7 to 1 0 . 1 , and the 
rate is less sensitive to hydrogen ion concentration 
at high pH ( 12 to 14) . The apparent reaction or­
der in hydrogen ion concentration decreases to 
about 0.4. Davis and Bromels ( Davis and Swain, 
1960; Davis et al. , 1962) found that the rate 
depended upon the ionic strength and upon the 
anion component of the buffer solution. They sug­
gested a mechanism which involved a rate-deter­
mining proton transfer from a general acid onto the 
borohyride ion (as shown in Scheme 5), in which 
the hydrolysis of the borohydride solution was con- · 
trolled by the formation of [ H • BH4 • Ai- ] • . 
The intermediate hydrolyzed immediately to an 
aquated borine radical ( ( BH3 ) •q) which also hy­
drolyzed rapidly: 

[
H• BH -]* 

Blf.t- + HA; <==-' A·_ 
4 

__,. H2 + 
• 

(BH3)oq+ Ai 
, fast 

( BH3 ) nq -products 

Scheme 5 . Proposed hydroly•i• me<:hanism for boro­
hydrid~ eatlysed by acid . · 

Kreevoy' s work ( Kreevoy . and Hutchins, 
1972; Kre~voy and Oh , 1973; Abts , Langland et 
al., 1975; Kreevoy and Jacobson, 1979) on the 
hydrolysis o( BH4- by acid has shown that the 
loss of the fi.rst hydrogen determines the overall 
rate,· and tl1e reaction is first order to both the 

concentration~ of BH4 ~ and n• . In acidic solu­
tion, the ratJ-detennining step is the formation of 
H2BH3 ; H.e P~?p~sedthe mechanism of this reac­
tion as shown in Scheme 6 • 

BH4~ + H+ .---::.-H2BH3 

HzBH3 '---'-Hz + BH3 
very fnst 

BH3 + 31120 H2 + B(OH)3 

OH-+ B(OHh vetyfast~B(OH)4-

Scheme 6. Proposed reaction meehnnism for the !Jy­
drolysis of borchydride. 

Wang and Jolly ( 1972) , however, suggested 

HzOBH3, BH2(Hz0)2', H20BH(OH) 2 as inter­
mediates in· low temperature reactions as shown in 
Scheme 7. 

BHi + H' + H20-H20BH3 + H2 

H20BH3 + H' + HzO -BHz(HzOh • + Hz 

BI-Iz(HzOh•-H20BH(OHh + H• + Hz 

HzOBH( OH)z -B( OH)3 + Hz 

Scheme 7 •. PropoS<.-d reaction mechanism for the hy­
drolysis of borohyclride. 

No mattl'.r what the intermediale is; the hydrol­
ysis of the borohydride is confirmed to . be first order 
in both hydrogen ion and borohydride ion. The mte · 
equation can be expressed using equation (3). 

dH2 · . 
di= kii(BH4)(HJO•) + kll,o(BHi) 

(H20) + kHA(BH4 )(HA) (3) 

Equation ( 3) can be simplifi<'Ai to equation · 
(4), where (BH4 " ), (H30' ), (H20) and 
(HA) represent the activities of the corresponding 
species in the system. 

Schlesinger et aJ • ( 1953) have shown that . 
the rate of hydrogen release slows down rapidly as ··. · 
the pH .'increases due to the increased presence of . 
borate ion. Since the borate ions produced are al ~ 
kaline, acids are therefore not an efficient cata~ 
lyst. 

4 . 2 . Transition metal salr catalysis 

Acid catalysis comprised the majority of the 
research on the hydrolytic reaction of NaBif.t. In 
the 1950s and i 960s, the search for more pmcti­
cal catalysts led to investigations of some first row 
transition metal chlorides (1953)' -which includes 
MnC12 , FeC12 , CoCI2 , NiCiz and CuCI2. Kauf­
man ( Kaufman, 1981; Kaufman and Sen, 1985) 
conducted detailed research on the effect of these 
salts and concluded that the transition metal salts 
can accelerate the hydrolysis greater than acids, 



Sl.ang et al./World Journal <if Engin""''<i! 3(3) (2006) 14-25 21 

The catalysis by metal salts can he described 
as an additive combination of acid catalysis and 
metal surface catalysis, the kinetics of which can 
be approximated by equation ( 5 ) ( Kaufman, 
1981). 

rate= k 11•(B""- )(W) + k., (5) 

where kH• is the rate constant for the acid 
· catalysis and k,11 is the rate constant for the metal 

surface catalysis . 

4. 3; Metal catalysis··· 
Due· to the low efficiency of acid catalysis, 

high efficiency catalysts have been investigated to 
hydrolyse sodium borohydride to hydrogen. The 
most. efficient' catalysts so far are. the transition. 

t!,etliJs. . . . .•. . . .... ·. .. • 
.. ·. The advantages. of transition metal catalysis 

over acid'· catalysis are as following ( Kaufmllll'. 
. 1981); 

• The hydrolysis rat~ cart be controi!ed by 
the amount ofeataJyst us~d and is usually unaf­
fected by change~ixr ~oluti<ln alkalinity .. · 

~ Minimalfoamingofsolutions. 

.. ··• .~ Possible recovt;ry and reuse of catalysts. 
·.· Asearlyasthe l95(Js, Sclilesinger et al 

(1953) reprirted that a1kalhte horohydride solu­
tions undergo hydrol!sis, ill the presence ofvari­
ous. transition. metal catalyst~, to produce hydro~ 
gen. B.Sed on this data, various metals such as 
Pt, Ru, Ni, Co a'n.d their supporting materials 
have been developed for hydrogen production from 
borohydride · solutions and reported in . recent 
years. 

Bro"n ( 1962) examined several metal cata-
. lysts for the hydrolysis of sodium borohydride oiolu­

lions and found that Ru and Rh liberated hydrogen 
rapidly. Amendola et al. ( 2000) used supported 
high surface area Ru on ion exchange resin beads 
to c.atalyse the hydrolysis. Wu et al. ( 2004) used 
carbon supported platinum as the catalyst for the 
hydrolysis, Richardson ( 2005) used Ru as the 
catalyst without any. carrier. Krishnan et al. 
( 2005) slated that Co02 can be used as an effi­
cient carrier for Pt, Ru and Li for catalysis. 

The mechanism of metal catalysis is not well 
understood. Soine researchers proposed a zero-or­
der reaction mechanism (Knufman, 1981), wh.ile 

some others proposed a first-order reaction mecha­
nism ( Richardson et al . , 2005) . 

4. 4. Factors affecting the hydrolysis 

The pH of the solution has a great effect on 
the hydro] ysis of sodium horohydride in the ab­
sence· of catalyst. The solution temperature also 
has a significant effect on the hydrolysis. Kreevoy 
and Jacobson ( 1979) proposed the follm~ing em­
pirical equation to predict the rate of hydrolysis of 
NaB"". 

log(t11z) =pH- (0.034T"' 1.92)~ (6) 

Where tIn is the time it takes for one-half of 
a NaDI~ solution to d~conipose (ruin), pH repre­
sents the pH value. of the solution and T .is the 
temperature (K). · 

5. Transformation of NaB02 to NaBH4 . 

. 5. 1 . Properties of NaB02 . 

Mte:r hydrolysis, sodium ~>tahorale (NaB~) 
is produ<.>ed as the hy-produ<>t (Scheme 8). In. · 
this section, the properties of sodium nietnbOrate . 
and possible routes to transfom1 it back to NaBH4 

are reviewed. NaB02 is relatively inert and non· 
toxic; it is a common detergent and soap additive 
but is toxic to ants and is an ingredient in ant poi~ · 
sons. An anhydrous form can be obtained when 
crystallizing from melts of 1: 1 of Nn20 • B203. 
The octahydrate, Na20·B20 3 .8H20, the tetrahy­
drote, Na20• B20 3 .4H20, and the monohydrate, 
Na20 • B20 3 • H20, occur in .the system Na20-

B203-H20. However, there is no ev.idence for the 
.. existence of a dihydrate (Kemp, 1956). . 

Scheme 8. 'n1c hydrolysi• of sodium borobydride. 

TI1e simple ionic unit (B02-) oruy exists in 
the sodium metahorate vapour in the form 
M• (0--B•-o-) ( Kemp, 1956). The an­
hydrous solid sodium metahorate is composed of 
sodium ion and trimeric metahorote ion, 
(B30 6 )

3", as shown in Scheme 9. However, the 
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solution of sodium metabomte is a binary elec­
trolytes system, which has been proved hy 
cryoscopic results and Raman spectrum of dis­
solved sodium metaborate ( Kemp, 1956) . The 
cyclic trihorute ions present in the crystals of the 
solid salts evidently break up on dissolution. 
Therefore, what is referred to as a solution of 
sodium metaborate is in fact a solution <•f the bi­
nary electrolyte NaB( OH)4 that is usually simpli- . 
fied as N aB02 . 

0 3-

1 

B 
·. / '-
0 0 
I I 
B. B 

/'-./'-. 
0 0 0 

Scheme 9 • The stru<:tu•~ of the trimeric metal~>rnte 
ion, (ll,06)l-. 

A ~olutionof sodium meta~rate is highly ba­
sic. It can he used as a component of photograph­
ic developers and replenishers due. to its. strong 
buffering function; which can colltrol the pH witlt-

Table 4 
·.·Calculation of possible coupling ren~-tion with reaction lO • 
. ·taken from Literature (Aiberty, 2001), 

Dasic reaction 

NaB02 + 2H2 = NnBft. 

+~ 

Coupling reaction· 

4Na + 0, = 2i'1a20 
SiO, + Na20= Na2Si03 

Na20 +Si+ 02 = Na2Si03 

2Mg + 02 = 2Mg0 

4Al + Nn20 + 302 = 
4NaAJO, 

NaB02 + 2H2 -"'BaBH4 + 0 2 

Scheme J 0. A <1in~~t rcnction to convert sodium 
metahorate into •odium borohydridc, 

in close limits. It is also a component for the 
preparation of starch Rlld dextrin adhesives, due 
to the high degree of alkalinity. Sodium metaho­
rate can also be used as a stabilizer for textile pro­
cessing. It can. also be incorporated into liquid 
laundry detergents for pH control and enzyme sta­
bilization . 

5. 2. Routes for transforming NaB02 back 
to NaBH4 

In order to' use NaBH4 hydrolysis in a sus­
tainable way, the by-product must ht:. converted .. 
back into NaBH4 ·• Little attention has been paid 
so far to the conversion of NaB02 to NaBH4 in the 
literature, This section gives possible routes for 
the conversion . · · 
5 . 2. 1. Coupling reactions 

One possihlewayto convert NaB{h into NaB!f.t 
is to use the reaction expressed in Scheme 10. How- . · 
eve,r, this ff'action has· a vf'.ry high po5itive Gibbs e.n­
ergy (~,d=796.8 KJ.rnolc 1

), as shtm:n in Table 
4 for the relationship hehveen rf'_action Gibbs energy, . 
equilibrium const!lllt for chernicul reaction (K) aad 
reaction directions. Tins indicates that di='l reac-

. tion through thisroute is impos.~ihle. 

The. ,•alues of the fundml\ental tl~<..m;.aynamic function were 

Overall reaction 

NaB02 + 2Si02 + 4Na + 
2H2 = NallH4 + 2Na2Si03 

NaB02 + Na20 + Si + 2H2 

= NaBft. + Na2Si03 

NnB02 + Mg + 2H2 = 
NaB114 + 2MhoQ 

3NaBO, + 4Al + 2Na0 + 
6H1 = Nalll~ + 4 NnAl 02 

-40.7 

. -290.5 

-341.8 

-3720.8 

It is known that some .reactions with negative 
~G ean drive a reaction that is not spontaneous as 
coupling reactions (just as the combustion of 
gasoline supplies enough free energy to move a car 
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( sm ... .rherg. 2001)) . Therefore' some reactions 
with very negative reaction Gihbs energy are pro­
posed to couple. with reaction ( I 01 to make it pos­
sible to convert NaB02 hack into NaB~. The po· 
tential chemical species for coupling with the 
NaB02 conversion reaction should not have any 

chemical reactions with NaB~ and the resulting 
NaBH4 should be separated from the reaction mix­
ture easily. Metal oxidation, such as that of sodi­
um, silicon and aluminium, satisfy the above cri· 
teria and therefore can be used to couple llith the 
conversion reaction . The nature ~ the industrial 
inorganic method for producing · NaBH4 can be 
classified as a coupling reaction. The calculation 
of the reaction Gibbs energy for the overall reaction 

. is given in Thble 4. As.canhe seen, all of the above 
coupling !'!'.action~ cim be used to drive n-.action ( 10} 
to completion •. Coupling l't'.actions are possible routes 
for converting NaBOz hack into NaBI4 . · 
5 • 2. 2: Elt'.ctrochemical methods · 
. ..· From the thermodynamic analysis, it is 
known that it is impossible to transfer NaB02 into 
NaBI4 without the use ~f a coupling reaction. In 
order to make the reaction proceed quickly, tricky 
conditions such as high temperature and hydrogen, 
pressureare needed to fulftl the requirements of 
the coupling reaction. Electrolysis n:iay be an al­
ternati,•e to solve the problem. In contrast to ihe 
coupling reaction approach 1 this is a relatively 
simple technology.; . • 

There are two electrode reactions dealing 
llith BH4 - preparation in the Handbook of Physics 
and Chemistry ( Dean and Lange , 1999) as shown 
in Scheme ( 11 ) and ( 12) . Electrode reaction 
( 12) maypot he suitable for use in the produ{:tion 
of horohydride because the horohydride ion is 
readily hydrolysed in an acidic environment. 

HzBOj + 5H20 + 8e ~BH4" +SOW 

E0 = -1.24 V 

Scheme 11 . llulf-ccll reaction ofhoric acid in basic 
6:mditions~ 

H3B03 +7B+ +8e~BH4- +3H20 
E0 = -0.481 V 

Scheme 12. Half-cell reaction of boric acid in acdic 
conditions~ 

The solution of sodium metahorate is a binary 
electrolytes system. However, the ions in its 
aqueous solution are not Na • nnd BQ2- . Actual­

ly, the anion in the solution is B( OH) 4- (Melior, 
1981). Hence, Scheme 11 should he written as 
Scheme 13, which can be designed as the cathode 
reaction of an electrolytic cell ( Paidar et al •.• 
2002). Oxygen evolution is the main anodic reac­
tion , as shown in Scheme 14 • The overall reaction 
is given in Scheme 15. .A schematic diagrnm of 
the cell required to produce NaBH4 from a NaB02 

solution is shown in Figure 5. The cell contains 
one anode, one. cathode, one semi-permeable 
membrane. Under an external electric polver;· B' 

(OH)4 - is reduced to BH4 - in the cathode and 

OH- is oxidized to02 in the anode, · 
. ' . : . ' . . ' ' . 

B( OI-1)4- + 4H20 +Se= BH4 - +BOW 

&:heme. 13. 'll~e actual hulf cell ;,.,.,lion of metaho' 
rate ion i:U busie · cond.itiohs:. · 

Scheme 14. Oxy~en-evolution reac~ion on anode .. 

Scheme 15. Overall reaction of. electrolysis of 
metahorntc ions .. 

In practice, there nre competing reactions on. 
the cathode. Because the cathode reaction with 
the high~>.r reduced potential reacts at the cathode 
first, watermay he l'educed into hydrogen on the 
cathode instead of the metabOrate ion, 
B( OH)4 -, due to its low standard electrode po­

tential, as shown in Schemes 16. By selecting 
suitable cathode materials and hydrogen prE'-Ssure 1 

the electrochemical method may he possible .. 

2H20 + 2e = H2 + 20H­

E0 = - 0. 8277 V 

Sth<:me 16, Hydn>lysis of water on euthode. 

5. 2. 3 . Raw materials for existing processes 
Sodium metahorate may be changed into the 

raw materials fur the existing processes. For an 
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e e .... :---'"---- o, 

Anode 

membrane 

Fig. 5. A !K:hemntic diagram of the proposed Clcctrol)1ic cell for NnBO,. 

inorganic process, NaB02 can he tran..lormed into 
homx through the following reactions. \\'hen con­
tncte,d with boric acid, sodium metahorate can he 
eha.nged into borm. (Schem~ 17) .. Sodium metah­
orate. can absorb atmospheric .. carbon dioxide, 
forming borax and sodium carbonate ( Scheme 
18) . For the organic process, sodium metabornte 
reacts with . strong mint>.ral acids . to form boric 
acid, which can react with methanol further to 
give trimethyl borate. This is the raw material for 
the . p~duction .· .. o£ sodium·: borohydride by . the 
Schlesiger method: The proeess can be expressed 
as shown in Schemes 19 and 20 • 

, Scheme 17 . Transfonnation of sodium metaborate 
into borax using boric acid 

Scheme. 18 o. Tmnsfonnntion of sodium 1mlaborate 
into borax using COz , . 

Scheme 19. Thmsfomllllion of mtrud>mrte into hori~ acid 

B(OHh + 3MeOH -B(OMe)l + 3Hz0 

Scheme 20. Tmnsfommtion of boric add into 
trimcthyl bomte. 

. . 

6. Current status of NaB~ as a hydro· 
gen source 

Sodium borohydride has been known as a vi­
able hydrogen generator since 1943 ( Schlesinger 
et al., 1943). At first, it was u5ed as a conve­
nient hydrogen source when a small!llilount of hy­
dl'{)gen .was needed. It was overlooked after World 
War TI due to its high cost. However, in recent 
years, it has attracted great a1tentioil as an alter­
native hydrog~ll storage method' Currently, sever­
al companies and ~ups such as Millennium Cell, 
Toyota Motor Company, and Hydrogenics are in­
vesting in this research. 

. Great efforts have been made to commer­
cialise the sodium horohydride system as a hydro­
gen source. For· example, Millennium Cell has 
established . a portable hydrogen . generator . using 
aqueous sodium borohydride solution With Ru cat­
alyst ( Amendola ei al. , 2000) ; In Oak Ridge 
National Laboratory of USA, a 500 W power sys­
tem based on sodium borohydride hydrolysis has 
been constructed ( Richardson et al. , 2005) . It 
is optimistic the commercialization of NaBH.t hy­
drogen product system. 

7. Conclusions 

• 1bere are two commercially available 
methods for producing NaBH4 : an organic process 
and an inorganic process. Both processes are 
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commercially available. 
• Three meclumisms are used for the hydrol­

ysis of NaBH4 : acid catalysis, metal salt catalysis 
and metal catalysis. Metal catalysis is believed to 
be the most efficient. 

• Although there is a significant amount of 
research and development being focused on the 
use of NaBH4 as a hydrogen source, some impor­
tant issues remain with regard to its utilisation, 
such as its optimal concentration and conversion of 
the side product NaB02• 

• Three routes to transform sodium metaho­
rate into sodium horohydride have been proposed: 

·- ~o~pllng reaction, electrochemical methods and a · 
raw materials approach. 
. . : From a calculation of Gihbs free energy , 
direct hydrogen nclsorption by NaB02 is thermody­
namically impossible due to the high positive 
Gibhs energy;, Direct , hyd~gen adsorption hy 
NaBOt ·cillJ be conducted by coupling with other 
!1'.actions with high negative Gibbs energy change 
suc.h a.q the ?xidntion reaction· of magnesium, 
sodium and silicon • . 

• ,A simple and practical transformation is 
the electroc:hemicai approac:h. The key to this 
method is the choice of suitable cathode materials . 
to prevent .hydrogen evolution. 

; Transformation of the by-product NaB02 

into raw materials for the existing process of man­
ufactl.lrillg NaB H., is a feasible method. . ·· 
'-·' . ,._, ··- ,, ' '., ,.-,---_ '_-· 
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Abstract 

Sodiumhorohydride (NaBH4) in an aqueous solution reacts with thewaterand produces 
hydrogen under a catalytic condition. This phenomenon has heen studied as a potential hy­
driJgen storage method. The water contained in the aqueous soh1tion has a significant. impact 
on the hydrogen production de.nsity. In this rt'port, using the concepts of thermodynamic dis· 
solution equilibrium and the van Hoff' s equation, n model to simulate and analyse the soluc 
bilities of NaBH4 and NaB02 at varying temperature. has heen developed. The parameters em· 

· .. ployed ln the model were obtained from existing m!'.asured data. 111e calculated results 
·" showed that the optimum concentration of the NaBH4 solution used for the hydrolysis reaction 

is about· half the level of its saturated solution. It incrertses as the .solution tempemture in­
?.reases hut only up to 378K. Further increase in temperature will results in decrease in opti­
rriised doncentration. 

Key 1vords: Sodium borohydride, Hydrogen production, Hydrogen storage, Soluhility, 
. Hydrol)~is 

1. Introduction 
-.With tJ:teincreasing.concem about air pollu· 

tion and oil depletion, l1ydrogen, H2 , has been 
intensively studied· as· an alternative energy 
source. The main problem with hydrogen applica­
tion is that it is not readily transported in. bulk. In 
order to use hydrogen widely, especially for mo­
bile applications, a compact and safe method for 
storage is needed. V mious methods have been de­
veloped for }12 storage, such· as high-pressure gas 

( Lmbeyre, 2004) , liquefied hydrogen ( Amann, 
1992; Zuettel, 2004), adsorption on materials 

ISSN: 1708- 5284 

with high specific surface area ( Zhou and Zhou, 
2001), reforming of natural gas, alcohols and hy: 
dmcarhons ( Dudfield et al; , 2000), catalytic re­
duction of water with metals (John, 1997) , ar{d 
slush hydrogen (De Witt et al. , 1990) etc. .Ench 
of these technologie~ has its inherited advantages .. 
as well as drawbacks, hut the still poor stored en· 
ergy density remains. 

One alternative solution which has potential 
to store more 112 safely for mobile application.• is 
to utilize the catalytic rt1duction of water ~t1th lty­
drides (Dudfield et al., 2000; John, 1997; Ko· 
j.ima rt ol. , 2004) . There are many different 
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types of hydrides which have the potential to react 
with water .and produce hydrogen gas. To use such 
materials for H2 production for mobile npplica· 
tions, the energy density and the system operation 
safety are the major concerns .. Table l listed the 
energy release during the hydrolysis reaction from 
a number of typical hydrides. It can he 5een that 
most reactions between metril hydrides and water 
are "igorous. The large amount of he.at can he re· 
leased during .the reaction which .may. cause explo~ 

Table I· 
He.ut released (or l grom hydrogen with different hydride•. 

llydrides Nalll{, LiH 

Afl•(kJmol ~ 1 ) -.27.1 -54.3 

Table 2 
\"1' eight of r"ductants nc>cessmy for l gra11i oflt\'dr<•ll''" • 

Hydride.• NaR~ LiH 

Wdght(g) 4.73 4.00 

The generation of hy<lmgen from NaBH4 in 
aqueous solution is shown in Eq. (l ), It can be 
seen that. one .mole of NaBH4 in a water solution 

react~ witl1 2 moles of the water and· produces 4 
moles of H2 and one mole of sodium metaborate 

( NaB02) M.a by, product. Halfofthe produced. 

H2 is extracted from the water. 

,.,, ' . 

NaBJ4+ 2H2Q....c.....4H:! + NaB02 (I) 

As a by-product, NaB02 has I() he removed 

during the hydrolysis reaction to avoid clogging the 
catalyst which will significantly reduce the system 
reac.tion efficiency ( Davis and Swain, 1960; 
Davis et al. , 1962) . A practical way to remove 
the Na~02 from the catalytic reacti~n bedis to 

. dissol~e it into the water left frori. the hydrolysis 
reaction and bring the solution into a exhaust sys­
tem. Clearly, the water. contained in the NaBI~ 
hyclrolysis reaction system has to not only cover 
the hydrolysis reaction but also to diesolve and re· 
move the by-product. Too mur:h water will reduce 
the hydrogen generation density of the system (A­
mendola et al. , 2000; Kojima et al. , 2004) , 
while insuffi.cienl water may results in catalyst 
dogging and reduce the syst.em reaction 

simt. Table 2 listed the density or these potential 
hydrides. Apart from . LiH which clearly shows the 
safety concern, the sodium borohydride, NaB H., 
has the least weight density. In comparison, it is 
clear that NaBH4 produces the least heat energy 

during the ltydrolysis reaction while has a low 
weight density, It has therefore the potential to he 
a successful candidate as an altemative hydrogen 
storage technology for mobile application in partic­
u1ar. 

LiAIH, NaAlll.t CaH2 

-62.5 -56.2 -58.0 

UAIH4 NuAIH4 Call~ 

12.2 10.5 

efficiency. Tltis necessitates the optimisatioit ur 
the NaBH4 concentration. In order to identify the 

uptimised concentration, a semi-empirical simula­
tion method hased on dissolution equilibrium prin­
ciples has been developed and reported iri this pa­
per. 

2~ Theoretical solubility model· 

When a solid solute is left in contact with a 
solvent, it dissolves u~til the solution is satlll'at­
ed. i.e. an equilibriuli. between undissolved and . 
dissolved . solutes is reached. This dissolution. 
equilibrium can be expressed in a general term: 

where n is. number of water crystallized with the 
solute AB , K is the equilibrium constant. 

Due to the interaction among the dissohed 
substances and the solvent, the petfom1ances of 
the dissolved substances in a renl s~lution differ 
from that in the ideal-dilute one. Such differences 
nre represented by the aelil'ities or the substances 
in the solution. Iknce, the equilibrium constant 

l 
l 
! 

l 
i 
I 
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the dissolution can be expressed us : 

/ where ai is the activity, and the suhscript denotes 
' tbe substances. . 

[;. . Acti,ity coefficient of a substance is defined 
!\:.ns ihe ratio between activity and ideal-dilute con· 

l;}entration ; 

r>'.. . a; 
t r. = o (3) 
L ·-· m.;lm; 
! \\·here m; is the molarity of substance i in the so· 
t' llltion, which is the moles of substonee contained 

'········.by·• .. IOOO·g· of·s-ol··'.·e··.n·. 1• in· .. ···t.·he s.olution,. a. nd .m;
0

·. is. I. l.1e . i nmlarity of the substance at standard conditions. . 
f;:•:,.. The activity cl· a s<ilid material is unity .. 
I. Sint.e the \vater is the hulk phase jn the solution,· 
[ ill! activity is assUJrled to he a constant. Substitute 
r Eq, (3) into (2b), the equilibrium nonstant can 
; then be obtained as: t. 
; 

' 
~-". K= afro*YA• •10_- ··m A .. • mB· = Ky~ mA· • m1f 

~ I w 
1''-··-. ) r·. 
L: . If the molarity of suhst:mce A + equal to that 
h, .--• ' 

j_. o{ B- and the solute AB in the solutioi1, m. A • = 
! mB· = m As then. the equili11rium constant Eq. 

f( 4) can he further simplified as 

(5) 

f', The e<(uilihriwn constant changes with tem­
Lperature; This can he expressed using the van' t 
iHoff equation (Atkins, 1990) · 

dlnK fj.ffO clinK AH" 
d1' =- RT2 or d(IIT)- R (6) 

, where T is temperature, AH0 is the change of en­
; thalpy of the dissolution IxWcess which equals to 

the mo.lar heat of solution and R is the universal 
gas constant. 

Integration of the van' t HofT equation and 
substitute the equilibrium constant with Eq. (6), 
gives 

(7) 

where C is an integration constant, which in­
dudes all the activity cneffidents. 

Rearrange Eq. ( 7) then gives the molality of 
the solute AB in the saturated solution, 

(8) 

For sodium borohydride, NaBH4 , two poten" 
tial crystalline states, NaBH4 • !H20 and NaBH4, 

.. ~y exist_ as the undissolved solid. in its saturated 
solution depending upon the temperature of the so­
lution as shown in Eq. (9a,b) (Melior, 1981). 
When the temperature is lower than 309.4K, the 
undissolved part is in the form of NaBH4 • 2H20. 
Above this temperature, theundissolved [lart i~ in 
the form of pure Nn1lH4 i 

K, . -
NaBH4 ·2H20~Na+ + BH4 + 2Hl0 
(T<309.4K) {9a) 

K, .·. . 
NaBH4 ~Na+ + BH4-
(T<309.4K) (9h) 

For>sodlum metahorate; NaB02 , there are 
three crystalline stales in the saturated sodium . 
metahorate solution NaB02 • 4H20, NaB01 • 
2H20, and NaB02 • 1121120, as shown in Eq. 
(12a, b, c). Again, the solubilitr of each state 
depends on the. temperature of the solution .. ( Mel­
Ior, 1980) .. 

NaB01 ·4H20 . Nu+ + B( OH)4 - + 2Hz0 
(273K<T<326.6K) (12a) 
NaB0,·2H,O~Na+ + B(OH)4-
(326.6K < T <378K) ( 12h) 
NaBO,•l/2H,O + 2/311,0 r==>Na' + B(OH)4-
(T> 378K) - • . .. (l!c) 

Using Eqs. ( 7) and ( 8) , the solubility of 
both NaBH4 and NaB02 in terms of mnlal.ity can 
be obtained as: 

- fj.lJ~.llll 
:!In m~·""· = RT ' + C (13) 
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( 14) 

which gives 

( 15) 

(16) 

\,·here, ~JJ~.BH, and ~H~,no, is the· standard en~ 

thalpy change of sodium metaborah:f solution, 
· which equals to the molar heat nf~olution; is an 

integr3J constant, which is related to the overall 
activity coefficient, and R is the unh·ersal gas 
constant •. 

from equations (15) and ( 16), it can he 
stlCJ:I tllatthe iluluhility is .related to the h<?.a! of so­
wtioll aod the temperature at which the dissolving 
process takes place. When the dissolving process 
is endothermic, Le. ~1{0 > 0, a higher tempera· 
lure results in a larger solubility. When the dis­

solving process is exothennic, i. e. L!.H0 < 0, a 

higher temperature gives smaller solubility. 

3. Semi-empirical solubility model 
Equations ( 13) and ( 14) shows that there is 

poleniially a linear relationship between 2lnm and 
liT. If such relationships can be identified, we 
may then be able. to use these equations to analyse 
the solubility of both reactant and by-product of 
the NaBH4 hydrolysis system and to develop a 
model to simulate and optimise the solution for the 
NaBH4 hydrolysis system. . 

Figure 1 shows the measured solubility data 
of NaBH4 at varying temperature (M ell or, 1980; 
1981). It can be seen tlmt the solubility of sodi­
um horohydride increases as the temperature in­
creases. Below 36 • 4 'C ( 309 • 4 K) , the crys­
talline stat.e .in the diss()lution equilibrium is 
NaBH4 • 2H20, and above this temperature .the 
crystalline state in the. dissoh;ng equilibrium is 
NaB!~. At36.4 'C (309 .4K), two kinds of crys· 

talline, NaBILs • 2H2 0 and NaBH41 coexist in the 
saturated solution, which is regarded as the In­
variant point. 

60.-----~------~~--------~~ 

55 • 
50 • • 36.4 ·c . . . . . • solid :NaBH• 

NaBH,·H;Oall.d Na~•• . 
• 

• 
solid: NaBH.rli.:!O • 

• 

• 
30 

25~-----,~--~-,,-~.-~-r~~ 

• • 

0 10 20 30 40 50. 60 
Temperature 'C 

Fig. 1. Measured solubility of NaBlJ..(Mdlor, 1981). 

Figure 2 shows the measured solubllity of 
NaBOi at YaT)·ing temperature (Melior 1 1980; 

1981). There are two invariable points at 53.6.'C 
ai1d 105 'C , respectively. These correspond to the 
transition temperatures of the sodium metaborale 
heiw"!'n its three crystalline slates, Na D02 • 

4H20, NaB02 • 21120, nnd NnB02 • l/2H20. 

Overall, its solubility increases as the temperature 
increases up to the level of l05 'C . This indicates 
that the enthalpy change of the dissolution is posi· 
til·e when the crystalline state is NaB01 • 4H20 or 
NaB02 • 2H20. lf the solution temperature further 
increases, the solubility of sodium metahorale 
starts to dedi ne. 

·,: 
. ' 
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55 I 05 "C 

so NaBOi·2H,O 
and Na:SO,•l/2H,Q 

45 

~ 40 

~ 35 
~ 30 V> 

NaB0,·4H,Q • 
25 • • • 20 • • • 15 • •-"-

• 

NaBOJ·2H,Q .... .. .. .. 

.. 

... ~ ....... . NaBOz·l/2HzO 

53.6'C 
NaB0,·4H,O 

and NaB0,·2H,Q 

0 10 20 30 40 50 60 70 80 90 lOO 110 120 
Temperature 'C 

Fig. 2, Measured solubility of Nall02 (Mellor, 1980). 

The solubility data .dted in Figures l and 2 · 
are in percentage by mass ( S,., 91 ) • In oide.r to oh­
lain the parameters in the models, this needs to 
he converted into molality defined as 

(17) 

where M is the molecular welght ofNaBH4 (equals 
to 37. 83 glmol) or NaB02 (equals to 65. 8 gl 
mol), 

Figures 3 and 4 shows the rearrange~!· solu­
bilitydata dted in Figures land2 by converting 
the mass solubility into molality in the form of 21n 
m vs. 11 T for NaBILt. It can be seen that a r~.a· 

sonahle linearity exists at each temperature range. 
There are some tlifferences between the measured 
data and the linear fit1. T~is is probably mainly 
due to the fact that .the water activity in the solu~ 
tion has been assumed to he constant at various 
NaBH4 concentration and· temperature. Further 
work in the area is undertaking. 

7.0,--------'-'--,-..:.:__..;._ __ ___, 

'i:'· 
~ 
"' 6.5 
J;l' 

~ 6.0 

~::;a 

~~ 5.5 z 
'-
0 

~ 5.0 
'§ 
0 

• 
solid: Na BO,· HoO 

36.4 "C 
• NaBH,·2H,O and NaBH• 

solid: NaBH< 

~ 4.5 
~ ~--~--~--.-.--.~-,,-~.---~~ 

0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 
l!f(liK) 

Fig. 3 . Temperolure effect t:JO NallH4 fioluhility .. 
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15+-.-~-.~--~-,----.-~~~~ 
0.0026 0.0028 0.0030 0.0032 0.0034 0.0036 0.0038 

Comparing the linearity with the dissolution 
equilibrium theory, Eqs. (13) and (14), both 
!:lH and constant C can be obtained. These are 
listed in Table 3. The positive value of the heat of 

· solution suggests that the dissolving process is en-

Table 3 
Senoi.empiricul" parameters Llll and c . 

Spcdes 

.• ·•.· · . 

. 

NaB!!, .2H20 ( < 309 .4K) 
Nt~BH .. 

. · .. ·· . 

NaBll., (;;;. 309 .4 K) 
... 

. .. . ·. 
··. 

Nall02 .4H20 ( <326.6K) 

NailO, 
I 

i'\all0,.2H,O (326.6-378K) I 
. ·' . 

Nall02 .112H20 ( ;;.378K) 

. 

Substitute the heat and the constant into 
Eqs. ( 15) and ( 16), the solubility of NaBH4 and 
Nu1l02 in the form of percentage by mass at vari­

ous tempemtures can then be obtained as: 
100E1e- F(T 

S; = 1000 + £.e- ~'/T (IS) 
. . 

lff(I/K) 

dothennic. Increasing temperature is favoumhle 
for the dissolution. On the other hand, tlte nega­
tive heat '•alue indicates that the dissolution pro­
eess is exothermic and increase in temperature ,.;n 
decrease the solubility of the solute. 

Pnramett~rs 

Ml" ( kJ/ mnl) 
Pre-exponential factor 

( Mul/kg water) 

· .. 

.• 

26.0 2980 . .. -
'-

. . · . 

43.7 ·.· . 10400 . . . .. .. 

31.9 . 2750 
. 

26.8 1180 .·· 

-4.6 9.25 
. 

.· 

where E; and F; are semi-empirical parnmeters 
listed in Table 4 .. 

figures 5 and 6 show the ·comparison be­
tween calculated solubility using Eq. ( 18) unci 
the measured value. It can he seen that a good a­
b'fccments are obtained nt all temperature r-anges. 
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Talole 4 
Semi-empiri(·al parometers E· and F· - -' ' .. 

. 

1\nllH, 
.. 

·. .. · 

. 

NnBO, . 

Parnntetirs . 

Species 
I E1 

. NallH4·2H20 ( <309.4K) . 1.13 X JOS 

·. NnHH., ( ;;. 309 .4K) :i_ 93 X .IQ'\ 

NaB02·4H20 ( < 326.(iK) 
.. 

··•. ·•. 1.81 X JQ" 

.. NnBQ2·2H20(326.6-378K) ·. 7.76xiO' 

Nnll02 •l/2H20 ( ;;.378K) 6.09 X IOZ 
. 

60 

55 

so 

'$. 45 
J; .. . 40 
ill 
J5· 35 

30 

25 

0 10 20 30 40 50 60 

Temperature 'C 

Fig~ 5. Comparison of calculal•d and me~sured solubility of NaBH4 • 

60~--------~~--~------~------; 

20 

0 20 

• simulated date 
-a- original date 

40 60 80 
Tcmpemture 'C 

100 120 

J•~ig. '6. Compilrison of cal('ulaled 1md m<~asur<~d :mlubllily of NuB02 • 

. 

7 

Fr 

1561 

. 2629 

1921 . .... 

1613 . 

-277 . 
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4. System optimisation 

[n order to obtain ihe maximum possible hy­
drogen production density, the water c:ontained in 
the JliaBH4 hydrolysis system needs to be opti­
misecl. There are thrtee parts of water involve in 
the hydrolysis . rMctions: water. used to produce a 

Tahle 5 
Wnter '"~"led for NaBH4 hydn•lysis sys em. .. 

.. · ·. 

saturated NaB!~ solution, w1 , water consumed by 
the hydrolysis reacticm , w2 , and the water needed to 
dissolve and J'eii10Ve the by-product, tc3• 

Table 5 listed the minimum amount of water 
required by each pnrt of the requirement of the 
hydrolysis system at varying temperature mnges as 
shown. 

. 
• • 

T<1mprrnture range 
( K) 

. 

Wat~r in saturated 
· NaBH4 solution 

w,(g} 

Water required for 
h:•lrolysis, 

w,(g) 

Wat<>r mquired for 
diSHf>lving Null~, 

w,(g) 

"''at" . ····~ h. w er reqmn~• y 
. the system 

( w2 + w3) (g) 

102.0 
. . ... . .. . . 

36.0 216.0 
. .... 

. 273 -3o9.4 l ··- '''" ---·--- . 

1 Jso.o 

166.0 309.4~326.6 ·.· 47.0 36.0 130.0 ..c. 
- -----··--1---'--.----'-l-.-------j-.--·-------\---,-c._----·. . .·· 

326.6:.. 378 --· -·- 30. () ---- 36.0 ..-··-·-.-"-·-t..-6..-0.,-.0 . 96.0 .··· .. · 
. . 0 50 • . --- 86.0 > 378 . · ... · ··.. .·. 10,0 36. . ·~ 

·.· 
. · .. .. . . ·. . 

It can he seen that the amount of water need­
ed to react with NaBH4 and to solve the NaB02 is 
significantly larger tha11 the amount of water con­
tained in the saturated NaBH4 solution. In other 
words, it is the wat~.r required to hydrolysis the 
Nalli14 ~nd dissolve th~ by-product NaB02decides 
th~optimised water content in the hydrolysis sys­
tem. The. optimised concentration of the system 
can thus he calcubted by 

lOOwNnDII 
C~n8H f~·t'if) = W + IV + 1V < . ( J9) 

~ 2 3 N~tBH~ 

where wN,nn is the weight of NaB!~. 
~ 4 - . 

Figure 7 shows both calculated maximum op­
timised NaB~ concentration in the hydrolysis sys- · 
tern and the t•<mcentration of saturated NnBH4 so­
lution at. various temperatures .. Two in!('resting 
phenomena ne~d to he addressed. First, the opti­
mised concentration of NaBH4 for the hydrolysis 
system is about half the level of saturated solution 
of NaBH4 • By simply looking at the concentration 
of the NaBH4 to design the hydrolysis n·.action sys­
tem is clearly insufficient. Second, the optimised 
concentration increases as the solution temperature 

90 

80 
• solubillty of NaBH• .· ... 

• • 
70 

~ 
(>() 

z 
'#. so 
~· 

40 

30 

20 

10 

o tllaJ< concentrntiorl ofNnBB• 
in hydrolysis system 

• • • • • 
o• 

0 • 
0 

0 20 

• • • 
• 

40 

• • 
,01! 

• 

Temperature "C 

• • 
• •• • 

80 lOO 120 

Fig. 7. Ca'lr.!ulated NuBH4 ~o'lul,iJitY, and it5 maxirmmt eoneentration in lhe hydrolysis $)'5lern. 

'i 
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mcw.ases. This clearly increases the hydrogen 
production density. However, such benefit only 
exists when the solution temperature is lower than 
378K. Further increase in temperature would de­
crease the optimised concentration, so reduces the 
hydrogen production density of the system. This is 
due to the fact that the dissolution of NaB02 at 
temperatures above 378K becomes exotherniic ll!ld 
high temperature will reduce its solubility~·. 

5 • Conclusions 

Based on the van Hoff' s equation, a thermo­
dynamic dissolution equilibrium model has been· 
developed. 

Using existing measured solubility data, a 
groupof semi-empirical parameters required by 
the . thermodynnmic .. dissolutitin equilibrium model 
for NtillH.(nnd N~B02wf"-Te obtained. . 

Usingthese semi-empirical parameters,. the 
solubility of both NaBH4 and NaB02 was predict­
ed by. the thermodynamic dissolution equilibrium 
model agrees well with the measured data. 

The 1:alculated results showed that the opti­
mum concentration of the NaBH4 solution used for 
the hydrolysis reaction is about half the level of its 
saturated solution. It increases as the solution 
temperature incren.~es hutonly up to 378K •. Frir" 
the~ inq~ase In. temperature will results in de, 
!!ft-.a;,e in opti:lnised coneentration. 

' ' .. ·-·-' ,' ' ' 

\•.'' 
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