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Shared-Control for a UAV Operating in the 3D Space

Jingjing Jiang1 and Alessandro Astolfi2

Abstract— This paper presents a shared-control scheme for a
UAV moving in a 3D space while its feasible Cartesian position
set is defined by a group of linear inequalities. A hysteresis
switch is used to combine the human input and the feedback
control input based on the definitions of a safe set, a hysteresis
set and a “dangerous” set. Case studies given in the paper show
the effectiveness of the shared-control algorithm.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as
drones, are aircrafts without a human pilot aboard. They
are used in military attacks [1] and surveillance [2], [3] and
have recently received significant attentions. Business report
states that the global UAV market size can be expected to
grow to over 8 billion dollars by 2018. Nowadays UAVs
not only play a role in military applications [4], [5], but are
also widely used in civil applications, such as policing [6],
weather determination [7], mapping [8] and agriculture [9].

Various traditional methods to control the positions of a
UAV, such as PI controls [10], linearized controls [11] and
fuzzy controls [12], [13] have been used. Even though these
controllers are easy to design and implement, they heavily
depend on designer’s experience. In addition, the assumption
of the availability of the dynamics of the UAV is not
always practical. Therefore [14] has introduced a nonlinear
controller using neural network to online learn the dynamics
of the UAV and has proved that the tracking errors and
the estimation errors are semi-globally uniformly ultimately
bounded, while [15] has utilized an adaptive controller based
on backstepping to compensate the uncertainty of the UAV
and has proved that the tracking errors in the x, y, z variables
and in the yaw rotation asymptotically converge to zero.
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Fig. 1: The Proposed Control Framework
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This paper does not focus on the angular dynamics of a UAV
(i.e. the dynamics of the pitch angle, the yaw angle and the
roll angle). Instead, we assume the dynamics of the overall
open loop system (including the ‘Transition Plant’ which will
be described later in this paragraph and the ’UAV’ block in
Figure 1) can be described by the equations

ẋ = vs cosφ cos θ,

ẏ = vs cosφ sin θ,

ż = vs sinφ,

θ̇ = ω1s,

φ̇ = ω2s,

(1)

where (x, y, z) denotes the Cartesian coordinates of the UAV
center of mass, θ is the heading angle (from East) of the UAV,
φ represents the UAV path angle (from the horizontal), vs is
the forward speed, ω1s and ω2s denote the angular velocity
with respect to the θ and φ axes, respectively. Note that
[vs, ω1s, ω2s]

T is the external input of the system (1). The
‘Transition Plant’ in Figure 1 is used to transmit the shared-
control input us into the inputs of the UAV, while keeping
us numerically equal to [vs, ω1s, ω2s]

T and the ’Shared-
Controller’ is used to combine the human action, denoted by
‘Human’, and the ’Feedback Controller’. Note that the name
“shared-control’ used in the paper has the same meaning
as that in the anti-lock braking system. Shared-control has
significant superiorities over human control since the safety
of the system is guaranteed: we use Lyapunov-like analysis to
prove the stability of the closed-loop system which satisfies
all constraints at all times. On the other hand, compared with
automatic control, the human operator could develop his/her
skills using the shared-controller and be self-confident about
his/her activities, thereby enjoying the fun of driving. The
function k in Figure 1 provides a feedback signal to the
human indicating how dangerous the situation is.

[16] has presented a shared-control algorithm for the kine-
matic model of a mobile robot. This paper extends the results
in [16] to a 3D space and provides formal proofs of the
properties of the closed-loop system with the shared-control
law. Furthermore, new case studies on 3D trajectory tracking
is given in the paper.

This paper is organized as follows. Section II formulates
the problem and gives definitions and assumptions. One
solution to the shared-control problem is presented in Sec-
tion III, in which formal properties of the shared-controller
are provided. One numerical example is given in Section IV
to show the effectiveness of the proposed shared-control
strategy. Finally, Section V gives some conclusions and ideas
for future work.



II. PROBLEM STATEMENT AND ASSUMPTIONS

In this section we formulate the shared-control problem for
the UAV model described by equations (1).

Let  vs
ω1s

ω2s

 =[1− k(x, y, z, θ, φ, vh)]

 vf
ω1f

ω2f



+ k(x, y, z, θ, φ, vh)

 vh
ω1h

ω2h

 ,
(2)

where uf = [vf , ω1f , ω2f ]T , denoted as f-control, repre-
sents the feedback-control action and uh = [vh, ω1h, ω2h]T ,
denoted as h-control, describes the human action. We use
the name s-closed-loop to denote the system described by
equation (1) with the input given by the equation (2), and
the name h-closed-loop to denote the system described by
the equations

ẋ = vh cosφ cos θ,

ẏ = vh cosφ sin θ,

ż = vh sinφ,

θ̇ = ω1h,

φ̇ = ω2h.

In addition, Ωh and Ωs are used to denote the Ω-limit set
(the definition of which is given in [17]) of the h-closed-loop
system and of the s-closed-loop system, respectively. Note
that the h-closed-loop system and the s-closed-loop system
share the same state space P×H×A = R3×S×A1, where
P is the set of Cartesian positions, H represents the set of
heading angles and A denotes the set of path angles. Let
Pa ∈ P be a given and compact set describing the admissible
Cartesian positions of the system (1) and uh be a given h-
control. Then the shared-control problem can be posed as
follows.

Given the system (1), an admissible configuration set Pa and
an h-control uh, find (if possible)

• an f-control uf ;
• a sharing function k;
• a safe set Rs(vh) , Pa ×Hs ×As2 ⊂ Pa ×H×A ,
R(vh);

such that the s-closed-loop system (1)-(2) has the following
properties.

1A is the set
A = {φ ∈ R : |φ| ≤

π

2
}.

2For any given sufficiently short ∆t > 0, any p(t) =
[x(t), y(t), z(t)]T ∈ Pa and any fixed vh, the sets As and Hs are defined
as

As×Hs =

θ × φ ∈ S× A :

p(t) + ∆t

 vh cosφ cos θ
vh cosφ sin θ
vh sinφ

 ∈ Pa

 .

P1) For any initial state (x, y, z, θ, φ) ∈ R, the state
(x(t), y(), z(t), θ(t), φ(t)) for the s-closed-loop system
remains in R for all t ≥ 0.

P2)

Ωs =

Ωh if Ωh ⊂ Rs(vh),

ΠRs(Ωh) if Ωh 6⊂ Rs(vh),

where ΠRs(Ωh) is the projection of Ωh into the set
Rs(vh), which will be defined in Section III-A.

P3) us = uh if (x, y, z, θ, φ) ∈ Rs(vh).

Assumption 1: The non-empty admissible configuration set
Pa is defined by a group of linear inequalities, namely

Pa = {p ∈ R3 |Sp+ T ≤ 0}, (3)

where p = [x, y, z]T , S = [sT1 , s
T
2 , . . . , s

T
m]T ∈ Rm×3 and

T = [t1, t2, . . . , tm]T ∈ Rm. In addition, if m > 3 then the
matrices S and T are such that

rank(

 sr1
...
srl

) < rank(

 sr1 tr1
...

...
srl trl

),

for all l ∈ [4,m] and r1, r2, . . . , rl ∈ {1, 2, . . . ,m}.

Assumption 2: The reference trajectory in the space P is
continuous.

The above assumptions hold for the rest of the paper.

III. SHARED-CONTROL DESIGN

A. Design of the f-control

As detailed in [18] we design the feedback controller under
the assumption that m = 3. Note that Nc f-controls need
to be designed and in general, Nc ≤

(
m
2

)
. Consider the ith

group of constraints

Sip+ T i ≤ 0, (4)

where p = [x, y, z]T , Si = [si1
T
, si2

T
, si3

T
]T ∈ R3×3 and

T = [ti1, t
i
2, t

i
3]T ∈ R3. Define a new variable qi as qi =

Sip+ T i. To remove the constraint on qi, we define a new
variable mi = [mi

1,m
i
2,m

i
3]T , with

mi
j = log

qij
qirj

, (5)

for all j ∈ {1, 2, 3}, where qirj is the reference trajectory
defined as

qirj =


qid, if qidj ≤ (1−

√
2

2 )r − ε,
−ε, if qidj ≥ (

√
2− 1)r − ε,

hij , otherwise ,

(6)

for j ∈ {1, 2, 3}, where r is a positive constant, hij =

−(r + ε) +
√
r2 − [(

√
2− 1)r − ε− qidj ]2 and qid =

[qid1 , q
i
d2
, qid3 ]T = Sipd + T i. Note that qirj < 0 and that



qirj is a smooth function. Therefore q̇ir and q̈ir exist. Let pir,
αir, v

i
r, θ

i
r, φ

i
r and ωir be given by3

pir = Si
−1

(qir − T i), αir = Si
−1
q̇ir,

vir =
√
αir1

2
+ αir2

2
+ αir3

2
, θir = atan(αir2 , α

i
r1),

φir = atan2(αir3 ,
√
αir1

2
+ αir2

2
), ωir = [θ̇ir, φ̇

i
r]
T .

(7)

Suppose (pd, θd, φd) ∈ Ωh. Then the projection of
(pd, θd, φd) into Rs(vh) relative to the ith group of active
constraints, i.e. Πi

Rs
(pd, θd, φd), is defined as

Πi
Rs

(pd, θd, φd) = (pir, θ
i
r, φ

i
r),

where (pir, θ
i
r, φ

i
r) is given by (7). Therefore the projection

of Ωh into Rs(vh), relative to the ith group of constraints,
is defined by

Πi
Rs

(Ωh) = {s ∈ Rs|s = Πi
Rs

(pd, θd, φd)},

for all (pd, θd, φd) ∈ Ωh.

With the use of the new variable mi defined in (5), the system
(1) can be rewritten as

ṁi
1 =

vif cosφi cos θi

em
i
1qir1

− vir cosφir cos θir
qir1

,

ṁi
2 =

vif cosφi sin θi

em
i
1qir2

− vir cosφir sin θir
qir2

,

ṁi
3 =

vif sinφi

em
i
2qir3

− vir sinφir
qir3

,

θ̇i =ωi1f ,

φ̇i =ωi2f .

(8)

Let

θi∗ = atan(l2, l1), φi∗ = atan(l3,
√
l21 + l22) (9)

where γ1 > 0, γ2 > 0, γ3 > 0 and

l1 = em
i
1(vir cosφir cos θir + γ1l1),

l2 = em
i
2(vir cosφir sin θir + γ2l2),

l3 = em
i
3(vir sinφir + γ3l3).

Note that if |φi∗| = π
2 , then θi∗ = atan(0, 0), which is

not uniformly defined. In this case, we define θi∗ = θr. In
addition, φi∗ and θi∗ are reference angles for φi and θi,
respectively.

Consider the Lyapunov function associated with the ith

group of active constraints given by

Li(mi
1,m

i
2,m

i
3, θ

i, φi) =
1

2

[
(θi − θi∗)2 + (φi − φi∗)2

+mi
1
2

+mi
2
2

+mi
3
2

]
,

(10)

3We use the 4 quadrant arctan function.

and choose uif = [vif , ω
i
1f , ω

i
2f ]T such that Li < 0 for all

(mi
1,m

i
2,m

i
3, θ

i, φi) 6= (0, 0, 0, θi∗, φi∗). One such a choice
is given as

vif =
√
l21 + l22 + l23,

ωi1f = θ̇i∗ +
mi

1v
i
f cosφi

em
i
1qir1

sin
θi + θi∗

2
sinc

θi − θi∗

2

−
mi

2v
i
f cosφi

em
i
2qir2

cos
θi + θi∗

2
sinc

θi − θi∗

2

− γ4(θi − θi∗),

ωi2f = φ̇i∗ +
mi

1v
i
f cos θi∗

em
i
1qir1

sin
φi + φi∗

2
sinc

φi − φi∗

2

−
mi

2v
i
f sin θi∗

em
i
2qir2

sin
φi + φi∗

2
sinc

φi − φi∗

2

−
mi

3v
i
f

em
i
3qir3

cos
φi + φi∗

2
sinc

φi − φi∗

2
− γ5(φi − φi∗),

which yields

L̇i = γ1
mi

1
2

qir1
+ γ2

mi
2
2

qir2
+ γ3

mi
1
2

qir1
− γ4(θi − θi∗)2

− γ5(φi − φi∗)2 ≤ 0.

This can be pushed back into the (p, θ, φ) coordinates
yielding

vif =

√√√√√√√√√√√
(
qi1
qir1

)2(vir cosφir cos θir + γ1log
qi1
qir1

)2

+(
qi2
qir2

)2(vir cosφir sin θir + γ2log
qi2
qir2

)2

+(
qi3
qir3

)2(vir sinφir + γ3log
qi3
qir3

)2

,

ωi1f = θ̇i∗ +

log
qi1
qir1

vif cosφi

qi1
sin

θi + θi∗

2
sinc

θi − θi∗

2

−
log

qi2
qir2

vif cosφi

qi2
cos

θi + θi∗

2
sinc

θi − θi∗

2

− γ4(θi − θi∗),
(11)

ωi2f = φ̇i∗ +

log
qi1
qir1

vif cos θi∗

qi1
sin

φi + φi∗

2
sinc

φi − φi∗

2

−
log

qi2
qir2

vif sin θi∗

qi2
sin

φi + φi∗

2
sinc

φi − φi∗

2

−
log

qi3
qir3

vif

qi3
cos

φi + φi∗

2
sinc

φi − φi∗

2

− γ5(φi − φi∗),



where

θi∗ = atan


qi2
qir2

(vir cosφir sin θir + γ2log
qi2
qir2

),

qi1
qir1

(vir cosφir cos θir + γ1log
qi1
qir1

)

 ,

φi∗ = atan



qi3
qir3

(vir sinφir + γ3log
qi3
qir3

),√√√√√√√
qi1
qir1

(vir cosφir cos θir + γ1log
qi1
qir1

)

+
qi2
qir2

(vir cosφir sin θir + γ2log
qi2
qir2

)


,

and qij = sijp+ tij , q
i
rj = sijpr+ tij for all j ∈ {1, 2, 3}. Note

that vif ≥ 0. This is consistent with its physical meaning: the
speed of a UAV is always nonnegative.

Lemma 1: Consider the system (1) controlled by (11) where
qir is defined by (6) and vir, θ

i
r and φir are given by (7).

Suppose Pa is described by (3), (x(0), y(0), z(0)) ∈ Pa and
the time that a feedback controller is active is larger than ∆t.
Then there exist γ1, γ2, γ3, γ4 and γ5 such that the closed-
loop system has the following properties.

• (x(t), y(t), z(t)) ∈ Pa for all t ≥ 0;
• lim
t→∞

(x(t) − pr1(t)) = lim
t→∞

(y(t) − pr2(t)) =

lim
t→∞

(z(t)− pr3(t)) = 0.

Proof: To begin with, qij(t) < 0 for all j ∈ {1, 2, 3}
according to the definition of mi. This proves the first
property.

Consider the ith Lyapunov function (10) and note that L̇i < 0
for all mi 6= 0, θi 6= θi∗ and φi 6= φi∗. Consider now the
switch from uif to ujf , with i 6= j, i.e. the group of active
constraints changes. Without loss of generality, we consider
switching from L1 to L2 at t = t0. Note that

L1(t0) =
1

2

[
m2

1(t0) +m2
2(t0) + [θ(t0)− θ1∗(t0)]2

+m2
3(t0) + [φ(t0)− φ1∗(t0)]2

]
,

L2(t0) =
1

2

[
m2

1(t0) +m2
2(t0) + [θ(t0)− θ2∗(t0)]2

+m2
4(t0) + [φ(t0)− φ2∗(t0)]2

]
,

where m1 = log
s1p(t0) + t1
s1pr(t0) + t1

, m2 = log
s2p(t0) + t2
s2pr(t0) + t2

,

m3 = log
s3p(t0) + t3
s3pr(t0) + t3

and m4 = log
s4p(t0) + t4
s4pr(t0) + t4

with

p = [x, y, z]T and pr = [xr, yr, zr]
T . Since the time

difference between two switches is not smaller than ∆t, there
always exists γ1, γ2, γ3, γ4 and γ5 such that

∫ t0+∆t

t0
L̇2dt ≤

L2(t0) − L1(t0), i.e. L2(t0 + ∆t) ≤ L1(t0). Suppose
{i1, i2, . . . , iI} is a sequence of active group of constraints,
where ij ∈ {1, 2, . . . , Nc} for all j ∈ {1, 2, . . . , I}, and
the ithj group is active for the time period (tij , Tij ] with
tij+1

= Tij for all j ∈ {1, 2, . . . , I − 1}. Therefore 0 ≤
LiI (TiI ) < · · · < Li2(Ti2) < Li1(Ti1). Define the overall
Lyapunov function L(t) as

L(t) = Lij (t), if t ∈ (tij , Tij ].

From the above analysis and [19] L(t) is a multiple Lya-
punov function and

lim
t→∞

(x(t)− pr1(t)) = 0, lim
t→∞

(y(t)− pr2(t)) = 0,

lim
t→∞

(z(t)− pr3(t)) = 0.

B. Shared Control Theorem

Similarly to [16] the overall set R can be divided into three
subsets: the safe subset Rs, the hysteresis subset Rh and
the dangerous subset Rd. Relative to the ith group of active
constraints and a given vh, the set R can be divided into R̃s,
R̃h and R̃d by equations (12), given on the top of next page,
where e = [cos θ cosφ, sin θ cosφ, sinφ]T , Qia = SiPa+T i,
and b2 > b1 > 0. To eliminate the ambiguity for different
groups of active constraints, we can pull back the sets R̃s,
R̃h and R̃d into the (x, y, z, θ, φ) coordinates using the
equations

Ris(vh) = diag(Si−1
, I)(R̃i

s − col(Ti, 0)),

Rih(vh) = diag(Si−1
, I)(R̃i

h − col(Ti, 0)),

Rid(vh) = diag(Si−1
, I)(R̃i

d − col(Ti, 0)).

Note that, by construction, the subsets Rs, Rh and Rd have
the following properties:

• Ris(vh) ∪ Rih(vh) ∪ Rid(vh) = R(vh) for all i ∈
{1, 2, . . . , Nc};

• Rid(vh) ∩ Rjd(vh) = ∅ for all i 6= j and i, j ∈
{1, 2, . . . , Nc};

• Rd(vh) = R1
d(vh) ∪ · · · ∪ RNc

d (vh),

Rh(vh) = R1
h(vh) ∪ · · · ∪ RNc

h (vh),
Rs(vh) = R1

s(vh) ∩ · · · ∩ RNc
s (vh) = R \ (Rd ∪Rh).

The sharing-function relative to the ith group of active
constraints ki can be defined as

ki(p, θ, φ, vh) =


1, (p, θ, φ) ∈ Ris(vh) \ Rid(vh),

li, (p, θ, φ) ∈ Rih(vh),

0, (p, θ, φ) ∈ Rid(vh),
(13)

where

li =

{
1, if (p, θ, φ) enters Rih(vh) from Ris(vh),

0, if (p, θ, φ) enters Rih(vh) from Rid(vh).

Finally, the shared-control input is given by

us(p, θ, φ, vh) =

Nc∑
i=1

[(1− ki)uif ] + (
Nc

min
i=1

ki)uh. (14)

Proposition 1: Consider the system (1) with the shared-
controller (11)-(13)-(14). Let Pa be a closed and compact
set described by (3) and uh be a given h-control. Assume
(x(0), y(0), z(0)) ∈ Pa and the time that a feedback con-
troller is active is larger than ∆t. Then there exist γj > 0,



R̃is(vh) =

{
(qi, θi, φi) ∈ Qia × S× A : sijevh ≤

1

qij + b2
− 1

b2
if qij ≥ −b2 for all j ∈ {1, 2, 3}

}

R̃ih(vh) =


(qi, θi, φi) ∈ Qia × S× A : ∃j ∈ {1, 2, 3} such that sijevh >

1

qij + b2
− 1

b2
and qij ≥ −b2

and sikevh <
1

qik + b1
− 1

b1
if qik ≥ −b1 for all k ∈ {1, 2, 3}

 (12)

R̃id(vh) =


(qi, θi, φi) ∈ Qia × S× A : ∃j ∈ {1, 2, 3} such that sijevh ≥

1

qij + b1
− 1

b1
,−b1 ≤ qij < 0

or ∃j ∈ {1, 2, 3} such that sijevh >
1

qij + b1
− 1

b1
, qij = 0

or ∀j ∈ {1, 2, 3} such that qij = sijevh = 0



for j ∈ {1, 2, 3, 4, 5}, and b2 > b1 > 0 such that the s-
closed-loop system has the following properties.

(1) Ωs = ΠRs
(Ωh).

(2) (x(t), y(t), z(t)) ∈ Pa for all t ≥ 0.
(3) us(t) = uh(t) for all t ≥ 0 and (p(t), θ(t), φ(t)) ∈
Rs(vh(t)).

Proof: Claim (1) is a consequence of the general results
in [20], and of the fact that ΠRs

(Ωh) is the Ω-limit set
of both the h-closed-loop and the f-closed-loop systems (by
definition, the former, and by equations (5)-(10), the latter).

As detailed in Section III-A, the f-control is such that the
configuration of the system stays in the admissible region
Pa. In addition, as detailed in [16], any trajectory should
enters the dangerous subset Rd before leaving R where uf
is active. Therefore, the set R is forward invariant and claim
(2) holds.

Finally, claim (3) is a direct consequence of the definition of
the shared-control.

IV. CASE STUDY

In this section we discuss a case study in which the config-
uration of the system needs to track a spiral. Note that the
Cartesian position of the h-closed-loop system goes outside
of Pa, i.e. Ωh 6⊂ Rs.

Consider the system (1) and the admissible configuration set
defined by

Pa = {(x, y, z)|x ≥ 0, y ≥ 0, z ≥ 0}. (15)

Assume the reference trajectory is a spiral described by

pd(t) = [3 cos(0.1t) + 5, 3 sin(0.1t) + 4, 0.1 + 0.02t]T ,

and the h-control is a stable tracking controller.

Simulation results are given in Figure 2 to Figure 3. Figure
2a and Figure 2b show that the configuration of the UAV for
the h-closed-loop goes outside the admissible set (the grey
shaded area), i.e. x ≤ 0, while that for the s-closed-loop
remains in the admissible set Pa. Note that the projections
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Fig. 2: Projections of paths of the system (1)in different
planes for the set Pa given in (15) with r = 3, b2 = 2, b1 =
1: the h-closed-loop (red, dash-dotted) and the s-closed-loop
(green, dashed). Round mark: the initial position of the UAV.

of the trajectories of the h-closed-loop system and of the
s-closed-loop system in the x − z and y − z plane do not
overlap with each other in the beginning because the system
states enters Rd where uf is active at the very beginning.
Figure 3 displays the time histories of the bounded shared-
control inputs us and of the state variables. It clearly shows
that the input signals vs, ω1s and ω2s are continuous and
smooth functions and equal to vh, ω1h and ω2h, respectively,
except for the time when the state of the system enters the
dangerous subset Rd.

V. CONCLUSIONS

We have proposed a solution to the shared-control problem
for a UAV moving in the 3D space. The shared-control
algorithm is based on a hysteresis switch and its formal
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Fig. 3: Time histories of the variable x, y, z, θ, φ, v, ω1 and
ω2 for the h-closed-loop system (red, dash-dotted) and the
s-closed-loop system (green, dashed).

properties are established by a Lyapunov-like analysis. Two
numerical examples are given in Section IV to show the
effectiveness of the shared-control law. Future research will
focus on the shared-control problem for multi-agent systems.
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