
This item was submitted to Loughborough's Research Repository by the author.
Items in Figshare are protected by copyright, with all rights reserved, unless otherwise indicated.

System failure minimisation using automated design optimisation

PLEASE CITE THE PUBLISHED VERSION

PUBLISHER

Loughborough University Department of Aeronautical & Automotive Engineering & Transport Studies

VERSION

AM (Accepted Manuscript)

LICENCE

CC BY-NC-ND 4.0

REPOSITORY RECORD

Astapenko, D., and L.M. Bartlett. 2012. “System Failure Minimisation Using Automated Design Optimisation”.
figshare. https://hdl.handle.net/2134/9304.

https://lboro.figshare.com/

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

System Failure Minimisation Using Automated Design Optimisation

Dovile Astapenko and Lisa M. Bartlett
Aeronautical and Automotive Engineering , Loughborough University,

Loughborough, UK

Abstract

Safety systems are designed to prevent the occurrence and future
development of hazardous situations. Consequences of the failure of a
safety system varies from minor inconvenience and cost to personal
injury, significant economic loss and death. The operation of a safety
system can be improved by either introducing better performing
components or by increasing the number of redundant components. At the
same time, such design alterations can influence how available resources
are utilized. The focus of this paper is to introduce a generic optimisation
method for constructing an optimal design case for any safety system,
with the aim of maximising its likelihood of functioning on demand and at
the same time ensuring optimal usage of available resources. The
analysed optimisation problem is represented as the constrained single
objective problem. The implemented optimisation method employs Fault
Tree Analysis (FTA) to represent system failure causes and Binary
Decision Diagrams (BDDs) to quantify its failure probability. A Single
Objective Genetic Algorithm (SOGA) has been chosen as the optimisation
technique. The methodology is illustrated with the optimisation of a High
Integrity Protection System (HIPS) design. The constraints imposed are
on system dormant failure probability, cost and maintenance down time.
Results of the application, with the generic implications of the analysis, are
discussed.

1. Introduction

Safety systems are designed to prevent the occurrence of certain
conditions and their future development into a hazardous situation.
Consequences of the failure of a safety system varies from minor
inconvenience and cost to personal injury, significant economic loss and
death. Safety systems have a specific functioning principle, i.e. such
systems work on demand. A high likelihood of functioning on demand for a
safety system can be ensured by altering its design. In such case
redundancy techniques can be introduced or certain components maybe
replaced with that of better reliability characteristics [1]. However design
alterations and therefore level of system reliability improvement is usually
subject to a number of design requirements such as cost, weight [2] or
maintenance downtime and other requirements of the system
performance. Thus the problem is to construct such system design that
would improve system reliability within constraints imposed on certain
design characteristics. However in many cases to achieve this by
manually enumerating all possible design options and analysing system
performance is impossible.

In this paper the general system design optimisation algorithm (GSDOA)
to determine an optimal design configuration for a safety system is
introduced. The approach combines an optimisation technique with both
qualitative and quantitative system analysis methods. Fault tree analysis
provides schematic description of possible combinations of system
conditions that could lead to its failure [3]. Thus it was employed to
represent a particular design configuration through listing system failure
causes for this system design. A binary decision diagram (BDD) is a
directed acyclic graph representing a Boolean Function. The quantitative
analysis of fault trees can be performed by transformation into BDDs [4].
The BDD based approach is considered to be a computationally more
efficient method. Thus in the design optimisation algorithm the BDD
method has been implemented to quantify system failure. Genetic
Algorithm (GA) was chosen as the optimisation technique to perform the
optimisation part of the approach. GA is a stochastic global search method
which is based on the mechanics of natural genetic variation and natural
selection [5]. It is a population based technique where encoded parameter
sets are used rather than the parameter sets themselves. GA uses the
fitness function itself, does not require derivative or other auxiliary
quantities and can easily handle constrained optimisation problems [6].

The approach is designed to be applicable to any safety system. In this
paper as an application example the summary of work carried out on the
High Integrity Protection System (HIPS) is provided. The overall aim of the
optimisation is to achieve the HIPS system design which is optimal in
three criteria: unavailability, cost, and maintenance down time.

2. System Analysis

One of the main objectives when designing any safety system is to ensure
its high likelihood of availability on demand. Required system availability
can be achieved be introducing certain system design structure. This
section discusses cases when initial system design is defined and a
number of alterations are introduced in order to improve system
availability. Quantitative system analysis due to design changes is also
discussed. System design alterations and analysis is a preparative part of
the system design optimisation process.

2.1 Design Considerations

A number of alterations regarding the structure and operation of a safety
system influence system availability. Design alterations that can affect
system reliability are redundancies introduced at component or subsystem
levels and also different component-type selections. System operation can
be influenced by time taken to maintain the system and how often
maintenance actions are taken. However when making alteration a
number of system characteristics have to be taken into account, such as
system cost, weight and etc.

In order to prevent system failure caused by failure of one component
redundancy can be incorporated into the system structure. Introducing
redundancy system components are duplicated. As a result contribution of
failure of one-type component towards failure of the system occurs if and
only if all redundant components fail. It is also possible to introduce so
called k-out-of-n redundancy. Here n defines number of redundant
components and k is a number of working components that is needed for
successful system operation. In this case a system will be subject to
failure if n-k+1 ≤ n components fail. If k is equal to 1 then it is equivalent to
a simple redundancy case. Both redundancy types can be implemented at
component or sub-system level. Thus the problem is what redundancy
level, i.e. number of redundant components, to choose in order to improve
system reliability up to a certain level since available resources are usually
very limited.

It is also possible to improve system reliability by replacing a component
with another component selected from a group of possible alternatives.
Each possible candidate can have different characteristics such as failure
rate, cost, weight or time taken to perform its maintenance. A problem in
making a decision about candidate suitability appears when the choice
between different characteristics of the components needs to be made.
For example, a choice needs to be made between a more reliable
component which is expensive and a less reliable component but which is
twice as cheap as the previous one.

After system design has been finalised system maintenance can also be
considered as an option contributing towards system reliability
improvement [7]. The time taken to maintain the system can be altered to
meat safety requirements. When a system design is defined system
maintenance frequency depends only on time intervals between
preventive maintenance activities of the components. Thus time intervals
between preventive maintenance of components can also be considered
during system design alteration process.

2.2 Analysis of System Designs

A fault tree provides a schematic description of possible causes of a
specific system failure. Each event of the fault tree defines a dynamic
change of state of a system element. Thus if a system design is altered
and new components are introduced resulting fault tree for a new design
system will also include new events representing failures of the new
system components. This justifies the use of fault tree analysis to identify
different system designs and find system reliability for the specified
designs.

However, on the other hand, it is time-consuming to construct and then
analyse a fault tree for each possible design case. The problem can be
resolved by using a fault tree representing all possible design alterations.
First this idea was suggested by Andrews & Pattison [8]. They analysed a
specific system case which was discussed in more detail in [9]. In this

paper the problem of constructing a fault tree comprising all possible
designs is extended. Rules which define changes in a fault tree according
to alterations of system design introduced are presented. Employing these
rules it is possible to represent all possible design variations in one fault
tree for any safety system analysed.

2.2.1 Fault Tree Modification Patterns

Consider different design alteration cases, for example, a replacement of
a chosen component with a certain number of redundant components. In
this case the number of new components can vary from 1 to n.
Additionally the k-out-of-n redundancy can be chosen were k is not
defined and can be equal to any number form interval (1, n). A different
component type selection and its replacement with another chosen initial
design component also results in a system design change. Letter t
identifies a number of possible component types. However It is also
possible to introduce component type selection option for new redundant
components. Thus the choices of system design alterations associated
with a replacement of one component can be defined with maximum
values of three variables: n, k and t. These variables are called design
variables since they define changes being introduced to the initial system
design.

A fault tree representing all possible design variations includes house
events. The house events are employed to switch on or off different
branches of the fault tree to model causes of system failure for each
design alternative. All house events in the fault tree are linked up in
groups. Each group is associated with either introduced redundancy or
component type selection. Links between house events in one group are
set to alter a part of the fault tree by switching certain branches on and off
so that only one possible design alternative is modelled.

House events together with structural fault tree changes associated with
system design alterations are incorporated in the initial design fault tree
using fault tree modification patterns. A fault tree modification pattern
(FTMP) defines a fault tree structure representing all possible design
variations after a replacement of one component. The fault tree structure
incorporates new basic events associated with a group of together linked
house events. Groups of house events corresponding to different FTMPs
are independent from each other.

Each modification pattern is defined by three parameters: the maximum
possible number of redundant components (n), redundancy type (k) and
the number of possible different component types (t). There are five FTMP
patterns corresponding to all possible component replacement cases.
Each replacement is possible at both component and subsystem level. A
FTMP is identified according to values of variables n, k and t:

1. Pattern 1: n > 1, k = 1, t = 1;
2. Pattern 2: n > 1, k ≤ n (k≠1), t = 1;

3. Pattern 3: n > 1, k = 1, t > 1;
4. Pattern 4: n > 1, k ≤ n (k≠1), t > 1;
5. Pattern 5: n = 1, k = 1, t > 1;

Consider a system with a fault tree in Figure 1. As an example Pattern 1 is
used which represents the case when one system element is replaced
with several redundant elements. The pump is chosen to be replaced and
up to n redundant pumps can be used. The resulting fault tree is shown in
Figure 2 a). If a specific case is analysed and, for example, when n = 3 the
fault tree for this system is given in Figure 2 b).Here the fault tree contains
a group of 3 house events. A number of pumps in the system is defined by
turning on a relevant branch, i.e. by setting a relevant house event to
TRUE while the rest of the house events are set to FALSE. For instance, if
the value of the house event PFT2 is set to TRUE and house events PFT1
and PFT3 are set to FALSE then the fault tree represents as system with
two redundant pumps fitted in.

 Fire Protection

System Fails

11

Fire Detector
Fails

Water Deluge
System Fails

Pump
Fails

Nozzles
Blocked

FD

PF NB

22

Figure 1. Initial Design System Fault Tree

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

2 Pumps are
Fitted and Fails

2 Pumps
Fail

2 Pumps
are Fitted

PFT2

5

Pump 1
Fails

Pump 2
Fails

PF1 PF2

n Pumps are
Fitted and Fails

n Pumps
Fail

n Pumps
are Fitted

PFTn

3+n

Pump 1
Fails

Pump 2
Fails

PF1 PF2

....... Pump n
Fails

PFn

3+2*n -1

Water Deluge
System Fails

Pump(s)
Fail(s)

Nozzles
Blocked

NB

2

3

………………….

3+n+1

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

2 Pumps are
Fitted and Fails

2 Pumps
Fail

2 Pumps
are Fitted

PFT2

5

Pump 1
Fails

Pump 2
Fails

PF1 PF2

2 Pumps are
Fitted and Fails

2 Pumps
Fail

2 Pumps
are Fitted

PFT2

5

Pump 1
Fails

Pump 2
Fails

PF1 PF2

n Pumps are
Fitted and Fails

n Pumps
Fail

n Pumps
are Fitted

PFTn

3+n

Pump 1
Fails

Pump 2
Fails

PF1 PF2

....... Pump n
Fails

PFn

3+2*n -1

Water Deluge
System Fails

Pump(s)
Fail(s)

Nozzles
Blocked

NB

22

33

………………….

3+n+1

a)

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

2 Pumps are
Fitted and Fails

2 Pumps
Fail

2 Pumps
are Fitted

PFT2

5

Pump 1
Fails

Pump 2
Fails

PF1

7

PF2

3 Pumps are
Fitted and Fails

3 Pumps
Fail

3 Pumps
are Fitted

PFT3

6

Pump 1
Fails

Pump 2
Fails

PF1

8

PF2

Pump 3
Fails

PF3

Water Deluge
System Fails

Pump(s)
Fail(s)

Nozzles
Blocked

NB

2

3

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

1 Pump is
Fitted and Fails

Pump 1
Fails

1 Pump is
Fitted

PF PFT1

4

2 Pumps are
Fitted and Fails

2 Pumps
Fail

2 Pumps
are Fitted

PFT2

5

Pump 1
Fails

Pump 2
Fails

PF1

7

PF2

3 Pumps are
Fitted and Fails

3 Pumps
Fail

3 Pumps
are Fitted

PFT3

6

Pump 1
Fails

Pump 2
Fails

PF1

8

PF2

Pump 3
Fails

PF3

Water Deluge
System Fails

Pump(s)
Fail(s)

Nozzles
Blocked

NB

22

33

b)

Figure 2. Altered Design System Fault Tree

In a similar manner other modification patterns are implemented and then
certain house events can be set to True of False to model different design
cases.

To summarise the fault tree representing all possible system designs is
constructed from the initial design fault tree and altered according to given
design variables using appropriate FTMPs. It means any system can be
chosen and the design alterations specific only to that system can be
implemented. Therefore it can be stated that implementation of FTMPs is
the first step towards constructing a general optimisation algorithm
applicable to any safety system.

2.2.2 System Unavailability Evaluation

As sated at the beginning of this section, to analyse different design cases
one fault tree representing all potential designs can be built. However,
when performing quantitative system analysis for different designs each
design needs to be analysed individually. Fault tree trimming operation is
introduced for this purpose. It is implemented in two steps. First a
particular design case is modelled by setting house events to either TRUE
or FALSE sate. Then the fault tree undergoes trimming operation.
Branches with house events set to a FALSE state are cut off resulting in a
fault tree for the analysed system design case.

Although trimming may slow down the optimisation process, it allows
greatly reducing the size of the tree being analysed which results in a
much faster calculation. It is especially useful when a larger number of
design variables is used and / or their maximum possible values are large
and when alterations are made at sub-system level.

At the following stage to find system unavailability for each generated
design its fault tree is converted to BDD. Thus a BDD based method was
chosen for quantitative analysis instead of using a fault tree approach. A
BDD is a directed acyclic graph that represents a Boolean function. All
paths through the BDD star at the root vertex and terminate in one of two
states: a 1 state or a 0 sate. When applied in reliability analysis the 1 state
corresponds to system failure, i.e. occurrence of the top event. Therefore
paths terminating in a 1 sate form a cut set of the fault tree. Conversion of
the fault tree to BDD format enables to find exact system unavailability in a
computationally more efficient way. The BDD approach detailed by R.
Remenyte-Prescott [10] was employed in the algorithm.

3. System Design Optimisation Algorithm

3.1 Optimisation problem introduction

A system design optimisation problem is analysed as a general single
objective minimisation problem. The problem is stated as a minimisation of
a system failure probability:

(1) ()sysmin XQ

where X is m–dimensional vector X = {x1, x2, …, xn}. An element xi is a
failure probability value of a basic event i i.e. system component i. Vector
dimension m is equal to a number of basic events in the fault tree or
system components subject to failure. Thus if the number of system
components varies for different design cases contents of X is adjusted to
the changes. It follows that the optimisation objective to minimise system
unreliability is equivalent to the objective to find such vector X that
corresponds to minimum system unavailability.

In the developed approach it is possible to set a number of limitations to
system characteristics. If a system design i meets the limitations it is
considered as a feasible system design. Constraints for system cost,
weight and volume can be used. To use the resources efficiently it may be
useful to have minimum and maximum constraints (Eq. 2). If only
maximum limit values are needed then the minimum constraint values
become equal to zero.

,

,

,

maxmin

maxmin

maxmin

VolumeVolumeVolume

WeightWeightWeight

CostCostCost

i
sys

i
sys

i
sys

<<

<<

<<

(2)

Since safety system works on demand time taken to maintain the system
influence its availability. Therefore possibility to define limits for minimum
and/ or maximum maintenance down time is also implemented in the
algorithm:

(3)
maxmin MDTMDTMDT i

sys <<

3.2 Optimisation Algorithm Structure

The structure of the optimisation algorithm is shown in Figure 3. The
algorithm contains three main stages. At first all possible system designs
are introduced using fault tree modification patterns chosen according to a
given list of design variables. The resulting fault tree then can used for
quantitative system analysis. Quantitative analysis is performed to
evaluate system unavailability for different design cases. On the other
hand individual system designs are generated using an optimisation
technique. Therefore these two processes are performed simultaneously.
It means each time a set of certain design variable values is generated it
is passed to evaluated reliability of the corresponding design. The
obtained result is passed back to the optimisation part. The obtained
information is then applied to generate another set of design variable
values and the process is repeated. At the end of the optimisation process
an optimal system design is generated which represents a system design
with minimal failure probability.

Three major techniques are employed. System designs are presented
using fault trees analysis and BDD technique is employed for system
quantitative analysis. Search for the optimal system design is performed
using single objective Genetic Algorithm (SOGA).

Reliability Analysis of
System Designs

Optimisation

BDD

SOGA

Initial System
Design

Optimal System
Design

All Possible Designs
Alternatives

Design
Variables

FTFTMPs

Figure 3. Structure of GSDOA

3.3 Genetic Algorithm

The implemented GA is summarised by the flowchart in Figure 4. Each
stage of the algorithm is discussed in detail.

 INITIALISATION

REPRODUCTION

CROSSOVER

MUTATION

N

N
REPLACEMENT

TERMINATION

N

n=nmax

END

SCALING

Parent Population

EVALUATION PENALISATION

Offspring

New
Population

NN

n=0

n= n+1

yes
no

INITIALISATION

REPRODUCTION

CROSSOVER

MUTATION

N

N
REPLACEMENT

TERMINATION

N

n=nmax

END

SCALING

Parent Population

EVALUATION PENALISATION

Offspring

New
Population

NN

n=0

n= n+1

yes
no

Figu GA re 4. Structure of SO

3.3.1 String Encoding and Initialisation

When developing a GA a problem specific representation is needed to
describe each chromosome of the population. In the introduced approach
a set of design variables associated with a problem forms a chromosome.
Binary numbers are used for encoding of each variable. In each string,
each design variable is allocated a particular number of bits required to
code a possible maximum value of the variable. It ensures that the size of
a chromosome is sufficient to store any value of design variables and its
size remains constant.

In the proposed algorithms a feasible initial population is generated. It is
implemented in the following way. Each string is generated by random

sampling. For each decision it is checked if the amount of resources
required for the generated design system does not overcome predefined
limits. If all constraints for resources are satisfied the string representing
the system design enters the initial population. The process is repeated
until N chromosomes enter the initial population. Here N denotes the size
of the population.

3.3.2 Reproduction, Crossover and Mutation

Three operators are used to create a new offspring population. At first the
reproduction operator is implemented employing a biased roulette wheel.
As a result N/2 couples of parent strings enter into a mating pool. Strings
of each couple are crossed over employing a one-point crossover
operator. As a result two new strings are created. During the crossover
process, a bit-by-bit mutation is also carried out.

3.3.3 Penalisation

A new offspring population is created as a result of reproduction,
crossover and mutation. At this stage the new strings are decoded and
their corresponding objective function values are evaluated. Since the
algorithm is developed to solve a constrained optimisation problem a
penalty application was chosen as an approach to deal with possible
violations of constraints. A penalty function proposed by Coit et. al. [11]
was employed in the algorithm:

(4)

() () inc

i i

i
feasallp NFT

BdFFF
κ

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1

,)(xx

Here, Fall is the best unpenalised value of the objective function yet found,
Ffeas is the best feasible value of the objective function yet found, NFTi
denotes the near-feasibility threshold that corresponds to a given
constraint i, di(x,B) is the magnitude of the violation of a given constraint i
for solution x, κi denotes a user-specified severity parameter and nc is the
total number of constraints set for the problem.

3.3.4 Replacement and Scaling

Replacement was implemented employing an algorithm described by
Chambers [12]. The idea of this algorithm is to replace a parent population
with an offspring population. If the best parent chromosome is fitter than
the best offspring chromosome than it replaces the worst offspring
chromosome. Replacement is then followed by fitness scaling procedure.

A linear fitness scaling [5] was introduced in order to improve the
performance of the algorithm. Research shows that it is especially
valuable when small population GA are employed. Parameters used in the
linear scaling procedure are problem-independent. They depend on a
population life and are found for a population in each generation.

4. Application Example and Results

The GSDOA has been applied to a simple High Integrity Protection
System (HIPS) on an offshore oil production well. The main function of the
HIPS is to prevent a high-pressure surge passing through it. Protection is
provided for processing equipment whose pressure rating could be
exceeded. Figure 2 represents the main features of the HIPS.

PT PT

Master Wing ESDV HIPS

Sub-system 1 Sub-system 2

Production
Well

Processing
Platform

Equipment

PT PTPTPT

Master Wing ESDV HIPS

Sub-system 1 Sub-system 2

Production
Well

Processing
Platform

Equipment

Figure 5. Structure of High Integrity Protection System

HIPS is divided into two separate subsystems. Sub-system 1 is the
Emergency Shutdown (ESD) sub-system. This is the first level of
protection of the HIPS. Sub-system 2 provides an additional level of
protection. Inclusion of the high-integrity protection system incorporates
this second level of redundancy.

The data for the optimisation problem of the HIPS included a fault tree for
its initial design and data for each component such as failure rate, mean
repair time, cost and testing time to perform maintenance. Time intervals
between maintenance for two sub-systems were not defined thus they
were included in the list of design variables. Ten main design variables
were introduced (Table 1). Two limiting factors were considered. HIPS
cost could not exceed 1000 units and maintenance down-time had to be
less than 130 hours a year.

The initial HIPS fault tree was altered twice using Pattern 3 (n=2, k=1, t=2)
regarding system changes associated with replacement of one ESD and
one HIPS valves. Pattern 2 (n=4, k=4, t=2) was also applied twice due to
introduced replacement choices for pressure transmitters in both sub-
systems.

GAs are guided search methods and the best values for the GA
parameters are case dependant. Therefore the choice of GA parameter
values was based a trial-and-error approach. Different values of
population size, crossover rate and mutation rate were chosen. Three
population sizes were analysed: 50, 30 and 10 chromosomes. Population
size had the biggest influence on optimisation duration. Mutation rates
were chosen equal to 0.001, 0.005 and 0.01 and crossover rate values
were equal to 0.75, 0.8 and 0.95. The best result, i.e. the smallest number
of generations required to find the minimal failure probability value was
equal to 73 and was obtained when using a 50 chromosome population, a
crossover rate equal to 0.75 and a probability of mutation equal to 0.01.

In 1999 R. Partison [9] also implemented the simple GA specially
designed for the HIPS optimization. The comparison of the best designs
obtained using both approaches is in Table 2.

Associated
System

Component

Design
Variable Design Variable Description

Design
Variable
Value

ESD Valve
E Number of ESD valves fitted 1, 2

V1 Valve type Type 1 or
type 2

HIPS Valve
H Number of HIPS valves fitted 1,2

V2 Valve type Type 1 or
type 2

Pressure
Transmitter 1

N1
Number of pressure transmitters
fitted in subsystem 1 1 - 4

K1
Number of pressure transmitters
required to activate for subsystem 1 1 - N1

P1 Pressure transmitter type Type 1 or
type 2

Pressure
Transmitter 2

N2
Number of pressure transmitters
fitted in subsystem 2 1 - 4

K2
Number of pressure transmitters
required to activate for subsystem 2 1 – N2

P2 Pressure transmitter type

n/a 1θ Inspection interval for subsystem 1 1 week – 2
years

n/a 2θ Inspection interval for subsystem 2 1 week – 2
years

Table 1. Design Variables

Associated
System

Component

Design
Variable

Initial
Design

Design
Variable
Values of
GA [xx]

Design
Variable
Values of
GSDOA

ESD Valve E 1 0 2
V1 Type 1 n/a Type 1

HIPS Valve H 1 2 1
V2 Type 1 Type 2 Type 2

Pressure
Transmitter 1

N1 1 2 3
K1 1 1 2
P1 Type 1 Type 1 Type 1

Pressure
Transmitter 2

N2 1 3 2
K2 1 2 1
P2 Type 1 Type 1 Type 2

n/a 1θ n/a 29 46
n/a 2θ n/a 32 29

Table 2. Results Comparison

Cost of the system with the design generated using the GA in [9] was 822
units, maintenance down time was 128,43 hours and system unavailability

was 7.6×10-4. System characteristics for the design obtained using
GSDOA are as following; system cost 642 units, maintenance down time
83.96 hours and system unavailability is 2.98×10-7.

5. Conclusions

The introduced algorithm is employed to solve a general system design
optimisation problem. The objective of the optimisation process is to
define a particular set of system components that would constitute an
optimal system design. As a result the algorithm determines the case
where the system failure probability is minimised and the utility of available
resources is optimised.

A simple High Integrity Protection System (HIPS) was employed as an
application example. Comparison of the optimisation results obtained
when using GSDOA and a simple GA specifically developed for HIPS
optimisation shows that GSDOA is capable to provide good optimisation
results. Using GSDOA system design was found with unavailability equal
to 2.98×10-7 and cost 642 units. These characteristics are better that the
ones of the system design obtained using the simple GA.

References

1. Martorell S., Sanchez A., Carlos S. and Serradell V. Alternatives and

Challenges in Optimizing Industrial Safety Using Genetic Algorithms.
Reliability Engineering & System Safety 86 [1] 25-38 (2004).

2. Ren Y. and Dugan J.B. Design of Reliable Systems Using Static &
Dynamic Fault Trees. IEEE Transactions on Reliability, 47 [3], 234-244
(1998).

3. Barlow R. E. and Lambert H. E. in Reliability and Fault Tree Analysis:
Theoretical and Applied Aspects of System Reliability and Safety
assessment, ed. Barlow R. E., Fussell J.B. and Singpurwalla N.D.
Society for Industrial and Applied Mathematics, Philadelphia, pp 7-35
(1975).

4. Rauzy A., New algorithms for fault trees analysis. Reliability
Engineering & System Safety 40 [3], 203-211 (1993).

5. Goldberg D. E., Genetic algorithms in search, optimization, and
machine learning. Wokingham: Addison-Wesley. (1989).

6. Levitin G. Genetic algorithms in reliability engineering. Reliability
Engineering & System Safety, 91 [9], 975-976 (2006).

7. Cepin M., Optimization of Safety Equipment Outages Improves Safety.
Reliability Engineering & System Safety, 77 [1] 71-80 (2002).

8. Andrews J.D. and Pattison R.L. Optimal Safety System Performance.
Proc. Ann. Reliability & Maintainability Symp, 76-83 (1997).

9. Pattison R.L. Safety System Design Optimisation (PhD Thesis).
Loughborough: Loughborough University (1999).

10. Remenyte-Prescott R. System Failure Modelling Using Binary
Decision Diagrams (PhD Thesis). Loughborough: Loughborough
University (2007).

11. Coit D.W., Smith A.E. and Tate D. M. Adaptive Penalty Methods for
Genetic Optimization of Constrained Combinatorial Problems.
INFORMS Journal on Computing 8 [2] 173-182 (1996).

12. Chambers L.D. (ed.) The practical handbook of genetic algorithms.
Boca Raton, Fla: Chapman & Hall/CRC (2001).

