

This item was submitted to Loughborough's Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED				
Attribution-NonCommercial-NoDerivs 2.5				
You are free:				
 to copy, distribute, display, and perform the work 				
Under the following conditions:				
Attribution . You must attribute the work in the manner specified by the author or licensor.				
Noncommercial. You may not use this work for commercial purposes.				
No Derivative Works. You may not alter, transform, or build upon this work.				
 For any reuse or distribution, you must make clear to others the license terms of this work 				
 Any of these conditions can be waived if you get permission from the copyright holder. 				
Your fair use and other rights are in no way affected by the above.				
This is a human-readable summary of the Legal Code (the full license).				
Disclaimer 모				

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/

Fault Tree Based Approach for System Fault Diagnostics

L. M. Bartlett and J. D. Andrews: Aeronautical and Automotive Engineering Department, Loughborough University, UK

Overview

- Aim of research
- System description
- Diagnostic methods
- Research outcomes
- Conclusions & Summary

Aim of Research

- Background:
 - Several researchers investigated diagnostic methods.
 - Main avenues sequential tests and real time.
 - Some theoretical, not applied to actual systems.
- Why the need for diagnosis?
 - Improve repair process.
 - Alter missions given system state.
 - Current research lacking in area of real time and multiple faults.

Aim of Research

• Aim:

Develop a diagnostic capability

- practical
- real time
- multiple fault causes

System Description

- Control system
 - V, C, & S.
- Sensors:
 - 1 Flow / No flow pipe 1
 - 2 Flow / No flow pipe 2
 - 3 Level in tank:High, Low, Normal

System Description

- Component failures:
 - Pipes blocked (P1B, P2B)
 - Pipes ruptured (P1R, P2R)
 - Tank Ruptured (TR)
 - Tank Leak (TL)
 - Valve fails open (VO)
 - Valve fails closed (VC)

System Description Assumptions:

Under normal operating conditions:

- 1. The analysis is performed under steady state conditions.
- 2. A rupture of the tank means that the outflow from the tank is greater than the inflow.
- 3. A leak within the tank means the outflow is less than the inflow.
- 4. Flow in through pipe 1 can be greater than the flow out through pipe 2.

System Description

Modes of Operation:

- Two modes of operation: normal and inactive.
- In *normal* operation:
 - Flow in section 1.
 - Flow in section 2.
 - Water in the tank normal.

- In *inactive* mode:
 - No flow in section 1.
 - No flow in section 2.
 - No water in the tank.
- Deviations from these expected system symptoms will indicate a fault.

Pipe 1

S

Т

3

С

Pipe 2

Use of Fault Trees:

What is a fault tree?:

- Represents failure events.
- Successively breaks down failure event into failure causes.
- Uses deductive logic (What can cause this?).
- Provides information on the combinations of failure causes.
- Two types of fault trees coherent and non-coherent.

Coherent & Non-coherent Fault Trees:

• Coherent

Coherent & Non-coherent Fault Trees:

Use of Fault Trees:

The task:

• For any unexpected system observation need to determine cause.

How achieve:

- Fault trees used to represent reasons for sensor readings i.e. no flow in section 1.
- Sensor reading fault trees can be coherent or non-coherent.
- Cause of unexpected system observation determined by combining appropriate sensor reading fault trees.

Fault Trees for Sensor Readings:

- Consider the ACTIVE mode:
 - Expected readings:
 - Flow in section 1, flow in section 2, normal level in tank
- Sensor readings of interest:
 - No flow in section 1
 - No flow in section 2
 - High water level in the tank
 - Low water level in the tank

Example Fault Tree for Sensor Reading:

Combining Fault Tree Information:

- For a given unexpected system observation the relevant sensor reading fault trees can be combined.
- Two methods of combination:
 - Diagnostic Method 1
 - Diagnostic Method 2

Diagnostic Method 1:

- System Observation fault tree produced containing:
 - Observations which **deviate** from the expected normal operation behaviour.
 - The sensor readings which conform to the normal operating states are ignored.

Mode	Section 1	Section 2	Tank
Normal (expected)	Flow	Flow	Normal
Observed State	Flow	No flow	High

Diagnostic Method 1:

Diagnostic Method 2:

- System Observation fault tree produced containing:
 - Observations which deviate from the expected normal operation behaviour.
 - AND Observations which conform to the normal operating states.

Mode	Section 1	Section 2	Tank
Normal (expected)	Flow	Flow	Normal
Observed State	No Flow	No flow	High

Diagnostic Method 2:

Research Procedure

- Each diagnostic method tested using coherent and noncoherent sensor fault trees.
- All possible system observations analysed.
- One example system observation demonstrated.
- Ranking procedure (importance measures) suggested for multiple cause possibilities.

Research Outcomes

Diagnostic Method 1 with coherent sensor fault trees:

Research Outcomes

Diagnostic Method 2 with coherent sensor fault trees:

• Fault failure causes:

Invalid combinations !!

{P1R.VO.P1B.VC.P2B} {TR.VO} and {P1R.VO}.

Research Outcomes – Conclusion 1

Coherent Sensor Reading Fault Tree Conclusions:

- Not sophisticated enough to determine a correct fault diagnosis.
- Incorrect fault combinations are produced with both methods 1 and 2.
- Just considering the state of the failed components is not adequate.
- Working components also need to be considered.

Research Outcomes

Diagnostic Method 1 with non-coherent sensor fault trees:

Research Outcomes

Diagnostic Method 2 with non-coherent sensor fault trees:

Research Outcomes – Conclusion 2

Non-coherent Sensor Reading Fault Tree Conclusions:

- Correct failure combinations produced for the example system state observed.
- However invalid combinations produced for other system states.
- Hence, inconsistencies can be found using method 1 where the working states of the system are not considered.

Overall Conclusions

Hence, for accuracy of diagnosis the following is needed:

- 1. Non-coherent fault trees for sensor reading causes.
- 2. Diagnostic method 2 to construct the observed system state fault tree (i.e. the whole collection of sensor readings, including the expected observations).

Importance Measures

Ranking procedure for multiple fault causes:

- What happens if multiple fault causes are given from the diagnosis?
- Need a method to show most likely cause.
- Fussell-Vesely measure of cut set importance.
- Probabilistic measure defined as:
 - the probability of occurrence of cut set i given that the observed system has failed
 - Imp =probability of cut set occurrenceobserved system state failure probability

Summary

- Two methods have been investigated for diagnosing possible multiple faults within a system.
- Diagnostic method 1 uses information from the deviated observations only.
 - Limitations in producing the correct list of failure combinations using both coherent and non-coherent sensor reading fault trees.
 - Fault combinations have been produced which are invalid when coherent trees have been combined.
 - Combinations produced that could not have occurred due to the status of the normally functioning parts of the system with noncoherent trees.

Summary

- Diagnostic method 2 considered also those parts of the system that are known to be functioning.
 - Inconsistent results produced using coherent sensor reading fault trees for some system observations.
 - Non-coherent fault tree representation of sensor readings proved the most successful as a diagnostic tool.
- The use of importance measures can be used to identify the most likely cause of the system fault when a number of options or possible causes are predicted.

Fault Tree Based Approach for System Fault Diagnostics

Thank you for your attention.

Any questions????

