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Abstract 

The goal of the present work is the development of a numerical method for compressible 
viscous flows on mixed unstructured grids. 

The discretisation is based on a vertex-centred finite-volume method. The concept 
of grid transparency is developed as a framework for the discretisation on mixed un- 
structured grids. A grid-transparent method does not require information on the cell 
types. For this reason, the numerical method developed in the present work can be 
applied to triangular, quadrilateral, and mixed grids without modification. 

The inviscid fluxes are discretised using the approximate Riemann solver of Roe. A 
limited linear-reconstruction method leads to monotonic capturing of shock waves and 
second-order accuracy in smooth regions of the flow. 

The discretisation of the viscous fluxes on triangular and quadrilateral grids is first 
studied by reference to Laplace's equation. A variety of schemes are evaluated against 
several criteria. The chosen discretisation is then extended to the viscous fluxes in 
the Navier-Stokes equations. A careful study of the various terms allows a form to be 
developed which may be regarded as a thin-shear-layer approximation. In contrast to 
previous implementations, however, the present approximation does not require knowl- 
edge of normal and tangential coordinate directions near solid surfaces. 

The effects of turbulence are modelled through the eddy-viscosity hypothesis and 
the one-equation model of Spalart and Allmaras. 

The discrete equations are marched to the steady-state solution by an explicit 
Runge-Kutta method with local time-stepping. The turbulence-model equation is 
solved by a point-implicit method. To accelerate the convergence rate, an agglom- 
eration multigrid method is employed. In contrast to previous implementations, the 
governing equations are entirely rediscretised on the coarse grid levels. 

The solution method is applied to various inviscid, laminar, and turbulent flows. The 
performance of the multigrid method is compared for triangular and quadrilateral grids. 
Care is taken to assess numerical errors through grid-refinement studies or comparisons 
with analytical solutions or experimental data. 

The main contributions of the present work are the careful development of a solution 
method for compressible viscous flows on mixed unstructured grids and the comparison 
of the impact of triangular, quadrilateral, and mixed grids on convergence rates and 
solution quality. 
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When I write, the story is always uppermost in my mind, and I feel that 

everything must be sacrificed to it. All the elegant passages, all the so-called 
beautiful writing-if they are not truly relevant to what I am trying to say, 

then they have to go. It's all in the voice. You're telling a story, after all, 

and your job is to make people want to go on listening to your tale. The 

slightest distraction or wandering leads to boredom, and if there's one thing 

we all hate in a book, it's losing interest, feeling bored, not caring about 

the next sentence., In the end, you don't only write the books you need to 

write, but you write the books you would like to read yourself. 

Paul Auster, The Red Notebook 

Whenever I complete a book, I'm filled with a feeling of immense disgust 

and disappointment. It's almost a physical collapse. I'm so disappointed by 

my feeble efforts that I can't believe I've actually spent so much time and .,, 
accomplished so little. It takes years before I'm able to accept what I've 

done-to realise that this was the best I could do. But I never look at the 

things I've written. The past is the past, and there's nothing I can do about 

it anymore. The only thing that counts is the project I'm working on now. 

Paul 
, 
Auster, ibid. 
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Nomenclature 

The symbols used in the present work were chosen according to the following guidelines: 

1. Upper- and lower-case Latin and Greek characters in normal typeface represent 

scalar quantities. 

2. Upper- and lower-case Latin and Greek characters in bold typeface represent 

vector quantities; a vector component is denoted by the corresponding character 
in normal typeface with a Latin subscript. 

3. Upper-case Latin and Greek characters in sans-serif typeface represent tensor or 

matrix quantities; a tensor or matrix element is denoted by the corresponding 

character in normal typeface with two Latin or Greek subscripts. 

4. The Einstein summation convention is employed for tensors with repeated Latin 

indices. 

These guidelines are ignored in some cases to ensure compatibility with symbols 

commonly employed in the literature. Infrequently used symbols are not listed below. 

SI units are used throughout. 

Latin Characters 

A area 

Ano area of'control volume at vertex 0 

a speed of sound 

CD drag coefficient per unit width, defined by Eq. (7.3.1b) 

CL lift coefficient per unit width, defined by Eq. (7.3.1a) 

CM moment coefficient per unit width squared, defined by Eq. (6.4.3c) 

C, specific heat at constant pressure, CC = 1004.64 J/(kg K); 

pressure coefficient, defined by Eqs. (6.3.1) and (6.4.2) 

Csuth constant in Sutherland's viscosity law, Cs�th = 110.0 K 

C� specific heat at constant volume, C,, = 717.6 J/(kg K) 
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c chord of aerofoil 

cbl constant in Spalart-Allmaras turbulence model, cbl = 0.1355 

Cb2 constant in Spalart-Allmaras turbulence model, cb2 = 0.622 

ctl constant in Spalart-Allmaras turbulence model, ctl =1 

Ct2 constant in Spalart-Allmaras turbulence model, Ct2 =2 

ct3 constant in Spalart-Allmaras turbulence model, Ct3 = 1.2 

ct4 constant in Spalart-Allmaras turbulence model, Ct4 = 0.5 

c�1 constant in Spalart-Allmaras turbulence model, c�1 = 7.1 

CO constant in Spalart-Allmaras turbulence model, c�2 = 5.0 

c,,, l constant in Spalart-Allmaras turbulence model, given by Eq. (2.4.30) 

c,,, 2 constant in Spalart-Allmaras turbulence model, c,,, 2 = 0.3 

c,,, 3 constant in Spalart-Allmaras turbulence model, c.,,, 3 =2 

d distance to nearest solid wall in Spalart-Allmaras turbulence model 

do degree of vertex 0 

E total internal energy 

Ep error norm, p=1,2, oo 

FO forcing function for control volume 0, defined by Eq. (5.2.11) 

fti function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.32) 

ft2 function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.31) 

f�1 function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.22) 

f�2 function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.25) 

f�3 function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.26) 

fw function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.27) 

g function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.28) 

gt function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.33) 

H total enthalpy 
h static enthalpy; 

measure of grid spacing 

I identity tensor, Iij = b; j 

i unit vector in x-direction 

j unit vector in y-direction 

k turbulence kinetic energy 



Nomenclature xxvii 

k unit vector, k= ix j' 

M Mach, number, M= V/a 

M transformation matrix, q= Mp, defined by Eq. (3.7.5) 

N number of vertices 

n normal vector, n=n., i + nyj 

n coordinate direction aligned with freestream direction 

% component in x-direction of normal vector 

ny component in y-direction of normal vector 
O(") on the order of () 

p pressure, given by Eq. (2.2.4) 

p primitive state vector, p= 1p, u, v, p}t 

Pr Prandtl number, defined as Pr = pCp/n 

Prt turbulent Prandtl number, defined as Prt = ptCr/It 

q conservative state vector, q= {p, pu, pv, pE}t; 

heat-flux vector, defined by Eq. (2.3.6) 

approximate solution in multigrid method 

coarse-grid solution vector in multigrid method 

q component of velocity vector normal to a given unit vector 

R residual 

RS Riemann invariant, defined by Eq. (3.11.16b) 

Rt Riemann invariant, defined by Eq. (3.11.16a) 

R+ Riemann invariant, defined by Eq. (3.11.16c) 

R_ Riemann invariant, defined by Eq. (3.11.12) 

R specific gas constant, R= Cp - C,,, R= 287.04 J/(kg K) 

r function in Spalart-Allmaras turbulence model, defined by Eq. (2.4.29); 

component of velocity vector tangential to a given unit vector; 

radial coordinate 

r position vector, r= xi + yj 

Re Reynolds number 

S strain tensor, defined by Eq. (2.3.3) 

s coordinate direction normal to freestream direction 

T static temperature 



Nomenclature xxviii 

T stress tensor, defined by Eq. (2.3.2) 

t tangential vector; t= tyi + tyj 

t time coordinate 
t, component in x-direction of tangential vector 

ty component in y-direction of tangential vector 

At time step 

u component in x-direction of velocity vector 

V velocity magnitude, V= jlvjj 

v component in y-direction of velocity vector 

V velocity vector, v= ui + vj 

x space coordinate in horizontal direction 

y space coordinate in vertical direction 

Greek Characters 

a angle of attack of aerofoil; 

angle between flow direction and normal vector at inflow boundary 

ak kth stage coefficient in Runge-Kutta method 
/3 Prandtl-Glauert parameter, ß=1 -M2 

ry ratio of specific heats, y=C,, /C,,, y=1.4 

Szj Kronecker delta, 8ij =1 if i=j, S2j =0 if i#j 

e variable used in Venkatakrishnan limiter function; 

small number, e«1 

77 coordinate direction aligned with control-volume face 

0 angular coordinate 

n coefficient of heat conduction; 

von Käxmän's constant, rc = 0.41; 

coefficient in MUSCL interpolation, -1 6n61 

Kt eddy coefficient of heat conduction 

A second coefficient of viscosity, A= -2p; i; 
limiter function, defined by Eq. (3.7.67) or (3.7.68) 

µ dynamic laminar viscosity, defined by Eq. (2.3.8) 

µt dynamic eddy viscosity, defined by Eq. (2.4.21) 



Nomenclature xxix 

V kinematic laminar viscosity 

eddy-viscosity variable in Spalart-Allmaras turbulence model 

coordinate direction aligned with edge Oi 

it it = 3.14159265.. . 

p density 

E entropy parameter, defined by Eqs. (6.3.2) and (6.4.4) 

Cr constant in Spalart-Allmaras turbulence model, a= 2/3 

generic variable; 

velocity potential, v= V4 

X variable in Spalart-Allmaras turbulence model, defined by Eq. (2.4.23) 

St vorticity, ft =Vxv 

Q magnitude of vorticity, 1= 11SZ1l 

no control volume at vertex 0 

fit region formed by cells meeting at vertex 0 

001 coarse-grid control volume containing fine-grid control volume at vertex 0 

St magnitude of vorticity in Spalart-Allmaras turbulence model 

w general vector of edge weights 

w general edge weight 

Calligraphic Characters 

Cö set of control volumes on grid h contained in control volume 0' on grid H 

Eo set of edges incident to vertex 0 

Zh restriction operator 

ZH prolongation operator 

-Eh 
interpolation operator 

T set of triangles meeting at vertex 0 

Operators 

D(")/Dt substantial derivative, D(")/Dt = ö(")/ät +v" V(") 

V(") gradient operator, V(") = ä(")/Uxi + a(")/äyj 

101 magnitude of scalar (") 

11011 magnitude of vector (") 



Nomenclature xxx 

a" (") scalar product of vector a with vector (") 

ax (") vector product of vector a with vector (") 

a ®(") tensor product of vector a with vector (") 

1(")l ceiling function 

L(-) J floor function 

neg(") negative projection operator, defined by Eq. (3.12.13) 

Subscripts 

ac aerodynamic centre 

eff effective value, given by sum of laminar and turbulent values 

i evaluated at vertex i; 

ith component of vector; 

evaluated at inner radius 

ij ijth component of tensor 

L left state 

o evaluated at outer radius 
R right state 

ref reference quantity 

wall evaluated at wall 

0 evaluated at vertex 0; 

evaluated at stagnation state 

Oi relating to edge directed from vertex 0 to vertex i 

of evaluated in coarse-grid control volume containing fine-grid vertex 0 

00 evaluated at freestream state 

Superscripts 

H on grid level with characteristic grid spacing H 

h on grid level with characteristic grid spacing h 

m evaluated at mth stage of Runge-Kutta method 

t transpose 

fluctuating part of Reynolds-decomposed variable 
fluctuating part of Favre-decomposed variable 



Nomenclature 

Overbars 

(") averaged part of Reynolds-decomposed variable ("); 

average value in control volume, defined by Eq. (3.2.2); 

modified quantity, unmodified quantity without overbar 

(") averaged part of Favre-decomposed variable ("); 

approximate solution, defined by Eq. (5.2.2) 

(") Roe-averaged variable, defined by Eqs. (3.7.71a)-(3.7.71d) 

Acronyms 

ACR Average Convergence Rate, defined by Eq. (6.3.3) 

ADI Alternating Direction Implicit 

AMG Algebraic Multigrid 

CFD Computational Fluid Dynamics 

CFL Courant-Friedrichs-Levy, 

CM Convergence Measure, defined by Eq. (3.13.7) 

CPU Central Processing Unit 

DNS Direct Numerical Simulation 

ENO Essentially Non-Oscillatory 

GMRES Generalised Minimum Residual 

HOT Higher-Order Terms 

ILU Incomplete Lower-Upper (Factorisation) 

LED Local Extremum Diminishing 

LES Large-Eddy Simulation 

LU Lower-Upper (Factorisation) 

LU-SGS Lower-Upper Symmetric Gauss-Seidel 

MUSCL Monotone Upstream-Centred Schemes for Conservation Laws 

RANS Reynolds-Averaged Navier-Stokes Equations 

SCT Scaled CPU Time 

TSL Thin Shear-Layer 

TVD Total Variation Diminishing 

WU Work Unit 
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Chapter 1 

Introduction 

The background and the aim of the present study are described. Different grid 
types are classified in order to expose their advantages and disadvantages. For 
the present study, unstructured grids are chosen because of their suitability for 
discretising complex geometries and adapting to fiowfield features. Previous work 
on unstructured grids is reviewed and discussed. Attention is focussed on the spatial 
discretisation and iterative solution methods. Finally, the objectives of the current 
study are formulated based on the aim and the review of previous work. 

1.1 Background 

The field of aeronautical engineering is characterised by a wide variety of complex flow 

phenomena. Taking an aerofoil at high-lift and cruise configurations as an example, flow 

phenomena such as shock waves and their interaction with boundary layers, separation 

bubbles, transition from laminar to turbulent flow, and wakes arise, as illustrated in 

Fig. 1.1ý 

Attempts to study such flows analytically using the partial differential equations 

governing fluid flow have met with very limited success. The complexity of these equa- 

tions means that only the simplest flow fields of interest to engineers are accessible to 

rigorous theoretical analysis. For example, a boundary layer developing or a shock wave 

impinging on a flat plate can be studied analytically with relative ease when considered 

in isolation. When trying to analyse their interaction, however, great difficulties ap- 

pear. Consequently, the great majority of engineering studies in aerodynamics used to 

be experimental in nature. The advent of the high-speed digital computer and its rapid 

development have opened up a further avenue for studying aerodynamic phenomena. 
It entails the numerical solution of the governing equations and has become known as 

Computational Fluid Dynamics (CFD)., ` , 
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interaction 
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Figure 1.1: Illiistration of' challenging flow phenomena by way of an 
aerofoil in (a) high lift and (b) cruise configuration. 
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CFD enjoys a number of potential advantages over the experimental approach: It 

reduces lead time in design and development, it is non-intrusive and provides more 

comprehensive flow-field information, it can simulate Hypothetical and hazardous flow 

conditions, and it is becoming increasingly cost-effective. 

During the past decade, CFD has reached a certain level of maturity and flexibility. 

It can be used with a relatively high degree of confidence for a wide range of problems 

of engineering interest. While CFD is not yet capable of delivering highly accurate 

absolute results for all such problems, it usually predicts trends and relative results well 

(e. g., the change in the flow field due to a change in geometry). 

A variety of advances have contributed to the present state-of-the-art in CFD. These 
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advances have been documented in a number of overview and review articles, see Har- 

low and Fromm [103], Chapman [63], MacCormack and Lomax [167], Hall [99,100], 

Lomax [159,160], Kutler [143], Rizzi and Engquist [237], Jameson [114-116,118,120], 

MacCormack [166], and Lax [146]. 

1.1.1 Aim of Present Work 

The present work may be regarded as the first step in a project whose ultimate aim is 

the numerical simulation of compressible turbulent flows about complex geometries in 

three dimensions. In this first step, a computer program is to be developed to study 

numerical issues in two dimensions. In a second step, the program will be extended to 

three dimensions. 

1.1.2 Classification of Grid Types 

A usual prerequisite for the numerical solution of the governing equations is the exis- 

tence of a grid in the solution domain. A grid may be visualized as a set of straight lines 

connecting grid points to form grid cells. Values of the dependent variables are placed 

at so-called storage locations relative to the grid cells. Invariably, solution methods 

require the approximation of the dependent variables and the reconstruction of gradi- 

ents of the dependent variables at locations other than those at which the variables are 

located. Both approximations have to be expressed in terms of nearby values of the 

dependent variables. In order to do so, information must be provided to the solution 

method about which storage locations are nearby a given storage location in the grid. 

It is this information which is referred to as grid structure (or simply structure). As 

will be discussed below, grid structure may be provided to the solution method either 

implicitly or explicitly, or by a combination of both. 

Several basic types of grids have been developed. It is instructive to classify these 

grid types according to the precise way in which grid structure becomes apparent. The 

classification will demonstrate that each grid type has distinct features and accompany- 

ing advantages and disadvantages which directly influence the suitability with respect 

to the aim given in Subsection 1.1.1. A multitude of additional grid types may be gen- 

erated by blending features of the existing grid types with the aim of maximising the 

advantages and minimising the disadvantages. Because of the blending, the classifica- 
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tion of these additional grid types can become somewhat arbitrary. The classification of 

grid types presented below is depicted schematically in Fig. 1.2. Detailed information 

on the various grid types may be found in Thompson et al. [274]. 

Structured Grids. In structured grids, grid points are placed at the intersections of 

coordinate lines of a coordinate system which spans the solution domain. As a result, 

interior grid points have a fixed number of neighbouring grid points and naturally map 

into a grid-point matrix. This allows the grid points to be referred to by indices. Neigh- 

bouring grid points are identified by simply incrementing or decrementing the respec- 

tive grid-point index. In other words, the underlying coordinate system implicitly lends 

structure to the grid, hence the name. The label `implicit' is employed to emphasize 

that the very nature of the grid itself implies a structure which can be exploited. Two 

types of structured grids can be distinguished, depending on the underlying coordinate 

system. 

Rectilinear Grids. Defining the coordinate system by straight lines leads to rectilinear 

grids. Due to their simple construction, rectilinear grids were the grids used in early 

applications of CFD, see, e. g., Reyhner [231] and Purvis and Burkhalter [226]. For non- 

rectangular solution domains, coordinate lines intersect boundaries at possibly irregular 

intervals. Consequently, cut boundary cells exist along the boundaries. These cells 

can complicate the imposition of boundary conditions and require special attention to 

ensure that stability, consistency, and accuracy of the numerical scheme are maintained. 

For inviscid flows, Keith Clarke et al. [137] demonstrated that accurate results can be 

obtained. For viscous flows, however, Frymier et al. [91] found that obtaining accurate 

solutions is difficult. This has prevented more widespread use of rectilinear grids. 

(Single-Block) Curvilinear Grids. The problems of the rectilinear-grid approach can be 

avoided if coordinate lines coincide with the boundaries, leading to curvilinear grids as 

pioneered by Thompson et al. [273]. An example of a curvilinear grid for the NACA 0012 

aerofoil is shown in Fig. 1.3. For simple geometries (such as aerofoils or wings in cruise 

configuration), curvilinear grids can be of high quality. Grid quality is usually assessed 
in terms of the skewness of grid lines and local variations of cell area. As demonstrated 
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Figure 1.3: Ctirviliiiear grid of C-topology for NACA 0012 aerofoil. 
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by Lee and Tsuei [149], high-quality grids are necessary to obtain accurate solutions. 

Solution methods which operate on curvilinear grids have been developed and tuned 

to a high degree of sophistication, see, e. g., Kroll et al. [142]. Accurate and reasonably 

efficient simulations of viscous flows for simple geometries are therefore possible. 

The growing acceptance of CFD by the aeronautical industry means that, flows 

around and inside geometries of increasing complexity are being studied. A geometry 

may be referred to as complex if a characteristic length scale (such as the radius of 

curvature or the separation distance of local geometric features) varies by several or- 

ders of magnitude. When applied to complex geometries, curvilinear grids have been 

found to suffer frone two main drawbacks. First, it is generally difficult and extremely 

time-coiisunºiug to generate high-duality curvilinear grids around and inside the com- 

plex geometries of interest. These difficulties are a direct consequence of the iiiiplicit 
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structure in the grid. By constraining grid points to have a fixed number of neighbours, 

the suitability of curvilinear grids is actually restricted to topologically rectangular so- 

lution domains. If the solution domain is not equivalent topologically to a rectangle, 

curvilinear grids often exhibit skewed grid lines and large local variations in cell area, 

which are likely to have a detrimental effect on solution accuracy. Second, since grid 

points are placed at the intersections of coordinate lines, increasing the resolution or im- 

proving the grid quality by adding grid points (either a priori or by grid adaptation) in 

a certain area necessitates the addition of the entire coordinate lines on which these grid 

points lie. Consequently, the implicit structure can also be regarded as being global, 

which can result in unnecessary grid refinement and is therefore inefficient. This can be 

seen from Fig. 1.3, where the increased resolution near the trailing edge of the aerofoil 

propagates outward into regions which are unlikely to exhibit significant gradients of 

the dependent variables. * 

Composite Grids. The drawbacks of single-block curvilinear grids can be lessened 

somewhat by reducing the extent of the region in which the structure is implicit. This 

can be accomplished by decomposing the solution domain into a number of subdomains, 
in each of which a curvilinear grid is constructed. This leads to so-called composite grids. 
Two main approaches have been suggested. 

Multi-Block Curvilinear Grids. Lee and Rubbert [150] and Weatherill and Forsey [295] 

developed the multi-block method, which divides the solution domain into contiguous 
blocks. A curvilinear grid is generated in each block. The connectivity between the 

blocks is specified explicitly in so-called connectivity tables. The basic premise is that 

it will be easier to generate high-quality curvilinear grids in each block separately than 

to generate one high-quality curvilinear grid in the entire solution domain. The multi- 
block approach is probably the most widely used grid type for complex geometries in 

the aeronautical industry nowadays. As shown by many contributions and exemplified 
by Vatsa et al. [283], high-quality results can be obtained for complex geometries. 
However, the multi-block approach suffers from the disadvantage that the generation 

`In this particular case, the clustering of grid points near the aerofoil surface improves the resolution 
of the wake behind the trailing edge due to the adoption of a C-topology and is therefore beneficial for 
viscous flow simulations. 
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of a satisfactory block topology for complex geometries is difficult to automate and can 

therefore be very time-consuming. 

Chimera Grids. The chimera method of Benek et al. [40] generates curvilinear grids 

separately for components of the geometry. In contrast to the multi-block method, the 

component grids are allowed to overlap, as depicted schematically in Fig. 1.4. Flow-field 

information is transferred between the grids by special interpolation procedures. The 

connectivity between the component grids is specified indirectly by the interpolation 

stencils in the overlap regions. Conservative interpolation methods are required in 

order to prevent significant errors, especially if the overlap regions are crossed by shock 

waves, see, e. g., Pärt-Enander and Sjögreen [221]. The chimera method is particularly 

well-suited for flows with boundaries in relative motion. Detailed descriptions of the 

chimera method may be found in Steger and Benek [265] and Steger [264]. Strengths 

and weaknesses of chimera grids were assessed by Belk [39]. The suitability of the 

chimera approach for complex geometries was demonstrated by Buning et al. [54] by 

simulating the flow over the space shuttle orbiter complete with solid rocket boosters 

and external tank. 

The chimera method has spawned two additional approaches. With the Feature- 

Associated Mesh Embedding (FAME) method, Albone [8] takes the association of 

structured grids with geometry components a step further. Distinct geometric and 

flow features are classified into types and associated with a suitable grid topology 

(such as C, H, or 0). A multiply embedded Cartesian background grid is used. As 

with the chimera method, information is transferred between grids through interpo- 

lation. Kao and Liou [133] developed DRAGON (Direct Replacement of Arbitrary 

Grid-Overlapping by Non-structured) grids, in which the overlapping regions are re- 

ceded and the resulting cavities are triangulated. In this way, the difficulties associated 

with interpolation are avoided at the expense of introducing another type of grid cell. 

Unstructured Grids. The multi-block method may be regarded as a framework 

which encompasses two special cases. First, by using a single block only, the origi- 

nal structured-grid approach as described above is recovered. Second, each individual 

grid cell may be taken as a block. As any implicit structure has been removed, and the 
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Figure 1.4: Illustration of chimera grid for generic two-clement aerofoil. 

complete structure has to be specified explicitly, this is usually referred tu as an unstruc- 

tured grid. (This point of view leads to the interpretation of multi-block and chimera 

grids as beint; locally, i. e., on the scale of each block or component grid, structured, laut 

globally, i. e., on the scale of the solution domain, unstructured. ) 

Since the explicit specification of grid structure is completely local, the number of 

grid cells meeting at a grid point is not restricted to a constant number, as in structured 

grids. For the same reason, unstructured grids may in principle consist of an arbitrary 

combination of cell types. Cells iiiay be categorised into types according to the number 

of edges or faces froin which they are coiistrluctecl. t The local nature of unstructured 

grids leads to three key benefits: First, unstructured grids for complex geometries can 

Although it is common to refer to triangular and quadrilateral grids as unstructured and structured 
grids, respectively, it should be noted that the distinction between structured and unstructured grids 
is in principle not dependent on the cell type. Any structured grid can be treated as an unstructured 
grid by the solution method (there may he good reasons for doing so, e. g., grid adaptation [3,129,291]), 
but not every unstructured grid can be treated in a structured manner. It follows that referring to 
a given grid as 'structured' or 'unstructured' is not strictly correct. Nevertheless, `triangular grids' 
are understood to be unstructured triangular grids, and `structured grids' will stand for structured 
quadrilateral grids in the following. 
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be of high quality. (The quality of unstructured grids is usually assessed in terms of 

local variations in cell area and interior angles of the grid cells. ) Second, unstructured 

grids are ideally suited to grid adaptation. Adding grid points is accomplished easily 

and results in local changes to the grid only. Third, the generation of unstructured 

grids is more easily automated and therefore less time-consuming for a given geometry. 

Three types of unstructured grids may be identified. 

Simplicial Grids. The majority of unstructured grids are currently constructed from 

geometric simplices, i. e., triangles in two dimensions and tetrahedra in three dimensions. 

An example of a triangular grid is depicted in Fig. 1.5 for a three-element aerofoil. In 

contrast to the curvilinear grid shown in Fig. 1.3, it can be seen that the grid resolution 

can be adjusted locally. 

The suitability of simplicial grids for inviscid flows is well-established. Frink [87], 

among others, demonstrated that solutions can be obtained whose quality is equal to 

that of solutions on structured grids. 

The application of simplicial grids to viscous flows requires the generation of highly 

stretched triangular and tetrahedral cells. Triangular grids for high-Reynolds number 
flows are of the form shown in Fig. 1.6(a), which can be regarded as a compressed and 

sheared equilateral triangular grid, or as a triangulated quadrilateral grid; the corre- 

sponding tetrahedral grid is shown in Fig. 1.6(b). * The key observation is that simplicial 

grids cannot be stretched without skewing the cells, in contrast to quadrilateral and 

hexahedral grids. 

In order to obtain accurate results for viscous flows, it is imperative that numerical 

diffusion is minimised. Carpentier et al. [60] and Carpentier [58,59] studied the modified 

equation for a second-order upwind finite-volume discretisation of the linear convection 

equation on a triangular grid such as that shown in Fig. 1.6 and a quadrilateral grid. 
The analysis showed that numerical diffusion was substantially higher on the triangular 

grid than on the quadrilateral grid. Numerical experiments verified this observation. 
This conclusion is consistent with the comments by Hall [100] and Ramakrishnan et 

=The shape of the triangular cells is supported by the analyses of Babu§ka and Aziz [18] and R. ippa 
[236], which indicate that the error of a piecewise linear approximation on a triangular cell is directly 
proportional to its largest angle. See also Handscomb [102]. The corresponding analysis for tetrahedral 
grids was presented by Kfi ek [141]. 
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Figure 1.5: 'Triangular grid for three-element aerofoil. 
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al. [228]. who stated that solutions obtained on simplicial grids were found to be less 

accurate than those on curvilinear grids. In cases where good agreement was obtained, 

e. g., Frink [88,89], it may have been partly due to increased local grid resolution. 

Of course, it can be argued that local refinement is a legitimate use of an inherent 

advantage of unstructured grids to reduce potentially larger local errors. Nevertheless, 

doubts remain over the suitability of simplicial grids for viscous flows. The comparisons 

of multi-block and triangular grids by Shresny and Baier [246] is also interesting in this 

regard. 

Mixed Grids. As shown above, the shapes of appropriately stretched triangles and tetra- 

Nedra in viscous regions are such that they may be merged to form layers of quadrilat- 

erals and prisms (obtained by extruding triangular faces), see, e. g., Merriam [188] and 
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(a) 

(b) 

Figure 1.6: Typical appearance of snnl>licial grids for viscous flow situ - 
ulations. (a) Triangular grid and (b) tetrahedral grid. Note the resem- 
blance to subdivided quadrilateral and prismatic grids. 
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Marcum [169]. This naturally gives rise to mixed grids, i. e., unstructured grids consist- 

ing of different cell types. The reduction in the number of cells and edges leads to a 

reduction in storage and processing time. (It should be noted, however, that this leads 

to a loss of resolution with cell-centred solution methods. ) Merging stretched simplicial 

cells is therefore an obvious way of combining the established accuracy of structured 

grids with the geometric flexibility of unstructured grids. In two dimensions, quadri- 

lateral cells are employed on solid boundaries while the rest of the solution domain is 

triangulated. Mixed grids were used in two dimensions by Holmes and Connell [109], 

Nakahashi and Egami [205], Hwang and Wu [112], Koomullil et al. [140], and Hasel- 

bacher et al. [107]. In three dimensions, one approach uses layers of prismatic cells on 

solid boundaries while the rest of the solution domain is filled with tetrahedra. An- 

other approach is to employ hexahedral and tetrahedral cells as a direct extension of 

quadrilateral and triangular cells. However, to allow hexahedral and tetrahedral cells 

to be used together, prismatic and pyramidal cells have to act as bridges between the 

triangular faces of tetrahedra and quadrilateral faces of hexahedra. Mixed grids were 

used in three dimensions by Mavriplis and Venkatakrishnan [183], Coirier and Jorgen- 

son [66], Gerhold et al. [94], and Blazek et al. [47]. Although interest in mixed grids 

is increasing, relatively little work has been carried out so far. This could be due to a 

lack of suitable grid generation methods and justified concerns-voiced by Baker [20] 

and Löhner [155]-that the existence of different cell types complicates the solution 

method. Haselbacher and Blazek [106] described the difficulties in developing efficient 

and accurate solution methods on mixed grids. An added complication is that high 

grid quality at the interface between regions of different cell types is difficult to achieve, 

especially with stretched hexahedra. 

Cartesian Grids. Cartesian grids are generated by recursive subdivision of the solution 

domain into square or cubic cells whose edges are aligned with the cartesian coordinate 

directions. For non-cartesian solution domains, this results in cut cells near boundaries, 

as with rectilinear grids. An example Cartesian grid for an aerofoil is depicted in 

Fig. 1.7. Since the generation of Cartesian grids is comparatively simple and easily 

automated, they are well-suited for preliminary design tools based on potential flow 

analyses, see, e. g., the TRANAIR code of Young et al. [303]. Coirier and Powell [67] 
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Figure 1.7: Cartesian grid for NACA 0012 aerofoil. Inset shows cut 
cells near aerofoil surface. 

demonstrated through comparisons with curvilinear grids that accurate results call he 

obtained for the Eisler equations. Alluiaras and Baron [9] and Berger [41] studied 

numerical issues regarding accuracy and conservation at the refinement interfaces where 

hanging nodes and edges exist. The application of Cartesian grids to viscous flows has 

lagged behind that to inviscid flows, because the cut boundary cells can lead to a 

serious degradation of accuracy, as demonstrated by Coiner [65], and because the usual 

isotropic refinement procedures lead to excessive, and therefore inefficient, refinement 

for aiiisotropic features such as shear layers. To circumvent. these problems, Cartesian 

grids niay be combined with boundary-conforming grids, see, e. g., Melton et al. [187], 

Karinas [134], Bishop and Noack [45], Sinith and Leschziner [255], and Delanaye et 

al. [76]. Further information on Cartesian-grid approaches may be found in Aftosinis 

[5], Powell [225] and Quirk [227]. Recent research on Cartesian grids has focussed on 

anisotropic refinement in order to reduce the total number of cells generated, see Berger 

and Aftosinis [42]. 
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The capabilities of unstructured grids in representing complex geometries is demon- 

strated by a number of researchers computing turbulent flows around complete aircraft 

geometries, see, e. g., Frink and Pirzadeh [90] and Mavriplis and Pirzadeh [182], and the 

impressive computations of Löhner and co-workers [35-37,189]. 

A price has to be paid for the enhanced capabilities of unstructured grids, of course. 
The storage of and repeated reference to connectivity information makes unstructured- 

grid flow solvers more expensive than structured-grid flow solvers both in terms of 

storage and processing time. § Braaten and Connell [50] stated storage requirements on 

tetrahedral grids of 120 words per vertex for inviscid flows and 300 words per vertex 

for turbulent flows on tetrahedral grids with an explicit solution method, adaptive 

multigrid convergence acceleration, and a two-equation turbulence model. Marcum 

and Agarwal [170] listed requirements on tetrahedral grids of 130 words per vertex for 

inviscid flows and 150 words per vertex for turbulent flows with an explicit method and 

a two-equation turbulence model. This compares to typical values of about 50 words 

per vertex for structured-grid flow-solution methods. Furthermore, the lack of global 

grid structure means that efficient solution techniques such as Alternating Direction 

Implicit (ADI) methods [38] cannot be applied. 

It may appear that the increased storage and processing time are a great price to pay 

for the enhanced capabilities. However, there are two reasons why unstructured grids 

are an attractive proposition for the computation of flows around complex geometries: 

First, it is easier and less time-consuming to generate an unstructured grid for a given 

complex geometry than a multi-block grid. An unstructured grid allows for an increased 

resolution of regions of interest with a smaller number of grid points covering the entire 

solution domain than a multi-block grid. Second, the reduction in time required for grid 

generation and the reduction in the number of grid points will compensate for or even 

outweigh the increased computational cost of obtaining a flow solution. Evidence which 

testifies to the validity of these arguments, at least for inviscid flows, was collected by 

Michal and Halt [190]. 

Hybrid Grids. The above discussion established that the advantages of unstructured 

This does not strictly apply to Cartesian-grid flow-solution methods because quantities such as 
face areas and control volumes do not have to be stored as they can be inferred directly from the data 
structure. 
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grids correspond to the disadvantages of structured grids and vice versa. Given their 

diametrically opposed characteristics, this is not surprising, of course. It is therefore 

reasonable to try to maximise the advantages and minimise the disadvantages by hy- 

bridising the two approaches, leading to so-called hybrid grids. It is clear from the pre- 

ceding discussion that hybrid grids share some features with multi-block and chimera 

grids. The difference is that hybrid grids may be regarded as introducing some means of 

grid structure into unstructured grids, whereas multi-block and chimera grids attempt 

the opposite. Two types of hybrid grids can be distinguished. 

Zonal Grids. Zonal grids attempt to combine the advantages of structured and unstruc- 

tured grids by using the most suitable type in certain zones of the solution domain. 

Typically, structured grids are used near solid boundaries and unstructured grids in the 

rest of the solution domain. As first demonstrated by Nakahashi and Obayashi [206], 

this provides the opportunity to solve the Navier-Stokes equations on the structured 

grid and the Euler equations on the unstructured grid and to tailor the solution meth- 

ods accordingly. The implementation of Nakahashi and Obayashi allowed overlapping 

of the structured and unstructured grids, but avoided interpolation since the grid points 

coincided in the interface regions. 

Weatherill [292,293] suggested the creation of zones with triangular grids only in 

regions where quadrilateral cells were of poor quality and where grid adaptation was car- 

ried out. This approach was also employed in three dimensions by Peace and Shaw [222] 

and Shaw et al. [252]. In three dimensions, the treatment of the interface between struc- 

tured and unstructured grids is complicated by the fact that prismatic and pyramidal 

cells need to be used as bridges between triangular and quadrilateral cell faces. 

Zonal grids may also be regarded as multi-block grids where unstructured grids 

are generated in some blocks, see, e. g., the SAUNA CFD system described by Shaw 

et al. [253], Shaw [250] and Shaw and Peace [251]. Zonal grids were also used in the 

UNSFLO code of Giles [96], by Mathur et al. [172], Hefazi et al. [108], Soestrisno et 

al. [257,258], Berglind [43] and Tsung et al. [275]. 

' The drawbacks of zonal grids are that the interface between the structured and 

unstructured zones requires special treatment and that the constant number of layers 

of quadrilateral or hexahedral cells may lead to poor grid' quality near the interface. 
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Figure 1.8 compares the interface for zonal and mixed grids in two dimensions. 

Prismatic Grids. A further way of combining features of structured and unstructured 

grids is through the use of prismatic grids originally introduced by Nakahashi [203,204] 

and developed further by Kallinderis [130]. Prismatic cells are generated by marching 

from surface triangulations in layers along appropriately defined normal directions, as 

shown schematically in Fig. 1.9. The resulting grid may be regarded as unstructured 

in each layer and structured in the direction normal to the surface. The advantages 

of prismatic grids are that considerable savings in storage and processing time may be 

realised because of the structure in the normal direction, see Parthasarathy et al. [220]. 

The structure in the normal direction may also be exploited in the derivation of implicit 

schemes, as done by Pandya and Hafez [218]. 

Because prismatic grids contain fewer and less skewed cells for a given number of 

grid points near solid walls, they are generally regarded as more suitable for viscous 

flow simulations than tetrahedral grids. A drawback of prismatic grids is that they 

cannot be used for multiply-connected domains and that they require the same number 

of triangular faces on opposing boundaries. Furthermore, adapting prismatic grids 

requires subdivision of all cells in the normal direction. 

The drawbacks of prismatic grids led to the development of prismatic-tetrahedral 

grids by Kallinderis et al. [131], Parthasarathy et al. [220] and Khawaja et al. [135]. 

Prismatic cells are used only adjacent to solid boundaries regions while tetrahedra are 

used to fill the rest of the solution domain. To prevent prismatic layers from crossing 

each other, they need to be pulled back in regions of concave curvature, as illustrated 

by the section through a prismatic-tetrahedral grid in Fig. 1.10. This is a potential 

drawback of prismatic-tetrahedral grids, as the thickness of the prismatic region is 

smallest where thickening of boundary layers is expected to occur. 

Prismatic-tetrahedral grids may be regarded as a subset of mixed grids. As with 

mixed grids, obtaining high grid quality at the interface can be difficult, as it depends 

on the surface triangulation, initial marching step, stretching ratio and the number of 

prismatic layers. 

Prismatic cells may also be used near solid boundaries to circumvent the difficulties 

associated with cut cells in the cartesian-grid approach, see Melton et al. [187], Karman 
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(a) 

(b) 

Figure 1.8: Comparison of interface between quadrilateral and triati- 
gular cells in (a) zonal grid and (b) mixed grid. Note that the number 
of layers of quadrilateral cells remains constant in the zonal grid, which 
can lead to quadrilateral cells of low aspect ratio. 
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direction of marching 

triangulated surface 

Figure 1.9: Illustration of generation of prismatic grid by marching 
along suitably defined normal vectors from a surface triangulation. 
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[134], and Delanaye et al. [76]. Of course, the problem of cut cells is not eliminated, 

but iºierely moved away fromn solid boundaries to a location where the cut cells can be 

assluiiecl to have a reduced negative impact Oil the flow Solution. 

Chosen Grid Type: Unstructured Grids. Unstructured grids were chosen for the 

present work because they offer virtually unlimited flexibility in discretising complex ge- 

ometries and in adapting to flow-field features. III the following, the term imstxtictlire(l 

grids' will stand for simplicial and mixed grids; Cartesian grids will only be considered 

if relevant. 

A 

A 

A 
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Figure 1.10: Section tbroiigli prismatic tetralieýlrýl grid. Note how 
1>risnlatic layers are pulled towards corner. Generated by method de- 
scribed in [135]. 

1.2 Pioneering Efforts on Unstructured Grids 

The prospect of being able to compute flows around and through arbitrarily complex 

geometries lead to an intensive research effort in developing solution methods for un- 

structured grids. It is interesting and instructive to review briefly some of the pioneering 

efforts. 

Early work by French research groups at the Institut National de Recherche en In- 

foririatique et Autoniatique (INRIA) and at Avions Marcel Dassault-Breguet Aviation 

(AMD-BA) concentrated on finite-element methods, which traditionally used iinstruc- 

tured grits. As early as 1982, Bristeau et al. [52] presented solutions for transonic 
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potential flow around the Dassault Falcon 50, business aircraft using a least-squares 

finite-element method on tetrahedral grids. Subsequent work by Angrand et al. [14] 

and Angrand and Dervieux [13] focussed on the Euler equations. These efforts were 

paralleled by research carried out at the University College Swansea in England by 

Löhner et al. [156,157], 'also based'on the finite-element method. 
Lectures at the von Kärmän Institute by Dervieux [78] in 1985, Morgan and Peraire 

[197]'14n 1987, and Desideri and Dervieux [79] in 1988 helped to disseminate the early 

work by the French and English research groups. 

Research on unstructured-grid methods in the United States was initiated by Jame- 

son and Mavriplis [123], who presented results for inviscid flows around aerofoils on 

structured triangular grids in 1985. The triangular grids were obtained from structured 

grids of 0-topology by inserting additional edges. Jameson and Mavriplis essentially 

extended the well-established cell-centred finite-volume method of Jameson et al. [124] 

and the improvements of Jameson and Baker [121] to triangular grids. A multigrid 

method was employed to accelerate the convergence rate. Solutions for subsonic and 

transonic cases compared well with results obtained on structured grids. Second-order 

accuracy was established by a grid-refinement study. 

In January 1986, Jameson et al. [125] presented inviscid calculations around the 

Boeing 747 complete with engine pylons and cowlings on tetrahedral grids. The concept 

of Delaunay triangulation was employed to generate the tetrahedral grid for a given 

set of points. The solution variables were stored at the vertices of the grid. The 

control volume at a vertex was defined by the union of the cells meeting at that vertex. 
Jameson et al. showed that the centred finite-volume discretisation is equivalent to a 
Galerkin finite-element approximation with linear basis functions. The solution method 

of Jameson et al. [124] and Jameson and Baker [121] was employed. Subsequently, 

Jameson and Baker [122] presented improvements to the method. 

The contribution of Jameson et al. [125] was important for three reasons. 1 First, it 

attracted considerable attention because it was the first one to demonstrate solutions 

of the Euler equations on unstructured grids for a complete aircraft geometry. Second, 

1The importance of the work of Jameson et al. may also be judged by the fact that it was described 
in the New York Times [210] as well as non-scientific journals such as Aviation Week and Space Tech- 
nology [17] and Aerospace America [151]. Weatherill [294] presented an interesting description of the 
background to the work reported in [125]. 
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it was developed into the AIRPLANE code, which was heavily used by the American 

aircraft industry and NASA and therefore demonstrated that the concept of unstruc- 

tured grids was a practical one. Third, as a result of the first two reasons, the work of 

Jameson et al. [125] served as a 'catalyst for much of the work which followed. An appli- 

cation for the McDonnell-Douglas MD-11 complete with engine pylons and cowlings as 

well as winglets was presented by Vassberg and Dailey [282]. Biswas et al. [46] applied 

the AIRPLANE code to the prediction of an unstarted inlet of a supersonic transport 

aircraft. 

In 1987, Stoufflet et al. [270] presented inviscid calculations around the space shut- 

tle orbiter and the Hermes spacecraft. The inviscid fluxes were computed using the 

approximate Riemann solver of Osher and Solomon [215]. Monotonic second-order ac- 

curate solutions were obtained through a limited extrapolation based on the work of 

van Leer [280]. The grids were adapted to shock waves through cell subdivision based 

on Mach-number differences. Real gas effects were modelled assuming local chemical 

equilibrium. An inexact Newton method was used for the solution update. 

Toward the end of the 1980's, the basic capabilities of unstructured grids had been 

demonstrated and the focus shifted towards the development of more sophisticated so- 
lution methods. The subsequent research effort was helped by the large body of knowl- 

edge accumulated by researchers using the finite-element method. The equivalence of 

the finite-element and finite-volume methods under certain conditions [22,113,247] al- 

lows formulae developed in the finite-element framework to be used in finite-volume 

discretisations and vice versa. Their equivalence is also responsible for the designations 

`Mixed Element-Volume' and `Finite-Volume-Galerkin' used by French research groups. 

1.3 The State-of-the-Art on Unstructured Grids 

The following two subsections review the current state-of-the-art on spatial discretisa- 

tion and solution methods in detail. The review concentrates on contributions based 

on the finite-volume method, but occasionally reference is made to contributions from 

the finite-element method because of the above-mentioned similarities between the two 

approaches. The review does not consider grid generation and adaptation, solution 

methods for unsteady flows, and parallelisation. 
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The two subsections are followed by a short summary and appraisal which is used to 

establish the objectives of the current work. The review and summary are independent 

of each other. Therefore, the summary may be read without having to read the review. 

Further information on the development and current state-of-the-art of unstructured- 

grid methods-in particular on the topics not considered herein-can be found in the 

review and overview articles by Batina [33], Mavriplis [175,179], Venkatakrishnan [284], 

Baker [20], Aftosmis [4], and Morgan and Peraire [198]. A comprehensive exposition of 

a variety of topics related to unstructured-grid methods may be found in the lecture 

notes by Sonar [259-261] and the proceedings of an AGARD course [7]. 

1.3.1 Spatial Discretisation 

The review of spatial discretisation methods is divided into the description of previous 

work on the definition of control volumes and the discretisation of the inviscid and 

viscous fluxes. The term `inviscid fluxes' denotes the spatial fluxes appearing in the 

Euler equations, whereas the term `viscous fluxes' denotes the spatial fluxes appearing 

due to viscosity and conductivity in the Navier-Stokes equations. 

Control-Volume Definition. The adoption of the finite-volume method requires the 

definition of a control volume over which the governing equations are integrated. There 

are two main choices for the definition of control volumes on unstructured grids. The 

first choice is the cell-centred scheme in which the grid cells are taken as control volumes 

and the solution variables are stored at the centroids of the grid cells, as illustrated in 

Fig. 1.11(a). The second choice is usually referred to as the vertex-based scheme and 

defines control volumes at each vertex from dual cells and stores the solution variables 

at the vertices of the grid. A variety of dual cells can be defined, of which the median 
dual, depicted in Fig. 1.11(b), is probably the most common. The median dual is 

constructed by joining centroids of grid cells with midpoints of the edges. 
The relative merits of the two schemes have been debated for some time, without 

a clear consensus on the superior choice having emerged. This might be because very 

few dedicated comparisons have been carried out. Relevant discussions and investiga- 

tions are widely dispersed in the literature; only the most important contributions are 

mentioned here. The debate usually addresses the numerical effort required to evaluate 
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Figure 1.11: Illustration of two choices for defining control volumes 
on unstructured grids. (a) Cell-centred scheme and (b) vertex-based 
scheine. Control volumes are shown shaded and locations of solution 
variables are denoted by the symbol `". ' 

the fluxes on a given grid and the accuracy with which the fluxes are discretised. 
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On a given simplicial grid in two (three) dimensions, there are approximately twice 

(six to seven times) as many cells as vertices. Therefore, the vertex-based scheme 

requires considerably less storage than the cell-centred scheine if used on the same 

simplicial grid. On quadrilateral and hexahedral grids, the storage required by the two 

schemes is approximately identical. 

To compute the fluxes on a given tetrahedral grid, Barth [25] showed that the vertex- 

based scheme requires less operations than the cell-centred scheine. On hexahedral 

grids, the number of operations i5 approximately the same. 

Sonic authors, e. g., Anderson [11] and Venkatakrislinan [285], suggested that the 

cell-centred scheine will be more accurate because of the larger number of cells than 

vertices in a given siinplicial grid. Conversely, Mavriplis [175] argued that the solution 

variables are more strongly coupled to neighbouring solution variables in vertex-based 

schemes, which may contribute to higher accuracy. On quadrilateral and hexaliedral 

grids, the above arguments do not apply as the number of cells and vertices are approx- 

irnately identical. Perhaps more importantly, the above arguments also do not apply if 

quadrilateral, hexahedral or prismatic cells are used near solid walls in the simulation 

of viscous flows, because the resolution normal to the wall is roughly the saine. 

The only contribution which is based on carefully obtained numerical results is the 

recent study of Levy and Thacker [153]. They compared the cell-centred method of 
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Frink [87] with the vertex-centred method of Mavriplis [176] using a grid-refinement 

study for the`inviscid transonic flow about a wing-body configuration on tetrahedral 

grids. Separate grids were generated for the two schemes to ensure that the comparison 

was based on the number of unknowns. The results showed that the vertex-centred 

method gave higher suction peaks and sharper shock waves while requiring significantly 

less CPU time. Levy and Thacker attributed the advantage of the vertex-based scheme 

to the larger number of unknowns on the boundaries. Although the study of Levy 

and Thacker is a worthwile contribution, their results must be interpreted with care, 

in particular regarding CPU time. The vertex-centred method of Mavriplis is based 

on matrix artificial dissipation [272] and agglomeration multigrid, whereas the cell- 

centred method of Frink employs the approximate Riemann solver of Roe [238] and an 

implicit method with inexact linearisation. Both of these differences will favour the 

vertex-centred method in terms of CPU time. 

Since unstructured grids are usually non-uniform, it is important to consider the 

accuracy of a given scheme on distorted grids. It is well-established that the vertex- 
based scheme incurs smaller errors on nonuniform quadrilateral grids than the cell- 

centred scheme, see, e. g., the analyses by Roe [239,240] and Morton and Paisley [200]. 

It is reasonable to assume that this will be the case on nonuniform triangular grids also. 

The accuracy of vertex-based solution methods on triangular grids was investigated by 

Roe [239], Giles [95], and Baker [21]. Turkel [276] showed how the accuracy of cell- 

centred schemes on non-uniform grids may be improved. Unfortunately, the improved 

schemes are more prone to instabilities; see the remarks in Roe [240] and Morton and 

Paisley [200]. 

Despite the study of Levy and Thacker [153], which represents the first careful 

comparison, there is not sufficient convincing numerical evidence to designate either 

the vertex-based or the cell-centred scheme the better approach. Most comparisons are 

based on heuristic arguments or theoretical analyses which may not apply or be of little 

relevance in practice. For this reason, the decision on which scheme to use is probably 

based on subjective points of view. The vertex-based scheme appears to be more widely- 

used, probably due to the influential work of Barth and co-workers [22,25,31]. 

Inviscid Fluxes. Several researchers employed the central-difference scheme with 
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scalar dissipation of Jameson et al. [124], see, e. g., Holmes and Connell [109] and Smith 

[256]. Good results were obtained although the construction of the dissipative terms 

is not based on physical grounds and reliant on user-specified and problem-dependent 

empirical parameters. As shown by Haselbacher and Blaiek [106], the construction of 

the dissipative terms is more problematic on mixed grids than on simplicial grids. 

In contrast to central-difference schemes, upwind schemes apply an appropriate 

amount of dissipation to each characteristic component of the Euler equations. Typi- 

cally, approximate Riemann solvers such as those of Roe [238] or Osher and Solomon 

[215] are employed in a one-dimensional fashion in the direction normal to a control- 

volume face. )) First-order upwind schemes are easily implemented on unstructured grids 

as, they only depend on solution states from nearest neighbours. Vijayasundaram [289] 

was among the first to present results obtained with first-order upwind schemes on 

unstructured triangular grids. 

The use of upwind schemes of higher than first order requires the reconstruction 

of polynomial solution variations from solution states. Computing the inviscid fluxes 

using a reconstructed polynomial of order k gives spatial accuracy of order k+1. A 

succinct overview of higher-order schemes was given by Barth [29]. 

Linear Reconstruction (k =1). Fezoui [83] developed an early second-order accurate 

upwind scheme for vertex-based solution methods. Gradients of the solution variables 

were, calculated at a vertex as the arithmetic mean of the gradients in the triangles 

meeting at that vertex. This is illustrated schematically in Fig. 1.12(a), where the 

shading denotes the area on, which gradients are computed for the linear reconstruction 

at the control-volume face between vertices i and j. The extrapolated states at a 

control-volume face were limited such that they were bounded by the solution states at 

the vertices whose control volumes are joined by that face. 

Later implementations computed the gradients at a vertex as a linear combination 

of a divided difference centred on an edge incident to that vertex and upwind and down- 

wind gradients. These schemes may be regarded as extensions to unstructured grids 

of the one-dimensional MUSCL (Monotonic Upstream-centred Scheme for Conserva- 

IlThis may lead to misinterpretation of flow features which are not aligned with control-volume 
faces. Genuinely multi-dimensional upwind schemes were reviewed by Pailli re and Deconinck [216]. 
Such schemes will not be considered in the present work. 
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tion Laws) method of van Leer [280] originally developed on structured grids. Two 

basic schemes may be identified. First, the upwind-cell formulation used by Stoufflet 

et al. [270], Rostand and Stoufiiet [242], Desideri and Dervieux [79], and Jameson [117] 

as shown schematically in Fig. 1.12(b) for two dimensions. Second, the dummy-node 

formulation employed by Whitaker et al. [300], Cabello et al. [55], and Lyra [165] as 

illustrated in Fig. 1.12(c). Both schemes require modification near boundaries and 

extra storage compared to the approach of Fezoui [83]. In practice, many methods 

employ variations or combinations of these two basic methods, see, e. g., Arminjon and 

Dervieux [15], Richter [232], Luo et al. [162], and Riemslagh and Dick [234]. 

The three approaches shown in Fig. 1.12 were not regarded as entirely satisfactory 

since monotonicity was enforced in a one-dimensional manner as on structured grids, 

although the stencils on unstructured grids are inherently multi-dimensional. This mis- 

match arose because it had not yet been established how to extend the Total-Variation- 

Diminishing (TVD) concept of Harten [104] to unstructured grids. Furthermore, with 

the exception of the work by Fezoui, no unique gradients were defined in each control 

volume. These deficiencies were resolved by Barth and Jespersen [31], who developed a 

method which reconstructs gradients and enforced monotonicity in a multi-dimensional 

manner. The Green-Gauss theorem was employed to compute gradients at each ver- 

tex. Monotonicity was enforced by limiting the gradients at a vertex such that the 

extrapolated face-values were bounded by the value at that vertex and the values at 

the neighbouring vertices. Their method has become widely used in both two and 

three dimensions, see, e. g., Whitaker [299], Anderson and Bonhaus [12], Ashford [16], 

Meister [185], Haselbacher et al. [107], and Galle [92]. Subsequently, Barth [24] also 

suggested weighted and unweighted least-squares and data-dependent techniques for 

the reconstruction of gradients. 

The limiter function of Barth and Jespersen typically leads to stalled convergence 

after an initial reduction of the residuals. Venkatakrishnan [285] found that the limiter 

function was reacting to machine-level noise in regions where the solution variables 

were nearly constant. " An improved limiter function was proposed which does not 

inhibit convergence, behaviour at the expense of a possible loss of monotonicity near 

large gradients. 

A detailed study by Aftosmis et al. [6] showed the least-squares reconstruction to be 
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la) 

(D) 

(c) 

Figure 1.12: Three approaches to reconstructing the linear solution 
variations necessary to obtain second-order accuracy with a vertex-lased 
scheine. (a) Gradients coinlnited at vertices, (b) Tipwind-cell foru m- 
lation, and (c) dliniiºiy-node formulation. Shading denotes area over 
which gradients are coiiiputed. Dashed lines denote outline of median- 
dual control volume. 
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significantly more accurate than Green-Gauss reconstruction on distorted grids. They 

also found that applying the limiter function of Barth and Jespersen only to the normal 

component of the gradient at a control-volume face improved the convergence behaviour 

while still obeying a multi-dimensional monotonicity principle. However, the directional 

limiter function did not perform as well as Venkatakrishnan's limiter. Ollivier-Gooch 

[212] implemented Venkatakrishnan's limiter function in a directional manner in an 

attempt to further reduce the effects of limiting. 

Cabello et al. [55] compared the method of Barth and Jespersen to the upwind-cell 

and dummy-node formulation for inviscid flows for triangular grids. They found that 

differences between the approaches were only significant for hypersonic flows, where the 

method of Barth and Jespersen was found to be less robust. A possible explanation for 

this behaviour may be that the scheme of Barth and Jespersen corresponds to a centred 

reconstruction, whereas the other formulations are directionally biased. 

Jameson [119] demonstrated that the TVD concept is not well-suited to triangular 

grids and suggested the construction of Local-Extremum-Diminishing (LED) schemes. 
A scheme is LED if it causes extrema to decay in time. LED schemes are equivalent to 

TVD schemes in one dimension. The earlier method of Barth and Jespersen is LED, 

although this is not immediately clear from their original publication. A later derivation 

by Barth [27] proved this without directly referring to the LED condition. Cournede et 

al. [70] showed that the upwind-cell formulation is also LED. 

Flink [88] presented a linear-reconstruction method for cell-centred schemes on tri- 

angular and tetrahedral grids. The dependent variables are interpolated to the vertices 

by the weighted averaging of Rausch et al. [229] which preserves linear variations. Us- 

ing geometrical identities of triangles and tetrahedra, explicit second-order accurate 

reconstruction formulae were derived in terms of the interpolated states at the vertices, 

see Figure 1.13. Frink stated that numerical experiments had shown that oscillations 

were avoided without limiter functions, but the precise reasons for this upshot remain 

unknown. Mitchell [192] later showed that the interpolation formulae derived by Frink 

may be regarded as a weighted combination of centred and upwind interpolations. 

Recent comments by Frink and Pirzadeh [90] indicated that some problems remain 

with the averaging procedure for viscous flows. Other upwind methods for cell-centred 

schemes were presented by Knight [138], Anderson [11], Grismer et al. [98], and Strang 
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Figure 1.13: Illustration of the upwind schenk of Frink [88] for cell- 
centred methods on (a) triangular and (b) tetraliedral grids. 

et al. [271]. 

Additional work on linear-reconstruction methods was carried out by Dnrlofsky et 

al. [81], Berzins and Ware [44], Batten et al. [34], and Hubbard [110,111]. 

Higher-Order Reconstruction (k > 1). Barth and Frederickson [30] developed a method 

for the reconstruction of polynomials of arbitrarily high order for cell-averaged data 

on general unstructured grids. They introduced the property of k-exactness to clas- 

sify reconstruction schemes which reconstruct polynomials of degree k or less exactly. 

In order to reconstruct exactly a polynomial of degree k: in d dimensions, a stencil of 

at least fdI (k + i)/d! non-coplanar points is required. Barth and Frederickson ex- 

tended the stencil beyond the mininnini required for a given order of accuracy to guard 

against pathological behaviour of' the reconstruction operator. Typical stencils for a 

vertex-based scheine are shown in Fig. 1.14. The resulting non-square linear system 

was solved using Grane-Schmidt decomposition. In order to obtain the desired order of 

accuracy, the integration around the control-volume boundary was carried out by Gaus- 
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Figure 1.14: Typical reconstruction stencils at vertex i for vertex-based 
scheme for interior and bouiidary vertices. 
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Sian quadrature of appropriate order. As may he expected, an order of ((k+ 1)/21 was 

found to be sufficient. The method was applied to the (sliockfree) Riiigleh flow [235] fier 

which siiiootli solutions were obtained by quadratic reconstruction on highly distorted 

triangular grids. 

Polynomial reconstruction algorithm lased on cell-averaged values were also stud- 

ied by Mitchell and Walters [193]. In contrast to the work by Barth and Jespersen 

and Barth and Frederickson, the reconstruction was not carried out within a control 

volume, laut around control-volume faces. The resulting method is thus closer in con- 

cept to the MUSCL method and its early extensions to unstructured grids as described 

stencil for second-order reconstruction at vertex i 
added stencil for third-order reconstruction at vertex i 
added stencil for fourth-order reconstruction at vertex i 
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Figure 1.15: R. econstrnctioii stencils at, vertex i four t lie liiglicr-urdes 

scheme based on point-wise values of Bartle [26]. The symbols 'E: -' and 
`o' denote original grid points and the additional unknowns, respectively. 

above. Monotouicity was enforced through limiter functions. 
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Barth [26] departed frone the use of cell averages in the reconstruction and considered 

the use of pointwise values. For steady-state calculations, the resulting mass matrix 

may be lumped without sacrificing spatial accuracy [57]. Additional unknowns are 

introduced at edge midpoints as shown in Fig. 1.15. This has the advantage that the 

physical domain of support is well-defined and unchanged between linear and quadratic 

reconstruction. 

Barth constructed two different representations of the solution from the pointwise 

values. The first representation is the quadratic interpolant on the cell. The second 

representation is the reconstruction polynomial which is determined such that the slit- 

ference between it and the quadratic iuterpolaiit is itiiiºiulised in a least-squares sense 

at all flux-quadrature points. Assuming that the grid is composed of' equilateral tri- 

angles, this leads to a stencil of 19 points for original grid points and of nine points 

for newly introduced points in the interior of the solution domain. For boundary grid 

points, enough points are available to reconstruct the five derivatives. The resulting 
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non-square matrix problem was solved at each point using the normal equations. Mono- 

tonicity was enforced by the limiter function of Barth and Jespersen. The quadratic 

reconstruction was found to be roughly seven times more expensive in terms of pro- 

cessing time than linear reconstruction. Of this a factor of four arises due to the larger 

number of unknowns. 

An interesting scheme was developed by Delanaye [75] for cell-centred discretisations 

on grids composed of arbitrary polygons. The derivation begins with the linear recon- 

struction using the Green-Gauss theorem as described above. On distorted grids, this 

only gives first-order accuracy. To ensure second-order accuracy regardless of grid dis- 

tortion, a first-order accurate estimate of the truncation error is subtracted. The second 
derivatives appearing in the estimate of the truncation error are then grouped together 

with those from the quadratic reconstruction. A weighted least-squares approach is used 
to compute the second derivatives. The resulting quadratic reconstruction method is 

about one third more expensive than linear reconstruction. The limiting procedure was 

modified to ensure high accuracy in regions of smooth flow. 

The higher-order schemes described above suffer from various disadvantages. The 

rapidly increasing extent of the stencil results in a storage penalty and can lead to 

problems for shock waves in close proximity. Boundaries have to be represented by 

curves of higher degree than the simple piecewise straight segments used for second- 

order schemes. Furthermore, higher-order methods lead to larger spectral radii and 
hence slower convergence rates. (This problem might be mitigated if, for a given level 

of accuracy, the coarser grids allow correspondingly larger time steps to be taken. ) Ap- 

proaches based on least-squares methods are prone to ill-conditioning of the coefficient 

matrix on highly stretched grids. 

The first difficulty, i. e., the rapidly increasing extent of the stencil, is circumvented in 

the approach developed by Halt and Agarwal [101] for cell-centred discretisations in two 

dimensions. Building upon the work of Allmaras and Giles [10], Halt and Agarwal solved 

additional equations for derivatives or moments of the governing equations instead of 

reconstructing the solution from average values. Accuracy of up to fourth order was 

obtained for Ringleb's flow. The method involving moments was found to be more 

robust and accurate, but also more expensive. Both methods were significantly more 

accurate than the approach of Barth and Frederickson. Halt and Agarwal also assessed 
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the efficiency of the two approaches by comparing storage and processing time against 

the error achieved for a given convergence tolerance. ' They found that higher-order 

methods were more efficient by an order of magnitude for relatively low error tolerances 

compared to first-order methods. In particular, the use of quadratic polynomials seemed 

to be the optimum choice for the test case considered. The approach of Halt and 

Agarwal was developed further by Boschitsch and Quackenbush [49]. 

Additional work on higher-order methods was carried out by Mitchell [192], Venkatakr- 

ishnan and Chakravarthy [287], and Debiez [74]. 

Essentially Non-Oscillatory (ENO) Schemes. In contrast to the higher-order methods 

described above, the reconstruction stencils in ENO schemes [105] are not fixed. In- 

stead, the reconstruction selects the stencil whose values support the least oscillatory 

polynomial. This leads to higher accuracy near discontinuities and eliminates the need 

for limiter functions. Due to the strong non-linearity of the stencil selection process, 

ENO schemes typically exhibit convergence problems. The application of ENO schemes 

to unstructured grids was studied by Vankeirsbilck and Deconinck [279], Abgrall and 

Lafon [1], Sonar [261], Friedrichs [86], and Abgrall et al. [2]. A comprehensive exposition 

of ENO schemes on unstructured grids may be found in the book of Sonar [262]. 

Ollivier-Gooch [213,214] modified the weighted least-squares reconstruction of Barth 

[24] by introducing a dependency on the smoothness of the function to be reconstructed. 
The resulting method was shown to satisfy a relaxed form of the ENO conditions. Appli- 

cations to two-dimensional inviscid external flows indicated savings in processing time 

of about 15-20% relative to weighted least-squares reconstruction with limiter functions. 

Detailed comparisons showed third- and fourth-order schemes to be approximately five 

and seven times more expensive in terms of processing time, and three and four times 

more demanding in terms of required storage than the second-order scheme of Barth 

and Jespersen with least-squares reconstruction. 

Viscous Fluxes. The discretisation of the viscous fluxes by a finite-volume method 

requires the approximation of gradients of the dependent variables at the control-volume 

faces. 

On unstructured grids, the approximation of gradients is relatively difficult because 
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identifiable coordinate directions do not exist. These difficulties manifest themselves in 

discretisation stencils for the viscous fluxes being ill-behaved in terms of consistency, 

accuracy, coupling, and positivity. The last property is important because the Lapla- 

cian (to which the viscous fluxes reduce for incompressible flow and constant viscosity) 

satisfies a maximum principle. 

Although many researchers compute high-Reynolds-number flows on unstructured 

grids, only two studies have addressed the discretisation of the viscous fluxes on un- 

structured grids in any detail. For simplicity, both studies concentrated on Laplace's 

equation. 

Barth [22] demonstrated that the Galerkin finite-element discretisation with linear 

triangular elements will satisfy a discrete maximum principle if and only if the grid is 

a Delaunay grid. More restrictive conditions apply in three dimensions, see Barth [23] 

and Letniowski [152]. These results are of theoretical interest, but of relatively little 

practical value since Delaunay grids are not ideally suited to the computation of high- 

Reynolds-number viscous flows. 

Coirier [65] studied various schemes on adaptively-refined, Cartesian grids. The 

study was motivated by the observation that calculations with non-positive schemes 

lead to non-monotone solutions and poor convergence behaviour when computing low 

Reynolds-number flows. Refined Cartesian grids constitute particularly severe test 

cases, as it is impossible to have smoothly varying grid cells near refinement boundaries. 

The results obtained by Coirier have a wider significance, however, since adaptation 

methods on other grid types may lead to hanging nodes and edges also. Coirier in- 

vestigated six schemes, four of which employed the Green-Gauss theorem and two of 

which employed polynomial reconstruction. He showed that accuracy and positivity 

were difficult to obtain simultaneously. 

A more detailed review of the discretisation of the viscous fluxes may be found in 

Subsection 4.2.3. 

Turbulence Models on Unstructured Grids. Soon after the pioneering efforts 

of Jameson et al. [125] and Stouf let et al. [270] had demonstrated the capabilities of 

unstructured grids, attention was turned to the solution of turbulent flows. It is con- 

venient to discuss the modelling of turbulent flows according to the class of turbulence 
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model employed. 

Algebraic Models. As may be expected, the earliest computations of turbulent flows 

on unstructured grids employed algebraic turbulence models such as those of Cebeci 

and Smith [61] and Baldwin and Lomax [19]. The non-local nature of algebraic models 

requires lines, approximately normal to solid boundaries, along which a local turbulence 

length scale is extracted. On structured grids, one family of coordinate lines may be 

used for that purpose. On unstructured grids, such lines do not exist and must be 

constructed explicitly. 

In 1987, Weatherill et al. [296] appear to have presented the earliest implementation 

of the Baldwin-Lomax turbulence model on unstructured grids. Structured grids of 0- 

topology were generated around solid boundaries and triangulated with an imposed 

connectivity. This resulted in layers of structured triangular cells, which allowed the 

extraction of the local turbulence length scale. The rest of the solution domain was 
triangulated using the Delaunay criterion. Application of the method to a transonic 
flow around an aerofoil resulted in reasonable agreement with experimental data. 

Apparently unaware of the work by Weatherill et al., Rostand [241] implemented 

the Baldwin-Lomax and Cebeci-Smith turbulence models on unstructured triangular 

grids for hypersonic compression ramp flows. Lines which were approximately nor- 

mal to the boundary were constructed explicitly, along which the eddy viscosity was 

computed. Mavriplis [174] subsequently refined and generalised this process for multi- 

element aerofoil geometries by constructing locally structured background grids using 
hyperbolic grid-generation techniques. Further work on the implementation of algebraic 

turbulence models on unstructured grids was carried out by Pan and Cheng [217] and 
Marcum and Weatherill [171]. 

One-Equation Models. The Spalart-Allmaras [263] one-equation turbulence model was 
developed partly with the intention that it should be simple to implement on unstruc- 
tured grids. It may be regarded as semi-local, since it requires only the distance to the 

nearest solid wall, but not quantities such as the friction velocity or the boundary-layer 

thickness. As a result, it has become widely used in recent years, see, e. g., Anderson and 
Bonhaus [12], Barth and Linton [32], Mavriplis and Venkatakrishnan [183], trink [89], 
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Khawaja et al. [136], Haselbacher et al. [107], Crumpton et al. [73], Galle [92], and 

Blaiek et al. [47]. 

Two-Equation Models. Soon after the first implementations of algebraic models, atten- 

tion shifted toward the use of two-equation models. The reasons for this shift were the 

well-known shortcomings of algebraic turbulence and their troublesome implementa- 

tion on unstructured grids. Holmes and Connell [109] presented results using the high- 

Reynolds number version of the k-e model [301] in 1989. The implementation of this 

model is considerably simpler since it is necessary to store only those points which are 

connected to grid points on solid walls. Subsequently, a number of authors presented 

results obtained with the high-Reynolds number k-e model, see, e. g., Stolcis and 

Johnston [268], Kwon and Hah [144], and Luo et al. [163]. In 1991, Mavriplis and Mar- 

tinelli [181] published results computed with high- and low-Reynolds-number versions 

of the k-e model. The mean flow equations were solved by a multi-stage Runge-Kutta 

scheme, whereas the turbulence model equations were solved using a point-implicit 

method for reasons of stability and robustness. Convergence of the mean-flow equa- 

tions was accelerated by a multigrid method, but the turbulence field was kept frozen 

on the coarse grid levels. Low-Reynolds number k-e models were also used by Marcum 

and Agarwal [170], Marcum and Weatherill [171], and Braaten and Connell [50]. 

Subsequently, Stolcis and Johnston [269] and Mohammadi [195] employed the k-e 

model in conjunction with one-equation models near solid boundaries in order to reduce 

the required grid density and processing time. 

Reynolds-Stress Models. Stolcis [267] and Cantariti and Johnston [56] implemented 

Reynolds-stress models with wall functions on unstructured grids. Wang et al. [290] 

presented results obtained with an algebraic Reynolds-stress model. 

Large-Eddy Simulation (LES). The use of LES in conjunction with unstructured grids 

is a current area of research. The earliest work appears to be that of Jansen [126] in 

1995, who computed the flow about the NACA 4412 aerofoil at maximum lift coefficient 

with a Galerkin/least-squares finite-element method on tetrahedral grids. Agreement 

with experimental values was found to be relatively poor in the separation region. 
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Discretisation of the transition strip used in the experiment and modelling the wind- 

tunnel walls in subsequent work brought some improvement in subsequent work, see 

Jansen [127]. An overview of these pioneering efforts was given by Jansen [128]. 

Knight et al. [139] presented results for the decay of incompressible isotropic turbu- 

lence obtained with a cell-centred finite-volume method on tetrahedral grids. The in- 

viscid fluxes were computed with Roe's approximate Riemann solver [238] with second- 

order accurate gradient reconstruction using the methods of Frink [88] or Ollivier- 

Gooch [214]. Comparison of the numerical results with experimental data revealed 

considerable discrepancies, in particular for the turbulence energy spectrum. Okong'o 

and Knight [211] subsequently published results for channel and boundary layer flows, 

for which reasonable agreement was obtained. Urbin et al. [277] extended the method 

of Knight et al. to third-order accuracy with the approach of Ollivier-Gooch [214], and 

considered the interaction of a supersonic boundary layer with a compression corner. 

The numerical results were in reasonable agreement with experimental data for mean 

quantities. 

Miet et al. [191] and Ducros et al. [80] also presented results obtained with LES on 

unstructured grids. 

Regarding the spatial discretisation methods used so far in LES on unstructured 

grids, questions must be raised about the use of second- and third-order upwind schemes. 

This is because Mittal and Moin [194] demonstrated that a fifth-order upwind scheme 

order was more dissipative than a second-order centred scheme. The results of Garnier et 

al. [93] and Bui [53] are also relevant in this context. This could mean that finite-element 

methods may get more attention in the future, since they allow easier construction of 

higher-order centred discretisations on unstructured grids than finite-volume methods. 

Disregarding the relatively poor agreement between LES and experiments achieved 

so far on unstructured grids, it is clear that the trend of applying LES to increasingly 

complex flows means that LES on unstructured grids will become more widespread in 

the future. In fact, the ability of unstructured grids to adjust the grid spacing locally is 

one way of reducing the extreme grid-resolution requirements by aggressive stretching 

away from solid walls, as already argued by Jansen [126]. Because the grid stretching 

near solid walls in LES is several orders of magnitude lower than in RANS simulations, 

tetrahedral grids may turn out to give adequate solution quality. However, using the 
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same arguments as in Subsection 1.1.2, mixed grids could still be attractive for LES 

using node-based solution methods. 

1.3.2 Solution of Discrete Equations 

In general, most methods for the solution of the discrete equations originally devel- 

oped on structured grids can be applied to unstructured grids with few modifications. 

The following paragraphs deal with solution methods for steady flows only, where the 

time-derivative is retained to allow the solution to be obtained through time-marching. 

Space-marching methods for unstructured grids have been developed by McGrory et 

al. [168], Nakahashi and Saitoh [207], Nakahashi et al. [208], Löhner [154], and Morino 

and Nakahashi [199]. 

A dedicated review of solution methods on unstructured grids, especially implicit 

and multigrid methods, was presented recently by Mavriplis [180]. 

Explicit Methods. Due to their simple implementation and low storage requirements, 

explicit solution methods are widely used, in particular the multi-stage Runge-Kutta 

method introduced by Jameson et al. [124]. A further advantage of the Runge-Kutta 

method is that the stage coefficients can be tuned to optimise the high-frequency damp- 

ing characteristics [281]. 

Runge-Kutta schemes were used by Jameson et al. [125], Mavriplis [173], Barth 

and Jespersen [31], Holmes and Connell [109], Nakahashi and Egami [205], Frink [87], 

Cabello et al. [55], Ollivier-Gooch [212], Gerhold et al. [94], Crumpton et al. [73], 

Haselbacher et al. [107], Galle [92], Blazek et al. [47], Haselbacher and Blazek [106], and 

many others. 

The use of the Lax-Wendroff method [147] on unstructured grids is not common. 

The only known applications are due to Kallinderis and co-workers [130,131,135,136, 

219,220] and Marcum and Marcum and co-workers [170,171]. 

The main disadvantage of explicit methods is that they suffer from poor convergence 

rates with increasing grid refinement and stretching. Even with techniques such as 

local time-stepping [124], enthalpy damping [124] (for inviscid flows only), and implicit 

residual smoothing [121], convergence rates can still be poor. As a result, implicit 

solution methods are used or explicit solution methods are employed in conjunction 
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with a multigrid method. 

Implicit Methods. One class of implicit methods is obtained by using the Euler 

backward method. The linearisation of the residual with respect to the state vector 
introduces the Jacobian matrix. The inversion of the resulting matrix equation gives 

rise to the inexact Newton method for large but finite time steps and the Newton 

method for infinitely large time steps. If the linearisation of the residual is exact, 
Newton's method is unconditionally stable and exhibits quadratic convergence if the 

initial iterate is in some sense close to the solution [266]. Because of this property, the 

use of implicit schemes obtained by the backward Euler method is a very active area of 

research. 

A drawback of implicit methods is that the storage required for the Jacobian ma- 
trix is considerable. For example, the solution of the Navier-Stokes equations with a 

one-equation turbulence model on triangular grids with a vertex-based discretisation 

requires approximately 175 (475) words per vertex to store non-zero entries of the Jaco- 

bian matrix for first-order (second-order) discretisations. The corresponding figures for 

tetrahedral grids are approximately 504 (1980) words per vertex for first-order (second- 

order) discretisations. To put these figures into context, it is noted that the storage 

of the Jacobian matrix alone exceeds the required storage for an explicit method with 

multigrid. 

The linear system can be solved by direct or iterative methods. 

Direct Methods. Venkatakrishnan and Barth [286] and Slack et al. [254] employed 
lower-upper (LU) factorisation in two dimensions. They used reordering procedures 

such as the reverse Cuthill-McKee algorithm [244, p. 75] to reduce the bandwidth and 

the operation count. Direct methods are very robust, but suffer from prohibitively 
large storage requirements and long processing times, precluding their use for practical 
three-dimensional applications. 

Iterative Methods. Using iterative methods for the solution of the linear system is more 

attractive due' to lower demands on storage and processing time. Classical relaxation 

methods such as the point Gauss-Seidel method were employed by Fezoui and Stoufflet 
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[84], Anderson [11], Anderson and Bonhaus [12], Fink [88], and Ashford [16]. These 

methods depend on diagonal dominance for stability which introduces a restriction on 

the maximum time step. Frink [88] compared the Gauss-Seidel method to a three-stage 

Runge-Kutta method with local time-stepping and implicit residual averaging for three- 

dimensional viscous flow simulations. The implicit method converged six times faster in 

terms of processing time, but required four times more storage than the Runge-Kutta 

method. 

The application of Krylov-subspace methods [244] to unstructured grids is an active 

area of research. In particular, the Generalised Minimum Residual (GMRES) method 

of Saad and Schultz [245] is widely used, see, e. g., Venkatakrishnan and Mavriplis [288], 

Whitaker [299], Barth and Linton [32], Nielsen et al. [209], Koomullil et al. [140], and 
Delanaye [75]. 

Preconditioning [244] is critical to achieving robust and fast convergence with Krylov- 

subspace methods. In general, it can be said that the more powerful the preconditioning 

matrix, i. e., the more closely it approximates its inverse, the larger the storage required. 
Venkatakrishnan and Mavriplis [288] investigated a number of preconditioners in con- 
junction with the GMRES method for inviscid and turbulent flows and concluded that 

Incomplete Lower-Upper (ILU) factorisation with no additional fill-in [244] performed 
best. The use of preconditioning methods such as ILU factorisation requires additional 

storage which is twice that of the Jacobian matrix. Part of this additional storage, 
however, may be reused to store data needed by the Krylov-subspace methods. Meis- 

ter [186] compared several Krylov-subspace and preconditioning methods in terms of 

convergence behaviour for inviscid and laminar flows. With simple blockdiagonal pre- 

conditioning, the Transpose-Free Quasi-Minimum Residual (TFQMR) method of Fre- 

und [85] was found to converge fastest. With ILU preconditioning, the Bi-Conjugate 

Gradient Stabilised (BiCGSTAB) method of van der Vorst [278] exhibited the lowest 

convergence rates. Since the ILU preconditioner leads to faster convergence at the 

expense of substantially higher memory requirements compared to the blockdiagonal 

preconditioner, Meister found that the appropriate combination of Krylov-subspace and 

preconditioning methods depends on whether the solution to a given problem is to be 

reached with minimal computational time or storage. 

The effect of reordering methods on the convergence rate of the GMRES method 



1.3 The State-of-the-Art on Unstructured Grids 43 

with ILU preconditioning was examined by Dutto [82]. The effect of ordering was found 

to be significant, but the best ordering method was problem-dependent. 

Although the iterative solution of the system of discrete equations is more efficient 

than the direct solution, the cost in terms of storage and processing time is still high. 

The use of first-order discretisations in computing the Jacobian matrix reduces the stor- 

age requirements, but it also precludes attaining the quadratic convergence associated 

with Newton's method. However, Barth and Linton [32] noted that for reconstruc- 

tion procedures without limiter functions, higher-order Jacobians can be formed by 

multiplying the first-order Jacobian with the higher-order reconstructed state vector. 

Another approach to reduce storage is to use so-called Newton-Krylov methods, in 

which Frechet derivatives [266] are used to compute the matrix-vector products, thus 

bypassing the storage of the Jacobian matrix at the expense of an increased number of 

residual evaluations. Fr6chet derivatives are also useful if the numerical scheme contains 

complicated or non-differentiable functions which may occur in upwind schemes, limiter 

functions, and turbulence-model equations. A drawback of Newton-Krylov methods is 

that powerful preconditioning methods such as ILU factorisation require the Jacobian 

matrix to be available explicitly. Hence the real benefit of Newton-Krylov methods are 

not the reduced storage requirements, but that quadratic convergence can be achieved 

in conjunction with preconditioning. 

Nielsen et al. [209] investigated a variety of numerical issues in Newton-Krylov meth- 

ods for two- and three-dimensional inviscid external flows. The GMRES method was 

employed with ILU preconditioning and reverse Cuthill-McKee ordering. A comparison 

of the Newton-Krylov method to a multigrid method with three grid levels for a two- 

dimensional transonic flow showed that the Newton-Krylov method was slower in terms 

of processing time. By employing an interpolated coarse-grid solution obtained with the 

point Gauss-Seidel method as an initial iterate, the Newton-Krylov method compared 

favourably with the multigrid method. The multigrid method requires considerably less 

storage, however. 

Slack et al. [254] compared a number of explicit and direct and iterative implicit 

solution methods for transonic inviscid flow over a circular-arc bump in a channel using 

both first-order and second-order discretisations. Preconditioned iterative implicit solu- 

tion methods were found to offer better performance with grid refinement than explicit 
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solution methods. 

The only way in which implicit methods can be made competitive with multigrid 

methods is if both storage and inversion of the Jacobian matrix can be avoided. This can 

be achieved by the Lower-Upper Symmetric Gauss-Seidel (LU-SGS) method of Yoon 

and Jameson [302], originally developed on structured grids, which decomposes the 

Jacobian matrix into strictly lower triangular, diagonal, and strictly upper triangular 

factors. Through an approximate splitting of the positive and negative projections of the 

Jacobian and updating on hyperplanes i +j = constant, where i and j denote the usual 

structured-grid indices, only scalar inversions and forward and backward substitutions 

are required to advance the solution. This results in a method which is unconditionally 

stable and requires little additional CPU time per update step compared to an explicit 

method. 

The extension of the LU-SGS method to unstructured grids required special re- 

ordering procedures for the construction of the hyperplanes. Soestrisno et al. [257,258] 

constructed these planes by sorting grid cells into groups of neighbours of neighbours. 
Sharov and Nakahashi [249] modified that method by coloring the vertices in each hy- 

perplane such that no two vertices of the same color are connected by an edge. Their 

method gives the usual hyperplanes i+j= constant on structured grids. Sharov and 
Nakahashi stated that the time taken for one LU-SGS iteration is less than that for a 

two-step explicit method. Further applications of the LU-SGS method were presented 
by Kano and Nakahashi [132], Sharov and Nakahashi [248], and Chen and Wang [64]. 

By using the LU-SGS method as a preconditioner to Krylov-subspace methods with 

numerical evaluation of the Jacobian matrix, a matrix-free implicit method may be de- 

rived, as pointed out by Luo et al. [164]. They demonstrated accelerations of about one 

order of magnitude compared to an explicit method for inviscid and laminar flows. The 

effectiveness of the method of Luo et al. for turbulent flows remains to be demonstrated. 

Multigrid Methods. * Multigrid methods [51] use a sequence of successively coarser 

grids to accelerate the convergence rate of an iterative method. The task of the iter- 

ative method is reduced to damping high-frequency error components only. Because 

Multigrid methods are not a solution method as such, because they require an explicit, or im- 
plicit method to remove high-frequency error components. The basic issues, however, are not directly 
dependent on the smoothing method. It is therefore convenient to treat multigrid methods separately. 
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little additional storage is required, multigrid methods are very attractive. The ap- 

plication of multigrid methods to unstructured grids required the development of new 

techniques for the construction of coarse grid levels. In contrast to structured grids, 

coarse unstructured grid levels cannot be generated by simply deleting alternate grid 

lines in each coordinate direction: ' Since the generation of a suitable fine grid is fre- 

quently a burden on the user, it is imperative that the construction of the coarse grid 

levels is as automatic as possible. Furthermore, it is desirable that the construction of 

the coarse grid levels is not dependent on a grid generator so that it can operate on grids 

of unknown origin. Several approaches have been developed, which differ primarily in 

the degree to which they can be automated. 

Mavriplis [178] provided a detailed discussion and comparison of the various ap- 

proaches, see also Riemslagh and Dick [233] and Chan et al. [62]. 

Successive Refinement. Perez [224] suggested the generation of a nested sequence of 

grids by successive subdivision of triangular cells into four smaller triangular cells, as 

shown in Fig. 1.16(a). This procedure is easily automated and allows a very simple 

construction of intergrid transfer operators through injection and averaging. Unfortu- 

nately, it was found that the resulting finer grid levels were of relatively poor quality. 
This disadvantage is avoided in the approach of Barth [28], which encodes, in the form 

of a directed acyclic graph [184], the sequence of structural changes of an incremen- 

tal Delaunay triangulation. This procedure allows the extraction of valid intermedi- 

ate triangulations as coarse grid levels. The use of successive refinement suffers from 

the drawback that it must be closely coupled with the grid-generation procedure and 

that the surface definition is required. Because of its similarities with grid adapta- 

tion through cell subdivision, successive refinement is ideally suited to the coupling of 

multigrid with grid adaptation, as done by Connell and Braaten [68], Parthasarathy 

and Kallinderis [219], and Braaten and Connell [50]. 

Regeneration. Löhner and Morgan [158] and Mavriplis [173] proposed the use of inde- 

pendently generated grids, as depicted in Fig. 1.16(b). Intergrid transfer operators are 

easily implemented using linear interpolation. The weights for the linear interpolation 

are commonly computed and stored in a pre-processing step. The computation of the 
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weights requires efficient search algorithms in order to identify overlapping cells. ' The 

obvious disadvantage of this approach is that the generation of the sequence of grids 

is non-automatic and therefore a burden on the user. Independently generated grid 

levels were used by Bonhaus [48], Peraire et al. [223], Mavriplis [176,177], Leclerq and 

Stouffiet [148], and Crumpton and Giles [71]. 

Vertex Removal. Guillard [97] suggested the selection of a subset of vertices of a given 

grid and the subsequent construction of a Delaunay triangulation, resulting in vertex- 

nested grids, as. illustrated schematically in Fig. 1.16(c). The selection of a subset 

of vertices is easily automated. The heuristic vertex-selection algorithm presented by 

Guillard results in coarsening ratios of approximately four. A drawback of the vertex- 

removal approach is that special care has to be taken to ensure that vertices critical 

to the description of the geometry are retained. Guillard retained those vertices whose 

neighbouring edges form the largest absolute included angle on a given grid level. Even 

so, for successively coarser grid levels, the solution domain is only approximately con- 

served. The method of Guillard was used by Morano and Dervieux [196] and Riemslagh 

and Dick [234]. 

Ollivier-Gooch [212] presented a method which removes a subset of vertices of a 

given grid through edge contraction. This also results in vertex-nested grids levels but, 

in contrast to the method by Guillard, it does not require a grid generator. The subset 

of vertices to be removed is determined such that the remaining vertices form a maximal 

independent set [184]. Edge-swapping is carried out to minimise the maximum angle 

between edges. Again, special care must be exercised to preserve boundary integrity. 

Crumpton and Giles [72] developed a method in which a coarse tetrahedral grid is 

generated by collapsing edges of a given fine grid. The two vertices connected by an 

edge are thus replaced by a new vertex at the midpoint of the edge to be collapsed. 

In contrast to the vertex-removal methods of Guillard and Ollivier-Gooch, the fine and 

coarse grids are not vertex-nested. To ensure that vertices are removed evenly in the 

grid, the vertices are colored such that each edge links vertices of different color. For each 

color, the shortest edge at a given vertex is collapsed. For edges which point toward 

or lie on a boundary surface, the collapsing algorithm retains that vertex which lies 

on more boundary surfaces, thus retaining salient features of the geometry. However, 
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even with these measures, the grid quality was relatively poor, which may affect the 

performance of the' multigrid method. The method of Crumpton and Giles [72] was 

extended to mixed grids by Müller and Giles [202] and Müller [201]. 

Control- Volume Agglomeration. An automatic and geometry-preserving coarse-grid 

construction can be derived by realising that coarser grids need not actually exist for 

finite-volume discretisations. Instead, coarse grid levels can be constructed by agglom- 

erating control volumes of a given fine grid, as shown in Fig. 1.16(d) for a vertex- 

based scheme. This approach was developed independently by Lallemand [145] and 

Smith [256] for vertex-based and cell-centred methods, respectively. In the case of 

vertex-based schemes, the process is initiated by selecting, in common with the meth- 

ods described above, a set of so-called seed vertices which remain on the coarse grid 

level. Control volumes associated with non-selected vertices are then agglomerated with 

the control volumes associated with seed vertices. 

The agglomeration multigrid method suffers from two main problems. First, the 

discretisation of diffusive fluxes on coarse grid levels is not trivial. Second, it is not 
immediately clear how to define prolongation operators which are more accurate than 

trivial injection. 

Mavriplis and Venkatakrishnan [183] applied the agglomeration multigrid method 

to mixed grids in three dimensions. Although the number of-applications of the agglom- 

eration multigrid method is increasing slowly, it has been applied mainly by research 

teams at INRIA and Mavriplis and Venkatakrishnan. 

Algebraic Multigrid (AMG). The techniques described above allow the generation of a 

sequence of coarse grids for use in a geometric multigrid method. In contrast, algebraic 

multigrid methods [243] do not construct coarse grid levels explicitly. Instead, the 

coarsening is dependent on the discretisation. The application of AMG to unstructured 

grids is not widespread. Early work was carried out by Lonsdale [161] and Webster [297] 

to solve the incompressible Navier-Stokes equations. AMG methods for compressible 

flows were presented by Raw [230] and Weiss et al. [298]. 
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Figure 1.16: I1lutitration of methods for the generation of coarse grid 
levels for nniltigrid methods on unstructured grids. (a) Successive re- 
fineineiit, (b) regeneration, (c) vertex removal, and (d) control-volume 
agglomeration for a vertex-based method. 
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1.4 Summary and Appraisal of Previous Work 

The discretisation of the inviscid fluxes on unstructured grids with higher than first- 

order accuracy may be regarded as well-developed due to the efforts of Barth and co- 

workers [30,31]. The majority of researchers employ second-order methods. Although 

the work of Halt and Agarwal [101] provided some quantification of the benefits of 

higher than second-order accuracy, the gains in accuracy (or equivalently, the reduction 

in the number of unknowns) remain to be established for flows in complex geometries 

and compared to the increased memory requirements and reduced robustness and con- 

vergence rates. Questions also remain about appropriate limiter functions, but these 

are not specific to unstructured grids. 

For the solution of the discrete equations, implicit approaches based on Newton lin- 

earisation and Krylov-subspace methods are competitive with multigrid methods based 

on processing time, but suffer from considerably higher storage requirements. Since 

well-formulated multigrid algorithms exhibit linear complexity, multigrid methods are 

considerably more attractive. The use of multigrid methods methods on unstructured 

grids required the development of new techniques for the generation of the coarse grid 

levels. The various techniques do not have an influence on the convergence rates which 

can be obtained, but differ in the degree of automation with which coarse grid lev- 

els can be constructed. The control-volume agglomeration method of Lallemand [145] 

and Smith [256] seems to be the most attractive since it is automatic and boundary- 

preserving. 

The above review of previous work did not directly address the discretisation on 

mixed grids because there do not appear to have been dedicated studies on this topic. 

The few relevant studies will be discussed in the appropriate sections. 

1.5 Objectives of Present Work 

Given the aim stated in Subsection 1.1.1 and the summary of previous work in Section 

1.4, the objectives of the present work are: 

1. To investigate the use of mixed grids in order to resolve regions dominated by 

viscous effects. 
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2. To construct spatial discretisations specifically suited to the computation of vis- 

cous flows on mixed grids. 

3. To develop an agglomeration multigrid method based on rediscretisation on the 

coarse grid levels. 

4. To demonstrate the performance of the methods developed under 1., 2., and 3. 

by conducting careful numerical studies on inviscid and viscous test problems. 

1.6 Outline of Thesis 

The rest of this thesis is organised into eight chapters. 

The governing equations for inviscid, laminar, and turbulent flows are presented in 

Chapter 2. 

The numerical method for single-grid calculations is described in Chapter 3. The 

concept of grid-transparency is introduced to establish a framework for the develop- 

ment of discretisation methods on mixed grids. Particular attention is paid to the 

performance of the numerical method on different cell types. 

The discretisation of viscous fluxes on unstructured grids is addressed in Chapter 4. 

Laplace's equation is chosen as a model equation for the viscous terms in the Navier- 

Stokes equations. Various schemes are studied and compared against a number of 

criteria. The chosen discretisation is extended to the viscous terms in the Navier-Stokes 

equations. An approximate, grid-transparent form of the viscous terms is derived which 

may be regarded as a thin-shear-layer approximation. 

Chapter 5 is dedicated to the implementation of an agglomeration multigrid method 
in order to accelerate convergence of the single-grid method described in Chapter 3. In 

contrast to previous work, the current implementation emphasizes the geometric aspects 

of the multigrid process by rediscretising the equations on the coarse grid levels. The 

agglomeration process, intergrid transfer operators, and several implementation issues 

are described in detail. 

The solution method is applied to inviscid flow problems in Chapter 6. Both trian- 

gular and quadrilateral grids are used. The exact solution for supersonic vortex flow is 

chosen to assess the order of accuracy of the method. The flow over a circular-arc bump 

in a channel is used to illustrate the characteristics of various reconstruction schemes 
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and limiter functions both in terms of solution quality and convergence histories. The 

performance of the agglomeration multigrid method is investigated both for the flow 

over the circular-arc bump and the flow over a NACA 0012 aerofoil. 

Solutions for laminar flow problems are listed in Chapter 7. The chosen test cases are 

the flow over a flat plate and the separated flow over the NACA 0012 aerofoil Triangular, 

quadrilateral, and mixed grids are used. Several discretisations for the viscous fluxes 

are compared. The performance of the agglomeration multigrid method is studied. 

Chapter 8 presents results for turbulent flow. The test cases are the ONERA bump 

Case C [77] and the RAE 2822 aerofoil Case 10 [69]. 

Chapter 9 summarises the present work, draws conclusions, and recommends areas 

for future work. 
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Chapter 2 

Mathematical Model 

The governing equations for inviscid, laminar, and turbulent flows are presented in 
integral form. Assumptions, auxiliary relations, and empirical constants are listed. 
The effects of turbulence are modelled through the eddy-viscosity hypothesis and 
the Spalart-Allmaras one-equation model. Boundary conditions are listed. 

2.1 Assumptions 

Throughout the current study, air is assumed to be the working fluid. The mathematical 

model is based on the following assumptions: 

1. The fluid is a continuum. For this assumption to be justified, it is required that 

the Knudsen number Kn [13] 

KnLýR «1, 

where A is the mean free path, L is a local characteristic length scale of the flow, 

M is the Mach number and Re is the Reynolds number. 

2. The fluid may consist of multiple chemical species but it is chemically inert and 

of a single phase. For air, this requires that the temperature T6 2500 K. 

3. The fluid may be treated as an ideal gas, i. e., intermolecular forces are negligible. 

As a result, the fluid is thermally and calorically perfect. For air, this requires 
that the temperature T6 800 K. 

4. The fluid may be treated as a Newtonian fluid, i. e., the fluid is isotropic and the 

stress and strain fields are linearly related. 

In the following sections, the governing equations are stated for an arbitrary control 

volume 11 with bounding surface c91 and outward unit normal vector n. The term 
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`control volume' is retained although the current study is restricted to two dimensions. 

2.2 The Governing Equations for Inviscid Flow 

The flow of a compressible inviscid, i. e., frictionless and non-conducting, fluid is de- 

scribed by the Euler equations. They may be written as the equation for conservation 

of mass, 

at jpdA+c pv "n ds = 0, (2.2.1) 
i asp 

the equations for conservation of momentum, 

J pv dA +' (pv ®v + pI) "n ds = 0, (2.2.2) 
si as2 

and the equation for conservation of energy, 

at 
jpEdA+ f 

pvH "n ds = 0, (2.2.3) 
t asp 

where t represents time, p the density, v the velocity vector, p the pressure, I the identity 

tensor, E the specific total internal energy and H the specific total enthalpy of the fluid. 

The pressure is linked to the total internal energy by the equation of state. For a 

thermally and calorically perfect gas, the equation of state is given by 

p=RpT=('y-1)pIE-2v"vl (2.2.4) 

where R is the gas constant, T is the temperature and y= Cp/C� is the ratio of specific 

heats. For a calorically perfect gas, the specific heats are constant. The specific heats 

are related to the gas constant by R= Cp - C,,. 

2.3 The Governing Equations for Laminar Flow 

The flow of a compressible viscous fluid is described by the Navier-Stokes equations. 
The equation expressing conservation of mass, Eq. (2.2.1), is unchanged. 

The equations for conservation of momentum become 

ýt jvdA+y (pv ®v + pI) "n ds =T"n ds, (2.3.1) 
asp fen 

where T is the viscous stress tensor. For a Newtonian fluid, the most general form of 
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the viscous stress tensor can be shown to be [1], 

T=2µS +AIV - v, (2.3.2) 

where p and A are the first and second coefficients of viscosity, respectively, and S is 

the strain tensor, 

S=1 [Vv + (vv), ]. (2.3.3) 

By requiring that the mechanical and thermodynamical pressures are identical (Stokes' 

hypothesis [12]), it follows that 3A + 211 = 0, or, 

T=2µS-2AIV"v. (2.3.4) 

Having eliminated the second coefficient of viscosity, p is now simply referred to as the 
(coefficient of) viscosity. 

The energy equation is 

(T .v- q) "n ds, (2.3.5) pE dA +ý pvH "n ds = 
fan 

ýt 
r, Jass 

where q is the heat flux vector. Fourier's law of heat conduction is assumed to apply, 

q= -'cVT, (2.3.6) 

where rc is the coefficient of heat conduction and T is the temperature. The coefficient 

of heat conduction is related to the viscosity through the Prandtl number 

PrC2. 
K 

(2.3.7) 

The variation of viscosity with temperature is given by Sutherland's law [12], 
3 

{i 
_T2 

Tref + Csuth 

Pref 'ref T+C 
(2.3.8) 

Suth ý 

where µTef is the value of viscosity at the reference temperature Tref and CS�th is a 

medium-dependent constant. 

The values of the various empirical constants are listed in Table 2.1, ' for air at 

moderate temperatures as a working fluid. 
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Table 2.1: Values of constants for air at moderate temperatures. 

constant value units 

Cp 1004.64 J/kg K 
R 287.04 J/kg K 
y 1.4 - 

Cs th 110.0 K 
Pr 0.72 - 

2.4 The Governing Equations for Turbulent Flow 

Turbulent flows are characterised by random fluctuations of the dependent variables in 

space and time [10]. Since the Knudsen number of the smallest characteristic turbulent 

length scale is much greater than unity, turbulent flows may in principle be computed 

by solving the Navier-Stokes equations. This deterministic approach is usually referred 

to as Direct Numerical Simulation (DNS) [5]. The suitability of DNS for high-Reynolds- 

number flows is limited due to the disparities between the largest and smallest length 

and time scales which need to be resolved. This may be illustrated by the estimate 

of the required number of grid points (and hence memory) of a DNS of a turbulent 

channel flow [11] 

NDNS (O. 08Reh)9/4e 

where Reh is the Reynolds number based on the mean velocity and the channel height. 

The storage capacity of presently available computers means that DNS is only a viable 

approach for flows of low Reynolds number. 

Since the ranges of length and time scales exceed those allowed by affordable com- 

puter capacity, some scales must be discarded and their effect on the retained scales 

modelled. In Large-Eddy Simulations (LES) [4], only the largest turbulent scales are 

computed directly, while the smaller scales are modelled. Although this restriction re- 
duces the required memory and processing time considerably, the reduction is not large 

enough to make LES a practical tool for the computation of high-Reynolds-number flows 

yet. A purely deterministic approach is therefore abandoned for high-Reynolds-number 

engineering calculations, and a statistical approach is adopted instead. 
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2.4.1 The Reynolds-Averaged Navier-Stokes Equations 

In the statistical approach, attention is focused on average values of turbulent quantities. 
The goal is the derivation of equations governing the evolution of these average values. 

Decomposition and Averaging. This goal is achieved in two steps. First, the flow 

variables are decomposed into mean and fluctuating parts. For statistically stationary 
fluctuations, this leads to, 

O(r, t) _ fi(r) ± 0'(r, t) (2.4.1) 

where r is the position vector. Second, the governing equations with the decomposed 

variables are averaged such that 

of = 0. (2.4.2) 

The average is taken as 
1 rt+ot 

L 
fi(r) = Öt J «r, t) dt, Tturb « At < Tmean (2.4.3) 

where Tturb and Tmean denote the time scales of the turbulent and mean flow motion. 

In the present work, it is tacitly assumed that these time scales are well separated such 

that the average in Eq. (2.4.3) is well defined. 

For compressible flows, the density-weighted average of Favre [3] is more convenient 

since it avoids the appearance of correlations involving density fluctuations in the time- 

averaged equations. The Favre-average is defined by 

O(r, t) = j(r) + 0"(r, t) (2.4.4) 

such that 

PO" = 0. (2.4.5) 

In other words, 

PO = Po" (2.4.6) 

For ease of exposition, the equations in this section will be presented in their dif- 
ferential form using cartesian tensor notation. The Einstein summation convention is 

assumed to apply to repeated indices. 
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In the following, the effect of turbulent fluctuations on viscosity and conductivity is 

ignored. 

By decomposing density and pressure according to Eq. (2.4.1) and the remaining 

flow variables according to Eq. (2.4.4), and averaging using Eqs. (2.4.2) and (2.4.5), the 

Reynolds-Averaged Navier-Stokes (BANS) equations are derived. 

The continuity equation is given by 

op- äpü 

at + ax = 0. (2.4.7) 

The momentum equations are 

ät 
+ axj 

(Puiu, +paij) = 911 
(T 

ij - Pus s) ' 
(2.4.8) 

where aal is the Kronecker delta. 

The energy equation reads 
ýt (PE 

+ 
2i'I) 

+x 
2i/ 

- 
r.. (i) 

, uii 7.2.4.9 
Lu; - pui ýJ-qj -p jn +i ij-p i" 

ý) 

9 

In the momentum and energy equations, T=j is given by 

[(2ULi 
+- auj 

-2 
aümSi taiý + ate" 2 a7T (2.4.10) Z'"tý "-- -1-µ --m Szj 

-µ ax j axi) 3 ax,,, ax j axi 3 ax,,, 

In Eq. (2.4.10), the second term is commonly neglected since it is expected to be much 

smaller than -puaý in Eq. (2.4.8). This assumption is valid for non-hypersonic flows. 

In the energy equation, the turbulence kinetic energy k appears as 

k= 
2u='ýu; ', (2.4.11) 

and is used to redefine the total internal energy and total enthalpy as 

E E- E -}- k (2.4.11a) 

H E-- H+k. (2.4.11b) 

To simplify the energy equation, it is common to neglect the terms 

ui'Tsj 
1 

-2 puh ui't4'. 
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With these definitions and simplifications, the energy equation may be written as 

apE aa ýTjj 
at + axe 

(PHüj) 
ate; 

[u, 

- 7j'1, 
) 

- qj - 7ihI17] . (2.4.12) 

The equation of state is given by 

p=R-PT. (2.4.13) 

Closure Problem. The essential consequence of the averaging process is that the 

resulting system of equations is no longer closed due to the appearance of unknown 

double correlations, i. e., the elements of the Reynolds-stress tensor -puä'1u! and the 

Reynolds enthalpy flux 

In principle, additional transport equations for the Reynolds-stress tensor and the 

Reynolds enthalpy flux may be derived. The difficulty is that these equations contain 

unknown triple correlations and that the transport equations for the triple correlations 

comprise unknown quadruple correlations. This situation is referred to as the closure 

problem since the number of equations never balances the number of unknowns. 

2.4.2 Turbulence Model 

The purpose of a turbulence model is to provide a set of algebraic and/or differential 

equations which provide sufficient information to overcome the closure problem. A large 

number of turbulence models of varying degrees of sophistication have been developed, 

see Rodi [7] and Wilcox [11]. 

Because the focus of the present work is on the development of numerical algorithms, 
it is deemed sufficient to restrict attention to a one-equation turbulence model based 

on the eddy-viscosity hypothesis of Boussinesq [11]. The turbulence model considered 

contains most of the terms encountered in more sophisticated turbulence models. 

Eddy-Viscosity Hypothesis. In direct analogy to the constitutive equation for the 

viscous stresses, Eq. (2.3.4), the Reynolds-stress tensor is written as 
2 Oil,,, 

8=i 
2 

-pui = 2i1 -2 µt ax", -2 Pk6, j, (2.4.14) 

where pt is the turbulent or eddy viscosity. The last term on the right-hand side is 

required to give the correct trace of the Reynolds-stress tensor. 
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Similarly, the Reynolds enthalpy flux is modelled by the gradient-diffusion hypoth- 

esis, 

_Phý =ý_Ktý 
, (2.4.15) 

where rct is the eddy coefficient of heat conduction, which is related to the eddy viscosity 
through the turbulent Prandtl number 

AtC'n Prt = Kt 
(2.4.16) 

By introducing Eqs. (2.4.14) and (2.4.15) into the Reynolds-averaged momentum 

and energy equations, the following equations are obtained, 

ät 
i+j (Puiüj -I-ptaij) =j 

(21iefrTh 
- 

3Fleff ýxmbij) 
(2.4.17a) 

(2.4.17b) ýt 
+ 

Oxý (z) 
= axe 

[iij (2itieffii 
- 

3F1effýxmaiý 
J +reff 

ai; 

where the static pressure is redefined to include the kineetic energy of the normal 

Reynolds stresses, 
2= 

it =P+ 3 Pk, (2.4.18) 

and where effective values of the viscosity and conductivity are defined by 

/reff = 14 + Pt ' 
(2.4.18a) 

1Ceff = 1. + Kt (2.4.18b) 

Through the eddy-viscosity and gradient-diffusion hypotheses, the task of a turbu- 

lence model has been reduced from providing expressions for the Reynolds-stress tensor 

and heat flux to furnishing an expression for the eddy viscosity and a value for the 

turbulent Prandtl number. 

The weaknesses of the eddy-viscosity hypothesis are discussed by Wilcox [11]. 

The eddy-viscosity and gradient-diffusion hypotheses allow the governing equations 
for turbulent flow to be written in the same form as those for laminar flow with time- 

averaged variables and effective viscosity and conductivity. Therefore, the time-average 

notation is dropped for the remainder of this work. 

Spalart-Allmaras Turbulence Model. The turbulence model of Spalart and All- 
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maras [9] consists of a single partial differential equation for an eddy-viscosity variable 

v 

p(v + v)Vi "n ds + Jý S(pv) dA (2.4.19) Y 
fn 

pv dA +' 
JQ 

pvv "n ds = 
an 

where the source term is given by 

S(pv) = pcbl (1 - ft2) ýv Production 

+ 
[pcb2Vv. Ov - (v + v)Vv " Op] Diffusion 

`2 

(2.4.20) 

P 
(cW1fW X61 )() Destruction - 2ft2 J 

+ Pf tl AV2. Transition 

The model described below differs slightly from that described in [9]. It incorporates 

modifications suggested by Spalart [8] to ensure that SZ (see below) remains positive. 

The eddy-viscosity variable v is related to the turbulent viscosity pt by 

µt = fv1Pv 

where the function f�1 is given by 

(2.4.21) 

A1 Xg 
. (2.4.22) 

X3 + Cvl 

and where X is defined as the ratio of the eddy-viscosity variable to the kinematic 

laminar viscosity, 

X= 
V. 

(2.4.23) 

The various terms in the source term are described in the following. 

Production Term. In the production term, 

St = St fv3 +T vd`z f�2 (2.4.24) 

where S2 is the magnitude of the vorticity SZ =Vxv, rc is von Kärmän's constant and 

d is the normal distance to the closest solid surface. The function f�2 is given by 

fv2 = 
(i 

+ 
2) 1 (2.4.25) 

and the function f�3 is defined as 

fv3 = 
(1 + Xf�l)(1 - . 

f�2) (2.4.26) 
x 
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Diffusion Term. Spalart and Allmaras [9] originally defined their turbulence model in 

non-conservative' form. In the above description, the model was cast in conservation 

form. By changing from the non-conservative to the conservative form, the second 

term involving the scalar product of the gradients of the eddy-viscosity variable and 

the density is introduced. This term is likely to be large only in shock-wave/boundary- 

layer interaction regions. 

Destruction Term. In the destruction term, the function fw is given by 

(1-ý cw3 l1/6 
fw=g 

96+c6 / 
(2.4.27) 

3 

where 

g=r+ cw2(r6 - r) (2.4.28) 

and 

r 
SIK2d2 

(2.4.29) 

The value of c,,, l is determined from the other constants to ensure correct representation 

of the logarithmic region, where production is assumed to balance destruction. This 

gives 

ß, u1 = 
cbl +1+ Cb2 (2.4.30) 
r2 

or 

Transition Term. The additional source term allows transition locations to be specified. 

The associated functions are defined by 

ft2 = Ct3 eXP(-ct4X2) (2.4.31) 

and 
2 

fti = ctigt exp I- Ct2 
AV2 (d2 + 9t dt " 

(2.4.32) 

The function gt is given by 

I (2.4.33) gt = min (0.1, 
tAst / 

where AV is the difference in velocity magnitude between the field point and the tran- 

sition point, Stt is the vorticity at the transition point, Ast is the grid spacing at the 
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Table 2.2: Values of constants for Spalart-Allmaras turbulence model. 

constant value constant value 
Prt 0.9 c,,, 2 0.3 
C�i 7.1 Cw3 2.0 
CO 5.0 v 0.6667 
K 0.41 Ctl 1.0 

C61 0.1355 Ct2 2.0 
Cb2 0.622 Ct3 1.2 

c,,, l 3.2391 Ct4 0.5 

transition point, and dt is the distance between the field point and the transition point. 

The constants are summarised in Table 2.2. 

Comparisons of the Spalart-Allmaras model with variants of the k-e and k-w 

models carried out by Menter [6] and Bardina et al. [2] have shown that the Spalart- 

Allmaras model is an attractive alternative in terms of accuracy, robustness and required 

computational resources. 

2.5 Boundary Conditions 

For inviscid flows, the slip condition must be enforced at solid walls 

(v " n)W, 11 = 0. (2.5.1) 

For viscous flows, the no-slip condition at solid walls requires that 

Vwall=0" 

The solid walls may be adiabatic 

(q. n)wall = 0, 

or isothermal, where the wall temperature is specified, 

(2.5.2) 

(2.5.3) 

T= TWali" (2.5.4 
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For turbulent flows, the eddy viscosity is zero on solid walls, i. e., 

1/wall = 0" (2.5.5) 

References 

[1] Aris R., Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover, 
1989 

[2] Bardina J. E., Huang P. G., and Coakley T. J., Turbulence Modeling Validation, 
Testing and Development, NASA TM 110446, April 1997 

[3] Favre A., Equations des gaz turbulents compressibles, Journal de Mecanique, Vol. 
4, No. 3, pp. 361-390,1965 

[4] Ferziger J. L., Large-Eddy Simulation, in: Simulation and Modeling of Turbulent 
Flows, Gatski T. B. et al. (Eds. ), Oxford University Press, 1996, pp. 109-154 

[5] Leonard A., Direct Numerical Simulation of Turbulent Flows, in: Simulation and 
Modeling of Turbulent Flows, Gatski T. B. et al. (Eds. ), Oxford University Press, 
1996, pp. 79-108 

[6] Menter F. R., A Comparison of Some Recent Eddy- Viscosity Turbulence Models, J. 
Fl. Eng., Vol. 118, pp. 514-519,1996 

[7] Rodi W., Turbulence Models and Their Application in Hydraulics, IAHR Mono- 

graph, 3rd Ed., A. A. Balkema, Rotterdam, 1993 
[8] Spalart P. R., Improvements in Spalart-Allmaras Model, dated March 1993, private 

communication, November 13,1996 

[9] Spalart P. R. and Allmaras S. R., A One-Equation Turbulence Model for Aerody- 

namic Flows, La Recherche Aerospatiale, No. 1, pp. 5-21,1994 

[10] Tennekes H. and Lumley J. L., A First Course in Turbulence, MIT Press, 1972 

[11] Wilcox D. C., Turbulence Modeling for CFD, 2nd Ed., DCW Industries Inc., La 
Canada, California, 1998 

[12] White F. M., Viscous Fluid Flow, McGraw-Hill, 2nd Ed., 1991 

[13] Zierep J., Theoretische Gasdynamik, 4th Ed., G. Braun, Karlsruhe, 1991 



PART II 

NUMERICAL METHOD 

84 



Chapter 3 

Unigrid Numerical Method 

The discretisation of the governing equations is described. The definition of control 
volumes and the data structure are discussed. The concept of grid-transparency 
is introduced in order to guide the discretisation on mixed grids. The numerical 
inviscid fluxes are listed and the boundary conditions described. 

3.1 Introduction 

As indicated in Chapter 1, the current work is based upon the use of the agglomera- 

tion multigrid method. In the present implementation of the agglomeration multigrid 

method, the equations on a given grid level are discretised in the same manner as on 

the finest grid level. Therefore, it is expedient to consider the finest grid level as the 

only one and to describe the numerical method as if it applied to a single grid level 

only, hence the term `unigrid numerical method. ' 

The discretisation is based on the integral form of the governing equations, thereby 

ensuring conservation and the correct shock jump conditions. Following Jameson et 

al. [23], the time-dependent form of the governing equations is employed as a means of 

reaching steady-state solutions. The temporal and spatial discretisations are separated, 

which allows them to be studied separately and matched to eachother. This procedure 

also eliminates a possible dependency of the steady-state solution on the time step. 

3.2 Finite-Volume Discretisation 

The integral form of the governing equations is discretised by subdividing the solution 
domain into non-overlapping control volumes S2z. The definition of the control volumes 
is discussed in the next section. The control volumes are assumed to be invariant with 

respect to time. It is convenient to describe the discretisation by considering the generic 
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conservation equation, 'ýII 

0f 
gidA+ 

yc 
f(q)"nds= J 

g(q, Vq)"nds+J s(q, Vq)dA. (3.2.1) 
sei asp; asp; 

In each control volume, the average value of the state vector is defined by 

qz(t) =1f q(r, t) dA, (3.2.2) Ani 

so that Eq. (3.2.1) may be written as 

A1; z +f f(q) "n ds = g(q, Vq) "n ds +J s(q, Vq) dA. (3.2.3) dt anti asz, of 
For a generic polygonal control volume consisting of nf; straight-line segments, the 

contour integrals are rewritten to give 
ni n. 

An; dt2 
+Ejf (q) "n ds =Ej g(q, Vq) -n ds +f s(q, Vq) dA, (3.2.4) 

j_1 s p,, , =1 s s, i 
where ä1j represents the control-volume face separating the control volumes Sli and 

Q j. The flux integrals are approximated by Gaussian quadrature with nG quadrature 

points (giving an accuracy of O(h2nG)), and the source term is assumed to be constant 

over the control volume to give 
nf' 

Af2; 
dta 

+E 
_2zß {wz[f() 

"n- g(q, Vq) - nlz,, s, = s(qa, (oq)i)Ajj;. (3.2.5) 
, 
j=1 t=1 

In Eq. (3.2.5), Asij is the length of the control-volume face separating control volumes 
S2z and SZj, and 9 represents the parameterised coordinate along the control-volume 
face. The values of the weights wl and the coordinates of the quadrature points 91 can 
be found in numerical analysis textbooks, see, e. g., Stoer and Bulirsch [40]. 

The above derivation defines a generic finite-volume method. In the following, 

the formal spatial accuracy will be limited to second order. Therefore, only Gaussian 

quadrature of order one, i. e., the midpoint rule, will be used. Equation (3.2.5) can then 

be written 
nfi 

Asp; d2+> [f (q) "n- g(q, Vq) " n]zj . szj = s(9z, (V )s)Anj. (3.2.6) 
j=1 

Further discretisation requires the evaluation of the inviscid and viscous fluxes at 
the control volume faces, which is described in Sections 3.7 and 3.8, respectively. 

Remark 3.1: The numerical solution of Eq. (3.2.6) necessitates assigning to the average 
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value qi a location inside the control volume 1. For an arbitrary solution variation, 
the Taylor-series expansion gives 

4i= 
ýi 

[fdÄ_(V)i. j(_ri)dA+HOT} 

where ri is the position vector of the centroid of control volume Q i, and HOT is the 

abbreviation for `higher-order terms. ' Disregarding the trivial case of vanishing (V )i, 

Eq. (3.2.2) strictly holds only if q1 is stored at the centroid of the control volume. 

Remark 3.2: In the following, grids will be referred to as uniform and non-uniform. A 

uniform grid consists of cells of identical areas. A non-uniform grid, which consists of 

cells of differing areas, may be regular or irregular. A grid is regular if the local variation 

in cell area is small enough not to cause substantial errors. This is usually achieved 

by variations in area between neighbouring cells less than approximately 10-20%. An 

irregular grid exhibits large variations in cell areas. 

3.3 Control-Volume Definition 

In the present work, cells of the dual grid are chosen as control volumes. To define the 

dual grid, it is helpful to refer to a given unstructured grid as the primal grid. A dual 

grid can then be defined through the following properties: 

1. Each cell of the dual grid is associated with a vertex of the primal grid. 

2. Each edge of the dual grid is associated with an edge of the primal grid. 

3. Each vertex of the dual grid is associated with a cell of the primal grid. 

Because of the association of cells of the dual grid, i. e., the control volumes, with 
the vertices of the primal grid, the latter are chosen as the storage locations for the 

solution variables. 

Remark 3.3: By storing variables at the vertices of the primal grid and constructing 

control volumes from a dual grid, Eq. (3.2.2) is satisfied on a uniform grid only. On 

non-uniform grids, the average value defined by Eq. (3.2.2) must be regarded as a 

pointwise value. This has two consequences. First, the average value will be coupled 
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to neighbouring values by the mass matrix. For steady flows, the mass matrix may 

be lumped without sacrificing spatial accuracy [7]. Second, the difference between 

pointwise values and average values can be shown to represent a second-order error [25] 

and is thus of importance only for methods of order three and higher. Since the current 

work concentrates on steady flows and employs second-order methods only, the overbar 

will be dropped in the following. 

The above list of properties allows a number of dual grids to be constructed. Two 

choices were explored in the present work. They are identical for primal grids composed 

of equilateral triangles. 

3.3.1 Median Dual 

On triangular grids, the median dual is constructed from median segments, i. e., by 

connecting the centroids of the triangles to the edge mid-points, as shown in Fig. 3.1(a). 

On quadrilateral grids, the median dual is defined by connecting midpoints of opposing 

edges. The median dual for mixed grids is shown in Fig. 3.1(b). It is noted that the 

median-dual edges are composed of two straight segments. 

Remark 3.4: The median dual arises naturally as a control volume if the spatial 

discretisation produced by the Galerkin Finite-Element Method with linear triangular 

elements is expressed in finite-volume form [3,21,36]. As will become apparent below, 

the median dual results in geometrical relationships which simplify many discretisation 

formulae. 

3.3.2 Containment Dual 

The containment dual is constructed by connecting the centres of the containment 

circles. The containment circle is defined as the smallest circle containing a triangle. 

For acute triangles, the containment circle is identical to the circumcircle, making the 

containment dual identical to the Dirichlet region, as depicted in Fig. 3.2(a). For obtuse 

triangles, the containment circle is equivalent to a circle centred on the longest edge of 

the triangle. The containment-dual control volume is shown in Fig. 3.2(b) for a grid 

composed partially of obtuse triangles. 
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(b) 

Figure 3.1: Median dual on (a) triangular grid and (b) mixed grid. 
Control volumes are shown shaded. 

(a) (b) 

Figure 3.2: Containment dual on (a) acute triangular grid and (b) 

obtuse triangular grid. Control volumes are shown shaded. 

89 

There is no natural extension of the containment dual to quadrilateral or mixed 

grids. 

3.3.3 Comparison 

The containment dual is particularly useful on grids generated for high-Reynolds- 

number flows, which usually consist of highly stretched grids adjacent to solid walls. 
The median dual on such grids is shown in Fig. 3.3(a), revealing highly distorted control 
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(a) (b) 

Figure 3.3: (a) Median dual (b) Containment dual on triangulated 

quadrilateral grid. 

volumes. By contrast, the containment dual gives rectangular control volumes, as de- 

picted in Fig. 3.3(b). Barth [5] has shown that containment-dual control volumes greatly 

reduce numerical diffusion compared to median-dual control volumes by calculating an 

inviscid flow over a NACA 0012 aerofoil on a grid generated for high-Reynolds-member 

flows. 

It is interesting to note that Viozat et al. [48] were able to demonstrate analytically 

the advantages of control volumes which reduce to the containment dual control volumes 

on triangulated quadrilateral grids. 

The containment dual is helpful in still another way. A frequently overlooked dis- 

advantage of triangulated quadrilateral grids is that triangulating a quadrilateral grid 

by inserting diagonals is not unique. When using the median dual, this gives rise to 

different control volmes, see Fig. 3.4. * Numerical experiments by the author with a 

scalar transport equation solved subject to a given velocity field showed that the re- 

sults can be influenced very strongly by the orientation of the diagonals [18]. In fact, 

the influence of the orientation of the diagonals was found to be more important than 

that of grid distortion. This form of grid-dependence is rather undesirable in viscous 

regions. The containment dual avoids this drawback and results in identical control 

volumes irrespective of the orientation of the diagonals. 

Although the containment dual on stretched triangulated quadrilateral grids iin- 

proves the accuracy, the efficiency of the calculation is reduced. This is because the 

flux calculation encounters dual edges of very small or zero length, whose contributions 

The triangulated quadrilateral grid shown in Fig. 3.4(a) is sometimes referred to as a Friedrichs- 
Keller triangulation after Friedrichs and Keller [13], who were among the first to analyse numerical 
methods on such grids. The triangulated quadrilateral grid shown in Fig. 3.4(b) is sometimes referred 
to as a Union-Jack triangulation for obvious reasons. 
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median dual 

(a) 

(b) 

Figure 3.4: Effect of diagonal edges on median dual and containment 
dual for triangulated quadrilateral grid with (a) diagonal edges of posi- 
tive slope and (b) diagonal edges of alternating slope. 

91 

to the solution update are therefore very small or identically zero. Looping over these 

edges could be prevented by a conditional statement, but this is also inefficient. The 

best option is to delete the dual edges with small or zero length altogether, which leads 

to mixed grids in a natural way. These advantages and disadvantages of the containment 

dual will he demonstrated in Chapter 6 for an inviscid flow. 

Alternative definitions of dual cells for stretched triangular grids were used also by 

Kasbariau et al. [2-1], Dervieux et al. [12], Debiez [9], Meister [27], and Viozat et al. [48]. 

Like the containment dual, these definitions reduce to rectangular control volumes on 

triangulated quadrilateral grids. 

The following sections and Chapter 4 describe the discretisation for an arbitrary dual 

containment dual 
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control volume at vertex `0. ' For notational convenience, the following definitions are 
introduced: 

1. The set of edges incident to vertex 0 is denoted by Co. 

2. The set of distance-one neighbours of vertex 0 is the set of vertices which are 
linked to vertex 0 by an edge and is denoted by Vo. 

3. The set of distance-two neighbours of vertex' O is the set of vertices which are 
linked by an edge to a distance-one neighbour of vertex 0. 

4. The set of triangles meeting at vertex 0 is denoted by To. 

3.4 Data Structure 

For unstructured grids to be useful in practice, the relationship of cells, edges, and 

vertices among themselves and/or between each other has to be described explicitly 

through connectivity data. The logical format according to which connectivity data are 

organised is termed data structure. Various data structures have been developed, see, 

e. g., Barth [5]. 

Since the data structure largely determines which operations can be carried out, the 

data structure needs to be matched to the solution method. In the present case, the 

essential operation of the finite-volume method is the computation of fluxes through 

control-volume faces. As described in the previous section, the control-volume faces are 

given by the edges of the dual grid. Because of the association between edges of the 

dual grid and edges of the primal grid,, the computation of fluxes can be carried out 

simply by looping over the edges of the primal grid. Therefore, the present flow-solution 

method employs an edge-based data structure [5]. 

The edge-based data structure can be stored in two arrays. For reasons which 
will become clear in Section 3.5, the current implementation of the edge-based data 

structure entails the storage of three arrays. 
The first array, e2v(2, nEdges), lists the two vertices defining each edge. Referring 

to Fig. 3.5(a), for edge ne, 

e2v(1, ne) = vi, 

e2v(2, ne) = V2. 
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V4 V3 

AC 

V2 

V2 
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(ý 

V1 

(b) 

Figure 3.5: Schematic illustration of data structure. (a) e2v and e2c- 
arrays, and (b) c2v-array. 

The convention is adopted that edge ne is directed from vertex vl to vertex v2. 

The second array, e2c(2, nEdges), lists the two cells sharing edge ne, 

e2c(1, ne) = cl 

e2c(2, ne) = c2, 

as depicted in Fig. 3.5(a). The entries are ordered such that the cells cl and c2 are 

to the left and right of edge ne, respectively. For an edge lying on a boundary, the 

corresponding entry in e2c is set to 0. 

The third array, c2v(4, nCells), lists the vertices of each cell in counter-clockwise 

order. For cell nc, as illustrated in Fig. 3.5(b), 

c2v(l, nc) = vi 

c2v(2, nc) = V2 

c2v(3, nc) = V3 

c2v(4, nc) = V4. 

If cell nc is a triangle, the fourth entry is set equal to the first entry, V4 = Vi. 

The above described the data structure for the interior of the solution domain. 

The boundary edges are stored in Compressed Sparse Row (CSR) format [35] for each 
boundary region in counter-clockwise order. 
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3.5 Grid Transparency 

The use of mixed grids raises the question of how the existence of different cell types 

affects the solution method. While it may be unavoidable to treat triangular and 

quadrilateral cells differently or separately in the pre- and post-processing stages, it is 

inconvenient to treat them differently or separately during the flow-solution stage. This 

may require additional data structure arrays, result in conditional statements, lead to 

untidy computer code, and adversely affect program speed. It is therefore desirable to 

treat the different cell types identically wherever possible. The ideal is a code which is 

independent of the cell type and requires a data structure of minimal extent. Such a 

code is termed `grid-transparent' in the present work. 

The key to formulating a grid-transparent code is to shift attention away from cell 

types and focus on edges and vertices. This amounts to regarding a grid as being 

described by geometric entities of lower level, because cells are constructed from edges, 

and edges are defined by two vertices. As a result, different cell types are handled 

automatically. In fact, a grid-transparent code does not distinguish between triangular, 

quadrilateral, and mixed grids for a given set of vertices in that the same operations are 

carried out in precisely the same manner. The only difference is the different number 

of edges and different values of control-volume areas and faces. 

In order that a code be grid-transparent, it must be ensured that the algorithms 

used in that code are grid-transparent. In this context, it is instructive to regard 

grid-transparent algorithms as a subset of edge-based algorithms, since only the first 

data-structure array described in Section 3.4 is required. This has important implica- 

tions on the discretisation stencils, because with the remaining data-structure array, 

only distance-one neighbours can be included directly in the stencil at a given vertex. 
Distance-two neighbours have to be included in the stencil indirectly by a two-step 

procedure. In the first step, an intermediate quantity is computed and stored at the 
distance-one neighbours. In the second step, the intermediate quantities are processed 
and accumulated at the given vertex to give the desired result. Figure 3.6 depicts the 

vertices which are included directly and indirectly for a quadrilateral and a mixed grid. 
On a triangular grid, all the vertices of the cells meeting at a vertex are involved in the 

stencil at that vertex. 
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Figure 3.6: Grid-transparent stencil on (a) quadrilateral grid and (b) 

mixed grid. Vertices included directly in stencil at vertex 0 are denoted 
by `x'. Vertices which can only be included in a two-step procedure are 
denoted by `®'. 

The preceding discussion focussed on two dimensions where there are only two cell 

types and two cells meet at each interior edge. The real benefits of grid-transparent 

algorithms will only emerge on three-dimensional mixed grids where up to four cell types 

can be used and the number of cells meeting at an interior edge is strongly dependent on 

the cell types meeting at that edge. For example, the number of cells meeting at an edge 

is essentially arbitrary for a tetrahedral grid, and may vary considerably on mixed grids. 

The array e2c would then have to be stored in compressed sparse row or linked list 

format. It is clear that a substantial simplification will be achieved if one does not have 

to refer to a large (and variable) number of cells at each edge. A further motivation for 

the development of grid-transparent methods is that it may not be possible to construct 

at all the second and third data-structure arrays for the complex polygonal cells on the 

coarse-grid levels generated by the agglomeration multigrid method. 

A recent paper by Perooinian et al. [31] also addressed the development of solution 

methods for different types of grids or mixed grids. Their method is also labelled 

grid-transparent' because it can handle structured, unstructured, and mixed grids. An 

important difference, however, is that the present solution method is not simply capable 
of handling triangular, quadrilateral, and mixed grids. As explained above, the present 

method does not, in fact, differentiate between such grids for a given set of vertices once 

0X 
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(a) (b) 

Figure 3.7: Grid-transparent stencil on (a) quadrilateral grid and (b) 

mixed grid through srnbdivision of Lion-simplicial cells with virtual edges. 
Virtual edges are denoted by dashed lines. 
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control volumes and face areas have been computed. 

Another way of avoiding the treatment of different cell types would be to subdivide 

the non-siniplicial cells into simplicial cells by virtual edges, as depicted schematically 

in Fig. 3.7. However, this is not regarded as suitable since it would lead to considerable 

additional memory requirements, thus defeating the original objective of attempting to 

treat different cell types with a unified data structure of minimal extent. 

The issue of grid-transparency will be discussed further as appropriate. 

3.6 Flux Quadrature 

Using the edge-based data structure, Eq. (3.2.6) can be recast as 
2 

An,, 
dqo 

+ [f(q) n- g(q, Vq) . n]oi 
,ý 

s(qo, (Vq)o)Aszý, (3.6.1) 
OiEe0 k=1 

where the inner summation arises for the median dual because each dual edge consists 

of two straight segments, as shown in Fig. 3.8 for edge Oi. In Fig. 3.8, the symbol `®' 
denotes the location of the quadrature points. 

Simplification of Flux Quadrature in Interior of Solution Domain. In order to reduce 
the complexity of the flux quadrature, it is common to replace the two segments with 

XXX XX 
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unit normals noi, l and noi, 2 by a single segment with unit normal noi, as shown in Fig. 

3.8.1 

noi, 1Osoi, i + noi, 20SOi, 2 (3.6.2) not = Aso: 

The superscript `" was chosen to reflect the fact that the normal consists of two straight 

segments. Equation (3.6.1) then becomes 

Aglo 
dd o+E [f (9) "ü- g(q, Opi) " n}oi Asoi = s(qo, (Vq)o)Asio" (3.6.3) 

OiEEo 

Barth [3] showed that the simplification comes at the expense of reduced accuracy on 

irregular grids. The reduced accuracy must be caused by the numerical smoothing 

terms, as the centred part of the discretisation is treated exactly. 

The complexity can be reduced further if the position of flux quadrature is not 

located at the midpoint of the simplified dual edge, but at the midpoint of the associated 

primal edge, as shown in Fig. 3.8(c). This simplification will introduce further errors 

into the flux quadrature. It is tacitly assumed that the reduced complexity offered by 

the two simplifications outweighs the reduced accuracy on distorted grids. 

For the containment dual, each dual edge is a straight segment. The unit normal 

not is therefore simply equal to the normal of the straight segment. Only the second 

simplification is required. 

Simplification of Flux Quadrature at Boundary of Solution Domain. The flux-quadrature 

points on boundaries are also modified. The theoretical position of the quadrature 

points for triangular points is as shown in Fig. 3.9(a). t Two modifications of the flux 

quadrature points on boundaries are carried out. 

First, the location of the quadrature points for the fluxes through the primal bound- 

ary edge is repositioned as shown in Fig. 3.9(b). The motivation is grid-transparency, 

since the modified location allows the boundary fluxes to be computed in the same 

manner irrespective of whether triangular or quadrilateral cells are on the boundary. 

IOn non-uniform triangular grids, this leads to a slight ambiguity. The redefined median-dual cells 
are identical to the centroid-dual cells (constructed by connecting centroids) but their areas are not 
identical. 

=The derivation is analogous to that of the Green-Gauss reconstruction on triangular grids in Sub- 
section 3.7.2 by simply starting from the divergence theorem instead of the Green-Gauss theorem. No 

equivalent positions for the flux quadrature points on quadrilateral grids can be derived within the 
current data structure. 
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nn; , 

7 
noi, 2 

(a) 

(b) 

S 

(c) 

Figure 3.8: Simplification of original flux quadratirre (a) for median- 
dual control voltunes. (b) Approximation of dual edge by single straight 
segment. (c) Relocation of flux-quadratirre location to midpoint of pri- 
mal edge. The symbol `0' denotes the location of flux evaluation. Nor- 

mal vectors are not drawn to scale. 
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Figure 3.9: Simplification of original flux quadrature (a) for median- 
dual control volumes at boundary. (b) Relocation of flux-quadrature 

locations to enable grid-transparency and prevent vanishing mass fluxes 

for viscous flows. The symbol `®' denotes the location of flux evaluation. 

Second, the location of the quadratrare points for the fluxes through the dual bound- 

ary edge is iuoved to its midpoint as shown in Fig. 3.9(b). The reasoning is that its 

original position leads to a vanishing mass flux for viscous flows due to the no-slip 

condition. 

3.7 Discretisation of Inviscid Fluxes 

The iirviscid flux at an edge 01 is approximated by a numerical flux function, 

[f (q) " n]oi = `I(go,, i,, 9oi, tz; n1). (3.7.1) 

where qoi,,, and qoi, I? denote the solution states to the left and right of the control 

volume face associated with edge Oi. Numerical flux functions which reconcile the two 

states at a control volume face to give a unique flux are called Riemann solvers. 

The order of accuracy obtained by a particular numerical flux function is only de- 

pendent on how the left and right states are determined frone surrounding solution 

states. 



3.7 Discretisation of Inviscid Fluxes 100 

3.7.1 First-Order Discretisation 

By assuming piecewise constant solution states in the control volumes, a first-order 

accurate discretisation is obtained. The left and right states are simply 

qoi, L = qo, (3.7.2a) 

qoi, R = qi" (3.7.2b) 

In practice, first-order accurate methods are too diffusive, leading to smeared shock 

waves, contact discontinuities, and shear layers. It is therefore necessary to raise the 

order of accuracy. 

3.7.2 Second-Order Discretisation 

Second-order accuracy can be obtained by reconstructing a linear variation of the so- 

lution variables in each control volume. Equations (3.7.2a) and (3.7.2b) are replaced 

by 

qoi, L = 9o +2 
[(1 

- n)(Vq)0. Oroi + rc(gi - qo)], (3.7.3a) 

qoi, R = 4i -2 
[(1 

- n)(V9)i "i r0i + ic(9i - 90), s 
(3.7.3b) 

where iro= = r; - ro and (Vq)o is the gradient at node 0. On uniform quadrilateral 

grids, these formulae reduce to the MUSCL extrapolation of van Leer [441. 

Experience has shown that the use of the primitive state vector p= 1p, u, v, p}t in 

the reconstruction gives better results than the conservative state vector q [20]. They 

are linked by a transformation matrix M, 

q=Mp. (3.7.4) 

The transformation matrix and its inverse are given by 

11 0001000 

M=0p00I M_1 -0ip00 (3.7.5) 
00p000P0 

0 2pu 2pv 711 
0 -1iu - 27-1 v ry- 1 
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The actual reconstruction is therefore given by 

qoi ,L= 
MOi, L S Po +1 

[(1 
- K)(VP)o i Oroi + rc(Pi - Po)] 

}' 
(3.7.6a) 

9oi, R = MOi, R 
{Pi 

-2 
{(i. 

- i)(Vp); " Lroi + /e(Pi - Po)] 
}' 

(3.7.6b) 

where MOi, L and Moi, R are the transformation matrices evaluated at the states POi, L 

and POi, R. In the present work, only rc =0 was used, giving the scheme of Barth and 

Jespersen [6] in which only nodal gradients are used. In the framework of the MUSCL- 

scheme of van Leer [44], the reconstruction method of Barth and Jespersen corresponds 

to the scheme originally advanced by Fromm [14]. 

Remark 3.5: The use of nodal gradients corresponds to a centred approximation of 

gradients. This means that the state at vertex 0 does not influence the gradient at that 

vertex. Consequently, nodal gradients do not detect oscillations on the scale of the grid 

spacing on uniform grids. This is a more severe problem on quadrilateral grids since 

they allow more spurious solution modes than triangular grids. This problem could 

be circumvented by setting n ,A0, similar to the approaches advanced by the French 

research groups. 

The solution states at the quadrature points for dual boundary edges are obtained 

from 

qoi, L = Moi, L 
[Po +2 (VP)o " (Oroi + Osoztoi)], (3.7.7) 

where toi is the unit tangent vector along the dual edge oriented such that not x toi >0 

as indicated in Fig. 3.9. The right solution state is obtained similarly. 

Gradient Reconstruction. The variable to be reconstructed will be denoted by 0 in 

order to emphasize that the reconstruction procedures may be used for purposes other 

than the higher-order inviscid fluxes. 

Green-Gauss Reconstruction (Triangular Grids). This reconstruction procedure was 

suggested by Barth and Jespersen [6]. 
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The Green-Gauss theorem 

foot VO dA = 
ieflof 

On ds (3.7.8) 

is applied to the region 0' formed by the union of triangles meeting at vertex 0. Equation 

(3.7.8) may then be approximated as 

(VO )o -1 On ds. (3.7.9) 
Aso, asio, 

Equation (3.7.9) is an exact relation if the function 0 is linear. 

At interior vertices, the contour integral is approximated by the trapezoidal rule to 

give 

(VO )o ^ Ast°, 
sEVo 

2 
(O i+c i+i) ni+112, (3.7.10) 

where the notation is explained in Fig. 3.10, and it should be noted that nz+1/2 is a 

scaled normal vector. Since the sum is cyclic, a shift in the indices may be employed 

to rewrite the above equation as 

(Vc)o 
ý 

Zoi 
(ni+1/2 + ni-1/2) " 

(3.7.11) 
o iEVo 

Since the sum of the normals is equal to zero, a constant value may be added to the 

summation, giving 

(V0)0 ; 
E] 

11E12 
(0o + Oi) (ni+1/2 + ni-1/2) . 

(3.7.12) 

° iEVo 

Equation (3.7.12) may be rewritten using the identities 

1 (3.7.13a) 

(3.7.13b) ni-i/2 = 3noz, 2 +1 2noi, 

which follow directly from the definition of the median dual, to give 

(V4)o lE3 
(Oo + /i) (nosi + noi, 2) " 

(3.7.14) 
A° 

iEVo 

In other words, exploiting the compatibility with the edge-based data structure, 
1 (VO )o 3F1 (qo + q50 n0i. (3.7.15) Ano' 

OiEeo 

By noting that An., /3 is equal to the area An,, of the median-dual control volume at 
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ni-1/2 

Figure 3.10: Definition of normal vectors used in derivation of Green- 

Gauss gradient reconstruction. Normal vectors are not drawn to scale. 

vertex 0, Eq. (3.7.15) inay be expressed as 

ýV )o = ((ko + Oi) noi" (3.7.16) 

If the vertex 0 lies on a boundary, additional terms arise from the boundary edges. 

In the derivation of these additional teriiis, reference is made to Fig. 3.11, in which the 

degree of vertex 0 is exaggerated fror the purpose of illustration. At vertex 0 in Fig. 

3.11, the equivalent of Eq. (3.7.10) is given by 

1 
(1700 =112 (Oo+0i)not +1 (Oi +(6i+i)ni+l/2+ 

12 
(Oo+(P,, )noT ,, Aizo, 

z=t 
(3.7.17) 

Employing it shift in the indices, the summation may he rewritten as 

111 
o Al 2 (Oo + (hi) not + 

Zýin312 
u 

In l 
, /, ý/, + 

2(/)i 
(ni+1/2 + ni-1/2) + 20nanni-1/2 +2 (Y'o + (m) no... (3.7.18) 

i=2 

i+1 
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Equation (3.7.18) may be recast as 
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(04)0 
A% 12 (oo + 01) not + 20i 

(3nOiii 
- 2noi 

) 

m=11 1 (3nOm, 
2 

111 
+2 Oa (ni+i/2 ni-1/2) +2 Om -2 nom J+2 (oo + gym) nom (3.7.19) 

For the boundary edges, n01,1 = nol and nom, 2 = nom, and also using the identities 

given by Eqs. (3.7.13a) and (3.7.13b), the above equation gives 

111 M-1 3 
(VO)o 2[co (not + nom) + 401 (önoi + no, ) +E 20anoi + 4ým (6nom + nom) 

i=2 

I 

(3.7.20) 

Using the condition that the control volume is closed, i. e., 

E not =-2 (noi + nom), (3.7.21) 
i=' 

Eq. (3.7.20) can be reformulated as 

151l3m 5 
(V )o 

sz, 

[(o+01)nol+2Z(Oo+Oi)nog+( 
00+4 nom , 

o i=1 
(3.7.22) 

which, upon using An,, = Ano, /3 may finally be expressed as 

111\ 
(0O)o �zzl Ano 2 

(500 
+ 6ý1 J not +2Z (00 + ¢i) not +2 

(5 
+ sum nom 

i=1 
\ 

(3.7.23) 

The second term is easily recognised as that already derived for the interior edges, and 

the first and third terms represent the boundary contributions. 

Remark 3.6: The so-called Hermitian interpolation used by French research groups [11] 

constructs gradients by an area-weighted summation of the gradients computed in the 

triangles meeting at a given vertex. This can be shown to be equivalent to the Green- 

Gauss reconstruction. 

Remark 3.7: Equation (3.7.16) suggests a midpoint approximation around the median- 

dual control volume. As shown by the above derivation, it is actually equivalent to an 

approximation by the trapezoidal rule on the slightly larger region given by the union of 

the triangles meeting at vertex 0. However, on triangular grids with containment dual 
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ni+t/2 ni-1/2 

nn 

Figure 3.11: Nomenclature for Green-Gauss gradient reconstruction at 
boundary. Normal vectors are not drawn to scale. 
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n3/2 

control volumes, mixed and quadrilateral grids, Eq. (3.7.16) is equivalent to a midpoint 

approximation. 

Green-Gauss Reconstruction (Quadrilateral Grids). As stated above, Eq. (3.7.16) can be 

used as a midpoint approximation around the control volume to the gradient on quadri- 

lateral grids. Equation (3.7.16) is, however, not equivalent to the actual Green-Gauss 

reconstruction on quadrilateral grids. Therefore, it does not recover exact gradients for 

linear functions on arbitrary quadrilateral grids. It can be shown that exact gradients 

are computed on quadrilateral grids consisting of uniform parallelograms and trapezi- 

ums with two opposing edges of equal length due to error cancellation. Since neither 

of these cell shapes lead to quadrilateral grids usable in practice, this fortunate result 

is of rather academic importance. 

It is instructive to derive the Green-Gauss reconstruction formula for quadrilateral 

grids. The derivation may be started from Eq. (3.7.12), because it does not contain 

any information on cell geometry. As for triangular grids, the derivation proceeds by 

reformulating the suns of the two normal vectors. However, in contrast to triangular 

nom no i 
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grids, the sum needs to be split into distance-one and distance-two neighbours of vertex 
0. This can be done by writing the sum as 

11 (VO)o (0o + Oi+a) (ni+v+1/2 + ni+o-1/2) + 
Acof 

06a62do-2 
2 

o even (3.7.24) 

2 (Oo + Oi+o) (ni+a+1/2 + ni+v-1/2) 
16c62do -1 

a odd 

where do is the degree of vertex 0. 

The first and second sums represent the distance-one and distance-two neighbours, 

respectively. With reference to Fig. 3.12, the second term of the first sum is rewritten 

as 

ni+a+1/2 + ni+a-1/2 = 2(no: +., i + not+o, 2) - 2(noz+o+2,2 + no: +(7-2, i), (3.7.25) 

and the second term of the second sum is recast as 

ni+Q+1/2 + ni+O-1/2 = 2(noi+o-1,1 + not+Q+1,2). (3.7.26) 

Substituting Eqs. (3.7.25) and (3.7.26) into Eq. (3.7.24) gives 

(VO10 
2[1 

ýý0 + ýi+o) 
[flOj+1, 

i + nOi+a, 2 - 
(nOi+v+2,2 + nOi+o-2,1)] -I- 1 Ano, 

OBa66222d0-2 
2 

o even 

2 
(Oo + Oi+o) (noi+o-1,1 + not+o+1,2) 

16o62d0 -1 
0 odd 

(3.7.27) 

With the usual definition of the dual edge associated with edge Oi and the assumption 

of a uniform quadrilateral grid, where noa+o+2,2 + not+a-2,1 = 0, the above equation 

becomes 

2 VO)o not+Q + ( 
A001 

06o62d0-2 

+ 
2 

o even 

component of edge Oi 
(3.7.28) 

(co + Oi+Q) (noi+, 
-1,1 

+ not+0+1,2) 
16o62d0 -1 

0 odd 
V 

component of virtual edge 

The gradient may thus be regarded as being composed of a sum over the dual edges 

of the grid and a sum over virtual edges, which link the distance-two neighbours to 
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ni+3/2 

-noi+: 

not-2 

ni-3/2 

1i+ 1/2 

ni-1/2 

Figure 3.12: Nomenclature for Green-Gauss gradient reconstruction on 
quadrilateral grid. Normal vectors are not drawn to scale. 

vertex 0, as illustrated in Fig. 3.13. In order to implement this scheine on quadrilateral 

grids, additional data structure arrays would be required. As argued in Section 3.5 on 

grid-transparency, this can lead to considerable additional memory requirements, thus 

defeating the original objective of attempting to treat different cell types with a data 

structure of minimal extent. For this reason, this scheine was not used in the present 

work, and Eq. (3.7.16) is used irrespective of the cell type. 

The differences in the stencil weights between Eqs. (3.7.16) and (3.7.28) for the x- 

derivative is illustrated in Fig. 3.14. It is interesting to note that Eq. (3.7.28) reduces to 

Eq. (3.7.16) if the contributions by the virtual edges are assumed to be equal to those 



3.7 Discretisation of Invisci(i Fluxes 108 

+ 

Figure 3.13: Illustration of construction of Green-Gauss gradient re- 
construction for quadrilateral grids with trapezoidal rule around union 
of cells at node 0 as a sum over dual edges and virtual edges (shown 
dashed). 

1 
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(a) 

1 
2 

i 
_ý 

i 
-i 

i 
_ý 

(b) 

Figure 3.14: Comparison of stencils obtained with Green-Gauss recoii- 
structioii of x, -derivative for uniform quadrilateral grids with (a) mid- 
point rule around control volume and (b) trapezoidal rule around union 
of cells meeting at node 0. 

of the actual edges. 

i 
8 

t 
i 

1 
8 

Müller and Giles [29] recently used a concept similar to virtual edges to derive a 

version of the Green-Gaus method which reconstructs gradients of linear functions 

exactly on quadrilateral grids. 

Least-Squares Reconstruction. A truncated Taylor series may be applied to each of the 
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do edge-neighbours of vertex 0. This results in the following overdetermined system 

o1(xi- x0) Gi(yi - yo) 

e02(x2 - xo) e02(Y2 - Yo) ax- 

ao 
ay 0 eOdo(xdo - xo) COdo(ydo 

- Yo) 

eoi(oi - 00) 

62 (02 -00) 

Odo(Odo -00 ) 

where each equation is multiplied by an arbitrary weighting factor 

Soi = Ilri 
- roll-P, 

(3.7.29) 

(3.7.30) 

with pL0. For p=0, the reconstruction is referred to as unweighted linear least- 

squares, otherwise as weighted linear least-squares. The weighting factors can be used 

to reduce the influence of more distant vertices. For example, p=1 gives inverse- 

distance weighting. 

Equation (3.7.29) may be written in the form 

Ax=b, (3.7.31) 

which can be solved by a variety of methods. A common approach is to solve it in a least- 

squares sense using the normal equations, as done by Ashford [2] and Delanaye [10]. 

This is achieved by pre-multiplying Eq. (3.7.31) by the transpose of the coefficient 

matrix which results in a symmetric 2x2 system. However, this is not considered to be 

a good approach because the condition number of the symmetric system is the square of 

that of Eq. (3.7.31). This means that the gradient calculation may become inaccurate 

on highly stretched grids. 

An approach which does not suffer from this limitation is to factor the matrix A 

using the QR-decomposition 

A=QR (3.7.32) 

into an do x2 orthogonal matrix Q and a2x2 upper triangular matrix R as suggested 
by Anderson and Bonhaus [1]. The QR-decomposition is carried out using the classical 
Gram-Schmidt method described in Golub and van Loan [16]. 

The decomposition may be derived explicitly. The derivation starts by writing Eq. 
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(3.7.32) in column form 

rll, o r12, o 
a1 a2 = ql q2 

0 r22, o 

In other words, 

al = rll, ogi (3.7.33a) 

a2 = ri2, ogi + r22, o92, (3.7.33b) 

which can be inverted to give 

qi = 
al (3.7.34a) 

rii, o 

q2 = 
a2 

_ 
r12, o al (3.7.34b) 

r22, o rll, or22, o 

From Eq. (3.7.34a), 

al al (3.7.35) qi Ilalll rii, o' 

where rll, o follows from Eq. (3.7.29) 

rii, o =E ýöi(x - xo)2. (3.7.36) 
OiEEo 

In addition, define 

a2 - a2 - (a2 " gi)qi, (3.7.37) 

and 

at 
qa = lla2l) 

(3.7.38) 

Using Eq. (3.7.35), Eq. (3.7.37) can be rewritten as 

ai ai 
a2 = a2 - 

(a2. 

ril, o rli, o 
(3.7.39a) 

= a2 -1E X02 (X, - xo)(yi - yo) 
al (3.7.39b) 

rll, o oiECo rll, o 

Define r12 as 

rig E ý2 (x, - Xo)(yz - Yo) (3.7.40) 
rii, o oýEEo . 
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and rewrite Eq. (3.7.39b) as 

This gives 

and define r22, o as 

%'12,0 
a2 = a2 - al. (3.7.41) 

ri i, o 

2 
(3.7.42a) jja2112 = a2 " a2 - 2r12, o 

al " a2 + 
(rll, 

o) 

r12o 

rii, o 

_ oi(Yi - Yo)2 - r12 (3.7.42b) 
OiEeo 

r22, o = ýöi (yi - yo)2 - 
OiE 

r12, (3.7.43) 
Eo 

so that both ql and Q2 are defined. 

The solution to Ax =b therefore follows from Eq. (3.7.32) as 

x= R-1Qtb. (3.7.44) 

Using the results derived above, this can be written as 
ZOt 

(x{ - xo) - 
42 

öir12,0 
L(yi 

- yo) - 
r12,0 (xi - x0) 1 rii, or2, o rll, o (Oi - O0) 

7C .t 402, Söir12, o 
OiEEo 2 

(yi - y0) -2 (xi - x0) 
r22,0 r11,0r22,0 

(3.7.45) 

The gradients at vertex 0 may therefore be computed by a loop over edges 

MOO -E w0i (Oi - 00) 

OiE6o 

(3.7.46) 

where woi = {wx, oi, wy, oi}t is the vector of edge weights. Its components are given by 

= 
öi 

(xi - xo) - 
ýöir12, o [(yi 

- yo) - xi - xo) 
r12, o I (3.7.47a) 

rll, o rii, o r22,0 Tii, o -J 
2 rl2o 

wv, oi =r of 1(yi 
- yo) - (Xi - Xo) 

Tll, o] . 
(3.7.47b) 

22,0 

where rll, o, r12, o, and r22, o are defined by Eqs. (3.7.36), (3.7.40), and (3.7.43), respec- 

tively. By pre-computing and storing rll, o, r12, o, and r22, o, the gradient may be com- 

puted by a single loop over the edges. The gradient of a linear function is computed 

exactly by design for arbitrary grids. The least-squares reconstruction has the addi- 

tional advantage that no special treatment is required at boundaries. 

On highly stretched grids, it might be expected that the repeated use of coordi- 
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Figure 3.15: Virtual edges are inserted into quadrilateral cells on 
boundaries to increase the support of least-squares gradient reconstruc- 
tion. Virtual edges at vertex i are shown dotted, whereas the virtual 
edge at vertex 0 is shown (lashed. 
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Hate differences of widely varying magnitude could lead to inaccurate weights. It has 

beeil verified that the differences in the computed weights between single- and double- 

precision arithmetic are negligible even on highly stretched grids. 

The weights for the least-squares reconstruction in three dimensions were derived 

by Haselhacker and B1a ek [19]. 

Virtual Edges. When using quadrilateral cells near flat boundaries, the gradient normal 

to the boundary is computed from a single edge. This is in contrast to triangular cells, 

where at least two edges can be used to compute the gradient. In some cases, this 

increased support oil triangular grids was found to lead to slightly better results than 

on quadrilateral grids when least-squares reconstruction was used. This observation 

prompted the construction of virtual edges, which are additional edges inserted into 

the quadrilateral cells on boundaries, as illustrated in Fig. 3.15. The virtual edges 

require only one additional integer data structure array. The concept of virtual edges 

was first used by Haselbacher and Blazek [19]. 

Quasi-ENO Reconstruction. Ollivier-Gooch [30] suggested a quasi-ENO reconstruction 

scheme. It is based on the weighted linear least-squares reconstruction described above. 
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The weights w0 are modified based on a measure of smoothness of the function. Non- 

smooth data is deemphasised in the reconstruction, thereby having the same effect as 

a limiter function. The resulting formula for the modified weights woz is 

woj wot =1+cI (V20)01 (0i - 00)2 
(3.7.48) 

where (V20)o is the Laplacian at vertex 0 computed from Eq. (4.2.20) and c is a constant 

whose value is 0(1). The value of the constant was not found to have a pronounced effect 

on solution quality or convergence rate. It is noted that the quasi-ENO reconstruction 

can only be expected to work well if non-dimensional quantities are employed. 

A comparison of these three reconstruction techniques for an inviscid test case can 
be found in Chapter 6. 

Limiter Functions. Unfortunately, second-order accurate schemes show oscillations 

in regions of high gradients. This is a consequence of Godunov's Theorem which states 

that no linear higher-order scheme can be monotone [20]. It is therefore necessary 

to make higher-order schemes non-linear. The non-linearity is introduced by so-called 

limiter functions. They reduce the order of accuracy to first order in regions of high 

solution gradients, thus preventing oscillations. 

When using higher-order discretisations in conjunction with Green-Gauss or least- 

squares reconstruction, Eqs. (3.7.6a) and (3.7.6b) are modified to give 

Qoi, L = MOi, L 
{Po 

+ ZAo(P) 
[(1 

- n)(Vp)o " Aroi + n(Pi - Po)] 1 (3.7.49a) 

9oi, R = Mo:, Rlt Pi - 
ZAi(P) [(1- 

rc)(Vp)i " Oroz + l(Pi - Po)] 
}' 

(3.7.49b) 

where 06 . 'o(p) 61 is the limiter function at vertex 0. 

Conditions for Monotonic Solutions. Before turning to the definition of the limiter 

functions, it is instructive to derive the conditions under which the solution of a scalar 

convection equation will be monotone. The derivation is patterned after Barth [5] and 

uses the fact that a discretisation of the form 

doo 
(3.7.50) dt - woi(0i - 00) 

OiEEo 

will be monotone if the edge weights woi L 0: Positive edge weights ensure monotonic- 
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ity because, if ¢o is a local maximum (minimum) over the extent of the stencil, qo 

will decrease (increase). This is equivalent to the-local extremum diminishing (LED) 

conditions of Jameson [22]. 

The derivation starts from the semi-discretised form 

A10 
ddto 

=-E ý(00i, L, 00i, Ri n0i) Asoi. (3.7.51) 
OiEEo 

It is assumed that the numerical flux function may be written as 

ý(ýoi, Lý c oi, Ri no) =2 (f (0oi, L) + 
.f 

(00i, R)) " not -2I d(Ooi, L, OOi, R; n0i) j(00i, R - 0Oi, L) 

(3.7.52) 

and that it is based on the linearisation (cf. Roe linearisation, Eq. (3.7.70) ) 

(f (00i, R) -f (coi, L)) ' n01 = d(OOi, L, 00i, R; n0i)(00i, R - 0Oi, L)" (3.7.53) 

If the following definitions 

d(cboi, L, coi, R; n0i) = d+(00i, L, coi, R; n0i) +d (coi, L, coi, R; noi) (3.7.54a) 

jd(Ooi, L, coi, R; n0i) I= d+(0oi, L, 0oi, R; n0i) -d (goi, L, cboi, R; n0i) (3.7.54b) 

are used, then Eq. (3.7.51) can be written as 

AS2o 0=-[, f (4oi, L) " not '+' d (00i, Le OOi, R; n0i)(00i, R - 00i, L)] OSOi. (3.7.55) 

OiEeo 

Application of Eq. (3.7.53) to the states ̀ Oi, L' and `0, ' and the fact that the summation 

of a constant term is identically equal to zero, gives 

Aco 
dd 0=-E 

OiEeo 

[dÖ 
L(coi, L - Oo) + dO, 

L(OOi, L - 00) + dL, 
R( oi, R - 0Oi, L)] OSOi, 

ry 
(3.7.56) 

where the abbreviations 

döL = d+(Oo, cboi, L; noi) (3.7.57a) 

dý, L = d- (co, 0oz, L; noi) (3.7.57b) 

dL, R = d-(qo:, R, 0oz, L; noi) (3.7.57c) 

were introduced. By defining the ratios of solution gradients (which are tacitly assumed 
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to exist), 

oik _ 
00i, L - co (3.7.58a) 
00 - Qk 

'P02 _ 
00i, L - 00 

(3.7.58b) Oi - 00 

19oi = 
00i, R - 00 

,L (3.7.58c) Oi - 0o 

where kE Vo, Eq. (3.7.56) may be written as 
dqo 

_ AS2o 
Chi 

=E 
[dLEoik(cbk 

- 00) - d0, LW0i(cbi - 00) - dL, 
R®oi(cbi - 00)] OSOi. 

OiEEo 

(3.7.59) 

Because d± (0o, cboi, L; noi. ) ? 0, the solution will be monotone if, Vi E Vo, 

ýoik L0 (3.7.60a) 

, Poi L0 (3.7.60b) 

Oo: L 0. (3.7.60c) 

It is important to note that the first two conditions are local to each control volume, 
but the third condition must be satisfied at each control-volume face. Therefore, the 

third condition is non-local. The inequality given by Eq. (3.7.60a) should be interpreted 

as: find any kE Vo such that the inequality exists. 

Remark 3.8: The reason for introducing the difference (co - 4k) in Eq. (3.7.58a) is to 

avoid a contradiction. Using the difference (qo - ca) would lead to 

COi . 
00i, L - 00 

_ -wOio 00 - Oi 

and it would be impossible for both Eoi and Toi to be positive. 

The first two conditions may be satisfied by requiring that 

om o(q5o, 
qj) 6 00z, L 6o ax(q5o, q52), (3.7.61) 

or, using Eq. (3.7.49a), 

n(oo, )- Oo 6 
iAo(0)(VO)o 

" Oroi 6 Eax(oo, )- q5o. (3.7.62) 
OiECo 

The third condition is not strictly enforced; see the comments in Barth [4]. This can 
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lead to small oscillations near strong unsteady shock waves, see, e. g., the comments in 

Sonar [37]. 

The aim is to find the largest value of ao(4) which ensures that the value of the 

reconstructed function inside the control volume at vertex 0 is bounded by the function 

values at vertex 0 and at the neighbouring vertices i. The current algorithm employs 

the limiter functions of Barth and Jespersen [6] or Venkatakrishnan [47]. 

Barth and Jespersen Limiter Function. The limiter function of Barth and Jespersen is 

computed by considering the edges incident to vertex 0 and the unlimited values of the 

variable Doti at the face Oi, 

00z = 00 +12 (VO)o " Oro2, (3.7.63) 

where the subscript `L' was omitted for convenience. By defining 

Omax = max(go, ci) (3.7.64a) 
OiECo 

Omin = min (q5o, 4i) (3.7.64b) 
OiE£o 

01, 
max = Omax - 00 (3.7.64c) 

01, min = Omin - 00 (3.7.64d) 

Aa = Doi - 009 (3.7.64e) 

the conditions given by Eq. (3.7.62) with Ao(q) can be expressed as 

01, 
min 

6, X0(O)A2 6 01, 
max, (3.7.65 

where the limiter function associated with vertex 0 is defined as the minimum of the 

limiter function applied to the edges incident to vertex 0, 

Ao(0) = min )/oi(0)" 
OiE6o 

(3.7.66) 

The limiter function Aoi associated with edge Oi is given by 

min 
(1, AQ2a"1 

if A2>0 

AN(0) = min 
(1, AQ 'n if 02 <0 (3.7.67) 

A2 
) 

1 if 02 = 0. 

The limiter function of Barth and Jespersen strictly enforces monotonicity (with the 
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above proviso) but may deteriorate convergence. Venkatakrishnan [47] showed that the 

deterioration of convergence is caused by the limiter function reacting to machine-level 

noise in regions where the solution variables are nearly constant. 

Venkatakrishnan Limiter Function. The limiter function of Venkatakrishnan [47] pro- 

vides improved convergence behaviour at the expense of strict monotonicity. Using the 

same notation as above, the limiter function is defined by 

1 (, &i 
, max 

+ 62)z 2+ 20201, 
max if 02 >0 

A2 Olim + 2A + A1, 
max02 -ý e2 

1 (01, 
min 

+ E2)02 + 202A1, min 3.7.68 ýo: (ý) = if A2 <0() 
E2 O1, 

min 
+ 2A2 + A1, 

min02 + E2 

1 if L2=0 

where e2 = (K h)3, K is a constant of 0(1), and h is an estimate of the local grid 

spacing. In the present work, h is taken as the square-root of the control-volume area. 

Note that the above definition of e can be expected to work well only if non-dimensional 

quantities are used. The limiter function at node 0 is again computed from Eq. (3.7.66). 

The effect of the variable e on the limiter function can be illustrated in one dimension 

by considering an extremum of the reconstructed function to occur at vertex 0. Assume 

that the magnitude of the gradient along each edge is equal to c, as depicted in Fig. 

3.16. Then the Barth-Jespersen limiter function gives Ao(q) =0 to ensure a monotonic 

reconstruction. In contrast, the Venkatakrishnan limiter function gives 

A02h 
K3 

+K3e 

thus allowing an extremum to occur in the reconstructed function unless K=0. 

In practice, it was found that while convergence with the limiter function of Barth 

and Jespersen may stall convergence after a reduction of about one order of magnitude in 

the residual norms, Venkatakrishnan's limiter function allows reductions of the residual 

norms of around four orders of magnitude in single-precision arithmetic. 

3.7.3 Numerical Flux Function 

Various approximate Riemann solvers were implemented in the numerical method de- 

scribed in this chapter. Of these, only the flux-difference splitting of Roe [34] is de- 

scribed, as numerical experiments not reported here indicated that it offered the best 
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lp 
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h 

Figure 3.16: Fiuiction used to illustrate difference between Barth - 
Jetil>erseli and Veiikata, krishii a, ii lüiºiter functions. 

compromise between solution quality and computational cost. 

Iii this subsection, the subscript `Oi' is dropped for the sake of simplicity. 

Roe Flux-Difference Splitting. The flux-difference splitting of Roe [34] is given by 

the inuiierical flux function 

ýI'(q/,, gI?; n) =2 [f(qL, ) +f(qH)] -n- 
2IA(gL, 

q!? )I(q,? - q,, ) - n, (3.7.69) 

where the matrix A(gl, 
I q1? ) is constructed such that the following conditions are ful- 

filled. 

1. For any pair q[, and q2 

f(gnn) - f(ql, ) = A(gJ,, qfl)(ql? - qr, ), (3.7.70) 

allowing exact representation of isolated discontinuities. 

2. If qj, = qjz =q then A(q, q) = A(q), where A is the Jacobian of the inviscid flux 

vector, guaranteeing that the approximate solution is exact if the left and right 

states are equal. 

3. The matrix A has real eigenvalues and linearly independent eigefvectors, ensuring 

that the linearised system is hyperbolic. 

Roe showed that these properties can he achieved if the Jacobian matrix A is formed 

0 Oi i 
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at the state given by 

RpPL (3.7.71a) 

alL + (1 - a)UR (3.7.71b) 

aVL + (1 - a)VR (3.7.71c) 

H= aHL + (1 - a)HR (3.7.71d) 

where the quantities Rp and a are defined as 

Rp = 
PR, (3.7.72) 
PL 

and 

a1+ RP' 
(3.7.73) 

In practice, it is common to rewrite the dissipation term in terms of the eigenvalues, 

the right eigenvector matrix and the wave strengths as 
4_ 

13; lOViR. i (3.7.74) (qL, qrt; n) =2 [f (9L) +f (qR)] .n-2_ 

where 

q-ä 

q (3.7.75) 
q 

q+a 

and where R is the matrix whose columns are the right eigenvectors 

1011 

ü -nßä -nyä üu+ nxä (3.7.76) 
v- nyä nßä vv+ nyä 

H-qa Fa 
Z(ü2-Fv2) 

H+qa 
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i 

AP -p ä0 
2ä2 
pOr 

Ov =a Op 
(3.7.77) 

Op- 
42 

Ap +p äAq 

2ä2 

where 0(") _ OR - (")L. In Eqs. (3.7.75), (3.7.76), and (3.7.77), q and r denote the 

components of the velocity vector normal and tangential to a given normal vector n 

respectively, 

q=v"n=unx+vny (3.7.78a) 

r=v"t= uny - vnx. (3.7.78b) 

Entropy Fix. Roe's flux-difference splitting captures isolated normal shock waves and 

contact discontinuities exactly by design. Unfortunately, discontinuous expansions are 

also recognised as valid solutions because Roe's scheme does not satisfy an entropy 
inequality. This makes a so-called entropy fix necessary, of which several forms have 

been proposed. In the present work, the entropy fix of van Leer et al. [45] was adopted. 

The acoustic eigenvalues are modified according to 

JAI if JAI L ÖA/2 
(ýý = ä2 (3.7.79) 

aA +4 if BAI < 6s/2 

where S. A is a threshold to prevent the acoustic eigenvalues from going to zero and is 

given by 

sa = max 
[4(AR 

- AL) 

, O] . (3.7.80) 

Grid Transparency. The discretisation of the inviscid fluxes is grid transparent as 
the loops are carried out over edges only. 



3.8 Discretisation of Viscous Fluxes, 121 

3.8 Discretisation of Viscous Fluxes 

The discretisation of viscous fluxes on mixed unstructured grids is discussed in detail 

in Chapter 4. 

3.9 Discretisation of Spalart-Allmaras Turbulence Model 

To enhance stability and robustness, the convection term is approximated by a first- 

order scheme. The diffusion terms are discretised using Scheme 2 described in Sub- 

section 4.2.5. The source terms are assumed to be constant over the control volume. 

Limiting procedures to ensure the positivity of v were not found to be necessary. 

3.9.1 Computation of Distance Function 

The distance function is defined as the function which gives the shortest distance to 

a solid wall for each interior vertex. By reference to Fig. 3.17, the value dA, oi of the 

distance function at vertex A due to the boundary edge Oi is given by 

OrAO if WA, Oi <0 

dA, oi = LrAjA if 06 WA, Oi 61 (3.9.1) 

OrAi if WA, Oi >1 

where 

OrAjA = OrAO - WA, ozzroi, (3.9.2) 

and 

IIArjAoII 
_ 

LrAO " Aroi 
WA, oi = IIOroiII IIOroiII (3.9.3) 2 

The distance function dA is then given by the minimum of all dA, oi computed for 

all boundary edges on solid walls, i. e., 

dA = min dA, oi. (3.9.4) 
of 

The distance function for vertex B is computed in an analogous fashion. 

In the present implementation, the distance function is computed in a preprocessing 

step by nested loops over all vertices and boundary edges on solid walls. This is a 
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B 

Figure 3.17: Illustration of computation of distance function for 
Spalart-Allinaras turbulence model. 

simplistic implementation since the cost of computing the distance function can become 

considerable. 

Wigton [51] described a fast algorithm for computing the distance function. Menter 

et al. [28] suggested solving a Poisson equation for the distance function in the vicinity 

of solid walls. 

3.9.2 Treatment of Transition Terms 

'I1ransition from laminar to turbulent flow can be simulated in the Spalart-Allinaras 

turbulence model using the dedicated source terms. These extra terms are only active 

locally in the immediate vicinity of the transition location. The facility of specifying 

transition within the Spalart-Allmaras model seems to have been seldom used so far. 

For this reason, the current implementation is described briefly. 
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ýý II 

no 

Figure 3.18: Schematic illustration of implementation of transition 
ternis in Spalart-Allinaras turbulence model. Transition region denoted 
by shading. 

The user may specify an arbitrary number of transition points through their coordi- 

nates. For each transition point, the present method finds the closest vertex on a solid 

boundary. In the following, such a vertex is designated as a transition vertex, marked 

as `0' in Fig. 3.18. To determine the region in which the extra source terms are to be 

active, a local coordinate system (: c', y') is first constructed. This is done by the simple 

linear coordinate transformation 

X cos B sin 9 a; - a; () 
,- sillB cosB y- Yo 

where the angle 0 is given by 

tan B 
1LX p 

=-, 
ny, o 

(3.9.6) 

and where n.,:, O and 7zy, o are the components of the outward-pointing normal vector 

no at the transition vertex. This transförination aligns the y'-axis with the negative 

(lirectioii of the outward-pointilig finit normal no. 

The local coordinate system is used to define a so-called transition ellipse, which 
includes the points which are to be part of the transition region. The transition ellipse 
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is given by 

(4)2 

(x1)2 +61, (3.9.7) 
max Ymax 

wh ere Xmax and ymax denote the lengths of the semi-major and semi-minor axes, re- 

spectively. These are determined from 

Xmax =2 ho, (3.9.8) 

and 

ymax =2 
An,, 
h r-1' 

(3.9.9) 
0 

where ho denotes the average grid spacing along the boundary at vertex 0, r is the 

growth rate of the normal grid spacing at vertex 0, and n is the number of grid points in 

the normal direction at vertex 0 which should be included in the transition ellipse. The 

reasoning behind Eq. (3.9.9) is that the normal grid spacing grows geometrically with 

rate r, and that the semi-minor axis should include n grid points. The term 2Aco/ho 

in Eq. (3.9.9) is an estimate of the near-wall grid spacing in the normal direction at 

vertex 0. In practice, the values taken for r and n were 1.2 and 12, respectively. 

The problem with the transition ellipse is that it may fail to include vertices if the 

curvature at vertex 0 is large, or even for small curvature if the grid is highly stretched 

near solid walls, as is usually the case for viscous flow simulations. In Fig. 3.18, such 

points are marked by unfilled circles. To prevent this from happening, all points i which 

satisfy the conditions defined by the conditions, 

Oro L0 (3.9.10a) 
Arlo - no 6 cos la2- 81 (3.9.10b) 

IlAriollllnoi 

Xä 6 xm (3.9.10c) ax- 

where Orin = ri - ro, and the angles are as` defined in Fig. 3.18, are also included in 

the transition region. Equation (3.9.10b) is necessary because of thin bodies, such as 
leading edges, where the sole use of Eqs. (3.9.10a) and (3.9.10c) will include points on 

the other side of the body. The angle 5 is taken as 75°. 

Hence, all vertices i which are not on a solid wall, satisfy Eq. (3.9.7), and Eqs. 

(3.9.10a)-(3.9.10c) are included in the transition region. These vertices are stored in 

compressed sparse row format for each transition vertex. With this treatment, the 
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implementation of the transition terms requires negligible storage and processing time. 

3.10 Initial Conditions 

The flowfield is initialised by setting it to the freestream state for external flows and to 

the inlet state for internal flows. 

3.11 Boundary Conditions 

The previous sections addressed the discretisation of the governing equations in the 

interior of the solution domain. The present section describes the discretisation of 

the boundary conditions defined in Section 2.5. The discrete boundary conditions are 

discussed in some detail since they have a strong influence on solution quality and 

convergence behaviour. 

A consequence of using a vertex-centred scheme is that solution variables are located 

on the boundaries. At first, this may be expected to simplify the imposition of boundary 

conditions. However, it is somewhat unnatural in the finite-volume framework and leads 

to some interesting difficulties which are discussed below. The comments by Roache [33] 

on the differences between the implementation of boundary conditions in cell-centred 

and vertex-centred schemes are also interesting in this regard. 

Boundary conditions can be imposed in a strong fashion, where the solution variables 

are directly set to the desired values. Alternatively, the boundary conditions can be 

imposed in a weak fashion, where the fluxes through the boundary are modified. 

It was attempted to keep the weak formulation of the boundary conditions as con- 

sistent as possible with the computation of the fluxes in the interior of the solution 

domain. This is achieved through the definition of left and right solution states on the 

boundaries as shown schematically in Fig. 3.19. Consistent with the definition that the 

normal vector to the boundary is pointing outward, the left state is taken as the state 

of the vertex on the boundary. 

For purposes of discussion, the boundary conditions are classified into fluid-solid 

(non-permeable) and fluid-fluid (permeable) boundaries. It is noted that this clas- 

sification distinguishes between physical and non-physical boundaries. Non-physical 

boundaries are those boundaries which are chosen to bound a potentially infinite, or 



3.11 Boundary Conditions 

freestreain 

qa 

qL 

inflow 

qtt . 
qi, 

Solution domain 

126 

outflow 
qL 

qj? 

solid wall qL 

qi? 

Figure 3.19: Introduction of left and right solution states on boundaries 

allows calculation of fluxes through bouiºdaries to be consistent with that 
in interior of solutioll domain. 

impractically large, solution domain. 

3.11.1 Fluid-Solid Boundary Conditions 

Slip-Wall Boundary. The tangency condition v"n=0 reduces the inviscid flux 

vector to 

() 

1 b: L: f(q) n= 7ý (3.11.1) 

O 

Weak Imposition. Using Eq. (3.11.1) to enforce the tangency condition in a weak fashion 

was found to lead to poor convergence behaviour. This was traced to a very lightly- 

damped limit cycle of the velocity vector on the slip-wall boundaries. The velocity 

vector was observed to oscillate between two states, whose average satisfied the tangency 
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condition. This observation was also made by Mavriplis [26]. 

Strong Imposition. To improve the convergence behaviour, a strong enforcement of 

the tangency condition was adopted. The following implementation is based on the 

treatment suggested by Hall [17], and is illustrated graphically in Fig. 3.20. 

The solution update at vertex 0 from the mth stage of the Runge-Kutta method 

may be written as (see Section 3.12) 

Qp p) = QÖ + öQ0, 
p) (3.11.2) 

where the subscript `p' indicates the predicted new value and the superscript `n' rep- 

resents the value from the old time step. The predicted change from the Runge-Kutta 

method is given by 

Q 
Om) _ -am 

Ato 
Ro (q(m_1)), (3.11.3) 

where am is the coefficient in the mth stage of the Runge-Kutta method, and Ro(q) 

represents the residual at vertex 0. The values of (pu)ö ) and (pv)ö ) do not necessarily 

satisfy the tangency condition. 

To ensure that (pu)0 and (pv)0 satisfy the tangency condition, the predicted 

velocity vector is projected onto the boundary, 

(p4)O(ö t) = (Pu)ö 
p)n, - (Pv)ö p)nx. (3.11.4) 

The corrections to the predicted velocity vector follow from 

b(Pu)O( 
, c) = (P9)ö t)ny - (Pu)ö p>> (3.11.5a) 

b(Pv)ö) = (p9)O(o i)ný - (Pv)ö p) (3.11.5b) 

The modified residual which leads to a tangential velocity vector is therefore given 

by 

Ro(9ý"`-1)) _ _am 
An, Q 

c). 
(3.11.6) 

The residuals of the continuity and energy equations are not modified. 

A modification of the above approach, in which the corrected values of pressure and 
density are obtained from the conditions of constant entropy and total enthalpy, did 

not lead to the expected improvements in solution accuracy and resulted in convergence 
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Figure 3.20: Illustration of strong imposition of slit)-wall boundary con- 
dition. 

problems when used in conjunction with the niultigrid method described in Chapter 5. 

Difficulties 'with, Strong Imposition. The strong imposition of the slip condition as 

described above requires the definition of a normal vector at a boundary vertex. This 

is taken to be the normalised average of the normal vectors of the two edges meeting 

at the vertex. It is clear that this definition becomes questionable if the included angle 

between the two edges is much less than 180°. One practical example is the flow at a 

finite-angle trailing edge of an aerofoil. In this case, the Kutta condition requires that 

the velocity vector vanishes. When implemented numerically, this was found to lead to 

very large losses in total pressure. Aligning the velocity vector with the bisector of the 

included angle at the trailing edge gave good convergence rates and satisfactory solution 

quality near the trailing edge. The disadvantage of this approach is that it is strictly 

speaking valid only if the total pressures on the upper and lower surfaces are equal. For 

this reason, the velocity vector at a trailing edge is not corrected. The above-described 

deficiencies are not regarded as significant because the computation of inviscid flows is 

not a major goal of the present work. 



3.11 Boundary Conditions 129 

Further details on the implementation of the slip-wall boundary condition for schemes 

with unknowns located on the boundaries of the solution domain were provided by 

Whitaker et al. [49] and Mavriplis [26]. 

No-Slip Wall Boundary. The no-slip condition reduces the inviscid flux vector to 

Eq. (3.11.1) and the viscous flux vector to 

10 
TTýnx + Txynb 

g(q, Vq) "n= (3.11.7) 

l Tyxnx + ryyny 

_qx - qy 

For an adiabatic boundary, the last entry in the viscous flux vector vanishes. 

Two types of no-slip conditions were used in the present work, i. e., for adiabatic 

and isothermal boundaries. 

Adiabatic Boundary. The condition of zero heat flux through the surface is enforced in 

a weak fashion. Since the update for the momentum equations on solid walls is always 

zero, it is not necessary to compute any fluxes through an adiabatic boundary. 

Problems with Adiabatic Boundary. The solutions obtained by solving for density and 

total internal energy on the boundary while the residuals for the x- and y-momentum 

equations are simply set to zero often showed poor convergence. This was traced back to 

the velocity components in near-wall regions having entered a limit cycle. It is believed 

that the limit cycle arose because of weak coupling between the flow field immediately 

near the wall and the wall pressure. In some cases, slight oscillations of the pressure on 

the wall were also detected. 

Isothermal Boundary. Anderson and Bonhaus [1] employed an isothermal boundary 

condition. Their approach consists of defining a constant wall temperature equal to the 

adiabatic wall temperature encountered in theoretical studies of compressible boundary 

layers, 

7,1= 
1+ Pr ry 

21 
Mme. (3.11.8) 
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Using the change in density computed from the solution update, 

Sppm) = -am 
AtoRo (p(tn_ý)) 

s 
(3.11.9) 

oJ 

the equation of state is used to define a change in total internal energy, 

a(PE')öm) = 
RTwa11SPÖm) 

(3.11.10) 
ry-1 ' 

which is converted back into a residual by 

Ro((PE)(m_l)) 
Ac20 

b (PE)öm) . (3.11.11) 
amLtO 

Using this approach, convergence to steady-state was found to be more robust and 
faster than with adiabatic boundary conditions. The slight oscillations of the pressure 

on the wall, which were sometimes observed with adiabatic boundary conditions, also 

disappeared. 

Problems with Isothermal Boundary. It must be noted that Eq. (3.11.8) is valid only for 

compressible laminar boundary layers in zero pressure gradient. The factor Pr should 

be replaced by 3 Pr for compressible turbulent boundary layers in zero pressure gradient 

and by Pr for Couette flow [50]. From a theoretical point of view, the above treatment 

cannot be regarded as entirely satisfactory. However, numerical investigations found 

negligible differences in practice. 

3.11.2 Fluid-Fluid Boundary Conditions 

Inflow Boundary. For subsonic inflows, total pressure po, total temperature To, and 

the angle a between the flow direction and the boundary normal are specified. 

The treatment of Chima [8] is used, in which the definition of the backward- 

propagating Riemann invariant 

R_ =v"n- 
2a 

=V cos a- 
2a (3.11.12) 

7-1 ry-1 

and the definition of the total speed of sound 

aö=ryRTo=a2+ry21V2 (3.11.13) 

are used to formulate a quadratic for the velocity magnitude of the right state, which 
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gives 

(y - 1)R_ cos a+ 4a2 I2+ cost a) - 2(y - 1)R2 
VR 

\y /' (3.11.14) 
2+(y-1)cos2 a 

The remaining variables can then be determined from the definitions of total temper- 

ature and total pressure, the equation of state, and the definition of the total internal 

energy. It is noted that the assumption of a constant total temperature amounts to 

isenthalpic flow. 

Remark 3.9: While the above procedure was found to work well in general, problems 

were encountered if VR -+ 0, i. e., if the inflow boundary specified a reservoir condition. 

It is readily shown that the evaluation of VR from Eq. (3.11.14) becomes dominated by 

round-off errors for vanishing VR. This problem was circumvented by combining Eqs. 

(3.11.12) and (3.11.13) to give a quadratic equation for the speed of sound, which leads 

to 

_22 oý2 '7_1 (3.11.15) 
('Y- l) cos a+2 aR -R- 

ry 
[�+cosa°s2 

Using the above equation, a more robust procedure resulted. 

For supersonic flows, the above interpolation is not used. Instead, the value of inflow 

Mach number is specified. 

Outflow Boundary. For subsonic outflows, the static pressure is prescribed. Following 

Spekreijse [39] and Richter [32], the right state is defined using the three Riemann 

invariants 

Rt = v"t (3.11.16a) 

R, =p (3.11.16b) 
P 

R+=v"n+ry2a1. (3.11.16c) 

The pressure for the right state is taken as the prescribed static pressure. The 



3.11 Boundary Conditions 132 

density then follows from Eq. (3.11.16b) as 
1 
'ý 

PR = PL 
PR (PL 

(3.11.17) 

Equations (3.11.16a) and (3.11.16c) can be used to solve for the components of the 

velocity vector at the right state 

UR = UL +'- (aL - aR) (3.11.18a) 
ry1 

VR VL 
2ny 

(aL - aR), (3.11.18b) =+ 
ry-1 

where aR = ypR/pR and the total internal energy follows from 

(PE) R= 
ryPRl 

+ 2PRýUR + 'U R). 3.11.19) 

For supersonic outflows, the right state is set equal to the left state. Since there is 

no discontinuity at the interface, no Riemann solver is required. 

Freestream Boundary. The treatment of the freestream boundary depends on whether 

the flow about the aerofoil enclosed by the freestream boundary produces lift. The 

freestream boundary is assumed to be inviscid. 

At a freestream boundary, the density pes, pressure pes, Mach number Mme, and 

angle of attack a are assumed to be specified. 

Non-Lifting Flow. The right state-vector is computed by 

UR = Mo, ry'p 00 cos a (3.11.20a) 
Poo 

vR = Moo ryP- 
sin a (3.11.20b) 

Poo 

and 

(PE)R =poo 
11+ 2M°°) 

Lifting Flow. For lifting flows, the freestream boundary treatment described above 
can give poor results for force coefficients if the outer boundary is located too close to 
the aerofoil. This is due to the farfield being influenced by the lift generated by the 

aerofoil. Thomas and Salas [43] suggested that this influence be modelled by a point 
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condition for lifting flows. Outer hotutdary need not he circular. 
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vortex located at the quarter-chord point of the aerofoil. The strength (circulation) 

of the point vortex is equivalent to the lift generated by the aerofoil. The boundary 

treatment for lifting flows is formulated as a correction to the treatment described above 

f'or 11011-lifting flows. 

The correction is derived by assuming the flow in the farfield to be modelled by the 

Prandtl-Glatiert equation, 

(1-M')ýý0+a'b=0 (3.11.22) OS2 9112 

where 0 is the velocity potential, s and n are the coordinate directions aligned with 

and normal to the freestream direction, whose origin is at the quarter-chord point of 

the aerofoil. The relevant nomenclature is shown in Fig. 3.21. 
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Through the coordinate transformation 

n= ßn, (3.11.23) 

where 

1 --M2 
, (3.11.24) 

is the Prandtl-Glauert parameter, Eq. (3.11.22) can be written as Laplace's equation 
in s and n, 

ý an 
a+ = o. (3.11.25) 

In the present context, the solution to Eq. (3.11.25) is given by the superposition of 

the uniform freestream and a compressible point vortex, 
r 

= Vas -- arctan 
On. 

21r s 
(3.11.26) 

The circulation r follows from the Kutta-Zhukovskii theorem and the definition of the 

lift coefficient as 

r=-2CLVOOC, (3.11.27) 

where c is the chord of the aerofoil and it is noted that the circulation is negative for 

positive lift. 

The velocity components in the s- and n-directions are given by 

Us = 
Os 

= V, 
(1 

+ 4Lc s2 

+ß2n2) (3.11.28a) 

u" 
00 

_ 
CLV"c ßs (3.11.28b) 

On 4i s2 +, 82n2' 

Rotating the velocity components into the original coordinate system gives 
CLC ß sin B 

UR = üc* = Voo cos a+ 4ýr 1- Mý sin2 (8 - a) 
(3.11.29a) 

CLC 0 cos 0 
VR = voo = Voo sin a- (3.11.29b) 

4ýr 1- Mý sin2 (9 - a) 

where (") denotes freestream variables modified due to the effect of the lift of the aerofoil. 
With the condition that the entropy and the stagnation enthalpy of the modified and 

original freestream variables be identical, the modified freestream pressure and density 
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are 

71_ 7-1 

(3.11.30) P Too + ry2, 
y 

1 

Poo / 
ry 

\V°O - 
v° 2 

and 
_ 7 

PR = Poo = Poo 
ý°O (3.11.31) 
Poo 

Symmetry Boundary. For ease of implementation, symmetry boundaries are as- 

sumed to be aligned with either the x- or the y-coordinate direction. 

Assuming, for the purpose of discussion, the symmetry boundary to be aligned with 
the x-coordinate direction, the conditions to be enforced are 

v=0 (3.11.32a) 
19y 

=0 (3.11.32b) 

jy =0 (3.11.32c) 

cry = 0. (3.11.32d) 

These conditions are enforced in a weak fashion. 

The corresponding conditions for a symmetry boundary aligned with the y-coordinate 
direction follow in a straightforward fashion. 

3.12 Solution Algorithm 

3.12.1 Euler and Navier-Stokes Equations 

The semi-discrete approximation given by Eq. (3.6.3) is first re-written 
ddt 

R0 (q), (3.12.1) 

where 

Ro(q) =- [(D(Qoi, 
L, qoi, R; NO - r(p0 , (OP)oi; noi)] Osoi (3.12.2) 

OiE£o 

represents the residual for the control volume at vertex 0. In the present work, Eq. 
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Table 3.1: Stage coefficients of Runge-Kutta scheme for first- and 
second-order schemes. Table taken from [42]. 

order 

stage first second 
1 0.0834 0.1400 
2 0.2071 0.2939 
3 0.4267 0.5252 
4 1.0000 1.0000 

(3.12.1) is solved using a four-stage Runge-Kutta method, 

Q00) n = Qö 

Qöl) = Q0(0) - al 
Ito 

Ito (Q(0)) 
Aco 

q0 = q0 - a2 
- 

1.0 Q(1) 
Aco \ / 

Q 
g) 

_ QOp) - a3 
ýtp 

Q(2) o Arlo \ / 

Q(4) = Q() - a4 
Otp 

Ro Q(3)) 
Ano \ 

q0 =q0 

where Oto is the time step for vertex 0, and the superscripts in parentheses denote 

sub-iteration indices. 

The computation of the time step is detailed in Subsection 3.13.1. 

Detailed information on Runge-Kutta schemes can be found in Swanson and Turkel 

[41]. 

Choice of Stage Coefficients. The stage coefficients are those determined by van 
Leer et al. [46] to give optimal smoothing of the high-frequency error components. 
Strong smoothing of the high-frequency error components is imperative when using a 

multigrid method. The coefficients are listed in Table 3.1 for the first-order scheme and 
the second-order scheme with n=0. 
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3.12.2 Spalart-Allmaras Turbulence Model Equation 
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Point-Implicit Treatment of Source Term. The production and destruction terms 

in the source term of the Spalart-Allmaras turbulence model are treated implicitly. This 

may be explained by reference to Eq. (2.4.19) 

ýt 

J pv dA +£ pvv "n ds =! 
£ 

p(v + 17)017 "n ds +r S(pv) dA. (3.12.3) 
si asp asp Jtt 

The time-derivative is approximated by the forward Euler scheme, 

J apt dA otI ((Pv)o+ý - (PI)ö) , 
and the residual is defined as 

Ro(pI) _- (ý - r)0i Asoi + So+'Aco (3.12.4) 
OiEeo 

where it is indicated that the convection and diffusion terms are evaluated at time level 

n, whereas the source term is evaluated at time level n+1. This gives 

3.12.5 no ((PÜ)Ol+1 
- (pI )=-E ((D - r)Oi OSOi + So +1An(, () 

OiEEo 

The source term is linearised about time level n by introducing the scalar Jacobian 

öS/äpv, abbreviated as Sä, to give 

Asl0 
(ýto 

- (Sa)ö) ((Pv)ö+l - (Pýö) (ý - I')öi Osoi + So An0, (3.12.6) 
oi¬eo 

which may be written in the form 

1 

(Pv)ö+l = (pu - An. 
(Oto 

- (Sa)o), E (ý - r)oi Asoi - S0 Ago 
OiEEo 

(3.12.7) 

or, 

Ot* 
(Pýö+l = (PM, -°E (e - r)ö As°i - So Aý0 

. 
(3.12.8) 

`4ý0 OiEEo 

where the modified time-step At* is given by 

Ato 
Otö =1- S0 A to 

(3.12.9) 

Thus, it may be seen that the update is of the same form as for the Euler and 
Navier-Stokes equations, but with a modified time-step. The Spalart-Allmaras model 
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is integrated using the same Runge-Kutta time-stepping scheme, where the update in 

the m-th subiteration is 

(P )o _ (PÜ)ö - am 0 (, D - I)öi As0i -SpAno , (3.12.10) 
A'o 

OiEEo 

where the modified time-step is now given by 

Oto 
1- Sýa1zAto 

Determination of the Jacobian. As suggested by Spalart and Allmaras [38], the 

Jacobian of the source term includes the production and destruction terms, and is 

defined as 
Op 

= neg I 
Op 

-DI (3.12.12) 

where 
Ix ifx<O 

neg(x) = (3.12.13) 
10 ifxL0. 

The Jacobian is determined analytically. This gives for the production term, 

1 äp 
= Cbl c+P 

ýsiaav3 +d(. fv2 + vaäv ýý (3.12.14) 

where 
0f \ 
äv2 

3 
1+ XI (3.12.15) 

ßv2 v\ Cv2 

afv3 
=1 

(fyi 

v af�2 f�s1 (1 + Xfvi) äv -v (3.12.16) 
äv -X 

[(1 
- f�2) 

v+ 
XL 

8 f,, l 1 3X2cv1 
3.12.17 av - v(X3+c1)2' 

() 

For the destruction term, 

49D 2fd 
daäwöýäv 

(3.12.18) 
Pý PP9/ 
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where 

O fw 
. 
fw 

_ 
911 1+ ßw3 (3.12.19) 

a9 9 jw (96 + cw3)2 
j9 

=1+ Cw2(6r5 - 1) (3.12.20) 

äv Sty d2 
1- SZ aäv3 

+1 
(fV2+)]} 

(3.12.21) 

3.13 Implementation Details 

3.13.1 Time-Step Calculation 

Various methods of calculating the time step were assessed. The method described 

below was found to work best in the sense that the maximum CFL number did not 

have to be adjusted much for a wide range of test cases. 

The time step is calculated by discretising the generic convection-diffusion equation 

µ0q5"nds (3.13.1) f OpodA+)[ 
pov"nds=fooo 

2o at ono 

The convection term is approximated by a simple upwind scheme as 
f 

Pov " nds (9'ö (Po)o + 4oi(Po)i) Osoti (3.13.2) 
49120 oiEto 

where qo = (4oi ± Igoi1)/2,4oi = voi " not and voi = (vo + v; )/2. 

The diffusive fluxes are approximated by Scheme 1 described in Section 4.2.5, given 

by Eq. (4.2.20), 

µV¢" nds '9020ä -4i 
Ed 

12 
OnOi 

1ac2o 

OiECo 

The time derivative is approximated by the forward Euler scheme, 

Jo aä t dA ötý ((Po)ö+l - (Po)ö ) 
Collecting terms gives 

(PO)ö+l = (Pý)ö 1- 
A10 E (qoi 

+ 
As0i 

-I- 
As0i 

J An° 
OiE(° P AnOi 

(3.13.3) 

An, 
Ato 

, of 

(q-Asoi 
-P pnoi) 

(3.13.4) 
Eo 

By requiring (pq)ö+' to be a convex combination of (po)ö and (pq); 
, the following 
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restriction on the time step Oto emerges 

140 

to 6/ 
CFL Ana (3.13.5) 

+µ 
Asp' 

Qpio'OsOi J \ P Anoi1 
OiECo 

The above analysis is strictly applicable to scalar equations only. In order to extend 

the time-step calculation to systems of equations, the positive projection is replaced by 

the spectral radius of the inviscid flux Jacobian, 

qo+i +- qo + aoi, (3.13.6) 

where aoi = (ao + ai)/2. Furthermore, the viscous contribution to the time step is 

multiplied by a factor of four to provide a safety margin and to account for contributions 

not included in the Laplacian. 

In order to accelerate convergence to the steady state, local time-stepping is used, 

i. e., each control volume is advanced at its computed time step, as described above. 

3.13.2 Convergence Monitoring 

In order to monitor the iterative process, a convergence measure is defined by 

N +l 
-n2 CM(q) =N(n (q1)2 + e) 

(3.13.7) 
i-1 

where N is the number of vertices in the grid and e is a small number used to prevent 

division by zero. 

The iterative process is declared converged when the convergence tolerance drops 

below an user-specified tolerance, usually taken as 1.10-8. Experience showed that it 

is usually more appropriate to monitor global parameters of physical significance, such 

as lift, drag, and moment coefficients and the net outflow of mass. The iterative process 

was stopped when some specified absolute or relative tolerance of the changes in the 

global parameters was reached. 

3.14 Closure 

The present chapter described the numerical solution method for single-grid calculations 
in detail, with the exception of the discretisation of the viscous fluxes. The treatment 

of triangular, quadrilateral, and mixed grids was studied in detail. The concept of 
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grid-transparency was developed. This allows the solution method to operate on grids 

composed of arbitrary grids without distinguishing between the various cell types. 

The description of the numerical method is continued in Chapter 4, which investi- 

gates the discretisation of the viscous fluxes on unstructured grids, and in Chapter 5, 

which describes the implementation of the agglomeration multigrid method. 
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Chapter 4 

The Discretisation of 

Viscous Fluxes on 

Unstructured Grids 

The discretisation of the viscous fluxes on arbitrary unstructured grids is investi- 

gated. Laplace's equation is studied as a model equation, for which criteria are de- 

veloped to judge the merits of different discretisations. Particular attention is given 
to positivity of the coefficients and grid-transparency. It is shown that currently 

used discretisations perform poorly even on regular triangular and quadrilateral 

grids. Alternative discretisations are developed and extended to the Navier-Stokes 

equations. 

4.1 Introduction 

The discretisation of the viscous fluxes by a finite-volume method requires the approxi- 

mation of gradients of the dependent variables at the control-volume faces. The quality 

of the discretisation hinges crucially on the approximation of these gradients. 

On structured grids, the gradients can be approximated easily by divided differences 

in the corresponding coordinate directions of the curvilinear coordinate system. For this 

reason, and because the physical characteristics of the inviscid fluxes are more difficult to 

simulate, the discretisation of the viscous fluxes is usually regarded as straightforward. 
On unstructured grids, where identifiable coordinate directions usually do not exist, 

the approximation of gradients is considerably more complicated. It is relatively simple 
to generate discretisation stencils of poor quality. Coirier [13] observed that such stencils 

can lead to diverging calculations for low Reynolds-number flows. For high-Reynolds 

number flows, it might be argued that " the influence of viscous stencils of poor quality 

145 
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is small and does not deserve much attention. However, there are good reasons why 

attention should be paid to the discretisation of the viscous fluxes. 

The computation of high-Reynolds-number flows invariably requires the use of tur- 

bulence models. These models often involve transport equations for quantities, such as 

the turbulence kinetic energy, which are positive by definition. It is therefore natural to 

demand that the discretised transport equations mirror this property. If the discretisa- 

tion does not prevent negative values from occurring, these can lead to counter-gradient 

diffusion and explosion-like numerical instability. A heuristic and crude approach to re- 

solving this problem is to resort to some form of limiting procedure, whereby positive 

values are prevented from dropping below a user-specified threshold, or by simply re- 

placing negative values by their absolute values. Not surprisingly, convergence often 

suffers if such practices are used, see, e. g., Jongen and Marx [27]. A fundamentally 

sounder approach is to construct the discretisation such that negative values cannot 

occur a priori. 

Positivity of a solution variable can be achieved in general by requiring the co- 

efficients in the discretisation stencil to be positive. Since it is well-known how the 

discretisation of convective and source terms can be made positive, what remains to be 

done is to find a discretisation of the diffusive terms which gives positive coefficients. 

In fact, this is particularly important, since the steep gradients exhibited by most tur- 

bulence quantities mean that diffusive transport is significant. As will be shown in this 

chapter, it is quite simple to construct discretisations of the diffusive terms which do 

not lead to positive coefficients. 

The preceding argument is based upon, but not restricted to, transport equations 

for turbulence variables. Indeed, the argument applies also to transport equations 
for other variables which are guaranteed to be positive, such as mass fractions in the 

simulation of chemically reacting flows. On a more general note, it seems inappropriate 

from a fundamental modelling viewpoint to have numerous and sophisticated inviscid 

numerical fluxes in comparison to the little-researched viscous numerical fluxes. 

For these reasons, it is important to study the discretisation of the viscous fluxes on 

unstructured grids. Studies of the discretisation of the viscous fluxes are rare and widely 
dispersed in the literature. This chapter aims to collect and review previous results and 

attempts to study further the discretisation of the viscous fluxes on unstructured grids. 
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Particular attention is focussed on mixed grids. 

4.2 Laplace's Equation 

For incompressible flows and constant viscosity, the viscous terms given by Eqs. (2.3.4) 

and (2.3.3) reduce to Laplace's operator. It is therefore convenient to study the dis- 

cretisation of the viscous terms by investigating the discretisation of Laplace's equation 

1720 = o. 

The idea is to develop a suitable discretisation of Laplace's equation and to extend it 

to the viscous terms in the Navier-Stokes equations. The suitability of a given discreti- 

sation of Laplace's equation is assessed by various conditions, which are formulated in 

the following subsection. 

4.2.1 Conditions on Discretisation 

Any discretisation of Laplace's equation can be written as 
n 

(024)0 - 
i-o 

where the coefficients wi depend on the coordinates of the grid vertices, c1 is the value 

of 0 at (xi, yz), and the summation is carried out over the n points involved in the 

stencil at the central vertex 0, as depicted schematically in Fig. 4.1. 

The following paragraphs describe the conditions which the discretisation given by 

Eq. (4.2.1) ought to fulfill in order to be physically and numerically accurate. Although 

the present study is based on dual cells as control volumes, the results described in the 

following paragraphs are also relevant to discretisations with control volumes based on 

primal cells. 

Positivity. Laplace's equation has a number of interesting properties. An important 

property in the present context is that solutions of Laplace's equation cannot exhibit 
a maximum or minimum inside the solution domain. For this reason, solutions to 

Laplace's equation are said to exhibit a maximum principle. The maximum principle 

may be regarded as the mathematical expression of the smoothing of extrema through 

diffusion. 
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Z 

i=n-1 

i=1 

Figure 4.1: Definition of nomenclature used in Eq. (4.2.1). 

It is desired that the discretisation obey the maximum principle. To find the con- 
ditions under which the discretisation satisfies the maximum principle, Eq. (4.2.1) is 

solved for 'o, 

(4.2.2) 40 =-W c6i 

i=l 

For the maximum principle to hold for the discrete set of equations, it is required that 

min ci 6 00 6 max Oi. (4.2.3) 
16i6n 16i6n 

This condition is satisfied by Eq. (4.2.2) only if the ratios of the coefficients wi/wo are 

negative. Therefore, it is necessary that the central coefficient wo is negative while the 

coefficients wi of the neighbours are positive. The discretisation is then said to satisfy 

a discrete maximum principle. 

If the discretisation obeys the maximum principle,, the coefficient matrix is an M- 

matrix [55]. This is a desirable property since classical iterative methods are stable for 
M-matrices, see, e. g., Wesseling [57]. 

Accuracy. In order to investigate the local accuracy of the discretisation, Oj is ex- 

i=3 
. _') 
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panded by a Taylor series to fourth order, 
4kk 

0s = 00 +EE (k - m)! m! 
Axos mAyý 

(ýxktýym)0' 
(4.2.4) 

k=1 mwhere 

Oxoi = x= - xo and tyot = y: - yo. By multiplying the above equation by w= 

and summing over i, the conditions for a second-order accurate discrete Laplacian are 
derived, * 

First-Order Accuracy (Consistency): 
n 

owi=O 

i=0 
n 

wi(xi - x0) =0 
i=1 

n 

wi(yi - Jo) =0 
i=1 

n 
W, (X, - x0)2 =2 

i=1 
n 

wi(xi - x0)(yi - yo) =0 
i=1 

n 

Wj(yi - yo)2 =2 
i. l 

Second-Order Accuracy: Eqs. (4.2.5a) - (4.2.5f), and 
n 

1: W{ (X{ - 20)3 =0 
i=1 

wi(xi - x0)2(yi - y0) =O 
i=1 

wi(xi - xO)(yi - yo)2 =O 
i=1 

wi(yi - YO), =0 
i=1 

(4.2.5a) 

(4.2.5b) 

(4.2.5c) 

(4.2.5d) 

(4.2.5e) 

(4.2.5f) 

(4.2.6a) 

(4.2.6b) 

(4.2.6c) 

(4.2.6d) 

In general, jjk±2 (p + k) equations arise for a discretisation of order pin d dimen- 

sions. 

*For completeness, it is noted that Eqs. (4.2.5d)-(4.2.5f) are related through the Cauchy-Schwartz 
inequality. 
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By recognising that Eq. (4.2.5a) gives 

wo = -Ewi, (4.2.7) 

i=I 

Eq. (4.2.1) can be rewritten as 

(020)0 Ewoi(Oi 
- Oo) = 0, (4.2.8) 

i-1 

where the weights wi were replaced by w0i to emphasize that the weights are associated 

with edges. Equation (4.2.8) will be used for the remainder of this chapter because it 

automatically satisfies the condition expressed by Eq. (4.2.5a). 

Linearity Preservation. If applied to a linear function, the Laplacian will be identi- 

cally zero and hence preserve it. 

For the discretisation given by Eq. (4.2.8) to be linearity preserving, it is required 

that (020)0 =0 if cb = Oo + (Vq)o " Oro1 where (V )o = (a, b)t with a, b= constant. 

This leads to the conditions given by Eqs. (4.2.5b) and (4.2.5c). 

Conservation. For the discretisation given by Eq. (4.2.8) to be conservative, it is 

required that w01 = wio where it is noted that the edge-weight does not include the 

control-volume area. The reasoning is that the contributions of edge Oi to the vertices 

0 and i must cancel for conservation to hold, i. e., 

woi(Oi - 4o) + wi0(40 - Oi) = 0e 

which gives woz = wio. 

For the more general case where the coefficient multiplying the difference is a matrix 
Woi, it is required that Wo: = Wio" 

Coupling. A further requirement is that the discretisation should not exhibit spurious 

solution modes. A solution mode is referred to as spurious if it satisfies the discrete 

equations, but not the differential equations. The following will analyse stencils on 

rectangular grids only, because the likelihood of spurious modes is usually greater on 

quadrilateral grids and the analysis is less involved. 

There are three possible spurious modes, as shown schematically in Fig. 4.2. A 
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Chequerboard mode Washboard modes 
14 v=-1 µ=-1, v=1 µ=1, v=-1 

+-+-+---- 
-+--+-+++ 
+-+-+---- 

Figure 4.2: Illustration of possible spurious solution modes on quadri- 
lateral grids. The symbols ̀ +' and `-' denote the sign of deviations from 
an approximately constant solution state. 

discretisation stencil can be checked for spurious solution modes by substituting 

O(x=, yi) =ý µ=vj (4.2.9) 

into the discrete equation, where xi = i0x, yj = joy, and where i and j denote the 

typical indices in a structured grid. The discretisation is free of spurious modes if ji >0 

and v>0, and is then said to exhibit strong coupling. Strongly coupled discretisations 

invariably arise from compact stencils and have the following key benefits: 

Damping Properties. Strong coupling is particularly important when employing multi- 

grid schemes to accelerate convergence, where the iterative scheme is required to damp 

high-frequency modes well. If spurious modes exist, the high-frequency damping prop- 

erties are poor. Pierce [46] found that a discretisation of the viscous fluxes which al- 

lowed the chequerboard spurious mode on hexahedral grids inhibited or even prevented 

convergence of a multigrid method. Strong coupling can be important for single-grid 

calculations also. Zheng and Liu [62] found that strong coupling was an essential ingre- 
dient in the discretisation of a two-equation turbulence model. 

Following Brandt [12], the high-frequency damping properties can be assessed by 

the smoothing factor G(ß) defined as 

G(ß) = max G(P), (4.2.10) 
1r/261ß16r 

where /3 = max(, 0x�ßy), G(ßß,, ß) is the amplification factor of the discretisation, and 
0 6,8x 6 it and 0 6ßy 6 ir are the wave numbers in the x- and y-directions, respectively. 
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A low smoothing factor gives good high-frequency smoothing properties and is in- 

dicative of strong coupling. The smoothing factor depends on the discretisation and the 

iterative scheme. In the following, it is assumed that the iterative scheme is the Gauss- 

Seidel method with lexicographical ordering of the unknowns, but the conclusions do 

not depend on this assumption. 

Accuracy. Strong coupling also leads to lower truncation error for a given order of 

accuracy. This may be seen from the two formulae for the second derivative on a 

uniform grid in one dimension, 

Oa+l - 20i + 4s-I a20 + Ax2 040 HOT 
ox2 äx2 12 

( 
äx4 

) 
+ 

_ 

2 19 20 2- 2bß + 4'j 0i ox2 a4ý - + 
( 

+ HOT 
40x2 = axe 

) 
3 

(19x4 ) 
, + 

i i 

where the second formula, which employs only every other grid point, allows a spurious 

solution mode and is therefore less accurate. The results of Wood and Kleb [61], who 

compared methods with strong and weak coupling on triangular grids, corroborate the 

benefit of strongly-coupled methods in terms of accuracy. 

Grid-'Transparency. The motivation for grid-transparent solution methods was al- 

ready discussed in Section 3.5. The aim is to develop a grid-transparent discretisation 

for the Laplacian with a view to extending it to the viscous terms in the Navier-Stokes 

equations. 

In terms of the discretisation of the Laplacian, a consequence of grid-transparency 
is that on uniform triangular and quadrilateral grids, the classical stencils shown in 

Fig. 4.3 are recovered. It should be noted that these stencils are the simplest which 

can be obtained. For more complicated stencils on quadrilateral grids, see Thom and 
Appelt [54]. Collatz [15] tabulated various stencils on quadrilateral, triangular, and 
hexahedral grids. 

Discretisations of the diffusion equation which are not grid-transparent were devel- 

oped by Roberts [50] and Wieners [59]. 
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Figure 4.3: Grid-transparent stencils for Laplacian on uniform (a) tri- 
angular and (b) quadrilateral grids. 

4.2.2 Discussion of Conditions 

1 

It is instructive to consider how the various conditions on the discretisations discussed 

above influence each other. 

Positivity versus Accuracy. It may be asked if it is possible to achieve accuracy 

and positivity siiiniltaneously. Unfortunately, this is not possible on arbitrary grids, 

as shown by Kershaw [30]. This is easily seen by writing the conditions given by Eqs. 

(4.2.5h)-(4.2.6d) in the foriii Cw = r, 

ß: r01 0. x02 ... OXOn, ýi C) 

OJoi Ay02 AY011 W2 0 

0? /01 AY 302 
... AY ]I wi t) 

where C is a9x it matrix, and w and r are u-vectors. 

The conditions under which positivity and accuracy are in conflict can be obtained 
by inspecting the row-entries in C and the corresponding entry in r. Any row in C 

whose entries are either all positive or all negative and whose corresponding entry in r 

1 

1l 
33 
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(a) (b) 

Figure 4.4: Examples of (a) quadrilateral grid acid (b) triangular grid 
for which AjOiAyoi > 0. Positivity and consistency cannot he achieved 
simultaneously for these stencils. 

is zero cannot be satisfied if the entries of w are either positive or negative. There are 

seven rows for which this is possible, corresponding to E(Is. (4.2.5b), (4.2.5c), (4.2.5e), 

and (4.2.6a)-(4.2.6d). 

At interior grid points, the row consisting of O: cpjDyoj is the tiiost restrictive. The 

problem thus arises if Ox0 Ayoj '? 0. Unfortunately, this inequality corresponds to a 

constraint on consistency. A stencil which satisfies the inequality inay be visualised as a 

stencil whose points i all lie in the first and third or the second and fourth quadrants of a 
local coordinate system centred at vertex 0. An example of triangular and quadrilateral 

grids where > () is shown in Fig. 4.4. If positivity of the coefficients is enforced, 
the discretisation at that point is inconsistent. On the other hand, a second-order 

accurate discretisation will be non-positive. This example illustrates that positivity 

and accuracy cannot be achieved simultaneously on an arbitrary grid. The practical 
implications of this result will be discussed further in Section 4.3. 

Two comments are in order. First, it is noted that iiou-positivity of the coeffi- 
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cients arises because of shearing or skewing of the grid. Simply stretching a grid does 

not necessarily lead to negative weights. Of course, as mentioned above, a triangu- 

lar grid cannot be stretched without skewing. Second, the conflict between positivity 

and accuracy seems similar to that encountered for the inviscid fluxes. However, it is 

fundamentally different because" for the inviscid fluxes, it is not due to grid quality. 

Non-positivity for the inviscid fluxes may occur in one dimension, in contrast to the 

viscous fluxes. Furthermore, the trade-off for the inviscid fluxes is between positivity 

and higher-Order accuracy. For the viscous fluxes, the trade-off is between positivity 

and consistency. 

Positivity and Accuracy at Boundaries. It follows from the above discussion that 

accuracy and positivity cannot be achieved simultaneously at boundaries, because the 

stencil is biased toward the interior of the solution domain by necessity. For the grid 

shown in Fig. 4.5(a), Eq. (4.2.5c) cannot be satisfied unless wp = 0. However, this 

means that Eq. (4.2.5f) cannot be fulfilled. Similarly, for the triangular grid shown in 

Fig. 4.5(b), Eq. (4.2.5c) cannot be satisfied if wp and wq are of the same sign, which 

means that positivity must be violated. Again, Eq. (4.2.5f) cannot be fulfilled as a 

result. 

At corners, as shown in Fig. 4.6(a), Eqs. (4.2.5b) and (4.2.5c) cannot be satisfied 

unless wp < 0. Finally, on the grid shown in Fig. 4.6(b), a consistent discretisation is 

altogether impossible. 

The problem of accuracy at boundaries can only be resolved if more distant points 

are included in the stencil. The inclusion of more distant points in the stencil does not 

allow positivity to be achieved, however. Furthermore, it is easy to show that the use 

of virtual edges does not lead to a resolution of the problem of obtaining accuracy and 

positivity simultaneously at boundaries. 

Conservation and Accuracy. The approach of Holmes and Connell [24], which 

guarantees a linearly transparent pseudo-Laplacian on arbitrary grids (see Subsection 

4.2.3), gives rise to two weights for each edge. Since the two edge weights are not 
identical except on uniform grids, the approach is not conservative. Thus there seems 
to be a contradiction between conservation and accuracy on arbitrary grids. 
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1) 

(a) (b) 

Figure 4.5: Examples of (a) quadrilateral grid (b) triangular grid near 
boundaries where positivity and accuracy cannot be achieved simulta- 

neously. 

(a) (b) 

Figure 4.6: Examples of grids near homidaries when, (a) positivity 
and accuracy cannot be achieved siinulta, neously and (b) consistency is 
impossible to achieve. 

p4 
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4.2.3 Review of Previous Work 

Given the fundamental difficulties described above, it is surprising that little work has 

been carried out on the discretisation of Laplace's equation. The following review at- 

tempts to collect and discuss the various contributions. For completeness, work relating 

to the slightly more general case of the diffusion equation is also included. The review 

considers the contributions dealing with accuracy separately from those concentrating 

on accuracy and positivity. 

Positivity. As already mentioned, Kershaw [30] showed that positivity and accuracy 

cannot be achieved simultaneously on arbitrary grids. He relied on the stability of the 

implicit solution procedure to ensure that negative solution values existed only in the 

transient and disappeared at the steady-state. While this may have been a satisfactory 

practice for the simple linear diffusion problems considered by Kershaw, it cannot be 

regarded as an acceptable practice for more general problems. 

Pert [45] examined two methods for obtaining a positive discretisation of the diffu- 

sion equation with a tensorial viscosity coefficient. It was noticed that the antisymmetric 

terms did not necessarily satisfy the maximum principle. The first method examined 

by Pert employed upwind differences for the fluxes based on the sign of the first dif- 

ference of the viscosity in the appropriate coordinate direction. The second method 

employed the Flux-Corrected Transport (FCT) method of Boris and Book [10] to limit 

the antidiffusive effect of negative coefficients. 

'Barth [3] demonstrated that the Galerkin finite-element discretisation of the Lapla- 

cian satisfies a maximum principle if and only if the grid is a Delaunay grid (see Rees [48] 

for an earlier derivation which remained unpublished). While this result is of theoretical 

interest, because it demonstrates the close link between positivity and grid quality, it is 

of relatively limited practical value since Delaunay methods are best applied to the gen- 

eration'of isotropic grids and'are therefore not well suited to the computation of viscous 
flows. It should also be noted that in three dimensions, Delaunay grids do not ensure 

that the Galerkin finite-element discretisation satisfies a maximum principle [3,32]. 

Maman [37] studied the problem of obtaining positive coefficients on adaptive trian- 

gular grids in the context of the computation of chemically reacting flows. The condition 

given by Eq. (4.2.5e) under which there exists a basic contradiction between accuracy 
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and consistency was derived. However, it was stated incorrectly that there is no linear 

scheme which ensured positivity. As will be shown below, it is in fact very simple to 

derive a scheme which ensures positivity. Several attempts were made by Maman to 

construct schemes which guarantee accuracy and positivity. These attempts involved 

extended stencils and modified test functions. An interesting idea examined by Maman 

was the development of nonlinear schemes based on the definition of a diffusion veloc- 

ity. Through dimensional arguments, it may be said that pvO = pV ¢, which leads to 

v= vV In 0, where v may now be interpreted as a diffusion velocity. Positivity may 

then be guaranteed by simple upwinding based on the sign of the normal velocity. How- 

ever, this scheme clearly has difficulties as 0 -+ 0, for which a truncation error analysis 

reveals inconsistency, and the scheme is not defined for 0<0. These difficulties prevent 

an application to viscous flows. The method adopted by Maman to guarantee positive 

coefficients for the Galerkin linear finite-element discretisation was to employ Delaunay 

triangulations. 

The most relevant piece of work in the present context is that of Coirier [13]. He anal- 

ysed the accuracy and positivity of six schemes on adaptively refined Cartesian grids. 

The analysis was motivated by the observation that non-positive schemes lead to non- 

monotone solutions and even divergence for low-Reynolds-number flows. - Adaptively 

refined Cartesian grids constitute a particularly severe test cases, as they invariably 

exhibit large variations in cell areas across refinement boundaries. 

Four schemes based on the application of the Green-Gauss theorem were shown 

to be inconsistent and non-positive on refined or stretched grids. Of these schemes, 

two lead to decoupled stencils. Two further schemes obtained the gradient from the 

reconstruction of a linear or quadratic polynomial. This leads to a3x3 or 6, x 6 

linear system at each control volume face. A careful choice of stencils at each face is 

required to ensure that the linear systems are invertible. Neither linear nor quadratic 

reconstruction guaranteed positive stencils on arbitrary grids. 

Calculations of low-Reynolds number flows over a backward-facing step showed that 

the chosen Green-Gauss scheme lead to a larger number of non-positive stencils than 

the quadratic polynomial reconstruction scheme, but the magnitude of non-positivity 

was less severe. 

In a separate study, Coirier solved Eqs. (4.2.5a)-(4.2.6d) subject to the condition 
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of positivity. This leads to a quadratic programming problem. Since the system is 

solved for each control volume, conservation is not ensured. The size of the stencils 

was reduced until a positive scheme was found, but the resulting procedure was not 
found to be robust and required an appreciable amount of memory [14]. Furthermore, 

the computation of the weights may require a significant amount of processing time. 

For large grids, however, this may be negligible compared to the time required for the 

complete calculation. In addition, the additional robustness afforded by positivity may 

also lead to faster convergence. 

Accuracy. Erlebacher [19] investigated the accuracy of two discretisations of Laplace's 

equation on a variety of generic distorted triangular grids. The first discretisation is 

essentially equivalent to the Galerkin linear finite-element method and the second is 

identical to that described in Subsection 4.2.4 which averages gradients in the cells 

adjacent to each edge. Both discretisations were shown to be inconsistent on distorted 

grids in general, although the second was more accurate. 

Baumeister [7] compared Galerkin linear finite-element and finite-difference discreti- 

sations of the Laplacian on various generic triangular grids. It was found that the two 

methods gave identical results provided that the area of the triangles meeting at a given 

vertex is equal to three times the area of the Voronoi region around that vertex. This 

implies that at least one of the two methods is inconsistent on arbitrary grids. 

In subsequent work, Baumeister, [8] suggested the use of linear combinations of 

Laplacians computed on three stencils. The first stencil is that originally considered, 

whereas the other two are given by a subset of neighbouring vertices which are suitably 

retriangulated. The required weights for the linear combinations are obtained by solving 

a3x3 system of linear equations corresponding to Eqs. (4.2.5d)-(4.2.5f). For certain 

geometric configurations, the linear system can become linearly dependent, however. 

Renard and Essers [49] investigated the errors incurred by the discretisations of the 

convection-diffusion equation on randomly distorted quadrilateral grids. Theoretical 

and numerical results for the classical finite-element method showed that the discretised 

diffusion terms were inconsistent on irregular grids and that consistency was obtained 

only on nearly uniform grids. 

Montgomery and Fleeter [43] analytically investigated the truncation errors resulting 
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from the discretisation of Laplace's equation by a finite-difference method on nine-point 

stencils on quadrilateral grids. A symbolic mathematics package was used to reduce the 

substantial amount of algebra involved in deriving the leading terms of the truncation 

error. The sensitivity of grid skewness and aspect ratio was studied. For distorted 

grids, the discretisation was shown to be highly inconsistent. The effects of skewness 

were found to be more severe than those of stretching. 

Pseudo-Laplacians. Discretisations based on centred differences require artificial dif- 

fusion terms to damp oscillations and provide stability. The artificial diffusion terms 

typically include a so-called pseudo-Laplacian operator. The expression `pseudo' is used 

to indicate that the Laplacian is based on undivided differences in its discrete form. This 

is in contrast to the (proper) Laplacian operator, which is based on divided differences 

in its discrete form. 

There are two important differences between the two forms. First, the weights wo; 

for the pseudo-Laplacian are dimensionless whereas the weights woi for the Laplacian 

are of dimension (length)-2. Second, the consistency conditions for the Laplacian given 

by Eqs. (4.2.5a)-(4.2.5c) actually lead to a second-order accurate pseudo-Laplacian. It 

is noted again that the conditions expressed by Eqs. (4.2.5b) and (4.2.5c) express the 

property that the (pseudo-) Laplacian of a linear function is identically zero. 

The construction of a second-order accurate pseudo-Laplacian is particularly impor- 

tant since the artificial diffusion terms should not degrade the second-order accuracy of 

the centred discretisation. Since this requires satisfaction of Eqs. (4.2.5a)-(4.2.5c), the 

construction of linearly-transparent pseudo-Laplacians is also of interest to the present 

discussion. 

Lindquist [33] investigated the construction of second-order accurate artificial dif- 

fusion terms on triangular and quadrilateral grids. The second differences were formed 

by integrating over cells and summing the contributions of the cells meeting at a node. 
To prevent the appearance of the chequerboard spurious solution mode, the integra- 

tion on quadrilateral grids is carried out by subdividing the cells into two triangles and 
integrating over the triangle which includes the node at which the second difference 

is formed. A grid-refinement study confirmed that the second differences were indeed 

of second-order accuracy on uniform grids, with only small reductions in accuracy for 



4.2 Laplace's Equation 161 

randomly distorted grids. 

Holmes and Connell [24] used the method of Lagrange multipliers to derive a 
linearly-transparent pseudo-Laplacian in two dimensions. By specifying that the devi- 

ation of the edge-weights from unity be minimised subject to the constraints expressed 

by Eqs. (4.2.5b) and (4.2.5c), explicit formulae for the edge-weights were derived. The 

edge-weights guarantee a linearly-transparent pseudo-Laplacian in the interior and at 

boundaries regardless of cell types. As noted by Holmes and Connell, the edge-weights 

can differ significantly from unity on distorted grids and are not guaranteed to be pos- 

itive. They elected to clip the weights to the range 06 woi 6 2. It should be noted 

that by clipping the weights, the pseudo-Laplacian loses its properties of consistency 

and transparency to linear functions. A disadvantage of the edge-weights of Holmes 

and Connell is that they are not uniquely assigned to an edge, and are therefore not 

conservative. 

Crumpton [16] suggested the construction of a linearly-transparent pseudo-Laplacian 

by subtracting the leading term in the truncation error expression of a pseudo-Laplacian 

which is not linearly transparent. This requires the storage of the left-hand sides of Eqs. 

(4.2.5b) and (4.2.5c) and a method which computes the gradients of a linear function 

exactly. 

Comments. Although previous work indicated some ways in which the fundamental 

problems of discretising the Laplacian operator in an accurate and positive fashion 

can be attacked, it failed to find an equally fundamental approach which resolves the 

problems completely. 

4.2.4 Non-Canonical Discretisations 

The following sections illustrate two schemes which lead to non-positive discretisations 

on arbitrary grids. They are obtained not by reconstructing gradients at the control- 

volume faces, but rather by averaging gradients obtained at vertices or at cell centres. 
This is equivalent to averaging across or along a control-volume face, as depicted in Fig. 

4.7. 

The discretisations are termed non-canonical because they reconstruct the gradients 
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Figure 4.7: Obtaining gradients as control-volume faces by (a) aver- 
aging vertex-gradients across control-voluiiie face or (b) averaging cell- 
gradients along control- volt i ne face. 
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in the x- and y-directions separately, 
in 

02OdA =( 
00ny 

+ --ny 
) 

ds. (4.2.12) f 

sp \ 8x 8y 

This will be discussed further below. Equation (4.2.12) is discretised as 

(V2q5)0 ̂1 
oZ 

(aLon, 
+ 8yn, /oi 

Asoi (4.2.13) 
Eo 

In the following, only uniform grids will be considered. 

Averaging Vertex Gradients. This method is probably the most straightforward to 

compute gradients at control-volume faces, as it is simply given by, 

( of 2 
KLOO 

+ 
(L 

il 
(4.2.14) 

and correspondingly for derivatives in the y-direction. Averaging gradients computed 

at vertices has the advantage that it is grid-transparent and only requires the first 

array of the edge-based data structure. Furthermore, it is efficient since the gradient 

computed at a vertex is used for several edges and because it allows the reuse of gradients 

reconstructed for higher-order inviscid fluxes. 

This method was used by Karman and Spragle [29], Luo et al. [36], and Galle [20]. A 

slightly modified approach was presented by Jorgenson and Pletcher [28] for cell-centred 

discretisations. 

The results obtained by averaging vertex gradients are shown below for the uniform 
triangular and quadrilateral grid. 

Triangular Grid. The stencil is shown in Fig. 4.8(a). It can be seen that negative 

weights occur for distance-one neighbours even on a uniform grid. Wood and Kleb [61] 

observed indications of decoupling in the solution of a diffusion problem solved on a 

triangular grid using the method of averaging vertex gradients. 

Quadrilateral Grid. For the uniform quadrilateral grid, the coefficients are positive, 

but only distance-two neighbours are involved in the stencil, as can be seen from Fig. 

4.8(b). This allows the appearance of spurious modes. When substituting Eq. (4.2.9) 
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Figure 4.8: Stencils obtained when averaging node-gradierits across 
control-volume faces for (a) equilateral triangular grid and (b) uniforiii 
quadrilateral grid. 



4.2 Laplace's Equation 165 

into the discrete equation, one arrives at 

ýµi-2vß-2 [(µ2 + v2)(µ2v2 + 1) -4 µ2v2] = 0, 

which allows all three spurious modes. Alternatively, the amplification factor may be 

derived as 

_ 
2+2cos(2, ßm-2ßy) 

(ýý' ýy) I 18 -, 8(cos 2ßm + cos 2, ßy) +2 cos (2,3,, - 2, ßy)' 

giving a smoothing factor of G(ß) = 1.0 at (ir, 0), (0, ir), and (ir, ir). Therefore, this 

stencil exhibits extremely poor high-frequency smoothing characteristics. 

Averaging Cell Gradients. Another way of obtaining the gradients at the control- 

volume faces is to average the gradients computed in the two cells meeting at the edge 

which is associated with the control-volume face. 

The procedure considered here is the reconstruction of gradients in each cell by the 

Green-Gauss theorem, and the subsequent area-weighting to give the gradient at the 

control-volume face, 

OX ý Ai+1/2 aý Ai-1/2 l(l 
-F (4.2.15) 

/oi Ai+1/2 + Ai-1/2 \ aý /i+1/2 Ai+1/2 + Ai-1/2 ax i-1/2 

It is straightforward to show that this gives, the same result as applying the Green- 

Gauss theorem directly to the union of the two cells meeting at edge Oi. This method 

was used by Parthasarathy et al. [44] and Schulz and Kallinderis [51]. Martinelli [38] 

and Liu and Zheng [34] used this method for cell-centred discretisations on structured 

grids. 

Since cell-gradients are used, the method is not grid-transparent. Furthermore, the 

extension to three dimensions is based on a face-to-edge data structure, which requires 

a considerable amount of storage [42]. 

It is noted that the same result is obtained on triangular grids if a median dual 

cell is constructed at the edge-midpoint as shown in Fig. 4.9(a) and the values of the 

newly introduced points are linearly interpolated. This method was considered by 

Erlebacher [19]. 

On a uniform grid, Eq. (4.2.15) of course simplifies to 

Cox pi 
-2 

[(Ox )i+1,2 

\ax'i-1/2 
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Figure 4.9: (a) Averaging gradients at edges is equivalent to recon- 
structing a gradient at edge mid-point using the Greeii-Gauss theorem. 
(b) If the diagonal of the points i-1 and i+1 does not bisect the edge 
Oi (as shown), the averaged gradient is not second-order accurate. 

2 

Triangular Grid. Tue desired stencil is obtained, as shown in Fig. 4.10(a). It is straight- 

forward if somewhat tedious to show that the gradient at a cell face will he second-order 

accurate only if the line drawn between the points i-1 and i+1 bisects the edge Oi. 

For the grid fragment shown in Fig. 4.9(b), second-order accuracy is thus not achieved. 

Quadrilateral Grid. Oil tue regular quadrilateral grid, the so-called rotated or skewed 

Laplacian is obtained, as shown in Fig. 4.10(b). By substituting Eq. (4.2.9) into the 

difference equation, one derives 

0/1, -1v. i-' [(/L2 + 1)(v2 + 1) - 4pv] = 0, 

which allows the chequerl)oard mode only. The amplification factor is given by 

G(`1 , /1) =4 
cosy Qa + 16 (1 

- cos 13, cos 
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giving a smoothing factor of G(ß) = 1.0 at (ir, 7r). Thus, this stencil has extremely poor 

high-frequency smoothing properties, too. This is confirmed by Pierce [46] who stated 

that this stencil was found to hinder or even prevent convergence with a multigrid 

method. This stencil was also used by Liu and Zheng [34]. 

4.2.5 Canonical Discretisations 

In contrast to the non-canonical discretisations above, canonical discretisations of the 

Laplacian discretise the normal derivative directly. This is done by discretising the 

identity 

IV 20dA = 
ý! n 

ds, (4.2.16) 

in the form, 

(21 ý q5)o Osoi, (4.2.17) 
Moi 

: to 

which is, of course, identically equal to Eq. (4.2.13) analytically, but not necessarily at 

the discrete level. A variety of schemes based on Eq. (4.2.17) may be devised, depending 

on the way in which the normal derivative is approximated. 

Scheme 1. Equation (4.2.17) is discretised as 

2 00 (0 ý)o 1 Asoi. (4.2.18) 
)Oi 

Aý0 
OiECo 

On 

At each face, the normal derivative is approximated by 

0i- 00 
(4.2.19) 

On)oi Onoi 

where Anoi = IIri - roll to give 

(V2O)o Ago 

o 

Onoi 
(Oi - 40). (4.2.20) 

Eo 

It is noted that this discretisation guarantees positive weights regardless of grid distor- 

tion. Consequently, it will be inaccurate on distorted grids, as discussed previously. 

Triangular and Quadrilateral Grids. Equation (4.2.20) gives the desired stencils 

shown in Fig. 4.3 on both triangular and quadrilateral grids. Spurious solution modes 
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Figure 4.10: Stencils obtained when averaging cell-gradients along 
control-voltune faces for (a) equilateral triangular grid and (b) uiiiforiii 
quadrilateral grid. 
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do not occur. For the quadrilateral grid, the amplification factor may be derived as 

(fl, fly) = 
2+2cos(Qý -ß ) 

18 - 8(cos ßy + cos ßy) +2 cos (#-- - ßy) 

giving a smoothing factor G(ß) = 0.5 at (ir/2, arccos(4/5)). 

Liu and Zheng [35] and Pierce [46] obtained the stencil given by Eq. (4.2.20) by 

applying a correction to the stencil obtained by averaging cell gradients. This procedure 

is justified on the grounds of economy since cell gradients can be reused for several cell 

faces, in contrast to gradients reconstructed directly at each cell face. 

Advantages of Normal Derivative. The normal derivative leads to three key advantages: 

First, it leads to positive coefficients. Second, it ensures strong coupling. Third, it is 

grid-transparent. 

It is clear that Eq. (4.2.19) is a good approximation only if the control-volume face is 

roughly normal to its associated edge. For the containment dual, this is always the case. 

For the median dual, the control-volume face can be nearly aligned with its associated 

edge on highly triangular stretched grids, such as that shown in Fig. 3.3(a). As a result, 

the approximation given by Eq. (4.2.19) is poor and needs to be improved. 

Comment on Positivity. Before describing how the'approximation of the normal deriva- 

tive at a control-volume face can be improved, it is important to point out that that 

the inaccuracy of Scheme 1 on distorted grids does not arise because of an inaccurate 

estimation of the normal derivative at control-volume faces, but solely because its coeffi- 

cients are guaranteed to be positive. Even if used in conjunction with containment-dual 

control volumes, where the normal derivative may be expected to be approximated ac- 

curately, Scheme 1 will still be inaccurate on distorted grids. This issue will become 

clearer when the link between the Galerkin finite-element and finite-volume discretisa- 

tions of the Laplacian is uncovered in Subsection 4.4.2. 

Scheme 2. In order to avoid the problems due to non-alignment of edges with control- 

volume faces, the normal derivative may be approximated at each control-volume face 

by introducing coordinates _ C(x, y) along the edge Oi and rj = ri(x, y) along the 

control-volume face, as shown in Fig. 4.11. 
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x 

Figure 4.11: Definition of geometric terms for canonical discretisation 

with Sclicinc 2. 

Using the cliaiii rule of calculus, the normal derivative at the control-volume face 

may be written as 

00 
_ 

00 a ýý aý all Oil 7z, oý + not ýý + nog X+ -nosy (4.2.21) 
all O dX Oy t71 03x Dy/ 

where 0/0 and Dc/ärß denote the derivatives along edge Oi and tangential to the 

control-volume face, respectively. 

By introducing the Jacobian J, defined as 

J_ 
Ox Oy 

- 
ä: r Oy 

(4.2.22) O all 071 Dý 

Eq. (4.2.21) can also be written in terms of the inverse metrics as 
ay, ciz 1 00 ay ac 

äßa JO ä7171, oi,: r - all noz'y) J öiý 710z, x -ý 7aoi , ý) . 
(4.2.23) 

By pararneterising the edge Oi in ýE [-1,1] and the dual edge in iE [-1,1], it can 
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be shown that the inverse metrics are given by 

Ox 
=2 (xi - xo) _-Z not " .I 

Dnoi (4.2.24a) 

Ox 
ý 777 

= 
1(x 

Xi-112) 2 
fioi -i Osoi (4.2.24b) 

ýy 1 (2Ji - Yo) =2 not "i Onoi (4.2.24c) 

y 
077 

1 
= 2 (yi+1/2 - yi-1/2) =2 not "i Osoi, 4.2.24d () 

so that the Jacobian becomes 

J=1 Osoi Onoi not x not " k, (4.2.25) 

and Eq. (4.2.23) can be recast as 

00 
_2 

öo 2noi " nog 00 (4.2.26) 
On not x nog "k Onoi äý no; x no; "k OsOz th 

The derivatives of 0 in the newly introduced coordinate directions are 

Oi - 00 (4.2.27a) 
aý -2 

Oi+1/2 - Oi-1/2 (4.2.27b) 
ark 2 

where 4i%+1/2 and c%_1/2 are the values at the centroids of the cells i+ 1/2 and i- 1/2. 

Equation (4.2.17) can then be written as 

_11 
Oso% no% " no% 

(0200 
A 

[n 

xnk On 
(ýi - ýo) -nxn 

no 0%EEo 0% 0% ' Oi 0% Oi ' 

(4.2.28) 

By introducing the angle Doi as defined in Fig. 4.12, it can be, shown that 

not x not "k= cos Boi (4.2.29a) 

not " nog =- sin Ooi, (4.2.29b) 

which allows Eq. (4.2.28) to be recast as 

1 Lsoi (020)0 4.2.30 
[cosOo, 

On . 
(02 -O o) + tan Ooi(O: +1/2 - Oi-1/2) 

A]"() 

This method was also used by Jiang and Przekwas [25], Jiang et al. [26], and Mathur 

and Murthy [39] for the computation of incompressible flows in two dimensions. A 

similar method was derived by Davidson [18]. 
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Figure 4.12: Definition of angle Boy. 

For triangular grids, Eq. (4.2.30) can also be rewritten as 

172 

(V2 )o ^11 
Osoi 

- (tanOoi+t - to 1 oz ý)(ýi - ýo). (4.2.31) 
As 

[COoOl 
Onoi 3 

1 

Triangular and Quadrilateral Grids. If the control-volume face is normal to its asso- 

ciated edge, Eq. (4.2.30) reduces to Eq. (4.2.20). As a result, the same stencils and 

properties are obtained. 

Equivalcii, ce to Diamond-Path, Reconstruction. The discretisatioii given by Eq. (4.2.30) 

is equivalent to the (liscretisation labelled 'diamond-bath reconstructions' by Coirier [13] 

and used by Knight [31] and Stolcis and Johnston [52] for cell-centred discretisations on 

triangular grids. The integration path for the diamond reconstruction scheme is shown 

schematically in Fig. 4.13. 

The Green-Gauss theorem is applied to the path given by connecting the edge 
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0 

Figure 4.13: Definition of integration path for diamond-path recon- 
struction. 

endpoints to the centroids of the cells sharing that edge. This gives 

173 

dip 
_1 ax 2Ao oz 

[(Oi; 
- 0o)(Jz+i/2 - Yi-1/2) - (Oi+i/2 - Oi-1/2)(yß - yo)] (4.2.32a) 

)Oi 

a(b )1 
[(01 

- 0o)(ýýi+i/2 - Xi-i/2) - (Oi+i ja - Oi-t/a)(: cz - xo)] (4.2.321) 
cý? ] oz 2Ao, oý 

where AO, oj is the area enclosed by the path. The Laplacian at vertex 0 is then formed 

from Eq. (4.2.13) to give 

211 (0 X6)0 , 2A 
{ [(Y 

+i12 - Yi-1/2)noi, x - (xz+112 - xi-i/2)iloz, y] (Oi - 00) 
Q0 oicso o, oý 

? /O)f'Oi, x - 
(Xi 

- x0)nOi, y] 
(Oi+1/2 

- Oi-1/2)}050i" 

(4.2.33) 

Since the iiorinal vectors are given by 

nog - 
? ii+l/2 - Yi-1/2 Xi+1/2 - 1%i-1/2 

ý (4.2.34a) Osoi Osoi 
Ji - Yoxi - Xo not = AUoi 1 O-i 1 (4.2.341>) 

of 
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and the area contained by the integration path is 

Ao, oi =1 AnoiOsoi not x not " k, (4.2.35) 

Eq. (4.2.33) can be written as Eq. (4.2.30) and the equivalence between the two dis- 

cretisations is demonstrated. On quadrilateral grids, the diamond-path reconstruction 

was used by Martinelli [38]. 

Unfortunately, it is not simple to obtain the cell-average values ¢; +1/2 and ¢s-1/2 

within the concept of grid-transparency. A modification which allows a grid-transparent 
discretisation is described below. Furthermore, it is not clear how to extend this dis- 

cretisation to three dimensions, since it is not possible to explicitly define a tangent 

vector at a control-volume face. 

These problems lead to the wish to derive a discretisation which retains the benefits 

of the normal derivative, is grid-transparent, and is easily extended to three dimensions. 

One possibility is described below. 

Scheme 3. Concepts of non-canonical and canonical discretisations can be com- 

bined. For example, it was shown above that the averaging of vertex gradients is 

grid-transparent but exhibits poor coupling. To remedy these problems, the compo- 

nent of the averaged vertex gradients along the edge is substituted with the divided 

difference along the edge, 

(VO)oi = (0o)oi - 
[(0o-)oi 

. 
LrOi 

- 
ci - c5ol Aroi 

(4.2.36) 
Onoi Onoi J Onoi 

where (0O_)oi denotes the averaged vertex gradient. This approach increases the cou- 

pling, guarantees positive weights on uniform grids, and is grid-transparent. It leads to 

the same stencils as Scheme 1 on uniform grids. 

This scheme was used by Vilsmeier [56], Mathur and Murthy [39], Crumpton et 

al. [17], Weiss et al. [58], Blazek et al. [9], and Haselbacher and Blazek [23]. A similar 

scheme was used by Liu and Zheng [35] and Pierce [46] as described before. 

It is interesting to note that the scalar product of Eq. (4.2.36) with the normal at 

a control-volume face can be written as 

(VO)oi " not = 
Oz - 00 

n-ot " 
1roi 

+ (VO)of x Oroi not x Aroi. (4.2.37) " Anoi Ono, 

The second term vanishes if the control-volume face is orthogonal to its associated edge. 
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Ti 

Figure 4.14: Explanation of nomenclature for alternative interpreta- 

tion of canonical Scheme 3. 

For this reason, it may be regarded as a tangential component of the normal projection 

of the gradient vector at the control-volume face. The train advantage of this scheme 

therefore lies in the property that the tangential component does not have to be defined 

explicitly. The inaüi disadvantages are that the scheine requires vertex gradients to be 

available and that it leads to large stencils on iioii-uniforin grids. 

Alternative Interpretation. An alternative interpretation of Scheme 3 inay be derived 

by defining a tangential component 4t of a vector in three dimensions through 

Ott = 4) - (/�n. (4.2.38) 

By defining the direction ý along the edge Oi (as for Scheme 2), and the direction i to 

he üorinal to the edge Oi (and hence non-unique), the normal gradient at the control- 

volume face may be written as 

Cý oý 
_ýý+d j71) nog, (4.2.39) 

where the nomenclature is defined in Fig. 4.14. The derivative in the ý-direction is 

easily approximated using the divided difference along edge Ui. Forming the derivative 

in the (non-unique) 7)-direction may be circumvented by using Eq. (4.2.38), where the 

Locus of unit norinals iý 
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derivatives are obtained by averaging vertex derivatives,, 

ýý1=(0ý)-(ýý")ý. 
(4.2.40) 

Equation (4.2.39) then gives 
(111)0 

__ 
7i- oo 

nof + (0O)oi " not ' (Oo)oi " noi (4.2.41) 
än f Anoi " 

Using the definition _ Aroi/Onoi, Eq. (4.2.41) then becomes identical to Eq. (4.2.36). 

This approach was used by Grismer et al. [22] and Strang et al. [53], but they chose to 

neglect the contribution of the tangential derivative in their implementation. 

Chosen Canonical Scheme. In the present work, Scheme 2 is employed, although it 

is recognised that Scheme 3 has advantages in terms of grid-transparency, particularly 

in three dimensions. The reason for employing Scheme 2 is that it was already being 

used in computations by the time the author became aware of Scheme 3. 

4.3 The Case for Canonical Discretisations 

At this point, two questions need to be addressed. 

First, the above discussion has shown that there exists a fundamental contradiction 

between accuracy and positivity on an arbitrary grid. Both properties can be achieved 

on regular grids only. In practice, grids for complex geometries usually exhibit regions 

of local irregularities. It is unlikely that high-quality solutions will be obtained in these 

regions, if the irregularities allow a numerical solution to be obtained at all. A robust 

code is required in such situations, and a canonical scheme contributes toward a robust 

code. .. -i, 
Second, it was shown above that the maximum principle for Laplace's equation leads 

to the requirement of positive coefficients. The author is not aware of the existence of 

a maximum principle for the Navier-Stokes equations, neither in general nor in spe- 
cific cases. In many instances, solutions to the Navier-Stokes equations do not obey a 
maximum principle. One might therefore raise the legitimate question as' to whether 
positivity of the coefficients is required from a physical point of view. However, regard- 
less of the answer to that question, it is still desirable to require positive coefficients 
from a numerical point of view. As argued in the introduction of this chapter, a posi- 
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tive discretisation ensures the positivity of quantities which are positive by definition, 

such as, e. g., the turbulence kinetic energy. Positive discretisations of the viscous terms 

therefore provide an important contribution to an overall positive discretisation. 

As pointed out by Coirier [13], the issue of positive operators for high-Reynolds 

number flows is, not as evident as for low-Reynolds number flows'since the positivity 

of the inviscid stencil obtained by limited higher-order schemes might compensate for 

a non-positive viscous stencil. t Relying on the positivity of one stencil to mask the 

non-positivity of another stencil is not regarded as ideal. 

For these reasons, the canonical discretisations are chosen to be extended to the 

viscous terms in the Navier-Stokes equations. 

4.4 Navier-Stokes Equations 

The following sections describe the extension of the canonical discretisation to the 

discretisation of the viscous terms in the Navier-Stokes equations. The widely-used 

Finite-Element discretisation of Barth [3] is also described. 

The discretisation of the viscous terms may be formalised by introducing a viscous 

numerical flux function, 

[g(q, V9; n)]oi = r(Qoi, (Vq)oi; noi) (4.4.1) 

by analogy to the inviscid numerical flux function. 

4.4.1 Canonical Discretisation 

The canonical Schemes 1 and 2 cannot be directly extended to the Navier-Stokes equa- 

tions because the viscous terms cannot be written in the form of a normal derivative, 

ion 
µ0v "n ds. (4.4.2) 

In contrast, discretising the viscous terms with the canonical Scheme 3 would not present 

any difficulty since it gives an expression for the gradient rather than the normal deriva- 

tive. To gain further insight into the discretisation of the viscous fluxes on unstructured 

tHowever, see the work by Barth [4], in which the positivity of the viscous stencil is used to com- 
pensate for a non-positive inviscid stencil on a regular triangular grid. 
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grids, it proves helpful to cast the viscous terms in the Navier-Stokes equations into a 

form which shows their character more clearly. 

For example, using Eqs. (2.3.4) and (2.3.3), the viscous terms in the momentum 

equations can be written as 

J( 
ýpVv-n+ 

µV"vn+p[(Vv)t"n-v"vn] } ds, (4.4.3) 
an JJJ 

or, in component form, 

asp 
pVu "n ds + 3 µV "v nx ds - 

an 
µVv "t ds, (4.4.4a) 

asp 

sp 

I 
pV v"n ds + 3 

Vv ny ds + 
on 

µ0u "t ds. (4.4.4b) 
asp 

In Expressions (4.4.4a) and (4.4.4b), the first terms represent the Laplacian operator 

for which a discretisation was developed above. The third terms vanish for constant 

viscosity due to Stokes' theorem while the second terms vanish for incompressible flow. 

Even for flows where the second and third terms do not vanish, it may be assumed that 

they are negligible compared to the first term. Some evidence which substantiates this 

assumption for laminar flows will be presented in Chapter 7. 

However, it should be noted that the third term in Expression (4.4.4a) and, in 

particular, Expression (4.4.4b), may not be negligible when eddy-viscosity turbulence 

models are employed. This is because the essentially constant dynamic viscosity is 

replaced by the sum of the dynamic viscosity and the strongly varying eddy viscosity. 

The validity of neglecting the third term in Expression (4.4.4b) for turbulent flows will 

be investigated in Chapter 8. 

The viscous fluxes in the energy equation may be written as, 

{Vll2. 
fl+V. VV. fl+[(Vv)t. V. n-V. VV. flJ 

4.4.5 () 

+µ (V xvxv"n)+nVT"n}ds, 

where the terms were grouped to show their counterparts in the terms of the momentum 

equations. Only the first and last terms are in a form which is easily discretised. 

Two approaches for the discretisation of the viscous terms were explored. 

Full Viscous Fluxes. The first approach includes all the terms in Expressions (4.4.4a) 

and (4.4.4b). Because of the second and third terms in these expressions, it is necessary 
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to reconstruct the x- and y-derivatives separately. 

Two Dimensions. In two dimensions, the x- and y-derivatives may be linked to the 

normal and tangential derivatives by 

00 
_ 

8n 
nx - 

00 
ny (4.4.6a) 

(4.4.6b) 
ýy 

= 
ýn 

ny + nx, 

where ny and ny are the components of the outward unit normal at a particular dual 

edge and 90/äs = VO "t is the tangential derivative. The first approach therefore em- 

ploys the above-described method of computing the normal derivative, while the Green- 

Gauss theorem is used to calculate the tangential derivative. The two are combined 

according to Eqs. (4.4.6a) and (4.4.6b) to give the gradients in the x- and y-coordinate 

directions which are then used to compute the viscous fluxes. 

The use of normal and tangential derivative components has been described previ- 

ously by Holmes and Connell [24]. The present derivation highlights how this decom- 

position naturally arises from studying Laplace's equation and the viscous terms in the 

Navier-Stokes equations. 

Three Dimensions. In three dimensions, the tangential derivative cannot be defined 

directly, as discussed above. To circumvent the explicit definition of the tangential 

derivative, canonical Scheme 3 may be employed. 

Approximate Viscous Fluxes. The second approach resorts to an approximate 

treatment. Neglecting the third terms in Expressions (4.4.4a) and (4.4.4b), and ap- 

proximating the second' terms using Eqs. (4.4.6a) and (4.4.6b), where the product of 

the tangential derivative and the normal vector components is assumed to be small, 

gives 

µVu"nds+ µ(0u"nnx+Vv"nn_, ny)ds (4.4.7a) 
asp 

iaýpVv"nds+3 
µ(Vu"nnýny+Vv"nny)ds. (4.4.7b) 

en 

Similarity to Thin-Shear-Layer (TSL) Approximation. An examination of the neglected 



4.4 Navier-Stokes Equations 180 

terms reveals that the approximate viscous fluxes can be interpreted as a kind of thin- 

shear-layer approximation in all coordinate directions. This may be shown by compar- 
ison with the systematic derivation of the formulation of the viscous terms in three- 

dimensional curvilinear coordinates by Gnoffo [21]. Retaining Gnoffo's nomenclature, 

a thin-layer approximation in the X-coordinate direction was derived as 

_ 
av lau Tn's =µ OX +3 DXn' 

VX - n, (4.4.8) 

where r3 represents the shear stress acting in the s-coordinate direction on a control- 

volume face with outward unit normal vector n, v is a dummy variable for u or v 

corresponding to the coordinate direction s, and U is the control volume face normal 

velocity. Putting X=y and s=x gives 

äu 1 öu äv 
Tnx -P 

[au 
+3 äunx + ayny n� ny, (4.4.9) 

to which the integrand in Expression (4.4.7a) effectively reduces for control-volume faces 

which are approximately aligned with the x-coordinate direction. 

For the viscous fluxes in the energy equation, the stresses are approximated using 

velocity gradients from Eqs. (4.4.6a) and (4.4.6b) where the product of the tangential 

derivative component with the normal vector components is once more neglected. The 

heat flux is easily approximated, because it is of the form given by Expression (4.4.2). 

It must be emphasized that the present approximate discretisation of the viscous 

fluxes does not require knowledge of normal and tangential directions at a solid wall, 

in contrast to the traditional thin-shear-layer approximation. 

Extension to Three Dimensions. The extension to three dimensions is straightforward. 

Boschitsch [11] obtained good agreement with the complete viscous fluxes for laminar 

flows in three dimensions. 

Other Approximate Discretisations. In an attempt to derive a simplified discretisation 

of the viscous fluxes on mixed grids, Mavriplis and Venkatakrishnan [41] chose to dis- 

cretise the full viscous terms on tetrahedral cells only and discretised the Laplacian on 

hexahedral, prismatic, and pyramidal cells. Although this reduces the computational 

work required, the approximation cannot be regarded as entirely satisfactory. Assum- 
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ing that hexahedral and prismatic elements are employed near boundaries, their scheme 

simplifies the viscous terms in viscous regions while the full viscous terms are retained 
in regions which are likely to be completely or nearly inviscid. In contrast to the method 

of Mavriplis and Venkatakrishnan, the present approximation does not depend on the 

cell type. Instead, it relies more on approximations justified from flow conditions; this 

is believed to be a better approach. 

Evaluation of Wall Shear Stress. It is of some interest to describe the evaluation 

of wall shear stress. In the present work, the wall shear stress is computed from 

TwaIl= -T" n-t, (4.4.10) 

where n is the unit normal pointing outward of the solution domain and t is a suitably 

defined tangential vector defined below. The negative sign in Eq. (4.4.10) arises because 

the unit normal points out of the solution domain. 

To evaluate the wall shear stress from Eq. (4.4.10), the form of the viscous fluxes 

given by Expressions (4.4.4a) and (4.4.4b) is particularly useful. It is helpful to analyze 

Expressions (4.4.4a) and (4.4.4b) at a solid wall for a steady flow field. 

For a steady flow, the continuity equation becomes 

0 V. (pv) = 

which, on expanding and using the no-slip condition, becomes 

V"v=0. (4.4.12) 

Thus the second terms in Expressions (4.4.4a) and (4.4.4b) vanish. 

The third terms in Eqs. (4.4.4a) and (4.4.4b) vanish also on account of the no-slip 

condition on solid walls. The only terms which remain on solid walls for a steady flow 

field are the Laplacian terms. 

Hence the wall shear stress becomes 

Tß, 1=-µVv"n"t. (4.4.13) 

On expanding, this may be written as 

Twall = -µ 
1( ax t, + ax ty nx + 

(Ou 
t, + 

Ty 
ty) nyJ . 

(4.4.14) 

It is this expression which was used in this work to evaluate the wall shear stress. It 
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is noted that the gradients appearing in Eq. (4.4.14) are evaluated at the midpoints of 

the edges lying on solid boundaries. 

Alternative Interpretation. It is interesting to note that Eq. (4.4.14) may be simplified 
further using the no-slip conditions to become 

Twall = -/1 
ý(u 

tx -I- v ty) nx -I- 
ýy 

(u tx +v ty) ny (4.4.15) 

where the velocity tangential to the solid boundary is defined as 

q= ut, + vty (4.4.16) 

which allows Eq. (4.4.15) to be written as the more familiar expression 

Twall = -/2-. (4.4.17) 

Definition of Tangential Vector. The vector t is defined to be a tangent vector to the 

solid wall in the same direction as the main flow. Using FORTRAN functions, t is 

defined as 

t= (ABS(ny), -nx SIGN(1.0, ny))t (4.4.18) 

for flow in the positive x-direction. 

4.4.2 Galerkin Finite-Element Discretisation 

The Galerkin finite-element discretisation presented by Barth [3] was used by Anderson 

and Bonhaus [1], Barth and Linton [6], and Ashford [2]. The method is discussed here 

in some detail for the sake of completeness and because it helps to illustrate some of 

the issues discussed above. Furthermore, it will be used to validate the discretisations 

of the viscous fluxes developed in the present work in Chapter 7. 

Since the viscous fluxes are essentially linear combinations of the viscosity and 
derivatives of the dependent variables, it is convenient to derive the Galerkin finite- 

element discretisation of the Hessian-like matrix 

aa aý 
t äý 

(µThäýý 
Ox 

ýµ 
äy 

o(z (off)) = aý 
(4.4.19) 

aay L() a 
ay 

Cµ 
ay 

) 
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2 

Figure 4.15: Piecewise linear shape function at node 0. 

Cell-Based Formulation. Multiplying by the piecewise linear shape f niction N as 

depicted in Fig. 4.15 and integrating by parts over the domain S2oy given by the union 

of the triangles meeting at vertex 0 results in 

NV (00)t dA = 
120/ J 

VNp,, (17)t dA - 
o, 

µ(VN) (VO)t dA. (4.4.20) 
Sz e,, 

Using the divergence theorem, this may be rewritten as 

f 
NV 1t (V (p) t dA = N1tdn (V O)' -/ 1tV N (V )t dA. (4.4.21) 

. sz,,, . ýýstý, , sty,, 

For the moment, it is assumed that the vertex 0 is not part of a boundary; hence the 

contour integral in the above equation is identically zero. This leaves 

J NVµ (VOt dA =-/ 1tVN (VO)' dA, (4.4.22) 
2 o, cZo, 

which may he rewritten as a sum over triangles fleeting at vertex 0, 

NVp (V(a)' dA µVN (VO)T+1 z dA, (4.4.23) 

. Ills?,,, 
iEro T+1/2 

where T+1/2 is the triangle defined by the vertex triplet (0, i, i+ 1). The gradient of 

the shape function in triangle 7-i+1/2 follows froin the application of the Green-Gauss 

theorem as 

VN ni+t/2 
( )T+,, () 

2 2AZ+ 1 /z 
4.4.24 
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ni-1/2 

aa1_ 1 

Figure 4.16: Definition of nomenclature used in derivation of Galerkin 
finite-element discretisation. Normal vectors are not drawn to scale. 

where A; +1/2 is the area of triangle T+1/2 and nq+1/2 is the scaled normal to the edge 

from vertex i to vertex i+1. The relevant' nomenclature is explained in Fig. 4.16. 

Using Eq. (4.4.24) and the assumption of linear variations of the dependent variables, 

Eq. (4.4.23) can be rewritten as 
f 

NVp (VO)t dA =2 
i+1/2 (0, )T 

+ßi2 

fµ 
dA. (4.4.25) 

nd iETo i+l/2 T"+112 

By defining 

1 
, 26) li+1/2 - Ai+1/2 T}1I2 

µ dA (4.4 

as the average value of viscosity, Eq. (4.4.25) gives 

NV (V4)t dA =2E Ti+1/2ni+1/2 (V )T+112 
" 

(4.4.27) 
I 

o' iETo 

For an assumed linear variation of viscosity, the average value is given by 

1 
llt+1/2 =3 (110 + µ' + µi+i) 

In the energy equation, the dissipation terms involve products of the viscosity and the 
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velocity components. An analogous derivation therefore requires the approximation of 
terms such as 

11 
µO dA. (4.4.28) / i+l/2 Aid 1/2 i+ ,2 

The corresponding approximation for linear variations of viscosity and the velocity 

components is derived to be 

12 
[(µo +µi)(00 +oi) + (/io +Pi+l)('0o +')i+l) + (µi +Pi+l)(ýGi 

The gradient of the dependent variable in Eq. (4.4.27) is given by the application 

of the Green-Gauss theorem as 

(0o)T+1/a 
--1 

(Ooni+1/2 
- Oini+l + Oi+1n0i), (4.4.29) 

2Ai+1/2 

which is exact if the function 0 is linear, and Eq. (4.4.27) becomes 

CO1 
NVµ (0O)t dA =4E A%+1/2 ni+1/2 

(Ooni+1/2 
- Oini+i + Oi+inöi) . 

(4.4.30) 

SE To 

Since n;, +1/2 = -noi + ni+l, Eq. (4.4.30) can be expressed as 

NVp (0O)t dA =4 
Aa+i/2 

n: +1/2 
[(Oi - co)nä+1 - (Oj+i - Oo)nö, ] (4.4.31) 

sto, iETo 

which, due to the sum being cyclic, can be recast by shifting the indices in the second 

term in the summation to give 

I/t1r i1i+1/2 t µi-1/2 

-1 
(Oi 

- Oo). 
JSZo, 

NVp (VO) dA =E 
(Ai+i/2 

ni+1/2ni+l - Ai-1/2 ni-1/2n1 

SETo 

(4.4.32) 

The summation in Eq. (4.4.32) may be interpreted as a loop over edges where an 

edge-weight, given by the matrix 
i2i+1/2 t µi-1/2 t WOi 

4 Ai+1/2 ni+1/2ni+1- Ai-1/2 , i-1/2ni-1) (4.4.33) 

is multiplied by the difference of the dependent variable along the edge. Unfortunately, 

this formula is not compatible with the edge-based data structure. Before consider- 
ing how Eq. (4.4.32) can be reformulated to be compatible with the edge-based data 

structure, the formulae which result if vertex 0 lies on a boundary are stated. 

Approximation of Contour Integral. If vertex 0 lies on a boundary, the contour integral 
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in Eq. (4.4.21) has to be taken into account. Introducing the parameterised coordinate 

06C61 along the edge Oi, this gives for the momentum equations, 

Jass 
No (µoNo + p1N: ) d (4.4.34a) No p no% (VO), 41/2 d= no: (VA)T+1/2 

0, 

=2 
(3ILo 

+1 µti) no: (VO)T+i/2' (4.4.34b) 

and for the energy equation, 

No µ7G not (VO)T+1/2 dý 
eito, 

1 

= not (VO)T 
f 

No (µoNo + µiNi) (''ONO +'OiNi) 4 (4.4.35a) 
%+1/a o 

=2 
[Zpooo 

+6 (µooi + µi0o + µioi)J not (Vo)T+i/a 
" 

(4.4.35b) 

Edge-Based Formulation. Identities between the scaled normal vectors are employed 

to recast the edge-weights in a form which is compatible with the edge-based data 

structure. Referring to Fig. 4.16, it is can be shown that for median-dual control 

volumes, 
1 (4.4.36a) n; +1/2 = 3noi, i -2 not 

4.36b) ni+i = 3noi, i +2 n+ oi, (4. 

and 

ni_1/2 = 3noi, 2 + 2noi (4.4.37a) 

4.37b) ni-1 = -3noi, 2 + 2noi" (4. 

Using these identities, the tensor product of the scaled normal vectors in Eq. (4.4.32) 

can be conveniently decomposed into symmetric and anti-symmetric parts to give 

ni+1/2ni+l =- 
(noiuöi 

- 9noi, lnoi, i) +3 (nOi, inöi - noinöi, i) (4.4.38) 

and 

ni-1/2nä-i = 
(4noinoi 

- 9noi, 2ntoi, 2) +2 (noi, 2nöi - noinöi, 2) " 
(4.4.39) 
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The anti-symmetric parts can be shown to be given by 

3 
2 

(noi, 
lnoi - noinoi, l) = 2llni+1/2 x ni+1II 

01= 
Ai+1/2 

01, 
(4.4.40) 

10 -1 0 

and 

(noi, 2noi - noinoi, 2) = 2I! ni-1/2 x ni-1II 
01. -01= Ai-1/2 

01 -01 (4.4.41) 

Substituting Eqs. (4.4.36a)-(4.4.37b) into Eq. (4.4.33) and using Eqs. (4.4.38)-(4.4.41) 

results in 

J 
NVµ (VO) t dA = Woi(0i - qo), (4.4.42) 

ot OiEeo 

which is compatible with the edge-based data structure. 

The matrix Woi can be split into symmetric and anti-symmetric parts 

w0i = WOi + WOi (4.4.43 

where the symmetric and antisymmetric terms are given byt 

4noinöi - 9noi, lnoi, i änolnoi - 9not, 2nöi, 2 
wsi (4 + µi_1 2A . 4.44) 

and 
01 (4.4.45) Wöi =4 

(Th+1/2 
- Ti-1/2) 

-1 0 

The two terms in Wöi involving geometric quantities only may be pre-computed and 

stored as weights for each edge. 

Comments. Several comments may be made about these edge-weights. 

Cross-Derivatives and Conservation. The cross-derivatives lead to the anti-symmetric 

term given by Eq. (4.4.45) in the edge-based formulation. The anti-symmetric term 

involves the difference in the average values of the viscosity in the cells meeting at the 

edge Oi. Because this term is anti-symmetric, it is non-conservative. Therefore, the 

edge-based formulation of the Galerkin finite-element discretisation is only conservative 

=It is interesting to note that Winslow [60] derived the equivalent of Eq. (4.4.44) as early as 1967 
for the discretisation of the diffusion equation. 
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for constant viscosity, in contrast to the cell-based formulation and finite-volume dis- 

cretisations. This has also been pointed out by Ashford [2]. The anti-symmetric term 

arises if the second and third terms in Expressions (4.4.4a) and (4.4.4b) are discretised. 

Positivity. As already stated, Barth [3] demonstrated that the Galerkin finite-element 

discretisation of Laplace's equation, i. e., where the edge-weights are given by tr(Woi) 

with constant viscosity, leads to a positive discretisation only if the triangular grid 

obeys the Delaunay criterion. As demonstrated by Letniowski [32], this property does 

not hold in three dimensions, where more restrictive conditions apply. 

It can also be seen that for the viscous terms in the Navier-Stokes equations, the 

anti-symmetric terms may lead to negative coefficients if large gradients of the viscosity 

exist. This may be of importance when eddy-viscosity models are employed. 

Simplified Discretisations. In order to simplify the corresponding discretisation in three 

dimensions (for a derivation, see Barth [3]), Mavriplis [40] suggested replacing the cell- 

averaged values of the viscosity by an edge average, 
1 

µi+i/2 = µi-i/2 = 
1(Po 

+ µi)" 

Consequently, the anti-symmetric term vanishes. 

Equivalence to Finite-Volume Discretisation for Diffusion Equation. If the 

diffusion equation is discretised by a finite-volume method and the flux through the 

face associated with edge Oi is approximated by 

Poi (V O)oi ' not = µi+1/2 (V4 )i+1/2 ' n0$, l + 77i-1/2 (VA-1/2 ' n01,2, (4.4.46) 

it can be shown that the resulting expression is identical to that obtained from the 

Galerkin finite-element method, where the edge-weight is given by Wog = tr(Wo=). 

It is instructive to reformulate the finite-volume discretisation for control-volumes 
based on Dirichlet regions. Using the definitions of the normal vectors shown in Figs. 
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2+1 

i 

Figure 4.17: Definition of normal vectors for Dirichlet region. Normal 

vectors are not drawn to scale. 

4.16 and 4.17, it can be shown that 

189 

ni+i =2 (n1 + n2) (4.4.47a) 

nz+1/2 =2 (n1 + n; j) (4.4.47h) 

nz_1/2 =2 (n. 1 + n6) (4.4.47e) 

ni-i = -2 (n. 1 + n5) . 
(4.4.47d) 

Substituting these relations into the diagonal elements of Eq. (4.4.33) leads to 

ni+t 
- Eýý i/any 

- ni-il (4.4.48) Wui =I 
(- (+l/2' 

2 Ai+l/l Ai-1/z / 
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Referring to Fig. 4.17, the fractions in Eq. (4.4.48) may be expressed as 

n1 " ni+1 
2 Ani Ifni+l 1111 cos 12 - a--) II 

/ On1 
_ Ai+1/2 Onoi Ifni+lII sin a* - (4 ) 

pnoi . 4.49a 2 

2 Ono II ni-1 II II cos 
(2 

n4 , ni-1 ßn4 
-- Ai-112 Anoi 11 ni-1 III sin ß* I -2 (4.4.49b) 

Onoi 

where the sign of angles in the numerators has been absorbed into the quantities Ani 

and Ln4. This gives the following expression for the edge weight 

Woi 
O1 

(µs+1/20n1 
+ µi-1/20n4) 

noi 
(4.4.50) 

For Laplace's equation, the edge-weights may be written in terms of an effective 

edge length, as indicated in Fig. 4.18(a), 
Ani + An4 Osoi, 

eff woi «, 2 Onoi Onoi 
(4.4.51) 

This expression is similar to Scheme 1 of the canonical discretisations described above 

(cf. (4.2.20)) in that the edge-weight may be interpreted as a ratio of the length of a 

control-volume face to the length of the associated edge. 

The main difference between the two schemes is that, in contrast to Scheme 1, 

the Galerkin finite-element discretisation is not guaranteed to be positive. This is 

because the effective length of the control-volume face for the Galerkin finite-element 

discretisation can become negative for triangular grids which do not satisfy the Delaunay 

criterion, as demonstrated by Barth [3]. This situation is illustrated in Fig. 4.18(b). 

The effective control-volume face length becomes negative because the scalar products 

in Eq. (4.4.49a) and (4.4.49b) become negative and positive, respectively, so that the 

edge-weight given by Eq. (4.4.51) becomes negative. 

Using the basic trigonometric results that 

ri+1/2 = 
inn= 

, 
(4.4.52) 

2 sin a 

where ri+1/2 is the radius of the circumcircle, as indicated in Fig. 4.18(a), and 

cos a= 
Anl 

, (4.4.53) 
ri+l/2 

the edge weight may be written as 

woi _1 
1' 

+1= sin(a + 3) 
(4.4.54) 

2 tana . tang) 2sinasinß' 
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(a 

2 

0 

(b) 

Figure 4.18: Definition of equivalent control-vohime face for discreti- 

sation of diffusion equation by Galerkin finite-element method. Normal 

vectors are not drawn to scale. 

2 

Equation (4.4.54) is equal to that previously derived by Barth fror the discretisation 

of the diffusion equation by the Galerkin finite-element method. The condition for 

positivity follows as 

+ý367r. (4.4.55) 

As shown by Putti and Cordes [47], the Galerkiii finite-eleiiient discretisatioii of the 

diffusion equation in three dimensions cannot be cast into an equivalent finite-volume 

discretisation with Dirichlet regions as control volumes. 

4.5 Conclusions and Outlook 

The discretisatioii of the viscous fluxes on mixed unstructured grids was studied using 
the Laplacian as a model. It was shown that a positive and accurate discretisation 

of Laplace's equation cannot be achieved on arbitrary grids. Using a number of cri- 
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Galerkin finite-clement, 
Discretisatiuii 
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with Dirichlet regions 

positive on any grid 

Finite-Volume 
Discretisatioii 

(Scheme 1) 
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teria, various discretisations of Laplace's equation were compared. It was shown that 

canonical discretisations, which approximate directly the normal derivative at a control- 

volume face, lead to more compact stencils with lower truncation error and stronger 

coupling. 

The chosen discretisation was extended to the viscous terms of the Navier-Stokes 

equations. A careful study of the nature of the various components of the viscous terms 

allowed the derivation of an approximate form which may be regarded as a thin-shear- 

layer approximation suitable for unstructured grids. 
Because of the fundamental difficulties in developing a positive and accurate discreti- 

sation of Laplace's equation on arbitrary grids, a possible route for future investigation 

could incorporate the constraints expressed by Eqs. (4.2.5a)-(4.2.6d) during grid gen- 

eration. In this way, grids on which positive and accurate discretisations cannot be 

achieved could be prevented a priori. 
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Chapter 5 

Multigrid Numerical Method 

The implementation of the agglomeration multigrid method on mixed unstructured 
grids is described. The generation of coarse grid levels through agglomeration of 
control volumes is explained. Intergrid transfer operators and the cycling strategy 
are defined. 

5.1 Introduction 

The solution method presented in Chapter 3 generally shows slow asymptotic conver- 

gence after a rapid reduction of residuals during the first few iterations. Nearly all 

iterative methods exhibit slow asymptotic convergence to some degree. This problem 

is particularly severe for the computation of three-dimensional turbulent flows since it 

is exacerbated with an increasing number of grid points and grid stretching. 

Analysis shows that iterative methods typically damp high-frequency error compo- 

nents well, but exhibit poor damping of low-frequency error components. Thus, the 

rapid reduction of residuals during the first few iterations corresponds to the annihila- 

tion of the high-frequency error components while the slow asymptotic convergence is 

caused by the remaining low-frequency error components. Multigrid methods accelerate 

convergence by capitalizing on the high-frequency damping properties of a given itera- 

tive method. This is accomplished by using a sequence of successively coarser grids, on 

which low-frequency error components reappear as high-frequency error components. 

Multigrid methods were first developed by Fedorenko [6] and Bakhvalov [1] for 

elliptic equations in the late 1960's, and further refined by Brandt [2] and Hackbusch [11] 

in the 1970's. Rigorous mathematical analyses for elliptic equations show that multigrid 

methods can exhibit convergence rates which are independent of grid size. This gives rise 

to an optimal complexity since the cost of obtaining the solution of a set of equations is 

directly proportional to the number of unknowns. Typically, 0(10) residual evaluations 
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are required. Because of the progressively coarser grids, storage requirements are only 

modestly increased. 

The application of multigrid methods to the Euler equations was pioneered by Ni 

[22], Jameson [7], and Jespersen [8] in the early 1980's. Convergence rates are improved 

because low-frequency error components are propagated more rapidly out of the solution 

domain. ' This was shown analytically by Lötstedt [17], who proved that for first- 

order partial differential equations with constant coefficients, the propagation of low- 

frequency error components is accelerated by a factor proportional to (2L - 1), where L 

is the number of grid levels. Although considerable improvements in convergence rates 

are observed when applying multigrid methods to the Euler equations, the resulting 

convergence rates are not as low as those for elliptic equations. The main reasons are 

discontinuities and the need for very low numerical dissipation. 

For the Reynolds-averaged Navier-Stokes (RANS) equations, the situation is similar 

to that for the Euler equations. The application of multigrid leads to an improvement 

in convergence rates, but they are also far removed from those obtained for elliptic 

equations. The reasons for this discrepancy are, in addition to those already mentioned 

above, the stiffness caused by the highly stretched grids, and the stiffness and highly 

non-linear behaviour of turbulence models. The most promising approach of dealing 

with these difficulties appears to be a combination of anisotropic coarsening and pre- 

conditioning, see, e. g., Pierce [23]. Brandt [4] provided a complete list of the barriers 

which need to be overcome for multigrid to achieve convergence rates for the Euler and 

RANS equations similar to those for elliptic equations. 

Detailed information on multigrid methods can be found in the monographs by 

Brandt [3] and Briggs [5] and the textbooks by Hackbusch [12] and Wesseling [30]. 

Wesseling [29] reviewed the use of multigrid methods in CFD. 

As explained in Chapter 1, the application of multigrid methods to unstructured 

grids required the development of new methods for the generation of coarse grid levels. 

In the present work, the agglomeration method originally devised by Lallemand [15] is 

used. The present implementation differs from previous ones mainly in two points, both 

of which attempt to address recognised shortcomings of the agglomeration multigrid 

*This does not explain why convergence is accelerated for problems with periodic boundaries, as 
error components propagated out of the domain through one periodic boundary re-enter through the 
other. 
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method. First, the viscous fluxes on the coarse grid levels are discretised in the same 
way as on the finest grid level. Second, a linear prolongation operator is constructed. 
A further difference compared to previous implementations is a modified agglomeration 

algorithm. 

Since the agglomeration multigrid method can be applied to triangular, quadrilat- 
eral, and mixed grids with relative ease, the present work provides an opportunity to 

study the performance of the multigrid method on these grid types. 

5.2 Full Approximation Storage (FAS) Scheme 

At the steady-state, the solution q to Eq. (3.12.1) will be given by 

R. o(q) = 0. (5.2.1) 

Approximate solutions 4 do not satisfy the above equation and lead to a defect do 

R. o(q) = do. (5.2.2) 

The approximate and exact solutions at vertex 0 are related through 

qo = 9o + (6q) 0. (5.2.3) 

Various algorithms to solve Eq. (5.2.2) have been constructed within the multigrid 

framework. In the present work, the Full Approximation Storage (FAS) scheme of 

Brandt [3] was used. The FAS scheme is particularly well-suited to the solution of 

nonlinear problems, because it does not require the linearisation of the equation to be 

solved. 

In the following, the FAS scheme is described assuming two grid levels. The gener- 

alisation to an arbitrary number of grid levels is straightforward. The two grid levels 

are denoted by the superscripts h and H, the capitalization indicating that the grid 
spacing on grid H is larger than that on grid h. Equations (5.2.1) and (5.2.2) may then 
be expressed on the fine-grid level as 

Rö (9h) =0 

and 

(5.2.4) 

Rö(gh) = do. (5.2.5) 
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Subtracting Eq. (5.2.5) from Eq. (5.2.4) gives 

Using Eq. (5.2.3), Eq. (5.2.6) is rewritten as 

Rö (qh + (bq)h) - Rö (9h) _ -do. (5.2.7) 

Expressing Eq. (5.2.7) on grid level H leads to 

ý"UI, 
(Ih 4+ 

(5q) 
)-R, (ZH 4) = -lh do, (5.2.8) 

where the subscript `0" denotes the control volume on level H which contains the 

control volume associated with vertex 0 on level h, and Zh and Ih are restriction and 

interpolation operators, respectively. They are defined in Subsections 5.6.1 and 5.6.3, 

respectively. 

Using Eq. (5.2.5) on grid level H, Eq. (5.2.8) is written as 

rt j" =ROH(ZhQh)-Zhý 
(hýýý 

where the coarse-grid solution vector, denoted by the superscript ("), is defined as 

The right-hand side of Eq. (5.2.9) is the forcing function 

which represents the difference between the residual of the restricted fine-grid state 

vector and interpolated fine-grid residual. The coarse-grid solution vector defined by 

Eq. (5.2.10) and the forcing function defined in Eq. (5.2.11) are the two key constructs 

in the FAS scheme. The forcing function ensures that the coarse-grid levels do not 

generate corrections if the fine-grid equations are satisfied. 

Having obtained an approximate coarse-grid solution qoi to Eq. (5.2.9), the correc- 

Rö (9h) - p(h) = -do. (5.2.6) 

4ö = Zh qö + q) off " 
(5.2.10) 

Fp = p$ýZh H Qh) -. h (ROgh)), (5.2.11) 

(5.2.9) 

tion is interpolated to the fine grid in order to compute a new approximate solution 
from 

ý, qö 9ö + ZH (9O - Zh 4ö ), (5.2.12) 

where ZH is a prolongation operator as defined in Subsection 5.6.2. 

It is important to note that the restricted approximate fine-grid state vector Zh qö 
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in Eqs. " (5.2.9), (5.2.10), and (5.2.12) must be identical. 

5.3 Coarsening Algorithm 

Having specified how the coarse-grid levels are used to accelerate the convergence of the 

single-grid solution method, the next step requires the construction of the coarse grid 

levels. As already stated, the coarse-grid levels are generated by agglomerating control 

volumes. 

The coarsening algorithm used in the present work consists of three main steps: 

1. Selection of seed vertices, 

2. Agglomeration of control volumes, 

3. Movement of seed vertices. 

Each of the above steps is described in the following subsections. The description 

assumes that level 1 denotes the finest grid level, and level n denotes the grid level 

obtained by applying the coarsening algorithm n-1 times to level 1. 

In describing the coarsening algorithm, it is useful to retain the designations ̀ vertex' 

and `edge, ' although, strictly speaking, neither exist on coarse grid levels. The reason 

for keeping these terms is that a vertex may still be thought of as a storage location 

for the dependent variables, and that an edge may still be regarded as being associated 

with a control-volume face. 

For notational convenience, the set of control volumes on grid h contained within 

control volume 0' on grid H is denoted by CO H1. 

5.3.1 Selection of Seed Vertices 

The agglomeration of control volumes is preceded by the selection of so-called seed 

vertices from the vertices in a given grid and by storing the seed vertices in a list. 

Seed vertices are those vertices whose control volumes agglomerate the unagglomerated 

control volumes of neighbouring vertices. 
In the present work, the list of seed vertices consists of all vertices for the sake 

of simplicity. This is less sophisticated than choosing the seed vertices to form an 

approximate maximal independent set as done by Mavriplis and Venkatakrishnan [20]. 
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The simpler method used in the present work is not believed to have a negative impact 

on the performance of the multigrid method. 

In the present implementation of the agglomeration multigrid method, boundary 

conditions are enforced on the coarse grid levels in the same manner as on the finest 

grid level. For this reason, it is necessary that there are vertices on the boundaries of 

the coarse grid levels. This is ensured by listing all boundary vertices at the beginning 

of the list of seed vertices. - 

5.3.2 Agglomeration of Control Volumes 

Isotropic Coarsening. The isotropic coarsening algorithm used in the present work 

consists of two nested loops. The outer loop visits each seed vertex. The inner loop runs 

over all edges and agglomerates all unagglomerated neighbours of a seed vertex. Once 

all unagglomerated neighbours at a seed vertex are agglomerated, two further steps are 

carried out. 

Check of Coarsening Ratio. First, the coarsening ratio of each control volume is checked. 

The coarsening ratio of a coarse-grid control volume is defined as the number of fine- 

grid control volumes contained within it. 
, 
This check is necessary to ensure a bounded 

complexity of the multigrid method with W-cycles, for which the coarsening ratio must 

be at least a factor of four, see, e. g., Wesseling [30]. If the coarsening ratio is less than 

four, the algorithm attempts to agglomerate as many unagglomerated control volumes 

as necessary to reach a coarsening ratio of four. Since the nearest neighbours were 

already agglomerated, unagglomerated neighbours of the nearest neighbours have to 

be considered. In general, several unagglomerated distance-two neighbours exist. The 

coarsening algorithm agglomerates the first distance-two vertex which is a distance-one 

neighbour of at least two distance-one neighbours, as illustrated in Fig. 5.1. This choice 
has two advantages. First, it leads to coarse-grid control volumes of better quality. 
Second, it allows the coarse-grid control volumes to be of quadrilateral shape if the 

finest level is a quadrilateral grid. This procedure was previously used by Mavriplis and 
Venkatakrishnan [21]. 
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M 
previously agglomerated control volumes 

control volume 0 and agglomerated distance-one neighbours 

0 distance-two neighbours of control volume 0, candidates for agglomeration 

0 distance-two neighbour of control volume 0, chosen for agglomeration 

0 
unagglomerated control volumes 

Figure 5.1: Illustration of step in agglomeration algorithm to ensure 
coarsening ratio of four on quadrilateral grid. 
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Elimination of Singletons. In the second step, the algorithm eliminates so-called single- 

tons. Singletons are single control volumes which could not be agglomerated because 

there were no unagglomerated neighbours. The algorithm eliminates singletons by ag- 

glomerating with the neighbouring control volume with the smallest coarsening ratio. 

This leads to coarse-grid levels with a more regular distribution of control-volume areas. 

On completing the agglomeration, the boundary and edge data structures are con- 

structed. The intergrid data structure, required for the transfer of information between 

the grid levels, is constructed during the agglomeration of control volumes. 

A detailed structural diagram of the coarsening algorithm is given in Fig. 5.2, where 

nLevels denotes the number of grid levels (including the finest grid level) and nvmin 

stands for the minimum number of vertices which is to remain on any grid level. This 

lower limit was found to be necessary to prevent the construction of grid levels which 

are so coarse that the solution method is unstable. Typically, the parameter nvmin was 

taken to be equal to eight. 

Figures 5.3 and 5.4 demonstrate the application of the isotropic coarsening algo- 

rithm to a triangular and a quadrilateral grid, respectively. Histograms depicting the 

distribution of coarsening ratio are given in Fig. 5.5 for the triangular and quadrilateral 

grids shown in Figs. 5.3 and 5.4. 

Anisotropic Coarsening. The above algorithm could be extended easily to produce 

anisotropic coarsening. Anisotropic agglomeration methods were presented by Mavriplis 

[18] and Lassaline and Zingg [16]. 

5.3.3 Movement of Seed Vertices 

Once the agglomeration of control volumes on a given grid level is complete, the seed 

vertices are moved according to 
h 

H_ 
EiEC4 Aniri 

ro L. iECa Al 

where ri is the position vector to vertex i contained in CH 0"I. The effect is illustrated 

in Fig. 5.6. On a uniform grid, the repositioned seed vertices coincide with the centre 

of gravity of the coarse-grid control volumes. The movement of seed vertices in the 
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input nLevels and nvmin 

set abort =0 and nlevel =2 

while abort =0 and n1evel6 nLevels 

construct list of seed vertices on level nlevel- 1 

loop over vertices in seed vertex list 

loop over neighbouring vertices 

F neighbouring vertex agglomerated T 

F seed vertex agglomerated Z, 

create new cell agglomerate to existing cell 

coarsening ratio greater than 3 ,r 

find common neighbour of agglomerated cells 

>\common 
neighbour agglomerated T 

agglomerate common neighbour 

agglomerate singletons 

construct intergrid data structure 

construct boundary condition data structure 

construct e2v array 

move seed vertices 

F\ number of vertices on nlevel greater than nvmin /T I 

set abort =1 and nLevels = nlevel 

set nlevel= nievel +1 

Figure 5.2: Structural diagram of coarsening algorithm. `F' is a short- 
hand for 'false' and `T' is a shorthand for `true. ' 
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ý.. 
ý. 

level 4,31 vertices aiid 68 control-volume faces 

Figure 5.3: lutist ratiuu of isotropic agglomeration algoritliin on trian- 
gitlar grid. 

level 1,3276 vertices and 9625 edges (control-volume faces) 

level 2,637 vertices and 1808 control-voluine faces 

level 3,135 vertices and 353 control-volume faces 
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level 3,224 vertices and 415 control-voliune faces 

208 

Figure 5.4: Illustration of isotropic agglomeration fier quadrilateral 
grid. 

level 1,3201 vertices and 6532 edges (control-volume faces) 

level 2,833 vertices and 1600 control-volume faces 

level 4,64 vertices am! 111 control-volume faces 
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ý 

a) 

0.5 
0 
aý 

a) 

l('vel 2 
level 3 
IoVc1 4 

U. ll : __ 

1   ý. 

' al i, 1.7 ýJ lU 11 

Coarsening ratio 
(ta) 

1.11 

lcwe12 

Iý l ,3 

C 

0.5 
0 

(b) ('uuu-senitig ratio 

Figure 5.5: 11istogr nis of coarsening ratio for (a) sequence of t. riangn- 
lar grids shown in Fig. 5.3 and (b) sequence of quadrilateral grids shown 
in Fig. 5.1. 
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------- -------- --------- 

--------- ------- --------- "-------- 

O, Oi 

" new position of seed vertex 

0 old position of seed vertex 

---- outline of control volumes on fine grid level 

Figure 5.6: Illustration of movement of seed vertices on coarse grid 
levels for fine grid consisting of quadrilateral cells. 

agglomeration multigrid algorithm is a new technique developed in the present work. 

The idea of moving the seed vertices arose out of the decision to rediscretise the 

governing equations on the coarse grid levels. By moving the seed vertices, the discreti- 

sation on the coarse grid levels is carried out on a dual grid which is more regular. This 

should improve both the stability and accuracy of the coarse-grid discretisation. 

Problems may occur with the movement of seed vertices for coarse-grid control 

volumes which are strongly non-convex, since the new position of the seed vertex, as 

determined from Eq. (5.3.1), may lie outside the control volume. More sophisticated 

algorithms could be developed which move the seed vertex more carefully for non-convex 

control volumes, and place it at the centre of gravity for convex control volumes. The 

agglomeration algorithm could also be modified to prevent the formation of non-convex 

control volumes on coarse grid levels. 

Seed vertices on boundaries are not moved. 
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5.4 Coarse-Grid Discretisation 

The discretisation of the governing equations on the coarse grid levels proceeds in the 

same manner as on the finest grid. This is in contrast to previous work on the agglom- 

eration multigrid method, where the residuals due to the viscous fluxes on the coarse 

grid were not obtained through rediscretisation, but through the Galerkin approach, 

see, e. g., Mavriplis and Venkatakrishnan [20]. Thus, the present implementation of 

the agglomeration multigrid approach is based on a geometric, rather than algebraic, 
interpretation. The motivation for investigating the rediscretisation is that it may lead 

to further improvements in convergence rates. 
On the coarse grid levels, Eq. (3.12.1) is written as 

ddt ýN= 
-1 Al 

(R, (q) + Fa) , 
(5.4.1) 

co, 0where 
Ano, is the area of the coarse-grid control volume and Fo was defined in Eq. 

(5.2.11). 

The computation of the residual on the coarse grid levels is carried out in much the 

same way as on the fine grid. In order to avoid distinguishing between the grid levels 

in the computer program, loops over edges are written as 

DO ne = nedges(edge_beg(nlevel)), nedges(edge_end(nlevel)) 

ENDDO I ne 

where 

edge-beg(l) a1 

edge-beg(2) = edge-end(l) +1 

edge-beg(N) = edge_end(N-1) + 1. 

and 

edge-end(l) - NO_EDGES_LEVEL_1 

edge-end(2) = edge-beg(2) + NO-EDGES-LEVEL-2 -1 

edge-end(N) = edge-beg(N) + NO_EDGES_LEVEL_N - 1. 
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Loops over vertices are written in a similar fashion. As a result, the routines which 

compute the residual and update the solution are used in the same way on all grid 
levels. 

The control-volume faces on the coarse grid levels are simplified in a manner similar 

to that described in Section 3.6. 

5.4.1 Inviscid Fluxes 

The discretisation of the inviscid fluxes is carried out in precisely the same manner as 

on the finest grid level. 

5.4.2 Viscous Fluxes 

On coarse grid levels, the viscous fluxes are approximated by the thin-shear-layer ap- 

proximation given by Expressions (4.4.7a) and (4.4.7b). The first term in Eq. (4.2.30) 

is used to approximate the normal derivative at a control-volume face. The inclusion of 

the factor 1/ cos Bo= was found to be crucial in obtaining a stable discretisation on the 

coarse grids. 

5.4.3 Boundary Conditions 

On coarse grid levels, boundary conditions are enforced in the same manner as on the 

fine grid. This is in contrast to the work of Mavriplis [19] in which the boundary 

conditions are inferred from the fine-grid equations and the solution variables on the 

boundaries are not updated on the coarse-grid levels. 

5.5 Cycling Strategy 

The sequence in which the grid levels are visited is termed a cycling strategy. In the 

present work, V-, W-, and F-cycles were investigated. These cycles are illustrated in 

Fig. 5.7 for four grid levels. 

The structural diagram of an algorithm which allows an arbitrary number of grid 
levels to be used with a given cycle type is shown in Fig. 5.8. The algorithm parameters 

which determine the cycle type are listed in Table 5.1. 
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-------------------------------------------------- levell 

-------------------------------------------------------- 
flevel2 

------------------------------------------------------------- level3 

------------------------------------------------------------------ level4 

----------- level l 

............... level2 

level 3 

(b) 
----------------------- 

flevel4 

--------------------- IH D 

-------------------------- level2 

(c) 

Legend: presmoothing 

restriction 

------------------------------- 
(E3 

------------------------------------ 
Eýý 

postsmoothing 

prolongation 

Figure 5.7: Illustration of (a) V-cycle, (b) W-cycle, and (c) F-cycle 
for 4 grid levels. 

------------- 
(a) 
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input cycleType, cycleGamma, nCycles and nLevels 

set nlevel=l and ncycle=l 

while ncycle 6 nCycles 

for indx=l, nLevels 

levC(indx)=O 

1evC(1)=cycleType-1 

while nlevel < nLevels 

time-stepping on grid nlevel 

restriction 

++levC(nlevel) and ++nlevel 

time-stepping on grid nLevels 

while n1evel>1 

prolongation 

--nlevel 

time-stepping on grid nlevel 

X levC(nlevel) equal to cycleGamma T 

while nlevel<nLevels 1evC(nlevel)= 
cycleGamma 

time-stepping on grid nlevel 

restriction 

++levC(nlevel) and ++nlevel 

time-stepping on grid nLevels 

++ncycle 

Figure 5.8: Structural diagram of cycling algorithm. See also Table 
5.1. The notations ++(. ) and --(. ) are abbreviations for (") E-- () +1 
and (") t- () - 1, respectively. 
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Table 5.1: Parameters determining the type of cycle in cycling algo- 
rithm depicted in Fig. 5.8. 

Cycle cycleType cycleGamma 
V10 
W20 
F21 

5.6 Intergrid-Transfer Operators 

Intergrid-transfer operators interpolate information between the fine- and coarse-grid 
levels and vice versa. Transfer operators are usually characterised by the degree of the 

polynomial which is transferred exactly by the application of the transfer operator. The 

order of a transfer operator is defined as m+1 if m is the degree of the polynomial 

which is transferred exactly. 

In general, transfer operators cannot be chosen arbitrarily. This is because the 

proofs of grid-independent convergence rates for elliptic problems require that 

M H+M17 >m 
hH 

(5.6.1) 

where m1h and m1N represent the orders of the restriction and prolongation opera- 

tors, respectively, and m is the order of the differential equation being solved, see, e. g. 

Hackbusch [12] and Hemker [13]. 

The inequality implies that intergrid-transfer operators used for the Euler equa- 

tions (m = 1) are not suitable for the Navier-Stokes equations (m = 2). Numerical 

experiments which confirm this implication were carried out by Wesseling [28]. 

5.6.1 Restriction Operator 

The restriction operator is defined as a simple volume-weighted average, 

ZH hE EC1, 
Ani b_ 1h 

, 

hýo= EAniol" (5.6.2) EiECo Ani Ano' 
TECo H 

The order of the restriction operator is 06 m1h 6 1. 
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5.6.2 Prolongation Operator 

Two different prolongation operators were used in the present work. They correspond 

to piecewise-constant interpolation (injection) and piecewise-linear interpolation. 

Piecewise-Constant Interpolation (Injection). The injection operator is defined 

by 

ZHoö = Oh +iE Cp , 
(5.6.3) 

giving an order of m1X = 1. Used in conjunction with the restriction operator given by 

Eq. (5.6.2), this results in a multigrid method which does not satisfy Eq. (5.6.1) for the 

Navier-Stokes equations. This deficiency manifests itself in an inconsistency between 

fine- and coarse-grid equations for the diffusion terms and leads to slower convergence. 

An ad hoc cure for the deficiency was suggested by Mavriplis and Venkatakrishnan [20], 

who scaled the viscous contributions by a factor of 2'" on grid level n. The scaling was 

originally derived by Koobus et al. [14] for the Poisson equation on the unit square. 

Piecewise-Linear Interpolation. A piecewise-linear prolongation may be defined by 

ZNOö = o1 = OH + \o' (V0) OH " &ro, i, iE Co , 
(5.6.4) 

where the gradient (V )ö is computed from the linear least-squares reconstruction 

described in Subsection 3.7.2, and the values of the limiter function A0 are computed 

from the Barth-Jespersen limiter function also described in Subsection 3.7.2. 

The order of the piecewise-linear prolongation operator is 16 m1h 6 2, depending 

on the severity of the limiting. 

Comment. Venkatakrishnan et al. [27] discussed the possibility of reconstructing a linear 

variation of the corrections. They argued that the use of a reconstruction would imply 

a triangulation, the avoidance of which is the main motivation of the agglomeration 

method. Their argument is correct if the reconstruction is based on an integral-based 

approach such as the Green-Gauss method described in Subsection 3.7.2, as used by 

Galle [9]. However, it should be noted that the reconstruction of gradients with the least- 

squares method described in Subsection 3.7.2 is not coupled in any way to the existence 
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of a grid. It simply requires connections between the point at which the gradients are 

to be reconstructed and the points which are part of the stencil. These connections can 

correspond to actual edges in the grid or to virtual edges. With this interpretation, the 

use of least-squares reconstruction becomes uncoupled from the existence of a grid and 

may be applied to the reconstruction of linear variations of the corrections. 

Other Approaches. Guillard and Marco [10] suggested the use of a linear reconstruction 

operator based on a heuristic weighting with control-volume areas. Although results 

were given which demonstrated grid-independent convergence rates for Laplace's equa- 

tion, their method was not found to perform well for the cases considered in the present 

work. 

5.6.3 Interpolation Operator 

The interpolation operator transfers residuals from fine grid levels to coarse grid levels. 

To ensure conservation, it is defined as a simple summation, 

Zh oö = 0i" (5.6.5) 
iECo, 

5.7 Closure 

The present chapter described the implementation of the agglomeration multigrid method 

in detail. Particular attention was given to the coarsening algorithm and the definition 

of intergrid transfer operators. A novel feature of the present agglomeration multigrid 

algorithm is that is based on rediscretisation. A new method developed in the present 

work is the movement of seed vertices. 
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Chapter 6 

Validation of Method for 

Inviscid Flows 

The numerical method is validated for inviscid flows on both triangular and quadri- 
lateral grids by applying it to three test cases. The first test case involves the flow 
generated by a supersonic free vortex. A grid refinement study is used to infer the 
order of accuracy of the solution method. The second test case deals with subsonic, 
transonic, and supersonic flows over a circular-arc bump in a straight-walled chan- 
nel. The third test case considers the subsonic and transonic flows over the NACA 
0012 aerofoil. 

6.1 Introduction 

The accurate simulation of inviscid flows is an essential requirement for any solution 

method aimed at viscous flows. It is important to ensure that the numerical dissipation 

introduced in the discretisation of the inviscid fluxes is in some sense low such that 

shear layers can be computed accurately. Since the discretisations of the inviscid and 

viscous fluxes are carried out separately, it is convenient to validate the discretisation of 

the inviscid fluxes before the solution method is extended to include the viscous fluxes. 

The validation typically involves an assessment of the shock-capturing capabilities of 
the solution method. 

These issues are investigated in general terms by applying the solution method 
described in Chapter 3 to three test cases. The test cases include the supersonic flow 

generated by a free vortex, the flow over a circular-arc bump in a straight-walled channel 

and the flow over a NACA 0012 aerofoil. Specific issues are investigated for each test 

case also. 

It is noted that contour lines are not directly labelled in the figures; instead, the 
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values of the initial and final levels and the number of levels are listed in the figure 

caption. 

6.2 Supersonic Free Vortex 

The flow generated by a free vortex models the isentropic flow of a compressible fluid 

between two concentric circles where the velocity magnitude varies inversely with the 

radius. The supersonic free vortex was previously used as a test case by Aftosmis et 

al. [1], Luo et al. [4], Coirier and Jorgenson [2], and Ollivier-Gooch [7]. Aftosmis et al., 

Luo et al., and Ollivier-Gooch used cells of the dual grid as control volumes whereas 

Coirier and Jorgenson employed cells of the primal grid as control volumes. 

The supersonic free vortex flow is particularly useful because the existence of an 

analytical solution allows an assessment of the numerical errors. Since the flow is 

shock-free, the results are not affected by limiter functions and may be expected to 

indicate the accuracy of the solution method in regions of smooth flow. 

6.2.1 Analytical Solution 

The analytical solution may be derived from the condition that the velocity magnitude 

V varies inversely with the radius r, 

Vr = constant, (6.2.1) 

from the momentum equation in the radial direction, 

ap pv2 Or r 

and from the condition of isentropic flow, 

(6.2.2) 

constant. (6.2.3) = pt) = 
(-. )' 

Using Eqs. (6.2.1) and (6.2.3), Eq. (6.2.2) can be integrated to give an expression 
for the density, 

r [1_(1)2]I'Y-l p jl+'Y-1Mi 1 6.2.4) 
p; ll 2r 

where the subscript `i' denotes values at the inner radius. The solution domain and 
boundary conditions are shown in Fig. 6.1. 
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Figure 6.1: Solution domain and boundary conditions for supersonic 
free vortex flow. 

6.2.2 Grid-Refinement Study 
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Since numerical errors can be calculated, the order of accuracy of the solution method 

can be inferred from a grid-refinement study. The procedure is as follows. 

On a given grid, the distribution of density errors is calculated from Eq. (6.2.4). 

The norm of the density errors is computed from 
1 

N_ 
Ep 

NIP 
Pk 1p i 

for p= 1,2, oo (6.2.5) 
k_1 Pk 

where N is the number of vertices in a given grid. The order of the solution method is 

then inferred in the following way: The logarithms of the norms of the density errors 

are plotted against the logarithms of a measure of the grid spacings. The order of the 

solution method is then given by the slope of the linear least-squares curve fit through 

the data points in the plot. 

Five different grid types are used in the grid-refinement study. They consist of one 

quadrilateral grid and four triangular grids. Since the triangular grids were generated 
by subdivision of the quadrilateral grid, they contain the same number of vertices and 
hence unknowns. The four triangular grids differ from each other in the way in which the 

quadrilateral grid was subdivided. The motivation for using these grids is to investigate 

a outflow 
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the influence of the orientation of the additional edges. 
For each grid type, three telescoping grid levels of 41 x 11,81 x 21, and 161 x 41 

vertices are constructed. The point distributions differ slightly from the grids used by 

Aftosmis et al., Luo et al., and Ollivier-Gooch. In the present work, the grids were 

generated such that the grid spacings in the radial and circumferential directions are 

approximately equal at the point (x, y) = (ri, 0). 

The coarsest level of each grid type is shown in Fig. 6.2. The associated dual grids 

are also shown in order to illustrate how the shape of the median dual is influenced by 

the orientation of the edges. 

The goals of the grid-refinement study are 

1. to assess the relative accuracy of the solution method on triangular and quadri- 

lateral grids, and 

2. to compare the Green-Gauss and least-squares reconstruction methods. 

Results for First-Order Scheme. The behaviour of the norms of the density error 

with grid refinement and the resulting orders of accuracy are shown in Fig. 6.3. In 

all norms, the error level is highest for the quadrilateral grids. The error levels for 

the triangular grids are lower than for the quadrilateral grids. The computed values 

of the order of accuracy are in the range of 0.94 - 1.15. The lowest values for the 

order of accuracy are obtained on the triangular grid with irregular orientation of the 

diagonals. Aftosmis et al. noted a drop in accuracy for grid type 3 compared to the 

quadrilateral grid, which is not observed in the present results. A possible explanation 

for this difference is that the present grids contain a larger number of grid points in 

the radial direction compared to the circumferential direction than the grids employed 

by Aftosmis et al., leading to less highly stretched triangular grid cells. Increased 

stretching leads to a larger angle between the edges and their associated dual edges, a 

feature which was identified by Aftosmis et al. as a key source of errors. 

Results for Second-Order Schemes. The results for Green-Gauss reconstruction 

are shown in Fig. 6.4. In contrast to the first-order accurate results discussed above, the 

error levels on the quadrilateral grids are not higher than those obtained on triangular 
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Figure 6.3: Results for first-order scheme for free-vortex flow. (a) Be- 
liaviour of norms of density error with grid refinement and (b) computed 
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grids. -Indeed, the smallest local errors occur on the quadrilateral grids. As shown 

in Fig. 6.4(b), orders of accuracy between 1.74 - 2.07 are achieved in the L1- and 

L2-norms. These values compare well with those obtained by Aftosmis et al., Luo 

et al., Ollivier-Gooch, and Coirier and Jorgenson. In the L,, "-norm, however, orders of 

accuracy of only approximately unity are achieved, indicating that the largest errors are 

approximately proportional to the grid spacing. It was verified that the largest errors 

occurred in the corner cells at the outflow boundary in all cases. It is not known whether 

the calculations by Aftosmis et al., Luo et al., and Ollivier-Gooch exhibited similar 

behaviour as the L,,,, -norms of the error distributions were not presented. Coirier and 

Jorgenson obtained first-order accuracy in the L,,,, -norm in some cases. They attributed 

the lower accuracy to the construction of the dissipative fluxes at the boundaries. The 

issue was not investigated further. 

The results obtained with the least-squares reconstruction are shown in Fig. 6.5. 

The results exhibit lower error levels than those computed with the Green-Gauss re- 

construction. The errors obtained on the quadrilateral grids are lower in all norms 

than those on the triangular grids. Unlike the results obtained with the Green-Gauss 

reconstruction, the order of accuracy on quadrilateral grids is not lower than those 

on the triangular grids. In the L,,. -norm, the computed orders of accuracy are again 

only approximately unity. As with the Green-Gauss reconstruction, the largest errors 

occurred in the corner cells on the outflow boundary in all cases. 

The accuracy of the solution method on irregular grids generated by perturbing the 

interior vertices by random amounts in the coordinate directions was not investigated. 

Relevant results were obtained by Aftosmis et al. [1]. 

6.2.3 Conclusions 

Based on the results discussed above, the following conclusions can be drawn: 

1. The relative accuracy on triangular and quadrilateral grids is similar. As previ- 

ously shown by Aftosmis et al. [1], the larger number of edges in the triangular 

grids does not result in higher accuracy. 

2. The Green-Gauss reconstruction resulted in larger errors on all grids and lower 

orders of accuracy for quadrilateral grids than least-squares reconstruction. 
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Based on Conclusion 2, the Green-Gauss method is not considered further for the 

reconstruction of gradients used in the second-order accurate inviscid fluxes. 
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The test case involving the inviscid flow over a circular-arc bump in a straight-walled 

channel was first suggested by Ni [5]. The geometry and boundary conditions are 
depicted in Fig. 6.6, where h represents the height of the bump as a fraction of its 

chord. Depending on the boundary conditions, subsonic, transonic, and supersonic 
flows may be generated, allowing the investigation of several aspects of the solution 

method. 
Calculations were carried out in order 

1. to compare the solution quality on triangular and quadrilateral grids, 

2. to compare the solution quality on quadrilateral grids with that on triangular 

grids obtained by inserting diagonal edges into the quadrilateral grids, and 

3. to assess the performance of the multigrid scheme for inviscid flows on the trian- 

gular and quadrilateral grids considered under 1. 

Solutions are compared using contour plots of pressure and line plots of the pressure 

coefficients on the lower and upper walls of the channel. The pressure coefficient is 

y=1 

inflow 

y=0 
x 

slip boundary 

outflow 

=2 

Figure 6.6: Solution domain and boundary conditions for flow over 
bump in channel. 
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defined as 

Cp 
7Mö \po 

where the subscript `0' denotes quantities at the inlet boundary. The solution quality 
is assessed using the entropy parameter E defined as 

7 

_p 
Po 

-1 (6.3.2) 
Po P 

which is identically zero for isentropic flow. The entropy parameter is positive for an 
increase in entropy. The only physical mechanism for the production of entropy in an 
inviscid flow is a shock wave. Deviations from E=0 away from a shock wave are 

entirely numerical and have no physical counterpart. 

The performance of the multigrid scheme is assessed through the number of it- 

erations required to reach a convergence measure of the continuity residual of 10-8. 

Since the convergence measure of the residuals of the continuity equation was usually 
O(10-3 - 10-4), this corresponds to a reduction of roughly 4-5 orders of magnitude. 
An average convergence rate (ACR) is then computed from 

ACR = 
(CMi()\T 

CMn (P) / 
(6.3.3) 

where n denotes the number of iterations for single-grid calculations and the number 

of cycles for multigrid calculations. It is important to note that fast convergence is 

associated with low values of the convergence rate. 

Convergence histories will be shown in terms of work units (WU). Following Wes- 

seling [14], a work unit is defined as the time required to carry out one time step on the 

finest grid. A further comparison will be made through the scaled CPU time (SCT) 

for a given calculation which is the CPU time for a given calculation normalised by 

the shortest CPU time achieved for that calculation with a given sequence of grids. 
This may be regarded as a direct measure of the convergence acceleration afforded by 

employing the agglomeration multigrid method. 

6.3.1 Subsonic Case 

The subsonic case is defined by an inflow Mach number of Mo = 0.5 and a bump height of 
h=0.1. As the flow remains subsonic over the bump, there is no physical mechanism of 

generating an increase in entropy and the flow pattern should be completely symmetric 
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(a) 

(b) 

Figure 6.7: (a) triangular grid and (b) quadrilateral grid used for sub- 
sonic and transonic biuup flow calculations. 

Table 6.1: Summary of grid characteristics used in computational study 
for subsonic and transonic binnp flow calculations. 

grid vertices edges triangles quadrilaterals 

triangular 3276 9625 6350 

quadrilateral 3332 6532 - 3201 
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witli respect to x=0.5. The second-order accurate solutions were obtained without a 

limiter function. 

Comparison of Triangular and Quadrilateral Grids. The calculations were car- 

ried out on the triangular and quadrilateral grids shown in Fig. 6.7. Their characteristics 

are listed in Table 6.1. Note that the two grids contain roughly the same nnml)er of 

vertices, and hence unknowns. 

The contours of pressure for the first-order accurate solutions are shown in Fig. 6.8. 

The Jaggedness of' the contour lilies in the solution on the triangular grid is due to the 

irregularities of the triangular grid and the plotting package. Overall, the solutions are 

quite similar. The corresponding second-order accurate solutions are shown in Fig. 6.9. 
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(a) 

(b) 

Figure 6.8: Contours of pressure for first-order solutions on (a) trian- 
gular grid (0.635,0.777; 15) and (b) quadrilateral grid (0.631,0.780; 15) 
for subsonic btunp flow. 

It is noted that the jaggedness of the contours is reduced substantially. Once again, the 

solutions on the triangular and quadrilateral grid are quite similar. 

The variations of the pressure coefficient on the lower and upper walls are plotted 

in Fig. 6.10 for both first- and second-order accurate solutions. Differences between the 

first-order accurate solutions on the triangular and quadrilateral grids exist mainly at 

the leading and trailing edges as well as at the crest of the bump. For the second-order 

accurate solutions, the irregularities disappear almost completely with the exception of 

the leading edge. 

Perhaps the most interesting comparison is made through the entropy parameter as 

shown in Fig. 6.11. For the first-order accurate solutions, the two most notable features 

are the spikes at the leading and trailing edges for the triangular grid and that the 

variation of the entropy parameter exhibits a (local) peak at the crest of the bump for 

the quadrilateral grid. This might he related to the grid stretching in the : r, -direction, 

which increases frone the leading edge of the bump to the crest, and decreases from the 

crest to the trailing edge. Another explanation might be that the entropy is diffusing 

away frone the solid wall. Beyond the trailing edge, the entropy parameter remains 
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(a) 

(b) 

Figure 6.9: Contours of presstu"e for second-order solutions on (a) tri- 

angular grid (0.623,0.787; 15) and (b) quadrilateral grid (0.622,0.778; 15) 
for subsonic bump flow. 

constant on the quadrilateral grid, whereas it decreases on the triangular grid. It, is 

also interesting to note that the spikes at the leading and trailing edges are in opposite 

directions for the second-order accurate solutions. 

It is worth noting that potential flow analysis of the radial and circumferential 

velocity components hear a corner gives 

a ýr-B 
uT ar-3 Cos l5 

(_6 

and 

uo a T. n-6 sin 
7r -B S 

-6 

where (r, 0) are the polar coordinates with origin at the corner and 6 is the angle at 

the corner. Both angles are positive measured in the counterclockwise direction with 

respect to the positive x-axis. For the bump, 

41a 
fi = aresin 411. +1I= 

22.62°. 

It can be seen that for a>0, a stagnation point exists at the corner as expected. 

More interestingly, there is a singularity in the velocity derivatives at the corner if 
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0<6< 90°. It is likely that this singularity is responsible for the observed spikes. The 

effect of the singularity on numerical solutions obtained with a structured cell-centred 

code was investigated by van der Maarel and Koren [12]. 

Effect of Diagonal Edges in Triangulated Quadrilateral Grids. In order to 

investigate the effect of diagonal edges in triangulated quadrilateral grids, second-order 

accurate solutions were computed for the grids shown in Fig. 6.12. Calculations were 

carried out with both median- and containment-dual control volumes. Typical differ- 

ences in the shape of the control volumes are shown in Fig. 6.13, which depicts enlarged 

fractions of the primal and dual grids near the trailing edge of the bump. 

Differences in the computed pressure coefficient distributions are restricted to the 

immediate vicinities of the leading and trailing edges and the crest of the bump, as 

shown in Fig. 6.14. The distributions of the entropy parameter are shown in Fig. 6.15. 

It is interesting to see that the triangulated quadrilateral grids also show a maximum 

of the entropy parameter at the crest of the bump like the quadrilateral grids. This 

suggests that the cause is the distribution of grid points, as surmised above, and not 

the cell type. 

Assessment of Multigrid Acceleration. Up to 5 grid levels have been used for both 

triangular and quadrilateral grids. The first four grid levels are shown in Figs. 5.3 and 

5.4. The grid characteristics are listed in Table 6.2. It is noted that the coarsening is 

more aggressive on the triangular grid. The average coarsening ratios are 4.5 on the 

triangular and 3.6 on the quadrilateral grids. 

To restrict the number of calculations, only V-cycles were used. It is expected that 

the behaviour of multigrid acceleration on triangular and quadrilateral grids with W- 

cycles will be similar to that observed with V-cycles. For all the calculations reported 

in this chapter, 2 pre- and postsmoothing iterations were carried out with 4 iterations 

on the coarsest grid level. Separate calculations showed that this combination is a 

good compromise between fast convergence and additional required processing time. 

Injection is used as a prolongation operator. The use of unlimited and limited linear 

prolongation was not found to lead to faster convergence, and in some cases actually 

led to stalled convergence. 
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Figure 6.10: Comparison of pressure coefficient for (a) first-order so- 
lutions and (b) second-order solutions on triangular and quadrilateral 
grids for subsonic bump flow. 
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(a) 

(b) 

(c) 

Figure 6.12: Triangulated quadrilateral grids with 3332 vertices, 9733 

edges and 6402 cells obtained from grid shown in Fig. 6.7(b). (a) Grid 

type 1 and (b) grid type 2 and (c) grid type 3. 
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The results obtained with first-order accurate discretisations on the triangular and 

quadrilateral grids are summarised in Table 6.3. It is noted that for single-grid calcu- 

lations, the number of cycles is equivalent to the number of iterations. For multigrid 

calculations, each cycle consists of several iterations. The corresponding convergence 

histories are shown in Fig. 6.16. The convergence histories for 5 grid levels are not plot- 

ted for the sake of clarity. The same procedure will be followed for all other calculations 

in this thesis if the clarity of the figures illustrating convergence histories suffers. 

Several observations can be made from Table 6.3. Both the triangular and quadri- 

lateral grids require about the same number of iterations to converge with a single grid 

level. The itiultigrid scheine perforiiis better on the triangular grid, where the use of 5 
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Figure 6.13: Detail view of effect of diagonal edges on control-volume 
shape near trailing edge of bump. (a) Grid type 1 with median dual, (b) 

grid type 1 with containment dual, (c) grid type 2 with median dual, 
(d) grid type 2 with containment dual, (e) grid type 3 with median 
dual, (f) grid type 3 with containment dual. 



6.3 Bump in Channel 243 

-1.0 

-0.5 

cp 0.0 

0.5 

1.0 
-1.0 

(a) 

1.0- 

-0.5 

cp 0.0 

0.5 

(b) 

-- type 1 

--- type 2 
-- type 3 

quadrilateral 

0.0 1.0 2.0 
x 

1.01 
-1.0 

- type 1 
--- type 2 
-- type 3 

quadrilateral 

0.0 1.0 2.0 
x 

Figure 6.14: Comparison of pressure coefficient for (a) median dual 
and (b) containment dual for second-order solutions on triangulated 
quadrilateral grids for subsonic bump flow. 
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Figure 6.15: Comparison of entropy parameter for (a) median dual 

and (b) containment dual for second-order solutions on triangulated 
quadrilateral grids for subsonic bump flow. 
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Table 6.2: Summary of characteristics of the 5 grid levels used in as- 
sessment of agglomeration multigrid scheme for subsonic and transonic 
bump flow. 

triangular grids quadrilateral grids 
level vertices edges vertices edges 

1 3276 9625 3332 6532 
2 637 1808 833 1600 
3 135 353 224 415 
4 31 68 64 111 
5 8 13 20 31 

Table 6.3: Summary of first-order results for agglomeration multigrid 
scheme applied to subsonic bump flow. 

triangular grid quadrilateral grid 
level ACR cycles SCT ACR cycles SCT 

1 0.993 1432 19.10 0.993 1421 5.23 
2 0.917 112 7.70 0.917 114 2.19 
3 0.810 46 3.20 0.831 54 1.12 
4 0.685 26 2.60 0.808 47 1.00 
5 0.501 14 1.00 0.808 47 1.00 

grid levels leads to a speed-up of nearly 20. On the quadrilateral grid, the use of 5 grid 

levels does not improve convergence over 4 grid levels. A maximum speed-up of just 

over 5 is obtained. 

When applying the multigrid scheme to the second-order discretisation, gradients 

are reconstructed on the finest grid level only. Thus convergence will be accelerated 

partly through reduced operation count. The results for the second-order scheme are 
listed in Table 6.4. The convergence histories are shown in Fig. 6.17 in terms of work 

units (WU). As with the results for the first-order scheme, the triangular grid requires 

more iterations than the quadrilateral grid on a single grid level. The multigrid scheme 

again performs better on the triangular grid, leading to a speed-up of just over 100 

with 5 grid levels. On the quadrilateral grid, the use of 5 grid levels leads to a slight 

worsening in convergence over 4 levels. The speed-up on the quadrilateral grid with 4 

grid levels is roughly 50. 
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1)111111) flow. 
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Table 6.4: Summary of second-order results for agglomeration multi- 
grid scheme applied to subsonic bump flow. 

triangular grid quadrilateral grid 
level ACR cycles SCT ACR cycles SCT 

1 0.999 17001 102.82 0.999 13553 48.95 
2 0.979 473 13.53 0.977 443 7.80 
3 0.849 61 1.76 0.861 68 1.25 
4 0.756 36 1.05 0.828 54 1.00 
5 0.746 34 1.00 0.831 55 1.02 

6.3.2 Transonic Case 

The transonic case is specified by an inlet Mach number of Mo = 0.675 and a bump 

height of h=0.1. As will be seen below, this leads to a relatively weak shock wave on 

the leeward side of the bump. This allows the assessment of the Barth-Jespersen and 

Venkatakrishnan limiter functions as well as the quasi-ENO reconstruction of Ollivier- 

Gooch. 

Comparison of Triangular and Quadrilateral Grids. The grids depicted in Fig. 

6.7 are employed. 

The pressure contours for the first-order calculations on the triangular grid are shown 

in Fig. 6.18. As expected, the shock wave is strongly smeared on both the triangular 

and quadrilateral grids, although slightly less so on the latter. 

The second-order accurate results for the triangular grid are shown in Fig. 6.19. The 

results obtained with the Barth-Jespersen limiter function show kinks in the contour 
lines near the boundaries, whereas both the Venkatakrishnan limiter function and the 

quasi-ENO reconstruction do not exhibit kinks. The corresponding results obtained 

on the quadrilateral grid are shown in Fig. 6.20. It can be seen that the results for 

the Barth-Jespersen limiter function show much reduced kinks in the contour lines 

compared to those on the triangular grid. The shock wave is resolved better than on the 

triangular grid, probably due to the fact that one family of grid lines is approximately 

aligned with the shock wave. 

The considerable improvement obtained by using second-order accurate schemes 

compared to first-order schemes can also be judged from the line plots of pressure 
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Figure 6.18: Contours of pressure for first-order solutions on (a) tri- 

angular grid (0.477,0.829; 15) and (b) quadrilateral grid (0.429,0.834; 15) 
for transonic bump flow. 

coefficient shown in Fig. 6.21. On the triangular grid, some differences exist between 

the second-order schemes just before the leading edge and behind the trailing edge of' 

the bump. The shock wave is located at about 70% of the chord of the bump. On 

the quadrilateral grid, the second-order schemes give virtually the same variation of 

the pressure coefficient. For the Venkatakrislinan limiter function and the quasi-ENO 

reconstruction, the expansion immediately behind the foot of the shock wave [16] is also 

resolved. The shock wave is located at about 71% of the chord of the bunil). 

The distribution of the entropy parameter depicted in Fig. 6.22 shows the features 

already described in the section on the subsonic test case. The oscillations apparent in 

the solution obtained with the Barth-Jespersen limiter function on the quadrilateral grid 

are probably due to the incomplete convergence. For both triangular and quadrilateral 

grids, the variation of the entropy parameter reveals that the numerical errors are 

quite large since the non-physical increases in entropy are approximately of the same 

magnitude as the physical increase through the shock wave. 

Finally, the convergence history for the Barth-Jespersen and Venkatakrislinan lini- 

iter functions on the quadrilateral grid is depicted in Fig. 6.23. The convergence history 
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Figure 6.19: Contours of pressure for second-order solutions with (a) 
Bart h-Jespersen limiter function (0.355,0.850; 15), (b) Venkatakrishn; in 
limiter function (0.355,0.850; 15), and (c) Ollivier-Gooch reconstruction 
(0.355,0.850; 15) on triangular grid for transonic bump flow. 
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of the quasi-ENO reconstruction is virtually indistinguishable to that obtained with the 

Venkatakrishnan limiter function and therefore not shown for the sake of clarity. The 

Bartli-Jespersen limiter function leads to stalled convergence. For this reason, the 

Bart h-Jesperseii limiter function is not considered further in the present work. 

The use of the Venkatakrislinan limiter function was typically about, 27o more ex- 

pensive in terms of CPU time per iteration than the use of the Bart h-Jespersen limiter 

function and the quasi-ENO reconstruction was typically roughly 12`%, cheaper than 

the Bart h-Jespersen limiter function. Despite this advantage of the quasi-ENO recon- 

struction, it is not further considered in the present work because of the difficulties in 

--l J 

/--" 'ý 1 
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Figure 6.20: Contours of pressure for second-order soltitions with (a) 

Bartle-Jespersen limiter function (0.340,0.825; 15), and (b) Venkatakrish- 

nan limiter function (0.340,0.825; 15), (c) Ollivier-Gooch reconstruction 
(0.340,0.825; 15) on ttita(lrilateral grid for transonic bump flow. 
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constructing all accurate Laplacian at boundaries. More accurate (liscretisatiolls of sec- 

and derivatives near boundaries are possible to achieve, but will destroy the advantage 

of less computational tune per iteration. 

Effect of Diagonal Edges in Triangulated Quadrilateral Grids. The effect of 

the diagonal edges üitroduced into a quadrilateral grid is üivestigated by computing 

the transonic flow over the circular arc 1)111111) using the Venkatakrishiian limiter. The 

grids are identical to those used for the equivalent comparison for subsonic flow and are 

shown in Fig. 6.8. Again, both median and coiitainmeiit dual control-volumes are used. 



6.3 Bump in Channel 252 

-2.0 
Barth-Jespersen 

--- Venkatakrishnan 

-- Ollivier-Gooch 
first order 

-1.0 

Cp 

(a) 

cp 

0.0 

0.0 1.0 2.0 

x 

1.0 '- 
-1.0 

-2.0 

-1.0 

- Barth-Jespersen 
--- Venkatakrishnan 
-- Ollivier-Gooch 

first order 

1.0 ' 
1.0 0.0 1.0 2.0 

(b) X 

Figure 6.21: Comparison of pressure coefficient for second-order so- 
lutions on (a) triangular grid and (b) quadrilateral grid for transonic 
bump flow. 

0.0 



6.3 Bump in Channel 253 

0.06 

0.04 

0.02 

E 

0.00 

-0.02 

- Barth-Jespersen 
--- Venkatakrishnan 

Ollivier-Gooch 
......... first order 

1 

J 

-0.04 
-1.0 

(a) 

, 0.08r- 

0.06 

0.04 

E 

0.02 

0.00 

- Barth-Jespersen 
--- Venkatakrishnan 
-- - Ollivier-Gooch 

first order 

r\-) 
. 

//\ 

-0.02 ' 
-1.0 0.0 1.0 2.0 

(b) x 

Figure 6.22: Comparison of entropy parameter for second-order solu- 
tions on (a) triangular grid and (b) quadrilateral grid for transonic 
bump flow. 

0.0 1.0 
x 

2.0 



6.3 Bump in Channel 254 

-3.0 

Barth-Jespersen 
-4.0 

-5.0 

norm -6.0 

-7.0 

Venkatakrishnan 
-8.0 

-9.01 0 2000 4000 6000 8000 
iterations 

Figure 6.23: Convergence history for second-order schemes with Barth- 
Jespersen and Venkatakrishnan limiter functions on quadrilateral grid 
for transonic bump flow. 

The pressure coefficients are shown in Fig. 6.24. The insets display the variation of 

the pressure coefficient in the immediate vicinity of the shock wave in more detail. For 

comparison, the results for the quadrilateral grid are also shown. For the median dual 

control-volumes, the shock wave is more heavily smeared. For the containment dual 

control-volumes, the differences are virtually negligible. 

The variation of the entropy parameter shown in Fig. 6.25 indicates that no clear 

conclusions can be drawn about which triangular grid leads to the largest numerical 

errors. It is interesting to note the spikes in the entropy parameter at the position of 

the shock wave which were not visible in the previously shown second-order accurate 

results. Pike [8] and Salas and Iollo [10] demonstrated that these spikes have a physical 

counterpart. 

Assessment of Multigrid Acceleration. The same sequence of grids is used as for 

the subsonic case. 

The results obtained with the first-order scheme are summarised in Table 6.5. As 
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Table 6.5: Summary of first-order results for multigrid scheme applied 
to transonic bump flow. 

triangular grid quadrilateral grid 

level ACR cycles SCT ACR cycles SCT 

1 0.994 1687 15.00 0.994 1613 6.95 
2 0.926 129 11.25 0.929 139 3.18 
3 0.836 56 2.60 0.875 76 1.86 
4 0.696 28 1.33 0.796 45 1.09 
5 0.631 22 1.00 0.780 41 1.00 

Table 6.6: Summary of second-order results for multigrid scheme ap- 
plied to transonic bum p flow. 

triangular grids quadrilateral grids 

level ACR cycles SCT ACR cycles SCT 

1 0.996 2662 11.87 0.998 5707 19.52 
2 0.942 169 3.41 0.960 257 4.04 
3 0.871 73 1.51 0.904 103 1.65 
4 0.810 48 1.00 0.855 67 1.22 
5 0.817 50 1.02 0.844 61 1.00 

with the subsonic case, the number of iterations required to converge is roughly iden- 

tical for single-grid calculations. The speed-up obtained by the multigrid scheme on 

triangular grids is again larger than that on quadrilateral grids. The corresponding 

convergence history is shown in Fig. 6.26. 

The results obtained with the multigrid scheme applied to the second-order discreti- 

sation are listed in Table 6.6. In contrast to the subsonic case, the quadrilateral grid 

requires more iterations to converge on a single grid. As a result, a larger speed-up 

is obtained on the quadrilateral grid than on the triangular grid, despite the fact that 

the ACRs on the triangular grids are lower than on the quadrilateral grids. For the 

triangular grid, the use of 5 grid levels did not result in a further improvement over 4 

grid levels. 



6.3 Bump in Channel 258 

-3.0 

-4.0 

-5.0 

norm -6.0 

-7.0 

-8.0 

-9.0 0 
(a) 

-3.0- - 

-4.0 

-5.01 

1101 11 
-6.0 

-7.0 

-8.0L 

-9.0 L 
0 

(b) 

1500 

I grid 

2 grids 

500 1000 00 

work units 

Figure 6.26: Comparison of nntltigrid convergence for first-order 

schemes on (a) triangular grid and (b) quadrilateral grid for transoiiic 
1nuu1) flow. 

500 1000 

work units 



6.3 Bump in Channel 259 

-3.0 

-4.0 

-5.0 

noun -6.0 

-7.0 

-8.0 43 

1 grid 

2 grids 

-9.0 
1--_1_. 1- 1__ý. 1--- 

0 
... t .. _II 

0 500 1000 1500 2000 2500 
(a) work units 

-3.0 

-4.0 

-5.0 

iiortu -6.0 

(b) 

-7.0 

-8.0 t1 
432 grids 

-9.0ýy 0 500 1000 1500 

work units 

H 

1 

2000 25(10 

Figure 6.27: Comparison of uniltigri(l convergence for second-order 
scheufies on (a) triangular grid and (b) quadrilateral grid for transonic 
1)111111) flow. 



6.3 Bump in Channel 260 

(a) 

(b) 

Figure 6.28: (a) triangular grid and (b) quadrilateral grid used for 

supersonic bump How calcttlations. 

Table 6.7: Summary of grid characteristics used in computational study 
for supersonic l)uiiip flow calculations. 

grid vertices edges triangles quadrilaterals 

triangular 3003 8818 5816 

quadrilateral 3072 6016 2945 

6.3.3 Supersonic Case 

The supersonic case is specified by an inlet Mach number of Mo = 1.4 and a bump 

height of It = 0.04. These conditions give rise to two oblique shock waves at the leading 

and trailing edges of the bump. The shock wave from the leading edge is reflected 

from the top wall and intersects the shock wave from the trailing edge, with a further 

reflection at the bottom wall and interaction. 

The grids depicted in Fig. 6.28 are employed. The corresponding grid characteristics 

are listed in Table 6.7. Once again, they have approximately the same number of vertices 

and hence unknowns. 

Comparison of Triangular and Quadrilateral Grids. The pressure contoiu"s for 
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Figure 6.29: Contours of pressure for first-order solutions on (a) tri- 

angular grid (0.529,1.059; 15) and (b) quadrilateral grid (0.514,1.060; 15) 
for supersonic bump flow. 

the first-order accurate scheme are shown in Fig. 6.29, which reveals that, the shock 

waves are heavily smeared. For the quadrilateral grid, the shocks exhibit high spreading 

rates due to misalignment with the grid lines. Although the shock waves are captured 

less sharply on the triangular grid, the spreading rates are lower. 

The use of a second-order accurate scheine leads to a large improvement in the 

capturing of the shock waves, particularly of the reflections, as may be seen in Fig. 

6.30. 

These observations are confirmed by the line plots of the pressure coefficients in Fig. 

6.31. For the first-order accurate calculation, the shock reflection at the cipher wall is 

clearly better resolved on the triangular grid. For the second-order accurate results, 

the quadrilateral grid leads to sharper shock waves and reflections. 

The variation of the entropy parameter depicted in Fig. 6.32(a) again demonstrates 

that the shock wave at the upper wall is poorly captured for the first-order accurate 

results. The second-order accurate results, shown in Fig. 6.32(b), exhibit a large spike 

at the leading edge and the already discussed peak at the crest of the b1urlp oil the 

quadrilateral grids. The entropy increase due to the shock reflection oil the lower wall 

is clearly visible on the quadrilateral grid only. 
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Effect of Diagonal Edges in Triangulated Quadrilateral Grids. Figure 6.33 

shows that there is relatively little difference between the different grid types for the 

pressure coefficient with both median dual and containment dual control volumes. 

For the case of containment dual control volumes, convergence stalled at CM(p) _ 

1 10-6. 

Assessment of Multigrid Acceleration. The inultigrid scheine is again assessed 

using five grid levels generated by applying the agglomeration procedure to the grids 

shown in Fig. 6.28. The grid characteristics are listed in Table 6.8. 

Tables 6.9 and 6.10 show that the performance of the multigrid scheine is broadly the 

same as that discussed in the subsonic and transonic test cases. Overall, however, the 

speed-ups are nincli lower and the calculations on more than three grid levels diverged. 

For the second-order scheme on the quadrilateral grid, the use of three grid levels lead 

to a slight worsening of the convergence rate compared to that for two grid levels. The 

convergence histories are shown in Figs. 6.35 and 6.36. 

(a) 

(b) 

Figure 6.30: Contours of pressure for second-order solutions on (a) t, ri- 
angular grid (0.520,1.275; 15) and (b) quadrilateral grid (0.519,1.350; 15) 
for supersonic bump flow. 
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Figure 6.32: Comparison of entropy parameter for (a) first-order so- 
lutions and (b) second-order solutions on triangular and (quadrilateral 
grids for supersonic bump flow. 
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Table 6.8: Summary of grid characteristics of the 5 grid levels used in 
assessment of agglomeration multigrid scheme for supersonic bump flow. 

triangular grids quadrilateral grids 
level vertices edges vertices edges 

1 3003 8818 3072 6016 
2 593 1682 768 1472 
3 128 335 192 352 
4 27 57 48 80 
5 9 14 12 16 

Table 6.9: Summary of first-order results for supersonic bump calcula- 
tions with multigrid scheme. 

triangular grid quadrilateral grid 

level ACR cycles SCT ACR cycles SCT 

1 0.983 551 2.79 0.981 537 3.06 
2 0.796 42 1.75 0.798 45 1.33 
3 0.664 24 1.00 0.718 30 1.00 
4 diverged diverged 
5 diverged diverged 

Table 6.10: Summary of second-order results for supersonic bump cal- 
culations with multigrid scheme. 

triangular grid quadrilateral grid 

level ACR cycles SCT ACR cycles SCT 

1 0.985 634 3.54 0.984 622 2.12 
2 0.828 53 1.35 0.857 66 1.00 
3 0.778 39 1.00 0.859 68 1.06 
4 diverged diverged 
5 diverged diverged 
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Figure 6.35: Comparison of tnultigrid convergence for first-order 

schemes on (a) triangular grid and (b) quadrilateral grid for supersonic 
1)111111) flow. 
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6.3.4 Conclusions 

The results discussed in the above allow the following conclusions to be drawn: 

1. The relative accuracy on triangular and quadrilateral grids is approximately the 

same. This is in agreement with the results obtained for the supersonic free-vortex 

flow in Section 6.2 of this chapter. 

2. Triangular grids obtained by inserting additional edges into quadrilateral grids 
do not exhibit higher accuracy than quadrilateral grids if median-dual control 

volumes are used. With containment-dual control volumes, equal accuracy may be 

obtained. However, the insertion of additional edges leads to higher computational 

cost, both in terms of CPU time and required storage. 

3. Convergence rates for the first-order scheme on a single grid level are similar on 

triangular and quadrilateral grids for the first-order scheme. For the second-order 

scheme, convergence rates are comparable on average. 

4. The agglomeration multigrid method works well for inviscid flows. The maximum 

speed-ups obtained on triangular and quadrilateral grids were 100 and 50, respec- 

tively, for the subsonic case. The average speed-ups were approximately 10 for 

both triangular and quadrilateral grids. 

5. The agglomeration multigrid method leads to larger acceleration on triangular 

grids in nearly all cases. Because the solution quality is similar, this could be an 

indication of stronger coupling among the solution variables rather than increased 

dissipation. The agglomeration multigrid method is also more robust on triangular 

grids than on quadrilateral grids in the sense that a larger number of coarse grid 

levels can be used before the minimum convergence rate is obtained. 

Based on Conclusion 2, the containment dual is not considered further in the present 

work. 
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6.4 NACA, 0012 Aerofoil 

To demonstrate that the solution method can also be used for external flows, it is 

applied to the NACA 0012 aerofoil. 

The geometry of the aerofoil is given by 

y= -0.06090x4 + 0.17058x3 - 0.21096x2 - 0.07560x + 0.178141 (6.4.1) 

where the leading edge of the aerofoil is located at x=0, and 06x61.008930411365. 

Two flow conditions will be considered. The same triangular grid will be used for 

both conditions. The grid is depicted in Fig. 6.38 contains 3014 vertices, 8744 edges, 

and 5730 cells. 256 vertices are located on the aerofoil. The outer boundary is located 

at approximately 12 chords. 

The solutions will be assessed with the lift, drag, and moment coefficients. Using 

the pressure coefficient, 

Cp = 
22 

-1) , 
(6.4.2) 

'YMoo \Poo 

the lift, drag, and moment coefficients are defined as (for a chord of unity), 

CL =-j Cp(nx sina - n, cos a) ds, (6.4.3a) 

CD =j Cp(nx cos a+ ny sin a) ds, (6.4.3b) 

CM =j Cp [-(y - yac)nx + (x - xac)ny] ds, (6.4.3c) 

where a is the angle of attack, the subscript `ac' denotes the aerodynamic centre (located 

at the quarter-chord point), and the moment coefficient is taken as positive in the 

anticlockwise direction. The entropy parameter is given by 

E=p (6.4.4) 
Poo(POO)" P 

The goals of the computations were 

1. to demonstrate the solution method for external flows, and 

2. to further validate the agglomeration multigrid method. 

Only second-order accurate results will be presented. 
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Table 6.11: Summary of grid characteristics of the 5 grid levels used in 
assessment of agglomeration multigrid scheme for inviscid flow around 
NACA 0012 aerofoil. 

level vertices edges 
1 3014 8744 
2 777 2189 
3 203 544 
4 52 127 
5 13 27 

6.4.1 Subsonic Case 

The subsonic case is specified by M,,,, = 0.5 and a= 0°. Since the flow is non-lifting 

and sub-critical, the lift, drag, and moment coefficients should be identically zero. 

The pressure contours computed with the unlimited second-order scheme are shown 

in Fig. 6.39. The computed values for the lift, drag, and moment coefficients are 

-0.001988, -0.002004, and 0.000874. As may be seen from Fig. 6.40(a), the non- 

zero value of the lift coefficient is mainly due to a slight discrepancy near the trailing 

edge, see the inset. Close inspection of the variation of the pressure coefficient shows 

a slight asymmetry along the entire aerofoil surface, however. This is because the 

grid is not symmetric. The behaviour of the entropy parameter shown in Fig. 6.40(b) 

shows relatively large errors near the leading edge, although the absolute values are 

comparable to other results found in the literature. 

Assessment of Multigrid Acceleration. The assessment of the agglomeration 

multigrid scheme is carried out using the five grid levels depicted in Fig. 6.41. Their 

characteristics are listed in Table 6.11. 

The convergence histories for V- and W-cycles in terms of work units are shown in 

Fig. 6.42. The average convergence rates and scaled CPU-times are listed in Table 6.12. 

The maximum acceleration attained by V- and W-cycles is approximately the same 

at a factor of over 20. With three grid levels, the use of a W-cycle leads to convergence 
in less than half the time required by using a V-cycle. With four grid levels, the 

time required to reach convergence is roughly the same. This indicates that the lower 

convergence rates attained by the W-cycle are balanced by the extra work required. 
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Table 6.12: Summary of second-order results for calculations with 
multigrid scheme of subsonic flow around NACA 0012 aerofoil. 

V cycle W cycle 
level ACR cycles SCT ACR cycles SCT 

1 0.998 6269 22.33 0.998 6269 23.20 
2 0.977 443 7.59 0.977 443 7.88 
3 0.941 166 2.93 0.840 58 1.23 
4 0.845 60 1.04 0.797 45 1.00 
5 0.838 57 1.00 0.795 44 1.00 

The reason for this behaviour may be that the grid level 4 is close to being too coarse, 

so that the extra time spent by the W-cycle on this level is not useful. This is confirmed 
by the data compiled in Table 6.12, which indicates that using an additional fifth grid 
level does not lead to a further acceleration for the W-cycle, and only a very small 
improvement for the V-cycle. 

It is interesting to note that the convergence of the single-grid scheme is considerably 
faster than that obtained for the subsonic bump flow. This comparison is justified since 

the two cases are specified by the same inflow and freestream conditions, respectively, 

and because the two grids contain approximately the same number of unknowns. The 

main reason for the faster convergence is almost certainly the imposed static pressure 

at the outflow for the bump calculations, which leads to outgoing waves being reflected. 

6.4.2 Transonic Case 

The transonic case is specified by M,,,, = 0.8 and a=1.25°. The point-vortex correction 

as described in Section 3.11 is applied at the outer boundary. 

The contours of pressure are shown in Fig. 6.43. The strong shock on the upper 

surface and the weak shock on the lower surface are well captured. The variation of the 

pressure coefficient and entropy parameter are depicted in Fig. 6.44. 

The computed values of lift, drag, and moment coefficients are 0.3512,0.02112, and 

-0.04181. These values agree quite well with other results published in the literature. 
A comparison with other published results [3,6,9,11,13,15] for lift and drag coefficients 
is shown in Fig. 6.45. It can be seen that while the present value for the lift coefficient 
lies well within the range of other results, the value for the drag coefficient is somewhat 
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Table 6.13: Summary of second-order results for calculations with 
multigrid scheme of transonic flow around NACA 0012 aerofoil. 

V cycle W cycle 
level ACR cycles SCT ACR cycles SCT 

1 0.995 2022 5.98 0.995 2022 8.54 
2 0.944 191 4.30 0.944 191 3.65 
3 0.896 100 1.38 0.844 65 1.40 
4 0.867 77 1.06 0.771 43 1.00 
5 0.859 72 1.00 0.779 44 1.09 

lower. 

The convergence of the agglomeration multigrid method for the transonic case is 

shown in Fig. 6.46. The corresponding average convergence rates and scaled CPU 

times are listed in Table 6.13. 

The speed-up afforded by the use of 5 multigrid levels is about a factor of 6 for 

V-cycles and about 8.5 for W-cycles. The lowest convergence rate achieved is about 

0.77. 

6.4.3 Conclusions 

Relative to the goals specified for this test case, the conclusions are: 

1. The solution method gives accurate results for external flows. 

2. The use of W-cycles in the agglomeration multigrid method leads to substantially 

higher speed-up for the transonic case than the use of V-cycles, whereas there is 

little difference for the subsonic case. 

6.5 Closure 

The main conclusions drawn from the results presented in this chapter can be sum- 

marised as follows: 

1. For inviscid flows, the solution quality on triangular and quadrilateral grids is 

similar. 
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2. Triangular grids obtained by inserting additional edges into'a quadrilateral grid 

entail higher computational cost and do not lead to increased accuracy. 

3. The convergence rates without multigrid are similar for first-order accurate solu- 
tions on triangular and quadrilateral grids. For second-order accurate solutions, 
the convergence rates without multigrid on triangular grids are comparable to 

those on quadrilateral grids on average. 

4. The agglomeration multigrid scheme works well for inviscid flows. The lowest 

convergence rates obtained for first- and second-order accurate solutions are ap- 

proximately 0.5 and 0.75, respectively. 

5. The agglomeration multigrid scheme performs better on the triangular grids for 

most cases. This seems to be a consequence of stronger coupling among the 

solution variables rather than higher dissipation. 

Having validated the solution method and demonstrated that accurate results are 

achieved for inviscid flows, attention is turned to laminar flows in the next chapter. 
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frei 

Figure 6.37: Solution domain and boundary conditions for inviscid flow 

over NACA 0012 aerofoil. 
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Figure 6.38: Triangular grid used for inviscid flow over NACA 0012 
aerofoil. 
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Figure 6.39: Contours of pressure for second-order solution of subsonic 
flow around NACA 0012 aerofoil (0.667,0.830; 15). 
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Figure 6.40: (a) Pressure coefficient and (b) entropy parameter for 
second-order solution of subsonic flow around NACA 0012 aerofoil. Inset 
in (a) shows slight asymmetry in solution near vicinity of trailing edge. 
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Figure 6.41: The five grid levels used in assessment of agglomeration 
multigrid scheme for flow around NACA 0012 aerofoil. 
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Figure 6.43: Contours of pressure for second-order solution of transonic 
flow around NACA 0012 aerofoil (0.398,1.010; 15). 
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Chapter 7 

Application of Method to 

Laminar Flows 

The numerical method is applied to laminar flows on triangular, quadrilateral, and 
mixed grids. The first test case considers the laminar flat plate and is used to 

establish the accuracy of the method. The second test case involves the separated 
flow over the NACA 0012 aerofoil and compares the accuracy on triangular and 
quadrilateral grids through a grid-refinement study. 

7.1 Introduction 

Having demonstrated that the solution method gives accurate results for inviscid flows, 

attentionýis turned to the application of the solution method to laminar flows. The 

computation of laminar flows is typically considered to be straightforward compared 

to the computation of turbulent flows, since there are no uncertainties regarding the 

mathematical model employed. Despite the apparent simplicity, there are many subtle 

issues which are not always appreciated, as the detailed studies of Allmaras [1], Mac- 

Cormack and Candler [6], and Venkatakrishnan [7] showed. For this reason, detailed 

numerical studies on two laminar flows are carried out in this chapter. These test cases 
include the boundary layer on a flat plate and the separated flow over the NACA 0012 

aerofoil. Specific issues are investigated for each test case. 

7.2 Flat-Plate Boundary Layer 

The most useful test case which may be used as a first test of the discretisation of the 

viscous fluxes is the incompressible flow of a uniform freestream over a semi-infinite 
flat plate at zero incidence. The usefulness of the test case stems from the fact that a 

287 
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theoretical solution may be derived, which allows the accuracy of the numerical method 

to be analysed rigorously. 

7.2.1 Theoretical Solution 

For incompressible flow and by invoking the thin-shear layer approximation [8], the 

Navier-Stokes equations may be simplified to the boundary-layer equations 
au av 
57+ay_ 0 (7.2.1a) 

2 

8t+uý +vu=vu (7.2.1b) 
y y2 

with the boundary conditions u=v=0 at y=0 and u=V,,,, at y= oo. 

The lack of a characteristic length scale means that the solution must be self-similar. 

By introducing the similarity coordinate 

'1 2ý 
Rex (7.2.2) 

where 

Re-, = 
Vvx (7.2.3) 

and the stream function 

o= V"Xv f (71), (7.2.4) 

Eq. (7.2.1a) is satisfied identically and Eq. (7.2.1b) may be written as 

ff"+f'=0, (7.2.5) 

with the boundary conditions f= f' =0 at i=0 and f' =2 at q= oo. The superscript 
(")' denotes differentiation with respect to rj. 

Blasius [3] solved Eq. (7.2.5) numerically using asymptotic expansions. Values of f 

and f' were tabulated by White [8]. The velocity components follow from the definition 

of the stream function as 

u= fe(il) (7.2.6a) 
Vý 

V_1r 
Voo 2 Rey `ýf'(rl) -f (rl)) (7.2.6b) 

and the thickness S-defined to be the vertical distance at which u=0.99V00-and 
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Figure 7.1: Solution domain and bourl<lary conclitiolis for laminar flow 
over a flat plate, at zero incidence. 

friction coefficient are given by 

5.0 
(7.2.7) 

.ý Re,. 

and 

_ 
0.664 

C 7.2. E 

respectively. 

It is important to note that Eq. (7.2.8) is usually regarded as a theoretical solution 

to the Navier-Stokes equations, despite it being a numerical solution of the boundary- 

layer equations. This point of view is justified since experiments have been shown to 

agree very well with the velocity distributions given by Eqs. (7.2. Ga) and (7.2. Gb), see, 

e. g., White [8]. 

7.2.2 Numerical Solutions 

The solution domain is depicted in Fig. 7.1. As indicated, the plate is of length L and 

the upper boundary is located at L/2. The upper boundary is modelled as a symmetry 

boundary. The freestreani Mach number is M,,, = 0.5. This value should be high 

enough to prevent convergence and accuracy problems with the solution method while 
being sufficiently low to avoid a marked influence of compressibility on the results. The 

symmetry condition 
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Table 7.1: Summary of grid characteristics for numerical study of lam- 
inar flow over a flat plate. 

grid vertices edges triangles quadrilaterals 
triangular 4472 13123 8652 - 

quadrilateral 4472 8797 - 4326 
mixed 3227 6649 573 2850 

Reynolds number is 

Reg = 
Loo L=6.25.104 

v 

for all calculations, giving a fractional thickness of the boundary layer at the outflow 

boundary of 5/L = 0.02, which is believed to be small enough to reduce to negligible 

levels the effect of the symmetry boundary on the boundary-layer development. It is 

noted that the specification of uniform flow conditions at the inflow boundary leads to 

a singularity at the leading edge of the plate. 

The triangular, quadrilateral, and mixed grids shown in Fig. 7.2 were used in the 

computational study. Their characteristics are listed in Table 7.1. At the inflow bound- 

ary, the grid spacing of the mixed grid in the y-direction is less than for the trian- 

gular and quadrilateral grid. Towards the outflow boundary, the grid spacing in the 

y-direction is approximately the same for all grids. At the outflow boundary, there are 

roughly 14 grid points in the boundary layer. It is noted that the use of triangles of 

rapidly increasing size away from the plate in the mixed grid leads to a substantial 

reduction of the number of vertices and edges. The mixed grid was generated using the 

CENTAUR package [5]. 

The objectives of the calculations were: 

1. to compare the accuracy of the numerical solutions on the triangular, quadrilat- 

eral, and mixed grids, 

2. to assess the thin-shear-layer approximation given by Expressions (4.4.7a) and 
(4.4.7b). 

Influence of Grid Type. The variation of the skin-friction coefficient along the 

plate Jor the three grid types is compared with the theoretical solution in Fig. 7.3. 
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(a) 

(b) 

(c) 

Figure 7.2: Grids used for laminar flow over flat plate. (a) Triauugutlar 

grid, (b) (IIiadrilateral grid, and (c) mixed grid. 

The discrepancies near the leading edge are due to the aforementioned singularity; the 

somewhat finer grid spacing in the y-direction on the inixed grid reduces the effect 

of the singularity. Beyond the leading edge, the agreement between the theoretical 

solution and the results on the quadrilateral and the mixed grids is very good. Close 

inspection of' Fig. 7.3 reveals that the level of skin friction is slightly too high, but the 

slope of the numerical results is very close to that given by the theory, indicating that 

the rate of growth of the boundary layer is predicted correctly. It is noted that the use 

of logarithmic scaling magnifies the very slight discrepancies. With linear scaling, as 

commonly employed by other authors, the differences would be virtually indiscernible. 

On the triangular grid, the skin-friction coefficient requires a longer distance to apt)roacli 
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Figure 7.3: Comparison of theoretical solution for skin-friction coef- 
ficient with solutions obtained on triangular, quadrilateral, and mixed 
grills. 

the theoretical curve. 

The comparison of the velocity profiles in similarity coordinates on the triangular, 

quadrilateral, and mixed grids is shown in Figs. 7.4 7.6. It may be seen that agreement 

with the theoretical solution is very close on the quadrilateral and mixed grids, whereas 

the solution on the triangular grids exhibit relatively large errors. Close inspection of 

the profiles of normalised u-velocity reveals slight overshoots -readily visible in the nor- 

inalised v-velocity profiles- which are indicating excessive numerical smoothing. The 

comparison of the velocity profiles on the quadrilateral and mixed grids shows very 

close agreement. This demonstrates that mixed grids can attain the Same accuracy as 

quadrilateral grids while taking advantage of triangles of rapidly increasing size away 
frohe solid walls to reduce the numbers of vertices and edges. It is clear from Fig. 7.2 

that fewer layers of quadrilateral cells could have been generated, leading to an even 

greater saving of vertices and edges. 
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Figure 7.5: Comparison of numerical solution on quadrilateral grid for (a) 'u-velocity and (b) v-velocity with theoretical solution at four loca- 
tions along flat plate. 
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Figure 7.7: Comparison of convergence on triangular, (luadrilateral, 

and riiixed grids in terms of normalised CPU time for laminar flow over 
flat plate. 

It is of sonne interest to compare convergence histories obtained on the triangular, 

quadrilateral, and mixed grids in relation to the CPU time. This is done iii Fig. 7.7, 

where the abscissa represents the CPU time on a given grid type for a fixed number of 

iterations divided by the CPU time oil the mixed grid. It can be seen that the cost of 

the solutions on the triangular and quadrilateral grids are approximately 1.8 and 1.3 

tunes larger than that oil the mixed grid, respectively. As tray be inferred from Table 

7.1, these numbers approximate the ratios of edges in the triangular and quadrilateral 

grids with respect to the edges in the mixed grid. Interestingly, the convergence on the 

nhixed grid is not as good as that oil the quadrilateral grid. The most likely explanation 

for this difference is the higher grid resolution at the leading edge. Other, less likely 

causes, are the interface between the quadrilateral and triangular cells and the very 

large cells towards the symmetry boundary. 
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Figure 7.8: Comparison of theoretical solution for skin-friction coef- 
ficient, with solutions obtained with thin-shear-layer approximation on 
triangular, (1u? (lril: tteral, and mixed grids. 

Assessment of Thin-Shear-Layer Approximation. The skiii-friction coefficients 

obtained with the thin-shear-layer approximation oil the triangular, quadrilateral, and 

mixed grids are compared with the theoretical variation in Fig. 7.8. The variations on 

the quadrilateral and mixed grids closely match those obtained with the full viscous 

fluxes shown in Fig. 7.3. The variation on the triangular grid shows increased discrep- 

ancies compared to that obtailled with the fill] viscous fluxes aiid agreement with the 

theoretical variation is only fair. 

These observations are reflected in the agreement between the computed and theo- 

retical velocity profiles depicted in Figs. 7.9-7.11. On the triangular grid, the trends are 

opposite to those exhibited by the full viscous fluxes in that the iioriiºalised u-velocity 
is over-predicted and the normalised v-velocity is under-predicted. The discrepancies in 

the norinalise(l v-velocity are particularly pronounced, reflecting the wrongly predicted 
level of growth and hence incorrect slope of the skin-friction coefficient in Fig. 7.8. On 
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the quadrilateral and mixed grids, the agreement with theory is very good. 
The reason for the relatively poor results on the triangular grid is due to the approx- 

imation of the normal derivative using only the divided difference along the edge. On 

highly stretched triangular grids, it is impossible to approximate the normal derivative 

accurately without employing an approximation of the tangential derivative along with 

the divided difference along the edge. 

The agreement obtained with the thin-shear-layer approximation on the quadrilat- 

eral and mixed grids indicates that it may be regarded as the extension of the tradi- 

tionally used approximation to unstructured grids. As already stated in Section 4.4.1, 

the form of the thin-shear-layer approximation developed in the present work has the 

advantage that it does not require knowledge of the coordinate directions normal and 

tangential to a solid boundary. 

7.2.3 Conclusions 

Based on the results presented above, the following conclusions may be drawn: 

1. The accuracy of the results obtained on quadrilateral and mixed grids is approx- 

imately the same and very close to the theoretical solution. The solution on the 

mixed grid is obtained at a lower computational cost. 

2. The accuracy of the results obtained on the triangular grid is lower than that on 

the quadrilateral and mixed grids. 

3. The results provide justification for the assertion that mixed grids combine the 

established accuracy of structured (quadrilateral) grids with the geometric flexi- 

bility of unstructured (triangular) grids. 

4. The thin-shear-layer approximation delivered results which are very close to those 

of the full viscous fluxes on quadrilateral and mixed grids. 

5. On the triangular grid, the thin-shear-layer approximation lead to relatively poor 

agreement with the theoretical solution. The disagreement is attributed to the 

discretisation on highly stretched triangular grids. 
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7.3 NACA 0012 Aerofoil 

The second test case is the laminar flow about the NACA 0012 aerofoil at a Mach 

number of M,,,, = 0.8, an angle of attack of a= 10°, and a Reynolds number of 
Rem = 500. This flow was part of a GAMM workshop [4] as test case A2. 

At the conditions stated above, a large separation bubble exists on the upper surface. 
The challenge posed by this test case is that separation occurs on a curved surface rather 

than being fixed by a sharp corner. To capture the separation point accurately, the 

deceleration of the boundary layer approaching the separation point must be captured 

precisely. 

The solution domain is depicted in Fig. 7.12. The outer boundary is located at 

approximately 10 chords. The far-field point vortex correction described in Subsection 

3.11.2 is applied. 

The goal of this test case is two-fold: 

1. To further study the numerical accuracy obtained on triangular and quadrilateral 

grids for viscous flows. The large separation bubble makes this test case more 

challenging than the flow over the flat plate considered in the previous section. 

2. To assess the thin-shear-layer approximation under more severe conditions. 

Because there exists no analytical solution for this test case, the accuracy of the 

numerical solutions is assessed by a grid-refinement study. The triangular grids are 

created by inserting additional edges into the quadrilateral grids. The characteristics 

of the four telescoping grid levels are listed in Table 7.2. The primal and dual medium 

triangular and quadrilateral grids are shown in Figs. 7.13 and 7.14, respectively. Note 

that the additional edges in the triangular grids are inserted such that the approximate 

symmetry of the grids is preserved. 

The solutions are compared using the lift and drag coefficients. The coefficients are 

considered to consist of inviscid and viscous contributions, and are given by 

CL =- 
)[ [Cp (nx sin a- ny cos a) + Cl (tx sin a- ty cos a)] ds (7.3.1a) 

CD = 
J[Cp 

(nx cos a+ ny sin a) + Cj (tx cos a+ ty sin a)) ds (7.3.1b) 
-- - ---------- CDp CD1 
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fre, 

Figure 7.12: Solution domain and boundary conditions for laminar flow 

about NACA 0012 aerofoil. 

Table 7.2: Summary of grid characteristics used in grid-refinement 
study for subsonic laminar flow about NACA 0012 aerofoil. 

triangular grid quadrilateral grid 

level vertices edges cells edges cells 
base 291 803 512 547 256 

coarse 1094 3142 2048 2118 1024 
medium 4236 12428 8192 8332 4096 

fine 16664 49432 32768 33048 16384 
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Figure 7.13: Primal and dual medium triangular grids used in grid- 
refinement study for laminar subsonic flow about NACA 0012 aerofoil. 
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Figure 7.14: Primaland dual medium quadrilateral grids used in grid- 
refineineiºt study for launiuar titibsonic flow about NACA 0012 aerofoil. 
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where the pressure coefficient is defined in Eq. (6.4.2) and the skin-friction coefficient 

Cf is defined as 

Twa11 Cf 7.3.2) 
o 

ZPoo 
co 

where the wall shear stress Twa, Ii is evaluated from Eq. (4.4.14). Since the flow features 

a large separation bubble, it is of interest to compare the positions of the separation 

and re-attachment points computed on the various grids. 

7.3.1 Grid-Refinement Study 

The influence of the grid type is investigated by carrying out a grid-refinement study as 

stated above. On the triangular grids, the discretisation of the viscous fluxes developed 

in Chapter 4 is compared to the well-established Galerkin finite-element discretisation 

of the viscous fluxes on triangular grids. 

Influence of Grid Type. The Mach-number contours, plots of the streamlines on the 

fine grid level, and the behaviour of the pressure and friction coefficients are depicted 

in Figs. 7.16-7.20 for the quadrilateral and the triangular grids with the finite-volume 

and finite-element discretisation of the viscous fluxes. For the quadrilateral grids, the 

variations on the coarse level are already quite close to that on the fine level. For the 

triangular grids, only the variations on the medium level are approximately as close. 

The lift and drag coefficients on the quadrilateral and triangular grids are plotted 

against the inverse of the square root of the number of vertices on the grid levels in Fig. 

7.21. A number of interesting points can be made from this figure: 

1. There is virtually no difference between the finite-volume and finite-element dis- 

cretisations of the viscous fluxes on the triangular grids, thus confirming the va- 

lidity of the finite-volume discretisation and its implementation. 

2. The values of lift and drag coefficients on the finest levels are very close on the 

quadrilateral and triangular grids. Since the values on the finest levels are not 

equal to those on the medium levels, the former cannot be claimed to be strictly 

grid-independent. However, since the differences between the finest and medium 

levels are much smaller than those between the medium and coarse levels, it is 
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(a) 

(b) 

Figure 7.15: (a) Mach contours (0.0,1.110; 15) and (b) streamlines with 
finite-volitiºie discretisation of vi5coii5 fluxes on fine level quadrilateral 
grid. 
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(a) 

(b) 

309 

Figure 7.17: (a) Mach contours (0.0,1.110; 15) and (b) streamlines with 
finite-vollilt e (liscretisatiou of viscous fluxes on fine level triangular grid. 
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Figure 7.18: Behaviour of (a) pressure coefficient and (b) skin-friction 
coefficient with grid refinement on triangular grids with finite-volume 
discretisation of viscous fluxes. 
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(a) 

(b) 

Figure 7.19: (a) Mach number contours (0.0,1.110; 15) and (b) stream- 
lines with finite-element diseretisation of viscous fluXes on fine level tri- 
angular grid. 
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reasonable to assume that the results on the finest levels are close to grid indepen- 

dence. It is also of interest to note that the convergence of the lift coefficient on 

the quadrilateral grids is non-monotone. Such behaviour was observed by other 

researchers carrying out grid-refinement studies, see, e. g., Zingg et al. [9], and 
does not indicate numerical anomalies in the present solutions. 

3. Whereas the difference between the lift coefficients on the base and fine levels of 

the quadrilateral grids is much smaller than that of the triangular grids, there 

are only small differences between the drag coefficients. The explanation for this 

difference in behaviour may be found in Fig. 7.22. On the coarse and medium grid 

level, the contribution of the pressure drag on the triangular grids is higher than 

that on the quadrilateral grid, but is compensated for by a lower contribution of 

the friction drag. 

It is interesting to consider how the third observation concerning the relative impor- 

tance of pressure and friction drag contributions on the triangular grids is connected to 

the level of numerical dissipation. Previous results indicated that the level of numerical 

dissipation was higher on the triangular grids. This seems to be in contradiction to Fig. 

7.23, which indicates that separation positions are closer to the trailing edge on coarser 

grids, on which there is more numerical dissipation. Since the separation positions on 

the triangular grids are closer to the leading edge, this could be taken to mean that 

the solutions on the quadrilateral grids are more heavily contaminated by numerical 

dissipation. That this is not the case may be seen from the observation under Point 3, 

namely that the difference between the friction drag coefficients on the triangular and 

quadrilateral grids is not as large as that between the pressure drag coefficients. This 

is also easily seen from the distribution of the pressure coefficient in Figs. 7.16,7.18, 

and 7.20. On the base and coarse levels of the triangular grids, there is a relatively 

large adverse pressure gradient. By comparison, the adverse pressure gradient on the 

base and coarse levels of the quadrilateral grid is much smaller. This indicates that the 

extent of the separation bubble is dominated by the pressure forces. 

Assessment of Thin-Shear-Layer Approximation. The performance of the thin- 

shear-layer approximation is assessed by performing a grid-refinement study on the 
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(7.3.1f)). 

saiiie grids as used above and comparing the results with those obtained for the full 

VISCOUS fluxes. 

Before discussing the results, it nmst be remarked that the computation of a sepa- 

rated flow at a very low Reynolds number constitutes it very severe test for the thin- 

shear-layer approximation, as the flow conditions basically invalidate the assumptions 

made in its derivation. For this reason, the relative importance of the terms appearing 

in the viscous fluxes will be investigated in detail. 

Quadrilateral Grids. The behaviour of the lift and drag coefficients with grid refinement 

with the thin-shear-layer approximation is compared in Fig. 7.24 to the previously 

discussed results obtained with the full viscous fluxes. It is seen that the variation of 

the lift coefficient predicted by the approximate form of the viscous fluxes is very close 

to that obtained with the full form. For the drag coefficient, agreement is not quite as 

1 aso 
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close, but still unexpectedly good. 

Tue reason for the better than expected agreement may be found frone Figs. 7.25 

and 7.26, which show the relative importance of the three terms in Expressions (4.4.4a) 

and (4.4.41) along normals emanating from the upper surface of the aerofoil at x=0.2 

and x_0.7, respectively. The former position is about midway between the leading 

edge and the separation position, and the latter position is within the separation bubble. 

The variations show clearly that the first terms in Expressions (4.4.4a) and (4.4.4b) are 

dominant. This explains the good agreement, since the thin-shear-layer approximation 

developed within the present work treats this term exactly. 

The behaviour of the separation and reattachment positions computed with the 

thin-shear-layer approximation is compared in Fig. 7.27 to that obtained with the full 

viscous fluxes. Overall agreement is once again surprisingly good. 

i 
mration 
)ubble 

Triangular Grids. The behaviour of the lift and drag coefficients with grid refinement 
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Figure 7.27: Behaviour of separation and reattachment positions with 
grid refinement, for full viscous fluxes and thin-shear-layer approximation 
on quadrilateral grids. Legend as shown in Fig. 7.24. 

with the tliiii-shear-layer approximation is compared in Fig. 7.28 to the previously dis- 

cussed results obtained with the full viscous fluxes. In contrast to the results on the 

quadrilateral grids, the differences are quite large with the thin-shear-layer approxinia- 

tion, leading to higher values for the lift and drag coefficients. 

These differences are reflected in the behaviour of the separation and reattachment 

positions with grid refinement, as depicted in Fig. 7.29. It is seen that the thin-shear- 

layer approximation leads to separation positions which are considerably closer to the 

leading edge. The reattachment positions are predicted to be very close to those of the 

full viscous fluxes. 

The reason for the poor performance of the tliiii-shear-layer approximation was 

already discussed in the section on the calculations of the lanºiiiar boundary layer oil a 

flat plate. 
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7.3.2 Assessment of Multigrid Acceleration 

The effect of iiiultigricl on the acceleration of convergence is investigated for both tri- 

angular and quadrilateral grids. The coarse-grid levels delivered by the agglomeration 

innltigri(l method are shown together with the finest grid level in Fig. 7.30 and 7.31. 

The accompanying characteristics of the grid levels are listed in Table 7.3. 

In all the computations shown below, W-cycles were used with the unlimited linear 

prolongation operator, 2 pre-sinootliilg steps, 4 post-smoothing steps, and 8 iterations 

on the coarsest grid level. 

The results, are summarised in Table 7.4. For a single grid, the quadrilateral grid 

converges in fewer iterations tliaiº the triangular grid. As with the previous applications, 

the acceleration afforded by the uiultigrid scheme is larger on the triangular grid than 

the ctuadrilateral grid. This is despite the fact that only four grid levels could be used 

for the triangular grid. This is surprising, because the characteristics of the coarser 
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Figure 7.30: The 5 grid levels used in assessment of agglomeration 
multigrid scheme for laminar flow around NACA 0012 aerofoil on trian- 
gular grid. 
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Figure 7.31: The 5 grid levels used in assessment of agglomeration 
multigrid scheme for laminar flow around NACA 0012 aerofoil on quadri- 
lateral grid. 
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Table 7.3: Summary of characteristics for the 5 grid levels used in as- 
sessment of agglomeration multigrid scheme for laminar flow around 
NACA 0012 aerofoil. 

triangular grids quadrilateral grids 

level vertices edges vertices edges 
1 16664 49432 16664 33048 
2 4235 12426 4235 8352 
3 1091 3136 1093 2118 
4 287 793 290 547 
5 78 200 80 144 

Table 7.4: Summary of results for multigrid scheme applied to laminar 
flow about NACA 0012 aerofoil. 

triangular grid quadrilateral grid 
level ACR cycles SCT ACR cycles SCT 

1 0.999 7871 19.13 0.999 7348 15.65 
2 0.970 251 4.71 0.968 233 3.85 
3 0.870 55 1.17 0.900 73 1.37 
4 0.798 34 1.00 0.860 51 1.02 
5 diverged 0.858 50 1.00 

grid levels generated from the triangular and quadrilateral grids are very similar. The 

difficulties with the multigrid scheme on the triangular grid already appeared with 

four levels, since the number of post-smoothing iterations had to be increased to 6 

for the multigrid scheme to converge. It is assumed that this indicates problems with 

the reconstructed corrections. In this context, it is interesting to note that the use of 

an increased number of post-smoothing iterations was found to be more effective than 

limiting the corrections. The accompanying convergence histories are shown in Fig. 

7.32. 

7.3.3 Conclusions 

The calculations of the separated flow over the NACA 0012 aerofoil lead to the following 

conclusions: 

1. The grid-refinement study revealed that the results on the finest level of the 

triangular and quadrilateral grids are very similar. 
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2. The finite-volume and finite-element discretisations of the viscous fluxes on the 

triangular grid give virtually identical results, thus validating the discretisation 

of the viscous fluxes developed in the present work. 

3. On quadrilateral grids, the thin-shear-layer approximation leads to results which 

are very close to those obtained with the full viscous fluxes. This is surprising, 

since the conditions of the test case basically invalidate the assumptions tradi- 

tionally made in deriving the thin-shear-layer approximation. 

4. On triangular grids, the thin-shear-layer approximation does not lead to good 

agreement with the results obtained with the full viscous fluxes, as already ob- 

served for the laminar boundary layer on a flat plate. 

5. The agglomeration multigrid scheme was found to work well, leading to speed-ups 
between 15 and 20 on the quadrilateral and triangular grids, respectively. 
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7.4 Closure 

The main points of the results presented in this chapter are: 

1. The accuracy of the results on quadrilateral and mixed grids is approximately the 

same. The solution on the mixed grids was obtained at a lower computational 

cost. 

2. The accuracy on triangular grids is lower than that on quadrilateral grids for 

viscous flows. 

3. The thin-shear-layer approximation gives solutions which are very close to those 

obtained with the full viscous fluxes on quadrilateral and mixed grids. 
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Chapter 8 

Application of Method to 

Turbulent Flows 

The numerical method is applied to turbulent flows on triangular, quadrilateral, and 
mixed grids. Two cases are computed, both of which entail shock-wave/boundary- 
layer interactions. ' The first test case involves the transonic flow over a bump in 
a channel. The second test case considers the transonic flow about a supercritical 
aerofoil. For both cases, good agreement is obtained between the computational 
results and experimental data. 

8.1 Introduction 

The final computations to be carried out deal with turbulent flows. The two cases 

considered involve interactions of turbulent boundary layers with shock waves in the 

flows over a bump in a channel and past a supercritical aerofoil. These so-called shock- 

wave/boundary-layer interactions are highly important in many industrial applications. 
Their 'significance stems from the steep rise in pressure and temperature through the 

shock wave, which leads to rapid thickening, and possibly separation, of the boundary 

layer as well as to high heat-transfer rates. 

The most prominent example of shock-wave/boundary-layer interaction is the flow 

past the wing of a transport aircraft at cruise conditions, see, e. g., Fig. 1.1(b). This 

particular problem received a lot of attention in the 1960's because the drag divergence 

caused by boundary-layer separation at high cruise speeds prevented economical oper- 

ation of transport aircraft. The resolution of this problem was the supercritical aerofoil 
developed by Richard Whitcomb at NASA Langley in 1965. However, Delery [6] pointed 

out that there are many other areas, such as intakes, nozzles, turbomachinery blading, 

missiles, and spacecraft, which ensure that shock-wave/boundary-layer interaction is 
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still very important today. 

The main challenge in computing shock-wave/boundary-layer interaction is the cor- 

rect prediction of the interaction strength. The burden of meeting this challenge rests 

mainly with the turbulence models. Given the known limitations of simple turbulence 

models, such as the Spalart-Allmaras [18] model employed in the present work, the goal 

of computing the two cases is to attain the same level of agreement as that reached in 

previous applications of the Spalart-Allmaras turbulence model. 

The relevance of the flow over a bump in a channel-apart from intakes of high- 

speed aircraft-is that this geometrical configuration resembles an aerofoil suction side, 

an afterbody, or a propulsive nozzle. 

8.2 ONERA Bump Case C 

The first test case for turbulent flow is the transonic flow over a bump in a channel 

investigated experimentally by Delery et al. [7]. The geometry of the bump and channel 

is shown in Fig. 8.1. The main feature of the test case is the extended separation region 

caused by the strong interaction of the boundary layer with the shock wave. As is 

characteristic of strong interactions of shock waves with turbulent boundary layers, the 

shock wave resembles the Greek letter A, and is thus usually referred to as a A-shock, 

see Ackeret et al. [1]. 

The test case of Delery et al. was used in numerous projects and workshops, most 

notably in the EUROVAL [15] and ETMA projects [8], and recently in an ERCOFTAC 

workshop [3]. 

The boundary conditions used in the present computations are shown in Fig. 8.1. 

The channel walls are taken as adiabatic. The outlet static pressure is not chosen to be 

the same as the experimental value. Rather, the outlet static pressure was specified such 
that the computed position of the shock wave coincided with its experimental position. 
The reasoning behind this commonly employed procedure is that the identical shock 
locations allow the solution in the separation and recovery regions to be compared with 
the experimental data. Further justification for not matching the experimental static 

pressure at the outlet is that the two-dimensional computation cannot take into account 
the influence of the channel side walls in the experiment. 
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Table 8.1: Summary of grid characteristics for numerical study of tur- 
bulent flow over ONERA bump. 

grid vertices edges triangles quadrilaterals 

triangular 15616 46359 30744 - 
quadrilateral ' 14641 29040 - 14400 

mixed 15616 32809 3644 13550 

At the inlet, no attempt was made to specify profiles of the flow variables. Previous 

computations by other researchers, e. g., those carried out as part of the EUROVAL 

project [15], indicated that the influence of the inlet conditions on the solution was 

negligible. 

8.2.1 Numerical Solutions 

The computations are carried out on triangular, quadrilateral, and mixed grids. Their 

characteristics are listed in Table 8.1. Note that the quadrilateral and the mixed grids 
have approximately the same number of unknowns. 

The quadrilateral grid shown in Fig. 8.2(b) was provided as part of the ERCOFTAC 

workshop [3]. 

The mixed grid is depicted in Fig. 8.2(c). It was generated with the CENTAUR 

grid-generation package [13]. The lower and upper walls are represented by 148 and 125 

vertices, respectively. The near-wall regions are discretised by 50 layers of quadrilateral 

cells, with a near-wall spacing of 2.10-6 m and a growth rate of 1.15. This gives the 

same near-wall resolution in the normal direction as for the quadrilateral grid, which 

was shown to produce nearly grid-independent solutions in previous studies, see, e. g., 
Batten et al. [3]. For this reason, no grid-refinement studies will be shown here. 

The triangular grid shown in Fig. 8.2(a) was produced by inserting edges into the 

quadrilateral cells of the mixed grid. These edges are inserted so that their orientation 
is random, which avoids a possible influence of a unique orientation on the results. 

The value of y+ is approximately 2 along the lower wall for all grids. 

Overall Flowfield. The computed pressure and Mach-number contours on the three 

grid types are depicted in Fig. 8.3. The A shock-structure is quite weak, in contrast 
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(a) 

(b) 

(c) 

Figure 8.2: (a) Triangular, (b) quadrilateral, and (c) mixed grids used 
for computation of turbulent flow over ONERA bump. 
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to that in the experiment. The lack of the second leg of the A-shock was observed in 

previous simulations with the Spalart-Allmaras turbulence model, see, e. g., the EROCF- 

TAC workshop [3], and with many other turbulence models. The rapid thickening of 

the boundary layer following the interaction with the shock wave is apparent from Fig. 

8.3. 

A more detailed view of the interaction region may be obtained from the interfero- 

gram presented by Delery et al. The comparison of a numerically generated interfero- 

gram, see, e. g., Samtaney [17], of the solution on the mixed grid with the experimental 

interferogram is shown in Fig. 8.4. The numerical interferogram was generated by 

plotting the integer quantity Ii, given by 

It -Inf 
pi - mini pi 1, 

F1 mod 2, 
maxi pi - mini pi J2 

where nf denotes the number of fringes to be drawn; in the present case nf= 128. 

Qualitative agreement between the numerical and experimental interferogram is good. 

The normalised pressure on the upper and lower walls is plotted in Fig. 8.5. The 

agreement with experimental values in front of and at the shock wave is good for all 

grids, as must be expected. In the interaction region and beyond the shock wave, 

agreement is poor in quantitative terms, because the pressure is over-predicted, as 

indeed it must, due to the specification of a value of the outlet static pressure higher than 

in the experiment. In qualitative terms, however, agreement is good, in the sense that 

the difference between the numerical solution and experimental values is approximately 

constant. It should be noted that the quality of the present solution is roughly equivalent 

to that obtained by other researchers using the Spalart-Allmaras turbulence - model at 

the ERCOFTAC workshop [3], who also specified p=0.65po at the outlet. 

The main differences between the different grids is that the shock waves on the 

triangular grid are more smeared than on the quadrilateral and mixed grids. This 

is an indication of increased numerical dissipation, as was already observed in the 

computations of laminar flows. The solutions on the quadrilateral and mixed grids 

are virtually identical. 

For completeness, the numerically computed separation and re-attachment positions 

on the lower walls are compared with the experimental positions in Table 8.2. It is seen 
that the predicted location of the separation point is approximately correct. This is 
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(a) 

J 

\1 

(b) 

(c) 

Figure 8.3: Pressure and Mach titnnber contours for turbulent flow over 
ONERA bump. (a) Pressure contours (0.340,0.796; 41) and Mach nuni- 
ber contours (0.000,1.368; 41) for triangular grid, (b) Pressure contours 
(0.324,0.792; 41) and Mach number contours (0.000,1.374; 41) for qua(lri- 
lateral grid, and (c) pressure contours (0.323,0.809; 41) and Mach nutn- 
ber contours (0.000,1.377; 41) for mixed grid. 

335 
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Figure 8.4: Comparison of niiinerical iiiterferugraiii of' solution on 

mixed grid and experimental interferogram of interaction region for tur- 
bulent flow over ONERA bump. Experimental interferograin obtained 
from Dclery et al. [7]. 

Table 8.2: Comparison of separation and re-attachment positions on 
lower wall for turbulent flow over ONERA bump. 

grid :1 S('7) (ill) Xatt (iii) 

triangular 0.255 0.349 

quadrilateral 0.257 0.345 

mixed 0.257 0.345 

experiment 0.263 0.325 

not surprising, since separation is determined by the shock wave, which is in the same 

position as in the experiment. The position of the re-attachnient point on all grids is 

too far downstream, indicating that the computed separation region is longer than that 

observed in the experiment. The separation region on the triangular grid is larger than 

those computed on the quadrilateral and mixed grids. 

Profiles of Streamwise Velocity and Turbulent Shear Stress. A more detailed 

investigation of the numerical solution requires examination of the agreement with 

experimental values of the streainwise velocity component u and the turbulent shear 

stress -7A7)". The results of the computations will be compared with experimental 

values at the four stations indicated in Fig. 8.6. In this figure, the four stations and the 

extent of the separation bubble in the experiment are superimposed on the computed 

Macli number contours on the mixed grid in order to show the comparison in relation 

to the overall flowfield. Thus, the first two stations are within the separation region, 

the third just beyond the re-attachment point and the fourth further downstream. 

The comparison of the u-velocity profiles at x=0.27 ni and x=0.29 in shown in 
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Figure 8.5: Comparison of numerical solution with experimental values 
of normalised pressure on (a) upper and (b) lower walls for ONERA 
bump. Insets show close-up view of interactioari regions. 
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oo 

°2 0 

extent of separation bubble in experiment 

Figure 8.6: Locations of comparisons of numerical solution for u- 
velocity profiles and turbulent shear stress with experimental values 
siuperiinposed on computed Macli iiuniber contours oii iiiixed grid for 
ONER. A binnp. 

Figs. 8.7 demonstrate that the computations predicts too thin a recirculation region, 

which is consistent with the under-predicted strength of the interaction of the boundary 

layer with the shock wave. It is noted that the computed boundary-layer thickness and 

the computed magnitude of the maximum reverse velocity are approximately correct 

at x=0.27 in and :L=0.29 in. The velocity profiles on the triangular grid show a 

slightly larger reverse velocity at : r, = 0.27 in and x=0.29 in and a larger recirculation 

bubble, which is consistent with the slightly earlier separation point. Figure 8.7 confirms 

that the extent of the separation region is over-predicted as the numerical solutions at 

x=0.33 in still exhibits a small negative velocity. This over-prediction affects the 

agreement at x=0.38 rn, where the computations significantly underestimate the ncar- 

wall streamwise velocity component. 

00 00 
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The turbulent shear stress is computed from Eq. (2.4.14), 

-Uv t+ 
äv 

=t 
(Ty 

TO 

where the eddy viscosity vt is given by the Spalart-Allmaras turbulence model. 

The comparison of the computed and measured turbulent shear-stress profiles in 

Fig. 8.8 reveal that the peak magnitude is generally under-predicted by about a factor 

of two, but the computed locations in the wall-normal direction of the peak magnitude 

are approximately correct. The turbulent shear-stress profiles are also similar in shape 

and magnitude to those presented at the ERCOFTAC workshop [3]. 

Compared to the discrepancies between the numerical solutions and experimental 

data, the differences among the numerical solutions are relatively small. 

The results presented above show that the solutions on the quadrilateral and mixed 

grids are very similar and that the solution on the triangular grid shows signs of more 

numerical dissipation. This is consistent with the observations made in Chapter 7. It 

is interesting to compare the convergence of the calculations for the same number of 

iterations in terms of the CPU time normalised with respect to the CPU time required 

by the mixed grid, as shown in Fig. 8.9. Although the quadrilateral grid required the 

least absolute CPU time due to the smaller number of edges, the mixed grid actually 

converges better in relative terms. As the near-wall resolution of the quadrilateral and 

mixed grids is very similar, the most likely reason for the better convergence is the 

use of triangles in the inviscid portion of the flowfield. In particular, the refinement 

near the shock wave using triangles may lead to a discretisation with better numerical 

properties. The reason for the stalling in convergence on the triangular grid is not 

known. 

8.2.2 Assessment of Thin-Shear-Layer Approximation 

The thin-shear-layer approximation will only be assessed on the mixed grid. This is 

because it was shown in Chapter 7 that the thin-shear-layer approximation does not 

work well on triangular grids, and because the results for the full viscous fluxes on the 

quadrilateral and mixed grids were virtually identical. 

The pressure and Mach-number contours obtained with the thin-shear-layer approx- 
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Figure 8.9: Comparison of convergence on triangular, quadrilateral, 
and mixed grids in teriiis of normalised CPU time for ONERA hiuºip. 

iination are presented in Fig. 8.10. 

The variations of the normalised static pressure on the channel walls obtained with 

the thin-shear-layer approximation are compared with the results for the full viscous 

fluxes and the experimental data in Fig. 8.11. Agreement between the two computations 

is very close, the only slight differences appearing in and downstream of the interaction 

region. Because of the close correspondence between the two solutions, no comparison 

of the streamwise velocity component and the turbulent shear stress will be shown. 

Instead, attention is focussed on assessing the validity of the thin-shear-layer ap- 

proximation in more detail by examining the relative importance of the various terns 

in Expressions (4.4.4a) and (4.4.4b). Compared to the previous investigations of the 

thin-shear-layer approximation for laminar flows, it must be remembered that the use 

of' an eddy-viscosity turbulence model means that the laminar viscosity appearing in 

the Expressions (4.4.4a) and (4.4.4b) is augmented by the eddy viscosity. 

The relative importance of the three ternis in the viscous fluxes in the x- and y- 
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J 

(a) 

(b) 

Figure 8.10: (a) Pressure contours (0.320,0.809; 41) and (b) Mach 

tuunl>er contours (0.000,1.384; 41) of turbulent flow over ONERA bump 

with thin-shear-layer approximation. 

1nomentuln equations along a normal to the lower channel wall at x=0.19 m, i. e., 

close to the throat of the channel, is illustrated in Fig. 8.12. It can be seen that 

approximating term 2 and neglecting term 3 in the x-momentum equations is justified 

as terns 1 is much larger than the other two over the whole boundary layer. Conversely, 

approximating term 2 in the y-moinentuln equation is not justified as it is of the same 

order of magnitude as the first term. Neglecting the third term may be regarded as 

valid. It must also be noted that the terms in the y-momentum equation are roughly 

two orders of magnitude smaller than those in the : c-momentum equation. This means 

that the effect of approximating the second term are probably insignificant, which would 

explain the excellent agreement between the full viscous fluxes and the thin-shear-layer 

approximation at x=0.19 in. 

A more severe test of the thin-shear-layer approximation is the assessment of the 

relative importance of the various terms at x=0.27, i. e., in the interaction region. 

As revealed by Fig. 8.13, the first term in Expression (4.4.4a) clearly outweighs the 

other two, so that the assumptions underlying the thin-shear-layer approximation are 

corroborated. By contrast, the third terns in Expression (4.4.41)) is the largest over 

the whole of the boundary layer, indicating that its neglection cannot be justified. 

The importance of the third terra together with the increased importance of the y- 
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momentum equation-the terms only being one order of magnitude smaller than those 

in the x-momentum equation-is probably the explanation for the slight discrepancies 

observed in the normalised static pressure distribution shown in Fig. 8.11. It should 

also be noted from Fig. 8.13 that the second term in Expression (4.4.4b), i. e., that 

involving the divergence of the velocity vector, contributes more to the flux balance at 

x=0.27 than at x=0.19, which is explained by the influence of the shock wave. 

8.2.3 Assessment of Multigrid Acceleration 

The agglomeration multigrid method did not give a converged solution for this test 

case. It was observed that while the overall flowfield was established very quickly, an 

instability seemed to develop in the interaction region on the lower wall. The instability 

could not be avoided by freezing the turbulence viscosity. 

It is not believed that the present approach of re-discretisation is responsible for 

this failure. It is suspected that the quality of the coarse dual grid is too poor in the 

immediate vicinity of the solid walls on account of the high grid stretching. This could 

be remedied by moving the seed vertices on solid boundaries also. 
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8.3 RAE 2822 Aerofoil Case 10 

The second test case considers the transonic flow around the RAE 2822 supercritical 

aerofoil investigated experimentally by Cook et al. [5]. The computation of transonic 

flows about supercritical aerofoils constitutes a severe test of numerical methods, even 

if the difficulties in modelling the turbulence are ignored, as pointed out by King and 
Johnson [14]. 

Case 10, the most challenging of those investigated by Cook et al., is considered 
here. The experimental conditions are M,,. = 0.75, a... = 3.19°, and Rem = 6.2 . 106. 

The measured force and moment coefficients were CL = 0.743, CD = 0.0242, and 

CM = -0.106. 
Only solutions obtained on quadrilateral grids will be presented. They are included 

to demonstrate the accuracy of the present solution method on a standard test case 

with industrial relevance. It was found to be impossible to generate a mixed grid with 

the same level of near-wall resolution. 

8.3.1 Wind-Tunnel Corrections 

Because of the blockage incurred due to the presence of the model and the upwash 

induced by the wind-tunnel side walls, the flow conditions in the wind tunnel are differ- 

ent from those without obstruction. To account for the differences in the computations, 

the conditions of the wind tunnel are corrected. The importance of wind-tunnel cor- 

rections to obtaining good agreement with experimental data for transonic flows about 

supercritical aerofoils was demonstrated by King and Johnson [14]. 

The corrections employed in the present work are identical to those of the EUROVAL 

workshop [9]. 

Correction of Mach Number and Angle of Attack. The effects of blockage are 

reflected by an increase of the freestream Mach number, 

AM,, = 0.004. (8.3.1) 

To take into account the wall-induced upwash, the experimental angle of attack 

and the aerofoil contour are modified. The angle of attack is changed by adding the 
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correction 

Da =h 
[CLÖO 

+%( 
4L 

+ Cm)] (8.3' 2) 

where c/h is the ratio of chord length to height of the wind tunnel given by 0.25, and /3 

is the Prandtl-Glauert parameter defined by Eq. (3.11.24), evaluated at the corrected 

Mach number. Furthermore, So and 'Si are empirical parameters taking the values 

-0.0654 and 0.1754, respectively. * With these values, the correction to the angle of 

attack is 

Da = -0.62°. (8.3.3) 

As a result, the corrected experimental parameters used in the computations are, 

M,,,, = 0.754, aý = 2.57°, Rem = 6.2.106. (8.3.4) 

Correction of Aerofoil Contour. The measured aerofoil contour tabulated by Cook 

et al. exhibits a slight irregularity at the trailing edge. The irregularity is removed 

by eliminating the point at the trailing edge and extrapolating the upper and lower 

ordinates to x=1.0. The resulting thin but finite trailing-edge thickness is removed 

by an upward adjustment of the lower surface over 0.4 6x61.0, which is smoothly 

blended to zero at x=0.4. This modification is due to Benton [4]. 

Following this modification, the aerofoil contour is modified by adding a camber 

correction to the lower and upper surfaces, 
Ay JJC 2 

_ 
L(hl x(8.3.5) 

c 2j3 `h) c\c 

Substituting the relevant values into Eq. (8.3.5) gives, to three decimal places, 
Ay 

= 0.006 x (1 
- 

X) 
. (8.3.6) 

cc 
Unfortunately, the corrected parameters and profile are not unique in that several com- 

binations of the corrected freestream Mach number, angle of attack, and profile coordi- 

nates can be found in the literature. Furthermore, Spalart and Allmaras [18] corrected 

the Mach number only, and varied the angle of attack to give the value of the lift 

'It is noted that these values differ from those originally quoted by Cook et al. The differences 
arise because later investigations with a viscous-inviscid interaction code (assumed to be capable of 
predicting the pressure distribution on the lower surface correctly) showed better agreement with the 
experiment when the modified values were used [19,20]. 
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coefficient observed in the experiment (they found that a,,,, = 2.52°). 

While the existence of several sets of parameters and profiles is unsatisfactory, this 

is probably not a serious issue. An investigation by Bardina et al. [2] demonstrated 

that the influence of changes in the angle of attack of ±10% with a given turbulence 

model was smaller than that of the turbulence model for a given angle of attack. This 

conclusion was also reached from the results of calculations with the present solution 

method. 

8.3.2 Numerical Solution 

The quadrilateral grid depicted in Fig. 8.15 is used. It consists of 31120 vertices, 61840 

edges, and 30720 cells. The aerofoil surface is represented by 256 vertices. The first grid 

points are located at a distance of 1.10-6 chord lengths from the aerofoil surface. This 

gives an average value of y+ of about unity along both the upper and lower surfaces. 

The freestream boundary is located at between 12 - 20 chord lengths from the leading 

edge of the aerofoil. The grid was kindly provided by Dr. Laurence Wigton [22] to 

conform to the same corrected profile as the EUROVAL grid. Transition was imposed 

at x/c = 0.03 using the dedicated source term of the Spalart-Allmaras turbulence model. 

Overall Flowfield. The computed distribution of the pressure coefficient is shown 

in Fig. 8.17(a). The agreement with experimental values is generally good with the 

exception of the under-prediction of the suction peak, and the location of the shock 

wave, which is placed too far aft. Although these discrepancies are often observed for 

this test case, see, e. g., Holst [11], they are nevertheless disappointing, since Spalart 

and Allmaras [18] obtained better agreement with experimental values at approximately 

the same angle of attack and on a very similar grid. t Simulations by other authors, 

e. g., Rumsey and Vatsa [16], Bardina et al. [2], Wang et al. [21], and Kalitzin [12], all 

obtained solutions similar to the present one. 

The corresponding distribution of the skin-friction coefficient is depicted in Fig. 

8.17(b). On the upper surface, the level of skin friction is approximately correct. An 

The aerofoil contour used in the computations of Spalart and Allmaras differed slightly from 
the present one on the lower surface and at the trailing edge, but had the same relative grid-point 
distribution. 
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Figure 8.14: Solution domains and boundary conditions for RAE 2822 
aerotoll. 

interesting feature, exhibited by nearly all simulations carried out so far using the 

Spalart-Alhnaras model, is that the flow does not re-attach following the shock-induced 

separation. The strong variations of the skin-friction coefficient near the trailing edge 

is caused by misalignment of the flow direction and the angle of the grid lines, as shown 

by Haase [10]. 

The competed lift, drag, and moment coefficients are 0.767,0.0271, and -0.114. 

Profiles of Streamwise Velocity. The comparison of the computed u-velocity with 

experimental data on the upper surface will be carried out at the stations indicated in 

Fig. 8.18. As may be seen frone Fig. 8.19, the agreement is good up to x/c = 0.498, with 

the exception of the position : x; /c = 0.179. At the station x/c = 0.574, the discrepancy 

between the computed and experimental velocity profiles is due to the error in the 

prediction of the shock location. The following three positions demonstrate that while 

the general shape of the velocity profile is predicted correctly, a thin separation region 

remains, as already discussed above. 
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Figure 8.15: Primal grid used for computation of turbulent flow past 
RAE 2822 aerofoil. 

Figure 8.20 demonstrates the effect of the dedicated source term of the Spalart- 

Allinaras source teriu for the simulation of transition. This is done by comparing the 

profiles of the normalised velocity tangential to the aerofoil surface at x/c = 0.01 and 

: ß; 1c" = 0.1. The change from a laminar to a turbulent boundary layer profile can be 

seen clearly. The inset shows the so-called turbulence index defined by Spalart and 

Allmaras [18], which is equal to zero in laminar regions and assumes a value close to 

unity in turbulent regions. 

8.3.3 Assessment of Thin- Shear-Layer Approximation 

The pressure and skin-friction coefficient obtained using the thin-shear-layer aI)i>roxi- 

niatiou are compared with the results of the full viscous fluxes in Fig. 8.21. As can 

be seen the agreement, is very close, with the exception of the separation region where 
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(a) 

(b) 

353 

Figure 8.16: (a) Pressure contours (0.340,1.043; 41) and (b) Macli 
inuiil)er contours (0.000,1.233; 41) for turbulent flow past RAE 2822 aero- 
foil. 
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Figure 8.17: Comparison of numerical solution with experimental val- 
ties of (a) pressure and (b) skin-friction coefficient for RAE 2822 aerofoil. 
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approximate location of shock wave in experiment 

Figure 8.18: Locations of comparisons of numerical solution for u- 
velocity profiles with experimental values superimposed on computed 
Mach-number contours for RAE 2822 aerofoil. 

slight differences appear. 

The lift, drag, and moment coefficients computed with the th iii-shwar- layer approx- 

imation are 0.760,0.0267, and -0.112. 

The good agreement is again explained by investigating the various terms in more 

detail. This is not done here as the observations are the same as for the ONERA bump. 

8.3.4 Assessment of Multigrid Acceleration 

As for the ONEIA hump, the agglouierttioti inultigrid scheme did not deliver a con- 

verged solution. The suspected reason for this failure is identical to that already men- 

tinned above. 

8.4 Conclusions 

The computations described in this Chapter lead to the following conclusions: 
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Figure 8.20: Illustration of the effect of the transition teriri by corn- 

parison of velocity profiles at r/c = 0.01 and i/c = 0.1 for RAE 2822 

aerofoil. Inset shows transition index. 

1. The solution method produces results which agree well with experimental data 

and with results by other researchers. 

2. The results on quadrilateral and mixed grids are almost identical. 

3. As for laininar flows, triangular-grid solutions exhibit more numerical dissipation. 

4. The agglomeration inultigrid scheme did not produce converged solutions. The 

reasons for this deficiency are believed to be related to not moving the seed vertices 

on solid walls. 
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Chapter 9 

Conclusions and 

Recommendations 

The results are summarised and the achievements and findings presented relative 
to the objectives formulated in Chapter 1. Subsequently, areas for future work are 
recommended. 

9.1 Summary of Results 

9.1.1 Inviscid Flow , 

For the supersonic free vortex case as well as the flows over a bump in a channel, the 

solution quality obtained on triangular and quadrilateral grids was found to be similar. 

The use of Green-Gauss reconstruction was found to be less accurate than least-squares 

reconstruction. 

The triangulation of a quadrilateral grid did not give increased accuracy. For 

median-dual control volumes, shock waves became smeared. For containment-dual con- 

trol volumes, the results were virtually identical to the original quadrilateral grid. The 

larger number of edges leads to increased computational cost by a factor of about 1.5. 

The agglomeration multigrid scheme performed very well for the bump and NACA 

0012 aerofoil flows. On average, the multigrid scheme seems to work better on triangular 

grids. This could be an indication of the stronger coupling among the solution variables, 

rather than evidence of increased numerical dissipation. 

9.1.2 Laminar Flow 

For the flow over a flat plate, the results on the quadrilateral and mixed grids were in 

very close agreement with the theoretical solution. This shows that mixed grids can 

363 
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attain the same accuracy as quadrilateral grids at a lower computational cost. On the 

triangular grid, the solution exhibited signs of excessive numerical dissipation, which is 

explained by the control-volume faces being misaligned with the edges of the grid for 

highly stretched triangular grids. 

The thin-shear-layer approximation gave results very close to those of the full viscous 
fluxes on quadrilateral and mixed grids for the flow over a flat plate. A detailed analysis 

of the various terms in the viscous fluxes explained the good agreement. The outcome of 

the analysis was consistent with the heuristic arguments put forward in the derivation 

of the thin-shear-layer approximation. On triangular grids, the results were in poor 

agreement with the theoretical solution. This was attributed to the approximation of 

the gradient at a control-volume face misaligned with the edges of the grid. 

The grid-refinement study for the separated flow about the NACA 0012 aerofoil 

showed that on the finest grid level, the solutions on the triangular and quadrilateral 

grids are very similar. The thin-shear-layer approximation produced results which were 

very close to those obtained with the full viscous fluxes. This was regarded as surprising, 

because the conditions of the test case basically invalidated the assumptions made in 

deriving the thin-shear-layer assumption. An analysis of the various terms in the viscous 

fluxes once again 'explained the good agreement. On the triangular grid, there were 

marked differences between the results of the thin-shear-layer assumption and the full 

viscous fluxes, as for the flow over a flat plate. 

The agglomeration multigrid scheme was found to work well despite the large sepa- 

ration bubble. This demonstrated that the approach of rediscretising the equations on 

the coarse grid levels is feasible. 

9.1.3 'Turbulent Flow 

The comparison of triangular, quadrilateral, and mixed grids for the turbulent flow over 

the ONERA bump showed that the solution quality on quadrilateral and mixed grids is 

almost identical. The solution on the triangular grid exhibited signs of more numerical 

dissipation, which is consistent with the findings in Chapter 6. 

The solution of the flow past the RAE 2822 aerofoil on a quadrilateral grid demon- 

strated the present solution method delivers results of equal quality to those presented 

by other researchers. 
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The agglomeration multigrid method did not produce converged solutions for the 

two turbulent test cases. The reason for this deficiency is believed to be due to not 

moving the seed vertices on the solid boundaries. 

9.2 Achievements and Findings 

Relative to the objectives of the present work formulated in Section 1.5, the achieve-. 

ments and findings are: 

1. The use of several cell types in mixed unstructured grids leads to additional dif- 

ficulties for the discretisation, but these difficulties can be overcome. 

2. The concept of grid-transparency was introduced as a framework for the devel- 

opment of discretisations on mixed grids. A grid-transparent discretisation does 

not require information on cell types. 

3. The discretisation of the viscous fluxes on unstructured grids was investigated 

in detail. Criteria were developed which assess the quality of the discretisation. 

The importance of the normal derivative in giving a grid-transparent and positive 

discretisation was emphasised. 

4. Analysis of the viscous terms in the Navier-Stokes equations allowed an approxi- 

mate form to be developed which is easily discretised and shows similarities to the 

thin-shear-layer approximation. In contrast to the traditional thin-shear-layer ap- 

proximation, the approximate form developed in the present work does not require 
knowledge of the directions normal and tangential to solid boundaries. 

5. Mixed unstructured grids produce solutions of equal accuracy to those on quadri- 

lateral grids at lower computational cost. 

6. The use of an agglomeration multigrid method with rediscretisation on the coarse 

grid levels leads to good convergence rates for inviscid and laminar flows. Further 

work is required to make this approach work for turbulent flows. 
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Figure 9.1: Possible use of virtual edges to improve discretisations at 
interfaces. Virtual edges are shown dashed. 

9.3 Recommended Future Work 

9.3.1 Development of Solution Methods for Mixed Grids 
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Spatial Discretisation at Cell-Type Interfaces. One important issue which re- 

mains to be addressed is the discretisatioii at interfaces between cell types. In the 

present work, no particular problems were encountered, even when shock waves crossed 

interfaces. However, if the capabilities of mixed grids are to be exploited more fully, e. g., 

along the lines suggested in Subsection 9.3.2, then cell-type interfaces will become more 

coniinoii and may lead to problems with grid quality. It will therefore be iml)ortaut, to 

investigate discretisatioii issues at cell-type interfaces more closely. 

A possible approach to reduce or elirniiiate possible problems at the iiiterhtices is the 

use of virtual edges, as depicted in Fig. 9.1. 

Agglomeration Multigrid Based on Rediscretisation. The approach of redis- 

cretisiiig the entire governing equations on the coarse grid levels obtained by aggloin- 

Bration iliultigrid should be investigated further. 
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For the rediscretisation approach to be successful, two issues will require resolution. 
Both issues are connected to the movement of seed vertices. 

First, the method of moving the seed vertices presented in this work should be 

generalised to prevent the repositioned seed vertices from lying outside a non-convex 

coarse-grid control volume. This could be achieved through an improved method of 

moving the seed vertices or through a modified agglomeration algorithm. 
Second, a method must be developed which allows seed vertices on boundaries to 

be moved. This will lead to an improvement of the quality of the coarse dual grids in 

the immediate vicinity of the boundaries. 

9.3.2 Automatic Generation and Adaptation of Mixed Grids 

In'order to harness the virtually unlimited flexibility of mixed grids, it will be necessary 

to exploit more aggressively the suitability of the various cell types for representing 

geometric and flow features. Therefore, it is recommended that future work should 

focus on the generation and adaptation of mixed grids where the suitable cell types 

are chosen automatically, as discussed in the subsequent subsections. The discussion 

concentrates on three dimensions, such that the term `cell' now refers to a small volume 

element bounded by triangular and/or quadrilateral faces. 

Automatic Generation of Mixed Grids. With the aim of maximising grid quality 

and minimising the number of cells (for a vertex-based solution method), the automatic 

generation of mixed grids should be based on a two-pronged approach. 
On the one hand, the grid-generation method should recognise automatically those 

parts of the geometry (i. e., surfaces or volumes) which are best discretised with a given 

cell type. Since the various cell types are constructed from triangular and quadrilateral 
faces, the question of which is the best cell type to fill a volume essentially reduces 

to the question of which is the best face type for covering a surface. To represent 

a given surface accurately with the minimum the number of faces, it will be useful 

to employ triangular faces only where the curvature of the surface changes rapidly in 

more than one direction. If the curvature changes rapidly in only one direction, the 

use of quadrilateral faces should be considered. An example of a surface where the 

curvature changes rapidly in only one direction is the leading edge of an aerofoil. The 
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use of triangular faces to represent the leading edge,, as depicted in Fig. 9.2 (a), leads 

to excessive resolution along the leading edge. Furthermore, the arbitrary directions 

of the edges can lead to serrations or notches in the leading edge. With quadrilateral 
faces, the leading edge can be represented more economically and accurately, as shown 
in Fig. 9.2(b). 

On the other hand, the grid-generation method should combine suitable cell types 
judiciously. The present use of quadrilateral/prismatic cells near solid walls to capture 

shear layers and triangular/tetrahedral cells in the rest of the solution domain is the 

most obvious example. Future grid-generation methods should take the combined use 

of cell types a step further. Two possibilities are shown in Fig. 9.3. To prevent the 

problem of prismatic-tetrahedral grids illustrated in Fig. 1.10, hexahedral cells could be 

used in the corners, as suggested in Fig. 9.3(a). Care will have to be taken with the use 

of stretched hexahedra in order to avoid grid-quality problems at cell-type interfaces, 

as already mentioned in Chapter 1. Flows in pipes could be computed by using grids 

such as that shown in Fig. 9.3(b), where layers of hexahedra are used on the wall and 

prisms are used to fill the vicinity of the centre-line. 

Automatic Adaptation of Mixed Grids. The aim of future adaptation algorithms 

should be to achieve maximum resolution with a minimum number of vertices. This is 

to be accomplished by representing the various flow features by the most suitable cell 

type. 

For example, aligning hexahedra and/or prisms to resolve a shock wave or contact 
discontinuity, as depicted schematically for two dimensions in Fig. 9.4, 

, 
leads to fewer 

cells than employing tetrahedra. With approximate Riemann solvers (such as that of 

Roe [4] which capture discontinuities with just one interior point), only three layers of 

hexahedra and/or prisms need to be generated. Van Rosendale [6] demonstrated the 

effects of grid-alignment on the sharpness of captured shock waves on triangular grids. 

First steps in the direction of using quadrilateral cells to capture shock waves in an 

otherwise triangular grid were undertaken by Hwang and Wu [2]. 

Free shear layers may be captured also by using hexahedra/and or prisms. When 

capturing wakes behind wings, the merging of the grid layers in the wake and on the 

fuselage will have to be developed. 
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(a) 

(b) 
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Figure 9.2: Rcl>res('irtatiuu of' the leading, e(Ige of an aelU i)i1 by (a) 

triangular faces and (b) quadrilateral faces. 
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Figure 9.3: Possible use of several cell types in future grid-generation 
methods. (a) Use of hexahedral cells to discretise corner geometries, and 
(b) use of hexahedral and prismatic cells to discretise pipe geometries. 
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shock wave 

Figure 9.4: Possible use of several cell types in future adaptation al- 
goritlims. Use of quadrilateral cells to capture strong one-dimensional 
gradients not only in shear layers, but shock waves also. 

The idea presented above on the use of hexaliedra and/or prisms to compute pipe 

flows may also be applied to the adaptation of jets and vortices. The radial and axial 

directions can be refined locally to take account of changes in vortex strength, for 

example. 

The adaptation algorithms described above relies on appropriate methods for de- 

tecting the various flow features. Such methods were recently described by Saintaney [5] 

and Lovely and Hahnes [3] for the detection of shock waves, and by Haimes and Ken- 

wright [1] for the detection of vortex cores and separation regions. It is evident that the 

adaptation algorithm will have to be based on a (local) regeneration strategy, and may 

start with tetrahedral cells in the solution domain except on the solid boundaries. In 

the case of shock waves and contact discontinuities, the algorithm would first need to 

locate the surface on which these lie, and generate on it a grid consisting of quadrilateral 

and/or triangular faces. Frone this surface grid, hexahedral and/or prismatic cells may 

be generated by marching out with more aggressive stretching than usual. In the case 

of jets and vortices, the centre-line could be used as a marching direction, where the 

hexaliedra and prisms are generated in slices orthogonal to the marching direction. 

With the more aggressive use of mixed grids, numerical schemes which (10 not distiii- 

guish between various cell-types such as that developed in the present work will become 
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essential. 
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