

This item was submitted to Loughborough’s Institutional Repository by the
author and is made available under the following Creative Commons Licence

conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

 1

Comparison of Two New Approaches to Variable Ordering

 for Binary Decision Diagrams

L.M.Bartlett and J.D.Andrews

Department of Mathematical Sciences

Loughborough University

Loughborough

Leicestershire

LE11 3TU

Abstract

Fault tree analysis, FTA, is one of the most commonly used techniques for safety

system analysis. There can be problems with the efficiency and accuracy of the

approach when dealing with large tree structures. Recently the Binary Decision

Diagram (BDD) methodology has been introduced which significantly aids the

analysis of the fault tree diagram. The approach has been shown to improve both the

efficiency of determining the minimal cut sets of the fault tree, and also the accuracy

of the calculation procedure used to quantify the top event parameters.

To utilise the BDD technique the fault tree structure needs to be converted into the

BDD format. Converting the fault tree is relatively straightforward but requires the

basic events of the tree to be placed in an ordering. The ordering of the basic events

is critical to the resulting size of the BDD, and ultimately affects the performance and

benefits of this technique. There are a number of variable ordering heuristics in the

literature, however the performance of each depends on the tree structure being

analysed. These heuristic approaches do not yield a minimal BDD structure for all

trees, some approaches generate orderings that are better for some trees but worse for

others.

Within this paper two approaches to the variable ordering problem have been

discussed. The first is the pattern recognition approach of neural networks, which is

used to select the best ordering heuristic for a given fault tree from a set of

alternatives. The second examines a completely new heuristic approach of using the

structural importance of a component to produce a ranked ordering. The merits of

each are discussed and the results compared.

1. Introduction

Over the past five years an alternative technique, to Kinetic Tree Theory (Vesely
[1]

),

known as the Binary Decision Diagram (BDD) method
[2-6]

 has been developed to

analyse the fault tree. In calculating the system or top event parameters it does not

need to first evaluate all the minimal cut sets, nor does it require the use of

approximations, the exact calculations can be performed.

To use the BDD methodology the fault tree representing the system failure mode must

first be converted to a BDD. To accomplish this the basic events in the fault tree are

placed in an order. A good ordering of the basic events can result in a very efficient

analysis, a poor ordering can lead to problems.

 2

Several research papers have been published which investigate different ordering

strategies and heuristics. From the research to date a number of heuristics have been

developed which are effective for specific fault tree structures, but a general heuristic

that produces a minimal BDD for all fault trees is not available. Lack of this efficient

ordering for any tree structure is probably the reason that only one commercially

available code
[8]

 has been produced which is based on this method. The latest research

looks at rule based approaches
[9]

 to identify an ordering scheme that yields an

efficient ordering of the fault tree variables. This paper compares two new

approaches to the variable ordering problem. The first uses the rule based approach

of neural networks to select the best ordering heuristic for a given fault tree from a set

of alternatives. The second approach uses the structural importance of each of the

basic events of the tree to produce a ranked ordering.

2. Binary Decision Diagrams

A BDD is a directed acyclic graph, as shown in figure 1. All paths through the BDD

start at the root vertex and terminate in one of two states, either a 1 state which

corresponds to a system failure, or a 0 state which corresponds to a system success. A

BDD is composed of terminal and non-terminal vertices, which are connected by

branches. Non-terminal vertices correspond to the basic events of the fault tree.

X1

X2

X4X3

1 1 00

0

ROOT VERTEX

TERMINAL 1 VERTEX TERMINAL 0 VERTEX

1 0 1 0

01

1 0

NON-TERMINAL

 VERTEX

Figure 1: A Binary Decision Diagram.

All the left branches leaving a vertex are the 1 branches (component failure occurs)

and all the right branches the 0 branches (component functional). Every path starts

from the root vertex, and proceeds down through the diagram to the terminal vertices.

Only the vertices that lie on a 1 branch on the way to a terminal 1 vertex are included

in the path. All the paths terminating in a 1 state give the cut sets of the fault tree. For

example, the cut sets of figure 1 are:

 1) X1X2X3 2) X1X4.

 3

The method to convert a fault tree to its equivalent BDD is described in many

publications and the reader is referred to them for details (refs. [3,7]).

3. The Variable Ordering Dilemma

In constructing the BDD, the ordering of the basic events is crucial to the size of the

resulting diagram. Using an inefficient ordering scheme will produce a non-minimal

BDD structure. Alternative ordering schemes will produce BDD’s of different sizes,

the smaller the BDD the more optimal the diagram. To illustrate this fact, consider

the simple fault tree shown in figure 2. The tree has four basic events, where X2 is

repeated.

TOP

G1

G2 G3

 X2 X3 X2 X4

 X1

Figure 2: A simple fault tree.

If the basic event ordering permutation of X1<X2<X3<X4 is taken, the resulting

BDD is shown in figure 3. This structure consists of only four nodes, it is a minimal

structure and hence produces only minimal cut sets.

X1

X2

X3

X4

1

1 0

0

1

X4

X3

X2

X1

1

1 0 0

1

X3

X2

X1

1

1

Figure 3: Ordering X1<X2<X3<X4 Figure 4: Ordering X4<X3<X2<X1

 4

However, if the alternative ordering permutation of X4<X3<X2<X1 is taken the

resulting BDD (shown in figure 4) consists of seven nodes, it is non-minimal and

yields non-minimal cut sets. For larger fault tree structures the efficiency of the

resulting BDD is more critical, and in the worst case of using a poor ordering

permutation, the diagram may not be able to be produced within the computers

memory capacity.

The objective would be to produce an ordering scheme that achieves the ‘best’ BDD.

The remaining sections of this paper will discuss two new approaches to tackling the

ordering problem. The first looks at finding the best solution from a set of

alternatives (section 4) and the second a completely new heuristic using structural

importance measures (section 5).

4. Using Neural Networks to Select an Ordering Scheme from a Set of

Alternatives

4.1 The Neural Network Approach

A recent new approach to tackling the variable ordering dilemma is to use a rule

based pattern recognition approach. There are several different types of pattern

recognition approach, for example, classifier systems, neural networks, Bayesian

methods and Fuzzy Logic. In the literature
[9]

, the classifier system has been used in

conjunction with a genetic algorithm. Results for the number of correct scheme

predictions for the test data were encouraging and predictions were better for smaller

trees. Additional work was required to gain the same accuracy for larger tree

structures. Utilising the evident potential of the pattern recognition approach, the

research is extended by trying a second method of neural networks, which may be

more suited to this problem.

Figure 5: Diagram of a multi-layer perceptron.

The neural network is another method of identifying patterns. It can be regarded as a

particular choice for a set of functions that map a set of input variables to a set of

output variables. There are a number of different neural networks and the multi-layer

Y1

ZMZ1Z0

YN

N OUTPUTS

W(M+1)0

d INPUTS

XdX1X0

W10

WMd

WM1WM0

W1d

W11

Bias

Bias

W(M+N)M

W(M+N)0

W(M+N)1

W(M+1)M

W(M+1)1

M HIDDEN

NODES

 5

feedforward network or multi-layer perceptron has been applied. The network is

made up of a series of layers with connections running from every unit in one layer to

every unit in the next layer. These connections are known as the weights and they

control the influence each node has on propagating the intermediate outcome to the

output nodes. Typically the network consists of a set of input nodes that constitute the

input layer, one or more hidden layers of nodes, and an output layer of nodes (as

shown in figure 5).

There are two modes of operation: a training phase to determine optimum weights of

network and a predictive phase to generate the desired outputs for a previously unseen

input. During the training phase multi-layer perceptron commonly uses an algorithm

known as the error back-propagation algorithm. The algorithmic process consists of

two possible passes through the different layers of the network: a forward pass and a

backward pass. In the forward pass, an input vector is applied to the input nodes of the

network, and subsequent outcomes are evaluated layer by layer. Hidden layer node

values, vj(n) are calculated by taking the linear combination between the hidden node

j and weight connections wji to each input xi(n). A non-linear activation function, g(),

is applied to the linear combination that is calculated.

))(.()(
0

∑
=

=
d

i

ijij nxwgnv Eq.1

The values for the output layer nodes, yk(n) are established by evaluating the linear

combination calculated between output node k and weight connection wkj to each

hidden node vj(n). An activation function g*() is then applied to the result, this may

be the same function as used in the hidden layer or different.

∑
=

=
m

j

jkjk nvwgny
0

))(.(*)(Eq.2

The activation function commonly used is the sigmoidal function, given by equation

3, where a is the linear combination output.

g(a) =1 / (1+ exp (-a)) Eq.3

During the backward pass, the weights are all adjusted in accordance with an error-

correction rule. This rule is applied at the output nodes for each training pattern n, and

takes the target response of each node tj, and subtracts from it the response generated

for that node by the network yj, to produce an error ej.

() () ()e n t n y nj j j= −

This error signal is then propagated backward through the network, against the

direction of weight connections, hence the name "error back-propagation". The

 6

weights are adjusted so as to make the actual response of the network move closer to

the desired response.

The training phase involves a number of cycles whereby on each cycle the search for

better weights is directed to a new area as defined by a specified search parameter.

When the error has been reduced sufficiently it is these weights that are used as fixed

values in the predictive phase. How well the network has been trained and models the

problem will be reflected in the prediction of new input data. If the network has been

trained well it will generalise well to new data and a correct response should be

predicted.

To commence the training phase of the network, the number of inputs and outputs of

the problem need to be determined and the training data set constructed. Sections 4.2-

3 review the inputs and the outputs for this variable ordering problem, and section 4.4

the data sets for training, and test set to assess the predictive capability of the trained

network.

4.2 Preferences for the Variable Ordering Schemes

The objective of the initial neural network modelling will be to establish the

capability of the neural network to select the best ordering heuristic from a restricted

group of alternatives for a given fault tree. In this study 6 different potential

structured ordering schemes are used and referred to as:

• Top-down, left-right approach:

- is produced by listing the variables in a top-down, left-right manner

from the original fault tree structure.

• Modified top-down, left-right approach:

- as the top–down, left-right approach but repeated events along each

level are considered first.

• Depth-first approach:

- involves breaking the whole tree structure into smaller trees

(subtrees) and looking at the optimal ordering of these subtrees. The

depth first ordering scheme gives each subtree a top-down, left-right

ordering, working from the first gate inputs of the top event.

• Modified depth-first approach:

- As unmodified version but with repeated events considered first.

• Priority depth-first approach:

- takes the depth-first approach one step further and considers subtrees

with only basic event inputs first.

• Modified priority depth- first approach:

- consider repeated events first in the ordering.

More details of these ordering schemes can be found in reference [8].

 7

4.3 Fault Tree Characteristics

A difficulty in the neural network approach is in characterising the problem at hand.

Some fault tree attributes have been selected to characterise each tree. The input layer

of the neural network are variables which represent the eleven characteristics which

were selected to represent the fault tree structure, and the output layer of nodes within

the network are used to model the six scheme preferences.

To summarise, the characteristics that have been chosen to represent the fault tree

structure are:

• Percentage of and gates;

• Percentage of different events repeated;

• Percentage of total events repeated;

• Top gate type;

• Number of outputs from top gate;

• Number of levels of tree;

• Number of basic events;

• Maximum number of gates in any level;

• Number of gates with gate outputs only;

• Number of gates with event outputs only;

• and highest multiple of a repeated event.

4.4 Training and Test Sets

To generate an appropriate neural network model and to test its performance a

training and test set of fault trees for the problem were required. Fault tree structures

used were taken from industry and randomly generated using a computer. The total in

the training set was 205 and 20 test trees in the test set.

To evaluate the performance of the neural network a test set of data was produced

with different tree structures and known best ordering schemes. The number of

correct scheme preferences the network predicted evaluated the performance of the

network.

4.5 Results of Most Appropriate Network Constructed

A number of models have been trained and tested with varying results. However, the

best networks that have been constructed using the multi-layer perceptron approach

have been very promising. The best network architecture is given in table 1. A single

hidden layer was used which comprised of five nodes. The enhanced gradient descent

algorithm was used to optimise the weights.

The weights generated in training and used in the prediction phase for previously

unseen data are given in table 2 and 3. Table 2 shows the weights which connect the

input nodes to each of the 5 hidden nodes, and table 3 indicates the weights from the

hidden layer to the output nodes.

 8

Structure Considerations

Number of Input Nodes 11

Number of Output Nodes 6

Number of Hidden Layers 1

Number of Nodes in Hidden layer(s) 5

Table 1: Best Network Architecture

 Hidden 1 Hidden 2 Hidden 3 Hidden 4 Hidden 5

Bias node 0.147330 0.243064 0.539561 0.673099 -0.331514

Input 1 0.641682 0.183194 -0.924516 -0.665176 0.708712

Input 2 0.796946 0.886754 0.186239 -0.306955 0.086139

Input 3 0.842000 0.883227 0.623115 -1.054132 -0.037604

Input 4 0.382882 0.365247 -0.433369 -0.995933 0.156702

Input 5 0.506398 0.347366 -0.710282 -0.981350 -0.983196

Input 6 0.642397 0.202210 1.478797 1.438517 0.256880

Input 7 -0.382380 0.972270 0.371361 -0.064075 -0.772999

Input 8 -0.963998 0.648210 0.894712 0.339276 -0.428676

Input 9 0.329570 0.264644 0.067410 -0.007906 0.446248

Input 10 -1.004186 0.236299 0.296611 0.159278 0.035732

Input 11 0.603500 0.120445 -0.361202 -0.926677 0.304544

Table 2: First Layer Weights of Best Network

 Output 1 Output 2 Output 3 Output 4 Output 5 Output 6

Bias node 0.435191 0.034015 0.902266 0.184042 0.291198 -0.378771

Hidden 1 1.562687 0.156753 0.383328 0.803264 -0.271374 0.430375

Hidden 2 0.732578 0.507769 -0.219266 0.543601 0.895298 0.526418

Hidden 3 1.316444 -0.003383 -0.184228 -0.025922 0.851694 0.116150

Hidden 4 -0.566968 0.253515 0.102770 -1.121804 -1.121293 0.104950

Hidden 5 0.199515 0.194763 -0.108666 -0.156623 -0.405690 -0.617658

Table 3: Second Layer Weights of Best Network

Using this architecture, the network predicted 14 out of the 20 test trees with correct

scheme preferences. The error at the end of training was 0.341187. Thus, when

trying to establish the best scheme choice which will lead to the smallest BDD for a

previously unseen fault tree the network will predict successfully the correct option on

70 % of occasions.

For the remaining 30 percent of predictions, the ordering heuristic produced would

yield a BDD of non-minimal dimension. The range of deviation from the minimal

varied depending on the fault tree. Some predictions selected heuristics which

resulted in a BDD with only a few nodes greater than smallest, whereas others where

considerably larger.

 9

5. Rankings Based on Structural Importance

5.1.Problem Areas With Current Heuristics

 On reviewing the heuristics currently in the literature certain problem areas were

evident. One was that many of the heuristics were affected by how the fault tree was

drawn, therefore for the same logic expression a number of different BDDs could

result depending on how the fault tree was represented. Many heuristics do not allow

for components to be selected from different branches of the tree and lie next to each

other in the ordering list. Another problem is how to deal with matched components

in methods that assign weights to each basic event.

From this the properties required in a good ordering heuristic seem to be:

- The contribution of an event to the system failure mode must be reflected in the

ordering produced.

- The ordering must be robust i.e. the ordering must be dependent upon the logic

function represented by the fault tree and not influenced by the way the fault tree

has been drawn.

- To uniquely map the fault tree onto a single event ordering.

Considering these points the structural importance measure was investigated. This

heuristic satisfies two out of the three points above. It does represent the contribution

each component makes to the occurrence of the top event, and it is also unaffected by

the way the tree is written or drawn. However, the ordering produced is not unique

because ties may result with some of the component measures and the means of

breaking these ties will affect the ordering.

5.2 Structural Importance Explained

For each component it’s importance measure signifies the role that it plays in either

causing or contributing to the occurrence of the top event. A numerical value is

assigned to each basic event which allows it to be ranked according to the extent of its

contribution to the occurrence of the top event.

In this research a deterministic measure of importance was used since it is only the

contribution of the component within the structure which can influence its ordering

not its likelihood of occurrence. Deterministic measures assess the importance of a

component to the system operation without considering the component’s probability

of failure. One such measure is the structural importance measure, which is defined

for a component j as

 IMPj = number of critical system states for component j

 total number of states for the (n-1) remaining components

A critical state for component j is a state for the remaining n-1 components such that a

failure of component j causes the system to go from a working state to a failed

state
[10]

.

 10

To illustrate this measure, consider the fault tree drawn in figure 6. The logic

expression for the top event is :

 TOP = A + B.C

TOP

 A

 B C

Figure 6: Simple fault tree structure

The structural importance measure for component A (IMPA) is calculated using table

2. Hence IMPA = ¾.

All Possible States for

components B and C

Critical State

for A

All Possible States for

components A and C

Critical State for

B

CB, No CA, No

CB, Yes CA, Yes

CB, Yes CA, No

CB, Yes CA, No

(NB. the B means component B working)

Table 2: Critical States for Component A and B

The structural importance measure of component B (IMPB) is given in table 2.

Hence, IMPB = ¼. Similarly, by structural symmetry the importance measure of

component C, IMPC = ¼.

In establishing the effectiveness of ordering components according to their structural

importance to yield a minimalistic BDD structure the tabular approach presented

above was not a practical proposition. Lambert
[10]

 found that using Birnbaum’s

probabilistic measure of importance, with stated probabilistic values of failure for

each component, the structural importance measure was produced.

Birnbaums measure of importance or criticality (Gi(q)) is defined as:

 Gi(q) = Q(1i, q) - Q(0i, q)

where Q(q) is the probability that the system fails, and

 11

Q(1i, q) = (q1, q2, …..,qi-1, 1, qi+1,…….qn)

and Q(0i, q) = (q1, q2, …..,qi-1, 1, qi+1,…….qn).

From Lamberts paper it states that if we let qj(t) (the probability of failure of

component j) equal to ½ for all j ≠ i, then the fraction of possible states in which

component i is critical, denoted by Bi, is:

Bi = { Q(1i, ½) - Q(0i, ½) }

Birnbaum calls Bi the structural importance of component i.

Implementing this (numerically) using the fault tree shown in figure 6, we see that

Q(q) = qA + qBqC - qAqBqC

Calculating the structural importance measure for A;

Q(1A,q) = 1

Q(0A,q) = qBqC

Therefore, GA(q) = 1 - qBqC,

and GA(1/2) = 1 – ¼ = ¾.

The same principle is then applied to components B and C. Placing these events in

the order reflecting their importance contribution gives A < B < C (where B and C are

equal). Using this ordering produces a minimal BDD.

5.3 Application Of Structural Importance Approach

To compare this new ordering permutation with the six previously identified schemes

(ref. [8], Andrews and Bartlett, 1998) each ordering permutation was generated and

then the number of nodes of the BDD were calculated. It is the number of nodes that

is used in the comparison process. The results after 225 trees were tested are shown

in table 3.

Nodes in comparison to

previous best

No. of

trees

% of trees Total =/<

= to previous best 77 34.2

< previous best 96 42.7 76.9 %

> previous best 52 23.1

Table 3: Results Using Structural Importance Measure For Ordering

From this, it is concluded that in approximately 77 % of all the trees tested, the

structural importance ordering yields a BDD of equal or smaller dimension than the

previous best scheme ordering.

When considering each of the six ordering heuristics individually, the repeated event

version of the top-down, left-right approach, produced the largest number of ‘the

 12

smallest’ BDDs in comparison to the other heuristics. Using this heuristic the

smallest BDD was produced on 29.8 % of occasions. Hence, it is concluded that

using the structural importance measure of each variable to produce an ordering yields

a better result overall than any one of the six different ordering methods used in

testing.

The research has shown the value of an ordering approach based on the component’s

structural importance. The difficulty remains in finding an efficient algorithm to find

the structural importance measures from the fault tree structure directly. Further

research into this ordering possibility is in using approximation methods to establish

the structural importance. Additional improvements in the ordering may possibly be

found by considering different techniques for ordering matched variables.

The best method currently seems to be to use the neural network approach to select

the best ordering heuristic for a given fault tree, and use this to construct the BDD.

From this BDD the structural importance values can be produced to generate the

second BDD from which the analysis procedure is to be carried out.

6. Conclusions

Both methods are feasible in improving the BDD ordering problem, although both use

indirect methods to find the solution, for example the neural network needs to be

trained on the problem before it can be used, and the structural importance measures

require the BDD to be generated first. To improve the methods the performance of

the neural network needs to exceed 14 and near 20 correct predictions for the test data

set. The structural importance technique is required to be generated from the tree

directly rather than using two BDDs. Extra work needs to be carried out in both areas

to make the two approaches ideal for the ordering problem.

7. References

1. W.E.Vesley, “A Time Dependent Methodology for Fault Tree Evaluation”.

Nuclear Eng. and des., 13, 1970, p337-360.

2. S.B.Akers, “Binary Decision Diagrams”. IEEE Transactions on Computers, vol.

C-27, 1978, p509-516.

3. A.Rauzy, “New Algorithms for Fault Tree Analysis”. Reliability Engineering and

System Safety, vol. 40, 1993, p203-211.

4. R.M.Sinnamon and J.D.Andrews, “Quantitative Fault Tree Analysis Using Binary

Decision Diagrams”. European Journal of Automation, vol. 30, No. 8, 1996.

5. A.Rauzy, “A Brief Introduction to Binary Decision Diagrams”. European Journal

of Automation, vol. 30, No. 8, 1996.

6. R.M.Sinnamon and J.D.Andrews, “Fault Tree Analysis and Binary Decision

Diagrams”. Proceedings of the Reliability and Maintainability Symposium, Las

Vegas, January 1996.

7. R.M.Sinnamon and J.D.Andrews, “New approaches to Evaluating Fault Trees”.

Proceedings of Esrel’95 Conference, June, 1995, p241-254.

 13

8. Group Aralia, “Computation of Prime Implicants of a Fault Tree Within Aralia”.

Proceedings of the European Safety and Reliability Association Conference,

ESREL’95, 1995, p190-202.

9. J.D.Andrews and L.M.Bartlett, “Efficient Basic Event Orderings for Binary

Decision Diagrams”. Proceedings of the Annual Reliability and Maintainability

Symposium, Anaheim, 1998, p61-68.

10. H.E.Lambert, “Measures of Importance of Events and Cuts Sets in Fault Trees”,

Reliability and Fault Tree Analysis: Theoretical and Applied Aspects of System

Reliability and Safety System Assessment. SIAM, Philadelphia, 1975, p77-100.

