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Abstract 
 

Recent analytical results in the theory of antisymmetric localised elastic 
modes propagating along edges of immersed wedge-like structures of 
arbitrary shape and curvature are briefly described with the emphasis on 
methodological aspects of using geometrical-acoustics approach for 
developing the theory. The velocities of localised modes are calculated for 
wedges of linear geometry, wedges with a cross section described by a 
power law, and curved cylindrical wedges.  It is shown that deviations of a 
wedge shape and curvature from linear geometry result in frequency 
dispersion of wedge modes. The comparison is given with the experimental 
investigations and numerical calculations of wedge waves carried out by 
independent researchers.  

 
1.  Introduction  
 
Antisymmetric localised elastic waves propagating along tips of solid wedges in contact with 
vacuum have been predicted in 1972 using numerical calculations (Lagasse [1] and 
Maradudin et al. [2]). It has been shown in [1,2] that such waves, now often called wedge 
acoustic waves, are characterised by low propagation velocity  (generally much lower than 
that of Rayleigh waves), and their elastic energy is concentrated in the area of about one 
wavelength near the wedge tips. Since 1972, wedge acoustic waves have been investigated in 
a number of papers with regard to their possible applications to signal processing and to non-
destructive testing of special engineering constructions (see, e.g., [3-8] and references there).  
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     The first experimental work studying wedge wave interaction with liquids has been 
published by Chamuel [9] in 1993. In the year 1994, the existence of localised flexural elastic 
waves on the edges of wedge-like immersed structures has been described theoretically by the 
present author [10].  These advances were followed by the experimental investigations of 
wedge waves in immersed structures which considered samples made of different materials 
and having different values of wedge apex angle [11,12].  Recently, finite element 
calculations have been carried out [13] for Plexiglas and brass wedges with the values of 
apex angle in the range from 20 to 90 degrees and an analytical theory based on geometrical-
acoustics approach has been developed for the same range of wedge apex angle [14]. In the 
paper [15] dealing with finite element calculations of the velocities and amplitudes of wedge 
waves, among other results, calculations have been carried out of the velocities of waves 
propagating along the edge of a cylindrical wedge-like structure bounded by a circular 
cylinder and a conical cavity.  
     The above mentioned theoretical calculations of wedge elastic waves in immersed solid 
structures and their experimental investigations are important for the explanation of many as 
yet poorly understood phenomena in related fields of structural dynamics, physics and 
environmental acoustics and may result in many useful practical applications. In particular, it 
is expected that these waves play an important role in the dynamics of wedge-shaped civil 
engineering off-shore structures  (such as piers, dams, wave-breakers, etc.), and in the 
formation of vibration patterns and resonance frequencies of propellers, turbine blades, disks, 
cutting tools and  airfoils. They may be responsible for specific mechanisms of helicopter 
noise, wind turbine noise and ship propeller noise.  Promising mechanical engineering 
applications of wedge elastic waves include non-destructive evaluation of specific 
engineering constructions (with edges), measurements of cutting edge sharpness, 
environmentally friendly water pumps and domestic ventilators utilising wave-generated 
flows. Another possible application earlier suggested by the present author [10] may be the 
use of wedge waves for in-water propulsion of ships and submarines, the main principle of 
which being similar to that used in nature by fish of the ray family.  
       In the present paper we give a brief overview of the recent results in the theory of 
antisymmetric localised elastic modes propagating along edges of immersed wedge-like 
structures of arbitrary shape and curvature. All these results have been obtained using the 
geometrical-acoustics approach.  The particular cases to be considered are wedges of linear 
geometry, wedges with a cross section described by a power law, and curved cylindrical 
wedges.   
 
2.  Geometrical-acoustics approach  
 
The approximate analytical theory of localised elastic waves in immersed solid wedges is 
based on the geometrical acoustics approach considering a slender wedge as a plate with a 
local variable thickness  d(x), where  x  is the distance from the wedge tip measured in the 
middle plane.  In the case of “linear” wedge  d(x) = xΘ,  where  Θ  is the wedge apex angle.  
      Applying the well known procedure for geometrical acoustics calculations of waveguide 
modes, one can derive the following Bohr - Sommerfeld type equation for the velocities  c  of 
the localised wedge modes propagating in  y-direction (along the tip) [6-8]  
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Here  k(x)  is a local wavenumber of a quasi-plane plate flexural wave (as a function of the 
distance  x  from the wedge tip),  β = ω/c  is yet unknown wavenumber of a localised wedge 
mode,  n = 1,2 3, ... is the mode number, and  xt  is the so called ray turning point being 
determined from the equation  k2(x) - β2 = 0.   
        In the case of linear wedge in vacuum  k(x) =121/4 kp

1/2(θx)-1/2 ,   and     xt=2√3 kp/Θβ2,  
where  kp = ω/cp,  so that the solution of Eq. (2.1) yields the extremely simple analytical 
expression for wedge wave velocities [6-8]:  
 
                                                     c = cpnΘ/√3.                                              (2.2) 
 
The expression (2.2) agrees well with the other theoretical calculations [1-5] and with the 
experimental results [3]. Note that, although the geometrical acoustics approach is not valid 
for the lowest order wedge mode (n = 1) [7], in practice it provides quite accurate results for 
wedge wave velocities in this case as well.    
 
3.  Effect of liquid loading  
 
To calculate the velocities of wedge modes in a wedge embedded in liquid one has to make 
use of the expression for a plate wave local wavenumber  k(x)  which takes into account the 
effect of liquid loading [10,14].  The starting point to derive  k(x)  for this case is the well 
known dispersion equation for the lowest order flexural mode in an immersed plate.  For 
shortness, we restrict ourselves in this paper only with the case  ρf/ρs ≈ 1  typical for light 
solid materials in water and limit our analysis by a subsonic regime of wave propagation  (k 
>ω/cf),  where  ρs  and  ρf   are respectively the mass densities of solid and liquid, and  cf  is 
the velocity of sound in liquid. For the sake of simplicity, we impose even a more severe 
restriction on wave velocities considering very slow propagating plate flexural modes (k >> 
ω/cf ) and using the approximation of incompressible liquid. Then, for  kd << 1  typical for 
thin plates, the wavenumber  k(x)  in the case of linear wedge  d = d(x) = xΘ  has the form  
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where  cl  and  ct  are longitudinal and shear velocities in wedge material. Substituting (3.1) 
into (2.1) and performing some simple transformations, one can derive the following 
analytical expression for wedge wave velocities  c  [14]:  
 
                                           c = ctA-5/2D-3/2(πn)3/2Θ3/2,                                        (3.2) 
 
where   A = 61/5(ρf/ρs)1/5(1- ct

2/cl
2)-1/5 = 61/5(ρf/ρs)1/5 [2(1-σ)]1/5  is a nondimensional 

parameter which depends on the relation between the mass densities  ρf/ρs and on the Poisson 
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ratio  σ,  and  D = ∫ −−
1

0

2/15/6 )1( dxx = 2.102.  Comparison of Eqs. (3.2) and (2.2) shows that 

the effect of liquid loading results in significant decrease of wedge wave velocities in 
comparison with their values in vacuum. It has been demonstrated [14] that Eq. (3.2) 
provides a very good agreement with the corresponding experimental data of Chamuel [11].  
      Although the above described geometrical acoustics theory has been developed for 
slender elastic wedges, it can be used successfully for description of the effect of liquid 
loading also for wedges with large values of wedge apex angle. In this case one should apply 
it for calculating relative values of wedge wave velocity, in comparison with those for 
wedges in vacuum.  The results of such calculations [14] show a remarkably good agreement 
with the experimental data of de Billy [12] presented as the ratio  cwat/cvac  between the 
velocities of the first order localised modes in immersed Plexiglas wedges and in the same 
wedges in vacuum.   
 
4. Waves in wedges of non-linear shape 
 
Here we briefly describe the generalisation of the theory by introducing a power law 
relationship between the local thickness  d  and the distance from the tip x:  d = εxm,  where  
m  is any positive rational number. Then, for immersed wedges, the Eq. (3.1) corresponding 
to a subsonic regime of wave propagation should be replaced by the expression  
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Substituting Eq. (4.1) into (2.1) and performing simple manipulations, one can easily obtain 
the general relationship for wedge wave velocities of localised elastic modes propagating in 
non-linear immersed wedges:  
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It is clearly seen from (4.2) that deviation of a wedge shape from linear geometry (m = 1 and 
ε = Θ) results in dispersion of wedge wave velocities. For linear wedges, as expected, the 
velocity  c is independent of ω  and reduces to the earlier derived expression (3.2). The case 
of  m = 5/3  requires a more careful investigation since both the nominator and the 
denominator in Eq. (4.2) have singularities for this value of m.  It is interesting to notice that 
the effect of liquid loading eliminates anomalous behaviour of wedge wave velocities for 
quadratic wedges (m = 2) in contact with vacuum. As a separate analysis shows [16], in the 
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latter case the velocities of all wedge modes are equal to zero, unless there is a truncation on 
the wedge tip.  
 
5. Waves in cylindrical wedge-like structures  
 
In this section we demonstrate that wedge wave propagation in cylindrical and cognate 
wedge-like structures can be considered in a rather simple way using the earlier developed 
approximate analytical theory of localised elastic modes in a wedge curved in its plane [7].  
       To calculate the velocities of wedge waves in a curved wedge one has to consider two 
possible types of curved wedges: wedges curved in their own plane (in-plane curvature) and 
wedges curved perpendicular to their own plane (anti-plane curvature). In both cases we 
assume that the radius of curvature is large enough in comparison with characteristic 
wavelengths.  
     Let us first consider the case of in-plane curvature and assume for certainty that the radius 
of curvature is positive (a convex edge) and has a value  r0.  Then, using the description of 
basic geometrical acoustics relations in cylindrical co-ordinates [17] in which the edge of a 
curved wedge is described by the equation  r = r0, one can rewrite the governing equation 
(2.1) as  
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where rt  is the co-ordinate of a ray turning point.  Considering wedges in vacuum and 
assuming that the radius of curvature  r0  is large enough  (r0 >> |r0  - rt|),  one can derive the 
following approximate expression for phase velocities of wedge waves propagating along a 
convex curved edge:  
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According to Eq.(5.2), wedge waves in curved wedges are dispersive. For an edge with a 
negative curvature (a concave edge), Eq. (5.2) remains valid if we replace r0  by -r0.  
     Let us now consider the case of wedge with anti-plane curvature of radius r0A..  Obviously, 
because of the symmetry considerations,  wedge wave velocities in such a wedge should not 
depend on the sign of anti-plane curvature,  i.e., they should not change after replacing  r0A  
by -r0A.. Therefore, one can conclude that, in the first approximation versus r0A

-1 , anti-plane 
curvature does not bring changes in wedge wave velocities.  
       Keeping all these in mind, we can now easily calculate the velocities of wedge modes 
propagating along a cylindrical wedge formed by the intersection of a cylinder of radius R 
with a conical cavity characterised by the rotation angle θ  [15]. The resulting structure 
represents a wedge with the apex angle θ  having both in-plane and anti-plane curvatures. 
According to the discussion above, the only geometrical parameter we need is radius of in-
plane curvature r0.. It is easy to show that for the geometry considered  r0 = R/sin(θ/2). Using 
this value of  r0  in Eq. (5.2) for the computation of velocities of two lowest-order wedge 
modes gives an excellent agreement with the existing finite element calculations [15].  
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