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Numerical Investigation of Aircraft High-speed Runway Exit 

Using Generalized Optimal Control 

Zexin Huang1, Matt C. Best2, and James A.C. Knowles3 

Department of Aeronautical and Automotive Engineering, University of Loughborough, UK 

To aim at reducing aircraft turnaround time and improving airport operation efficiency, 

this paper considers the optimization of aircraft ground manoeuvres such as a high-speed 

runway exit. The aircraft on the ground is a highly nonlinear dynamical system described by 

a fully parameterized mathematical model. The full aircraft model used in this paper has 

been further developed to include combined slip tire model. An iterative simulation-based 

optimization algorithm known as Generalized Optimal Control is employed to investigate 

the optimal solution for the control input such as nose-gear steering, main-gear brakes and 

engine thrust. To achieve different control objectives, the cost function is defined 

accordingly and then minimized by GOC. The optimization results of GOC will help to 

explore the safety boundary of ground handling and guide the design of a real-time 

controller. 

Nomenclature 

𝑉𝑥 , 𝑉𝑦 , 𝑉𝑧    = aircraft translational velocities along each of the aircraft body axes 

𝑊𝑥 , 𝑊𝑦 , 𝑊𝑧  = aircraft angular velocities about each of the aircraft body axes 

𝐹𝑥𝑁, 𝐹𝑦𝑁, 𝐹𝑧𝑁   = force elements on the nose gear in the local tire coordinate system 

𝑉𝑥𝑁, 𝑉𝑦𝑁 , 𝑉𝑧𝑁  =  nose gear velocities in the local tire coordinate system 

𝐹𝑥𝑅, 𝐹𝑦𝑅, 𝐹𝑧𝑅  = force elements on the right gear in the local tire coordinate system 

𝑉𝑥𝑅, 𝑉𝑦𝑅 , 𝑉𝑧𝑅  =  right gear velocities in the local tire coordinate system 

𝐹𝑥𝐿, 𝐹𝑦𝐿, 𝐹𝑧𝐿  = force elements on the left gear in the local tire coordinate system 

𝑉𝑥𝐿, 𝑉𝑦𝐿, 𝑉𝑧𝐿  =  left gear velocities in the local tire coordinate system 

𝐹𝑥𝑇𝐿, 𝐹𝑥𝑇𝑅  = right and left thrust force parallel to aircraft's x-axis 

𝐹𝑥𝐴, 𝐹𝑦𝐴, 𝐹𝑧𝐴  = aerodynamic force elements at the aerodynamic center of the aircraft 

𝑀𝑥𝐴, 𝑀𝑦𝐴, 𝑀𝑧𝐴  = aerodynamic moment elements at the aerodynamic center of the aircraft 

𝐹𝑧𝑊                   = weight of the aircraft at the center of gravity 

𝑋, 𝑌, 𝑍                =    global position of aircraft center of gravity 

𝜓, 𝜃, 𝜑  =    yaw angle, pitch angle and roll angle of the aircraft 

𝑉𝑥𝐺 , 𝑉𝑦𝐺 , 𝑉𝑧𝐺   = aircraft translational velocities in the ground coordinate system 

𝑊𝑥𝐺 , 𝑊𝑦𝐺 , 𝑊𝑧𝐺    = aircraft angular velocities in the ground coordinate system 

𝛿𝑧𝑁, 𝛿𝑧𝑅, 𝛿𝑧𝐿  =  deflection of each tire in the ground coordinate system 

𝑆𝑅,𝐿     =  the slip ratio of the right and left gear 

S̅𝑅,𝐿     =    the normalized slip ratio of the right and left gear 

𝛼𝑁,𝑅,𝐿     = the slip angle of the nose, right and left gear 

𝛼̅𝑅,𝐿     =  the normalized slip angle of the right and left gear 

𝐶𝑥𝑅,𝐿     =  the longitudinal stiffness of the right and left gear 

𝐶𝑦𝑅,𝐿     =  the cornering stiffness of the right and left gear 

𝜇𝑥𝑅,𝐿     =  the longitudinal friction coefficient of the right and left gear 

𝜇𝑦𝑅,𝐿     =  the lateral friction coefficient of the right and left gear 

𝛺𝑅,𝐿    =  the wheel angular velocity of the right and left gear 
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I. Introduction 

According to Statistical Summary of Commercial Jet Airplane Accidents by Boeing [1], 11% of fatal accidents 

occurred during manoeuvres on the ground. Even non-fatal ground damage incidents can be quite costly both for 

airlines, which lose revenue, and for passengers who experience delay and risk physical harm. Although there can be 

serious economic and safety repercussions from ground collisions at airports, such incidents still occur frequently: 

50 accidents were recorded by the International Air Transport Association (IATA) over the period 2010-2014 [2]. 

Of the ground manoeuvre stages identified, taxiing to and from the runway was the ground phase with the highest 

incident frequency (almost 40% of the accidents occurred here). Reducing ground collisions in the future is therefore 

a key priority for both airports and airline operators globally, something that reliably automated ground manoeuvres 

could facilitate. 

A first advantage of automating aircraft ground manoeuvres would thus be to improve the security and reliability 

of airport operations under different weather conditions and road conditions. A highly reliable and robust controller 

would allow more stable and faster ground manoeuvres than a human pilot could achieve. In addition, it comes with 

associated benefits on the economic aspect. For example, the occupation time of the runway for each aircraft can be 

minimized so as to increase the airport traffic capacities.   

Whilst fly-by-wire systems have been commonly used by aircrafts in flight, aircraft-on-ground control remains 

very limited. A few researches have focused on aircraft ground dynamics. A fully parameterized 6-DOF aircraft 

model proposed Rankin et al. [6]. A comprehensive bifurcation analysis was carried out to study the lateral 

dynamics of the aircraft-on-ground. The boundaries of laterally stability were presented in dependence on 

operational parameters such as steering angle, thrust level and position of center of gravity. In a more recent study, 

Rankin et al. presented a general approach to evaluate lateral loads on individual landing gears across an entire 

operating region [7]. The maximum gear loads are determined for two types of manoeuvres and two different 

operating weights. A generic parameterized turn was defined in terms of approach velocity and the steering input 

which was represented by a ‘tanh’ function. It was assumed that the brakes are applied to achieve a desired velocity 

before entering the turn and then the turn is initiated with the application of steering after brakes are released. These 

assumptions replicate typical pilot practice, however the optimality of such an approach has not been quantified.  

A few control methods have been proposed and employed to automate aircraft ground manoeuvres. J. Duprez et 

al. proposed a yaw rate control law based on dynamic inversion and feedback linearization in [3]. A linear controller 

was designed to constrain aircraft yaw rate to follow a linear reference behavior. This method requires the highly 

nonlinear tire/ground friction forces to be reduced to saturation-type nonlinearities. As an alternative to dynamic 

inversion, C. Roos et al. presented a non-standard anti-windup control strategy [4][5]. It was used to control the nose 

gear steer angle. This proposed method was based on a simplified bicycle model in [4] and a linear parameter 

variable (LPV) aircraft model in [5], associated with an original approximation of the nonlinear tire forces by 

saturation-type nonlinearities. It was shown through simulations, that the method is efficient to handle low-speed 

lateral manoeuvres.  

Model-based control strategies greatly depend on the quality of the model. A good model should be able to 

reflect the system responses accurately. The simplified models used to demonstrate control techniques [3~5] have 

limitations when considering high lateral accelerations. Hence, the aircraft model considered in this paper is 

developed from Rankin’s 6-DOF model and further developed with the inclusion of a combined-slip tyre model. 

When braking and steering occur simultaneously, the tire develops a slip angle due to turning and a slip ratio caused 

by the longitudinal force. Therefore, the normalized total slip is introduced to calculate the total tire force. The total 

tire force builds up rapidly from zero slip and then reaches its maximum at the optimal slip. As the total slip 

continues to increase, the tire will saturate and result in the reduction of total tire force. Generally, the application of 

longitudinal slip tends to reduce the lateral force at a given slip angle condition, and conversely, the application of 

slip angle tends to reduce the longitudinal force at a given braking condition. The proposed optimization algorithm 

in this paper can be used to determine the maximum required brake torque that can be applied while the tires can 

still generate sufficient lateral grip.   

 Throughout this paper, we aim to find the optimal control inputs with regard to a specified cost function. There 

are no factitiously predefined patterns for any control inputs. The aircraft behavior is limited by itself as a dynamical 

system. In addition, we take advantage of a fully parameterized aircraft model that allows direct access to all system 

states and parameters. Hence, the iterative simulation-based optimization algorithm known as Generalized Optimal 

Control (GOC) can be employed to identify the optimal control inputs. GOC has been employed effectively for ride 

and handling optimization in cars by Gordon and Best [8] [9]. For any smoothly nonlinear system, the optimal 

control inputs that minimize the user-defined cost function can be determined using GOC. Specifically, time-variant 

control variables (steering, braking, and thrust) and fixed aircraft parameters (e.g. CG and tire parameters) can be 
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optimized simultaneously. Such an approach has recently been used to study collision-avoidance strategies for cars 

[10]. It established the feasible limit of collision-avoidance behavior of a car and the optimal control input that 

achieves best performance. 

 This paper considers a 45-degree runway geometry for the high-speed runway exit manoeuvre. Given a specific 

initial condition without loss of generality, the optimal control varies with different composition of cost functions. 

There are two scenarios considered here for the runway exit manoeuvre: the aircraft follows the centerline as closely 

as possible; the aircraft exits the runway as fast as possible using any paths. A specific cost function needs to be 

designed for each scenario. 

 The paper is organized as follows: Section 2 gives full details of the aircraft mathematical model. Section 3 

explains the general and specific application of GOC. The optimal control sequences in high-speed runway exit are 

investigated in Section 4. Finally, the study concludes with some considerations on practical implementation of the 

runway exit manoeuvre in Section 5 as well as directions for future work. 

 

 

II. Aircraft Model 

To develop control strategies for an aircraft automation system, it is essential to develop a mathematical model 

first. This chapter gives details about the derivation and implementation of the full aircraft model that describes the 

aircraft’s behavior on the ground. This model is developed based on Rankin’s model [5] which was initially 

developed from an industrially validated SIMMECHANICS model [11]. It is therefore taken to be a good 

representative of real aircraft behaviors.  

 A tricycle model is considered as the overall frame of the aircraft. The airframe is rigid body with six degrees-of-

freedom (DOF): three translational DOF and three rotational DOF. Three landing gears are attached to the airframe. 

Specifically, the two main gears are connected with translational joints (moving in vertical axis only) and the nose 

gear that steers the aircraft is connected with a cylindrical joint (moving in and rotate around the vertical axis).  

The model proposed in this paper is constructed based on the test data in normal operating regions, including 

nonlinear effects where appropriate, for example, the aerodynamics and tire/ground forces. The chosen parameters 

and sub-component models represent a mid-sized passenger aircraft. The model parameters can be adapted to 

represent almost any passenger aircraft.  

The aircraft’s coordinate system is consistent with the aircraft’s principle axes of inertia. The origin is defined at 

the center of gravity, with the x-axis pointing towards the nose of the aircraft along the centerline of the fuselage, the 

z-axis pointing towards the ground and the y-axis points towards right according to the right-hand rule.  

Since this paper considers the optimization of steering, braking and thrust simultaneously, Rankin’s model has 

been further developed to meet the requirement, with an addition of a combined-slip tire model. The brakes are only 

applied on the main-gears which will cause the difference between the wheel speed and contact-patch speed. 

Therefore, another two state variables are included in order to represent the main-gears’ angular rate. 

A. Equations of Motion 

The aircraft Equations of Motion are described by a system of coupled ordinary differential equations (ODEs). 

These equations are derived from Newton’s Second Law by balancing either forces or moments in each degree of 

freedom [12]. Additionally, they are further linked with relative sub-models, for example the tire model and the 

aerodynamics model. The aircraft translational and rotational velocities in the local body coordinate system are 

given as six ODEs [5]:  

      𝑚(𝑉𝑥̇ + 𝑉𝑦𝑊𝑧 − 𝑉𝑧𝑊𝑦)       =         𝐹𝑥𝑇𝐿 + 𝐹𝑥𝑇𝑅 − 𝐹𝑥𝑅 − 𝐹𝑥𝐿 − 𝐹𝑥𝑁 cos(𝛿) − 𝐹𝑦𝑁 sin(𝛿) − 𝐹𝑥𝐴 + 𝐹𝑧𝑊 sin(𝜃),  (2.1) 

      𝑚(𝑉𝑦̇ + 𝑉𝑥𝑊𝑧 − 𝑉𝑧𝑊𝑥)       =         𝐹𝑦𝑅 + 𝐹𝑦𝐿 + 𝐹𝑦𝑁 cos(𝛿) − 𝐹𝑥𝑁 sin(𝛿) + 𝐹𝑦𝐴 + 𝐹𝑧𝑊 sin(𝜑),                            (2.2) 

      𝑚(𝑉𝑧̇ + 𝑉𝑦𝑊𝑥 − 𝑉𝑥𝑊𝑦)       =         𝐹𝑧𝑊 cos(𝜃) cos(𝜑) − 𝐹𝑧𝑅 − 𝐹𝑧𝐿 − 𝐹𝑧𝑁 − 𝐹𝑧𝐴,                                                    (2.3) 

𝐼𝑥𝑥𝑊𝑥̇ − (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑊𝑦𝑊𝑧       =         𝑙𝑦𝐿𝐹𝑧𝐿 − 𝑙𝑦𝑅𝐹𝑧𝑅 − 𝑙𝑧𝐿𝐹𝑦𝐿 − 𝑙𝑧𝑅𝐹𝑦𝑅 −  𝑙𝑧𝑁𝐹𝑦𝑁 cos(𝛿) + 𝑙𝑧𝑁𝐹𝑥𝑁 sin(𝛿) +     (2.4)           

𝑙𝑧𝐴𝐹𝑦𝐴 + 𝑀𝑥𝐴, 

𝐼𝑦𝑦𝑊𝑦̇ − (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑊𝑥𝑊𝑧       =         𝑙𝑥𝑁𝐹𝑧𝑁 − 𝑙𝑧𝑁𝐹𝑥𝑁 cos(𝛿) − 𝑙𝑧𝑁𝐹𝑦𝑁 sin(𝛿) −  𝑙𝑥𝑅𝐹𝑧𝑅 −  𝑙𝑧𝑅𝐹𝑥𝑅 − 𝑙𝑥𝐿𝐹𝑧𝐿 −    (2.5) 

𝑙𝑧𝐿𝐹𝑥𝐿 + 𝑙𝑧𝑇𝐹𝑥𝑇𝑅 +  𝑙𝑧𝑇𝐹𝑥𝑇𝐿 + 𝑙𝑧𝐴𝐹𝑥𝐴 + 𝑙𝑥𝐴𝐹𝑧𝐴 + 𝑀𝑦𝐴, 

𝐼𝑧𝑧𝑊𝑧
̇ − (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑊𝑥𝑊𝑦         =       𝑙𝑦𝑅𝐹𝑥𝑅 − 𝑙𝑦𝐿𝐹𝑥𝐿 − 𝑙𝑥𝑅𝐹𝑦𝑅 − 𝑙𝑥𝐿𝐹𝑦𝐿 + 𝑙𝑥𝑁𝐹𝑦𝑁 cos(𝛿) − 𝑙𝑥𝑁𝐹𝑥𝑁 sin(𝛿) +    (2.6) 

                                                           𝑙𝑥𝐴𝐹𝑦𝐴 +  𝑙𝑦𝑇𝐹𝑥𝑇𝐿 −  𝑙𝑦𝑇𝐹𝑥𝑇𝑅 + 𝑀𝑧𝐴. 
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Rankin’s model has been developed for this work by introducing additional two ODEs to describe the two main-

gears’ wheel rotations. The ODEs are derived by balancing the moments of the friction force 𝐹𝑥𝑅,𝐿  and brake torque 

𝑇𝑏𝑟𝑎𝑘𝑒  about the wheel’s roll axis: 

𝐼𝑀𝐺𝑊𝑅
̇ = −𝐹𝑥𝑅 ∗ 𝑅𝑤ℎ𝑒𝑒𝑙 − 𝑇𝑏𝑟𝑎𝑘𝑒 ,                                                              (2.7) 

𝐼𝑀𝐺𝑊𝐿
̇ = −𝐹𝑥𝐿 ∗ 𝑅𝑤ℎ𝑒𝑒𝑙 − 𝑇𝑏𝑟𝑎𝑘𝑒 ,                                                                    (2.8) 

The aircraft dimensions defined with respect to the aircraft center of gravity (CG) are given in Table 1. The 

parameter CG is a percentage measured along the mean aerodynamic chord, from the leading edge to the center of 

gravity. Throughout this paper, the center of gravity is at a forward position, as is 14% of the mean aerodynamic 

chord. In terms of aircraft mass m, a lightweight case (45420kg) is considered in which no passengers or cargo are 

on board but the minimum amount of fuel. The weight of the aircraft (denoted as 𝐹𝑧𝑊 = 𝑚𝑔) acts at the center of 

gravity along the z-axis in the ground coordinate system considering the pitch and roll angles. The steering angle 

(denoted as 𝛿) is applied on the nose gear. The orthogonal tire forces (denoted as 𝐹𝑥𝑁,𝑅,𝐿, 𝐹𝑦𝑁,𝑅,𝐿 and 𝐹𝑧𝑁,𝑅,𝐿) are 

defined at the tire-ground contact patch. The aerodynamic forces (denoted as 𝐹𝑥𝐴, 𝐹𝑦𝐴, 𝐹𝑧𝐴) and moments (denoted as 

𝑀𝑥𝐴, 𝑀𝑦𝐴, 𝑀𝑧𝐴) are defined at the aerodynamic center of the aircraft. The thrust forces (denoted as 𝐹𝑥𝑇𝑅 and 𝐹𝑦𝑇𝑅) 

are parallel to the x-axis of the aircraft. 

To describe the dynamics of an aircraft moving on the ground, it is essential to calculate the position and attitude 

of the aircraft. Therefore, a ground coordinate system is considered here in which we can do the calculations with 

reference to a fixed location and orientation in space. The global position is defined as (𝑋, 𝑌, 𝑍) while the attitude is 

defined by the Euler angles(𝜓, 𝜃, 𝜑) , where 𝜓 is the yaw angle, 𝜃 the pitch angle and 𝜑 the roll angle. In addition, 

the translational velocities and angular velocities in the ground coordinate system are defined as (𝑉𝑥𝐺 , 𝑉𝑦𝐺 , 𝑉𝑧𝐺) and 

(𝑊𝑥𝐺 , 𝑊𝑦𝐺 , 𝑊𝑧𝐺) respectively. Transformations from the local body coordinate system to the ground coordinate 

system can be derived by using the standard sequence of rotations given in Philips [13]. Considering the pitch angle 

and roll angle are relatively small, the velocities in the ground coordinate system are derived with small-angle 

approximation as follows:  

𝑉𝑥𝐺   = 𝑉𝑥 cos( 𝜓) − 𝑉𝑦 sin(𝜓) + 𝜃𝑉𝑧 cos(𝜓) + 𝜑𝑉𝑧 sin(𝜓),                                    (2.9) 

𝑉𝑦𝐺   = 𝑉𝑥 sin( 𝜓) + 𝑉𝑦 cos(𝜓) + 𝜃𝑉𝑧 sin(𝜓) + 𝜑 𝑉𝑧cos(𝜓),                                  (2.10) 

𝑉𝑧𝐺   = −𝜃𝑉𝑥 + 𝜑𝑉𝑦 + 𝑉𝑧 ,                                                                                         (2.11) 

𝑊𝑦𝐺 = 𝑊𝑦 − 𝜑𝑊𝑧 ,                                                                                                    (2.12) 

𝑊𝑥𝐺 = 𝑊𝑥 + 𝜃𝑊𝑧 ,                                                                                                    (2.13) 

𝑊𝑧𝐺 = 𝑊𝑦𝜑 cos (𝜃)⁄ + 𝑊𝑧 .                                                                                      (2.14) 

                                

Another six ODEs are therefore introduced to calculate aircraft’s position and attitude: 

𝑋̇ = 𝑉𝑥𝐺 ,                                                                               (2.15) 

𝑌̇ = 𝑉𝑦𝐺 ,                                                                               (2.16) 

𝑍̇ = 𝑉𝑧𝐺 ,                                                                               (2.17) 

𝜓̇ = 𝑊𝑧𝐺 ,                                                                              (2.18) 

𝜃̇ = 𝑊𝑦𝐺 ,                                                                              (2.19) 

𝜑̇ = 𝑊𝑥𝐺 .                                                                             (2.20) 

The position (𝑋, 𝑌) and yaw angle 𝜓 will be used to plot the trajectory of the aircraft’s CG. 

 

 

Table 1 System parameters and values 
 

Symbol Parameter Value  

  Dimensions relative to CG position 

  𝑙𝑥𝑁 x-distance to the nose gear (10.186 + 𝐶𝐺 ÷ 100 × 𝑙𝑚𝑎𝑐) m 

 𝑙𝑧𝑁 z-distance to the nose gear 2.932 m 

 𝑙𝑥𝑅, 𝑙𝑥𝐿 x-distance to the right/left gear (2.498 − 𝐶𝐺 ÷ 100 × 𝑙𝑚𝑎𝑐) m 

 𝑙𝑦𝑅, 𝑙𝑦𝐿 y-distance to the right/left gear 3.795 m 

 𝑙𝑧𝑅, 𝑙𝑧𝐿 z-distance to the right/left gear 2.932 m 

  𝑙𝑥𝐴 x-distance to the aerodynamic center (0.25 − 𝐶𝐺 ÷ 100) × 𝑙𝑚𝑎𝑐 m 
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 𝑙𝑧𝐴 z-distance to the aerodynamic center 0.988 m 

 𝑙𝑥𝑇 x-distance to the thrust center (0.25 − 𝐶𝐺 ÷ 100) × 𝑙𝑚𝑎𝑐 m 

 𝑙𝑦𝑇𝑅,  𝑙𝑦𝑇𝐿 y-distance to the thrust center 5.755 m 

 𝑙𝑧𝑇 z-distance to the thrust center 1.229 m 

 𝑙𝑚𝑎𝑐 Mean aerodynamic chord 4.194 m 

   

 Wheel parameters  

𝑘𝑧𝑁 Stiffness coefficient of the nose tire 1190kN/m 

𝑘𝑧𝑀 Stiffness coefficient of the main tire 2777kN/m 

𝑐𝑧𝑁 Damping coefficient of the nose tire 1000Ns/m 

𝑐𝑧𝑀 Damping coefficient of the main tire 2886Ns/m 

𝑐𝑟𝑟 Rolling resistance coefficient 0.02 

𝑅𝑤ℎ𝑒𝑒𝑙 Wheel radius of the main landing gear 0.64 m 

   

 Moment of Inertia parameters  

𝐼𝑥𝑥 Moment of Inertia about x-axis 913200 kg ∙ 𝑚2 

𝐼𝑦𝑦 Moment of Inertia about y-axis 2548000 kg ∙ 𝑚2 

𝐼𝑧𝑧 Moment of Inertia about z-axis 3335000 kg ∙ 𝑚2 

𝐼𝑀𝐺  Moment of inertia of main landing gear 30.925 kg ∙ 𝑚2 

*CG is defined as a percentage measured along the mean aerodynamic chord, from the leading edge to the 

center of gravity. 

 

B. Tire model 

At the relatively low velocities experienced by an aircraft on the ground, the nonlinear forces generated by the 

tires have the dominant effect over aerodynamic forces on the aircraft movement. Hence, a realistic tire model is 

essential to capture the system’s response accurately. The forces generated by the tires are calculated with a tire 

model developed by the GARTEUR Action Group investigating ground dynamics [21]. Throughout this section a 

second subscript N, R or L following x, y or z indicates the nose, right or left landing gear local coordinate system 

with which the velocity or force elements are aligned.  

The vertical force component on the tire is modelled as a spring and damper system [15]:  

𝐹𝑧𝑁 = −𝑘𝑧𝑁𝛿𝑧𝑁 + 𝑐𝑧𝑁𝑉𝑧𝑁 ,                                                                 (2.21) 

𝐹𝑧𝑅 = −𝑘𝑧𝑅𝛿𝑧𝑅 + 𝑐𝑧𝑅𝑉𝑧𝑅 ,                                                                 (2.22) 

𝐹𝑧𝐿 = −𝑘𝑧𝐿𝛿𝑧𝐿 + 𝑐𝑧𝐿𝑉𝑧𝐿 .                                                                   (2.23) 

The stiffness coefficients 𝑘𝑧∗ and damping coefficients 𝑐𝑧∗ are listed in Table 1. The vertical velocity of each tyre 

(𝑉𝑧𝑁, 𝑉𝑧𝑅 , 𝑉𝑧𝐿) can be calculated in terms of the aircraft velocities in the local body coordinate system as follows [5]:    

𝑉𝑧𝑁 = 𝑉𝑧 − 𝑙𝑥𝑁𝑊𝑦 ,                                                                             (2.24) 

𝑉𝑧𝑅 = 𝑉𝑧 + 𝑙𝑦𝑅𝑊𝑥 + 𝑙𝑥𝑅𝑊𝑦 ,                                                               (2.25) 

𝑉𝑧𝐿 = 𝑉𝑧 − 𝑙𝑦𝐿𝑊𝑥 + 𝑙𝑥𝐿𝑊𝑦 .                                                                (2.26) 

 

Since we assume that the roll axes of the tires are always parallel to the ground, the deflection of each tire (𝛿𝑧∗) 

can be calculated in terms of the position of the aircraft in the ground coordinate system as follows [5]: 

𝛿𝑧𝑁 = −𝑙𝑧𝑁 − 𝑍 + 𝑙𝑥𝑁 sin(𝜃),                   (2.27) 

𝛿𝑧𝑅 = −𝑙𝑧𝑅 − 𝑍 − 𝑙𝑥𝑅 sin(𝜃) − 𝑙𝑦𝑅 sin(𝜑),                    (2.28) 

𝛿𝑧𝐿 = −𝑙𝑧𝐿 − 𝑍 − 𝑙𝑥𝐿 sin(𝜃) + 𝑙𝑦𝐿 sin(𝜑).               (2.29) 

The longitudinal force element on each tire consists of two components: the rolling resistance and the force 

caused by slip ratio (in the case of braking). At a relatively low speed, rolling resistance is the primary motion 

resistance force. Rolling resistance occurs due to hysteresis in the material of the tire. As a result, the pressure in the 
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leading half of the contact patch is higher than that in the trailing half. Consequently, a horizontal force (rolling 

resistance) is generated to balance the moments about the roll axis of the tire, which is approximated by [5]: 

𝐹𝑟𝑟𝑁 = 𝑐𝑟𝑟𝐹𝑧𝑁 cos(𝛼𝑁),                (2.30) 

𝐹𝑟𝑟𝑅 = 𝑐𝑟𝑟𝐹𝑧𝑅 cos(𝛼𝑅),                      (2.31) 

𝐹𝑟𝑟𝐿 = 𝑐𝑟𝑟𝐹𝑧𝐿 cos(𝛼𝐿).                                    

(2.32) 

Here 𝐶𝑟𝑟 is the rolling resistance coefficient which is specified in Table 1. When a rolling tire is subject to a lateral 

force, the tire will drift to the side. An angle known as slip angle will be generated between the direction of tire 

heading and the direction of travel. Here 𝛼∗ is the slip angle which is defined in the local tyre coordinate system as: 

𝛼𝑁 = arctan (
𝑉𝑦𝑁

𝑉𝑥𝑁
),             (2.33) 

𝛼𝑅 = arctan (
𝑉𝑦𝑅

𝑉𝑥𝑅
),                  (2.34) 

𝛼𝐿 = arctan (
𝑉𝑦𝐿

𝑉𝑥𝐿
).                  (2.35) 

Since the brake torque is introduced as a control input, a combined-slip tire model developed by Milliken [14] is 

employed in this paper. When steering and braking occur simultaneously, the tire develops a slip angle due to 

turning and a slip ratio caused by the longitudinal force [14]. Therefore, it is necessary to introduce another variable 

of the normalized combined slip 𝑘𝑅,𝐿 given by: 

𝑘𝑅,𝐿 = √𝑆𝑅̅,𝐿
2 + 𝛼̅𝑅,𝐿

2 ,                  (2.36) 

𝛼̅𝑅,𝐿 =
𝐶𝑦𝑅,𝐿 tan(𝛼𝑅,𝐿)

𝜇𝑦𝑅,𝐿𝐹𝑧𝑅,𝐿
,                           (2.37) 

𝑆𝑅̅,𝐿 =
𝐶𝑥𝑅,𝐿𝑆𝑅,𝐿

𝜇𝑥𝑅,𝐿𝐹𝑧𝑅,𝐿
,                       (2.38) 

𝑆𝑅,𝐿 =
𝛺𝑅,𝐿𝑅𝑤ℎ𝑒𝑒𝑙−𝑉𝑥𝑅,𝐿 cos(𝛼𝑅,𝐿)

𝑉𝑥𝑅,𝐿 cos(𝛼𝑅,𝐿)
,                                                               (2.39) 

The normalized resultant friction force 𝐹𝑅,𝐿 and its longitudinal and lateral components are calculated in terms of the 

normalized lateral force 𝐹̅𝑦𝑅,𝐿  and the normalized longitudinal force 𝐹̅𝑥𝑅,𝐿 : 

𝐹𝑁,𝑅,𝐿 = √𝐹̅𝑦𝑅,𝐿
2

+ 𝐹̅𝑥𝑅,𝐿
2

,                   (2.40) 

𝐹̅𝑦𝑅,𝐿 =
𝐹𝑦𝑅,𝐿

𝜇𝑦𝑅,𝐿𝐹𝑧𝑅,𝐿
,                           (2.41) 

𝐹̅𝑥𝑅,𝐿 =
𝐹𝑥𝑅,𝐿

𝜇𝑥𝑅,𝐿𝐹𝑧𝑅,𝐿
,                            (2.42) 

By the equations above, the normalized resultant force can be calculated in terms of the normalized combined-

slip using mathematical curve fitting tools. As an example, Figure 2.1 shows the plot of  𝐹𝑅,𝐿 𝑣𝑠 𝑘𝑅,𝐿 generated by 

Pacejka’s “magic formula” [16][17] as follows: 

𝐹𝑅,𝐿 = 𝐷′ sin(𝛾),                      (2.43) 

𝛾 = 𝐶′𝑎𝑐𝑟𝑡𝑎𝑛(𝐵′𝜀),               (2.44) 

𝜀 = (1 − 𝐸′)𝑘𝑅,𝐿 + (
𝐸′

𝐵′) arctan(𝐵′𝑘𝑅,𝐿),                 (2.45) 

The parameters 𝐵′, 𝐶′, 𝐷′, 𝐸′ can be adapted to represent almost any tyre. For the solid curve representing a typical 

vehicle tire in Figure 2.1, the parameters are defined as 𝐵′ = 0.714, 𝐶′ = 1.40, 𝐷′ = 1.00, 𝐸′ = −0.20. 
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Figure 2.1 The total tire force F is plotted against the normalized slip K. The maximum point Fmax 

that can be generated by the tire occurs at the optimal slip Kopt.  

Additionally, to calculate 𝐹̅𝑦𝑅,𝐿  and 𝐹̅𝑥𝑅,𝐿  in terms of the resultant force 𝐹𝑅,𝐿 , the following relationship between 

them is given as: 

𝐹̅𝑦𝑅,𝐿 =
𝜂𝑅,𝐿(𝑘𝑅,𝐿) tan(𝛼𝑅,𝐿)

𝑆𝑅,𝐿
𝐹̅𝑥𝑅,𝐿 ,                                                  (2.46) 

Here 𝜂𝑅,𝐿(𝑘𝑅,𝐿) is a function of slip ratio that makes the above equation hold for both small and large slip angles and 

slip ratios. The function 𝜂𝑅,𝐿(𝑘𝑅,𝐿) is of the form as follows: 

 

𝜂𝑅,𝐿(𝑘𝑁,𝑅,𝐿) = {
1

2⁄ [1 + 𝜂0𝑅,𝐿] − 1
2⁄ [1 − 𝜂0𝑅,𝐿]cos (

𝑘𝑅,𝐿
2

⁄ ), |𝑘𝑅,𝐿| ≤ 2π

1                                    , |𝑘𝑅,𝐿| > 2π
                           (2.47) 

 

where 𝜂0𝑅,𝐿  is determined from the longitudinal stiffness 𝐶𝑥𝑅,𝐿 , cornering stiffness 𝐶𝑦𝑅,𝐿 , longitudinal friction 

coefficient 𝜇𝑥𝑅,𝐿, and lateral friction coefficient 𝜇𝑦𝑅,𝐿: 

𝜂0𝑅,𝐿 =
𝐶𝑦𝑅,𝐿𝜇𝑥𝑅,𝐿

𝐶𝑥𝑅,𝐿𝜇𝑦𝑅,𝐿
,                                                                     (2.48) 

 

Given the equations above, the normalized longitudinal and lateral forces can be derived as follows:  

 

𝐹̅𝑦𝑅,𝐿 = 𝜂𝑅,𝐿𝐹𝑅,𝐿
tan(𝛼𝑅,𝐿)

√𝑆𝑅,𝐿
2+𝜂𝑅,𝐿

2𝑡𝑎𝑛2(𝛼𝑅,𝐿)

,              (2.49) 

𝐹̅𝑥𝑅,𝐿 = 𝐹𝑅,𝐿
S𝑅,𝐿

√𝑆𝑅,𝐿
2+𝜂𝑅,𝐿

2𝑡𝑎𝑛2(𝛼𝑅,𝐿)

,              (2.50) 

Finally, the actual longitudinal and lateral forces can be derived from the normalized forces as: 

𝐹𝑥𝑅,𝐿 = 𝜇𝑥𝑅,𝐿𝐹𝑧𝑅,𝐿𝐹̅𝑥𝑅,𝐿 + 𝐹𝑟𝑟𝑅,𝐿 ,                                                         (2.51) 

𝐹𝑦𝑅,𝐿 = 𝜇𝑦𝑅,𝐿𝐹𝑧𝑅,𝐿𝐹̅𝑦𝑅,𝐿 ,                 (2.52) 

C. Aerodynamic model 

In addition to the tire model, the aerodynamics is another major area where nonlinear behavior can enter the system. 

The aerodynamic forces are nonlinear since they are proportional to the square of the velocities. Moreover, because 

of the geometry of the aircraft, the relative aerodynamic coefficients also depend nonlinearly on the angles that the 

aircraft makes with the airflow: the aerodynamic slip angle 𝛼𝑎𝑐 and the attack angle 𝜎. Since we assume that there is 

no incident wind above the ground, the aerodynamic slip angle can be defined in the same way as the tire model: 

𝛼𝑎𝑐 = 𝑎𝑐𝑟𝑡𝑎𝑛 (
𝑉𝑦

𝑉𝑥
),                (2.53) 

where 𝑉𝑥 and 𝑉𝑥 are the velocities of the aircraft CG in the local body coordinate system. As for the attack angle, it 

remains relatively steady in the case of ground manoeuvres. The proposed aerodynamics model consists of six 

elements: three forces and three moments about each axis of the aircraft. It is assumed that all the force elements act 

at the aerodynamic center of the aircraft, which is defined as the 25% along the mean aerodynamic chord from its 

leading edge. The six force elements are modelled as follows: 

𝐹𝑥𝐴 =
1

2
𝜌|𝑉|2𝑆𝑤𝐶𝑥(𝛼𝑎𝑐),               (2.54) 

𝐹𝑦𝐴 =
1

2
𝜌|𝑉|2𝑆𝑤𝐶𝑦(𝛼𝑎𝑐),                     (2.55) 

𝐹𝑧𝐴  =
1

2
𝜌|𝑉|2𝑆𝑤𝐶𝑧(𝛼𝑎𝑐),                                                                 (2.56)  

𝑀𝑥𝐴 =
1

2
𝜌|𝑉|2𝑆𝑤𝑙𝑚𝑎𝑐𝐶𝑙(𝛼𝑎𝑐),                   (2.57) 

𝑀𝑦𝐴 =
1

2
𝜌|𝑉|2𝑆𝑤𝑙𝑚𝑎𝑐𝐶𝑚(𝛼𝑎𝑐),                (2.58) 

𝑀𝑧𝐴 =
1

2
𝜌|𝑉|2𝑆𝑤𝑙𝑚𝑎𝑐𝐶𝑛(𝛼𝑎𝑐 , 𝜎),               (2.59) 

where |𝑉| is the modulus of the aircraft overall velocity, and the parameters 𝜌,  𝑆𝑤 , 𝑙𝑚𝑎𝑐 are listed in Table 1. The 

six dimensionless aerodynamic coefficients 𝐶𝑥, 𝐶𝑦 , 𝐶𝑧, 𝐶𝑙 , 𝐶𝑚, 𝐶𝑛 are nonlinear functions of 𝛼𝑎𝑐. These functions can 

be obtained from the SIMMECHANICS model developed by the GARTEUR Group [18].  
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III. Generalized Optimal Control 

In order to develop optimal control strategies for a variety of aircraft ground manoeuvres, the Generalized 

Optimal Control (GOC) algorithm developed at Loughborough University [8][9] is proposed for this study. In many 

application scenarios, GOC can be used to identify the optimal control inputs for a particular cost function. This 

method is based on a Hamiltonian function in terms of system states and co-states (Lagrange multipliers). The 

optimal control sequence is obtained at the minimum of the Hamiltonian function with respect to control variables. 

 

A. General Formulation  

The GOC algorithm is based on a gradient descent implementation of Pontryagin’s Maximum Principle [19] and 

Marsh [20] for application in dynamical systems. It minimizes a given cost function J which typically consists of a 

continuous dynamic cost function 𝐿[𝑥(𝑡), 𝑢(𝑡)] plus a residual cost 𝐿𝑇[𝑥(𝑇)] associated with final states: 

𝐽 = 𝐿𝑇[𝑥(𝑇)] + ∫ 𝐿[𝑥(𝑡), 𝑢(𝑡)]𝑑𝑡
𝑇

0
,               (3.1) 

A vector of Lagrange multipliers (co-states) p(t) is introduced and then a Hamiltonian function is defined in terms of 

the system states and co-states as follows: 

𝐻 = 𝐿[𝑥(𝑡), 𝑢(𝑡)] + 𝑝𝑇(𝑡)𝑔[𝑥(𝑡), 𝑢(𝑡)],          (3.2) 

where the function g is defined via the system ODEs: 

𝑥̇ = 𝑔[𝑥(𝑡), 𝑢(𝑡)],             (3.3) 

The co-states are derived from the following differential equations: 

𝑝̇𝑇(𝑡) = −
𝜕𝐻

𝜕𝑥
= −

𝜕𝐿

𝜕𝑥
− 𝑝𝑇 𝜕𝑔

𝜕𝑥
,            (3.4) 

𝑝𝑇(𝑇) =
𝜕𝐿𝑇

𝜕𝑥
,              (3.5) 

and the optimal control sequences are found at the minimum of the Hamiltonian function: 
𝜕𝐻

𝜕𝑢
= 0,              (3.6) 

The equations above are all solved over the time interval [0, T] under two initial conditions: fixed initial states 

𝑥(0) = 𝑥0 and fixed initial co-states 𝑝(𝑇) = 𝑝𝑇.  Hence the system is a two-point boundary value problem.  

By using the methods given by Marsh [20] and Best and Gordon [8][9], the optimal solution is identified via a 

discrete sequence of controls and each control element is held constant for an equal time interval ∆t. Within the time 

period for each control, the cost gradient is obtained directly from the Hamiltonian as: 
𝜕𝐽

𝜕𝑢𝑖
= ∫

𝜕𝐻

𝜕𝑢𝑖

𝑡𝑖

𝑡𝑖−1
𝑑𝑡,             (3.7) 

Therefore, a gradient-based iterative optimization can be utilized to determine the optimal control sequence. 

Each iteration is conducted in four steps as summarized below. In addition, a flow chart showing the process is 

depicted in Fig 3.1 

Step 1: Calculate the integral of the system state-space from the initial state 𝑥(0) using the current discrete 

control sequence and evaluate the continuous cost  𝐽[0,𝑇]. 

Step 2: Evaluate the residual cost 𝐿𝑇[𝑥(𝑇)]in terms of the final state 𝑥(𝑇) and hence the initial co-state 𝑝[𝑇]. 
Step 3: Integrate the co-state system via ∂H⁄∂x in reverse-time from the initial condition 𝑝[𝑇] from last step. 

Step 4: Calculate cost gradients and hence update the control sequence by a line search optimization along the 

steepest descent direction (inverse direction of the cost gradient) to minimize J. 

Steps 1-4 are repeatedly executed until suitable convergence of cost function is achieved. 

 
Figure 3.1 Flow chart of the GOC algorithm. 
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B. GOC Implementation Test: Maximum Deceleration Rate 

 The classical 4th order Runge-Kutta method is employed to calculate the time integration of the states and co-

states. The time step is kept constant throughout the simulation. The state errors are monitored so as to adjust the 

time step accordingly to ensure reasonable accuracy. Each control unit is a zero-order-hold model for one or 

multiple time steps. The length of control step will not only affect the fine degree of control, but the convergence 

speed of cost function as well. Hence, the control time interval should be adjusted accordingly in order to achieve 

optimality fast and accurately.  

 The simple scenario of a straight-line deceleration using main gear brakes is considered here. GOC is used to 

identify the braking required to minimize distance travelled. The initial condition of the aircraft is an equilibrium 

with the forward speed of 40 m/s and the global position of (X = -1000, Y = 0). The simulation time is set as 0 to 10 

seconds with the time step of 5ms which is sufficiently small for this dynamical system. The cost function must be 

continuous and smooth with respect to all the state and control variables. In this case, the continuous cost function is 

defined as a track cost 𝐿𝑡𝑟𝑎𝑐𝑘 . To be specific, it is a quadratic function with respect to the aircraft’s deviation from 

the centerline. This continuous cost function makes the aircraft keep a safe distance to the edge of the runway. In 

addition, a final cost regarding the aircraft final position and orientation ensures that the resulting control strategy is 

time-optimal, and the aircraft is aligned with the road with no significant yaw rate or sideslip velocity:  

𝐿𝑓𝑖𝑛𝑎𝑙 =  λ1((𝑋 + 1000)2 + 𝑌2) + λ2𝜓2 + λ3𝑊𝑧
2 + λ4𝑉𝑦

2 

The λ coefficients are set based on the initial condition and then rescaled to ensure that all the cost components are 

in the same order of magnitude. The total cost is comprised of the continuous track cost plus the final cost: 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑡𝑟𝑎𝑐𝑘 + 𝐿𝑓𝑖𝑛𝑎𝑙 . 

 The final optimal solution is obtained after 2200 iterations as shown in Fig 3.2. The convergence is determined 

by the cost gradient. The final cost gradients are shown in Fig 3.2(f). Compared with the initial cost gradient, the 

magnitude has been reduced 10,000 times. Further iterations see only reduction of cost gradients while the total cost 

remains unchanged which indicates that the cost function has converged. In this case, the total slip consists of 

longitudinal slip ratio only without lateral slip. The optimal braking torque is shown in Fig 3.2(a). According to the 

formulation of longitudinal and lateral force on the tire, the maximum deceleration occurs when the total slip equals 

the optimal slip. Comparing Fig 3.2(a) and Fig 3.2(e), it can be seen that the braking torque varies with the 

dynamical load on the main gear. Since the optimal slip is an increasing function of the vertical load, the more load 

on the tire means the more brake torque can be applied before saturation. To achieve the maximum deceleration, the 

total slip of the tire should stay on the critical level as can be seen in Fig 3.2(c). A very small period of over-slip at 

the beginning is caused by the inertia of the wheel. A tiny difference between the optimal slip and total slip at the 

end of the simulation can be seen, though it will be eliminated by continuing the GOC optimisation for enough time. 

It shows in Fig 3.2(d), however, the normalized tire forces (w.r.t. the maximum force) have already been perfectly 

controlled at the value of ‘1’ which means maximum friction force. 

 Fig 3.2(b) shows the main-gears’ wheel speed and contact-patch speed. The difference between them results in 

the longitudinal slip ratio. When the brake torque is applied, the wheel speed will be reduced. In turn, the linear 

speed becomes lower than the translational speed which results in a negative slip ratio. Therefore, a negative friction 

force acts on the main-gears to slow down the aircraft. From the dashed curve of longitudinal velocity, it shows that 

the aircraft is at a constant deceleration rate of 3 m/s2, namely the maximum deceleration rate by main-gears’ 

braking.  

 Fig 3.2(e) shows the dynamic load on the nose gear and the main gear. There is a small weight transfer from the 

main gears to the nose gear due to the deceleration. The corresponding reduction in brake torque can be seen in 

Figure 3.2(a). Then the loads on main gear and nose gear increase at the same time. This is because the aircraft 

speed is slowed down such that the aerodynamic lift decreases.     

 In conclusion, this simple test case shows that the implementation of GOC is correct and able to optimize the 

control input to achieve the minimum of a cost function. The tire forces are well controlled just before the saturation 

to gain the maximum deceleration rate. Furthermore, GOC will be used to investigate more complicated ground 

manoeuvres. The formulation of the problem and results are discussed in the next section. 
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Fig 3.2 A straight-line braking optimization to minimize distance travelled. Panel (a) shows the optimal 

brake torque input required. Panel (b) shows the wheel speed (solid line) and contact-patch speed (dashed 

line) for the right (b1) and left (b2) gear. Panel (c) shows the optimal slip (dashed line) and the actual slip 

(solid line) for the right (c1), left (c2), and nose (c3) gear. Panel (d) shows the normalized friction force for 

the right (d1) and left (d2) gear. Panel (e) shows the dynamic load on the nose gear (solid line) and main 

gears (dashed line). Panel (f) shows the cost gradient with respect to brake. 
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IV. Optimization of High-speed Runway Exit 

In this section, GOC is used to optimize a runway exit manoeuvre. The runway geometry considered here is a 

40-meter-wide 45-degree runway exit with two line-segments and one arc-segment, as is shown in Fig 4.1(a). The 

track cost is defined as a quadratic function of the distance to the runway’s centerline. Based on the same runway 

geometry and the track cost, two cases are considered here: in case 1, the aircraft follows the centerline as closely as 

possible; in case 2, the aircraft exits as fast as possible. 

 

 
 

Fig 4.1 Runway and track cost. Panel (a) shows the 45-degree runway exit geometry in the ground X-Y 

coordinate system. Panel (b) shows the quadratic track cost in terms of the deviation from the centerline.  

 

A: Runway exit following the centerline 

 In this case, GOC will control the aircraft to follow the centerline of the runway without considering the final 

distance to a target point. By doing this, the aircraft will follow the given path and end up with a target yaw angle of 

45 degrees. The initial condition of the aircraft is an equilibrium with the forward speed of 40 m/s at the global 

position (X = -250, Y = 0). The continuous cost function is the track cost as depicted in Fig 4.1(a). The residual cost 

is a function of the aircraft’s yaw angle, yaw rate and lateral velocity, to ensure that the aircraft is aligned with the 

road with no significant yaw rate or side-slip velocity. Hence, the overall cost function is defined as follows with 

coefficients λ:   

𝐿𝑓𝑖𝑛𝑎𝑙 = λ1(𝜓−𝜋/4)2 + λ2𝑊𝑧
2 + λ3𝑉𝑦

2, 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑡𝑟𝑎𝑐𝑘 + 𝐿𝑓𝑖𝑛𝑎𝑙 . 

 The cost function converged after 50,000 iterations as shown in Fig 4.2(a). The total cost drops dramatically 

within the first 1000 iterations and then settles down gradually over 49000 iterations. Since the magnitude of the 

cost gradients has been reduced by a factor of 10000 as shown in Fig 4.2(b), plus no further reduction of total cost 

can be achieved with further iterations, the cost function is judged to have converged. The spike on the cost gradient 

would shrink with further iterations, but it is sufficiently small (𝑂(10−3)) to be considered as converged. The final 

aircraft trajectory is illustrated in Fig 4.2(c) with small triangles representing the aircraft’s position and orientation at 

each second of the simulation. It can be seen that the aircraft has followed the centerline very well with an ideal final 

state of 45-degree yaw angle. 

 The aircraft steers to the left when approaching the exit in order to get a larger turning radius. The optimal 

control inputs of steering, thrust and braking are depicted in Fig 4.3(a). The negative steering angle at the beginning 

shows that the aircraft is turning to the left initially. However, the inertia of the aircraft is so huge that the aircraft 

yaw angle builds up after a delay of around 3 seconds. Since the initial forward speed of 40m/s which is too fast to 

make a 45-degree turn, reverse thrust, and brakes are applied to reduce the aircraft’s speed. Fig 4.3(b) shows the 

wheel speed and contact-patch speed of the right and left gear. It shows that the forward speed drops dramatically 

from 40m/s to less than 20m/s. It can be seen that the right gear wheel speed drops towards zero during peak braking, 

however, the brake torque is released to a lower level before the right gear’s wheel locks. By doing this, the 

aircraft’s dynamics is still under control and the tires can be recovered from the saturation status. 
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Fig 4.2 Panel (a) shows the total cost along the 50,000 iterations. Panel (b) shows the final cost gradient in 

terms of steer (solid line), thrust (dashed line), and brake (dashdot line). Panel (c) shows the optimal 

trajectory of the aircraft CG with small triangles illustrating the aircraft position and orientation at each 

second of the simulation. 

 

 

 The rapid increase in the braking torque can be seen after 5s which results in the right-gear’s tire saturation. The 

slip angles of each tire are depicted in Fig 4.3(c). In the right-gear subplot, the over-slip occurs when the total slip 

exceeds the optimal slip. In turn, the tire saturation leads to the decrease of the right gear’s lateral friction force as 

shown in Fig 4.3(d). In addition, the total yaw moment around the z axis is increased due to the reduction of the 

lateral grip so as to allow the aircraft to make a turn more easily. The optimality is also reflected in Fig 4.3(f), which 

shows the normalized total friction force on main gears. The forces are normalized with respect to the maximum 

force that the tire can generate. It can be seen that the normalized force on the right gear stays right on the maximum 

level during the turn except when it over-slips to make a quick adjustment to the yaw angle. 
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Fig 4.3 Optimal 45-degree runway exit following the centerline. Panel (a) shows the optimal control input of 

steering (a1), thrust (a2), and braking (a3). Panel (b) shows the wheel speed (solid line) and the contact-patch 

speed (dashed line) of the right (b1) and left (b2) gear. Panel (c) shows the optimal slip (dashed line) and the 

actual slip (solid line) of the right (c1), left (c2), and nose (c3) gear. Panel (d) shows the longitudinal (solid line) 

and lateral (dashed line) force element of the total tire/ground friction force of the right (d1) and left (d2) gear. 

Panel (e) shows the dynamic load on the nose gear (solid line), right gear (dashed line), and left gear (dashdot 

line). Panel (f) shows the normalized total tire/ground friction force of the right (f1) and left (f2) gear. 
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B: Fast exit using brakes and steer 

In this case, a fast 45-degree runway exit manoeuvre is considered. To make comparison with the result in Case 1, 

the simulation starts off from the same initial condition (an equilibrium with the forward speed of 40 m/s and global 

position of (X = -250, Y = 0) and runs for the same period of time from 0 to 15 seconds. The simulation time is set 

as 0 to 15 seconds with the time step of 10ms which is sufficiently small for this dynamic system. The continuous 

cost function remains the same as in Case 1, which is a quadratic track cost with respect to the deviation from the 

centerline. This continuous track cost ensures the aircraft moves within the track’s boundary. The final cost is 

defined with respect to the final distance (to an unachievable point to ensure that the resultant control strategy is 

time-optimal), and the final attitude (to ensure that the aircraft is aligned with the road with no significant yaw rate 

or side-slip velocity). The final cost function is given below: 

 

𝐿𝑓𝑖𝑛𝑎𝑙 =  λ1(𝜓−𝑝𝑖/4)2 + λ2𝑊𝑧
2 + λ3𝑉𝑦

2 + λ4((𝑋 − 500)2 + ((𝑌 − 500)2). 

 

The coefficients λ are set based on the initial condition and then rescaled to ensure that all the cost components are 

in the same order of magnitude. λ1, λ2, λ3  remain the same as in Case 1. The total cost is comprised of the 

continuous track cost plus the final cost: 

 

𝐿𝑡𝑜𝑡𝑎𝑙 =  𝐿𝑡𝑟𝑎𝑐𝑘 + 𝐿𝑓𝑖𝑛𝑎𝑙 . 

 

   

 

 
Fig 4.4 Panel (a) shows the total cost along the 16,000 iterations. Panel (b) shows the 

final cost gradient in terms of steer (solid line) and brake (dashdot line). Panel (c) shows 

the optimal trajectory of the aircraft CG with small triangles illustrating the aircraft 

position and orientation at each second of the simulation. 
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The cost function converges after 16,000 iterations as shown in Fig 4.4(a). The cost drops significantly in the 

first few hundred of iterations and then settles down gradually over about 9000 iterations. The convergence can be 

confirmed since the magnitude of the cost gradients has been reduced by factor of 1000 as shown in Fig 4.4(b), plus 

no further reduction of total cost can be achieved with more iterations. The final aircraft trajectory is illustrated in 

Fig 4.4(c). Each small triangle represents the aircraft’s position and orientation at each second of the simulation. 

 

 
Fig 4.5 Fast 45-degree runway exit: Panel (a) shows the optimal control input of steering and braking. Panel 

(b) shows the wheel speed (solid line) and the contact-patch speed (dashed line) of the right (b1) and left (b2) 

gear. Panel (c) shows the optimal slip (dashed line) and the actual slip (solid line) of the nose, right and left 

gear. Panel (d) shows the longitudinal (solid line) and lateral (dashed line) force element of the total 

tire/ground friction force of the right (d1) and left (d2) gear. Panel (e) shows the dynamic load on the nose 

(solid line), right (dashed line) and left (dashdot line) gear. Panel (f) shows the normalized total tire/ground 

friction force of the right (f1) and left (f2) gear.  
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 The final optimal solution and several critical intermediate states are illustrated in Fig 4.5. The optimal control 

sequence of steering and braking are shown in Fig 4.5(a). It can be seen that the aircraft steers to the left initially 

(negative steering angle) to obtain a larger turning radius, and then to the right to cut the coner. It takes a couple of 

seconds to build up the aircraft yaw angle due to its huge yaw moment of inertia. The brake is applied initially at 

point ‘A’ to slow down the aircraft when the lateral slip is relatively small. Then just before the aircraft starts to cut 

the corner, the brake is completely cut off at point ‘B’ to achieve the maximum lateral slip angle. As can be seen in 

Fig 4.5(c), the solid curve illustrates the total slip and the dashed curve illustrates the optimal slip where the 

maximum force occurs. The total slip on all the three gears achieved the optimal slip at some point along the 

manoeuvre which means the maximum tire force was generated. This can be seen clearly in Fig 4.5(f), the 

normalized tire force reaches a value of ‘1’, which indicates the tire is operating at its maximum capacity. Due to the 

weight transfer from right gear to left gear as depicted in Fig 4.5(e), the right gear saturates a little bit to obtain a 

greater tire force on the left gear such that the total lateral force is maximized. 

V. Conclusion 

From the optimization result of the high-speed runway exit manoeuvre as discussed above, GOC has been 

revealed to be a powerful tool of optimal control, especially for nonlinear system. GOC can be used to explore the 

limit of aircraft ground handling by minimizing the cost function. Therefore, the cost function should be defined 

according to the control objective. All the cost components must be well balanced in case the optimization is stuck 

due to some extremely high cost. The final optimal control for the 45-degree runway exit might be in a different 

pattern because of the different initial condition to start with like CG position and velocity. Following simulation 

experiments will be conducted to investigate a full range of initial velocities with various distances to the exit. 

Hopefully, the boundary of initial condition can be identified such that the aircraft can cut the corner if only the 

initial condition is within that boundary. Even though GOC is not suitable for real-time implementation, the optimal 

solution given by GOC is valuable to guide the design of a closed-loop controller in the future. 
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