
 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



The Application of Black Box Models to Combustion

Processes in the Internal Combustion Engine

by

Bastian Maass

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of

Doctor of Philosophy (PhD) of Loughborough University

June 2011

c© by Bastian Maass, 2011



Abstract

The internal combustion engine has been under considerable pressure during the last few years.

The publics growing sensitivity for emissions and resource wastage have led to increasingly

stringent legislation. Engine manufacturers need to invest significant monetary funds and

engineering resources in order to meet the designated regulations.

In recent years, reductions in emissions and fuel consumption could be achieved with ad-

vanced engine technologies such as exhaust gas recirculation (EGR), variable geometry tur-

bines (VGT), variable valve trains (VVT), variable compression ratios (VCR) or extended af-

tertreatment systems such as diesel particulate filters (DPF) or NOx traps or selective catalytic

reduction (SCR) implementations.

These approaches are characterised by a highly non-linear behaviour with an increasing demand

for close-loop control. In consequence, successful controller design becomes an important part

of meeting legislation requirements and acceptable standards. At the same time, the close-loop

control requires additional monitoring information and, especially in the field of combustion

control, this is a challenging task. Existing sensors in heavy-duty diesel applications for in-

cylinder pressure detection enable the feedback of combustion conditions. However, high

maintenance costs and reliability issues currently cancel this method out for mass-production

vehicles. Methods of in-cylinder condition reconstruction for real-time applications have been

presented over the last few decades. The methodical restrictions of these approaches are

proving problematic.

Hence, this work presents a method utilising artificial neural networks for the prediction of

combustion-related engine parameters. The application of networks for the prediction of pa-

rameters such as emission formations of NOx and Particulate Matters will be shown initially.

This thesis shows the importance of correct training and validation data choice together with

a comprehensive network input set. In addition, an application of an efficient and accurate

plant model as a support tool for an engine fuel-path controller is presented together with an

efficient test data generation method.

From these findings, an artificial neural network structure is developed for the prediction

of in-cylinder combustion conditions. In-cylinder pressure and temperature provide valuable

information about the combustion efficiency and quality. This work presents a structure that

can predict these parameters from other more simple measurable variables within the engine

auxiliaries. The structure is tested on data generated from a GT-Power simulation model and

with a Caterpillar C6.6 heavy-duty diesel engine.

Keywords: Artificial Neural Networks, Optimum Network Topology, Diesel Engine, Combus-

tion Modelling, Emission Modelling, Virtual Sensing, Parameter Observer
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1 Introduction

The internal combustion engine is exposed to vast pressure from more stringent emission reg-

ulations and the demand for more efficient fuel consumption. Recognisable changes in climate

and the increasing demand on fossil resources leave no doubt that internal combustion engines

need to be developed into another level in order to confirm their outstanding importance in

particular within the domain of transport and heavy-duty applications. The key for further

application capabilities is the reduction of emission levels and fuel consumption. The improve-

ment of combustion quality and efficiency is imperative as control of combustion in-cylinder

parameters such as pressure and temperature characteristics which contain a considerable

amount of information about the combustion process that can be used for monitoring and

consequently control.

Particularly in the domains mentioned, diesel engines are the dominant combustion engine

type. Nevertheless, over the last couple of years it has been noticed that a “dieselisation” is

occurring [1]. The classic sector of heavy-duty applications both on- and off-road has known

about the innate advantage of lower fuel consumption and higher efficiency for years. Now,

this benefit has also impacted the number of sales for light and medium road vehicles as

Schindler mentions in his work [2].

The effect of increasing emissions and, especially, hazardous emissions generated by diesel

engines such as NOx or smoke puts additional pressure on this engine type. Current advanced

engine technologies enable engines to be made more adaptable for instantaneous and varying

engine conditions. This includes more flexible component behaviour such as: variable valve

timing (VVT), variable geometry turbine (VGT) and variable exhaust gas recirculation (EGR)

as well as the control of these applications [1]. However, here is where the challenge starts to

grow more severe. With an increase of control demanding technologies, a rise in complexity

and non-linearity can be noted and engine processes require an improved closed-loop control.
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1.1 In-Cylinder Conditions and Characteristics

At the same time, monitoring of engine behaviour is required, ideally with additional sensor

applications for feedback. In order to avoid additional sensors and use the explanatory power of

certain engine parameters, the in-cylinder conditions became the point of focus. The conditions

during combustion enable the detection of engine misfires, power leakages, and can be used

to draw conclusions on emission levels. Monitoring the in-cylinder process is therefore crucial

and has been realised with special methods such as direct measurement methods in form of

pressure transducers, fibre optic cables or strain gauges. Another approach is the indirect

pressure recovery where vibration signals in the crank-shaft kinematics or on the cylinder head

are used for reconstructing the pressure trace. In addition, modelling approaches have been

developed to create a virtual representation of the system. However, these latter methods are

not very applicable in on-board diagnostics.

This research work presented for the degree of Doctorate of Philosophy investigates the feasi-

bility of predicting pressure and/or temperature characteristics within heavy and medium-duty

diesel engines using artificial neural networks (ANN). ANN are classified in the Black-Box-

Modelling domain and are therefore a promising approach for on-board implementation with

its real-time capabilities. At the same time, accuracy levels are still sufficient for adequate

monitoring and control purposes.

1.1 In-Cylinder Conditions and Characteristics

The in-cylinder conditions of a combustion engine are highly dependent on the stochastic na-

ture of 1. the dynamics of entering fluids such as air and fuel and 2. the successive chemical

processes. In addition, there are a number of external factors that can influence these stochas-

tics to some extent. The air and fuel path have a considerable effect on these but also timings

of fuelling and valvetrain can control some of the stochastics. The considered four-stroke cycle

consists of four phases: 1. induction 2. compression, 3. expansion, 4. exhaust.

During the cycle, certain events govern the actual combustion process. During the induction

process, the initial conditions for combustion are determined by controlling intake valve opening

(IVO) and closure (IVC). These events allow the air to stream in and out of the cylinder
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1.1 In-Cylinder Conditions and Characteristics

chamber. Depending on piston heads and air intake ports, the air is set into a tumbling or

swirl motion in order to create an active environment during fuel injection and, consequently,

better fuel distribution throughout the cylinder. With the closure of the intake valve (IVC)

and the reciprocating cylinder the compression phase starts. Air is compressed and heated up.

When the piston approaches top dead centre (TDC), fuel is injected (start of injection - SOI)

into the chamber and mixes with the air and ignites once it has reached the temperature and

pressure required to start the chemical reactions. A sudden rise in pressure and temperature

due to heat release can be observed. This moment is known as start of combustion (SOC) as

shown in the sample pressure and heat release trace of a compression ignition event in figure

1.1. This ideally happens at TDC or after TDC, during the expansion stroke in order to create

minimal pumping losses due to created reaction forces. The combustion forces the piston to

move downwards and towards the bottom dead centre (BDC). Around this point the exhaust

valve opening (EVO) takes place and combustion ends. The formed gases and emissions are

finally pushed out during the exhaust stroke. The cycle is completed towards the TDC where

the intake valve opens again.

1.1.1 The combustion process and its impact on engine performance

The core of the combustion engine is the chemical process of discharging the enclosed energy

in fuel in order to push a piston down the cylinder. The control of this process has a significant

effect on the power output, efficiency, emissions formation, and engine life. A smooth and

evenly spread combustion over the length of the expansion stroke is more beneficial than

harsh and immediate reactions during the start phase. Those kind of effects can be achieved

with multiple injection events in order to spread the fuel load evenly over the combustible

period. This can also prevent abnormal combustion behaviour such as knock or immediate

complete combustion where extreme material stresses can occur. In addition, fuel efficiency

can be increased due to more precise fuel injections and hence overall engine efficiency can

be improved. The product of combustion are emission gases such as CO, CO2, NOx, HC

and, characteristic for direct injection diesel engines (PM). The variables affecting emissions

formation directly in the cylinder chamber are air-to-fuel ratio, temperature and duration of

combustion. The emissions within the main focus of current emission regulations are carbon
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Figure 1.1: Example of Pressure Trace
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Figure 1.2: Example of Pressure-Volume Dia-
gram

dioxide CO2, nitrogen oxide NOx and particulate matters (PM). The formation of CO2 is

mainly dependent on the amount of fuel used during combustion and therefore also a function

of engine size. The other two emission types can only be tackled in a trade-off since NOx

is most likely to be formed at high combustion temperatures whereas PM is reduced at high

temperatures due to better vapourisation of droplets. A more detailed description of emissions

formation of nitrogen oxides and particulate matters is picked up within the methodology in

chapter 4.

1.1.2 Content of information of In-cylinder Pressure and Temperature

As emissions formation and fuel efficiency is reliant on the combustion process, it is of interest

to find variables to describe its quality and characteristics. Different parameters, such as burn

rates, angles of fuel burned, or end of combustion are used for in-cylinder monitoring. However,

they are determined from parameters such as in-cylinder pressure and temperature. Monitoring

these two parameters and understanding their characteristics can be used to influence overall

combustion quality. The information they provide about engine behaviour can be included in

engine control and engine diagnostics.

In-cylinder Pressure Trace In-cylinder pressure information is usually presented in a

waveform pressure characteristic over the engine crank angle of 720◦CA as presented in figure

1.1. This pressure characteristic appears to be similar in phase and magnitude from cycle to

cycle.

Slight variations can be detected in steady conditions and underline the stochastic nature
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Figure 1.3: Example of temperature trace

of the process. Another analytic presentation of the pressure characteristic is the pressure-

volume (P-V) diagram. This diagram enables us to calculate the actual work undertaken during

the combustion process as well as the pumping losses due to intake and exhaust processes.

An exemplary P-V diagram is shown in figure 1.2. With the help of these presentations,

considerable changes in pressure characteristics can be detected. A sudden rise may be the

reason for a misfire. On the other hand, a drop in pressure may be the reason for a leaking

seal due to piston ring failure or valve misfit. Along with a change in engine power output

due to abnormal pressure changes, unnecessary engine stresses cause premature wear of parts

and costly damage. In addition for lower pressures, emissions formation can also be highly

influenced. Fuel spray might not ideally break up and bigger droplets of fuel resulting from

that increase the possibility of incomplete combustion and therefore increase PM emissions.

In-cylinder heat characteristics Heat development during combustion is usually defined

through the instantaneous heat release with starting ignition. In figure 1.3 an exemplary

characteristic of a heat release is shown. The temperature characteristic of combustion has

a significant effect on emissions formation and material wear. The trade-off between high

and low temperatures as mentioned before can have considerable effects on the formation of

either NOx or PM. At the same time, high temperatures cause higher material stresses during
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combustion inside the cylinder as well as in the following passages in the exhaust part of the

engine.

1.2 Conventional In-cylinder Condition Detection

Since the start of the combustion engine era it has been of interest to determine the in-cylinder

pressure that acts in the piston and the actual temperature in the combustion chamber.

However, the combustion process is complex and the pressure and temperature distribution

varies greatly within the chamber. Consequently, it is difficult to detect the instantaneous

value, and measurements can only represent an excerpt of the situation. Therefore, the

positioning of the measurement equipment at key locations and choosing the right sensitivity

are crucial.

Pressure Detection Systems

Different systems for pressure detection were developed throughout the years as described

in [3]. Bae et al. [4] introduced a sensor integrated into spark plugs using a fibre optic

cable. Every pressure perturbation that affects the cable changes the amount of transferred

light. This in turn can be related to the pressure. Another approach used a film strain gauge

sensor that promised good and accurate results similar to piezoelectric transducers [5]. These

transducers are well established in modern experiments. Since the transducer extends into the

chamber, the classic approach is to apply the sensor as flush with the cylinder wall as possible

[6]. However, in current experimental pressure detection, the sensors integrated into the spark

or glow plugs are increasingly used as shown in the work of Schindler et al. [2]. A typical

pressure acquisition system can be seen in figure 1.4 (redrawn from [6]).

At the core of these systems is a piezoelectric transducer that senses pressure variations

during combustion cycles. The heart of the pressure transducer is a piezoelectric crystal that

generates electric charges if it is exposed to an acting load, in this case in-cylinder pressure.

The observable electrical charge is proportional to the force and enables us to deduce the

instantaneous pressure. It is fitted into a metallic housing with a diaphragm that conducts

the pressure to the crystal. An amplifier is required to make the pressure characteristic visible.
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1.2 Conventional In-cylinder Condition Detection

Figure 1.4: Pressure measurement experiment set-up with pressure transducer and periphery (partially
redrawn from [6])

At the same time, an additional encoder records the crank angles to transfer the pressure into

the crank-angle domain [6].

This measurement technique brings a number of significant disadvantages, meaning that this

approach is still a technique mostly used in laboratories. Firstly, the method is intrusive.

Although the sensor is mounted as flush as possible to the cylinder wall, the intrusive character

still exists due to the increased size of the spark or glow plugs. On the one hand, an extension of

the sensor would decrease the in-cylinder volume. This changes the conditions of measurement

because a decrease in volume affects the pressure characteristic. On the other hand, the sensor

requires some assembly space. In the case of existing engines, this can lead to collisions with

cooling paths in the engine block.

The sensitivity of the sensors is a second disadvantage. Even though sensors varying in sen-

sitivity are available, the sensor is exposed to extreme environmental forces, which in turn

makes it difficult to protect. For instance, pressure forces deform the housing and may falsify

measurements. In addition to the mechanical force, thermal effects impact the accuracy. Due

to temperature fluctuations the metal expands and may add extra pressure to the sensing

unit that influences the signals of the crystal. This issue is overcome by adding extra cooling

paths into the housing, which in turn leads to an increase in the dimensions of the sensor itself.

Hence, required assembly space and an increase in complexity and costs of sensor development
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1.2 Conventional In-cylinder Condition Detection

are encountered. Another disadvantage is low reliability due to the exposure to these heavy

acting forces. The extreme conditions shorten the life cycle, meaning that the equipment

needs to maintained on a regular basis. This factor applies in particular when it comes to

mass series production.

Altogether these concerns render pressure determination costly and less appealing, especially

for the purpose of monitoring pressure characteristics in combustion engines, which are in

everyday operation. The use of direct in-cylinder measurements can be driven by the per-

formance and efficiency improvements potentially achieved through combustion control based

on those sensor applications. However, several strategies have currently been proposed to

bypass the direct measurement approach. They are realised through prediction, estimation or

reconstruction of pressure waveforms in the combustion chamber. The range of methods is

presented in more detail in the following literature review.

Temperature Detection Systems

Currently, there is no direct temperature detection in combustion engines specially designed for

application in a mass production environment. In the field of experimental laboratory set-ups,

approaches are mostly based on an optical assembly. A window in the cylinder head or engine

block enables the user to access and monitor the combustion process with cameras or light

beams.

Alongside the main established optical methods today, another approach was developed prior

to laser technology. Livengood et al. used the velocity of sound to measure the temperature

inside the combustion chamber [7]. However, this method is not practical when it comes to

non-stationary equipment where other noises may falsify the measurements and increase the

effort required to detect the signal of interest.

The optical methods referred to as radiation thermometers or pyrometers can be split into two

different approaches. The first utilises the existing radiation of material - radiation thermome-

try. In the second approach, the radiation is additionally excited by a light beam, often a laser,

and is known as - scattering method. An extensive outline of those methods is described in

the literature by Zhao [6].
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1.2 Conventional In-cylinder Condition Detection

The two-colour-method is one of many that have been in use for radiation thermometry for

many years [6, 8]. It uses the diesel engine’s characteristics of thermal radiation of soot

particles and is based on the assumption that the particle temperature is the same as the

flame temperature. Two wavelengths are detected, one of which is a reference used to deter-

mine a meaningful ratio. In addition, the flame temperature is also capable of detecting the

instantaneous soot density.

The other approach is distinguished by the fact that a laser beam is sent into the combustion

chamber to excite spectral lines scattering the light. Methods used include spontaneous Raman

Scattering, Laser Rayleigh Scattering, and the Temperature Measurement by PLIF as described

in [6, 9].

Figure 1.5: Example of Temperature measurement (partially redrawn from [6])

All of these optical methods only apply to laboratory work. Even the advantage that they

are non-intrusive cannot overcome the fact that their accuracy is highly dependent upon the

quality of sight into the cylinder. This is especially apparent in diesel engines where higher soot

density makes it more likely that depositions affect the sight. Continuous maintenance of the

window would therefore be required. An additional disadvantage is the elaborate equipment of

lasers, cameras and mirrors illustrated in figure 1.5. Hence, these technologies are only viable

for experimental work rather then an on-board application.
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1.3 Virtual Sensors for Detection

To date, no suitable approach for measuring temperature and pressure in mass produced cylin-

der combustion engines has been found. The difficulties encountered in the detection of engine

parameters in real-time for control purposes lead to the methods of reconstruction, estimation

or prediction. Alternative techniques have been investigated that can be summarised as virtual

sensing. This approach is determined by an estimator that predicts costly or immeasurable

data from available sensor signals and serves as a virtually sensing diagnostic tool. The long-

standing approach of observers is based on physical equations or data maps such as those used

in the work of Stephant et al. [3] in a vehicle simulator. The more recent term of ’virtual

sensors’ is marked by their less required understanding of physical processes. They enable the

user to virtually sense a parameter determined on the basis of existing engine and environmen-

tal signals. Different techniques, from numerical models to empirical and Black-Box models,

have been used to implement this method of diagnosing difficult to measure engine parameters

[10, 11, 12].

1.4 Non-linearity of the Process

The combustion process itself is highly dynamic and variable in transient engine operation. But

even in steady-state points a strong variation in flame and flow characteristics make it difficult

to predict an exact combustion process. In addition, the impact of parameters such as EGR

or the delay between injection and start of combustion characterise the system as non-linear.

Also the complex input choice indicates that the system contains non-linearities. An increase

in intake manifold pressure does not necessarily lead to a higher combustion pressure since

the time of injection and the mass of injection can considerably diverge at different operating

points. Hence, with a retarded injection the peak pressure differs from a previous scenario

where the injection took place earlier. In this work the virtual sensor that is generated is

outlined as a non-linear predictor in order to satisfy the mapping requirements.
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1.5 Objectives of the Research Project

The aim of this research is to develop a virtual sensor in order to determine in-cylinder pressure

and temperature conditions. Its implementation is based on the recent and current research

activities in this field. The research focused on several objectives.

The objectives of this research were:

1. Investigation of applicability of virtual sensing theory to variables in the engine environ-

ment such as air and fuel path, engine emissions and in-cylinder combustion parameters.

2. Definition of inputs of interest depending and based on various parameters’ impact on

engine behaviour and operation characteristics.

3. Analysis of data features for the definition of efficient and minimum training costs.

4. Definition of a virtual sensor structure: preferable model structure in the field of arti-

ficial neural networks. Consideration of possible drawbacks of architectures and their

applicability.

5. Creation of lean model structures representing least-possible complexity which conse-

quently keeps computational demands to a minimum.

The findings of this research work are partially presented in chapter 4 what includes several

extracts of research papers published at conferences in the field of automotive and control.

They include findings on the definition of training and validation data for successful training

of network structures. In addition, input definition and network construction have been part

of the investigations and are presented as well as a contribution to the main results found

in chapter 5, 6 and 7. Here, the implementation of a pressure and temperature trace model

are presented. One of the main contributions is the choice of inputs such as the training and

validation data definition and generation. A new approach of network validation is shown where

simulation data not measurable in the real engine environment is combined with real measured

data in order to validate a network structure for prediction of in-cylinder temperatures. In

addition, a network for in-cylinder pressure prediction is presented. The chosen architecture
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enables satisfactory predictive results. One part of these results has been presented in another

publication at the SAE congress 2011.

1.6 Outline of the Thesis

Chapter 1: Introduction

The first chapter provided a quick and broad introduction into the importance of in-cylinder

condition monitoring, control, and its effect on engine performance followed by an initial outline

of possible alternative approaches to existing laboratory methods not applicable to on-board

diagnostic tools.

Chapter 2: Literature Review

The literature review section presents initial work and recent activities on the indirect detection

of in-cylinder conditions such as in-cylinder pressure and temperature. Here, a distinction is

made between reconstruction and prediction and the advantages and disadvantages of both

approaches are highlighted. Together with the motivation and objectives from the introduction,

this chapter shall point out the idea and technological gap this research project aims to fill.

Chapter 3: Theory of Artificial Neural Networks - Structures and Optimisation

This chapter presents the theory of Artificial Neural Networks (ANN). It describes the struc-

tures, networks and architectures that have been developed over the last few decades and

determines possible candidates for the current problem. In addition, training methods and al-

gorithms are presented that can be considered for the chosen networks. The chapter concludes

with an overview of the use of ANN in automotive applications. On the basis of this chapter

the reader shall understand the model choice and implementation approach.
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Chapter 4: Methodology and Model Structure

This chapter presents some findings on the topic of network development which are published.

They show the feasibility of implementation and capability of ANN on the topic of virtual

sensing applications. Main findings in these publications are the training and validation data

variation as well as the input definition. In addition, the results of an implementation of ANNs

for the design of model predictive control are shown to underline the range of practicability of

the chosen modelling approach. These introductory examples form the basis for the resulting

model structure in the form of a mixed parallel network, which is also presented here. Its inputs,

outputs and specifications are described. This chapter shows the idea and implementation of

this project in detail.

Chapter 5: Data Generation and Acquisition

Chapter 5 covers the field of data generation and acquisition for training and validation sets

in order to develop the model. It describes the necessity of data variety and different test

scenarios such as steady-state pressure measurements and transient high-load cycles. To

generate experimental, data a 6 cylinder in-line heavy duty diesel engine (C6.6) is fitted with

the equipment required to detect in-cylinder pressure data. To compensate for missing in-

cylinder temperature data, a software model based on GT-Power is set-up - in the form of

engine 1D simulation software. This model is validated against data from the C6.6 engine and

a validated Dynasty model of this particular engine model. The chapter concludes with data

processing and the principal parameters required for the model training.

Chapter 6: Modelling Results with GT-Power Generated Data

This chapter shows results for a variety of network applications aimed at data generated with a

GT-Power model. The in-cylinder parameters, temperature and pressure, are predicted based

on engine parameters identified in the previous section. Each model is presented together with

its results for both parameters.
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Chapter 7: Modelling Results with Real-Engine Generated Data

Chapter 7 shows the results for the same network applications as presented in the previous

chapter. It validates the applicability of the networks based on experimental and noise contam-

inated signals. Data from the diesel engine are used as inputs and outputs. In addition, the

temperature trace generated with a GT-Power model is used to train networks. The in-cylinder

parameters, temperature and pressure, are predicted based on engine parameters identified in

the previous section. Each model is presented with its results for both parameters.

Chapter 8: Summary and Conclusion

The conclusions for the developed models are presented here and contain the novelty of the

model structure approach and the data set generation by mixing computed and measured

data for development purposes. An outline for its potential applications is made in the field

of engine controller design or virtual on-board sensing along with available implementation

methods and required modifications.
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2 Literature Review

In-cylinder condition detection and monitoring faces serious limitations due to factors such as

implementation complexity, engineering feasibility, reliability and costs as described in the in-

troductory chapter 1. Therefore, the idea of indirect detection has been developed for several

years now. In order to avoid restrictions, different approaches have been employed to find

relationships between the more accessible engine parameters and the in-cylinder conditions.

The relations can be of statistical nature or expressed through a model that describes the

physical relationship between the in-cylinder parameter of interest and the initiated or related

signal recorded. The techniques used to identify relations will depend on the application of

the model as to whether for example, high accuracy and information content is required to

study engine behaviour or if a control scenario needs to be designed where fast and mainly

reliable results are required. Within this area, several authors have presented their work which

is summarised in this review.

Throughout this chapter, distinction is made between the methods “reconstruction” and “pre-

diction”. The term reconstruction is used in combination with the analysis and recovery of an

initiated or amplified signal by the in-cylinder pressure. This recovered signal is characterised

by the fact that its origin lies in the past. A prediction of in-cylinder conditions can however

be based on the pre-combustion parameters available for measurement.

The following sections 2.1 and 2.2 present a summary of the applied research for both the

indirect temperature and pressure data acquisition.
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2.1 Literature Review of Indirect Temperature Detection

Direct temperature detection is a difficult and imprecise process as shown in the previous chap-

ter 1.2. The current applications are mainly applicable to laboratories that are inappropriate

for application in an industrial environment. Hence, research is focused on determining the

in-cylinder heat-release from the combustible mixture. Different approaches have been sug-

gested based, for example, on 1. physical models and 2. statistical relationships identified from

heat flux measurements. In recent years, the broad range of engine developments for meeting

emissions legislation and fuel consumption limitations have been met by, for example, common

rail injection, variable structured fuel injection, exhaust gas recirculation or inter-cooling, and

new engine construction designs. However, these developments have outpaced the adaptation

of available thermal modelling approaches as stated in the work of Finol et al. [13]. Therefore,

it is necessary to find advanced approaches to better describe in-cylinder thermal conditions

and achieve potential benefits in terms of:

• Enhanced cooling systems (smaller and lighter pumps or heat exchangers)

• Reduced thermal distortion (lower friction and optimised piston-ring assembly)

• Improvement of computational methods in CFD or FEA

This section creates an overview of the development of in-direct temperature detection and the

methods available. In an early stage of investigation into reconstruction methods, Livengood

et al. [7] introduced the method of using the speed of sound to determine the in-cylinder tem-

perature. In their approach, the known speed of sound and its changing propagation through

a gaseous medium with varying temperatures is used. They focused on the flame front condi-

tions that are most significant for the development of diesel knock which occurs in the event

of a sudden temperature increase. A pulse trigger is used to excite sound and its propagation

is then measured with a crystal transducer. The time difference over the known distance is

caused by varying temperature and, hence, gas conditions. Amongst others, Hickling et al.

[14] and Carryer et al. [15] adopted and adapted this approach and introduced pressure trans-

ducers into the set-up. This usage is considered a disadvantage for this method because of

the limitations of pressure transducers introduced in section 2.2.
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In terms of modelling and predicting or simulating the thermal behavior of combustion engines,

a wide range of applications has been developed. The different character of models lies in the

accuracy and complexity of how closely the relations are investigated. For instance, Huang

et al. [16] developed a zero-dimensional model based on the thermodynamic equations of

combustion. The combustion process is divided into premixed and diffusive combustion and

the formulae for instantaneous combustion and mechanical friction losses are empirical. The

aim of the work was to find the optimum heat-release pattern in terms of fuel consumption,

maximum combustion pressure and pressure rise rate. Restrictions of these approaches are

the assumptions of ideally mixed and uniformly distributed in-cylinder conditions such as gas

and temperature. These have an effect on overall accuracy since the spatial heat distribution

is important for the detection of knock patches within the flame front which in turn has an

impact on combustion performance and efficiency. However, the advantage is the least compu-

tational demand in comparison to much more complex models when taking into consideration

the spatial distribution of gas and temperature composition.

In the work of Stiesch et al. [17], a phenomenological or quasi-dimensional modelling approach

is applied. The goal of the paper is to predict the heat-release and emissions formation during

the combustion process of a direct injection diesel engine. The two processes are described

using separate models in order to trade the accuracy and validity against the computational

demand. The spatial approach enables the determination of the in-cylinder conditions more

precisely. With fuel entrainment, additional zones are formed and generate improved resolu-

tion of the combustion chamber. Still, the drawback of this model is the uniform pressure

assumption over the entire cylinder chamber volume. On the other hand, the computational

demand rises and therefore makes real-time application infeasible.

Another quasi-dimensional model is introduced by Hountalas et al. [18] with the introduc-

tion of submodels for air entrainment, fuel injection, droplet breakup and combustion and

gas exchange. This model is similar to Stiesch’s where the fuel entrainment zones of tem-

perature and fuel-air composition are built to include the time history. This method showed

considerable errors at the beginning and the end of the combustion where the heat-release was

17



2.1 Literature Review of Indirect Temperature Detection

underestimated and overestimated respectively. This error was explained by the highly hetero-

geneous temperature and combustion composition. The ideal gas law and assumed uniform

in-cylinder pressure do not represent the real situation and thus make it very difficult to esti-

mate the combustion conditions more accurately. However, the overall accumulated accuracy

for temperature history and emissions formation were all estimated. This work claims to have

identified the error and quantified its impact.

The work of Tamilporai et al. [19] also takes into account the actual heat transfer and ap-

plies a two-zone combustion model improved in terms of its swirl characteristic. With this

additional heterogeneous information, instantaneous heat flux and the variation of gas velocity

can be incorporated into the calculations of heat-release. The goal of the paper is to inves-

tigate the effect of conventional and low heat rejection engines. This work shows that with

increasing complexity and incorporation of additional information regarding the heterogeneity

of in-cylinder conditions, the accuracy of the heat-release can be improved. However, the

computational demand and expenditure make the application less favourable than, for exam-

ple, the online controller design. In addition, the presented models do not accommodate the

features of modern engines.

Here, the work of Chmela et al. [20] shows an advanced view of the dependence of heat-release

on in-cylinder conditions that are influenced by advanced control strategies. Their simplified

model without any spray development, evaporation or mixture formation results in the fact

that it is only applicable to high-load diffusion combustion phases because at low loads the

premixed combustion phase cannot be described. Nevertheless, the work points out the high

proportional relation of heat-release rate to the fuel injection and the kinetic energy. In an

adapted version of the model in the work of Lakshminarayanan et. al. [21] the addition of

possible wall impingement is made at high speed-high load operation. It undermines the as-

sumption of the previous work and achieves even more accurate results. The model is tested

over a range of five different engines varying in type and size. In some cases considerable

improvements were made. This shows the modern engine technologies can have an significant

effect on the engine performance characteristics and need to be included in the modelling
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strategies.

Another aspect of modelling is the inclusion of EGR that is now almost universally applied

to diesel engines. Ogawa et al. [22] points out the importance of low temperature combus-

tion achieved through exhaust gas recirculation. Looking at the combustion calculation and

emission formation the application of those technologies has a significant effect. Consequently,

models complexity has to be revised and increased since increasing numbers of factors influence

the in-cylinder thermal development expressed either through the actual flame temperatures or

the heat release. With additional complexity the accuracy versus computational demand trade

off becomes significant again. Here, solutions in the form of zero or one-dimensional models

are favorable in terms of their cost. However, multidimensional models result in higher accu-

racies over the whole combustion chamber with greater assumptions but require considerable

amounts of computational power for the rapid calculations.

2.2 Literature Review of In-direct Pressure Detection

The measurement of in-cylinder pressure characteristics is far more routinely and widely ap-

plied than temperature measurement. However, reliability and intrusion issues still make the

actual measurement unsuitable for mass application. These constraints shifted the focus to

different approaches to find a reliable, real-time and less costly method to capture aspects of

the in-cylinder pressure characteristics.

The conventional way of modelling and simulating in-cylinder behaviour is based on compre-

hensive understanding of physical and chemical phenomena. This comes with computational

demand and expenditure and is mainly used to investigate combustion and the effects of pa-

rameters that influence combustion such as air motion, fuel entrainment, flame propagation.

Due to the recent and pressing requirements for on-board diagnostics (OBD) and advanced

control strategies, there has been an increasing need for reliable and fast data. Here, two

methods are predominant in the research field. Both rely on less costly sensors and try to
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capture the in-cylinder characteristic through the effects of combustion as opposed to a direct

measurement.

• Cylinder block vibrations initiated through occurring knock and combustion

• Crank angle kinematics recognised through pressure changes during the combustion

phase

The following section presents the current research undertaken up to now with regard of in-

direct in-cylinder pressure detection either through reconstruction or predictive modelling.

2.2.1 Pressure Reconstruction through Cylinder Block Vibrations

In-cylinder characteristics, in particular sudden pressure changes, create structure-borne noise

which becomes detectable at the surface using sensors on the cylinder block. This method is

established as knock detection, especially in commercial SI-engines as Villarino et al. [23] state

in their work. The goal is to find a relationship between the vibration captured at the surface

and the actual pressure waveform developed during the combustion phase. This relies on the

fact that quick and sudden pressure variations such as those found during the combustion

event are transferred through cylinder walls, the cylinder head or the piston. The challenge

with this approach is the identification of the pressure-initiated signal within the signal that is

contaminated with noise. This is difficult because of two main reasons as concluded by Antoni

et al. [24]:

• Piston slap or inertial forces perturbate the signal on the surface.

• Low frequencies carrying the main energy of the pressure trace are not conveyed due to

the rigidity of the cylinder block.

In several applications different locations have been tested such as cylinder head surface or

cylinder head bolts. The acquired signals have been analysed and used to reconstruct of

pressure traces through inverse filtering with neural networks. One of the early investigations

was carried out by DeJong et al. [25] in the mid 1980s in which a vibration signal of a heavy-

duty diesel engine was measured. They discovered that the deconvolution of the pressure
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signal with a frequency response function provided promising results. This approach is called

inverse filtering where a source x(n) is convoluted with a response function h(n) into the

actual measured vibrations y(n) - see equation 2.1:

y(n) = x(n) ∗ h(n) (2.1)

However, the significant deviation of the reconstructed pressure trace in comparison to the

measured conditions gave rise to the need for further investigation.

The measured vibrations are transformed into the frequency domain using Fourier Transforms

in order to detect the frequency bands initiated through the pressure variations. This signal

can be inversely deconvoluted with the response function into the the pressure trace. How-

ever, the definition of the response function can be challenging because of the mentioned

perturbation signals, the engine assembly and time-varying conditions. The source signal is

converted into engine block vibrations the moment it impinges on the cylinder walls. The

propagation path through the engine block and the engine running conditions such as tem-

perature and speed have a significant impact on the signal measured on the surface of the

cylinder block. In addition, separate force sources create and add perturbations to the sig-

nal such as the piston slap or valve impacts and are documented in several studies [24, 26, 27].

The combination of time and angle-based events create a challenge for this method. Applica-

tion to different engine types is required, which in turn imposes different assembly and noise

path characteristics. Kim et al. [28] present an approach that takes this structural variabil-

ity into account. They developed a method using cepstral analysis. This approach suffered

significant drawbacks in signal processing where data smoothing affected the overall accuracy

when reconstructing the pressure waveform.

El-Gahmry et al. [29] presented studies where cepstral analysis was applied to two engines with

extreme size differences - a 102 bhp engine was used in comparison with a 10 000 bhp engine.

In both cases the approach delivered results with acceptable and sufficient correlation in rela-

tion to the measured pressure signal. This investigation points out the feasibility of cepstral
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analysis to overcome structural variability issues. Furthermore, the authors concluded that this

method is less reliable in the application of SI engines which generally operate on a lower com-

pression ratio and the pressure signals contribute lower energy to block vibrations than in higher

pressure CI engine applications. In addition, it was found that the frequency content is more

useful than the energy content of the signal. The recognition of this distinction leads to the

capability not being able to reconstruct low-energy signal parts such as during the compression.

Multi-cylinder engines face multiple impacts from valves, pistons and combustion within an

engine cycle. Some of these events overlap and the signal analysis gains complexity. An in-

vestigation by McCarthy et al. [27] introduces a so-called cepstral comb window. Here, the

time domain is used rather than the frequency domain as in the other methods. This is due

to the time-based nature of impacts. The cepstral comb window is applied in order to recon-

struct signal sections with multiple impacts. In this work, a robust reconstruction approach is

created for reciprocating engines with broadband transients. However, they also identified the

questionable case where impacts are not equally spaced over time as for example with variable

valve timing at different speed and load conditions.

Gao et al. [30] compared three different approaches against each other: 1. time-domain

smoothing, 2. direct inverse filtering, 3. cepstral smoothing. The newly developed method of

time-domain smoothing is intended to achieve a more robust transfer function by multiplying

the signal with an exponential window. The resulting output of the reconstructed pressure

trace can be compared to the results of the more complex cepstral method. However, the

authors also state that the varying conditions of engines may cause some problems in the

reconstruction of the pressure trace.

Another approach is implemented in the work of Antoni et al. [24, 26]. A periodically varying

filter is applied that utilises the fact that the vibrational signal is characterised by a non-

stationarity which is addressed using a cyclostationary paradigm. The signal is sampled in the

crank angle domain, allowing a correlation with engine events and kinematics. This angle-

domain-based signal is transferred into the frequency domain where it results in considerably

22



2.2 Literature Review of In-direct Pressure Detection

improved performance than the more conventional approaches of invariant inverse filters. One

reason for this is its accommodation of low-frequency components in the signal. These com-

ponents are described as ill-posed issues of the block vibration approach because the engine

block tends to transfer higher frequency components (> 500 Hz) due to rigidity. Another

work using the crank-angle domain is presented by Zurita et al. [31] which uses multivariate

data analysis (MVDA). In the investigation, this method is compared to the cepstral analysis

described earlier. The MVDA consists of two projection methods: 1. Principal Component

Analysis, 2. Partial least squares analysis. Both methods are combined in order to enable

identification of a relationship between the initiating signal and the response. The results

show that this method can be used to successfully reconstruct the in-cylinder pressure in a

six-cylinder diesel engine whereas the cepstral analysis failed to reconstruct pressure curves for

some of the engine cylinders.

A completely different approach is pursued by Du et al. [32] by using artificial neural networks

(ANN). The studies described the implementation of a radial basis function network includ-

ing k-means clustering for the inputs and a gradient descent algorithm for centre and network

training. The results from the developed network show sufficient accuracy. However, processes

can be improved through further investigations in the form of additional training data and data

pre-processing in order to reduce networks complexity. Another ANN approach is presented by

Vulli [33] who uses a Non-Linear Autoregressive with Exogenous Input (NLARX) model struc-

ture. Although the previous ANN approach is known for its good generalisation capability in

non-linear applications, this approach achieves somewhat better results. In addition to Du

the data is pre-processed with Fourier transformation and different training algorithms were

investigated: 1. Back-Propagation-Through-Time (BPTT) and 2. Extended Kalman Filter

(EKF).

Overall, the methods presented can be used to detect the pressure waveform. However, addi-

tional noises from engine parts, overlapping engine events, structural variability and different

signal domains raise the question of final achievable accuracy. Another disadvantage of the

general methodology of reconstructing the signal from block vibrations is the weak representa-
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tion of low-frequency parts due to the engine block characteristics. Parallel to this approach,

researchers have tried the other mentioned method of reconstructing the in-cylinder cycle char-

acteristics through the angular speed fluctuations. This particular method promises access to

the lower frequencies.

2.2.2 Pressure Reconstruction through Angular Speed Fluctuations

The use of angular speed fluctuations in order to monitor combustion conditions has been

mainly driven by the aim to detect abnormal combustion as stated in a review by Williams

[34]. However, recently researchers tried to reconstruct the whole pressure trace or quantify

the generated torque [35]. Measurements are most commonly taken from the flywheel ring

gear but are enhanced with recordings taken from the crankshaft nose or driven inertia. This

is to achieve a more comprehensive characterisation of the signal. A fluctuating signal is gen-

erated through sudden pressure changes that occur at the start of combustion accompanied

by changing force amplitudes acting on the piston. With this increase in force amplitudes

the crank shaft connected to the piston is accelerated and causes a temporary speed change

captured by sensors. As in the previous method, the recorded signal can then be related to

the corresponding pressure characteristics causing the output. Different methods for recon-

struction have been developed and presented by researchers. Mathematical models, inverse

filtering, pattern recognition and, more recently, the application of artificial neural networks

have been the focus when it comes to accurate reconstruction.

One of the early approaches used to find the relation between speed fluctuations and pressure

waveform was developed by Rizzoni [36]. This model considers the physical impacts of gas

pressure forces, friction and pumping losses and reciprocating inertia forces. These formu-

lations are transferred from the mechanical quantities into their electrical analogues and the

model is fed with the crankshaft acceleration measurements. As a conclusion of this model it

is established that pumping losses and time-varying friction can be negelected. Overall, the

result of the model shows a valid description over a wide range of transient engine conditions

for time-average and instantaneous torque. In an extension of this work, Rizzoni’s [37] model
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was refined for a single-cylinder combustion engine. In addition, the inertia, stiffness, damping

parameters and the frictional losses of piston rings and bearings of the engine were incorpo-

rated into the model. In this work, the transfer of vibrations through the connection of the

flywheel and the dynamometer were an additional focus since perturbation signals can be in-

troduced through external sources into the crankshaft. Furthermore, the model was simplified

as only discrete frequencies were considered by filtering noise and emphasising the actual vibra-

tions to access the pressure-initiated signal. This model is applicable to multi-cylinder engines.

In the studies of Connolly et al. [38, 39], a model in the form of a continous, linear, first-

order differential equation is defined to relate the combustion pressure characteristics to the

resulting angular crankshaft speeds. The model was developed by validating it in ‘forward

direction‘ where the angular speed is calculated from measured pressures. The model applica-

tion is performed inversely by deconvolving the pressure from the measured angular crankshaft

speed. Through this inverse approach, a distinction can be made between abnormal and nor-

mal combustion. The drawback of this modelling tool is the limitation in terms of steady-state

operation.

Another approach was developed by Moro et al. [40] who defined different patterns in the

crankshaft speed characteristic in relation to pressure combustion conditions. Each pattern

is related to a frequency response function. These functions are stored in a map in order to

determine the signal transfer characteristics through the engine structures. The map then

enables the derivation of the pressure waveform. This less expensive method of reconstruction

is an approach for on-board diagnostics if applied on a map basis. However, depending on the

required accuracy vast amounts of data need to be generated to cover different conditions and

different fault characteristics.

In the work of Lee et al. [41], a pattern recognition method has been applied in comparison

with a frequency analysis. The pattern recognition method employs a stochastic analysis in

which the physical complexity of the engine is ignored. This was achieved by building a re-

lationship between combustion and crankshaft in the form of polynomial expression, enabling
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a fast and non-costly calculation of pressure traces. In contrast, they described a frequency

analysis approach where the advantage lies in transferring the signal into the frequency domain

and being able to define frequency components relevant to the measured signal. Consequently,

the computation time was shortened because the calculation expenditure required fewer com-

ponents. Both approaches were capable of being applied on a low sampling resolution and

met the criteria for real-time online estimation and control.

In the three reported works of Taraza et al. [42, 43, 44], the issue of non-rigidity of the

crankshaft is discussed. The first investigation [42] establishes the importance of harmonic

orders for representing the in-cylinder parameters of gas pressure and torque. This approach

enables the distinction of the orders initiated in the cylinder chamber and orders generated

through non-rigidity and resonance oscillations. Different harmonics are caused by varying en-

gine phenomena such as combustion pressure, faulty cylinder conditions or power imbalance.

Hence, patterns of harmonics can be used to isolate certain engine problems. In [42, 44], the

authors also state that lower frequency components measured in the crankshaft fluctuation

contain information about the indicated gas pressure. For these frequency regions in partic-

ular, the crankshaft can be assumed to be a rigid body that does not introduce resonance

frequencies. In addition, specific harmonic orders can be used to determine varying power

contributions of individual cylinders. One disadvantage of this method is the limitation in

terms of steady-state conditions. In the case of additional engine operation points there would

be a requirement for far more data in the form of harmonic patterns for each condition.

Zeng et al. [45] used this information about harmonics and created a speed-load curve with

fitting factors for a polynomial relation under defined conditions. This was achieved by mea-

suring in-cylinder pressure on tested points and capturing the corresponding harmonics on the

crankshaft. With the corresponding map the in-cylinder pressure can be reconstructed with a

trade-off in accuracy of conditions between defined points where interpolation is applied.

Another approach of reconstruction is the application of ANN. The method radial basis func-

tion already mentioned in 2.2.1 was proposed by Jacob et al. [46] and eventually applied by
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Gu et al. [47]. The non-linear relation and potentially necessary application to a wide range

of engine conditions makes ANN with its generalisation capabilities and non-linear mapping

characteristic a promising choice. The results showed that the RBF operated in a consistent

and robust manner over a wide range of engine operations.

A similar discovery was made by Potenza et al. [48] who applied the Non-Linear Autoregressive

model with exogenous input (NLARX) as mentioned earlier in 2.2.1. They applied two different

training algorithms, wheras the Extended Kalman Filter was found to be more efficient and

resulted in better network performance than the Back-Propagation-Through-Time algorithm.

In these applications, problems were identified in the complex structure and computationally

expensive structures of the network. Accuracy is thought to be improved by additional training

data with higher feature density recorded over a wider engine operation range. At the same

time, any additional inputs and data features model structures will grow in complexity, which

will consequently increase computational costs.

To summarise the method of reconstruction of cylinder pressure through crankshaft velocity

fluctuations, it appears there are several reconstruction approaches that lead to promising

results in terms of:

• Abnormal combustion detection

• Faulty cylinder detection

• Torque reconstruction

• Gas pressure reconstruction.

However, there are challenges in recovering the information required. Assumptions in models

and relations or limitations to certain engine conditions or operating ranges take their toll

on accuracy. In the event of more comprehensive models or maps for engine conditions, the

computational expenditure increases. This in turn disqualifies the algorithm for on-board di-

agnostics or controller design purposes. An additional problem is the measurement location

which is ill-posed for several possible signal perturbations. Engine phenomena such as over-

lapping cylinder excitations introduce noise into the measurement or vibrations introduced

from the road and transferred through the clutch generated disturbances. In addition, the
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crankshaft is considered a non-rigid body. On the one hand, this is a reasonable assumption

for lower frequencies introduced through cylinder pressure that can pass through the engine

components and then be detected. On the other hand, higher frequencies cause resonance

problems. A third problem arises in the form of the singularity phenomena that appears while

the cylinder moves through the Top-Death-Centre (TDC) and Bottom-Dead-Centre (BDC)

points. At these points torque is instantaneously zero because of the change of direction. As

a consequence, there is no pressure information available at these moments via the crankshaft.

This effect becomes crucial since the pressure propagation process is at its peak around TDC

and the instantaneous information cannot be detected.

Taking into consideration the problem of low frequency blocking in the cylinder block vibration

method and the ill-posed high frequency part in the crankshaft speed fluctuation method

Johnsson [49] developed a method combining those signals.

2.2.3 Combination of Block Vibration Signal and Crankshaft Speed Signal

The reconstruction of the pressure trace through vibrational analysis on the cylinder block or

fluctuation analysis on the crankshaft speed suffer from frequency range restrictions. This

is either caused by the fact that the transferring medium is too rigid (engine block) or too

flexible (crankshaft). Hence, the engine block does not transfer the low frequencies of the

pressure trace and the crankshaft has a resonant behaviour at high frequencies. When both

features are combined, they theoretically enable a higher accuracy and more comprehensive

system representation. Johnsson [49] presents a complex valued RBF network that is fed with

both measured signals. The signals are pre-processed with Fourier transformation in order

to access the necessary frequency bands. For training purposes k-means clustering is applied

along with a recursive hybrid learning algorithm in order to optimise the networks performance.

The results are accurate but would require more training data to improve performance. This

however would lead to bigger networks and more computational expense that goes against the

needs of real-time applications.
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2.2.4 Prediction through Comprehensive Models

The predictive character of a model theoretically enables the result to be taken into account

for instantaneous control actions. The predictive detection of in-cylinder pressure has to be

based on parameters that are available prior to the combustion event and have an effect on

the outcome of the combustion rather than reconstructing them from signals available after

the event. Different models have been developed in recent years. The pressure predictive

models are mainly integrated into fully comprehensive engine models used for engine calibra-

tion and investigation of different engine processes. They are handled as a sub-model with

varying detail and complexity. In the case of comprehensive implementations, the computa-

tional demand may be very high which disqualifies those methods from any real-time operation

in OBD or control. However, models have been developed with good prediction accuracies

depending on the model type. Their complexity can be classified into: 1. zero-dimensional,

2.quasi-dimensional and 3. multi-dimensional approaches. These are determined via the de-

gree of detail in which the in-cylinder process is analysed. Zero-dimensional models usually

assume ideally mixed states of in-cylinder behaviour. Quasi-dimensional models use the notion

of different zones of gases such as unburned, burned or flame zone. The multi-dimensional

approach is most comprehensive and utilises a mesh of separate zones that describes the cylin-

der. The latter is usually applied in computational fluid dynamics (CFD) models and can give

precise predictions for each step of combustion for different zones in the combustion chamber.

The studies of Sing et al. [50, 51] generated a comparison of three different approaches to

diesel engine combustion modelling. Their comparison parameters are in-cylinder pressure,

NOx and simultaneous optical diagnostic images from a heavy-duty diesel engine. A char-

acteristic time combustion model, a representative interactive flamelet model and a direct

integration using detailed chemistry are implemented with a KIVA code. Each model is tested

on five different engine operation points. The predictions of all three models show a reasonable

trend for cylinder pressure and other comparison parameters. However, the actual in-cylinder

phenomena were considerably different between each of the models. The cost of these results

with CFD codes comes with the computational expenditure which is significant and renders

them not applicable for OBD or controller design purposes.
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A less detailed model is presented by Pariotis et al. [52]. This quasi-dimensional model uses a

multi-zone phenomenological approach with a procedure normally used in CFD models. The

combustion process is described in more fundamental terms than a plain quasi-dimensional

approach but is less computationally demanding than in a CFD model. It also takes into

consideration the spatial distribution of air-fuel mixing and temperature and gas mixture con-

centrations. In the paper, three different load and speed points are presented and the models

are correlated with a turbocharged diesel engine. The results for pressure prediction are de-

scribed as sufficient. In most engine models, the pressure trace correlation is a measure of the

models’ quality rather a focus on the models’ development. Models implemented simply to

predict of the pressure are rare and mainly developed for low-cost simulations and to develop

control algorithms in the lab.

Zero-dimensional models require the least computational performance. Therefore, models with

generalisation of complex gas mixtures, fuel-entrainment systems or temperature distribution

are preferred for real-time simulations. The model presented by Grondin et al. [53] focused on

the pressure and torque generation of a single cylinder CI engine. The model is described by

physical phenomena based on the filling and emptying method and the ideal gas law is applied

as stated in equation 2.2:

PV = nRT. (2.2)

Here P represents the absolute pressure, V the volume, n the number of moles of the gas,

R the absolute gas constant, and T the absolute temperature. The model is described as

favourable for hardware-in-the-loop (HIL) applications. The simplification generates a fast,

reliable and, over a reasonable engine operation range, accurate model. However, model vali-

dation for transient application still needs to be verified.

Allmendinger et al. [54] developed a model based on energy balance equations. However,

their approach was to split the calculations of an engine cycle into different phases in order to
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reduce the number of parameters actually required and, consequently, calculation time. Their

model can calculate the in-cylinder pressure, temperatures during compression, expansion and

the heat-release phase. Their model shows some deviations from measured results which are

due to incorrect initial conditions and neglecting the cylinder wall heat transfer as stated in

the conclusions. Nevertheless, it is claimed their model is reasonable and reliable for control

purposes.

This approach is utilised by Erikssons et al. [55] who instead developed a model for a SI

engine. The Otto cycle enables the authors to solely consider the compression and expansion

processes that need to be modelled. The gap in-between is interpolated using a Vibe function.

Instead of describing the two processes numerically, an analytical approach is applied. The

aim here is to develop a simple, reliable and accurate model.

Another important factor in this combustion model is described in Chen’s work [56]. The

model is developed for a CI-engine application and is used to investigate the impact of vari-

ation of inlet conditions on the peak cylinder. It correctly predicts the in-cylinder pressure

with varying intake manifold temperatures and pressure. For peak pressure composition, this

simplified model uses three parameters: 1. intake manifold pressure, 2. pressure rise from

compression to expansion with combustion (motoring pressure rise), 3. pressure rise added

through the combustion heat added to the cylinder. The model closely agrees with trends and

magnitudes of the peak cylinder pressure. The drawback of this method is that the prediction

is restricted to peak cylinder pressure rather than the whole pressure trace over the engine cycle.

Zweiri et al. [57] describe an analytical, non-linear dynamic model for a single-cylinder diesel

engine. It is validated using the cylinder pressure and instantaneous engine speed under tran-

sient operating conditions. The model can describe the dynamic behaviour of varying fuelling

strategies and the resulting engine speed. For those operations it includes dynamometer dy-

namics, friction parameters and cylinder thermodynamics. The results are found to be in good

agreement with the previously mentioned validation parameters. The authors state that the

model can be used as a investigation tool for transient fuel control design and fault diagnostics

as a model-based estimator but also for OBD and control operation.
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This overview shows that predictive models are mainly developed for investigation and under-

standing of engine behaviour. Although the need for non-linear models as on-board diagnostic

tools or for hardware-in-the-loop controller design has become greater, current models are

still not sophisticated enough to cover the entire engine operation range. The application of

ANN is promising since the recognised generalisation capabilities can overcome the demands

of transient engine conditions. At the same time, efficient and lean network design can achieve

fast and real-time-capable models applicable to on-board diagnostics.

2.3 Summary Literature Review

• The in-cylinder temperature estimation is achieved using heat release models. These

can be distinguished by the number and types of parameters and the spatial resolution

of CFD or FEA simulations.

• The in-cylinder pressure simulation is classified into two main parts. The reconstruction

utilises signals that are excited by the pressure characteristics inside the cylinder, whereas

the prediction determines the pressure signal from relevant engine parameters measured

prior to the combustion event.

• The reconstruction is segmented into the approaches of engine block vibration and angu-

lar crank-shaft speed fluctuation reconstruction. In both approaches, several techniques

have been employed, such as inverse filtering, mapping, mathematical, numerical or

neural network modelling.

• Prediction can be categorised into zero-dimensional, quasi-dimensional, multi-dimensional

and black-box modelling. The first three modelling approaches can be distinguished from

one another by the considered parameters and their treatment. In contrast, black-box

models in the form of neural networks, simply neglect the complexity of the observed

system.
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2.4 Advantages of Simulation Approaches

• Heat-release models permit further understanding of combustion processes and enable

the investigation of varying engine behaviour with changing parameters, such as air

entrainment or injection rate and timing.

• The reconstruction approaches, such as engine block vibration and angular speed fluctu-

ation measurements, can be readily acquired because the required sensor hardware has

already often been installed. In addition, the signal recovery techniques can be based on

data processing that cuts down the required understanding of engine processes in terms

of their complexity. Consequently, the techniques can be considered for a real-time

on-board application purpose.

• Modelling approaches to predict in-cylinder pressures increase the understanding of en-

gine combustion processes and achieve high accuracies in terms of mapping the outputs.

• Artificial neural networks achieve remarkable results for both parts, reconstruction and

prediction. Their adaptiveness and ability to accommodate the process and systems

complexity push them into a promising position.

2.5 Disadvantages of Simulation Approaches

• Indirect temperature measurement is characterised by elaborate models that require

substantial computational resources.

• Strong noise perturbations from other engine parts, high- and low-frequency constraints

in both approaches: 1. cylinder block vibrations 2. crank fluctuations, and model

simplifications in the reconstruction techniques lead to an overall restriction of both

methods.

• The prediction is denoted by the trade-off between accuracy and computational de-

mand. Increasing utilisation of submodels aids accuracy but simultaneously increases

the required computing effort.
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• The approaches identified from the literature are not appropriate when it comes to

on-board emissions control.
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3 Theory of Artificial Neural Networks - Structures

and Optimisation

The theory of Artificial Neural Networks (ANN) has been in development over the last few

decades. Its origins are based in the field of neuroscience from where it spread into other

sciences such as engineering, but also economics for stock market prediction [58].

The idea of ANN is laid out in the paradigm of the human nervous system. Therefore, it

resulted from an interdisciplinary work between mathematicians and neurophysiologists who

determined that the nervous system can be mapped by logical procedures represented in maths.

Here, the breakthrough was achieved by McCulloch and Pitts [59] in the 1940s. It was shown

that a simple unit in the form of a neuron composed within a sufficient network of neurons

could map any computable function. However, after two decades of pursuing this new ap-

proach, the level of interest slowed down due to lack of computing power. The increasingly

required computational accuracy of learning algorithms for the rising complexity of problems

could not be met. Especially within the engineering domain this field was put on hold until

the end of the 1980s before becoming increasingly popular again in the 1990s as a result of

the cheap and sufficient computing power. The ability to solve complex problems on desk

machines made the theory highly applicable for everyday tasks. Since then, the method of

ANN has been utilised in system identification tasks for creating models or controllers in a

number of different fields as the following studies suggest [59, 60, 61, 62].

The following chapter outlines the theory of artificial neural networks. The first section de-

scribes the formulation of a single processing unit. In the second section, architectures of

comprehensive parallel processing compounds are presented. The third section covers the op-

timisation of a system-representative network through specific training algorithms. A fourth
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section illustrates compilations of ANN structures and their application. The final section

summarises the chapter.

3.1 Artificial Neural Network Principles

The idea behind ANN is based on the human nervous system found in the brain: the neural

network. This composition of neurones can be described as a magnificent parallel distributed

processing unit. The human brain’s natural ability to store knowledge and use it to map com-

plex input-output relations makes it unique. Hence, the development of artificial counterparts

for simple and narrower field application can be a powerful tool. Haykin [59] defines a neural

network as follows:

A neural network is a massively parallel distributed processor made up of simple

processing units, which has a natural propensity for storing experiential knowledge

and making it available for use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning

process.

2. Inter-neuron connection strengths, known as synaptic weights, are used to store

the acquired knowledge.

From this definition it follows that an ANN, similar to its natural paradigm, learns from

stimulating inputs and a desired output it can relate to. It is taught by the existing input-

output relation and, based on the teaching, it generates a mapping function that enables it to

predict the output based on new, unseen inputs. The corresponding relation of this input and

output is hidden within the structure of the ANN. There is no information given by the network

about the inner behaviour of the actual relation it maps between input and output. Therefore

it can be counted into the field of black-box modelling approaches. This approach is especially

desirable for not fully understood physical relations where definitions of phenomena cannot be

described through mathematical formulation of the problem. In addition, in cases of extreme

complex numerical relations requiring vast computing power, neglecting this information by

using ANN can reduce computing time considerably.
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The performance outcome of an ANN is dependent on different parts the user can choose and

train. The core unit of such a network is a so-called neuron as presented in figure 3.1.

3.1.1 The Neuron and its Peripherals

The neuron is the basic processing unit that, in connection with other neurons forms a network.

This unit consists of several parts as they are also displayed in figure 3.1:

• Input signals - xj

• Connecting links with assigned synaptic weights - wkj

• Bias input - bk

• Summing junction -
n
∑

j=1

• Activation function ϕ( · )

• Output signal ŷk.

Each of these parts therefore play a role in finding a network that performs sufficiently on a

selected problem, i.e. modelling task.

Figure 3.1: Single neuron scheme with input, weight, bias, summing junction, activation function and

output
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Inputs and Outputs The inputs xj and outputs ŷk are key parameters in order to suc-

cessfully train an ANN. The information content incorporated in the inputs of the system is

crucial in order to find an operational point with sufficient performance levels. The inputs

provide stimulating information as to what causes a reaction within the system resulting in an

output. Therefore it is important that the scope of information covers the maximum required

details. This enables the trained ANN to perform more accurately on new and unseen data

known as the generalisation capability. Common pre-processing procedures are the normalisa-

tion of inputs and outputs in order to reduce the input value range and avoid saturation of

the activation functions. The output range of many functions lies between [0, 1] or [-1, 1].

Hence, the system output value is also required to be within the target values of the activation

function of the output layer to avoid saturation of output values. In case of multiple inputs it

is recommended to choose uncorrelated information with covariances that are approximately

equal. A popular method of finding uncorrelated inputs is the principal-component analysis.

Connecting links The connecting links between inputs and neurons and the inter con-

nections between neurons are the ANN memory. Links are assigned with weighting values

according to the importance of the corresponding connection. This synaptic weight wkj is

multiplied by the input value from either the input xj or the output ŷk of a predecessor neu-

ron. Their value is changed during training until a specified accuracy level with respect to

the reference system output is found. In the final training state, the value for each weight

describes the importance of each input to the neurons’ output. Initialisation of the weights

is important to ensure training process efficiency. Initial states can lead to saturation of the

activation function. Consequently, this may cause a longer and possibly unsuccessful training

process that results in not finding the weight allocation. Haykin [59] states that if the values

are chosen from the uniform distribution they should have a mean of zero and a variance that

is equal to the reciprocal of the number of synaptic connections into a neuron as expressed

through 3.1:

σw = m−
1

2 . (3.1)

An additional value for tuning is the bias input that can be chosen as a perturbation signal
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into the summing junction.

Summing junction The summing junction is the combining element of the neuron k where

the different connecting links either from the input or from a predecessor neuron are combined

into the activation potential vk. This is represented through the mathematical equations 3.2

and 3.3:

uk =

n
∑

j=1

wkjxj (3.2)

and

vk = uk + bk. (3.3)

The neuron inputs x1, x2, ..., xn are multiplied with the correlating input weight wk1, wk2, ..., wkn

and then summed up into the resultant signal uk shown in 3.2. In the follow-up equation 3.3

the activation potential vk of neuron k is formed by the sum of uk and bk.

Activation or Transfer Function The activation function or sometimes also called transfer

function acts as an amplitude limiter and maps the activation potential vk into a finite value

range of output ŷk. Typically these ranges are between [0, 1] or [-1, 1]. The transformation

can be mathematically expressed through the formulation of 3.4:

ŷk = ϕ(vk). (3.4)

This varies from the type of activation function which is described into more detail in the

following section 3.1.2.

3.1.2 Types of Activation Functions

The activation function determines the relationship between the input and output by mapping

the activation potential vk through a functional relation ϕ( · ) into the output ŷk. Within the

field of ANN, different functions are preferably used:
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• Threshold functions

• Piecewise linear functions

• Sigmoidal functions

• Pure linear functions
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Figure 3.2: Typical threshold activation function
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Figure 3.3: Typical piecewise linear activation function
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Figure 3.4: Typical hyperbolic tangent activation function

Their choice is dependent on the problem of the system that needs to be mapped, whether the

system is classifying, is linear, or shows some non-linear characteristics. In figure 3.4, three of

the main functions are represented. The threshold function is typically used for classification

problems whereas the piecewise linear function can be applied to linear problems. The pure
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linear function represents a special case of the piecewise linear functions. The most commonly

used function especially within non-linear problems is the sigmoidal function, which is based

on the logistic function described by 3.5:

ϕ(vk) =
1

1 + exp(−a · vk)
, (3.5)

where the activation potential is represented through vk and a which is describing the slope of

the function. If this value becomes infinitely positive, the function represents a simple thresh-

old. An infinitely negative value of a represents a pure linear function. Another commonly

used function from the group of the sigmoidal functions is the hyberbolic tangent function

shown in 3.6:

ϕ(vk) = b · tanh(a · vk), (3.6)

where a defines the slope and b determines the output range of the function. A positive or

negative infinite value leads to a threshold or linear characteristic respectively. The actual

output form of an hyperbolic tangent activation function can be described as being anti-

symmetric since a negative value of vk is mapped into a negative value of ϕ( · ) as figure 3.4

shows. The other output form is a non-symmetric form that is represented through the logistic

function where the input range, e.g. [-10, 10], is mapped into the function space [0, 1].

In general, every function that is continuously differentiable could be a possible candidate for

an activation function. In theory, this enables specific custom functions to be defined for

individual problems. Nevertheless, current practice shows that for most ANN applications the

presented function types are used [62].

3.2 Neural Network Architectures

A composition of neurons and connecting links into networks is considered to be an artificial

neural network (ANN). Compositions of those networks have been evolved during the last few

decades to create more and more complex architectures of combinations. Different architec-

tures fit different tasks such as: pattern association and classification, function approximation
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Figure 3.5: Single-layer feedforward network

finding associative memories or generate new meaningful patterns. Within the field of ANN,

a distinction is generally made between three main architectures:

• Single-layer feedforward networks

• Multi-layer feedforward networks or Multi-Layer Perceptrons (MLP’s)

• Recurrent neural networks (RNN)

3.2.1 Single-Layer Feedforward Networks

The architecture of a single-layer feedforward network represents the basic structure of neuron

composition as illustrated in figure 3.5. The alignment of neurons is organised in layers.

The initial layer contains source nodes that connect the inputs towards a layer of neurons

generating the network output. Literature does not consider the inputs as an independent

layer with computation of data, so here it is simply called the input layer but is not considered

during layer numbering.

Figure 3.5 shows a single-layer network connecting the input layer with four source nodes to

an output layer of four neurons. The processing direction is strictly forward which results in

the name of single-layer feedforward network. Single-layer structures can accommodate single

input single output (SISO), which are basically a neuron, multiple input - single output (MISO)
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Figure 3.6: Multi-layer feedforward network or Multi-Layer Perceptrons (MLP’s)

or multiple input - multiple output (MIMO) networks. They are used for pattern classification

or simple function approximations.

3.2.2 Multi-Layer Feedforward Networks

The extension of the basic network version contains additional layers. Figure 3.6 shows a

network with an input layer, two hidden layers and one output layer. The introduction of

hidden neurons between the input and output increases the networks’ capabilities of mapping

higher-order statistics and introduces a global perspective that increases modelling power. In

general, it is stated that most practical neural networks have just two to three hidden layers

[62]. Such limitation ensures a complexity within manageable boundaries and computational

expenditure that is both reasonable and acceptable for training procedures and operation.

The network in figure 3.6 can be expressed by the abbreviation 6 − 3 − 4 − 2 which means it

consists of 6 source nodes, 3 hidden neurons in layer one, 4 hidden neurons in layer two, and

2 output neurons. The general term for a network with j inputs, h1 hidden neurons in layer

one, h2 hidden neurons in layer two and y outputs is consequently j −h1 −h2 − y. Figure 3.6

represents a fully connected network where all the nodes of each layer are connected to all of
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the nodes in the subsequent layer. In case of missing connections a network is called partially

connected. A popular name for the multi-layered networks is also the expression MLP which

stands for multi-layer perceptrons.

3.2.3 Multi-Layer Feedforward Networks with Temporal Behaviour

Conventional feedforward networks are limited to representing dynamical characteristics of an

input-output relation. Their standard implementation does provide for the inclusion of any

time-related information. This can be solved by a short-time memory represented through

a tapped delay line storing preceding inputs which generates a temporal dimension for the

networks performance [59, 62]. The output y(n) includes some temporal information from

delayed inputs for a single hidden layer of the size m and can be described by 3.7:

ŷ(n) =

m
∑

j=1

wjyj(n) =

m
∑

j=1

wjϕ

(

p
∑

l=0

wj(l)x(n − l) + bj

)

+ b0 (3.7)

where wj defines the weights of the output neuron, x(n − l) the delayed input, bj stands for

the neuron bias, and b0 for the input bias if applicable.

3.2.4 Recurrent Neural Networks

Recurrent neural networks (RNN) are defined by a feedback loop. This loop can be either

between output and input layer, between hidden layers, or even between the neuron’s output

and input. This structure has a profound learning advantage. Its feedback enables the imple-

mentation of time dimension and, hence, system dynamics. The delaying capability of inputs

and outputs defines a long-term memory.

Figure 3.7 displays an example of an RNN where two outputs are fed back to the input layer.

The introduced connection branches require a unit-delay element that is denoted by z−1.

A further detailed distinction can be drawn between three different types:

• Input-Output Recurrent Model

• State-Space Model
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Figure 3.7: Recurrent neural network (RNN)

• Recurrent Multilayer Perceptron

Input-Output Recurrent Model - This model is derived from an MLP. The inputs are

delayed as in an MLP with temporal behaviour. In addition, the output is fed back into

the input layer with delay units. Due to the exogenous inputs x(n) and its predecessors

x(n − 1), ..., x(n − q + 1) on the one hand and the output ŷ(n + 1) that is regressed in

terms of its previous values ŷ(n), ŷ(n − 1), ..., ŷ(n − q + 1) the network is called Non-Linear

Autoregressive with Exogenous Input Model - NARX or NLARX. Figure 3.8 shows a general

canonical model of the structure.
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Figure 3.8: Nonlinear Autoregressive with Exogenous Inputs Model - NARX or NLARX: canonical

representation (partially redrawn from [59])

This network structure can grow considerably depending on the number of recurrent outputs

and delayed inputs. Hence, network performance is a trade-off between the computational

expenditure and the required dynamics.

State-Space Model - The state-space model (SSM) differs from the NLARX model on

account of its state-based feedback. The states of the SSM are defined through the outputs

of hidden neurons. These states are looped back to the input layer. Figure 3.9 visualises the

assignment of the state feedback from the hidden layers. Its structure can be expressed by the

following equations 3.8 and 3.9:

x(n + 1) = f(x(n),u(n)) (3.8)

y(n) = Cx(n) (3.9)
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where x(n+1) is the hidden layer output generated through a non-linear function, f , which is

dependent on x(n),u(n), the hidden layer output previously fed back and the environmental

input respectively. The output layer transfer function is of linear character which leaves the

output y(n) in equation 3.9 in a simple multiplication of the output neuron weight matrix C

and the current hidden layer output x(n) - see figure 3.9.q
px nw n w n + 1 y n + 1 ŷ n

Figure 3.9: State space model with MLP and a single hidden layer (partially redrawn from [59])

This operation of feedback enables information of previous network states to be stored which

may influence the forthcoming process and hence take dynamical behaviour into account.

In addition, recurrent multi-layer perceptrons (RNN) and second-order networks can be men-

tioned as an extension of the state-space model. The former is characterised by a local

feedback around each hidden layer which permits free choice of the transfer function of each

layer. The latter shows a multiplication of the nodes from external and feedback inputs with

weight wkij resulting in an activation potential vk:

vk =
∑

i

∑

j

wkijxiuj (3.10)

with xi as the external input and uj for the feedback input.

3.2.5 Combining Artificial Neural Networks

The growing complexity of single ANN becomes bigger, more difficult to train, and may lose

its computational efficiency. Hence, in some cases the development of network compounds
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becomes inevitable. Network compounds as presented in Maass et al. [63] can improve

the overall task solutions considerably. A compound may include the arrangement of several

neural networks which can be allocated different tasks or even the same ones in case of

required redundancy [64]. This method enables ANN capabilities to be broadened by building

network ensembles or modular combinations. The former is defined as a system of redundant

networks, which ensures a definite result in case one of the networks fails to perform. In

case of a modular combination, individual networks are designed to perform a superior task

and contribute to a solution. A third way is the combination of ensembles and modular

combinations. The definition of those combinations is either made as a decomposition of

a task from top to bottom or bottom-up for sensor fusion. There are different methods of

combining ANN modules which are presented in figure 3.10.

Figure 3.10: Different methods of combining ANN into multi- network systems
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These combinations can be used for a variety of purposes in order to find system behaviour

solutions:

• Modularity for optional exchange

• Voting capabilities

• Several non-similar outputs

• Signal variability

Here, the modularity for optional exchange describes the fusion of a variety of signals within

an overall solution. A subsystem may provide an output to another subsystem that combines

other inputs to a system’s output. An example of such a scheme is represented in figure 3.11.

In the literature it is also known as the modularity-based approach as described by Sharkey et

al. [64].

C o m p o n e n t1 . 1 C o m p o n e n t1 . 2
Figure 3.11: Scheme of network modularity: task distribution for finding overall task solutions
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A network structure with voting capabilities is also described as an ensemble [64]. Several

networks map the same output redundantly. An overlooking system selects the strongest

“vote”, i.e. the best result from all of the different subsystems. These subsystems can have

different inputs or be trained differently - figure 3.12.

C o m p o n e n t1 . 1 C o m p o n e n t1 . 2
Figure 3.12: Scheme of network output voting: Several redundant networks predict the same output

and a vote for the best or the majority result is applied

The third bullet of non similar outputs is represented in section 4.3. An engine model contains

four independent ANN for four outputs. A single ANN for all four outputs cannot generate the

output performance of several independent networks. Hence, a modular compound is required

in order to find the tasks’ solution.

Another possible use for network compounds is signal variability. This type of network com-

pound is especially helpful for wide operation ranges such as, for example, powertrain diag-

nostics. Different settings (start of injection, fuel rail pressure, fuel ratio) or operation points

(speed and torque) may be modelled with separate networks. Depending on the system’s state,

different subsystems are chosen to generate the system’s desired output. This subsystem can
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again be split into redundant networks in order to find the best solution for the task. A possible

structure is presented in figure 3.13.

C o m p o n e n tS e t t i n g 2C o m p o n e n tS e t t i n g 1
S e t t i n g ?

Figure 3.13: Scheme of operational variability: Several networks predict the same output for different

operation cases and are trained on signal variability

Examples within literature can be found such as subtask modelling of a system described in

the work by Soumelidis et al. [65], which discusses the development of an initial modular

powertrain model including a model of an electric motor and a model of a transmission. Each

of the models was replaced by a neural network in the following in order to investigate if similar

results can be achieved. Guoyin et al. [66] introduced definitions for parallel neural network

structures that are classified into three variations:

• Parallel network system with single task

• Parallel network system with multiple tasks

• Mixed parallel system networks
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A parallel network system with a single task can be applied for redundancy problems. Such a

system structure enables the classification or detection of certain signal patterns. Each net-

work is trained on different input variations. This approach ensures the broadest spectrum

of the signal is covered and redundancy is created in case a network fails to determine the

output. In those cases, networks can also be used for generating voting results that are anal-

ysed and combined towards a system output. In their work [67, 68], Sharkey et al. state that

different training patterns applied to different modules increase the generalisation capability of

the whole multi-net compound and, consequently, the overall classification or approximation

performance.

The second item, i.e. the parallel network with multiple tasks, is chosen e.g. by Sharkey et al.

[69] who developed a fault diagnosis tool for a marine diesel engine where a combination of

network modules forms a multi-net system. Each module is trained for a particular subspace

question, in this case a certain engine fault. The actual problem can then be detected by

combining the results.

This technique has also been applied in the conference paper: Diesel Engine Prediction Using

Parallel Neural Networks by Maass et al. [63] which is presented in section 4.2.3. In this case,

the network compound consists of independently trained NLARX networks covering certain

signal parts. The results are summed up to provide an overall result. Lee et al. [70] state that

the application of several networks can be used to find the optimum on the error surface. This

decreases the risk of converging into local minimum on the error surface. Also, the application

of networks on subspaces reduces the overall computational performance of the network due

to complexity reduction in each network.

3.3 Optimisation Methods of Artificial Neural Networks

The next step after choosing the ANN architecture is the network’s optimisation which is

aimed at reducing the error e between the teaching data output y and the network output ŷ.

The optimisation of an ANN can be controlled through different parameters:
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• Number of layers

• Number of neurones

• Activation function definition

• Weight matrix assignment

Whereas the choice of numbers for layers and neurons is experience-based and trial-and-error

dominated, the actual weight assignment is typically solved through numerical optimisation.

As already mentioned in the previous section 3.2, a reasonable network consists of up to 2

or 3 layers. The literature describes that networks with more than 3 layers are considerably

more difficult to train and optimise due to increasing complexity and pure computational

expenditure as some of the training algorithms require computing-intensive operations. The

number of neurons within each layer or how many delayed inputs and recurrent outputs a

network requires for optimum performance is also trial-and-error dominated. However, the

literature describes two approaches of finding optimal numbers of neurons as: 1. network

growing or 2. network pruning. The former is based on the idea of building a network

with as few neurons as possible, while the latter approaches the solution from the opposite

direction by introducing a large network with numerous neurons that in turn result in an over-

fitted network. This is characterised through a very close match of network outputs with

presented training data, but the ability to generalise over unseen data is be poor. The pruning

technique systematically eliminates irrelevant links between neurons until an adequate network

performance is achieved The definition of transfer functions is dependent on the actual system

characteristics. As described in subsection 3.1.2, the commonly used activation function for

non-linear system behaviours are sigmoidal functions for hidden layers and linear activation

functions for the output layer. In case of classification problems the domain of threshold

functions plays an important role.

The major task for network optimisation lies in the weight assignment. Several algorithms have

been proposed over the last few decades. The idea is to find a minimum for a cost function that

is based on the error between the training data and the network output. Training a network

can be carried out either in a supervised or unsupervised manner. In the former, the network is

taught with teaching data that incorporates the system’s behaviour for as many characteristics
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of input and output data as possible. It is used to teach the network the system’s response

towards certain input features by adjusting connection weights until the minimum value of a

function of the errors between the teaching output data y and the network processed output

ŷ is achieved. The latter method, unsupervised learning, applies competitive rules in order to

build and distinguish different classes in the input data of the environment. These unsupervised

approaches are not further investigated in this work.

Different ANN may require certain training algorithms in order to satisfy different learning

tasks such as pattern recognition or classification, function approximation, control application

or filtering. Consequently, feed-forward architectures require different techniques to recurrent

and temporal networks which include dynamics of systems. However, the basic approach

for weight optimisation and reduction of the cost function can be described on the gradient

descent algorithm used in feed-forward structures. The aim of all algorithms is to reduce the

cost function and hence the error e between training data output and network output.

The error at the network output node j is defined by the error ej(n):

ej(n) = dj(n) − yj(n) (3.11)

where dj(n) is the desired response and yj(n) the current output of node j at step n.

The cost function ξ(w, n) of the network is defined by the sum of the square of the output

errors associated with the nodes at the output layer:

ξ(w, n) =
1

2

k
∑

j=1

e2
j (n) (3.12)

where w is a vector of adjustable weights of the network. Hence, with every presentation of

training data it is the aim to choose w to reduce the cost function ξ(w) to a local optimum

where:

∇ξ(w) = 0 (3.13)
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with the gradient operator ∇ represented by:

∇ =

[

δ

δw1
,

δ

δw2
,

δ

δw3
, ...,

δ

δwm

]T

(3.14)

This cost function needs to be differentiable in respect of w in order to find an optimum on

the weight space.

The first-order partial derivatives may be used to define the search direction on the error

surface in order to find the minimum. By applying this information, the following definition of

the gradient descent algorithm can be made:

w(n − 1) = w(n) − ηg(n) (3.15)

where g:

g = ∇ξ(w) (3.16)

and η is a learning-rate parameter that defines how big the search steps on the error surface

are, which is also referred to as the weight space. The temporal performance of algorithms is

a trade-off between small and large learning-parameter step sizes. In case of a small change,

the search route will be smoother, resulting in a slower convergence time. On the other hand,

if the learning rate is defined through a big step size, the algorithm may be become unstable

and will not meet the target.

This basic algorithm can be improved by using second-order derivatives or, as described in

Newton’s method-using quadratic approximation in order to minimise the cost function [59].

The general problem with gradient methods is the slow convergence time. Depending on the

error tolerance and the size of the network, the number of iterations to find the optimum can

be computationally intensive. In addition, these algorithms are not protected against running

into local minima on the error surface. Hence, the resulting minimum of one run of the algo-

rithm is not necessarily the global optimal solution.
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3.3.1 Back-Propagation Algorithm

The back-propagation algorithm consists of two main phases which are repeated iteratively

until the optimal of the cost function is found. The core of the back-propagation is the gradient

descent described in equations 3.17 to 3.22. The aim is to reduce the function:

ξav =
1

N

N
∑

n=1

ξ(w, n) (3.17)

where ξav describes the average squared error over the set of training samples 1, ..., N . The

process of the back-propagation algorithms is the computation of network outputs including

all hidden layer signals before back-propagating the local gradients in order to calculate weight

changes for connecting links between the nodes. An initial training example with an input

vector x(n) and a desired output vector d(n) is presented to the network. This is followed

by calculating the activation potentials for each neuron defined by the general expression in

equation 3.18.

v
(l)
j (n) =

m0
∑

i=0

w
(l)
ji (n)yl−1

i (n) (3.18)

where yl−1
i (n) is the output signal of a neuron i in the previous layer l−1 that is multiplied by

the weights w
(l)
ji (n) assigned to the connection from layer l to layer l−1 between the neurons

i and j. The output of a neuron j in layer l is consequently defined by 3.19:

yl
j = ϕ(v

(l)
j (n)). (3.19)

where the y is an output of the transfer function ϕ in dependency of the activation potential

v
(l)
j (n) of the corresponding neuron.

For ym
j in a network with m layers, two special cases occur. If the neuron j is in the first

hidden layer the output signal of the input layer is equal to the jth element of input vector

x(n):

y0
j = xj(n).
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The other special case is if the neuron is located in the output layer l = L. Then:

ŷL
j = oj(n)

with oj(n) representing the output signal of a neuron j from the network. With this signal

the output error can be subtracted from the desired response dj(n) - equation 3.20:

ej(n) = dj(n) − oj(n). (3.20)

This forward computation is then followed by a backward calculation of the local gradients δ

that is defined by 3.21:

δ
(l)
j (n) =









eL
j ϕ′

j(v
(L)
j (n)) for neuron j in output layer L

ϕ′
j(v

(l)
j (n))

∑

k δl+1
k (n) ·w

(l+1)
kj (n) for neuron j in hidden layer l









(3.21)

With this gradient, the adjustment for the individual weights can be calculated on the basis

of the generalised delta rule as shown in equation 3.22.

w
(l)
ji (n + 1) = w

(l)
ji (n) + α[w

(l)
ji (n − 1)] + η · δ

(l)
j (n) ·y

(l−1)
i (n) (3.22)

where α represents a momentum constant and η a learning-rate parameter. These parameters

are adjusted over the number of iterations in order to increase the precision in finding an

optimum. A momentum coefficient can be applied as a filter in order to smoothen the gradient

oscillation on the trajectory in the weight space. Further explanations about the definition of

the delta rule and the local gradients can be found in [59].

3.3.2 Back-Propagation Through Time

An extension of the popular back-propagation algorithm is the version for temporal MLP

networks that adds the dimension of time delays to the optimisation process. This is achieved

by unfolding the network into its time dimension [59, 71]. The unfolded network grows with

each processing step as displayed in figure 3.14 where the schematic development of the
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Figure 3.14: Back-Propagation Through Time processing scheme

algorithm is visualised.

The network consists of layers n0, ..., n1 where the former is the start time and the latter the

end time of the training example. As a consequence, each layer consists of a time step rather

than a neuron set and hence the back propagation is operated in the time dimension rather

than processing information backwards through the neural network. The corresponding cost

function for this algorithm is defined by 3.23:

ξtotal(w) =
1

N

N
∑

n=1

∑

j∈A

e2
j (w) (3.23)

where A is the set of indices j for all samples of output neurons. Hence, the cost function

depends on the sum of error output of the neurons in A over all time steps 1, ..., N . The local

gradients represent the sensitivity through the partial derivatives of the cost function ξtotal(w)

with respect to the network’s connection weights and is defined by equation 3.24:

δj(n) =









ϕ′
j(vj(n))ej(n) for n = N

ϕ′
j(vj(n))

[

ej(n) +
∑

k∈A δk(n + 1)wkj(n)
]

for 1 < n < N









. (3.24)

Following the gradient calculation in the backward computation, the weights of the network

are adjusted according to the rule 3.25:

△wji = η

N
∑

n=n+1

δjwi(n − 1) (3.25)
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where η is the learning rate and wi(n − 1) represents the input into neuron j at timestep

n − 1. For a more elaborate explanation of the back-propagation algorithm the author refers

to the literature [59]. Here the definitions are plainly for support of the understanding of the

gradient descent search algorithms.

The back-propagation shows a good computational efficiency but can lead to intensive storage

requirements depending on the network depth and size or length of the training examples.

3.3.3 Numerical Optimisation Methods

The slow convergence and restriction to first-order gradient information of the steepest descent

search used in classic back-propagation can be overcome by Newton’s method which is known

as a second-order optimisation method. Second order optimisation methods utilise the Hessian

matrix, which is a matrix of second derivatives of the cost function ξ(w) with respect to the

decision vector w.

An = ∇2ξ(w)|w=wn
(3.26)

In case of a quadratic function with a strong minimum, Newton’s method can converge and

find the optimal minimum in one step. However, if the function is not quadratic it cannot

be assumed that the method converges at all [62]. Another disadvantage with Newton’s

method is that the storage requirement of the second derivative grows quadratically [59].

This, consequently, is impractical in case of complex input/output relationships with a wide

range of connections. These disadvantages can be overcome by variations of some methods.

The Quasi-Newton method that uses an estimate of the Hessian matrix and its inverse requires

less storage. However, its computational expenses restrict it from use with large and complex

networks. For more detailed information on Newton’s and the Quasi-Newton method, the

literature of [59, 62] can be consulted. Here, two other classes of second-order methods are

presented, the Conjugate Gradient method and Levenberg-Marquardt method.

Conjugate Gradient Method - The conjugate gradient method avoids the processing,

storage and inversion of the Hessian matrix and searches along conjugated vectors for the
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optimal minimum. First, the gradient of the function ∇ξ(w) = gn is derived at each step n

for each iteration, which results in a search direction along the steepest descent. Secondly,

each new direction pn is a combination of the gradient and the previous direction pn−1 defined

by 3.27:

pn = −gn + βnpn−1 (3.27)

where βk is a scaling factor determining the length of the search step along the defined vector.

It can be chosen by several different methods. Two common definitions are defined by 3.28 or

3.29in [62]:

1. Polak-Ribiere:

βn =
∆gT

n−1
gn

gT

n−1
gn−1

(3.28)

2. Fletcher-Reeves:

βn =
∆gT

n
gn

gT

n−1
gn−1

(3.29)

Finally, the search direction defines the next step of the iteration, as seen in 3.30:

wn = wn−1 + αnpn (3.30)

where wn represents the new point on the error surface determined by the previous point

wn−1, the current search direction pn, and the learning rate η which is defined by 3.31:

ηn = −
gT

npn

pT
nAnpn

. (3.31)

Levenberg-Marquardt Algorithm - Another variation of Newton’s method is the Levenberg-

Marquardt algorithm. However, it avoids the computationally expensive Hessian matrix by
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approximating it with 3.32:

A = JTJ (3.32)

where J is the Jacobian matrix that consists of first-order derivatives of the network errors with

respect to the weights and biases [62]. This becomes possible if the cost function represents

the form of a sum of squares as in the case of feedforward training where the cost function is

represented by the equation 3.17.

The algorithm is operated in a back-propagating manner. A training example is presented to

the network resulting in a network error. This error is used for the calculation of the Jacobian

matrix through determination of so-called Marquardt sensitivities sl
j , the matrix elements that

are defined by 3.33:

sl
j =

δel
j

δvl
j

(3.33)

with the derived error el
j over the activation potential vl

j . The sensitivities are determined

through the back propagation procedure as presented earlier. For each neuron within the

network a sensitivity is determined. Those sensitivities define the Jacobian matrix J:

J =

















δe1

1

δv1

1

δe2

1

δv2

1

...
δeL

1

δvL
1

δe1

2

δv1

2

δe2

2

δv2

2

...
δeL

2

δvL
2

...
...

. . .
...

δe1

j

δv1

j

δe2

j

δv2

j

...
δeL

j

δvL
j

















(3.34)

Where j is the neuron within the layer and l stands for the actual layer of the sensitivity.

With this information, the weight vector for the next step is determined by equation 3.35:

wk+1 = wk − [JTJ + µkI]
−1JTe. (3.35)

The parameter µk may be adapted depending on the result of the next propagation. In case

of decreasing squared errors, network performance improves and the step wk+1 is accepted

61



3.3 Optimisation Methods of Artificial Neural Networks

and parameter µk is adapted by reducing it by a previously defined value. In case of increasing

errors, µk is multiplied by this value.

This procedure is iterated until the algorithm converges to a predefined value for the sum of

squared error. The drawback with this method is the storage of the Jacobian matrix which is an

n × n matrix. In case of substantial networks, this can lead to memory problems. However, the

computational costs can be reduced by this method which is designed for feedforward networks.

In addition, the Levenberg-Marquardt algorithm has been shown as an efficient alternative to

back-propagation and the newton optimisation algorithm as shown by [59, 62, 72]. For this

reason the Levenberg-Marquardt algorithm is used throughout this work for optimisation. It

is also shown that the algorithm also is applicable to recurrent neural networks if trained in a

serial manner.

3.3.4 Further Optimisation Capabilities for Increasing Network Complexity

An attractive alternative to gradient based methods is the DIRECT algorithm, which is a

deterministic global optimisation algorithm which does not assume that the cost function is

differentiable. Originally developed by Jones et al. [73], it became popular in the optimisation

of cost functions of neural networks. DIRECT stands for DIviding RECTangles, which cap-

tures the main feature of the algorithm that is described as dividing multidimensional spaces

into rectangles. This basic approach is also found in Lipschitzian optimisation. However, the

described algorithm avoids the determination of a Lipschitzian constant that may either be

not easy to determine or non-existent. For further explanations of the algorithms, refer to the

literature of [73].

In addition, genetic algorithms are often applied for training artificial neural networks. These

algorithms are inspired by the field of evolution [74] and can be used for function optimisation

and a broad variety of applications. A solution is found by selection of the so-called “fittest”

solutions which are allowed to create a new generation of the network parameters. This evolu-

tionary path is also considered global optimisation algorithm due to its evolutionary approach.

Further informationcan be found in the literature as for example of, e.g. [74].
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The above-mentioned global optimisation methods are known for their more reliable and robust

search approach that avoids local minimum. However, in this work the optimisation approach

with common gradient based algorithms provided sufficently good results, so that it was not

necessary to employ global optimisation methods.

3.4 Summary and Conclusions

This chapter outlined the general idea and theory behind artificial neural networks. It showed

some of the more common structures in use and highlighted the distinction between applica-

tions and preferred network structures. In addition, current research directions are described

where the combination of ANN is within the focus of reducing the complexity of single net-

works and increasing the performance. The chapter also outlines the theory of gradient-based

algorithms such as simple back-propagation but also the more numerical based methods of

Levenberg-Marquardt.

This chapter provides the theoretical background about ANN that is required and applied

throughout the rest of this work. The focus lies within the application of simple feed-forward

networks up to the recurrent NLARX structure. Single network structures are presented as

well as combined networks for improved performances. The training algorithms used is the

Levenberg-Marquardt code which provides good training results in view of the proximity be-

tween network output and teaching output. In addition, the optimisation time is of sufficient

speed.

The next chapter will present some initial work on the application of ANN in the field of

emissions prediction or engine parameter estimation. Within the scope of this work, the focus

is on the choice of training and validation data sets as well as the choice of inputs in order

to find a correct mapping capacity of the ANN for the desired output. The work presented

within the next chapter is published material.
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4 Methodology and Model Structures

The previous chapter outlined the theory behind ANN and their working mechanism. It also

explained a variety of methods for different applications. An increasing complexity of prob-

lems and demands for computational performance cause neural networks to grow and result

in large network compounds. Today’s applications, especially in powertrain technology, are

highly non-linear. Common modelling techniques find it difficult to perform without trade-off

between either accuracy or simulation time. The advantage here initially lies with ANN in

the simulation performance. Although complex problems are expensive in terms of training,

their simulation time can be fast due to simple mathematical relations and information stored

within neuron connections. However, ANN are developed for increasingly complex relations

and Multiple-Input and Multiple-Output networks lead to huge network compounds if incor-

porating recurrent characteristics. The next step involves combinations of networks that are

arranged to spread complexity over several networks or let them compete for the best solu-

tion. Simulation expenditure for complex networks mapping highly non-linear processes can

be reduced by creating combinations of networks that either:

1. work in unison towards superior tasks or

2. compete with other networks for task solution

The distribution of networks over a range of operation points can be beneficial for simulation

performance because smaller and less expensive ANN can be developed. Training times might

increase due to an increasing number of networks but simulation time can be improved due

to the least complex networks covering smaller data scopes which in turn require less training

information. In terms of control structures, the decentralisation of computationally intensive

algorithms such as an ANN can be also an advantage due to savings with regard to memory

and processor power requirements.
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4.1 Neural Networks in Automotive Application

This chapter describes applications of ANN methodology for engine parameter monitoring

and prediction of a medium-sized diesel engine. It is shown how to define a model structure,

then train it and validate it for NOx, PM prediction and fuel path control design. These

examples cover the importance of input choice, data characteristics and the advantage of

combining networks in different cases. This paper shows initial work on the topic of neural

network application in automotive on-board diagnostics and engine control design. The work

presented also contains contributions in the field of input choice, the training and validation

set desing such as the finding the model architecture with the least error and best coefficient

of determination.

4.1 Neural Networks in Automotive Application

The automotive sector has applied these kind of models in several different problems. Their

main implementation can be seen in control design in the area of engine operation. Hence,

in engine development, neural networks are used for control problems such as fuel injection,

output performance or speed [75, 76]. In addition, advanced control strategies such as variable

turbine geometry (VGT), exhaust gas recirculation (EGR) or variable valve timing (VVT) have

been a focus of ANN modelling [77]. Nevertheless, the application of ANN is also used for

virtual sensing such as emissions [11, 12] or as described in Prokhorov [10] for misfire detection,

torque monitoring or tyre pressure change detection.

The combustion process itself has been investigated and parameters modelled with neural

networks by different authors. Potenza et al. [48] developed a model estimating Air-to-Fuel

Ratio (AFR) for in-cylinder pressure and temperature on the basis of crank shaft kinematics

and its vibrations. Winsel et al. [78] present a method with artificial neural networks. Static

and time delay neural networks are implemented and trained for modelling in-cylinder pressure

and engine torque. In their work they the show the capability of this modelling approach

for spark ignition engines. Here, different parameters are influential than in comparison to

the compression ignition process. In the work of He et al. [79], combustion parameters and

emissions are modelled under the consideration of boost pressure and EGR.
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4.2 Emissions Modelling with Artificial Neural Networks

Emissions regulations have become increasingly stringent over the past decade and legislation

will pursue this trend in the upcoming years. Within the field of diesel combustion, NOx and

particulate matter emissions are a particular focus of reduction enforcement. Consequently,

new goals are being set for engine manufacturers in order to comply with global emissions

standards. These new goals require comprehensive understanding and control procedures for

advanced engine technologies and their parameters. However, intensified control therefore

leads to growing complexity and costs [1]. In particular, additional sensor systems and their

hardware implementation for monitoring and diagnosis purposes contribute towards costs and

computational demand. In addition, data acquisition might be ill-posed by slow sensors or

slow changing parameters. Here, the prediction and estimation of parameters may be the

solution. The method of virtual sensing can overcome those drawbacks. Measurements of

more readily accessible data used and made available for engine control management (ECM)

can be implemented to map a model relation between available influencing parameters and

signals such as emissions.

4.2.1 Accuracy targets and measurements

An accuracy target was formulated by an industry partner who had initial experiences with

neural network modelling approaches. Their experience showed a 95% accuracy towards the

measured target output would suit their needs for application in controller design or on-board

diagnostics.

Hence, the performance of the trained network is measured through the coefficient of deter-

mination R2:

R2 = 1 −

∑N

n=1(yn − ŷn)2

∑N

n=1(yn − ȳn)2
. (4.1)

where ȳn describes the mean value of the desired output data. It defines the amount of

explained variability of the system’s output by the current network. A value of R2 =1 represents

a perfect fit of desired output and network output which means the model is able to explain
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the system’s response in full whereas a value close to zero or even negative would mean the

variability in the output is not well described by the model.

This coefficient of determination is used throughout the rest of this work as a measurement of

accuracy. In certain modelling parts an additional comparison technique is used. A comparison

between measured and predicted output shows a linear behaviour in an ideal case. This

mapping enables a visual comparison and detection of outliers.

4.2.2 NOx Emission Prediction with a NLARX Structure

In literature, NOx modelling is presented using different approaches. Comprehensive models

representing physical relations such as elaborated CFD models or empirical mappings. Here

an NLARX structure is shown as was presented in the work Maass et al. [80] for the SAE

meeting on Powertrains, Fuels and Lubricants in 2009. Data is generated from two different

heavy-duty diesel engines. One data set results from a Non-Road-Transient Cycle (NRTC)

presented in figure 4.1, another data set is created from a set representing a composition of

cycles shown in figure 4.2.

Data Sets - The first data set consists of 12 inputs such as: torque, boost pressure,

engine speed, pilot fuel quantity, final fuel quantity, back pressure, intake manifold pressure

and temperature, exhaust temperature and coolant temperatures. The data is recorded at a

sample rate of 1Hz over a period of 1200 seconds, the length of an NRTC cycle. The resulting

NOx is presented in figure 4.1.
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Figure 4.1: NRTC engine test cycle and corresponding NOx output - Data set I

The second data set consists of 9 inputs and is sampled at 1 Hz over a time period of 2378

seconds. The operating cycle seen in figure 4.2 is a composition of an NRTC, a ramped modal

cycle, a full-load curve and some key steady-state points. The set contains 29 repetitions of

the cycle in which the engine calibration maps for start of injection (SOI), fuel rail pressure

(FRP), and fuel quantity are changed. An exemplary cycle result is shown in figure 4.2 with

a resulting NOx emissions output.
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Figure 4.2: Composition of engine test cycles and corresponding NOx output - Data set II
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Data-Processing - Both data sets are pre-processed before being used to train an NLARX

structure. They are normalised into a range of [0, 1] for reduction of data variability and,

hence, improved network performance. At the same time, a training and validation set is

formed from each data set.

The first data set is split into quarters and rearranged as shown in figure 4.3. Quarters 1 &

3 and 2 & 4 form the training and validation set respectively. Each set has a length of 612

seconds. The reason for this processing lies in re-distributing training data characteristics. As

seen in the original signal in figure 4.1, the first half of the output signal shows high-frequency

oscillations over a wide range whereas the second half is characterised through fewer oscillations

with smaller amplitudes. In order to present both characteristics to the network and train the

network, this new arrangement is set up. It covers both characteristics evenly. The boundaries

of the quarters are not processed separately. The main focus was laid that the cuts are made at

samples which show similar characteristics in order to reduce the risk of training wrong system

behaviour. For the input and output delays at the first quarter the first value is assumed as

initialisation value. This strategy is applied also in the next sections and with the same data

set for particulate matters prediction.
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Figure 4.3: Processed NOx output for data set I into training and validation sets
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The second data set is processed differently into training and validation sets. The second

set consists of 29 different cycle repetitions. Each cycle has a variation due to calibration

changes. Therefore each cycle should represent different characteristics. Initially, only one

cycle is chosen for training and the residual 28 cycles are used for validating the network and

confirm its generalisation capability. Later the impact of increased information content in the

training set is investigated by including several cycles in the training set.

Training and Validation Results - The training procedure is operated through a Matlab

integrated optimisation. During each training run, the number of neurones per layer, the

number of hidden layers, and the delay of input and output feedback can be manipulated by

the user. As literature suggests networks with more than three layers do not create sufficient

improvement in the view of predictive capability. Hence an initial set-up with three layers was

implemented. The number of neurons is systematically varied from 20 neurons per layer down

to 4. After reduction of neurons to a minimum of 12 in a three-layer network the layers are

reduced to two layers and neurons are pruned from 20 per layer down to 4 per layer. The

results are compared and the best structure is defined based on the total number of layers.

In case of comparison between feedforward and recurrent networks the recurrency needs to be

considered as additional cost due to networks training complexity and the additional number

of neurons in the input layer. Here, the best results are achieved by two-layer networks and

second-order delays of inputs and output feedback. The training data is presented to the

network with tuned parameters and the optimisation algorithm searches for a minimum of the

cost function for the NLARX structure as defined by 4.2:

min
w

ξ(w, ZN) =
1

N

N
∑

n=1

‖y(n) − ŷ(n|w)‖2. (4.2)

where ZN = [y,xk] with n = 1,...,N is the data set of N samples that is split into training and

validation parts. The y represents the desired measured output as shown in figures 4.1 and

4.2. The input vector xk contains k inputs also from the recorded data set whereas ŷ(n|w) is

the network output for sample n and the weight vector w.

During training of a network the measured outputs are used instead of a true recurrent output
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feedback. This approach makes it easier and faster to find a valid system mapping. However,

in the validation process true recurrence is applied to assure a valid structure. The actual

network output is fed back to the input layer and used for the output mapping.

Data set I is the initial step in order to show the NLARX structure’s capability to approximate

the relationship between the inputs and the NOx output. The network parameters found

through training achieve a good correspondence between the measured and network output.

Figure 4.4 shows the training and validation set comparisons of the outputs. The coefficient

of determination for the training set, R2
train = 0.96 and R2

valid = 0.94 for the validation set.
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Figure 4.4: Comparison results for NOx output of data set I for training and validation set: R2

train
=

0.96 (top) and R2

valid
= 0.94 (bottom)

The top graph shows the comparison of the training data against the network output. It can

be seen that the network output in light blue follows the desired output well. Although some of

the signal peaks are not covered, the characteristic of the signal is represented by the modelled

output. The missing signal peaks can be linked to a lack of information in the training inputs.

Hence, the importance of data features in inputs is crucial in order to train a network. This is

also shown in the second network developed for the second data set.

This data set is used to investigate the flexibility and generalisation capability of the NLARX
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structure on varying data sets. This data set covers cyclic variances over the runtime of a cycle

but with different calibration settings affecting the output. Firstly, one cycle is used to train

the network’s weight parameters resulting in a comparison value of R2
train=0.95 for training as

presented in the top graph in figure 4.5.
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Figure 4.5: Comparison results for NOx output of data set II for training and validation set with 1 cycle

for training and 29 cycles for validation

Subsequently the network is applied to all residual 28 cycles in order to validate the model

structure. The visual results are shown in the bottom graph in figure 4.5. The graph shows a

lack of model accuracy at high NOx outputs. In addition, an overview of all R2
train coefficients

is plotted over the number of cycles in figure 4.6. The black curve shows a decreasing trend

of comparison from the first cycle used for training until the last cycle where the calibration

settings are changed significantly. This decrease shows that a single cycle does not contain

enough information for generalisation over varying engine settings. When SOI changes, the

rail pressure and fuel quantity are reset to the initial settings of the training cycle. This can be

observed in the network’s performance since the comparison rises at cycle number 10 and 21

where this change occurs. Here the engine settings are closest to the training set behaviour.

Consequently, the next step is to provide additional training information of different engine
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settings. Hence, four additional cycles are chosen for training the network. This increases

the amount of data available for finding an optimal network set-up. The training set now

contains information about different SOI, FRP and fuel quantity settings. The training result

is sufficient - R2
train= 0.98. For comparison purposes, the validation results are plotted in

the same graph as the previous results in figure 4.6 from the single cycle training set. The

difference is significant as the results are within the designated accuracy that vary between

R2
min= 0.94 and R2

max=0.97.

0 5 10 15 20 25 30

0.4

0.5

0.6

0.7

0.8

0.9

1

Cycle Number

R
2  −

 V
al

ue

 

 

Single Cycle Training

Five Cycle Training

Stabilised Performance for multiple training cycles

Decreasing Performance Trend
for single cycle training

Figure 4.6: Comparison results for NOx output of data set II for training and validation set with 1 (black

line) and 5 (bright blue line) cycles for training and 29 cycles for validation

Conclusion - The first conclusion of this work is that a NLARX structure is capable of

mapping a relation between engine parameters and the emission output NOx. This is shown

on a single NRTC cycle data set that is processed into training and validation data. The

trained network achieves sufficient results. The second part of this investigation shows the

importance of available training information. A single cycle used for training a network resulted

in sufficient comparison results on the training set but failed over a cycle batch that includes

cyclic variations of engine performance and engine settings of SOI, FRP and fuel quantity.

The adaptation of the training set with additional information from other cycles with different
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engine settings resulted in an overall improvement of network performance. Only 14% of the

whole data set are required in order to achieve a sufficient generalisation capability of the

network.

4.2.3 Particulate Matter Emissions Prediction with Parallel NLARX Structures

The following investigation presents a model for prediction of particulate matter (PM) emis-

sions which in this case are represented by the term smoke and are stated as being as good

indicator for the comprehensive emissions group of PM. Modelling of PM emissions has been

tried with several modelling techniques, ranging from comprehensive physical descriptions of

the process down to less computationally demanding procedures with quasi-dimensional models

or empirical studies. He et al. [79] describe a model that estimates engine output param-

eters amongst others along with smoke emissions from available engine parameters such as

boost pressure and EGR. This work was published at the ACC conference 2009 in the engine

diagnostic session titled: Diesel Engine Emissions Prediction Using Parallel Neural Networks

[63].

Data Set and Data Pre-processing - The data set consists of the same data as described

for the previous NOx problem - an NRTC set recorded at 1Hz data over 1200 seconds. For

initial modelling, the same inputs are used such as: torque, boost pressure, engine speed, pilot

fuel quantity, final fuel quantity, back pressure, intake manifold pressure and temperature,

exhaust temperature and coolant temperatures. The data is normalised into the range of [0,

1] in order to reduce data variability.

In terms of data partitioning, the same approach as described above is chosen due to the fact

that just one set of data is available. This is divided into training and validation parts by

rearranging the quarters into 1 & 3 and 2 & 4. In figure 4.7 the smoke output signal and the

processed version are presented respectively.

74



4.2 Emissions Modelling with Artificial Neural Networks

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

S
m

ok
e[

/m
]

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [s]

S
m

ok
e 

ou
tp

ut
 n

or
m

al
is

ed

Training Set Validation Set

Figure 4.7: Original and processed smoke output split into training and validation set

The output signal is characterised by two different parts. In the first half of the signal, high

peaks and fluctuations are introduced through wider feature distribution and more transient

behaviour in the two variables torque and speed up to 600 s into the cycle as shown in figure

4.1. The second half of the cycle consists of steady-state parts and hence minimal fluctuations

are introduced. The behaviour identified can be traced back to the fact that with a rapid

change of speed, the combustion conditions also change. Soot formation is regulated by a

number of different parameters, which are indirectly influenced by the change to the engine’s

loading conditions. On the one hand the amount of oxygen that is available for forming organic

compounds by oxidation reactions is critical. On the other hand the formation of the spray is

crucial. High injection pressures ensure that a sufficient atomisation of the fuel can take place

because smaller droplets are less likely to lead to soot formations. A third feature is a high

combustion temperature that leads to complete combustion and less in-cylinder soot formation

by breaking up fuel droplets through oxidisation [81]. Taking these thoughts into account, the

smoke signal can be explained as follows. The first half of the smoke signal is a result of rapid

changes in engine speeds. During transients the engine control requires some delay time until

a stable condition is achieved that allows for minimum emissions formation. In this phase,

the amount of oxygen that flows into the cylinder settles towards a steady-state, whereas the

fuel injected may rise due to a load increase. This initial excessive fuel may coincide with a

reduction in oxygen flow and, consequently, soot is more likely to be formed. In addition, the

duration of combustion is dependent on the amount of oxygen present and the engine speed.

As a result, a shorter period of combustion with a decrease in required oxygen can lead to

incomplete combustion. The second half of the signal is dominated by steady speed resulting
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in a flat output signal. Small visible peaks breaking this signal are due to the sporadic fast

speed changes. Due to high speeds of around 80% of the rated speed, the temperature can

rise and be kept at a high level. Hence, the conditions during the combustion process are

more likely to break-up the fuel droplets and create a more homogenous mixture within the

combustion compartment. At the same time, less fluctuations mean less transient states with

varying conditions which in turn result in less soot formation.

Other parameters such as fuel injection timing and duration of in-cylinder pressures and temper-

atures also have an impact on observed engine behaviour. In this case however, the formation

is initiated through the two controlled variables torque and speed.

Parallel Modelling Approach - The presented final parallel modelling approach has been

developed based on the fact that no sufficient results for a single NLARX structure could be

found. Extreme signal fluctuations in the first half of the the output signal introduce a so-called

hypersensitivity. This leads to high-frequency oscillations with an underlying lower frequency

in the prediction signal as it can be seen in figure 4.8. The network becomes inaccurate in

steady situations as they are present during the second half of the signal. The approach to

overcome this drawback is developed from the work that Guoyin et al. [66] present. Here, a

parallel network system with multiple tasks is chosen. Lee [41] states that the operation of

several individual networks reduces the risk of getting stuck in a local minimum. Sharkey et al.

[64] determine different approaches such as ensembles and modular structures. In this case a

modular network structure is set up where each network is assigned with an individual task.
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Figure 4.8: Performance of a single NLARX network designed on present data

In the presented work the smoke output signal is divided into three vertical regions. Con-

sequently, the amplitudes of signal spikes are cut while the frequencies of residual parts are

decreased as shown in figure 4.9. The division of three regions is determined by trial and error

giving the best trade-off between results and computational expenditure.
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Figure 4.9: Region division of smoke output signal

The graph in figure 4.9 shows the division lines and region contents. The first region, referred

to here as lower region (LL), consists of signal noise and low frequencies. The remaining part

is split into a middle region(ML) and a top region (TL). The ML covers the part of the signal

with medium density of oscillations and peaks of a normalised smoke value up to y=0.3. The

residual peaks are covered by the top region. In the TL some characteristic peaks are present

without any noise or smaller peaks that perturb the signal-to-noise ratio. In table 4.1 the

chosen region borders are presented.

Table 4.1: Division borders of the approach

0 < LL < 0.035 ⇒ ∆yLL= 0.035
0.035 < ML < 0.3 ⇒ ∆yML = 0.265

0.3 < TL < 1 ⇒ ∆yTL = 0.7

A separate network is developed for each output division receiving input information over the

whole signal range. The inputs are not divided since information for the output is spread over

the whole input range. The parallel processing model structure is presented in figure 4.10.

The input vector is the same for all three NLARX networks whereas each network will predict

a region output: ŷLL, ŷML or ŷTL. This predicted information is combined into an overall

signal ŷoverall that is compared against the overall measured output.
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Figure 4.10: Schematic representation of parallel NLARX model structure

Training and Validation Results - For each region an NLARX model is trained with a

corresponding output region. The performance of the network is measured with the previously

mentioned comparison coefficient R2 expressed in equation 4.1.

The lower region (LL) is indicated by (1) the lower part of peak oscillations as well as (2)

low peaks and noise. The signal range is reduced by dividing it into three regions which in

turn achieves a more homogenous amplitude distribution. This approach favours the choice

of NLARX structures for estimation. Consequently, the comparison between measured and

predicted output for the training set is sufficient with R2 = 0.97. The validation set demon-

strates the practicability of the chosen structure with R2 = 0.92. The visual comparison of

the two signals is presented in figure 4.11.
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Figure 4.11: Comparison between measured and predicted model output for lower region of smoke

output

While the first part of the signal is well predicted, the second half is characterised by a number

of discrepancies. This observation is present in the other regions as well.

The middle region (ML) represents the middle section of peak oscillations and the medium

peaks of the signal. In this region the NLARX achieves a training set comparison between

measurements and the model output of R2 = 0.93. This model’s validity is confirmed by the

training set comparison of R2 = 0.90. As expected, this validation value is lower than in the

LL due to a broader frequency range in the signal determined by a wider scope of y-values.

Here, ∆yML is 0.265 wide whereas the first region covers ∆yLL = 0.035.
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Figure 4.12: Comparison between measured and predicted model output for middle region of smoke

output

The graph in figure 4.12 that visualises the ML output comparison shows similar characteristics

of the predicted output signal as in figure 4.11. The first half of the prediction correlates

closely to the measurement whereas the second half is marked by fluctuations. It is assumed

this fading of the signal is introduced as a result of the network structure approach. The

data within the first half requires different network characteristics to the data in the second

half. After introducing the fast-response data and training the network thereon the response

is quicker and noise is introduced within the second half.

The top region covers the high peaks of the output signal. The range of ∆yTL is 0.7. Hence,

a higher range of output data leads to a wider frequency range. The training comparison drops

to R2 = 0.99 in comparison to a sufficient R2 = 0.97 for the validation data set as presented

in figure 4.13. The results show a very close comparison between the model and the measured

system output. In fact, the peaks marking the smoke output peaks are covered sufficiently

and the introduced noise in the second half is present but kept lower since there are no low

signal fluctuations.
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Figure 4.13: Comparison between measured and predicted model output for top region of smoke output

The overall result for the output is created by adding together the three network estimation

outputs. The comparison with the measured output shows a sufficient result of R2 = 0.97

for the training and R2 = 0.96 for the validation set. Here, in addition a linear comparison

determines the prediction accuracy as shown in figure 4.14. The data forms a scatter cloud

close to the origin in the graphs due to the characteristics of the output signal that is based at

zero. The scatter distribution fits a linear comparison close to the unit vector. In figure 4.15 it

can be seen that parts initially classified as difficult due to their wide amplitude differences and

high frequencies are described sufficiently by the calibrated model. Patterns with high peaks

and high density of oscillations show appropriate comparison. However, the less oscillating

parts are marked by noise introduced through the calibration approach. The networks are

designed for responses on high and fast responses in the first half and overshoot at small

oscillations as present in the second half of the signal.
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Figure 4.14: Comparison between measured and predicted model output in linear plot
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Figure 4.15: Overall comparison between measured and predicted model output
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Conclusion - This work shows the importance of network design on performance. A single

NLARX structure cannot create sufficient estimation performances due to signal character-

istics. Analysis of the signal and the generation of a parallel network structure where each

network is allocated an individual task enables a reduction in the complexity of the signal

relations. This in turn results in improved prediction performance for the available data. A

further investigation will show the effect of choosing the network inputs more strategically. The

next subsection will present additional training and validation data together with a different

approach for choosing the network input.

4.2.4 Identification of Input Parameters for Soot Prediction

This section describes a further investigation of the virtual sensors for online prediction of

smoke emissions of medium and heavy-duty diesel engines. The test section shows results for

a variety of engine test cycles and training validation scenarios. The analysis of input data

results in an improved model complexity with fewer inputs. It defines the inputs with the

highest information density required for sufficient prediction of soot along with the minimum

requirements in terms of inputs for meeting a predictive comparison coefficient accuracy target

of 95%.

Initial data generation and model development based on a C6.6 engine test - For

an initial model set-up, four test cycles were run on a C6.6 engine at the test facilities at

Loughborough University. The ECM is set to an industrial calibration. The cycles are run in

order to create a range of engine response characteristics relating to soot formation. The test

cycles are:

Part A - Random Walk (figure 4.16) The random walk test was operated in two different

versions:

1. ‘1-slow’ test: The slow random walk test runs over a duration of 6218 seconds. The

original test cycle covers the complete engine speed-load map. However, due to the

engine being in operation for these tests, the maximum load is reduced down to 70 %

at the speed points 800, 1000, 1100 RPM.
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2. ‘2.5-fast’ test: The fast random walk test runs over a duration of 1001 seconds. This

test also incorporates a reduced speed-load. Due to faster ramp times the maximum

load is reduced at speed points 800, 1000 and 1100 RPM points. This action is taken

in order to avoid engine stall problems in this stage of the test.

Part B - Constant Speed Load Acceptance (CSLA) test (figure 4.17) The constant

speed load acceptance test runs for a duration of 45 minutes. The engine speed is increased

from 1000 RPM to 2200 RPM. At each speed step, torque is stepped up to peak torque,

in this case 70% of maximum torque. The peak torque is applied for 500 seconds and the

engine response is measured to determine soot emissions.. The ramp times of these tests are

presented in the appendix A in the table A.1, whereas the graph with the speed and load

changes is presented in figure 4.17

Part C - Idle to Full Throttle (figure 4.18) The idle to full throttle test is characterised

by a step change from an idle state with no load applied to a full throttle condition with peak

torque.

Part D - NRTC (figure 4.19)

1. Complete NRTC test with 70% load and full speed range covering a wide range of engine

transients in different frequencies and combinations.
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Figure 4.16: Random Walk 1 & 2 training and validation part distribution
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Figure 4.17: CSLA Test - training and validation part distribution
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Figure 4.18: Idle Ramp Test training and validation ramps
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Figure 4.19: NRTC Test showing speed and torque signal

Test Cycle Data Processing The cycle test data is processed into a training and validation

set. Each cycle is split into training (T) and validation (V) parts. These parts are recompiled

as shown in the scheme in Table 1 in the appendix. The resulting training and validation sets
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are shown in 4.20 and 4.21. Each set contains the same amount of data for each of the test

cycles. The feature density covers a wide scope of engine operation behaviour in steady-state

(CSLA and Idle Ramp) and transient operation (RW and NRTC). In the graphs the concrete

line shows the engine speed curve whereas the dashed-dotted curve represents the torque,

the engine load. Both curves show the complete range of the present engine at 800-2300

RPM and 0-900 Nm. Each data set is initially processed into 1 Hz data for the initial model

identification.
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Figure 4.20: Training Set showing a combination of all parts of the mentioned cycles
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Figure 4.21: Validation Set showing combination of all parts of the mentioned cycles

Initial Model Identification with Seven Inputs For the initial model identification seven

inputs were chosen:

1. Torque/ Load

2. Engine Speed

3. Intake Manifold Temperature (IMT)

4. Mass-Air-Flow (MAF)

5. Air-to-Fuel Ratio (AFR)

6. Boost Pressure

7. Exhaust Pressure.

In the operated test cycles, smoke output of the engine is represented by measurements using

an AVL 439 opacity meter.

Two different approaches were tested for this initial model identification in order to find a

suitable model structure. Each set was reduced to 1 Hz data and the inputs and outputs are

normalised for data range reduction. The three different modelling approaches are:
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1. Single NLARX structure

2. Three-layer parallel NLARX structure

Each model was trained with the training set shown in figure 4.20 and validated against the

validation set (figure 4.21). The comparison between the desired measured test data and the

model-predicted output is determined through the coefficient of determination R2.

In addition a linear regression plot is presented to show the direct value-to-value comparison

of measured and predicted output. The comparison is shown by a diagonal regression line.

The closer the value-to-value comparison, the closer it fits the line, which in turns shows a

perfect fit of predicted output to the measured output.

The prediction results for each of the approaches for training and validation show similar

characteristics:

1. Initial modelling with single NLARX structure [1Hz data]

a) Training R2= 0.88

b) Validation R2= 0.67

2. Three-layer approach with NLARX structures [1 Hz data] (see [63])

a) Training R2= 0.86

b) Validation R2= 0.69

The achieved results are not sufficient and require further investigation. In particular the data

at 1 Hz does not seem to provide enough information to generate a comparison between inputs

and outputs. In addition, the current list of inputs may need further investigation. The next

step incorporates two additional inputs.

Model Identification with nine Inputs The additional inputs are:

1. Fuel-Rail Pressure (Common Rail Pressure)

2. Fuel Quantity.
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Those inputs may increase the information content available to predict the actual opacity

output and lead to an input list of nine inputs:

1. Torque/ Load

2. Engine Speed

3. Intake Manifold Temperature (IMT)

4. Mass-Air-Flow (MAF)

5. Air-to-Fuel Ratio (AFR)

6. Boost Pressure

7. Exhaust Pressure

8. Common Rail Pressure

9. Fuel Quantity

Due to the signal variety the inputs and outputs are normalised into a range of [0, 1].

For this input set the single NLARX structure shows similar results to the three-layer approach.

Hence, the three-layer approach is neglected here due to the similarity of the results in compar-

ison to the single NLARX approach. This provides evidence to the effect that a single NLARX

structure is capable of predicting the full data scope and a task distribution for different data

ranges is not necessary.

To summarise, the single NLARX approach provided the following results:

• Initial modelling with single NLARX structure [10 Hz data]

1. Training R2= 0.99

2. Validation R2= 0.96

Here the visual comparison of the single NLARX structure is shown in figure 4.22. The blue

line represents the desired normalised opacity output whereas the bright green dashed line

shows the model output for training and validation. In addition, a value-to-value comparison

is plotted in figure 4.23 in order to provide a better overview of the comparison.
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Figure 4.22: Comparison results for nine-input NLARX structure with data sampled at 10 Hz; Training

comparison: R2 = 0.99 - Validation comparison: R2 = 0.96
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Figure 4.23: Value-to-value comparison results for nine-input NLARX structure with data sampled at

10 Hz; Training comparison: R2 = 0.99 - Validation comparison: R2 = 0.96

This result leads to the conclusion that for a sufficient information density a higher sampling

rate is required together with additional fuelling information. In the following, investigations
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4.2 Emissions Modelling with Artificial Neural Networks

are conducted into reducing the number of inputs and data samples. The idea behind reducing

the number of inputs is to find a less complex network structure for faster training and less

costly data processing of sensor signals.

PCA Pre-Processing for Inputs for Model Identification The inputs, influence on

the model are determined with a Principal Component Analysis (PCA) applied to the set of

nine inputs. This leads to a possible reduction by four inputs down to five crucial inputs for

sufficient predictive accuracy of the model. The PCA predicts the influence of each input on

the systems behaviour. The following list shows the ranking for the PCA result on the 9 inputs

chosen initially. The PCA functionality of the MATLAB’s Neural Network Toolbox was used

in order to determine the principal components. The PCA method is based on determining the

maximum signal variability by subtracting the mean value for each input signal and creating

a zero mean signal. A next step incorporates the calculation of the covariance matrix before

the eigenvectors are found. Based on those eigenvectors the input signals are ordered with

the largest variation first and least variation last. In this case the variability is set to a 60 %

threshold for the principal components i.e. every component with less than 60 % variability

is neglected. The inputs PC6, PC7, PC8 and PC9 were dropped in order to determine the

performance change without their influence. As shown in the following figures, the performance

improves. This effect can be defined by reducing “waste” information from inputs neglected.

These inputs may contain information that does not relate to the output, in turn making it

difficult to find an optimal solution.

1. PC1 – Air-to-Fuel Ratio

2. PC2 – Speed

3. PC3 – Torque/Load

4. PC4 – Exhaust Manifold Pressure

5. PC5 – Common Rail Pressure

6. PC6 – Boost Pressure

7. PC7 – Fuel Quantity
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8. PC8 – Intake Manifold Temperature

9. PC9 – Mass-Air-Flow

The result for a five-input model can be seen in 4.24 and 4.25.
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Figure 4.24: Comparison results for five-input NLARX structure based on the results of principal-

component analysis with data sampled at 10 Hz; Training comparison: R2 = 0.99 - Validation comparison:

R2 = 0.99
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Figure 4.25: Value-to-value Comparison results for five-input NLARX structure based on results of

principal-component analysis with data sampled at 10 Hz; Training comparison: R2 = 0.99 - Validation

comparison: R2 = 0.99

Training and validation results for five inputs:

1. Torque

2. Speed

3. Air-to-Fuel Ratio

4. Exhaust Manifold Pressure

5. Common - Rail - Pressure

Results:

1. Training R2=0.9961

2. Validation R2=0.9961
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Conclusions and summary The results show a sufficient predictive accuracy of the NLARX

structure based on five inputs. The investigation also confirms the importance of the choice

of inputs for the correct representation of system behaviour. It is shown that the previous

findings of using a three-layer network structure can be reduced in complexity by identifying

the correct inputs. Inputs with little impact on a system’s behaviour may contaminate input

information and create more complex relations, making it difficult to find optimum network

training points. The inputs also show an image of the engine parameters that are directly

related to the behaviour of formation of soot during the combustion process. Torque and

speed have a comprehensive expression capability for many engine conditions. Hence, they

showed the highest values within the PCA. The three other parameters help to define certain

operating conditions that are known to favour soot formation. Low air-to-fuel ratios indicate

excessive fuel entrainment which may cause unburned carbon and, consequently, increased soot

rates.The exhaust pressure reflects on the possible after-burn and oxidation processes within

the exhaust part. A considerable number of chemical reactions occurred after the exhaust gas

left the cylinder environment, meaning that the exhaust manifold pressure is an indicator for

the conditions within the exhaust system. The fifth input parameter as a result of the PCA

is the common - rail - pressure. The injection pressure considerably affects the break-up of

the fuel jet and an improved break-up can result in reduced droplet size and hence the risk of

soot formation. The methodology presented can be applied to find the correct set of inputs

for model identification.

4.3 Neural Network Modelling for Fuel Path Control Design

The previous section showed the practicability of neural networks in the emission modelling

and hence in the complex and non-linear, highly dynamic field of engine behaviour. As outlined

earlier, emissions regulations are progressively being enforced to meet increasingly and more

stringent targets. In addition, fuel economy is a driving factor in engine development in

order to meet customers’ expectations and reduce running costs. A method of reducing these

parameters in diesel engines, especially passenger cars, has been the multi-pulse injection

technology. This is, increasingly applied in the field of medium and heavy-duty diesel engines.

Along with the rising number of injection events, the dynamics of fuelling become more and
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4.3 Neural Network Modelling for Fuel Path Control Design

more complex. Look-up tables (LUT) are still in place with modern production diesel engines

which define a setting for certain engine modes through a system of listings. These have been

calibrated for optimised emission and fuel economy, often manually. Finding the optimum

behaviour for a closed-loop control in a system with a high degree of freedom such as with

multiple and varying injection settings, is an increasingly difficult task. The optimisation

of such a controller can be be investigated through a model-based approach. A real-time

modelling approach can ease the design task by simulating the controller’s behaviour over a

range of modelled engine behaviour. Here, the model’s accuracy is crucial.

The following section presents an extract of a technical paper presented at the SAE Congress

2010 by Deng et al. [82] with the title “Modeling Techniques, to Support Fuel Path Control in

Medium Duty Diesel Engines”. This paper proposes a state-space model for representing of the

fuel-path dynamics within the control algorithm. In terms of controller design and validation,

an ANN structure is created that acts as an engine plant model.

This structure is shown in figure where the ANN is represented through the engine model. The

outputs of the model are fed into the controller which adapts the engine model inputs in order

to find the best operating point for NOx. Amongst NOx the designed ANN structure can

predict compressor mass flow rate, exhaust manifold pressure, exhaust manifold temperature.

Those parameters are based on the following model inputs: start timing of main injection, dwell

between the injections, rail pressure and the fuel ratio between main and pilot injection.
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Figure 4.26: Real-time engine plant model for controller design

Data Generation - The data required for training and validation of the ANN are recorded

with a Caterpillar C6.6 heavy-duty off-highway engine. In order to capture a broad variety of

features for the model calibration, the output parameters are recorded as a response of random

step input signals as shown e.g. for the start of injection timing in figure 4.27. The signal

is defined as a sequence of random magnitudes with sampling instants at a probability of p -

equation 4.3:
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Figure 4.27: Random perturbation signal for start of injection for data generation

r(k) = r(k − 1) with distribution 1 − p (4.3)

e(k) with distribution p (4.4)

where k is an integer and e is a discrete time noise process with zero mean and standard

deviation. The signal magnitudes are designed to cover the whole range of fuel injection space

for fixed speed and torque. This ensures a wide variety of features for this engine condition

and takes into consideration the model’s ability to interpolate between set points of calibration

as well as its inability to extrapolate beyond the range of presented calibration data. Here,

data acquisition is operated at 1440 RPM and 466 NM. The injection time ranged from -6◦

to 3◦ TDC, rail pressure was operated at between 45 MPa and 75 MPa, dwell from 0.4 ms to

0.5 ms and the fuel injected was distributed from 0.5 to 1. The training set consists of 2000

seconds and the validation set was logged for 2500 seconds while initially sampled at 33.3 Hz

before being resampled at 10 Hz.
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4.3 Neural Network Modelling for Fuel Path Control Design

Training and Validation Results - To this end, the known NLARX structure is used in a

parallel manner. Each output, exhaust manifold pressure, compressor mass flow rate, exhaust

manifold temperature, and NOx is predicted by an individually trained NLARX network.

In figure the design of the engine plant model is shown. The four inputs are combined in a

vector before being fed into the individually trained network for the four outputs. Each output

is predicted through a separate NLARX ANN.

Figure 4.28: Neural networks for engine parameter prediction for engine fuel-path controller design

The training and validation comparison results are shown in figures 4.29 to 4.32. It is shown

the accuracy of the trained NLARX model in order to predict the corresponding output.
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Figure 4.29: Comparison of exhaust temperature between measured and model-predicted output
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Figure 4.30: Comparison of compressor mass - air flow between measured and model-predicted output
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Figure 4.31: Comparison of exhaust pressure between measured and model-predicted output
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Figure 4.32: Comparison of NOx between measured and model-predicted output

These models are used in order to design a control algorithm which is based on state space

models predicting each of the outputs. They show also sufficient accuracy and can be used
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in the application of model predictive control in order to define a stable horizon for control

parameters.

Table 4.2 shows the comparison between performance results for the neural networks and the

state space model. It can clearly be seen that the neural networks show a better modelling

capability and close comparison with the system’s behaviour. Hence, they are used as an

engine plant model in order to design an control algorithm based on state space models.

Output R2 Training R2 Validation
NN SS NN SS

1 EXT 0.99 0.75 0.99 0.68
2 CAF 0.99 0.74 0.99 0.66
3 EXP 0.99 0.79 0.99 0.72
4 NOx 0.99 0.69 0.99 0.72

Table 4.2: Comparison of ANN and SS performances

Conclusion - In this work an experiment design is presented that enables random creation

of engine operation points. By randomly changing engine calibration settings a response of

the engine is provoked. This approach requires knowledge about the system boundaries in

order to avoid critical scenarios with potential engine failure. In this example, the results are

achieved from a single speed and load operation point. Additional data would be required in

order to be able to predict the networks’ capability more comprehensively. Nevertheless, the

type of ANN presented here shows good basic capabilities to support the controller design.

Due to its superior prediction performance in comparison to the steady-state model that was

also tested, the controller design can be more accurate. Trends and characteristics can be

tested more comprehensively within the controller development.

4.4 Conclusions

This chapter outlined the investigation of several applications of ANN in the field of engine

parameters related to the combustion process. It has been established which model structure is

appropriate for the prediction of non-linear parameter characteristics. In addition, the sections

about emissions formation draw a conclusion about the importance of input choice and how to
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reduce potential input lists that incorporate waste information. The work about NOx formation

also draws a conclusion on the importance of engine calibration settings and their impact on

the network’s predictive performance if changed. Each section emphasises the importance of

training and validation data. The choice of test cycles for data generation is described in the

work about emissions formation. In addition, the fuel-path control work describes an additional

data acquisition procedure with a random signal generator. This creates a random variance of

input parameters for coverage of engine conditions across the operation range. The fuel-path

work also describes the implementation of an ANN structure as a plant model for controller

design support purposes.

In this chapter the applicability of ANN is shown for engine parameters related to the com-

bustion process. These findings are now applied to the detection of an applicable structure for

prediction of in-cylinder pressure and temperature conditions based on a GT-Power simulation

model and the previously mentioned Caterpillar C6.6 engine.
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5 Data Acquisition and Generation

Data acquisition is a key element for successful modelling of system’s behaviour. In the

field of neural network modelling the training data is crucial for creating a good generalising

network that covers a broad range of the system’s behaviour. The previous chapter outlines

the importance of the analysis of the system’s parameter output range in correspondence to

the input response. Hence, sufficient experiment design is key to successful neural network

design. For efficient and yet sufficient training data generation, it is necessary to find the least

required data covering the broadest engine operation range. This data set does not need to

contain all different operating states as they can be generalised by the optimised network. They

will, however, miss out extreme states in the operation map, which means a lack of training

information. Neural networks generally cannot extrapolate states which are not covered by

the training data as shown in subsection 4.2.4.

In addition, a design of experiment can be varied by pseudo-random signal generation for engine

parameters. The variation of control parameters such as engine speed, torque, SOI, FRP or

FR can be used to create different engine operation scenarios - see section 4.3. Depending on

the parameter to be modelled, the operation makes a considerable difference. High transient

load and speed changes can cause extreme soot output peaks as shown in subsections 4.2.3

and 4.2.4. On the other hand steady-state operation with increasing load can cause rising

combustion temperatures resulting in excessive NOx formation during diesel combustion - see

subsection 4.2.2. Hence, the data generation for network training is highly dependent on the

parameter to be modelled.

In case of in-cylinder condition acquisition such as the peak combustion pressure or temperature

it is both difficult and expensive to record these two parameters. Although cylinder pressure

recordings are available on some larger industrial diesel engines, the temperature within the

combustion chamber is not measurable on common production engines. In order to overcome
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this difficulty, a simulation model is applied and validated against the real engine. The software

package GT-Power enables simulation of the missing parameter and generates the possibility

of additional data acquisition in case of downtimes of the test cell equipment. Hence, two

data acquisition systems are available:

1. GT-Power Engine Simulation Model of Real C6.6 Engine

2. Caterpillar 6-Cylinder 1106D Industrial Diesel Engine

This chapter describes the data requirements for in-cylinder pressure and temperature predic-

tion. The chapter outlines factors that affect combustion and describes the experiment design

along with the most influential parameters. In addition, the chapter outlines the two systems

used for acquiring data: the GT-Power simulation model validated against a verified Dynasty

973 model and the C6.6 Caterpillar diesel engine.

5.1 Parameter Identification - Network Inputs and Outputs

The combustion process is dependent on several parameters. For the modelling process it

is crucial to define the principal component parameters in order to generate a network of

minimal complexity and to avoid correlation between input parameters. An initial approach

is the physical understanding of the combustion process as described by the graph in figure

5.2. Certain parameters influence the initial conditions of the combustion process, while others

control the start of combustion. This section lists the engine parameters which are considered

for the neural network training and modelling of in-cylinder pressure and temperature. The

understanding of combustion processes is based in this case on the corresponding literature on

combustion - [81, 83, 84].

In-cylinder conditions The in-cylinder temperature and pressure describe the in-cylinder

conditions during combustion. They follow the process of compression up to the moment

combustion initiation where a sudden expansion of gases due to exothermic reactions causes

pressure and temperature to increase as the compression ignition engine cycle is described in

figure 5.1.
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Figure 5.1: Ideal engine cycle pressure-volume diagram: 1-2 compression phase, 2-3 combustion -

constant volume heat release, 3-4 combustion - constant pressure heat addition, 4-5 expansion and

combustion abates, 5-1 gas exchange and pressure drop at valve opening

The process of combustion is a result of pre-combustion conditions which are set by the

following parameters.

Mass - Air - Flow The mass - air - flow determines how much air is made available

for combustion within the cylinder and hence influences the quality of combustion. At the

same time the air-flow has an impact on the initial gas density in the cylinder and therefore

pressure and temperature development during the compression stroke. The mass - air - flow is

dependent on the engine design. In turbocharged engines the air flow can be controlled more

specifically to emerging engine operation needs.

Intake Manifold Conditions The intake manifold conditions can be described by the pres-

sure and temperature. The manifold conditions have a considerable impact on the initial

in-cylinder conditions prior to the intake valve closure. The higher the pressure, the higher

the initial compression pressure. The higher the temperature, the higher the initial in-cylinder
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temperatures. Both parameters affect the in-cylinder compression process and how fast com-

bustion status is achieved. In addition, the intake manifold conditions are influential during

the overlap period of intake and exhaust valve opening. In case of lower pressures in the

intake system, exhaust gases can be dragged back into the combustion chamber and used to

influence the gas exchange.

Exhaust Manifold Conditions The exhaust manifold is described by the temperature and

pressure that predominate in this part of the system. High pressures caused by turbochargers

may cause back pressures and hinder the gas exchange between cylinder and exhaust system.

Temperatures in the exhaust are an indication of combustion temperatures and whether after-

combustion is taking place in the exhaust system.

Valve Lift Profiles The intake valve closure defines the start of the compression and the

rise of pressure and temperatures within the cylinder until combustion. The exhaust valve

opening following the combustion terminates closed-cylinder conditions and defines the end

of in-cylinder combustion. These two events mark the start and end point of combustion and

are therefore crucial to system’s behaviour.

Injected Mass - Flow Profile The mass flow profile defines the amount of fuel injected

into the combustion chamber. The injection of fuel, usually defined as a flow rate during the

injection period, includes information about the start of injection. It also defines the time

period in which start of combustion will occur. Instead of the the mass flow profile, two

other similar and closely connected events can be utilised. The injector activation current

gives an indication of injection events such as start of injection or the injection duration.

Another important parameter is the needle lift profile which shows the activity of the injection

process. A raised needle indicates fuel flow. These parameters are crucial to distinguish

between the compression process and the actual start of combustion. Depending on the mass

flow profile, the combustion parameters are determined such as start-of-injection (SOI) or

start-of-combustion (SOC).
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Figure 5.2: Exemplary combustion process events - 2200 RPM and 480Nm (70 %)

5.2 Data Acquisition Systems

The acquisition of data for training and validation of the neural network is realised through two

different approaches. The simulation software GT-Power from Gamma Technologies provides

a platform for accurate data generation. In addition, a C6.6 medium-duty diesel engine is

employed equipped with in-cylinder pressure sensors and additional injector measurements

such as needle lift-activating injector current.

These two approaches are required due to the limitations in each method. Through the applica-

tion of two different approaches these restrictions are partially overcome. The simulation only

generates non-noisy data. Although the artificial introduction of noise signals can overcome

this, the real engine environment is the benchmark for the neural network application. Hence,

the modelling approach needs to be tested on real data generated during test cell operation.
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On the other hand, the test cell engine cannot provide in-cylinder temperature data due to the

difficulties in engine temperature measurements as described in the introduction in chapter 1.

For this reason the simulation model is designed in order to provide this missing parameter.

The simulation model in this case is validated against a verified model implemented in the

software Dynasty. Engine implementation 973 is validated against the test cell. However,

the Dynasty model is restricted, which makes it necessary to include the more comprehensive

GT-Power software. The following section highlights the GT-Power implementation and the

characteristics of the simulation model [85].

5.2.1 GT-Power Simulation Model

The GT-Power simulation tool is part of the GT-Suite from Gamma Technologies [85]. The

model is implemented as a one dimensional simulation model. The model calculates an average

for the flow direction of different engine parts such as pipes, valves or cylinder. Its predictive

accuracy depends on the discretisation resolution of sub-volumes and how comprehensively

the model designer defines the individual part specifications. However, the discretisation reso-

lution also affects the computational cost of simulation and therefore it is a trade-off between

accuracy and computation.

The present GT-Power simulation model has been validated against the independent Dynasty

model implementation 973, which is fully validated against the real engine. This model serves

as a data source for parts and calibration data for different load and speed cases. The calibra-

tion parameters and set parameter are listed in table 5.1. The calibration parameters are taken

from the Dynasty model as reference points and are the validation values for the GT-Power

implementation. The engine settings are also read from Dynasty and are used as control

parameters for the calibration parameters together with engine part specifications.

The GT-Power model is set up from different template groups which require certain specifi-

cations on which the calculations are based. The following brief descriptions of the templates

illustrates their main features. In some cases an individual calibration of a component or sub-

system of the engine was needed. For further explanations of templates, refer to the GT-Suite

user manuals.
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Table 5.1: Calibration parameters for GT-Power engine simulation model

Calibration Parameter Unit
In-cylinder pressure bar
EGR flow Fraction and valve opening
Intake conditions Temperature and pressures
Exhaust conditions Temperature and pressure
Turbocharger - Turbine speed, compression ratio
Engine torque Nm
Brake power kW
IMEP bar
Compressor pressure ratio Fraction

Engine Settings Unit
Engine speed RPM
Injection timing degrees BTDC
Injected fuel mass mg
Injection duration ms
Injection pressure bar
Valve opening CA◦

Turbocharger maps (Turbine and compressor)
Cooler outputs C◦

Pipes, Flowsplits and Valves The core components of the engine model are the pipe

segments, flowsplits and valves which determine the gas flow and directions. Each pipe seg-

ment specification is provided by the Dynasty model: dimensions, material and hence friction

coefficients and heat conduction. In addition, the model takes into account discharge effects

over valves, orifices or diameter changes in the piping. The valves for EGR and the bypass

section are represented by throttle or butterfly valves. The calibration values of the pipes are

mass - flows, temperatures and pressures which are correlated to the predicted values of the

Dynasty template.

Turbocharger and Compressor The engine implementation realises a turbocharger with

variable geometry turbine (VGT). The turbine operation in the model is controlled by mapping

values describing the turbine aperture which is assigned through a turbine map. The turbine

and compressor are connected through a shaft block that also enables the introduction of

inertia and the matching of turbine and compressor speed. The operation of the turbocharger

is validated and correlated against rotational speed and pressure ratios before and after the

turbine and compressor wheels.
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Aftercooler and EGR Cooler The cooler units are implemented by a pipe segment that

consists of a number of identical pipes in parallel application to one another. This set-up acts as

a heat sink and the desired outlet temperature is imposed by the pipes’ wall-temperature that

simulates the water-cooling behaviour. Another calibration parameter is the desired pressure

drop over the cooler unit. Therefore the intake pressure and outlet pressure are correlated

against the Dynasty model data. Two cooler units are simulated in this model: 1. Aftercooler

for the intake-system cooling, 2. EGR Cooler for heat reduction of exhaust gases.

Engine Block Here, the term engine embraces the following components: manifolds, valve

train, injectors, cylinders and crank train. The manifolds are represented by pipe and flowsplit

components. Special caution is required with regard to mass flow in order to to achieve closest

correlation with the calibration data. Variations in the flow characteristic can have significant

effects on the charge cycle and consequently on the combustion process.

The valve train is represented by individual cam-controlled seat valve blocks with two inlet

and two outlet valves for each cylinder. These blocks contain the valve geometry as well as

the lift and flow characteristics for the particular valve which differs depending on intake or

exhaust.

The current model incorporates a multiple injection strategy that enables up to four separate

injections - pilot, postpilot, main and post. For each injection event, the fuel mass is either

calculated in GT-Power or controlled through a Simulink controller (multi-injection control

block). In the former case, the injected fuel mass and the duration are determined on the

basis of the current in-cylinder pressure, cylinder crank - angle, engine speed and fuel rail

pressure. Each injector is controlled through a command referenced to the first cylinder.

Injector blocks also contain data for the injector parameters such as nozzle size and holes or

the injected fuel.

Cylinder blocks define the cylinder geometry and the cylinder head as well as the piston shape

and bore dimensions. In addition, the combustion model is referenced in the cylinder block.

In this model a predictive direct-injection diesel combustion model is used that predicts the

burn rate, pressures, temperatures and emissions formation - particularly NOx.
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The coordination of engine operation is defined in the crank train template where the start of

cycle, the firing order and the TDC reference crank angle is assigned. In addition, it contains

the type of engine, 4-stroke, and the cylinder configuration, in-line. The engine model structure

is presented in figure 5.3 for visualisation. V E N T U R I T U B EB Y P A S S V A L V E

E G R F L O W V A L V E S V G T
I N J E C T O R S

Figure 5.3: GT-Power Engine model. Map of the modelled engine parts

Special emphasis was placed on the predictive combustion model that is specified in the cylinder

blocks. The direct-injection jet combustion model requires calibration against simulated or

measured cylinder pressure traces. For calibration purposes the model is fitted with a measured

cylinder pressure trace for different operation points. Each of these traces is used for calculating

the burn rate and other combustion parameters. This burn rate is then used to predict the in-

cylinder pressure trace which is compared against another measured trace. Depending on the

accuracy, several calibration parameters are monitored for error behaviour. The indicated mean

effective pressure (IMEP) is an important calibration parameter. In addition, the characteristic

of the pressure trace is investigated, along with initial pressure conditions at intake, intake valve

closure (IVC), the available fuel and air masses and their ratio. For an accurate combustion

model, the example pressure trace has to be correctly phased in order to achieve a close

correlation between the predictive model and the desired signal.
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As a measurement of accuracy of the current model, a pressure trace of the GT-Power model

and the Dynasty model are plotted against each other in figure 5.4 and of a pressure-volume

diagram is presented in figure 5.5. In addition the IMEP value is shown by way of comparison

for the operation state at 2200 RPM and 685 Nm.
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Figure 5.4: Pressure traces of GT-Power and Dynasty in Correlation of R2 = 0.99
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Figure 5.5: Pressure-volume relation and IMEP comparison between GT-Power and Dynasty
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The pressure trace and the P-V diagram show an overall correlation. There are slight differences

in intake and combustion duration which shows the differences between combustion models.

However, for the current application of data generation, these correlation characteristics are

sufficient. The model can generate in-cylinder conditions, in particular pressure traces and

temperature traces over the entire engine operation range as presented in figure 5.6 for low,

medium and high-speed operation. It also shows close quantitative and qualitative correlation

over the combustion process and correctly indicates events such as start of combustion and

peak pressure. These variables are important, particularly with regard to the application of

model temperature traces in combination with the real engine data. Firstly, the quantity of

the prediction needs to be correct and accurate enough in order to determine the temperature

from calculations based on the pressure trace. A correlation of up to 95% shows an acceptable

range. Due to the fact that the temperature detection can only be an instantaneous spatial

and temporal extraction of the combustion, this accuracy measure will give the correct trend

of peak heat development. In addition, the quality of the signal such as characteristic events

are required for training and subsequent correct prediction throughout the network.
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Figure 5.6: GT-Power combustion model output: pressure and temperature traces over low (800 RPM),

medium (1200 RPM) and high speed (2050 RPM)
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5.2.2 Caterpillar C6.6 1106D Industrial Diesel Engine

The test engine is a Caterpillar six-cylinder, 6.6 litre industrial medium-duty diesel engine. Its

specifications are listed in table 5.2. The engine is a Tier 3 engine that has been substantially

modified to meet Tier 4 emissions specifications. These modificiations include modern ad-

vanced technology auxiliary systems such as a variable geometry turbine (VGT) turbocharger,

an after- and EGR gas cooling system, an EGR control valve system with two separate con-

trolled pathways and a throttle valve in the intake. The engine operates on direct fuel injection

and was tested on different injector types and injection such as for example up to four injection

events.

Table 5.2: Caterpillar 1106D Industrial HD Diesel Engine - Specifications

Descriptor Value

Bore 105 mm
Stroke 127 mm
No. of cylinders 6
Displacement 6.6 L
Cylinder arrangement In-line
Type of combustion Direct injection
Compression ratio 16.2:1 (turbocharged/aftercooled)
Valves per cylinder 4
Firing order 1-5-3-6-4-2

The engine is operated using the Cadet engine test system installed in the test cell. It allows

the control of speed and torque via dynamometer control and high-speed data acquisition.

The system supports the automatic run of transient schedules or stage-based testing with

definition of setpoints, timings or test flows.

For research purposes the engine is fitted with an air- and fuel-path real-time control system

that replaces the manufacturer’s engine control unit (ECU). The original engine sensors are

expanded with an independent sensor system comprising around 120 additional parameters

within the engine and auxiliaries. Figure 5.7 shows the engine block with its original sensor

locations, while Figure 5.8 shows the test cell with the engine arrangement. The engine head

with sensor connections, intake and EGR system are visible.
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Figure 5.7: Perkins 1106D HD industrial diesel engine - sensor and ECM location: 1) Coolant tempera-

ture sensor, 2) Intake manifold temperature sensor, 3) Intake manifold pressure sensor, 4) Fuel pressure

sensor, 5) Electronic Control Module (ECM), 6) Oil pressure sensor, 7) Primary speed/timing sensor, 8)

Secondary speed/timing sensor, 9) Solenoid for fuel injection pump

The data acquisition system designed for real-time control consists of an air-path control sys-

tem run as an XPcTarget application. This extension of the MATLAB/Simulink environment

allows control applications to be run on a commonly used personal computer in real-time and

in parallel to the engine. In addition, a fuel-path control system is in operation via LabView

which, similar to the XPcTarget application, enables integration with MATLAB/Simulink sim-

ulations. The current acquisition and control set-up has evolved this way and is currently under

change. The data acquisition for the control operation is realised through a PXI/PCI-chassis.

The schematic drawing in figure 5.9 explains the acquisition architecture.
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Figure 5.8: Test cell arrangement at Loughborough University for the Caterpillar C6.6 medium-duty

engine.
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N e t w o r kV a r i a b l e sl o g g i n g+ c o n t r o l
l o g g i n g l o g g i n g

Figure 5.9: Schmematic top level representation of engine data acquisition and real-time control system

The PXI system logs different variables at different sampling rates for the various applications.

The real-time engine control logs parameters at 30 Hz (P1). For engine monitoring, the
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low-speed code (P2) samples various data channels at 10 Hz for recording engine operation

and behaviour. In addition, a third code (P3) samples the parameters required for in-cylinder

acquisition at crank-angle resolution. Hence, the code can sample at different sampling rates

and can be either triggered optically by encoder measurements or set to a fixed sampling

rate corresponding to the operational engine speed. In the case of transient operation, the

recording of in-cylinder pressure traces requires averaging or should not exceed a sampling

window of 60 seconds due to vast amounts of data, especially at high-speed operation.

5.2.3 Engine Parameters Recorded

For both data acquisition applications the input identification applies differently. Due to re-

strictions in sensor availability at the engine, certain input information for the network structure

is derived from available sensor readings. The two listings show the parameters recorded from

the Caterpillar C6.6 engine and the parameters recorded from the GT-Power model.

Table 5.3: List of input parameters for ANN structures recorded from the GT-Power simulation and the
Caterpillar C6.6 engine

Parameters from Caterpillar C6.6 engine List of parameters recorded with GT-Power

Compressor mass air - flow Compressor mass air - flow
Intake manifold pressure Intake manifold pressure
Injector current Intake manifold temperature
Needle lift Injected fuel mass- flow
Exhaust temperature (port 1)
Intake valve profile Intake valve profile
Exhaust valve profile Exhaust valve profile

The sensor set-up at the C6.6 engine provides information about the intake manifold air - flow

and the intake manifold pressure. The temperature sensor within the intake manifold does not

provide a resolution high enough in order to detect temperature differences within the intake

system. To define the compression and power stroke of the cycle, the intake and exhaust

valve profiles are recorded as well. They serve as an indication for initiated compression and

the end of the combustion process. These profiles are recorded from the C6.6 engine and

the GT-Power model and are the same in both cases. For information about the combustion

process, the actual start of combustion and the length of combustion can be derived from fuel

injection information. The information required is incorporated in the injection profile. In the
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GT-Power model the profile of injected fuel mass can be used in order to detect the start of

injection and the actual mass injected. Hence, the information for the start of combustion

is available as well as the duration of combustion due to the actual available fuel mass to

burn. For the C6.6 modelling task a different set of parameters is available, which includes

the injected fuel mass flow information used for the GT-Power modelling. The injector current

measurable at cylinder 1 of the C6.6 engine can be used to define the start of injection and

hence indicates the start of combustion. An additional parameter, the actual needle lift of

the injector, is used as an indicator for the mass of fuel entraining the cylinder over a specific

period of time. An additional parameter used for the engine modelling is the exhaust port

temperature. This value is recorded at the exhaust port of cylinder 1, which is equipped with a

better sensor than the intake manifold that enables the detection of event-based temperature

rises such as exhaust valve opening. Hence, the sensor signal contains information about the

in-cylinder temperature during the gas exchange which could be related to the combustion

temperature.

The sensor signals used here are acting as network inputs and they all contain information of

some relevance to combustion. The data is recorded in the crank angle domain due to the

cycle-based origin of the process that is described on events such as crank TDC or BTDC.

Hence, the crank position is a possible additional input defining the cycle events.

5.3 Design of Experiments and Data Generation

The acquisition of data for network training requires a certain operation range in order to

be able to teach the network sufficient generalisation capabilities. The boundaries defining

the extent of system operation also define the design of experiments. Insufficient scope of

training data leads to failure of output prediction beyond the training data boundaries. Neural

networks show good generalisation capabilities within the trained data range. However, outside

this training range the capability of extrapolation is limited.

In the case of in-cylinder pressure and temperature, the boundaries of operation are set by

the engine speed, load and the calibrated engine control settings related to fuel injection. A
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change to those settings causes a variation of parameter behaviour and would require a revised

version of the trained network as shown in the section about NOx prediction in 4.2.2.

The data generation for in-cylinder pressure and temperature is realised over the engine op-

eration range described in a speed-torque map shown in figure 5.10. Specific data points are

recorded. The initial data recorded from the GT-Power model covers seven speed cases and

21 load cases leading to 105 operation points. The load is increased in 5% increments from

no load to peak load. Speed steps are: 800 RPM, 1000 RPM, 1200 RPM, 1400 RPM, 1550

RPM, 1800 RPM and 2200 RPM.

Figure 5.10: Design of Experiments (DOE) for GT-Power data acquisition: Speed-torque map for

definition of engine operation range: 5 speed points with 21 load cases each - 105 operation points

The real engine data is generated with a step load increase of 10% from zero to 70% load.

Due to current system specification, the engine load was limited to 70% load application.

The hardware installed on the engine was limited to certain operational ranges which did not

allow engine loads above 70%. Operation above this limit would cause engine stall in certain

scenarios due to loss of oil pressure or excessive emissions output due to fuelling errors. Hence,

only data from zero to 70% load is considered. It is assumed that the data covers sufficient

engine operation points in order to show the applicability of the presented method.
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Figure 5.11: DOE: Real engine test with incremental load increase from zero up to 70% of peak load

Figure 5.11 shows the experiments carried out on the real engine. The load is ramped up

every 4 seconds for 1.5 seconds to the next load stage. In total the runtime is 68.5 seconds.

Depending on the speed, this creates between 500 engine cycles for 800 RPM and 1300 engine

cycles for 2200 RPM. Each data set contains steady-state cycles and cycles showing transient

behaviour between load stages.

5.4 Conclusions

This chapter outlined the data acquisition requirements for the modelling task of in-cylinder

conditions with ANN. The first section defines the engine parameters with the key impact

on the combustion process. The parameters are recorded with two acquisition systems. A

GT-Power simulation model that is built using a Dynasty simulation model. This model, in

turn, is validated against a real Caterpillar C6.6 engine. The simulation becomes necessary

for the generation of in-cylinder temperature data which is not accessible through real engine

experiments. In addition, the simulation enables the fast and less cost intensive data generation

for initial modelling purposes. The other acquisition system is a real Caterpillar C6.6 engine
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that enables the high-speed data acquisition of cycle-based data. The engine is equipped with

a cylinder pressure transducer and a comprehensive data acquisition system.

The chapter also describes the simulation and experiment procedures carried out for data

generation. Due to hardware restrictions, the data is currently limited to 70% of peak load in

the GT-Power application and the real engine. However, the key engine operation points are

covered by a DOE. The data acquired is first used for an initial modelling with GT-Power data

in chapter 6 before the network structures are tested on real engine data in chapter 7 along

with transient and noisy data signals.
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6 Modelling Results with GT-Power Generated Data

The results presented in this chapter show the performance of different network topologies on

the prediction of in-cylinder pressure and temperature data. Three different network types are

applied in order to detect the best possible network topology for the problem at hand.

The first structure is a simple multi-layer feed-forward network as described in 3.2. The

second structure is a multi-layer feed-forward network with input time delays in order to include

possible input dynamics. A third structure used is the NLARX recurrent network which has

been described in 4.2.2, 4.2.3 and 4.2.4.

6.1 Cylinder Pressure Modelling with GT-Power Data

The cylinder pressure data from GT-Power contains the key inputs identified for this modelling

task. The initial modelling approach for each network is realised with six inputs:

1. Compressor mass air - flow

2. Intake manifold pressure

3. Exhaust manifold temperature

4. Injected mass - flow

5. Inlet valve profile

6. Outlet valve profile.

The output is the in-cylinder pressure trace shown the of example in figure 5.2. The training

data set is composed of 15 cycles that cover the engine operation range:

• Speed: 800 RPM to 2200 RPM
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Table 6.1: Training set - speed and load scenarios

Speed [RPM] Torque cases [%]

800 0 20 40 60 70
1400 0 20 40 60 70
2200 0 20 40 60 70

• Torque: 0% to 70% of maximum rated torque.

The engine torque on the real engine is limited to 70% because restrictions are in place for

certain operation scenarios. Hence, the GT-Power simulation is restricted to the identical range

in order to match this data to the available data from the real engine - further explanations

about specific restrictions are given in the next chapter 7 for real engine modelling. In addition,

several points within the engine operation range are covered randomly. The training set covers

the boundary speed, load points and additional 9 points, making a total of 15 cycles as shown

in table 6.1.

The visualisation of the training set is presented in figure 6.1. It shows the in-cylinder pressure

traces and the variance within different operation points. The cycles are arranged randomly

and their cycle arrangement can be found in the appendix in tables B.1 and B.2 along with

the actual load value for the corresponding cycle.
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Table 6.2: Validation set - speed and load scenarios

Speed [RPM] Torque cases [%]

800 0 10 30 50 70
1200 0 20 40 60 70
1400 0 10 30 50 70
1800 0 20 40 60 70
2200 0 10 30 50 70
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Figure 6.1: Training set for cylinder pressure modelling generated with GT-Power consisting of 15 cycles

covering load scenarios at 800, 1400, 2200 RPM.

The validation set consists of 25 cycles consisting of the scenarios shown in table 6.2 and

figure 6.2. The current training and validation sets consist of steady-state cycle data.
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Figure 6.2: Validation set for cylinder pressure modelling generated with GT-Power consisting of 25

cycles covering load scenarios at 800, 1200, 1400, 1800, 2200 RPM.

For each network type a corresponding set of results is presented. The network performance

is measured with the comparison coefficient: coefficient of determination R2 as formulated in

equation 4.1. In addition, a linearity check is plotted showing the value-to-value comparison

between the measured and predicted output.

6.1.1 Network Training Approach

The goal of the network training is to find a topology for prediction of the in-cylinder pressure

or temperature. As described in section 3, the topology consists of the network architecture,

the number of layers and neurons, the assignment of transfer functions, and the training of

the network weights and bias. For the latter the best performing points are found through a

training algorithm as described in section 3.3. In terms of the transfer function, the literature

[59, 62] states that within multi-layer networks the hidden layers usually are assigned non-

linear functions in case of non-linear relationships with the output layer being assigned a linear
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function. In this case, the logistic function defined in equation 3.5 is used consistently for

the hidden layers and a pure linear function for the output layer. The number of layers and

neurons is tested manually over a sensible and feasible range. The literature states that every

neural network can be trained to map a differentiable function with a network that consists

of no more than three hidden layers [86]. A network with up to three hidden layers and a

sufficient number of neurons can be taught any non-linear differentiable function. Hence, the

tests are limited to networks of up to three layers. At the same time the modelling is limited

to available computational resources which restricts the number of neurons to 25 per layer.

The memory of the personal computer in use cannot process networks any larger than this and

hence the current training data set. The aim here is to find an efficient network structure for

generating sufficient results in view of the comparison coefficient and the linearity check plot.

The feed-forward networks without and with input delay is trained for three-layer topologies

with 4, 10, 15, 20 and 25 neurons per layer. In addition, two-layer topologies are presented

with 4, 10, 15, 20, 25 neurons per layer.

6.1.2 Multi-layer Feed-Forward Network Structure

The feed-forward structure is trained with a Levenberg-Marquardt algorithm. The training

data is presented in 50 iterations to the network for training. Performance is measured via the

mean squared error calculated from the difference between the desired output and the network

predicted output. The smallest network topology with the best achieved performance is a six

input network with three layers and four neurons per layer. With an R2 performance of 0.85

and 0.71 for training and validation respectively, the result is neither accurate nor sufficient.

The visual comparison and the linearity check graphs in figures 6.3 and 6.4 show an insufficient

comparison between the measured and predicted output. For better accuracy, an additional

input signal is added that enables the network to relate information to periods after inlet valve

closure through to outlet valve closure. The crank angle signal enables the comparison of

engine cycle behaviour during the compression and expansion stroke. The injected fuel mass

- flow indicates the moment of ignition and hence the start of combustion. However, the

information for compression and expansion is missing. Adding the extra input enables the

network to relate training input information to the training output information.
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Figure 6.3: Comparison result for three-layer network [4 4 4] with six inputs: training R2 = 0.85 and

validation R2 = 0.71
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Figure 6.4: Value-to-value comparison along a linear plotline: training and validation set
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The result for seven inputs can be seen in figure 6.5. For this scenario the best result is

found with a network of 10 neurons per layer trained to achieve an R2 of 0.99 for training and

the validation set respectively. The visual comparison in figure 6.5 shows a good comparison

of the training set. In the lower of the two graphs below, the validation set shows a close

comparison. However, the network misses some peaks of the validation cycles. In addition,

the linearity check plot in figure 6.6 indicates the closer comparison between measured and

predicted values in comparison to the results with six inputs in figure 6.4.
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Figure 6.5: Comparison result for a FFN three-layer network [10 10] with seven inputs: training R2 =

0.99 and validation R2 = 0.99
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Figure 6.6: Value-to-value comparison along a linear plotline: training and validation set

6.1.3 Multi-layer Feed-Forward Network Structure with Input Time - Delay

The multi-layer feed-forward structure with input time delay is characterised by an additional

tuning parameter. The definition of previous input states considered for processing the current

output is tuned during the optimisation process. For the investigation here, four previous input

states are considered which showed the best results within a range of one to ten previous input

states per input. The result presented in figure 6.7 and figure 6.8 is a two-layer network with

four neurons per layer and seven inputs. The residual results for six- and seven-input network

topologies are shown in the table of results in the appendix B.3. The six-input topologies

show similar comparison performances as shown for the simple feed-forward structure in figure

6.3. In consequence, a seven-input approach shows the best performance for predicting the

validation set of in-cylinder pressure traces.
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Figure 6.7: Comparison result for a FFNTD two-layer network [10 10] with seven inputs: training R2 =

0.99 and validation R2 = 0.99
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Figure 6.8: Value-to-value comparison along a linear plotline: training and validation set

133



6.1 Cylinder Pressure Modelling with GT-Power Data

The comparison coefficient determined from the signals in figure 6.7 are 0.99 for training and

validation respectively, which is similar to the previous structure. However, the network found

for the input delay topology shows a slightly better value-to-value performance in comparison

to the simple feed-forward structure as figure 6.8 implies. In particular, peak pressure is

predicted more closely in the validation part which indicates a better generalisation capability

of the network. In addition, the delay structure enables a decrease in the number of neurons per

layer, resulting in a similar sufficient performance. However, the number of inputs increased due

to the delayed inputs. Consequently the simple feed-forward structure is potentially preferable

due to the overall simpler computational operation costs.

6.1.4 Non-linear ARX Structure

The NLARX network showed close comparison results in previous examples and achieves the

best performance for this task. For this structure, the six initial chosen inputs are sufficient to

be trained to map a relation of inputs and output. The most sufficient performance is found

for a NLARX with two layers and three neurons per layer. The recurrent characteristic of this

network are the output and previous states that are fed back as an additional input. This

parameter is set to three previous output states that are considered for the system mapping.

In addition, for each of the inputs, one previous state is used for the input-output relation

mapping. In consequence, the network has 15 inputs [six current input states, six delayed

input states, three recurrent output states = 15]. The result with this network is a comparison

coefficient R2 = 0.99 for training and validation. The visualised results are plotted in figure

6.9 for the measured signal and the network output for training and validation. In addition,

the value-to-value graph in figure 6.10 shows the closest fit along the regression line for all

three structures presented.
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Figure 6.9: Comparison result for a NLARX three-layer network [3 3] with six inputs: training R2 =

0.99 and validation R2 = 0.99
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Figure 6.10: Value-to-value comparison along a linear plotline: training and validation set

This recurrent structure shows the closest comparison in view of the value-to-value comparison.
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6.1 Cylinder Pressure Modelling with GT-Power Data

It requires only six inputs in comparison to the two other networks that require the additional

crank angle information in order to relate cylinder pressure behaviour to the input steps.

In addition, in figure 6.11 a cycle of the training set and a cycle of the validation set are picked

along with the prediction signal of each of the optimal performing networks. The graph shows

the measured signal plotted against three prediction signals. In the case of the training cycle,

the NLARX comparison follows the signal closely through the start of combustion pressure

change. At this point the feed-forward networks fail to predict the exact moment. The

FFNTD shows a step in the predicted pressure, however it is too early. The FNN network

creates a smooth transition from compression into combustion, which makes it difficult to

detect the start of combustion. Consequently, the performance of the feed-forward networks

is slightly offset in the validation set. In particular, the combustion (expansion) phase after

the peak pressure shows the weakness of the feed-forward approach. In this case the network

cannot generalise over the unseen case within the validation set. The NLARX network shows

a close comparison throughout the trace. However, the peak pressure is overpredicted.
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Figure 6.11: Comparison of all three best found network performances against a training and validation

cycle
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6.2 Cylinder Temperature Modelling with GT-Power Data

In this section for each of the network structures, an best performing network topology is found

with the least number of neurons and iteration runs. All of the trained networks presented

in the result tables B.3, B.4, B.5 in the appendix B.2 are trained for 50 consecutive training

data presentations. This is restricted in order to reduce the risk of overtraining the network

and reducing its generalisation capabilities.

The next step is now the prediction of in-cylinder temperature in a similar approach.

6.2 Cylinder Temperature Modelling with GT-Power Data

The inputs used for the in-cylinder pressure modelling are also used for the in-cylinder tem-

perature modelling. An exemplary temperature signal is shown in figure 5.2. The training

and validation set is composed in the same approach as for the cylinder pressure data and are

shown in figures 6.12 and 6.13 respectively.
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Figure 6.12: Training set for cylinder temperature modelling generated with GT-Power consisting of 15

cycles covering load scenarios at 800, 1400, 2200 RPM.
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Figure 6.13: Validation set for cylinder temperature modelling generated with GT-Power consisting of

25 cycles covering load scenarios at 800, 1200, 1400, 1800, 2200 RPM.

The in-cylinder temperature is modelled with the three network architectures as presented for

the in-cylinder pressure modelling. First a topology for the multi-layer feed-forward structure

is presented, followed by the input time-delay structure and, finally, the recurrent NLARX

structure.

6.2.1 Multi-layer Feed-Forward Network Structure

With the initial six input set-up the feed-forward structure could not be optimised towards

a sufficient R2 result. Hence, the mapping capability is increased by adding the crank angle

signal to the input set. With seven inputs the network is optimised towards a performance of

R2 = 0.99 for training and validation. However, the value-to-value comparison shows that the

networks accuracy is not sufficient.
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Figure 6.14: Comparison result for a FFN 2 layer network [10 10] with 7 inputs: training R2 = 0.99 and

validation R2 = 0.99
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Figure 6.15: Value-to-value comparison along a linear plotline: training and validation set
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6.2 Cylinder Temperature Modelling with GT-Power Data

The network results presented in figures 6.14 and 6.15 show the prediction results for two-layer

network with 10 neurons per layer. This network shows the closest value-to-value comparison

of all tested networks. The residual test results can be found in table B.3 the appendix B.2.

6.2.2 Multi-layer Feed-Forward Network Structure with Input Time Delay

The multi-layer feed-forward structure with input time delay is trained for a sufficient result

R2 of 0.99 for training and a R2 of 0.98 for validation shwon in figure 6.17.
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Figure 6.16: Comparison result for a FFNTD three-layer network [10 10 10] with seven inputs: training

R2 = 0.99 and validation R2 = 0.98
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Figure 6.17: Value-to-value comparison along a linear plotline: training and validation set

The visual comparison graph in figure 6.16 shows the good prediction capability of the network.

The network generalises over the validation set except for certain temperature traces, in this

case for 800 RPM and 30% load and 1800 RPM and 0% load (validation cycles 13 and 22).

The results for all trained network designs are shown in the table B.4.

6.2.3 Non-Linear ARX Structure

The NLARX structure shows the best performance of all three structures for temperature

prediction. A network trained with six inputs including two layers and four neurons per layer is

the most sufficient network topology for this structure. It achieves an R2 of 0.99 for training

and validation, and the value-to-value comparison is close for both sets. The number of outliers

drifting away from the linear line in figure 6.19 is reduced significantly in comparison to the

other two structures and their topology.
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Figure 6.18: Comparison result for a NLARX two-layer network [4 4] with six inputs: training R2 = 0.99

and validation R2 = 0.99
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Figure 6.19: Value-to-value comparison along a linear plotline: training and validation set
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6.2 Cylinder Temperature Modelling with GT-Power Data

The generalisation capability of the NLARX network shows the best performance for all three

structures and can predict across the engine operation range as represented by the validation

set.

The performance increase of the NLARX is explicitly shown in figure 6.20 where cycles six

and 13 of the training and validation set are plotted respectively. The graph shows the

measured signal of the cycle and the prediction output of all three structures. The training

set comparison is close for all three structures. An indication of the network’s performance

can be investigated at the step change of the signal during start of heat release - at sample

3955. The NLARX network fits the curve very closely whereas the simple FFN structure

shows some delay in response which results in a signal step missing out the exact rate of heat

increase. In comparison, the FFNTD shows a closer comparison due to increased dynamics

incorporation.
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Figure 6.20: Comparison of all three network performances for temperature prediction. Zoomed in at

training cycle six and validation cycle 13

However, the validation signal shows the generalisation capabilities of the three structures.

The NLARX network closely fits the cylinder temperature trace with all signal characteristics.
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In the same view, the FFNTD and the FFN fail in predicting the exact temperature over the

combustion cycle. This shows the lack of generalisation capability within the two feed-forward

structures.

6.3 Conclusion on the Investigation of GT-Power Data Modelling

In this section the results of model identification for in-cylinder condition modelling are pre-

sented. Data generated with a validated GT-Power model are employed as training and

validation data in order to investigate the capability of three different network structures in

order to predict in-cylinder pressure and temperature.

The network structure with the best predictive and generalisation capabilities is the NLARX

structure. It underlines its broad applicability amongst the other presented engine parameter

modelling investigations in chapter 4. It shows good predictive capabilities with the chosen six

inputs sketching the cylinder condition behaviour. In addition, the validation set that includes

unseen cycle cases at different speeds and load scenarios fits closely the correlation.

Nevertheless, the presented feed-forward structures show good correspondence between mea-

sured and predicted signals for a variety of engine cases. An additional input enables the

network to be trained sufficiently. By adding the current crank angle to the input list, the

feed-forward networks are able to relate cylinder events and the network performance can be

increased significantly. The FFN still shows delays in signal response and hence high frequency

characteristics in the pressure or temperature trace such as start of combustion are not covered

sufficiently. The FFNTD shows a better response capability, but the response overshoots the

measured signal or does not meet the correct value. Unseen data in particular shows that the

FFNTD has problems in generalising to a satisfactory level.

Overall, the network structures found display good correspondence and for each of the struc-

tures, a network topology is found that can predict the in-cylinder conditions over a wide range

of engine states. Low engine speeds and low loads are of particular interest here. The input

signal’s rate of change and the output’s response are less articulated. Therefore, it is more

challenging for networks to distinguish between engine state changes. The FFN specifically
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6.3 Conclusion on the Investigation of GT-Power Data Modelling

showed that at these states, the feature detection such as start of combustion or valve opening

and closing events are difficult to model.

For further investigations, the simpler FFN and the NLARX network are used. The FFNTD

shows a slight improvement in network performance over the FFN. However, the increase in

training and prediction costs is significant since the delay structure adds four additional input

feeds to the input layer. Hence, the FFNTD input layer increases up to 30 inputs instead of

six as with the FFN structure. At the same time, the number of neurons within the hidden

layer does increase within the FFN but the total number of neurons is kept lower than in the

FFNTD for pressure and temperature prediction.

The next chapter will focus on the application of the tested network structures on real engine

data recorded from the Caterpillar C6.6 engine. It is investigated whether the models are

capable of dealing with noisy data signals as well as slightly different input sets.
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7 Modelling Results with Real-Engine Generated Data

Additional data from the real engine described in chapter 5 is generated in order to validate

the findings of the previous chapter. The measurements contain following channels used as

input channels for the model:

1. Injector current

2. Exhaust temperature (port 1)

3. Compressor mass air flow

4. Needle lift

5. Intake manifold pressure

6. Inlet valve profile

7. Outlet valve profile

The list shows different inputs in comparison to the signals used for the GT-Power modelling.

The reason for these differences lies within sensor availability and sensor capability. Hence,

the intake manifold temperature sensor resolution is lacking accuracy due to the sensor type.

In addition, the injected fuel mass - flow is replaced by the two sensor readings of injector

current and needle lift. Despite the differences, the listed sensors contain the main information

required for the modelling process as described in section 5.1.

Similar to the previous chapter, the signals to be modelled are the in-cylinder pressure and

the in-cylinder temperature. The former signal is captured during the operation of the real

engine with an installed in-cylinder pressure transducer. The latter is acquired by running

the corresponding engine state in the simulation environment GT-Power in order to generate

an in-cylinder temperature trace. The identical engine states within real-engine and engine
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7.1 Real-Engine Training and Validation Data

Table 7.1: Training set - speed and load scenarios

Speed [RPM] Torque cases [%]

800 0 10 20-30 40 50-60 70
1400 0 0-10 20 30-40 50 60-70 70
2200 0 10-20 30 40-50 60 70

simulation are supposed to generate close comparison as shown in chapter 5. The simulated

trace is allocated to the respective case of measurements from the real engine. In the following,

an optimum network is found for each parameter and the results are presented here. Firstly,

this chapter presents the training and validation scenarios generated with real-engine operation.

Secondly, the FFN and NLARX structures are pursued to find a modelling capability of in-

cylinder pressure and temperature traces.

7.1 Real-Engine Training and Validation Data

The data recorded from the engine contains steady-state cases as found in the GT-Power

results and transient phases. The test is designed to record data over 60 seconds with a load

ranging from 0% up to 70. Load changes occur every four seconds after the load had been

ramped up for 1.5 seconds to the current load stage.

The results of the test can be seen in figure 7.1 which shows the torque ramping up towards

70% load with the cylinder peak pressure rising along with transient behaviour during torque

increase. The graph is plotted against the number of cycles recorded and available for train-

ing. The axis shows that approximately 50 cycles per load case are theoretically available for

training. However, due to available computing performance and memory from each load case,

one cycle of data is chosen randomly together with a cylce from the transient phase.

Hence, the training and validation data does include transient cases in addition to the steady-

state scenarios. For the training set, 19 cycles are chosen randomly from 800 RPM, 1400 RPM

and 2200 RPM at different loads and transients shown in table 7.1. The resulting training set

is plotted in figure 7.2.

The validation set consists of 33 cycles including load cases and transients from 800 RPM,
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Figure 7.1: Engine test procedure with increasing torque at fix speed (1200 RPM) from 0% - 70% load
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Figure 7.2: Set of pressure traces for network training recorded on the test engine
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Table 7.2: Validation set - speed and load scenarios

Speed [RPM] Torque cases [%]

800 0 0-10 20-30 40-50 60-70 70
1200 0 10 20 30 40 50 60 70
1400 0 10-20 30-40 50-60 70
1800 0 10 20 30 40 50 60 70
2200 0 0-10 20-30 40-50 60-70 70

1200 RPM, 1400 RPM, 1800 RPM and 2200 RPM - 7.2. The arrangement of cycles chosen

for the test can be found in the tables C.1, C.2 of the appendix C.1 for the training and

validation set respectively.
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Figure 7.3: Set of pressure traces for network validation recorded on the test engine

7.2 In-Cylinder Pressure Modelling with Real Engine Data

For modelling in-cylinder pressure, two network structures are investigated: the multi-layer

feed-forward structure and the non-linear ARX structure.
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7.2 In-Cylinder Pressure Modelling with Real Engine Data

7.2.1 NLARX Structure

The most sufficient NLARX structure in this search is found with a hidden two layer network

with 8 neurons per layer. The input layer consists of the seven listed inputs plus one previous

output state per input and three previous output states. The resulting trained network achieves

a training and validation performance of R2=0.99. The comparison in figure 7.4 shows a good

prediction of cylinder pressure for a variety of engine operation scenarios. The generalisation

of the network can be seen in the lower of the two graphs in figure 7.4 where the validation

set shows close comparison. Underlined is the comparison coefficient by the linearity check

in figure 7.5 which shows the close fit of the value-to-value comparison with the regression

line.
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Figure 7.4: Comparison result for an NLARX two-layer network [8 8] with seven inputs: training R2 =
0.99 and validation R2 = 0.99

7.2.2 Multi-layer Feed-Forward Structure

The feed-forward structure is trained with an additional input, the crank angle degree signal.

Without this additional input, the network cannot be trained to find a relation between the
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Figure 7.5: Value-to-value comparison along a linear plotline: training and validation set

inputs and the output. Hence, this network contains an input layer of eight nodes. The hidden

unit contains two layers with 10 neurons per layer. The result of the training and validation

can be seen in figures 7.6 and 7.7. The comparison coefficient for the training set is R2 =

0.98 and for the validation set R2 = 0.95.

The validation signal in figure 7.7 shows the weakness of the FFN structure in generalising over

unseen states. The value-to-value comparison shows a wide distribution around the regression

line. In particular, states of 1200 RPM are not covered correctly. The network introduces

some offset to the signal. This is assumed to be due to the unseen data at this speed state.

The results for all network topologies trained for pressure and temperature prediction can be

found in tables C.3 and C.4 of appendix C.2 for the FFN and NLARX structures respectively.

In the next section the results for the temperature prediction are presented.

7.3 In-Cylinder Temperature Modelling with Real-Engine Data

The in-cylinder temperature used is generated with GT-Power and, in the previous section,

it has been shown that the FFN and NLARX structures are able to find a mapping relation
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Figure 7.6: Comparison result for an FFN two-layer network [10 10] with eight inputs: training R2 =
0.98 and validation R2 = 0.95
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Figure 7.7: Value-to-value comparison along a linear plot line: training and validation set
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between inputs and outputs. However, in this section it is shown that the simulated cylinder

temperature can be used as training data for a network based on real-engine data.

7.3.1 NLARX Structure

The comparison for the temperature signal shows good results with an R2 = 0.99 for training

and validation. The same network topology is used as implemented for the in-cylinder pressure.

The results are presented in figures 7.8 and 7.9.
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Figure 7.8: Comparison result for an NLARX two-layer network [8 8] with seven inputs: training R2 =
0.99 and validation R2 = 0.99

7.3.2 Multi-layer Feed-Forward Structure

The feed-forward structure is changed towards a network topology with two layers and 20

neurons per layer. The results are plotted in figures 7.10 and 7.11. The performance shows

similar behaviour as seen in the previous chapter. The training data shows a close fit in the

visual and value-to-value comparison. However, the validation set is predicted less accurately as

the value-to-value graph shows. In particular, the peak temperatures are missed repeatedly.
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Figure 7.9: Value-to-value comparison along a linear plot line: training and validation set

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000
FFN Temperature Signal Training

T
em

pe
ra

tu
re

 [C
°]

0 0.5 1 1.5 2

x 10
4

0

500

1000

1500

2000

2500
FFN Temperature Signal Validation

T
em

pe
ra

tu
re

 [C
°]

Crank Angle [CA°]

 

 

Measured
Predicted

Figure 7.10: Comparison result for a FFN two-layer network [10 10] with eight inputs: training R2 =
0.99 and validation R2 = 0.98
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Figure 7.11: Value-to-value comparison along a linear plot line: training and validation for the temper-
ature prediction

Similar to the in-cylinder pressure data the FFN structure shows a close comparison in predict-

ing the training data. In addition, the comparison coefficient of the validation set is sufficient.

However, the value-to-value visualisation discloses that the comparison value mainly shows

that the network can predict the trend of the temperature characteristic. The network is not

trained for an exact value prediction.

7.4 Conclusion on the Investigation of Real Engine Data

Modelling

This chapter presented the applicability of the findings of chapter 6. The network structures

FFN and NLARX are first used to predict the in-cylinder pressure and then the in-cylinder

temperature.

The training and validation data is recorded from the Caterpillar C6.6 engine presented in

chapter 5. The training set contains seven initial inputs that are recorded in the crank angle

domain. The list of signals differs slightly from the initial input set chosen in the GT-Power

modelling chapter. This is due to restrictions in sensor resolution or a lack of equipment.
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Nevertheless, the chosen inputs provide the information required for successful input-output

mapping. In the case of the FFN structure, the crank angle signal is required as an additional

input in order to find a mapping capability. The input enables the network to relate crank

angle degrees with other input information.

The approach for in-cylinder pressure modelling can be concluded with the NLARX structure

being the best choice for this modelling problem. A sufficient topology is found that shows close

comparison in terms of training and validation for the comparison coefficient and the linear

regression value-to-value fit. It can generalise over a variety of states that contain steady-state

scenarios as well as torque transients generated through the design of experiment.

The FFN structure also achieves a sufficient training comparison and meets requirements such

as prediction of peak values and correct timings. However, in some unseen cases within the

validation set, the network fails to find the correct relation. A variety of network topologies

have been tested and it is found that the FFN cannot sufficiently generalise over the chosen

validation set. The network is able to predict the signal trend of in-cylinder pressure and

temperature and predict the peak value. However, the value-to-value comparison discloses the

weakness of exact value prediction with this structure.

From this investigation it can be concluded that the NLARX structure is the network with the

best capability for in-cylinder modelling. It can be trained quickly, it shows good capability

of generalisation, and can achieve good results with a minimum topology size. The main

advantage of this network structure is the dynamics information provided through delayed

input information and feedback of resulting outputs.
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8 Summary and Conclusions

This thesis has outlined the challenging field of monitoring in-cylinder conditions. In particular,

cylinder pressure and temperature characteristics during the combustion process would have

great utility in combustion control. These parameters are fundamental in the description of

the combustion process.

The detection and measurement of combustion parameters are currently both equipment and

cost intensive and therefore pose difficulties for real-time application and mass-production.

Temperature detection has been developed principally for laboratory applications and is quite

unsuited to mass-production engines. Its measurement requires optical access and is therefore

impractical. Cylinder pressure has been used for a long time in larger diesel engines and was

recently introduced for the first time in light-duty engines. Its drawback includes high initial

costs of implementation and high maintenance requirements.

Consequently, several other approaches have been developed for real-time monitoring of cylin-

der conditions to meet the needs of on-board diagnostics and controller design. Chapter

2 describes the key approaches for temperature and pressure reconstruction and prediction.

However, the approaches are ill-posed by certain characteristics of engine parts or due to

the difficulties in extracting information from structure-transferred noise that incorporates the

in-cylinder information. The approaches presented for real-time application reconstruct the

signal from previously obtained information. Hence, there is no predictive capability. Other

modelling approaches are often accurate and require good system knowledge. Physical and

mathematical models have a drawback due to their computational cost, which makes them

inappropriate for real-time application.

This work investigates the applicability of neural networks to the field of combustion engine

parameter prediction. In Chapter 4, 5, 6 and 7 several contributions in the perspective of
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network structure and arrangement, their input identification, data acquisition and training

data definition are made.

8.1 Main Findings and Contributions

Neural Network Structure The investigation of applicable neural network structures has

shown that for engine parameter modelling, the NLARX structure is a reliable predictor. This

structure showed its capability in a variety of investigations such as for predicting NOx, partic-

ulate matter or engine exhaust parameters. For this reason it is also chosen for the application

of in-cylinder condition prediction where it showed its quality with regard of generalisation,

accuracy and least-complex topology choice in comparison to other network structures. Others

have shown sufficient predictive capability in view of response characteristics and overall corre-

lation. However, the value-to-value correlation showed considerable differences in comparison

to the NLARX structure. Feed-forward approaches can predict signals closely and can map the

trend of non-linear parameter behaviour. However, the resolution and response of the NLARX

structure shows superior accuracy. Here, the main finding is the applicability of the NLARX

structure to the modeling task of in-cylinder conditions which shows apparent non-linear highly

dynamic system behaviour. The application of a NLARX structure to model the combustion

process is the novelty in this case.

Input Identification The modeling of systems behaviour requires an information source for

state changes to the system that is incorporated within the input set. Hence, identification

of the correct input set is crucial for defining a network that can represent the underlying

functionality of the system. This work shows that the choice of inputs can drastically increase

performance as in the case of the FFN structure implemented for the in-cylinder pressure

and temperature prediction. By adding sample or time based information such as the crank

position, the network can relate other events to certain crank positions. In particular, recur-

ring events can be exploited as they occur within the in-cylinder domain. In general, input

identification can be achieved with different approaches:

• Trial and error
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• Systems knowledge

• Principal Component Analysis (PCA)

The first trial and error approach is most efficient if knowledge of the system is minor but

a number of measurements are available. The second approach requires initial knowledge

of the system which should allow the definition of inputs and their effect on the output.

However, this approach can be misleading because black-box models are often used where

there is a lack of system knowledge. In the last approach, the PCA characteristics of an input

are analysed and ranked in comparison to the other inputs. The investigation of soot-rate

prediction in section 4.2.4 showed a successful reduction of the input set and generation of

an ANN prediction capability. An initial set-up of inputs was reduced using a PCA. Main

findings are identification of key parameters as inputs for a successful neural network modeling

approach. The analysis of inputs is approached with systems understanding rather than with

statistical analysis as shown previously with a PCA. The inputs impact is confirmed by the

networks modeling accuracy.

Data Acquisition and Processing The data acquisition and processing of data is crucial.

The data available for systems training ideally has to completely cover the system’s behaviour.

Hence, knowledge of system boundaries is required in order to derive the output scope and

the corresponding input range. In order to define additional cases, a random signal can be

used to simulate the input characteristics and broaden the system’s response and, with it, the

data range covered by the network. The data acquired can either be recorded by a real-engine

system, a software simulation, or a hybrid approach. In this work, a novel hybrid approach

leads to the solution of developing a model that can predict the in-cylinder temperature of

the real engine. Since measuring in-cylinder temperature is not possible on the real engine,

a GT-Power simulation model is used to generate the missing signal. The model is validated

against the real engine by using a Dynasty model, a Caterpillar Inc. simulation software.

A predictive combustion model is then used to generate the in-cylinder temperature trace

that is subsequently associated with the corresponding scenario measured on the real engine.

This finding is confirmed by the networks performance with real engine input data predicting

simulated in-cylinder temperature data over a broad engine operating range. In addition, the
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acquisition approach also showed its validity in the in-cylinder pressure prediction where the

network could be trained to predict simulated and measured pressure traces across the engine

operating range.

Various methods can be used in order to capture a broad variety of system responses:

• Predefined tests

• Pseudo-random input signals

• Design of experiment

Another novelty in the perspective of data acquisition is the choice of predefined engine test

scenarios are presented in the work for NOx, smoke and soot-rate prediction where an NRTC

test is used for defining the system’s boundaries. Another approach is the use of pseudo-

random control signals that might be applied to start-of-injection, fuel-rail-pressure, or the

ratio between injections as presented in the work about fuel path control in section 4.3. For

the work presented in chapters 6 and 7, a design of experiment is applied where key feature

points of the engine operation map are chosen.

The definition of training and validation sets is another part of this work that has been

investigated closely. The initial work on the prediction of NOx showed the importance of a

sufficient and comprehensive representation of system behaviour in the training data used to

find an optimum network topology. A further investigation on this is presented in sections 4.2.3

and 4.2.4. In addition, it is important to ensure that the maximum output signal amplitudes

are represented in the training signal as shown in section 4.2.3 where the peaks in smoke output

are part of the modelling task. Here, another contribution is presented. A novel approach

of slicing a signal into separate amplitude zones in the time domain rather than investigating

the frequency domain is shown. The resulting modular network combination is applied from

literature but shows the validity of slicing approach.
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8.2 Conclusion on In Cylinder Condition Modelling Opportunities

and Limitations

A new approach has been presented for in-cylinder modelling. An NLARX network is found to

be the best-performing network structure on in-cylinder pressure and temperature prediction.

The network structure shows fast training characteristics. The training algorithm finds a good

generalising and predictive network structure after less than 50 iterations. The correlation of

training and validation data is sufficient with an R2 =0.99 for both sets. The network topology

found generalises over a variety of engine states. The training and validation set was chosen

randomly from the data generated with a validated GT-Power model and a real C6.6 engine.

The results show that the feed-forward structures can predict the trend of the desired signal.

However, the accuracy of the found network topologies is not sufficient. The network’s output

response is slightly delayed and causes the loss of characteristics of the desired signal such

as start of combustion or inlet and outlet valve impacts. Despite this uncertainty, the peak

pressure and temperature are predicted for most of the test scenarios. Hence, for monitoring of

peak pressure conditions, the feed-forward structures seem applicable. Their ability of pressure

trace prediction appears limited and hence an application for in-cylinder closed-loop control

is in question. Key parameters such as start-of-combustion or 50% Mass-Fraction-Burned

cannot be determined exactly in the current training state. The limitations in computational

performance restrict the training process and hence a better prediction.

The presented NLARX network structure can be either used for monitoring purposes or for

the support of controller design. It could be either implemented as an engine plant model

that enables the simulation of engine cycles during tuning and optimization of a closed-loop

controller. In addition, the network could be operated as a virtual sensor within the engine

management environment. Also, the application as part of a model- predictive controller

is a possibility. The drawback of this approach is the wide range of channels required for

successful modelling. Injector current, needle lift or exhaust port pressure are not currently

standard sensors within a production engine. Another issue is the possible shift of engine

behaviour and the consequent change in input signals and hence system output. A network

implemented for engine monitoring requires regular retraining in order to ensure a reliable
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output.

Some of the current limitations shall be part of future work on this topic.

8.3 Outlook and Future Work

The presented approach is promising for controller design as well as on-board diagnostics and

combustion control. The on-board diagnostic capability is currently restricted through the

required high sampling rates and some of the chosen inputs. One future step would be the

implementation of the network structure on a test engine such as the C6.6 engine used for

data generation in order to test the real-time applicability across the entire engine operation

range. The current design of experiment incorporates a variety of key engine speeds and

loads. In addition to the steady-state cases, transients between load stages are incorporated.

However, transients between speeds and transients such as idle speed and no load to full load

require further investigation. This area of additional training cycles also raises the point of how

much data a network could cover. For this scenario, a further investigation could look into the

application of a network map that covers this distinct engine operating range. These operating

ranges can either be on the speed-load curve or defined by the transients that occur during

engine operation. An initial test of the network structure can be applied with the validated

GT-Power model. This work showed that in-cylinder temperature output data generated from

the GT-Power simulation can be allocated with input data from the real engine and then

predicted. The next step would be the validation of the network’s ability to operate in real

- time on the engine and predict the in-cylinder temperature based on the simulated training

data. A final step for proving the network’s capability of temperature prediction would be

the generation of real in-cylinder temperature data following the training and validation of a

network topology.

Another field of interest would be the implementation of an in-cylinder condition plant model

for controller design. Combustion control is challenging and requires fast and reliable moni-

toring information. The presented approach can provide a reliable model plant for designing

control structures aiming at emissions formation reduction based on temperature and pressure

information. In addition, parameters such as heat - release, peak cylinder pressure, burn rate
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or start-of-combustion can be derived from a virtual sensor-based approach. These parame-

ters can help controlling combustion conditions that reduce emissions output such as lower

temperatures in view of NOx formation.
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A Continuous Speed-Load Acceptance

Table A.1: Constant speed-load acceptance cycle with ramp times, speed and torque values

Speed [RPM] Start Torque [Nm] Target Torque [Nm] Comment

1000 50 700 Ramp up 10s - hold 1min
1000 700 50 Ramp down 10s
1200 50 50 Ramp to next speed point with 50 Nm
1200 50 900 Ramp up 6s - hold 1min
1200 900 50 Ramp down 6s
1400 50 50 Ramp to next speed point with 50 Nm
1400 50 900 Ramp up 4s - hold 1min
1400 900 50 Ramp down 4s
1600 50 50 Ramp to next speed point with 50 Nm
1600 50 885 Ramp up 3s - hold 1min
1600 885 50 Ramp down 3s
1800 50 50 Ramp to next speed point with 50 Nm
1800 50 805 Ramp up 2s - hold 1min
1800 805 50 Ramp down 2s
2000 50 50 Ramp to next speed point with 50 Nm
2000 50 715 Ramp up 2s - hold 1min
2000 715 50 Ramp down 2s
2200 50 50 Ramp to next speed point with 50 Nm
2200 50 620 Ramp up 2s - hold 1min
2200 620 50 Ramp down 2s

2200 50 620 No speed change - ramp torque up in 2s
2200 620 50 Ramp down 2s
2000 50 50 Ramp to next speed point with 50 Nm
2000 50 715 Ramp up 2s - hold 1min
2000 715 50 Ramp down 2s
1800 50 50 Ramp to next speed point with 50 Nm
1800 50 805 Ramp up 2s - hold 1min
1800 805 50 Ramp down 2s
1600 50 50 Ramp to next speed point with 50 Nm
1600 50 885 Ramp up 3s - hold 1min
1600 885 50 Ramp down 3s
1400 50 50 Ramp to next speed point with 50 Nm
1400 50 900 Ramp up 4s - hold 1min
1400 900 50 Ramp down 4s
1200 50 50 Ramp to next speed point with 50 Nm
1200 50 900 Ramp up 6s - hold 1min
1200 900 50 Ramp down 6s
1000 50 50 Ramp to next speed point with 50 Nm
1000 50 700 Ramp up 10s - hold 1min
1000 700 50 Ramp down 10s

174



PhD Thesis - Bastian Maass B Results for GT-Power Modelling

B Results for GT-Power Modelling

B.1 Training and Validation Sets for GT-Power Modelling - Cycle

Arrangement

Table B.1: Arrangement of training set for GT-Power Modelling - Load and Speed cases and their
arrangement within the training set shown in figure 6.1

Torque/Speed 800 RPM 1400 RPM 2200 RPM
0 % Cycle 1 7 9
10 %
20 % Cycle 4 15 6
30 %
40 % Cycle 8 5 3
50 %
60 % Cycle 10 14 11
70 % Cycle 12 2 13

Table B.2: Arrangement of validation set for GT-Power Modelling - Load and Speed cases and their
arrangement within the validation set shown in figure 6.2

Torque/Speed 800 RPM 1200 RPM 1400 RPM 1800 RPM 2200 RPM
0 % Cycle 25 24 23 22 21
10 % Cycle 18 19 20
20 % Cycle 17 16
30 % Cycle 13 14 15
40 % Cycle 12 11
50 % Cycle 8 9 10
60 % Cycle 7 6
70 % Cycle 1 2 3 4 5
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B.2 Training and Validation Results for GT-Power Modelling -

Network Topologies

Table B.3: Results for GT-Power Modelling - Results for all tested network topologies for pressure and
temperature prediction with the FFN

Results for GT-Power Pressure Modelling with FFN
FFN with 6 inputs FFN with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.94 0.75 [4 4 4] 0.97 0.97

[10 10 10] 0.95 0.6 [10 10 10] 0.98 0.58
[15 15 15] 0.91 0.37 [15 15 15] 0.99 0.98
[20 20 20] 0.92 0.65 [20 20 20] 0.99 0.98
[25 25 25] 0.96 0.32 [25 25 25] 0.99 0.99

2 [4 4] 0.78 0.75 [4 4] 0.97 0.97
[10 10] 0.93 0.54 [10 10] 0.99 0.99
[20 20] 0.95 0.0426 [20 20] 0.99 0.99
[25 25] 0.93 0.48 [25 25] 0.99 0.99

Results for GT-Power Temperature Modelling with FFN
FFN with 6 inputs FFN with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.95 0.88 [4 4 4] 0.99 0.98

[10 10 10] 0.98 0.86 [10 10 10] 0.99 0.98
[15 15 15] 0.98 0.8 [15 15 15] 0.99 0.99
[20 20 20] 0.98 0.75 [20 20 20] 0.99 0.99
[25 25 25] 0.99 0.57 [25 25 25] 0.99 0.97

2 [4 4] 0.63 0.62 [4 4] 0.52 0.52
[10 10] 0.96 0.85 [10 10] 0.99 0.99
[20 20] 0.92 0.83 [20 20] 0.99 0.98
[25 25] 0.98 0.73 [25 25] 0.99 0.97
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Table B.4: Results for GT-Power Modelling - Results for all tested network topologies for pressure and
temperature prediction with the FFNTD

Results for GT-Power Pressure Modelling with FFNTD
FFNTD with 6 inputs FFNTD with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.72 0.7 [4 4 4] 0.99 0.94

[10 10 10] 0.86 0.73 [10 10 10] 0.98 0.96
[15 15 15] 0.92 0.62 [15 15 15] 0.99 0.99
[20 20 20] 0.93 0.69 [20 20 20] 0.99 0.97
[25 25 25] 0.9 0.65 [25 25 25] 0.99 0.94

2 [4 4] 0.8 0.77 [4 4] 0.99 0.99
[10 10] 0.87 0.69 [10 10] 0.98 0.97
[15 15] 0.85 0.71 [15 15] 0.96 0.88
[20 20] 0.91 0.71 [20 20] 0.99 0.99
[25 25] 0.91 0.59 [25 25] 0.99 0.94

Results for GT-Power Temperature Modelling with FFNTD
FFNTD with 6 inputs FFNTD with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.86 0.82 [4 4 4] 0.99 0.98

[10 10 10] 0.95 0.85 [10 10 10] 0.99 0.98
[15 15 15] 0.94 0.82 [15 15 15] 0.99 0.99
[20 20 20] 0.96 0.85 [20 20 20] 0.99 0.99
[25 25 25] 0.97 0.83 [25 25 25] 0.99 0.97

2 [4 4] 0.87 0.81 [4 4] 0.52 0.52
[10 10] 0.94 0.89 [10 10] 0.99 0.99
[15 15] 0.95 0.88 [15 15] 0.99 0.98
[20 20] 0.98 0.84 [20 20] 0.99 0.98
[25 25] 0.98 0.73 [25 25] 0.99 0.99
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Table B.5: Results for GT-Power Modelling - Results for all tested network topologies for pressure and
temperature prediction with the NLARX

Results for GT-Power Pressure Modelling with NLARX
NLARX with 6 inputs NLARX with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.98 0.98 [4 4 4] 0.99 0.99

[10 10 10] 0.99 0.99 [10 10 10] 0.97 0.97
[15 15 15] 0.99 0.99 [15 15 15] 0.83 0.83
[20 20 20] 0.89 0.89 [20 20 20] 0.99 0.99
[25 25 25] 0.99 0.99 [25 25 25] 0.9 0.9

2 [4 4] 0.99 0.99 [4 4] 0.99 0.99
[10 10] 0.99 0.99 [10 10] 0.99 0.99
[15 15] 0.99 0.99 [15 15] 0.99 0.99
[20 20] 1 1 [20 20] 1 1
[25 25] 1 1 [25 25] 1 0.99

Results for GT-Power Temperature Modelling with NLARX
NLARX with 6 inputs NLARX with 7 inputs

Results R2 Results R2

Layer Neurons Training Validation Neurons Training Validation
3 [4 4 4] 0.99 0.99 [4 4 4] 0.99 0.99

[10 10 10] 0.99 0.99 [10 10 10] 0.99 0.99
[15 15 15] 1 0.99 [15 15 15] 1 0.99
[20 20 20] 0.99 0.99 [20 20 20] 1 0.99
[25 25 25] 1 0.99 [25 25 25] 1 0.97

2 [4 4] 0.99 0.99 [4 4] 0.99 0.99
[10 10] 0.99 0.99 [10 10] 1 0.99
[15 15] 0.99 0.99 [15 15] 1 0.99
[20 20] 0.99 0.99 [20 20] 1 0.99
[25 25] 0.99 0.99 [25 25] 1 0.99
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C Results for Real Engine Modelling

C.1 Training and Validation Sets for Real Engine Modelling-

Cycle Arrangement

Table C.1: Arrangement of training set for Real Engine Modelling - Load and Speed cases and their
arrangement within the training set shown in figure 7.2

Torque/Speed 800 RPM 1400 RPM 2200 RPM

0 % Cycle 1 4 18
0-10 % Cycle 15
10 % Cycle 7
10-20 % Cycle 6
20 % Cycle 3
20-30 % Cycle 14
30 % Cycle 16
30-40 % Cycle 12
40 % Cycle 8 5 3
40-50 % Cycle 13
50 % Cycle 19
50-60 % Cycle 10
60 % Cycle 11
60-70 % Cycle 8
70 % Cycle 9 17 2
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C.1 Training and Validation Sets for Real Engine Modelling- Cycle Arrangement

Table C.2: Arrangement of validation set for real engine modelling - Load and Speed cases and their
arrangement within the validation set shown in figure 7.3

Torque/Speed 800 RPM 1200 RPM 1400 RPM 1800 RPM 2200 RPM

0 % Cycle 33 32 31 30 19
0-10 % Cycle 27 28
10 % Cycle 26 25
10-20 % Cycle 24
20 % Cycle 23 22
20-30 % Cycle 20 21
30 % Cycle 19 18
30-40 % Cycle 17
40 % Cycle 16 15
40-50 % Cycle 13 14
50 % Cycle 12 11
50-60 % Cycle 10
60 % Cycle 9 8
60-70 % Cycle 6 7
70 % Cycle 5 4 3 2 1
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C.2 Training and Validation Results for Real Engine Modelling -

Network Topologies

Table C.3: Results for real engine modelling - Results for all tested network topologies for pressure and
temperature prediction with the NLARX

Results for Real Engine Pressure Modelling with FFN
FFN with 8 inputs

Results R2

Layer Neurons Training Validation
2 [4 4] 0.99 0.99

[10 10] 0.99 0.99
[15 15] 0.99 0.99
[20 20] 0.99 0.99

Results for Real Engine Temperature Modelling with FFN
NLARX with 8 inputs

Results R2

Layer Neurons Training Validation
2 [4 4] 0.99 0.99

[10 10] 0.99 0.99
[15 15] 0.99 0.99
[20 20] 0.99 0.99
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Table C.4: Results for Real Engine Modelling - Results for all tested network topologies for pressure and
temperature prediction with the NLARX

Results for Real Engine Pressure Modelling with NLARX
NLARX with 7 inputs

Results R2

Layer Neurons Training Validation

2 [4 4] 0.99 0.99
[10 10] 0.99 0.99
[15 15] 0.99 0.99
[20 20] 0.99 0.99

Results for Real Engine Temperature Modelling with NLARX
NLARX with 7 inputs

Results R2

Layer Neurons Training Validation

2 [4 4] 0.99 0.99
[10 10] 0.99 0.99
[15 15] 0.99 0.99
[20 20] 0.99 0.99
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