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ABSTRACT 

Several valuable and popular mixed mode partition theories are assessed against experimental re-
sults for the prediction of delamination toughness of fiber-reinforced laminated composites. It is 
shown that Wang and Harvey’s classical partition theory [1-6] gives the most accurate predictions; 
Davidson et al.’s non-singular field partition theory [7, 8] also gives accurate predictions; but the 
Wang and Harvey’s shear deformable partition theory [1-6] and the singular-field partition theory [7-
10] gives poor predictions. It is concluded that the Wang and Harvey’s classical partition theory [1-6] 
governs macroscopic interface fractures. 

1 INTRODUCTION  

Partition of mixed-mode fractures is one of the fundamental research topics in the mechanics of in-
terface fractures in layered composite materials. There has been a great deal of confusion concerning it 
due to the many complexities arising from the involvement of factors such as interface properties, 
crack extension size, material size, and analytical derivation methodologies, to name only a few. 
Based on a powerful orthogonal pure mode partition theory (OPPT) [1-6] Wang and Harvey and their 
colleagues have carried out a systematic development of partition theories based on classical and 
shear-deformable beam and plate/shell theories, and 2D elasticity theory for mixed-mode interface 
fractures including brittle, cohesive, homogeneous and bi-material interfaces under general loading 
conditions. Multi-scale interface fractures have been considered including delamination in macroscop-
ic fiber-reinforced laminated composites, spallation of macroscopic/microscopic thermal barrier coat-
ings in aero engine turbine blades, spallation of microscopic α-Al2O3 films grown by oxidation, tele-
phone cord buckling of microscopic thin films driven by pocket energy concentration, and adhesion 
toughness of multilayer graphene membranes. Excellent predictions have been observed in compari-
son with experimental tests. Most of the previous confusions have been cleared. Here, some compari-
sons are presented for prediction of interface delamination toughness in macroscopic fiber-reinforced 
laminated composites. 

2 SEVERAL IMPORTANT PARTITION THEORIES 

Fig. 1 (a) shows a layered composite double cantilever beam (DCB) with its associated geometry, 
two tip bending moments, and two tip axial forces. The partition is based on the bending moments and 
axial forces acting at the crack tip B, which are shown in Fig. 1 (b). 
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2.1 The Williams partition theory 

Williams was one of the first researchers to attempt to partition a mixed mode [11]. His theory was 
developed for either isotropic materials or unidirectional composite materials. 

 

Figure 1: A layered composite double cantilever beam. (a) General description. (b) Crack tip forces. 

Williams partition, denoted by IWG  and IIWG , is now reproduced here. Again, for consistency, the no-
tation has been changed where appropriate to match the conventions in this paper. 
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2.2 The Suo-Hutchinson partition theory 

Suo and Hutchinson [9, 10] considered a crack in a semi-infinite strip of orthotropic material and 
derived expressions for the mixed-mode intensity factors based on 2D elasticity theory, which are ana-
lytical except for one parameter, which is determined numerically. This partition is now reproduced 
here. For consistency, the notation has been changed where appropriate to match the conventions used 
elsewhere in this paper. This partition theory assumes that a square-root singular field exists, so the 
partition is expressed in terms of stress intensity factors. The mode I and II stress intensity factors 

ISHK  and IISHK  are 
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where M  and N  are linear combinations of the applied loads: 
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The geometric factors U , V  and   are functions of  : 
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The quantity   is determined from the following approximate formula: 

   31.52  (9) 

For comparison with the energy release rates from the beam theories, the relationship between energy 
release rate and stress intensity factor for plane stress is 

 EGK 2  (10) 

For plane strain E  may simply be replaced by  21 E . The Suo-Hutchinson partition theory is usu-
ally called singular field partition theory. 

2.3 Davidson et al.’s partition theory 

Davidson et al.’s partition theory [7, 8], which is based on 2D elasticity, is given by the following 
formula: 
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where cN  and cM  are the concentrated crack tip force and moment respectively. Details of all the 
quantities in Eq. (11) can be found in Refs. [7, 8] and are not copied here; however, giving the details 
of  , which is called the ‘mode mix parameter’, is worthwhile. 
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Note that   in Eq. (12) is given by   10log . The mode mix parameter   is determined with the 
aid of experimental data. Davidson et al.’s partition theory is usually called non-singular field partition 
theory. 

2.4 The Wang-Harvey partition theories 

 For generally layered composite materials, in the Wang-Harvey Euler beam or classical partition 
theory [1-6], the mode I and II components of the total energy release rate, denoted by IEG  and IIEG  
respectively, are 
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where IEc  and IIEc  are  
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 ii  ,  and  ii  ,  represent the two sets of orthogonal pure modes where the range of i  is from 1 to 
3, details of which can be found in the studies [1-6]. The partitions are easily reduced for isotropic ma-
terials [1-6]. A thickness ratio 12 hh  is now introduced. The present classical partitions for iso-
tropic materials reduce to  
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where IEc  and IIEc  are still given by Eqs. (15) and (16) and 
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The isotropic 
1

G  and 
1

G  for use in Eqs. (15) and (16) are 
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According to the Wang-Harvey Timoshenko beam or shear deformable partition theory [1-6], the 
mode I and II components of the energy release rates denoted by ITG  and IITG  respectively are for 
generally layered composite materials, 
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The partitions for isotropic beams reduce to 
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where ITc  and IITc  are still given by Eqs. (31) and (32). 

Finally, the Wang-Harvey averaged partition theory is the average of the Wang-Harvey Euler beam 
and Timoshenko beam partitions. The mode I and II components of the energy release rate from the 
averaged partition theory are denoted by IAG  and IIAG  respectively. They are 

   2ITIEIA GGG   (35) 

   2IITIIEIIA GGG   (36) 

 

3 EXPERIMENTAL ASSESSMENTS 

The first set of experimental results is from the work [12]. The DCB was made from laminated 
unidirectional composite materials and the upper beam was loaded by a bending moment, i.e. 

0,0 2121  BBBB NNMM . The ERR partitions IG and IIG at failure are shown in Fig. 2 from var-
ious partition theories presented in Section 2. The Wang-Harvey Euler beam or classical plate/shell 
partition theory is the closest to the linear failure locus which is expected to be the accurate failure cri-
terion for the DCB materials of low toughness in consideration. The Wang-Harvey Timoshenko beam 
or shear deformable plate/shell partition theory is the furthest to the linear failure locus. The Wang-
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Harvey averaged partition theory is very close to the Suo-Hutchinson theory, but both of which are far 
away from the linear failure locus. In contrast, the Williams partition theory is closer. 

 

Figure 2: A comparison of partitions from various partition theories and the linear failure locus for 
epoxy-matrix/carbon-fibre composite specimens. 

As far as the authors’ knowledge is concerned, the work in Refs. [7, 8] represents some of the most 
comprehensive and thorough experimental test data available for the study of interfacial delamination 
toughness in generally laminated composite beams. Davidson et al.’s non-singular-field partition theo-
ry [7, 8] was identified as the best performer in predicting interface fracture toughness. The present 
Fig. 2 identifies the Wang-Harvey Euler beam or classical plate/shell partition theory is the best per-
former. In the following assessments, the experimental test data [7, 8] are used to assess the two best 
performers. In addition, the singular-field partition from finite element method simulation based on 2D 
elasticity is also assessed. 

Unidirectional (UD) specimens made from C12K/R6376 material with midplane and offset delam-
inations are considered first. The results are shown in Fig. 3. As expected, all three partition approach-
es give largely identical partition results for midplane delaminations. By using these results, a failure 
locus is experimentally determined in terms of the total critical ERR cG  and the partition GGII  and 
this is shown in Fig. 3 as the solid piecewise straight line. The error bars show plus/minus one stand-
ard deviation from each data point based on Davidson et al.’s testing of at least five specimens for 
each test [7, 8]. Up to plus/minus one standard deviation of the failure locus is also shown by the 
shadowed area. The different partition theories are assessed against this failure locus for offset delam-
ination. It is seen that Wang and Harvey’s Euler beam partition theory and Davidson et al.’s non-
singular-field partition theory again give largely identical partition results and agree very well with the 
failure locus; however, the singular-field partition results are generally not in good agreement with this 
failure locus. It is surprising to see the excellent—almost identical—agreement between Wang and 
Harvey’s Euler beam partition theory and Davidson et al.’s non-singular-field partition theory, because 
the former is derived completely analytically, and the latter is derived with the aid of experimental 
work. In order to investigate this observation further, Fig. 4 shows the difference between the parti-
tions GGII /  from both partition theories over a range of bending moment ratios, BB MM 12 , and 

thickness ratios,  1log10 . Within the range 
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Figure 3: Fracture toughness of midplane and offset delaminations in unidirectional laminates made 
from C12K/R6376 [7]. 

331   , or with reference to Eq. (12), the range 468.0468.0   , the two approaches are ap-
proximately identical, which is strong support for the theoretical basis behind Wang and Harvey’s Eu-
ler beam partition theory. Cross data markers for each UD specimen test point  ,12 BB MM  tested in 
Ref. [7] are also overlaid onto Fig. 4. It is interesting to note that every test point lies in the region 
where there is excellent agreement between the two partition theories. This begs the question, outside 
of the region 331   , which theory is better? Although this is not conclusive, the data presented in 
Ref. [13] shows that Wang and Harvey’s Euler beam partition theory agrees well with the experi-
mental measurements when 31  and much better than Davidson et al.’s non-singular-field parti-

tion theory. 

 

Figure 4: Difference between GGII  from Wang and Harvey’s Euler beam partition theory and Da-

vidson et al.’s partition theory with overlaid test points for unidirectional beams [7]. 

Multidirectional (MD) specimens [8] which are made from T800H/3900-2 graphite epoxy material 
are considered next. The partition results are given in Fig. 5. The straight line in Fig. 5 is the failure 
locus obtained from UD midplane delamination tests. As the test results fall almost exactly on the line, 
they are not plotted on the figure for clarity. It is impressive to see that partition results from Wang 
and Harvey’s Euler beam partition theory for the MD specimens fall almost exactly on the line except 
for one specimen. This test however has a large standard deviation for its fracture toughness measure-
ments. Reference [8] says that there may have been some errors in the testing of this specimen. It is 
also noted that both Davidson et al.’s non-singular-field partition theory [7, 8] and the singular field 
approach have better agreement with the failure locus than they do for the UD specimens in Fig. 3. 
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Figure 5: Fracture toughness of midplane and offset delaminations in multidirectional laminates 
T800H/3900-2 [8]. 

4 CONCLUSIONS 

By using some of the most comprehensive and thorough experimental test data to be found in the 
literature, several valuable and popular partition theories are assessed. Wang and Harvey’s Euler beam 
or classical plate/shell partition theory [1-6] has excellent agreement with experimental test results and 
gives very accurate predictions of macroscopic interfacial fracture toughness of laminated composite 
beams with arbitrary layups, various thickness ratios and various loading conditions. It is a very valu-
able theory for academic research of fracture and fatigue of advanced materials. Furthermore, it can 
play a very valuable role in the design of engineering structures made of layered materials. Davidson 
et al.’s non-singular-field partition theory [7, 8] has excellent agreement with experimental test results 
and with Wang and Harvey’s Euler beam or classical plate/shell partition theory [1-6] (inside the 
range 331   ) for UD laminated composite materials. Its accuracy is still very good for MD lami-
nated composite beams; however, it has been observed and argued that overall Wang and Harvey’s 
Euler beam or classical plate/shell partition theory [1-6] offers improved accuracy. In general, the sin-
gular-field approach based on 2D elasticity and the finite element method give poor predictions. 
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