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DYNAMIC MODEL OF A GUN DRIVE SYSTEM FOR A BATTLE TANK 

by 

C. W. BARLOW 

ABSTRACT 

Mathematical models are presented for both the traverse and elevation 

gun drive systems of a modern main battle tank. The models are based 

upon the generation of torque, through the gun drive gearboxes, arising 

from collision engagement of the mating gears, and included a full 

description of the non-linear effects of both backlash and friction. 

Digital simulation studies, based upon the mathematical models"showed 

------,~h,~-,unrl"~nDen-loop_conditions, the initial backlash was predominant 
----,_.----- -- --
--,--~---

-------','n-controlling the torque generation, the .angular velocity and displacement 

error, at each mesh. 

The representation of the gun dynamics as a lumped stiffness and inertia 

exc 1 uded barrel frequenci es hi g'her than the fundamental, whi ch resu 1 ted 

in low frequency gun vibrations as a result of its relatively low natural 

frequency (5 Hz). 

The results from the digital simulation of the closed-loop traverse 

gun drive system showed that backlash was not significant to pointing 

accuracy,. providing that there was no non-linear friction in the system. 

The inclusion of the non-linear friction components resulted in a steady

state pointing error of the system. The pointing accuracy of the system 

decreased with increased Coulomb friction. 
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PREFACE 

This dissertation is a report of research carried out 

by the author in the Department of Transport Technology at 

Loughborough University of Technology, under the direction 

of RARDE, Chertsey. The dissertation is in the main a report 

of the independent work of the author: the work of others 

has been referenced where appropriate. 

The author would like to express sincere thanks to his 

supervisor, Dr. D. Mclean, for his continued guidance and 

counsel throughout the period of this research. 
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ABSTRACT 

Mathematical models were presented for both the 

traverse and elevation gun drive systems of a modern main 

battle tank. The models were based upon the generation of 

torque, through the gun drive gearboxes, arising from 

collision engagement of-the mating gears, and included a 

full description of the non-linear effects of both backlash 

and friction. 

Digital simulation studies, based upon the mathematical 

models, showed that, under open-loop conditions, the initial 

backlash condition was predominant in controlling the form 

of torque generation, and the associated angular 

displacement error, at each mesh. 

The representation of the gun dynamics as a lumped 

stiffness and inertia excluded barrel frequencies higher 

than the fundamental, which resulted in low frequency gun 

vibrations as a result of its relatively low natural 

frequency (5 Hz). 

The results from the digital simulation 

closed-loop traverse gun drive system showed that 

of the 

backlash 

was not significant to pointing accuracy, providing that 

there was no non-linear friction iri the system. The 

inclusion of the non-linear friction components resulted in 

a steady-state pointing error of the system. The 

accuracy of the system decreased with increased 

friction. 
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CHAPTER 1 INTRODUCTION 

The drive system for the gun turret of a 

battle tank (M.B.T.) usually comprises two 

mechanical systems: azimuth and elevation. 

modern main 

independent 

The azimuth, 

often referred to as the traverse system is associated with 

the rotation of the turret and its main weapon system, and 

the elevation system is used to establish the vertical angle 

of the weapon system relative to the turret. 

The turret is supported on the hull of the tank by a 

bearing assembly which permits the turret to rotate relative 

to the hull. The torque required to drive the turret to a 

desired azimuth position is provided by an electric drive 

motor and an associated reduction gearbox. This gearbox is 

usually located in the turret itself, and it rotates as the 

turret rotates. The drive to the turret is from a pinion 

gear meshing with a large ring gear mounted on the hull. 

Rotation of the pinion establishes relative turret-to-hull 

azimuth position. The weapon system is usually attached to 

the turret by a pin-type connection which allows weapon 

elevation relative to the turret and provides vertical, 

lateral, and longitudinal support. 

The elevation system usually comprises an electric 

drive motor and reduction gearbox whose output is delivered 

via a pinion gear which mates with the gun rack gear, 

thereby providing elevation of the weapon relative to the 

- 1 -



hull. 

Each of these systems has independent, closed-loop, 

_electronic controls which-receive feedback signals from the 

stabilized gun sight, as well as possibly from rate 
f 

gyroscopes and accelerometers which may be mounted in the 

turret and hull. These electronic control systems usually 

require high system gains and correspondingly complex 

compensation techniques to meet the extremely stringent 

bandwidth requirements, while still maintaining adequate 

stability margins. The optimum design of the controller for 

the closed-loop drive system for the gun turret requires a 

detailed knowledge of the open-loop load characteristics 

because of the possibility of the phenomenom of resonance, 

as a result of the nature of the mechanical load 

characteristics, and also because of the existence of 

non-linear characteristics of the performance of the dynamic 

system. 

The objectives of the research work reported in this 

dissertation were to produce an accurate mathematical model 

of both the traverse and the elevation gearboxes for the gun 

drive system of a modern main battle tank and also to carry 

out extensive digital simulation studies which would permit 

validation of the developed models whilst allowing further 

studies to be made of particular aspects of gearbox design 

and performance. However, so strongly did the electric drive 

and mechanical load influence the dynamic characteristics of 

- 2 -



the gearbox that it was necessary to include in the research 

work a detailed study of their effects. 

The dynamic environment in which the gearboxes were 

presumed to operate is shown schematically in Figure 1.1. 

The general layout of each gearbox is shown in Figure 1.2 

for the azimuth system and in Figure 1.3 for the elevation 

system. 

A gear train is, often considered to be an ideal 

component represented by a simple transfer 

function ,N which is the gear ratio. Although this 

assumption is sometimes adequate for certain applications, 

whenever the gear train is the major component of a 

servomechanism, such as that in an M.B.T. gun drive system , 

~then a more detailed approach is required with all losses in 

the gears being taken into iccount. These factors invalidate 

the representation of a gearbox as a simple speed and torque 

converter. 

A detailed approach requires accurate modelling of all 

the gearbox elements in terms of their inertial properties 

ie. th~ accelerations, velocities, and 
also, 

displacements, and)l must take into account the finite 

distribution of inertia through the gearbox and the 

losses due ( to friction and' backlash. 

Such an approach has several advantages, and not only 

for the design of control systems for existing gearboxes. 

Any generalised model permits the investigation of the 

- 3 -
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performance at any point in the gearbox thereby allowing 

modifications to be made to suit specific required dynamic 

performance. 

The models presented in this work are based upon the 

generation of torque at each gear mesh through the collision 

engagement of the gears. The collision 

mesh is itself a function of both the 

prevailing at each mesh and the 

engagement 

backlash 

associated 

at each 

condition 

initial 

condition. The torque arising from the collision engagement 

at a gear mesh, through the associated mesh stiffness, 

results in a displacement of the collision-engaged member. 

This displacement then forms the input to the next gear 

mesh. 

Backlash, or free play, occurs when two mechanical 

elements are not rigidly coupled, but are conn~cted through 

an inactive zone of displacement within which no direct 

mechanical coupling exists. Care has been taken to 

accurately model the non-linear effects of backlash at each 

mesh, as the effect is not only one of lost motiori between 

mating gears, thereby causing instability in some instances, 

and subsequently deterioration in pointing accuracy of the 

system, but it also acts as a switching mechanism for torque 

generation. 

The term 'friction' has a number of meanings, but, at 

its simplest, it may be regarded as a linear (or viscous) 

term which is a continuous linear function of the velocity. 

- 7 -



Such friction is, of course, the easiest to represent in any 

simulation program and it results in a net loss of torque in 

the system. However, in many instances, the type of friction 

occurring is usually a combination of both linear and 

non-linear phenomena. Two very common discontinuous types of 

friction, which occur when mechanical surfaces are in direct 

contact (eg. they are not seperated by a viscous film of 

lubricant) are Coulomb friction and stiction. When Coulomb 

friction exists, stiction will exist as well. 

The continuous linear friction term is usually added 

to the constant Coulomb component which 

combined linear term with its origin on the 

characteristic curve offset by the value 

fricton. Care has been taken to model 

results in a 

friction/speed 

of the Coulomb 

accurately the 

appropriate friction characteristic at each gear mesh. 

In a position control servomechanism, the presence of 

friction may be desirable for some conditions and 

undesirable for others. The non-linear components produce a 

steady-state, or static, error, and are therefore 

undesirable from the viewpoint of accuracy. However, under 

certain conditions, linear friction can provide appreciable 

damping. It can be shown (ref. 1) that all positional 

servomechanisms with backlash would display continuous 

oscillations about null, except for the existence of linear 

friction in the system. 

In any event it must be emphasised that friction, in 
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gene~al, is a ve~y va~iable effect. Diffe~ent mechanical 

elements f~om the same p~oduction batch may exhibit 

ma~kedly diffe~ent cha~acte~istics, and the same element 

itself may exhibit ma~kedly diffe~ent characte~istics 

th~oughout its life , dependent upon such facto~s as past 

wea~, its state of lub~ication, and its ope~ating 

tempe~atu~e, fo~ example. Hence any simulation of a f~iction 

effect is neccessa~ily app~oximate, based upon 'typical' 

values. 

The stiffnesses 

associated ine~tias 

of the gea~s and 

we~e calculated 

p~ope~ties of the gea~box elements. The 

shafts 

f~om 

effects 

and the 

geomet~ic 

upon the 

gea~box dynamics of such finite stiffnesses and ine~tias can 

be significant. Owing to the natu~e of the models it is 

impo~tant to distinguish between absolute and ~efe~~ed 

values. Although the ine~tias of the individual gea~s and 

shafts may be small, thei~ effective ine~tias a~e inc~eased 

by the ~efe~~al of the ine~tias of all the othe~ gea~s and 

shafts loadside, and, also by the ~efe~~ed ine~tia of the 

load itself. Simila~ly, f~ictional effects and stiffnesses 

a~e also ~efe~~ed pa~amete~s. The models have been a~~anged 

to ~ecalculate ~efe~~ed values whe~e an absolute value is 

alte~ed, thus making ~e-design possible at simulation 

~un-time. The methods of ~efe~~al of the va~ious pa~amete~s 

a~e outlined mo~e fully in the app~op~iate sections of this 

disse~tation. 

- 9 -



Although backlash has been carefully modelled, the 

effects of referred parameters when a gear becomes unmeshed 

have not been included· in the·models because of the gross 

non-linearities which resulted and their effect on the 

stability of the integration method. Thus, referred values 

are constant for a diven simulation run. A detailed 

discussi.on of this point is presented in Appendix 1. 

The models have been arranged so that the system 

dynamics can be set up under the complete control of the 

user to reflect any required initial state and includes 

options to remove any, or all, of the non-linearities 

thereby allowing their effects upon system performance to be 

studied. 

The gearboxes are used to drive representative load 

dynamics, namely turret and gun for the traverse system, and 

gun alone for the elevation system, with the inclusion of 
descf,'ph<:.nOJ: Ihi!:. 

the appropriate out-of-balance forces. The >'load I properties 

must be considered to be the least satisfactory component 

of these models for 

estimates a.~d. d ()Q5 not 
~. 

: l ; : 
,I; ,s· based only upon informed 

represent particular turrets or 

particular guns, since such classified information was not 

available to the author. In particular, the representation 

of the gun as a l~mped inertia and stiffness results in the 

exclusion of barrel frequencies higher than the fundamental, 

although the modes associated with these higher frequencies 

may be significant in terms of achieved pointing accuracy. 
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No effects of external inputs from vehicle motions were 

studied although these too may be significant for system 

performance. 

Chapters 2 and 3 of this dissertation are devoted to 

the necessary geometric relationships required by the models 

for the calculation of component inertias and stiffnesses. A 

detailed presentation of friction, -together with the 

appropriate mathematical representation of the non-linear 

friction characteristics throughout the gun drive systems, 

is given in Chapter 4. The torque/speed characteristic of a 

simple drive motor is detailed in Chapter 5, as the output 

from such a model forms the forcing input to each gearbox 

model. Although the same motor model has been used for both 

systems, the dynamic characteristics of the motor will be 

different in each case due to the differing distribution of 

inertia and friction effects and the difference in gear 

ratios for each system. Backlash, and the associated 

mathematical representation of torque generation following 

collision engagement of the gears, is presented in Chapter 

6. The modelling of a planetary gear train is detailed in 

Chapter 7, with the transformations necessary for its 

representation as a single effective mesh. 

The digital Simulation, presented in chapter 8, is 

based on ACSL, Advanced Continuous Simulation Language. This 

digital simulation language is interactive and allows 

variables, simUlation conditions, outputs, graphical plots 

- 11 -



etc. to be changed at any time during a run. It provides for 

the selection of any o~ four integration algorithms, which 

are fixed-step, . first-order and second-order Runge Kutta, 

and a variable step Euler routine and a 'stiff' variable 

step algorithm developed by W. Gear (ref.2). Control of the 

integration parameters can be handled from within the 

simulation program or reset at run time. Thus, for example, 

step length or communication interval can be adjusted at run 

time to suit the particular dynamics of the system under 

consideration. In the work presented here the most 

satisfactory results were obtained using the 'stiff' 

algorithm ( developed by Gear) which is outlined more fully 

in Appendix 1. Some results are presented to illustrate the 

nature of problems encountered when attempting to use the 

fixed-step Runge Kutta, second-order algorithm. These 

problems arose due to the 'stiff' nature of the modelling 

equations. 'Stiff' differential equations frequently arise 

from physical problems in which there exist greatly 

differing local time constants. This condition implies that 

the solution will contain 'fast' and 'slow' components in 

decay. The short time-constant components then control the 

stability of the integration method even though they may 

have decayed to insignificant levels, so that the truncation 

or rounding error is determined by the components with the 

longer time-constants. If flexibility effects of the gun 

dynamics or the effects of gear meshing on referred 

- 12 -



parameters, for example, were to be included, then the 

choice of Gear's method is strongly recommended. 

The dissertation is completed with results showing the 

responses of both azimuth and elevation systems to step 

inputs of motor torque for a range of initial conditions. 

Although the objectives of the work presented here were 

concerned with the modelling of the open-loop gun drive 

systems, it became apparent in the course of the research 

work that, apart from small torque inputs, the effects of 

non-linear friction on performance only became appreciable 

under closed-loop conditions. Therefore,simple control laws 

were developed to examine system 

closed-loop conditions. It is not 

be considered as 

developed merely 

performance under 

intended that these 

'optimum' for the 

as a means 

control laws should 

systems, but were 

illustrating the effects and inter-relationship of 

for 

the 

non-linearities on system performance. 
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CHAPTER 2 GEAR AND SHAFT INERTIAS 

·The ·determination -of system inertia is of major 

importance for design and analysis as it directly affects 

the damping, stability, and response of the system. Although 

the inertia of the individual gears and shafts may be small, 

their effective value, when summed and reflected, can be 

significant. 

A great majority of servo rotating components are by 

nature symmetrical about. the axis of rotation and lend 

themselves to easy calculation. In fact the inertia of most 

of these can be calculated by subdividing each component 

into hollow right circular cylinders. The various cylinder 

inertias are then summed to provide the total inertia for 

the component. The general equation for calculating the 

inertia of a hollow right circular cylinder in terms of 

diameters is: 

2 d2) I :: M(D + 
8 

where D is the outside diameter (m), 

d is the inside diameter (m), 

and M is the mass of cylinder (Kg). 

. . . . . . . . . . ( , ) 

The mass of the cylinder is 

M :: 

defined by the equation: 

2 2 
n ph (D - d ) •••••.•• (2 ) 
4g 

where p is the density of the material (Kg/m3 ) , 
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h is the height of cylinder (m) , 

and g is the acceleration of gravity (m/s2
). 

The various cylinder inertias are then summed to 

provide the total inertia for the component. 

The inertias of the shafts may also be determined in a 

similar manner, however, since in this case d is zero 

Eq.(1) reduces to: 

......•......... ( 3 ) 

The distribution of inertias through the traverse and 

elevation gun drive systems are shown in Figure 2.1 and 

Figure 2.2 respectively. The variables used in these figures 

refer to the digital simulation presented in Chapter 8. 

Since it is the torque developed at each mesh that will 

accelerate the inertia, the inertia is assumed to act on the 

output member of each gear mesh. Thus, all the n inertias on 

a common shaft are added to form the inertia of the output 

member, which is given by: 

•••••••••••••••• ( 4 ) 

where le is a component inertia on the same shaft as the 

output member. 

In addition, the output member has all output member 

inertias loadside referred onto it through the appropriate 

gear ratio. The total effective inertia on the output member 

of the i th gear mesh is then given by: 

- 15 -
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• . • • • • • • • • • • • ( 5 ) 

where Iq is a component inertia on a common shaft with the 

output member j loadside of i , 

and Nj is the gear ratio from the output member i to the 

output member j. 

Usually a component is mounted so that its axis of 

rotation is through the centre of gravity. If this is the 

case then the above equations yield the correct inertia 

directly. If this is not the case, as when referring 

inertias back through the gear train, the inertia about the 

desired axis of rotation can be determined by using the 

parallel axis theorem. The inertia of the component about 

the desired parallel axis may then be calculated as: 

I I !Md2 = cg + 2 . . . . . . . . . . . . . . ( 6 ) 

where I is the inertia about the desired axis 

Iq is the inertia through the centre of gravity 

.parallel to the axis desired , 

and d is the distance between the two parallel axes. 

The absolute inertias in the gear train are calculated 

from eq.(1) and eq.(3) for gears and shafts respectively. 

The referred inertias loadside are then added to give the 

total effective inertia on the output member of the gear 

mesh. If the parallel distance between shafts is 

significant, then the parallel axis theorem must be used 
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prior to reffering an inertia through the appropriate gear 

ratio. 

The values of absolute and the corresponding referred 

inertias used for the traverse system were: 

Element Absolute Referred 

Inertia Inertia 

(Kgm 2
) (Kgm2 ) 

Motor shaft 0.005 0.0797 

First gear 0.000197 

Second gear 0.00488 0.5417 

Shaft 0.00001 

Third gear 0.00006 

Fourth gear 0.0077 ·8.8037 

Shaft 2 0.000345 

Fifth gear 0.000199 

Sixth gear 0.000148 152.699 

Shaft 3 0.00596 

Pinion gear 0.01074 

Turret 43000 51051.89 

Gun 8051.89 8051.89 

TABLE 2.1 

Note that the fifth and sixth gears are the equivalent 

gears representing the planetary gear system. The 
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representation of the planetary gear system as a single 

equivalent mesh is shown in Chapter 7. 

The values of absolute and the corresponding referred 

inertias Used for the elevation system were: 

Element Absolute Referred 

Inertia Inertia 

(Kgm2 ) (Kgm2 
) 

Motor shaft 0.005 0.25166 

First gear 0.0012 

Second gear 0.0002 0.11316 

Third gear 0.0004 0.05889 

Shaft 1 0.000312 

Fourth gear 0.00024 

Fifth gear 0.00085 0.76881 

Shaft 2 0.00025 

Sixth gear 0.00067 

Seventh gear 0.00055 12.2229 

Shaft 3 0.0026 

Pinion gear 0.00023 

Gun 5913.52 5913.52 

TABLE 2.2 

The planetary gears are represented in the elevation 

system by the equivalent mesh between gear 6 and gear 7. 
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It is only important to calculate the effective 

inertia on each collision-engaged member as it is the 

effective inertia of this member that the torque developed 

at each mesh will accelerate. 

The increase in effective inertia at each mesh is due 

mainly to the referred load inertia, although ignoring the 

gear and shaft inertias themselves, particularly at the 

motor end of the gearbox, may result in significant errors. 

For example, the referred load inertia accounts for 92.5% of 

the total effective inertia on the motor shaft in the 

traverse system and 96.3% of the total effective inertia on 

the motor shaft in the elevation system. The ratio of 

referred load inertia to the total effective inertia is 

likely to increase loadwards through the system, dependent 

on the gear ratios. 

However insignificant the gear and shaft inertias may 

appear to be, their inclusion does allow a realistic design 

appraisal at simulation run-time. 
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CHAPTER 3 DETERMINATION OF GEAR AND SHAFT STIFFNESSES 

The torque at each mesh is generated through the 

stiffness associated with a pair of meshing gears. An 

analytical description of stiffness provides insight into 

the factors that should be considered to ensure that maximum 

stiffness is obtained. For a pair of meshing spur gears the 

deflection, 6, of the gear teeth, assuming one tooth contact 

at the tooth centre, is given by: 

(. = P(EaZa+ EbZb) 
F Ea Za Eb Zb 

••..• (7 ) 

Where Za and Zb are the elasticity deformation factors for 

the mating gear teeth , 

Ea and Eb are the the material moduli of elasticity 

for the mating gears , 

and P and F are the applied tangential load and the gear 

face width respectively. 

The elasticity deformation factors for each gear are given 

by: 

Y ••••••••• (8 ) 
Z - (0.242 +7.25Y) 

where Y is the Lewis form factor, a function of the circular 

pitch, number of teeth, pressure angle, and tooth profile. 

The Lewis form factor for a conventional 20 degree 

pressure angle, full depth gear is shown in Table 3.1. 
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No. of teeth Form factor No. of teeth Form factor 

10 0.064 26 0.110 

1 1 0.072 28 0.112 

12 0.078 30 0.114 

13 0.083 34 0.118 

14 0.088 38 0.122 

15 0.092 43 0.126 

16 0.094 50 0.130 

17 0.096 60 0.134 

18 0.098 75 0.138 

19 0.100 100 0.142 

20 0.102 150 0.146 

24 0.107 300 0.150 

TABLE 3.1 LEWIS FORM FACTOR 
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The stiffness· of the gear mesh, represented by a 

torsional spring of stiffness, K, may be obtained from 

eq . (7). Thus, 

K T 
e 

2 
4D2 FEa Za Eb Zb •.••• ( 9 ) 

Ea Za + Eb Zb 

When the gears are made of identical material eq.(9) reduces 

to: 

K 
•.•••••• ( 10 ) 

Za + Zb 

where D2 is the pitch diameter of the collision engaged 

gear. 

The gear mesh stiffness computed. by the preceding 

equation is based on one tooth contact. Some texts multiply 

this result by the tooth contact ratio to arrive at a more 

'accurate' stiffness value. However, Chubb (Ref.1) suggests 

that even the unfactored stiffnesses are oft~n higher than 

those experienced for actual hardware. 

The stiffnesses of the various shafts in the gearbox 

assemblies were calculated according. to the following 

equation: 

.••..•. ( 11 ) 

where D is the shaft diameter , 

L is the shaft length , 

and Gs is the shear modulus of elasticity of the 

shaft material. 
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The stiffness at any point in the gear train is the 

sum of the absolute stiffness, as calculated above, and the 

referred stiffnesses, loadside, such that the effective 

stiffness at any pOint, i,is given by: 

2 
Kj = K + . EKj • Nij •••••••••••• ( 1 2 ) 

where K is the absolute stiffness at the point i 

Kj is a stiffness at a point j , loadside of i , 

and tJ ij is the gear ratio from the point i to the point j. 

The angular displacement error due to the finite 

stiffness of the shaft may be obtained by dividing the 

torque applied to the shaft by the effective shaft 

stiffness. If the angular displacement of the output member 

of the i ch gear mesh is given by 6 j ,then, the input angle 
ch 

to the succeeding (i+1) mesh is given by: 

T = 6· - -' , K 
s 

••••••••••••• ( 1 3 ) 

The effect of shaft stiffness is an extra term, I! 
Ks 

controlling the angular input into the subsequent gear mesh. 

The distribution of stiffness through the traverse 

system is shown in Figure 3.1, and in Figure 3.2 for the 

elevation system. The variables shown in these figures refer 

to the digital simulation presented in Chapter 8. 
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Figure 3.1 : Distribution of stiffness through traverse sy-stem 

• 



Kg = Gun stiffness 

I\) motor Ks3 GUN 
'I A 

Kl Ks2 
B E pin Kg 

K2 K3 K4 

C D 
Ksl 

figure 3.2 : Distribution of stiffness through elevation sy-stem 



The absolute and referred values of stiffness for the 

traverse and elevation systems are detailed below: 

Element 

(1) Traverse; 

Motor shaft 

1st mesh 

Shaft 1 

2nd mesh 

Shaft 2 

3rd mesh 

Shaft 3 

4th mesh 

5th mesh 

(2) Elevation; 

Motor shaft 

1st mesh 

2nd mesh 

Shaft 1 

3rd mesh 

Shaft 2 

4th mesh 

Shaft 3 

5th mesh 

Absolute 

Stiffness 

(Nm/rad) 

00 

1.697*10
7 

1.135*10
8 

7 
1.972*10 

8 
1.116*10 

1 .014 * 10
8 

6.994*10
9 

2.890*10
8 

9.220*10
6 

= 
3.119*10

6 

1.601*10
6 

6.352*10
5 

2.104*10 6 

7.215 * 10
6 

1.302*10
6 

2.553*10
5 

7.480*10 
6 
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Referred 

Stiffness 

(Nm/rad) 

00 

1.631 *10
8 

1.460*10
8 

5.348*10
8 

8 
5.151 *10 

9 
7.005*10 

6.994*10
9 

2.982*10
9 

9.220*10
6 

00 

9.282*10
6 

3.212*106 

1 .612 * 1 0
6 

2. 112 * 1 0
7 

8.234*106 

1.318*10
6 

1.545*10
6 

7.480*10
6 



The motor shaft was assumed to have been infinitely 

stiff, both in the traverse system and in the elevation 

system. 

The distribution of stiffness, unlike that of inertia, 

is not dominated by anyone element, and it 

important that all the finite stiffnesses 

should be taken into account. In general, the 

is therefore 

in the system 

load end of 

the gearbox will have higher stiffness values than the motor 

end, due to the effective increase in torque through the 

system. However, this effect may not be relised as stiffness 

is a function of the individual component geometry, which is 

itself a function of the overall system requirements for 

torque and speed conversion. Thus, the local stiffness 

values obtained will not only be a function of the loading 

of the individual component, but will also be a function of 

gearbox geometry. 

However, even when the gear and shaft stiffnesses are 

based upon the appropriate static load analysis of the 

individual members, the dynamic effects that such finite 

stiffnesses have on system performance are ignored. The 

inclusion of the finite inertias and stiffnesses in the 

mathematical models, and subsequently in 

simulation, therefore allows these effects 

and allows for the re-design of any gearbox 

the digital. 

to be studied, 

element to be 

made to suit the required dynamic performance. 
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CHAPTER 4 FRICTION EFFECTS 

The friction levels associated with typical gear 

trains and load components vary considerably with component 

life and usage for 'identical' production line units. This 

variation is a function of temperature and possibly a 

function of angular position. If the mathematical models 

required for the gearboxes were to be used for such 'life' 

studies, then appropriate methods of statistical analysis 

and simulation would be required. It is adequate for 

research simply to use typical values to investigate 

effects on system performance. 

this 

the 

Friction can be divided into the following distinct 

components: 

(1) Stiction; 

(2) Coulomb friction; 

(3) Viscous friction; 

Stiction and Coulomb friction are two very common 

forms occurring discontinuously whenever mechanical surfaces 

are in direct contact, ego when they are not separated by a 

viscous film, ego lubricant. Viscous friction is essentially 

linear and occurs in mechanical elements by virtue of the 

relative angular motion. Windage effects in the motor a~d 

bea~ing friction are frequently taken as being viscous 

friction terms. 

When the velocity is zero, only stiction applies. The 
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application of any torque to the member involved will result 

in the development of a stiction torque of magnitude exactly 

equal, but of opposing direction, so that the angular 

velocity remains at zero. When the applied torque reaches a 

particular value, the stiction limit, then the opposing 

stiction torque disappears suddenly. This corresponds to 

'breakaway', and an immediate acceleration of the member 

results. Once motion does occur, following 

Coulomb, or sliding-friction, effect will 

breakaway, the 

apply, together 

with any viscous components. 

Kochenburger (Ref.3) recommended that the function 

shown in Figure 4.1 be used to represent the stiction 

effect. This representation is adequate for some simulation 

problems. However, its major disadvantage is that it permits 

the existance of a small, but finite, velocity when stiction 

is in being. A typical friction characteristic for a gear 

train servomechanism is shown in Figure 4.2. From this 

figure a continuous relationship 

velocity can be established for all 

between friction and 

non-zero .velocities. 

However, such a characteristic is usually obtained under 

motor acceleration. A different characteristic usually 

obtains when the motor is decelerating. Therefore, the 

disadvantage with this characteristic, as with 

Kochenburger's model, is that upon deceleration the stiction 

effect is again encountered. Such an occurrence contradicts 

the definition of stiction in that the stiction effect does 
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Figure 4.1 : Kochenburger's suggested friction 
characteristic 
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Stiction 

Coulomb 

Viscous 

Angular 
velocity 

Figure 4.2: Ty-pical gear train friction characteristic 
obtained under motor acceleration. 
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not again become effective until the velocity reaches zero. 

The friction model developed for the motor is shown in 

Figure 4.3. This characteristic is split into four distinct 

regions relating to the velocities at the stiction 

boundaries, -~ ,+~ . Each of the regions is unique in its 

combination of acceleration and velocity as may be inferred 

from Figure 4.3. Thus the governing mathematical equations 

can be readily established. The underlying assumption is 

that upon deceleration Coulomb friction is encountered at 

velocities within the stiction boundary, and stiction does 

not become effective until zero velocity is reached. Note 

how this model obeys the definition of stiction. 

The function shown in Figure 4.3 was achieved by 

assigning several logic conditions to friction, depending 

upon the relative signs of motor speed and acceleration and 

also upon the value of motor speed, ie. 

Fm= Fs .Sgn(wm) - K.wm 

Fm= Fe .Sgn(wm) 

where Sgn(i) is defined as: 

+1 for i >0 

Sgn( 1) = 0 for i =0 

-1 for i <0 

Ct m is the motor angular 

and wm is th.e motor angular 

when O::m.wm >0 .... (14) 

when Ctm.wm <0 .. .. (15) 

•••••••••••••••••••• ( 1 6 ) 

acceleration 

velocity 
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Figure 4.3 : DeveloQed motor friction characteristic 
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K is given by: 

•••••••••••• ( 1 7 ) 

• ••• ( 18 ) 

for wm = 0 ; 

F = m Fs .Sgn (CXm) when Tm > Fm • ••• ( 1 9 ) 

F = m Tm when Tm ~ Fm • •.. (20 ) 

where Fm is the total friction at the motor shaft 

Fs is the referred stiction at the motor shaft 

Fe is the referred Coulomb friction at the motor shaft 

Fv is the referred viscous friction at the motor shaft 

To avoid an implicit structure arising in the 

simulation, the accelerating torque, Tm-Fm,was used to assign 

conditions upon acceleration for it has identical sign. Tm 

represents the torque delivered by the drive motor. 

Viscous friction is a velocity-dependent term and is 

therefo~e referred as the gear ratio squared, such that the 

total linear viscous friction on the motor shaft is given 

by: 

••••••••.•••• (2 1 ) 

where Fm is the linear friction coefficient of the motor 
v 

shaft, 

F· is the linear friction coefficient of a point j Iv 

loadside , 

- 35 -

, 



and Nj is the gear ratio from the motor shaft to the 

point j. 

Both stiction and Coulomb friction are torques and are 

therefore referred as the gear ratio: 

Fs = Fm + ~F· • N j •••.•••••.• (22 ) 
s Js 

Fe = Fm e + ~Fje . Nj •••••••.•.• (23 ) 

where Fm ,Fm are the stiction and Coulomb friction 
s e 

components of the motor shaft , 

~s '~e are the stiction and Coulomb friction 

components of a point j loadside, 

and Nj is the gear ratio from the motor shaft to the 

point j. 

OWing to the manner in which torque was generated at 

each gear mesh, it was found to be impossible to achieve the 

same friction characteristic as that being used at the 

motor. The friction function used throughout the gearbox, 

and at the load, is shown in Figure 4.4. The logic is 

identical to that used at the motor, with the motor 

accelerating torque being used to define correctly the sign 

of stiction. 

The characteristic, 

defined as: 

for the . th 
~ gear mesh 

when Wj = 0 ...... . (24) 

when.~ t 0 ....... (25) 

where Fj is the total friction acting on the output member 

F· is the referred stiction at the output member 
IS 
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Figure 4.4 : OeveJoQed friction characteristic for 
gear meshes and J oad. 
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F· 'e 
is the referred Coulomb friction at the output 

member 

F· IV is the referred linear friction at the output 

member 

and wi is the velocity of the output member. 

The referred friction at the output member is given 

by: 

F. = Fs + I:F, • N
ij • ••••.•.•••• (26 ) IS Js 

F· = Fe + I: Fie .Nij • .•••••.•.•• (27 ) le 

F· Fv I: F· 2 
• •••••••.••• (28 ) = + • Nij Iv Jv 

where ~ ,~,~ are now the absolute friction components at 

the mesh 

and Nij is the gear ratio from the output member to the 

point j. 

Figures 4.5 and 4.6 show the distribution of friction 

through the traverse and elevation systems respectively. The 

variables shown in these figures refer to the digital 

simulation presented in Chapter 8. Thus, at the i th mesh, 

the absolute values of stiction, Coulomb friction, and 

viscous friction coefficient are denoted by ~i' ~i' and 

Fv. respectively. 
I 

The absolute values of friction torque for stiction 

and Coulomb friction, together with the corresponding value 

of the viscous friction coefficient, used in this study are 

as follows for the traverse system: 
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1. Motor shaft; 

Stiction = 0.46 (Nm) (29) 

Coulomb = 0.26 (Nm) (30 ) 

Viscous = 0.046 (Nm-s) (31) 

2. First mesh; 

Stiction = 0.419 (Nm) (32 ) 

Coulomb = 0.245 (Nm) (33 ) 

Viscous = 0.573 (Nm-s) (34) 

3. Second mesh; 

Stiction = 0.419 (Nm) (35 ) 

Coulomb = 0.245 (Nm) (36) 

Viscous = 0.573 (Nm-s) (37 ) 

4. Third mesh; 

Stiction = 0.532 (Nm) (38) 

Coulomb = 0.311 (Nm) (39) 

Viscous = 0.614 (Nm-s) (40) 

5.Fourth mesh; 

Stiction = 1520 (Nm) ( 41) 

Coulomb = 1410 (Nm) (42 ) 

Viscous = 1300 (Nm-s) (43) 

6. Fifth mesh; 

Stiction = 0.00 (Nm) (44 ) 

Coulomb = 0.00 (Nm) (45 ) 

Viscous = 0.00 (Nm-s) (46) 

Note that the fourth mesh is between the gearbox 

- 41 -



output pinion and the turret ring and consequently the 

friction values are those of the load. The fifth mesh is the 

gun/turret interface which has been modelled as a 

conventional mesh as the turret engages the gun through the 

deadspace between them. In this case the gear ratio is 

unity. It has been assumed that there is no friction at the 

gun/turret interface as they are directly coupled once 

engaged through the deadspace. 

The referred values for the traverse system are 

calculated from above as follows: 

1. Motor shaft; 

2. first mesh; 

3.Secondmesh; 

4. Third mesh; 

Stiction = 2.492 

Coulomb = 2.074 

Viscous = 0.132 

Stiction = 5.481 

Coulomb = 4.893 

Viscous = 0.623 

Stiction = 20.50 

Coulomb = 18.83 

Viscous = 0.832 

Stiction = 83.66 

Coulomb = 77.42 

Viscous = 4.502 
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(48) 
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(50) 

(51) 

(52) 

(53 ) 

(54 ) 

(55) 

(56) 

(57 ) 

(58) 



5.Fourth mesh; 

Stiction = 1520 (Nm) (59) 

Coulomb = 1410 (Nm) (60) 

Viscous = 1300 (Nm-s) (61) 

6. Fifth mesh; 

Stiction = 0.00 (Nm) (62 ) 

Coulomb = 0.00 (Nm) (63) 

Viscous = 0.00 (Nm-s) (64) 

The absolute values of friction used in the elevation 

system are: 

1. Motor shaft; 

Stiction = 0.424 (Nm) - (65) 

Coulomb = 0.254 (Nm) (66) 

Viscous = 0.065 (Nm-s) (67) 

2. first mesh; 

Stiction = 0.115 (Nm) (68) 

Coulomb = 0.089 (Nm) (69) 

Viscous = 0.0023 (Nm-s) (70 ) 

3.Second mesh; 

Stiction = o . 115 (Nm) (71) 

Coulomb = 0.089 (Nm) (72 ) 

Viscous = 0.0023 (Nm-s) (73 ) 

4. Third mesh; 

Stiction = o . 115 (Nm) (74) 

Coulomb " 0.089 (Nro) (75 ) 

Viscous = 0.0023 (Nm-s) (76 ) 
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5.Fourth mesh; 

Stiction = 0.144 (Nm) (77 ) 

Coulomb = 0.111 (Nm) (78 ) 

Viscous = 0.0025 (Nm-s) (79) 

6. Fifth mesh; 

Stiction = 125.76 (Nm) (80 ) 
-

Coulomb = 102.64 (Nm) (81) 

Viscous = 99.02 (Nm-s) (82 ) 

The referred values for the elevation system are then 

calculated from the above as follows: 

1. Motor shaft; 

Stiction = 1 .719 (Nm) (83 ) 

Coulomb = 1 .249 (Nm) (84) 

Viscous = 0.0802 (Nm-s) (85 ) 

2. first mesh; 

Stiction = 0.8791 (Nm) (86 ) 

Coulomb = 0.702 (Nm) (87) 

Viscous = 0.009 (Nm-s) (88 ) 

3.Second mesh; 

Stiction = 0.552 (Nm) (89) 

Coulomb = 0.4429 (Nm) (90 ) 

Viscous = 0.0035 (Nm-s) ( 91) 

4 .. Third mesh; 

Stiction = 1 .580 (Nm) (92 ) 

Coulomb = 1 .283 (Nm) (93 ) 

Viscous = 0.0153 (Nm-s) (94 ) 
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5.Fourth mesh; 

Stiction = 5.860 (Nm) (95) 

Coulomb = 4.776 (Nm) (96 ) 

Viscous = 0.2071 (Nm-s) (97) 

6. Fifth mesh; 

Stiction = 125.76 (Nm) (98 ) 

Coulomb = 102.64 (Nm) (99) 

Viscous = 99.02 (Nm-s) ( 100) 

It has been assumed that the absolute values of 

friction at each mesh were equal, as the only known friction 

characteristics for the system were: 

(1) motor friction; 

(2) load friction; 

(3) load friction referred onto motor shaft (from (2)); 

(4) motor + load friction + gearbox friction, referred 

to the motor shaft; 

From these, the total effective gearbox friction 

referred onto the motor shaft can be calculated'. This 

effective friction is assumed to result from an equal 

distribution of friction through the gearbox, and thus the 

absolute values of friction at each mesh may be calculated. 

Table 4.1 shows the breakdown of the total effective 

motor friction into its constituent components, ie motor 

friction, effective load friction, and effective gearbox 

friction, for both the traverse and elevation systems. 
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% of total effective friction on motor shaft 

load motor gearbox 

(1) Traverse: 

Stiction 73.3 18.5 8.2 

Coulomb 81.7 12.5 5.8 

Viscous 1.4 34.9 63.7 

(2) Elevation: 

Stiction 46.9 24.7 28.4 

Coulomb 52.6 20.3 27 . 1 

Viscous 5.1 81 .0 13.9 

TABLE 4.1 BREAKDOWN OF EFFECTIVE MOTOR FRICTION 

From Table 4.1 it can be seen that the inclusion of 

gearbox friction is significant. In addi tion, the 

contribution of the load to viscous damping is small in both 

systems. The load friction is the major contribution to the 

non-linear friction components, these components being 

most significant in terms of achieved pointing accuracy. 

The inclusion of the full non-linear friction effects 

in the mathematical models, allows their effects on system 

performance to be studied under a wide range of dynamic 

conditions. If pointing accuracy of the system is of major 

importance, then it is essential that the models contain a 

full description of the non-linear friction effects at each 

point in the gearbox. 
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CHAPTER 5 MODEL OF ELECTRICAL DRIVE MOTORS 

The inputs to the mathematical models of the gearboxes 

are taken to be the torques provided by the respective drive 

motors. Consequently it was necessary first to establish a 

suitable mathematical model for the electric motors which 

were used in this application. 

Only the mechanical properties of these motors are of 

concern in this work. Thus, the electrical characteristics 

were not specifically included, ie. the time constants 

.associated with the magnetic fields of the motor have been 

neglected. Therefore, the electrical drive motors have been 

assumed to produce torque instantaneously. Each motor, 

nevertheless, has its own mechanical dynamics .which have 

been modelled. The input from the motors to the digital 

simulation has usually been taken as 

although any deterministic function could 

This ideal motor is assumed to have no 

a step function, 

have been used. 

internal torque 

losses and the assumption is made that the speed vs. torque 

characteristic is wholly linear for any given set of applied 

voltages. For a fixed reference voltage, the motor develops 

a stall torque which is proportional to the voltage applied. 

Once the motor begins to run, with any value of applied 

voltage, the torque available for acceleration decreases due 

to bearing friction and any system friction referred onto 

the motor shaft. As the torque developed is taken as being 
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proportional to the applied voltage it is only neccessary to 

state the required torque as an input to the modelling 

equations. The block diagram representation of the motor is 

shown in Figure 5.1. It should be noted that the transfer 

function transforming velocity into friction torque is 

representative only, as it takes no account of referred 

friction torque loadside of the motor. The non-linear 

friction components were shown in Chapter 4 to be functions 

of motor angular acceleration, motor speed, and direction of 

rotation. 

Newton's second law states that: 

T = LCCm ......•....•. (101) 

where T represents all torque inputs (Mm), 

I is the inertia on the motor shaft (Kg.m2
) 

2 
and CCmis the motor angular acceleration (rad/s ) 

The inertia, I, is composed of the motor inertia plus 

all referred inertias loadside, ie. 

• ..... ( 102) 

where Im is the motor inertia (Kg.m2
) , 

I j is an inertia at a pOint j loadside (Kg.m2
) 

and Nj is the gear ratio from the motor shaft to the 

point, j 
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Figure 5.1 : Block diagram of electricdr.iye motor 



The input torque to the system is given by: 

T:Tm-F .....••........ (103) 

where T is the motor stall torque (Nm) , 

and F is the friction on the motor shaft. (Nm-s). 

The friction term, F, dependant on motor speed, may be 

expressed as the following components: 

+ Fm c + I:Fjc 
2 

+ I:Fjv .Nj 

• Nj 

•..... (104) 

where Fm ,Fm ,and Fm are the stiction, Coulomb, and s c v 

viscous friction components of the motor shaft, 

are the stiction, Coulomb, and 

viscous friction components of a point j load side 

and Nj is the gear ratio from the motor shaft to the 

point; j 

In this study it has been adopted as a convention that 

the gear ratio is given as follows: 

N: Ne; .......•.. (105) 
Ne;+1 

where N t j is· the number of teeth on the i th gear. 

ie. for a reduction ratio, N is less than unity. 

From equation (101) and equation (103) the angular 

acceleration of the motor can be established as: 

.......... (106) 

The velocity and displacement of the motor arising 
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as a result of this angular acceleration 
e 

(a. de 
)~ m 

em = itm dt 
o 

where wm has the units rad/s , 

and em has the units of radians. 

are therefore: 

•••••••••• (107) 

..... •.... (108) 

The value of torque, or corresponding voltage input, 

may be positive or negative, ie the motor displacement may 

be clockwise or counter-clockwise. 

From Eq.(102) the inertia at the motor shaft is the 

sum of the referred system inertias through the gear meshes, 

which"is true for any point in the gearbox, where the 

inertia is increased by the reflected system inertias 

loadside, as described in Chapter 2. 

It can be seen from the above set of des6ribing 

equations that, apart from the non-linear friction 

components, the motor model is an essentially linear one. 

The motor torque has been assumed to be a linear function of 

voltage and no account has been included in the model of 

either motor torque saturation" or of any non-linear 

speed-torque curve. However, most servomotors are designed 

to have a linear torque characteristic throughout their 

rated operating range. Therefore, as a first approximation, 

motor torque saturation is usually omitted from the 

analysis. In the work here it has been assumed for 

generality that the slope of the speed-torque curve is 

unity. 
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If the speed range over which the friction 

characteristics are non-linear is small compared to the 

overall speed range of the motor, then for all, except 

small, torque inputs the motor will be operating chiefly in 

its linear region. The mechanical time-constant of the motor 

can then be determined from an analysis of the differential 

equations. The motor transfer function can be obtained by 

transforming the above equations using the Laplace operator, 

and assuming zero initial conditions, ie. 

Friction torque 

Accelerating torque 

.Therefore: 

• ••••••• (109) 

•••••••• (110) 

•••••••• (111) 

Hence the motor tran~fer function is given as: 

em (s) 
Tm 

t •••••••• (112) 

The mechanical time constant, tm' is given by: 

sec. .••••••• (113) 

ie. tm is the ratio of the referred inertia to the referred 

viscous friction. 

The time constant is defined as the time required by 

the motor to reach 63.2 % of its final speed for a step 

torque input. As soon as the motor develops any value of 

angular velocity, friction torque begins to develop, which 

subtracts from the developed motor torque, thereby 
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decreasing the torque available for acceleration until, 

eventually, the friction torque equals the developed torque. 

At this point the net torque available to accelerate the 

inertia is zero and consequently the' motor speed remains 

constant. The motor reaches 63.2% of this steady speed in tm 

seconds. 

In reality, any motor torque developed must be used to 

accelerate the complete system inertia. Equation (113) 

demonstrates the use of referred parameters to guarantee 

that the motor 'sees' the full effective system inertia in 

the modelling equations. The mechanical time-constant of the 

motor is increased by the effect of the inertias loadside. 

Similarly, the to~que generated at each mesh must accelerate 

the effective system inertia loadside of the mesh. 

By substituting the appropriate values of effective 

motor inertia and viscous friction coefficient into eq.(113) 

the motor time constant can be calculated: 

(tm)traverse = 0.606 secs. 

(tm)elevation = 3.142 secs. 

( 114 ) 

( 115 ) 

The effective increase in motor time constant due to 

the effects of the load on the motor shaft can be calculated 

by substituting the absolute values of motor inertia and 

viscous friction coefficient into eq.(l13). Thus the 

unloaded motor time constant is given by: 

(tm)traverse = 0.109 secs. ( 11 6 ) 

{tm)elevation = 0.077 secs. ( 117 ) 
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Thus the effect of loading the motor is to increase 

the time taken to reach steady speed by a factor of 5.5 for 

the traverse system, and by a factor of 40 for the elevation 

system. 

The effect is more marked in the elevation system for 

a number of reasons. First the overall gear ratio is smaller 

than that in the traverse gearbox, thus increasing the 

effective loading on the motor shaft. This effect is 

magnified by the fact that the first gear ratio in the 

elevation system is not a reduction ratio, thus referred 

inertias are increased across this ratio. This greater 

loading of the motor shaft is not balanced by a similar 

increase in friction due to the relatively low values of 

viscous friction throughout the elevation system. 

The linear analysis of the motor presented above is 

valid only for large torque inputs where, at high steady 

speeds, the viscous friction component is large compared to 

the constant Coulomb friction. However, its study does help 

in achieving an understanding of the modelling techniques 

and clearly shows the effect that the system's inertia has 

upon the dynamic characteristics of the motor. 

The output of the motor is taken to be its angular 

displacement, Sm This displacem~nt is then taken as being 

the input to the gearbox with the torsional stiffness of the 

motor being assumed to be infinite. 
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CHAPTER 6 BACKLASH 

Backlash, or free play, occurs when two mechanical 

elements are not coupled rigidly, but rather through an 

inactive zone of displacement within which no direct 

mechanical coupling exists. Excessive backlash can cause 

difficulties in controlling mechanical systems. However, 

most procedures used to reduce the amount of backlash can, 

when carried too far, result in excessive friction instead. 

In design, some form of 'trade-off' is often necessary. 

For a theoretical set of perfectly mating gears, the 

tooth gap is equal to the tooth thickness on the line of 

contact and the backlash would be zero provided the centre 

distance, Cs' was fixed at: 

where 

Cs = (no, +n02 ) 

2P 

••••••••••••••••• (118) 

Cs is the standard centre distance , 

no, ,n0 2 are the number of teeth for gears 1 and 2 

respectively, 

and P is the diametral pitch associated with the gear 

pair. 

Such a gear pair, however, cannot exist because of 

inevitable discrepancies in its manufacture. Moreover, the 

chance of 'binding', even for a set of 'perfect' gears, is 

always possible due to thermal expansion of the gears. For 
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these reasons some backlash is always 'built' into 

. conventional spur gears by cutting the teeth thinner than 

the thickness required by theory , which is equal to half 

the circular pitch. Also, it is customary to increase the 

centre distance by an amount equal to that resulting from 

differential thermal expansion. Because of this increase 

there will be additional backlash at lower temperatures. 

Consider the backlash introduced by the non-ideal 

. tooth thickness. This is equal to the difference dTt between 

the-actual and the ideal tooth thickness~ 

= ..!!.... 
2p - T, + 2; - T2 

= -; - T, -T2 • . . • • • . ( 1 19) 

where T, and T2 are the tooth thicknesses associated with 

gears 1 and 2 respectively. 

The backlash dTe introduced by a non-ideal centre 

distance is determined by the involute relationship 

illustrated in ~igure 6.1. 

The following analytical relationship can be 

established for dTe as a function of de: 

+ 

dTe = (2tan9l) de + 

(1+3tan2~)(2p)2 (de l
3 

(3 tan3~){no,+n02l2 
+ ......... . 

2 
___ -.::2..;..P ___ ( de) 

(no, +n02 ) tan ~ 

..•.. ( 120 ) 

where ~ is the standard pressure angle and de is the 

difference between the operating and standard centre 
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dr _c 
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FIGURE 6.1: RELATIONSHIP BETWEEN BACKLASH AND CENTRE DISTANCE 
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distance. 

Equation (120) represents 

accounting for the effect of 

an 

the 

infinite 

involute 

series 

curve. 

Calculations may be carried out to any desired accuracy by 

including a sufficient number of terms. For a typical 

precision gear train, de is sufficiently small so that the 

higher order terms in this series may be neglected. If this 

is considered to be the case, the backlash, dTe , resulting 

from centre distance variations, may be calculated as: 

dTe = 2tan~ (C - Cs) 

where C is the actual centre distance. 

••••••• (121) 

Radial play in the bearings also contributes to a 

variation in centre distance. Running gears tend to force 

each other" apart to the extent allowed by the bearing play. 

This tendency increases the operating centre distance and 

can be included in the calculations by 

increasing de. 

appropriately 

One additional factor, the gear pitch diameter runout, 

or eccentricity, must be considered when calculating 

backlash. In a perfect gear, the pitch circle would be 

concentric about the axis of rotation. In reality a curve 

drawn through all pOints of constant tooth thickness would 

be both eccentric and jagged. The latter results from 

tooth-to-tooth spacing and involute variations. The total 

variation of the curve is defined as the total composite 

error (TCE). Figure 6.2 shows a typical gear error chart 
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Figure 6.2 : TY-Qical gear error chart obtained by
variable centre text fixtures 
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obtained by variable centre distance test fixtures. The run 

out, or eccentricity, is given by the difference between the 

TCE and the tooth-to-tooth composite error (TTCE). Since the 

eccentricity is representative of a cenire distance 

variation, it contributes to the total backlash in the same 

manner as the true centre distance. Using the same 

approximation as before: 

TCee =2tanql[TCE1-TTCE1+TCE2-TTCE2] .. (122) 

For any fixed collection of errors, Eq. (122 ) 

represents a 'worst case' situation since it assumes that 

both gears are meshed at their low point of eccentricity. If 

a hunting tooth exists, however, this point will always 

occur. 

The total backlash existing between two mating gears 

is then given by: 

............ .. (123) 

Having established the backlash at each gear mesh 

throughout the gear train, either by analytical methods, or 

by direct measurement, there are considerable 

in predicting the effects on the system dynamics 

analytical techniques. Consequently, simulation 

are frequently necessary to study these effects. 

The dynamic simulation of backlash is 

diagrammatically in Figure 6.3. 6, and 6 2 are 
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Figure 6.3 : Dxnamic simulation of backlash 
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displacements of the driving and collision engaged members. 

Actually it is only their difference, (9 2-91 ), which is 

significant here. This difference governs the engagement gap 

spacings, 9~ and 9s2 , which are given by: 

9s1 = B1 -(8 2 - Nl .8 1 ) 

9s2 = B2 +(9 2 - Nl .81 ) 

..••• . (124) 

...••. (125) 

~ and B2 ar~ ~he neutral settings of the gaps, ie. 

the initial conditions on 8s1 and 8s2 • Consequently, the 

total backlash, B, is given by; 

B = Bl + B2 ••••••••.••• ••.• (126) 

Hence for the i ch gear mesh 

•.•.•••..•.••.•. (127 ) 

By letting; 

.•••.•••...••.••. (128) 

then adjustment of d j in the range 0 to 1 corresponds 

to a change in the initial condition of the gear mesh as 

shown in Figure 6.4. 

In this study all gear meshes have their backlash set 

to 0.00762 cm ,which is then referred onto the output 

member as; 

= 0.00762 
rj 

......••..•.••• . (129) 

where Bj is the referred backlash (rads) onto the output 

member of the i ch mesh, of radius rj (cm.) 

From equation (129) it can be seen that angular losses 

in the gearbox may be reduced by increasing the radius of 
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( a) di = 0 : Gears fully unmeshed in direction of 
rotation as an initiel condition. 

(b) di = 1 : Geers fully meshed in direction of rotetion 
as en initiel condition. 

(c) di = 0.5 : ie mid-wey between (e) end (b) 

Figure 6.4 : Change of initial condition on gear mesh 
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the driven gear. Consequently the angular loss due to 

backlash at the load end, which is the most significant in 

the system , will be small for the traverse system, owing to 

the relatively large diameter of the turret ring. The 

referred angular losses in the traverse system resulting 

from a 0.00762 cm. tolerance on all meshes, are given by: 

1. First mesh; 

B = 0.000953 (rads) ......•.. (130) 

2.Second mesh; 

B = 0.000904 (rads) ......... (131) 

3. Third mesh; 

B = 0.007284 (rads) ......... (132) 

4.Fourth mesh; 

B = 0.000502 (rads) ......... (133) 

5.Fifth mesh 

B = 0.0001 (rads) .......•. (134) 

The referred angular losses in the elevation system 

resulting from a 0.00762 cm tolerance on all meshes are: 

1. First mesh; 

( 1 35 ) 

( 1 36 ) 

( 1 37 ) 

( 1 38 ) 
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5. Fifth mesh; 

B = 0.001232 (rads) (139) 

The torque which arises at the engagement of the i th 

gear mesh is given by: 

Tj = -K j .6s2 

Tj = 0 if 9s1 ,9s2 > 0 ••••• (140) 

Tj = K· I .9s1 if 9s1 ~ 0 

where Kj is the mesh stiffness. 

As a result of this engagement torque the acceleration 

of the collision engaged member can be shown to be: 

(Xj = (Tj - Fj ) 
I j 

••••••••••••••••• (141) 

where F j is the referred friction onto the output 

member 

I j is the referred inertia onto the output 

member 

Consequently, the velocity of the collision engaged 

member is given by: 
t 

1 (Xj dt 
0 

•••••••••••• (142) 

f~j dt 
0 

and its displacement by: 

•••.•••••••• (143) 

If shaft stiffnesses are ignored then the output 

displacement,6 2j from the i th mesh is the input 
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th 
displacement into the (i+1) mesh, ie: 

••••••••• ••• (144) 

Obviously, each engaging surface posseses resilience, 

surface or contact friction, and some inertia. To analyse 

exactly the transmission of forces and velocities following 

gear collision would involve the study of distributed 

parameter differential equations. However, to a first 

approximation, such effects are negligible, and it is 

adequate to show the effects of engagement by representing 

the collision engaged member as a combination of a spring 

constant, K, and some viscous friction. 

The nature of the torque generated is essentially 

oscillatory, as the the two engaging members come into and 

out-of-mesh. This effect is particularly marked if there is 

insufficient contact friction, leading to poor damping of 

the collision-engaged member. Since values of surface 

friction are only imperfectly known, it is likely that any 

consideration of collision-engaged response will produce 

highly oscillatory, un damped motion. 

The block diagram arrangement for a representative 

gear mesh is shown in ~igure 6.5. 

The linearisation of a set of non-linear differential 

equations is a useful technique, whereby the equations may 

then be analysed without recourse to digital computing 

methods. In addition, results obtained from the linearised 
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equations may be compared with those from the full 

non-linear model thus highlighting any effects of the 

non-linearities on dynamic performance. However, it must be 

emphasised that conclusions reached from a study of the 

linearised equations may not be applied to the full system 

model~ Analysis of a set of linear differential· equations 

usually requires that the equations first be transformed 

using the Laplace operator, s. 

The equations modelling the torque generation at each 

mesh can be linearised by removing the dependence of torque 

on the backlash condition. Without this dependence on 

backlash, eq.(124) and eq.(125) reduce to: 

9s1 = - (9 2 - N1 .9 1 ) ••••••• (145) 

9s2 = (9 2 -N1 .6 1 ) ••••••• (146) 

Dependent upon the backlash condition, eq.(140) gives 

the torque arising from collision-engagement of the gears, 

ie. 

. ....... (147) 

and Tj " Kj .9s1 ••••••• • (148) 

Without backlash, eq.(147) and eq.(148) are identical 

and the torque generated at the mesh is given by: 

....... .. (149) 

The angular acceleration of the output member arising 

from this torque is given by: 

<Xj" (T; - Fj)/I; .......... (150) 

where F; and I j are the referred viscous friction and 
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inertia at the output member. 

The corresponding angular velocity and displacement 

are, therefore: 

wi (s) = ..!:i-
s ••••••••• (151) 

Si (s) = wi •••••••.• ( 152 ) 
s 

where s is the Laplace operator. 

The viscous friction actirig on the output member is a 

function of the angular velocity and can be written as: 

••••••••• (153) 

where~. is the effective viscous friction component for 
I 

the output member. 

By rearranging the above equations, and by suitable 

substitution, the transfer function relating output angular 

displacement to input angular displacement can be shown to 

be given by: 

9 2i (s) 
9 1i 

•••••• (154) 

or: 

e2i (s) 
9 1i 

••••• (155) 

which may be represented in the standard form for a 
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second order linear system, ie. 

G(s) = 
2 

~Wn 
... (156 ) 

where Wn is the undamped natural frequency, ) is the 

damping ratio, and ~ is a scaling factor. 

By comparing eq.(155) with eq.(156) then the undamped 

natural frequency of the gear mesh, W n " (rad Is) , is given 
I 

by: 

W. =~Kj 
n" I I i 

and the damping ratio is given by~ 

1 Fvj 

2/I"; 
" K"j 

.... ( 1 57) 

.. .. (158) 

The frequency and damping associated with the gear 

meshes in the gun drive system, using the values of 

stiffness and inertia previously detailed, are therefore: 

(1) Traverse: 

(Hz) 

First mesh 2761 

Second mesh 1240 

Third mesh 1077 

Fourth mesh 12 

Fifth mesh 5 

Frequency 

(rad/s) 

17348 

7791 

6767 

75 

31 
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Damping 

3.316*10-5 

6.062*10-6 

2.176*10- 6 

1.666*10-4 

0.000 



(2 ) Elevation: 

Frequency Damping 

(Hz) (rad/s) 

First mesh 1441 9054 4.390*10- 6 

Second mesh 1175 7382 4.003*10- 6 

Third mesh 834 5240 1.893*10- 6 

Fourth mesh 52 327 2.580*10- 5 

Fifth mesh 5 31 2.354*10- 4 

It can-be seen that the frequency decreases through 

both systems as the effective inertia increases. The low gun 

frequency (5 Hz) is due to its representation as a lumped. 

inertia. This neglects higher barrel frequencies even though 

the modes associated with these may be significant. 

The damping at each mesh, in both systems, is 

extremely low, due to the omission of the damping associated 

with the mating gear teeth during collision-engagement. As 

stated earlier, this lack of knowledge of contact friction 

between mating teeth is likely to produce torque generation 

that is oscillatory in nature. 

Although the values of backlash presented in this 

chapter appear to be very small, it is important to note 

that the required pointing accuracy of the gun drive system 

for a modern M.B.T. is likely to be of the order of 0.001 

radians. 
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CHAPTER 7 THE PLANETARY GEAR SYSTEM 

Planetary gear trains are frequently used in M.B.T. 

gun drive systems where a relatively large gear ratio is 

required within a small area, due to design limitations on 

space inside the turret and hull, which prohibits the use of 

a series of conventional meshes. Such planetary gears are 

usually stiffer than conventional meshes and usually have 

less backlash associated with them for a given tolerance. 

For these reasons they are usually positioned at the load 

end of a gearbox, where the torque levels are higher, and 

where excessive backlash is more critical for pointing 

accuracy. The structure of the planetary gear train, used in 

both the traverse and elevation gearboxes is shown 

schematically in Figure 7.1. 

The input into the planetary train is via a sunwheel 

gear which meshes with each of the three planet gears. Since 

the outer annulus is fixed, the planet gears are constrained 

to rotate around the sunwheel in addition to rotating about 

their own individual axes. It is this rotation of the three 

planet gears about the sunwheel, as a fixed unit, which 

provides the output from the irain, on a shaft co-axial with 

the sunwheel. 

In addition to the electrical inputs, both traverse 

and elevation systems will ususally have a mechanical input 

option, via a gunner's handle, which can be used in the 
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Figure 7.1 : Planetary_gear train 
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event of an electrical power failure. Therefore, as a safety 

precaution, it. is usual to make the gun drive system 

non-reversible by fitting a clutch to the outer annulus of 

the planetary system. A large reverse torque input, such as 

that arising from the gun colliding with a stationary 

object, frees the outer annulus, thereby preventing 

associated gun accelerations from being transmitted back 

through the gearbox to the gunner's handle. 

',.,.1 " - ," 

This option has not been incorporated into the 

modelling equations. 

Since the outer annulus is fixed, in normal operation, 

and the drive is taken off from the rotation of the planet 

gears around the sunwheel, the planetary train may be 

modelled as a single mesh with the same effective stiffness, 

backlash and friction as the planetary train. It is 

necessary to decompose the overall gear ratio, Np ' of the 

planetary train into it's two constituent components, Na and 

Nb' made up of the engagements of the sunwheel with the 

planet gears, and the planet gears with the outer annulus, 

in order that the correct effective parameters for the 

single mesh can be calculated. The overall gear ratio of the 

planetary train is given by 

N N NoP.Noa N p = a b = 1 + --'-:':::"!-"'-'''''''-
Nos.NoP 
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where Nop, Nos, Noa are the number of teeth on the 

planet gear (one of the three planet gears),the sunwheel, 

and the outer annulus respectively. 

The gear 

gears is given 

Consequently: 

ratio between the sunwheel 

by: 

Na = 

N = Noa + 
b NoP 

NoP 
Nos 

Nos 
NoP 

Thus, the .single mesh which effectively 

and the planet 

• •.•••• ( 1 60 ) 

••.•••• (161) 

replaces the 

planetary gear train must have the the following absolute 

parameters: 

(a) Stiffness: 

K = 3 •••••• ( 162 ) 

The numerator accounts for the number of planet gears. 

(b) Backlash: 

(c) Stiction: 

FS = FSa+ Nb·FSb 

(d) Coulomb friction: 

(e) Viscous friction coefficient: 

Fy = FYa + Nb
2 

.FYb 
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CHAPTER 8 THE DIGITAL SIMULATION 

The digital simulations used for the traverse and 

elevation systems are identical in structure, differing only 

in the number of gear meshes and the values used. Therefore, 

to avoid repetition and confusion over the variable names, 

only a detailed account of the traverse system is presented 

here. 

8.1 Inertia 

The representation of the distribution of inertia 

through the traverse system was presented in Figure 2.1. 

Since the torque developed at each gear mesh accelerates the 

effective inertia of the output member, it is necessary to 

calculate the effective inertia of the output member at each 

mesh by substitution of the appropriate values into eq.(5). 

This procedure can be somewhat simplified by first applying 

eq.(4) to calculate the absolute inertia existing on each 

shaft, consisting of the inertia of the shaft itself, in 

addition to the inertias of any gears on the shaft, ie: 

where I j is the absolute inertia on the shaft, 

Is. is the inertia of the shaft itself, 
I 

I j is a gear inertia on the shaft. 

..••.•• (167) 

Thus, from Figure 2.1, the absolute inertias on each 
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shaft in the traverse system are given by: 

••••••• ( 168 ) 

where the motor shaft inertia, Is, may include inertia 
m 

terms for the motor itself. 

I, = Is , 
12 = IS2 

13 = IS3 

The ,effective inertia of the 

It = I tur 

where Iwr is the turret inertia 

Igun is the gun inertia 

Mg is the gun mass 

+ Ib + le •••••• • (169) 

+ Id + le •.••••• (170) 

+ 3I
f + I Pin ••••• (171) 

turret is given by: 

+ tMg d 
2 

(172 ) + Igun 

and d is the distance from the centre of gravity of the 

gun to the centre of rotation of the turret. 

Therefore, the effective inertia acting on each output 

member, assuming that the parallel distance between shafts 

is negligible, is given by: 
2· 2 2 

+ N,. I, + N,. N2 _ 12 

.••••••••••• (173) 

••• .'( 17 4 ) 

.••• (175) 
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• ••. (176) 

There are no other inertia terms associated loadside 

with the gun and hence it is represented by its absolute 

value. 

8.2 Stiffness 

The representation of the distribution of stiffness 

through the traverse system was shown in Figure 3.1. By 

sUbstitution of the appropriate values into eq.(12), the 

effective stiffness at any point in the system, when the 

shafts are asumed to be infinitely stiff, may be calculated: 
2 2 2 

N2 • K2 + N2 • N3 , K3 

+ •••••••• (177) 

where Ktis the turret stiffness, andK~is the stiffness of 

the gun relative to the turret. 

. ...••• • (178) 

••••• ••..• (179) 

8.3 Friction 

The distribution of friction through the traverse 

system was represented in Figure 4.5. From this figure the 

following referred values may be calculated: 
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(a) Motor shaft 

•••••••• ( 180 ) 

•••••••• (181) 

•••••••• ( 182 ) 

(b) E'irst mesh; 

FS = E'S1 + N2 E'S2 + N2 N3 FS3 + N2 N3 N4FS •••••• ( 183) 
1r t 

E'c = E'c + N2 E'C2 + N2 N3 E'C3 
+ N2 N3 N4 E'Ct •••••• (184) 

1r 1 

2 2 2' 2 2 2 
E'V = E'V + N2 . E'V2 + N2 · N3 . E'V + N2 · N3 . N4 . E'Vt (185) 

1r 1 3 

(c) Second mesh; 

E'S = FS2 + N3 E'S3 + N3 N4 FS 
2r ,t 

•••••• (186) 

E'c = E'C 2 
+ N3 E'C 3 + N3 N4 E'c 

2r t 
•••••. (187) 

2 2 2 
E'V = E'V2 + N3 . E'V3 + N3 · N4 . E'Vt 

2r 
•••••• (188) 
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(d) Third mesh; 

Fs = FS3 + N4
FS 3r t 

•••••• (189) 

, 

Fc = FC3 
+ N4 FC 3r t 

•••••• (190) 

2 
Fv = FV3 + N4 FV 3r t 

•••••• (191) 

The absolute values of load friction are used at the 

pinion gear/ turret mesh. In the digital simulation, the 

non-linear friction terms are multiplied by a real constant, 

FOFF, which is nominally set to unity. Setting FOFF to zero 

will cause the non-linear friction components to be removed, 

and will cause the effect of the stiction boundary in the 

motor friction characteristic to be removed, thereby 

linearising the friction characteristic throughout the 

system. 

8.4 Torque generation 

The engagement gap spacings at each gear mesh are 

given from eqs.(124) & 

(a) First mesh; 

9s1 = 
9s2 = 

(b) Second mesh; 

9s3 = 

9s4 = 

( 125) , therefore: 

Bl - (91 -NI .9m) 

B2 + (91 -NI .9m) 

B3 - (92 -N2 .91 ) 

B4 + (92 -N2 ·91 ) 
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•••••. ~(193) 

....•.. (194) 

••.•••• (195) 



(c) Third mesh; 

9s5 = B5 - (63 -N3 .62 ) • ••..•• (196) 

9ss = Bs + (63 -N3 .62 ) · ....•• ( 1 97 ) 

(d) E'ourth mesh; 

9s7 = B7 - (6 t -N4 ·63 ) • •••••• ( 198 ) 

9sa = Ba + (6 t -N4 .63 ) • ••.••. (199) 

(e) E'ifth mesh; 

9sg = Bg - (6g -9 t ) · ••...• (200) 

9s10 = BlO + (9g -9 t ) · ••.•.• (201 ) 

In the digital simulation, the initial conditions on the 

engagement gap spacings at each mesh, B1 , B2 , .... B10 ' are 

multiplied by a real constant, BOE'E' , which is nominally set 

to unity. By setting BOE'E' to zero removes the backlash at 

each mesh. Thus, by appropriate selection of either E'OE'!' or 

BOE'E' , non-linear friction and backlash effects may be 

eliminated from the study independently, or complete 

linearisation may be achieved by setting both to zero. 

The motor torque, Tm, is a declared· constant in the 

digital simulation. The torque generated at each subsequent 

mesh, dependent upon the backlash condition, is given by: 

(a)E'irst mesh; 

Tor1 = -K1r .9s 2 when 9s2 ~O 

Tor1 = 0 when 9s1 ,9s2 >0 •... (202) 

Tor1 = +K1 .6s1 when 9s1 ~O r 
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(b) Second mesh; 

Tor2 = -K2r .9s4 when 9s4 ~O 

Tor2 = 0 when 9s3 ,9s4 >0 •... (203) 

Tor2 = +K2 .Gs 3 r 
when 9s3 ~O 

(c) Third mesh; 

Tor3 = -K3 .9s6 r _ when 9s6 ~O 

Tor3 = 0 when 9ss ,9s6 >0 .•.. (204) 

Tor3 = +K3 r . Gss when 9ss ~O 

(d) Fourth mesh; 

Ttur = -Kt .95 8 when 9s 8 ~O r 

Ttur = 0 when 9s7 ,9s8 >0 .... (205) 

Ttur = +K t .95 7 when 9s 7 ~O . r 
(e) Fifth mesh; 

Torgun= -Kg .9s
10 

when 9s10 ~O 

Torgun= 0 when 9s 9 ,9s10 >0 .... (206) 

Torgun = +Kg .Gs 9 when 9s9 ~O 

The subsequent accelerations, velocities, and 

displacements are given by: 

O<m = (Tm-Fm) IImr •.... (207) 

" wm = [o<mdt ..... (208) 
°t 

9m = JWm dt ..... (209) 
o 

where Fm' dependent upon the conditions outlined in Chapter 

4, is a function of the referred stiction, Coulomb, and, 

viscous friction components. The motor angular displacement, 

9m, is then used as the input into the first gear mesh which 

results in the generation of the torque, To~ ,in eq.(202). 
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The acceleration, velocity, and displacement of the output 

member arising from this torque are given by: 

0<1 = (Tor1 -F1 )/I 1 ••••• (210) 
~ r 

w1 = L0<:1 dt ..•.. (211) 
o ~ 

91 = LW1 dt ..•.• (212) 

The output displacement, 9
1

, is then the input into 

the second mesh, if shaft stiffness is assumed to be 

infinite, reulting in the generation of the torque, Tor2 , in 

eq.(203). The acceleration, velocity, and displacement of 

the output member arising from this torque are given by: 

OC 2 = (Tor2 -F2 ) 1I2 
~ r 

w2 = (0<:2 dt 
J~ ~ 

9 2 = L W2 dt 

Similarly for the third mesh: 

0<3 = (Tor3 -F3 ) 1I3 
I: r 

W3 =10<:3 dt 
o ~ 

93 = i w3 dt 

9 3 is then the angular displacement of 

..... (213) 

..... (214) 

..... (215) 

..... (216) 

..... (217) 

..... (218) 

the pinion 

gear, ie the output displacement from the gearbox. The 

torque generated at the turret is then given by eq.(205), 

and the resulting acceleration, velocity 

displacement are given by: 

O<tur= (Ttur -Ft~r)/It 
(I: . 

W tur = )0 O<:tur d t 
o ~ 

9 tur = [ wturdt 

The acceleration, velocity, and angular 
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..... (219) 

. .... (210) 

....• (211) 

displacement 



of the gun, arising from the gun torque developed in 

eq.(206), are given by: 

Otgun = ( T0'gun)/Igun ••••• (212) 
1-

wgun= [o<gun d t ••••• (21 3 ) 
o t 

9gun = L Wgun d t •••.. (21 4 ) 

In the elevation system there exists an out-of-balance 

torque at the gun rack. This out-of-balance torque is 

assumed only to exist when the system is in motion. The 

resulting angular acceleration of the gun in the elevation 

system is therefore: 

o<~ = (Torg + Tb - Fg)/ I~ .•..• (215) 

where To~ is the torque input to the gun from the elevation 

gearbox, Tb is the out-of-balance torque, and Fg is the gun 

friction. 

The functional relationship used to model this 

out-of-balance torque is given by the graph shown in Figure 

8.1, from which eq. (216) is obtained, ie. 
I 

Tb = 1500.9g + 200 ...•• (216) 
I 

Tb is in Nm and 9g in radians. It is emphasised here that 

the functional relationship chosen for the out-of-balance 

torque of the gun is merely representative: it does not 

represent a true function, such being unknown to the author. 

The relationship used assumed that the range of deflection 
, 

o 0 
angle for the gun was from -7.5 to +20 • 

Note that there is no gun friction in eq.(212) and 

that··the friction values F-- F F· ':~:~c' ': .. :"--are·-functions-· of·· 1'2'3' . , 
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Elevation angle of gun ( degrees) 

Figure 8.1 : Out-of-balance torQue due to elevation 
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the friction characteristics in eq.(183) to eq • ( 1 91 ) , 

dependent on the .conditions outlined in Chapter 4. 

The above relationships define the basic traverse gun 

drive system in the digital simulation. However, in 

open-loop analysis, these provide no indication of system 

performance, and therefore the variable Perr j is defined: 

...•. (217) 

where the product 9m • Nj gives the ideal angular 

displacement at a point in the gearbox. 

Thus Perr j gives the error between the achieved and 

ideal displacement at any point in the gearbox, ie . 

Perr; = (9m.N, )-9, ....• (218) 

Perr
2 = (9m·N, .N2 )-92 ....• (219) 

Perr3 = (9m·N, .N2··N3 )-93 ..... (220) 

Perrt = (9m·N, .N 2 .N3 .N 4 )-9 tur ....• (221) 

Perrg = (9m·N, .N2·N3·N4)-9gun ..... (222) 

The effects of turret eccentricity can also be studied 

by the inclusion of the appropriate function which varies 

the gear ratio, N4 , with angular position. As an example of 

this the case is considered where the turret ring is assumed 

to be elliptical. Consequently, the effective radius of the 

turret, R
t

, varies with angular position, as represented by: 

Rt = J (A.sin 9 t )~(B.cos 9 t )2 ...... (223) 

where A and B are the major and minor axes of the ellipse. 

The gear ratio, N4 , is then given by: 

..... (224) 
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where Rp is the radius of the pinion gear. 

8.5 Simulation of closed-loop gun positioning system 

A simple control law was developed for the positioning 

of the gun in its traverse drive mode. Under closed-loop 

conditions the motor torque is controlled via a 3-term 

controller as shown in ~igure 8.2. This controller had the 

following gains: 

The input to the 

G, = 9:0 

G2 = 0.001 

G3 = -7.0 

closed-loop simulation is 

..... (225) 

..... (226) 

..... (227) 

the required 

azimuth position of the turret, ie. 9 t d . The angular error, 

ge , arising from a step demand in turret position is 

therefore: 

ge = 9td - I 
9 tur ..... (228) 

where 9td ' and 
I 

9tur are in degrees. 

Consequently: 

... (229) 
I where wt is turret angular velocity, deg./s. 

8.6 The simulation programs 

The listing of the ACSL programs which simulate the 

gun drive systems are given in Appendix2, for the traverse 

drive system, and in Appendix3, for the elevation drive 

system. The integration method used was Gear's stiff method 
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which is outlined in Appendix 1. The integration parameters 

used throughout the study were: 

CINT communi ca tion 'interval, set at 0.001 s 

NSTP defines the initial calculation interval, c, in 

terms of the communication interval, such that: 

c = CINT/NSTP 

NSTP,has been set at 10 

MERROR - relative error bound for individual, defined 

state variables. All relative error bounds were 

set at O.L 

XERROR -absolute error bound for individual state 

variables. All absolute error bounds 

at,O.L 
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CHAPTER 9 RESULTS OF THE DIGITAL SIMULATION 

In this chapter results of the digital simulations are 

presented for the traverse and elevation gun drive models of 

a modern M.B.T. Although any of the gearbox characteristics 

can be studied, the results have been limited for reasons of 

space and clarity. The following characteristics are 

therefore presented and discussed to illustrate the 

performance of the gun drive systems ~nder open-loop 

conditions. 

(1) torque generation at each mesh; 

(2) velocity under conditions of collision-engagement; 

(3) the pointing error associated with each mesh; 

The main purpose of the research work was to 

investigate the effects of non-linear friction and backlash 

on the dynamic performance of the drive systems. However, 

results are also presented illustrating the effects of 

finite gear and shaft stiffnesses, and the effects of the 

load dynamics. The predominant feature for open-loop 

conditons is the dependence of torque generation upon the 

backlash condition at each mesh, and in particular the 

effect of the initial backlash condition on pointing error. 

The effects of non-linear friction, particularly the Coulomb 

component, are not significant until the models are operated 

under closed-loop conditions. 
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With reference to Chapter 6 the range of conditions on 

backlash for all meshes is as follows: 

(a) di=O% ie. as an initial condition all gears are 

fully unmeshed in the directio~ of rotation. 

(b) di=100% ie. as an initial condition all gears are 

fully meshed in the direction of rotation. 

(c) di=50% ie mid-way between conditions (a) and (b). 

The above conditions also apply to the pinion-turret 

mesh and the gun/turret interface. 

9.1 Traverse gun drive system under open-loop conditions 

Figure 9.1 shows the torque, collision-engaged 

velocity, and pOinting error of the system resulting from a 

step input motor torque of 46 Nm, with di set to 0%. The 

effects of shaft stiffness have been ignored, ie. the shafts 

have been assumed to be infinitely stiff. The peak torque 

levels at each mesh are greater than would be expected from 

consideration of the gear ratios alone, as is illustrated in 

Table 9.1. 

Gear ratio Ideal torque Peak torque 

(Nm) (Nm) 

First mesh 2.697 124 442 

Second mesh 4.050 502 1 ,615 

Third mesh 4.170 2,095 16,154 

Pinion/turret 18.290 37,710 169,231 

Turret/gun 1 .000 37,710 20,769 

TABLE 9.1 
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These highe~ peak to~que levels a~e due to the impulse 

to~ques gene~ated on collision engagement of the gea~s. 

The effect of backlash on to~que gene~ation is clea~ly 

seen, pa~ticula~ly at the fi~st mesh, ~esulting in the fo~m 

of to~que gene~ation as shown, with ze~o levels of to~que 

indicating that the gear pai~ have become unmeshed. The 

p~esence of backlash allows the gea~s to come into and 

out-of-mesh with a f~equency dependent upon the effective 

stiffness and ine~tia at the mesh. This effect is 

pa~ticula~ly noticeable when the fi~st gea~ pai~ become 

unmeshed fo~ a substantial pe~iod of the simulation ~un. 

This pe~iod of non-engagement is followed by anothe~ pe~iod 

of collision-engaged to~que activity, which is itself 

~eflected in the to~que gene~ated at the second mesh. These 

high f~equency components a~e filte~ed out by the subsequent 

lowe~ f~equency meshes. The oscillato~y natu~e of the to~que 

is due to low contact f~iction bet~een the engaging 

su~faces, which ~esults in poo~ damping. The peak to~ques 

th~oughout the ~est of the system occu~ du~ing the initial 

collision-engagement of the gea~s, and, with g~eate~ damping 

than fo~ the fi~st mesh, the to~que amplitudes decay 

quickly. With highe~ effective ine~tias on the output 

membe~s, the f~equency of meshing is dec~eased th~ough the 

gea~box, as p~edicted f~om the linea~ analysis. 
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Although not shown in Figure 9.1, the velocity of the 

motor at the end of the simulation run was 332 rad/s. A 

comparison between the subsequent collision-engaged 

velocities, obtained from Figure 9.1, and the ideal 

velocities resulting from a consideration of the gear 

ratios, is shown in Table 9.2. The mesh efficiency is 

defined as the ratio of th.e collision-engaged velocity to 

the 

wl 

w2 

w3 

wtur 

wgun 

ideal velocity. 

Gear Velocity (rad/s) 

ratio Ideal I Collision-engaged 

2.697 123.10 121 .5 

4.05 30.39 30.0 

4.17 7.29 6.9 

. 18.29 0.40 0.39 

1.00 0.40 0.39 

TABLE 9.2 

Mesh 

efficiency 

98.7% 

98.7% 

94.7% 

97.5% 

100.0% 

It can be seen that the collision-engaged velocities 

are close to the ideal values, taking into account losses in 

the gearbox, and therefore the mean torque at each mesh must 

also be close to ideal. This indicates that the gearbox 

model is functioning correctly as a speed and torque 

converter. 

The stepped turret velocity is a result of the 
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collision-engagement of the pinion gear with the turret 

ring, with constant .turret velocity during periods of 

non-engagement. This effect is transmitted through to the 

gun, resulting in a low frequency vibration as a consequence 

of representing the gun as a lumped inertia. 

Figure 9.2 and 9.3 show the effect of the initial 

conditions on backlash on torque generation , with di set to 

50% and 100% respectively. The effect of the stepped turret 

velocity disappears when the gears are initially meshed, as 

the pinion gear and the turret are no longer 

collision-engaged. As would be expected from such open-loop 

operation, the initial backlash condition predominates in 

controlling the pointing error at each mesh. The form of the 

pointing error follows closely that of the associated 

torque, ie higher frequencies are observed at the early 

meshes. This is due to the torque itself being a function of 

the relative gear angles. A comparison between the pointing 

error of the turret arising from the change in the initial 

backlash condition is shown in Table 9.3. 

di 

0% 

50% 

100% 

Turret Pointing 

Error (millirad) 

0.90 

0.46 

0.0077 

TABLE 9.3 
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From Table 9.3 it can be seen that the pointing 

accuracy of the turret increases .... as .. the initial backlash 

decreases in the direction of rotation. 

Figures 9.4, 9.5, and 9.6 are for the same conditions 

as the previous figures, but with the inclusion now of

finite shaft stiffnesses. The shafts themselves are then 

able to twist, and in doing so produce an extra angular loss 

during periods of high torque activity. This results in the 

increased dynamic pOinting errors being shown. The dynamic 

twisting of the shafts also influences the torque generation 

at each mesh for they absorb and release energy, thus 

controlling the angular input int6 each mesh. The effects of 

finite shaft stiffnesses couple strongly with the gun 

dynamics assumed. A more detailed gun model, with the 

inclusion of higher barrel frequencies, would result in 

improved responses. 

Figure 9.7 shows the torque generation, velocity, and 

pointing error of the linearised system to a motor torque 

step input of 46 Nm. In this case, therefore, the backlash 

is zero at each mesh, and the friction is wholly viscous. In 

addition, the shaft stiffnesses are assumed infinitely 

stiff. The form of torque generation in the linearised model 

is similar to that arising from the non-linear model when 

the gears are initially meshed, and the resulting pointing 

error of the turret is identical. Although the· simulation 

was terminated at 3 seconds, it is evident from both Figure 
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9.3 and Figure 9.7"that the pOinting error of the turret is 

tending to zero in both cases. 

Figure 9.8 shows results for the linearised model, but 

with the inclusion of finite shaft stiffnesses. The 

inclusion of finite shaft stiffnesses results in increased 

torque activity at the third mesh, and and increased damping 

of the turret torque. In addition, the pointing error 

activity in the the rest of the system is reduced. 

The above sets of results show how the dynamic 

performance of the system, whether linear or non-linear, is 

affected by the inclusion of finite shaft stiffnesses. This 

leads to the conclusion that the shafts are not stiff 

enough, particularly for torque levels produced from 

collision-engagement of the gears. In the remainder of the 

results presented for the traverse drive, under open-loop 

conditions, it has been assumed that the shafts are 

infinitely stiff, and it has been taken that the gears are 

fully unmeshed as an initial condition, ie di=O%, as this 

represents the 'worst case' for the system. 

Figure 9.9 shows the effect of increased turret 

stiffness on performance. The stiffness of the turret has 
9 

been increased to 4.0*10 Nm/rad. Comparing Figure 9.9 with 

Figure 9.1, it can be seen that the frequency of the turret 

is increased, as would be predicted from a linear analysis. 

This increase in frequency results in the pinion gear and 

turret ring becoming unmeshed less frequently than 
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previously, and therefore a smoother generation of velocity 

is obtained. Although the pOinting error of the turret 

settles to the same value as previously, the decreased time 

to settle would be beneficial under closed-loop conditions. 

Figures 9.10 shows the effect of turret ring 

eccentricity on performance. The diameter of the 

conventional, circular, turret ring is 2.0 m. In this case, 

the turret ring is assumed to have been elliptical, with 

major and minor axes set to 2.10 m and 2.0 m, respectively. 

The effect on performance is only clearly seen in the turret 

velocity. Comparing Figure 9.10 with Figure 9.1, the turret 

reaches speed more quickly, although this 'steady' speed 

will undergo fluctuations as the gear ratio is changed by 

the effective change in turret radius with angular position. 

This final velocity of the turret is now reduced to 0.34 

rad/s as compared with the 0.39 rad/s previously. 

Fluctuations in turret velocity due to eccentricity of· the 

turret ring may cause problems in closed-loop position 

control, if turret velocity were to be used in the . feedback 

path. 

Figure 9.11 shows the problems encountered when 

attempting to use the fixed-step, second-order, Runge Kutta 

algorithm. The response is 'noisy' due to the inability of 

the integration method to deal with the 'stiff' modelling 

equations. 
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9.2 Elevation gun drive system under open-loop conditions 

As the elevation system is. similar to the traverse 

system, and the same considerations apply to the effects of 

the non-linearities and finite shaft stiffnesses on system 

performance, results are presented merely to show the 

effects of tne out-of-balance torque. The simulation runs 

were terminated at gun angles corresponding to the gun limit 
o 0 

stops, ie -7.5 , + 20. 

Figure 9.12 shows the torque generation, 

collision-engaged, velocity, and pointing error of the 

system to a step motor torque input of 15 Nm, ie. gun 

elevating. Figure 9.13 shows the torque generation, 

collision-engaged velocity, and pointing error of the system 

to a step motor torque of -15 Nm, ie gun depressing. In both 

cases the effects of finite shaft stiffnesses have been 

included, and the initial condition on backlash for both is 

identical, with di set to 50%. Clearly the effects of shaft 

stiffnesses are not as pronounced as in the traverse system, 

due to. the lower torque levels through the system. It must 

be remembered that the first two meshes have gear ratios 

greater than unity, and therefore the torque is reduced 

through them. The effect of the out-of-balancetorque is 

clearly seen. The effect is to increase the effective torque 

during gun elevation, and ·to decrease it during gun 

depression. The offset of the effective gun torque is 

clearly seen, decreasing with time for gun depression, and 
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increasing with time for gun elevation. The low frequency of 

the gun is again due to its representation as a lumped 

inertia. This,low frequency results in a pulsing of the gun 

torque resulting in the stepped gun velocity obtained. 

9.3 Traverse gun drive system under closed-loop conditions 

Figure 9.14 shows the response of the turret to step 

input demands of turret angle, for a range of initial 

conditions, using the control law discussed in Chapter 8. 

The control law was developed for the linearised system, and 

subsequently used to study the effects of the 

non-linearit~es on performance. In the closed-loop study, 

the developed motor torque has not been limited, although 

the motor is known to have a maximum torque rating of 46 Nm. 

The advantage of this is that the performance of the 

closed-loop system is then dictated by the performance of 

the gearbox itself. The demanded turret azimuth position was 

20
0

in all cases. 

Figure g.14(a) shows the response of the turret when 

the system is linearised. It can be seen that there is no 

steady-state pointing error of the system. 

Figure 9.14(b) shows the response of the turret with 

the inclusion of the nominal backlash values, but still with 

linear friction. It can be seen that the re~ponse of the 

turret is identical, with no steady-state pointing error. 

Figure 9.14(c) shows the response of the turret with 
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increased system backlash. The backlash at each mesh is ten 

times greater than the nominal values. The response of the 

. system is again identical. This indicates that,. providing 

there is no non-linear friction present, the motor can 

develop enough torque to overcome the errors due to backlash 

in the system. The damping of the system may be affected by 

further increasing the backlash, and excessive backlash may 

result in limit cycling, dependent upon the level of viscous 

friction in the system, although this effect has not been 

studied. Backlash-friction· curve theory (ref.1) outlines 

empirical relations for calculating the amount of backlash 

that a servomechanism can withstand without a . null 

oscillation. 

Figure 9.14(d) shows the response of the turret with 

the inclusion of the non-linear friction characteristics, in 

addition to backlash. The pointing error at the end of the 
o 

simulation run was -0.47 . 

Figure 9.14(e) shows the response of the turret with 

increased system Coulomb friction. The Coulomb friction at 

each mesh ,. and at the motor, is five times that of the 

nominal values. The pointing error at the end of the 
0 

simulation run was - 1. 25. 

Providing that the backlash at each mesh is not 

excessive, the digital simulation predicts that it is the 

non-linear friction in the system, particularly the Coulomb 

component, that is the limiting factor for the performance 
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of the system under closed-loop conditions. 

9.4 Summary of digital simulation conditions 

Case A: 

Case B: 

Case C: 

Case D: 

Case E: 

Case F: 

Case G: 

Case H: 

Case I: 

Case J: 

Case K: 

Case L: 

Case M: 

Case N: 

Case 0: 

Case P: 

Case Q: 

Case R: 

System initial condition shaft stiffness 

on gears (dil 

Traverse 0% removed 

Traverse 50% removed 

Traverse 100% removed 

Traverse 0% finite 

Traverse 50% finite 

Traverse 100% finite 

Traverse removed removed 

Traverse removed finite 

Traverse as Case A: increased turret stiffness 

Traverse as Case A: elliptical turret ring 

Traverse as Case A: Runge Kutta integration 

Elevation 

Elevation 

Traverse: 

Traverse: 

Traverse: 

Traverse: 

Traverse: 

50% (elevating) 

50% (depressing) 

closed-loop, linear system 

closed-loop, plus nominal 

finite 

finite 

backlash 

closed-loop, plus increased backlash 

closed-loop, full non-linear system 

closed-loop, increased Coulomb friction 
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CHAPTER 10 CONCLUSIONS 

10.1 Concluding summary 

This research investigation was concerned with the 

mathematical modelling of the traverse and elevation gun 

drive systems of a modern main battle tank. The dynamic 

performance of the mathematical models was investigated, 

using digital simulation techniques,. under open-loop 

conditions for a range of initial conditions. 

The mathematical models presented were full system 

models based upon the generation of torque at each gear mesh 

through the collision-~ngagement of the~mating gear teeth, 

and included the non-linear effects of backlash and friction 

at each mesh. 

The necessary geometric relationships for the 

calculation of system inertia and stiffness were presented 

in Chapters 2 & 3, respectively. It was shown that inertia 

and stiffness are both referred parameters, and that the 

effective inertia and stiffness of a component is increased 

by the effect of all other components loadside. It was shown 

that inertia and stiffness are reflected back through the 

gear train by the square of the appropriate gear ratio. 

A full description of friction was presented in 

Chapter 4, along with the approp~iate mathematical 

relationships for its description in a digital simulation 
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study. Due to the nature of torque development in .the 
, 

models, it was found impossible to achieve the desired 

friction function at each gear mesh and thus a simplified 

version of the motor friction characteristic was used. 

Rather than use a step input angle to the first gear 

mesh, a motor model was developed to provide the forcing 

inputs into each system. The description of the developed 

motor model was presented in Chapter 5, along with a linear 

analysis showing that the dynamic performance of the motor 

is dependent upon system inertia and friction. 

A full description of backlash and the mathematical 

representation of torque generation was presented in Chapter 

6. It was shown that the generati6n of torque at each mesh 

is dependent on the backlash at each mesh, and the 

associated initial condition. Linearisation of the 

equations, by removing the dependence of torque on the 

backlash condition, showed that the transfer function 

relating input angle to output angle could be considered as 

a linear second-order system multiplied by a scaling factor, 

which was the gear ratio. Under steady-state conditions this 

transfer function predicts that the output angular 

displacement is the product of the gear ratio and the input 

angular displacement. 

As both gun drive systems contained a planetary gear 

train at the load end, the transformations necessary for 

representation of the planetary train as a single effective 

- 118 -



mesh were presented in Chapter 7. 

The implementation "of the modelling equations in the 

digital simulation was presented in Chapter 8. In the course 

of the research study it became apparent that the effects of 

non-lin~ar friction were not easily detected under open-loop 

conditions, and therefore a simple control law was developed 

to investigate the performance of the traverse system under 

closed-loop conditions. 

The results from the digital simulation for the 

traverse system, under open-loop conditions, clearly showed 

the effects of backlash, and its initial condition, on 

torque generation. The levels of torque through the system 

were much higher than was expected from consideration of the 

gear ratios alone, due to the cOllision-engagement of the 

mating gears~ These high impulse torques were particularly 

marked in the initial gear meshes, where the frequency of 

meshing was highest; The result was that the mating teeth 

came into and out-of-mesh with a frequency dictated by the 

effective stiffness of the mesh and the effective inertia of 

the output member. The achieved distribution of velocity 

through the system was seen to be very close to ideal, 

indicating that the gear mesh models were functioning 

correctly as speed converters. The form of velocity 

developed in the first three meshes was smooth, due to the 

high frequency meshing. The form of the developed turret 

velocity was seen to be dependent upon the initial backlash 

- 119 -



condition, such that when the gears were assumed to be fully 

. ·unmeshed in the direction of rotation as an initial 

condition, the turret velocity was stepped in nature, due to 

periods of non-engagement of the pinion with the turret 

ring. This effect became less pronounced when the gears were 

assumed to be 50% in mesh, and disappeared when the gears 

were assumed to be fully meshed. Thus, the initial 

collision-engagement of the gears results in a pulsing of 

torque into the turret and gun, the magnitude being 

dependent upon the initial backlash condition. The 

representation of the gun as a single lumped inertia 

resulted in low frequency vibrations as a result of its 

relatively low natural frequency (5 Hz). 

The form of the pointing error at each mesh followed 

closely the form of the associated torque generation, ie 

higher frequencies in the earlier meshes, due to the torque 

being a function of relative gear angle. The steady-state 

pointing of the system, as indicated by the turret, was seen 

to be dependent upon the initial backlash condition such 

that the lowest error was achieved when the gears were 

assumed to be initially meshed. The pointing accuracy of the 

linearised model was identical to that of the non-linear 

model with the gears initially meshed, indicating 

bouncing back and forth of the gears, allowed by 

does not contribute to the pointing error, but 

initial condition on backlash. 
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The effects of finite shaft stiffnesses on performance 

were clearly seen. The shafts were clearly not stiff enough 

for the levels of collision-engaged torque through the 

system, and there was evidence of the shaft dynamics 

coupling with the gun dynamics. The effects of finite shaft 

stiffness were not apparent in the elevation system as the 

issumed gun model is probably more.representative in this 

axis. In addition, the levels of torque were lower in the 

elevation system, due to both the lower motor torque inputs 

and the lower overall gear ratio. The effect of the gun rack 

out-of-balance torque was clearly seen as an offset in the 

developed gun torque. 

A preliminary investigation of the closed-loop 

traverse gun-drive system, although not initially one of the 

reasearch objectives, was carried out in order to ascertain 

the effects of the non-linearities upon system performance. 

This preliminary study showed that providing backlash is not 

excessive, and does not adversely affect .the damping of the 

system, then the performance of the closed-loop gun drive 

system is dictated by the level of Coulomb friction 

system, resulting in a steady-state pOinting error 

turret to step input demands on azimuth position. 
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10.2 Recommendations for further work 

1. There remains a clear need for the investigation of 

2. 

gear meshing on the referred values of inertia, 

stiffness, and friction. This effect was not incorporated 

into the models as the problems associated with the 

integration were not sorted out 

satisfaction of the author by the 

work. The inclusion of the effect 

to the complete 

completion of this 

of gear meshing on 

referred parameters would result in a more realistic 

model. However, their inclusion may lead to an even more 

relaxed control on relative and absolute error bounds, 

which in turn may lead to problems with numerical 

accuracy. 

A more complete investigation of 

stiffness on dynamic performance is required 

purposes. 

gear mesh 

for design 

3. A more complete investigation of shaft stiffness is 

required, particularly the effects of the coupling of 

shaft and gun dynamics. 

4. There is a need for a more realistic gun model, 

taking into account higher barrel frequencies than the 

fundamental, and the modes associated with these 

higher frequencies. 

5. An investigation of the coupling between the 

traverse system and elevation system dynamics is 
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~equired, involving the linking of the two systems into 

one simulation program with the inclusion of the relevant 

coupling terms. 

6. There is a need for the investigation of vehicle 

motions on system performance, particularly in relation 

to a coupled gun drive system model. 

7. A more thorough investigation of the closed-loop 

8. 

dynamics of both systems is required, with the 

appropriate deisgn of the control law. This would require 

a more accurate description of the motor to include 

electrical phenomena, as well as mechanical phenomena, in 

the modelling equations. 

An attempt should be made to confirm some of the 

findings of this research investigation by' carrying out 

tests on the performance of a modern main battle tank. 

The required variables could be obtained by the 

positioning of the appropriate measurement sensors in the 

turret and gun. 
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APPENDIX 1 STIFF DIFFERENTIAL EQUATIONS 

A major reason for problems with numerical integration 

is that the system to be simulated may have system-response 

time constants that are short compared to the solution time. 

This can be true even if the system response is not 

oscillatory. This may force one to use integration steps, 

DT, of the order of the smallest time-constant, causing not 

only slow computation but also serious round-off errors. 

For the general non-linear vector equation 

dX = G(X,T) 
dT 

(A-1 ) 

we speak of the system being locally stable if the 

eigenvalues ,\(X,T) of the local Jacobian'matrix 

j :: Jac(G) ••••• (A-2 ) 

have negative real parts. 

A differential-equation system (A-1) will be called 

stiff if the relative range of its local time constants is 

large, say, larger than 100, for any point (X,T). For 

example, the system 

+ dX + 100X = 0 •••• (A-3) 
dT 

is a stiff system with eigenvalues -100 and -1; the solution 

can contain a 'fast' component of and· a ·'slow' 
-- ... _ .•.. -'- '-'-~'-'--'--

com-po;:;ent of a2e-l0.otN~te that the response is non-oscillatory 



in this case. 

Application of numerical-integration rules transforms 

a given differential-equation system into a system of 

difference equations. The latter may, however, be unstable, 

and thus amplify small numerical errors as the solution 

proceeds, even though the original differential-e1uation 

system is completely stable. Consider open Euler integration 

applied to the simple differential equation 

ie. , 

dX = AX 
dT 

..•.. (A-4) 

•... (A-5) 

This difference equation is completely stable if ~nd only if 

11 +ADT 1 < 1 ••••••• (A-6) 

even though the original differential equation (A-4) is 

completely stable for 

Re(A) < 0 ••••• (A-7 ) 

Note that integration stability can force the use of 

an inconveniently small DT even though the transients 

associated with the larger values A. contribute little to 
I 

. the particular solution. 

One is, then, led to seek integration rules with large 

regions of stability. Dahlquist (ref.4) defined an 

integration rule as A-stable if and only if the numerical 

solution goes toO 

. -as-ymp to ti ca1l ysfati 1 e differential~equation 

for 

system, ie 

any 

a· 



system with Re(A) < O. 

Since stiff differential equations frequently arise 

from considerations of physical systems, practical digital 

simulation systems must include at least one stiff-system 

integration rule. The most successful rules, though not 

A-stable, are implicit methods. Unfortunately, they require 

substantial per-step computing effort, but this is often 

paid for by the p6ssibility of using much larger integration 

steps. Implicit rules require solution of a possibly 

k+1X system of Eq.(A-l) for the vector at each step. 

large 

The 

typical approach to this problem is to use a form of 

Newton-Raphson iteration. This involves finding 

approximation to the Jacobian of the derivative matrix, 

aG 
j= 0 aX ..•... (A-8) 

an 

This is usually done by making n+l calls to the derivative 

function and finding the local approximations to the 

elements of J: 

+ AXj ) -

AXj 

Go(kX) 0 

I 'J = 1,2,3 ... on 

where Gj is the ith element of the nth-order derivative 

vector. This time-consuming process is obviously only worth 

doing if DT can be greatly increased, which is often the 

case in many problems. 

Rosenbrock (ref.5) proposed an extension to implicit 

forms of· the Runge-Kutta process. A simple second-order 



example is 

K1 = [1- ~TkD DTkG .... (A-9) 

k+1X k = X + K1 .••• (A-10). 

Calahan (Ref.6) presents similar methods. Note that such 

methods require not only the n+1 call of the derivative 

function to estimate J, but also the inversion of possibly 

large nXn matrices at each step. Clearly, a lot of per-step 

effort is required for a high-ordere~ set of diff~rential 

equations. 

Gear (ref.2) has developed his 'stiffly stable' 

strategies, which provide high accuracy for major system 

eigenvalues of small magnitude and retain stability for 

relatively unimportant shdrt time-constants associated with 

eigenvalues of large magnitude. Moreover, his methods are 
I 

variable-order, variable-step strategies. To further reduce 

average per-step computing effort, Gear recomputes the 

Jacobian only when tests indicate that the current 

approximation to J is no longer suitable. 



APPENDIX 2 

ACSL Simulation Program of Traverse Gun Drive System 



• 

" "'I, " 
" 'mIS ffiCXlWol SIKJIATES THE 'lRAvmsE IRIVE " 
• • 

"------- • 

"------- • 

"--- • 

MmRCR ~.1, THETl=!!l.l, 'mEI'2=!!I.1, 'lHE:I'3=!!I.1 
MERRCR ~=!!I.1, 'IHE'IG=e.1 , WM:II'=!!I.1, W1 =!!I. 1 , W2=!!1.1 , W3=!!1.1 
MERRCR WIm=!!l.1,\GJN=e.1 
XERRCR ~,1, THETl=!!l.l, 'l'HE'l'2=!!I.1, 'llEI'3=fI.1 
XERRCR ~=!!I.1, 'IHE'IG=e.1, WM:II'=!!I.1, W1 =!!I. 1 , W2=!!1.1 , W3=!!1.1 
XERRCR WIm=!!l.l, \GJN=e.1 

"-,---------------
"R.EFERRED FRICl'ICN 'ID GEARS AND MCm:R" "---------------._-----
"ABS:lll1l'E VAUJES OF FRICTION" 
,,--------------
" 1. STICTICN" ,,----- " 

" FOFF IS l'WI'laI 'ID 'nRN OFF ALL N::N-LINEM FRICTION " 
,,---------------------- " 

CXNSTANl' FOFF=l 
"-------~OOI'E FRICTION REMOVED WHEN FClFF'=!!I " 

" OCNLIN IS SWI'IaI 'ID LINEARISE MJDEL " 

" --------------------" 
CCNSrANl' N:NLIN=1.1'J 

" 

" 

" 

" N:1I'E 'ID LINEARISE MJDEL tQlLIN t-UST BE sm" 'ID ZERO. 
" IJCME.Vm FOFF I-Usr BE sm" 'ID UNI'lY 'ID PREVENl' THE " 
" REM:IITAL OF VIsc:DUS FRICTION" 

FS'lM=e.46*FO~ 
Fsrl=!!l.41964*FOFF*NCm.IN 
FST2=!!I.41964*FOFF*NCNLIN 
FST3=!!1.5321'J62*FOFF*NONLIN 
FSTl'=152I'J*FO~ 

11 2 • ClJULCMB" 
,,------- " 

" 



• FO:UM=0. 26*roFE'*NI:m.IN 
FO:m.=e.24479*FOFF*N:NLIN 
FCDJ2=eJ.24479*FOFF*N:NLIN 
FCDJ3=e.31037~· 
FCXm'=1410*FOFF*mILIN 

" 
" 3. VISCXXJS" 

FIIM=0:046 
EVI=e:S72S9 
EV2=eJ.S72S9 
rv3=0.61369 . 
FVT=1300 

CCNS'l'lINl' SIUPM=50 
CCNS'l'lINl' SIUP1=50 
CXNSl'ANl' SIUP2=S0 
CXNSl'ANl' SIUP3=50 
ClN5'I'ANl' SIUPl'=10000 

" 

"-------------------
"DEFINITICN ce GEAR RATIC6" 
,,-----------
CXNSTANl' Nl=e:37078 
CONSl'ANl' N2=e.24691 

CCNSTANl' N3=e.24 

" 

" 

• lurE N4 MAY WiRY IF 'lUUWl' m::mIRICITY llQlJDED .. 

"INVERSE GEAR RATIC6" .. .. 
N1A=1/Nl 
N2A=1/N2 
N3A=1/N3 

"GEM RATIO FUl!I:TICNS R:R ~ OF INmTIA AND FRICTICN" 
'I ,t 

N1N1=Nl. *NI 
N2N2=N2*N2 
N3N3=N3*N3 

"--- ---------'" 
"ABSOI11I'E BrIFFNESSES" 
"-----------'----,, 

CXNSTANl' Kl.=1.6974E+m 
COOSl'ANl' K2=1.9721E+07 

CCNSTANl' K3=1.0137E+07 
CCNSl'ANT Icr'=2.89E+08 $ • 'll.RREl' STIFFNESS " 

END 

a:NSTANl' m'G=-9.22E~ $"GUN 'ro 'lUUWl' STIF!'m:SS 
KS1=1.13S2SE+08*STQFF 
KS2=1.116E+08*SIUFF 

KS3=6.994E+09*STQFF 
CONSTANl' SIUFF=1.0 

" 



• 
IJYNN.!IC 

" " 
DERIVATIVE . ...... 
,,---- " 

a::tSI7'.Nl' M1IJ=2, MIN=2 
RTUR=«MAJ*SIN(THETUR»**2+(MIN*COS(THETUR»**2)**3:S 
NJl'=RTUR*256/2 
N4=14/OOl' 
N4A=1/N4 
N4N4=N4*N4 

" CAIaJIATICN OF REF'EmUD FRICrIOO" 

" 1 MJIm SBAET" 

srIQ.R=F'S'lM+(Nl *FSTl )+(N2*Nl *FSl'2) + (N3*N2*Nl *FST3 )+; • ; 
(N4*N3*N2*Nl *FSrr) 
roru:J;IooFCnM+-(Nl *FeWl )+(N2*Nl *FC002) + (N3*N2*Nl *FCXXJ3 )+ •• : 
(N4*N3*N2*Nl *FCXl1r) 

EVmEF=EVM+(NlNl*1'Vl.)+(N2N2*NlNl*FV2)+(N3N3*N2N2*NlN1*M).; ; 
+ (N4N4*N3N3*N2N2*NlN1 *FVr) 

STICIR=FSl'l +(N2*FSr2 )+(N3*N2*FSl'3)+ (N4*N3*N2*FS'I'l') 
FClREF=FO:lJl +(N2*FC002 )+(N3*N2*FaXJ3 )+(N4* •• ; 
N3*N2*FCXl1r) 
FVlREF=1'Vl.+(N2N2*FV2)+(N3N3*N2N2*FV3)+.; ; 
(N4N4*N3N3*N2N2*FVl') 

" 3. sro:ND GE1\R MESH" 

STIC2R=FSl'2+ (N3 *FST3)+ (N4*N3*FS'I'l') 
FC2REF=FaXJ2+(N3*FaXJ3 )+(N4*N3*ro:m) 
FV2REF-M+(N3N3*M)+ (N4N4*N3N3*rvr) 

" 4 THIRD. GE1\R MESH" 
"PLANE'IRY SYSTEM , FRICrICN CN EN:H SIDE OF PIANET GE'J\RS " 

STIC3R=Fsr3+(N4*FSrr) 
E'C3REF'-FaXJ3+(N4*ro:m) 
~M+(N4N4*FVl') 

"ABSOIl1I'E INERTIAS" 
rolS'l'ANl' ~.OOS 
CCNS'l'Nn' JA=1.974SE-e4 

COOSl'ANT JB=4.879E-e3 
CONSTANl' JC=S.88431E-eS 
COOSl'ANT JD=7.7126E-e3 
CONSTANl' JE=1.996E-04 
CONSTANl' JF=1.47774E-e4 
CONSTANl' JP=1.0744E-e2 
COOSl'ANT JSl=1.34144E-eS 
CONSTANl' JS2=3.45413E-04 
~~ JS3=S.9S949E-33 



crnsrANl' JS3=5.95949E-93 

"ADDITICN CE' INERTIAS CN mt-m SHAFTS " 
~ 

J1=-JB+US1-hl'C . ...... 
J2=;JD+JS2-nJE 
J3=(3*JF)-tJS3hlP $ "TmEE PIJ\NE:ffiy ~S " 

CXlNS'I1INl' In.R=43001!J 

"OOFF IS SWITcrI 'IO 'llRN OFF M.L 1lACKI.ASH" 
CXlNS'I1INl' OOFF=1 

1Wl<l=9.525E-e4*00FF*N0NLIN 
B1£l<2=9 .1il445E-e4*OOFF*NOOLIN 
BI\C<3~.OO7284*OOFF*NONLIN 
Bl\CK~. 0005315*OOFF*NONLIN 
~.000l. *OOFF*NONLIN 

" INITIAL CCNDITICNS Fm MESHING" 
crnSl'1\Nl' FRAC=5e 

BKl=BAC<l *FRlIC/100 
BI<2=BN:l<2*mAC/100 
BK3=BACIC3*FRl1C/100 
BK4=B1ICK4*EmC/100 
BKS--!Wl<S*rnlIC/100 

"El"E'EX!I'IVE B!\CKIASH Nr El\CH MESH" 

DIJ.=(BKl) 
DLlA=(IWl<l-BKl) 
DL2=(BK2) 
DL2A=(BAa<2-BK2) 
DL3=(BK3) 
DL3A=(BI\C<3-BK3 ) 
DIA--BK4 

DIAA=(BAa<4-BK4 ) 
DL5=BKS 

DLSA=(BAa<5-BKS ) 

"El'EEx::TIVE BACKUISH Nr PINNICN - SPElC <12 'lHXJ " 
EBP=(DIJA*N2*N3)+(DL2A*N3)+DL3A 

"El'EECI'IVE BACKUISH Nr !DAD " 
" 1 • El"E ECl'IVE BAOOASH AT 'll.RRET - EST " 
EBr=(DIJA *N2*N3*N4 )+(DL2A *N3*N4) * (DL3A*N4 )+DIAA 
" 2 • El"E'EX!l'IVE BACKUISH Nr am -EOO " 
EOO=(DIJA*N2*N3*N4)+(DL2A*N3*N4) * (DL3A*N4)+DIAA+DLSA 

JMREF--JM+-(J1 *NlNl )+(J2*N2N2*NlNl )+(J3*N3N3*N2N2*NlNl) ••• 
+ (J'ltR+Jam) * (N4N4*N3N3*N2N2*NlNl) 
JlREF=Jl+(J2*N2N2 )+(J3*N3N3*N2N2 )+ •• ; 
(J'ltR+JGUN)* (N4N4*N3N3*N2N2) 
J2REF=U2+ (J3*N3N3) + (JTUR+JGUN) * (N4N4*N3N3) 
J3REF=J3+(JT!R+JGUN) * (N4N4) 

"CAIaJIATICN CF El''I''EL""l'IVE srlFFNESS" 
11 '1 

KlEFF=Kl+KS1+(K2+KS2) *N2N2+(K3+KS3) *N3N3*N2N2+(KT+KTG) ••• 



K1EFF=Kl. +KS1 +(K2+KS2) *N2N2+(K3+KS3) *N3N3*N2N2+(~) ••• 
*N4N4*N3N3*N2N2 
KS1EFF=KlEFF-Kl 
K2EFF=K2+KS2+(K3+KS3)*N3N3+(K'l'+K'ro)"N4N4*N3N3 
KS2EFF=K2EFF-K2 '4. 
K3EFF=K3+KS3+(K'l'+K'ro) "N4N4 
KS3EFF=K3EFF-K3 
K'l'EFF=!cr'+K' 

-'------------INP!Jl' PMJ\Mf~l.S_-----" - MmR <E'IRACl'ERISTICS 

CXNSTJ\Nl' 'lTIRG=29 
CXNSTJ\Nl' GmET=9. 9 
CXNSTJ\Nl' GlNI'=eJ. 001 

c:x:NSTlINl' Gl=-7. 9 
nmCll.=(TARG-'ItROO ) 
INTERR=INTEG(ERRCll.,9.9) 

c:oosrANl' L'\G=0 
OJNSTANl' 'lK=46 
a:NSTANl' T1=9.1 

" 

PRocmRAL( INPIJl'=il'K,LAG, T1) 
IF(LAG.EQ.9)INPUT=TK 
IF(LAG.EQ.1)INPUT=INTEG«TK-INPUT)/Tl,9.9) 
EN> 

OJNSTANl', 0PEN=1 
PRCCEDtRAL('lM:1l'=INPUT ,OPE2!l, nmCR,~, Gl'BET ,GINI' ,OW) 
IF( OPE2!l. EQ.1 )'lMJl'=INPUT 
IF( OPE2!l.EQ.9)'lMYl'=G'ffiET*Cll.-+GINl'*:mrmR+GW'WltROO 
EN> 

-------·------END 'OF INPUT ~~if-f --" 
WJM=9 .42*NCNLIN*roFF 

GW:M=(STIaR-F01REF) *2.381 
PRCCElXRAL(FM=!IMJl', STIaR, rnArM, FCMREF, WVM, FVMREF,~) 
IF( «nm-FM)*WMJr) .GT.9.9.AND.ABS(WM:7l') .LT.WVM)FM=(STICf.R* ••• 
SIGN(1.9, w-or) )-(~) 
IF«(nm-FM)*WMJr).LT.9.9.AND.ABS(WMOT).LT.WVM)FM= ••• 
FCMREF*SIGN(1.9,w-or) 
IF(WMOT.EQ.9.9)FM=STICMR*SIGN(1.9,(nm-FM» 
IF (ABS ('lIDl') • LE. STICMR. AND. Worn • EQ. 9 • 9) FM=!IMJl' 
IF(ABS(Worn) .GE. WVM)FM=(ABS(FVMREF'* (\'MJI'-W\IM) )+ro1REF) *SIGN( 1.9, WMOT) 

IF(ABS('lIDl') .LE. ro1REE' .AND.ABS(W!UI') .LE.WVM)m=sroPM*'tMn' 
EN> 
~FM 

NX1!Cfr=AC'lIDl' /;n.mEF $ " MOl1:R }\CY'FT ·mATICN " 
WM::7l'=INTEG(A<XMJl',I~) , $ " MOl1:R VEIDCI'IY " 

THEK7l'=INTEG(WMOT, ICltM) 
~189/3.1416 
CCNST1\NI' IC'IMJI'=9. 9 

CONSTANl' IC'mI>D=9. 9 
- RErATIVE GEAR AOOLES RR 'ltROOE GENERATION 

THE:l'S1=DLl-( (THEl'1) -'I'HIMJl'*Nl.) 
'1'Hm'S2=DLlA+( (THEl'1) -'ffiEMJI'*Nl.) 
THE:l'S3=0L2- ( (THEl'2) -THEl'lA *N2) 
THEl'S4=DL2A+ ( (THEl'2 )-THEl'lA *N2) 

THETlA=rfrel'l-( (TCRl*S'roFF)/KS1EFF) 
DELTAl~l/Kl 

THE:l'SS=OL3- ( (THEl'3) -THET2A *N3 ) 
THETS6=DL3A+( (THET3)-THET2A*N3) 

" 



THEl'S6=DL3A+{ {THET3 }-nreI'2A *N3} 
THEI?A-"""mET2-{ {TCR2*sroFF} /KS2EFF} 

" GE1IR MESH Sl'IFFNESSES " 
"EEEECrlVE srIFFNESSFe~·_ 

CCNS'I'mr Jm\=1.3 $" GE1IR EFF:rCI~ " 
" TCR(llE ClIUllIATIOOS . " 

"DAMPIN3 CXJEl' E'ICImI'S" 
COOSTlINl' BSl~ 
COOSTlINl' ~ 
CCNSTJ\Nl' BS3=e 
COOSTlINl' ~ 
COOSTlINl' I393=e 

PRoc::EIX.RAL{TaU=rHE:I'Sl, THE:l'S2, KlEFF , ErA, BSl } 
IF {UiE1S2 .LT. 3 .9}TaU=-KlEE E 'EtA*'mETS2-BSl * {loM7l'-Wl.} 
IF{'ffiETS1.LT.9 .3}TaU=KlEFF*ETA*THErSl-BSl * {VK1I'-Wl} 

IF{ {'ffiETSl.GE.9.9} .AND. {THETS2.GE.9.9} }TaU~.9 
END 

COOSTlINl' Wl~. 9 
COOSTlINl' GW)1~.9 

PROCEnRAL{Fl=IUU, STIClR,mAD1, FClREF, Wl, EVlREF , Wl} 
IF{ {{TaU-Fl}*Wl} .Gr.9.9.AND.ABS{Wl} .LT.Wl}Fl={STIClR* ••• 
SIGN{1.9,Wl}}-{GRAD1*Wl} 
IF{ {{TaU-Fl}*Wl} .LT.9.9.AND.ABS{Wl} .LT.Wl}Fl= ••• 
FCIREF'SIGN{1.3,Wl} 
IF{Wl.EQ.9.9}Fl=STIClR*SIGN{1.3,{TMOT-FM}} 
IF{ABS{TaU}.LE.STIClR.AND.Wl.EQ.9.9}Fl=STIClR*SIGN{1.3,TMOT} 
IF{ABS{Wl}.Gr.WV1}Fl={ABS{FV1REF*{Wl-wv1}}+FClREF}*SIGN{1.3,Wl} 

IF{ABS {TaU} .LE.EGREE' .AND.ABS{Wl} .LE. Wl} Fl=S'l'OPl *Wl 
END 

AO::l={TaU-Fl} /JIREF 
Wl=INrm{AO::l, ICWl) 
Tf1E1'l=INrm{Wl, Ierm.} 

NmETl=rHE1'l. *NlA 
CCNST1.Nl' ICWl~.3 
CCNST1.Nl' Icnn~.9 
PRccmRAL{TCR2=rHE:I'S3, 'rnEI'S4,K2EFF , ErA, BS2} 

IF{'mEl'S4.LT.9.9}TCR2--K2EFF*ErA*'rnEI'S4-BS2*{Wl-w2} 
IF{'ffiETS3.LT.9.3}TCR2=K2EFF*ETA*'mETS3-BS2*{Wl-w2} 

IF{ {'ffiETS3.GE.9.9} .AND. {THETS4.GE.3.9} }TCR2=3.3 
END 

o::lNSI'ANT wn=e. 9 
CCNSTJ\Nl' CID.D~.9 

PRccmRAL{F2=I'CR2, STIC2R,GRAD2, FC2REF , WIT2, FV2REF, W2} 
IF{ {(TCR2-F2}*W2) .Gr.3.9.AND.ABS(W2} .LT.WIT2}F2={STIC2R* ••• 
SIGN(l.3,W2})-(CID.D2*W2} 
IF({(TCR2-F2}*W2}.LT.9.9.AND.ABS{W2}.LT.WIT2}F2= ••• 
FC2REF*SIGN{1.9,W2} 
IF{W2.EQ.9.9}F2=STIC2R*SIGN{1.3,{TMOT-FM}} 
IF{ABS{TCR2}.LE.STIC2R.AND.W2.EQ.9.9}F2=STIC2R*SIGN{1.3,TMOT} 
IF(ABS{W2}.GT.WV2}F2={ABS{FV2REF*{W2-wv2»+FC2REF)*SIGN{1.3,W2} 

IF (ABS(TCR2) .LE.FC2REF .AND.ABS{W2) .LE. WIT2)F2=S'l'OP2*W2 
END 

AOC2={TCR2-F2}/J2REF 
W2=INrm {A0::2, ICW2} 
'mEI'2=mrm (W2, Icrn2) 

N'll1EI'2=THET2*NlA *N2A 
CXlNSTlINl' I~. 9 
COOSTANl' ICl'H2=C1I.9 
PRCCEOORAL{TCR3=rHEI'SS, THETS6 ,K3EFF ,ETA, BS3} 

IF{THEl'S6.LT. 3. 9}TCR3=-K3EFF'ETA*THErS6-BS3* {W2-w3} 



IF ('IHE'ffi6 .LT.9. 9)'lm3=-K3EFF 'ETA *THETS6-BS3* (W2-w.3) . 
• IF(TRETS5.LT.0.0)'lm3=K3EFF'el~*THETSS-BS3*(W2-w.3) 

IF( ('ltrel'SS.GE. 0.0) .AND. (THel'S6 .GE. 0.0) )'lm3=9. 0 
END 

~mAD3=e.0 ...... 
cx:mTANl' WV3=e.0 
mOCE::UU\L(FJ~,STIC3R,mAD3,FC3REF,WIT3,FV3REF,WJ) 
IF( «'lm3-FJ)*W3) .GT.0.0.AND.ABS(WJ) .LT.WIT3)F3=(STIC3R* ... 
SIGN(l.0,WJ»-(GRAD3*W3) 
IF( «TCR3-FJ)*W3) .LT.0.0.AND.ABS(WJ) .LT.WIT3)FJ= ••• 
FC3REF*SIGN(1.0,WJ) 
IF(WJ.EQ.0.0)FJ=STIC3R*SIGN(l.9,(TMOT-FM» 
IF(ABS('lm3).LE.STIClR.AND.WJ.EQ.0.0)FJ=STIC3R*SIGN(1.0,TMOT) 
IF(ABS(WJ).GT.WIT3)F3=(ABS(FV3REF*(WJ-wv3»+FC3REF)*SIGN(l.0,WJ) 

IF(ABS('lm3) .LE. FC3REF • AND.ABS (WJ ) .LE. WIT3) FJ=SroP3*W3 
END 

AOC3=(T0R3-FJ)/JlREF 
W3=:mrm(1ICC3, ICWJ) 
'ffiE:l'3=INrm (WJ, Icm3) 

Nllrel'3--T!m3*NlA*N2A*N3A 
CCNSTANl' ICWJ=9.0 
CCNSTANl' Icm3=9. 0 

" TOl'1\L REFERRED lE1IDSPACE IN 'tRAVERSE IRIVE 

'nIETS7=OIA-( ('ffiE:l'tR)-THE:I'3A*N4) 
TIrel'SB=DIAA+( ('ffiE:l'tR) -THET3A *N4) 

" 

THE1'3A--'!'HET3-( ('lm3*SlOFF) /KS3EFF) 
mOCE::UU\L(TltR=rHETS7 , THErr'S8, KTEFF, erA, BST, 'lmLIM) 
IFbtJE:M .LT.0. 0) TltR= ( -KTEF P'ETA*THE'l'S8 )-BS1'* (WJ-wnR) 
IF('llIl'!l'l>7.LT. 0. 9)TltR=(K'l'EF'p'erA*THETS7) -BS1'* (WJ-wnR) 

IF«'ltrel'S7.GE.0.0).AND.(THETSB.GE.0.9»TTUR=9.0 
IF( (ABS(TltR) .GE. 'rCRLIM) )TTUR=lXRL!M*SIGN( 1. ~, TIt1R) 
CCNSTANl' 'l\:RLIM=1.0E+30 $" cum:H serrIN3 .. 
END 

CDNS'1'1INl' WIIT=0. 0 
aJNST1\Nl' GWJl'=9.0 

PRcx::m.RAL(FnR=mR, FSTr,mAIJl', FO:Ul', wr, FVl', wnR) 
IF«(TltR-FnR)*wnR).GT.0.0.AND.ABS(wnR).LT.wr)FnR=(FSTr* ••• 
SIGN(l.0,WTUR»-(GRADT*WTUR) 
IF( «TltR-FnR)*wnR) .LT.0.0.AND.ABS(WTUR) .LT.WVT)FnR= ••• 
FCOUT*SIGN(l.0,WTUR) 
IF(WTUR.EQ.0.0)FTUR=FSTr*SIGN(l.0,(TMOT-FM» 
IF(ABS(TltR).LE.FSTr.AND.WTUR.EQ.0.0)FTUR=FSTT*SIGN(l.9,TMOT) 
IF(ABS(WTUR).GT.wr)FTUR=(ABS(FV1'*(WTUR~»+FOOUT)*SIGN(1.0,WTUR) 

IF(ABS(TTUR) .LE. FOOUT .AND.ABS(wnR) .LE. wr)FTUR=SroPT*wnR 
END 

AcrnR=('rl'lR-F1'!.R) / (J'nR+JGUN) 
WTUR=INl'm(AcrnR,ICW1') 
WTURDG=WTUR*180/3.l4l6 
THEmR=INrm(WTUR,IC'lHl') 

NmEl'l'=I'HImR*NlA*N2A*N3A*N4A 
TURDG=THETUR*l80/3.l4l6 
~ IC\'Il'=e.0 

. ClNSTANl' ICIHT=0. 0 
PmRT=(TIiEMJl'*Nl *N2*N3*N4)-'l'HFmR 

PFRRl= ('l'REMJl'*Nl )-'!'HETl 
PmR2=(TIiEMJl'*Nl*N2 )-THE:l'2 
PmR3=(THEMJl'*Nl *N2*N3)-THET3 

.. GUN DYNAMICS .. 



.. GUN DYNA'1ICS .. 
THETS9=DL5-(~) 
THESl0=DL5A+(~) 
PRcx:mRAL(T<RGUN=trHE:l'S9, THESleJ ,K'ro, BSG) 
IF(THESleJ .LT. 3. 3)T<R~*THESlI/I-BSG* (wrm-lGlN) 
IF(THETS9 .LT.3. 3)TCRGUN=KTG*THEI'S9-BSG* (wrm-lGlN) 
IF( ('1l1E'IS9.GE.3.3) .AND. (THESll'J.GE.eJ.3) )T<RGUN=eJ.3 
mD 

~~267 
a::NSTANl' RT=l. eJ6 
~RGUN=1.77 

"ABSOIl1l'E INERTIA CF GUN AB:X1l' e.G. " 
a::NSTANl' JGABS=5913. 52 

"INERTIA OF GUN AB:X1l' CENIRE OF ROmTICN" 
JGUNFcrGABS+«RGUNtRT)**2)*MGUN 

ACmUN='l'CRGUN/ JG.JN 
W3UN=mrm(Aal3UN, loon) 
THE'ro=INl'ro(wruN, ICIOO) 
a::NSTANl' ICWJ=9.3 
a:N3TANl' ICI'fD=I!l.3 
PmRG=('IHEMJ1'*N1 *N2*N3*N4)-TI1E'IU 

PRocmEAL (MESID.=THEl'S2, BACKl, DUA) 
IF ('lllE:l'S2.LE. 3.3) MESID. =100 
IF(THETS2.GE.BACKl)MESID.=eJ.3 
IF (TI1E'l'S2 • Gr .I'J.I'J.AND. TI1E'l'S2. LT. BACKl ) MESm. =1- (nrers2/DUA) 
mD 
PRocm.RAL (ME:SH2='rnE:I'S,lWl<2, DL2A) 
IF (THE:1'S4. LE.3. 3) MESH2=100 
IF (THE:1'S4.GE. BACK2) MESH2=eJ. 3 
IF(THE:1'S4.Gr.eJ.eJ.AND.THETS4.LT.BACK2) MESH2-1-(THE:1'S4/DL2A) 
END 
PROCEIXRAL (MESH3--THETS6, BACKJ, DL3A) 
IF (TI1E'I'S6. LE. eJ. 3) MESIi3=100 
IF( n1E'l'S6. GE. BI\OC.3 ) MESH3=eJ. 3 
IF(TI1E'I'S6 .Gr .I'J.I'J .AND. n1E'l'S6. LT • BI\OC.3) MESH3=1-('1'HEffi2/DL3A) 
END 
PRocmEAL (MESHl'=THEl'S8, BACK4, DIM) 
IF (THETSB.LE.I'J.I'J)MESRT=100 
IF(THETSB.GE.BACK4)MESHT=eJ.1'J 
IF (THETSB.Gr .I'J .I'J.AND. THEI'S8 .LT • BACK4) MESHl'=1- (THETS8/DIM) 
END 
PROCEIXRAL (MES!D=trHEslI'J, BI\CKS, DLSA) 
IF (THES1eJ.LE.I'J.I'J)MESH3=100 
IF(THES1eJ.GE.BI\CKS)MESH3=eJ.1'J 
IF(THES11'J.Gr.I'J.I'J~AND.THES11'J.LT.BI\CKS) MESHG=1-(THES11'J/DLSA) 
END 

" TERMINATICN CDNDITICN 
TERMr(T.GE.TF) 

" 

~ TF=3.1'J $" Sl'lXNDS " 
END 
END 
END 



APPENDIX 3 

ACSL Simulation Program of Elevation Gun Drive System 



• 
• 'lttIS ffiOOUlM SIMUIATES 'mE ELEVATICN [RIVE 
I'ROOUIM ELEIIATICN 
INITIAL . ........ 

CINl'ERVAL CINr=e.001 
NStEPS NSTP=1000000' 
AIG::IU'IH4 IAIG=2 

" 

MmRCR 'lHEMJl'=e.1, 'llIET1=e.1, 'ffiET2=0.1, 'mET3=e.l, THET4=0.1 
MmRCR ~.1,'IHElI'G=e.1, ~ .1, W1=e.1, W2=1, W3=1 
MmRCR W4=1,ws=e.l,~.1 
xmRCR 'IHEMlT=0.1, 'llIETl=e.1, 'IHEn'2=e.1, 'llIET3=e; 1, THET4=0.1 
xmRCR ~.1, 'IHElI'G=e.1, ~.1, W1=e.1, W2=1, W3=1 
xmRCR W4=1, ws=e.1, w:ruN=e.1 

"AB9Xl1I'E VAIIJES CF FRICTICN" 

" 1. STICTICti" 

• roFF IS SWI'OCH 'ID 'llRN OFF AIL N:N-LINEAA FRICTIOO" 
<nlS'I1INl' EUi'F=1 
·'--------~NOl'E FRICTICN IUM:I\1ED WHEN roFF=e " 

• NCNLIN IS 9oII'lOi 'ID LINElIRISE M::)DEL" 
CCNSTJ\m' N:tiLrn=1.1J 
FS'lM=0 .423875*FOFF*NCNLIN 
FSl'l=e.1151 *FOFF*NCNLIN 
FSI'2=e.1l51 *FOFF*N<NLIN 
FST3=e.1l51 *roFF*NCNLIN 

. FS'I'4=e.143875*FOFF*N<:NLIN 
FSro=125.76'*roFF*'OONLIN 

.1 2 • <::x:lJIi::IiB. 

~. 254325*roFF*NCNLIN 
F(nJl=e .1J8855*roFF*NOOLIN 
ro::xJ2=e.1J8855*FOFF*NCNLIN 
FCXXJ3=e .1J8855*FOFF*NCNLIN 
F'CXX.J4=e.11069*FOFF*NCNLIN 
FaXJG=11J2.64*FOFF*NCNLIN 

" 3.VI~" 

F\IM=e .36475 
FV1=e.0023178 
FV2=e.0023178 
FV3=e.0023178 
FV4=0.002463 
FVG=99.1J196 

"DEFINITICN OF GEAR RATIOS" 

COOSTANr N1=L4728 
mlSTANT N2=1.385 
mlSTANI' N3=1J.27624 
a:NSTANT N4=e. 25 
a:NSTANT N5=1J.1J45455 

"INVmSE GEAR RATIOS" 



"INVERSE GEAR RATIOS" 

NlA=l/Nl 
N2A=1/N2 
N3A=1/N3 
N4A=1/N4 
N5A=l/NS 

....... 

"GEAR RATIO FUCl'ICNS Fl:R REFEruU\L OF INERTIA J\ND FRICTICN" 

NlNl~*Nl 
~*N2 
N3~*N3 
N4N4=N4*N4 
N5NS=N5*NS 

" CAICUIATICN CF REFmRID FRICTICN" 

" 1 !I:l'ltR SHAFl''' 

Sl'I01R=FS'l}.f+(Nl *FsTl)+(N2*Nl *FSr2)+ (N3*N2*N1 *FSr3 )+(N4*N3*N2*N1 *FST4) ••• 
+ (NS*N4*N3*N2*N1 *FSro) 
rom:F=FClU#(Nl *ro::m )+(N2*N1 *F0XJ2 )+(N3*N2*N1 *FCXXJ3 )+(N4*N3*N2* ••• 
Nl *FaXJ4 )+(NS*N4*N3*N2*N2*FCnJG) 

FVMREF=FVM+(NlNl *FVl) +(N2N2*NlN1 *FV2 )+(N3N3*N2N2*NlN1 *F.V3) ••• 
+ (N4N4*N3N3*N2N2*NlNl *FV4) * (NSNS*N4N4*N3N3*N2N2*NlN1 *FVG) 

" 2. FIRsr GEAR MESH" 

srICIR=FST1+(N2*FST2 )+(N3*N2*FST3) +(N4*N3*N2*FST4)+ (NS*N4*N3*N2*FS'ro) 
FClREF=FCDJ1+(N2*F0XJ2 )+(N3*N2*FCDJ3 )+(N4*N3*N2*FaXJ4 )+(NS*N4* ••• 
N3*N2*ro:m) 
WlREF=FV1 + (N2N2*FV2) + (N3N3*N2N2*FV3 )+ (N4N4*N3N3*N2N2*FV4) ••• 
+ (NSNS*N4N4*N3N3*N2N2*FVG) 

" 3. SEXXlND GEAR MESH" 

Sl'IC2R=FST2+(N3*FST3 )+(N4*N3*FST4) + (NS*N4*N3*FSro) 
FC2REF=FCDJ2+(N3*ro:m )+(N4*N3*r0:xJ4 )+(NS*N4*N3*FCX:lUG) 
FV2REF=FV2+(N3N3*FV3)+(N4N4*N3N3*FV4)+(NSNS*N4N4*N3N3*F.VG) 

" 4 'IHIRD GEAR MESH" 

srIC3R=FST3+(N4*FST4)+ (NS*N4*FSro) 
FC3REF=FCDJ3+(N4*FCnJ4 )+(NS*N4*FCnJG) 
FV3REF=FV3+(N4N4*FV4)+(NSNS*N4N4*FVG) 

"5 FCItR'lH GEAR MESH" 

srIC4R=FST4+(NS*FSro) 
~ro:lU4+(NS*F'CCXn) 
FV4REF=FV4+(NSNS*FVG) 

"AB9JI1JI'E INmTIAS" 
CCNSI'ANl' ~.005 
CPNSTANl' JA=1.1998E-03 
CCNSI'ANl' Jl=1.9772E-e4 



~ Jl=1.9772E~ 
CCNST1\NT J2=2. 223E~ 
c::c:NSI'l\Nl' J3=4. 882E-e3 
c::c:NSI'l\Nl' J4=4.65E-e3 
~ 
c::c:NSI'l\Nl' JGUN=5913. 52 

"~ C1II.ClJIATIalS" 

-. 

• 9JFF IS SWI'lai 'ID 'llRN CFF ML BACKUISH" 
o::tlS'I7INl' OOFF=1. a 
1WlO.=2.292E-e3*OOFF*N:NLIN 
B.!IC<2=3 .175E-e3*OOFF*N:NLIN 
~.8835E-e3*OOFF*N:NLIN 
IW:l<4=a.3111a6*OOFF*N:NLIN 
IW:l(5=1.232E-e3*OOFF*N:NLIN 

" INITIAL roIDITIalS Fm ME9HIN:i" 
cnlSl'ANr ERl\C=Ci!. 5 

BKl=B1\CKl. *Fru\C 
BK2=BACl<2*Fru\C 
13K3=1WX3*Fru\C 
!lK4=Bl'O<4*Fru\C 
BK5=BI\OG*F1U\C 

"EFEn:I'IVE BI\CKIASH M EN:H MESH" 

DU=(BKl) 
IL1A=(1WlO. -BKl) 
DL2=(B<2) 
DL2A=(IW:l<2-B<2) 
DL3=(BK3) 

. DL3A=(IW:l<3-BK3) 
DlA=IlK4 
DIAA=(BAO<4-BK4 ) 
DLS=a<5 
DL5A=(BAa<5-BKS) 

"CAIDJIATICN OF REFERRED INERTIA" 

JMREF-~(Jl*NlN1)+(J2*N2N2*NlN1)+(J3*N3N3*N2N2*N1Nl) ••• 
+ (J4*N4N4*N3N3*N2N2*NlNl )+(JGUN*N5N5*N4N4*N3N3*N2N2*NlNl) 
JlREF=crl+(J2*N2N2)+(J3*N3N3*N2N2)+(J4*N4N4*N3N3*N2N2) ••• 
+ (J<l.lN*NSN5*N4N4*N3N3*N2N2 ) 
J:m:F=J2+(J3*N3N3 )+(J4*N4N4*N3N3)+ (JGUN*N5N5*N4N4*N3N3) 
J~3+(J4*N4N4)+(JGUN*N5N5*N4N4) 
J~4+(JGUN*N5N5) 

"ABSOTlJTE SI'IFFNESS 1I 

cnlSl'ANr Kl.=3.119E-+e6 
CCNST1\NT K2=1.6alE+a6 
CCI!I'Sl'1\NT K3=2 .104E+37 
CCNST1\NT K4=1.332E-+e6 
COOST1\NT KG=7.48E+a6 

KSl=9.5E+04*STOFF 
KS2=9.6537E+04*STOFF 
KS3=2.234E-+e5*STOFF 

CCNST1\NT STOFF=3. 3 

"CAIaJIATICN OF EE'E EL"'1'IVE srIFFNESS" 



• "CALCUIATION OF &F'ECl'IVE srIFFNESS" 
KlEFF=Kl + (K2-H<S1) *N2N2+(K3+KS2) *N3N3*N2N2+(K4+KS3) *N4N4*N3N3*N2N2 ••• 
+(KG) "N5NS*N4N4*N3N3*N2N2 
K2EF'F=K2iKS1+(KJiKS2)*N3N3"+ci<4+KS3) *N4N4*N3N3+(KG) "NSNS*N4N4*N3N3 
KS1.EFF=K2EFF-K2 
KJEFF=K3+KS2+(K4+KS3) *N4N4+ (KG) "N5NS*N4N4 
KS2EFF=K3EFF-KJ 
K4~4+KS3+(KG) "N5NS 
KS3~4EFF-K4 
END 

IMW!lC 
DERIVATIVE 

.. H:1I'CR ~IsrtCS 

c:c:NS'mNl' INrul'=15 
PROCEIl.RAL ('IIDl'=Gt1NDG) 
IF(GUN!JG.GE.2111)~ 
IF(GUN!JG.LE.-8)~ 

" 

IF (GUNDG .LT. 20.AND.GUN!JG. Gl' • -8 )'lK1l'-lNPUl' 
END 
~(srtCMl.-E01REF)*2.381 
CXNn'Mll' sroIM=e 
cnlS1'1INl' S'roPl=e 
cx:NSTl\Nl' S'roP2=e 
CXNSrAm' S'roP3=e 
cn<srANr S'roP4=e 
cn<srANr S'ror0=9 
WI.'M=e.42*roFF*tolLIN . 

PROCEIl.RAL(FM='lMJl' , srtCMl., GRAr.M, FCl1REF , WIIM, FIIMREF' , WMDT) 
IF«(TMOT-FM)*WMOT).Gl'.11I.0.AND.ABS(WMDT).LT.WVM)FM=(STICMR* ••• 
SI~(1.0,~»-(~) 
IF«(TMOT-FM)*WMOT).LT.I1I.0.AND.ABS(WMOT).LT.WVM)FM= ••• 
FCMREF*SI~(1.0,~) 
IF(WMOT.EQ.I1I.0)FM=STICMl.*SIGN(1.0,(TMOT-FM» 
IF( ABS ('lMn') • lE. srtCMR. AND. WMOT • EQ. 111.111) FM='IM:Il' 
IF(ABS(~).GE.WIIM)FM=(ABS(FVMREF*(~»+FCl1REF)*SIGN(1.3,WMOT) 

IF(ABS ('lMn') .LE. rom:F • AND.ABS (WMOT) • LE. WIIM) FM=S'roJ?M*\olMJl' 
END 

1\C'lIDl'=ilMYlFM . 
~-AC'Ilm/JMREF $ .. H:1I'CR 1It:X:ELERATICN .. 

WM7I'=mrm(AO:M)T,IaM:n') $" H:1I'CR VE!DCITY' " 
~180/3.1416 
cnlSl'l\Nl' IC\'MJl'=e.11I 
THEMJl'=mrm(wmr,ICl'IM) $ .. rmm AOOLE (R1IDlANS) 
cnlSl'l\Nl' I~.11I 

" REIATIVE GEAR ANGLES Fm TCRQUE GmmATlCN 
THEl'Sl=DLl-( (TIm'l)-THEml'*Nl) 
THEl'S2=DL1A+( (TIm'l)-TImm'*Nl) 
THEl'S3=0L2-( (T1m'2 ) -'I'HETl *N2) 
~L2A+( (TIm'2)-THEl'1*N2) 
'l.'Hm'2A='l'Hm'2-( (TCR2*STOFF) /KSIEFF) 
THE:l'S5=DL3-( (TIm'3)-'I'HET2A*N3) 
'mETS6=DL3A+( (TIm'3)-THEl'2A*N3) 
THEl'3A=T!lEl'3-( (TCR3*STOFF) /KS2EFF) 
THEl'S7=DL4-( (THET4)-THET3A*N4). 
THF:I'S8=DIAA+( (TIm'4)-THEl'3A*N4) 
THET4A=THEl'4-( (TCR4*STOFF) !KS3EFF) 
THm'S9=DLS-( (THFrrG) -'I'HET4A "NS ) 
THESl0=DL5A+( (THEro)-THEl'4A"NS) 

" 

.. 



• 'mESl0=0I5A+( ('l'HF:ro)-THEl'4A*NS) 
" GFJ\R MESH ~ " 
~ En'A=e.9S $" GFJ\R EFFICIElCY " 
" TCR(lJE CAIaJIATICNS n _ • 

PRCCElXRAL(TCRl=rHEI'Sl, 'mETS2, KlEFF, ETA) 
IF('mETS2.LT.0.0)TCRl=-KlEFE'tE'm*THEIS2 
IF(mETSl.LT.0.0)TCRl=KlEFF,tE"rA*THE:I'S1 

IF( (mETSl.GE.0.0) .AND. ('mETS2.GE.~.0) )TCRl=0.'" 
EM> 

a::NSrJ\Nl' rnADl=0 
a:NSTJ\Nl' WI1l=0 

PRCCElXRAL(Fl=rau, Sl'IClR,GUIDl, E\:lREF , WITl, EVlREF , Wl) 
IF«(TORl-Fl)*Wl).GT."'."'.AND.ABS(Wl).LT.WITl)Fl=(Sl'IClR* ••• 
SIGN(l."',Wl»-(rnADl*Wl) 
IF( «TORl-Fl)*Wl) .LT.",.",.AND.ABS(Wl) .LT.WITl)Fl= ••• 
FClREF*SIGN(1.0,Wl) 
IF(Wl.EQ.0.",)F1=STIClR*SIGN(1.0,(TMOT-FM» 
IF(ABS(TORl).LE.Sl'IClR.AND.Wl.EQ.",.0)Fl=STIClR*SIGN(1.""TMOT) 
IF(ABS(Wl).GT.WITl)Fl=(ABS(FVlREF*(Wl-wvl»+FClREF)*SIGN(1.0,Wl) 

IF(ABS (TORl) .L1M'ClREF .AND.ABS(Wl) .LE. WlTl) Fl:S'roPl *Wl 
END 

ACCl=(TORl-Fl)/JlREF 
Wl=INrm(ACX:l, ICWl) 
THETl=INrm(Wl,ICTHl) 

<nlS'l'J\Nl' ICWl=3. '" 
a::NSrJ\Nl' ICTHl=0. 3 
PRClCE!X.ru\L( TCR2:'I'HETS3 , THE!'S4, K2EFF , ETA) 

IF ('lBE:l'S4. LT • 0."') TCR2=-K2EFF*EI'A *'mETS4 
IF (THE:l'S3 • LT.IJ. "') TCR2=K2EE'E't£"'l'A *'rnm'S3 
. IF( (THE:l'S3.GE.3."') .AND. (THE!'S4.GE.0.1J) )'Im2=0.1J 

END 
a:>NSTANl' rnAD2=0 
a:>NSTANl' WI12=0 

PRccm.RAL(F2=l'CR2,Sl'IC2R,GUID2,FC2REF,WI12,FV2REF,W2) 
IF( «TCR2-F2)*W2) .GT."'."'.AND.ABS(W2) .LT.WI12)F2=(Sl'IC2R* ••• 
SIGN(l.IJ,W2) )-(rnAD2*W2) . 
IF( «TCR2-F2)*W2) .LT. "'."'.AND.ABS (W2) .LT.WI12)F2= ••• 
FC2REF*SIGN(1.0,W2) 
IF(W2.EQ."'."')F2=STIC2R*SIGN(l.IJ,(TMOT-FM» 
IF(ABS(TCR2).LE.Sl'IC2R.AND.W2.EQ.3."')F2=STIC2R*SIGN(1.IJ,TMDT) 
IF(ABS(W2).GT.WI12)F2=(ABS(FV2REF*(W2~»+FC2REF)*SIGN(1.0,W2) 

IF(ABS(TCR2) .LE.FC2REF.AND.ABS(W2) .LE.WI12)~P2*W2 
END 

ACC2=(TCR2-F2) /J2REF 
W2=INrro(ACX:2, ICW2) 
THET2=INrro(W2, IC'1H2) 
a::NSrJ\Nl' ICW2=3.'" 
a::NSrJ\Nl' IC'1H2=3. '" 
PRccm.RAL(TCR3=rHEI'SS, THE:1'S6, K3EFF, ETA) 

IF (THETS6. LT. "'. "') TCR3=-K3EF E'tE'!:A *THETS6 
IF(mETSS.LT."'.0)TCR3=K3EFF*ETA*THE:I'SS 

IF( ('ffiETSS.GE.3."') .AND. (THETS6.GE."'.0) )TCR3=0.1J 
END 

<nlST1\NT rnAD3=0 
<nlST1\NT WI13=0 

PRccm.RAL(F3=lm3, Sl'IC3R,GRAD3, FC3REF, WI13, FV3REF, W3) 
IF«(TCR3-F3)*WG).GT.",.3.AND.ABS(W3).LT.WI13)F3=(STIC3R* ••• 
SIGN(1."',W3»-(rnAD3*WG) 
IF«(TCR3-F3)*WG).LT.0.",.AND.ABS(W3).LT.WI13)F3= ••• 
FC3REF*SIGN(1.0,W3) 



• FC3REF"SICN(l.e,W3) 
IF(W3.EQ.e.e)F3=STIC3R*SIGN(I.e,(TMOT-FM» 
IF(ABS(TORJ).LE.STIC3R.~.EQ.e.e)F3=STIC3R*SIGN(I.e,TMOT) 
IF(ABS(W3).GT.WV3)F3=(ABS(FV3REF*(W3-wv3»+FC3REF)*SIGN(I.e,W3) 

IF(ABS(TORJ) .LE. EeJREF .AND.ABS(W3) .LE. WV3 )F3=STOP3*W3 
mo 

~(T0R3-F3) /J3REF' 
W3=INrEn(A0C3, ICW3) 
THm'3=INrEn (W3, IC'llD) 
CXNS'l'ANl' IGWJ=e. e 
CXNS'l'ANl' ICIH3=eJ. e 

PRCiCEtUU\L(TCR4=l'BETS7 , THETSS, K4EFF, E:l'A) 
IF('Im:1'S8.LT.e.e)TCR4=-K4EFF*E:l'A*THE:rS8 

IF(1llEtS7 .LT.e.e)TCR4=K4EFF*E:l'A*'rm:l'S7 
IF( (TIlEl'S7 .GE.e.e) .AND. (THETSS.GE.e.e) )TCR4=e.e 
mo 

<XJNSTMn'~ 
cnlSTANl' WIT~ 
ERCCEnRAL(F~4, STIC4R,GR1ID4, FC4REF, Wl4, EV4REF, W4) 
IF( ((TCR4-F4)*W4) .GT.e.e.AND.ABS(W4) .LT.Wl4)F4=(STIC4R* ••• 
SIGN(I.e,W4»-(GR1ID4*W4) 
IF( «TCR4-F4)*W4) .LT.e.e.AND.ABS(W4) .LT.Wl4)F4= ••• 
FC4REF*SICN(I.e,W4) 
IF(W4.EQ.e.e)F4=STIC4R*SICN(I.e, (TMOT-FM» 
IF(ABS(TCR4).LE.STIC4R.AND.W4.EQ.e.e)F4=STIC4R*SIGN(I.e,TMOT) 
IF(ABS(W4) .GT.WlT4) F4= (ABS (EV4REF* (W4-WJ4 ) )+romEF) *SIGN(I.e, W4) 

IF (ABS(TCR4 ) .LE. ro:IREF .AND~ABS (W4) .LE. Wl4 )F4=ST0P4*W4 
mo 

ACC4=(TCR4-F4)/J4REF 
W4=INrEn(Ar04, ICW4) 
'ltml'4=INrEn(W4, lCiH4) 
a:>NSI'ANl' ICW4=e. e 
CXlNSTANl' IClH4=0.e 

" 'lUI'AL REFmRED DFADSPACE IN 'IRAVERSE mIVE 

" GUN Cl1l' OF BAI.IIOCE TCR(llE" 
CCtlST1\NI' 008=1. e 

" 

"roB=RSW(ABS (TMOT) • GT • STICf.R, ( (1494.1 *THE:IG) +200.62) *OOB, e.0) 
'l'CRKG=l'CRGUNI'l'OB 
ERCCEnRAL(TCRGUN=l'HETS9, THESle, KG, m'A) 
IF(THESle.LT.e.e)TCRGUN=-KG*THESle*m'A 
IF('lm:IS9 .LT. e. e)TCRGUN=KG*THETS9*E:l'A 
IF({tflETS9.GE.e.e).AND.(THESle.GE.e.e»TCRGUN=e.0 
mo 
<XJNSTMn' mADG=e 
CCtlST1\NI' WIIG=e 

PROCEn!U\L( F'G=IlmKG, FS'ro, GU\OO, FC:XXX;, WITG, FVG, w:;tJN) 
IF( «TCRKG-FG)*WruN) .GT.e.e.AND.ABS{w:;tJN) .LT.WITG)FG=(FSTG* ••• 
SIGN(I.e,w:;tJN»-{GU\OO*WGUN) 
IF( ((TCRKG-FG)*W:mN) .LT.0.e.JIND.ABS(w:;tJN) .LT.WITG)FG= ••• 
FOOUG*SIGN(I.e,w:;tJN) 
IF(WGUN.EQ.e.e)FG=FSTG*SIGN(1.0,(TMOT-FM» 
IF(ABS(TCRKG).LE.FS'ro.AND.w:;tJN.EQ.0.e)FG=FS'ro*SIGN(I.e,TMOT) 
IF(ABS{w:;tJN).GT.WITG)FG=(ABS(FVG*(~G»+FC:XXX;)*SIGN(I.0,w:;tJN) 

IF(ABS(T<lU<G) .LE.FC:XXX;.AND.ABS(w:;tJN) .LE.WITG)FG=STOPG*W:mN 
END 

AcmuN=(TCRKG-FG) /JGUN . 



• 1CCXnF('l'E<G-FG) /JGJN 
;G.N=INm:;(JICCnJN, I('w;) 
~lOO/3.14l§.. 
111EIG=rnm:;(~, ICIHil

o 

~·lOO/3.1416 
a:NSTNn' ICloG=e.eJ 
a::NS'rml' ~.eJ 

PmRl=('lmK1l'"Nl )-111EI'l. 
PmR2=('1mH1l'"Nl *N2)-'l'HET2 
PmR3=('1mH1l'"Nl *N2*N3)-THErr'3 
PmR4=('l'BEMJl'"Nl *N2*N3*N4)-THErr'4 

PmRG=('1mK7l"'Nl. *N2*N3*N4*N5)-mm; 

.. TERMIN!\.TICN a::tmITICN 
fficx::mRAL(FINISB=GJNOO) 
IF( GlNOO.GE. W)FINISR=l 
IF(GlNOO.LE.-7.5)FINISR=l 
);liD 

TERMl'(FINISH.GE.l) 

.. 

mlSI'l\Nl' ~3.eJ $" SEXl:lNDS .. 
);liD 

);liD 

);liD 

WI'ltM 
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