
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

HMAPs - Hybrid height-Voxel maps for environment representationHMAPs - Hybrid height-Voxel maps for environment representation

PLEASE CITE THE PUBLISHED VERSION

https://doi.org/10.1109/IROS.2018.8594113

PUBLISHER

© IEEE

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Garrote, Luis, Cristiano Premebida, David Silva, and Urbano Nunes. 2019. “Hmaps - Hybrid Height-voxel
Maps for Environment Representation”. figshare. https://hdl.handle.net/2134/37236.

https://lboro.figshare.com/
https://doi.org/10.1109/IROS.2018.8594113

HMAPs – Hybrid Height-Voxel Maps for Environment Representation

Luı́s Garrote, Cristiano Premebida, David Silva, Urbano J. Nunes

Abstract— This paper presents a hybrid 3D-like grid-based
mapping approach, that we called HMAP, used as a reliable
and efficient 3D representation of the environment surrounding
a mobile robot. Considering 3D point-clouds as input data, the
proposed mapping approach addresses the representation of
height-voxel (HVoxel) elements inside the HMAP, where free
and occupied space is modeled through HVoxels, resulting in
a reliable method for 3D representation. The proposed method
corrects some of the problems inherent to the representation of
complex environments based on 2D and 2.5D representations,
while keeping an updated grid representation. Additionally,
we also propose a complete pipeline for SLAM based on
HMAPs. Indoor and outdoor experiments were carried out
to validate the proposed representation using data from a
Microsoft Kinect One (indoor) and a Velodyne VLP-16 LiDAR
(outdoor). The obtained results show that HMAPs can provide
a more detailed view of complex elements in a scene when
compared to a classic 2.5D representation. Moreover, validation
of the proposed SLAM approach was carried out in an outdoor
dataset with promising results, which lay a foundation for
further research in the topic.

I. INTRODUCTION

In this work we propose a new representation method,
we call Height-Voxel Map (HMAP), that encompasses char-
acteristics from 3D and 2D representations (using a hybrid
approach). The HMAP representation is composed by multi-
ple Height-Voxels (HVoxels) aligned vertically in a 2D grid-
map, as exemplified in Fig. 1 for an indoor environment. An
HVoxel is a vertical voxel created from raw measurements
and is defined by four parameters: number of samples (|v|);
voxel density (ρ); minimum height (zmin) and maximum
height (zmax). For each stack of vertically aligned HVoxels
an occupancy probability is also provided. This particular
representation presents some important characteristics, such
as: no padding is added to the voxels, meaning that to some
degree it is possible to recover a height upsampled version of
the original 3D point-cloud; for the best case scenario (e.g.,
wall), this representation becomes a 2.5D representation
O(1), and for the worst case a O(log(n)) search.

In terms of contributions, this work proposes:
• HVoxel representation (local representation) and HMAP

(global representation) mapping pipeline - a 3D point-
cloud is converted into a set of occupied HVoxels
(the HVoxel representation), a ray tracing technique is
applied in order to compute free-space HVoxels and the
HMAP is updated accordingly.

The authors are with the Institute of Systems and Robotics, Department of
Electrical and Computer Engineering, University of Coimbra, Portugal. This
work was supported by the Portuguese Foundation for Science and Tech-
nology (FCT) under the PhD grant with reference SFRH/BD/88672/2012.
E-mails: {garrote, cpremebida, urbano}@isr.uc.pt.

Fig. 1. A snapshot of an HMAP representation of an indoor environment
(office setting).

• Hybrid HMAP representation - for each cell, a set of
vertically aligned HVoxels is converted into an occu-
pancy probability.

• SLAM based on HMAP - the method proposed in [1]
for 2D grid-maps was adapted for HMAPs.

The remainder of this paper is organized as follows. An
overview of the related work is provided in Section II.
Section III details the proposed representation and mapping
framework. Section IV describes the hybrid representation
and the SLAM framework. The following section presents
tests, performed in indoor and outdoor scenarios, and dis-
cussions. Conclusions are presented in Section VI.

II. RELATED WORK

This section gives a review of related works on envi-
ronment representation in mobile robotics for indoor and
outdoor scenarios. There are many ways to represent the
environment surrounding a mobile robot and research in
environment representation has been the focus of many
research teams. Multiple solutions are already available and
well field-tested through the Robot Operating System (ROS)
platform [2]. A breakthrough was achieved with the 2D occu-
pancy grid maps [3], a representation that is still widely used
in many mobile platforms. Some of the key characteristics of
this representation include a fast update of occupancy values
and fast-constant cell access time. These characteristics mean
that this representation can be deployed in a wide variety of
mobile platforms including ones with low cost processing
units. However, this representation presents some shortcom-
ings when representing 3D objects and scaling to large areas.

In trying to provide some answers to these shortcomings,
2.5D and 3D representations have been proposed.

The 2.5D representation, in its initial implementations,
solved the problem of representing height in 2D maps by pro-
viding a representation of elevation as ”height” information
on each cell. In the category of 2.5D representations, as in
[4], 2.5D polar grid maps were proposed for 3D point-cloud
inputs where the representation was adapted to the sensor’s
measurement model (Velodyne HDL-32E), and interpolation
methods such as inverse distance weighting (IDW) and
Kriging were employed to generate denser representations.
The main limitation of 2.5D mapping is the representation
of vertical overlapping elements (e.g., space between trees
and pavement could be marked as an obstacle). However,
multi-layer or multi-level approaches [5] provided a solution
to this limitation by layering the environment with multiple
2D grid-like maps.

Finally, 3D mapping approaches have been proposed in
order to provide a complete solution to environment repre-
sentation. A multiresolution cuboid representation, based on
the incremental fusion of grid cells, is proposed in [6]-[7].
The Octomap approach proposed by Hornung et al. [8], a
probabilistic representation based on octrees, allows 3D mul-
tiresolution representations and querying. This representation
was widely tested and is fully integrated in ROS.

From a computational point of view, the 2D and 2.5D
representations provide simpler and faster representations
that can have constant access time while 3D representations
may present bigger memory footprints constraints on the
access time depending on the depth or resolution of the
desired region on the representation. Most motion planning
approaches still require 2D grid-maps or 2D costmaps to
compute collision free paths since planning in 3D can prove
to be a computationally heavy task, and depending on the
scenarios can be considered an over-engineered approach
(e.g., 2D planning of a wheelchair’s motion). However, when
approaching to interact with objects or to capture more
detailed characteristics of an environment, precise and 3D-
like representations may be crucial to provide optimal and
safer planning solutions.

In the context of mobile robots, converting a 3D or
2.5D representation into a 2D representation requires the
definition of a ground plane reference or a direct mapping
strategy. Although many strategies have been proposed to
solve this problem, only two solutions are more related to
the work presented here. In [9], a 3D point-cloud to 2D
grid-map pipeline was proposed featuring good performance
in the representation of non-trivial obstacles (e.g., gutters,
stairs). The pipeline is composed by a 2.5D intermediary
representation, a ground plane detection algorithm and an
inverse sensor model. In [10] a fusion model incorporates
vertical penalization based on elevation thresholds to convert
a 3D point-cloud to a 2D grid-map.

In order to extend the proposed representation into a
SLAM approach, we build on the work presented in [1]
for 2D grid-maps, known in the ROS community as Hec-

Simultaneous Localization and Mapping

HVoxel Selection HVoxel Matching

2D data
Indexing

Height Clustering
and HVoxel
Generation

HVoxel Ray Tracing
and Free Space
Computation

HVoxel
Merging

HVoxel
Extrusion

Mapping

3D Point-cloud3D Sensor HVoxel
Representation

HVoxel List

Transform HMAP

Pose

Ground
extraction

HVoxel to 2D
occupancy update

Hybrid Representation

Hybrid 2D-HVoxel
Representation

Fig. 2. Pipeline of the proposed method including the hybrid representation
(green dotted rectangle), the mapping pipeline (blue dotted rectangle) and
the SLAM framework (red dotted rectangle).

tor SLAM1, where a Gauss-Newton minimization and bilin-
ear interpolation are used in order to minimize the matching
error between a map and a laser-scan 2D point-cloud.

III. HMAPS MAPPING FRAMEWORK

In this Section we present the pipeline to generate HMAPs.
The overall proposed approach for mapping, SLAM and
hybrid 2D-HVoxel representation is presented in Fig. 2. The
first step, comprised by two modules (2D Data Indexing
and Height Clustering and HVoxel Generation), consists in
generating an HVoxel representation. The representation is
then transformed, given an external pose, and an HMAP is
initialized or updated (HVoxel Ray Tracing and Free Space
Computation, HVoxel Merging and HVoxel Extrusion).

A. 2D Data Indexing

The first step on this process requires the downsampling of
the 3D point-cloud into a 2D grid map (R) representation. R
is defined as a two-dimensional environment representation
bounded between ([0, nrows], [0, ncols]) and composed by
a set of cells cij , with row i and column j. Each cell c
is defined by constant size and contains a set of elevation
measurements. The data structure used in the HMAP (M)
follows the same structure presented for the representation R.
Given a point-cloud (P) composed by a set of 3D Cartesian
points (pk = (xk, yk, zk)

T , k = 1, 2, ..., n), each cell is
updated by projecting the x and y components on the grid
cell. The algorithm used to generate a 2D grid-map from a
3D point-cloud is summarized in Algorithm 1: the convert-
ToMapIndex procedure provides the mapping between the
coordinates in a Cartesian frame (x, y) to the grid coordinates
(i, j); while the procedure withinMapBounds checks if a
provided point pij belongs to the current 2D map.

1Hector SLAM – http://wiki.ros.org/hector slam

Algorithm 1: 2D data indexing for a 3D point-cloud
P : the correspondent 2D grid map is generated; where
each cell contains a set of elements corresponding to the
height.

Input: 3D point-cloud (P)

1 Initialization:
2 Create empty 2D Representation nrows × ncols (R)

3 foreach p in P do
4 pij ← convertToMapIndex(p)
5 if withinMapBounds(pij) then
6 R(pij) ← R(pij)

⋃
pz

Output: R

Algorithm 2: Height Clustering and HVoxel Generation:
Converts a set of height elements into an HVoxel.

Input: Representation map nrows × ncols (R)

1 foreach c in R do
2 if ¬ Empty(cell) then
3 set ← HeightClustering(cell)
4 foreach segment in set do
5 c ← c ∪ createHV oxel(segment)

6 else
7 c ← ∅

Output: R

B. Height Clustering and HVoxel Generation

In our approach, each cell in R contains its corresponding
height values therefore, in order to generate HVoxels, we
apply an height clustering point-distance algorithm (see the
survey [11]) with a point-distance threshold on the z-axis
(HeightClustering); this is summarized in Algorithm 2.
This approach allows, to a certain degree, to recover an
upsampled 3D point-cloud, with the HVoxels representing
height boundaries. In the context of this work, an HVoxel
is defined as a fixed-size voxel in the boundaries of a 2D
grid-map cell, and having a maximum (zmax) and minimum
(zmin) heights. Unlike 2.5D grid-maps, in HMAPs each cell
can contain multiple HVoxels. Another characteristic of this
HVoxel is the normalized voxel density (ρ(v)), as proposed
in [9], which is given by:

ρvoxel(v) =
Km

1 + e
−(

Kn(|v|−dmin)

Vvoxel
)

(1)

where Vvoxel denotes the volume of the HVoxel (Vvoxel =
hA), |v| is the number of points inside the HVoxel, Km

denotes an amplitude gain, Kn is a sample normalization
factor, and dmin represents the minimum number of points
inside the HVoxel.

C. HVoxel Ray Tracing and Free Space Computation

A 3D point-cloud does not represent per se free space
but, knowing the 3D sensor field-of-view (FOV), a 3D ray
tracing algorithm for HVoxels can be used (as shown in
Algorithm 3). For each HVoxel in the representation R, a 3D

Algorithm 3: HVoxel ray tracing and free space compu-
tation: Given sensor origin and an HVoxel we compute
the free space HVoxel pathway.

Input: HVoxel representation nrows × ncols (R)
Sensor origin pb ← (xi, yi, z)

1 foreach cell in R do
2 if ¬ Empty(cell) then
3 foreach HVoxel in cell do
4 if HVoxel(ρ) ≥ nth then
5 cellIDs ← ProjectLineTo2D(pb, HVoxel)
6 ulm ← lineModel(pb, HVoxel(zmax))
7 llm ← lineModel(pb, HVoxel(zmin))
8 foreach cID in cellIDs do
9 R ← createFreeHVoxel(cID , llm, ulm)

Output: R

Fig. 3. Representation of the HVoxel ray tracing method for one HVoxel on
a 2D grid map. Considering the HVovels, we have: the base point (in light
red), the free HVoxels (in light blue), and the lines connecting the maximum
and minimum values of z, in red and green respectively. Considering the 2D
grid, the dark-grey corresponds to the cells where the free-space HVoxel will
be added and, in black, the base point and the occupied HVoxel projected
in the 2D grid map.

point-cloud is projected (from the HVoxel to the 3D sensor’s
frame) into a 2D grid map plane (see Fig. 3). On the 2D
plane we compute the cells corresponding to the 3D line
using the Bresenham’s algorithm [12] (ProjectLineTo2D).
Since the maximum and minimum height values per HVoxel
are available, we define two line models from the maximum
and minimum heights to the sensor’s origin (lineModel), and
for each cell in the 2D grid map we compute a free space
HVoxel (createFreeHVoxel). If the normalized density of
an HVoxel (ρ) is bellow a threshold, the computation of free
space HVoxels for that particular HVoxel is ignored.

D. HVoxel Merging

Given a previous HMAP, Mk−1, and an HVoxel rep-
resentation from the last 3D point-cloud R∗, an update
on the previous HMAP is required in order to obtain the
current HMAP M . Assuming that all maps are referenced
to the same global coordinate system (in mapping or SLAM
contexts a transformation is applied to R∗ in order to align
R∗ in Mk−1), for each overlapping HVoxel we update
the minimum and maximum height values, the sum of the
number of points and also the corresponding normalized

HVoxel density. This final step generates the HMAP, M ,
without the integration of free-space HVoxels.

E. HVoxel Extrusion

On a new HMAP, M , we apply the concept of extrusion
to HVoxels. For a set of HVoxels and free-space HVoxels we
apply the following rules:

• If no free-space HVoxels overlap HVoxels then, no
changes are made to the representation.

• If a free-space HVoxel overlaps HVoxels but has a
smaller normalized density then, the overlapped HVoxel
is updated accordingly to the overlapped area (|v| =
|v| − d ∗ |vf |); furthermore, if the final normalized
density is below a given threshold the overlapping area
is removed.

• If a free space HVoxel overlaps but has bigger normal-
ized density then, the overlapping area is removed.

• If a free space HVoxel is inside an HVoxel and the
normalized density is smaller then, the HVoxel is sub-
divided, otherwise the HVoxel is updated.

After applying these rules, all HVoxels with small density
are removed.

IV. HYBRID HMAPS AND SLAM

In the previous section the HMAP framework was intro-
duced to deal with 3D environments, on the other hand in
this section we present a 2D occupancy grid-map that can
be stored alongside the proposed HMAP (each cell contains
the occupancy probability) and is updated using data from
the representation. An overview of the proposed Hybrid
Representation pipeline is presented in Fig. 2 (green dotted
rectangle).

A. Ground Extraction

In [9] a conversion pipeline was proposed to convert from
3D point-clouds to 2D grid-maps using a Rapidly-exploring
Random Tree (RRT) inspired ground plane detection algo-
rithm (RRT-GPD), which is suitable for indoor environment
representation. Also in [9] the approach was particularly
developed for assistive robotics contexts (i.e., mapping floor
outlets, gutters or steps as obstacles). In this subsection, we
present a new version of the approach conveniently adapted
for HMAPs.

Proposing a solution simultaneously suitable for indoor
and outdoor scenarios is a complex task. Although for most
indoor scenarios a ground plane detection algorithm will
suffice, outdoor scenarios have different requirements and
detecting a single plane may not be enough. Therefore, we
propose to solve this problem by detecting drivable patches
using a RRT inspired algorithm (see Algorithm 4). Patches
in the context of this work are small local planes defined
by position, normal vector, height and width dimensions. We
choose to represent the tree in a Kd-tree for fast patch queries
(search complexity is O(log n)).

Given an initial pose, the first step is to compute
an histogram of the neighborhood heights in order to
select an acceptable candidate (p0) to start the tree

(NeighborhoodHistogram), then the tree is initialized
(initializeTree) with the initial patch centered in p0. The
patch is computed using local interpolation and a plane fitting
algorithm and, until a maximum number of iterations K is
met, the algorithm follows a RRT-like exploration approach.
Initially, the search space is restricted to a neighboring
region but increases and moves (updateSearchSpace) to the
average of all valid sampled points reducing in this way
the number of samples needed to provide a minimal set of
patches.

The sampling procedure sampleRandomDirection gen-
erates 2D points (xrand) uniformly sampled in the search
region. A nearest node approach is then performed to obtain
the nearest patch in the tree. Since the distance between the
sampled points and the nearest patch can be higher than a
defined threshold, meaning that a new patch might not be
valid depending on the patches in between (e.g., a rail in
a highway). The projectTo procedure is used to provide a
patch center point candidate which, for indoor and outdoor
2D scenes, is given by :

xexpansion =

[
xnear(x) + dn cos](xnear, xrand)
xnear(y) + dn sin](xnear, xrand)

]
(2)

where dn is the node expansion distance. Given the center
point xexpansion, a neighborhood window of points is ex-
tracted (getHeightPoints). If a cell has multiple HVoxels,
all maximum height values are returned. If a cell is empty,
a search in the neighborhood nodes is performed to find a
valid HVoxel candidate (∆h < dth) and an interpolation
step is applied to the candidate’s maximum height. The in-
terpolation uses the IDW algorithm, and helps the generation
of smoother patches. If no valid points are detected in the
patch then the patch is discarded. The patch’s normal is
computed by patchGeneration using a least squares plane
fitting algorithm. Once a valid patch is found, and depending
on the requirements of a particular application, a set of
conditions must be verified to ensure that a connection
between two patches (the patch represented in xnear and
plocal) is valid. This algorithm ensures that a connection
between two patches is valid by verifying the displacement
of the normals of both patches and the elevation between
them. If one of the conditions is not met the candidate can
still be connected to neighbor patches otherwise the patch
is added to the tree and the search space is updated. If
neither the nearest patch nor the neighboring patches meet
the conditions, the candidate is rejected. After K iterations,
the output of this algorithm is a tree composed by patches
that cover the searchable space.

B. HVoxel to 2D Occupancy Update

To convert an HVoxel into an occupancy probability it is
necessary, as the first step, to query a patch. The nearest patch
to an HVoxel represents the local ground plane. HVoxels
with zmin and zmax close to the local ground plane mark
driveable space which translates into a small probability of
a cell being occupied. Also HVoxels higher or lower than a

Algorithm 4: RRT based patch exploration algorithm.
Input: Initial Hint (pxyz), Plane normal threshold (Nth),

Elevation threshold (Eth), HMAP (M), Maximum
number of iterations (K), Node expansion distance
(dn)

1 Initialization:
2 p0 ← NeighborhoodHistogram(pxyz , M);
3 G ← initializeTree(p0);

4 for k=1 to K do
5 xrand ← sampleRandomDirection();
6 xnear ← nearestNode(G,xrand);
7 xexpansion ← projectTo(xnear ,xrand);
8 P ← getHeightPoints(M , xexpansion);
9 plocal ← patchGeneration(P);

10 if | normal(plocal) · normal(xnear) | ≤ Nth then
11 if | plocal(z) - xnear(z) | ≤ Eth then
12 G ← G

⋃
{ xnear ,plocal };

13 updateSearchSpace(xexpansion);

14 else
15 xneighbours ← nearestNodes(G,xexpansion,dn);
16 foreach node in xneighbours do
17 if | normal(plocal) · normal(node) | ≤ Nth then
18 if | plocal(z) - node(z) | ≤ Eth then
19 G ← G

⋃
{ node,plocal };

20 updateSearchSpace(xexpansion);

Output: G

predefined threshold are truncated or ignored (i.e., to ignore
the detection of the ceiling in indoor environments or trees in
outdoor environments as obstacles). A log-odds probability
that a cell c is occupied given the observations z1:t (see [13])
is given by:

l(c|z1:t) = log
p(c|zt)

1− p(c|zt)
−log

p(c)

1− p(c)︸ ︷︷ ︸
=0, if p(c) = 0.5

+log
p(c|z1:t−1)

1− p(c|z1:t−1)

(3)
where p(c) is the prior probability, p(c|z1:t−1) the previous
estimate and p(c|zt) the probability that a cell c is occupied
given the measurement z and it is computed using an inverse
sensor model. The proposed inverse sensor model to convert
vertically stacked HVoxels into an occupancy probability is
given by:

p(c|zt) =
NH
max
i=1

0.5, if vi(zmin, zmax) > z+ ∪ vi(zmin, zmax) < z−max(vi(ρ), 0.5) e
− (|c|−|vi|)

2

2σ2 , if ||plocal − vi|| > dpth
Kg +

0.5−Kg

1+e−(|c|−|vi|)
, if ||plocal − vi|| ≤ dpth

, otherwise
(4)

where σ2 denotes the variance, Kg ∈ [0, 0.5] a bias gain,
dpth a distance threshold, plocal a local patch, NH the
number of vertical HVoxels, z+ and z− the detection limits.
The inverse sensor model is valid for c ∈ [vo, v]. vo is an
HVoxel representing the origin of the sensor’s frame and
the path between vo and v is computed using a ray tracing

algorithm.

C. Simultaneous Localization and Mapping

In this subsection we present a SLAM approach using the
HMAP representation (see red dotted rectangle highlighted in
Fig. 2). Following a similar approach as in [1], the goal is to
find a rigid transformation ξ = (px, py, ϕ) that minimizes the
error between a local representation (HVoxel representation)
and a global representation (HMAP)

ξ∗ = argmin
ξ

n∑
i=1

[1−MH(Si(ξ)))]
2 (5)

where MH(Si(ξ)) is a function that returns an HVoxel re-
lated metric and Si(ξ), which denotes a 2D transformation to
an HVoxel representation in the HMAP (vx,vy), is expressed
as

Si(ξ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

vxvy
1

+

pxpy
1

 (6)

The Gauss-Newton equation for the minimization problem
is given by:

∆ξ = H−1
n∑

i=1

((1−MH(Si(ξ)))(5MH(Si(ξ))
δSi(ξ)

δξ
)T

(7)
where 5MH(Si(ξ)) is the map representation gradient and
H is the Hessian matrix given by:

H =

n∑
i=1

[
5MH(Si(ξ))

δSi(ξ)
δξ

]T [
5MH(Si(ξ))

δSi(ξ)
δξ

]
(8)

For further details, the full derivation is provided in [1].
Some of the contributions in [1] include the use of a bilinear
interpolation to approximate the representation gradient and
a multiresolution representation of the map to avoid local
minimum. For the HMAP representation, and depending
on the scenario, generating multiresolution maps can be a
memory expensive task, and preliminary results showed that
in this particular case, decreasing the resolution meant the
degradation of the final results. Also, the bilinear interpo-
lation was applied to a 2D grid map, meaning that for the
HMAP representation and, in particular for an HVoxel, even
if the base of the representation is a 2D grid-map, it is not
possible to define multiple 2D grid maps for each HVoxel.
The proposed solution is shown in Fig. 4 and consists in
the definition of regions of interest around an HVoxel. The
bilinear interpolation is applied only after the region of
interest has been interpolated by an IDW method adapted
for HVoxels.

Each HVoxel contains its normalized density that, to some
degree, defines if the HVoxel is valid or not. Even if an
HVoxel has high density, this value is not enough to compare
two HVoxels since they can have similar densities and
correspond to different characteristics on the environment.
To compare HVoxels we propose the Intersection over Union
IoU criterion (also known as Jaccard index) for HVoxels,

H
Voxel

Fig. 4. Layered interpolation of HVoxels in a 3x3 window - For a given
HVoxel candidate, the IoU metric is computed inside the boundaries of the
HVoxel.

IoU(v) = Vintersection

Vunion
. The HVoxel volume is given by

V = hA. Since the area of the base is the same for each
HVoxel and based on the vertical stacking nature of the
representation, the IoU criterion can be expressed as follows:

IoU(v) =

∑N
i=1 (v(h) ∩ vi(h))∑N
i=1 (v(h) ∪ vi(h))

(9)

where N is the number of HVoxels present in the layer
defined by the HVoxel v, and the HVoxel height is given
by v(h) = v(zmax)− v(zmin).

A selection of HVoxels is performed in the ”Height-Voxel
Selection” step (see Fig. 2). The selection is performed by
taking into account the normalized density. If an HVoxel
density is above a given threshold, that HVoxel is used in
the SLAM. The MH(v) is obtained by applying the bilinear
interpolation,

MH(v) ≈ y − y0
y1 − y0

(
x− x0
x1 − x0

F11 +
x1 − x

x1 − x0
F01

)
+

y1 − y

y1 − y0

(
x− x0
x1 − x0

F10 +
x1 − x

x1 − x0
F00

)
(10)

while its partial derivatives that approximate the map repre-
sentation gradient are calculated as follows:

∂MH

∂x
(v) ≈ y − y0

y1 − y0
(F11 − F01) +

y1 − y

y1 − y0
(F10 − F00)

∂MH

∂y
(v) ≈ x− x0

x1 − x0
(F11 − F01)+

x1 − x

x1 − x0
(F10 − F00)

(11)

where F00, F01, F10 and F11 are locally interpolated values
of the nearest grid cells by an interpolation function F . For
the virtual layer defined by the boundaries of an HVoxel
(zmax and zmin) the interpolation function F interpolates
a new HVoxel if one is missing, using the IDW algo-
rithm. Finally, having the interpolated HVoxel then the IoU
is computed. The IDW interpolation technique to obtain
v′(zmin, zmax), was implemented according to the following
expression:

v′ =

(∑N
i=1

1
||v−vi||p

(vi(zmin))∑N
i=1

1
||v−vi||p

,

∑N
i=1

1
||v−vi||p

(vi(zmax))∑N
i=1

1
||v−vi||p

)
(12)

where N corresponds to the number of neighbor cells with
valid HVoxels in the zmax and zmin boundaries. Using these
two stages of interpolation, a solution for the local minima
problem often encountered in Gauss-Newton minimization is
provided. In particular, this approach behaves as a dynamic

multiresolution grid, in which, if a HVoxel has a match, only
the bilinear filter will be used; otherwise an interpolated
HVoxel contributes to the direction of the minimization.
Interpolation values can be cached locally to speed up the
calculation.

V. EXPERIMENTAL RESULTS

Experimental tests where carried out with datasets ac-
quired in indoor and outdoor settings. In the indoor setting, a
Microsoft Kinect One mounted in a differential drive mobile
platform performed an office traversal. For the outdoor
setting, using a Velodyne VLP-16 LiDAR mounted in an
electric vehicle, an exit from a underground parking-lot with
a small route inside the campus was performed. No changes
or special measures where taken while making these tests
in order to make them as realistic as possible, meaning
that dynamic obstacles such as humans or vehicles (in the
outdoor setting) are present in the datasets. Both datasets
where acquired using ROS and stored in the ROS BAG
file format for offline processing. All the results presented
in this section were generated by an in-house QT/C++ 3D
environment built to handle ROS BAG files and to study
environment representations.

The validation of the proposed representation was per-
formed based on two tests. The first was a comparison be-
tween the HMAP and the pipeline proposed in [9] (2.5D and
2D representations). The second test consisted in applying
SLAM to the outdoor dataset. A grid size of 600x600 was
used with a cell size of 0.05 m for the indoor scenarios and
0.25 for the outdoor scenarios. The point-distance threshold
was 0.15 m (indoors) and 0.4 m (outdoors). The 3D point-
cloud was limited between 0.8 and 5 m for the indoor dataset
and 1.2 to 25 m in the outdoor case. Other parameters were
set as : Km = 1, Kn = 0.0005, dmin = 5, σ = 0.02,
Kg = 0.3, K = 400, Nth = 0.2, Eth = 0.05 (indoor),
Eth = 0.2 (outdoor), dn = 0.4 (indoor), dn = 0.9 (outdoor),
dpth = 0.03 (indoor), dpth = 0.1 (outdoor) and interpolation
window size was 3 cells.

Figures 5 and 6 show five scenarios (three indoor and
two outdoor) and corresponding results. For each scenario,
five figures were generated to contextualize the results and
to qualitatively evaluate the method. The first column shows
the input 3D point-cloud, columns II and III correspond to
the hybrid HMAP (3D and 2D representations) and columns
IV and V to the 2.5D and 2D grid-map proposed in [9].
By comparing columns II and IV (in a detailed viewing),
it is noticeable the increase in the detail in the scenario
by observing the tables, and the human where it is almost
perceptible that the human’s arms are holding the joystick
that is controlling the mobile platform: that level of detail
is lost in the 2.5D representation. It is also important to
note that the walls are represented similarly in both 2.5D
and HMAP representations. On the indoor scenarios the
2D representation presents quite similar results, while in
outdoors the 2D occupancy grids show more detail with the
new hybrid representation: that is due to the method used to
extract the ground plane, also proposed here, which better

A

B

C

I II III IV V
Fig. 5. Results obtained with the indoor dataset (office setting): first row
corresponds to three tables (A), second row to a scenario with a cabinet
and chairs (B) and third row scenario contains a human (C). From left to
right - 3D point-cloud (I), HMAP representation (II), 2D representation
from HMAP (III), 2.5D representation and 2D grid-map [9] (IV and V).

A

B

I II III IV V
Fig. 6. Results obtained with the outdoor dataset: first row corresponds to
the vehicle leaving its parking space (A) and second row a T intersection
scenario (B). From left to right - 3D point-cloud (I), HMAP representation
(II), 2D representation from HMAP (III), 2.5D representation and 2D
grid-map [9] (IV and V).

represents ground surfaces in outdoor scenarios. Overall, the
proposed HMAP approach provides a detailed representation
of the surrounding environment.

A second test (see Fig. 7, grid size of 2000x2000) was
performed with the purpose of validation of the proposed
SLAM approach. The method successfully mapped the vis-
ible parked vehicles and structural elements, both inside the
parking lot and outside on the street. It was also able to
correctly match those elements with the map resulting in
an accurate representation of the environment, and the path
generated (in red) closely matched the path performed by the
vehicle.

VI. CONCLUSION

In this paper we presented the HMAP framework, a consis-
tent 3D-based environment representation suitable for indoor
and outdoor scenarios. Mapping and SLAM approaches
were also explored based on the HMAP representation.
The proposed approach takes as input 3D point-clouds and
provides rich hybrid representations, suitable for planning
problems with multiple layers of decision (e.g., general and
fine planning). Experiments in indoor and outdoor scenarios
using moving robotic platforms, with 3D sensors mounted
onboard, showed increased details obtained by the HMAP
in the scenarios representation. In addition, the HMAP-
based SLAM implementation achieved promising results in
a complex outdoor scenario.

Fig. 7. SLAM results obtained in the outdoor dataset. In red the estimated
localization of the electric vehicle, on the bottom right a Google Maps view
of the map.

ACKNOWLEDGMENT

Part of this work has been supported by
UID/EEA/00048/2013, AGVPOSYS (CENTRO-01-0247-
FEDER-003503) and MATIS (CENTRO-01-0145-FEDER-
000014) projects, with FEDER funding, programs PT2020
and CENTRO2020.

REFERENCES

[1] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flexible
and scalable SLAM system with full 3D motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR), 2011.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Trans. on
Robotics, vol. 23, no. 1, pp. 34–46, Feb. 2007.

[3] H. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in IEEE ICRA, 1985.

[4] C. Premebida, J. Sousa, L. Garrote, and U. Nunes, “Polar-grid repre-
sentation and kriging-based 2.5D interpolation for urban environment
modelling,” in IEEE ITSC, 2015.

[5] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in 2006 IEEE/RSJ IROS
Conference, Oct 2006.

[6] S. Khan, A. Dometios, C. Verginis, C. Tzafestas, D. Wollherr, and
M. Buss, “RMAP: a rectangular cuboid approximation framework for
3D environment mapping,” Autonomous Robots, vol. 37, no. 3, pp.
261–277, 2014.

[7] S. Khan, D. Wollherr, and M. Buss, “Adaptive rectangular cuboids
for 3D mapping,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015.

[8] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, 2013.

[9] L. Garrote, J. Rosa, J. Paulo, C. Premebida, P. Peixoto, and U. Nunes,
“3D point cloud downsampling for 2D indoor scene modelling in
mobile robotics,” in 2017 International Conference on Autonomous
Robot Systems and Competitions (ICARSC), 2017.

[10] J. D. Adarve, M. Perrollaz, A. Makris, and C. Laugier, “Computing
occupancy grids from multiple sensors using linear opinion pools,”
IEEE ICRA, 2012.

[11] C. Premebida and U. Nunes, “Segmentation and geometric primitives
extraction from 2D laser range data for mobile robot applications,”
Robótica 2005 - Actas do Encontro Cientı́fico, 2005.

[12] J. E. Bresenham, “Algorithm for computer control of a digital plotter,”
IBM Systems Journal, vol. 4, no. 1, pp. 25–30, 1965.

[13] S. Thrun, W. Burgard, and D. Fox, “Probabilistic robotics,” 2005.

