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ABSTRACT
The BDD technique first introduced for the purposes of Fault Tree Analysis (FTA) by Rauzy in 1993 enables
efficient qualitative analysis of all fault trees and accurate quantitative analysis of coherent fault trees.
Quantitative analysis of non-coherent fault trees using the BDD technique is limited to calculating the top event
probability. However, the extension of Bimbaum’s measure of component reliability importance to non-
coherent application developed by Beeson and Andrews in 2001 enables the calculation of expected number of

system failures, Wgyg (O, ¢ ) directly from the SFBDD.

INTRODUCTION

Fault Tree Analysis (FTA) is a well-known deductive technique introduced by Watson in the early 1960°s
to enable system reliability assessment. A fault tree diagram contains two basic elements, gates and events.
The three fundamental gate types are: the AND gate, the OR gate and the NOT gate. Fault tree structures
can be categorised as either coherent or non-coherent. A fault tree can be non-coherent if the NOT gate is
used or directly implied, and results in component working states contributing to system failure.

FTA is split into two stages, qualitative analysis, which involves identifying all the possible causes of
system failure, known as the minimal cut sets (prime implicant sets for non-coherent fault trees) and
quantitative analysis, which involves quantifying system parameters relating to system availability and
reliability. Although this is a useful technique it does have some disadvantages.

One major disadvantage of FTA is that it can be inefficient, even the most powerful computers may not be
able to perform exact qualitative analysis especially for large fault trees with many repeated events.
Although culling techniques can be employed they in turn have the disadvantage of producing only a partial
list of minimal cut sets, which means approximate methods must be employed during quantification. These
approximations usually rely on the basic events having a small likelihood of occurrence. If this condition is
not met the results obtained can be inaccurate. '

Rauzy introduced the Binary Decision Diagram (BDD) technique to overcome these shortfalls [1]. This
technique requires the fault tree to be converted into a BDD, known as the SFBDD because it encodes the
structure function of the fault tree. The SFBDD can be used to perform exact quantitative analysis of
coherent fault trees. However quantitative analysis of non-coherent fault trees is limited. It would be

desirable to be able to calculate the expected number of system failures in a given interval Wsys(0,2). This

paper will show how the SFBDD can be used to calculate Wy (0, t) for a non-coherent fault tree.

DEFINITION OF COHERENCY

A fault tree can be classified as either coherent or non-coherent according to its underlying logic. If during
fault tree construction the failure logic is restricted to the use of the AND gate and the OR gate the fault tree
is coherent. If however, the NOT gate is used or directly implied (by XOR) the fault tree can be non-
coherent, A more precise definition of coherency is given below:



A fault tree is coherent 1f its structure {unction d)(_\) complics with the definition of coherency given by the
propertics of relevance and monotonicity [2].

- Every component / is relevant
#(1;,x)# ¢(0;,x)  Forsome x
- Its structure function is monotonically increasing
¢(1i>£)2¢(0i>£) Vi

Where
#(1,,x)= G(xp s Xy ] X X, )
¢(Oz?’.\_’) = ¢(xl seem X ,O,XH,[ ,...,X“)

And x, are the Boolcan indicator variables defining the state of each component

The first condition ensures that cach component contributes to the system state. The second, an increasing!
structure function ensures that the system state deteriorates (at least does not improve) with increasing
numbers if component failures.

The use of NOT logic is generally discouraged during fault tree construction. This is because in a non-
coherent system, component working states can contribute to system failure, which can be considered to be
a bad design in that it has components working correctly contributing to system failure. Analysis of such
structures also tends to be more complex and rarely provides additional information about the system.
However, Andrews demonstrated that NOT logic is essential for successful analysis of multitasking systems
[3].

THE BDD TECHNIQUE

A BDD is a directed acyclic graph. Thus all paths through the BDD are directed in one straight route from
the top node known as the Root Vertex through Non-Terminal Vertices until a Terminal Vertex.is reached.
Paths terminate in one of two states, 1, corresponding to system failure or, 0, corresponding to the system
functioning. Non-terminal vertices represent components and are connected to other vertices by branches.
Each non-terminal vertex has a one branch, and a zero branch corresponding to the component failing and

* functioning respectively. Figure 1 highlights the features of a SFBDD.
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Figure 1: A general SFBDD

Rauzy developed an if-then-else (ize) method for éomputing the SFBDD from the fault tree. An example of
this ize structure is given below in equation (1): -

ite(x,, f;, /2) (1)

Where x, represents a variable and f; and f, represent logic functions. This ite structure is interpreted as
follows: :

Ififailsi.e. x; =1 then consider the logic function f|
else consider the logic function f,.

Thus in the BDD, £, forms the logic function for the one branch of x; and f, forms the logic function for
the zero branch of x;. Figure 2 shows the diagram that represents this ize structure.

Figure 2: ite structure for ite(x;, f1, f 2)

In order to compute a SFBDD it is necessary to order the basic events in the fault tree, for example
a <b <c¢. Numerous variable ordering schemes have been developed, one such scheme is the Top-Down
approach, which will be used to order the basic events in the example below. Once a variable ordering
scheme has been selected the ite procedure outlined below is applied to compute a SFBDD.

1. Assign each basic event x, in the fault tree an ife structure.
x; = ite(x;,1,0) ite structure for normal literal
xi = ite(x,,0,1) ite structure for a negated literal
2. Modify the fault tree structure so that each gate has only two inputs.
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3. Consider cach gate in a bottom-up fashion.
4. If the two gate inputs arc J and /7 such that:
' J=ite{x,F1,F2)  H=itey,G1,G2)

Then the following rules are applied:
- If x<y, J<op>H=ite{x,Fl<op>H,F2 <op>H)
- If x:y,J<0p>H=ite(x,Fl<0p>G1,F2<0p>G2)

These rules are applied in conjunction with the identitics given below:
' l<op>H=H,0<op>H =0 if<op>isan AND gate
l<op>H=1,0<0p>H=H if<op>isan OR gate

Where < op > describes the Boolean operation of the logic gates of the fault tree. For an AND gate <op >
is the dot product (. ) and for an OR gate <op > is the sum symbol (+).

To illustrate how an SFBDD is compufed consider the non-coherent fault tree in figure 3.

. Figure 3: Non-coherent fault tree

Beginning by assuming a top-down variable ordering a<b <c:

Assigning cach basic event in the fault tree an ire structure:
a= ile(a,l,O), a= ite(a,O,l)
b =ite(h,1,0), ¢ = ite(c,1,0)

Considering the gates in a bottom-up fashion beginning with gate G1:

Gl=a-b

Gl= iz.‘e(a,i,’ ) ite(b,l,O)

G1 = ite{a, 1 - irefb,1,0)L [0 - ite(p,1,0)]) |

Gl = ire{a, ite(h,1,0),0) Since 1-H =H and 0- H =0
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Now dealing with gate G2

G2=a-c

Gl= ite(a,0,1)~ z'te(c,l,O)

G1 = ite(a,[0- ite(c,l,O)l - ite(c,l,O)D

G1 = ite(a,0, ite(c,1,0)) Since 1. H=Hand 0-H =0

Finally dealing with the top gate Top:
Top = Gl1+ G2

Top = ite(a, ite(b,l,O),0)+ ite(a,0, ite(c,1,0))
Top = ite(a, [0+ ite(b,1,0)} [0 + ize(c,1,0)))
Top = zte(a,ite(b,l,O), ite(c,l,O)) : Since 0+ H = H

The SFBDD obtained from the fault tree in figure 3 is given in figure 4. '

O

Figure 4: SFBDD for fault tree in figure 3

CALCULATING Wy(0, t) USING BIRNBAUM’S MEASURE OF IMPORTANCE

The expected number of system failures is a valuable measure for assessing the system reliability. For
coherent systems Wys (0,¢) can be expressed in terms of Bimbaum’s measure of importance. This measure
was developed by Bimbaum in 1969 [4] it is denoted by ‘G; (q( )) and defined as the probability that
component i is critical to system failure. ' -

G, (g(r))=—a§—;j’@—()t) @

The following identity can be used to calculate the expected number of system failures:

Wers (0,8)= (ZG (gl w) ]d - ©)
o\i=l

Where w; (t) is the unconditional failure intensity of component 7 and q,.(t) is the failure probability of

component i and # is the total number of components in the system.
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Andrews and Sinnamon developed a procedure for caleulating Higyg(0,¢) . using the SFBDD. This
procedure is efficient, eliminating the need to cvaluate lengthy series cxpansions. However Birnbaum
developed this measure strictly for the analysis of coherent systems and the identity in equation (3) cannot
be used to calculate Wyy(0,¢) for a non-cohcerent system. Hence for non-coherent systems Wyg (0,¢) must

be calculated using traditional fault tree techniques, consequently approximations are unavoidable even for
moderate sized trecs.

In 2001 Beeson and Andrews extended Birnbaum’s measure of component reliability importance to enable
the analysis of non-cohcrent fault trees [6]. In a non-coherent system, a component i could be critical to the
system statc in one of two ways; it could be failure critical, or it could be repair critical. Thus the
probability that component ¢ is critical to the system is:

The probability that component [ is failure critical
or component is repair critical.

Provided that Henley and Inagaki’s procedure is used to calculate an expression for the system
unavailability [7) the failure importance of component i is denoted by G,-F (q(z‘)) and defined as the
probability that the system is in a state such that the failure of component i would causc the system to fail.
Similarly the repair importance of component i is denoted by G,.R (g(z)) and defined as the probability that

the system is in a statc such that the repair of ‘component / would cause system failure. The failure and
repair importance of i can be expressed as follows:

G,-”(g(f))=—”?’%;;‘?i | - @
ot ) - 2= ®

Where p. is the working probability of component i and g is the failure probability of component i.

The identity in cquation (3) can now be extended to enable the analysis of non-coherent systems:

Wes(0,0) = Oj[ 1 67 (o)) + ZG (e (u))du ©

This extension cnables Wgys(0,¢) to be evaluated using the SFBDD cnabling cxact and efficient

evaluation of this parameter. To evaluate Wy (O,l) using equation (6) it is first necessary (o obtain.
expressions for the failure and repair importance of each component. The procedure for calculating the
failure and repair importance from the SFBDD is outlined below.

Consider a general node in the SFBDD, x; for a non-coherent fault tree representing component i. The
one branch of node x; corresponds to the failure of component i, therefore component i is either failure
critical or irrelevant. Similarly the zero branch of node x; corresponds to the functioning of component
I, therefore 7 is either repair critical or irrelevant.
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Hence the sum of the probabilities of the terminal one paths that pass through the one branch of a node
x; represents the probability that component i is failure critical or irrelevant.

P(Component i is failure critical or irrelevant)= Y. Pr, (g(t))Po ii (q(t)) (7N
Allnodes -

Where Pr, (g(t)) is the probability of the path section from the root vertex to node x; and Po;l_ (g(z)) 1s
the probability of the path section from the 1 branch of node x; to a terminal 1 node (excluding the
probability of x;).

An expression for the probability that component i is repair critical or irrelevant is obtained by
summing the probabilities of the terminal one paths passing through the zero branch of a node x;.

P(Component i is repair critical or irrelevant) = ZPrxi (q(t))Po 3{ (q(z‘)) (8)
Allnodes - o
X; '

Where Pogl_ (g(t)) is the probability of the path section from the 0 branch of the node x; to a terminal 1
node (excluding the probability of x;). |

The probability that component 7 is irrelevant can be obtained by taking the intersection of equations
(7) and (8).

P(Component i is irrelevant) = > Pr,. (g(t))Poii (g( ) D.Pr (q(t))Po%( ) ZPr (t))Poii @(t)

Allnodes Allnodes Allnodes
X; Xi Xi ’

)

Then given that the failure importance is defined as the probability that component I is failure critical
and the repair importance is defined as the probability that component I is repair critical:

67 (g@)= Tpr, ()Pl (g@)- ZPr, [g@))Pot, (g@)Pol (o)) (10)

All n(?des All n'odes
GF(a)= P (g)Po? (g()- s (g0)ol, (g)Pos, (g() (1)

To illustrate how Wgyg(0,¢) is calculated consider the SFBDD in figure 4 obtained from the non-coherent
fault tree in figure 3. Table 1 records Pr,, (_q_(t)), PO}:,- (g(z)), Pogi (g(t)) and for each node in the SFBDD.

From these result the failure and repair importance of each component can be calculated.

Nobe [ Pr, @) Po,, (g(t)) Po? (Q (¢ ))




F1o 1 a,(1) g ()
F2 q,() ! 0
F3 1'_ qu (f) L 0

Table 1: Results obtained for Pr,, (Z(t)), Po )lc,. (Q(t», and Pogi (g(t)) for each node in the SFBDD

From Table I;
Pol{g(1))Po2(g()= 4, (1)g. (1)
P(),l] (q(‘f ))Po,? (q(l )) =0

Po! <q (1 ))Pog (g(f)> =0

From equations 10 and 11:

64 {010, 0)-,0)a.0) = 2, (Xt 4. ()
6 (4(0)= (.- 9,0, 0)= 2. (Y-, )
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Hence from equation 6:
{

Wars (0.0) = [((g (Xt — g0 @)hw, () + g, (uw, () + (1= g, (. )+ (g 0 =g ),

0

CONCLUSION
The BDD technique for FTA improves the efficiency of qualitative analysis of both coherent and non-
coherent fault trees and the accuracy of quantitative analysis of coherent fault trecs.

This paper has demonstrated that it is possible to use the BDD technique to calculate the expected number
of system failures for a non-coherent fault tree. Calculating this measure using the BDD technique has the
advantage of producing an exact result, which is rarely possiblc using conventional FTA. Furthcrmore the
calculation procedure is straightforward and efficient eliminating the nced to cvaluate lengthy series
cxpansions. :
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