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DYNAMIC MODEL OF A GUN DRIVE SYSTEM FOR A BATTLE TANK

by
C. W. BARLOW

‘ABSTRACT

- Mathematical models are pfesented for both the traverse and elevation
gun drive systems of a modern main battle tank.  The modé}s are_based
dpon the generation of torqﬁe, through the gun drive gearbbxes,'arising
frbm collision engagement of the mating gears, and included a fuil:

description of the non-linear effects of both backlesh and friction.

-DigitaY simulation studies, based upon the mathematical models,. showed

—}hat _.under_noen-loop_conditions, the initial backlash was predominant

e e T T ——

in controlling the torque generation, the angular velocity and displacement

error, at each mesh.

~ The representation of the gun dynamics as a lumped stiffness and inertia
excluded barrel frequencies higher than the fundamental, which resulted
in Tow frequency gun‘vibrations as a result of its relatively low natural

frequency (5 Hz).

The results from the digital simulation of the closed-loop traverse

gun drive system showed that backlash was not significant to pointing
‘accuracy,. providing that there was no npn-lineaf friction in thé System...
The inclusion of the non-linear friction components resulted in a steady-
state pointing erfor of the system. The pqinting accuracy.of the ;ystem

- decreased with increased Coulomb friction.
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PREFACE

This dissertation ié a- report of researéh carried out
by the author in the Department ofITransportf Technology at
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of the independent work of the author; the work of others
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supervisor, Dr. D. Meclean, for his continued guidance and

counsel throughout the period of this research.



ABSTRACT

Mathematical 'models were presentedl for both the
tréverse and.elevation gun drive systems‘of_ a modern hain
battle tank. The models were based upon the generation of
torque, through the gﬁn drive gearboxes, arising from
collision engagement of sthe mating éears, and included a
full'description of the non—iinear effects of both backlash
and fricﬁion,

Digital simuiation studies, based upon the mathematical
models, showed that, under open-loop conditions, thé initiai
backlash condition was predominant in controlling the- form
of  torque generatiod, and thel' associated ahgular
displacement error, at each mesh.

The representation of the gun dynamics as a lgmpéd.
stiffness'and inertia excluded barrel frequencies higher
than the fundamental, which resulted in 1low frequency gun
vibrations as a result of 1its relativeiy low natural
frequency (5 Hz).

The reéults_ from the digital  simulation .of the
closed—loop‘?raverse gun drive system showed that backlash
ﬁas not significant to pointing accuracy, 'providing _thét
there was no non-linear friction in the 'sysﬁem. Thé
inclusion of the non—lineér friction components resulted in
. a steéd&-staté pointing error of the system. The pointing
accuracy of the system decreased with increased Coulomb

friction.
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NOTATION

All symbols are defined in the text  immediately following

their use.
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CHAPTER .1 INTRODUCTION

The drive system fqr the gun turret of a modern main
battle taﬁk (M.B.T.) usuaily comprises two indepéndent
mechanical systems: azimuth and elevétion._ The azimuth,
often referred to as the traverse system is associated with
the rotation of the turret énd its main weapon system, and
the elevation system is used to establish the vertical angle
of the.weapon system relative to the turret.

The turret is supported on the hull of the tank by a
bearing aséemblj Uhich permits the turret to rotate relative
to the hull. The torque required to drive the turret to a
desired azimuth position is provided by an electric dfive
motor and an associated beduction'gearbox. This gearbox 1is
usually locéted in the turret itsélf, and it rotates as'.the
turret rotates. The drive to the turret is from a pinion
gear meshing with a large ring gear mounted on the hull.
Rotation of the pinion establishes relative turret-to-hull
azimuth position. The weapon system is usually aﬁﬁached to
the turret by a pin-type connection wpich' allows weabon
elevation felative to the turret and prbvides verticél,
lateral, and longitudinél support.

The‘elevation system usually comprises an electric
drive motor and reduction gearbox whose output is delivered
via a pinion gear which mates with the gun réck gear,

thereby providing elevation of the weapon. relative to ‘the



hull.-

Each of these sysﬁems has independent, cloéed-loop,
délectronic controls which -receive -feedback signals from the
stabilized gun Sig?t, ;s well as possibly from rate
gyroscopes and accelerometers which may be mounted 'in the
turret and hull. These electronic c¢ontrol systems usually
require high system gains and correspondingly complex
compénsatidn techniques to. meet the extreﬁely stringent
bandwidth requifements, while stili maintaining adequate
stability margins. The optimum design of the cdntroiler for
the closed-loop drive system for the gun turret requires. a.
detailed knowledgé qf the open-loop load characteristics
because of the possibility of the phencomenom of resonance,

as a result of the nature of the mechanical load

characteristies, and also because of the existence of '

| non-linear characﬁeristics of the performance of the dynamic
systeh.

| The objectives of the research work reported in this
dissertation were to produce an accurate mathematidal ‘model
of both the traverse and the elevation gearboxes for the gun
drive system of a modern main battle tank and also_to -earry
out extensive digital simulation studies wnich would permit
validation of the developed models whilst allowing further
studiés to. be made of particular aSpects_of gearbox design
and performance. However, so strongly did the électric drive

and mechanical ‘load influence the dynamic characteristices of



tﬁg‘gearbox that it was ﬁecessary to include in the research
work a detailed study of their effects.

The dynamic environment in which the gearboxes were
presumed to operate is shéwn schemaﬁically in Figure 1.1.
The general layout of each gearbox is shown in Figure 1.2

for the azimuth éystem and in Figure 1;3 for the elevation

Al

- system. B
- A gear train is " often considered to be an ideal
component ;H” représented by a simple f;”il.. transfer
.function ,N , which 1is the gear ratio. Although. this
assumption is sometimes adequate for certain applications,
whénever the gear train 'is the ma jor component of a
'servomeqhanism, sﬁch as that in an M.B.T. gun drive system ,'
\then a more detailed approaéh is requiredlwith all losses in
the gears being taken into account. These factor3'invalidate
the representation of a gearbox as a simple speed and torque
converter.

A detailed approach requires accurate modelling of all

the gearbox elements in terms of their inertial properties

ie. 'Ehé“A accelerations, f:;_;l velocities, and
displacéments, .angﬁfaust -take into .account the finité
distribﬁtion-of inertia through the gearbox- and' '53 “ the
losses due (.. - to friction and?! ' backlash.

Such an approach has several advantages, and not only
for the design of control systems for existing gearboxes,

Any generalised model permits the investigation of the
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performance at any peint in the gearbok thereby allowing
modifications to be made to suit specific required dynamic
pebformance.
| The models presented in this work are based wupon the

generation of torque at each gear mesh thrdugh the colliéion
engagement‘of the gears. Thercollision engagement at each
mesh is itself a function of both the backlash condition
prevaiiing at each mesh and the associated initial
condition. The tohque arising from the collision engagement
at a gear mesh, through the associated mesh stiffness,
fesults ih‘a_disp;acement of the collision-engaged member.
This displacement then forms the input to the next_ gear
mesh. |

Backlash, or free play, occurs when t#o mechanical -
elements are not rigidly coupled, but are connected through
an inactive zone of displacement within which no direct
mechanical coupling exists. Care has been taken to -
accurately model tﬁe'non-linear effects of backlésh at each
mesh, as the effect is not,onlj one of lost motion’lbetween
mating-geafs, thereby causing instability in some instances,
and Subsequently deterioration in pointing ;ccuhacy of the .
system, but it also acts as a switching mechanism for torque
geheration. |

The term 'friction' has a number of meanings, but, at
its simplest, it may be regarded as a linear (or viscous)

term which is a continuous linear function of the velocity.



Such friction is, of course, the easiest to represent in any
simulation program and it results in a net loss of torque in
the system. However, in many instances, the type of friction
occurring is usually a combination of both 1linear and
non-linear phenomena. Two very common discontinuous types of
frieticon, which occur'wheﬁ mechanical surfaces are in direcﬁ
contact (eg. they are not seperated by a viscous film of
lub?icant) are Coulomb_friction and stiction. When Coulomb
friction exists, stiction will exist as well.

The continuous linear friction term is usually added
fo the constant Coulomb component which results in a
‘combined linear term with its origin on the friction/speed
characteristic curve offset by the value of the Coulomb
fricton. Care has been taken tQ model"acqurateiy the
. appropriate fﬁiction characteristic at each gear mesh.

In a position control servomechanism, the presence of
friction may be desirable for some conditions .and
undesirable for others. The non-linear components produce a
steady-state; or statie, error, and are therefore
undeSirablelfrpm the viewpoint of_accuracy. Howeveb, under
~certain conditiqns, linear friction cah provide appreciable
damping. It can be shown (ref. 1) that all positional
servomechanisms with  backlash would display continuous
oscillations about nuli, except for the existence of linear
friction in the system. | | |

In any event it must be emphasised that friction, in

-8 -
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géneral, is a very .variable effect. Different mechanical
elements from the same producgion- batch may exhibit
markedly différent characteristics, and the same element
itself may exhibit markedly different characteristics
-throughout its 1ife , dependent upon such factors as past
wear, its state of lubrication, and its operating
temperature;‘for example. Hence any simﬁlation of a friction
effect is heccessarily approximate, based upon ‘'typical'
-values. |

The stiffnesses of the gears and shafts and the
associated inertias were  calculated from geometric
properties of the gearbox elements. The effects upon the
gearbox dynamics of such finite stiffnesses and inertias can
be significaht. Owing to the nature of the models it is
importanf to distinguish between absolute .and feferred
values. Aibhough the inertias of the individual gears and
shafts may Be small, their effective inertias are increased
by the referral of the inertias_of_all_the other gears and
shafts loadside, and, also by the referred inertia of the
load itself. Similarly, frictional effects and stiffnesses
are also referbed paraméters.‘The models have been arranged
to rééalculate referred values where an abéolute valué is
_ altered,_'thhs makiﬁg re-design possible at simulation
run-time. The methods of referral of the vérious parameters
are outlined more fﬁily in the appropriate sections of this

dissertation.



Although backlash has been capefully modelled, the
effects of referred parameters when a gear becomes unmeshed
_.have not been-includedvinwthe-models because of the gross
non-linearities wnich reeuited and their effect on the
stability of the integration method. Thus, referred values
are constant for a éiven simulation run. 4 detailed
discussion of phis point is presented in Appendik'i.

The models have been arranged so that the system
'dynamics can be set up_under the .complete control of the
user to‘reflect any required* initial state .and includes
" options to remove any, or ali, of the non-linearities
thereby allowing their effects upon system performance to be
studied.

- - The gearboxes.are used to -drive repreeehtative' load
dynemics, namely turret and éun for the traverse system, and
gun alone for the elevation system, with the inclusion of

o descriptionog the
the appropriate out-of-balance forces. The \load ' properties

must be considered to be the least satisfactory component

of these models for f;;;"Jsi based only upon informed
estimates féﬁa. do@inet_.represent particular turrets or
particﬁlar guns, since such classified infofmation was not
.available to the author.”In particular, ‘the representation
of the.gun as a lUmped inertia and stiffness results in the
exclusion of barrel frequencies higner than the fundamental,
although the modes associated with these higher frequeneies

may -be significant in terms of achieved ' pointing accuracy.



No: effects of external inputs from vehicle motions were
studied although these too may be significant for system
performance:

Chapters 2 and 3 of this dissertation are devoted to
the necessary geometric relationships reqsired by the models
for the calculation of component inertias and stiffnesses. A
detailed preSentation' of friction, -together with the
appropriate mathematical representation of the non-linear
frlctlon characteristics throughout the gun drive systems
is glven in Chapter 4 The torque/speed characterlstlc of a
simple drive motor is detailed in Chapter 5, as the output
from such a model forms the forecing input to each gearbox
model. Althouéh the same motor model has been used for both
systems, the dynamlc characterlstlcs of the motor will be
dlfferent in each case due to the differing dlstrlbutlon of
inertia and friction effects and the difference in gear
ratios for eacﬁ system. Backlash, and the associsted
mathematical representatioh of torque generation following
collision engagement of the gears, is presented in Chapter
6. The modelling of a planetary gear traih is detailed in
Chapter 7, with the transformations necessary for its
representation as a single effective mesh.

The digital simﬁlation, presented in chapter 8, 1is
based on ACSL, Advanced Continuous Simulation Language . This
digital simulation language is -interactive and allows

variables, simulation conditions, outputs, grapnical plots



ete. to be changed at any time during a run! It prbvides for
the selection of any of four integration algorithms, which
*ére fixed-step, -first-order and jsecond-order Runge Kutta,
and a variable step.Euler foutine and a 'sﬁiff' variable
step algorithm developed by W. Gear (ref.2). Control of the
integration parameters can be handled from within the
simulation programgor reset at run time.iThus,_for example,
step 1ength 6r‘00mmunication interval can'ﬁe ad justed at run
“time to suit the particular dynamics of the system under
consideration. In _the work presented here the most
Satisfactopy results were obtained using‘ the 'stiff;
algorithm ( developed by Gear) which is outlined more fully
in Appendix 1. Some results are presented to illustrate the.
~nature of problems encountered when aftempting to._uéer_theﬂ
fixed-step. Runge Kutta, second-order algorithm. These
problems arose due to the 'stiff' nature of the modelling
equations. 'Stiff’ differgntial equapions frequently arise
from physical problems in which there exist greatly
différing local time‘constanté. This condition implies that

the solution will contain 'fast' and 'slow' components in
decay. The shoft time-constant components then. controi the
stability of the integration method even :though they may
have decayed to insignificant levels, so that the truncation
or rounding error is deéermined by the components with the
longer time-constants. If flexibility effegts of the gun

dynamiés or the effeéts of gear meshing on referred

- 12 =



parameters, for example, were to be included, then the
choice of Gear's method is strongly recommended.

The disﬁertation is comﬁleted with_results showing the
responses of both azimuth and elevation systems to step
inputs of motor torque for a range of .initial 'conditions.
~ Although the-objectives cof the work presented here were
concerned with the modelling of the open-loop gun drive
systems, it became apparent in the course. of the research
work that, apart from small torqﬁe inputs, the effects of
hon-linear'friction oﬁ performance only bécame appreciable
under closed-loop conditions. Therefore,simple control laws
were developed to examine system performance under
closed-loop conditions. It 1is not intended that these
control laws should be considered as 'optimum' for the
systems, but wére developéd merely as a means for
illustrating tﬁe effects and inter-relationship of the

non-linearities on system performance.



CHAPTER 2 GEAR AND SHAFT INERTIAS

-Q"The“”detefminéﬁion "of systenm inertié is of major
importance for design and analysis as it directly affects
the démping, stability} and response of the system. Although
the inertia of the individual gears and shafts may be small,
their effective value, when summed and reflected, can be
significant.

A‘great majority of servo rotating components are by
nature symmetrical about the axis of rotation and lend
themselves to easy calculation. In fact the inertia. of most

of these can bé calculated. by subdividing each component

into hollow right circular cylinders. The various c¢ylinder

rinertias are then summed to provide the total inertia for

the component. The general equation for calculating the
inertia of a hollow right circular cylinder in terms of
diameters is:

I - MR e d2) D

]
8
where D.is_the outside diameter (m),
d is the inside diameter (m),
and M is the mass of eylinder (Kg).
The mass of the cylinder is defined by the equation:
M = mph(D°- d°) S ¢-3)
42 | | S

where p is the density of the material (Kg/m® )

- 14 -



h is the height of eylinder (m) ,
and g is the acceleration of gravity (m/s?).

The vérious cylinder inertias are then summed té
provide the total inertia for the component. |

-The ineftias_of the shafts may also be determiﬁed in a
similar manner, however, since 1in this case d 1is zero

Eq.{1) reduces to:

The distribution of inertias through the traverse and
elevation gun drive systems are shown in Figure‘ 2.1 and
Figure 2.2 respectively. The variables used in these figures
refer to the digital simulation presented in Chapter 8.
Since_it is the ﬁorqde developed at each mesh that will
accelerate the inertia, the inertia is assumed to act on the
output member of each gear mesh. Thus, all the n inertias on
a common shaft are added to form the inertia of the output
member, which is given by:

[3]
I::)_';Ic ..... ERRREEERRRE

¢

where Ic iS a component inertia on thé same shaft as the
output.member. |

In addition, the output member has all output member

iﬁertias loadside referred onto it through the "appropriate

gear ratio, The'total:effective inertia on the output member

h

of the i gear mesh is then given by:
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I = £I.. + TI.. .N2 ... ... o (5)

i ci L
whefe Icj is a component inertia-on a common shaft with the
output member J loadside of i ,
and Ni is the gear ratio from the output member i to the
output member j.

Usually a component is'mountéd so that its axis of
rotation is through the centre of gravity. If this is the
case then the above equations yield the‘ correct inertia
directly. If this 1is not the case, as when beferring
inertias back through the gear train, the inertia about the
raesired axis of rotatioh can be determined by  using the

parallel axis theorem. The inertia of the component about

‘the desired parallel axis may then be calculated as:

where I is the inertia about the desired axis
‘Icg is the inertia " through the centre of ‘gravity
.parallel to the axis desired ,
and d is the distance between the two parallel axes.

The absolute inertias in the gear'train are calculated
from eq.(1) ahd.eq.(3) fof gears and shafts respectively,
The referred.inertias loadside are then added to give the
total effective inertia on the ocutput member of the gear

mesh. If the parallel distance between shafts. - is

- significant, then the parallel axis theorem must be used

. 18 -



gears

ratio.

prior to reffering an inertia through the appropriate gear

The values of absolute and the corresponding referred

Elément'

Motof shaft
First gear
Second gear
Shaft 1
Thifd gear
Fourth gear
‘Shaft 2
Fifth gear
Sixth gear

Shaft 3

Pinion gear:

Turret

Gun

"Absolute

Inertia
(Kgm?)
0.005
0.000197
0.00488
0.00001
0.00006

0.0077

0.000345
0.000199
0.000148
0.005§6
O.bTOTH
43000
8051.89

TABLE 2.1

inertias used for the traverse system were:

Referred
Inertia
(Kgm?)

0.0797

0.5417

.8.8037

152.699

51051.89
8051.89

Note that the fifth and sixth gears are the equivalent

representing

planetary

- gear system, The



representation of the planetary gear system as a single
equivalent mesh is shown in Chapter 7. |
The values of absolute and the corresponding referred

inertias used for the elevation system were:

Element ' Absolute Referred
'Inertié . inertia |

o (Kgn? )  (Ken?)
Motor shaft 0.005 . 0.25166
First gear 0.0012 _

Second gear : 0.0002 0.11316
Third gear 0.0004 - 0.05889
Shaft 1 0.000312

Foﬁrth géar | 0.bd02ﬂ

Fifth gear 0.00085 0.76887
Shaft 2 ' 0.00025

Sixth gear . 0.00067

Séventh gear ' 0.00055 12.2é29
Shaft 3 | 0.0026
Pinion gear  0.00023

Gun | 5913.52 ~ 5913.52

TABLE 2.2

The planetary gears are represented in the elevation

system by the equivalent mesh between gear 6 and gear 7.

- 20 -



It 1is only important to caléulate the effective
inertia on each collision-engaged' member as it is the
effective inertia of this member that the torque deveioped
at each mesh will ac¢ceelerate.

The increase in effective inertia at each mesh is due
mainly to the referred load inertia, although ‘ignoring the
gear and shaft inertias themselves, particularly at ‘the
motor end of the gearbox, may result in-significant errors.
For example, the refefred load inertia acccounts for 92.5% of
‘the total effective inertia on the motor shaft in the
traverse system and 96.3% of the total effective inertia on
the motor shaft in the elevation system. The ratio of
referred load inertia to the -total effective inertia is
iikely to increase loadwards through the system, dependent
on the gear ratios.

.However insignificant thé gear and shaft inertias may
appear to be, their inclusion doés allow a realistic design

appraisal at simulation run-time.



CHAPTER 3 DETERMINATION OF GEAR AND SHAFT STIFFNESSES

The torque at” each mesh 1s generated through the
stiffness asscciated with a paif of meshing gears. An
analytical description of stiffness provides insight into
the factors that Should be considered to ensdre that maximum
stiffness is obtained. For a pair of meshing spur gears the
deflection, &, of the gear teeth, assuming one tooth contact

at the tooth centre, is given by:

3= P(EaZa+EpZp)  ..... (7)
FEaZaEbZb
Where Z; and Zp are the elasticity deformétioﬁ factors fdr‘
the mating gear'teéth '
| E; and Ep are tﬁe the @éterial moduli of elasticity
.for.the mating gears ,
and P and F are the applied tangential load and the = gear
face width respectively.
The elasticity deformation.factors for each geaf are given
by:

) AP (8)

Zz - (0-242+7.25Y)

where Y is the Lewis form factor, a function of the circular
pitch, number of_teeth, pressure angle, and tcoth profile.
The Lewis form factor for a conventional 20 degree

pressure angle, full depth gear is shown in Table 3.1.
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No. of teeth Form factor No. of teeth Form factor

10 0.0624 26 0.110

11 0.072 28 0.112
12 0.078 30 . 0.114
13 0.083 34 0.118
14 0.088 38 0.122
15 0.092 43 ~0.126
16 0.094 50 0.130
17 0.096 - 60 © 0.134
18 0.098 75 | 0.138
19 0.100 100 o 0.142
20 : 0.102 150 © 0.146

24 : 0.107 300 0.150

TABLE 3.1 LEWIS FORM FACTOR
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The stiffness. of the gear mesh, represented by a
torsional spring of stiffness, K, may be obtained from
.eq.(7). Thus,

2
K =X — 4Dz FEaZaBbZpb = ..... (9)

When the gears are made of identical material eq.{9) reduces

to:
2 .
K = 4D FEZ3Zh .iia... (10)
T Za+Zp
where D, is the pitch diameter of the collision engaged

. gear,

The gear mesh stiffness computed by the'.pbeceding
equation 1s based on one tooth contact. Some texts multiply
this result by the tooth contact ratio to arrive aﬁ a more
'accurate' stiffness value. However, Chubb (Ref.1) suggeets
. that even ehe unfactored stiffnesses are often higher than
those experienced for actual hardware.

The stiffnesses of the various shafts in the gearbox
assemblies were calculated according . to the following

equation:

I’ ... LL.(11)

4
Kg = GsD 32t

where D is the shaft diameter ,
L is the shaft length ,
and G, is the shear modulus of elasticity of the

shaft material.
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The stiffness ét any point.in the gear train 1is the
sum of the absolute stiffness, as calculated above, and the
referred stiffnesses, loadside, such that the effective
stiffness at any point, i,is given by:

2

K, = K+ KN i,

where K is the absolute stiffness at the point i -,

Kj is a stiffness at a point j, loadside of i ,

and N, is the gear ratio from the point i to the point j.

The angular displacement error due to 'the finite
stiffness §f.the shaft may be obtained be dividing ¢the
torque . applied to the shaft by the effective shaff
'stiffness. If the angular displacément of the output member

h

of the it gear mesh is given by 8; , then, the input langlé

th '
to the succeeding (i+1) mesh is given by:

- Ti
8, = e‘_'ks ............. (13)
The effect of shaft stiffness 'is "an extra term, -E o
s

controlling the_angular input into the subsequent gear mesh,

The-distribution of stiffness through the traverse
system is shown in Figure 3.1, and in Figure 3.2 for the
elevation system. The variables shown in these figures refer

to the digital simulation presented in Chapter 8.
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Ki = Mesh stiffness : >
* Ksi = Shaft stiffness | g Ktg

Ktur = Turret stiffness

Ktg = Gun to turret stiffness

9¢

F Ks3
' Ks2 ===
motpr" Al |0 E pin . GUN
K1 K2 K3 -;- Ktur | v
B C |
Ksi |
Turret

E_i_gur‘g3.l . Distribution of stiffness through traverse system



Kg = Gun Stiffness

12

motor A E - Ks3 GUN
| 6 |
N Ks2
| B E —1F | pin Kg
K2 K3 K4 ™1
C D G
Ksl

~ Figure 32 - Distributijon of'stiftnggg through elevation system




The absolute and referred values of stiffness for the

traverse and elevation systems are detailed below:

Element Absolute ~ Referred
Stiffness Stiffness
(Nm/rad) o - (Nm/rad)

(1) Traverse;

Motor shaft oo | co

1st mesh 1.697*107. 1.631*10a
Shaft 1 | 1.135%10° 1.460%10°
2nd mesh 1.972%10° 5.348%10°
Shaft 2 1.116%10° 5.151%10°
3rd mesh 1.014%10° 7.005%10
Shaft 3 6.994%10° 6.994%10°
4th mesh 2.890%10°  2.982%10°

' 8
5th mesh 9.220%10° 9.220%10

(2) Elevation;

Motor shaft oo ' oo

1st mesh ©3.119%10° ~ g.282%10°
2nd mesh 1.601%10° 3.212*%10°
Shaft 1 | 6.352%10° - 1.612%10°
3rd mesh . 2.104%10% 2.112%10"
Shaft 2 7.215%10° 8.234%1¢°
4th mesh  1.302%10° 1.318%10°
Shaft 3 - 2.553%10°  1.545%10°

Sth mesh 7.480%10° 7.480%10°
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The motor shaft was assumed to have been infinitely
'stiff, both in the traverse system and in the elevation
system. | | |
The distribution of stiffness, unlike that of inertia,
is not dominated by any one element, and it 'is therefore
importantrthatrall'the finite stiffnesses in the system
should be taken into account. In general, the 1load end éf
the gearboﬁ will have higher stiffnéss values than the motor
end, due to the effective increase in torque through the
system. Hdwever, this effect may not be relised as stiffness
is a function of the individual component geometry, which is
itsélf a function of the.-overall sYstem requirements for
torque and - speed conversion. Thus, the local stiffness
values obtained will not only be a functicon of thé loading
of the individual component, but will also be a function of
gearbox geometry.
| However, even when the gear and shaft stiffnesses are
based upon the 'appropriate static load analysis of the
- individual membehs, the dynamic effects that such finite
stiffnesses have oh system pérformance_ are ignored. The
inclusion of the finite inertias and stiffnesses in the
‘mathematical models, and subsequenﬁly in the digital
simulatiqn, fherefore allowé tﬁese effects 'td be - stﬁdied,
and allows for the re-design of any gearbox element to be

made to suit the required dynamic performance.
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CHAPTER 4 FRICTION EFFECTS

The frietion levels 'associated with typical gear
trains and load components vary considerably with component
life and usage for 'identical' production line units. This
variation is a function of temperature and possibly a
function of angular positioﬁ.l If the mathematical models
required for the gearboxes were to be used for éuch 1life!
studies, then appropriate methods of statistical analysis
and simulation would be required. It is adéquate' for this
‘research simply to use typical values ¢to investigate the
effects on system performance.

Friction can be divided into ﬁhe following distinct
lcﬁmponeﬁts:

(1) Stiction;
(2) Coulomb friction;
(3) Viscous friction;

Stiction and Coulomb friction are two very common
forms occurring discontinuously whenever mechanical surfaces
are in-direct contact,‘eg. when they are not separated by a
viscous film, eg. lubricant. Viscous friction is essentially
linear and occurs in mechanical elements by virtue of the
relative:angular motion. Windagé effects in the motor apd
bearing friction are  frequently taken as being Viscous
friction terms. |

When the velocity is'zero, only stiction applies. The
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application of any torque to the member involved will result
in the development of a stiction torque of magnitude exactly
equal, but of opposing direction, so that " the angular
velocity remains at zero. When the applied torque_reaches a
partiéular value, the stietion 1limit, then the opposing
stietion torque disappeabs 'suddeniy. This corresponds to
'breakaway'; and aﬁ immediate acceleration of .the' membér
results. Once motion does oceur, follbwing bréakaway; the
Coulomb, or sliding-frietion, effect will apply, together
with any viscous compenents. '

Kochenburger (Ref.3) recommended that the function
shown in Figure 4.1 be used to represent the stiction
effeét. This representation is adequate for some simulétioh
probléms; Howéver,‘its major disadvahtage is thét it permits
the existance of a small, but finite, velocity when stiction
is in being. A typical fricticn characteristiec for a gear
“train servomechanism is shown in Figure 4.2. From this
.figure a continuous relationship between friction and
velocity can be established for all non-zero  velocities.
However,.such.a characteristie 1is usually obtained under
- motor acceleration. A different .charactefistic usually
“obtains when the motor 1s decelerating. Therefore, the
disadvantage  with this characteristic, as with
Kochenburger's model, is that upon deceleration the stiction
effect is again encountered. Such an occurrence contradicﬁs

the definition of stiction in that the stiction effect does
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Stiction

viscous
Coulomb
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viscous

Stiction

Figure 4.1 : Kochenburger's suggested friction
char‘actemstlc

Friction

Viscous
Stiction

Couicmb

Angular
velocity

Figure 4.2 : Typical gear train friction char gtg 15L1§

obtained under motor acce]er‘gtlon
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not again becomé effective until the velocity reaches zero.
The friction model developed for the motor is shown in
" Figure 4.3. This characteristic is split into four distinect
regions relating to the velocities at the stiction
boundaries, -w, ,+w; . Each of the regions is wunique 1in 1its
combination of acceleration and velociﬁy as ﬁay bé inferred
from Figure 4.3. Thus the governing'.mathematical equations
can be readily established. The underlying assumption 1is
. that upon deceleration Coulomb frietion 1is encountered Aat
velocities within the stiction boundary, and stiction does
not become effective until zero velocity 1s reached. Note
how this model obeys the definition of stiction.
| . The function shbwn. in Figure 4.3 was achieved by
éssigning several logic éonditions to ffiction,--dépending
upon the relative signs of motor speed and acceleration . and
also upon the value of motor speed, ie.

for -w, < w, < +Wg ;

E,= F .Sgn(wy) - K.wy,  when @p.wpm >0 ....(14)
Fn= F. -Sen(wy) . when oWy <0 Lo..(15)

where Sgn(i) is defined as:
+1 for 1 >0
Sgn(i) = 0 for i =0 ....ieiineniernnn vl -(16)
-1 for i <0
an1is the motor angular acceleration

and Wi is the motor angular velocity
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wWm> 0
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> am*wm«<o0
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Figure 4.3 : Developed motor friction charactet istic
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K is given by:

K= (F-F) = oo, (17)
wS
for - W, > Wy >‘+ws ;
E.= [F, . (W -w; )+F. 1.Sgn(w,) -..-(18)
for w, = 0 ;
F.= F .Sgn(x,) when T, > F, ....(19)
Frn® Tm when T, & Fn  ....(20)

‘where F, is the total friction at the motor shaft

F, is the referred stiction at the motor shaft
EE is the referred Coulomb friction at the motor shaft
F, 1s the referred viscous friction-at the motor shaft

Y

To avoid an implicit structure arising in  the
simulation, the accelerating torque, T,-F, was used to assign
conditions upon acceleration for it has identical sign. T,
'represenis thertorque delivered by the driﬁe motor.

' Viscous friction is a velocity-depéndent term and 1is
therefore referred as the gear ratic squared, such that the
“ total linear viscous friction bn the motor shaft is  given

by:

where E“v is the linear friction coefficient of the motor
shaft,
Fh is the linear frietion coefficient of a point j

loadside ,
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and N; is the gear ratio from the motor shaft to the
point j.
Both stiction and Coulomb friction are torques and are

therefore referred as the gear ratio:

T 3 T (22)
Fo = ch + Z.'.ch ‘Ni e armaneas (23)

where En ,Fn are the stiction and Coulomb friction
components of the motof.shaft R
Fjs +Fjc ‘are the stiction and Coulomb friction
components of a point'j loadside,
aﬁd Ni is the gear ratio from thé motor shaft to the
‘point J- |

Owing to the manner in which tordue was ‘generated at
each géar mesh,'it wés fbund'to‘be impossible to achieve the
same friction characteristic as that being ‘used at the
motor. The friction function used throughbut the gearbox,
and at the load, is shown iﬁ Figure .4.4. The logic 1is
identical to. thét 'used at the lmotar, with the motor

accelerating torque being used to define correctly the sign

of stiction.

The = characteristic, for - the ith gear mesh 1is.
defined as:
‘ F, = Fis .Sgn(% ) when w; =0 ....... (24)
FF=F .w +F - whenw #0 ....... (25)
v I lc

where F; is the total friction acting on the output member

Fis is the referred stiction at the output member
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Yiscous -
Stiction

Figure 4.4 : Developed friction characteristic for
gear meshes and load.
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F is the referred Coulomb friction at the output
member |,

F. is the referred linear friction at the output
member |,

and w; ié the velocity of the output member.

The referred friction at the output member is given

by: .
Fo = B+ ZF .Nij' R (26)
o= F + TR N ...l eeeeei(27)
F,= B+ I, LNT O Ll (28)

_ where F; ,F. ,F, are now the absclute friction components at
the mesh . |
an§ Nii ‘is the gear ratio from the qutput member to the

point j.

Figures 4.5 and 4.6 show the distribution of friction
through the traverse and elevation systems reSpectively..The
-variables shown in these figures refer to the digital
simulation presented in- Chapter 8._Thus, at the ith mesh,
. the absolute values of 'stiction, Coulomb friction, and
viscous friction coefficient are denoted by &i ; &i ' .gnd
Eh. respectively.

| The absolute values of frictioh ﬁorque for stiction
- and Coulomb frictibn, together with the corresponding value.

of the viscous friction coefficient, used in this study are

as follows for the traverse system:
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Fv = Viscous friction coefficient

Fs3
| - Fc3
Fsm Fs2 ' Fv3

- Fem - Fe2
Fym FV2 \

/
motor A D_

Fsl)

Fcl
Fvi | B C
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1. Motor shaft;

2. First mesh;

3. Second mesh;

“Coulomb -

4. Third mesh;

5.Fourth mesh;

Stiction
Coulomb
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Stietion
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Viscous
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Viscous

'Stiction
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6. Fifth mesh;
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0.419
0.245
0.573

0.532

0.311
0.614

1520
1410

1300

0.00
0.00

0.00

Note that the fourth mesh is

- U4

(Nm)
(Nm)

(Nm=-s)

(Nm)
(Nm)

(Nm-s)

(N:ﬁ)
(Nm)

(Nm-s)

(Nm)
(Nm)

(Nm-s)

(Nm)
'(Nm)

(Nm-s)
(Nm)
" (Nm)

. {Nm=-s)

between

the

(29)
(30)
(31)

- (32)

(33)
(34)

(35)
(36)
(37)

- (38)

(39)
(40)

(41)
(42)
(43)

(44}
(45)
(46)

gearbox



output pinion and the turret ring and c¢onsequently the
friction values are those of the load. The fifth mesh is the
.gun/turret interface which has been modelled as a
convehtional mesh as the turret engages the gun through the
deadspace between them. In this case the gear ratio is
unity. It has been assumea that there is no friction at the
gun/turret interface as. they are directly coupled once
engaged through the deadspace.

The referred values for the traverse systém are
calculated‘from abové as follows: o

1. Motor shaft;

Stictionlz 2.492  (Nm) 47)

Coulomb = 2.074  (Nm) (48)
Viscous . 0.i32 (Nm-s) (49)
2. first mesh; _
Stiction = 5.481 | (Nm) (50)
Coulomb = 4.893  (Nm) (51)
 Viscous = 0.623  (Nm-s) (52)
3.Second mesh; _ ._
|  Stiction = 20.50  (Nm) (53)
| Coulomb =.18.83 | (Nm) | (54)
Viscous = 0.832 (Nm-s) (55)
4. Third mesh; |
| | Stiction =‘83.66' (Nm) - (56)
Coulomb = T77.42 (Nm) - | (57) -
Viscous = 4.502 (Nm-s)" (58)



5.Fourth mesh;

Stiction

- 1520 (Nm) (59)
Coulomb = 1410  (Nm) (60)
Viscous = 1300 (Nm~s) (61)
6. Fifth mesh; _
Stiction = 0.00 (Nm) - (62)
COulomb -0.00  (Nm)  (63)
Viscous =_0;OO (Nm=s ) (64)

The absolute values of friction used in the elevation
system are:
1. Motor shaft;

Stietion = 0.424  (Nm) - . (65)

Coulomb. = 0.254  (Nm) (66)
Viscous = 0.065  (Nm-s) (67)
2. first mesh; _ _ .
| Stiction = 0.115  (Nm) (68)
Coulomb = 0.089 (Nm) (69
Viscous = 0.0023 (Nm-s) (70)
3.Second mesh;

‘Stiction = 0.115 (Nm)r A7)
Coulomb = 0.089 (Nm) (72)
| Viscous = '0.0023 (Nm-s) (73)

4. Third mesh; :
| StictiOn = 0.115 (Nm) o (78)
' Coulomb = 0.089  (Nm) . (75)
= 0.0023 (Nm-é) (76)

Viscous
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5.Fourth mesh;

Stiction = 0.144 (Nm) (1T

Coulomb = 0.111 (Nm) (78)

Viscous = 0.0025 (Nm-s) (79)
6. Fifth mesh;

Stiction = 125.76  (Nm) (80)

Coulomb = 102.64 (Nm) (81) -

Viscousf = 99.02 (ﬁm—s) (82)

The referred values for the elevation system are thgn_
calculated from the above as follows: | |

-1; Motor shaft; | _
1.719  (Nm) - (83)

Stiction =

Coulomb . = 1.249  (Nm) (84)

viscous - 0.0802 (&sz)" (85)
2. first mesh; |

Stiction = 0.8791 (Nm) (86)

Coulomb = 0.702  (Nm) (87)

Viscous = 0.009 (Nm-s) - (88)
3.35econd mesh; ’

Stietion = 0.552  (Nm) (89)

Coulomb = 0.4429 (Nm) (90)

Viscous = 0.0035 (Nm-s) (91)
4. Third mesh; . |

Stiction = 1.580  (Nm) .(92)

Coulomb = 1.283  (Nm) S (93)

Viscous =

0.0153 (Nm-s) (94)



5.Fourth mesh;
5.860 (Nm) (95)

Stiction =

Coulomb = 4.776  (Nm) (96)

Viscous = 0.2071 (Nm-s) (97)
6. Fifth mesh; | |

Stiction = 125.76 (Nm) (98)

Coulomb = 102.64 (Nm) (99)

Viscous = 99.02  (Nm-s) (100)

It has been assumed that the absolute values -of
friction at each mesh were equal, as the only known friction

characteristics for the system were:

(1) motor frietion;

(é) load friction;

(3) load friction referred onto motor shaft (from (2));

(4) moﬁor + load friction + gearbox frietion, referred
to the motor shaft; | | \

From these, the total effective gearbox friction
referred onto the moﬁor shaft can be calculated. This
effective friction is assumed ﬁo_.result from an equal
distribution of friction through the gearbox, and thus the
‘absolute va;ues df friction at each mesh may be calculated.

Table 4.1 shows the breakdown of the- total effective
motor friction into its constituent components, ie motofA
friction, effective load friction, and effective gearbox

friction, for both the traverse and elevation systems.



% of total effective friction on motor shaft

load motor gearbox

(1) Traverse:

Stiction  73.3 | 18.5 8.2

Coulomb  81.7 - 12.5 5.8

Viscous 1.4 . 34.9 63.7
(2) Elevation: )

Stiction 46.9 24.7 284

Coulomb 52.6 . 20.3 271

Viscous 5.1 81.6 13.9

TABLE 4.1 BREAKDOWN OF EFFECTIVE MOTOR FRICTION

From Table 4.1 it can bé seen that‘ the iﬁclusion of
gearbox - friction is significant. In addition, the
contribution of the load to viscous damping is small in bhoth
. systems. The load friction is the'major contribution to the
non-linear friction components, these componenfs being
most significant in £erms of achiéved pointing accuracy.

.Thé inclusion of the full noh-linear friction effects:
in the mathematical models, allows their effects on syétem'
performance td be studied under a wide range of dyhamic
conditicns. If pointing aceuracy of the system is' of major.
_impoftanée, tﬁen‘it is essential that the models contain a
fuli description‘of the non-linear friction effects at each

point in the gearbox.
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CHAPTER 5 MODEL OF ELECTRICAL DRIVE MOTORS

The inputs to the mathematical models of the gearboxes
are taken to be the torques provided by the respective drive
motors. Consequently it was necessary first to establish a
suitable mathematical model for the electric mofors which
ﬁere used in this application.

Only the mechanical properties of these motors are of
concern in this work. Thus, the electrical characteristics
were not specifically included, ie. the pime constants
~associated with the magnetic fields of the motor have been
neglected; Therefore, the electrical.drive motors héve been
assumed to produce torque instaﬁtaneously. Each motor,
'nevertheless, has its own mechanical dynamies .whiéh have
. been modelled. The input from the motors to the digital
simulation has usually been. ﬁaken as a step functionj
aithough-any deterministiec funection could have been used.
This ideal motor is assumed to. have .no internal ltorque
losses and the assumption is made that the speed vs. torque
charactéristic is wholly linéar for any given set of applied
7 vqltages. For a fixed reference voltage, tﬁe motor develops
a stall torque which is propoptional to the voltage applied.
Once the motor begins to run, with any value of appliéd
voltage, the torque available for acceleration_decreases due
to bearing friction and any system friction referred onto

the motor shaft. As the torque developed is taken as being
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proportional to the applied voltage it is only neccessary to
state the required torque as an input to the médelling
equations. The block diagram representation of the motor 1is
shown in Figure 5.1. It should be noted that the transfer
funetion transforming velocity into friction torque is
representative only, as it takes noe account of referred
_frigtion torque  loadside of the motor. The non-linear
frietion components were shown in Chapter 4 to be functions
. of motor angular acceleration, motor speed, and direction of
rotation.

Newton's second law states that:

T=T.X_.  .cicceeens. .. (1071)

where T represents all torque inputs (Nm) ,
I is the inertia on the motor shaft (Kg.mz) ’
" and ®,is the motor angular acceleration (rad/s>)
The inertia, I, is composed of the motor inertia plus:
ail reférred inertias loadside, ie.
I=Tp+ TLLNS ool (102)
where I, is the motor inertia (Kg.mz) )
.I- is an inertia at a poiﬂt j loadside (Kg.mz) ,

]

and Ni

point, j

is the gear ratio from the motor shaft to the
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Figure 5.1 ; Block diagram_of electric drive motor
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The input torque to the system is given by:

“where T 1is the motor stall torque (Nm) ,
and F is the friction on the motor shaft. (Nm-s).
The friction term, F, dependant on motor speed, may be
expressed as the following components:
F o= Fp, + ZF N + ch‘ + IFj -N
+ Bm, + EF, LGN LLlLi(108)
where Fr , Fro , and F, are the stiction, Coulomb, and

viscous friction components of the motor shaft,

and Fiv

Fjs ? ch,

viscous friction components of a point j loadside ,

are the stiction, Coulomb, and

and Ni is the gear ratio 'from the 'motbr shaft ¢to the
point,; j
In this study it has been adopted as a convention that

the gear ratio is given as follows:

No= N .. ..(105)
Ntiﬂ

_ where Nt.l is' the number of teeth on the ith gear.
- . le. for a'reduction ratio, N is less than unity.
From equation (101) and equation (103) the angular

acceleration of the motor can be established as:

The velocity and displacement of the motor arising
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as a result of this angular acceleration are therefore:
‘ t

‘f& de cresnansaa(107)

om
ff«m At eeenn.. ...(108)

o

W

m

o
where w_ has the unité_rad/s .
and 6, has the units 6f radians.

Thé value of torque, orrcorresponding .voltage input,
- may be positive or negative, ie the motor displacement may
be clockwise or countef-clockhise. _

From Eq.(102) the inertia at the motor shaft is the
sum of thé'referred system inertias through the gear meshes,
which'is true for any point in the gearbox, where the
inertia 1is inéreased by the reflected system inertias
loadside, as described in Chapter 2. |

It can be seen from the above set of describing
equations that, apart from the non-linear friction
'components, the motor model is an essentially linear ohe.
The hotor torqhe hés been assumed té be a linear functié; of
" voltage aﬁd no account has been included in the model of
either motor torque saturation- or of any non;linear
speed-torque curve. However, most servomotors are désigned
t; have a 1linear torque 1characteristic lthroughout; their
rated opérating range. Theneforé, as a first approximation,
motor torque saturatioh is wusually - omitted from the
analysis. In the work heré it has been assumed fof
generality that the slope of the speed-torque curve 1is

unity.



If the .speed range over which the | friction
characteristics are non-linear is small éompared to the
overall speed range of ﬁhe motor, then for all, except
small, tordue inputs the motob will be operating éhiefly in
its linear region. The mechanical time-constant of the motor
can then be determined from an analysis of the differential
equations. The motor transfer function can be obtained by
- transforming the above equations using the Laplace operator,

and assuming zero initial conditions, ie.

Frietion torque = Fmvs O ) . (109)

‘Accelerating torque =-I.526m(s) e (110)
-Therefore: _ _ | ._

I.s%0pm(s) = Tm-Fm;den#S) cereeeea(111)

Hence the motor transfer function is given as:

Om. .\ _
Tm C) T T T

The mechanical time constant, Lo is given by:
tm - FI scc; ........ (113)
My

ie. t_ is the ratio of the referred inertia to the referred
viscous friection. _

The time'consténtlis defined as the time réquired by
‘the motor to reaéh 63.2 % of its final speed for a step
torque 1input. As soon as the motér .develops any value of

angular velocity, friction torque begins to develop, which

subtracts from the developed motor torque, thereby
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decreasing the torque available for écceleration until,
eventually, the frictioﬁ torque equals the developed torque.
At this point the net torque available to accelerate the
inertia is zero and consequently the motor speed remalns
constant. The motor reaches 63.2% of this steady speed in Im
seconds.

In reality, any motor torque develbpéd must be used to
 accelerate the complete system inertia. Equatidn (113)
demonstrates the use of referred parameters to guarantee
that the motor 'sees' the full effective system inertia in
the modelling equations. The mechanical time- constant of the
motor is increased by the effect of the inertias loadside.
Similarly, the torque generated at each mesh must accelerate
the effective system inertia loadside of the mesh.

By substituting the appropriate values of effect%ve
motor inertia and viscous friction coefficient into eq.(113)
the motor time constant can be calculated:

(tm)traverse 0.606 secs. (114)

(tm)elevation = 3.142 secs. (115)

The effective increase in motor time constant due to
the effects of the load on the motor shaft can be calculated
by substituting the absolute values of motor inertia and
viscous friction coefficient into eq.(113). Thus the
unloaded motor time constant is given by:

(ty,)traverse 0.109 seecs. (116)

(tm)elevation = 0.077 secs. (117)
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Thus the effect of loading the motor 1is to inérease
the time taken to.reach steady speed by a factor of 5.5 for
the traverse'system, and by a factor of 40 for the elevation
system. | |

The effect is more marked in the elevation system for
a number of reasons. First the ovérall gear ratio is smaller
than thét in the traverse gearbog, thus increasing the
effective loading on the motor shaft. This effect is
magnified by the fact that the first gear ratio in the
lielevation system‘is not a reductibn ratioc, thus referred
inertias are increased across this ratio. This greater
loading of the motor shéft is not balanced by a similar
increase in friction due to the relatively low = values of
visdous'friction'thfdughout thé elevation system;

The linear analysis of the motor presented above 1is
valid only for large torque inputs where, at high steady
speeds, the viscqus friction component is_large compared to
the consﬁaht Coulomb friction . However, its stﬁdy does help
in achieving an understanding of the modelling techniques
" and clearly showé the effect £hat the system's inertia has
upon the dynamic characteristics of the motor. |

The output of the motof_is taken to be its angular
displacement, em' . This displacement is then taken as being
the input to the gearbox with the torsional stiffness of the

motor being assumed to be infinite.
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CHAPTER 6 BACKLASH

Backlash, or free piay, .occurs when two ‘mechanicai
elements are not coupled rigidly, but rather through én
inactive zone of displacement within which no direct
mechanical coupling exists. Excessive backlash can cause
difficulties in contrqlling mechanical systems. However, -
most procedures used to reduce the amount of Dbacklash- cah,
when carried too far, result in excessive friction instead.
In design, some form of 'trade-off' is often necessary.

For a theoretical set 6f perfectly mating gears, the
tooth gap is équal to the tooth thickness on the 1line of
contact and the bécklash would be zero providéd the centre
waS'fixedrat: - o

distance, C,,

C; = (no,+n0,) eeeiiiiieciaan... (118)
2P
where
C is the_standard centre distance ,
no, ,no, are.the number of.teeth for gears 1 and 2
reSpectively, | _
and P is the diametral pitech associated with the gear
péir.
Such a gear paiﬁ, however, _cannot. exist because of
inevitable discrepancies ip its manufacture. Moreover, the‘
chance of 'binding'; even for a set of 'perfect' gears, is

alWays possible dué to thermal expansion of the gears. For-
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these " reasons _soﬁe backlash 1is always 'built!? into
.conventional spur gears by cutting the teeth thinner than
the thickness required by theory , which is equal . to half
the circulér piteh. Also, it is customary to -increasé the
centre distance by an amount equal to that resulting from
~ differential thermal expansion. Because of_ this increase
| there will be additional backlashiat lower temperatures.

Considef the backlash introduced by the nonFideal
.tooth thickness. This is equal to the difference th between

the-actual and the ideal tooth thickness:

S RAN
i = g - T T
= 1;- - T1 -'T2 ------- (119)

| where T1.éhd T2 are the tooth ﬁhlcknesses .associated with
geafs 1 and 2 respectively.

The backlash dT. 1introduced by a non-ideal centre
distance 1is determined by  the involute . relationship
illustrated in Figure 6.1. |

| The following analytical relationship can be
established for dy, as a function of d:

2
ch = (2tane)de + 2P (de)

(noy+no,) tang

+ (1+3tan®) (2p) (d.:)3
(3tan3p)(noy+noy)2

where ¢ is. the standard pressure angle and d. 1is the

difference between the operating and standard .centre
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FIGURE 6.1: RELATIONSHIP BETWEEN BACKLASH AND CENTRE DISTANCE
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disténce.

Equation {(120) represents an infinite series
accounting for the effect of the  involute curve.
Calculations may be carried out to any desired accuracy by
including a sufficient number of terms. For a typical
precision gear train, d. is‘sufficiently small so that the
higher order terms in this.series May be neglected. If this
is considered to be the case, the backla#h, d& ,  resulting
from centre distance variations, may be calculated as:

dT} = 2tane(C-C,) = .i..... (121)
~where C is the actual centre distance. |

Radial play in the bearings also contributes to a
variation in centre distance. Running gears tend to force
éach other apart to the e#tent allowed by the'beéring pléy;
This tendency increases the operating centre distance and
can be included in the _caiculatiohs by appropriately
inecreasing d¢.

One -additional factor, the gear pitch diameter runout,
or eccentricity, must be considered when calculating
backlash. In a perfect. gear, the pitch circle would be
concentric ‘about the axis of rotation. In reality a curve
drawn through all'points:of constant tooth thickness would
be both eccentric and jagged. The latter results from
tooth~-to-tooth spacing and involdte variations. The total
variation.df the curve is.defined as the total composite

error (TCE). Figure 6.2 shows a typical gear error chart
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run-out or : TCE
’ eccentricity l

Figure 6.2 : Typical gear error chart obtained by
variable centre text fixtures

.



obtained by variable centre distance test fixtures. The run
out, or eccentricity, is given by the difference between the
TCE and the.tooth-to-tooth composite error (TTCE). Since the
eccentricity 1is representative of a centre distance
variation, 1t contributes to the total backlash in the same
manner as the true centre distance. Using‘ the ‘same
: approximation as before: .

Tece  =2tan¢[TCE1-TTCE1+TCE2-TTCE2] ..(122)

For any fixed collection of errors, Eq. (122)
represents a 'worst case' situation since it assumes that
both gears are meshed at their low point of eccentricity. If
a hunting tooth exists, however, this point will always
occur;

The total backlash existing between two mating‘ gears
- is then given by: | | |

B = th + ch + the | e eaae EEEREREEE (123)

Having established the backlash at each gear mesh
throughout the geaf train, either by analytical methods, or
"by direct measurement, there are considerable difficulties
in predicting the effects on the system dynamics by purely
. analytiéal techniques. Consequently, simulation procedures

are frequently necessary to study these éffects.
‘The dynamic simulation of backlash is illustrated

diagrammatically in Figure 6.3. ©, and ©, are the angular
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Eigufre 6.3 : Dynamic simulation of backlash
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displacements of the driving and collision engaged members.
Actually it is only their difference, (©,-8,), which Iis
significant here. This difference governs the engagement gap
spacings, Os, and-es2; which are given by:
@sy = B;-(6, - Ny.8;) L e eaa {(124)
8s, = By+(8, - Ny.80) . ..., (125)
By and B, are the neutral settings of the éaps, ie.
the initial conditions on 6sy, and esé. Consequently, the
total backlash, B, is given by;
| Bz By + Ba  eeeeereniinnn, (126)
Hence for the i'Mh gear mesh
| B; =By; + B2y  eeeieiiiiaa.l.. (127)

By letting;

then adjustment of d; in the range 0 to 1 corresponds
to a change in the initial condition of the gear’ mesh as
shown in Figure 6.4,

In this study all gear meshes have their backlasn  set
to 0.00762_cm , which. 1is then referred onto the output
member as; |

B = 0.00762 R (129)

T

where B; 1is the referred backlash (rads) onto tne output
member of the i mesh, of radius bi (cm.)
From equation (129) it can be seen that angular losses

in the gearbox may be reduced by increasing the radius of
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the driven geér. Consequently the angular loss due to
backlash at the load end, which is the most significant in
the system , will be small for the traverse system, owing to
the relatively large diameter of the turret ring. The
referred angular losses in the traverse system resulting
from a 0.00762 cm. tolerance on all meshes, are given by:

1. First mesh;

B = 0.000953 (rads) ..veeeens (130)
2.Second mesh;

B = 0.00090%4 (rads) ......... (131)
3. Third mesh;

B = 0.007284 (rads) ......... (132)
4 Fourth mesh;

B = 0.000502 (rads) ......... (133)
5.Fifth mesh ;

B = 0.0001 (rads) ......... (134)

The referred angular losses in the elevation system
resulting from a 0.00762 cm tolerance on all meshes are:
1. First mesh;

0.00229  (rads) _ (135)

B =
2.3econd mesh;
| B = 0.003175 (rads) | | (136)
3. Third mesh; B - |
B = 0.000884 (rads) (137)
4 Fourth mesh;
B = 0.011106 (rads) (138)
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5. Fifth mesh;
B = 0.001232 (rads) (139)

The torque which arises at the engagement of the ith

gear mesh is given by:

T, =0 . if 8s,,85, >0 ..... (140)
T; =

Kl .931 if .951 \g o

where K, is the mesh stiffness.
As a result of this engagement torque the acceleration
of the collision engaged member can be'shown to be:
@ s (Ti- F) e (141)
¥
where F; 1s the referred fhiction onto the output
member
I; is the referred. inertia onto the output
membeﬁ

Consequently, the vélbcity of the collision engaged

member is given by:

Wy = 'Jaidf ............ (142)
and its displacement bDy: to
8; = J;i' o (143)
If shaft stiffnesses ar: ignored then the output
displacement,e2i , from the ith mesh is the input
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th
displacement into the (i+1) mesh, ie:

Obviously, each engaging surface:posseses resilience,
surface or contact friction, and some inertia. To analyse
exactly the transmission of forces and velocities following
‘gear collision would involve the study of distributed
parameter differential -equations.. However, td a first
approximation, such effects are negligible, and. it 1is
adequate to show the effects of engagement -by representing
the collision engaged membér-as a combination of a spring
constant, K, and some viscous friction.

The nature of the torque generated 1s ‘essentially
osciliatbry; as the the two engaging members come into énd
out-of-mesh._This effect is particuiarly ﬁarked if there 1is
insufficient contact friction, leading to poor damping of
the collision;engagéd member. Since 'values of .surface
friction are only imperfectly‘known; it is likely that any.
consideration of collision-engaged response will produce
highly oscillatory, undamped motion.

The block diagram arrangement for a representative
gear mesh is shown in Figure 6.5.

The linearisation of a set of non-linear .differential
équations is a useful technique, whebeby the equatidns may
then be analysed without recourée to- digital computing

methods. In addition, results obtained from the linearised
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equations may be compared with those from the full
non-linear model thus highlighting any. effects of the
7 non-linearities on dynamiec performance. However, it must be

emphasised that conclusions reached from a study of the

linearised equations may not be applied to the Ffull system -

model. Analysis of a set of linear . differential. equations
usuallylrequires that the equations first be transformed
using the Laplace operator, s.

The equations modelling_the'torque generation at each
mesh can be linearised bj removing the dependence of torque
on the backlash condition. Without this dependence on
backlash, eq.(124) and eq.(125) reduce to:

| s, = - (8, ~ My.64)  ceann. (145)
9s, = (85 - Ny.8;) Ceee . (146)

Dependent upon the backlash condition, eq.(140)' gives
the torque arising from collision-engagement of the geafs,
ie.

T.

K285,  eeea.. (147)
and T, = K;.8s, . e (148)

| Without backlash, eq.(147) and eq.(148) are identical
and the torque generated‘at the mesﬁ is given b&:

T

= -Kij(8y =~ Ny.8y) e, (149)
The.angular acceleration of the output member ‘arising
from this torque is giﬁen by:
g = (Ty - Fp)/T, ceeeinnn. (150)

where F, and I; are the referred viscous friction and

[y
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inertia at the output member.

The corresponding angular velocipy and displacement

are, therefore:

1]

w; (s) =L | SR (151)

8 (s) =
- s

where s is the Laplace operatér.

The viscous friction aaﬁihg on the output member is a

‘functiOn of the angular velocity and can be written as:

Bpo= By, oWy 0 el (153)

where E}i is the effective viscougq frictioh component foE_

the ocutput member.
By rearranging the above equations and by suitable

subétitution, the transfer function relating outpﬁt angular

displacement to input angular displacement can be shown to

be given by:

92; (s) | - Ni KI
z ——— . (154)
or .
K .
e2i() _ NiIr ‘ . .,.5.(155)
en-s T sPaRs K |

which may be represented in the standard form for a
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second order linear system, ie.

G(s) =

where W, is the undamped natural

2
pVVn

$2 4 23Whs + W2

...(156)

frequency, '3 is the

damping ratio, and P is a scaling factor.

By comparing eq.(155) with eq.(156) then the undamped

natural frequendy of the gear mesh,Wni (rad/s), 1is given

- K
- B

and the damping ratio is given by:

by:

“’i :

1 Fvi
2

... (157)

....(158)

The frequency and damping asscociated with the gear

meshes in

the

gun drive system,

J

using the values of

stiffness and inertia previously detailed, are therefore:

(1) Travebse:

First
Second
.Third
Fourth

‘Fifth

mesh

mesh.
mesh -

mesh

mesh

(Hz)
2761
1240
1077

12

Frequency
(rad/s)
17348
7791

6767

75
31
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3.316%107°
6.062%107°
2.i76*10'6"
1.666%107*
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(2) Elevation:

Fﬁequency - Damping
(Hz) - (rad/s) |
First mesh a1 9054 4.390%10°°
Second mesh 1175 7382 4.003*10°°
Third mesh - 834 - 5280 1.893%10°°
‘Fourth mesh - 52 - 327 2.580%10°0
Fifth nesh - 5  7'* 3 2.354%107*

 .It can be séen that thé‘ fréquehcy  decreases through -
both SyStems'as the effective inertia”increases. The low gun
,frequengy (5 Hz) is due to its repreSentation.'gs- é, lumped
- inertia. Thiélneglects higher barrel freqﬁencies even thbugh
':thé‘modesJaséééiatéd'ﬁith“thése may be significant. |
| The damping at _eéch mésh, .in both systems, is
extremély low,.aue to ﬁhe.omission.of ﬁhe daﬁping assqéiatedi
with the matihg gear.teeth during colliSion—engagement. " As
stated.earlier,_this_laék‘of knowledge-bf éohtact friction
betweeh méting_teeth'is likely to'produce fprque' geﬁeratidﬁ
n_théﬁ is oécillater'in ﬁature.'  | | .
-Aithpugh the.valués_.of  backlash -pfeseﬁted in this

éhapter appear to be Very smail, it 1is important to note

'that thé’required pointing accubacy of the gun drive. system =

for a modern M.B.T. is likely to be of the order of 0.001

radians. -

- T o



CHAPTER 7 THE PLANETARY GEAR SYSTEM

Planetary gear trains are frequently used in M.B.T.
gun drive éystems where a relatively large gear ratio  is
required within a small area, due to design limitations on
space inside the turret and hull, which prohibits the use of
a series of conventiohal mesh;s. Such planetéry gears are
usually stiffer than conventional meshes and wusually have
less‘backlash associated with them for a given tolerance.
For these reasons they are usually positioned at the load
end of a gearbox, where the torqﬁe levels are higher, and
where excessive backlash 1is more e¢ritical for pointing
accdracy. The structure of the planetary gear train, used in
~ both the ?traverse and 'eievatioh gearbbxeé isl: ého%n“
schematically in Figure 7.1,

The input into the planetary train is via a sunwheel
gear which meshes with each of the three planet gears. Since
the outer_ahnulus is fixed, the'ﬁlanet gears are constrained
t¢e rotate around the sunwheel in addition to rotating about
tﬁeir own individual axes. It‘is.this rotation of the three
'.planet geafé ébout the sunwheel, as a fixed_‘unit, whiéh
provides the dutput from the Erain, on a shaft co-axial with
the sunwheel. | -

Iﬁ addition to the electrical inputs, both traverse
and elevation systems.will ususally have a meéhanical input

optidn, via a gunner's handle, which can be used in the
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Figure 7.1 : Planetary gear train
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event of an electrical power failure. Therefore, as a éafety
precaution, it is usual to make the gun'”drivé system
non-reversible by fitting a cluteh to the outer annulus of
the planetarylsystem. A large reverse tofque input, such as
that arising from ¢the 'gun colliding with a stationary
object, frees the outer annulus, thereby | preventing
associated gun acdelerations' from being transmitted 5ack

through the gearbox to the gunner's handle. .. T

T P i N . o
FES L . ' *E v 5 ; PR a 4 A
- . 1 o . PR " - -

.. This option has not been incorporated into the

ﬁéaelling equations.

N Since the outer annulus is fixed, in normal operation,
and the drive is taken off from.the rotation of the planet
gears around the ”Sunwheel, the planetary train may  be
modelled as a single mesh with the same effective sﬁiffness,
backlash and friction as the planetary train. It | is
necessary to decomposé the overa;l gear ratio, NP, of‘ the
planetary train into it's two constituent components, N, and
N,, made up of the engagements of the sunwheel with the
plénet gears;.and the planet gears with the outer annulus,
in order that the..correct effective parameters for the
single mesh can be calculated. The overall gear ratio of the

planetary train is given by

_ _ No p.Noa - Noa
N, =NN, = 1.—NoPNoa — _ Noa [ ......... (159)
P ah =1 Nos.NoP Nos
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where Nop, Nos, Noa are the number of teeth on the
‘planét geér'(one of the three 'planet' gears),the sunwheel,

and the outer annulus respectively.
The gear ratio between the sunwheel and the planet

gears is given by:

N, = DNeP L. (160)
) Nos :
Conéequently:
— Noa _Nos . ' (161)
N, =203 , _‘Nos .  ,.,....
b= "NoP © T NoP |

Thus; the .single mesh which effectively = replaces the
planetary gear train must have the the following -absolute
‘ parameters:

(a) Stiffness:

T

3 :
1 2
2 + Np
Ka Kb
The numerator accounts for the number of planet gears.

(b) Backlash:

B = B+ Ny.B  ...... . (163)

(c) Stiction:
| Fy = Fsa_+ Nb.E‘Sb ........ (164)
(d} Coulomb friction:

Foom R+ Npefe,  eeees -(165)

(e) Viscous friction coefficient:

.F = F + sz .F e e ass ...‘(166)

v ¥Ya
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CHAPTER 8 THE DIGITAL SIMULATION

The_digital simulations used for the traverse and
elevation systems are identical in structure, differing only
in the number of gear meshes and the values used. Therefore,
+ to avoid repetitioh and confusion over the variable names,
only a detailed account of the traverse system is . presented

here.

8.1 Inertia
The representation of the distribution of 1inertia
" through the fraverse system was presented in Figure 2.7.
~Since the torque developed at each gear mesh accélerates the
effective inertia of tﬁe ouﬁput member, it is necessary to
calculate the effective inertia.of the output member at each
mesh by substitution of the appropriate values into eq.(S).
This procedure can be somewhat simblified’by first apblying
eq.{4) to calculate the absolute inertia existing on each
.shaft, consisting of the inertia of the shaft itself, in

addition to the inertias of any gears on the shaft, ie:

where I, is the absolute inertia on the shaft,

I, is the inertia of the shaft itself,
1 .

Ij is a gear inertia on the shaft.

Thus, from Figure 2.1, the absolute inertias on each
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shaft

where

terms

where

and

in the traverse system are given by:

Im= ISm + I, aLe.... (168)
the motor shaft inertia, Ism, may include inertia

for the motor itself.

I, = IS{ + Iy + I . (169)

Ip = Ig, + Ig + Ie  cenenns (170)

I;p = Ig, + 3L + Ip,  -eees (171)
The ,effective ihertia of the turfet ié given'by:

T, = Iy + Igan +3Mgd” (172

I is the turret inertia

tur

‘Igun is the gun inertia

Mg is the gun mass

d is the distance from the centre of gravity of the

gun to the centre of rotation of the turret.

Therefore, the effective inertia acting on each output

member, assuming that the parallel distance between shafts

is negligible, is given by:

Im = Ip + N I, P NGNZLT, + NDONGLNGL I

TR S e S (173)
L, = T, + NAT, + NpuNgwTy + Ny Na N2 Io ... (174)
I, = I, + N1, + N2 T, ... (175)
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. _
Isl' = I3 + N4 I[ . ..-.(176)

There are no other inertia terms associated 1loadside
~ with the gun and hence it is represented by its absolute

value.

8.2 Stiffness 7

The representation of the distribution of stiffness
through the traverse system was shown in Figure 3.1. By
Substitution of the appropriate wvalues into eq.(12), the
effective stiffness at any poiht-in the system, when the
shafts afe asumed to be infinitely stiff, may be calculated:

2 2
+ NjuKy + NpiNa. Kg
. 2 2 2 e ’
b NpuNgulNp(Ke+Keg ) eennnnnn (177)

- where K,is the fturret stiffness, andKegis the stiffness of

the gun relative to the turret.

-~
K
]

, 2 2 ' :
= Ky + NJuKy + Ng-Ng. (K +Keg ) e (178)
Ky = Ky + N2 (Ke+Keg ) eeeenennnn (179)
8.3 Friction
'The distribution of'.friction through the traverse

5ystem was represented in Figure 4.5. From this figure the

following referred values may be calculated:
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(a)'Motor.shaft

- - F .= F
_smk_
Fem = Fom
r
Fer = l:‘Vﬂ"l

(b) First mesh;

FS ; = FS1
;
F = F
C1r Cq
F = F
Vi, -V

(c¢) Second mesh;

F = F
Szr S2
F = F
: C
Czr Ca
sz = FV2

Sm %

+ Ny N,F,

N, F 5y

S, + Ny N, N,F

3 53

+ NN NN, Fg el .. (180)

Ny Fg o+ NyNpFg, + NyNpN3Fe,

+ N-] N2N3N4Fct ------ .-(181)

Ry, - Ny Ng.Fy, Ny Mg, N3 By

2 2

e N7 N22.N3.N4.th' ........ (182)
NpFg ~+ NzgéFsa + N2N3N4Fst S (1.83)
NpFg, + NpNgFo  + NN N Foo o w..... (184)
2 2 2 2 2 2
N2FV2 + NQ‘NS‘FV:; +N2N3N4,th (185)
Nana +.. N3N4Fst . S e (186)
NyFo, + N3N4Fct e (187)
Ng By + Na.Ne By ... (188)

t
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{(d) Third mesh;

Fog. = Fgy * N4Fst ...... (189)
T
Fog = Fo, *NFe el (190)
r ot
2
Fv3r = By, o+ N4th ...... (191)

Thé absolute values of load friction are used at the
pinion gear/ turret mesh. In the digitél simulation, the
non-linear friction terms are multiplied by a real cohstan;,
FOFF, which is nominally set to unity. Sétting FOFF to zero
will cause the non-linear friction components‘to be removed,
and will cause the effect of the stiction boundary iﬁ the
motor friction characteristic to be rémovéd, théréby‘
linearising the frietion characteristic throughout . the
sjstem.

8.4 Torque generation

The engagement gap spacings at each gear mesh are

given from eqs;(124)'& (125)5‘£heréfore:

" (a) First mesh;

8s; = By - (8, -N;.64) creseea(192)

8s, = By + (8 -N; .6p) cevee..(193)
(b) Second3mesh; | |

8s, = By - (8,-N,.9, Y .. (194)

0sy = B, + (8,-N,.8,)  ....... (195)
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(¢) Third mesh;
- 0sg = Bg - (8;-N3.8,)  ..... ..(196)
ess = Bs + (93—N3 -82) T s eeenaa (197)

(d) Fourth mesh;

8s, = By = (8-N,.85)  ....... (198)

63, = By + (8=Ny.83)  .......(199)
(e) Fifth mesh;

8sg = By - (8g-8.)  ....... (200)

8s; = Byp + (8;-6,)  ....... (201)

-In the digitai simulation, the 1initial conditions on the
engagement gap spacings at each mesh, B;, B, ,....Byy, are
multiplied by a real constant, BOFF, which is nominally set
to unity. By setting BOFF to zero removes the backlash at
each mesh. Thus, by appropriate selection of éither FOFF or
BOFF,_.non-linear friction and backlash effects may be
eliminated froem the étudy independently, or  complete
linearisation may be achieved by settihg both to zero.

The motor torque, Tm,‘is a declared.‘constant. in the
digitai 3imulation. The1torque.generated at each  subsequent

mesh, dependent upon the backlash condition, is given by:

(a)First'mesh§

-0s, when 8s, <0

TOI"1' = -K1r
Tor, = 0 when 6s,,83, >0 ....(202)
Tor, = +K;_ .8s, when 8s, <0
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(b) Second mesh;

Tor, = =Ky, -834 when 8s, <0 _
Tor, = 0 when @s;,8s, >0 ... (203)
Tbrb = +K2r.Qs3 when €8s, go
(¢) Third mesh;'
. Tor, = —Ksr._es6 when B8sg4 40.
“Tor, =0 when 6s5,08s; >0  ....(204)
Tor3 = +K3r.935 when'es5 <0

(d) Fourth mesh;

T = ~K, .8s when 8s, <0

tur = r 8
Tewr = O ~ when 8s;,855 >0  ....(205)
Ttur = +Ktr .957 when BST \<_.O

(e) Fifth mesh;

Tor,, .= -Kg-.es when 8s,, <0

gun 10 ' | _
Torgyp= 0 when 8s4,8s,, >0 ....(206)

Tor‘gunz +Kg .08 when B8sg9 <0

9

The subsequent accelerations, velocities, and

displacements are given by:

o(m=(TT-Fm)/Im'r ] R (207)

o= [omdt L, (208)
Tt .

Om = [umdt R (209)

whére_ﬁ“, dependent upon the conditibns outlined in Chapter
4, is a function_of the referred stietion, Coulomb, ahd\
viscous friction components. The motor angular displacement,

B is then used as the input into the first gear mesh which

.m’
results in the generation of the torgue, Tor, , in eq.(202).
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The acceleration, veloecity, and displacement of the output
member arising from this torque are given by:

(Tor1-F L (210)

0(1 =

W, =-[o< ceen(211)

o, = j'w1 dt ceeo(212)
9

The output displacement, 8,, is then the input into

1 H
the second mesh, if shaft stiffness is assumed to be
infinite, reulting in the generation of the torque, Tor,, in
eq.(203). The acceleration, velocity, .and displacement of

- the output member arising from this torque are given by:

o, = (Tor, -F )/I ..... (213)
J;‘Q dt . ciaels(218)
8, =‘rw2 dt T i .(2-15)
- Similarly forlﬁhe third ;ésh: |

| oy = (Tory -Fy ) /T, ceen (216)
Wy j;<3 ‘ . (217)
0, =.f Wy dt ceaio(218)

o

8, is then the angular displacement of the pinion
géar, ie the output displacement from the gearbox. The
torque generated at the turret is then given by eq.(205),
and the resulting .acceleration, velocity and ahgular

displacement are given by:

*ur= (Ttur F(ur)/It R (219)
Weyr = f“tur dt . e e (210)
Beur= [ wedt oo Ll (211)

0

The acceleration, velocity, and angular displacement
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of thé gun, arising from the gun torque developed in

eq.{206), are given by:

gun- ( Togun)/Igun -00-0(212)
gun[ gun eeesa(213)
Ogun= f gun 7 ceaes (214)

In the elevation system there exists an out-of-balance
torque at the gun rack. This out-of-balance torque 1is
assumed dnly to exist when the sjstem is in motion. The
resulting angular accelebation of the gun in the elevation
system is therefore:

!

] !
otg = (Torg-v» T, - F‘g)/ I, | ce...(215)

where wakis the torque input to the gun from the elevation

géarbox,_Ts is the out-of-balance torque, andnﬁ is the gun

friction.

The functional relationship wused ¢to model this
out-of-balance torque is given by the gréph shown in Figure
8.1, from which eq.(2+6) is obtained, ie.

T, = 1500.6. + 200 el (216)

g
Tb is in Nm and Bé in radians. It‘is emphasiszsed here that
the functional relationship chosen for the out-of«balance
torque of the gun is merely representative: it does not
represent a true functidn, Sueh being unknown to the author.
The relationship used assumed that thé range of deflection

o
angle for the gun was from -7.5 to —+209.

Note that there is no gun friction in eq.(212) and

-_—m,thatuthe-frictibnavalues~Fqu;,F ,eu u«ﬂm—aremwfunctions—rofw»

- 84 -



Gun out~of-balance

torque
Tb (Nm) ’800
400

-10 0 10 | 20

Elevation angle of gun ( degrees}

ﬂgurg. 8.1 : Out-of-baiance torque due to elevation
' of gun | |
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the friction characteristics in eq.(183) to eq.(191),
dependent on the conditions outlined in Chapter 4.

The above relationships define the basic traverse gun
drive system. in the digital éimulation. - However, in
open-loop analysis, these provide no indication of system
performance, and therefore the variable Perr, is defined:

Perr, = (8N, )-8, ... (217)
where the product 8m-N; gives the ideal angular
diéplacement at a point in the gearbox.

Thus Perri‘gives the error between the achieved and

ideal displacement at any point in the gearbox, ie.

Perq = (0p-Ny)-80 ... (218)
Perr, = (8m.N; .N, )-8, ’;....(219)
Perry = (8n.N, .N,.N3)-8;  ..... (220)
Perry = (B N, Ny N3 Ng)=8g,r ... (221)
Perry = (8m.Ny Ny N, Ny )=8gyn ... (222)

The effects of turret ecéentricity can also be studied
by the inclusion of the appropriate function which varies

the gear ratio, N with angular position. As an example of

4’
this the case is considered where the turret ring is assumed

to be.elliptical. Consequently, the effective radius of the

turret, R , varies with angular position, as represented by:

t R ) ‘
R, = \/(A.sin et?+(B.cos 8,) - ... (223)

where A and B are the major and minor axes of the ellipse.

The gear ratio, N4,'is then given by:

Rp
N = —_—
4 .
Rt
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where RP is the radius of the pinion gear.

8.5 Simulation of closed-loop gun positioning system
A simple control laﬁ was developed for thé positioning

of the gun in its traverse drive mnmode. Under closed-loop

conditions the motor torque is controlled  via -a " 3-term

controller as shown in Figure 8.2. This controller had the

following gains:

G.' = 9;0 . - . .....(225)
Gy = 0.001 cev..(226)
Gy = -7.0 -~ ... (227)

The input to the closed-loop simulation is the required
azimuth position of the~turret, ie. 8.4 - The angular error,
Be » érising- from a steb demand in turret position is
therefore:.

e = Bd = By  aeeen (228)

whére 8,4y » and eu;are in degrees.
Consequently: R
/
Tm = G1 .ge -+ Gzofee dt -+ G3.Wt c-.-(229)
_ Jo o

“where w/ is turret angular velocity, deg./s.

t
8.6 The simulation programs

The listing of the ACSL programs whidh simulate the'rf
gun drive systems are given in Appendix 2 , for the traverse
drive system, and in Appendix3, for the elevation drive

"system. The”integration method used was Gear's stiff method
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which is outlined in Appendix 1. The integration parameters

used throughout the study were:

CINT -
NSTP - -

MERROR -

XERROR -

‘communication ‘interval, set at 0.001s

defines the initial calculaticen interval, ¢, in
terms of fhe communication interval, such thét:

¢ = CINT/NSTP |
NSTP . has been set at 10
relative error bound for individﬁal, .defined
state variables. Ail helative'error bounds were
set ét 0.1. |
absolute error bound for individual state
variabiesj Al absolute error ‘bounds were set

at 0.1.
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CHAPTER 9 RESULTS OF THE DIGITAL SIMULATION

In this chapﬁer reéults of Ehe digital simulétions are
presented for the traverse and elevation gun'dfive models of
a modern M.B.T. Althbugh any of the gearbox'.characteristiqs
can be studied, the results have been limited for reasons of
space and élarity. The foilowing characteristics are
~ therefore ipresented and discﬁssed to illustrate ﬁhe
perfofménce of the .gun. drive systems _tnder 6pen3100p
conditions. |

(1) torque éeneration.at each mesh;

(2) velocity under conditions of coilisibﬁ-engagement;

(3) the pointing error associated witﬁ each mesh;

Tﬁe‘ main purpose'wof the research work_ was to
inveétigate the effects of non-lihear~friction-and backlash
on- the dynamice performance.of the.‘drive Systems. " However,
results are also presented illustrating the effects of
finite gear and shaft stiffnesses, and the effeets of the
'load "dynamices, The predominant feature for open-1loop
conditons is the dependence of torque generation wupon the
_baéklash condition at eaéh. mesh, and in particular the
effect of Ehe initial backlash condition on pointing-‘érror. .
Thé éffects of nohalinear‘friction, particularly the Coulomb.
‘compbnent, are not significant until the modeis are operated

“under closed-loop conditions.
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'With reference to Chapter 6 the fange of conditions on
backlash for all meshes is as follows:
.(a) d1=0% ie. as an initial condition 511 gears are
fully unmeshed in thé direction of rotation.
(b) di=100% ié. as an initial.condition‘all'gears are
 fully meshed inlthe direction of rotation.
(¢) di=50% ie mid-way between conditions (a)'an& (b).
The above conditions also appiy to the piniothurret
mesh énd_the gun/turret inﬁepface.
9.1 Traverse gun drive system under open-loop conditions
Figuhe 9.1 shows the tqrqué, collision-engaged
vélocity,:and‘poihting error of the system resulting from a
step input‘motor torque of 46 Nm, with di set to 0%. The
.éffects df_shaft stiffness héve.been igndféd,.ie; thé“shéfts
have been assumed to be infinitely stiff. The ‘peak torque
levels at each mesh are greater than would be,ekpected' ffom

consideration of the gear ratios alone, as is illustrated in

Table 9.1.
Ceér ratio  Ideal torque Peak torque
o | _ | (Nm) (Nm )
First mesh 2.697  124.:' oy
Second mesh .4.050 _ 502 1,615
Third mesh 4.170 2,099 | 16,154
 Pinion/turret 18.290 37,710 169,231
Turret /gun ~1.000 537;710 o 20,769
| TABLE 9.1 |



These higher peak torque levels are due to the impulse
torques generated on collision engagement of the gears.

The effect of backlash on torque generation is clearly
seen, particularly at the first mesh, resulting in the form
of taorque generatioh as shown, with zero"levele‘ bf‘ torque
indicating that the gear pair haﬁe - become wunmeshed. The
presence of backlash-aliows' the gears toﬁ come ‘into and
out—of-mesh_with a frequency erendent_ upon the effective
stiffness and inertia at the mesh. This effect is
particularly noticeable wﬁen the first gear pair become .
unmeshed for a substantial period of the simulation run.
This period of hon-engagement is followed by another period
of eollision-engaged tofque_ activity, which .is itself
" reflected in the torque generated at the_Seeond mesh.  These
high frequency:componehts are filtered out by the subsequent
lower frequency meshes. The oscillatory nature of the torque
is due to low contact friction between the engaging
surfaces, which results in poor damping. The .peak torques
throughout the rest of the system occur during ﬁhe initial
'collision-engagement of the gears, and, with greater daﬁping
than for the firsf mesh, the torque amplitudes decay
.quickly. With higher. effective ‘inertiaS"on the output
~members, the freqUency.of meshing is decreased- thnrough the:

gearbox, as predicted from the linear analysis.
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Although not shown in Figure 9.1, the velocity of the
motor at_the_end of:the simulation run was 332 rad/s. A
combarison" between the subéequent collision-engaged
velocities, obtained from Figure 9.1, and the ideal
velocities resulting from a - consideration of the gear
ratios, is Shoﬁn in Tablé 9.2." The mesh 'efficiéncy is
defiﬁed as the ratio of the collision-engaged yelocity to

" the ideal velocity.

Gear Veloecity (rad/s) : Mesh
ratio Ideal / Collision-engaged. efficiency
Wi 2.697 123.10 121.5 98.7%
w2 . 4.05  30.39 0.0 - 98.7%
w3 4.7 7.29 6.9 94 . 7%
wtur -18129 . 0.40 0.39' o '97.5%
wgun  1.00 0.40 0.39  100.0%
TABLE 9.2

It can be seen that the 'colliéion—ehgéged -Qelocities
',are.close to the ideal'valﬁes, taking into account losses in
the gearbox, ahd thgpefore the mean tofque at each mesh must
also be close to ideal. This - indicates that the _gearbOX
model is functioning correctiy as a- speed and torque
conveftér. o |

The stepped turret velocity is a result of the
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collision-engagement of the pinion gear with the turret
ring, - -with constant .turret velocity during' periods of
nen-engagement..This effect is transmitted through to the
gun, resulting in a low frequency vibraﬁion as a cbnseduence
of representing the gun as a iumped inertia.

Figure 9.2 and 9.3 show the effect of the .initial
condltlons on backlash on torque generatlon ,'w1tn di set to
50% and 100% respectlvely The effect of the stepped turret
veldeity dlsappears when the gears are initially meshed,. as
the: pinion - gear and  the turret are no loﬁger
- collision-engaged. As would be expeeted from such open-loop
operation,-the initial backlash condition predominates 1in
centfolling the pointing error at each mesh, The'form‘of the
pointing' erref' follows ciosely that of the‘ associated
torque, ie_higher,frequepcies are observed .at' the eerly
meshes. This'is‘due‘to the torqueeitself being a function ef
. the relative gear angles. A comparison between the poihting
error of the tﬁrret afising from the change in the initial

backlash condition is shown in Table 9.3.

?  di _ - Turret Pointing

Error (millirad)_.

0% 090
50% o 0.46
100 0.0077

TABLE 9.3
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Frém Table 9.3 it can be seen that the‘ pointing
acceuracy of the turret increasesnués“ the 1initial backlash
decréases in the direction of rotation.

Figures 9.4, 9.5, and 9.67are for the same conditions
as the previous figures,r but with the inclusion now of -
finite shaft:stiffnesses. The shafts themselves .arg thenr
.able fo tﬁist; and in doing S0 produce an.extra angular loss'
during periodé of high torque'activity. This results in the
increased dynamic pointing efrors.being shown.. The dyﬂamic
twisting of the shafts also influences the torque generation
at each mesh for they -absorb :and release energy, thus
éontrolling the anguiar input into each mesh. The effecté of
o finite'shaft Vétiffnesses_ couple strongly with the gun
dyﬁamics assumed. A more detailed gun modél,l wiﬁh the
‘inclusion of higher barrel frequencies, would result in
improﬁed-responses.

- Figure 9.7 shows the torque generation,‘vélocity, and
pointing error of the linearised system‘to- a motor torque
'step'input of 46 Nm. In this cése, therefore, the backlash
is zeré at each mesh; and thé friction is whollyiviscous..Inf
addition, the shaft stiffnesses are ‘a53umed infinitely
stiff. The form of torque generaﬁion in the linearised model
is similar to that arising from the non-linear model when
the gears are initially meshed, and the resulting ‘pointing_
errof of the turret is identical. Althougﬁ the " simulation

was terminated at 3 seconds, it is evident from both Figure
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9.3 and Figure 9.7, that the pointing error of the turret ié
tending to zero in both éaseg.

Figure.9.8 shows Eésulﬂs‘for the iineariéed model, but
‘with ‘the 1inclusion of finité shaftA stiffnesses. The
inclusion of finite shaft stiffnesses results in increased
| torque activity at the third mesh,.and and incfeésed‘damping
of the turret torque. I; addition, the pointing error
‘activity in the the rest of the system is reduced.

.The above sets of resﬁlts shoh how the. dynamié
- pérformance of the system, whether linear or non-linear, 1is
affected by the inclusion of finite.shaftistiffnesses. This
leads to the conclusion_ that the shafts are not _sﬁiff
| enough, particularly for torque levels produced from
 0611isi¢6§éngageméht of the gears. Ih'the\hehéindér':ofA the
results presented for the traﬁerse, drive, undér‘ open=-loop
conditions, it has been assumed. that " the shafts are
infinitely stiff, and it has.been‘taken that the gears are
fully unmeshed as an‘initial gondition, ie '&izo%;.:aé' this
represents the 'worst case' for the_system,.

Figure - 9.9 shows the effect of increased - turret
stiffness'bn performance. The stiffness of the turret has
been increased to 4.0*109Nm/rad. Comparing'Fiéﬁre 9.9 with
Figure 9.), it caﬁ bé seen that tHe frequency'9f thé turref__
is incréaéed, as wquld'be predicted from a linéar  analysis.
This increase in frequenéy results in the pinion gear and

turret ring becoming unmeshed less frequently””‘than
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previously, and therefore a smoother generation ﬁf velociéy
is obtained. Although the pointing efror of thé turret
settles to the same value‘as previously, the deéreaéed ltime
to settle would be beneficial under closed-loop conditions.
Figures 9.10. shows the effect of turret ring
_edqentricity on lperformance. Ihe. 'diameter:' of the
.conventional,‘circular,.tﬁrfet Eing is.2.0 m. In this caée,
the turret'ring is assumed to have been elliptiecal, - withr
ma jor and minor axeg'set te 2.10 m and 2.0 m, respectively.:
The effect on pefformanceris only clearly.Seen in the turret
velocity. Comparing_Figuré-Q;fO with Figure 9.1, the turret
reaches‘speed more quickly, although this. fsteady' _speed .
will uhdepgo fluctuations és‘the gear ratio  is ghange& by
the effective change in turfet fadius with angular position.
- This final velocity.of the turret is now reduced to :0.3&
rad/s as compared  with the 0;39” rad/s previously.
Fluctuations in turref.velocity due Eo eccentricity of: the.
turret ring may cause problems in closed-loop positibn
control, if”turret velocity were to be-used in thé - feedback
path. | |
Figure '9.11. shows tﬁe broblems .en66uﬂtéred  when
atteMpting to use.the fixed-sﬁeb, secdnd-order,_Runge" Kutta
élgorithmf The régpbnsg is 'ndisy' dué ﬁb the_-iﬁabilit& of
the integration method to deal with the 'étiff' modéiling

equations.
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'9.2‘Elévation'gun drive,éystem undeflopeh-lobp cohdifions
As the elevation syétem is similar to the traverse

system, and the'same‘cdnsidérationé apply £d>the effecﬁs"of
the non—lineafities'éqd finite shaft stiffnesses .on Vsystem
| _pefformance; resﬁlts “are - presented mere;y. to show .the -
 _effec£s-of tne outfof;baléncé torque;—-fhe simdlation  runsi
'-were‘tefminafed'at gun'aﬁéles cprrespohding to thé gdn'limit'
.:}5t995s ié--?,So,.+-20?. | o |

' Figure 9.12 ' shows  the.  torque  generation,
coliiSidn—gngaged, veldcity; -and pointing ‘érfér__of  the  
Syétém to a‘step:mo;of torqﬁé input  of ‘15 Nm, _ie.r gun
.eLevating}‘fFigufe 9;13_ shows  the  torque- ‘genéfation,.
.cgilisiOn-eﬁgaged-Veiocity; and pdinting error qftheisyspgm
ﬁo-a”sﬁéb motor-torque of -15 Nm, 1ie guh depressing. In both
'gésesjﬁhe effectslof ‘finite shaft stiffﬁésseé ‘have  been
_included,laﬁd.thé initial:conditionfonlbacklash'fOf both .is
idéntidal, with di‘seﬁ_td 50%..Clearly_the.effects of  shaft
stiffneéses.are hoﬁ aé pronbuncéd és in'the travefse.éyétem,
‘due 'to the Lower torque levéls tthQgh the system. It MQs;f
.bé.feméﬁbébéd_that the.first:two 'méShgs'ihave _géar .hatios;
greater thah unity,.and therefqre .thé ,torqﬁe.'ig- bedpcéd
through_them}'The effect of the out-of-baiancé.;tbhqﬁe: is

‘clearly seeh.‘The effect is to increase the effective ‘torque

during gun elevatioﬁ, andlqto  decreé$e it during fgun S

:jdepression. The'joffSet_ of the effective gun torque is

clearly-éeen, decheasing with time for gun: depreSsion, and’
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~increasing with time for gun elevation. The low frequency of
the gun is again due to its representation as a lumped
inertia. This:low frequency results in a pulsing of the gun

torque resulting in the stepped gun velocity obtained.

9.3 Tbaverse‘gun.drive system under closed-loop conditions

Figure 9.14 shows the response of the turret to step
input demands of tﬁrret angle, for a range of initial
conditions, using'the control law discussed in Chapter 8.
The control law was developed for the linearised system, and
subsequently used to study the effects of the
non-linearities on performance. In the closed-loop study,
'the developed motor torque has not - been limited, althohgh
" the motor is known to have.a maximum torque rating of 46 Nm.
The advantage of this is that the performance of the
closed-loop system is then dictated by the performance of
the gearbox itself. The demanded turret azimuth position was
20%in all cases. |

Figure 9.14(a) shows the response of the turret when
thelsystem is linearised. It can be seen that there 1is no
steady-state pointing error 6f the system.

Figure 9.14(b) shows the response of the turret with
the inclusion of the nominai backlash Qalues, but still with
linear friction. It can be seén that the response of the
turret is identical, with no steady-state pointing error.

Figure 9.14(0) shows the response of the turret with



:increagéd system backlash. The backlash at each mesh‘is ten
times greater than the nominal values. The response of the
'system is again identical.'Thié indicétes that, providing
there_is n§ hon-linear friction present, the motor céh
deVeloﬁ enough torque to overcome the efrors due.to bacﬁiash
in the system. The démﬁing of the system may be_affécted by
further increasiﬁg the backlash;.and exgessive_backlash ma&
résﬁlt'in limit éycling, dependent upon the level of viscous
friction in the system, although this effect has not been
studied. Backlash-friction ' curve theory_.(réf.1) .outlines
empirical relations for calculating Ehé amount of backlash
that a servomechanism can . withstand ‘without a  -null
oscillation. _ | | |

Figure 9.14(d) shows the response of the turret with
the inclusion of the non-linear friction characterisﬁics, in
addition to backlash. The pointing error at the énd of the
simulation run was —0.470.

" Figure 9.14(e) shows the response of the turret with
increased system Coulomb friction. The Coulomb friction ' at
each mesh, and at the motor, is five times that  of . the
- neminal vélués. Thé pointing error. at the end of the
simulation run was =~ 1;25?

Providing that the backlash at each mesh is not
_excessive, the digital Simulatidn predicts that it is the.
non-lineaf friction in the system,,bartibularly the Coulomb

component, that is the limiting factor for the _pebformance
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of the system under closed-loop conditions,

9.4 Summary of digital simulation conditions
System initial condition , shaft stiffness

on gears (di)

Case A: Traverse ‘ 0% : o | removea‘
Case B:  Traverse 50% .~ .removed
Case C: Traverse 100% - removed
_Casé D:  Traverse 'O%‘ o : finite
Case E:  Traverse . 50% :  finite
Case F: Traverse | 100% . finite
Caée.G: Traverse femoved ‘removéd
Case H: Traverse : removed . finite
Case I{. Traverse as Case A: increaéed turret stiffnéss
Case J: Travefse as Case A:.ellipticaluturret ring
Case K: Traverse as Case A:_Runge Kutta integration
Case L: Elevation 50% (elevating) finite

.. Case M:  Elevation o 50%,,(depreSSing) finite
Case- N: Trévefse: closed-loop, lihear systém
Case 0: " Traverse: élosed—loop, plhs ndminal backlash .
Case P: Traverse: closed-loop, plus increased backlash

Case Qﬁ Traverse: closed-loop, full non-linear system

Case R: Traverse: closed-loop, increased Coulomb friction
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CHAPTER 10 CONCLUSIONS

10.1 Concluding'summéry

This research inveéﬁigatioh was concerned wiﬁh the
mathematical modelling of the .travefse and elg#ation gun
"drive systems of a modern ‘main battle tank. The dynamic
pérformaﬁca of the mathematical models was investigated,
using digital simulation techniques,. under ocpen-loop
~conditions for a range of initial conditions.

The mathematical modeis presen£ed .were full system
models baséd ﬁpon the generation of torﬁué at each gear mesh
through the collision-éngagemeﬂt of the mating gear teeth,
and included the.pon—;inear effects of backlash and friction
at éach mesh. | |

The 'necessary geometric “relationships - for  the
calculation of éystem inertia and stiffness "were presented
in Chapters 2 & 3, respectively. It was Shown thaf inertia
and stiffness ére both referred ‘pérameters, and' that the
effective inertia and stiffness of a component is incfeased
by the effect-of all other componen?s loadside. It was shown
that inertia and stiffness are reflected back through the
‘qgéar train by the square of the'appropfiate gear ratio.'.

A full description of friction was presented in
Chapter 4, along _with ~ the appropfiate mathematical

'relationships”for its description in a” digital simulation
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study. Due to the nature of .torqué development in -the
models, it was “found impossible to achiéve the des&red
friction function at each gear @esh and thus a simplified
version'pf the motor friction characteristic was used.

' Rathgr than use a step input angle to the first gear
mésh, a motor model was developed to providé thé' foreing
inputs iﬁto-each system._The description of the developed
ﬁotor model was presented in Chapter 5, aiong with a 1linear
. analysis showing thét the dynamic performance of 'the motoer
is dependent upon systém inertia and fridtion.

A full descfiptidn of backlash  and the mathematical
repreéentétion of torque generation was presented.in Chapter
6. It was shown that the generatidﬁ of torque at each mesh
is dependeﬁt on Ehe' backlash at each mesh, and the -
associated initial condition. Linearisation of  the
equations, by removing the ‘depéndence. of torque on the
backlash condition, showed. that the tranéfer funection
reiat;ng input angle;to-oﬁtput éngle could be considered"as
a linear seéopd-érder system.multiplied by a scaling factor,
which was the gear'raﬁio. Undef steady-state cdnditions this -
transfer function predicts ~ that " the ocoutput éngular B
displacement is the product éf‘the gear ratio and the input
'angulaf displacement. -

~As both gun drive systéms contained a planetary gear
train at the.load end,'lthe 'transfdrmatidns 'necésgary for

representation of the planetary train as a single effective
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mesh ﬁere presented in Chapter T.

?4'?" The implementationfof the modelling equétions in the
digital simulation was presented in Chapter 8. In the course
of the'reSearch_study it became'apparent thafxthé effects of
non-linear friction were not easily detected under.open—loop
conditions, and théreforé'a simple control iaw was developed
to investigate thé berfofmancelof the tpéverse‘sysﬁem under
wcloéed-loop conditions.

Thé  results from the 'digital  simulation for the
traverse éystem, under open-loop conditions, clearly showed
‘the effects of backlash, and its initial chnditiqn; on
torque generation.‘The levels_of'torque through the system
- were much highér'than was'expected'frdm considérationidf‘thé
géar ratios alone; due to‘the ;gollision-engagement of the
mating gears. Thése high impulsé torques were pafticularly
mafked_in the initial gear meshes, wﬁere thel ffequendy of
meshing was highestJ.The result was that the mating teeth
came into and out—of-mesﬁzwiﬁh.a'fréqueﬁéy dictéﬁed by the
effective stiffness of the mésh_énd the effective ine:tia of
bhe'outppt member. The 'aéhiéved distribution of' veloecity
through the system was seen to be very c¢lose to ideal,
indicéting' that . the gear mesh’ hodels were- functioning
correctly._as Hspeed convérters. The form of velocity
developed_in‘the_first threé meshes was Smooth, due to ,;he
high frequency méshing. The form of the developed turret

velocity was seen to be dependent upon the initial backlash
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condition, such that when the gears were assumed to be fully
-unmeshed in - the -direction of rotation as an initial
éonditioh, thé tufret-velocity was stepped in nature, due to
periods of non-engagement of the pinion with the turret
.,ring. This‘effect became less pronounced when the gears were
assumed to be 50% in mesh, and disappeared when ther gears
were assumed to be fully meshed. Thus, the ~initial
collision-engagement of the'gears results in a pulsing of
torque into the turret and gun, the magnitude -‘being
dependent upbn the initial backlash -Vcondition; The
representation of the gun as a single ‘lumped_ inertia
resﬁited in low frequenCy vibrations as a - result of its
‘relatively low natural frequehcy (5 Hz).-

The form of the pointing error at each.”mgsh .followed .
closély the form of the associated torqué generation, ie
higher frequencies in the earlier meshes, due to the torque
being a function of relative gear angle. The steady-étaté
pointing of the system, as indicated by the turret, was seen
to be dependent upon ﬁhe initial backlash condition ' such
that the lowest error was achie#ed when the gears were
assumed to be initially meshed. The pointing accuracy of the .
linearised model waé identical to that of lthe non-linear

model with the gears initially meshed, indicating that the

'__bouncing'back and forth of the gears, allowed by backlash,

does not contribute to the pointing error, but ratner the

initial condition on backlash.
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The effects of finite-shaft‘étiffnesses on performance
Wwere clearly seen. The shafts were clearly not stiff..enough
for the 1levels of colliSibn-engaged' torqué throdgh' the
syStem, aﬁd .thére was evidence' of the shaft dynamics
coupling with the gun dynamiés. The effects of finite shaft
stiffness. were not abparent in ﬂherelevation system as the
assumed gun model.is probably more .representative in this
aiis. In addition, the levels of torque were lbwer_-in the
eievétion system, due to both the lower motor torque . inputs
and the lowef overall gear ratio. The effect of the gun rack
Qut—of-balanée térque was clearly seen as an offset in the
'dgvelopea gun tordué. | \ -
“ .A  §rélimiﬁafy..ihﬁééﬁigééion”' 6fﬁ ‘theﬁ éioéed-lbop
traverse gun?drive'system, although not initially'éne of the
reasearch objectives, was carfied out in order to ascertain
the effects'of the ﬁon;linearities‘ubon sysﬁem performance.'
This préliminary.study Showed that_providing backlash is not
excessive,.and does not:advérsely affeét_the_damping of the
"system, thén-the performance of the closed-loop gun drive
system is dictatéd_by‘tne level of Coulomb frietion in the
system, resulting in a sﬁeady-sﬁate pointing error of the

turret to step input demands on azimuth position.
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10.2 - Recommendations for further work

There remains a clear need for the investigation of
gear meshing’ on the réfebred values of - inertia,
stiffness, and fr;ction..This effect was not incorponated
into the models as the problems' associated  with- the
integration were not sorted out to the ~complete
satisfaction of the author by the_.completion‘ of this
work. The inclusion of the effect of gear meshing on
referred‘parametehs would result in a  more realistie
model. However, their‘inclusion nay lead to an even more

relaxed control on relative and absolute error bounds,

_which in turn may lead to problems with numerical

accuracy.

A more complete investigation =~ of gear mesh

- stiffness on dynamic performance is required for design

purposes.
A more complete investigation of shaft stiffness is
requiréd, particularly- the effects of the coupling of

shaft and gun dynamics. :
| There is a need for a more realistic gun model,
taking into account nigher barrel frequencies than the
fundamental, and the modes  associated Nwith these

higher frequencies;- | .

An investigation of tne _cdupling between ° the

traverse system and elevation system dynamics is
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?equired, involving the linking of the'two systems into
one éimulation program with the inclusion of the relevant
coupling terms.

- There is a need for the investigation bf vehigle

motions on system performance, particularly in relation

to a coupled gun drive‘system model.

A ﬁore thordugh investigation of the closed-loop
dynamics of both systeﬁs is required, :‘with | the
appropriaté deisgn.of the contrel law. This wauld require
a more accurate descriptionl of the motor .to include
eiectrical phencmena, as well as mechanical phenomena,‘in
the modelling'equations.'r | |

An attempt should be made ﬁo confirm some "of ‘the
findings of this research investigation by’ carrying out
tests on the performance of a modern main battle tank;
The required variables could be dbtained‘ by the
positioning of the appropriate measurement sensors in the

turret and gdn.
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APPENDIY 1 STIFF DIFFERENTIAL EQUATIONS

A major reason for probléms with numerical integration
is that the system to be simulated may have system-response
time constants that are short compared to the solution time.
This can be true even if the system response is npt

oscillatory. This may force one to use integration steps,

DT, of the order of the smallest time-constant, causing not

only slow computation but also serious round-off errors.
For the general non-linear vector equation
dX = G(X,T) ... (A=1)
dT _ :
we speak of the system being 1locally stable if the

_eigenvalues /“(X,T) of the local Jacobian ‘matrix

T

3G =z Jac(G) cees. (A=2)
dX |

have negative real parts.

A differential-equation system (A-1) will be called .

stiff if the relative range of its local time constants is
large, say, 1argeb than 100, for any point (X,T). For

example, the system

2
X, + & +100x=0. oor (A3

is a stiff system with eigenvalues -100 and -1; the solutibn

can contain a ‘'fast' component of a et and” a “'slow'
1 o

—10.0t N

component of a,e

otéréhat théw}espohse is non-oscillatory



in this case.
Application of numerical-integration rules transforms
a given differential-equation system into a system of
difference equations. The latter may, however, be uhstable,
aﬁd thus amplify small numerical erroré as the_ solutioh
proceeds, even though the ~original differential-equation
system is completely stable. Consider open Euler integration
appliéd to the simple differential equation
%% = AX ceaoa (A=h)
ie.,
’ | kH1y = kx wA%XDT = (1+ ADT)*X  ....(A=5)
_}his difference equation is completely stable if and only if
| 11+ADTI < 1 © ieee...(A=6)
even though the original differential equation (A-4) is
completely stéble for |
Re(A) < 0 cee..(A=T)
Note that integration stability éan force the use of
an inconveniently small DT even though the transients
associated with the larger values Ai contribute little to
‘Ehe”pafticulan solgtion.
One is, then, led to seek integration riles with large
regioﬁs of stability. Dahlquist (ref.4) defined an
integration rule as A-stable if and only if the numerical =

solutidn goes to - O -for all DT as Tkﬂ-m for any

“asymptotically stable differential-equation system, ie a-



system with Re(A) % 0.

' Since stiff ‘differential equations frequently arise
from consider;tibné of physical systems, practical digital
simulation systems must include at least one stiff-system

integration rule. The most successful rules, though not

A-stable, are implicit methods. Unfortunately, they require

- substantial per-step computing effort, but this is often'

‘paid for by the possibility of using much larger integration
steps. Implicit rules require solution of a possibly large
k+1
system of Eq.(A-1) for the vector "'X at. each step. The
typical approach to this problem 1is to use a form of
Newton—Raphsdﬁ iteration. This involves finding an
approximation to the Jacoblan of the defivative matrix,
_ 4G ceer..(A=8)
T="3x

This is usually done by making n+1 calls to the derivative
function and finding the 1local approximations to the

elements of J:

G e AX) -G ), o903 g
J'] Ax’ ' -4 I

where G; 1s the ith element of .the nth-order derivative
- vector. This time-consuming process ;s obviocusly only worth
Idoing if DT can be greatly increésed, which is often the
case in many problems.

Rosenbrock (ref.5) pfoposed an extension -to impliecit

forms of. the Runge;Kutta process. A simple 'second-order



example is

1

o ik :.[I_%'Ijkﬂ pTkg e (A=9)

| kety o Ky K, ... (A=10).
.Calahan (Ref.6) presents similar methods. Note that such
methods require not only the  n+1 call"of"the d?rivaﬁive
function to estimaté J, but also the inversion of possibly
.lafge nXn matrices at each step. Ciearly, a lot of per-step
effort is required for a high—orderea set of différential
equations. _

Gear (ref.2) has developed his 'stiffly stable’
straﬁegies, which provide high accuracy .for major system
eigenvalues of small magﬂitude and retain stability- for
.relativelj unimpoftaﬁt short time—cohstants'assbciatéd  ﬁith
eigenvalues of large'magnitude. Moreovir, his methods are
.ﬁafiable-order,-variéble-step strafegies.‘To fufther reduce
average per-step computing effort, Gear recomputes .the‘
Jacobiah " only when :tests indicate that the current

approximation to J is no longer suitable.



APPENDIX 2

ACSL Simulation Program of Traverse Gun Drive System



T

* ‘THIS PROGRAM SIMULATES THE TRAVERSE IRIVE

PROGRAM TRAVERSE

CINTERVAL CINT=3.001
NSTEPS NSTP=1030000 .
ALGORTITEM IALG=2

MERRCR THEMOT-@.l,THET1=0.1,THET2=0.1, THET3=¢.1

MERRCR THETUR=@.1,THETG=d.1,WMOT=0.1,W1=3,]1,W2=4.1,W3=d.1
MERR(R WIR=0.1,WGUN=0.1

XEFRR(R THEMOT=#.1,THET1=9.1,THET2=¢.1, THET3=1.1
mmmn#1mm1,m1m#1wz=a1m=al
XERRCR WIR~4.1,WGUN=J.1

"REFERRED FRICTION TO GEARS AND MOTCR"

"ABSOIUTE VALUES OF FRICTION"

* 1.STICTION"

" EDFF IS SWITCH TO TIRN OFF ALL NOM-LINEAR FRICTION "
. L]

1

‘CONSTANT FOFF=1

NOTE FRICTION REMOVED WHEN FOFF=¢g "

" NONLIN IS SWITCH TO LINEARISE MODEL *

L L]

CONSTANT NONLIN=1.9

- NOTE TO LINEARISE MODEL NONLIN MUST EE SET TO ZERO.
" " ~HOWEVER FOFF MUST BE SET TO UNITY TO PREVENT THE "
o REMOVAL OF VISCOUS FRICTION®

FSTM=0 , 46 *FOFF*NONLIN
FST1=0.41 964 *FOFF*NONLIN

_ FST2=0.41964*FOFF*NONLIN
FST3=0. 53206 2*FOFF*NONLIN
FSTT=152@*FOFF*NONLIN

" 2.00ULoMB"




» POOUM=0. 26*FOFF*NONLIN
FOOU1=0, 244 79* FOFF*NONLIN
FOOU2=03 . 24479 *FOFF*NONLIN
FOU3=0. 31037 *FOFF*NONLIN® *
FOOUT=141@*FOFF*NONLIN

" 3.visoous"

FVM=0.046
FV1=3.57259
FV2=0.57259
FV3=0.61369
FVT=1300

~ CONSTANT STOPM=50
CONSTANT STOP1=5@
CONSTANT STOP2=58
CONSTANT STOP3=50
CONSTANT STOPT=10000

"DEFINITION OF GEAR RATIOS"

- CONSTANT N1=3.37078
CONSTANT N2=91, 24691
CONSTANT N3=0.24 -
. NOTE N4 MAY VARY IF TURRET BCCENTRICITY INCLUDED "

"INVERSE GEAR RATIOS"
"

N1A=1/N1 ' . ' t
N2a=1/N2 .
- N3A:=1/N3

"GEAR RATIO FUNCTIONS FOR REFERRAL OF INERTIA AND FRICTION"

NIN1=N1*N1
NZN2=N2*N2
N3N3=N3*N3

':ABSOLUI‘E STIFFNESSES" - .
CONSTANT Kl=1.6974E+F7
CONSTANT K2=1.9721E+37 -
- CONSTANT K3=1.0137E+37 -
CONSTANT KT=2.89E+28 $ " TURRET STIFENESS °*
: CONSTANT KTG=9.22E+36 $"GUN'ID'1‘LRRE'I‘SI‘IFFNESS .-
KS1=1.13525E+@8*STOFF -
KS2=1.116E+28*STOFF
 KS3=6.994E+HIO*STOFF
CONSTANT STOFF=1.8

END



»

DYNAMIC

DERIVATIVE C T Ta
L

CONSTANT MAJ=2,MIN=2 ‘
Rm=((wsm(m))**z+mm*cos(m))**2)**@ 5
NOT=RTIR*256/2
N4=14/NOT
- NAA=1/N4
NANA=NA*N4

“  CALCUIATION OF REFERRED FRICTT

" 1 MOTR SHAFT"

STICMR=FSTMH(N1*FSTL ) +{N2*N1*FST2 )+ (N3*N2*N1 *FST3 ) +. . .
{(MAYNITN2*NL*FSTT) -
FOMREF=FOOUMH{N1*FOOUL }4+ (N2*N1 *FOOU2 ) +{N3*N2*N1 *FOU3 ) +. . .
(N4*N3*N2*N1*FCCUI‘)

| mmm(um*m)+(N2N2*Nm1*m)+(N3N3*N2N2*N1N1*M) ees
+(NANA*NIN3I*NIN2*N1N1 *FVT) , \

* 2. FIRST GEAR MESH"

SI‘ICIR—E‘S'I‘1+(N‘2*F5'1'2)+(N3*N2*FSI‘3)+(N4*N3*N2*FS‘I‘1‘)
FCIREF=FOUL+(N2*FO0U2 )+ (N3*N2*FOOU3 )+ (N4*. .. -
N3*N2*PCoUT)
FVIREF-M+(N2N'2*FV2)+(N3N3*N2N2*FV3)+. .

‘ (N4N4*N3N3*N2Nz*wr)

" 3.SECOND GEAR MESH"

STIC2R=FST2+(N3*FST3 )+ (N4*N3*FSTT)
FC2REF=POOU2+{N3*FOOU3 )+ (N4*N3 *FOOUT)
Evmmmam*m)ﬂmm*mm*m)

-"4THIRDGE?\RMESH
PI.ANEI'IRYSYSI‘EM FRICI'I(I\TCNM'ISIDEOFPIANETGEARS

STIC3R=FSI'3+(N4*FST1‘)
FCIREF=FOOU3+ (N4*FO0UT)
FVIREF=FV3+(NANA*FVT)

"ABSOLUTE INERT ‘
CONSTANT JMOT=d.005
CONSTANT JA=1.9745E-04
CONSTANT JB=4.879E-23
CONSTANT JC=5.88431E-05
. CONSTANT JD=7.7126E-23
- CONSTANT JE=1.996E-04
CONSTANT JF=1.47774E-04
CONSTANT JP=1.0744E-92
CONSTANT JSl=1.04144E-05
CONSTANT JS2=3.45413E-84
CONSTANT JS3=5.95949E-03



CONSTANT JS3=5,95949E-413

“ADDITION OF INERTIAS ON COMMON SHAFTS "
JM=IMOTHIA

J1=JBHISLHIC - ~-.

J2=IDHIS2HIE |
J3=(3*JF)HIS3HIP § "THREE PLANETRY GEARS "
CONSTANT JTIR=43000

"BACKTASH CALCULATIONS"

"BOFF IS SWITCH TO TURN OFF ALL BACKLASH"
CONSTANT BOFF=1
BACK1=9, 525E-034*BOFF*NONLIN
BACK2=9 . 44 5E~84*BOFF*NONLIN
BACK3={.007284*BOFF*NONLIN
BACK4=0 . 3001531 5* BOFF*NONLIN
- BACKS=0 . 3¢ * BOFF*NONLIN -

" TNITIAL, CONDITIONS FCR MESHING"
CONSTANT FRAC=50

m<1=am*mm/1w
BK2=RACK2*FRAC/100
BK3=RACK3*FRAC/100
RK4=RACKA*FRAC/100
BKS=BACKS*FRAC/ 100

- "EFFBECTIVE BACKIASH AT EACH MESH"

DLl=(BK1)
DL1A=(RACK1-BK1)
DL2=(BK2)
DIL2A=(BACK2-BK2)
DL3=(BK3)
DL3A={ BACK3-BK3)
DLA=BK4 _
" DLAA={RACK4-BKX4)
DL5=RKS
DLSA-[BACKS-BKS)

EFFECI'IVEBAC’:(IASHATPDNICN SPEC <12TE-IIJ
EBP_-(DI.IA*NZ*N3)+(DL2A#N3)+DL3A

"EFFECTIVE BACKIASH AT IQAD "
- "1 . EFFECTIVE BACKLASH AT TURRET - EBT "
" EBT=(DLIA*N2*N3#*N4)+(DL2A*N3*N4) * ( DL3A*N4 ) +DIA4A -
* 2 , EFFECTIVE BACKIASH AT GUN -ERG "
EBG=(DLIA*N2*N3*N4 )+{DL2A*N3I*N4 ) * (DL3A*N4 ) +DLAA+DLSA
JMREF:Jm(Jl*mm)+(J2*N2N2*Nm)+(J3*N3N3*N2N2*N1N1) ves
+{JTUR-HJGUN) * (NANAMNINIMN2N2*NINL)
JIREF=J14+{J2*N2N2 )+ { T3*NINI*N2N2 ) +. . .
- (JTTUR-HAIGUN) * (N4N4A*NINI *N2N2)
) J2R.EE‘=JZ+(J3*N3N3)+(J'I‘LR4\I(1N)*(N4N4*N3N3)
J3REE‘=J3+(J'I'IR+JGUN)*(N4N4)

"CAICULATION OF EFFECTIVE STIFFNESS"

KIEFF=K1+KS1+(K2+KS2) *N2N2+(K34KS3 ) *NIN3*N2N2+(KT4+KTG) .. .




KIEFF=K1-+H{S1+{K2+KS2) *N2N2+ (K3+KS3 ) *N3NI*N2N2+(KTHKTG) . . »
FNANANINI *N2N2 '

KS1EFF=K1EFF-K1
mem2+(x3ms3)*ﬂ3m+@um)m*mm
KS2EFF=K2EFF-K2

K3EFF=K3+XS3+ (KTHTG) *N4N4

KS3EFF=K3EFF-K3

KTEFF=KT+KTG

. ‘ INPUT PARAMETERS "
" MOTCR CHARACTERISTICS " -
CONSTANT TARG=20
CONSTANT GTHET=9.0
CONSTANT GINT=0.001

CONSTANT Gw=-7.9
FRRCR=(TARG-TURDG)
INTERR=INTEG (ERRCR, 5. 8)
" CONSTANT IAG=0
CONSTANT TK=46
CONSTANT T1=0.1
PROCEDURAL( INPUT=TK, LAG, T1)
IF(LAG.PQ.0) INPUT=TK
IF(1AG. m.l)mmm((m-m)/m,e.a)
PD
cmsrmr OPEN=1
PROCEDURAL ( TMOT=INPUT, OPEN,ERRCR INTERR, GTHET, GINT ,GW)
IF{OPEN,EQ.1)TMOT=INPUT
IF(OPEN M. a)mmm*macammr*mmm
BD

B . FND OF INPUT s&mcrxo:q-—-—-—"_
WM=F . 4 2" NONLIN*FOFF '
GRADM=({STIOMR-FCMREF) *2. 381
PROCEDURAL (FM=TMOT, STICMR, GRADM, FOMREF, WM, FVMREF, WMOT)
IF( ({(TMOT=-FM) *WMOT) .GT. 3.0, AND ABS(WMOT) . LT . WUM ) FM=(STICMR*, . .
SIN(1.9, WOT) )-(GRADM*WMOT)
IF(((’MJI‘-EM)*MJT) LT.4.3 ,AND.ABS (WMOT) LT JIVM)PM=.
- FOMREF*SIGN(1 .8, WMOT)
IF(WMOT.FQ. 3. E)MIQR*SIGN(I a, (mor—m))
IF(ABS(TMOT) .LE. STICMR . AND . WMOT . FQ. 0. &) FM=TMOT :
IF(ARS (WMOT) .GE.WVM) FM=( ABS ( FVMREF™* (WMOT-WVM) ) +FCMREF ) *SIGN(1.8 ,WMOT)
~ IF(ABS(TMOT).LE.FQREF.AND. ABs(wmr) .LE ,WWM) FM=STOPMYMOT :
END

 ACTMOT=TMOT-FM

ACCMOT=ACTMOT/IMREF $ " MOTCR ACCELERATION "
- WMOT=INTEG{ACCMOT, ICWMOT) * § " MOTCR VELOCITY "
THEMOT=INTEG (WMOT, ICTHMO)
WMOTDG=WMOT*183/3.1416
CONSTANT ICWMOT=3.8
-~ CONSTANT ICTHMO=3.0 , -
" REIATIVE GEAR ANGLES FOR TCRQUE GENERATION "
THETS1=DL1-( (THET1 ) -THEMOT*N1)
THETS2=DLAA+( { THET1) ~THEMOT*N1)
THETS3=DL2~( (THET2) -THET1A*N2)
THETS4=DL2A+( (THET2)}-THET1A*N2) -
THET1A=THET1~-( (TCR1*STOFF) /KS1EFF)
' DELTA1=TCR1/K1
- THETS5=DL3-{ (THET3 )-Jrrmrza*m )
THETS6=DL3A+( (THET3) ~THET2A*N3)



THETS6=DL3A+{ (THET3 ) ~THET2A*N3)
THET?A=THET?2~( (TCR2*STOFF) /KS2EFF)
" GEAR MESH STIFFNESSES "
"EFFECTIVE
CONSTANT ETA=1.0 $" GEAR EFFICIENCY "
" TORQUE CALCULATIONS "
"DAMPING QUEFFICIENTS"
CQOHNSTANT BS1=0
CONSTANT BS2=9
CONSTANT BST=0
CONSTANT BSG=0
mocmm(m—mm*sl,mrsz K1EFF,ETA,BS1)
IF(THETS2.LT.3.6) TOR1=-K] EFF*ETA* THETS2-BS1* (WMOT-W1)
- IF(THETS1.LT.9.0)TCR1=K1EFF*ETA*THETS1-BS1* {WMOT-W1 )
IF( (THETS1.GE..8) .AND. ( THETS2.GE.9.0) )TCR1=0.08
BD :
CONSTANT WV1=0.0
'~ CONSTANT RAD1=3.3
PROCEDXRAL(F1=TCR1, STICIR,GRAD]1, FCIREF, W1, FVIREF ,W1)
IF( {{TCR1-F1)*Wl) .GP.&. 0. AND. ABS(WI) LT.W1)F1=(STICIR*..
SIG(1.9,Wl) )~(GRAD1*W1)
IF( ((TR1-F1)*W1).LT.%.9. AND. ABS(Wl) .LT.WV1)Fl=,..
FCIREF*SI®N(1.9,W1)
IF(W1.52.0.8)FI=STICIR*SIGN(1.4, ( TMOT-FM) )
TF (ABS(TCR1) .LE.STICIR . AND.WL.EQ. @.8) F1=STICIR*SIGN(1.d, TMOT)
IF(ABS(W1).GT.W1)F1=(ABS(FVIREF* {(W1-WV1) }4+FCIREF) *SIGN(1. 2 ,W1)
IF(ABS('KRJ,) .LE.FCIREF.AND.ARS{Wl ) .LE.WV1)F1=STOP1*W1
END
AQC1=(TOR1-F1) /JTIREF
WL=INTEG(ACC], ICW1)
THET1=INTEG (W1, ICTH1)
NTHET1=THETL*N1A
CONSTANT ICW1=3.2
CONSTANT ICTH1=3.0
. PROCEDXRAL( TCR2=THETS3, THETS4, K2EFF, ETA, BS2}
IF{THETS4.LT.9.0) TOR2=-K2EFF*ETA*THETS4-BS2* (WL-W2 )
IF(THETS3.LT.4.0 ) T(R2=K2EFF*ETA*THETS3-BS2* {W1-W2)
IF( (THETS3.CE.?.8) .AND. (THETS4.GE.3.8) YT(R2=0.8
END
CONSTANT W2=3.0
CONSTANT GRAD?2=0.0
PROCEDURAL(F2=TCR2, STICZR , GRAD2, FC2REF , W2, FV2REF ,W2)
IF{ ( (TOR2-F2)*W2) .GT.9.0.AND. ABs(wz).L'r W2)F2=(STIC2R*,.. -
SIGN(1.4,W2) )-(GRAD2*W2) o
IF( { (TOR2-F2)*W2) .LT.3.0.AND.ABS{W2) .LT . WW2)F2=, , .
FC2REF*SIGN(1.0,W2)
IF(W2.B0.0.8)F2=STICR*SICN(1.3, (TMOT-FM) )
IF{ABS{TCR2) .LE.STICR.AND.W2.FQ.9. G)FMI'ICZI*SICN(I g, ™OT)
IF(ABS(W2) .GT.W2)F2=(ABS(FVZREF* (W2-WV2) )+FC23EF)*SIGN(1 @,w2)
IF(ABS(TCR2).LE FC2REF . AND. ABS{W2) .LE, wvz)m=srop2*w2

Acc2=(Tm2—F2)/JmEF
W2=INTHG{ACC2, ICW2)
THET2=INTEG(W2, ICTH2)
NTHET2=THET2*N1A*N2A
CONSTANT ICW2=0.00
CONSTANT ICTH2=3.0
 PROCEDURAL (TCR3=THETSS, THETS6 ,K3EFF, ETA, BS3)
IF(THETS6.LT.d.0)TOR3=—K3EFF*ETA*THETS6-BS3* (W2-W3)



IF(THETS6.LT.d.0) TCR3=K3EFF*ETA*THETS6-BS3* (W2-W3) .
., IF(THETS5.LT.d.5) TCR3=K3EFF*ETA*THETS5-BS3* (W2-W3)
IF( (THETSS5.GE.#.9) .AND. (THETS6.GE.3.8) )JTCR3=0.8
END -
CONSTANT GRAD3=0.0 ~.
CONSTANT W3=0.0 -
PROCEIXRAL(F3=T0R3, STIC3R ,GRAD3, FC3REF, W3, FV3REF, W3)
IF{ ((TOR3~-F3)*W3) .GT.d.3.AND. ABS(W3) LT, W3)F3=(STIC3R*...
SIGN(1.4,W3) )-(GRAD3*W3)
IF({ (TOR3-F3)*W3).LT.0.4. AND. ABS{W3) .LT.W3)F3=, ..
FC3REF*SIGN{1.8,W3)
IF{W3.FM.0.0)F3=STICIR*SI®({1.4, ('Imr-m))
IF(ARS(TOR3) .LE.STIC3R .AND.W3.FQ.0.8) F3=STIC3R*SIGN(1.7 m:rr)
- IF(ABS(W3).GT. wv3)F3-(ABs(1=v3Rm'*(w3—w3))+EcaREF)*SI®1(1 a,w3)
IF(ABS(TCRB) LE.FC3REF.AND. ABs(w3).LE WV3)F3=STOP3*W3 .

ACC3=(’I'CRB-F3)/J32EF
W3=INTEG(ACC3, ICW3)
THET3=INTBG(W3, ICTH3)

NTHET3=THET3*N1A*N2A*N3A
QONSTANT ICW3=0.0
CONSTANT ICTH3=0.%

* TOTAL REFFRRED DEADSPACE IN TRAVERSE IRIVE "

THETS7=DI4~{ { THETIR ) ~THET3A*N4)
THETSS=DLAA+( (THETUR ) ~THET3A*N4 )

THET3A=THET3~( (TOR3*STOFF) /KS3EFF)
PROCEDIRAL(TTWR=THETS7, THETSS8, KTEFF, ETA, BST, T(RLIM)
IF(THETS8.LT.d.8) TTUR=( m'E:FE*ErA*'mErsa)-Bs'r*(m—wnn)
IF({THETS7.LT.?.0) TTUR={KTEFF*ETA*THETS7 ) ~BST* (W3-WTLR ) -

- IF{(THETS7.GE.4.8) .AND. (THETS8.CE..8) )TTIR=0.0
- IF((ABRS(TTIR) .GE.TORLIM) )TTUR=TCRLIM*SIGN({1 .4, TTUR)
CONSTANT TORLIM=1.0E+38 $" CLUTCH SETTING "
CONSTANT WT=3.0
~ CONSTANT GRADT=0.0
PROCEIXRAL{ FTIR=TTUR , FSTT,GRADT , FOCUT, W'T, FVT, WIR ) '
- IF({{TTIR-FTIR)*WI'R) .GT.#.4. AND, ABs(wnR) LT.WT)FTIR=(FSTT*..
SIGN(1.9,WIR) )-(CRADT*WITR )
IF( ({ TUR-FTIR ) *WTR ) . LT.5.0.AND. ABS(WI‘LR) LT, wr)m—
- FOOUT*SIGN(1.4,WIR)
IF(WIR.EQ.9. ﬂ)m-Fsm*sxGN(l a, ('mm-m))
IF(ABS(TTIR) .LE.FSTT.AND.WITR . BQ.&.0) FTUR=FSTT*SIGN(1.4, 'mm')
. IF(ABS(WItTR).GT.WT)FTUR=(ABS(FVT* (WTUR-WVT) )+ch'r)*snm(1 a,WIR)
IF(ABS(TTIR) .LE.FCOUT.AND. ABS{WITR ) . LE.W/T) FTUR=STOPT*WIUR
ACCTUR=(TTUR-FTIR ) / (TTUR-HIGUN)
WIUR=INTEG (ACCTUR, ICWT)
WIURDG=WTIR*180/3.1416
THETUR=INTEG(WT'R,ICTHT) .
NTHETT=THETUR *N1A*N2A*N3A*NAA
TURDG=THETUR*180/3.1416
CONSTANT JCWI=0J.08
- CONSTANT ICTHT=0.0
PmRT-(nmm*Nl*Nz*m*M)-Tmm
PERR1=(THEMOT*NL ) ~THET1 _
PERR2=( THEMOT*N1*N2 ) -THET2
Pmm-(nmm*mm*m)-m
. GUN DYNAMICS “



" GUN DYNAMICS "

. *  THETS9=DLS5-(THETG~THETIR)
THES10=DLSA+( THETG-THETIR ) :
PROCEDURAL ( TORGUN=THETS9, THES14, KTG, BSG)
IF(THES14.LT.?.0) TORGUELKTG*THES1 0-BSG* { WIUR~WGUN )
IF(THETS9.LT.d.0) TORGUN=KTG*THETS9-BSG* (WIUR -WGUN)
IP((THETS9.GE.?.0) .AND. (THES19.GE.5.8) YTORCUN=J. 0
END -

CONSTANT MGUN=267

CONSTANT RT=1.06

CONSTANT RGUN=1.77

"ABSOLUTE INERTIA OF GUN ABOUT C.G. "
CONSTANT JGABS=5913.52

"INERTIA OF GUN ABOUT CENTRE OF ROTATION"
JGUN=JGABS+( (RGUNHRT) **2) *MGUN
AQOGUN=TCRGUN/ JGUN
WGUN=INTEG (ACOGUN, ICWG)
THETG=INTEG (WGUN, ICTHG)
CONSTANT ICWG=0.0
CONSTANT ICTHG=0.0
m&(mmmm)m
PROCEDURAL (MESHI=THETS2,BACK},DL1A)
IF (THETS2.LE.3.4)MESH1L=100
1F(THETS2.GE.BACK1 )MESH1=3.9
 IF{THETS2.GT.4.0.AND.THETS2.LT.BACK1) MESH1=1-(THETS2/DL1A}
BD
PROCEDURAL {MESH2=THETS4, BACK2,DL2A)
IF (THETS4.LE.d.0)MESH2=100 :
IF(THETS4 .GE.BACK?2 )MESH2=.@
' IF{THETS4.GT.d.0.AND.THETS4.LT.BACK2) msm-l—(mrs-i/om)
END -
PROCEDURAL (MESH3=THETS6, BACK3,DL3A)
IF (THETS6.LE.d.0)MESH3=100
IF(THETS6 .GE. BACK3 )MESH3=(3. 0
IF(THETS6 .GT.#.3. AND. THET'S6. LT. RACK3) MESH3—1-('IHEI‘SZ/DL3A)
END
- PROCEDURAL (MESHT=THETSS, BACK4, DIAA)
IF (THETSS.LE.d.0)MESHT=100
IF(THETSS.GE . RACK4 )MESHI=], & _
IF(THETSS.GT.@.9.AND. THETS8.LT.BACK4) MESHT=1~(THETSS/DLAA)
END
PROCEDURAL (MESHG=THES14, BACKS, DLSA)
IF (THES14.LE.d.0)MESHG=100
IF(THES1¢.GE. RACKS MESHG=0.0
- IF(THES10.GT.4.8.AND.THES10.LT.BACKS) MESHG=1-(THES16/DLSA)

- " TERMINATION CONDITION "
TERMT(T.GE.TF)
CONSTANT TF=3.8 $ " SECONDS "
END
END

BOTTOM



APPENDIX 3

AC3L Simulation Program of Elevation Gun Drive System



»

" THIS PROGRAM SIMULATES THE ELEVATION mrvr-: "
PROGRAM ELEVATION
INITIAL R
CINTERVAL, CINT=0.0d1
NSTEPS NSTP=1000000
ALGCRITHM IAIG=2 ' '
MERRCR THEMOT=0.l,THET1=84.1, THET2=0.]1, THET3=@.1, THET4=%,1
MFERRCR THETS=J.1,THETG={.1,WMOT=0.1,W1=0.1,W2=1,W3=1 :
MERRCR W4=1,W5=0.1,WGUN=0.1
XERRCR THEMOT=4.1,THET1=4.1, THET2=0.1, THET3=0.1, THET4=0.1
‘mmml,m@almlmﬂl%lm—l
XFRRCR W4=1, w5=a 1, WeUN=5. 1

"REFERRED FRICTION TO GEARS AND MOTCR"

"m VALUES OF FRICTION"

" 1,STICTION"

" FOFF IS SWITCH TO T(RN OFF ALL NON-LINFAR FRICTION"

CCNSIRNTECE’EEI
IOI‘EFRICI‘I(NRWEDWHENEOFM "

" NONLIN IS SWITCH TO LINEARISE MJDEL"
CONSTANT NONLIN=1.0
FSTM=0.423875*FOFF*NONLIN
FST1=@.1151 *FOFF*NONLIN
FST2=0.1151 *FOFF*NCNLIN
FST3=0.1151*FOFF*NCNLIN
- FST4=90.143875*FOFF*NONLIN
FSTG=125.76*FOFF*NONLIN

" 2.,000L0MB"

" FOOOM=J . 254 325*FOFF*NONLIN
FOOU1=9.88855* FOFF*NCNLIN
FOO2=0 ., 98855* FOFF*NONLIN
FOOU3=9, G8855*FOFF*NONLIN
FOOU4=0. 1 136 9*FOFF*NONLIN
FOOUG=102 . 64*FOFF*NCNLIN

" 3,VISOoUS®
FM0.86475
FV1=0.06023178
FV2=41, 0323178
FV3=0.5623178

FV4=0.002463
FVG=99.0196

"DEFINITION CF GEAR RATIOS"

CONSTANT N1=1.4728
CONSTANT N2=1.385
CONSTANT N3=9.27624
CONSTANT N4=@,25
CONSTANT N5=31.945455

"INVERSE GEAR RATIOS"



*INVERSE GEAR RATIOS"

" N1A=1/N1
N2A=1/N2
N3A=1/N3
. N4A=1/N4
NSA=1/N5

GEAR RATTO FUNCTIONS FCR REFERRAL OF INERTIA AND FRICTI

NINI=N1*N1
N2N2=N2*N2
N3N3=N3*N3
NANA=N4*N4

NSNS=NS*N5

" CALCULATION OF REFFRRED FRICTION"
" 1 MOTOR SHAFT"

STICMR=FSTH+(NL*FSTL )+ (N2*N1*FST2)+(N3*N2*N1 *FST3 ) + (N4 *NI*N2*N1 *FST4) . ..
+(NS*NANI*N2*N1*FSTG)
WM(M*M)HM*M*MH(M*NPM*M)+(N4*N3*N2*
N1*FOOU4 )+ (NS*NA*NI*N2*N2*FOOUG)

FUMREF=FVM+ (NIN1*FV1)-+ (NZN2*NINL*FV2) + (N3N3*N2N2*NINI*FV3) . .
+(NANA*NINI*N2N2*NINL *FV4) * (NSNS *NANA*NINI *N2N2*NIN1 *FVG)

® 2.FIRST GEAR MESH"

. STICIR=FST1+{N2*FST2)+(N3*N2*FST3 ) +{NA*N3I*N2*FST4 ) + (NS *N4A*N3 *N2*FSTG)
mm1+(m*m2)+(N3*‘N2*F(I)U3)+(N4*N3*N2*F(IU4)+(NS*N4*. .e
N3*N2*FOOUG)
EVlREF-EVl+(N2N2*FV2)+(N3N3*N2N2*EV3)+(N4N4*N3N3*N2N2*FV4) e
+ (NSNS *NANA*N3INI *N2ZN2*FVG)

" 3,SECOND GEAR MESH"

STIC2R=FST2+{N3*FST3 )+ {N4*N3I*FST4 )+ (NS*N4*'NI*FSTG)
FCREFSFOU24+ (NI*FOIU3 )+ { NA*N3*FOOU4 ) +{ NS *NA*NI*FOOUG)
wmm(mm*mh(N4N4*N3N3*w4)+(N5N5?N4N4*N3N3*m)

" 4 THIRD GEAR MESH"

STICIR=FST3+(N4*FST4 ) +{NS*NA*FSTG)
FC3REF=FO0U3+ (N4*FOOU4 ) + (N5 *NA*FOOUG )
FV3IREF=FV3+{NAN4*FV4 )+ (NSNS *NANA*FVG)

"5 FOURTH GEAR MESH"

STIC4R=FST4+(NS*FSTG)
FCAR ER=FCOU4+ {NS*FOOUG )
FVAREF=FV4+{NSNS*FVG)

“ABSOLUTE INERTIAS"
CONSTANT JMOT=J.005 :
CONSTANT JA=1.1998E-23
CONSTANT J1=1.9772E-04



 CONSTANT J1=1,9772E-04
CONSTANT J2=2.223E-34
CONSTANT J3=4.882E-03
CONSTANT J4=4.65E-03
JM=TMOTHIA :
CONSTANT JGUN=5913.52

" BOFF 1S SWITCH TO TURN OFF ALL BACKLASH"
CONSTANT BOFF=1.3
BACK1=2. 292E-03*BOFF*NONLIN
BACK2=3.175E~-03*BOFF*NCNLIN
. BACK3=.8835E-33*BOFF*NONLIN
BACK4=0.. 811136*BOFF*NONLIN
BACKS5=1 . 232F-33*BOFF*NCNLIN

" INTTTAL CONDITIONS FCR MESHING"
CONSTANT FRACA.5

DIAA—(BAO(4—BK4)

DL5=FKS

 DLSA=(BACKS-BKS) -

"CALCULATTON OF REFERRED INERTIA"

' JMREF=IM+(J1*NINL )+ (J2¥NZN2#*NINL ) +(J 3*NIN3*N2N2*NIND ) . . .
+{ T4 NANA*NINI*NZN2*NIN1 )+ (JGUN*NSNS *NANA*NINI*N2N2*N1N1 )

JlREE‘=J1+(J2*N2N2)+(J3*N3N3*N2N2)+(J4*N4N4*N‘3N3*N2N2) ees
+(JGUN*NSNS*NANA *N3NI*N2N2 )

o JmEF=J2+(.13*N3N3)+(J4*MN4*N3N3)+(JGUN*N5N5*N4N4*N3N3)

J3REF=J3H{T4*N4N4 )+ JGUN*NSNS*NAN4S )
J4REF=&T4+(JGJN*N5N5)

"ABSOLUTE STIFFNESS"
CONSTANT K1=3.119E+26 -
CONSTANT K2=1.60LE+26
CONSTANT K3=2.184E+07
CONSTANT Kd=1..3@2E+26
' CONSTANT KG=7.48E+76
KS1=9. SE+I4*STOFF
KS2=9.653TEHIA*STOFF
KS3=2.234E+I5*STOFF
CONSTANT STOFF=d.0

"CALCULATTON OF EFFECTIVE STIFENESS"



"CALCULATTON OF EFFECTIVE STIFFNESS"
: KJ.EFF=K1+(K2+KSI) N2+ (K34KS2 ) *NINIMN2N24+ (K4+KS3) TNANA*NINI*NINZ. .
+(KG) *N5N5 *NAN4*N3NI*N2N2
| sz%«su(mmsz)*N3N3“(K4AK53)*N4N4*N3N3+(KG)*N5N5*N4N4*N3N3
KS1EFF=K2FFF-K2
K3EF'F=!G+{<S2+(K4+KSS)*N4N4+(KG)*NSNSW
KS2EFF=K3EFF-K3
KAEFF=KA+KS3+(KG) *N5N5
KS3EFF=KAEFF-K4
DYNAMIC
DERIVATIVE
" MOTOR CEARACTERISTICS "

CONSTANT INPUT=15
' PROCEDXRAL (TMOT=GINDG) |
IF{GUNDG.GE. 20 )TMOT=0
- IF{GUNDG.LE.~8)TMOT=H
IF{GUNDG.LT. 28 .AND.GURDG.GT. -B)Trviorn-mwr
END
GRADM=( STICMR-FCMREF ) *2,381
CONSTANT STOPM=0
CONSTANT STOP1=d
CONSTANT STOP2=0
CONSTANT STOP3=0
CONSTANT STOP4=4 -
~ CONSTANT STOPG=0
WM=0.42*FOFF*NONLIN - .
PROCEDURAL (FM=TMOT, STIOMR, CRAIM,EG'IREE‘ WWM, FVMREF , WMOT')
- IF{ { {TMOT-FM) *WMOT) .GT.& .3 . AND. ABS (WMOT) . LT . WWM) FM=(STICMR*. . .
SI{1.9,WOT) )- (GRADM*WMOT')
IP( ( (TMOT-FM) *WMOT) . LT. 3.9, AND. ABS {WMOT) . LT, WWM) FM=, ,
FOREF*SIGN(1.4,WOT)
IF{WMOT. EQ. 5. 8) FM=STICMR*SIGN(1. &, (TMOT-FM) ).
IF{ABS{TMOT) .LE.STICMR . AND. WMOT . BQ. 3 . @) FM=TMOT
IF(ABS(WMOT) .GE. m)n@(m(mw(mm—wvmnmm)*srcm(l &,WMoT)
IF(ABS(TMOT) .LE. FO'REF . AND. ABS {WMOT) . LE. WWM) FM=STOPM*WMOT \
| AOCMOT=ACTMOT/JMREF $ ® MOTCR ACCELERATION "
- WMOT=INTEG(ACOMOT, ICWMOT) § * MOTCR VELOCITY "
WMOTDG=MOT*180/3.1416 :

' CONSTANT ICWMOT=0.0 L
THEMOT=INTEG(WMOT, ICTHMO) § " MOTCR ANGLE (RADIANS) "
CONSTANT ICTHMO=0.0 :

' RELATIVE GEAR ANGLES FOR TCRQUE GENERATION "
THETS1=DL1-( (THET1)~THEMOT*M1) _
THETS2=DL1A+( {THET1 ) -THEMOT*N1)

THETS3=DL2-( (THET2 }~THET1 *N2)

- THETS4=DL2A+{ (THET2 ) -THET1*N2)

THET2A=THET2-( (TOR2*STOFF) /KS1EFF)
THETS5=DL3-( (THET3 ) ~THET2A*N3)

" THETS6=DL3A+( (THET3 ) ~THET2A*N3)
THET3A=THET3-( (TCR3*STOFF) /KS2EFF)
THETS7=DLA-( (THET4 ) -THET3A*N4 ) -
THETS8=DLAA+( (THET4 ) -THET3A*N4 )
THET4A=THET4- ( (TOR4*STOFF) /KS3EFF)
THETS9=DL5~-( (THETG) -THET4A*NS) ~
THES10=DL5A+( (THETG ) ~THET4A*N5 )



., 'IHBM=DL5A+(('I‘I—IE'IG)-—’IHEI‘4A*NS)
' GEAR MESH STIFFNESSES *
CONSTANT ETA=3.95 $" GEAR mcrm "
" TORQUE CALCULATIONS "
PROCEDIRAL(TOR1=THETS1, THEI‘SZ KlEFF ETA)
IF(THETS2.LT.d.0) TOR1=-K1EFF*ETA*THETS2
IF{THETS1.LT.#.8)TR1=K1EFF*ETA*THETS1
IF((THETS1.GE.®.d) ., AND, (THETS2.GE./.0)} ) TOR1=4.0
END
CONSTANT GRAD1=0
CONSTANT W1=g
PROCEDURAL(F1=TCR1, STICIR,GRAD1 EC].R.EF.WVI EVIREF ,W1)
 SIGN(1.0,W1))- (GRADl*m)
IF( ((TCR1-F1)*W1).LT.9.0.AND,.ABS{W1) .LT.Wl)F1=. .e
FCIREF*SIGN(1.0,W1)
IF(W1.EQ.9,8)F1=STICIR*SIGN(1.4, (TMOT-FM) )
. IF{ABS{TCR1).LE.STICIR.AND.W1 .EQ.4.4) F1=STICIR*STGN(1.4, 'Im'r)
- IF(ABS(W1) .GT.W1)F1=(ABS{FVIREF* (W1-WV1) }+FCIREF) *SIN(1 .9 m)
IF(ABS(TCR1) .LE.FCIREF.AND.ARS{W1) .I..E.Wl)Fl=S'IOPl*W1
END
: ACC1=(TR1-F1) /I1REF
. WI=INTB:{ACC1,ICWl)
THET1=INTEG{W1, ICTH1)
OONSTANT ICW1=3.0
CONSTANT ICTH1=0.d
PROCEDIRAL (TCR2=THETS3, THETS4 , K2EFF, ETA)
IF(THETS4.LT. 3.0 ) TR 2=—K2EFF*ETA*THETS4
IF(THETS3.LT.#.0) TOR2=K2EFF*ETA*THETS3
IF( (THETS3.GE.8.%) .AND. { THETS4 .GE. 4. a))'Im2=a g
END
CONSTANT GRAD2=0
PROCEIURAL(F2=TCR2,STIC2R ,,GRAD2, FCZREF, W2, FV2REF,W2)
IF( { (TCR2~F2)*W2) .GT.9.8 .AND.ABS(W2) .LT WZ)F2=(STIC2R*.. .
SIN(1.4,W2) )-{RAD2*YW2) - -
IF( ( (TCR2-F2)*W2) .LT.3.0.AND.ARS(W2) .LT . W2)F2=,,.
FC2REF*SIGN(1.9,W2)
IF{W2.50.0.9)F2=STICR*SIGN(1 .4, (TMOT-FM) )
IF(ABS(TCR2) .LE.STIC2R .AND.W2.FQ.3.0)F2=STIC2R*SIN(1. ﬂ,'mor)
TF(ABS(W2) .GT.W2)F2=(ABRS{ FV2REF* (W2-WV2) ) +FC2REF) *SIGN(1.0,W2)
IF(ABS(TCR2) .LE.FCREF.AND.ABS{W2) .LE. wvz)r'z=s'10?2*w2
END
: Accz—('xmz-}?z)/JmEE'
W2=INTEG({ACC2, ICW2)
THET2=INTHG(W2, ICTH2)
~ CONSTANT ICW2=0.0
CCONSTANT ICTH2=03.0
. ' PROCEDURAL(TOR3=THETS5, THETS6 K3EE'F,EI'A)
_ IF(THETS6.LT.3.8) TOR3==K3EFF*ETA*THETS6 |
IF(THETSS.LT. 0.0 ) TOR3=K3EFF*ETA*THETS5
'~ IF({THETSS.GE.0.9).AND. (THE.TSG GE.@. a))'rcn3=a 4]
END
CONSTANT GRAD3=0
PROCEDIRAL(F3=TCR3, STIC3R,GRAD3, FC3REF, W3, FV3REF, W3)
IF{{(TCR3-F3)*W3).GT.3.8.AND.ABS(W3).LT. wva)F3—(STIc3R*...
SIGN{1.9,W3))~-{CRAD3*W3) ‘
IF( ((TCR3-F3)*W3).LT.0.0.AND.ABS(W3) .LT. WV3)F3—...
. mmsxm(l a,w3)



" FC3REF*SIQN(1.0 w3)
. IF(W3.P.0. G)F3-—STIC3R*SIGN(1 @, (TMOT-FM))
' IF(ABS(TCR3) .LE.STIC3R . ANQ, W3 . EQ. .3 ) F3=STIC3R*SIGN(1.8, TM™OT)
IF(ABS{W3) .GT.WV3) F3=( ABS(FVIREF* (W3-WV3) )+FC3REF) *SIGN(1. e W3)
IF(ABS(TCR3) LE.FC3REF.AND.ABRS (W3) .1E. W3)F3=smp3*w3
" END
- AOC3={TR3-F3) /J3REF

W3=INTEG(ACC3, ICW3)

THET3=INTEG (W3, ICTH3)

OONSTANT ICW3=0.0

~ CONSTANT ICTH3=4.0

PROCEDURAL ( TOR4=THETS7 , THET'S8, K4EFF', ETA)
IF(THETSS.LT.d. 8 )TOR4=-KAFRFF*ETA*THETSS _
- IF(THETS7.LT.5.0)TOR4=KAEFF*ETA*THETS7 ‘
IP{ (THETS7.GE.¥.9) .AND. (THETS8.GE.4. a))mR4=a @
. END
CONSTANT (RAD4=0
COONSTANT W4=3
PROCEDRAL(F4=T(R4, STIC4R , GRAD4 , FCAREF WV4.FV4REF wa)
IF( { (TCRA-F4) *W4) .GT.0.4.AND. ABS(W4) . LT.W4)F4-(erc4R
SIN(1.9,W4) )-(GRAD4*WA) _
- IF{({TCR4~-F4)*W4) .LT.7A.4. AND ABS(W4).LT.W4)F4=...
FCAREF*SIN(1.0,W4)
IF(wW4.BQ.0. a}ch::R*sxcm(l a, (MI‘-—FM))
IF(ABS{TOR4) .LE.STICAR . AND. W4 .EQ. 9. 3) FA=STICAR*SIGN(1.d, TMOT)
IF(ABS(M).GI‘.W4)F4——(ABS(FV4REF*(W4-WV4))+MEF)*SICN(1 ] w4)
IF(ABS(TCR4) .LE.FCAREF . AND. ABS (W4 ) . LE. WV4 ) F4=STOP4 *W4
END
- - BOCA=(TCR4-F4) /JAREF
WA=INTEG(ACCA, ICWA)
THETA=INTEG (W4, ICTH4)
CONSTANT 1CW4=0.0
 OONSTANT ICTHA=(.0 -

" TOTAL REFERRED DEADSPACE IN TRAVERSE IRIVE
"GUN(I]'I'CFBAIAI\EE'KRQJE

CONSTANT COB=1.0
TOB=RSW(ABS({TMOT) .GT.STICMR, ((1494 1*'I‘HEIG)+258 62)*(1)8 a. 0)

- TCREKGETCRGUNATOB

PROCEDURAL( TORGUN=THETS9, THES14, KG, ETA)

IF(THES14.LT.D. e)mcum—xc*nmsm*m\

IF(THETS9.LT.9.8) TCRGUN=KG*THETSO*ETA .

IF({THETS9.GE.#.d) .AND. (THES10.GE.#.0) ) TCRGUN=3.0

CONSTANT GRADG=( '

CONSTANT WVG=0
PROCEDURAL( FG=TCRKG, FSTG, GRADG, FOOUG, WG, FVG, WGUN)
IF{ { {TORKG-FG) *WGUN) .GT. 4.8 . AND. ABs(mtm) LT.WGYFG=({FSTG*. .
SIGN(1.%,WGUN) }-{GRADG*WGUN) \
IF{ { (TORKG-FG) *WGUN) . LT. 7. /. AND. ABS(WGUN) LT, WG)FG=. .
FOOUG*SIGN(1 .0, WGUN)
IF{WGUN.EQ.0.0)FG=FSTG*SIGN(1.4, ('I'MJI‘-FM)) '
IF{ABS(TORKG) .LE.FSTG. AND. WGUN.EQ.J.0) FG=FSTG*SIGN (1.4, TMOT)

IF(ABS(WGUN) .GT. WVG ) FG={ ABS  FVG* (WGUN-WVG) )+FCOUG)*SIC'N(1 @, WGUN)

IF(ABS(TORKG) . LE. FOOUG. AND. ABS{WGUN) . LE. wvc)m:smpc*muu :
END
~ AOOGUN=({TCRKG-FG) /IGUN



A00GIN=( TORKG-FG) /JGUN
WERNE=INTEG { ACOSUN, ICWG)
WGLNDG=WGUIN*186/3.1416
THETG=INTH: (WGUN, ICTHG
GINDG=THETG*180/3.1416
OONSTANT ICWG=8.0
CONSTANT ICTHG=9.0
PERR1=(THEMOT*N1 }-THET1
PERR 2=( THEMOT*N1 *N2 ) -THET2
PERR 3=( THEMOT*N1*N2*N3) ~THET3
PERR4=(THEMOT*N1 *N2*N3*N4 ) ~THET4

PERRG=( THEMOT*N1 *N2*N3*N4*NS ) ~-THETG

- " TERMINATION OONDITION "

- PROCEDURAL( PINISH=GUNDG)
IF(GUNDG.GE. 28)FINISH=1
IF(GUNDG.LE.~7.5)FINISE=1

END _ -
TERMT (FINISH.CE.1) - o
CONSTANT TF=3.4 $ " SEOONDS "
BRD

END-

BOTTCM






