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ABSTRACT 

The use of numerical optimization methods to select reciprocating 
engine anti-vibration characteristics is investigated. A rigid body 
power train model coupled through an arbitrary array of vibration 
isolators to a rigid supporting structure forms the basis of the 
dynamic model. By calculating the forced response of the power train 
to its internally generated excitation, the strain energy summed over 
the isolators may be determined. This energy, which is indicative of 
the efficiency of the vibration isolative mounts, is used as the 
objective function in the optimization procedure. The method is 
expected to be useful in preliminary design studies of front wheel 
drive vehicles where traditional methods of mounting automotive 
engines are not necessarily applicable. 

Each isolator is approximated by a set of mass less linear springs 
acting along and about its elastic axes and the engine as a rigid body 
described by its inertia properties with respect to a reference frame 
fixed to its centre of mass. The undamped eigen/solution for the 
system is found, it being assumed that these modes can be used to 
uncouple the damped equation of forced vibration. The excitation due 
to unbalanced inertial and combustion forces are approximated by 
Fourier series. The response to each excitation harmonic is computed 
by modal superposition with damping being introduced on a modal basis. 
The mean square response and the maximum strain energy summed over all 
harmonics is then determined. 

For any specific engine speed the system strain energy can be 
expressed as a single function of the isolator design variables, viz 
stiffness, position and orientation and hence minimized by a numerical 
algorithm. The optimal values of the design variables are computed by 
a NAG FORTRAN routine within the feasible region defined by bounds on 
design variables and by other constraints. Two such constraints are 
of practical importance: (a) static deflection at the isolator, and 
(b) engine static rotations. This new approach has the advantage of 
directly linking the numerical process of finding the optimum isolator 
configuration simul taneously with both the static and the dynamic 
forced response of the engine. 

The method has been extensively tested numerically on a contemporary 
four cylinder diesel engined car with promising results. It is clear, 
however, that final modifications might be necessary at the final 
design stage to account for road input excitation. 
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PRINCIPAL NOTATION 

A list of the most commonly used symbols is given below. where bold­

type characters indicate either a vector or a matrix. 

a) Scalars 

ak' bk 
ar 
bo 
cr 
• cr 
ci (x) 

di 

dij 
e 

fi 
fIr) 

f.(s) 
l. 

F(X) 

g 

Iij 
j 

kij 
kp.kr·ks 

L 

m 

mrec 
mrot 
n 
p . r 
qi 

Fourier coefficients 

Modal mass for the rth mode of vibration 

Frequency independent Fourier coefficient 

Modal stiffness of the ith mode of vibration 

Modal complex stiffness 

The ith constraint function 

Distance of the ith cylinder centre from the crankshaft 

centre 

Elements of direction cosine matrix 

Basis of the natural logarithm 

Internally generated engine force in the ith direction 

The complex genralized force for the rth mode of vibration 

The i th element of the static force vector 

Optimization objective function 

Acceleration of gravity 

Moments and products of inertia 

-1 

Elements of the global stiffness matrix 

Isolator stiffness in the p.r.s local direction 

respectively· 

Load on the isolators 

Power train mass 

Reciprocating mass 

Rotating mass 

Number of engine cylinders 

The rth principal coordinate 

Internally generated engine moments in the ith direction; 

generalized coordinates 
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q' x 
r 

Final drive torque 

Crank radius 

iv 

r(n) r(n) r(n) 
x 'y.'z 

Position coordinates of the nth isolator 

Time t 

Vjk 

X,Y,Z 

y 

w 

The kth element of the eigenvector corresponding to 

the jth natural frequency 

Weighting factor for the ith constrain function 

Mean square response for the ith generalized 

coordinate 

Global translational coordinates: 

Crankshaft centre coordinates 

Transformed optimization variable 

'Modal complex receptance 

Polynomial coefficients 

Eulerian angles 

, Modal loss factor 

Angle between the ith and the No 1 cylinder crank 

Ratio of the crank radius to the conrod length 

Penalty parameter 

Global rotational displacements 

Engine speed 

The rth modal frequency 

Vectors and Matrices 

A 

B 

C 

f 

G 

Direction cosine matrix; Modal mass matrix; ~atrix whose 

ith row contains the'coefficients of the ith constraint; 

~e Jacobian matrix of the constraints 

Approximation to the Hessian matrix G 

Direction cosine matrix; Modal stiffness matrix 

Complex vector of the generalized forces 

Hessian matrix with elements; the second partial 

derivatives of f(x) 

Global inertia matrix 

Principal inertia matrix 



K 

v 

Global stiffness matrix 

Principal axis translational stiffness matrix for the nth 

isolator 

Principal axis rotational stiffness matrix for the nth 

isolator 

KXx Translational stiffness submatrix 

EX Translational-rotational submatrix 

K Rotational-rotational submatrix 

M Mass matrix 

p 

R 

T 

U 

u 

v 

V 

x 

z 

Vector of principal coordinates! the n-dimensional vector 

of search 

Position matrix 

Transformation matrix 

Transformation matrix 

Translational·subvector of x 

Eigenvector. Rotational subvector of x 

Modal matrix 

General displacement vector with respect to the global 

axes. Vector of optimization variables 

General displacement vector with respect to the principal 

axes 

Matrix the columns of which form the basis for the 

feasible subspace 

The Hessian matrix of the Lagrangian function 

The vector of the Lagrange multipliers 

Spectral matrix 

Virtual displacement vector 

Gradient vector with elements, the first partial 

derivatives of f{x) 
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CHAPTER 1 

INTRODUCTION 

During the early years of the motor vehicle it was customary to 

~ the engine into the vehicle chassis. Engine vibration 

was a minor problem compared with the severe shake caused by the solid 

rubber tyres on the primitive vehicle body. Further the solid engine 

structure provided a very stiff cross member for the chassis. In fact 

the first attempts to isolate the engine can be attributed to 

crankcase failures induced by chassis distortion on the rigidly bolted 

power train. As road noise was filtered with rapidly increasing 

improvements on the vehicle such as the introduction of pneumatic 

tyres, improved suspensions, quieter body construction etc, engine 

induced vibration became disturbing. Subsequently efforts were made 

to make engines quieter using existing theoretical knowledge of engine 

dynamics. 

The introduction of well balanced configurations, such as the in-line 

six cylinder engine, improved matters considerably. Compared with the 

four cylinder engine's inherent 2nd (and also 4th, 6th ••• ) order 

force and moment unbalance, the six cylinder engine's 6th (and also 

12th, 18th ... ) order force unbalance and 3rd (and also 6th, 9th ••. ) 

torque unbalance impose a lower degree of interaction between the 

idling speed excitation spectrum and the rigid engine isolator 

spectrum, thus reducing engine vibration considerably. However. even a 

perfectly balanced reciprocating engine will require some degree of 

isolation as uneven firing gives rise to half order torque harmonics 

which can cause considerable vibration at engine idle due to their low 

frequency. Despite the dynamic advantages of the six cylinder engine. 

the four cylinder engine has continued to play a dominating role in 

the future of the motor car, providing a sensible compromise for size. 

dynamic balance. power. manufacturing cost and reliability. Ingenious 

mechanisms developed to improve the balance of the four cylinder 

engine have proved too expensive for large scale production and as a 
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result solutions ~the engine vibration 

have continued to be investigated. 

problem by engine isolation 

Lack of powerful numerical algorithms on fast digital computers left 

engineers with no alternative but the development of easy to use 

methods for engine vibration isolation. Such methods were extensively 

used for the design of isolation systems for front engine-rear wheel 

drive (North-South) arrangements with impressive results. However, 

the increasing trend for smaller vehicles and front engine-front wheel 

drive (East-West) arrangements introduced new problems in the design 

of isolation systems,. mainly due to space restrictions and the 

increased reaction torque on the power train imposed by the integral 

engine-gearbox-final drive designs. Motivated by this new class of 

problems and by the availability of reliable numerical optimization 

routines, some different approaches to the design of power train 

isolation systems have evolved. 

The main principles of traditional methods for isolating engine 

vibration will now be briefly outlined along with their numerical 

implementation. The merits and weaknesses of the methods will be 

described and a new approach based on a somewhat different view of 

engine isolation system design will be outlined. 

1.1 BACKGROUND 

The methods used for the investigation of engine isolation systems 

were based on the well established vibration theory that a body 

supported on resilient supports possesses a number of natural 

frequencies (often referred to as eigensolutions) depending on the 

number of degrees of freedom considered in the vibration model. 

Investigation of the eigensolution (usually in the range of 5-20 Hz) 

for a rigid engine-isolator system revealed that by careful design of 

the isolation system the modes of vibration could be decoupled and 

hence the rigid engine-isolator spectrum could be controlled. The main 

requirement for complete decoupling is that the elastic centre of the 

dynamic system must.coincide with the centre of mass. Partial 
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decoupling can be achieved in a number of ways depending on the 

relative position of the elastic centre from the centre of mass, known 

to be a function of the isolator position, orientation and stiffness 

properties. Engine vibration isolation based on this principle was 

discussed by Crede [1] in 1957 and conditions for decoupling four 

modes were derived. Investigators such as Horovitz [2], Wilson [3] and 

Bolton-Knight [4], to name but three, developed conditions for 

decoupling the modes of vibration for a six degrees-of-freedom engine 

model by considering isolators inclined in different planes. Their 

work is discussed by Lee [5] in his attempt to investigate the 

decoupling of the engine modes of vibration for a six degrees-of­

. freedom model allowing complete freedom on the isolator orientation 

and extending his analysis to deriving conditions for total 

. decoupling. 

Whatever the approach to modal decoupling there are two main points to 

be made. Firstly, that by decoupling the modes of vibration the 

frequency spectrum is narrowed, and secondly that with decoupled modes 

the interaction between engine vibration and engine shake can be 

controlled or even avoided. It should be noted, however, that all the 

investigators mentioned earlier were concerned with the isolation of 

the traditional 'North-South' engine arrangement, and that direct 

application of such methods to 'East-West' engines has not yet been 

recorded. 

Efforts have been made, in recent years, to design isolation systems 

for 'East-West' engines using numerical optimization methods. The 

main requirement with such methods is that a function which is 

believed to describe the dynamic. response of the system is defined and 

is then numerically minimized subject to a number of conditions. 

Literature research revealed that the earliest attempt to investigate 

optimum isolation systems using such methods dates back to 1971. D. 

Zibello [p] developed a numerical procedure to establish the optimum 

stiffness and damping characteristics for an established isolation 

system, using a numerical technique which required data from vehicle 

ride evaluations. This particular approach to engine vibration 

.. 
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isolation is most appropriate for final 'tuning' purposes and offers 

no assistance at the preliminary design stage. 

In 1979 S.R. Johnson [7] produced a numerical algorithm based on a 

grounded rigid engine-isolator model but the orientation of the 

isolators is not included in the optimization procedure and static 

requirements had to be separately satisfied. His objectives were to 

decouple all the modes of vibration, using kinetic energy modal 

distributions, place the rigid body spectrum below the excitation 

spectrum and finally constrain the modal frequencies within specified 

frequency bands. Although his work provides a useful tool for 

investigating optimal isolation systems, it lacks generality since 

optimal isolator orientation cannot be investigated and static 

analysis is not integrated into the optimization procedure. An even 

more constrained approach was presented by J.E. Bernard and J.M. 

Starkey [8] in 1983. Their objective was to keep the modal spectrum 

of the grounded engine rigid body away from a specified frequency band 

by assigning weighted penalties to solutions that allowed modal 

frequencies into that band. Additional penalties were assigned to 

solutions that required large changes of design variables as such 

solutions were considered uneconomical. Apart from the unrealistic 

approach to engine vibration isolation, the surprising feature of this 

work is the mathematical complexity it introduces to predict changes 

in the eigenvalues of the system caused by changes in the design 

variables. Such procedures are useful for systems with large numbers 

of degre~Of freedom but seem unjustifiable for a six degree of )c 
freedom model. 

Finally in 1984 P.E. Geck and R.D. Pat ton [9] produced an optimization 

algorithm for isolating a grounded rigid model based on a method that 

statically decouples the roll mode. Other objectives were to place 

the bounce mode high and the roll mode low in the frequency spectrum. 

Their work included the isolator orientation in the optimization 

procedure but again the static analysis is kept separate. Complete 

vehicle-power train mode shapes are presented in their paper which 

clearly demonstrates the interaction of engine vibration and engine 
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shake thus supporting the use of modal decoupling as an optimization 

objective. Further their experience with complete vehicle optimization 

methods and the failure of such algorithms to cope with the complexity 

of such models is discussed in their paper as a supporting argument 

for subsystem optimization. 

It seems that in an effort to investigate'optimum isolation systems 

for reciprocating engines, traditional practices based on the rigid 

engine-isolator spectrum have been conveniently formulated for the 

purpose of utilizing modern numerical optimization a}gOri thms. 

However, none of the methods, discussed earlier, includ'i,.the static 

analysis into the optimization procedure. Although the application of 

modal decoupling successfully provided isolation systems for 'North­

South' engine arrangements there is no evidence that such isolation 

systems were optimum. If modal decoupling is used as the optimization 

objective for the investigation of optimum isolation systems for 

'East-West' engine arrangements then there is no guarantee that the 

solution will be other than an optimum decoupled isolation system. 

Finally, if powerful numerical algorithms are used in such a way to 

solve the, complex engine isolation problem, then their potential is 

underrated. A new approach to optimum engine isolation design is 

adopted here. The optimization objective is defined in terms of the 

forced response of the engine to its internally generated forces while 

the static requirements are incorporated into the optimization 

procedure in terms of constraints. 

A brief discussion of this new approach will now be presented during 

an introductory description of the contents of this thesis. --
1.2 A NEW APPROACH 

At the very early stage, the question that had to be answered was 

whether the six degree of freedom, grounded, rigid engine model is an 

adequate one, although such a model is widely used. Discussions with a 

motor car manufacturer [10] confirmed the view that models of low 

dimensionali ty had an important role to play in preliminary design 
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calculations. For reasons of simplicity the six degree of freedom 

rigid engine isolator model is used, but the investigation of optimum 

isolation systems is based on the principle of minimizing the forces 

generated at the isolators. The FORTRAN-coded procedure that --~vest:l.gate~ optimum isolation systems is developed on this principle ~. 

and it .will be presented in the following stages. 

First, a rigid body power train model coupled through an arbitrary 

array of isolators to a rigid supporting structure is analysed for 

dynamic response. The rigid body power train is described by the 

inertia properties of the power train and each isolator is 

approximated by a set of linear springs acting along and about its 

elastic axes. The position and orientation of each isolator with 

respect to the power train centre of mass is described by three 

Cartesian coordinates and three Euler angles respectively. The dynamic 

system is excited by the internally generated engine forces and the 

response of the system to the resulting series of harmonic excitations 

is computed. Graphical presentation of both the response and the mode 

shapes of the system are presented. 

Next, a brief introduction to the development of numerical 

optimization methods is followed by the definition of the general 

optimization problem. The objective optimization function is then 

defined in terms of the maximum strain energy of the system, which is 

indicative of the efficiency of the vibration isolative mounts, and is 

optimized with respect to the isolator position, orientation and 

stiffness-properties. The optimization design space is defined by 

bounds on the optimization variables and constraints on the isolator 

static displacement, power train static rotations and the rigid body 

frequency spectrum. It is the constraints on the isolator static 

displacements and the power train static rotations that take care of 

the static requirements while constraints on the rigid engine isolator 

spectrum allows some control on the separation of engine vibrations 

and engine shake. The NAG FORTRAN routine used to perform the 

optimization, transforms the original constrained problem into a 

series of unconstrained subproblems by an augmented Lagrangian 
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function transformation and each subproblem is minimized by a quasi­

Newton method. The main steps of the algorithm are explained with the 

aid of a flowchart diagram and the various numerical requirements such 

as scaling, constraint weighting and the importance of the 

optimization monitoring information is explained on practical grounds. 

Finally, the optimum solution obtained from the computer program, 

starting from the isolation system of an existing production engine, 

is presented and the fE1asibility of the optimum isolation system is 

discussed. Through this discussion it will become evident that by 

allowing freedom on the elastic coupling of the vibration system and 

minimizing force transmission, better isolation systems can be 

established. It is recognised, however, that to be genuinely !Jseful 

in industry the exhaust system must be included in the model, due to 

its importance on the East-West engine vibration characteristics and 

that engine shake must be incorporated. The exhaust system can be 

included to a first approximation if an equivalent stiffness element, 

in the form of an additional isolator, can be provided and the inertia 

properties of the power train with the exhaust can be measured. 

Likewise, rubber hoses or other linkages between the power train and 

the vehicle structure can be included in the model with no further 

modification to the code. Engine shake, however, cannot be included 

without modification of the model unless an equivalent excitation 

vector at the power train centre of mass can be computed. 

Finally an area of concern wi th the algorithm developed here is its 

current inability to include non-linear isolator characteristics. The 

effect of this limitation on the static analysis section of the 

problem is discussed to the extent of suggesting a way to remove such 

limitations from the program. 
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CHAPTER 2 

ENGINE VIBRATION 

The response.of a four cycle reciprocating engine excited by its 

internally generated forces and isolated from a rigid foundation by a 

set of isolators, as shown in Figure 2.1, is investigated in this 

chapter. 

The power train (engine-gearbox assembly) will generally be subjected 

to a number of different types of forces generated by driving 

conditions, engine power and gravity. For the purpose of the following 

analysis it is convenient to distinguish between static and dynamic 

forces applied to the frame of the power train. 

• 

Engine - gearbox 
assembly 

z • Force 

moment 

Torque 

~ISolator 
FIGURE 2.1: ARRANGEMENT OF THE POWER TRAIN AND ISOLATORS 
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The static forces of primary concern are the engine weight force and 

the zero frequency component of the engine torque reaction. Also of 

concern are forces resulting from the motion of the vehicle such as 

braking and cornering. Strictly speaking, these are dynamic forces.> >< 
but for the purpose of this analysis they will be regarded as static 

since, for normal driving conditions, variations in them are very slow 

compared to the engine forces. The importance of the quasi-static 

forces is that they can cause large engine displacements and 

consequently possible interaction of moving and stationary parts, 

which is undesirable. 

Dynamic forces on the other hand are responsible for shaking the 

engine and are generated by combustion gas pressure variations and by 

unbalanced reciprocating or rotating inertias. For modern 

reciprocating engines where balance of rotating inertias can be well 

established, the dynamic forces can be generally represented, as in 

Figure 2.1, by a vertical unbalance force due to the reciprocating 

parts, a pitching moment resulting either from a non-symmetric crank 

arrangement, or by an offset vertical force and finally a rolling 

torque caused by the vertical unbalance force and gas pressure 

fluctuations. 

The isolators must, therefore, be deSigned and posi tioned in such a 

way so that they will support the power train under the worst possible 

static conditions, prohibiting large engine displacements and 

simultaneously attenuating the transmission of engine vibration to the 

supporting structure. The following dynamic analysis, which is 

developed with respect to a Cartesian reference frame fixed at the 

power train centre of mass, with the Z axis vertical positive upwards, 

the Y axis horizontal, positive towards the front of the engine and 

the X axis lateral to form a right handed system, will set the 

foundations for the discussion of engine vibration attenuation which 

will be presented in the next chapter. 
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2.1 THE VIBRATION MODEL 

In deriving the equations of motion the physical system shown in 

Figure 2.1 is represented by discrete elements possessing either 
, 

stiffness or inertia as shown in. Figure 2.2. The underlying· 

assumptions embodied in this model are the following: 

1. The.structure supporting the isolators is rigid 

2. The engine structure is rigid 

3. The mass of the vibration isolators can be neglected 

4. Dynamic displacements are small. . 

As each of these assumptions imply that certain approximations can be 

made to the physical system. the validity of these approximations will 

now be discussed. 

With a rigid supportiI).g structure. there are two defects -introduced 

into the mathematical model. One is that road inputs, •. which are lmown 

to be important cannot be included in the following analysis and the 

x . I 

FIGURE 2.2: DISCRETE-ELEMENT MODEL LAYOUT 
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second is that consideration of vibration transmission to the chassis 

is prevented. The first defect could be removed by modifying the 

model to include a rigid body representation of the chassis connected 

to the road surface by a simple suspension model, thus allowing 

consideration of engine shake. Consideration of vibration 

transmission to the chassis, however, requires finite element models 

of the chassis which are too complicated for preliminary design 

studies, and further such models are known to be extremely difficult 

to use in numerical optimization algorithms due to the number of 

variables involved and the time required for system changes during 

optimization as a result of the finite element software procedures. 

The approximation of the power train by a rigid body is by no means 

unreasonable as the frequencies of the structural modes of the power 

train are well above those involving what are effectively rigid body 

motions of the power train unit on its isolators. Similarly the 

approximation of the isolators by massless springs is no cause for 

alarm. Whilst wave propagation in vibration isolators has been 

observed, the frequency range where it might be of concern is well 

above the rigid body frequency range" of the engine on its isolators. 

"The assumption of small dynamic displacements, however, allows the 

approximation"Qf the isolators as linear springs. Since the dynamic 

deflections are known to be small it is appropriate to treat this part 

of the problem within the framework of linear small amplitude 

vibration theory, although the force deflection characteristics of 

rubber are notoriously nonlinear. The isolator nonlinearity is, 

however, important in calculating the deflection of the system under 

conditions of high static engine torques. This aspect of the problem 

will be discussed at the end of this chapter with the aid of numerical 

results from the computer program. 

gguations of motion: The equations of free-undamped vibrations are 

formulated first. The resulting eigensolution is then used to find a 

modal solution to the damped forced vibration problem resulting from 

the application of internally generated engine forces. 
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The undamped equations of motion are of the form: 

Mx+Kx=O (2.1) 

where M and K are the mass and stiffness matrices of the system 

expressed in the global X,Y,Z coordinates located at the power train 

mass centre. The vector x is of order six being comprised of three 

translations and three rotations, i.e. 

xT = [x, y, z, ~, e, ~] (2.2) 

The mass matrix has the form 

m 0 0 0 0 0 
I 

0 m 0 I 0 0 0 I 

0 0 I 
0 0 0 M = m I (2.3) ------------r-----------0 0 0 I Ixx -Ixy -Ixz 

I 
0 0 0 -Iyx Iyy Iyz 
0 0 0 -Izx -Izy I zz 

and is assembled by direct application of Newton's second law of 

motion to the power train rigid body. A slight problem might arise 

when assembling the rotational inertia submatrix as the power train 

inertia properties are usually given wi th respect to its principal 

inertial axes. Greenwood [11], however, shows that by equating the 

rotational kinetic energy of the body in the two coordinate systems 

the rotational inertia properties of the body can be transformed from 

one axis set fo another. Let C denote the direction cosine matrix 

such that 

~ = ex (2.4 ) 
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where "p' x represent a vector in the principal axis and the global 

axis respectively. Then, if Ip and I denote the rotational inertia 

matrices in two such axis systems, respectively, it can be shown that: 

(2.5) 

The stiffness matrix has the form 

K • [-;::----1-----;:;-] 
(2.6) 

and by virtue of the reciprocal properties of mechanical systems the 

stiffness matrix will be symmetric. ~ubsequently it holds that Kxe = 

K~x' Each submatrix in (2.6) can be assembled by considering the 

. contribution of each isolator separately and then summing over all the 

isolators. Let P, R, S denote the local elastic axes of the nth 

isolator in Figure 2.1 and A (n) the direction cosineL~\that 

(2.7) 

where x(n) denotes a translational displacement with respect to the 

global axes and pen) the equivalent displacement with respect to the 

nth isolator elastic axes. 

Smollen [12] shows that by considering the forces generated at the nth 

isolator due to a translation of the suspended body and then 

transforming these forces back to the global axes, the translational­

translational stiffness submatrix due to the nth isolator is given by 
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(2.8) 

Similarly by considering the moments about the body axes due to the 

forces generated at the nth isolator.by a translation of the body. the 

rotational-translational stiffness submatrix is given by 

K(n) = R(n) K(n) 
ex xx 

(2.9) 

where R(n) is the skew-symmetric position matrix for the nth isolator 
-> 

0 _r(n) r(n) 

R(n) r(n) 
z y. 

= 0 _r(n) 
z x 

_r(n) r(n) 0 
y x 

The skew symme,tric form is explained by examining the vector 

expression r x f. The zeros on the leading diagonal of its matrix 

equivalent are simply an expression of the fact that forces cannot 

generate moments about their line of action and vice versa. 

Finally the rotational-rotational stiffness submatrix is assembled by 

considering the moments which will resul t on the body due to forces 

and moments 'generated on the nth isolator by a general body rotation 

with the result 

= R(n)K(n) RT(n) + A(n) K(n) AT(n) 
xx A 

(2.10) 

Summing over the isolators gives the total stiffness matrix for the 

system as 
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I 

K = 

S I S L K(n) : L K(n) RT(n) 
.. _!!~! ____ :: ________ .! _______ 1l~1. __ ~~ _____________________________ _ 

I 

R(n) K(n) I 
I 

s 

L 
n=l 

s 
+ y. 

n=l 
xx xx 

Isolator orientation: Whilst providing the simplest representation of 

finite rotations, the six fold redundancies among the nine direction 

cosines make them unsuitable for use in an optimization algorithm. 

The reason for this is that each redundancy can only be removed by an 

equality constraint viz the sum of squares of the elements in any row 

or column of the direction cosine matrix A(n) must equal to unity. 

This problem is overcome when the orientation of the nth isolator with 

respect to the engine axes is specified by three ordered rotations 

about the isolator elastic axes. The angles of the ordered rotations 

are the Euler angles and the order of rotation which will be employed 

here is the "Yaw-Pitch-Roll" order as follows. 

First the isolator is rotated through an angle a about the S elastic 

axis 

Second the isolator is rotated through an angle ~ about the P elastic 

axis 

and finally, the isolator is rotated through an angle y about the R 

elastic axis. 

Following this method as illustrated by Synge and Griffith [13], the 

transformation matrix A(n) can be derived as 
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where d11 = cosy cos<> - sill'( sinS sina 

d21 = cosy sinx + siny sinS cosa 

d31 = -siny cosS 

d12 = -cosS sina (2.11) 

d22 = cosS cosa 

d32 = sinS 

d13 = siny cosa + cosa sine sina 

d23 = siny sina - cosy sinS COSa 

d33 = COSy cosS 

and 0 .;; a .;; 211 

-11/2 .;; S .;; 11/2 (2.12) 

0 .;; y .;; 211 

Natural frequencies and mode shapes: These are found by seeking 

solutions of the form x = v e jwt to equation (2.1). The non-trivial 

solutions resulting from such trial solutions satisfy 

(K - w2 M) v = 0 (2.13) 

thereby giving the six natural frequencies and mode shapes of the 

engine on its mounts. The natural frequencies can be assembled in a 

diagonal spectral matrix n. and the six mode shapes corresponding to 

the natural frequencies form the columns of the modal matrix V of the 

system. 

Graphical presentation of mode shapes is conveniently performed if the 

general body motion of a mode of vibration is expressed as a screw 
~ 

displacement. The basic theory involved together with the FORTRAN-code 

translation of the screw-displacement analysis is presented in 

Appendix B. Figure 2.3 shows one such presentation of the mode shapes 

for the Ford 1.6 litre engine which is used throughout the thesis as a -
practical example. 

??? , . . 
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2.2 INTERNALLY GENERATED FORCES 

The matrix equation of motion (2.1) is now completed with the addition 

of an external force vector. thus 

M x + K x = fo e jwt (2.14) 

. 
where f is the complex vector of the generalized forces of the power 

train centre of mass containing both magnitudes and phase angles. The . 
derivation of the components of f for reciprocating engines is 

discussed. in varying detail. by a number of authors including Biezeno 

[14]. Taylor [15]. Shigley [16] and a brief outline of their results 

appropriately formulated for this work is presented in Appendix A. 

What is required for the forced response analysis are analytical . . 

expressions for the components of f in equation (2.14). By 

approximating the mass properties of the piston. con-rod and crank. 

for each cylinder of an n-cylinder in-line reciprocating engine. by a 

rotating mass (mrot) concentrated at the crank pin and a reciprocating 

mass (m rec ) concentrated at the gudgeon pi~ and the gas pre&sure 

torque by a Fourier series (i.e. T = -nbo - ~ ak sin kwt - ~ bk 
cos kwt) the forces and moments generated by ~;:Jh cylinder summe~\.ith 
respect to a Cartesian reference frame fixed at the centre of the 

crankshaft (see Appendix A) are given by equations (2.15) to (2.20). 

The other parameters involved in these equations are the crank radius 

r. the engine speed w. the angle between the ith cylinder crank and 

the No 1 cylinder crank ei • the distance di of the ith cylinder centre 

from the crankshaft centre and the ratio of the crank radius to the 

con-rod length A. 

n 

~ (2.15) 
i=l 

(2.16) 



n 

L 
i=l 

. 2 
- mrec rw Re [A 

n 

L 
i=l 

n 

L 
i=l 

n 
q2 = -mrec r~2 Im [ L 

i=l 
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n L e j (wt+6i)] + 
i=l 

e j2(wt+6 i )] 

n L d
i

e j (wt+6i)] -
i=l 

d e j2 (wt+6 i )] i. 

_ 1 e j2 (wt+6i) _ 3l ej3(wt+6i))] _ 
2 4 
., n 

- L ak Im [ L e jk(wt+6i)] _ 

k=l i=l 
., n 
L bk Re [ L e jk (wt+6i ) ] 

k=l i=l 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

. However, equations (2.15) to (2.20) give the components of the vector 

; in equation (2.14) if, and only if, the crankshaft centre coincides 

wi th the power train centre of mass and the crankshaft and cylinder 

centre lines are parallel to the global axes. Generally, the 

crankshaft centre does not coincide with the power train centre of 

mass, 

lines 

and it is possible that both the crankshaft and cylinder 

will. be skewed with respect to the global axis. 

centre . 
If f' 

represents the force vector at the centre of the crankshaft with 

components given by equations (2.15) to (2.20), then a transformation 
• 

might be required on f' to yield the global force vector f of equation 

(2.14). 

For the general case, where none of the conditions mentioned above is 

satisfied. the required transformation matrix will be derived on the 
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principle that the virtual work done on the power train by each of the 

two force vectors is the same i.e. 

" A 
f' Q~' = f QV (2.21) 

where <5 V', QV are the virtual displacement vector in the crankshaft 

local axes and the global axes respectively. With reference to Figure 

2.4, let U denote the transformation ' matrix such that 

x" = U Xl 

Then if /ix, Q~ are the translational and rotational subvectors of QV 

and /ix", Q~' the equivalent subvectors of v' and Rc is the position . , 

matrix for the crankshaft centre with respect to the global axes, 

assembled from the coordinates xc' Yc' Zc shown in Figure 2.4, then it 

follows that 

z 

y-----~\or-

P-owertrain ./ 
centre of mass 

Crankshaft 
centre at 

x 

y' 

y. x' 
I Xc. Ye. zeT'::::;:' 

FIGURE 2.4: GLOBAL AND CRANKSHAFT REFERENCE FRAMES 
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or <I v' = T o:v (2.22) 

where 

Substituting for QV' into equation (2.21) the following relationship 

between f and f' is obtained 

(2.23) 

2.3 CALCULATION OF FORCED RESPONSE 

As the ~de shapes sPan the frequency spectrum of the system_they can 

be used as basis vectors to describe the response of the system to a 

harmonic excitation i.e. the response of the system at any other 

frequency can be expressed as a linear combination of the modal 

vectors. The equation of motion (2.14) can be decoupled by a linear 

transformation utilising the orthogonality properties of the modal 

vectors with respect to the mass and stiffness matrices of the system 

shown for example by Bishop, Gladwell and Michaelson [17]. The 

coordinates which de couple the equations of motion, referred to as the 

principal coordinates, are related to the generalized coordinates by 

the linear transformation 

x = V P (2.24) 
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where p is the vector of the principal coordinates. When the system 

is vibrating in a natural mode the only non-zero element in p is the 

one corresponding to that mode. Applying the above transformation to . 

equation (2.14) and premultiplying by VT yields 

which in view of the orthogonality properties of the eigenvectors 

reduces to 

• 
A P + c p = vT r e jwt 

or in component form: 

(2.25) 

where ar and cr are the modal mass and stiffness coefficients and r(r) 

is the complex generalized force for the rth mode of vibration. 

Stiffness proportional damping is introduced by a modal loss factor nr 
(equal to the cyciic energy loss divided by the maximum strain energy 

of the mode). by making the modal stiffness complex i.e. by replacing 
! 

(2.26) 
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" Substituting cr for cr in equation (2.25) and solving for Pr gives the 

response in the principal coordinates as 

(2.27) 

where (lr is the complex receptance 

(w ' - w') - j nw' r r r 
(lr· = -------------

a
r

[ (.wr' - w')' + (nr wr') 'J 
(2.28) 

The complex amplitude of the generalized coordinates ii is then 

computed by substituting equation (2.27) into (2.24) giving 

" n 
xi" = L 

j=l 
n 

= L 
j=l 

(2.29) 

~ n 
where CliJ =. L (lr vir)v~r) is the receptance linking the response of 

the ith cooidlnate to an excitation in the jth coordinate. The 

solution in the time domain, to agree with equation (2.14) is given as 

(2.30) 

Multi-frequenc~excitation: As noted above, equations (2.15) to 

(2.20) express the exci tation as a series of harmonics of the engine 

speed w. Since our interest is mainly in the magnitude of the 

response, a measure of the total response of the system for a 

particular engine speed is given by the sum of the mean square values 

of the responses to the individual excitation harmonics. 
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For the mthharmonic of excitation, the response for the ith, 

generalized coordinate is computed from equation (2.29) by 
A (m) 0 A (ml A th substituting a r for ar and fj for f j . The receptance for the m 

harmonic is calculated from equation (2.28) by replacing III with m III and 

equation (2.30) is now modified as 

(2.31) 

The mean square response is then computed by direct application of 

Parseval's formula to equation (2.31) giving, the mean square response 

for the ith generalized coordinate as: 

n 

=! L 
m=l 

(2.32) 

So far we have considered the dynamic characteristics of engine 

isolation systems and developed analytical expressions for the forced 

response of the power train to its internally generated forces. These 

expressions will be used in the following chapter for the formulation 

of the optimum system isolation problem. However. the, feasibility of 

such systems will depend on their ability to satisfy the static 

requirements mentioned at the beginning of this chapter and 

consequently analytical expressions are required to implement these 

requirements into the optimization procedure. 

Analytical expressions for the power train centre of mass displacement 

and the isolators deflection will now be derived from a static 

analysis of the engine-isolator system. 

,,' 
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2.4 STATIC ANALYSIS 

As was mentioned in the introductory part of this chapter, the static 

forces experienced by the engine frame are primarily the engine weight 

and the static torque (i.e. output torque at the drive line). The 

static torque on the engine frame is of great importance as, under 

maximum-torque engine speed with first gear engaged and sudden release 

of the clutch, it can reach extremely high values. Forces arising 

from vehicle driving conditions will not be included in the following 

analysis as they cannot possibly arise at the same time with the 

maximum static torque on the engine frame and consequently if they are 

included the calculated static displacements will be overestimated, 

and when used as feasibility criteria in the optimization procedure 

the result will be a statically overdesigned and dynamically less 

efficient isolation system. 

The following static analysis will be developed with respect to the 

engine global axis coordinates shown in Figure 2.1 and the assumption 

made in that the isolators possess linear load-deflection 

characteristics. However the possibility of implementing nonlinear 

characteristics by an·iterative numerical procedure is also discussed 

in the following sections of this chapter. 

For static equilibrium of the engine-isolator system the following 

matrix equation must be satisfied: 

(2.33) 

where f(s) is the static force vector at the power train mass centre 

fT(s) = [r(s) 
x • 

f(s) f(s) q(s) q(s) q(s)] 
y'z'x'y'z 
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and is assembled from the engine weight and the final drive torque as 

follows. 

Let q~ denote the final drive torque and R', U' denote the position 

and direction cosine matrices of the final drive axis, with respect to 

the global axes. The static force vector at the power train mass 

centre due to q~ is given by 

where f'T = [0, 0, 0, 0, q~, 0] and T ·is the transformation matrix 

relating drive train and global coordinates. The total static force 

vector is then computed by adding the engine weight to the appropriate 

element of ft(s) i.e. 

r(s) = fl(s) + [0, 0, -mg, 0, 0, O]T (2.34) 

Finally the stiffness matrix K is that derived by equations (2.8) to 

(2.10) and x(s) is the static displacement vector at the power train 

mass centre i.e. 

xT(s) = [x(s), y(s), z(s),.~ (s), e(s), ,p(s)] 

Solving equation (2.33) for x(s) gives the displacements .()f the power 

train mass centre as 

(2.35) 
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The deflections at each isolator can now be derived by considering the 

displacements along each isolator's local axes due to the translations 

and rotations of the power train. 

If R{n). A{n) are the position and direction cosine matrices of the 

nth isolator local axes with respect to the global axes and u{s). v(s) 

are the translational. rotational subvectors of x{s) respectively. it 

can be shown that the translations at the nth isolator with respect to 

its local axes are given by 

(2.36) 

By placing constraints on the values of the elements of x(s) and u{s). 
n 

computed by equations (2.35) and (2.36). static stability of the 

engine isolator system can be maintained and isolator stress levels 

can be kept within acceptable limits as will be discussed in the 

following chapter. 

The implementation of both the static and the forced response analysis 

into a FORTRAN computer program will now be briefly discussed and pre­

optimization computer results will be presented and discussed. 

2.5 NUMERICAL RESULTS 

The selected NAG optimization routine (E04UAF). which will be 

discussed in the next chapter requires two user supplied subroutines. 

Eo4uAF calls FUNCTl to compute the value of the optimization function 

and then CONl to compute the value of each constraint function. The 

basic computational steps involved in these subroutines are outlined 

in the flow charts presented in Figures D2 and D3 of Appendix D. The 

flow charts illustrate that the dynamic response and the static 

displacements of the power train are computed within these subroutines 

and that FUNCTl can also be used. outside the optimization loop, to 
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compute the dynamic response of the power train for a specified range 

of engine speeds. Using this facility a test run was made to check 

the code for possible "bugs" and the programming errors found were 

corrected. The presentation of the results and the following 

discussion aim to explain what exactly is being computed under the 

general term 'dynamic response', and to point out any sensitive areas 

that could be important in a numerical optimization procedure. The 

limitations of the static analysis imposed. by the linearity of the. 

model will be demonstrated by numerical results and the possibility of 

modifying the program to include non-linear load-deflection 

characteristics for the isolators will be discussed. The results 

which will be presented were obtained using the necessary data for the 

power train-isolator arrangement shown in Figure 2.5. The legend 

gives a brief description of the power train while the complete set of 

the data used can be found in Appendix C. 

The dynamic response of the power train to its internally generated 

forces over a range of engine speeds is presented in Figures 2.6 to 

2.11. Each of the Figures 2.6 to 2.10 show the six dynamic 

displacements of the power train mass centre as a function of engine 

speed for various harmonics of the excitation. Theoretically,· the 1/2 

and the odd number harmonics should not exist with a 0-180-180-0 crank 

arrangement. The presence of these harmonics is due to the fact that 

the torque excitation vector is computed using the measured torque 

spectrum which was supplied with the other engine data listed in 

Appendix C. In contrast to mathematical models, the half order and odd 

order harmonics are always present in real engines as a result of 

cylinder-to-cylinder combustion irregularities. As can be seen from 

Figure 2.6. the 1/2 order harmonic excites the rigid power train modes 

well within the engine operating speed although its effect to the 

overall vibration level is not considerable as it can be observed from 

the mean square displacement graph in Figure 2.11. However, its 

presence becomes increasingly important as the cylinder-to-cylinder 

. combustion irregularities become more and more uneven for reasons such 

as bad carburation, bad timing or misfiring to name but three. 

Although the dynamic response to the 1/2 order excitation harmonic is 
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not expected to play a significant role in the optimization procedure, 

it will give a point of comparison between the initial and the final 

optimum isolation systems. 

It should be mentioned at this point that the torque spectrum which 

was used, was obtained from measurements at an engine speed of 800 rpm 

and zero engine load. In order to avoid unnecessary programming 

complications, the same spectrum was used for the computation of the 

dynamic displacements at all engine speeds. Apart from the already 

mentioned simplification the most unrealistic part of these plots is 

the lower limit of the engine speed range which was set to 50 rpm and 

which is too far below the lowest possible idling speed for any real 

engine. However, setting the bottom limit to such a low value allows 

all theresoni peaks to appear on the plots. Unfortunately the f 1 c"'­

level of these peaks is highly affected by the constant torque 

spectrum and consequently it is not possible to use the peak level for 

mode shape identification. Nevertheless the magnitude of the response 

can be used to assess the contribution of the individual harmonics of 

the excitation to the overall response of the system. 

One way of checking the program is by examining whether the peaks of 

the response curves occur at the computed eigenvalues. For the system 

of Figure 2.5 the eigenva1ues were found to be as follows 

n 

1 

2 

3 
4 

5 
6 

Hertz 

5·19 

6.92 

9.09 

12.23 

12.38 

19.51 

!E.!!! 
311.69 

415.07 

545.2 

733.58 

742.62 

1170.58 

From Figure 2.7, which gives the response to the first order 

excitation harmonic, it can be seen that the peaks occur at the 

frequencies listed above. Further, the peaks in the response curves. 

for the other excitation harmonics, occur at 1/n times these 
=-
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frequencies. The missing sixth peak on the response plot is due to 

the numerical closeness of the fourth and fifth modal frequencies. 

A quick comparison of the magnitude of the harmonic responses will 

reveal that the second excitation harmonic plays a dominant role. 

This domination is reflected in the mean square displacement plots of 

Figure 2.11 where the contribution of the other excitation harmonics, 

to the overal response, does not appear to be substantial. 

The question that arises now is whether there exists a dominant mode 

shape. This kind of information will be of good value at a later 

stage when trying to understand, in physical terms, how the optimum 

isolation system was obtained by the numerical optimization algorithm. 

Mode shape identification was attempted using the pictorial 

representation of the mode shapes presented earlier in Figure 2.3 and 

the two dimensional views shown in Figures 2.12-2.14 were produced to 

aid such an attempt. However it was found impossible to succeed due 

to the urelated scaling among translations and rotations. Time did 

not permit· further investigations to be carried out on the scaling of 

the translations and the rotations that result from the screw 

displacement of the body (Appendix B). An alternative was to use the 

modal kinetic energy distribution. 

Johnson and Subhedar [18] give the modal kinetic energy distribution 

as 

(2.37) 

where mkl is the k,l element of the mass matrix 

Vjk is the kth element of the eigenvector corresponding to the 

jth natural frequency 

Wj is the jth natural frequency 
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It is further stated in their paper that the summation of the energies 

due to the off-diagonal terms in the mass matrix is termed the 

coupling energy of the system. However it is not clear to the author 

what exactly is meant by this term especially when it can be 

associated with a negative sign. However using this method the 

following kinetic energy distributions were obtained for the system 

shown in Figure 2.5: 

Using Table 2.1. the peaks on· the dynamic response plots can now be 

related to the rigid power train mode shapes. ·The roll mode seems to 

play a key role in the dynamic behaviour of the dynamic model. The 

dynamic response to the second excitation harmonic indicates that the 

roll displacement almost dominates the dynamic response. Further from 

Table 2.1 it is obvious that the roll mode is excited at the top of 

the modal spectrum and well within the engine operating speed range, 

and what is more important is that the second excitation harmonic 

excites this mode at an engine speed which is fairly close to the 

engine idling speed.· These observations indicate that the isolation 

system is designed to be fairly stiff in roll. It is beyond doubt 

that the stiffness of an East-West engine isolator system in roll is a 

critical design factor. 

Modal Frequency x y z e COUPL. 

5·19 2.26 64.83 14.30 8.20 5.63 5.0 -0.22 
6.92 8.32 32.95 40.6 5.24 9.94 3.35 -0.4 
9.08 48.25 0.01 19.64 11.37 21.03 12.26 -12.56 

12.23 23·0 0.0 3.66 . 33.4 9.95 47.23 -17.24 
12.38 8.97 2.12 21.34 42.64 4.56 19.44 0.93 
19.51 9·3 0.06 0.42 1.98 57.1 18.7 12.44 

TABLE 2.1: PERCENTAGE MODAL KINETIC ENERGY DISTRIBUTION 
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As mentioned earlier, the engine isolation system is also responsible 

for reacting the maximum final drive torque. For the power train 

described in Figure 2.5 this is about 12.8 times the maximum engine 

output torque and up to double that value for the case of sudden 

release of the clutch in first gear. The question that remains to be 

answered is whether the given isolation system is statically over_ /­

designed and consequently dynamically less efficient. 

Subroutine CON1 computes the static displacements of the power train 

and the deflections of the isolators using the linear analysis 

described in Section 2.4. However, the load-deflection 

characteristics of the commonly used isolators (rubber-mounts) are 

notoriously nonlinear. This nonlinearity is demonstrated in Figure 

2.15 which is the x-direction load-deflection characteristics for the 

left-hand upper and lower mounts of the Escort 1.6 Diesel [10]. It 

can be appreciated "from these graphs that linearity is maintained only 

in the low load region (approximately 2 kN for the isolators shown) 

and that linear. aproximations to the isolator deflection, under high 

loading conditions, will be overestimated to say the least. In order 

to demonstrate the magnitude of the error induced by the linear 

analysis the relevant numerical information was selected from the 

computer results of the test run and will now be presented. 

Isolator No 

1 

2 

3 

418 

288 

288 

Translational Stiffnesses (kN/m) 

kr 

132 

77 
77 

TABLE 2.2: ISOLATOR STIFFNESSES 

165 

226 

226 
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The dynamic translational stiffnesses used for each isolator along 

each of its elastic axes are given in Table 2.2 above. Al though the 

static rates of rubber isolators are generally lower than the dynamic 

rates, it was decided to use the dynamic rates for the static analysis 

since computing and updating a second stiffness matrix during 

optimization would increase considerably the computation time 

consumption without any significant gain. Using the dynamic stiffness 

matrix, which is computed in FUNCT1, the static deflections of the 

isolators due to the engine weight and the maximum final drive torque 

were computed by CON! as shown below in Table 2.3. 

Assume, for sake of argument, that the load-deflection characteristics 

presented in Figure 2.15 also apply for the Z-direction of isolators 2 

and 3; the isolators are oriented so that the p, r, s directions 

coincide with x, y, z respectively. Using the computed deflections 

from Table 2.3 and the appropriate stiffness rates from Table 2.2, in 

the linear relationship F = ke, the forces on the second and third 

isolators are given as F(2) = 4.7 kN and F(3) = 3.54 kN and the 
z z 

corresponding deflections suggested by the load-deflection-

characteristics are Z2 " 15.8 mm and Z3 " 11.6 mm. The numerical 

difference between the computed and the interpolated deflections might 

not seem considerable at first. However, had the constraint on that 

deflection been 15 mm, then the corresponding stiffness rate would 

Isolator No. 

1 

2 

3 

x 

1.63 

2.43 

0.061 

Deflection in mm 

y 

0.562 

9.74 

10.71 

TABLE 2.3: COMPUTED ISOLATOR DEFLECTIONS 

Z 

4.7 

20.8 

15.65 
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have been increased, by the linear model, from 226 kN/m to at least 

315 kN/m in order to avoid constraint violation. It can be 

appreciated that such changes, apart from being unnecessary. are 

generally speaking, undesirable. 

One way to improve the linear model, is to introduce the isolator 

load-deflection characteristics into the computations, by the 

iteration loop suggested by the modified flow chart of CONI presented 

in Figure 2.16. First a polynomial is fitted to each load-deflection 

curve (using a NAG routine such as E02AFF) so that the deflection Xij 
for the i th isolator in the jth direction is expressed as a function 

of the applied load i.e. 

(2.38) 

where L is the load and aN are the polynomial coefficents. Next the 

first linear approximation to the static displacements is computed 

using the linear analysis of Section 2.4 and the forces on each 

isolator are estimated. Using these forces in equation (2.38) an 

interpolated value for each deflection is calculated and compared with 

that previously computed. If the difference between these two values 

exceeds a specified tolerance, then the corresponding stiffness rate 

is updated using the relationship: 

(2.39) 

The static stiffness matrix (now separate from he dynamic stiffness ~ t 
matrix) is recomputed and the isolator deflections are re-evaluated 

according to Section 2.4. This method is demonstrated graphically in 

Figure 2.17 and was also successfully tested manually for convergence 

on a single isolator. 
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Unfortunately the effect of the linear model on the optimization 

constraints was discovered at a stage when time limitations did not 

permit the author to carry out the necessary modifications to the 

program, test it and optimize all over again. 
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CHAPI'ER 3 

NUMERICAL OPTIMIZATION 

Numerical optimization can be "loosely" defined as that numerical 

procedure that seeks optimal values of design variables which minimize 

or maximize a specific quantity termed the objective function while 

satisfying a variety of conditions that define acceptable values of 

the variables, termed constraints. Numerical optimization methods are 

reported by Ragsdell [19] to have been born of the logistical needs of 

World War 11 and the work of George Dantzig on linear programming. 

Early numerical optimization methods, such as the well known simplex 

method, . could only address problems where all the functions involved 

were linear combinations of the design variables and consequently 

could not satisfy all demands as most problems are nonlinear and many 

of these cannot be accurately approximated by linear functions. 

Numerical'algorithms that can deal with nonlinear problems have been 

developed since the late 1950's and have been used in numerous 

industrial applications ranging from structural designs to economics. 

Recent developments and applications of numerical optimization 

algorithms, including numerous references, have been edited by Lev 

[20] and cover the period 1972-1980. 

Background reading by the author of this thesis on optimization 

literature has created the impression that modern numerical 

optimization algorithms are either developed on the principle that the 

design space is searched for the optimum solution by some directed 

search method or on the principle that the design space is searched in 

a random way (Monte Carlo method). It has been argued [9] that the 

main advantage of optimization algorithms developed on the latter 

principle is that there is less chance of missing the global minimum, 

due to the random search process. However. methods based on "search 

directions" have been found to be more widely used both in ,Europe and 

in the United States. Such methods can be classified into two groups, 

namely transformation methods, which transform the nonlinear 
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constrained problem into a series of nonlinear unconstrained 

subproblems and linearization methods which solve a linear 

approximation of the nonlinear constrained problem. 

In the following sections of this chapter a brief explanation of the 

general optimization problem will be presented and the objectives for 

the investigation of optimum isolation systems for reciprocating 

engines will be developed. Finally the transformation type numerical 

algorithm, used to perform the optimization and troublesome numerical· 

areas associated with it, will be discussed. 

3.1 THE GENERAL OPTIMIZATION PROBLEM 

In mathematical terms the general constrained optimization problem can 

be stated as follows: 

minimize f(x) , XT = [xl' x2' ... , xN] € RN 

subject to: li .;; xi .;; ui t i = 1, 2, · ... N 

Cj(x) ;;. 0, j = 1, 2, • •• f J (3.1) 

hk(x) :; 0, k = 1, 2, · .. , K 

where f(x) is the objective, a function of the design variables xi; 

Cj(x), hk(x) are the inequality and equality constraint functions 

respectively and li' ui are the· lower and upper bounds respectively on 

the design variables. 

The n-dimensional space RN, formed by the set of all vectors X closed 

with respect to linear combination, is divided into two subspaces 

which constitute the feasible and infeasible regions of the design 

space. Within the feasible subspace of RN, all vectors X satisfy the 

constraints an~ consequently such vectors are feasible solutions@ t 
• 

'. 
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* (3.1). However, if X is an optimum solution then it can be shown 
* that in addition to (3.1) X must satisfy various other conditions 

known as optimality conditions. 

* Sufficient conditions for x to be a strong local minimum of the 

general constrained problem will next be discussed during an 

introduction to optimality conditions for multivariate functions. The 

derivation of these conditions is extensively discussed by various 

authors such as Gill,Murray and Wright [21] and Luenberger [22] to 

name but tWO~d involves complicated mathematical analysis which is 

beyond the scope of this work. However, for the purpose of this 

thesis, a greatly condensed explanation of the theory will suffice, 

and what is presented here is drawn mainly from [21]. 

Consider first the unconstrained minimization problem of a 

multivariate function defined as: 

Minimize f(x), (3.2) 

Since there are no constraints, then the entire design space RN is 
* feasible. If x is a local minimum of f(x) then the function must be 
* stationary at x and must also display positive curvature. Following 

reference [21]. f(x) is assumed to be twice continuously 

differentiable and consequently it can be approximated by a Taylor 
* expansion about x given as: 

* f(x + e:p) (3.3) 

where e s"atisfies 0 .;; e .;; 1, e: is a positive scalar and p is an n­

dimensional vector (pe:RN). The vector g(x *) is the vector of first 
* partial derivatives of the function at the point x given as 
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... , 

* * 

(3.4 ) 

and G(x ) is the nxn Hessian matrix of f(x ) composed of the second' 

* partial. derivatives of f(x ) as: 

32 f 32 f 32 f 

3"'1
2 3x13x2 3x! 3xn 

* G(x ) = (3.5) 

32 f 32f 32 f 

3x13xn 3x23xn 
3x 2 

n 

Using equation (3.3) and a series of contradictory arguments. it is 
- * shown in [21] that the sufficient conditions for x to be a strong 

local. optimum of fare: 

(3.6) 

* G(x ) ~s positive definite 

where 11_11 denotes a vector norm. If the first condition of (3.6) 

* is satisfied then by defini tion of a vector norm, g(x ) must be the 

* zero vector and hence x is a stationary point. However, if the 

Hessian matrix is positive definite then for any n-dimensional vector 

p it holds that pTGp > 0 and consequently x* is a local optimum as it 

can be deduced from equation (3.3). From equations (3.6) and (3.2) it 

follows that the optimum can be any point x, x e: RN which satisfies 

equations (3.6). 

If constraints are introduced so that the optimization problem becomes 

that defined by equations (3.1) then it can be shown that there exists 

x, x e:RN, which satisfies equations (3.6) but does not satisfy the 

constraint functions. 
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The set of all vectors x, xE RN which satisfy the constraints, define I _ ~_ . 
the subspace of feasible solutions @J equations (3.1). For the @ 
derivation of the optimality conditions for the general optimization 

problem it is necessary to consider means for characterizing the set 

of feasible points in a neighbourhood of a feasible point i.e. a point 

x EcRN that satisfies all the functional constraints. Luenberger [22] 

argues that a fundamental concept that simplifies the required 

theoretical development is that of an active constraint. An 

inequality constraint Cj(x) ;;. 0 is said to be active at a feasible 

point x if C j (x) = 0 and inactive at x if C j (x) > O. By conv'lmtion 

then,any equality constraint hk(x) is active at any feasible point. I<-
The significance of the active constraints is that their presence 

restricts feasible perturbations about a feasible point. This is 

graphically illustrated in Figure 3.1 where C1(x), C2 (x) and C
3

(x) are 

inequality constraints and the feasible region is that enclosed by the 

* curves Ci(x) ~ 0, i = 1, 2, 3. If x is a local optimum, it is 

* obvious from Figure 3.1 that local properties satisfied at x do not 

depend on the inactive constraints C2• C3• 

FOllOWing;M reference [21], consider first the case when all th:, f 
constraints are linear functions of the designvari-ables and let A 

denote the matrix, whose i th row contains the coefficients of the i th 
~ 

active constraint at the feasible point x. Due to the linearity of 

the constraints, the properties of linear subspaces can be used to 

define all feasible directions of search from a feasible point. It 

can be shown that the sufficient condition for p to be a step from any 

feasible point to any other feasible point can be expressed as: 

~ 

A p = 0 (3.7) 

~'I 
It will later be illustrated that even if!one of the constraints is 

nonlinear, then it is more complicated to characterize feasible 

perturbations and that in fact there is. no feasible direction p along 

which feasibility can be retained. 
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C(x~= 0 

FIGURE 3.1: EXAMPLE OF ACTIVE AND INACTIVE CONSTRAINTS 

Continuing the discussion on linear constraints. if Z denotes the 

matrix, the columns of which form the basis for the subs pace of all 

feasible vectors p defined by equation (3.7) then any vector p 

1 satisfying it can be written as a linear combination of the columns of 
• * Z i.e. p = Z Pz for some vector pz. If x is a feasible point then 

* the Taylor expansion of f(x) about x along such direction is given 

as: 

where €, () are defined as before. The vector ZT g(x *) is termed the 

projected gradient of f(x) at x* and the matrix ZTa Z the projected 

* Hessian of f(x) at x • 

* If x is a local minimum of f(x) then it follows from equation (3.8) 

that pTZTg(x*) must vanish for every Pz and that the projected Hessian 
z * 

must be positive definite (i.e. f(x ) must display positive curvature 

* at x ). The first condition implies that 
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(3.9) 

* which further implies that g(x ) must be a linear combination of the 

rows of A i.e. 

* "'T * g(x ) = A A (3.10) 

* for some vector A • termed the vec~or of Lagrange multipliers and 

which is unique only if the rows of A are linearly independent. The 

jth Lagrange multiplier (Aj) is a first order indication of the change 

in f(x) which would result from a positive step along a perturbation p 

such that: 

AT h 
where a is the it row of the matrix A (see equation (3.7)). 

i 

The sufficient optimality conditions for the linearly constrained 

problem can be expressed as: 

A * 
and A x = 0 

T * * AT * Z g(x ) = 0 or equivalently g(x ) = A A 

A; > O. i = 1. 2 ••••• t 

(where t is the number of active constraints) 
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and ZTG{x*)Z is positive definite. 

If the jth Lagrange multiplier is negative, then it means that a 

positive step along a non-binding perturbation (i.e. ;r, p > 0) with 
---J 

respect to the jth active constraint will reduce the objective 
* function and hence x cannot be optimum. However, if Aj = 0 then no 

indication is given about the change in f{x) which will result by such 

perturbation and consequently extra restrictions are required on the 

Hessian matrix to ensure that f{x) displays positive curvature along 

such perturbations. 

Consider now - the case when one or all of the constraints. are 

nonlinear. The problem that arises is that in general there is no 
A A 

feasible direction p such that Ci(x+ ex p) = 0 holds for all 

sufficiently smalllexl. If feasibility is to be retained with respect 
A 

to Ci ·= 0 then it will be necessary to move along a feasible arc with 
A * origin at x • Further if Ciis to remain i1entically zero for all 

points on the arc then the rate of change of Ci along the arc must be 
* zero at x •. If p is a tangent to a feasible arc for all constraints, 

then it can be shown that 

A' * 
A{x )p = 0 (3.12) 

A * where A{x lis the Jacobian matrix of the constraints i.e. the matrix 

whose ith row is the gradient vector of the ith constraint. However, 

if equation (3.12) holdsjit does not follow that p is a tangent to a ? 
feasible arc and it can be shown that the condition of equation (3.12) 

A * 
is sufficient only if the matrix A{x ) possesses full row rank, i.e. 

* when the gradients of the active constraints at x are linearly 

independent. 

* Due to the fact that the matrix A{x ) is not constant, a constant 

basis for the feasible subspace cannot be defined. The matrix Z is 
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now defined as the matrix whose columns form a basis for the set of 
"* * * vectors orthogonal to the rows of A(x ) at x and is denoted Z(x ). 

Although first order optimality conditions can be easily derived by 
* arguing. that the function must be stationary at x along any feasible 

arc, giving the necessary condition as 

* g(x )p = 0 (3.13) 

where p satisfies equation (3.12), the derivation of second order 

optimality conditions is more complicated as it requires information 
* about the constraint curvature at x. However, if equation (3.13) 

holds for every p that satisfies equation (3.12) then it follows that 

* * Z(x ) g(x ) = 0 (3.14) 

must be true, or equivalently 

(3.15 ) 

* for some vector A of Lagrange multipliers. Again following [21] 

consider now the Lagrangian function defined as 

L(x, A) = f(x) - AT C(x) (3.16) 

* Equation (3.15) states that x is a stationary point of the Lagrangian 
* when A = A. Based on this property and for reasons of convenience, 

the second order optimality conditions can be derived by analysing the 
* Lagrangian function and seeking conditions for f(x ) to display non-

* negative curvature at x along any feasible arc. If W(x, A) denotes 
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the Hessian of the Lagrangian function then the sufficient optimality 

conditions for the nonlinear constraint problem are: 

* A * C(x ) ~ 0 with C(x ) = 0 

*T * * A *T* Z(x ) g(x ) = 0 i al tl ( ) A( ) ' or equ v en y g x = X A 

A~ > 0 i = 1, 2, ••• , t and 

*T *,* *-Z(x) W(x, A ) Z(x ) is positive definite. 

Again if any Lagrange multiplier is zero then extra restrictions must 

be applied to the Hessian to ensure that f(x) displays positive 

curvature along any feasible arc p, for which equation (3.12) holds 

for all constraints associated with positive Lagrange multipliers but 

not necessarily so for constraints associated with zero Lagrange 

multipliers. 

Although this brief presentation has by no means covered all aspects 

of the derivation of optimality conditions for the general 

optimization problem, it is believed that the main concepts involved 

have been introduced sufficiently for the purpose of this work. What 

will follow is a short explanation of a method which attempts to 

compute the optimum solution to the general optimization problem of 

equation (3.1) when nonlinear constraints are present. In general 

optimization methods are iterative and involve the solution of two 

main subproblems, namely the computation of a feasible direction of 

search from a current estimate of the optimum and the computation of 

the step length along. such direction that will give a "better" 

approximation of the optimum. A model algorithm is shown in the flow 

diagram of Figure 3.2. 

However, as was previously discussed when nonlinear constraints are 

present, the computation of a feasible search direction is in general 
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an impossible task. and consequently a method based on feasible 

direc'tions cannot be directly employed. 

Transformation Methods: One approach to solving the nonlinear 

constrained problem is to construct a function whose unconstrained 

* * minimum is either x or is related to x is a known way. The original 

problem can then be solved by formulating a sequence of unconstrained 

subproblems. Such a function can be constructed by augmenting the 

Lagrangian function defined earlier by equation (3.16). 

Gill. Murray and Wright [21] argue that the most popular augmented 

Lagrangian function is given by 

L(x. A .p) = f(x) - pTC(x) + ! P C(x)T C(x) 
2 

( START 

Compute direction of search"Pk 

Compute step length a k such that 
I 

f(xk + a I'J<) < f(xk) 

Update estimate of the minimum 

xk+1 <- xk + aPJ.:. K<- K+1 

t 

NO 
Optimality YES Terminate conditions 
satisfied? algorithm 

FIGURE 3.2: MODEL OPTIMIZATION ALGORITHM 

(3.18) 
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* where p is a positive penalty parameter. It can be shown that if A =A 
* then x is a stationary point of L(x,A,P) and that there exists a 
- * '* -finite p such that x is an unconstrained minimum of L(x, A,p)¥p )P. 

The theory of augmented Lagrangian methods is beyond the scope of this 

work and it will not be further discussed. However, practical 

experience with this particular function will be discussed later in an 

attempt to give an interpretation of the various terms involved in 

equation (3.18). 

Having defined the unconstrained subproblem a direction of search 

method, such as the one which will now be discussed, can be used to 

obtain the unconstrained minimum. 

Newton's Method: This is an iterative procedure M attempts to ~"9 
converge to the local minimum of the unconstrained problem defined 

earlier by equation (3.2), and is based on a local quadratic 

approximation of the objective function about the current 

approximation of the minimum. Assuming that the function is twice 

continuously differentiable then a Taylor expansion about the current 

point xk is given as: 

(3.19) 

The computation of the search direction p is implemented by seeking a 

vector p which minimizes the right hand side of equation (3.19) i.e. 

by finding the stationary point of 

(3.20) 

This requires the solution of the linear system of equation 

(3.21) 
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According to reference [21] equation (3.21) defines the Newton method 

and the vector p so computed is termed Newton's direction. If 

G(xk) in 'equation (3.20) is positive defini te and consequently the 

quadratic model has a unique minimum, then equation (3.21) guarantees 

that Pk is a descent direction since 

Further if the condition number of G(xk)(cond(G(xk)= 11 G(xk)II:! IG-1 (xk)ll) , 

is uniformly bounded for all k then a globally convergent algori thm 

can be developed by taking a step el:k along the Newton direction 

defined by equation (3.21). A practical definition for elk is that the 

slope of the function at xk + elPk is sufficiently reduced from that at 

xk i.e. 

(3.22) 

where n specifies the accuracy with which ak approximates a stationary 

points of f(x) along Pk and 0" n < 1. If G(xk) is not positive 

definite then the quadratic model function defined by equation (3.19) 

might not have a minimum nor even a stationary point. This situation 

could arise when xk is, a saddle point and G(xk) is indefinite. 

According to reference [21], modified Newton methods construct a 

"related" positive definite matr~x Ok when G(xk) is indefinite and 

then solve equation (3.21) using Gk instead of G(xk). One method to 

determine whether G(xk) is positive defini te is based on a modified 

Cholesky factorization giving Ok as 

(3.23) 

where L is unit lower-triangular, D is a positive diagonal matrix and 

E is a non-negative diagonal matrix, which is identically zero when 

G(xk) is positive definite. 
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The main advantage of Newton-type methods is that they use curvature 

information given by the Hessian matrix to build a local quadratic 

model of f(x) at the current iteration step. For a general nonlinear 
* function such methods converge quadratic ally to x if the starting 

* point is sufficiently close to x , the Hessian matrix is positive 
* detinite at x and ilk converges to unity. However, in practice, 

modified Newton methods are used for greater computational efficiency. 

Quasi-Newton Methods: In contrast to Newton-type methods where all 

curvature information is computed at a single point, these use the 

observed behaviour of f(x) and its gradient vector g(x) to build up 

curvature information as the iteration of a descent method proceeds. 

An approximation Bk to the Hessian G(xk) is maintained and updated at 

each iteration, which [21] is performed using the relation: 

11<+1 (3.24 ) 

where Yk = gk+1 - gk' In practice however, a Cholesky factorization 

of Bk is kept and updated and the search direction is computed by 

equation (3.21). 

3.2 FORMULATING THE ENGINE ISOLATION PROBLEM 

In this section the objective functidn and the constraints for the 

investigation of optimum engine isolation systems will be derived and 

formulated according to the defini tion of the general optimization 

problem given in equation (3.1). 

The objective function: Following the decision that the investigation 

of optimum engine isolation systems will be based on the forced 

response of a six-degree of freedom rigid engine isolator model, for 

reasons discussed during the introductory chapter, it was thought 

sensible that the optimization objective should be to minimize the 
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magnitude of the forces transmitted to the rigid supporting structure. 

It is clear from the mathematical.statement of the general 

optimization problem that the optimization objective must be expressed 

in terms of a single function of the design variables,Bearing in mind 

that the principal reason for using engine isolators is to minimize 

the transmission of engine generated forces to the vehicle chassis, it 

seemed reasonable to define the objective function as the sum of the 

mean square values of the forces over all the isolator local 

directions and over all the harmonics of the excitation. To derive 

the analytical expression for this mean square transmitted force, the 

dynamic displacement vector at the power train mass centre computed by 

equation (2.29) for the rth harmonic of the excitation is transformed 

by equation (2.36), after substitution of the static displacement 

vectors u(s), v(s) by the equivalent dynamic vectors of the power 

train mass centre, to give the deflection at the i th isolator. The 

forces on the i th isolator are then computed by the following 

equation: 

(2.25) 

(r) th th where f ij is the force on the i isolator in the j local direction 

due to the rth harmonic of the excitation 

kij is the stiffness of the ith isolator in the jth local 

direction 

xi;) is the deflection of the ith isolator in the jth local 

direction due to the rth harmonic of the excitation. 

The objective function is then expressed as: 

f(X) (3.26) 

where X is the optimization vector comprised of the design variables; 

viz. isolator stiffness rates, global posi ti·on coordinates and 

orientation Euler angles. 
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The necessary steps to compute this function for a given set of design 

variables is illustrated by the flow chart given in Figure 3.3. 

Although the computation steps are not particularly complex, they do 

involve a great number of matrix multiplications. Dur{ng early 

computer runs the objective function described by equation (3.26) was 

optimized using an algorithm for unconstrained optimization and it was 

realised that the objective function was computed at least once for 

each design variable free from its bounds. The reason for this is 

attributed to the numerical approximation of the derivatives of the 

objective function. Further it was observed that a typical 

optimization run would require a few hundred iterations to converge to 

the minimum. Bearing in mind that the calculation loop shown in 

Figure 3.3 is executed for each harmonic of the excitation, it can be 

appreciated that during a typical optimization run the computer· will 

execute that loop several thousand times. Consequently efforts were 

made to reduce the computation time of the objective function to a 

minimum and as a result two alternative definitions of the objective 

function were considered. The quickest way to compute the objective 

function, in terms of the forced response, is of course to define it 

as the mean square displacement at the power train mass centre 

expressed by equation (3.27) as the sum of the mean square value of 

the power train mass centre displacements over all global directions 

and over all the excitation harmonics 

(3.27) 

However, this definition was discarded on the grounds that minimizing 

mean square displacement at the power train mass centre does not 

necessarily imply force transmission minimization. 

The second alternative was to define the objective function as the 

maximum strain energy stored in the dynamic system as a result of the 

harmonic excitation. By definition the strain energy of a dynamic 

system is expressed as 
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SUBROUTINE FUNCTION 

Retrieve engine dynamic displacements 

Set isolator No. I = 1 

Retrieve position and dfirection cosines 
arrays for the It isolator 

Multiply position array of current isolator 
with engine dynamic rotations to obtain 

isolator global deflections due to engine rotations 

. 

Add isolator deflections caused by the 
engine rotations to the engine translations 
to obtain total global isolator deflections 

Multiply global isolator deflections with 
. 

isolator direction cosine matrix to obtain 
local isolator deflections 

Multiply local isolator deflections with 
isolator stiffness rates to obtain isolator faces 

Compute mean square value of forces 
and add to the contents of summation address 

r 

I 

( RETURN) Any more YES 11 - 1+11 
isolators? 

NO 

FIGURE 3.3: FLOW CHART FOR COMPUTING MEAN SQUARE FORCE 
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n 
2 kij qi qj 

j=1 

(3.28) 

where kij is the element in the i th row and jth column of the global 

stiffness matrix and qi' qj are the ith and jth generalized 

coordinates. The objective function is then expressed as 

f{X) = ~ . r [ 
r=1 

6 6 ...... .... 
L L kij Ix{r) Ilx~r) 13 

i=1 j=1 i J 
(3.29) 

where 1~(r)lis the magnitude of the complex displacement at the power _ l. 

train mass centre due to the rth harmonic of the excitation. computed 

by equation (2.29). It is easy to calculate as may be seen from 

Figure 3.4 whilst retaining a direct connection with the force 

transmitted to the supporting structure. 

This relationship can be ~hown by considering the simple oscillator 

shown in Figure 3.5. The transmitted force can be expressed as: 

and hence the mean square force is given as: 

2 x' 
= k -

2 

The time averaged strain energy is given by: 

<v> = k <x2> = ~ x2 
2 4 

(3.30) 

(3.31) 

(3.32) 
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( SL'llRO!rrIllli FUNCTION 

Retrieve global stiffness mat..-ix and 
engine dynamic displacements 

Calculate the magnitude of the engine 
dynamic displacements 

Multiply the stiffness matrix with the 
magnitude of the. displacement vector and is 

transposed to obtain the st:'ain energy 

I Add strain energy to contents of summation address I 

( amJR.'1 

FIGURE 3.4: FLOW CHART FOR COMPUTL'IG S1'RAIN ENERGY 

m 

k 

FIGURE 3·5: SINGLE OSCILATOR 
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and hence the relation between strain energy and transmitted force can 

be derived form equations (3.31) and (3.32) as 

<I' 2) = 2k <V> T (3.33) 

It is quite clear now that using strain energy as the optimization 

objective, the primary objective of minimizing the forces transmitted 

to the supporting structure is not violated while comparison of 

Figures 3.3 and 3.4 clearly suggests that the computation time of the 

objective function will be reduced considerably. 

The constraints: As was discussed during the static analysis of the 

rigid-engine isolator model presented in the previous chapter, it is 

desirable to place constraints on the isolator maximum allowable 

static deflections and power train maximum allowable static rotations. 

It was further discussed that separation of engine vibration from 

engine shake is desirable as low frequency road inputs can excite the 

lower rigid-engine modes. In order to achieve this it would be 

essential to isolate a particular degree of freedom from the coupled 

modes of vibration and hence "force" that chosen degree of freedom to 

be excited within a specified frequency using frequency constraints. 

Effectively what is required is to identify the modal frequency 

corresponding to the mode shape in which the chosen degree of freedom 

dominates the rigid-body response. If a numerical procedure could be 

used to carry out such identification, every time the eigenvalue 

problem is solved during optimization, then it would be possible to 

(::.§!E.!:.!.§!ll:(separate 7engine shake from engine vibration. Total 1"':r 
separation could not be achieved with a coupled system as it is highly 

unlikely that the constrained degree of freedom would not be excited 

at all the other modal frequencies as it can be appreciated from Table 

2.1. Here, for example, it is clear that the vertical degree of 

freedom is excited in most other modes of vibration. If the mode of 

vibration where the vertical degree of freedom dominates the response 



69 

is constrained within a specified frequency band there. is no guarantee 

that the vertical mode will not be excited outside that frequency 

band. It can be appreciated now that attempting to separate engine 

shake from engine vibration using frequency constraints in the way 

just discussed. the only resul t will be to increase the computation 

time with doubtful benefits. A much simpler way to~artial9dsolv~the jp9- "'d-" 
problem is to identify the frequency band where the road excitation is 

expected to interfere with the rigid-engine frequency spectrum and 

then introduce frequency constraints which will ensure that all .the 

rigid power train modes are beyond that frequency band. 

These frequency constraints. together with the displacement 

constraints mentioned earlier. fix the general design space which is 

defined by the upper and lower bounds of the design variables in a 

feasible and an i.nfeasible subspace. As there is no reason to 

restrict the optimum solution to lie on the borders between the 

feasible and the infeasible subspace. all the constraint functions 

will be of the inequality type and will be formulated as follows. 

Let u (s) represent the static deflections· of the i th isolator in the 
l.] 

jth local direction. computed by equation (2.36) and vIs) the static 
r 

engine rotation about the rth global axis computed by equation (2.35). 

If Cij denotes the maximum allowable value for v~s) then the 

inequality constraint functions can be expressed as 

Ci+j(X) Icijl I (s) I = - u 1f ;;. o. i 1. 2. N (3.34 ) = ... , 
j = 1. 2. 3 

Ci+j+r(X) = Icrl - Iv(s) I ;;. o. r = 1. 2. 3 (3.35 ) 
r 

Similarly if h denotes the minimum allowable value for the rigid 

engine isolator spectrum (W • n = 1. 2 ..... 6) then the frequency 
n 

constraints can be expressed as follows: 
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Ci+j+r+n(X} = IWnl - I~I ~ O. n = 1. 2 ••••• 6 

Equations (3.29) and (3.34) to (3.36) completely describe the 

objectives for the investigation of optimum engine isolation systems. 

What will follow is a description of the numerical algorithm and a 

discussion of a number of important numerical issues such as local and 

global minima. numerical accuracy and scaling. 

3.3 THE NUMERICAL ALGORITHM 

Choosing the appropriate routine to solve the optimization problem 

previously defined. proved to be an easier task than had been 

anticipate~ mostly due to the limited range of readily available 

software. Optimization routines supported at Loughborough University 

are only those included in the NAG Library which is implemented on 

both the PRIME and the Honeywell Multics computer systems of the 

University. The documentation for the optimization routines. supplied 

by NAG. describes all the algorithms available in the library and 

users are advised to select the appropriate routine using one of the 

two available decision trees depending on whether the problem to be 

solved is of the constrained or unconstrained type. Then the 

selection of the appropriate routine simply depends on the type of 

constraint (i.e. simple bounds on the design variables or function 

constraints) and the availability of analytical expressions for the 

derivatives of the objective functions with respect to the design 

variables. 

The optimization problem defined previously is of the constrained type 

and further analytical expressions for first and second derivatives of 

the objective function are impossible to develop. Under these 

specifications the decision tree for constrained optimization problems 

pointed to the routine named Eo4uAF which will be described next. 

NA!LE04uAF: This procedure uses the augmented Lagrangian function 

defined earlier by equation (3.18) to transform the general constraint 
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problem into a sequence of "bounds-constrained" subproblems, Once the 

augmented Lagrangian is constructed using current estimates of the 

Lagrange multipliers A, and the penalty parameter p, then E04uAF 

passes control to NAG subroutine E04JBF which solves the current 

"bounds-constrained" subproblem by a quasi-Newton method. 

The user is requested to supply three subroutines named FUNCT1, CON1, 

AMONlT the functions of which are as follows: 

FUNCT1: computes the objective function of any x set by the NAG 

routine 

CON1: computes the constraints at any x 

AMONlT is a routine which can be used to monitor the progress of the 

algorithm. 

Subroutines FUNCTl and CONl have been discussed in the previous 

chapter concerned with the dynamic and static analysis of the rigid 

engine isolator model. However flow· charts for all three routines can 

be found in Appendix D where a description of the whole computer 

program is presented in terms of fairly detailed flow diagrams. A 

call to Eo4uAF is made by the following statement: 

CALL E04uAF (N, MEQ, MlNEQ, MRNGE, M, MONAUX, lPRlNT, MAXCAL, ETA, 

XTOL, STEPMX, CL, CU, LCLU, lBOUND, XL, XU, LAMSET, X, 

RHO, RLAM, F, C, lW, LlW, W, LW, lFAIL) 

Although all the parameters involved in the argument are fully 

explained in the NAG documentation [23], the meaning of some of these 

is explained below for quick reference purposes. 

N number of independent design variables 

MINEQ 

M 

MAXCAL 

ETA 

number of inequality constraints 

total number of constraints 

maximum allowable number of function evaluations 

specifies how accurately the minimum of a "cross section" 

of the augmented Lagrangian function is to be determined 

(can be related to n of equation (3.22)) 
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X the N-dimensional array containing ini tial values of the 

design variables 

RHO is the penalty parameter p of equation (3.18) 

RLAM the M-dimensional array containing estimates of the 

Lagrange multipliers 

F 

C 

IFAIL 

contains the current value of the objective function 

the M-dimensional array containing the current values of 

the constraint functions 

this is the report flag parameter which is set by the 

routine before exit to give some indication of the status 

of the final solution 

On entry. Eo4uAF checks all the parameters in. its argument for 

consistency and if an error is detected then IFLAG is set to 1 and the 

algorithm terminates with an error report. Otherwise the algorithm 

commences by constructing the Lagrangian function defined in equation 

(3.18). First the inequality constraints are transformed into equality 

constraints by the addition of slack variables and further bounds. For 

example the constraint Ci(x);;' 0 is replaced by the equality 

constraint and simple bound: 

(3.37) . 

~+i ;;. 0 

Using current information on the Lagrange multipliers and the penalty 

parameter Pjthe Lagrangian function is then constructed and is passed 

to E04JBF where it is minimized subject to bounds on the original and 

the slack variables. 

The main steps of the numerical algorithm are illustrated by the flow 

chart diagram in Figure 3.6. This brief explanation of the numerical 

algorithm gives some idea of the numerical procedures involved in the 

computation of the minimum. Decisions within the algorithm are taken 
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by observing numerical changes in key parameters and consequently 

numerical precision is of vital importance. Further when the problem 

involves many design variables and constraints it is impossible for 

the user to construct a geometrical representation for the problem 

which would help in visually locating undesirable areas or even strong 

minima. Undesirable areas within the design space are areas where the· 

function surface resembles a "flat valley". Such areas create 

numerical problems due to the fact that the function undergoes little 

change by moving along such a "valley" and consequently errors are 

introduced in the estimate of the gradient vectors, which cause even 

larger errors in the computation of second derivatives. It can be 

appreciated that under such conditions the computed directions of 

search are unlikely to be a direction that will minimize the objective 

function and consequently the algorithm might get "stuck" or even 
\ . 

fail. Unfortunately there is no way to prevent the occurrence of such 

situations in complex problems nor is there a way to ensure that 

algorithms of the type described will converge to the global minimum. 

One common technique used to reduce the chance of serious error is to 

solve the same problem using many different starting points from which 

the best solution is chosen (although even such a trial and error kind 

of approach does not guarantee that the global minimum is not missed). 

Apart from the problem mentioned above, there are a number of other 

numerical problems Q can arise and which can be prevented once the ~~~ 
sources are established. The nature of such problems as well as 

possible remedies will next be discussed during an introduction to the 
, 

importance of "scaling" on the behaviour of the optimization 

algorithm. 

Scaling is the term used in optimization literature to describe in a 

vague sense the numerical difficulties associated. with optimization 

algorithms. With respect to scaling, the NAG documentation manual 

[23] suggests that the user should scale the objective function, the 

constraints and the design variables in such a way so that: 
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a) at the solution they all lie in the range [-1, +1] and 

b) at points one unit away from the solution F(x) and cl (x) differ 

from their values at the solution by approximately one unit. 

Unfortunately it is not always possible to follow the above scaling 

recommendations when dealing with practical problems. Scaling F(x) 

and cI(x) so that they are in the range [-1, +1] will not be possible 

unless the exact range of values of these functions is known from the 

start. Further it will be extremely difficult to follow recommendation 

(b) especially when F(x) and cI(x) are nonlinear functions. However 

it is possible to scale the design variables so that they are in the 

range [-1, +1] as their exact range of values (upper and lower limits) 

are usually specified in practical problems. 

Gill, Murray and Wright [21] briefly discuss the reasons for such 

variable tr·ansformations. They argue that numerical problems can 

arise due to the fact that the design variables involved in practical 

problems when expressed in physical units will generally have widely 

varying orders of magnitude or differences in the range of typical 

values. The main principle of variable transformation is to "map" all 

the variables to a common numerical range so that numerical changes on 

the variables can be carried out on a common basis. Consider for 

example two of the variables involved in the definition of the 

optimization objective function given earlier by equation (3.29). The 

stiffness of the isolator will be of the order of 106 N/m while the 

position of the isolator with 

will be of the order of 10-lm. 

respect to the power train mass centre 

It can be appreciated that a numerical 

change of 0.1 to these variables does not reflect equivalent numerical 

changes. The numerical algorithm must therefore decide in some way 

what is a reasonable numerical change for each of the variables 

involved. Even if the variables are of' the same order of magnitude the 

same problem can arise when the range of typical values of the 

variables involved is substantially dissimilar. Consider, for 

instance, the case where the variables Xl' x2 are constrained as 

follows: 
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Although both variables are of the same order of magnitude the 

variable x2 is much more restricted and consequently a finer numerical 

change might be more appropriate. Again the numerical algorithm will 

have to decide what is a reasonable numerical change for each of the 

variables. However, if the design variables are "mapped" onto the same 

numerical range by some linear (or otherwise) transformation, then it 

will be much easier for the numerical procedure to select a reasonable 

numerical step. 

Assuming that the exact bounds of the design variables can be 

specified, the following transformation relationship is given in [21] 

_,--2_X_il..­
Yj = 

b
j 

(3.38) 
- a. 

J 
- a. 

J 

where Xj is the jth original design variable, Yj is the jth 

transformed design variable and aj .. Xj .. b j • Obviously the 

transformed variables Yj are only visible to the optimization routine 

(E04UAF) while the computation of the objective function is carried 

out (by FUNCT1) using the original variables. This is achieved by 

transforming the variables Y j back to physical units (within FUNCT1) 

using the inverse of equation (3.38) i.e. 

(3.39) 

Equations (3.38) and (3.39) conclude the scaling of the design 

variables. What remains to be discussed is the scaling of the 

objective function and the constraints. 
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Unfortunately scaling these functions is not as straightforward .. and « 
indeed it was this part of the problem that consumed most of the 

author's time. The objective function F{x) and the constraints cr(x) 

were scaled on a trial and error basis by observing the behaviour of 

the numerical algorithm during a series of optimization attempts. 

Starting these attempts with no scaling whatsoever on F{x) and cr(x) 

and by observing intermediate optimization results as well as the 

final solution it was decided, for reasons which will be discussed in 

the next chapter, that each of the constraint functions should be 

multiplied by a constant weighting factor each time these functions 

are evaluated within CON!. Equations (3.34) to (3.36) were thus 

modified as follows: 

ci+j (x) = [I Cij 1- lug> I] Wi +j ~ 0 i = 1. 2 ••.•• N 

j=1.2.3 

(3.40) 

(3.41) 

where W denotes the weighting factor associated with each constraint. 

It was further observed that scaling F{x) in a similar way had no 

visible effects on the behaviour of the numerical algorithm and 

subsequently the objective function was left unscaled. 

Further comments on the effect of scaling and the trial and error 

approach in choosing "appropriate" weighting factors will be discussed 

in the next chapter during an extensive discussion of the computer 

results obtained in an attempt to compute an optimum isolation system 

for the power train-isolator arrangement which was briefly discussed 

in the second chapter of this thesis. 



78 

CHAPTER 4 

A CASE STUDY 

The previous two chapters developed the required theoretical analysis 

for the investigation of optimum isolation systems for reciprocating 

engines. The computer program which reads the data and calls the NAG 

routine Eo4uAF to minimize the objective function computed by 

subroutine FUNCT1 subject to bounds on the design variables and 

constraints set by subroutine CON1, is named "ENGVIB". The flow chart 

of ENGVIB can be found in Appendix D with a brief description of the 

structure of the entire computer program. The structure of the data 

file required to intialize ENGVIB is also illustrated in this 

appendix, while the engine-isolator arrangement which is represented 

by the data is described in Appendix C. 

4.1 OPTIMIZATION PARAMETERS 

From the theoretical analysis previously presented, it will be 

appreciated that the numerical algorithm can only partially satisfy 

the complex requirements associated with minimizing the transmission 

of engine induced vibration whilst simultaneously satisfying the 

static conditions specified. The main modelling assumptions which 

limit the usefulness of the algorithm are: 

1. the engine supporting structure is rigid, and 

2. that the isolators behave like linear springs. 

However the implications of these two assumptions on the optimum 

solution obtained by the computer program are unlikely to be serious 

if certain key optimization parameters are carefully selected at the 

start. Effectively these parameters can be classified into two 

general categories; those which define the specifications of the 

optimum isolation system (Le. the constraint constants) and those 

which are related to the scaling (i.e. the weighting factors). 
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With respect to the first type of parameter, the main problem to be 

dealt with, prior to running the computer program, is that of choosing 

appropriate values for the maximum allowable deflections Cij of the 

isolators as set out in equation (3.34). Recalling the discussion on 

the problems associated with the linear model of the engine mounts it 

can be appreciated that special allowance must be made in the 

numerical values of these constants to account for their nonlinear 

load-deflection characteristics. Load-deflection characteristics of 

isolators with elastic properties resembling those specified by the 

stiffness bounds can be used to give a gross approximation to the 

numerical values of the constants Cij' The program can then be run 

for a series of Cij values about these gross estimates. The values 

of Cij for which the optimum isolation system possesses the most 

desirable static behaviour can thus be selected for further 

optimization attempts if needed. When the program was run for the 

power train-isolator arrangement shown in Figure 2.7 and the static 

torque was set to the assumed maximum torque of the power train 

(2437 Nm) the isolator deflections were computed as follows: 

Isolator No. X-Deflection Y-Deflection Z-Deflection 

1 1.63 mm 0.56 mm 4.7 mm 

2 2.43 mm 9.75 mm 20.8 mm 

3 0.06 mm 10.71 mm 15.6 mm 

The stiffness of the second isolator in the Z-direction was 226 N/mm 

and consequently equation (2.33) gives· an applied force of 4.69 kN. 

From Figure 2.17 the isolator deflection at a load of 4.69 kN is 

found to be 12.8 mm according to the upper graph, 'and 15.8 mm 

according to the lower graph. Suitable values of Cij for running the 

program are thus expected to be in the range of 10 to 20 mm. However, 

apart from the maximum isolator deflections, three more constants are 

required to specify the maximum allowable static rotations of the 

power train (see equation (3.35». Fortunately the computation of the 

power train rotations is not significantly affected by the linear 
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model and conf!equently real tolerances can be used. It was advised 

[10] that the power train should not be allowed to rotate more than 10 

degrees in any direction and the appropriate constants were set to 

this value although a value of 5 degrees was also used in some 

computer runs for testing purposes. With respect to the constants 

Cij' two sets of test runs were carried out. one with cijset at 15 

and another with Cij set at 20 mm. 

The next problem is to decide whether frequency constraints should be 

applied. The option of frequency constraints was introduced into the 

program so that the rigid power train frequency spectrum could be 

intentionally shifted away from undesirable frequency bands. The 

option is switched on by setting the parameter INAT to 1 in which case 
I 

the user must supply a minimum numerical value cn• see equation (3.36) 

for each modal frequency. As was stated previously. frequency 

constraints can be used to separate engine vibration from engine 

shake. For the purpose of testing the optimization program a series 

of test runs was carried out to determine whether the program could 

reach an optimum when the modal frequency spectrum (initially in the 

range 5 to 19 Hz) was forced to exceed an 8 Hz lower limiting 

frequency which was suggested [10] to be the highest frequency of road 

input excitations that the engine isolation system would experience. 

The problems described in the previous two paragraphs are relatively 

easy to deal with. The difficult and time consuming part is that of 

choosing numerical values for the weighting factors wi for the 

constraint functions (see equations (3.40) to (3.42» and for the 

penalty parameter p (see equation (3.18». The main problems which can 

occur as a result of inexperienced choice of numerical values for 

these parameters can be summarized as follows: 

a) the optimization algorithm ignores constraint violations; 

b) slow or oscillating changes of the objective function; 

c) too many iterations required for each unconstrained subprobleoi; 

d) the algorithm appears to be stuck (no substantial change is 

observed in the objective function for a great number of 

itera tions) 
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e) the algorithm terminates and the value of the objective function 

on exit is greater than that on. entry. 

It is the source of these problems that the following discussion aims 

to clarify on a practical basis since they play a crucial role in 

determining whether or not the optimum isolation system eventually 

identified will be associated with a strong minimum of the objective 

function. Unfortunately, the algorithm is unable to flag a global 

minimum which leaves the user with no alternative but to run the 

program, using manydifferent starting points and then to pick the 

lowest minimum obtained. However, if all the previously stated 

problems are reasonably dealt with, then it is only a matter of 

computer time or better definition of the original optimization 

problem before a strong optimum solution is obtained. Based on 

considerable experience of successfully running the program, it was 

found that for a reasonably well defined and scaled problem the 

algorithm would converge to a local minimum within no more than 1.5 to 

2 hours. Typically only about 1.0 hr cpu time was required. 

As was stated at the end of Chapter 3, the weighting factors were 

introduced into the program after certain experience was gained by 

running the program without scaling the constraint functions. The 

problem which emerged from those early optimization attempts was that 

the algorithm was not able to detect violation of constraints; On 

exit, several constraints would be violated but §) far as the ~ 
algorithm was concerned there was nothing wrong with the solution 

obtained (IFAIL was set to zero on exit meaning .that a local minimum 

for the constrained problem had successfully been found). With respect 

to scaling of the constraint functions Gill, Murray and Wright [21] 

argue that the constraints should be well scaled with respect to the 

design variables but should also be balanced with respect to each 

other. @ far as the first requirement is concerned. it is expected ~ 
that the transformation applied to the design variables (equation 

(3.38) should be adequate for this purpose. Balancing of the 

constraints requires that each constraint should be appropriately 

weighted. However. this is not the only effect of introducing 
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weighting factors, and in fact itis a less obvious effect that was 

responsible for the undetected constraint violation which was observed 

during the early optimization. attempts. It should be mentioned at 

this point that throughout the progress of the algorithm the Lagrange 

multipliers remained zero. 

Zero Lagrange multipliers are known to be a 'bad sign' even when the 

solution obtained satisfies all the required conditions. Discussing 

the subject of Lagrange multipliers Gill, Murray and Wright argue that 

no comment can be made about the optimality of a point associated with 

zero Lagrange multipliers before higher derivatives are examined 

(which are unlikely to be available). Further it is argued that 

a Lagrange multiplier which is zero at the solution point could 

indicate that the associated constraint is redundant or that the 

solution is at a saddle point. 

Constraints which are associated with zero Lagrange multipliers are 

deleted from the active set and consequently cannot influence the 

sequence of iterates of the algorithm. Due to the limiting precision 

of computation, difficulties can arise in determining the correct sign 

of a very small multiplier which could be caused by a small 

perturbation, initiated by a rounding error. Substantially greater 

errors can be involved in the computation of the Lagrange multipliers 

due to ill-conditioning of the Jacobian matrix of the constraints on 

which the computation of the Lagrange multipliers is known to be 

critically dependent. According to reference [21] the effect of 

multiplying a constraint by a constant wi is to alter the rows of the 

Jacobian and consequently the values of the Lagrange multipliers. It 

can be appreciated now why weighting of the constraints can change the 

sequence of iterates dramatically. 

Once the weighting factors were introduced, violation of constraints 

became detectable by the algorithm but that involved careful 

assignment of the weights so that the constraints were properly 

balanced. Initially certain constraints would still be violated at 

the solution. However, investigation of intermediate optimization 
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results revealed that this was due to the numerical domination of the 

other (satisfied) constraints. .In particular it was the isolator 

deflections that appeared to be invisible to the algorithm in contrast 

to the engine rotations to which the algori thm appeared to be mos t 

sensitive. (Frequency constraints were not applied during those early 

optimization attempts). It was observed that the isolator deflections 

were numerically smaller than the engine rotations by a factor of a 

least 10 throughout the progress of the algori thm. Considering th 

Lagrangian function (equation (3.18)). it can be appreciated that 

numerical difference among the constraints leads to a square of that 

difference on the associated penalty term of the Lagrangian (~ p cTc) 

which in turn implies that the algorithm will be biased towards 

certain directions of search. 

There appear to be no other guidelines on choosing weighting factors 

apart from those mentioned above. Closing the subject of constraint 

scaling Gill. Murray and Wright discuss the possibility of future 

software which will automatically scale all the constraint functions. 

Although this kind of software development will be of great value in 

conditioning optimization problems from a numerical point of view. it 

could distance the engineer from vital features of his particular 

problem. which at present cannot be considered an exhilarating 

expectation. On the contrary it is believed that users of numerical 

optimization algorithms should acquire the necessary background on 

optimization theory. 

One further parameter of importance which must be initially set by the 

user and which can cause a lot of problems (if it is too large or too 

small on entry to E04UAF) is the penalty parameter p involved in the 

defini tion of the Lagrangian. According to Gill. Murray and Wrigh t 

[21]. the Hessian matrix of the augmented Lagrangian function will be 

ill-conditioned for certain ranges of p which implies that the 

unconstrained subproblem will beUl-conditioned too. On the choice 

of p the NAG routine manual suggests that the user should set p to 1 

initially and if· this causes overflow or convergence to a non-feasible 

point then p = 100 should be tried. Neither overflow nor convergence 
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to a non-feasible point was observed irrespective of what value was 

assigned to P. However, the problems described earlier by (c) and 

(d) are largely attributed to unsuitable values for p. For the 

current problem, suitable values of P can be found in the range of 1 

to 1000, although the actual value will largely depend on the chosen 

constraint constants and the weighting factors. 

4.2 RESULTS 

The following presentation of computer results aims to demonstrate the 

potential of the computer program whilst also illustrating the 

sensitivity of the algorithm to the scaling parameters. Tables 4.1 to 

4.4 describe four optimization attempts which were made without 

frequency constraints. It can be appreciated that the algorithm 

reached a minimum of the objective function each time while satisfying 

all the conditions specified. However, the optimum obtained each time 

was a different local minimum of the objective function as is 

indicated by the value of F(x) after optimization. In the first two 

attempts the engine static rotations were limited to 5 degrees 

(0.08727 rads) while the isolators were allowed to deflect up to 15 

and 20 mm respectively. Both attempts yielded almost the same 

reduction in the objective function although E04uAF indicated that the 

solution of the second run (RES2) is the optimum (IFAIL = 0 on exit). 

The flag IFAIL is set before exit from E04uAF to indicate the 

confidence of the algorithm on the optimum obtained. If IFAIL is set 

to 2 then this indicates that either the maximum allowable number of 

function evaluations has been exceeded or that 10 cycles of E04uAF 

have been completed (i.e. ten subproblems have been solved) and the 

routine was unable to converge to a better optimum. Usually this 

means that convergence criteria are not satisfied to the precision 

specified by XTOL (which on entry was set to E04uAF to approximately 

1.0E-19). The NAG Manual states that the precise test for convergence 

is 

GLNORM/(1.0 + 1 FI) +11 D -I, r 11 < XTOL 
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----------------------------------------------------------------
FILE : RESI 
RHO = 10 ENGItIE SPEED = 800.0 rpm 
Before opti.iz.tion FIX) = 0.7620E-I 
After opti.ization FIX) = 0.166BE-I 
Percentage change 0 % = -7B.11 
IFAIL = 2 

No of function evaluations = 6836 
NcrJ of gradient of Lagrangian = 0.4855E-8 
Condition cf Hessian = 0.:!l55E+5 
Nor. of residual = 0.3922E-8 
RHO on e,it = 0.3S59E+6 

XI 
YI 
Z1 
X2 
Y2 
Z2 
X3 
Y3 
Z3 
XX 
yy 
ZZ 

CONSTRAIN CONSTANT NEIGHT 
15 5 
15 5 
15 I 
15 55 15 
15 10 
15 55 15 
15 10 
0.09727 0.001 
0.08727 0.1 
0.OB727 0.001 

ISOLATOR STATIC OIS?LACENENTS I •• ) 
----------------------------------

X Y Z 
--------------_ ... ---------------

BEFORE OPT. 1.63 0.56 4.70 

AFTER OPT. 1.36 1.33 7.71 

BEFORE OPT. 2.43 9.74 20.n 
2 

AFTER OPT. 9.79 4.05 15.00 

BEFORE OPT. 0.061 10.71 15.65 
3 

AFTER OPT. 12.15 5.54 13.73 
------ ---- --------

~~~~_~!~!1E_~E!~I!E~~_.!E:~::;:! 

BEFORE OPT. 
AFTER OPT. 

BEFORE OPT. 
AFTER OPT. 

Table 4.1 

XX YY ZZ 

0.23 4.28 2.39 
0.64 5.00 1.13 

NATURAL FREOUENCIES 1Hz) 
------------------------

2 3 4 • 6 " 
5.19 6.92 9.10 12.22 12.37 19.50 

5.01 5.69 7.46 9.90 10.19 14.39 

Computer results from output file RES1 
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FILE : RE52 
RHO = 100 EH6ll1E SPEED = 800.0 rpl 
Before opti.ization F(X) = 0.7620E-1 
After optiJization Fm = 0.1618E-I· 
Percentage change D Z = -7B.77 
IFAIl = 0 
No of function evaluations = 41316 
Nor. of gradient of lagrangian = 0.4136E-11 
Condition of Hessian = 0.6340E+9 
Hor. of residual = 0.2BB9E-12 
RHO on exit = 0.7644E+6 

CONSTRAIN CONSTANT NEIGHT 
XI 20 10 
YI m 10 
ZI 20 I 
U m 10 
Y2 20 10 
n m 10 u m 10 
n m " lx3x m 10 

0.08727 11 
YY 0.08727 
II 0.08721 I 

ISOLATOR STATIC DISPLACEHE.'ITS (.0) 
-----------------------------------

I Y l 
----------------------------------------------------------------

BEFORE OPT. 1.63 0.56 4.70 
1 

AfTER OPT. 2.52 2.84 10.12 
---------- ------------- -------

BEFORE OPT. 2.43 9.74 . 20.77 
2 

AfTER OPT. 5.23 7.B9 IS.94 
------------

BEFORE OPT. 0.061 10.11 15.65 
3 

AFTER OPT. B.!S 2.78 13.67 

EHGIIIE STATIC ROTATIOIIS (Degrees) 
---------------------------------

BEFORE OfT. 
AFTER OPT. 

BEFORE OPT. 
AFTER OfT. 

Table 4.2 

5.19 

4.~S 

XX yy lZ 

0.23 4.28 
0.57 ~. 0 

NATURAL FREgUEtlCIES (Hz! 
------------------------

2 • 4 " 
6.91 9.10 12.22 

5.28 6.29 9.94 

2.39 

1.02 

5 
12.37 
10.09 

6 

19.50 
14.46 

Computer results from output file RE52 
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EHGIHE SPEED: 800.0 rpa 
Before optilization F(X): 0.7620E-1 
After optiaization F(X): 0.1264E-1 
Percenta,e change D.: -B3.41 
IFAIL : 2 
No of function evaluations : 3329 
Nor. of gradient of Lagrangian = O.212~E-. 
Conaition of Hessian : 0.2215E+2 
Norl of residual : 0.5128£-6 
RHO on exit : 0.5408E+6 

CotlSTRAIN CotlSTANT WEIGHT 
XI 15 10 
'1 15 10 
ZI 15 10 
X2 15 10 
'2 15 10 
22 15 10 
X3 15 10 
'3 15 10 
Z3 15 10 
XX 0.1745 0.01 
yy 0.1745 0.01 
ZZ 0.1745 0.01 --------_._-_. 

ISOLATOR STATIC DISPLACEHEHTS (.1) 
-----------------~------------X , Z 

---------------- ---------------
BEFORE OPT. 1 •• 3 0.56 4.70 

1 
AFTER OPT. 2.44 2.18 11.69 

BEFORE OPT. 2.43 9.74 20.77 
2 

AFTER OPT. 15.00 5.11 15.00 

----
BEFORE OPT. 0.061 10.71 15.05 

:; 
AFTER OPT. 15.00 7.47 15.00 

ENGINE STATIC ROTATIONS (Degrees) 

BEFORE OPT. 
AFTER OPT. 

BEFORE OPT. 
AFTER OPT. 

Table 4.3 

------------------... -------------
XX yy ZZ 
0.23 4.28 2.39 
1.05. 6.43 

NATURAL FREQUENCIES (Hz) 
------------------------• T 4 5 6 • " 

5.19 6.92 9.10 12.22 12.37 19.50 
5.!3 S.iS 7.53 9.02 10.52 14.71 

Computer results from output file RES3 
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FILE: RES4 

RHO = 10 ENGINE SPEED = 800.0 rpl 

Before o,tilization F(X) = 0.7620E-l 
After optlllzation Fm • 0.6940E-2 
Percentage change 0 % • -90.89 
IF~IL • 2 
~o of function evaluations = 14076 
Norl of gradient of Lagrangian • 0.2540E-7 
Condi tion cf Hes.ian = 0.6905E+3 
Nora of residual = 0.2521E-6 
RHO an exit = 0.9878E+6 

CONSTRAIN CONSTANT NEIGHT 

ISOLATOR STATIC DISPLACEHEllTS (.1) ------------_ ... ----
X Y Z 

---------------------------- -----
BEFDRE OPT. 1.63 0.56 4.70 

1 
AFTER OPT. 4.71 1.25 15.00 

----
BEFORE OPT. 2.43 9.74 20.77 

2 
AFTER OPT. 15.00 0.h9 14.92 

---------
BEFORE OPT. 0.061 10.71 15.65 

3 
AFTER OPT. 15.00 3.32 15.00 

ENGINE STATIC ROT~TIONS (Oegrees) 

BEFORE OPT. 

AFTER OPT. 

BEFORE OPT. 

AFTER OPT. 

Table 4.4 

---------
XX yy ZZ 

0.23 4.28 2.39 

1.00 1.91 

IlATURAL FREQUENCIES (Hz) 
------------------------

2 3 4 5 6 

5.19 6.92 9.10 12.22 12.37 19.50 

4.87 5.71 7.68 9.72 15.16 17.00 

Computer results from output file RES4 
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where GLNORM is the Euclidean norm of the vector Gz - A x RLAM (Gz is 
• . an approximation to the gradient vector of F{X) with respect to 

the free variables and A is the Jacobian of the active 

constraints) 

D is a diagonal 

(I + ATA). 

~ Oft. 
matrix~ elementsL the diagonal elements of 

The quantity of the left hand side of the inequality (4.1) is 

estimated at the end of each cycle of Eo4uAF. On exit of run RES2 this 

convergence parameter was estimated as O.1657E-8 which is certainly 

not less than XTOL. It is therefore not clear why the algorithm set 

IFAIL = O. 

One point that is clear from Tables 4.1 to 4.2 is that certain 

constraints will be inactive at the solution. In fact, with the 

exception of ZZ and YY, all the other constraints are inactive at the 

solution. These constraints, as expected, were associated with zero 

Lagrange multipliers. However, they were not removed from successive 

runs because it was not certain if their redundancy was genuine or due 

to inappropriate scaling. It was found at a later stage that under 

certain condi tions some of them became active as can be observed in 

Tables 4.3 and 4.4. Comparing the scaling factors and the final 

results of Tables 4.3 and 4.4, the sensitivity of the algorithm to the 

scaling of the constraint functions becomes evident. The results show 

that a change in the weighting factors of the engine rotation 

constraints by a factor of ten caused the algorithm to converge to a 

lower local minimum, Unfortunately, the condition number of the 

Jacobian matrix of the constraints is not monitored by Eo4uAF and as a 

result it is not possible to investigate whether the observed change 

in the sequence of iterates was connected with improved conditioning 

of the Jacobian. The parameters which are available for monitoring at 

the end of each iteration of E04JBF are: 

1. the iteration number; 

2. the number of function evaluations; 
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3. the norm of the gradient vector of the Lagrangian function, and 

4. the condition of the projected Hessian. 

However, these parameters give no indication of the effectiveness of 

the applied scaling although they do indicate changes in the sequence 

of iterates of the algorithm. 

Due to the fact that there is no test available to check whether a 

particular type of scaling will improve the conditioning of the 

optimization problem it was decided to adjust the scaling factors by 

observing the values of the constraint functions at the solution. 

Hence, constraints which appeared to change little and which were 

numerically large in relation to the others, and those which appeared 

to be redundant, were scaled down. On the other hand, those 

constraints which were considered to be relatively more important for 

the validity of the solution or numerically small compared with the 

others were scaled up. However, the magnitude of the scaling factors 

in a particular case was obtained on a trial and error basis. For the 

optimization problem described so far it was decided that the 

important constraints were: 

1. engine rotation in the YY direction since this is the direction of 

the applied torque; 

2. isolator deflection in the Z direction since the isolator 

orientation (design variable subject to bounds) was limited to 10 

degrees and consequently the applied torque and the engine weight 

were most likely to cause large deflections in a vertical plane; 

3. frequency constraints for subsequent runs because of their 

influence on the engine shake problem. 

Although the solution obtained from RES4 does not meet the 8 Hz 

frequency minimum discussed earlier, it was decided to check this 

solution simply because the frequency spectrum"- of the optimum 

isolation system is fairly close to that of the initial system and out 

of curiosity to find out the physical meaning of the changes made to 

the design variables by the numerical algorithm. Table 4.5 shows the 
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---------------------------------------------------------
DESIGN VARIABLES , BEFORE OPTIMIZATION , AFTER OPTIMIZATION , , 

-------------------- --------------------- ---------------------
Stiffness KXl 418 N/mm 202 N/mm 
Stiffness KYl 132 N/mm 103 N/mm 
Stiffness Kzl 165 N/mm 126 N/mm 

Position Xl 124 mm 160 mm 
Position Y1 292 mm 257 mm 
Position Zl 81 mm 60 mm 

Orientation FIl 0 Degrees 0 Degrees 

Orientation THETA 1 0 Degrees -0.21 Degrees 
Orientation PSll 0 Degrees 0 Degrees 

Stiffness KX2 288 N/mm 408 N/mm 
Stiffness KY2 77 N/mm 71 N/mm 

Stiffness K~? 226 N/mm 398 N/mm 

Position X2 308 mm . , 103 mm • 
Position Y2 -279 mm -325 mm 
Position L2 -292 mm 6 mm 

Orientation FI2 0 Degrees 0 Degrees 

Orientation THETA2 0 Degrees -1.79 Degrees 

Orientation PSI2 0 Degrees 0.99 Degrees 

-------------------- ---------------- ---------------------
Stiffness KX3 288 N/mm 465 N/mm 

Stiffness KY3 77 N/mm 82 N/mm 

Stiffness Kz3 226 N/mm 400 N/mm 

Position X3 -181 mm -63 mm 

Position Y3 -303 mm -246 mm 

Position Z3 -272 mm -149 mm 

Orientation FI3 0 Degrees 0 Degrees 

Orientation THETA3 0 Degrees -2.78 Degrees 

Orientation PSI3 0 Degrees 0 Degrees 
, , 

-------------------- , --------------------- , ---------------------

Table 4.5 Original and final values of optimization variables 
for the computer results of table 4.4 
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initial and final values of the optimization variables, while Figure 

4.1 shows the position of the isolators with respect to the power 

train before and after optimization. From this figure it can be 

appreciated that the algorithm reduced the objective function by 

moving the isolators closer to the power train and effectively 

reducing the roll stiffness. However, from Table 4.5 it is obvious 

that in order to satisfy the'static constraints the stiffnesses of the 

second (rear left) and the third (rear right) isolators in the Z and X 

local directions were substantially increased. Table 4.6 shows the 

kinetic energy modal distributions of the optimized system while Table 

4.7 shows those of the original system. 

Comparison of Tables 4.6 and 4.7 shows that the algorithm effectively 

reduced the roll mode frequency from 19.51 Hz to 8.72 Hz. Recalling 

the discussion on the dynamic response of the model (in Chapter 2), it 

is obvious that reducing the frequency of the roll mode effectively 

reduces the transmission of vibration generated by the second harmonic 

of the excitation. 

The dynamic response of the optimum isolation system is superimposed 

on that of the original system and is presented for comparison in 

Figures 4.2 to 4.8. The advantages for vibration isolation of a low 

frequency roll mode are evident in, all the plots. Such a low 

frequency roll mode is, of course, undesirable because of its 

susceptibility to road surface indirect vibration which makes this 

particular solution undesirable. This solution also has one further 

disadvantage from a practical point of view. The dotted triangles on 

the X-Y plane (plan view) in Figure 4.1 outline the supporting base 

defined by the isolators before and after optimization. It may be 

seen that the power train mass centre is outside the, base defined by 

the optimized position of the isolators which is certainly not 

traditional engineering practice. However, it was not possible in the 

time available to investigate the possibility of additional 

constraints which would eliminate the problem apart from careful 

definition of the design space. 
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Frequency x Y z xx yy ZZ COUPL. 

1. 4.87 0 12.34 37.94 23.3? 20.5 2.47 3.43 
2. 5·71 2.46 83.34 5.20 3.77 2.66 0.95 1.62 
3. 7.68 55.07 3.39 2.54 3.68 11.67 18.34 5.31 
4. 8.72 8.17 0.76 11.94 13.48 72.88 21.0 -28.23 
5. 15.16 0·51 0.01 41.92 58.04 0.29 0.17 -0.94 
6. 17·00 33.72 0.11 0.29 0.65 0.27 63.18 1.78 

TABLE 4.6: KINETIC ENERGY MODAL DISTRIBUTIONS FOR RES4 

Frequency x Y. z xx yy ZZ COUPL. 

1. 5·19 2.26 64.83 14.30 8.20 5.63 5.00 -0.22 
.2. 6.92 8.32 32.95 40.60 5.24 9.94 3.35 -0.40 

3· 9.08 48.25 0.01 19.64 11.37 21.03 12.26 -12.56 
4. 12.23 23.00 0.00 3.66 33.40 9.95 47.23 -17.24 
5. 12.38 8.97 2.12 21.34 42.64 4.56 19.44 0.93 
6. 19·51 9.3 0.06 0.042 1.98 57.10 18.70 12.44 

. 

TABLE 4.7: KINETIC ENERGY MODAL DISTRIBUTIONS OF ORIGINAL SYSTEM 
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Tables 4.8 to 4.11 show the scaling and the results of the 

optimization attempts which were made wi th frequency constraints. 

Tables 4.8 and 4.9 give evidence of the previously stated problem of 

termination of the algorithm at a point where the value of the 

objective function is greater than that at the starting point. It is 

beyond any doubt that in this particular case the algorithm was misled 

by an ill-conditioned problem as a resul t of bad scaling. However, 

there can be cases where such an occurrence is quite genuine. Consider 

for instance the situation where the algorithm is initiated at a non­

feasible point and most of the constraints are violated by substantial 

margins. It is quite possible then that at the optimum point the 

objective function will be numerically greater than at the starting· 

point .• In other words, it is possible that a better local minimum of 

the objective function might exist in the unfeasible subspace. 

With respect to the frequency constraints three optimization attempts 

were made. First the· lower end of the rigid-power train frequency 

spectrum was limited to 8 Hz for the reason described above. These 

attempts are illustrated in Tables 4.10 and 4.11. Although the 

solutions obtained from these runs were feasible, it was found 

difficult to obtain a lower minimum and time limitations did not allow 

further attempts to be carried out on this particular case. Further 

it was realised that there was no need to constrain every single modal 

frequency. As previously noted the NAG routine which solves the 

eigenvalue problem returns 

only the first element 

the eigenvalues in ascending order. Hence 

of the eigenvalue matrix needs to be 
....-.,.... ,- .-

constrained, thereby implying that five of the six frequency 

constraints are redundant. Deleting the redundant constraints from the 

program was considered at first but not implemented. Instead, the 

constraint constants were changed so that the redundant constraints 

could be made active on the condition that each modal frequency was 

.constrained at a higher level than the previous one. The six modal 

frequencies were thus constrained at 8, 10, 12, 14, 16 and 18 Hz 

respectively so that the modal frequency spectrum will be placed above 

the frequency band of possible road input exci tation and below the 

second order engine excitation (engine idle at 800 rpm or 13.33 Hz 
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FILE: RES6 
RHO = 1 Ell6INE SFEED = BOO. 0 rp~ 
Before opti.ization FIX) = 0.7620E-l 
After optiaization F(X): 0.7909E-I 
Percentage cnan'le D Z = +3.79 
IFAIl = 2 
No of function evaluation; : 4890 
HorJ of gradient of lagrangian : 0.1610E-5 
Condition of Hessian = 0.2480E+4 
Horm of residual = 0.7659E-4 
RHO on elit = 0.254IE+7 

XI 
YI 
1I 
X2 
Y2 
22 
X3 
Y3 
23 
XX 
YY 
ZZ 
XI 
N2 
~3 
N4 
liS 
Nb 

CONSTRAIII COIISTANT NEI6HT 
15 
I~ 
15 
15 
15 
15 
15 
15 
IS 
0.1745 
0.1745 
0.1745 
8.0 

10.0 
12.0 
14.0 
16.0 
18.0 

10 
10 
10 
10 
10 
10 
10 
10 
10 
0.01 
0.01 
0.01 
0.01 
0.001 
0.0001 
0.00001 
0.000001 
0.0000001 

ISOLATOR STATIC DISFLACEHENTS (Ill --------
X Y Z 

--------

2 

3 

BEFORE OPT. 
AFTER OFT. 

BEfORE OFT. 
AFTER OPT. 

BEfORE OFT. 
AFTER OFT. 

1.63 
4.1! 

2.43 
9.60 

0.061 

11.39 

O.Sh 

0.37 

9.74 

2.30 

10.71 
0.81 

4.70 
3.99 

------
20.77 
10.02 

1~.65 

9.0b 

Ell6INE STATIC ROTJ1T!OtIS IDegrees) 
---------------------------------

BEFORE OPT. 
AFTER OPT. 

BEFORE OPT. 
AFTER OPT. 

5.19 

8.75 

Table 4.8 

XX yy ZZ 

0.23 

0.31 

4.28 

4.22 

NATURAL FmUEIIC I ES 1Hz) 
------------------------• 3 4 • 

6.92 9.10 12.22 

9.93 11.68 12.44 

2.39 
0.95 

5 

12.37 

20.50 

6 
19.50 
22.64 

Computer results from output file RES6 
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FILE: RES5 
RHO = 100 EH6INE SPEED = 800.0 rpI 
Before cctilization F(X) = 0.7620E-l 
After optilization F(X) = 0.7701E-l 
Percenta~e change D % = +1.46 
IFAIL . = 2 
:10 of function evaluation; = 3052 
Hor. of gradient of Lagrangian = 0.2154E-5 
Condition of He;;ian = 0.1540E+2 
Nor. of residual = 0.1997E-3 
RHO on exit = 0.2333E+10 

Xl 
YI 
ZI 
X2 
Y2 
Z2 
X3 
Y3 
Z3 
XX 
YY 
ZZ 
NI 
N2 
W3 
W4 
~5 
Nb 

1 

2 

CONSTRAIN CONSTANT WEIGHT 

15 10 
15 10 
15 10 
15 ' 10 
15 10 
15 10 
15 10 
IS 10 
15 10 
0.1745 0.01 
0.1745 0.01 
0.1745 0.01 
8.0 0.01 

10.0 0.001 
12.0 0.0001 
14.0 0.00001 
16.0 0.000001 
18.0 0.0000001 

ISOLATOR STATIC DISPLACEMENTS (.1) --------------
BEFORE OPT. 
AFTER OPT. 

BEFO~E OPT. 
AFTER OPT. 

BEFORE OPT. 

AFTER OPT. 

X 

1.63 
1.39 

2.43 

1.56 

Y 

0.56 
0.11 

9.74 
5.00 

10.71 
4.09 

Z 

4,70 
2.35 

20.77 
15.00 

15.65 
7.60 

------------------------------------------------------------

BEFORE OPT. 

AFTER OPT. 

ENGINE STATIC ROTATIONS (Degrees) 
-----------------------------

XX yy ZZ 

0.23 

O.ll 

4.28 2.39 
0.83 

----------------------------------------------------------------
NATURAL FRE~UEHCIES (Hz) 
------------------------

2 3 4 5 6 

BEFORE OPT. ~.19 61~2 9.10 12.22 12.37 1~.50 

AFTEP. OPT. S.19 9.99 10.33 1~.7S 13.76 Ib.57 
--------------------------------.-------------------------------

Table 4.9 Computer results from output file RES5 
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-----~~---------------------------------------------------------
FILE: RESBa 

RHO = 100 ENGINE SPEED = BOO.O rpl 

Before optimization FIX): O.7b20E-l 
After optilization FIX): 0.72~4E-1 
Per~entage chang! D t : -4.27 
IFAIL : 2 
No of function evaluation; = 2744 
Nor. of gradient of Lagrangian = 0.8362£-7 
Condition of He;;ian = 0.6100E+3 
Nor. of residual = 0.8706E-8 
RHO on exit = 0.137SE+9 

XI 
YI 
II 
X2 
r2 
Z2 
X3 
Y3 
Z3 
XX 
yy 
ZZ 
NI 
N2 

oN3 
N4 
M5 
N6 

CONSTRAIN CONSTANT NEIGHT 
15 
15 
15 
15 
15 
15 
15 
15 
15 
O.lm 
0.1745 
0.1745 
8.0 
8.0 
8.0 
8.0 
8.0 
8.0 

10 
10 
10 
10 
10 
10 
10 
10 
10 
0.01 
0.01 
0.01 
0.01 
0.001 
0.0001 
0.00001 
~J~~~%~1 

ISOLATOR STATIC DISPLACEHEHTS (II) ----------
X Y z 

0 ___ --------------------------

BEFORE OPT. 1.63 0.56 4.70 
1 

AFTER OPT. 1.61 0.40 3.2b 

BEFORE OPT. 2.43 9.74 20.77 
2 

AFTER OPT. 2.45 3.67 13.44 
-----_._--

BEFORE OPT. 
AFTER OPT. 

0.061 

4.34 

10.71 

2.99 

15.65 
7.24 

----------------------------------------------------------------
~61 H~":TA TIE_~!~!.! 0115 _~E.:1:':;;~ 

BEFORE OPT. 
AFTER OPT. 

XX YY ZZ 

0.23 

0.05 

4.28 2.39 
0.58 

----------------------------------------------------------------
NATURAL FREQUENCIES 1Hz) 
------------------------

2 3 4 • 6 " 
BEFORE OPT. 5.19 6.92 9.10 12.12 12.37 19.50 

AFTER OPT. 8.00 8.03 8.91 12.16 13.75 16.82 

Table 4.10 Computer results from output file RESBa 
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---------------------------------------------_.----------
FILE: RESBb 
RHO = 10 EN6INE SPEED = 800.0 rpl 

Before optilization F(X) = 0.7620E-I 
After optilization Fm = 0.551iE-1 
Percentage change D : = -27.59 
IFAIl = 2 
No of function evaluations = 5221 
Nora of gradient of lagrangian = O.2837E-S 
Condition of Hessian = 0.79~9E+2 
Nor. of residual = O.2752E-3 
RHO on exit = 0.3123E+9 

It 
YI . 
Zl 
X2 
Y2 
Z2 
Xl 
Y3 
13 
XX 
YY 
ZZ 
NI 
N2 
N3 
N4 
W5 
N6 

CONSTRAIN CONSTANT NEISHT 

15 
IS 
IS 
IS 
15 
15 
IS 
IS 
15 
0.1745 
0.1745 
0.1745 
8.0 
8.0 
8.0 
B.O 
B.O 
B.O 

10 
10 
10 
10 
10 
10 
10 
10 
10 
0.01 
0.01 
0.01 
0.1 
0.00000001 
0.00000001 
0.00000001 
0.00000001 
0.00000001 

ISOLATOR STATIC DISPLACEHEHTS Ill) 
. X Y Z 

BEFORE OPT. 1.63 O.~6 4.70 
1 

AFTER OPT. 0.54 0.27 3.55 
--------------------------- -----

BEFORE OPT. 2.43 '.74 20.n 
2 

AFTER OPT. 7.74 1.8Z 13.30 
--------

BEFORE OPT. O.Ohl 10.71 15.65 
3 

AFTER OPT. 7.44 1.~9 B.12 

EN6INE STATIC ROTATIONS IDegrees) 

BEFORE OPT. 

AFTER OPT. 

BEFORE OPT. 

AFTER OPT. 

Table 4.11 

---------------------------------
XX YY lZ 

0.23 4.28 2.39 

0.50 2.57 0.73 

NATURAL FREQUENCIES (Hz) 
------------------------

2 3 4 • 6 " 
5.19 6.92 9.10 12.22 12.37 19.50 

8.00 10.61 12.07 12.65 16.80 1B.39 

Computer results from output file RES Bb 
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giving the second order excitation at 23.66 Hz}. The results of the 

final attempts are summarised in Tables 4.12 and 4.13 and conclude the 

selected series of computer runs, out of all those which were made for 

the purpose of testing the computer program. The following section of 

the current discussion will deal with the. evaluation of this final 

solution. 

The position of the isolators, with respect to the power train mass 

centre, for the optimum isolation systems obtained from the computer 

runs described in Tables 4.12 and 4.13, are shown in Figures 4.9 and 

4.10 respectively. By comparing the position of the power train mass 

centre relative to the supporting triangular base defined by the 

isolators on the X-Y plane it can be appreciated that the optimum 

isolation. system obtained from the optimization attempt described in 

Table 4.13 is statically more stable than that of Table 4.12. In 

addition to this, the optimum isolation system of Table 4.13 is 

associated with a lower minimum of the objective function and 

consequently it is selected as the best solution. Although on exit 

from Eo4uAF the flag IFAIL was set to 2, it is not necessarily true 

that the solution is not optimum. The only case where IFAIL was set 

to 0 on exit, is the optimization attempt described in Table 4.2. 

Table 4.14 below shows the values of the optimization parameters, 

which are checked by the algorithm before the flag IFAIL is set on 

exit from Eo4uAF, for the two optimization attempts described in 

Tables 4.2 and 4.13 respectively. 

From Table 4.14, it is clear that the only sUbstantial difference 

between the optimality conditions of the two attempts is the amount by 

which the inequali ty constraint functions lie outside their range, 

i.e. the norm of the residual vector. However this difference is not 

• 
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FILE: RES8 
RHO = 1 EN61NE SPEED = BOO.O rpl 
Before optilization FIX) = 0.7620E-l 
After optiJization FIX) = 0.2091E-1 
Percentage change D 7. = -72.56 
IFAIL = 2 
No of function evaluations 
Nor. of gradient of Lagrangian 
Condition of Hessian 
Nor I of residual 
RHO on exit 

Xl 
Yl 
Z1 
X2 
Y2 
Z2 
X3 
Y3 
Z3 
XX 
YY 
ZZ 
NI 
N2 
N3 
N4 
~5 
Nb 

CONSTRAIN CONSTANT 

15 
15 
15 
IS 
15 
15 
15 
15 
15 
0.1745 
0.1745 
0.1745 
8.0 
10.0 
12.0 
14.0 
16.0 
IB.O 

9B63 
O.2029E-6 
0.1339E+5 
0.3256E-b 
0.2159E+4 

WEI6HT 
10 
10 
10 
10 
10 
10 
10 
10 
10 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 

-------------------_ ... _-------------
ISOLATOR STATIC DISPLAC~EHTS (11) 

X Y 
---------------------

1 

2 

BEFORE OPT. 

AFTER OPT. 

BEFORE OPT. 
AFTER OPT. 

BEFORE OPT. 
AFTER OPT. 

1.63 

0.26 

2.43 
12.66 

0.061 

9.69 

0.56 

0.53 

9.74 
2.50 

10.71 
0.22 

~~6INE_:!~!!£_~E.!~!!E~~E:~re;:~ 
XX YY ZZ 

BEFORE OPT. 

AFTER OPT. 

0.23 4.28 2.39 
0.05 5.33 1.00 

Z 

4.70 

0.99 

20.77 

15.00 

15.65 
11.22 

--------------------------------------------------------------
NATURAL FREQUENCIES 1Hz) 
-----------.. --.. ---------

2 3 4 5 6 

BEFORE OPT. 5.19 6.92 9.10 12.22 12.37 19.50 

AFTER OPT. B.OO 10.00 12.00 14.77 16.00 20.42 

Table 4.12 Computer results from output file RESB 
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----------------------------------------------------------------
FILE : RES9 

RHO = I ENGINE SPEED = 800.0 rpl 
Before optilization F(X) = 0.7620E-1 
Aft~r optiliz1ticn FIX) = 0.2025E-1 
Percentage change 0 % = -73.42 
IFAIL = 2 
Ha of function evaluations = 17727 
Hor. of gradient of Lagrangian = 0.5i92E-10 
Condition of Hessian = 0.4710E+5 
Horl of residual = 0.1118E-8 
RHO on exit = 0.5074E+3 

XI 
YI 
ZI 
X2 
Y2 
l2 
X3 
Y3 
Z3 
Xl 
yy 
ZZ 
NI 
N2 
N3 
N4 
MS 
N6 

CONSTRAIN CONSTANT WEIGHT 

20 10 
20 10 
20 10 
20 10 
20 11°0 20 
20 10 
20 10 
20 10 
0.1745 0.1 
0.1745 0.1 
0.1745 0.1 
S.O 0.1 
10.0 0.1 
12.0 0.1 
14.0 0.1 
16.0 0.1 
IS.O 0.1 

ISOLATOR STATIC DISPLACEHEHTS ( •• 1 

1 Y Z 
------------

BEFORE OPT. 1.63 
1 

O.~6 4.70 
AFTER OPT. 0.S7 O.IS 1.24 

2 
BEFORE OPT. 2.43 9.74 20.77 
AFTER OPT. 3.76 0.52 17.34 

--------------_ .. _------------------
3 

BEFORE OPT, 

AFTER OPT. 
0.061 

11.47 
10.71 15.65 
0.43 14.5~ 

._------------------------------------------

BEFORE OPT. 

AFTER OPT. 

BEFORE OPT. 

AFiER OPT. 

~~~~_~=TIC_~E!~~E~:_!E;1::::~ 
XX YY ZZ 

0.23 4.2S 2.39 
0.04 S.b3 O.9~ 

NATURAL FmUEIICIES (Hz) 
------------------------

2 3 4 5 

5.19 6.92 9.10 12.21 12.37 
8.00 10.00 12.00 14.71 16.00 

6 
19.50 

20.2b 

Table 4.13 Computer results from output file RES9 
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IFAIL 

Norm of residual 

LHS of condition (4.1) 

o 

0.288gE-12 

o.1657E-8 

2 

0.1118E-8 

0.3657E-8 

TABLE 4.14: OPTIMALITY PARAMETERS FROM OPTIMIZATION ATTEMPTS OF 

TABLES 4.2 AND 4.13, ON EXIT FROM Eo4uAF 

alarming, bearing in mind that the specified accuracy of the solution 

defined by XTOL has little practical significance. For practical 

purposes setting XTOL in the range of 10E-5 to lOE-8 should be quite 

adequate. 

The values of the design variables, before and after optimization, for 

the optimization attempt described in Table 4.13 are shown in Table 

4.15. They indicate that the algorithm increased the isolator 

stiffnesses in order to satisfy the constraints but brought the 

isolators closer to the power train mass centre as can be observed in 

Figure 4.10. The kinetic energy modal distributions for the optimum 

isolation system, given in Table 4.16, indicate that the roll mode has 

been moved towards the lower end of the rigid-power train frequency 

spectrum. 

Finally the dynamic behaviour of the optimum isolation system, 

superimposed on that of the original system, is presented in Figures 

4.11 to 4.17 for the purpose of comparison. The discontinuous 

vertical line on all the plots marks the engine idling speed which is 
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DESIGN VARIABLES : BEFORE OPTIMIZATION AFTER OPTIMIZATION 

Stiffness KXl 418 N/mm 750 N/mm 

Stiffness KY1 132 N/mm 500 N/mm 

Stiffness Kzl 165 N/mm 400 N/mm 

Position Xl 124 mm 82 mm 
Position Y1 292 mm 399 mm 
Position Zl 81 mm 88 mm 

Orientation FI1 0 Degrees 10 Degrees 
Orientation THETA 1 0 Degrees -10 Degrees 
Orientation PSIl 0 Degrees 10 Degrees 

Stiffness KX2 288 N/mm 500 N/mm 
Stiffness' KY2 77 N/mm 70 N/mm 
Stiffness Kz2 226 N/mm 400 N/mm 

Position X2 308 mm 242 mm 

Position Y2 -279 mm -248 mm 

Position Z2 -292 mm -26 mm 

Orientation FI2 0 Degrees 0 Degrees 

Orientation THETA2 0 Degrees 10 Degrees 

Orientation PSI2 0 Degrees 10 Degrees 

---- ------------------ -----------------
Stiffness KX3 288 N/mm 108 N/mm 

Stiffness KY3 77 N/mm • 234 N/mm • 
. Stiffness Kz3 226 N/mm 400 N/mm 

Position X3 -181 mm -81 mm 

Position Y3 -303 mm -244 mm 

Position Z3 -272 mm -149 mm 

Orientation FI3 0 Degrees 0 Degrees 

Orientation THETA3 0 Degrees 10 Degrees 

Orientation PSI3 0 Degrees 0 Degrees 

-------------------- --------------------- ---------------------

Table 4.15 Original and final values of design variables from 
the optimization attempt described in table 4.13 



104 

Frequency x Y z xx yy zz COUPL. 

1. 8.0 0.18 0.49 36.52 0.70 63.53 2.75 -4.17 

2. 10.0 1.63 94.42 2.85 0.00 0.28 1.08 -0.26 

3· 12.0 84.42 1.10 4.58 0.48 1.43 6.71 1.28 

4. 14.7 3.36 3.62 55.22 4.15 31.54 3.56 -1.45 

5. 16.0 0.63 0.18 0.74 96.85 11.67 3.63 -13.70 

6. 20.3 9.80 0.19 0.04 0.36 0.04 88.40 -1.17 

TABLE 4.16: KINETIC ENERGY MODAL DISTRIBUTIONS FOR OPTIMUM ISOLATION 

SYSTEM 

also the engine speed used for the optimization. From Figure 4.16 it 

can be seen that the optimum isolation system is more efficient at 

engine speeds in the range of 600 to 1600 rpm with the exception of 

the two peaks which appear at approximately 880 and 960 rpm 

respectively. These peaks are attributed to the response of the 

vertical and the pitch modes of vibration to the first harmonic of the 

excitation as can be deduced from Figure 4.12. At frequencies lower 

than 600 rpm and higher than 1600 rpm the optimum isolation system is 

found to be less efficient than the original isolation system. At 

high frequencies the response of the power train is controlled by its 

inertia and this is reflected by the decline of the mean square 

displacement curve where the two systems display almost identical 

behaviour. The deficiency of the optimum system at high frequencies 

is undoubtedly due to its having stiffer isolators than the original 

system. This means that if the level of vibration at high frequencies 

is to be kept as low as possible, then an upper bound of the isolators 

stiffnesses should be specified prior to optimization. If no other 

changes are made to the constraints then it is expected that the 

algorithm will have little choice but to place the isolators further 
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away from the power train mass centre in order to retain feasibility 

of the solution. It can be appreciated that under such conditions the 

roll mode will, mos t likely, be shifted to a higher posi tion in the 

rigid-power train frequency spectrum and effectively reduce the 

efficiency of the isolation system at engine idle. The efficiency of 

the isolation system below the operating frequency band isof no 

importance in assessing its overall performance although it gives some 

indication of its behaviour during engine starting. However, 

comparison of the two systems in the low frequency region (50-600 rpm) 

is inconclusive for this kind of assessment. 

The dynamic response of the two isolation systems, to the 0.5 and the 

second order harmonics of the excitation are considered as a final 

check for the optimum solution. The dynamic response curves shown in 

Figure 4.13 suggest that overall the response of the two isolation 

systems to the second harmonic of the excitation is similar. However 

Figure 4.13 shows also that the response of the optimum system to the 

0.5 harmonic of the excitation is generally smoother (less peaks) 

al though the level of the response is generally equivalent for both 

systems. 

It is believed that all the problems which were encountered during the 

development of the program and all those which emerged while testing 

the algorithm, have been reasonably analysed. No attempt has been 

made to discuss the various problems on a mathematical basis due to 

lack of sufficient mathematical background on optimization theory. 

Time limitations did not allow the acquisition of such knowledge and 

consequently the discussion has been limited to the practical, but 

certainly not unimportant, aspects of the problem. 
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FIGURE 4.2: DYNAMIC RESPONSE OF POWER TRAIN MASS-CENTRE DUE TO THE ~ ORDER 
EXCITATION HARMONIC (OUTPUT FILE RES4) : 
(a) ORIGINAL, (b) OPTIMIZED 
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FIGURE 4.3: DYNAMIC RESPONSE OF POWER TRAIN MASS-CENTRE DUE TO THE FIRST 
ORDER EXCITATION HARMONIC (OUTPUT FILE RES4) : 
(a) ORIGINAL, (b) OPTIMIZED 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

It was demonstrated in the previous chapter that the program can 

successfully carry out all the optimization objectives which were set 

i.e. minimize the objective function while satisfying all the 

constraints. It was further shown that the numerical algorithm 

achieved a local minimum of the objective function in a fairly 

traditional engineering way. That is by moving the isolators closer to 

the engine mass centre (X-direction) and consequently reducing the 

roll mode frequency. In fact these changes are performed in the first 

few iterations while the rest of the computing time is associated with 

changes that ensure satisfaction of the constraints .to the specified 

tolerance and further search of the local design space for a "better" 

minimum. Had the specified tolerance been reduced to the value 

suggested in Chapter 4 then it is expected that the computing time 

would be reduced considerably. 

It would seem that this new approach to optimization of isolation 

systems has two main advantages over the methods used in the past. 

The objective function is defined in terms of a quantity which is 

directly related to force transmission into the chassis, referred to 

as the maximum strain energy of the dynamic system (see Section 3.2), 

and the static requirements are incorporated in terms of constraints 

on the deflection of the isolators and engine rotations, as discussed 

in Sections 2.4 and 3.2. The main benefi t which emerges from this 

definition of the objective function is that there are no implied 

constraints on the formation of the stiffness matrix other than those 

imposed by the static requirements. The final result may also be 

directly interpreted in terms of isolation efficiency in contrast to 

other methods where either some form of modal decoupling or spectral 

penalty function is used. Such methods produce no immediate evidence 

of the isolation efficiency of the system obtained from the 

optimization process. 

I 
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Unfortunately time limitations did not allow the dynamic model to be 

generalized. It suffers, in its present form, from lack of a non­

linear static analysis of the isolators deflections (discussed in 

Section 2.5) and a lack of consideration of road input excitation 

(engine shake). With respect to the former it was shown in Section 2.5 

that the problem can be adequately solved with the minimum of 

alterations to the computer program. Frequency constraints were 

introduced as a remedy to the problem of separating engine vibration 

from engine shake. However, frequency constraints are regarded as 

arbitrary constraints on the design space and consequently freedom 

constraints on the optimization algorithm. It is strongly believed 

that it would be far more sensible to change the model into one which 

includes a simple model of the vehicle suspension and indeed that 

would be the author's reaction had time permitted it. 

Another area of concern remains that of the definition of the static 

constraints. This is due to the fact that in many optimization 

attempts it was observed that the position of the isolators for the 

optimum isolation system defined a triangular base on the X-V plane (" ? 
/ 

which did not enclose the power train mass centre. This point was 

discussed in Chapter 4 and formed one of the acceptance criteria for 

the optimum isolation system. The question that remains is whether 

additional constraints are required to make the algorithm aware of 

this standard engineering practice or whether a completely different 

definition of the static requirements is needed. 

Carefully selecting the upper and lower bounds for the position of 

each isolator is one way of solving the problem, but again not an ?< 
entirely acceptance one. Optimization algorithms are powerful tools 

and should be utilized to the maximum of their potential. 

Finally there remains the subject of scaling which was extenSively 

discussed in Chapter 5. It is quite clear to the author, and it is 

anticipated that it will be equally clear to the reader by now, that 

scaling is a critical factor on the presentation of the physical 
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problem to the numerical optimization algorithm. Numerical decisions 

are not based on engineering judgement and what is required is the 

engineer's adaptation to the numerical thinking of an optimization 

routine. Acquisition of theoretical background on basic numerical 

optimization literature is necessary but not sufficient at all times. 

Most of the author's time was sper on relating the acquired -lIt 
theoretical background to the behaviour of the selected routine and 

redesigning the presentation of the problem for numerical stability. 

It is hoped that the discussion on the numerical aspect of the 

optimization problem will provide future investigators with useful 

guidelines. 
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APPENDIX A 

INTERNALLY GENERATED FORCFS IN MULTI-CYLINDER ENGINES 

For the purpose of calculating inertia forces it is generally accepted 

that the distributed mass of the crank mechanism of Figure A.l can be 

approximated by two concentrated masses, namely a reciprocating mass 

(mrec) at the gudgeon pin and a rotating mass (mrot) at the crank pin. 

Using a two mass-element approximation for the con-rod and the crank, 

based on the assumption that the sum of the masses of the elements 

equals the distributed mass of the link and that there is zero moment 

about the mass centre of the link, it can be shown that: 

1 
=m...+-1m 

!' 1 r 

m = m r1 + ~ m 
rot c r 1 r 

z 

z 

x. ___ -/---,!---=~ ._L-
w 

FIGURE A.l: SINGLE CYLINDER CRANK-MECHANISM 

(A.l) 

(A.2) 
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where mp' mr • mc denote the mass of the piston. connecting rod and 

crank respectively. 

Kinematic analysis of the mechanism shows that the piston displacement 

can be expressed as an infinite series in terms of the crank rotation 

(e) and the ratio of the crank radius to the con-rod length A (= r/L). 

Usually this ratio falls in the range 0.17 to 0.4 and the common 

practice is to ignore second order terms in A from the kinematic 

expressions. The complete expression for the piston displacement is 

given in reference [14] as 

z = 
r 

where 

= 
Ao + cose +. L 

j=1 
(_1}j-1 A2j cos 2je 

4j2 

(_1}k-1 ~] ~~~] (~}2k-1. j = 1.2 •.•. 

(A.3) 

However. for the purpose of this work a sufficiently accurate 

expression is given in reference [16] as 

z = (1 _ ~) + cose + ~ cos2e 
r A 4 . 4 

(A.4 ) 

Differentiating equation (A.4) twice will give the acceleration of the. 

reciprocating mass while the acceleration of the rotating mass is 

simply rJ assuming constant engine speed. For the single cylinder 

engine the reciprocating mass will generate a vertical force on the 

frame and a torque about the crankshaft while the rotating mass will 

generate a vertical and a lateral force on the engine frame. 

The cylinder gas pressure due to combustion generates a torque about 

the crankshaft which can be expressed as a Fourier series in the crank 

angle by 
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Tc = bo + L ai sin(i6) + L bi cos (i6) (A.5) 
i i 

For four-cycle engines where a cycle is completed in two revolutions 

of the crank. half as well as integer orders appear in the Fourier 

series and hence i =~. 1. l~. 

For a single cylinder engine the forces and moments exerted on the 

frame due to both inertia and combustion forces are given by equations 

(A.6) to (A.ll) 

Fx = mrot rw2 sin6 (A.6) 

Fy = a (A.7) 

Fz = rw2 [mrot cos6 + mrec (cos6 + A cos26 ) ] (A.8) 

Mx = a (A.9) 

My = a (A. la) 

Mz = -m r2W 2 [~ sin6 - ! sin26 - lA sin36] -rec 4 2 4 

- 1: ai sin(i6) - L bi cos(i6) (A.ll) 
i i 

The coefficient bo has been ignored in equation (A.ll) for the reason 

that it represents the mean static torque and hence does not affect 

the dynamnic response of the engine. 

The mul ticylinder crank arrangement is illustrated in Figure A.2. A 

set of axes is fixed at the crankshaft centre with the Z axis along 

the cylinder centre line. the Y axis along the crankshaft centre line 

and the X axis in the fore/aft direction to form a right hand system. 
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The forces and moments defined by equations (A.6) to (A.ll) are 

applied to each cylinber, taking into account the crank-angle spacing 

and the firing order, and the individual cylinder forces are then 

added algebraically to give the individual resul tants at the crank 

centre. 

If the crank· angle of the i th cylinder isw t + 9 i and the cylinder 

spacing is di , then with reference to Figure A.2 the forces at the 

crank centre for the n-cylinder engine can be expressed as follows: 

n 
[ L 

i=1 

Fy = 0 

Fz = (mrot + mrec) 
n 

rw2 Re[ t . e j (W t +9i}] + 
1=1 

Ili)2 Re 
n 

e j2 (w t +91} ] + mrec [q 
1=1 

Mx = - (mrot + mrec ) rw2 Re [ 
n 
L 

i=1 
di e j (wti9 i}] -

- mrec rw2 Re [A 
n 

d
i 

e j2 (wt+9 i }] L 
1=1 

M 2 I [\l d, eJ' (wt+91)] y = mrot rw m L • 

-~ 
4 

1=1 

r 2w2 Im [~ I e j (wt+9i} -! I 
4 i=1' 2 i=1 

I e j3 (wt+9i }] - {L ak Im [ Y 
1=;1 . k i=1 

+ L bk Re [ I e jk (wt+9i}]} 
k i=1 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 
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The terms in { } represent the gas pressure torque and are formulated 

under the assumption that the Fourier coefficients are obtained from 

gas pressure data measured at one cylinder only and that cylinder-to­

cylinder pressures are identical. For real engines cylinder-to­

cylinder pressure variations do exist and a better representation of 

the torque spectrum is obtained by flywheel torque measurements. 

Should such a torque spectrum be available then it could be used in 

place of the calculated values of equation (A.l7). 

n 

z 

y 

FIGURE A.2: MULTICYLINDER CRANK ARRANGEMENT 
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APPENDIX B 

PICTORIAL REPRESENTATION OF MODE SHAPES 

The problem of visualising a mode shape, of a dynamic system of both 

rotational and translational·freedom, arises from the difficulty of 

relating rotations and translations on a common scale. This 

difficul ty can be overcome if the body modal general displacement, 

described by the modal vector, is reduced to a screw displacement i.e. 

resembled to the motion of a nut on.a screw. 

The general displacement of a rigid body can be described by a 

translation vector OS and a rotation vector on (assuming small 

displacement) about some fixed point O. The displacement of some 
-

other point on the body located by a position vector r relative to 0 

is given by: 

OS' = os + on x r (B.l) 

on' = on (B .2) 

Milne [24], for example, shows that this displacement can also be 

described by a screw displacement about an axis located at r 1 with 

respect to 0, if a vector rl can be found so that for all r 

os' = p on' + on' x (r - r 1 ) (B.3) 

Substituting for os' and on' into equation (B.3) yields 



135 

Q'S + on x r = p on + on x (r - rl) 

oS + on x rl = p on (B.4 ) 

Equation (B.4) is solved for p and rl by taking the dot product first 

and the cross product in turn of on with equation (A.4) and assuming 

that Qn.rl = 0 giving the location of the screw axis as 

(B.5) 

and the pitch of the screw as 

p - os.on (B.6) -nnrz 

The equation of the screw axes is then given by the locus of rl_ i.e. 

by 

rl = os x on +Aon 

ioni 2 
(B.7) 

Using the modal vector as a general displacement vector for the body 

and assigning its translational part to 0 s and its rotational part to 

on, as is illustrated in the example which follows. the location and 

pi tch of the "modal screw axis" can be obtained from equations (B.5) 

and (B. 7). Rotating the body about this axis through an arbitrary 

angle ~ and translating the body along the axes by ~ /2rr the mode 

shape of the body can be obtained. It will now be shown how this 
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method can be implemented into a computer to use three-dimensional 

graphics for pictorial representation of the mode shapes. 

Figure B.1 shows the screw axis in relation to the original body axes. 

A screw axes system can be formed from rl,Gn:and the cross product of 

rl and Bn. The location of 0, after the screw displacement, with 

respect to the screw axes system is first computed and then 

transformed to the X, Y, Z axes. The new orientation of the X, Y, Z 

axes after the screw rotation can be found and the resulting direction 

cosine matrix can be reduced to three Euler angles. If the body is 

drawn in its original posi tion using a 3D graphics routine and then 

the drawing axes are shifted according to the computed translation of 

the point 0 and rotated by the three Euler angles, the body mode shape 

is obtained by simply redrawing the body with respect to the new axis. 

z 

x 

FIGURE B.1: SCREW AXIS POSITION RELATIVE TO BODY AXES 



137 

The procedure is summarised by the following set of. matrix equations. 

The position of 0 with respect to the screw axes is: 

• 
(B.8) 

where R1 is the position matrix of 0'. 

The position of 0 with respect to the screw axes after the screw 

rotation ~ is: 

x + os 

and after the screw translation it becomes 

=X~s+p~ 

If C is the direction cosine matrix so that 

(B.9) 

(B .10) 

(B.11) 

then the position of 0 with respect to the X, Y, Z' axes after the 

screw displacement is given by 

(B.12) 

The orientation of the body axes after the screw displacement is shown 

in Figure B.2. 
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axes origin 

Body axes after 

screw displacemen~ 

y----~ /0 
Fixed body axes _Screw axes 

FIGURE B.2: ORIENTATION AND POSITION OF BODY AXES AFTER SCREW 

DISPLACEMENT 

Let Xs. yS .Zs denote the screw axis and XSI. ySI. ZS· denote the screw 

axes after the screw rotation and C' the direction cosine matrix so 

that 

(B.13) 

From equation (B.ll) 

s' x =Cx (B.14) 

and (B.15) 

Combining equations (B.13). (B.14) arid (B.15) yields: 
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x = CT C' C X (B .16) 

giving the transformation between the original and the rotated body 

axes as 

T = CT C' C (B.17) 

from which the three Euler angles can be obtained. 

Example: 

Consider the modal vector v where 

-0.001071 

0.005738 translational part (Le. 6 s) 

v = -0.002695 

-0.007879 

! -0.008955 rotational part (Le. dn) 

-0.006839 

From equation (B.7) the screw axis will pass from the point r1 given 

by equation (B.5) as: 

r1 = -0.3352 i + 0.07358 j + 0.2899 k 

and its direction cosines will be those of dn i.e. 

[-0.57305. -0.65131. -0.49741] 
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The screw pitch is computed from equation (B.6) and 

p = - 0.129676 

Having located the screw axis, we can proceed to define the screw axes 

system noting that the vector rl is perpendicular to the screw axis 

and hence it can be used as the second axis of the system, the 

direction cosines of which are those of rl i.e. 

[-0.74621, 0.163774, 0.645245] 

·Comparing the direction cosines of the screw axis with those of rl we 

can adopt the convention that the screw axis is the yS axis of the new 

system and the axis along rl is the ~s axis. The direction cosines of 

the ZS axis are then computed by taking the cross-product rl x On and 

calculating the direction cosines of the resulting vector. 

If r2 = rl x on then 

r2 = 0.0209272 i - 0.045767 j + 0.035818 k 

giving the direction cosines for the ZS axis as 

[0.33879. -0.740929. 0.579866] 

and hence the direction cosine matrix C in (B.ll) is assembled as 



[

-0.746215 

C = -0.57305 

0.33879 
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0.163774 

-0.651307 

-0.740929 

0.645244] 
-0.497408 

0.579866 

Assembling the position matrix for 0' from the vector r1 

R1 = [~.2899 
-0.07358 

-0.2899 

o 
-0.3352 

0.07358

J 
0·3352 
o 

Then the position of 0 with respect to the screw axes system is 

computed from equation (A.8) and 

Assuming a 100 (0.174533 rad) screw rotation, the rotation vector ~ is 

set as 

~T = [0, 0.174533, 0] 

and hence the position of 0 after the screw displacement is computed 

from equations (B.9) and (B.10) as 
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and from equation (B.12) the position vector of 0 with respect to the 

X. Y. Z axes is found as 

Xo = 0.039534 i - 0.043356 j + 0.056726 k 

The direction cosine matrix C' which relates the original screw axes 

system with the screw axes system after the screw rotation (equation 

B.13) is assembled using the "Yaw-Pitch_Roll" Euler angle rotation 

discussed in Chapter 2. 

For the screw rotation: Rotate about Zs by ~ = 0 

Rotate about XS by e = 0 

Rotate about yS by ~ = 0.174533. 

Giving the direction cosine matrix C' as 

C' = (~'98481 
-0.17365 

o 
1 

o 

~.173648 ] 

0.98481 

and hence from equation (B.17) the transformation matrix T is computed 

as 

[

0.9897 
T = -0.0807 

0.1174 

0.0920 
0·9912 

-0.0946 

-0.1088] 
0.1044 
0.9884 

This transformation matrix can be solved for a new set of Euler angles 

~. e'. ~' which together with the vector Xo will define the 
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coordinate transformation required for the computer graphics. The 

angles <1>', 0', '1" are computed from T as 

The computer program, included in this Appendix, is the program 

written by the author to utilize three dimensional computer graphics, 

supported by GINO-F routines, for pictorial representation of mode 

shapes. 
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APPENDIX C 

THE FORD 1.6 LITRE ENGINE AND ISOLATION SYSTEM 

The power train-isolator arrangement described below is that of a 

standard production car. All the data presented here have been kindly 

supplied by the Dunton Research and Engineering Centre of the Ford 

Motor Company [10]. 

Power Train 

Type 

Capacity 

Direction cosine matrix for 

principal axes 

In line 

1608 cc 

40 kW at 

95 Nm at 

1 3 4 

80 mm 

Ixx = 

Iyy = 

I zz = 

~ 
0.9660 

0.1848 

. -0.1558 

four cylinder 

4800 rev/min 

3000 rev/min 

2 

0.2317 

-0.9026 

0.3583 

diesel 

-0.0754J 
-0.3814 

-0.9156 
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Location of power train mass centre 

from vehicle mass centre 

Location of centre of crankshaft 

from vehicle mass centre 

x = -0.414m 

Y = 0.094m 

Z = 0.199m 

Xc = -0.418m 
Yc = 0.140m 

Zc = 0.097m 

Zero load torque spectrum at 800 rpm engine speed. 

, . 

Fourier Coefficients 

Harmonic No. Frequency (Hz) . Real Imaginary Phase Angle 

0·5 6.9794 -0.31676 -0.36043 0.47984 
1.0 13.959 5.14327 -7.88074 9.41060 
2.0 27.918 -48.65539 -168.34996 175.2400 

3·0 41.876 -3.47907 -3.5206 4.9496 
4.0 55.835 -64.61180 -76.07989 99.814 

5·0 69.794 -2.95054 0.19391 2.9569 
6.0 83.753 -45.45762 -21.06217 50.10 

7·0 97·712 -1.22193 1.11813 1.6563 
8.0 111.67 -22.79407 1.26241 22.829 

9·0 125.63 0.43749 0.83497 0.94264 

10.0 139·59 -7.28576 6.04232 9.4653 

Maximum speed reduction of final drive: 12.827:1. 
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Isolation System: 

Number of isolators: 3 
Isolator positions (see also Figure 2.7) and stiffness rates: 

First isolator (RH mount): 

Position: Xl = -0.290m 

Y1 = 0.386m 

Zl = ·0.280m 

Second isolator (LH mount): 

Position: X2 = -0.106m 

Y2 = -0.185m 

Z2 = -0.093m 

Third isolator (LH mount): 

Position: X3 = -0.595m 

Y3 = -0.209m 

Z3 = -0.073m 

Space Constraints: 

Stiffnesses: kx1 = 418 N/mm 

kY2 = 132 N/mm 

kZ3 = 165 N/mm 

Stiffnesses: kX2 = 288 N/mm 

kY2 = 77 N/mm 

kZ2 = 226 N/mm 

Stiffnesses: kx3 = 288 N/mm 

kY3 = 77 N/mm 

kZ3 = 226 N/mm 

These define the free space in the engine compartment relative to the 

vehicle mass centre. 

1. -0.500" Xl .. -0.250 metres 

2. 0.350 .. Y1 .. 0·500 

3. 0.180 .. Zl" 0.370 

4. -0.400 .. X2 ~ -0.050 

5· -0.420 .. Y2 ~ -0.150 

6. -0.050 .. Z2" 0.410 

7. -0.650 .. X3 .. -0.300 

8. -0.360 .. Y3 .. -0.150 

9. -0.200 .. Z3" 0.050 
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Stiffness Constraints: 

These define a practical range of isolators as follows: 

10. 100 .;; kXl .;; 750 kN / m 

11. 100 .;; kYl .;; 500 
12. 100 .;; kzl .;; 400 

13. 100 .;; ~2 .;; 500 

14. 100 .;; kY2 .;; 400 

15. 100 .;; kZ2 .;; 400 

16. 100 .;; kX3 .;; 500 

17. 100 .;; kY3 .;; 400 
18. 100 .;; kz3 .;; 400 
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APPENDIX D 

COMPUTER PROGRAM AND DATA 

D.l THE ENGVIB COMPUTER PROGRAM 

The program is not of the interactive type. All data are read from a 

data file and all output is similarly diverted into an output file. 

It has been written for a FORTRAN 77 compiler and consists of the main 

segment ENGVIB and fourteen subroutines. three of which are called 

directly from the optimization routine. The flowchart of each of 

these three routines as well as that of the main segment are shown in 

Figures D.l to D.4. The function of the remaining eleven subroutines 

is as follows. (The numbers in the boxes correspond to those on the 

flowcharts and indicate where each subroutine is called): 

DIRCOS: 

EULER: 

FORCE: 

LOCAL: 

MATD: 

PCHANGE: 

Computes the direction cosine matrix from a given set of 

Euler angles (Yaw-Pitch-Roll convention). Called at [1] 

Computes the Euler angles from a given direction cosine 

matrix. Called at m 
Calculates the force vector generated by the engine 

inertias at the centre of the crankshaft. Called at [i] 

Computes the static deflections of the isolators caused 

by a displacement of the power train. This subroutine 

is called by CONl 

Called at [§J for printing of intermediate results 

Print the percentage change of the optimization 

variables on exit from Eo4uAF. Called at ~ 



REPORT: 

SCALE: 

STRAIN: 

TRANSFORM: 

VLCHECK: 
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Prints out final and original values of the optimization 

function and the percentage change. Called at [[] 

Scales all the optimization variables so that they lie 

in the range (-1, +1) before entry to the optimization 

routine ~ and scales them back to their physical 

units when control is passed from the optimization 

routine to FUNCT1 ~ 

Computes the strain energy at the end of each cycle of 

subroutine FUNCT1 and returns the value of the 

optimization functions on the last call. Called at IT!] 

Computes the transformation matrix which is required to 

transform the crankshaft forces to an equivalent set of 

forces applied at the power train mass centre. Called at 

I}] 

Checks that the cosines and the sines of the Euler 

angles, computed from the elements of the direction 

cosine matrix do not exceed unity. Called from 

subroutine EULER. 

Apart from the optimization routine Eo4uAF two more routines are used 

from the NAG-Library. These are F02AEF, which is called to solve the 

eigenvalue problem of equation (2.13) and F01ADF, which is called to 

estimate the inverse of the stiffness matrix. 



:-----------------------------.......... .. 
150 

.... 
7 

ENGVIB 
SCat.. the de .... gn yan.abl. •• Cd.L FUNCT1 to cc.put. the 

, , m ID that -1<X~< 1 13.381 dyncDt.c reapoM. of the 

-~ ~r..t~at. ayate .. 

Open INPUT ,OUTPUT r~Le. Set at.L plll'OIIatera ~n , li 
the EO'UAF arguaent 

,It 
~ No 

Reod enlll-" dot a V~te I.I'pJt dota OPTIHIZATION , 
~rt.o output f~L. 

\!J 

~ 
Read ~.oLotor tranaLat~ond. Reod ccnatrlllont conatant. 

, I'Vee 
at~ffne •• e. and w~lt1t~ng fcators 

I, ~ 
Cat.L EO'UAF 

. 

Conopute the etot~a , 
" 

Are force. 12.UI , I, 
No 

~ rot at~onat. .t~ ffne ...... Cd.L FUNCT1 to comput. the 
DVIIIoLabLe , cVoo~c respon.. of the 

Ca.put. the trcn.fOl'llCt~on optuua ayst .. 
_~X for the enlll-n. 

, I, , Inea j I' :t;, force. 12.231 

~ 
, " Read ~eoLator 

IIN.te ~naL reatLts rotat~onat. 8t~ffnell88 Read cranlcahoft oxe. 
di.rectl.on C08I.nes Is1 ~nto output r~Le 

\11 
~ , IJ 

Read upper and Lower Reod pos~t~on ccordi.nat .. 
bcu1da for uoLat or of the cranlcahoft 

et~rfneeaes 
CLose d.L opened r~L88 

t I 1\ No , I, 
Read ~80Lotar poa~t~on I 
ccordi.notea and thIM.r 

( upper and L 0__ botnda Another uoLator , RETURN 

t v •• 

Reod ~8oLator di.rect~on 
C08I.nea j 1\ 

, I, 
Set the upper and Lower 

. CollpUte the ~aoLotor belnll for the EuLer 
t1l EuL er angLe. 12.111 angLe. 12.121 

I . 
.... -.,. 

FIGURE 0.1: FLOWCHART OF MAIN PROGRAM 
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SUBRDUTlNE FUNCT1 ) 
~ ~-,~ 

No 

SeaL. de.~gn VCI'I.abL .. , C<§, .. f6l back to phy~cat. !Bt. 
ha'llon~c , 

V,. V •• 

Coaput. dl.rect~on caac.ne 
Co~. opt~lII.zat~an 

IICt~X for each ~sat.ator 

1il 
Funct~an 13.28) ea_put. lIean 1ICJlOI" vd.UI 

71 12.111 
. 

of reaponae and odd to 

t 1I8on .qua-e reapanc. 
If 10]- .... at ~on array 

" l RETURN ) i ea~e 8t~rrneaa Dat~x 
. 

1 2.8 ) - 1 2.1D ) 
Increoa. horllo~c nUllber 

St are frequency and 

t by ~ncr_nt stap r .. pona. tar current 
ha'llon~c 

COllpl£e se.gen vectora and + se. gen vaL uel. 1 cat.~ NAG 
FD2AEF ta 8O~ve 12.13" HuLt~pLy receptancea 

Wl.th torcee to obta.n 
, reeponce 12.2Q) 

No + 
PM.ntol£ re(JJI.red r, ~te response resULts COIIfIut.e the receptance 

~nto a .... L. for pLott~ng aat~x eL .... nts 7I1l,J) 

Yea I 

PM.nt I IsoLator st~ffness.s Incr.OI. ~n. ape.d Coapute the receptance. 

IsoLator poac.t~on by ~ncr_nt atap for each aod. of 

IsoLator o~entot~an ~brat~on 12.28) 

Mass aotr~x 
St~ffness lIotr~x 'v 

Is1 
NatlraL frequ.ncus I 

Mode shopes 

la COllpl£. forces at the 

engl.ne apeed > Bnljlon. l1ICIaa centre 
..... BOX va~ue r 

191 
12.23) 

For current engl.ne 8peed 
No 

ca.put. the ~nert~a conatantt 

tt-ec w r ••• Yea 

For current horllOn~c 

( RETURN ) coapute the engl.ne force 
at the centre of the 

Deter.~ne wh~ch ~8 the f~rst crankshaft 
horllo~c at ex~tat~an 31 12.1:1) to 12.20) 

, -, , 

Ft-g. 0·2 F~ow chart for subroutt-ne FUNCT1 
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. 

( SUBRWTrNE CONI ) 
\ If 

Comput" the ~nver.e of the 
et~rrne .. aatru 

ICaLL NA; F01ADFI 

, I1 

Ilul.t~pl.\I the ~nverse 
.t~ffne.a .ctr~x ~th the atat~c force 

vector to abtCII.n the .tct.~c 
ci.apLace.ent. at the 

povertrCII.n ma.. centre 

\ '/ 
. 

Comput" the defLect~en. at 
each ~.oLctDr 12.361 

. , 1/ 

Conpute the CDnetr~nt fI.Ilct~cna 

for the .ngt.ne rotct~Dna 
. cnd the ~.oLatar defLect ~ en. 

13.'0' , 13.3'11 

, I1 

NO 
ARE 

FREQUENCY CONSTRAINTS 
REIlUIREO f 

\ I, YES 
, I, 

Co.puts the CDn.tr~nt ft.t1t~Dna 

fDr the nct1.raL fraquencua 
13.'11 

\ I! 

( REMN ) 

Fl.g. 0·3 FLow chart for subroutl.ne CON1 
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SUBROUTINE AMONIT 

ND 

VM.te ~neD output t'l.Le the 
F:1It~.ata8 or the Lagrange .uLt~pLur8 

Ctrrant vaLue or the p.naLty par_.r 
Norm of th. jJ'adl.ant or the Lagr~an 

Norll or the rea~duat. v.ctar far 
the con.tr~ne. 

V~t. ~nea output r~L. the 
No or EO.(J8F ~terot~ona 

No of f~~on evaLuot~onal 
Ctrrent. f'U'lct~on vaLue I 

The norII of the gracl.ant vector 
The cancl.t~on nnber or the lfeaal.an 

Th. cu-rant ~aoLator derLect~ona 
The CU'l"ent engt.ne rotat~on 

No 

Y ... 

Vr~t. ~nto output r~Le the 
C1rrent nctu-cL rrequ.nc1. ... 

RETlJlN 

FIGURE D.4: FLOWCHART OF MONITORING SUBROUTINE AMQNIT 
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0.2 DATA FILE STRUCTURE 

All the read statements in the program are in free format and hence 

the only requirement in constructing the data file is that the data 

should be separated by a space and that they should be assembled in 

the right order. A typical data file is listed below with a line-by­

line explanation following. 

'FORD DIESEL ENGINE 1.6 LITRE - ZERO LOAD'. FALSE. (1) 

3 0 4 3 2 1.0 1 1000 20 1 10.0 0.5 (2) 
0.0 10.0 -10.0 10.0 0.0 10.0 (3) 

197.0 13.1564 7.0244 10.7088 1.4062 0.25904 -2.03478 (4) 

0.418E6 0.132E6 0.165E6 (5) 

1.05E 1.0E5 1.0E5 (6) 

7.5E5 5.0E5 4.0E5 (7) 
0.124 0.292 0.081 (8) 

-86.0E-3 256.0E-3 -19.0E-3 164.0E-3 406.0E-3 171.0E-3 (9) 
1.0·0.00.00.01.00.00.00.01.0 (10) 

0.288E6 0.077E6 0.22E6 (11) 

1.05E 0.7E5 1.0E5 (12) 
5.0E5 4.0E5· 4.0E5 (13) 

0.308 -0.279 -0.292 (14) 

14.03-3 -514.0E-3 -295.0E-3 364.0E-3 -244.0E-3 211.0E-3 (15) 
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 (16) 

0.288E6 0.077E6 0.226E6 (17) 

1.0E5 0.07E6 1.05E6 (18) 

5.0E5 4.0E5 40E5 (19) 
-0.181 -0.303 -0.272 (20) 

-236.0E-3 -444.0E-3 -399.0E-3 114.0E-3 -244.0E-3 -149.0E-3 (21) 
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 (22) 

13420.0180.0540.0360.0 (23) 

0.5 1.0 1.0 0.04 0.0 0.9139 0.096 0.3077 -609.28915 (24) 

6 800.0 0.05 (25) 
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. I 

-0.36043 -0.31676 (26) 
-7.88074 -5.14327 (27) 
-168.349 -48.6554 (28) 
-3.5206 -3.47907 (29) 
-76.079 -64.612 (30) 
0.19391 -2.95054 (31) 
-21.0622 -45.4576 (32) 
1.11813 -1.22193 (33) 

1.0 0.0 0.0 (34) 
0.0 1.0 0.0 (35) 
0.0 0.0 1.0 (36) 
-4.0E-3 46.0E-3 -102.0E-3 . (37) 

5.0E-3 5.0E-3 (38) 
10.0 10.0 (39) 
15.0E-3 -15.0E-3 10.0 (40) 
5.0E-3 5.0E-3 (41) 

. 10.0 10.0 (42) 
15.0E-3 -15.0E-3 10.0 (43) 
5.0E-3 5.0E-3 (44) 
10.0 10.0 (45) 
15.0E-3 -15.0E-3 10.0 ( 46) 
0.1745 0.01 (47) 
0.1745 0.01 (48) 
0.1745 0.01 (49) 
5.0 0.1 (50) 
5.0 0.1 (51) 
5.0 0.1 (52) 
5.0 0.1 (53) 
5.0 0.1 (54) 
5.0 0.1 (55) 

The interpretation of the data is as follows: 
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Lines: 

1 Title for current computer run (character variable) 

Switch for optimization/dynamic response (logical variable) 

2 Number of isolators (integer) 

3 
4 

5 
6 

7 
8 

9 
10 

11-16 

& 17-22 

Number of additional points on the power train, the static 

displacements of which are critical and should be constrained 

(integer) 

Number of engine cylinders (integer) 

Number of available stiffness rates/isolator 3 or 6 (integer) 

Optimization switch IPAR. If IPAR=2 then the objective 

function, F{X), is defined as the maximum strain energy of the 

system. If IPAR=l then F{X) is defined as the sum of the mean 

square displacements at the power train mass centre 

Scaling factor for the objective function 

Count down parameter for complete output of results during 

optimization 

Optimization parameter which defines the frequency of 

monitoring intermediate optimization results 

Optimization ~witch, which declares whether frequency 

constraints will be applied 

Initial value of penalty parameter RHO 

Optimization parameter which defines the accuracy of ea'ch 

linear search 

Upper and lower bounds for the Euler angles 

Power train mass and inertias 

Stiffness rates for first isolator 

Lower bounds of stiffness rates 

Upper bounds of stiffness rates 

Isolator position coordinates 

Lower and upper bounds of position coordinates 

Isolator direction cosines (orientation) 

Same as 5-10 for second and third isolator 

, 
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23 Engine firing sequence 

Crank arrangement 

24 First excitation harmonic to be considered 

Second excitation harmonic to be considered 

Harmonic number increment 

Crank radius 

Rotating mass 

Reciprocating mass 

Distance between cylinder centre lines 

Ratio of crank radius/conrod length 

Maximum static torque/ number of engine cylinders 

25 Number of excitation forces 

Engine speed 

26-33 

34-36 

37 
38-55 

Modal loss-factor 

Combustion Fourier coefficients (imaginary-real) 

Direction cosines for crankshaft axes 

Position coordinates for crankshaft centre 

Constraint constants and weighting factors 



.~. ' .. 

..... 

'-
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D: :~~:':S IO?1 :-;;: r 3 , ~ '·1 {6 • -5 , , 2: ~: .: ~:~ (3 } • DC (.3 ) • !y:~ \ J • 3 ) 7? ~ 3 j 

* , ;:C2 {3 • :; : , ;{F ( 3 ) • it 1 (:3 } • :r:" (3 ) , ~ ( ;5 , , ! :' l T:' = ( :3 () , I :c= ~ (3 ) , DC:) (3 • ~ 

5 ?:2:B~a*ATAN(\.O) 

5 RAJ=?IZ/360.0 
7 C 
3 C 

: 1 
: 2 . " ,., 

~ 5 
i 6 
:7 
, <3 

19 C 
20 
~. 

~ . 

26 
27 
:8 
29 
30 
3 ! 
J2 
JJ 

'. " 
~v 

, . 
"~ 

C 

,-

~~AD(O,~:OL.D 

O?=:-!(S ,F!LE=OLD) 

FOR:-!AT(60Ai ) 
REAiJ (5 , "+ ~ : 2:'07 
R=:A:J (5 , ~ ) ('" ( r ) , I = i ,6 ) 
READ (5, * ) ( (V ( I , J ) , J = i ,5 ) , ! = 1 ,6) 
CLOS:(5) 

;;R r T=: (0, 100 ) 

. ) 

100 FORMAT(T5,'E~:er screw axis rotation (Degrees)'// 
*75,'and translation sca:~ r~c~cr'//) 
R~AD(O,~)~SCR,7SCL 

!F(!?LOT.~Q.! )~HEN 
L. -1 
CA!..:' DEVIC=:(!..) 
CA!..!.. P!CCLE 
=:·1D !F 
DC 10 J= 1 ,6 
r::CJ.!..E.3)T:iEN 
IVAL=J-l 
ES=: 
!VA:'.:J-4 
=:1>1:J !i' 
YSH!FT=50.0 

::C":'_fJ .0 
:0 :1) !: ~ • ".' 
7~ ~ : ~ ~ V : : .. ; ) 
~~)(: );,;'1 : -.: .,;; 

CA~~ C~OSS(7~.:~0.R) 
~~.;:~:..: ~ C).") 

::.:~()!::!.~~ 

, ..... ". , 
:...: :'~ 

3CRE','; 



.O!" ,. 

-, -, 
'-'. 

: :....> 

..,.., 
78 
'79 

66 
e9 
90 
91 
92 
93 
914 
95 

c 

--"-....... - ., ....... -~ ....... : - ~ ... , -::= - -'..., ..... - - .. ' .'. 

~~:' - . 

CALL ::=OS1 (R,~~:~.D=) 
Cl:.:':' !-1A:':V (!:le. ::;:' ) 

:;:{KP)::O.O 
CALL MAXV(D=,K?l 
D: (KS ) ~ DU~!1Y 

KS2=K? 
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CA~~ DCOS2(K?,DC,DC; 
!F(K?LT.KS.AND.K?*KS.NE.3)7HEN 
CA~L CROSS(R,RO,P) 

CALL CROSS(RO,R,?) 
":·iD ! F 
MOD?2=0.0 
DO 40 !=1,3 
MOD?2:~OD?2+?(!)~?~!) 

Uf .. ~? ~ ,-
t:..· • .;. .:. 

97 LiD CONT! NU= 
~6 
99 

lOO 
,01 
-;02 
103 
,0;; 
-;05 
~06 

~C7 

i08 
• C'. ~l. 

110 
-; -; 1 

. . :: 

C 
c 

;-!OD?= SQ27 cr-:OJ?2) 

CA!...!... DCOS 1 (? i"!OD?, DC) 
!F(~33.EQ:61K?~~ 

!~(KS3.EC.?)~?=2 
IF(KS3.EC.2)K?=3 

CALL DC032(~?,D:,DC1 

:?~!?~C7.EQ.O)7HEN 

W~I7E(C,200lJ.W(J) 

\J;\! 'rE (Cl. : :? 0 ) KS , ::32 , KS 3 , P! TC:-;, (R ( ! l , ! :; ! , 3 ) • (DC'! (:~S,:~ ) , ;.~::; ~ - .......... -
=.'1:-' .!. ~ 

F:;:;;.;T {75, t !"!OD=: 
;.-' (RADS/SEC") 

t ,:2,720.' !'::::AL ::-REQU::::NCY 'J f7. 2, 

, , , . , 

': 20 ?o:\:~ . .c..T(:-=,' KSC::=:t-.' :; " 1:';,725,' ;':5'1 = I I!:!' 745,' ~:S2. :: .::l/ 

, .. , .. .. . -...; 

, .3(::0. 4 ,2 

.~'.~::::;('-.:".:;:~. : • i 
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: ·36 
1·97 
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200 

202 
2G3 
"''''''. - .... ~ 

:06 
207 
208 
209 
::0 

~:.2 
.... , ., 

:: :} 

C 
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1"::'! .. ~. :""'1'1" ::', .... - ,--...:=~. ... ,-, _ ...... -~ . . , .... -_., 

c.!.!..!... TRANSF (-1 ) 
CAL!.. W! NDC~'; (J ) 
C.~.L!.. V!:::~.;S= (,2,:3 ) 
=SH!F7~230.C-:VA~~7~.O . 

:.'- .. . .. . -. 

CAL~ SH!FT3(O.O,YS~!F7.ZS~!~T) 

CA:"L SCALE ( .:5 ) 
CAL!.. L!NCC:"(!) 
CAL~ R07A73(3,-30.0: 
CA~L R07A73{2.30.0) 
CAL:" 80)«50.0,100.0,60.0) 
CAL!.. AX:5(EO.O,;00.0,60.0) 
D;\;;73C:"~:<,!(! ) 
DY·TSCL*X7(2) 
DZ=7SCL*XT(3) 
CALL SHIFT3(D)(,DY,DZ) 
CALL ROTA73(3.F!) 
CA~L ROTA73C: ,7HE) 
CA~~ ROTA73(2.?SIi 
c.;~:.. ;"':XC::"{J) 

E:-IV !F 
10 CON7!NUE 

IF (I?L07 .:C.; )7:::)1 
CALL T!TLE(!TITLE,Y) 
CALL DEVEND 
:~ro ! F 
E!m 

SUBROU7:~E 22CSS(V; 9V2.VV) 
DIr-:E.NSrCN V: ~3 j, V: (3) .VV()) ,?~~3.3) 
::0 ~ 0 ! -: ,3 
'IV ( : ) :; () • r) 
':'V"" ... _1'1 • ..., 
.. ""._'-v.·~ 

~~.~ 10 :~N~:~UE 
., ..... \ ?;~(~.1):;V",;·, 

., .. : 

.:: . .i 
... ~ . 

..... : 

.... , .... 
" : 

., "1-; 

.:" J -, , 
.. '.' 

~;~(J.2)~V· 

? :,: : . .:2 ) = -?:-: (:2 , ~ 

, ,-
~. _.' ... 
-"." ~() ,j.:.-: 
·r; i : ~ .. VI

/ : : ' -?:~ : : . -; ; - '.J::' ( ... : .' 
.:' -::::.::: :;'.:~ 

.' 

.;-:: ...... =-,! .. - - .' .... 

R~.-\:" ;'!S'.:·:: !.:C(Ji 
:JS 1 ,) ~.: i , 
DC ( ! ) = :< ( :) :'1: 
'~I"I ~r"'''· "nl:': ",,\J,' ... ",,_ 
", __ ,OF", 
;',:,:, ~ '.,,' ...... ; 
..: .. ~,' 
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.. " .. .. 
.:.. ... .:.. '-
·~w D!~E~S!a~ :C(J 
::~5 J:-!l~X.;.: A3S (:C ( : ) 

250 

252 
253 

255 

:53 
259 
260 
25: 

c 

DC iO (:, ,3 
~? L0\35 (DC \: ) ) • GT • D!J!AX) 1':-:==·1 
D~';X= AB3 CDC ( ! ) ) 
KP= ! 
END I:: 

10 CC~TINUE 
RETt:RN 

SU8ROUT!~E DCOS2(K?,!JC,DC~ 
D!:1ENS!CN Dei (3,3) ,DC(3) 
DO 10 I: i ,3 
DC i C(P, I ) : DC ( I 

10 CONTINU" 
RETURN 

262 :;1D 
263 C 

3~320UT!NE EULE~{D.?!.7HE,?S!,?!:) 

~~c :Z~E~S:CN J~3,3) -,..- .... ..!o' '-' 
c ==============~~===========~======:===~=============~====: 

\c::: 

~59 
270 

c 
c 
C 
c 

Calculat~ the an~le T!-!ETA -?!/2 <= 7HE7A (= ?:, 

\c:=: 
273 C 
274 C7~E=5QR7(' .0-D(3,2)~D(3.:1 

27~ THE=ATAN2(D(3,2),CTH~) 

_!o:: C 
C 

.... .,. .... 
_ f'~ \..-

?S! o <= 
\1':: 

..... ) . 

- 0 ,-

, 
" -.- '. - -, .' , !- .. _---------------------_ .. _------------_ .. _---_ .. _------

" ,; . ., 
" --" - C ... : .~ ".' .-: ': :~ =. :. S 1 .~.~ .. /' 

J. 

" 

'': . -., 
" , ,- -------------------------------------------------------- ... -
, '. -
--., - -



\!;---
99 

300 C 
301 
302 
303 C 
304 C 
305 
306 
307 ,­

'~ 

30G C 
30') 
3iO 
31 1 
3i2 
313 
314 
315 
316 C 

163 

:_'';:'''_ '-i!..::~='''::: :C?:3~. :1?$:-: 
C~~~ VL:~~CK:S?S:.S?3:) 

.F!=ATAN2(SF!,CFI) 
PS!=A!AN2(S?SI,C?SIl 

I? (F! • LT .. 0 .. 0 ) r! -:? !.: ~?! 
!F(?Si.L7.0.0)?S!=?!2;PS! 

R:::7URN 
E)!D 

SUBROUTINE V:"CH:::CK(;{,Y~ 
!PCABS(X).GT.1.0lTHEN 

Y=O.O 
E,W IF 
R:::7UReJ 
END 

317 suaRaU7:~::: 20XIX30X.YSox.zaox) 
313 C DRAY A BOX OF D!MENS:8NS X30X,Y30X t ZEOX !~ XYZ 
3i9 
320 
321 
322 
323 
324 
325 
326 
327 

CAL:' }:OV:-03 (:~30X/:!. tJ t YBOX,-:; .0 t Z50:{/2 .:; ) 
CA:'L 8.?OK~:r (0 ) 

c ;:~(J:J:- EDGES 
CALL LINBY310.0,-YSDX,O.0) 
CALL.LIN3Y310.0,O.O,-Z30X) 
CALL L!NBY3(O.O.Y30X,O.O) 
CALL LIN2Y3(O.O.O.O,Z9QX) 

C SIDE EDGES 
CALL LIHBY31-XBOX,O.O,O.01 

323 CALL LI~EY3(O.O.O.O,-Z80X) 
329 CALL LINBY3(XBOX,O.O,0.0} 
330 C TO? EDG2S 
331 CALL ~OV:03(X30X/2.0,-Y3aX/:.O,Z90X/2 .. 0) 
31~ CALL LINBY3(-X30X,O .. O.O.O)~ 
333 CA~~ L:~3Y~(0.0.Y30X,0.0) 

3''-' 
"3 .:.r~ 
JJ7 

j'"l" , 

~ ... ..:.. 

.J 41. 
",. , . 
... u_' 

..... , 
j '.:·1.: 

J'j 1 

~.~ " 

C 
,­
" ~~_~ ~0V3Y3:0.0,-Y30X.O.O~ 

- ....... -" 
.-::~ .::'" .. ,; 

-oi- • :..; • :.:: r G:·!." • / / ) 
.... Of r, ... ~ =- ,'j:"'; ~,' 

.. ,' _ .. .::~,:; r:.'l.: .. :'" .~. " .. " - -',' ',' 

. ,. ".': 



35,3 
3:', 
36') 

C 
C 

164 

EXD 
36~ 

362 
363 
364 
363 

DIMENSION 17,7LE(80) ,IH6J,!AR(10),!ARI (5) 
DATA !AR!77,79,68,6?,32,O,32.32,4S,32/, 

366 
357 
36·, 
369 
370 
3 7 , 

372 
373 
374 
375 
376 
377 
.......... ') 
:'1<./ 

J79 
3i3C 
38i 

. 382 
383 
384 
365 

* !Aa1!32,40,72,122,U1' 
C~';'!..L 7~ANSF (-1 ) 
CALL w':·;JO\·;(3) 

CA:':' L! NCOL (1 ) 
CA~L ~OV:03{O.O,2C.O.25.0) 
CA!..L CHA.~ ~ ( !:or TLE, 80 ) 
DO ~ 0 ::. '7 .6 
1AR(6)d'8+, 
FR:\l(Il 
1F('.LE.3)7HEN 
!VAL=!~i 

i ~. .. . . '. _ ... r.:... .. _ - 'i 

!F(!.G7.3'Y!'!OD=125.0 
ZMOD·230.0-IVAL~75.0-30.0 

C.~LL r:OV703 (0.0, Yl':OD. ZY:OD) 
CALL ASC:!(IAR,10) 

386 CALL CHAF!X(FR,7,2) 
387 CALL A5CI!(lA~1,5) 
36a 10 COi-rTINtJE 
369 RETURN 
390 
391 C 

3';:S 
3 '~::: 

J ';: '-;l 
. !;~ i) 

.. , . 
'- .~' . 

.... ~' 
',.',' .... '.' ,; 

~. 

. '. 

" 'J 

~'7 

, ..... I 

\.. ... :..-
C .. ;LL 
'- .-. ...... 

... ~ , ..... -._-

L:X3Y3(J').0,O.O,O.O) 
:'!JV7!;J t,O ,I).:). ,". :.".:)) 

.. '). ?:=C':: .. .::. '}. ',:'. ~, ; 

:.. : :.! 3 ',''': : 'J • I.) • ,;.~ • :~ • -: • ") ; 

. ','.~ • :; • ') • I) .: 

r:t1~~ .":'';I;-:C:;'"~). £). ':'=';0::'::::.:) 1'3:;. 'J. fJ.'~ : 
C:fA:-:OL (~H '!-o:. j 

~O~7~J(O.O.O.J.Z20X!:.O·JO.C) 

.... .... -.. ~ .. 
:'.::' .. ' :',.; 
:::::: 

• 



-' .J. 
. 

~ 

o· 2:,) 

:. -
.i.,;.2:Z 

... 23 
&.:, .... 4 -
u:S 
:"::!6 
427 

~ 

" .~ 

C 

c: 
C -,~ 
C 
C 

165 

3;;3~OU7:~~ ~:~COS(~,?:.7~~.?3:~ 
: ~ ~.~=)!::: ~ '};! :-.:. '3 ,I 

Get ~~:C~ 3n~les f~om ar~ay of optimization variables 
calcula:e t~~;~ s!nds and cosines 

:.Z? :?:=COS(?~~ 
430 SFi~SIN(F!) 

u31 C7~=:C03(7~=) 

432 S7~==SINC7~~) 
~J3 C?SI=COS(?SIl 
43" 
435 C 
"36 C 

lO37 
~ 
, .') 

L.;3 . 
~~o 

!;L;! 

442 
443 
UU4 

llll5 
4"6 

4LJ8 
1;4', 

C 
C 
C 
C 

C 

j:::~7 4.401 

S?SI.:S!~l(?S! ) 

-------------------------------------------------------_ .. " 

-----------------------------_._---------------------------

Dt 1,1) =C?Sr .. c;:!-S?SI*S7P'=,*SFI 
D t i , 2 ) .: - CTr.E,... SF! 
J(l ,3)=S?S~~CFI+C?Sr*S7H=·SFr 
D(2,1 )=C?S!+SFI+SPSI*S,HE .. CFI 
D(2,2)=CTH::+C?! 
D(2,3)=S?S!+SF!-C?Sr.S7~E·CF! 
D(3,1 )=-S?S:-+C'7:-!E 
D{3.2}:S7::E 
JtJ.J/4C?S!*CT~E· 
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