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Abstract 

 

Fault tree analysis, FTA, is one of the most commonly used techniques for safety 

system analysis.  There can be problems with the efficiency and accuracy of the 

approach when dealing with large tree structures.  Recently the Binary Decision 

Diagram (BDD) methodology has been introduced which significantly aids the 

analysis of the fault tree diagram.  The approach has been shown to improve both the 

efficiency of determining the minimal cut sets of the fault tree, and also the accuracy 

of the calculation procedure used to quantify the top event parameters. 

 

To utilise the BDD technique the fault tree structure needs to be converted into the 

BDD format.  Converting the fault tree is relatively straightforward but requires the 

basic events of the tree to be placed in an ordering.  The ordering of the basic events 

is critical to the resulting size of the BDD, and ultimately affects the performance and 

benefits of this technique.   There are a number of variable ordering heuristics in the 

literature, however the performance of each depends on the tree structure being 

analysed. These heuristic approaches do not yield a minimal BDD structure for all 

trees, some approaches generate orderings that are better for some trees but worse for 

others.   

 

Within this paper two approaches to the variable ordering problem have been 

discussed.  The first is the pattern recognition approach of neural networks, which is 

used to select the best ordering heuristic for a given fault tree from a set of 

alternatives.  The second examines a completely new heuristic approach of using the 

structural importance of a component to produce a ranked ordering.  The merits of 

each are discussed and the results compared. 

 

 

1. Introduction 
 

Over the past five years an alternative technique, to Kinetic Tree Theory (Vesely
[1]

), 

known as the Binary Decision Diagram (BDD) method
[2-6]

 has been developed to 

analyse the fault tree. In calculating the system or top event parameters it does not 

need to first evaluate all the minimal cut sets, nor does it require the use of 

approximations, the exact calculations can be performed. 

 

To use the BDD methodology the fault tree representing the system failure mode must 

first be converted to a BDD.  To accomplish this the basic events in the fault tree are 

placed in an order.  A good ordering of the basic events can result in a very efficient 

analysis, a poor ordering can lead to problems. 
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Several research papers have been published which investigate different ordering 

strategies and heuristics.  From the research to date a number of heuristics have been 

developed which are effective for specific fault tree structures, but a general heuristic 

that produces a minimal BDD for all fault trees is not available. Lack of this efficient 

ordering for any tree structure is probably the reason that only one commercially 

available code
[8]

 has been produced which is based on this method. The latest research 

looks at rule based approaches
[9]

 to identify an ordering scheme that yields an 

efficient ordering of the fault tree variables.  This paper compares two new 

approaches to the variable ordering problem.  The first uses the rule based approach 

of neural networks to select the best ordering heuristic for a given fault tree from a set 

of alternatives.  The second approach uses the structural importance of each of the 

basic events of the tree to produce a ranked ordering. 

 

 

2. Binary Decision Diagrams 

 

A BDD is a directed acyclic graph, as shown in figure 1.  All paths through the BDD 

start at the root vertex and terminate in one of two states, either a 1 state which 

corresponds to a system failure, or a 0 state which corresponds to a system success. A 

BDD is composed of terminal and non-terminal vertices, which are connected by 

branches.  Non-terminal vertices correspond to the basic events of the fault tree. 
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Figure 1: A Binary Decision Diagram. 

 

All the left branches leaving a vertex are the 1 branches (component failure occurs) 

and all the right branches the 0 branches (component functional).  Every path starts 

from the root vertex, and proceeds down through the diagram to the terminal vertices.  

Only the vertices that lie on a 1 branch on the way to a terminal 1 vertex are included 

in the path.  All the paths terminating in a 1 state give the cut sets of the fault tree. For 

example, the cut sets of figure 1 are: 

    1) X1X2X3    2) X1X4. 
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The method to convert a fault tree to its equivalent BDD is described in many 

publications and the reader is referred to them for details (refs. [3,7]). 

 

 

3. The Variable Ordering Dilemma 
 

In constructing the BDD, the ordering of the basic events is crucial to the size of the 

resulting diagram.  Using an inefficient ordering scheme will produce a non-minimal 

BDD structure.  Alternative ordering schemes will produce BDD’s of different sizes, 

the smaller the BDD the more optimal the diagram.  To illustrate this fact, consider 

the simple fault tree shown in figure 2. The tree has four basic events, where X2 is 

repeated. 

 

TOP

G1

G2 G3

     X2      X3      X2      X4

     X1

 
 

Figure 2: A simple fault tree. 

 

If the basic event ordering permutation of X1<X2<X3<X4 is taken, the resulting 

BDD is shown in figure 3.  This structure consists of only four nodes, it is a minimal 

structure and hence produces only minimal cut sets.   
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Figure 3: Ordering X1<X2<X3<X4  Figure 4: Ordering X4<X3<X2<X1 
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However, if the alternative ordering permutation of X4<X3<X2<X1 is taken the 

resulting BDD  (shown in figure 4) consists of seven nodes, it is non-minimal and 

yields non-minimal cut sets.  For larger fault tree structures the efficiency of the 

resulting BDD is more critical, and in the worst case of using a poor ordering 

permutation, the diagram may not be able to be produced within the computers 

memory capacity.    

 

The objective would be to produce an ordering scheme that achieves the ‘best’ BDD.  

The remaining sections of this paper will discuss two new approaches to tackling the 

ordering problem.  The first looks at finding the best solution from a set of 

alternatives (section 4) and the second a completely new heuristic using structural 

importance measures (section 5).  

 

 

4. Using Neural Networks to Select an Ordering Scheme from a Set of 

Alternatives 

 

4.1  The Neural Network Approach 

 

A recent new approach to tackling the variable ordering dilemma is to use a rule 

based pattern recognition approach.   There are several different types of pattern 

recognition approach, for example, classifier systems, neural networks, Bayesian 

methods and Fuzzy Logic.  In the literature
[9]

, the classifier system has been used in 

conjunction with a genetic algorithm. Results for the number of correct scheme 

predictions for the test data were encouraging and predictions were better for smaller 

trees.  Additional work was required to gain the same accuracy for larger tree 

structures.  Utilising the evident potential of the pattern recognition approach, the 

research is extended by trying a second method of neural networks, which may be 

more suited to this problem.   

 

 

Figure 5: Diagram of a multi-layer perceptron. 

 

The neural network is another method of identifying patterns.  It can be regarded as a 

particular choice for a set of functions that map a set of input variables to a set of 

output variables. There are a number of different neural networks and the multi-layer 
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feedforward network or multi-layer perceptron has been applied.  The network is 

made up of a series of layers with connections running from every unit in one layer to 

every unit in the next layer. These connections are known as the weights and they 

control the influence each node has on propagating the intermediate outcome to the 

output nodes. Typically the network consists of a set of input nodes that constitute the 

input layer, one or more hidden layers of nodes, and an output layer of nodes (as 

shown in figure 5).  

 

There are two modes of operation: a training phase to determine optimum weights of 

network and a predictive phase to generate the desired outputs for a previously unseen 

input. During the training phase multi-layer perceptron commonly uses an algorithm 

known as the error back-propagation algorithm.  The algorithmic process consists of 

two possible passes through the different layers of the network: a forward pass and a 

backward pass. In the forward pass, an input vector is applied to the input nodes of the 

network, and subsequent outcomes are evaluated layer by layer.   Hidden layer node 

values, vj(n) are calculated by taking the linear combination between the hidden node 

j and weight connections wji to each input xi(n). A non-linear activation function, g( ), 

is applied to the linear combination that is calculated. 

  

))(.()(
0

∑
=

=
d

i

ijij nxwgnv   Eq.1 

  

The values for the output layer nodes, yk(n) are established by evaluating the linear 

combination calculated between output node k and weight connection wkj to each 

hidden node vj(n).  An activation function g*( ) is then applied to the result, this may 

be the same function as used in the hidden layer or different. 
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The activation function commonly used is the sigmoidal function, given by equation 

3, where a is the linear combination output. 

 

g(a) =1 / (1+ exp (-a) )   Eq.3 

 

During the backward pass, the weights are all adjusted in accordance with an error-

correction rule. This rule is applied at the output nodes for each training pattern n, and 

takes the target response of each node tj, and subtracts from it the response generated 

for that node by the network yj, to produce an error ej.  

 
( ) ( ) ( )e n t n y nj j j= −

 
 

This error signal is then propagated backward through the network, against the 

direction of weight connections, hence the name "error back-propagation".  The 
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weights are adjusted so as to make the actual response of the network move closer to 

the desired response. 

 

The training phase involves a number of cycles whereby on each cycle the search for 

better weights is directed to a new area as defined by a specified search parameter.  

When the error has been reduced sufficiently it is these weights that are used as fixed 

values in the predictive phase.  How well the network has been trained and models the 

problem will be reflected in the prediction of new input data.  If the network has been 

trained well it will generalise well to new data and a correct response should be 

predicted. 

 

To commence the training phase of the network, the number of inputs and outputs of 

the problem need to be determined and the training data set constructed.  Sections 4.2-

3 review the inputs and the outputs for this variable ordering problem, and section 4.4 

the data sets for training, and test set to assess the predictive capability of the trained 

network. 

 

 

4.2 Preferences for the Variable Ordering Schemes 
 

The objective of the initial neural network modelling will be to establish the 

capability of the neural network to select the best ordering heuristic from a restricted 

group of alternatives for a given fault tree.  In this study 6 different potential 

structured ordering schemes are used and referred to as:  

 

• Top-down, left-right approach:  

- is produced by listing the variables in a top-down, left-right manner 

from the original fault tree structure. 

• Modified top-down, left-right approach: 

- as the top–down, left-right approach but repeated events along each 

level are considered first. 

• Depth-first approach: 

- involves breaking the whole tree structure into smaller trees 

(subtrees) and looking at the optimal ordering of these subtrees.  The 

depth first ordering scheme gives each subtree a top-down, left-right 

ordering, working from the first gate inputs of the top event. 

• Modified depth-first approach: 

- As unmodified version but with repeated events considered first. 

• Priority depth-first approach: 

- takes the depth-first approach one step further and considers subtrees 

with only basic event inputs first.  

• Modified priority depth- first approach: 

- consider repeated events first in the ordering.   
 

More details of these ordering schemes can be found in reference [8]. 
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4.3 Fault Tree Characteristics 

 

A difficulty in the neural network approach is in characterising the problem at hand.  

Some fault tree attributes have been selected to characterise each tree.  The input layer 

of the neural network are variables which represent the eleven characteristics which 

were selected to represent the fault tree structure, and the output layer of nodes within 

the network are used to model the six scheme preferences. 

 

To summarise, the characteristics that have been chosen to represent the fault tree 

structure are:  

 

• Percentage of and gates;  

• Percentage of different events repeated;  

• Percentage of total events repeated;  

• Top gate type;  

• Number of outputs from top gate;  

• Number of levels of tree;  

• Number of basic events;  

• Maximum number of gates in any level;  

• Number of gates with gate outputs only;  

• Number of gates with event outputs only;  

• and highest multiple of a repeated event. 
 

4.4 Training and Test Sets 

 

To generate an appropriate neural network model and to test its performance a 

training and test set of fault trees for the problem were required.  Fault tree structures 

used were taken from industry and randomly generated using a computer.  The total in 

the training set was 205 and 20 test trees in the test set.  

 

To evaluate the performance of the neural network a test set of data was produced 

with different tree structures and known best ordering schemes. The number of 

correct scheme preferences the network predicted evaluated the performance of the 

network. 

 

4.5 Results of Most Appropriate Network Constructed 

 

A number of models have been trained and tested with varying results.  However, the 

best networks that have been constructed using the multi-layer perceptron approach 

have been very promising. The best network architecture is given in table 1.  A single 

hidden layer was used which comprised of five nodes.  The enhanced gradient descent 

algorithm was used to optimise the weights. 

 

The weights generated in training and used in the prediction phase for previously 

unseen data are given in table 2 and 3.  Table 2 shows the weights which connect the 

input nodes to each of the 5 hidden nodes, and table 3 indicates the weights from the 

hidden layer to the output nodes. 
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Structure Considerations  

Number of Input Nodes 11 

Number of Output Nodes 6 

Number of Hidden Layers 1 

Number of Nodes in Hidden layer(s) 5 

 

Table 1: Best Network Architecture 

 
 Hidden  1 Hidden 2 Hidden 3 Hidden 4 Hidden 5 

Bias node 0.147330 0.243064 0.539561 0.673099 -0.331514 

Input 1 0.641682 0.183194 -0.924516 -0.665176 0.708712 

Input 2 0.796946 0.886754 0.186239 -0.306955 0.086139 

Input 3 0.842000 0.883227 0.623115 -1.054132 -0.037604 

Input 4 0.382882 0.365247 -0.433369 -0.995933 0.156702 

Input 5 0.506398 0.347366 -0.710282 -0.981350 -0.983196 

Input 6 0.642397 0.202210 1.478797 1.438517 0.256880 

Input 7 -0.382380 0.972270 0.371361 -0.064075 -0.772999 

Input 8 -0.963998 0.648210 0.894712 0.339276 -0.428676 

Input 9 0.329570 0.264644 0.067410 -0.007906 0.446248 

Input 10 -1.004186 0.236299 0.296611 0.159278 0.035732 

Input 11 0.603500 0.120445 -0.361202 -0.926677 0.304544 

 

Table 2: First Layer Weights of Best Network 

 
 Output  1 Output 2 Output 3 Output 4 Output 5 Output 6 

Bias node 0.435191 0.034015 0.902266 0.184042 0.291198 -0.378771 

Hidden 1 1.562687 0.156753 0.383328 0.803264 -0.271374 0.430375 

Hidden 2 0.732578 0.507769 -0.219266 0.543601 0.895298 0.526418 

Hidden 3 1.316444 -0.003383 -0.184228 -0.025922 0.851694 0.116150 

Hidden 4 -0.566968 0.253515 0.102770 -1.121804 -1.121293 0.104950 

Hidden 5 0.199515 0.194763 -0.108666 -0.156623 -0.405690 -0.617658 

 

Table 3: Second Layer Weights of Best Network 

 

Using this architecture, the network predicted 14 out of the 20 test trees with correct 

scheme preferences.  The error at the end of training was 0.341187.  Thus, when 

trying to establish the best scheme choice which will lead to the smallest BDD for a 

previously unseen fault tree the network will predict successfully the correct option on 

70 % of occasions. 

 

For the remaining 30 percent of predictions, the ordering heuristic produced would 

yield a BDD of non-minimal dimension.  The range of deviation from the minimal 

varied depending on the fault tree.  Some predictions selected heuristics which 

resulted in a BDD with only a few nodes greater than smallest, whereas others where 

considerably larger. 
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5. Rankings Based on Structural Importance  
 

5.1.Problem Areas With Current Heuristics 
 

 On reviewing the heuristics currently in the literature certain problem areas were 

evident.  One was that many of the heuristics were affected by how the fault tree was 

drawn, therefore for the same logic expression a number of different BDDs could 

result depending on how the fault tree was represented. Many heuristics do not allow 

for components to be selected from different branches of the tree and lie next to each 

other in the ordering list.  Another problem is how to deal with matched components 

in methods that assign weights to each basic event. 

  

From this the properties required in a good ordering heuristic seem to be: 

 

- The contribution of an event to the system failure mode must be reflected in the 

ordering produced. 

- The ordering must be robust i.e. the ordering must be dependent upon the logic 

function represented by the fault tree and not influenced by the way the fault tree 

has been drawn.  

- To uniquely map the fault tree onto a single event ordering. 

 

Considering these points the structural importance measure was investigated.  This 

heuristic satisfies two out of the three points above.  It does represent the contribution 

each component makes to the occurrence of the top event, and it is also unaffected by 

the way the tree is written or drawn.  However, the ordering produced is not unique 

because ties may result with some of the component measures and the means of 

breaking these ties will affect the ordering.  

 
 

5.2 Structural Importance Explained 
 

For each component it’s importance measure signifies the role that it plays in either 

causing or contributing to the occurrence of the top event.  A numerical value is 

assigned to each basic event which allows it to be ranked according to the extent of its 

contribution to the occurrence of the top event. 

 

In this research a deterministic measure of importance was used since it is only the 

contribution of the component within the structure which can influence its ordering 

not its likelihood of occurrence.  Deterministic measures assess the importance of a 

component to the system operation without considering the component’s probability 

of failure.  One such measure is the structural importance measure, which is defined 

for a component j as 

 

  IMPj =  number of critical system states for component j          

            total number of states for the (n-1) remaining components 

 

A critical state for component j is a state for the remaining n-1 components such that a 

failure of component j causes the system to go from a working state to a failed 

state
[10]

.  
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To illustrate this measure, consider the fault tree drawn in figure 6.  The logic 

expression for the top event is : 

    TOP = A + B.C 

 

TOP

      A

     B       C

 
 

Figure 6: Simple fault tree structure 

 

The structural importance measure for component A (IMPA) is calculated using table 

2. Hence IMPA = ¾. 

 

All Possible States for 

components B and C 

Critical State 

for A 

All Possible States for 

components A and C 

Critical State for 

B 

CB,  No CA,  No 

CB,  Yes CA,  Yes 

CB,  Yes CA,  No 

CB,  Yes CA,  No 

(NB. the B  means component B working) 

 

Table 2: Critical States for Component A and B 

 

 

The structural importance measure of component B (IMPB) is given in table 2.  

Hence, IMPB = ¼.  Similarly, by structural symmetry the importance measure of 

component C, IMPC = ¼. 

 

In establishing the effectiveness of ordering components according to their structural 

importance to yield a minimalistic BDD structure the tabular approach presented 

above was not a practical proposition. Lambert
[10]

 found that using Birnbaum’s 

probabilistic measure of importance, with stated probabilistic values of failure for 

each component, the structural importance measure was produced.   

 

Birnbaums measure of importance or criticality (Gi(q)) is defined as: 

 

 Gi(q) = Q(1i, q) - Q(0i, q) 

 

where Q(q) is the probability that the system fails, and  
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Q(1i, q) = (q1, q2, …..,qi-1, 1, qi+1,…….qn) 

and    Q(0i, q) = (q1, q2, …..,qi-1, 1, qi+1,…….qn). 

 

From Lamberts paper it states that if we let qj(t) (the probability of failure of 

component j) equal to ½ for all j ≠ i, then the fraction of possible states in which 

component i is critical, denoted by Bi, is: 

  

Bi = { Q(1i, ½) - Q(0i, ½) } 

 

Birnbaum calls Bi the structural importance of component i. 

 

Implementing this (numerically) using the fault tree shown in figure 6, we see that 

 

Q(q) = qA + qBqC  - qAqBqC 

 

Calculating the structural importance measure for A; 

 

Q(1A,q) = 1 

Q(0A,q) = qBqC 

 

Therefore,    GA(q) = 1 - qBqC,  

and     GA(1/2) = 1 – ¼  = ¾.  
 

The same principle is then applied to components B and C.  Placing these events in 

the order reflecting their importance contribution gives A < B < C (where B and C are 

equal).  Using this ordering produces a minimal BDD. 

 

 

5.3 Application Of Structural Importance Approach 

 

To compare this new ordering permutation with the six previously identified schemes 

(ref. [8], Andrews and Bartlett, 1998) each ordering permutation was generated and 

then the number of nodes of the BDD were calculated. It is the number of nodes that 

is used in the comparison process.  The results after 225 trees were tested are shown 

in table 3. 

 

Nodes in comparison to 

previous best 

No. of 

trees 

% of trees Total =/< 

=  to previous best 77 34.2  

< previous best 96 42.7 76.9 % 

> previous best 52 23.1  

 

Table 3: Results Using Structural Importance Measure For Ordering 

 

From this, it is concluded that in approximately 77 % of all the trees tested, the 

structural importance ordering yields a BDD of equal or smaller dimension than the 

previous best scheme ordering. 

 

When considering each of the six ordering heuristics individually, the repeated event 

version of the top-down, left-right approach, produced the largest number of ‘the 
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smallest’ BDDs in comparison to the other heuristics.  Using this heuristic the 

smallest BDD was produced on 29.8 % of occasions.  Hence, it is concluded that 

using the structural importance measure of each variable to produce an ordering yields 

a better result overall than any one of the six different ordering methods used in 

testing.  

 

The research has shown the value of an ordering approach based on the component’s 

structural importance.   The difficulty remains in finding an efficient algorithm to find 

the structural importance measures from the fault tree structure directly.  Further 

research into this ordering possibility is in using approximation methods to establish 

the structural importance.  Additional improvements in the ordering may possibly be 

found by considering different techniques for ordering matched variables. 

 

The best method currently seems to be to use the neural network approach to select 

the best ordering heuristic for a given fault tree, and use this to construct the BDD. 

From this BDD the structural importance values can be produced to generate the 

second BDD from which the analysis procedure is to be carried out. 

 

 

6. Conclusions  
 

Both methods are feasible in improving the BDD ordering problem, although both use 

indirect methods to find the solution, for example the neural network needs to be 

trained on the problem before it can be used, and the structural importance measures 

require the BDD to be generated first.  To improve the methods the performance of 

the neural network needs to exceed 14 and near 20 correct predictions for the test data 

set.  The structural importance technique is required to be generated from the tree 

directly rather than using two BDDs.  Extra work needs to be carried out in both areas 

to make the two approaches ideal for the ordering problem. 
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