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The use of numerical optimization methods to selec¢t reciprocating
" engine  anti-vibration characteristics is investigated. A rigid beody
power train model coupled through an arbitrary array of vibration
isolators to a rigid supporting structure forms the basis of the
dynamic model. By calculating the forced response of the power train

to its internally generated excitation, the strain energy summed over:

the isolators may be determined. This energy, which is indicative of
the efficiency of the vibration isolative mounts, is used as the
objective function in the optimization procedure. The method is
expected to be useful in preliminary design studies of front wheel
.drive vehicles where traditional methods of mounting automotive
engines are not necessarily ‘applicable.

Each isclator is approximated by a set of massless linear springs
acting along and asbout its elastic axes and the engine as a rigid body
described by its inertia properties with respect to a reference frame
fixed to its centre of mass. The undamped eigegféolution for the
system is found, it being assumed that these modes can be used to
uncouple the damped equation of forced vibration. The excitation due
to unbalanced inertial and combustion forces are approximated by
Fourier series. The response to each excitation harmonic is computed
by modal superposition with damping being introduced on a modal basis.
The mean square response and the maximum strain energy summed over all
harmonics is then determined.,

For any specific engine speed the system strain energy can be
expressed as a single function of the isclator design variables, viz
stiffness, position and orientation and hence minimized by a numerical
algorithm. The optimal values of the design variables are computed by
a NAG FORTRAN routine within the feasible region defined by bounds on
design wvariables and by other constraints. Two such constraints are
of practical importance: (a) static deflection at the isolator, and
(b} engine static rotations. This new approach has the advantage of

directly linking the numerical process of finding the optimum isolator -

configuration simultaneously with both the static and the dynamlc
- forced response of the englne.

The method has been extensively tested numerically on a contemporary
four cylinder diesel engined car with promising results. It is clear,
however, that final modifications might be necessary at the final
design stage to account for road input excitation.
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PRINCIPAL NOTATION

- A list of the most coﬁmonly used symbols iS-given'below,‘whefefbeld-

type characters indicate either a vector or a matrix.

a) Scalars

Fourier coefficients

Modal mass for the rth

mode of vibration
Frequency independent Fourier coefficient
Modal stiffness of the ith mode of vibration

Modal complex stiffness

- The ith constraint function

Distance of the ith cylinder centre from the crankshaft
centre '
Elements of direction cosine matrix

Basis of the natural logarithm

. Internally generated engine force in the 1th direction

th

The complex genralized force for the r“' mode of v1bratlon

‘The 1th element of the static force vector

. Optimization cbjective function

Acceleration of gravity
Moments and produets of inertia

-1 | ... | |
Elements of the global stiffness matrix

‘Isolator stiffness in the p r,s local direction

respectlvely

Load on the isolators

" Power train mass

Reciprocating mass

Rotating mass

Number of engine cylinders
The rth‘principal coordinate

Internally generated engine moments in the ith direction;

' generalized'coordinates




r ’ .
p(n) p(n) n(n)
A S -

t

| ij ‘

.- Final drive torqoe'
Crank radius

Position coordinates of the nth isolator

- Time

The kth'element of the eigenvector corresponding to.

the jth natural frequency

" Weighting factor for the i*R constrain function

Mean square response for the'ith generaiized
coordinate ' o

Global translational coordinates:

Crankshaft centre coordinates

Transformed optimization variable

‘Modal complex receptanoe

Polynomial coefficients

Eulerian angles

" Modal loss factor

Angle between the 1th ang the No 1 oylinder crank
Ratio of the crank radius to the conrod length
Penalty parsmeter

Global rotational displacements

"Engine speed ' 7_

The rth modal frequency

Vectors and Matrices

A ~ Direction cosine matrix; Modal mass matrix; Matrix_whosé

th

row contains the'coefficients of the i constraint;

The Jacobian matrix of the constraints

a mn a w

Approximation to the Hegssian matrix G

‘Direction cosine matrix; godai stiffness matrix

Complex vector of the generalized forces
Hessian,matrix-with elements;'the'secood partial

~ derivatives of f{x)

Global inertia matrix

Principal inertia matrix

Le.

Le




‘Principal axis rotational stiffness matrix for the n

Global stiffness matrix
Principal axis translational stiffhess-matrix for the nth

isolator

isolator _ _ .
Translaticnal stiffness submatrix
Translational-rotational submatrix
Rotational-rotational submatrix

Mass matrix

Vector of principal coordinates/ the n-dimensional vector

of search

- Position matrix

Transformation matrix

Transformation matrix

Translational subvector of x

Eigenvector. Rotational‘subvector of x

Modal matrix

General displacement vector ﬁith'respect to the global
axes. Vector of optimization variables ‘

General displaceméht vector with respect to the prinéipal
axes ' ) '_. '

Matrix the columns of which form the basis for the
feasible subspace _

The Hessian matrix of the Lagrangian function

The vector of the Lagrange multipliers

Sbectral matrix .

Virtual displacement vector'

Gradient vector with elements, the first partial

derivatives of f£({x)

th




CHAPTER 1

INTRODUCTION

During the early years of the motor vehicle it was 6ustomary to
lffffffi!fggiﬁ the engine into the vehicle chassis. Engine wvibration
was a minor problem compared with the severe shake caused by the solid
rubber tyres on the primitive vehicle body. Further the solid engine
structure provided a very stiff cross member for the chassis. In fact
the first attempts to isolate the engine can be attributed to
crankcase failures induced by .chassis distortion on the rigidly bolted
" power train. As road noise was filtered with rapidly increasing
improvements 6n the vehicle such as the introduction of pneumatic
tyres, lmproved suspensions, quieter body cqnstructioﬁ eté, engine
induced vibration became disturbing. Subsequently efforts were made
to make engines quieter using existing theoretical knowledge of engine

dynamics.

The introduction of well balanced configurations, such as the in-line
six cylinder engine, improved matters considerably. Compared with the
four cylinder engine's inherent 2nd (and also 4th, 6th ...) order
force and moment unbalance, the six'cylinder engine's 6th (and also
12th, 18th «.) order force unbalance and 3rd (and alsoc 6th, 9th ...)
torque unbalance impose a lower degree of interaction between the
. 1dling speed excitation spectrum and the rigid engine isolator
spectrum, thus reducing engine vibration considerably. However, even g
perfecfly balanced reciprocating éngine will require some degree of
isolation as unevén firing gives.rise_to half ofder torque harmonics
-which can cause considerable vibration at engine idle due to their low
frequency. Despite the dynamic advantages of the six cylinder engine,
the four cylinde? engine has continued to play a dominating role in
the future of the motor car, providing a sensible compromise for size,
dynamic balahce, power, manufacturing cost and reliability.. Ingenious

mechanisms developed to improve the balance of the four cylinder

engine have  proved too expehSive for large scale production and as a




. o - . .
result sclutions the engine vibrat:.on problem by engme isolation 2(
have contlnued to be investigated ' : ' IR

Lack of powerful numerical algorithms on fast digital computers left
-engineers with neo alternative but the development of easy to use
methods for engine vibration isolation. Such methods were extensively
used for the design of isolation systemsifor.front engine-rear-wheel
drive (North-South) arrangements with impressive results. However,
the increasing trend for smaller vehicles and front engine-front wheel
drive (East-West) arrangements introduced new problems in the design
of isolation‘systems, meiniy due to space restrictions and the
increased reaction torque on the power train'imposed by the integral
engine-gearbox~-final drive designs. Motivated by this new class of
- problems and by the availability of reliable numerical optimization
_routines. some different approaches to the design of power train

isolation systems have evolved

Tne main principles of traditional methods for iéolating engine
vibration will now be briefly outlined along with their numerical
implementation. The merits and weaknesses of the methods will be
described and a new approach based on a somewhat different view of

engine isclation system design will be outlined.
1.1 BACKGROUND

The methods used for the investigatidn of engine isolation systems’
were besed on the well established vibration theory that a body
supported on resilient supports possesses a number of natural
. frequencies (often referred to as eigensolutions) depending on the
_'number of degrees of freedom considered in the v1bration model
t Investigation of the eigensclution {(usually in the range of 5-20 Hz)
for a rigid engine-isolator system revealed that by careful design of
the isolation system the modes of vibration could be decoupled and.-
hence the rigid engine-isolator Spectrnm could be controlled. The main
_ requirement'for'complete decoupling is that the elastic centre of the

dynamic systenm must.coincide with the centre of mass. Partial



'decouﬁling can be achieved in a number of.wayé depending on thé
felative position of the elastic centre from the centre of mass, known
to be a function of the iscolator poéition; orientation and stiffﬁess
'properties. Engine vibration isolation based on this principle was
‘discussed by Crede [1] in 1957 and conditions for decoupling four
modes were derived. Investigators such as Horovitz [2], Wilson [3] and
Bolton=-Knight [4#], to name but three, developed conditions for
decoupling the modes of vibration for a six degrees-of-freedom engine
model by considering'isolators inclined in different planes. Their
work 1is discussed by Lee [5] in his attempt to investigate the
decoupling of the engine modes of vibration for a six degrees-of -
:freedon:'model allowing complete freedom on the isolator orientation
‘and extending his snalysis to deriving conditions for total

“decoupling.

‘Whatever the approach to modal 6ecoup1ing there are ﬁwo'main points to.
be made. Fifstly. that by decoupling the modes of vibration the
" frequency spectrum is narrowed, and'secoﬁdly that with decoupled modes
-the interaction between_engine vibration and engine shake can be
controlled or even avoided. It should be noted. however, thét all the
'investigatdrs'mentioned earlier were concerned with the isolation of
" the traditional 'North-South' engine arrangement, and that direct
-application of such methods to 'East-West' engines has not yet been

recorded.

Efforts héve been made, in recent'years. to design isolation sYstems 

'for'East-WeSt'engines using numerical optimization methods, The

-'main requirement with such methods is that a functioh which'is

. believed to describe the dynamic response of the system is defined and
is then numerically minimized Subject to a number of conditions. -
Literature researcﬁ revealed that the earliest attempt to investigate
optimum isolation systems using such methods dates back to 1971. . D.
Zibello [6] developed a numerical procedure to establish the optimum
stiffness and damping characteristics for an established isolation -

system, using a numerical technique which required data from vehicle

ridé evaluations. This‘particular approach'to engine vibration ' |




isolation is most appropriate for final 'tuning' purposes and offers

no assistance at the preliminary design stage.

'In 1979 S.R. Johnson [7] produced a numerical algorithm based on a
grounded rigid engine-isolator model but the orientation of the
isolators is not included in the optimization procedure and static 
requirements had to be separately satisfied. His objectives were to
" decouple all the modes of vibration, using kinetic energy modal
distributions, place the rigid body spectrum below the excitation
spectrum and finally constrain the modal frequencies within specified
frequency bands. Although his work provides a useful tool for
investigating optimal isolation systems, it lacks generality since
~optimal isolator orientation cannot be investigated and static
,_énalysis is not integrated into the optimization procedure. An even
more constrained approach'was presented by J.E. Bernard'and'J.M.
Starkey [8] in 1983. Their objective was to keep the modal spectrum‘
of the grounded engiﬁe rigid body away from a specified frequéncy band_

by'assigning weighted penalties to soiutions that allowed modal |
frequencies into that band. Additional penalties were assigned to
solutions that required large changes of design wvariables as such
solutions were considered uneconomical. Apart from the unrealistic
approach tb engine vibration isolation, the surprising feature of this
work 1s the'mathematical complexity it introduces to predict changes
in the eigehvalues of the system caused by changes in the design
variables. Such procedures are useful for systems with large numbers
of degree/ of freedom but seem unjustifiable for a six degree of

freedom model,

‘ Finaliy in 1984 P.E. Geck and R.D. Patton [9] produced an optimization
algorithn forlisolating é grounded rigid model based oﬁ a method that;
‘statically decouples.the roll mode. Other objectives were to place
thé'bounce mode high and the roll mode low in the frequency speétrum.
Their work included the isolator orientation in the optimization‘
procedure but again the static analysis is kept separate. Complete
'vehicle-power train mode'shapes are presented in their paper which

" clearly demonstrates the interaction of engine vibration and engine




-

shake thus supporting the use of modal decoupling as_ an optimization
' objective., Further their expériénce with complete'vehicle optimization

- methods and the failure of such algorithms to cope with the complexity

‘of such models is discussed in their paper as a supporting argument

for subsystem optimizaticn.

Ii: seemé that in an effort to ihvestigate'optimum isolation systems
- for reciprocating' engines, traditional practices based on the rigid
e'ng;’.ne-isolator spectrum have been conveniently formulated for the
purpose"o'f utilizing modern numerical optimization a%gorithms.
. However, none of the methods, discussed earlier, include/ the static

analysis into the optimization procedure. Although the application of

modal decoupling successfully' provided isolation systems for 'North-
South' engine arrangements there is no evidence that such isolation
systems were optimum, If modal decoupling is used as the optimization
objective for the investigation of optimum isolation systems for
"Eaé.t-w-est' engine arrangements then there is no guarantee that the
solution will be other than an optimum decoupled isolation system.

‘Finally, if powerful numerical algorithms are used in such a way to

solve the‘ complex engine isolation problem, then their potential is.

underrated. A new approach to optimum engine isolation design is
adopted here. The optimization objective is defined in terms of the
forced response of the engine to' its internally generated forces while
ther static requirements aré incorporated into the 6ptimization

‘ procedure in terms of constraints.

" A brief discussion of this new approach will now be presented during

an introductory description of the contents of this gesis.

. 1.2 . A NEW APPROACH

At the very early stage, the question that had to be answered was

whet;her.the six degree of freedomn, grounded. rigid engine model is an-

adequate one, although such a model is widely used. Discussions with a
motor car manufacturer [10] confirmed the view that models of low

dimensionality_had an important role to play in preliminary design

[T



caiculatioﬁs. For reasons of simplicity the six‘degrée of freédom
rigid engine isolator model is used, but the investigation of optimum
. isolation systems is based on the principle of minimizing the forces
generated at the isolators. The FORTRAN-coded procedure Eggg
%Eggggigaggg‘optimum isolation systems is developed on this principle
and it will be presented in the following stages.

First, a rigid body power train model coupled through an arbitrary

array of isolators to a rigid supporting structure is analysed for

dynamic response. The rigid body power train is desdribed‘by the

inertia pfopertiés of the power train and each isolator is
~approximated by a set of linear sprihgs acting along and about its
elastic axes. The position and orientation of each isolator with

‘respect to the power train centre of mass is described by three

Cartesian coordinates and three Euler angles respectively. The dynamic_

system is excited by the internally generated enginé forces and the
response of the system to the resulting series of harmonic excitations
is computed. Graphical presentation of both the response and the mode

shapes of the system are presented,

Next, a brief intrdduction to the development of numerical
'optimization methods is followed by the definitioh of the general
optimization problem. The objective optimization function is then
defined in terms of the maximum strain energy of the system, which is
ihdicative of the efficiency 6f the vibration iseclative mounts, and is
optimized with respect to the isclator position, crientation and
stiffness-properties. The optimization design space is defined by
bounds on the 6ptimization variables and constraints on the isolator
stétic dispiacement. power train static rotations and’ the rigid body
frequency spectrum. It is the constraints on the isolator static
displacements and the power train static rotations that take care of
the static requirements while constraints on the rigid engine’isolatof
spectrum'allows some control on the‘sepération of engine vibrations
and engine'shake; The NAG FORTRAN routine used to perform the
optimization, transforms the original constrained problem into a

series of unconstrained subproblems by an augmentéd Lagrangian




Newton method. The ﬁain'steps of the algorithm are explained with the

aid of a flowchart diagram and the various numerical requirements such

as scaling, constraint weighting and the importance of the -

‘optimization monitoring inforﬁatiqn is explained on practical grounds.

Finally, the optimum sclution obtained from the computer progran,
.starting from the isolation system of an existing productibn engine,

'-is presented and the féasibility of the optimum isolation system is

discussed. Through this discussion it will become evident that by -

allowing freedom on the elastic coupling of the vibration system and
‘minimizing force transmission, better isolation systems can be
established. It is recognised, however,  that to be genuinely useful
in industry the exhaust system must be included in the modél. due to
its importance on the East-West engine vibration characteristics and

-that engine shake must be incorporated. The exhaust system can be

included to a first approximation if an equivalént stiffness element.'

in the form of an additional isoiator. can-be provided and'tﬁe inertia
properties of the power train with the exhaust can be measured.
Likewise, rubber hoses or other.linkages between the power train and
- the vehicle structure can be included in the model with no further
modification to the code. Enginé shéke. however, cannot be included
without modification of the model unless an'equivalent excitatiop

. vector at the power train centre of mass can be computed.

Finally an area of concern with the algorithm developed here is its

current inability to include non-linear isolator cheracteristics. The

. effect of this limitation on the static analysis section of the .

problem_is discussed to the extent of suggesting a way to remove such

limitations from the progran.

function transformation and each subproblem is minimized by a quasi--

‘ _,\,) uX"?




CHAPTER 2

ENGINE VIBRATION

The response of a four cycle reciproca'ting engine excited by its
~ internally generated forces and isclated from a rigid foundation by a
set of isolators, as shown in Figure 2.1, is investigated in this

chapter.

' The power train (engine-gearbox assem.bly)' will generaily be subjected‘

to a number of. different types of forces generated by driving
| conditions, engine power and gravity. For the purpose of the following
analysis it is convenient to distinguish between static ‘and dynamic

forces applied to the frame of the power train.

j ¢ Dynamic Force

~ Dynamic pitching moment

Static torque

Engine - gearbox Dynamic Torque

assembly N -
© Weight =~ | %@9
; ) Efiilmﬁ\ f 4F}
. o Isolator T .

FIGURE 2.1: ARRANGEMENT'OF THE POWER TRAIN AND ISOLATORS




- the zero fre(;uency component of the engine torque reaqtion. Also of
concern are forces resulting from the motion of the thicle such as
~ braking and cornering.-Strictiy speaking, these are dynamic forceq,

but for the purpose of this analysis they will be regarded as static
since, for normal driviﬁg conditions, wvariations in them‘gre very slow
compared to the engine forces. The importance of the quasi~-static
forces is that they can cause large engine displacements and
consequently possible interaction of moving'and stationary parts,

which is undesirable.

Dynamic forces on the other Hand are responsibie for shaking the
engine and are generated by combustion gas pressure variations and by

unbalanced reciprocating or rotating inertias. For modern

reciprocating engines'where balancé of rotating inertias can be well -
established, the dynamic forces can be generally represented, as in '

~Figure 2.1, by a vertical unbalance force due to the reciprocating

- parts, a pitching moment resulting either from a non-symmetric crank
arrangement, or by an offset vertical force and finally a rolling
torque caused by the vertical unbalance force and gas pressure

fluctuations.

.The isolators_must. therefore, be designed and positioned in such a
way so that they will‘support the power train under the‘worst possible
static conditions, prohibiting large engine displacements and
simultanecusly attenuating the transmission of engine vibration to_the
‘supporting structuré. The folldwingrdynamic analysis, which is
.devéloped with respect to a Cartesian reference frame fixed at the

power train centre of mass, with the Z axis vertical positive upwards,

'.the\faxis horizontal, positive towards the front of the engine and

the X axis lateral to form a right handed system, will set the
foundations for the discussion of engine vibration attenuation which

will be presented in the next chapter.

‘'The static forces of'primary concern are the engine weight force and -

Na




10

2.1 THE VIBRATION MODEL

'In deéiviﬁg the equations of motion the physical system shown in
Figure 2.1 is represented by discrete elementé possessing either
stiffness or inertia as shown in . Figure 2.2. The underlyingk‘

assumptions embodied in this model are the following: |

1. The structure supporting the isolators is rigid

2. The engine structure is rigid

3. The mass of the vibration isolators can be neglected
. Dynamic displacements are small.

As each of these assumptions imply that certain approximations can be
made to the physical system, the validity of these approximations will-

now be discussed.

With a rigid supporting structure, there are two defects introduced
into the mathematical model. One is that road inputs, which are known
to be important cannot be included in the following anélysis and the

Kiz

& | -
Kaz
= K ol Kyy .
3 Fe'™ S

FIGURE 2.2: DISCRETE-ELEMENT MODEL LAYOUT
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‘second is that consideration of vibration transmission to the chassis
is prevented. The first defect could be removed by modifying the
: ﬁodel to include a rigid body representation of the chasgis connected
to the road surface by a simple suspension model, thus allowing
consideration of engine shake. Consideration of wvibration
transmission to the chassis, however, requires finite element models
of the chassis which are too complicéted for preliminary design
studies, and further such models are knéwn to be extremely difficult
to use in numerical optimiéation algorithms due to the number of
variables involved and the time required for systém changes during
optimization as a result of the finite'element software procedures. -

.The approximation of the power train by a figid body is by no means
unreasonable as the frequencies of the structural modes of the power

‘train are well above those involving whaﬁ are effectively rigid body:
- motions of the power train unit on its isolators., Similarly the
'approximaﬁion of the isolators by massless springs is no causé for
alarm. Whilst wave propagation in vibration isolators has been
observed, the frequency range where it might be of concérn is well

above the rigid body frequency range of the engine on its isolators.

. The assumptionlof-sﬁall dynamic displacements, however, allows the
".'approximation'o.f' the isol.ators as linear springs. Since the dynamic
deflections are known to be small it is appropriate to treat this part
of the problem within the framework of linear sﬁall'amplitude

vibration theory, although the force deflection characteristics of

rubber are nétoriously nonlinear. The isolator nonlinearity is, 
however, important in calculating the deflection of the system under
conditions of high'static engine torques. . This aspect of the prbblem
~ will be discussed at the end of this chapter with the aid of numerical

.results froh the computer'program.

Equations'of motion: The equations of free4undamped vibrations are

formulated first. The resulting eigensolution is then used to find a

modal solution to the damped forced vibration problem resulting from

the application of internally generated engine forces.
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The undamped equations ot‘.motion are of the form:
M%+Kx=0 O (2.1)

- where M and K are. the mass and stiffness matrlces ‘of the system
expressed in the global X Y,Z coord:.nates located at the power ‘train
mass centre. The vector x is of order six twp_gj.ui of three

translations and three rotations, i.e.

T ox, 9,2z, 6,0,%1 (2.2

The mass matrix has the form

m 0 o!lo 0.
0 m o0!0 0 o0 |
m= (0 __ 0 =90 _ _0__0 (2.3)
0 0 0 1 Ly -Lo -I,
|
0 0 0 1T Iy Iy,
_0 Y 0 : “Izx 'Izy zz

and is assembled by direct application of Newton's second law of
motion to the power train rigid body. A slight problem might arise
when assembling the rotational inertia submatrix és thé power train
_inertia propertie's are usually given with respect to its principal'
inertial axes. Greenwood [11], however, shows that by equating the
rotational kinetic energy df‘ the'body in the two coordinate systems
the rotaticnal inertia properties of the body can be transformed from
‘one axis set to another. Let C denote the direction cosine matrix
such that

x, = Cx S (2.4)

(radte§




i3

where Xps X represent a Vector in the principal axis and the global
axis respectively. Then, if Ip and I denote the rotational inertia:

matrices in two such axis systems, respectively, it can be shown that:
= cT |
I=¢C Ip c - - _ (2.5)

The.stiffness matrik haS'thé forh '
K = | s : _ (2.6)

and by virtue of the recip:ocal properties of,meéhanical systens the

. stiffness matrix will be symmetric. Subsequently it holds that K4 =

Kgx. Each submatrix in (2.6) can be assembled by considering the
" contribution of each isolator separately and then summing over all the

isolators. Let P, R, S denote the lodal elastic axes of the nth

. R (n) | o
isolator in Figure 2.1 and A the direction cosinizso that

x(n) = aln) p(n) | 7 ' ,(2,7).

Grse?

- where x(n) denotes a translational displacemenf with respect to the_:: 

global axes and p'™ the equivalent displacement with respect to the

nth isolator elastic axes. -

Smollen [12] shows that by considering the forces generated at the nth

isolator due to a translation of the.suspended body and then_

transférming these forces back to‘thé global axes, the translational-

translational stiffness submatrix due to the nth isolator is given by
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Similarly by considering the moments about the body axes due to the
forces generated at the nth isolator by a translation of the body, the
rotational-translational stiffness submatrix is given by

k(n) = g(n) gln) | (2.9)
ax XX ‘ :
-where Rhﬂ'is the skew-symmetric position matrix for the nth isolator‘>

o e ()

R - fm) G )
-pfn) L(n) 0
Y X

The skew symmetric form'is explained by examinihg the wvector
expression r x f. The zeros on the leading diagonal of its matrix
equivalent are simply an expression of the fact that forces cannot

‘generate moments about their line of action. and vice versa.

Finally the rotational-rotational‘stiffness submatrix is assembled by

¢onsidering the moments which will result on the'body due to forces
and moments ‘generated on the nth isolator by a general body rotation
with the result ' '

.. K(n) =-R(n)K(n) RT(n) + A(n) K(n) AT(H) k2.10j
6o X% A

Summing over the isolators gives the total stiffness matrix for the

~ system as

B 18(3); Aln) kén) I (2.8)
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™ s . ‘ : . . .
(n) 1 (n) T(n)
K=} -E‘gl--__ff_-_______; ________ Z.l-.}:}:__' ----------------------------
. ] 1 s -
nz1 ~ gin} Ki:) i Zl B(n) %iz) gT(n) | z aln) an) AT(n)
T N ' ' o n=1 .

.3
]

Isolator orientation: Whilst providing the simplest representation of

~ finite rotations, the six fold redundancies among the nine direction
cosines'make them unsuitable for use in an optimization algorithm,
The reason. for this is that each redundancy can only be removed by an
equality constraint viz the sum of squares of the elements in any row
or column of the direction cosine matrix A(n} must equal to unity.
. This problem is overcome when the orientation of the nth isolator with
fespect to the engine axes is specified by three ordered rotations
about the isolator elastic axes. The angles of the ordered rotationé
are the Euler angles and the order of rotation which will be embloyed' '

" here is the "Yaw-Pitch-Roll" order as'follows.

First the isolatdr is rotated through an angle o about the S elastic
axis ‘ . _ o | :
Second the isolétor is rotated thréugh an angle g about the P eléstié 7
axis | L _ A

and finélly. the isolator is rotated through an angle y about the R

elastic axis.

Following this method as illustrated by Synge and Griffith [13], the

transformation matrix A“ﬂ can be derived as
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where.dll

= cosy cosa - siny sinB sino
d21 = c¢osy sina + siny sinf coso
d31 = Fsiny cosB. | |
dy5, = -cosg sina ' ‘ : (2.11)
dys = cosg cosa ' - '
d32 = sging _ _
d13_— siny cosa + cosa sinf sina
d23 = siny sino - cosy sinf cosa
d33 = COSy COSB
end 0 < o < 25 .
o -1/2 < g <m2 (2.12)
0 ¢ '

N'g ‘.{217

Natural frequencies and mode shapes: These are found by seeking

solutions of the form x = v eJ% ¢o equation {2.1). The non-trivial

solutipns_resulting from such trial solutions satisfy
(K- w2 M) v=0 N | (2.13)

thereby giving the sik natural frequencies and mode shapes of‘the
enginé cn its mounts. The natural frequencies can be assembled in a
diagonai spectral matrix §, and the six mode shapes corresponding to
the natural frequencies form the columns of the modal matrix V of the

system.

Graphical presentation'of mode shapes is conveniently performed if the
general body motion of a mode of vibratioh is expressed aé a screw
displacement. The basic theory involved together with the FORTRAN-code
translation of the screw-displacement analysis_is presented in
Appendix B. Figure 2.3 shows one such presentation of the mode shapes
for the Ford 1.6 litre engine which is used throughout the thesis as a

practical example.

227
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A
-

,Y e

MODE 1 = 3.19 CHe) | ' MODE 4 -~  12.23 ¢Hz)

. mODE2 - 6.92 CHz) | nODE 3 - 12.28 (Hz)

MODE 3 -  9.89 (Hz) | . MODE 8 - 19.31 (Hz)

Fig. 2. 3 Mode shapes (Ford diesel 1.6 Litre engine)
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- 2,2 INTERNALLY GENERATED FORCES .

' The matrix equation of motion (2.1) is now coﬁlpleted with the addition .

of an external force vector, thus
Mx+Kxs= £ elut - ‘ (2.14)

where f is the complex vector.of the generalized forces of the power

train centre of mass containing both magnitudes and phase angles. The

derivation of the components of £ for reciprocating engines is.

discussed, in varying detail, by a number of authors including Biezeno a

[14], Taylor [15], Shigley [16] and a brief outline of their results
appropriately formulated for this work is presented in Appendix A.
- What is requifed for the forced response' analysis are analytq‘.c'al
expressions for the components of i’ in equation {(2.14). . By
approximating tﬁe mass properties of the piston, con-rod and cfank.
for each cylinder of an n~cylinder in-line reciprocating engine, by a
rotating mass (m,ot) concentrated at the crank pin and a reciprocating

mass (m ) concentrated at the gudgeon pin. and the lgas pregsure

rec
torque by a Fourier series {i.e. T = -nb, - z ap sin kut - 1 by

cos kwt) the forces and moments generated by e;ch cylinder summé‘dﬂwith
respect to a Cartesian reference frame fixed at the centre of the
crankshaft (see Appendix A) are given by equations (2.15) to (2.20).
The other parameters involved in these equations are the crank radius

th cylinder crank and

the No 1 cylinder crank 6;, the distance d; of the ith cylinder centre

r, the engine speed w, the angle'bet-ween the 1

from the crankshaft centre and the ratio of the crank radius to the

con-rod length A.

iy
|

n
= Moo xfo.? In [ ) ej(w-“ai)]' o (2.15)
i=1 T

£.=0 o ) (2.16)




f_ = (m ) ru? Re [ Z e3(wt+el)] +

rot ¥ Dprec
o i=1

‘o, o2 Re [A ,igl | 'ejz(wtfei)] ) | ;2.1_7) -

. : ’ ‘n :
Ay = “(Mpoe + Bpge) ru? Re [ 2 diej(mt+ai)] -

i=1
| S _ :
- m, rif Re [A ) diejz(mt+ei)3 ' (2.18)
. . i=1 ) L .
q&.= ot 2 Im [ z d ej“”t+ei)] o '_: (2-19)
‘ : . Ci=1 ‘ ' '
9 = 'mrec r%”z Im L z (% ej(wf+ei) )

- 1 J2(utesy) _ 3 oJ3(uteos))]

2
n
- Z ak Im { } eJk(mt+e )]
k—l 1—1
- Z by Re [ Z edklut+e; )] e © (2.20)

k—l i=1

.HoWever' equations (215) to {2.20) give the components of the vector
£ in equation (2.14) if, and only if, the crankshaft centre coincides
with the power train centre of mass and the crankshaft and cylinder
centre lines are parallel to the global axes.'GenérallyL the
crankshaft centre does not coincide‘with'the power train centre of
gfmass, and it is possible that both the crankshaft and cylinder centre
lines wi11 be_skewed with respect to the global axis. If ff
represents the force vector'at the centre of the,crahkshaft with'
compbﬁents giﬁen by equations (2.15) td‘ﬁl20). then a transformation -
might be required on E' to yield the global force vector £ of equation

(2.14).

" For thé general case, where none of the conditions mentioned above is

satisfied, the required transformation matrix will be derived on the
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pr_-inciple that the virtual work done on the power train by each of the

two force vectors is the same i.e.
£ 8V = Fov . ' (2.21)

where dv', 8v ére the virtual displacement vector in the crankshaft
local axes and the global axes respectively. With reference to Figure
2.4, let U dénote the transformation matrix such that

_'Then if &=, &¢ are thé trahslational-and rotational subvectors of §v
and &x", 6¢'. the equivalent sﬁbveci.:ors of v' and Rc is the position
matrix for the crankshaft centre with respect to the global axes,
assembled from the coordinates Xor Yor Ze shown in Figuré 2.4, then it
follows that | ' | ' | ‘

. N <

Y ‘/ &
&

o : ‘ O v

Powertrain / : v

cenfre of mass

Crankshaft Y_ 7 X
tentre at {Xe, Y, 2o ) —"
Ny
%e
f
{Z £

FIGURE 2.4: GLOBAL AND CRANKSHAFT REFERENCE FRAMES
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§x' = UT x + ut ﬁz 8¢
§6' = UT 8¢
or T gv = T &Y - | (2.22)
uT 1+ ol R
- . ) _ i e
where L T 2 feem————— :.. ........
0 N |

Subst:l.tutlng for Sv into equation (2. 21) the following relationsh:l.p

between t‘ and f' is obtained
f =10 £ - (2.23)

2.3 CALCULATION OF FORCED RESPONSE

As the mode shapes span _the frequency spectrum of the system they can-

be used as basis vectors to describe the response of the sysﬁtem to a
harmonic excitation. i.e. the response of‘_the system at any other
frequency can be expressed as a linear combination of the modal

vectors. The equation of motion (2.14) can be decoupled by a linear

transformation utilising the orthogonality properties of the modal

vectors with respeét to the mass and stiffness matrices of the system
shown for example by Bishop, Gladwell and Michaelson [17]. The
coordinates which decouple the equations of"motion, referred to as the
principal coordinates, E_lre' related to the generalized coordinates by

the linear transformation

x =V P ' (2-24)

s
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where p is the vector of the principal coordihates.f When the system

-is vibrating in a natural mode the only non-zero element in p is the

one corresponding to that mode. Applying the above transformation to -

" equation (2.14) and premultiplying by VT yields
VMVp+VERVD =Vl Felot

which in view of the orthogonality properties of the eigenvectors

reduces to
Ap + Cp=VTt:ejmt.-j
o? in component form:
a. p +Cc.Pp = E(r) edm_"- : (2.25)

where a. and cp are the modal mass and stiffness coefficients and f(r)

th pode of vibration,

is the complex generalized force for the r
. Stiffnéss proportional damping is introduced by a moda1 loss factor n.
{equal to the cyciicrenergy loss divided by the maximum strain energy
of the modé). by making the modal stiffness complex ie. by replacing
p .
Cn with ' '

epze  (Ledny e




' Substituting é\r for c, in equation (2.25) and solving for p, gives the

redponse in the principal cocordinates as

pp = & Flr) Jut | ' (2.27)

~

a
. where r

-is the complex redeptance
~ _ (mrz w=) } j nrwr .
2 o242 232 :
ar[(.mr w4+, w )]

' The complex amplitude of the generalized coordinates %; is then
‘computed by substituting equation (2.27) into (2.24) giving

xi-.= 2 ‘. [ z Vi . ar Vj ] fj (2-29)
=1 r=t " | .
_n A A ‘
=1 oy fy

j=1 \

where & { () o) 35 th linking the re: £
13 Qp Vi~ j s e receptance nking the response o

the ith coordinate to an excitation in the jth coordinate. The

‘solution in the time domain, to agree with equation (2.14) is given as
xg(t) = (xf' + 3 xped®® 0 (2.30)

Multi- frequency excitation: As noted above, equations (2.15) to

- {2.20) express the excitation as a series of harmonics of the englne
speed m Since our interest is mainly in the magnitude of the

- response, a measure of the total response of the system for a

particular engine speed is given by the sum of the mean square values

of the responses to the individual excitation harmonics.
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For._the'mth_ harmonic of ‘excitation the response for the ith,

generalized coordinate is computed from equation (2.29) by
substituting u(m)for a, and fgnlfor f.. The receptahce for the mth
harmonic is calculated from equation (2 28) by replacing w with mw and

equation (2.30) is now modified as
™ (e) = /(W) g Nfmhednee gy

The mean square response is then computed by direct applicatidn of
Parsevavs formula to equation (2.31) giving the mean square response

for the 1 th generalized coordinate as:
=2 1 [ ™%+ (x®))2] (2.32)
m=1 * ‘ - o

Sc far we have considered the dynemic characteristics of engine
isolation systems and developed analytical exbressions for the forced
response of the power‘trein to its internally generated forces. These

 expressidns will be used in the following chapter for the formulation
of the optimum system iselation problem. " However, the feasibility of
such systems will depend on their ‘ability to satisfy the static

. requirements mentioned at the beginnlng of this chapter and

consequently analyt1ca1 expressions are required to implement these

requirements into the optimization procedure.

'Analytical expressions for the pewer train centfe of mass displacement

and the isolators deflection will now be derived from a static

analysis of the engine-isolator system.




25

2.4 STATIC ANALYSIS

As was mentioned in the-introduéfory part of this chapter, the stafic
forces experienced by the engine frame are primarily the engine weight
and the static torque (i.e. output torque at the drive line). The
static torque on the engine frame is of great importance as, under

maximum-torque engine speed with first gear engaged and sudden release
~of the clutch, it can reach extremely high values. Forces arising
| from vehicle drivmg conditions will not be included in the following
‘analysis as they cannot possibly arise at the same time with the
maximum static torque on the engine frame and consequently if they are
included the calculated static displacements will bé ovérestimated.
and when used as feasibility criteria in the optimization procedure
the result will be a statically overde51gned and dynamically 1ess'
-efficient isolation system.

The following static analysis will be developed with respect,ﬁo the
engine global axis coordinates shown in Figure 2.1 and the assumption
made in that the isolators possess linear load-deflection
characteristics. However the possibility of implementing nonlinear
characteristics by an-iterative numerical: procedure is also discussed
in the following sections of this chapter.

For statlc equlllbrium of the engine- isolator systen the follow1ng

matrix equation must be satisfied:

el&) gxls) (2.33)

where f(s) is the static force vector at the power train mass centre

f1e) - (o), pls), elo), (), qls), qls)
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o and is assembled from the engine weight and the final drive tor'que. as

follows.

Let q denote the final drive torque and R', U' denote the position
and direction cosine matrices of the final drive axis, with respect to
the global axes. The static force vector at the power train mass

centre due to q, is given by
£{s} = T g

where £'T = [0, 0, O, O, q;‘. 0] and T is the transformation matrix
relatihg drive train and global coordinates. The total static force
" vector is theri computed by adding the engine weight to the appropriate
"element of ft(s) i.e.

f(.s) = f;-(s) + [0, O, -mg, O, O, OJT o (2334)

Finally the stiffness matrix K is that derived by equétions (2.8')‘ to
(2.10) and x(s) is the static displacement vector at the power train

' mass centre i.e.

x1(8) = [x{s) y(s) (s) 4(s), ‘9(5)' p(s)y

| Solving'equation (2.33} for x(s) gives the displacements ._qf‘ the pbwer

- train mass centre as

x(s) = k1 g(s) | - (2.35)
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The deflections at each isolator can now be derived by considering the
displacements along each isolator's local axes due to the translations

and rotations of the power ‘train.

1f R{M), A(M) gre the position and direction cosine matrices of the
‘n®™ jsolator local axes with respect to the global axes and u(8), (S)
are the translational' rotational subvectors of x(s) respectively, it
can be shown that the translations at the nth isolator with respect to

its local axes are given by
o) 2 A yle) L Al gD (8) (5

By placing constraints on the values of the elements of x(s) and ugls).
computed by equations (2.35) and (2.36), static stability of the
engine isolator\system can be maintained and isolator stress levels
can be kept within acceptable limits as will be discussedlin the

. following chapter.
The implementatlon of both the static and the forced response analysis
into a FORTRAN computer program will now be brlefly discussed and pre-

optimization computer results will be presented and discussed.

2.5 NUMERICAL RESULTS

The selected NAG optimization routine (EO4UAF), which will be
discussed in the next chapter requires two user supplied subroutines.
EO#UAF calls FUNCTl to compute - the value of the optimization functlon '
and then CON1 to compute the value of each constraint function. The
bhasic computetionai steps involved in these subroutines are outlined
in the flow charts presented in Figures D2 and D3 of Appendix D. The
flow charts illustrate that the dynamic response and the static
displacements of the power train are'computed within these subroutines
and that FUNCT1 can also be used, outside the optimization loop, to
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compute the dynamic response of the power train for a specified range

of engine speeds. Using this faciiity'a‘test run was made to check .

" the code for possible "bugs" and the programming'errofs found were

corrected. The presentation of the results and the following

" discussion aim torexplain what exactly is being comﬁuted under the

general term 'dynamic response', and to point out any sensitive areas

that could be important in a numerical optimization ﬁrocedure. The

limitations of the static analysis imposed by the linearity of the.

model will be demonstrated by numerical results and the possibility of
modifying the program to include non-linear load-deflection
characteristics for the isclators will be discussed. The results

which will be presented were obtained using the necessary data for the

power train-isolator arrangement shown in Figure 2.5, The legend

gives a brief description of the power train while the complete set of
the data used can be found in Appendix C.

The dynamic résponse of the power train to its'internally'generated
forces over a range of engine speeds is presented in Figures 2.6 to
2J1; Each of the Figures 2.6 to 2.10 show the six dynamic
displacements of the power train maﬁs centre as a function of engine
speed for various harmonics of the excitation. Theoretically, the 1/2
and the odd number harmonics should not exist with a 0-180-180-0 crank
arrangement. The presence of these harmonics 1s due to the fact that

.the torque excitation vector is computed using the measured torque

spectrum which was supplied with the other engine data listed in -

Appendix C. In contrast to mathematical models, the half order and odd
‘order harmonics are'always present in real engines as a result of
;cylinder-to-cylinder combustion irregularities. As can be seen from

Figure 2.6; the 1/2 order harmonic excites the rigid power train modes

- well within the engine operating speed although its effect to the .-

-overall vibration level is not considerable as it can be obéervedlfrom
the mean séuare displacement graph in Figure 2.11. However, its

presence becomes increasingly important as the cylinder-to-cylinder

_combustion irregularities become more and more uneven for reasons such .

as bad carburation, bad timing or misfiring to name but three.

Although the dynamic respohse to the 1/2 order excitation harmonic is

j—
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not expected to play a significaﬁt role in the optimization procedure,
it will give a point of comparison between the initial and the final

optimum isolation systems.

It should_belmentioned at this point that the torque spectrum which
was used, was obtained from measurements at an engine speed of 800 rpm

and zero engine 1oad. In order to avoid unnecessary programmlng

complications. the sane spectrum was used for the computation of the

dynamic displacements at all engine speeds. Apart from the already
mentioned simplification the most unrealistic part of these plots is

the lower limit of the engine speed range which was set to 50 rpm and

which is too far_below the lowest possible idling speed for any real

engine. However, setting the bottom limit to such a low value allows
all the'resonegffpeaks_to appear on the plots. Unfortunately the

level of these peaks is highly affected by the constant torque.

spectrum and consequently it is not possible to use the peak level for
-mode shape identification. Nevertheless the magnitude of the response
can be used to assess the contrlbution of the individual harmonics of

the excitation to the overall response of the system.
One way of checking the program is by examining whether the pesks of
the respoﬁse curves occur at the computed eigenvalues. For the system

of Figure 2.5 the eigenvalues were found to be as follows

Hertz : rpm

n
1 5.19 311.69

2 6.92 . Ws.07
3 9.09 545.2
4 12.23 733.58
5 12,38 742,62
6 19.51 : 1170, 58

- From Figure 2.7, which gives the response to the first order
~excitation harmonic¢, it can be seen that the peaks occur at the

frequencies listed above. Further, the peaks in the response curves,

for the other excitation harmonics, occur at 1/n times these
A S — )

| i
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frequencies. The missing sixth peak on the response plot is due to ‘
the numerical closeness of the fourth and fifth modal frequencies. ' '
|
|
|
|

A quick comparison of the magrii_tude of the harmoﬁic 'responses will
reveal that the second excitation hafmonic plays a dominant role.
This domination is reflected in the mean square displacement plots of '
Figure 2.11 where the cdntribution of the other excitation harmcnics,

to the overal response, does not appear to be substéntial._‘

The question that érises now is whether‘thére exists a dominant mode
shape., This kind of informatioﬁ will be of good value at a later
stage when trying to understand, in physical tefms; how the optimum
isolation system was obtained by'the nunerical optimization algofithm.
Mode shape identification was at;empted using the.pictorial
- representation of the mode shapes presented earlier in Figure 2.3 and
the two dimensional views shown in Figures 2.12~-2.14 were produced to
aid such an gttempt. However it was found impossible to‘succeed aue
to the urelated scaling among translations and rotations. Time did
-not permit-further investigations to be carried out on the scaling of
the translations and the rotations that result from the screw

displacement of the body (Appendix B). An alternative was to use the

modal kinetic energy distribution.

Johnson and Subhedar [18] give the modal kinetic ehefgy distribution

as

1 mkl ij le we : (2-37). .

KE, = ©
Kl = 5

_ where oy is the k,l1 element of the mass matrix

vk 1is the k' element of the eigenvector corresponding to the
o _
J

natural frequency

mj lis_the jth natural ffequency ‘
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It is further stated in their paper that the summation of the energies
due to the off-diagonal terms in the mass matrix is termed the

coupling energy of the system, However it is not clear to the author

" what exactly is meant by this ferm especially when it can be

associated with a negative sign., However using this method the
following kinetic energy distributions were obtained for the'syétem
shown in Figure 2.5:

Using Table 2.1, the peaks on the dynamic response plots can now be
related to the rigid power train mode shapes. The roll mode seems to
play a key role in the dynamic behaviour of the dynamic model. The

- dynamic response to the seéond excitation harmonic indicates that the

" roll displacement almost dqminates the dynamic response. Further from . -
- Table 2.1 it is obvious that the roll mede is excited at the top of -

the modal spectrum and.well within the engine operating speed range,
and what is more important is that the second excitation harmonic
excites this mode at aﬁ engine speed which is fairly'close to the
engine id1ing speed. - These observations indicate that the isolation

system is designed to be fairly stiff in roll. It is Beyond doubt

that the stiffness of an East-West engine isolator system in roll is a

critical design factor.

Modal Frequenéy-  X Y : Z - b 8 S ] COUPL.
5.19 2.26 64.83 14.30 8.20 5.63 5.0 -0.22 |
6.92 8.32 32,95 40.6 5.24 9.9% 3.35 -0.4
9.08 48,25  0.01 - 19.64 11.37 21.03 12.26 -12.56
12,23 23.00 0.0  3.66°33.% 9.95 47.23 -17.2%
12.38 8.97 2.12 21.34% 42.6% 4.56 19.44  0.93
19.51 9.3 0.06 0.42 1.98 57.1 18,7  12.44

TABLE 2,1: PERCENTAGE MODAL KINETIC ENERGY DISTRIBUTION




As mentioned earlier, the engine iéolatibn system is also responsible

- for reacting the maximum final drive torque. For the power train
described in Figure 2.5 this is about 12.8 times the maximum engine' _
output torque and up to double that value for the case of sudden-
release of the clutch in first gear. The question that remains to be _
‘answered 1s whether the giéen isolation system is statically over— )ﬂ

designed and consequently dynamically less efficient.

Subroutine CON1 computes the static displacements of the‘power train
and the deflections of the isolators using the linear analysis
described in Section 2.4, However, the load-deflection
characteristics of the commonly used isolators (rubber-mounts) are
notoriously nonlinear. This nonlinearity is demonstrated in Figure
2.15 which is the x-direction load-deflection characteristics for the
left~hand upper and lower mounts of the Escort 1.6 Diesel [10]. It
can be appreciated from these grabhs that linearity is maintained only
in the low load region {approximately 2 kN for the isolators shown)
and that linear aproximations to the isolator deflection, under high
loading conditiohs, will be overestimated_to say the least. In order
to demonstrate the ﬁagnitude of the error induced by the linear
analysis the relevant numerical information was selected from the

computer results of the test run and will now be presented.

‘ Translational Stiffnesses tkN/m)
Isol N ' o
- Isolator No K, K, | kg
1 118 132 165
2 | 288 “ 77 . 226
3 o - 288 : 7 226

" TABLE 2.2: ISOLATOR STIFFNESSES




The dynamic translational stiffnesses used'f‘dr each isolator along

each of its elastic axes are given in Table 2.2 above. Although the
static rates of rubber isolators are generally lower than the dyﬁamic
rates, it was decided to use the dynamic rates for tﬁe static analysis
since conmputing and updating & second stiffness matrix during
optimization would increase cons.iderably ‘the computation time
consunption without any s_ignificant gain. Using the dynamic. stiffness
matrix, which ig computed in FUNCTI1, the static deflections of the
- isolators due to the engine we:.ght: and the maximum final drive torque'
were computed by CON1 as shown below in Table 2. 3.

Assume, for sake of argument, that the load-deflection characteristics
presented in Figure 2.15 also apply for the Z-direction of isolators 2
and 3; the isolators are oriented so that the p, r, s directions
ébincide with x, y, z respectively. 7 Using the computed deflections
from Table 2.3 and the appropriate stiffness rates from Table 2.2, in
. the linear relationship F = ke, the forces on the second and third
isolators are given as F(Z) = 4.7 kN and F(3) = 3. 54 kN and the
.correspondlng def‘lections suggested by the load-deflection-
characteristics are Z, = 15.8 nm and Z3 = 11.6 mm. The numerical
difference between the computed and the interpolated deflections might
not seem considerable at first. However, had the constraint on that

deflection been 15 mm, then the 'corresponding stiffness rate would

_ - Def‘lecﬁion in mm
Isolator No. X - _ ¥ ‘ z
1.63 ~ 0.562 kT
o 2.43 9.74 20.8
3 - - 0.061 10.71 ' 15.65

TABLE 2.3: COMPUTED ISOLATOR DEFLECTIONS
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‘have been increased, by the linear modél.‘from 226 kN/m to at least

315 kN/m in order to avoid constraint violation. It can be

appreciated that such changes, apart from being unnecessary, are

. generally-speaking. undesirable.

One way to improve the linear model, is to introduce the isolator
load-deflection characteristics into the computations, by the
iteration loop_suggested by the modified'flow chart of CON1 presented
" in Figure 2,16, Firét.a polynomial is fittéd'to each load-deflection
curve {using a NAG routine such as EQ2AFF) so that the deflection Xij

for the ith isolator in the jth direction is expressed as a function '

of the applied load i.e.
‘Xij(L) =ag * dlL + 0y L2.+u3_L3 +'3.. + Oy LN o (2.38)

where L is the load and &y are the polynomial coefficents. Next the
first 1linear approximation to the static displacements is computed
using the linear analysis of Section 2.4 and the forces on each
isolator are estimated. Using these forces in equation (2.38) an
interpolated value for each deflection is calculated and compared with
that previqusly computed. If the difference between these two values
exceeds a specified tolerance, then the corresponding stiffness raté
is updated using the relationship:

Kij = Fij/xij(]") | L {2.39)

The static stiffness matreix (now separate fronni&e'dynamic stiffness
matrix) is recomputed and the isolator deflections are re-evaluated
according to Section 2.4, This method is demonstrated graphically in
Figure 2.1?.and was also successfully tested manually for éonvergence

on a single isolator.
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Unfortunately the effect of the linear model on the optimization
constraints was discovered at a stage when time limitations did not -

permit the author to carry out the necessary modifications to the

program, test it and cptimize all over again.
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NUMERICAL OPTIMIZATION

Numerical optimization can be'"loosely".defined as that numerical
procedure that seeks optimal values of design variables which minimize
or maximize a specific quantity termed the objective function while
satisfjing a variety of conditions that define adceptable values of
fhe variables, ?ermed constraints. Nume:ical optimization methods are
reported by Ragsdell [19] to have been born of the logistical needs of
World War II and the work of George Dantzig on linear programming.
Early numerical optimization methods, such as the well known simplex
method, ' could only address problems where all the functions involved

were linear combinaticons of the desigh variables and consequently
| could not satisfy all demands as most problems are nonlinear and many °
of these cannot be accurately approximated by linear functions.
Numericalhalgorithms that can deal with nonlinear problems have been
developed since the late 1950's and have been used in numerous
industrial applications ranging from structural designs to economics.
- Recent developments and applications of numerical optimization
_ algorithhs, including numerous references, have been edited by Lev’
{20] and cover the period 1972-1980.

Background reading by the author of this thesis on optimization
" literature has created the impression that mddern'numerical_
optimization élgérithms are either develoﬁed on the principle that the
design space is searched for the optimum solution by some directed.
search method or on the principle that the design space is searched-in
a random way {Monte Carlo me_thbd). It has been argued f9] that the
main advantage of optimization aigorithms developed oh the latter
principle is that there is iess chance of missing the global minimum,
~ due to the random search process. However, methods based on "search
directions" have been found to be more widely used both in;Europe and
in the United Stéfes. Such methods can be classified into ﬁwo groups,

namely transformation methods, .which transform the nonlinear




constrained problem into a series of nonlinear unconstrained

subproblems and linearization methods which solve a linear

approximation of the nonlinear constrained problen.

In the following sections of this chapter a brief explanation of the
general optimization problem will be presented and the cobjectives for
the investigation of optimum isolation systems for reciprocating
engines will be developed. Finally the transformation type numerical
algorithm used to perform the optimization and troublesome numerical-

areas associated with 1t, will be discussed

3.1  THE GENERAL OPTIMIZATICON PROBLEM

In mathematlcal terms the general constrained optlmlzation problem can

‘be stated as follows:

ninimize ‘ - F(x), [xl. Xos seey xN]E gN |
subject to: li~<~ x5 < vy, i-= 1,2, vv., N
cj(x) 20, - i=1,2, ..., 7 (3.1)

h {x) =0, | k

i

-

-

o
- .
»

=~

where f(x) is the objective, a function of the design variables xl,
cj(x), hy(x} are the inequality and equality constraint functions
respectively and 1i' u; are the lower and upper bounds respectively on

the design variables.

The n-dimensional space RN. formed by the set of all vectors X closed
with respect to linear combination, is divided into two subspaces
which constitute the feasible and infeasible regions of the design

space. Within the feasible subspace of RN. all vectors X satisfy the

'constraints‘ and consequently such vectors are feasible solutions ‘é"
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(3.1}, However if X is an optimum solution then it can be shown
- that in addition to (3.1) X ‘must satisfy various other condltlons

known as optimality conditions.

Sufficient conditions for x* to be a strong locel ninimum of the
general constrained problem will next be discussed durlng an
introduction to optimality conditions for multivariate functions. The
derivation of these conditions is extensively discussed by various
authors such as Gill, Murray and Wright [21] and Luenberger [22] to
name but two/and involves complicated mathematical snalysis which is
" beyond the scope of this work. Howevef. for the purpose of this

thesis, a greatly condensed explanation of the theory will suffice.

and what is presented here is drawn mainly from [21].

- Consider first the unconstrained minimization problem of a

‘multivariate functlon defined as:
Minimize - f(x), =x¢ rN _ ' S (3.2}

Since there are no constraints, then the entire desigﬁ space RN is
feasible. If x is a local minimum of f(x) then the function must be
stationary at x* and must also display positive curvature. Following
reference [21], f(i} is assumed to be twice continuously
‘differentiable and consequently it can be approximated by a Taylor

expansion about x* given as:
* - . .
- f(x +e€p} = f‘(x ) +ep g(x ) ¥ 21 g2 TG(x + c0p)p (3.3)

-where 8 satisfies 0<$pg<€1,e is a positive scalar and p is an ﬁ;

*
dimensional vector (psRN). The vector g{x } is the vector of first

. . ) . *
partial derivatives of the function at the point x given as.

ZEL(h;hﬂ5
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* of of
g(x ) [3_’ "'a—t

and G(x )} is the nxn Hessian matrix of f(x ) composed of the second
partial derlvatlves of f(x ) as'

ol e
sey é-}q](x*) o -. : (3."")

[ g% 32¢ 32
ok, % Bx, 3%, 3%, 0%
6(x") = : (3.5)
Béf 3%E . 32¢
| dx k. dxydx ax

Using'equation (3.3) and a series of contradictory arguments, it is

. *
shown in [21] that the sufficient conditions for x to be'a strong.

local optimum of f are:

IS |
(3.6)
G(x*) is positive definite

where ||.

is satisfied then by definition of a vector norm, g(x*) nust be the
zero vector and hence x*'is a stationary point. However, if the
Hessian matrix is positive definite then for any n-dlmen51ona1 vector
p it holds that pTGp > 0 and consequently x is a local optimum as it
can be deduced from equation (3.3}). From equatlons (3.6} and (3.2) it
follows that the optimum can be any peoint =x, xE:RN_which satisfies

| equations (3.6).

'If constraints are introduced so that the optimization problem becomes

that defined by equations (3.1) then it can be shown that there exists
X, X ERN' which satisfies equations (3.6) but does not satisfy the

" constraint functions.

denotes a vector norm., If the first condition of {3.6)



The set of all vectors x, Xt RN which satisfy the constraints, define

the subspace of feasible solutions equations (3.1). For the

derivation of the optimality conditions for the general optimization
problem it is necessary to consider means for characterizing the set
of feasible points in a neighbourhood of a feasible point i.e. a point_:

x RN that satisfies all the functional constraints. Luenberger [22]
‘argues that a fundamental concept that simplifies the required -

‘theoretical development is that of an active constraint. An-

inequality constraint Cj(x) 0 is said to be active at a feas:.ble

point x if Cj(x) = 0 and inactive at x if Cj(x) > 0. By convention -

- then any equal:.ty constraint h,(x) is active at any feasible point.
The,51gn1f‘:.cance of the active constraints is that their presence

restricts feasible_perturbations about a feasible point. This is

graphically illustrated in Figure 3.1 where Cl(x). Cz(x) and C3(x) are

inequality constraints and the feasible region ig that enclosed by the

curves Cy (x) o, i=1, 2, 3. If :t is a 1ocal oth.mum, it is -

obvious from Fig'ure 3.1 that local properties satisfied at x do not
" depend on the inactive constraints Cs, 03.

Following }J:rt.{reference [21], consider first the case when all the

constraints are linear functions of the design variables and let A

denote the matrix, whose ith row contains the coefficients of the ith

active constraint at the feasible point X.. Due to the linearity of .

the constraints, the properties of linear subsbaces can be used to
define all feasible directions of search from a feasible point. It
can be shown that the sufficient condition for p to be a step frqm any

feasible point to any other feasible point can be expressed as:
Ap=0 . | - {3.7)

' It will later be illustrated that even if fone of thé constraints is

nonlinear, then it is more complicated to _characterize feasible

perturbations and that in fact there is no feasible direction p along

which feasibility can be retained.

e
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FIGURE 3.1: EXAMPLE OF ACTIVE AND INACTIVE CONSTRAINTS

Continuing the discussion on linear constrainté. if Z denotes the

matrix, the columns of which form the basis for the subspace of all ,

feasible vectors p defined by equation (3.7) then any vector p
satisfying it can be writtén as a linear combination of the columns of
mpz for some vector p,. If x* is a feasible po.’gh‘t_then
the-Taylor_expansion of f(x) about x* along such direction is given

as;:

f‘(x* +eZ p,) = f‘(x*) + _Epg ZTg(x*) + %‘-52 p'zr ZTG(x* + c0p)z -3 (3.8)

where £, # are defined as before. The vector ZTg(x ) is termed the

*
projected gradient of f(x) at x and the matrix z1G 2 the projected

*
Hessian of f(x) at x .

If x is a local minimum of f(x) then it follows from equation (3.8)
 that plzT
*
must be positive definite (i.e. f(x.) must display positive curvature

+ .
at x ). The first condition implies that

+* . .
gi{x ) must vanish for every p, and that the projected Hessian

w"*Y:L'.M
drrm ~"‘"?
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T g(x) =0 . - (3.9)

rows of A i.e.

»

* -~ .
g(x) = AT A e v {3.10)
' . #* ' :
for some vector X , termed the vector of Lagrange multipliers and
which is unique only if the rows of A are linearly independent. The

'in f{x) which would result from a positive step along a perturbation p
such that: - ' o

alp>0

A P=0%if]

T

where a is the it row of the ‘matrix A (see eduation'(3.7)).-

"The sufficient optimality conditions for the linearly constrained

probleﬁ can be expressed as:

#*

* . '
li >0,i=1,2, t

(where t is the number of active constraints)

. * .
which further implies that g{x ) must be a linear combination of the

jth Lagrange multiplier (xj) is a first order indication of the change




and . . ZTG(x*)Z is positive definite.

- If the jth Lagrange multiplier is negative, then: it means that a
positive step along a non- binding perturbation {i. e.;jT P> 0) with .
respect to the Jth active constraint will reduce tlse objective
function and hence‘x* cannot he optimum. However, if lj = 0 then no
indication is given about the change in _f(x) which will result by such
perturbation and conéequently extra restrictions are required on the
Hessian matrix to ensure that f{x) displays positive .cur{rature along

such perturbations.

Consider now the case when one or all of the constraints are
Ny nonlinear.' The preoblem that arises; is:\ that in general there is no
feasible direction p such that Ci'(x_-+ o p) = 0 holds for all
‘sufficiently small|a|. If feasibility is to be retained with respect
to 6 0 then it will be necessary to move along a feasuble arc with
origin at x . Further 1if C -is to remain identically zero for all
points on the arc then the rate of change of Cl along the arc must bhe
 zero at x*.' Ifpisa tangen't to a feasible arc for all constraints,

then it can be shown that
P o '
CA(x )p=0 ‘ {3.12)

where. ﬁ(x*) is 'the Jacobian métrix of the constraints i.e. the matrix
whose J.th row is the gradient vector of the :Lth constraint. However,

if equation (3.12) holdssit does not follow that p is a tangent to a.
feasible arc and it can be shown that the condition of equation (3.12)
is sufficient only if the matrix R(x*) possesses full row rank, i.e.
" when the gradients of the active constraints at x*.- are linearly

independent.

| “ o
Due to the fact that the matrix A(x ) is not constant, a constant

_basis for the feasible subspace cannot be defined., The matrix Z is




now defined as the matrix whose columns form alaa31s for the set of‘

vectors orthogonal to the rows of A(x ) at x and is denoted Z(x ).

Although first order optlmality conditions can be easily derived by

arguing. that the function must be stationary at x along any feasible.

arc, giving the necessary condition as

gp=0 a3

where p satisfies equation (3.12), the derivation of second order

optimality conditions is more complicated as it requires information
. * . ’

about the constraint curvature at x . However, if equation (3.13)

" holds for every p that satisfies equation (3.12) then it follows that

A . . , _
Z(x' ) g(x ) = 0 | | (3.14)
- must be true, or equivalently

glx) = AT (3.15)

. . '*. .
for some vector A of Lagrange multipliers. Again following [21]

consider now the Lagrangian function defined as

| L{x, A) = f{x) - AT é(x) o ~ (3.16)

Equation (3.15) states that x is a stationary point of the Lagrangian

. *
when A= XA . DBased on this property and for reascns of convenience,

the second order cptimality conditions can be derived by analysing the

Lagrangian function. and seeking conditions for f(x*) to display non-

* .
negative curvature at x along any feasible arc. If W(x, A} denotes
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 the Hessian of the Lagrangian function then the sufficient optimalit&

conditions for the nonlinear constraint problem are:

‘C(x*) Z 0 with a(x*) =0
Z(x*)Tg(x*) =0 or eduivalently g(xr) = R(x*)TA*
AY>0 1=1,2, ..., t and

Z(x*)T W(X*-‘A*) Z(x*) is poSitive.definite..

" Again if any Lagrange multiplier 1s zero then extra restrictions must
be applied to the Hessian to ensure that‘f(x) displays positive
curvature along any feasible arc p, for which equation (3.12) holds
- for all constraints assbciated'with poSitive Lagrange multipliers but
| not necessarily so for constraints associated with éero Lagrange

multipliers.

Although this brief presentation has by.no means covered all aspects
‘of the derivation of optimality conditions for the general
optimization problem, it is believed that the main concepts involved
have been introduced sufficiently for the purpose of this work. What
.will follow is a short explanation of a methqd which attempts to
compute the optimum solution to the general optimization problem of |
equation (3.1) when nonlinear constraints are present. In general
optimization methods afe iterative and involve the solution_of two
main subproblems, namely the computation‘of'a feagible direction of
search from a current estimaté of the optimum and the computation of
the step lehgfh along such direction that will give a "better"
apﬁroximation of the oppimﬁm. A model algorithm is shown in‘thé flow

diagram of Figure 3.2.

‘However, as was previously discussed when nonlinear constraints are

present, the computation of a feasible search direction is in general
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" an impossible task, and consequently a method based on fe331blew

" directions cannot be directly employed

~ Transformation Methods: One approach to solving the nonlinear

constrained problen is to construct a f‘unctio_n whose unconstrained
‘minimum is either x* or is related to x* is a known way. The original
problem 'can then be solved by formulating a sequence of unaonstrained
subproblems., Such a function can be constructed by augmenting the
Lagrangian function defined earlier by equation (3.16).

- Giil, Murray and Wright [21] argue that the most popular augmented ‘

Lagrangian f‘unction is given by

‘L(x.?s.o) £(x) - TE(x) + lycmT e  (3.18)

( . START '

Y

Compute direction of search Pi

R

Compute step length @, such that
| ] f{x, + apy) < fx)

|

Update estimate of the minimum

' X1+ Xy *op, K+ K¢l

' Optimality
conditions
satisfied?

YES Terminate
algorithm

FIGURE 3.2: MODEL OPTIMIZATION ALGORITHM




- . . o -
where P is a positive penalty parameter. It can be shown that if A=)

then x is a stationary point of L{x,A,p) and that there exists a
finite p such that % 15 an unconstrained minimum of L(x, r,p)*fﬁ Sp
The theory of augmented Lagrangian _methods is beyond the scope of this
work and it will not be further 'discussed. However, practical .
experience with this particular function wili be disc_ussed later in an
attempt to give an interpretation of the various terms involved in
~equation (3.18). - '

Having defined the unconstrained subproblem a direction of search
method, such as the one which will now be discussed, can be used to
obtain the unconstrained minimum. ‘

-

Newton's Method: This is an iterati_vg procedure @aftempts- to
converge to the local minimum of the unconstrained problem defined
earlier by equation (3.2), and is based on a local quadratic
approximation of the objective function about the current
approximation of the minimum. Assuming that the function is twice
continuously differentiable then a Taylor expansion about the current’

point Xy is given as:

Plxe+ ) = £lx) + g To + LpT atmde (3.19)

~ The computation of the search direction p is implemented by seeking a
vector p which minimizes the right hand side of eq‘uation (3.19) i.e.
by finding the stationary point of ' |

$(p) = glx )T p -159T G(x, )p - - (3.20)

This requires the solution of the linear system of equation °

G(x,) B = = &lx)



- According to reference [21] equation (3.21) defines the Newton method

and the vector p so computed is termed Newton's direction. If

G(xy) in equation (3.20) is positive def‘inite'and' consequently the .

quadratic model has' a unique minimum, then equation (3.21) guarantees

that Py is a descent direction since ’

g(xk)Tpk = -g(xk)'.r G'l(xk)i g(x )<0.

Further if the condition. number of G{x; ) (cond(G(xy ) =| | G(x ) |.] [G"l(xk)] 1)

“is uniformly bounded for all k then a globally convergent algorithm
can be developed by taking a step «j along the Newton direction
defined by eqnation (3.21). A practical definition for o) 1is that the

slope of the function at x) + op, is sufficiently reduced from that at .

xk i.e.

le(x, + op)T o < - nglx)T by O (3.22)

where n specifies the accuracy with which o). approximates a stationary -

points of f(x) along p, and 0Sn < 1. If G(x,) i1s not positive

definite then the quadratic model function defined by equation (3.19) _
might not have a minimum nor even a stationary point. . This situation _

could arise when x)-is a saddle point and G(xk) is indefinite.

According to reference [21], modified Newton methods construct a

"related" positive definite matrix Ek when G(xk) is indefinite and
then solve equation (3.21) using G, instead of G(xk).' One method to

determine whether G(xk) is positive definite is based on a modified

Cholesky factorization giving Ek as

Ek = LpLl = G(xy) + E _ ,(3-23)

where L is uni't: lower-triangular, D is a positive diagonal matrix and
E is a non-negative diagonal matrix, which is 1dentically zero when

G(xk) is positive definite.



The main advantage of Newton--type methods is that they use curvature .

information.given by the Hessian matrix to build a local quadratic
. model of f{x) at the current iteration step. For a géneral nonlinear
function such methods converge quadratically to x*.if the starting
ﬁoint is sufficiently close to x*, the Hessian matrix is positive
detinite at x* andtxk converges to uniﬁy. However, in practice,

modified Newton methods are used for greater computational efficiency.

Quasi-Newton Methods: = In contrast to Newton-type methods where all-

curvature information is computed at a single point, these use the
observed behaviour of f(x) and its gradient vector g(x) to build up
curvature information as the iteration of a descent method proceeds.
An approximation By to the Hessian G(xk) is maintained and updated at

each iteration, which [21] is performed using the relation:

' ¥ Y T g gT

- . k Yk Ix I
Bk+1 Bk + T . + *

- Y¥e Py 9 Py

(3.24)

where'yk 5 Bie+l ~ By In practice however, a Cholesky factorization
. of By is kept and updated and the search direction is computed by
equation {3.21). '

3.2 FORMULATING THE ENGINE ISOLATION PROBLEM

In this gection the objective function and the constraints for the
~investigation of optimum engine isolation systgmg will be derived and
formulated according to the definition of the general optimization

problem given in equation (3.1),

The objective function: Following the decision that the investigation

of optimum engine isolation systems will be based on the forced

response of a six-degree of freedom rigid engine isolator model, for

‘reasons discussed during the introductory chapter, it was thought

sensible that the optimization objective should be to minimize the




magnitude of the forces transmitted to the rigid supporting structure.

It is clear from the mathematical statement of the general

optimization problem that the optimization objec;ive must be expressed

in terms of a single function of the design variables,Bearing in mind
that the principal reason for using engine isolators is to minimize

the transmission of engine generated forces to the‘vehiéle chaééis, it

seemed reasonable to define the objective function_as the sum of the

" mean square values of the forces over all the isclator local
direétions and over all the harmonics of the excitation. To derive
the analytical‘expression for this mean square transmitted force, the
dynamic displacement vector at the power train mass centre computed by
equation (2.29) for the rt? harmonic of the excitation is transformed
by equation (2.36), after substitution of the static displacement
vectors ulS), () by the equivalent dynamic vectors of the power

th js0lator. The

train mass centre, to give the deflection at the i
forces on the ith isolator are then computed by the following
equaticn: '

( R
fi;)-kij xi(;) . (2.25)

where f;;) is the force on the ith isolator in the jth 1ocal direction
due to the r'® harmonic of the excitation
- kyy
direction _ . .
() th th
Xy is the deflection of the i isolator in the j local

dlrection due to the rth harmonic of the excitation.

The objective'function is then expressed as:

(kg )? (x5

1

: m
£x) =3 1 [
' r=1 i

TN

1 9=1

»whére X 1is the optimization vector comprised of the design variables;

viz, isolator stiffness fates.‘global position coordinates and

orientation Euler angles.

is the stiffness of the ith isclator in the j#h local

2] (3.26)




The necessary steps to compute this function fbr.a given set of design
variables is illustrated by the flow chart given in Figure 3.3.
Although the computation steps are not particularl& complex, they do

involve a great number of matrix multiplications. During early

computer runs the objectivé function described by equation (3.26) was

optimized using an algorithm for unconstrained optimization and it was

realised that the objective function was computed at least once for

~each design variable free from its bounds. The reason for this is

‘attributed to the numericai'approximation of the derivatives of the
objective function. Further it was observed that a typical
optimizatidn rﬁn ﬁould require a few hundred iteratipnslto converge to
the minimum. Bearing in mind that the calculation loop shown in
 Figdre 3.3 is executed for each harmonic of the excitation, it can be
appreciated thét during a typical optimization run the comhutef will
execute that loop several thousand times. Consequéntly efforts were

made to reduce the computation time of the objective function to a

minimum and as a result two alternative definitions of the objective -

function were considered. The quickest way to compute the objective
' fﬁnction, in terms of the forced response, is of course to define it
as the mean square displacement at the power train mass centre
expressed by equation (3.27) as the sum of the mean square value of
the power train mass centre displacements over all global directions

and over all the excitation harmonics

‘n 6 : - : )
ey =2 1Y 552 (3.27)

r=1 i=1

However, this definition was discarded on the grounds that minimizing
mean square displacement at the power train mass centre does not

nécessarily imply force transmiséion minimization.

The second alternative was to define the objective function as the

maximum strain energy stored in the dynamic system as a result of the

harmonic excitation, By definition the strain energy of a dynamic .

system is expressed as
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FIGURE 3.3: FLOW CHART FOR COMPUTING‘MEAN SQUARE FORCE




V= 32 : E Z kij q; q[‘.j N ' _ (.3.28)
i-l j=1 : .

where kij is the element in the 1t0 row and jth column of the global
stiffness matrix and q4, a4 are'the.ith and jth generalized

coordinates. The objective function is then expressed as
' 6 6 - A \ ' |
0-18 [ ) | 2T |:
£(X) = 3 Z [ 121 jzlkij|xi )||xj B (3.29)

where |x(r)]is the magnitude of the complex dlSplacement at the power

train mass centre due to the rth harmonic of the excitation, computed

- by equation (2.29). It is easy to calculate as may be seen from
'Figure 3.4 whilst retaining a direct connection with the force

transmitted to the supporting structure.

This relationship can be shown by considering the simple oscillator
shown in Figure 3.5. The transmitted force can be expressed as:
Fpr=k x ‘ ~ {3.30)
~and hence the mean square force is given as:

CFp2> = k2 f; - | _' (3.31)

- The time averaged strain energy is given by:
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FIGURE 3,.4: FLCW CHART FOR COMPUTING STRAIN ENERGY
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‘and hence the relation between strain energy and transmitted force can

be derived form equations (3.31) and_(3.32) as
CFp2> = 2k <V> o (3.33)

It ig quite clear now that using sﬁrain energy as the optimization
objective, the primary objective of minimizing the forces transmitted
~to the supporting structure is not violated while pomparisdn of
Figures 3.3 and 3.4 cléariy suggests'that the computation time of the
objective function will be reduced considerably. | '

' The constraints: . As was discussed during the static analysis of the

rigid-engine isolator model presented in the previous chapter, it is’

desirable to place constraints on the isolator maximum allowable
static deflections and power train maximum allowable static rotations.

It was further discussed‘that separation of engine vibration from

engine shake is desirable as low frequency road inputs can excite the

lower rigid-engine modes. In order to achieve this it would be
essential to isolate a particular degree of freedom from the coupled
modes of vibration and hence "force" that chosen degree of freedom to
be excited within a sgpecified frequency using frequency constraints.
Effectively what is reduired is to identify the modal frequency
corresponding to the mode shape in which.the chosen degree of freedom
dominates the rigid-body'response. If a numerical procedure could be

used to carry out such identification, every time the eigenvalue'_‘

problem is solved during optimization,‘then it would be possible to

ggggig;;x separate fengine shake from engine vibration. Total

separation could not be achieved with a'coupled system as it is highly

‘unlikely that the constrained degree of freedom would not be excited

at all the other modal frequencies as it can be appreciated from Table
2.1. Here, for ekample.'it is clear that the vertical degree of

freedom is excited in most other modes of vibration. If the mode of

vibration where the vertical degree of freedom dominates the response
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is constrained within a specified frequency band thére‘is no guarantee
‘that the vertical mode will not be excited outSide that frequency
_band. It can be.éppreciated.noﬁ that attempting to separate engine
'shéke from engine_vibration using frequency constraints in thé way
just discussed, the only result will be to increase the computation
time with doubtful benefits. A much simpler way to|partially|sclve)the
_problem is to identify the frequency band where the road excitation is
expected to interfere with the rigid-éngine frequency spectrum and
then introduce f‘fequency constra'ints which will ensure that all the
rigid power train modes are beyond that frequency band. .

These frequency constraints, together with the displacement
" constraints mentibned‘earlier,_fix the general design spece which is
defined by the upper and lower bounds of the design variables in a

feasible and an infeasible subspace. As there 1s no reason to

restrict the optimum solution to lie on the borders between the

feasible and the infeasible subspace, all the cbnstraint functions
will be of the inequality type and will be formulated as follows.

Letiaq? represent the static deflections of the 1th isolator in the
_jth local direction, computed by equation (2.36) and vl(:s) the static

engine rotation about the rth
CIf cij denotes the maximum allowable value for vg?) then the

inequality constraint functions can be expressed as

. - - . (sj o -

Cpuy®) = loggl - 10agl 50, 521, 2, .0y m (3.34)
=1, 2,3

ety = o] - sl s 0,0 =1,2,3 0 (3.35)

- Similarly if h denotes the minimum allowable value for the rigid

engine isolator spectrum'(wn. n =1, 2, ..., 6) then the frequency .

"constraints.can be expressed as follows:

global axis computed by equation (2.35)(

aﬁ:&—.
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Cirgapen(®) = |8 ) = |ny[ 20, n=1,2, ..., 6 (3.36)

Equations (3.29) and'(3.34) to (3.36) complefely describe the

objectives for thelinvestigation of optimum engine isolatioh'systems.
What will follow is a description of the numerical algorithm and a
discussion of a number of important numerical issues such as local and

global mlnlma, numerical accuracy and scaling.

3.3 THE NUMERICAL ALGORITHM

Choosing the appropriate routine to solve the optimization problem
previously defined, proved to be an:eqsier.fask than had been
anticipated mostly due to the limited range of readily available
software. Optimization routines supported at Loughboroﬁgh University

are only those included in the NAG Libréry'which'is implemented‘on

" both the PRIME and the Honeywell Multics computer systems of the
University. The docﬁmentation for the optimization routines, supplied
by NAG, describes all the algorithms available in the library and
users are advised to select the appropriate routine using one of the
two available decision trees depending on whether the problem to be
sdlyed is of the constrained or unconstrained type. - Then the
selection of the appropriate routine simply deﬁends‘on the type of
cdnstraint {(i.e. simple bounds on the design variables or function

constraints) and the availability of analyticai expressions for the

derivatives of the objective functions with respect to the design

variables.

The optimization problem defined previously is of the constrained type

and further analytical expressions for first and second derivatives of

] gn:c.h.‘fj

the objective function are impossible to develop. Under these

specifications the decision tree for constrained coptimization problems

pointed to the routine named EQ4UAF which will be described next.

NAG_EQ4UAF: This procedure uses the augmented Lagrangian function

defined earlier by equation (3.18) to transform thé_general constraint
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problem into & sequence of_“bounds-constrained" subproblems; Once the
augmented Lagrangian is constructed using current estimates of the
Lagrange multipliers A, and the penalty parameter p, then EQ4UAF:
. passes cecntrol to NAG subroutine EO4JBF which solves the current

"bounds-constrained” subproblem by a quési-Newton method. .

The user is requested to supply three subroutiﬁes named FUNCT1, CON1,
AMONIT the functions of which are as follows: '

FUNCT1:  computes the bbjectiﬁe function of any =x set‘by the NAG
. routine ' | h

CON1:  computes the constraints at any x

AMONIT._ is a routine which can be used to monitor the progress of the

algorithm.

 Subroutines FUNCT1 and CON1 have been discussed in the previous
chapter concerned with the dynamic and static analysis of the rigid
engine isolator model. However flow charts for all three routines can
be found in Appendix D where a degcription of the whole computer
program is presented in terms of fairly detailed flow diagrams. A
call to ECYUAF is made by thg following statement:

CALL EQYUAF (N, MEQ,IMINEQ. MRNGE, M, MONAUX, IPRINT, MAXCAL, ETA,
XTOL, STEPMX, CL, CU, LCLU, IBOUND, XL, XU, LAMSET, X,
RHO, RLAM, F, C, IW, LIW, W, LW, IFAIL):

Although all the parameters involved_in.the argument are fully -
explained in the NAG documentation [23], the meaning of some of these

is éxplained below for quick reference purposes.

N - number of independent design variableé
MINEQ - number of inequality constraints
M - total number of constraints
- MAXCAL - maximum allowable number of function evaluations

ETA . - specifies how accurately the minimum of a "cross section”
of the augmented Lagrangian function is to be determined

{can be related ton of equation (3.22))
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X -~ the N-dimensional array containing initial values of the
design variables ‘
RHO - is the penalty parameter p of equatlon {3. 18)

RLAM - the M-dimensional array- containing estimates of the
- ‘Lagrange multipliers . |
F - contains the current value of the objective function:
C - the M-dimensional array containing the current values of
the constraint functions | '

this is the report flag parameter which is set by the

2
=
=
o
1

routine before exit to give some indication of the status
of the final solution

On entry, ECU4UAF checks all the parameters in its argument for
consistency and if an error is detected then IFLAG is set to 1 and the
algorithm terminates with an error report. Otherwise the algorithm
commences by constructing the Lagrangian function defined in equation
(3.18). First the inequality constraints are transfofmed into equality
constraints by the addition of slack wvariables and further bounds. For
example the constraint Ci(x)> 0 is replaced by the equality
constraint and simple bound: ‘

Ci{x) - xp,4 =0 - {3.37) .

v
o

Xm+i

Using current information on the Lagrange multipliers and the penalty
parameter pjthe Lagrangian function is then constructed and is passed
to EC4JBF where it is minimized subjectrto bounds on the original and

the slack variables.

The ﬁain steps of the numerical algorithm are illustrated by the flow

- chart diagram in Figure 3.6. This brief explanation of the numerical

algorithm gives some idea of the numerical procedures involved in the

computaticn of the minimum. Decisions within the algorithm are taken
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- by observing numerical changes in key parameters and consequently

nunerical precision is of vital importance. ' Further when the problem

'involves'many design variables and constraints it is impossible for
the user to construct a geometrical representation for the problen
which would help in-visually locating undesirable areas or even strong

minima, Undesirable areas within the design'space are areas where the

function surface resembles a "flat walley". - Such areas create

numerical problems due to the fact that the function undergoes little

‘change by moving along such a "valley” and consequently errors are

introduced in the estimate of the gradient vectors, which cause even
larger errors in the cbmputatioﬁ of second derivatives.. It ¢an be
appreciated that under such conditions the computed directions of
. search are unlikely to be a direction that will minimize the objective

function and consequently the algorithm might get "stuck” or even

fail, Unfdrtunately there is no %ay‘to prevent'the occurrence of such -

situations in complex problems nor is there a way to ensure that
'algorithms of the type described will converge to the global minimum.
One common technique used to reduce the chance of serious error is to
solve the same problem using many diffepént starting points from which
 the best solution is chosen (although even such a trial and error kind

of approach does not guarantee that the global minimum is not missed).

Apart from the problem mentioned above, there are a number of other
numerical'problems(gggi)can arise and which can be prevented once the
sources are established., The nature of such problems as well as
possible remedies will next be discussed during an introduction to the
~ importance of "scaling" on the behaviour of the oﬁtimization

algorithm.

Scaling is the term used in optlmlzatlon literature to describe in a
vague sense the numerical difficulties associated with optimization
algorlthms. With respect to scaling, the NAG documentatlon manual
.[23] suggests that the user should scale the objective function, the

_constraints and the design variables in such a way so that:
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" a) ‘at the solution they all lie in the range [-1, +1] and
b) at points one unit away from the solution F(x) and cr(x) differ
from their values at the solution by approximately one unit. _

Unfortunatély it is not always possible to follow tﬁe above scaliag
‘reconmendations when dealing with practical problems. Scaling F(x)
and cI(x) so that they are in the range [-1, +#1] will not be possible -
unless the exact range of values df these functions is known from the
start. Further it will be extremely difficult to follow recommendation
{b) especially when F(x) and cy(x) are nonlinear functions. waever
it is possible to scale the design variables so that they are in the .
range [-1, +1] as their exact range of values (upper and lower limits)

are usually specified in practical problems. .

Gill, Murray and Wright [21] briefly discuss the reasons for such
variable transformations. They argue that numerical problems can
- arise due to the fact that the design variables involved in practical
problems when expressed in physical units will generally have widely
varying ordérs of magnitude or differences in'the range of typical

values; The main principle of variable transformation is to "map" all '
the variables to a common numerical range so that numerical changes on
the variables can be carried out on a common basis. Consider fbr
example two of the variables involved in the definition of the
optimization objective function given earlier by equation (3.29). The
stiffness of the isolator will be of the order of 106 N/m while t‘he,
position of the isolator with respect to the power train mass centre
will be of the order of 10™1m. It can be appreciated that a numerical
change of 0.1 to these variables does not reflect equivalent numerical
changes. The numerical algorithm must therefore decide in some way
what is a feasonable numerical éhange'for each of the variables
involved,‘Even if thé variables are ofrthe same 6rder of magnitude the

same problem can arise when the range of typical values of the
variables involved is substantially dissimilar. Consider, for
instance, the case where the variables Xy, X, are constrained as

follows:
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Although both variables are of the same order of magnitude the
variable x5, is much more restricted and consequently a finer numerical
change might be more appropriate. Again the numerical'algorithm will
have to decide what is a reasonable numerical change for each of the
‘variables., However, if the design variables aré'"mapped" onto the same
numerical range by some linear (or otherwise) transformation, then it
will be much easier for the numerical procedure to select a reasonable

numerical step.

Assuming that the exact bounds of the design variables cén be
specified, the following transformation relationship is given in [21]

2xi _ aj + by
b, ~a. b. - a,
J J J

(3.38)

where xj is the jth original design variable, Y3 is the jth

transformed design variable and a4 < Xy €b Obviously the

_ transformed variables yj are. only visible to the o;tlmlzation routine

"(EO4UAF) while the computation of the objective function is carried
out (by FUNCT1) using the original variables. This is achieved by
transforming the varlables Yj back to physical units (w1th1n FUNCT1)

u51ng the inverse of equation (3.38) i.e.

a + b

Equations (3.38) and (3.39) conclude the scaling of the design
variables. What remains to be discussed is the scaling of the

_cbjective function and the congtfaints.
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" Unfortunately scaling these functions is not as straightforwarqbapd '2X:
indeed it was this part of the problem that consumed most of the
author's time. The objective function F(x) and the constraints cI(x) |
~were scaled on a trial and error basis by observing the behaviour of
the nuinerical algorithm during a series of optimization attempts. . ‘
Starting these attempts with no scaling whatsoever on F(x) and cr{x)
and by observing intermediate optimization results as well as the _ ‘
final solution it was decided, for reasons which will be discussed in
" the next chapter, that each of the constraint functions should be
multiplied by a constant weighting factor each time these functions _ o
‘are e#aluated within CON1l. Equations (3.3%) to (3.361 were thus

modified as follows: _

egoglx) = [Jegy |- [uf§)Twy,52 0 1=

]
)8
=

G -
=
]

ci+:]+r(x) = [Icr I-Iv:(:s)ll Wi+j+r'>’ O, r=1,2,3 _ (3.41) ' ‘

ci+j.+r+n(x) = {lmnl = IhI] wiq.jq.r-pn 2 0, n=1,2, ..., 6(3'”’2)

where W denotes the weighting factor associated with each constraint.
It was further observed that scaling'F(x) in a similar way had no
visible effects on the behaviour of the numerical algorithm and '

subsequently the objective function was left unscaled.

Further comments on the effect of scaling and the trial and error '
approéch in choosing_"app:opriate" weighting factors will be discussed
in the next chapter during an extensive discussion of the computef
results obtained in an attempt to compute an optimum isolation system

for the power train-isolator arrangement which was briefly discussed

~in the-second chapter of this thesis.
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CHAPTER 4

A CASE STUDY

The previous two chapters developed the required theoretical analysis
for the investigation of optimum isolation systems for reciprocating
engines. .The computer program which reads the data and calls the NAG
routine EQ4UAF to minimize the objective function computed by
subroutine FUNCT1 subject to bounds on the design wvariables and

congtraints set by subroutine CON1l, is named "ENGVIB". The flow chart
_ of ENGVIB can be found in Appendix D with a brief description of the
.structure of the entire computer program. The structure of-the data
file required to intialize ENGVIB is also illustrated in this
appendix, while the engine-isolator arrangement which is represented‘

by the data is described in Appendix C.

4.1 OPTIMIZATION PARAMETERS

From the theoretical enalysis pfeviously presented, it will be
apprecieted that the numerical algorithm can only partially satisfy
'the'complex requirements associated with minimizing the transmission
of engine induced vibration whilst simultaneously satisfying the
static conditions specified. The main modelling aesumptions which

limit the usefulness of the algorithm are:

1. the engine supporting structure is rigid, and

2. that the isolators behave like linear springs.

However the implications of these tw0‘assumptions on the optimum
solution cobtained by the computer program are unlikely to be serious
if certain key optimization parameters‘are-carefully selected at the
start. Effectively theee parameters can be classified into two
generalrcategories; those which define the specifications of the
optimum isolation system (i.e. the constraint constants) and those

which are related to the scaling (i.e. the weighting factors). -
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With respect to the first type of parameter, the main problem to be
dealt with, pribr to running the computer program, is that of choosing
appfopriate values_for the maximum asllowable deflections Ci 4 of the
isolators as set out in equation (3.34). Recalling the discussion on
the prpblems associated with the linear model of the engine mounts it
can be appreciated that special allowance must be made in thé
numerical values of these constants to account for their nonlinear
load-deflection characteristics. Load-deflection characteristics of
.isolators with elastic properties resembling thdse specified by the
stiffness bounds can be used to give a gross approximation to the
numerical values of the constants cij.,.Thg program can then be run

for a series of Cij values about these gross estimates. The wvalues -

of Cij for which the oppimum isolation system possesses the most
desirable static behaviour can thus be selected for further

optimization attempts if needed. When the program was run for the

power train-isolator arrangement shown in Figure 2.7 and the static

tofque was set to the assumed maximum torque of thé power train

(2437 Nm) the isolator deflections were computed as follows:

Isolator No., X-Deflection Y-Deflection : Z-Deflection
1 . .1.63 mm . O.56\mm | 4.7 om

| 243 mm 9.75 mm ~20.8 mm
3 0.06 mm 10,71 nm . 15.6 mm

~ The stiffness of the second isolator in the Z-direction was 226 N/mm

and consequently equation (2.33) gives an applied force of 4.69 kN.

From Figure 2.17 the isolator deflection at a load of 4,69 kN is
found to be 12.8 mm according to the upper graph, 'and 15.8 mm

according to the lower graph. Suitable values of €y for running the

.program are thus expected to be in the'range of‘iO to 20 mm.‘ However,

“apart from the maximum iéolator'deflections, three more constants are .

required to specify the maximum allowable static rotations of the

power train (see equation {(3.35)). Fortunately the computation of the

. power train rotations is not significantly affected by the linear
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model and cons‘equéntly'real tolerances can be used. It was advised .
[10] that the power train should not be alloﬁed to rotate more than 10
degrees in any direction and the appropriate constants were set to
this value although a value of 5 degrees was also used in some
computer runs for testing pdrposes; With respect to the constants
cij' two sets of test runs were carried out, one with_cij_set at 15

and another with cij‘set-at 20 mm.

Thé next problem is to decide whether frequency constraints should be
_aﬁplied. The‘option of fregquency constraints was introduced into the
program so that the rigid pbwer train frequency spectrum could be .
intentionally shifted away from undesirable frequency bands. The
option is switched on by setting the parameter INAT to 1 in which case
the user must supply a minimum.numerical value cn. see equation (3.36) "
for each modal frequency. As wag stated previously, frequency
constraints can be used to separate engine vibration from engine
shake. For the purpose of testing the optimization program a series
of test runs was carried out to determine whether the program could
reach an optimum when the modal frequency spectrum (initially in the
range 5 to 19 Hz) was forced to exceed an 8 Hz lower limiting
frequency which was suggested [10] to be the highest frequency of road
input excitations that the engine isolation system would experience.

The problems described in the previous two péfagréphé'are_relatively

easy to deal with., The difficult and time consuming part is that of

éhoosing-numerical values for the weighting factors wy; for the

constraint functions (see equations (3.40) to (3.42)) and for the

penalty parameter p (see equation (3.18)). The main problems which can

occur as a result of inexperienced choice of nuﬁerical values for

these parameters can be summarized as follows: 7

a) the optimization‘algorithm ignores constraint viclations;

b) slow or oscillating changes of the objective function; |

c) .too‘many iterations reduired for each unconstrained subproblem;

d) the algorithm appears to be stuck (no substantial change is
~ observed in the objective function for a great number of

iterations)
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e} the algorithm terminates and the value of the objective function

on exit is greater than that on. entry.

It is the source of these ﬁréblems that the following discussion aims
to clarify on a practical basis since they play a crucial role in

determining whether or not the optimum isolation system eventually

-identif'ied will be assbciated with a strong minimum of the objective

functiqn.- Unfortunately, the algprithm‘is unable to flag a global
minimum which leaves the user with no alternative but to run the
‘,program, using many,different stﬁrting points and then to pick the
lowest minimum obtained. However, if all the previously stated
problems'ére reasonably dealt with, then it is only a matter of
computer time or better definition of the original optimization
problem before a strong.optimum solution is obtained. Based on
considerablé experience.of successfully running thé‘program, it was
found that for a reasonably well defined and scaled problem the
algorithm would convefge to a local minimum within no more than 1.5 to

‘2 hours. Typically only about 1.0 hr cpu time was required.

As was stated at the end of Chapter 3, the weighting factors were.

introduced into the program after certain experience was gained by
.running the program without scaling the constraint functioﬁs. Thé
problenm which emerged from those early optimization attempts was that
. the algorithm was not able to detect ﬁiolation of constraints.. On
exit, several constraints would be violated but @;)far as the
algorithm was concerned there was nothing wrong with the solution
| - obtained (IFAIL was set to zero on exit meaning that a local minimum
. for the constrained problem had succeséfully'been found). With respect
to scaling of the constraint functions Gill, Murray and Wright [21]
argue'that the constraints should be well.scaled with respect to the
design vériables but éhould also be balanted with respect to each

other, @ far as the first requirement is concerned, it is expected

that the,tfansformation applied to the design variables (equation

(3.38) should be adequate for this purpose. Balancing of the
constraints requires that each constraint should be appropriately

- weighted. However, this is not the only_effeét of introducing
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, weighting factors, and in fact it is a less obvious effect that'was.
responsible for the undetected constraint violation which was observed
"during the early-6ptimization.attempts.‘ It should be mentioned at
this point that throughout the progress of the algorithm the Lagrange

nultipliers remained zero.

Zero Lagrange multipliers are known to be a 'bad sign' even when the
solution obtained satisfies all the required conditions. Discussing
the subject of Lagrange multipliers Gill, Murray and Wright argue that
no comment can be'made about the optimality of a point associated with-
zero‘Lagrange multipliers before higher derivatives are examined
(which are unlikely to be available)., Further it is argued that
- a Lagrange multiplier which is zero at the solution point could
indicate that the‘associated‘constraint is reaundant or that the
.solution is at a saddle point.

Constraints which are associated with zero Lagrange ﬁultipliers-are
deleted from the active set and consequently cannot influence the
sequence of iterates of the algorithm. Due to the limiting precision
of computation;'difficuities can arise in determining the correct sign
of a veryrémall multiplier which could be caused by a small
perturbation, initiated by a rounding error. Substantially greater
errors can be involved in the computation of the Lagrange multipliers
due to ill-conditicning of the Jacobian matrix of the constraints on
thch the computation of the Lagrange hultipliers‘is known to be
critically dependent. According to referehce [21] the effect of
multiplying a constraint by a constant w; is to alter the rows of the
Jacobian and bonsequently the values of the Légrange nultipliers. It
can be appfeciated now why weighting_oflthe constraints can change the

sequence of iterates dramatically.

. Once the weighting factors were introduced, violation of constraints
became detectable by the algbrithm but that involved  careful
assignment of the weights so that the constraints were properly
balanced.'Initiaily certain constraints would still be violated at

the solution. However, investigation of intermediate optimization




83

results revealed that this was due to the nomerical‘domination of the
other (satisfied) constraints.:'In'particular it was the isolator
deflections that appeared to be invisible to the algorithm in contrast
‘to the engine rotations to which the algorithm appeared to_be most
sensitive. (Frequency constraints were not applied during those early
optimization attempts). _It was observed that the isolator deflections
were numerically smaller than the engine rotations by a factor of a
. least 10 throughout the progress of the algorithm, Considering th.
Lagrangian function (equation (3.18)), it can be appreciated that

numerical difference among the constraints leads to a square of that

difference on the associated penalty term of thetLagrangian-(& chc)

which in turn implies that the algorithm will be biased towards
certain directions of search. ' |

There appear to be no other guidelines on choosing weighting factors
apart from those mentioned shove. Closing the subject of constraint
scaling Gill, Murray and Wright discuss the possibility of future
software which will automatically scale all the constraint functions.
Although this kind of software development will be of great value in

conditioning optimization problems from a numerical point of view, it

could distance the engineer from vital features of his particular

problem, which at present cannot be considered an exhilarating
expectation. On the contrary it is believed that users of numerical
optimization algorithms should acquire the necessary background on

'optimization theory.

One further parameter of importance whlch must be initlally set by the
user and which can cause a lot ot‘ problems (if 1t is too large or too
small on entry to EO4UAF) is the penalty parameter p involved in the
definition of the.Lagrangian; According to Gill, Murray and Wright

211, the Hessian matrix of the augmented Lagrangian function will be

ill-conditioned for certain ranges of p which implies that the

unconstrained subproblem will be ill-conditioned too. On the choice

of p the NAG routine manual suggests that the user should ' set p to 1
. inditially. and if this causes overflow or convergence to a non-feasible

point‘then p = 100 should be tried. Neither overflow nor convergence
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to a non-feasible point was observed irrespective'of.what'value was
assigned to pP. However, the problems described earlier by (c) and
(d) are largely attributed to unsuitable #alues'for p. For the
'current problem, suitable values'of P can be found in the range of 1
to 1000, although the actual value will largely depend on the chosen

constraint constants and the weighting factors.
4,2 RESULTS

The following presentation of_comﬁuter results aims to demonstrate the

‘potential of the computer program whilst also illustrating the

' sensitivity of the algorithm to the scaling parameters. Tables 4.1 to

4.4 describe four optimization attempts which were made without

‘frequency constraints. It can be appreciated that the aigorithm.

reached a minimum of the objeétive function each time while satisfying
all the conditions specified. However.rthe‘optimum obtained each time
was a different local minimum of the objective function as is
' indicatéd by .the value of F(x) after optimization. In the first two
attempts the engine static¢ rotations were limited to 5 degrees
(0.08727 rads) while the isolators were allowed to deflect up to 15
and 20 mm respectively. Both attempts yielded almost the same

reduction in the objective function although EOHUAF indicated that the '

 solution of the second run (RES2) is the optimum (IFAIL = O on exit).

The flag IFAIL is set before exit from EO4UAF to indicate the

confidence of the algorithm on the optimum obtained. If IFAIL is set

to 2 then this indicates that either the maximum allowable number of

function evaluations has been exceeded or that 10 cycles of EQ4UAF

have been completed (i.e. ten subproblems have been solved) and the
routine was unable to converge to a better optimum. Usually this

means that convergence criteria are not satisfied to the precision

-specified by XTOL (which on entry was set to EOUYUAF to approximately'

1.0E-19). The NAG Manual states that the precise test for convergence

GLNORM/(1.0 + |F|) +||p *r |1 ¢ xTOL
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FILE 3 RESL - | o ’ ‘
RHO = 10 o ENGINE SPEED = 800.0 rpa s

Before optiaizaticn F(X} = 0.7420E-1
Atter optisization F(X) = 0,1b88E-1
qﬁﬁﬁantage change 4= 5 8.1

No of function evaluations |
Ners of gradient of Lagrangian
fondition of Hessian

Nore of residual

RHD on exit : 0, 3507544
CONSTRAIN CONSTANT NEIGHT

it 13 ]

Y1 15 . 5

1] 13 1

12 13 ]

Y2 13 5

12 ig 10
13 15 - ]

Y3 15 b

I3 13 10

4§ 0.09727 0.001
YY 0.08727 . 8.1
iz 0.08727 0.00%

ISOLATOR STATIC DISPLACEMENTS (ma)

i Y 1
. BEFORE 0PT. - 1.83 0.5 4,70
" AFTER OPT, 1.36 1.33 A7
) BEFORE 0T, 243w o077
AFTER (OPT. 9,79 - 4,05 15.00
s BEFORE CPT.  0.04t BTN 15,45
" AFTER OPT, 12.15 5.54 13T
 ENGINE STATIC ROTATIONS (Degrees)
_ 10 _ Yy 11
EEFORE OPT. 0,23 4,29 2.39
" AFTER OPT. 0.44 C500 . .13

NATURAL FREGUENCIES (Hz}
o 2 3 3 R
BEFOSE OFT.- 5.19  6.92  9.10 222 1237 19.5
AFTER OPT, 5,00 589 7.48 .90 - 109 1439

HuhWwpn
[
Sor
rs
- ‘ gt
- : Ity
- . - L]
. r:-ll'.::lm R
i
Lt Ao

" Table 4.1 Computer results from output file RES1
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CFILE & RES2 . , ‘
RHO = 100 ENGINE SFEED = 500.0 rys _

Bafors apt..xzntlnn FlX) =0, 76;.0E-
Atter optisization FI(X) = 0,1416E-1"
Percantage change D L = -718.77
IFAIL =
No of functign evaluations = 41314
Nora of qradient of Lagrangiam = 0,4138E-|1
Condition of Heszian = (,6330E+9
Nors of residual = 0,288%E-12
RHC an exit = 0,7444E+4
COMSTRAIN CONSTANT _ - HEIGHT
I 2 10
1 20 16
i1 20 1
X2 20 10
Y2 20 10
i2 20 10
3 20 10
5 3 i
‘XX 0. 087
YY 0. 8722.7’ 1l
¥4 1
ISGLATOR STATIC DISPLACEMENTS (ma)
X ¥ )
) BEFORE OPT, 1.53 0.55 .70
AFTER 0PT. ¥ .3 10.12
, BEFORE QPT. 2.43 %7 S ¥
AFTER - OPT. 5.2 7.89 - 1534
5  BEFORE OPT. 0.081 10,71 15.55
| AFTER OPT, .23 278 147
ENGINE STATIC EOTATIONS {Degrees}
X Y 1t
BEFORE OFT. 0.23 4,23 2.39
AFTER OPT. 0.57 S0 §.902
_ NATURAL FREDUENCIES (Nz)
T2 3 4 5 b
BEFRRE OPT. 5.19 - &.%2 .00 12,22 137 - 1950
AFTER 0PT. 4.3 5.28  &.29 9,94 10,09 4.4

'Table 4.2 - Computer results from output file RES2
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FILE 3 RESS :
FHO = 10 ENGINE SPEED = §09.0 rpa
Bafora optisization F(Y) = 0.7420E-1
After optimization F{X) = 0.1254E-1
vercentage change A = -6.41
[FAIL . =12
Mo ot function evaluations = 3329
Hors of gradient of Lagranqian = .2129E-§
fondition of Heszian = (,2213E+2
Hora of residual = 0.3128E-6
RHO on exit = 0,J408E+4

CONSTRAIN CONSTANT REIGHT

1 13 10
Y1 15 10
- 13 10
X2 15 10 |
y3 153 i0 B
2 15 10
13 i3 10 |
Y 15 10 ‘
I3 i3 10
1 0,1745 0.01 \
Yy 01745 0,01 _
1 0.1745 0.0f ‘
ISOLATOR STATIC DISPLACEMENTS (aa) .
X Yo 1 _ |
| BERREDPT. LS 0.5 .70 _ | -
AFTER OPT. 2.4 2.18° 1159 T :
. BEFORE OPT. 2,43 9.74 20,77
AFTER DFT, 15,00 g1l 15.00
3 BEFORE OPT. 0.061 10.71 15,45 |
AFTER OPT. 15,00 7.47 15.00 |
|
ENGINE STATIC ROTATIONS (Degrzes)
1 W 11
BEFORE OPT. .23 4, 2.39
AFTER OPT, L.05% .43 1.54

NATURAL FREBUENCIES (Hz) - |
12 Y 5 b

BEFORE OPT. 519 6,92 9.0 122 127 {950 o -
FTER OPT. 543 575 1.53° 0 %02 10,52 147

Table 4.3 Computer results from output file RESJI




- FILE ; RES4

ENGINE SPEED = 800.0 rpa -

RHD = 10
‘Befare optiaization F{I) =40,
After optimization F(}} = 0,89
Percantaga change - D % = -90.89
IFAIL . =12
Ho of function evaluations & = {4076
Nora of gradizat of Ligrangian = 0.2530E-7
Conditind af Hessian . = (,4905E43
. Nora ot residual = 0,2821E-4
kHd on exit = (.7873E+6
~ LONSTRAIM CONSTANT BEIBHT
i 13 ' 10
11 15 10
i1 13 10
12 i3 1
12 13 10
12 15 10
13 13 10
13 13 10
I3 13 10
1X 0.1743 0.1
4 0.1743 0.1
il - 0.4745 0.1
- TSOLATOR STATIC DISPLACEMENTS (om)
X Y 1
1 BEFORE OPT. .83 b §.70
AFTER OPT. 471 128 15.00
2 BEFORE OPT. - 2,43 9.74 20.77
AFTER [OPT. 13.00 - 0.89 C 1492
3 BEFDRE OPT, 0.0a1 10.71 15,85
AFTER OPT, 15,00 33 15,00
EHBINE STATIC KOTATIONS (Degrees)
‘ 1 A 11
BEFORE QPT, 0.23 4,28 .39
AFTER OFT. L.oo - .99 - L
HATURAL FREGUENCIES (Hz)
{ 2 3 4 8
BEFCRE 0PT. 3.19 6,92 .10 12,22 12,37 - 19,30
AFTER OFT, 4.97 .11 1.48 g2 1516 1700

Table 4.4 Computer results from output file RES4
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where GLNORM is the Euclidean norm of the vector Gz - A x RLAM (Gz is
» .
~an approximation to the gradient vector of F(x) with respect to

the free variables and A is the Jacobian of the active

fconstraints)_ ore

D is a diagonal matrix;yitﬁ‘elementSL the diagonal elements of

(x + aTa),

The quantity of the left hand éide‘of‘the'inequality (8.1} is -

estimated at the end of each cyéle of EOHUAF. On exit of run RES2 this
convergence parameter was estimated as 0.1657E-8 which is certainly

not less than XTOL. It is therefore not clear why the algorithm set .

IFAIL = 0.

One point that is clear from Tables 4.1 to 4.2 is that certain

constraints will be inactive at the solution. In fact, with fhe_'

exception of ZZ and YY, all the other constraints are inactive at the
solution; These constraints, as expected; were associated with zero
- Lagrange multipliers. However, they were not removed from successive
runs because it was not certain if their redundancy was genuine or due

to inappropriate scaling. It was found at a later stage that under

certain donditions some of them became active as can be observed in .

Tables 4.3 and 4.4. Comparing the scaling factors and the final
results of Tables 4.3 and 4.4, the sensitivity of the algorithm to the
scaling of the constraint functions becomes evident. The results show
that a change in the weighting factors of the engine rotation
constraints by a factor of ten caused the algorithm to converge to a
lower local minimum, Unfortunately, the condition number of the

Jacobian matrix of the constraints is not monitored by EO4UAF and es a.

" result it is not possible to investigate whether the observed change .

in the sequence of iterates was connected with improved conditioning
of the Jacobian. The parapeters which are available for monitoring at
the end of each iteration of EO4JBF are: -

1. the iteration number:

2. the number of function evaluations;

*
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3. ‘the norm of the gradient vector of the Lagrangian function, and
4, the condition of the projected Hessian. '

- However, these parameters give no indication of the effectiveness of
the applied scaling ﬁlthough they do indicate changes in the seqﬁence
of iterates of the algbrithm. ' :

Due to the fact that there is no test available to check whéthér a
. particular type of scaling wifl improve. the conditioning of the
optimization problem it was decided to adjust'the scaling factors by
observing the values of the cpnstraint functions at the solution.
"Hence, constraints which appeared to change little and which were
numerically large in relation to the others, and those which appeared
to be redundant, were scaled down. On the other hand, those
constréints which were considered to be relatively more importaﬁt for
the validity of the solution or numerically small comparea with_the
others were scaled up._‘However,‘the magnitude of the scaling factors
in a particular case was obtained on a trial aﬂd error basis. For the

optimization prdblem described so far it was decided that the

' important constraints were:

1. engine rotation in the YY direction since this is the direction of
the applied torque; ‘

2. 1isolator deflection in the Z direction since the isolator
orieﬁtation (design variable subject to bounds) was limited to 10
degrees and consequently the applied torque andrthe éngine weight
were most'likely to cause large deflections in a vertical plane;

3. frequency constraints for subsequent runs because of their

influence on the engine shake problem,

Although the solution obtained from RES4 does not meet the 8 Hz
frequency minimum discussed earlier, it was decided to check this
solution simply because the frequency spectrum-of the optimum
isolation system is fairly close to that of the initial system. and out
of curiosity to find out the physical meaning of the changes made to
the design varisbles by the numerical algorithm. Table 4.5 shows the
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DESIGN VARIABLES

EEFORE OPTIMIZATION

AFTER OPTIM

IZATION

Stiffness KX1

N/mﬁ

Orientation FSI3

: H
! H
H :
H H
' 418 N/mm : 202
Stiffness KY1 i -132 N/mm { 103 N/mm
Stiffness Kz1 ! 165 N/mm : 126 N/mm
_ ‘ : '
Position Xt ; 124  mm : 150 mm
Paosition Y1 H 292 mm ! 297 mm
©. Position Z1 ! ‘81 mm ! 60 mm
: i o
Orientation FI1 = 1 0 Degrees ! 0 Degrees -
Orientation THETA1 | O Deqgress H =0.21 Degrees
Orientation FSIt : ¢ . Degrees H Q Degrees
H i
H ‘ : . .
Stiffness KX2 : 288  N/mm : 408 N/mm
Stiffness KY2 H 77 N/mm H 71 N/mm
Stiffness Kz2 i 226 N/mm : 398 N/mm
‘ : _ H
Position X2 ! 308 mm 3 103 mm
Position Y2 : -279 mm : -3Z25 mm
Position Z2 : -292 ‘mm : & mm
. ! !
Drientation FI2 : 0 Degrees H 0 Degrees
Orientation THETAZ | 0 Degrees : -1.79 Degrees
"Orientation PSIZ : -0 Degrees : Q.97 Degrees
1 ! |
H H
'Stiffness KX3 : 288 N/mm : 465 N/mm-
Stiffness KY3 : 77 N/mm H 82 N/mm
Stiffness Kz=32 HE 226 N/mm : 400 N/mm
' ‘ : :
Position X3 i =181 mm H .. =&6F  mm
Positian Y3 ! -303 mm } - =245 mm
Position I3 ' -272 mm : -149 mm
' ! :
Orientation F13 H Q Degrees H 0 Degrees
Orientation THETA3 | 0 Degrees | ~—2.78 Degrees
: 0 Degrees : 0] Deqgrees
' :

Table.4.5 Original and final
for the computer

values of optimization variables
results of table 4.4



initial and final values of the optimization variables, while Figure
:4.1 shows the position of the isolators with réspect to the power
train before and aftér optimizaﬁion. From this figure it can he
appreciated that the algorithm reduced the objective function'by'
moQing the isolators closer to the power train and effectively
reducing the roll stiffness. Howeﬁer,ffrom Table 4.5 it is obvious
‘that in order to satisfy the static constraints the stiffnesses of the
gsecond (rear left) and the third (réar right) isolators in the Z and X
lqcai_directions were substantially increased. Table 4.6 shows the
kinetic energy modal distributions of the optimized system while Table
4,7 shows those of the original system.

Comparison of_Tableé 4.6 and 4.7 shows that the algorithm effectively
reduced the roll mode frequency from 19.51 Hz to 8.72 Hz. Recalling
the discussion on the dynamic response of the model (in Chapter 2), it

is obvious that reducing the frequency'of the rdll mode effectively
reduces the‘transmission of vibration generated by the second harmonic

of the excitation.

" The dynamic response of the optimum isolation system is superimposed
on that of the original system and is presented for cemparison in
Figures 4.2 to 4.8. The advantages for vibration isolation of a low )
frequency roll mode are evident in all the plots. Such a low
frequency roll mode is, of course, undesirable because of its
susceptibility to road surface indirect vibration which makes this
particular solution undesirable. This solution also has one further
disadvantage from a practical point of view. The dottéd triangles on
the X-Y plane (plan view) in Figure 4.1 ocutline the supporting base
defined by.the isolators before and'after optimization. It may be
seen that the power prain masé centre is outside the base defined by
the optimized position of the isolators~which‘is certainly not

traditional engineering practice. However, it was not possible in ther.
time availab1e to investigate the possibility of additional
constraints which would‘eliminate the problem apart from careful

definition of the design space.
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Frequency X Y - Z X YY ZZ COUPL.

4.87 0 12,34 37.9% 23.32 20.5 2,47 3.43
571 2.46° 83.34 5.20 3.77 2.66 0.95 1.62
. 7.68  55.07 3.39 2,54 3.68 11.67 18.3% '5.31
- 8.72 . 8.17 0.76 11.9% 13.48 72.88 21.0 -28.23
. 15.16 = 0.51 0.01 41,92 58.04 0.29 0.17 =-0.9%
17.00 - 33.72 0.11  0.29 0.65 0.27 63.18  1.78

AUl N e

TABLE 4,6: KINETIC ENERGY MODAL DISTRIBUTIONS.FOR RESY

Frequency X Y oz XX Y*  ZZ  COUPL.
1. 5.19 2.26 64.83 14.30 8.20  5.63 5.00 -0.22
.2, 6.92 8,32 32.95 540.60 - 5.2%. . 9.94 . 3.35 -0.40
3. 9.08 48,25 0.01 19.64 11.37 21.03 12.26 -12.56
4, 12.23 23.00 0.00 3.66 33.80 9,95 47.23 -17.24
5.12.38 8,97 2.12 21.3% 42,64 4.56 19.44 0.93
6. 19.51 9.3  0.06 0.042 1.98 57.10 18.70 12.44

TABLE 4.7: KINETIC ENERGY MODAL DISTRIBUTIONS OF ORIGINAL SYSTEM
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Tables 4.8 to 4.11 show the scaling and the results of the
optimization attempts which were made with frequency constraints.
Tables 4.8 and 4.9 give evidence of the previously stated problen of
termination of the algorithm at a point where the wvalue of the
objective function is greater than that at the starting point. It is
" beyond any doubf that in this particular case the algorithm was misled
by an ill-conditioned prbble'm as a result of bad scaling.: However,
there can be cases where such an occurrence is quite geﬂhine. Consider
 for instance the situation where the algorithm is initiated at a non-
feasible point and most of the constraints are violated by substantial
mérgins. It is quite possible then that at the optimum point the
objective function will be numerically greater than at the starting -
point;’ In other words, it is possible that a better local minimum of
the objective function might exist in the unfeasible:subSpace.

With respect to the Frequency constraints three dptihization attempts
‘were made.  First the lower end of the rigid-power train frequency
‘spectrum was limited to 8 Hz for the reason described above. These
attempts are illustrated in Tables 4,10 and ﬁ;ll. Although the
solutions obtained from these runs were feasible, it was found
difficult to obtain a lower minimum and time limitations did not allow

~ further attempts to be carried out on this particular case. Further

it was realised that there was no need to constrain every single modal
' frequency. As previously noted the NAG routine which solves the
eigenvalue problem returns the eigenvalues in ascending order. Hence
only the first element of the gigenvalu@_matrix needs to be
constrained, thereby implying that five of .the six frequency
constraints are redundant. Deleting the redundant constraints from the
program was considered at first but not implemented. Instead, the
constraint constants were changed so that the redundant constraints
could be made active on the condition that each modal frequency was
.constrained at a higher level than the previous one. The six modal
frequencies were thus constrained at 8, 10, 12, 14, 16 and 18 Hz
respectively so thét the modal frequency spectrum wili be placed above

- the frequency band of possible road input excitation and below the

second order engine excitation (engine idie at 800 fpm or 13.33 Hz
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© FILE : RES4 o .
RHE = § ENBINE SFEED = 800.0 rpa
Befora optizization F(Y) = 0.7620E-1 '
ffter optisization. F(%) ;—'?:.57]?3?5-1

Percentage change
IFAIL 3 :

Ha of function evaluations = 48%0
Nora of gradient of Lagrangiaa = 0.1810E-3
fonditiod of Hessian = (,24B0E+4
Nora of residual = (, 7639E-4
RHO on axit = (,2341E+7
CONSTRAIN COMSTANT HEIGHT
4] ' 13 10
b§ 15 10
4] 13 10
12 15 10
Y2 t3 10
2 i3 10 -
13 13 L
Y3 13 10
13 15 10
i 0.1745 0.
¥ 0.1743 0.01
1 0.1743 9.01
81 8.0 0.01
N2 - 10,0 0,001
13 12,0 0.0001.
4 1.0 0.00004
CR 15,0 - 0.000001
Ll 18.0 0.0000901
TEOLATOR STATIC DISPLACEHENTS {ea)
H ¥ 1
. BEFGRE OPT, 1.83 .58 4.70
AFTER OFT. 4,11 0.37 3.5%
2 BEFORE OFT. 2.8 T4 20.77
AFTER OPT. 0,80 2,30 10.02
3 BEFURE OPT. 0.081 10.71 S.45
BFTER OFT, 11.3¢ 0,81 9.06
ENBINE STATIC ROTATIONS (Degrees)
_ no- Y i1
BEFORE OPT, - 0,23 4.28 2,39
AFTER . OPT. 0.3t 4,22 0.95

NATURAL FRETUENCIES {Hz)
i 2 3 ] ] b
BEFORE OPT, 5.19 6.92 9.10 . 12,22 1237 19.50
" AFTER OPT.  B.7% 7.93 - 1168 1244 0 20,00 22,44

Table 4.8 Computer results from output file RESS&




FILE z RESS | o
RHD = 100 EMBINE SFEED = 800.0 rps

- Befora cptisization F(X) = Q,7420E-1
After optiaization FIX) = 0,7731E~]
Percantige change D% = +1.38
IFAIL . . =12
%o of function evaluations = 3032
Nora of gradient of Lagrangian = ¢.2154E-3
Congition of Hessian : = 0,1540E+2
Nora of residual = (,]997E=3
RHO on exit = 0, 2333E+H10

CONSTRAIN CONSTANT WEIGHT

1 13 10
it B 10
It 13 10
12 15 10

12 15 10
12 15 10
13 13 10
3. 15 10
I3 15 10
14 0.1745 0,01
1A 0.1743 0.01
11 0.174 0.01
o 8.0 0.01
W2 10.0 0,001
N3 12.0 0.0001
N4 4.9 0. 00004
¥ 1t.0 . 0.000601
L1 18.0. 00000

ISGLATOR STATIC DISPLACEMENTS (aa)

1 Y 1
' BEFORE OPT,  1.63 0.58 470
AFTER OPT. .13 0.1 2.5
. BEFORE OFT. 2.43 .74 20.77
AFTER  OFT. 1.56 5. 00 15.00
BEFORE OFT. 0.081 10.711 ' 15465
" AFTER 0PT, 390 .09 7.50
ENGIME STATIC ROTATIONS (Degrees)
n YY 1
BEFORE OPT. 0.23 4,28 2.39
AFTER  OPT. 0,11 2.25 0.83

~ NATURAL FREOUENCIES (Hz) :
| 2 3 4 ]

AFTER OPT. 8.49 9,89 10,32 278 1L

CBEFORE OFT. 5.9 6,92 9,10 12,22 1237 19.50

18,57

Table 4.9 Computer results from output file RESS




* FILE ¢ RESBa
RHO = 100
Befare optimjzation

After optisization
Percontage change
IFal

]
——
FEag>t

_ EHBINE SPEED = 80040 rpa

—

uhWhnn

] <>

No of function evaluations
. Nora of gradient of Lagrangian
Condition of Hessian

WaH g
ST
o
—
=
=] N
™
+
Cad

Nora of residual L B704E-8
RHO on exit 0,1375E+9
- CONSTRAIN CONSTANT  WEISHT
1 15 - 10
Y1 15 19 -
11 13 10
12 15 10
12 15 10
1z 15 10
3 15 10
YZ 15 10
13 i3 10
13 0,745 0,01
Yy 0.1745 0.01
11 0.4743 0,01
Kl 2.0 .01
¥2 8.0 0,001
N3 8.0 0.0001
4 8.0 0. 00001
W5 8.0 0.000001
' 8.0 0. 0000401
ISOLATOR STATIC DISPLACEMENTS (ma)
1 Y 1
. BEFORE OPT. 1,83 0.55 4,70
AFTER OFT. 1.4 0.50 26
. BEFORE OPT. 2.4 9,74 20.77
AFTER 0PT. 2.45 387 13,44
5 BEFORE OPT. 0,081 - 10.71 15.45
: AFTER OPT. 4,34 2,99 7.4
ENBINE STATIC ROTATIONS (Deqress)
1 u
BEFORE. OPT, 0.23 2,39
AFTER  OPT. 0,05 0.58
NATURAL FRESUENCIES (H2)
t 2 3 -
BEFORE OPT, 5.9 692 %10 12.22 12,37 19,50
AFTER OPT. 8,00 . 807 8,9 12,16 13.75 16,92

Table 4.10

Computer results from output file RESS8a
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~ FILE & RESSb

RHO = 10 K ENGINE SPEED = 800.0 rpa
Befors optiaization F{X) = Q.742(E-1
After optimization F(X) = 0,3317E-1
Percentaqe change D % = -27.59
IFAIL . . =12
Na of function evaluations A = 3221 '
Nora of qradient of Lagrangian = 0,2837E-3
Condition of Hessian . = 0,7999E+2
flora of resideal = §,2792E-3
RHO om exit = 0,3123E+9
CONSTRAIN CONSTANT - WEIGHT
11 13 10
- 13 10
11 13 10
12 15 10
¥ 13 10
I2 - 13 10
13 13 10
13 13 10
13 15 10
X 0,1743 0.01
YY 0.1745 0.01
44 0.1743 0.01 .
CH] 8.0 0.1
w2 8.0 0. 00000001
N3 8.0 0.0000009
4 8.0 0. 00009001
¥ 8.0 9.00000001
L1 - 8.0 . 00000001

ISOLATOR STATIC DISPLACENENTS (aa)

X Y 1
, BEFIRE DPT. 1,43 . 5h A0
AFTER (OPT. S8 0.27 3.55
. BEFORE OPT.  2.43 9.74 20.77
 AFTER 0PFT, .74 1,87 13.30
; BEFORE UPT, 0081 10,71 15,45
" BFTER OPT. 7.44 1.9 .12
ENGINE STATIC ROTATICNS (Degrees! -
XX ow o
BEFORE DPT. 0.23 528 2,39
COUBNFTER OPT. - 0,50 2,57 0,77

HATURAL FREGUENCIES (Hz) .
| ! 2 3 s 5 b
BEFORE OPT. 5.19 . 6,92 9.10 12,22 1237 1950
AFTER OPT, 8,00 . 10.81 12,07 12,53 16,80 18,39

Table 4.11 Computer results from cutput file RESEBDb
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giving the second order excitation at 23.66 Hz). The results of the

final attempté are summarised in Tables 4.12 and 4.13 and conclude the
selected series of computer runs, out of all those which were made for
the purpose of testing the computer program. The following section of
the current discussion will deal with the evaluation of this final

" solution.

The position of the isoclators, with respect to the‘powef train mass
centre, for the optimum isolation systems obtained from the computer
runs described in Tables 4.12 and 4.13, are shown in Figures 4.9 and
4,10 respectively. By comparing the position of the power train mass
centre relative to the supporting triangular base defined by the
.isolators on thé X-Y plane it can be appreciated that the optimum
isoclation system obtained from the optimization attempt described in _
" Table 4.13 is statically more stable than that of Table 4.12. 1In
addition to this, the optimum isolation system of Table 4.13 is
associéted‘with_a‘lower minimum of the objective function and
consequently it‘is selected as the best solution. Although on exit
from EO4UAF the flag IFAIL was set to 2, it is not necessarily true
thét the solution is not optimum. The only case where IFAIL was set
to O on exit, is the optimization attempt described in Table 4.2.
Table 4.14 below shows the values of the optimization parameters,
which are checked by the algorithm before the flag IFAIL is set on
exit from EQO4UAF, for the two optimization attempts described in
Tables 4.2 and 4.13 respectively. ' A

From Table 4.14, it is clear that the only substantial difference
. between the optimality conditions of the two attempts is the amount by
which the inequality constraint functions lie outside their range,

i.e. the norm of the residual vector. However this difference is not
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FILE + RESS .

RHO = & _ ENGINE SFEED = 800.0 rpa
Before optisization F(X) = 0.7420E-1

After optimization FI(X) = 0,2091E-1
Parcentage change D% = -72,34

IFAIL \ oo=2
. No of function evaluations = 9843

Nora of gradient of Lagrangian = 0,2029E-
Condition of Hessian o= {,133964]
Nora of residual = ), JI3hE=H
RHD on exit = (.2159E+4 _
CONSTRAIN CONSTANT - _ NEIGHT

14 13 e : 10 -
1 13 10
11 13 10

X2 15 10
Y2 13 10

12 13 10
13 13 10

3 15 19
13 13 10

11 0.1743 0.1
1Y 0.1743 0.1
i1 0.1743 0.1
Nt 8.0 0.1
N2 10.0 0.1
Lk 12.9 0.1
W 14,0 0.1
23 16.0 0.1
LL 18.9 0.4

ISOLATOR STATIC DISPLACEMENTS {am)
X Y 1

| BEFORE OPT. = 163 0.5 - 470
AFTER OPT. 0.25 0.53 0,98
) BEFORE OPT.  2.43 9.74 20,77
AFTER COPT. 12,46 2.50 15.00
; BEFORE 0T, - 0,041 1.7 15,45
AFTER OPT, 7.49 - 0.22 1L
ENGINE STATIC ROTATIONS {Degrees)
1X Yoo 1
BEFORE OPT. . 0.23. 428 23
AFTER  0PT. 0.05 5,33 1,00

NATURAL FREQUENCIES (Hz) |

- 12 3 4 5§ 4
BEFGRE OPT. 5.19 692 9,10 1222 12,37 19,50
AFTER OPT, .00 1000 12,00 1477 16,00 20,42

Table 4.12 Computer results from output file RESS
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FILE & RESY
RHE=1 EMGINE SPEED = 800.0 rpa

AFTER OPT. 8,00 10,00 - 12,00 1471 16,00 20,2

Befara eptimization F(X} = 0.7420E-1
After optimization F{(X) = 0,2023E-1
Porcentage change D % = -73.42
IFAIL =2
Ho of function evaivations =~ = 17727
Nora of gragient of Lagrangian = 0,3792E-10
Condition of Hessian = 0. 4710E+3
Nors of residual : = 0,1116E-3
RHO eon exit = 0.5074E+3
CONSTRAIN CONSTANT . BEIGHT
X1 L . 10
11 2 10
1 20 10 -
12 P 10
Y2 p 10
12 20 10
3 20 10
) 4 2 10
Iz 20 ]
XX 0.1743 0.1
Y 0.1745 0.1
il 0.1745 0.1
¥l 2.0 0.1
%2 10.0 ' B
W3 12,0 0.1
.1} 14,9 - 0.1
N3 16.0 0.1
¥4 18,0 0.1
ISOLATOR STATIC DISPLACEMENTS (aa)
X Y 4
¢ BEFORE GPT. .43 0.58 4.70
AFTER OPT. 0.87 0.18 1.24
, . BEFORE OPT. S un %74 20.77
AFTER (PT. 1.78 0.32 17.34
3 BEFORE OPT. 0,081 10.74 15,483
AFTER OPT, 11.47 0.8 14,52
EYBINE STATIC KOTATIONS (Degrees)
. R § | Y i
BEFORE 0PT. . 0.23 42 2.3¢
AFTER (OPT. 0.04 5.42 .9
~ NATURAL FREGUENCIES (Hz) _
o ! 2 3 4 ] b
BEFORE OPT, 5.19 6.2 9.10 .22 1337 19.50
. \
|
|

Tablé. 4.13 Computer results from output file RES?
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IFATL, | 0 5
Norm of residual ' 0.2889E-~12 0.1118E-8

LHS of condition (4.1) ' 0.1657Ej8. | 0.36573-8

TABLE 4.14: OPTIMALITY PARAMETERS FROM OPTIMIZATION ATTEMPTS OF
" . TABLES 4.2 AND 4.13, ON EXIT FROM EO4UAF '

alarming, bearing in mind that the specified accuracy of the soluticn
defined by XTOL has little practical significance. For practical
purposes setting XTOL in the range of 10E-5 to 10E-8 should be quite

adequate.

The values of the design variables, before and after optimization, for
the optimization attempt described in Table 4.13 are shown in Table
" 4,15. They indicate that the algorithm increased the isolator
stiffnesses in order to satisfy the constraints but brought the
isolators closer to the'poﬁer train mass centre as can be cbserved in
Figure 4.10. The:kinetic energy modal distributions for the optimum
isolation system, given in Table'4.16. indicate that the roll mode has

been moved towards the lower end of the_rigid-power train frequency

Sspectrum,

Finally the dynamic behaviour of the optimum isolation.syStem,
superimposed on ;hat of the original system, is presented in Figures
4,11 to 4.17 for the purpose of compafisoh. The discontinuous
vertical line on all'the-plots marks the engine idling speed which is
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*44‘____f____________i:‘—'--F---I-.I-ll-lllllllllllll........

DESIGN VARIABLES

Orientation PSI3

i BEFORE OPTIMIZATION ! AFTER OPTIMIZATION
! ' | . -

| = | : |
Stiffness KX1 i 418 N/mm H 750 N/mm
Stiffness KY1 ' 132 N/mm ! SO0 N/mm
‘Stiffness Kz : 165 N/mm ! 400 N/mm

' H H '
Position X1t : 124 mm i .82 mm
- Position Y1 : 292 mm H 399 mm
Position Z1 H 81 mm : 88 mm
‘ o H H
Orientation FI1 H Q0  Degrees i 10 Degrees
"Orientation THETAL | o Degrees : =10 Deqgrees
Orientation PSI1 i Q- Degrees i 10 Degrees -
' L 0 !
H H 1
Stiffness KX2 H 288 N/mm i S0Q  N/mm :
Stiffness KY2 H 77 N/mm ' .70  N/mm ‘
Stiffness Kz2 : 226 N/mm ! 400 - N/mm ;
' - .

‘ ! . ' _
Pasition X2 : 308 mm H 242 mm .
Position Y2 H =279 mm : -248 mm ) : |

. Position Z2 ! =292 mm ' ~24 mm
_ ‘ :
Orientation FI2 : 0 Degrees ! 0 Degrees
Orientation THETAZ2 | 0 Degrees. : 10 Degrees
Orientation PSIZ2 : 0 Degrees | 10 Degreés
! ! '
_ : o H _
Stiffness KX3 i 288 N/mm : 108 N/mm
Stiffness KY3 H 77 N/mm H 234 N/mm
‘Stiffness Kz=3 H 226 N/mm H 400 N/mm
! ! o
Position X3 H -181 mm . H -B1 mm
Position Y3 ! ~303 mm ; -244 mm
Position ZI3 H =272 mm H —-149 mm
| ' : !
Orientation FI3 : 0 Degrees : 0 Degrees -
Orientation THETAZ | (o] Degrees H 10 Degrees
i 0 Degrees ! ) Degrees
i : '

Table 4.15 Original
' the optimization attempt described in table 4.13

and final values of design variables

from
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Frequency X Y z XX Y ZZ  COUPL.
1. 8.0 0.18 0.49 36.52 0.70 63.53 2.75 -4.17
2. 10.0 1.63 9o4.42 ~2.85 0.00 0.28 1.08 -0.26
3. 12.0 8h.h2  1.10 4,58  0.48 - 1.43  6.71  1.28
4187 3.36  3.62 55.22 b5 3154 3.56. -1.45
'5.16.0  0.63 0.18 ~0.7% 96.85 11.67  3.63 =-13.70
6. 20.3 9.80 0.19  0.04 0.36  0.04 88.50 -1.17

TABLE 4.16: KINETIC ENERGY MODAL DISTRIBUTIONS FOR OPTIMUM ISOLATION
' SYSTEM '

also the engine speed used for the optimization. From Figure 4,16 it
can be seen that the optimum isolation system is more efficient at
engine speeds in the range of 600 to 1600 rpm with the exception of
the two peaks which appear at approximately 880 and 960 rpm
- respectively. These peaks are attributed to the response of the
vertical and the pitch modes of vibration to the first harmonic'of the
excitation as can be deduced from Figure 4,12, At frequencies lower
than 600 rpm and higher than 1600 rpm the optimum isolation system is
found to be less_efficient_than the original isolation system. At
high frequencies the response of the power train is controlled by its
inertia and this is reflected by the decline of the mean square -
displacement curve where the two systems display almost identical
behaviour. The deficiency'of the 6ptimum system at high frequencies
is undoubtedly due to its having gstiffer isolators than the original
system. This means thét if the level of vibration at high frequencies
is to be kept as low as possibie. then an upper bound Qf the isolators
stiffnesses should be specified prior to optimization. If no other
changes are made to the constraints then i1t is expected that the

algorithm will have little choice but to place the isalétors furthér
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away from the power train mass centre in order to retain feasibility
of the solution. It can be appreciated that under such conditions the
roll mode will, most likely, be shifted to a higher position in the
rigid-power train frequency spectrum and effectively reduce the
efficiency of the isolation system at engine idle. The efficiency of
the isolation systen below_the operating frequency band is of no
importance in assessing its overall performance although it gives some
indication of its behaviour during engine starting. However,
comparison of the two systems in the low frequency region (50-600 rpm) -

is :|.nconclusive for thlS k:r.nd of assessment.

The dynamic response of the two isolation systems, to the 0.5 and the
second order harmonics of the excitation are considered as a final
. check flor the optimum solution_. The dynamic response curves shown in
Figure 4.13 suggest that overall the response of the two isolation'
‘systems to the second harmonic of the excitation is similar. However
Figure 4.13 shows also that the response of the o_ptimum' system to the .
0.5 harmonic of the excitation is generally smoother (less peaks) '
although the 1eve1 of the response is generally equivalent for both

systems.

It is believed that all the problems which were encountered during the
development of the program and all those which emerged while testing
. the algorithn,‘have been reasonably analysed. No attempt has been
made to discuss the various problems on a mathematical basis due to
lack of sufficient mathematical background on optimization theory.
Time limitations did not allow the acquisition of such knowledge'and
consequently the discussion has been limlted to the pract:.cal but

certainly not unimportant, aspects of the problem.
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FIGURE 4.l: ENGINE-ISOLATOR LAYOUT BEFORE AND AFTER OPTIMIZATION
: {OUTPUT FILE RES4) '
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CHAPTER 5

_SUMMARY AND CONCLUSIONS

- It was demonstrated in the previous chapter that the program can
“successfully carry out all the optimization objectives which were set
iue,‘minimize the objective function while satisfying all the
.constraints. It was further shown that the numerical algorithm
achieved a local minimum of the objective function in a fairly

‘traditional engineering way. That is by moving'the isolators closer to

the engine mass centre (X-direction) and consequently reducing the

roll mode frequency. In fact these changes are performed in the first
" few iterations while the rest of the computing time is associated with

changes that ensure satisfaction of the constraints .to.the specified

- tolerance and further search of the local design space for a "better"
minimum. Had the specified tolerance been reduced to the value
suggested in Chapter 4 then it is expected that the computing time

would be reduced considerably.

It would seem that this new approach to coptimization of isclation
- systems has two main advantages over the methods used in the past.
The objective function is defined in terms of a quantity which is
. directly relatéd to force transmission into the chassis, referred to
as the maximum strain energy of the dynamic system (see Section 3.2},
_ and the static requirements are incorporated in terms of constraints

on the deflection of the isolators and engine rotations, as discussed
in Sections 2.4 and 3.2. The main benefit which emerges from this
definition of the objective flunction is that there are no implied

constraints on the formation of the stiffhess matrix other than those

imposéd by the static requirements. The final result may also be

directiy interpreted in terms of isolation efficiency in contrast to

other methods where either some form of modal decoupling or spectral

penalty function is used. Such methods produce no immediate evidence
of the isolation efficiency of the system obtained from the

' optimization process.
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Unfortunately time limitations did not allow the dynamic model to be

generalized, It suffers, in its present form, from lack of a'non--

linear static analysis of the isolators deflections (discussed in

Section 2.5) and a lack of consideration of road input excitation

{engine shake). With reepect to the former it was shown in Section 2.5

that the problem can be adequately solved with the minimum of

alterations to the computer program. Frequency constraints were

introduced as a remedy to the problem of separating engine vibration

from engine shake. However; frequency constraints are regarded as
arbitrary constraints on the design space and consequently freedonm
constraints on the optimization algorithm. It is strongly believed
that it would be far more sensible to change the model into one which
includes a simple model of the vehicle suspension aﬁd indeed that
. would be the author's reaction had time permitted it.

Ancther area of concern remains that of the definition of the static -

. constraints. This is due to the fact that in many optimization
attempts it was observed that the position of the isolators for the
optimum isolation system defined a trianguleﬂ base on the X-Y plane
which did not enclose the power train mass centre. . This point was
discussed in Chapter 4 and formed one of the acceptance criteria for
the optimum isolation system. The question that remains is whether

additional constraints are required to make the algorithm aware of

this standard engineering practice or whether a completely different -

‘definition of the static requlrements is needed.

Carefully selecting the upper and lower bounds for the position of

each isolator is one way of solving the problembbut again not an
entirely acceptance cne. Optimization algorithms are powerful tools

and should be utilized to the maximum of their potential,

Finally there remains the subject of scaling which was extensively
"discussed in Chapter 5. It is quite clear to the author, and it is
anticipated that it will be equally clear to the reader by now, that

scaling is a critical factor on the presentation'of the physical




problem to the numerical optimization’ algorithm. ‘ Numefical decisions
‘are not based on engineering judgement and what is required is the
engineer's adaptatipn to the numerical thinking of an optimization
routine. Acquisition of theoretical backgfound on basic numerical
optimization literature is necessery but not sufficient at all times.
Mest of the anthor's time was spey{ on relating the acquired V/‘f
theoretical background to the behaviour of the selected routine and'
redesigning the presentetion of the problem for numerical stability.
It is hoped that the discussion en the numericai aspect of the

optimization problem will provide future investigators with useful

.guidelines. .
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APPENDIX A

INTERNALLY GENERATED FORCES IN MULTI-CYLINDER ENGINES

For the purpose of calculating inertia forces it is generally accepted
that the'distribﬁted mass of the crank mechanism of Figure A.l1 can be
approximated by two concentrated masses, namely a reciprocating mass
(m.ee) 8t the gudgeon pin and a rotating mass (n.o¢) 8t the crank pin.
Using a two mass-element approximation for the con-rod and the crank,
based on the assumption that the sum of the masses of the elements

equals the distributed mass of‘ the link and that there is zero moment

about the mass centre of the link, it can be shown that:

= 1
mrec:'mp""..,_""r
' ry 1y
Prot "B T * 7T Ur
2

FIGURE A.l: SINGLE CYLINDER CRANK-MECHANISM
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where my, o

crank respectively.

, m. denote the mass of the pisten. connecting rod and
r c ”

Kinematic analysis of the mechanism shows that the piston displacement

can be expressed ags an infinite series in terms of the crank rotation

{8) and the ratio of the crank radius to the con-rod length A (= r/L).

Usually this ratio falls in the range 0.17 to 0.4 and the common

practice is to ignore second order terms in ) from the kinematic

expressions. The complete expression for the piston displacement is

given in reference [14] as

- oA
+ cosg +. ) (-1)371 223 ¢o5 236

Z_,
r j=1 4j2

(o]

where o o | ' | (A.3)

hag = 452 kzj ORI EED G g = 12,

However, for the purpose of this work a sufficiently accurate

expression is given in reference [16] as

Loy
- r

1.3 + cosd + A cos28 ' ' (A.4)
A4 S :

Differentiating equation (A.b4) twice will give.the acceleration of the

reciprocating mass while the acceleration of the rotating mass is

- simply I‘u,g assuming constant engine speed; For the single cylinder

engine the reciprocating mass will generate a vertical force on the

frame and a'torque about the crankshaft while the rotating mass will

generate a vertical and a lateral force on the engine frame.

The cylinder gas pressure due to combustion generates a torque about

the crankshaft which can be expressed'as a Fourier series in the crank

angle by




ai sin(dig) + z b; cos(18) (A.5)
i : '

For four-cycle engines where a cycle is‘cbmpleted in two revolutions

of the crank, half as well as integer orders_appear in the Fourier
series and hence 1 = Y, 1, 1, vee '

For a singlé cylinder engine the forces and moments exerted on the
frame due to both inertia and combustion forces are given by equations
(A.6) to (A.11) ) ' N '

Fy, = mrét ru? sing ; ‘ ' : o (A.6)
Fy._= 0 ‘ . : (A.7)
F, = rw? tmrot €osB + M., (cose + Acos20) ] (A.S)
My = 0 . | . - | (4.9)
My = 0o | (4.10)

My = -mpgq rw® [2 sing - 2 sin20 - 3 sin30] -

V- Z léi ﬁin(ie) - Z, by cos(ig) ‘ (A.li)
i . i . :

The coefficient b, has been ignored in equation (A.11) for the reason
that it represents the mean static torque and hence does not affect

the dynamnic response of the engine.

The multicylinder crank arraﬁgement is illustrated in Figure A.2. A
set of axes is fixed at the crankshaft centre with the Z axis along
the cylinder centre line, the Y axis along the crankshaft centre line

and the X axis in the fore/aft direction to form a right hand system.



The forces and moments defined by equations (A.6) to (A.ll).'are'
applied to each cylinber,‘ taking into é.qcount the crank-angle spacing
and tﬁe firing order, and the individual cylihder forces ére then
added ﬂgebraicﬁally to give the individual resultants at the crank
centre. ' ' ' |

If the crank angle of the ith cylinder is wt + 94 and the c¢ylinder
spacing is d;, then with reference to Figure A.2 the forces at the

crank centre for the n-cylinder engine can be expressed as follows:

. n ' '
ert rm2 Im [iEI ei(wt"’ei)]

{m

rot * Brec! rw? Re[ f j(mt+ei)] .\

i=1

- a
+m 2Re [a]  ed2(wt+Bi)y

rec ™
i=1

)rm Re [ z d; e-ﬂmt*ia )]..
i=t

“(Dpot * Bpec

- _mre rw2 Re [A ig d__ejZ(mt+e )]

rot r“’ Im [ E d; ej(Mt+ei)]
L i=1 :

Mo T rl 2 Im [J‘ Z eJ(wt"‘a:L) - % z eJZ(Wt"e )"
' i=1 i=1 o
- 3_ z eJ3(wt+9 )] - {z ak Inm [ lf ejk(w't*'ei)] +

i=1

+ Z . bk Re [ Z eJk(mt*ei)]}
k i=t \
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The terms in { } represent the gas pressﬁre torque and are formulated
under the assumption that the Fourier coefficients are obtained from
gas pressure data measured at one cylinder only and that cylinder-to-
cylinder pressures are identical._ For real engines cylinder~to-
cylinder pressure variations dd exist and a better representation of
the torgque specti‘um is cobtained by flywheel torque measurements.
Should such a torgque spectrum be available then it could be used iﬁ
placé of the calculated values of equation (A.17).

- FIGURE A.2: MULTICYLINDER CRANK ARRANGEMENT
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APPENDIX B

" PICTORIAL REPRESENTATION OF MODE SHAPES

. The problem of visualising a mode_'_shape.- of a dynamic system of both

ro{:ational and. trahsletional'freedom‘ arises from the dlf‘f‘lculty of

o relatlng rotat:.ons and translat:.ons on a common scale. Thls- '

) d:t.ff:.culty can be overcome 1f‘ the body model general displacement' )
described by the modal. vector is reduced to a screw d:.splacement i.e.-

_ resembled to the motion of a nut on a screw. '

" The general dlsplacement of‘ a r:.g:l.d body can be described by a
translation vector §s and a rotation vector §n (assuming small
d:l.splac'.ement) about some fixed point 0. The displacement of some

| "-.other polnt on the body located by a pos:.t:.on vector r relatz.ve to 0 ‘

is given by:

. &s! §s+énxr I : (B.1)

én'=én - . m2)

Milne [2’4] for example shows that thls dlsplacement can also’ be."
"described by a screw dlsplacement about an axis located et Ty w1th :

respect to 0, if a vector ry can be found so that for all r
Ces'=pén'wdn x (r-1xp) (B.3)

Substitubiog for §s' and én' into equetion (B.3) "yields




G’s+6nxr=pl6n+6nx(r-rl)

§s + 6n x ri. = pén ‘ o (B.U4)

Equation {B. 4) is solved for p and r, by taking the dot product f‘irst
and the cross product in turn of én with equation (A.4) and assuming
that §n. rl 0 g;wing the location of the screw axis as

_gsx& |
ry = 862 i _ (B.5)

and the pitch of the screw as
- 8s.6n B (B.6)

The equation of the screw axes is then given by the locﬁs of ry, i.e.
by | | | |

r = $§s x 6n +én (B.7) |

EXE

Using the modal vector as a general displacement vector for the body
and assigning its translational part to §s and its rotational part to
Gn; as is illustrated_ in the example which follows, the location and
pitch of the "modal screw axis" can be obtained from eqﬁations (B.5)
and (B.7). Rotating the body about this axis thbough an arbitrary
angle ¢ and translating the body along the axes by pd/2r the mode
shape of the body can be obtained. It willl now be shown how this
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nmethod can be implemented into a computer to use three-dimensional

graphics for pictorial representation of the mocde shapes.

Figure B.l shows the screw axis in relatién to the original body axes.
A screw axes system can be formed from ry,4n and the cross product of
ry and Sn. The location of 0, after the sc.rew displacement, with
respect to the screw axes system is first computed and then
transformed to the X, Y, 2 axes. The new orientation of the X, Y. Z
axes after the screw rotation can be found and the resulting direction
cosine matrix can be reduced to three Euler angles. If the body is
drawn in its original position using 2 3D graphics routine and then
. the dr;awing axeé are shifted according to the computed translation of
the point QO and rotated by the three Euler angles, the body mode shape
is obtained by simply redrawing the body with respect to the new axis.

FIGURE B.l: SCREW AXIS POSITION RELATIVE TQ BODY AXES
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The procedure is summarised by the following set'of_matrix equations.

The position of O with respect to the screw axes is:

p.4

os = - C By | - (B.8)

where Ry is the position matrix of 0'.
The position of 0 with respect to the screw axes after the screw
rotation ¢ is: ' '

| *és = xo§+ Rf ¢ o . | o (5;9)

and after the ecrew translation it beeomes:
Xos = Xog +p¢ “ ' (B.10)

If C is the direction.cosine matrix so that
xg = Cx ' (B.11)

then the position of O with respect to the X, Y, Z axes after the
screw displacement is given by

x, = Clx"  (B.12)

The orientation of the body axes after the screw displacement is shown

" in Figure B.2.
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Z ' Screw axes origin
/ '

>

Body axes after

Fixed body axes ' _——S;rew axes

FIGURE B.2: ORIENTATION AND POSITION OF BODY AXES AFTER SCREW
DISPLACEMENT

. S yS oS : s' ys' .s'

Let X®, Y°,Z° denote the screw axis and X*, Y°, Z° denote the screw
' 'axes after the screw rotation and C' the direction cosine matrix so
that ' ' '

x5 = ¢ =5 - (B.13)
From equation (B.11)

B =Cx o  (B.1%4)
and S | xS =Cx . . (B-l15.)'

Combining equations (B.13), (B.1}4) and (B.15) yields:
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x=ClC' CX o  (B.16)

giving the_tranéformation between the original and the rotated body

axes as
_ T , : . .
T=C2C'C ~ (B.17)

from which the three Euler angles can be obtained.

Ekample:

Consider the modal vector v where

-0.001071}
0.005738 | translational part (i.e. §s)
~0.002695 | S
-0.007879
-0.008955 | rotational part  (i.e. §n)
~0.006839 | ‘

From equation (B.7) the screw axis will pass from the point ry given
by equation (B.5) as: ' ‘ ' '

gl - -0.3352 1 + 0.07358 § + 0.2899 k.

and its direction cosines will be those of 8n i.e. : o -

[-0.57305, =~0.65131, =-0.49741]




The screw pitch is computed from equation (B.6) and .

p = - 0.129676

- Having located the screw axis, we can proceed to define the screw axes
system noting that the vector rq is perpendicular to the screw axis
and hence it can be used as the second axis of the system, the

direction cosines of which are those of ry i.e.
[-0.74621, 0.163774, 0.645245]

-Comparing the direction cosines of the'screw axis with those of ry wé
can adopt the convention that the screw axis‘is the Y2 axis of the new
system and the axis along r; is the X% axis. The direction:cosines of
the Z3 axis are then computed by taking the cross-product ry x 8n and

calculating the direction cosineg of the resulting vector.
If ry =1y x §n tﬁen
r, = 0.0209272 1 - 0.045767 § + 0.035818 k
giving the Qirectién cosines for the ZS aﬁié as
'[0f33879' -0.740929, 0.579866]

and hence the diréction cdsine matrix C in (B.11) is assembled as
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-0.746215 0.163774 0.645244

¢ = [|-0.57305 -0.651307  =0.497408

0.33879 -0.740929 0.579866

Assembling the position iﬁatfix for 0! from the vector ry

0 -0.2899 0.07358|

R; = | 0.2899 0 0.3352

-0.07358 -0,3352‘ 0

Then the position of 0 with respect to the screw axes system is -

conputed from equation (A.8) and 7

= -0.44926 i,

Xos

Assuming a 10° {0.174533 rad) screw rotation, the rotation vector $ is

set as
o' = [0, 0.174533, O]

and hence the position of 0 after the screw displacement is computed
" from equations (B.9) and (B.10) as | '

Xoe = -0.449263 15 « 0.078411 K5
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and from equation (B.12)} the position vector of 0 with respect to the

X, Y,'Z.axes is found as
X, = 0.039534 i -.0.0143356.3' + 0.056726 k '

The direction cosine matrix C' which relates the original screﬁ axes
system with the screw axes system after the screw rotation (equation
B.13) is assembled using the "Yaw-Pitch_Roll" Euler angle rotation.
. discussed in Chapter 2. :

0

For the screw rotation: Rotate about Zg by ¢ =
' ' Rotate about X5 by @ = 0
. Rotate about Y® by ¥ = 0.174533.
Giving the direction cdsine ﬁatrix C' as
‘ 0.98481 0 0.173648
c' = 0 1 0 _
-0.17365 o 0.98481

and hence from equation (B.17) the transformation matrix T is computed.

as

0.9897 | 0.0920 -0.1088

T = [-0.0807 0.9912 0.1044

0.1174 ~0.0946 0.9884

This transformation matrix can be solved for a new set of Euler angles

will define the

¢, o'y y' which together with the vector Xg
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‘coordinate transformation required for the computer graphics. The
angles'¢’.6', ¥* are computed from T as

o' = -5.31° ' = -5.43°, = -6.77°

The computer program, included in this Appendix, is the program
written by the author to utilize three dimensional computer graphics,

supported by GINO-F routines, for pictorial representation'of modé

shapes.




APPENDIX C

THE FORD 1.6 LITRE ENGINE AND ISOLATION SYSTEM

The power train-isolator arrangement described below is that of é"‘
standard production car. All the data presented here have been kindly
supplied by the Dunton Research and Engineering Centre of the Ford
Motor Company [10]. ' -

Power Train

Type | ) ' ' In line four cylinder diesel
Capacity - AR - 1608 cc
Maximum power’ R _ 40 kW at 4800 rev/min
' Maximum torque = . = - 95 Nm at 3000 rev/min
Firing order : R 13 4 2 |
Bore - S 80 mm -
Stroke . o 80 mm
Piston mass S . 0.6989 kg
Con rod mass = o - 0.7494 kg
Fraction of con rod acting at small end 0.287 kg
Effective mass of piston 0.9139 kg
Con-red length 130 nm
Crank radius | ' 40 mm
Crank radius/con-rod length )] " 0.3076
Distance between cylinder centre lines 96 mm .
' Power train mass o ' 197 kg S
Principal moments of inertia Iy = 13.58 kg.m2 .
| | | I, = 5.89 kg.m?
I,; = 11.66 kg.n?

- 0.9660 0.2317  -0.0754
. Direction cosine matrix for . 0.1848 ° -0.9026 - -0.381%4

principal axes ; | |-0.1558 0.3583  -0.9156




Location of power train mass centre

- from vehicle mass centre

Location of centre of crankshaft

from vehicle mass centre
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~0.414m

X =

Y= 0.09%m
Z= 0.199m
X, = -0.418n
Y, = 0.140m
Z, = 0.097n

Zero load torque spectrum at 800 rpm engine speed.

Fourier Coefficients

Phase Angle

139.59 -7.28576

Harmonic No. . Frequency (Hz) . Real Imaginary
0.5 6.9794 -0.31676 .  -0.36043 0.47984
1.0 13.959 5.14327  -7.8807% . 9.41060
2.0 27.918 -48.65539 -168.34996  175.2400
3.0 . 41.876 -3.47907 = -3.5206 4.9496
4.0 55.835 -64.61180 -76.07989 99.814
5.0 - 69.794 -2.95054 0.19391 2.9569
6.0 83.753 -45.45762  -21.06217 50.10°
7.0 97.712 - -1.22193 1.11813 1.6563
8.0 111.67 - -22.79407 1.26241 22.829
9.0 125.63 0.43749 - 0.83497 - 0.94264
10.0 6.04232 9.4653

Maximum speed reduction of final drive: 12.827:1.




Isolation System:

Number of isolators:

3

Isolator positions (see also Figure 2.7) and stiffness rates:

First isolator {(RH mount):

Position:

Second isolator

Position:

X
Yy

21

X
Y
23

-0.290m
0.386m
:0.280m‘

(LH mount):

-0.106m
-0.185m
=0.093m

Third isolator (LH mount) s

Position: X3
3
Z3

Space Constraints:

-0.595m
-0.20%m
~0.073m

Stiffnesses: kxi = 418 N/mm
kyp = 132 N/mn
kz3 = 165 N/mml
Stiffnesses: k., = 288 N/mum
'Stiffnesses: ky3 = 288 N/mm
kYS = 77 N/mm
k,3 = 226 N/mm

These define the free space in the englne compartment relative to the

vehlcle mass centre.

1. -0.500<

. 0.350 €
.3,  0.180¢
4.  -0.400 €
5. -0.1420 <
6, =0.050 <
7. -0.650 <
‘ -0.360 <
9. =0.200 <

B X BTV
B R

F
h

N'-<:
/AN AN/A

B3
no

>4

3
WoWw W
S AN AN AN

VAN AN AN

-O.250\metres
0.500
0.370

-0.050
-0.150
0.410

-0.300
-0.150
0.050
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Stiffness Constraints:
These define a practical range of isolators as follows:

10. 10

0 < kyy < 750 KN/m
11. 100 < kyg < 500
12. 100 g k,q < 400
13,100 < ky, < 500
4. 100 < kyp < 400
15. 100 < k,» < 400
16. 100 < ky3 < 500
17. 100 < kyg < 400
18, 100 < k,3 < 400
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APPENDIX D

COMPUTER PROGRAM AND DATA

D.1 THE ENGVIB COMPUTER PROGRAM

The program is not of the interactive type. All data are read from a

data file and all ocutput is similarly diverted into an cutput file. _

It has been written for a FORTRAN 77 compiler and consists of the main
segment ENGVIB and fourteen subroutines, three of which are called

directly from the optimization routine. The flowchart of each of

these three routines as well as that of the main segment are shown in .

Figures D.1 to D.4, The function of the remaining eleven subroutines
is as follows. (The numbers in the boxes correspond to those on the

flowcharts ‘and indicate where each sub.routine is called):

DIRCOS: - : Computes the direction cosine matrix from a given set of
~ Euler angles (Yaw-Pitch-Roll convention). Called at

EULER: | Computes the Euler angles from a given direction ‘cosine
‘matrix. Called at .

FORCE: Calculates the force vector generated by the engine-

inertias at the centre of the crankshaf‘t.. Called at
LOCAL: . Computes the static deflections of the isolators caused
by a displacement of the power train. This subroutine

is called by CONt

MATD: - . Called at for printing of intermediate results

PCHANGE: - Print the ﬁércentage change of the'opt'imization
variables on exit from EOQ4UAF. Called at




REPORT:

SCALE:

STRAIN:

TRANSFORM:

© VLCHECK:
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Prints out final and original values of the optimization

- function and the percentage change. Called at

Scales all the optimization variables so that they lie
in the range (-1, +1) before entry to the optimization

routine @ and scales them back to their physical

units when control is passed from the optimization
routine- to FUNCT1 E

Computes the strain energy at the end of each cycle of
subroutine FUNCT_l and returns the value of the
optimization functions on the last call. Called at

" Computes the transformation matrix which is required to

transform the crankshaft forces to an equivalent set of

forces applied at the power train mass centre. Called at

El

Checks that the cosinés and the sines of the Euler
angles'. computed from the elements of the direction
cosine matrix do not exceed unity. <Called from
subroutine EULER. '

Apart from the optimization routine EOQYUAF two more routines are used
from the NAG-Library. These are FOZ2AEF,. which is called to solve the
eigenvalue problem of equation (2.13) and FOlADF, which is called to

"estimate the inverse of the stiffness matrix.




C ENGVIB )

Y

Open INPUT/OUTPUT files

Y

Reod sngune data

Y

Read Lsolctor transloticnol
. gtLffnesses

- Read Laolator
rototLonal styffnesses

Read wpper ond Lower .
bounds for veolator -
stLffnesses

4

Read Lsolator posution
coordunates and theur
upper and Lower bounds -

Y

Reod vaolator durection
cosLhee

A 4

. Conpute the Laolotor
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Y

Scale the desugn varichbles
ﬂ” that ~1<Xu<q (3.38)

i

Set cll porcneters un
the EQLUAF arguaent

r

¥rete urput deta
toto output fule

N

Reod constrount constonts
and wewghtung factors

A

Conpur.é the statuo
torcen (2,34)

/

Coaputs the transforaction
natrux for the engune
'Z'I forces (2.23)

/

Cal.L FUNCTY to compute the

. dynanic response of the
vretial oyston

OPTIMIZATION ¢

Coll EDLUAF

Call FUNCT1 to compute the

dynon.c response of the
optLaun systen -

A%

Reod cronkshoft oxes
du.rectLon cosLnes

/

Read position coordunctes
of the crankshoft

Arcther vaolotor 1
Yes

Set the upper and Lower
bounds for the Euler
angles (2.12)

' 7] Euker onghes (2.11)

FIGURE D.1:

FLOWCHART OF MAIN PROGRAM

¥rebe funal results

' Tﬂ wnto output fule

Y

Close oll opened fiules

( ‘rewmn )




C SUBROUTINE FUNCTA )

N

Sccle des.gn vervables
7l bock to physicol units

Y
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Optimvzation 1

A

Computes dt.recr.t.on' cosLne

(2,91

11

actr.x for each usolator

Coapute stiffness natrux
IQ-B"‘Q-iU’

Y

Conput @ eugen vectors ond
evgen values,(coll NAG
FO2AEF to solve (2.13))

Printowt reqared 1.

Pﬁ.nt ! Iscloctor stiffnessss

Isolaotor poaition
Isolotor or.entatyon
Maosa motrix
- Stuffness matrix
Noeturcl frequencies
8 Hode shopes

Y

Cospute optim.zaotion
_1T| - Function (3.28)

Y
RETURN

_( y

Incracas harnom.c nunber
by uncrenent step

Vrite response results
tnto a file for plotting

Y

Anothear
haraonue ?

Compute neon squarse vd..utl
of' responee ond odd to
nean sguare responce

'ﬁ[ sunngtLon array

Store frequency ond
response for current
harmonvc

A

Multiply recoptonces
with forces Lo obtan
responce {2.29)

n

Conput e the receptance
actrix eleasnts A{l.J)

/

Increcse engune speed
by sncremant step

Ia
engLne apeed >

For currsnt engune speed

compute the vnertLa constonts

Mrecwr .o-.

)

Osteraune which us the furat
hornoruc of exciiotion

F N

‘votm ?
' | Yoo
A

( remmn )

o~
-

Compute the recsptonces
for eoch mode of
v.brotuon (2.28)

Bl

Conpute forces ct the
engLn@ mass centre
(2.23}

For current hormom.c

compute the engune forced

- ot the centre of the
crankshaft

3

b
-

Fvg. D-2 Flow chort for subroutitne FUNCT1
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< SUBROUTINE CONY )

Y

Compute the vnverse of the
stiffness aatrux
{Call NAG FOADF)

V

, Hultiply the tnverss .
stuffness notrix with the atatic force
vector to obtoun the stotie
dusplucenents at the
povertraun mass centre

\%

Compute the deflections ot
each vsolator (2.36)

Y

Conpt @ the constravnt functions

for the engune rototions
-ond the vsolator deflections
lxnlﬂl ’ f3-3‘"

FREQUENCY CONSTRAINTS
_REQUIRED 1

Conputa the constraunt funtions
for the naturdl fraqusncues
(3.41) '

Fug. D3 Flow chart for subroutune

CON1




153

SUBROUTINE AMONIT

END

OF ECDL{UAF
CYCLE ?

Vrite urto owtput fule the
Estumctea of the Logrange aultipliers
Y | current value of the penolty peraneter
Norn of the gradient of the Lagranguon

Norn of the resi.dual vector for
' the constrounts

¥rite unto output fule the
Mo of EQLJBF vterotions

No of function evoluaotions,
Current function volue,

The norm of the graduent vector
The cond.tion nunbsr of the Hesavon
The current Lsolotor deflections
The current engLne rotation

ARE

FREQUENCIES
ONSTRAINED

Y ‘ Vrite unto output file the
current naturcl freguencles

G

FIGURE D.4: FLOWCHART OF MONITORING SUBROUTINE AM_QNIT
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D.2 DATA FILE STRUCTURE

All the read statements in the program are in free format and hence

~the only requirement in constructing the data file is that the data

should be separated by a space and that they should be assembled in

the right order. A typical data file is 115ted below with a 11ne-by-

- line explanation follow;ng _
'FORD DIESEL ENGINE 1.6 LITRE - ZERO LOAD'. FALSE._
304321.01 1000201 10.0 0.5

0.0 10.0 -10.0 10.0 0.0 10.0.

197.0 13. 1564 7.0244 10.7088 1. 4062 0. 25904 -2, 03478

0.418E6 0.132E6 0.165E6

"1.05E 1.0E5 1.0E5

7.585 5.0E5 4.0E5

0.124 0.292 0.081 .

-86.0E-3 256.0E-3 -19.0E-3 164.0E-3 406.0E-3 171.0E-3
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

0.288E6 0.077E6 0.22E6 -

1.05E 0.7E5 1.0E5

5.0E5 4.0E5 4.0E5

0.308 -0.279 -0.292 . '

- 14,03-3 -514.0E-3 -295.0E~3 364.0E-3 -244.0E-3 211.0E-3 °
1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 -

0.288E6 0.077E6 0.226E6
1.0E5 0.07E6 1.05E6.
5.0E5 4.0E5 40ES
 -0.181 -0.303 -0.272

| -236.0E-3 -444 ,0E-3 -399.0E-3 114 OE-3 -244 0E-3 -149, OE -3 |

1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0

| :.1 3 4 20.0180.0 540.0 1360.0

0.5 1.01, 0 0.04% 0.0 0. 9139 0.096 0.3077 -609 28915
6 800.0 0.05

(1)

- (2)

(3)
(4)

(5)
(6)
(7)
(8)
(9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)

.
- (18)
(19)

(20)
(21)
(22}

(23)
(24)

(25)
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-0.36043 -0.31676 S (26)
-7.88074 -5.14327 - S (27)
-168.349 -48.6554 : S (28)
~3.5206 -3.47907 _ : ' ' (29}
-76.079 -64.612 IR o ; (30)
0.19391 -2.95054 | . (31)
=21.0622 -45.4576 S | (32)
1.11813 -1.22193 | 1 (33)
1.0 0.0 0.0 | | - (34)
0.0 1.0 0.0 I - T (35)

0.0 0.01.0 | R . (36).

“=4.0E-3 46.0E~3 -102.0E-3 . S (37}
5.0E-3 5.0E-3 | K . | - (38)
10.0 10.0 A | S (39)
15.0E-3 -15.0E-3 10.0 , | (%0)
5.0E-3 5.0B-3 o . | (41)

' 10.0 10.0 o ' - (42)
15.0E-3 -15.0E-3 10.0 - | ' (43)
5.0B-3 5.0E-3 . (44)
10.0 10.0 _ . o . - (U5)
15.0E-3 -15.0E-3 10.0 | o | (46)
0.1745 0.0 . (47)
0.1745 0.01 S - o (48)
0.1745 0.01 o - | (49)

. 5.00.1 . : - S (50)
5.0 0.1 : ~ _ | - (51)
500.1 - R R N (52)
5.0 0.1 ' ' . (53)
5.0.0.1 - : S T (5

5.0 0.1 ' ' ' (55)

The interpretation of the data is as follows:




Lines:

"
)
6
7
8
9

10.

‘system. If IPAR=1 then F(X) is defined as the sum of the mean

Title for current computer run (character variable)

Switch for optimization/dynamic response (logical variable)
Number of isolators (integer)

Number of additional points on the power train, the static
displacements of which are critical and should be constrained
(integer) ' ‘
Number of engine cylinders (integer)

Number of available stiffness rates/isolator 3 or 6 (integer)
Optimization switch IPAR, If IPAR=2 then the objective
function, F(X), is defined as the maximum strain energy of the

square disﬁlacements at the pdwer train mass centré

Scaiing factor for the objective function |

Count down parameter for complete output of results during
optimization ' ' ' '
Optimization parameter which defines the frequency of -
monitoring intermediate optimization results

Optimization switch, which declares whether frequency

constraints will be applied

Jnitial value of penalty parameter RHO

Optimization parameter which defines the accuracy of each
linear search S -

Upper and lower bounds for the Euler angles

Power train mass and inertias

Stiffness rates for first isolator

Lower bounds of stiffness rates
Upper bounds of stiffness rates
Isclator positidn coordinates .
Lower and upper bounds of position coordinates

Isolator direction cosines {orientation)

Same as 5-10 for second and third isolator



2

25

26-33
- 34-36
37

Engine firing sequence
Crank arrangement
First excitation harmonic to. be considered
Secdnd excitation harmonic to be considered
Harmonic¢ number increment

Crank radius _

Rotating mass

Reciprocating mass

Distance between cylinder centre lines

"Ratio of crank radius/conrod length
- Maximum static torque/ number of engine cylinders

Number of excitation forces

Engine speed

Modal loss -factor

Combﬁstion Fourier coéfficients (imaginary-real)
Direction cosines for crankshaft axes

Position coordinates for crankshaft centre

Constraint constants and weighting factors
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IFLIPLAT.EN. . I THIY

DRAW MUDE 3EAPE

CALL TRANSF(-1)

CALL WINDCW(3)

CALL VIZNZZ(2,3)
TSHIFT:230.C-IVAL+7T.0,

CALL SHIFT3(0.,0,YSEIFT,288I5T)
CALL SCALE{.5)

CALL LINCOL(!)

CALL ROTAT3(3,-30.0)

CALL ROTAT3(2.3C.0) _

CALL “oxcso 2,106.0,60.0)
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301 .

a0

aa

a

A GO0

0
=
=
i
=4

FI 2{3FI,CFI}

PST=ATAN2(SP3I,CPS1:
IF(FI.LT.0.0)FI=PIZ+F] .
1F{PSI.LT.0.0)P3I=PI2+PSI

RETURN

END .

SUBROUTINE VLCOHECK (X,

17 (A S(X).GT.1.0JTHEN

H=X/R2S (XD :

W= O m o

=1

1

OriDoN ~n
C_: N

m i m g
¥

vs
=4

YBOX .230" ;

-,—\Rr\u.—- e :'-‘.:

w

v - -l -
DRAW A BOA oF 'D M WIENE,YE0K,Z20K 1IN RYZ
~ ra-Tabld
HERSX 2L, /2. Z30u/2.2)

A mAY A vmAY e
: ::3.—*./_. =T

N

J

.-:»POK:?I (0

CALL LINSY31(0.0,-YS0X,0.0)
CALL 'LIN2Y3(0.0,0.0,-2806X
CALL LINBY3(0.0,Y20¥%,C.0}
LL LINRY3(0.0,0.0,220%)

3IDE EDGES

o) LINBY3 (-XBOX,0. o 0.0)

CALL LINZY2(0.0,0. o T30Y)

CALL LINBY3(XB0X,0. 0 0)

EDGES

CALL MOVTO2(XB0X/2.0,-Y30¥%/2.0,2ZB

ALL LINBY2{-X2CX,0.0,0.0)°

-' . .JOJ\,C’.O)

=
-
t‘i

N ) ~

AL LN

ar » 1o atTReen

TN
ALl LINZEYZ (L
Arziim e D e eem.s
DASHED REZAx ZDEEC
~Aar T M aAt g N
CALL BRONEZN( S
PAT T aUT oy oAy "o
CALL MOYSYI0.,0,-Y20K,0.0
v P armrr Y £ - iy
CALL LINZUAIC.Q,0.00, 230N
— st w ey ey o e
CALL LINDYIULHBDH, O D, 0]

: [T I JTNN DY L
TOVRY Y SKEGM ), 000
L Y O LRV I PR P TS
e A ...."-‘. .r-.'-‘. :

R TR UL B X R IPR L B B

DU o eV Il iu

T + yeumy

U G T D

- L By - . . . LA
mUL R e T - '
R T R
P R - .

- RPN e me g ey

LR WIZITWARD 20 i s,

1 DARENUNTY Y g s

«t 3, R .",Gu.i AR I

b i oy ]
-y, SITGMA 770

A '

READUG, «)0

—very em

Tun T

PPy -

- RO OCALL TLot

T e e e R



te4

354 TE(LLIOLAICALL Tegts

as7 ITILLIn.3cALL SIou |

38R IT(L.E0.5)CALL Z5s3e

3%3 RETUSY

341 END

251 C |

352 C

353 SUBRCUTINE TITLE(ITITLE,H) |

‘364 DIMENSION ITIT LE(“OJ Wi{6},IAR(10),IART (5) |
3673 DATA IARSTT,79,68,52,2 2,0,32.3z,n=,32/,

366 ¥ 1301.34,40,7_, 22,851/ o

57 CALL TRANSF(-1) '

3473 CALL WINDOW(2)

3592 TALL YIZW3SE:2,3) ’

370 SCALL LINCOL(1)

3714 CALL ¥OUT83(0.0,20.0,25.0) |

372 CALL CHAAY({ITITLE,SC)

373 DC 10 I=1.5

374 IAR(S):4L3+1

375 FR=W(I)

376 IF(I.L2.3)THEN |
s I L:I?.?

373 ELSE |
172 TYAL= -4

3se z iz

281 YMOD:2E .2 ' ' :

‘382 IS{I.GT.3)YM0D=125.0 .

383 ZMOD=230.0-IVAL%75,0-30.0 ‘

334 CALL MOVT03(0.0,YMOD,ZM0D)

IT(IAR,10)

e e
a
B ()

t
T
I

A d
CALL
v Ty e
d5g CALL Cr IX(FR,7,2}
apvr e
387 CALL ASC ;(-.'-..1. 31
333 10 CONTINUZ
o e AT
339 RZTUR)
AT
380 END |
3%t C ‘
123+ :
A22 |
ﬂ'rﬂﬂf\"l""“\"“ T LY % :'!‘f":""’l Tr oy ‘
333 SUBRLCUTINE AKXZS(XBON,YECH,ZBOX) _
l. al 1 e -~ al
34 CALL MOWTI2.0.0,0.0,0.510
e s ——\,\c_(—_\rr., y
- L A -
-~ a0 ToT Ty TEE LR N by N
335 CALL LINSY2INIOH/Z.0.0.0,0.9:
e TALL ZRONZNIG:
-~ et e e masmurm s oo \
e CALL LINZY2i32.0,0.6,0.0: ‘
<oy o m A e v
339 ALL MIAVTOIR.L.n T D) |
R CALL SIRCRZL ‘
et i v eare s o pmper e e
w3 SALL LINIVI . L NI DL L |
o Frar Er Rl Al Y RPN S
z £ TV T
SAalL IRCHIZMN
[, . o,
4133 JALL LIMEzvVIi.L0 AV I
Loy T oo PRI T I -
Ly - PRI oy
T Cale )
. Il o - AL ] “
Lk R N QL0 0 oTuRS2 0
HEM TALL i) :
. M o
“0a CALL G.0,0.0,20.0)
‘v jmacr et e m var e ey s e
hL RN JE L L Y A IR I VR e
L (U Meoy
N IS IS I 5510 DEQUNMNES KR B3 JUEA IR S ST
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- P N ey oy ~ oy - ~ 2y
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