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Abstract— Linear Multi-Input Multi-Output (MIMO) dynamic 

models can be identified, with no a priori knowledge of model 
structure or order, using a new Generalised Identifying Filter (GIF). 
Based on an Extended Kalman Filter, the new filter identifies the 
model iteratively, in a continuous modal canonical form, using only 
input and output time histories.  The filter’s self-propagating state 
error covariance matrix allows easy determination of convergence 
and conditioning, and by progressively increasing model order, the 
best fitting reduced-order model can be identified.  The method is 
shown to be resistant to noise and can easily be extended to 
identification of smoothly nonlinear systems. 
 

Keywords— System Identification, Kalman Filter, Linear Model, 
MIMO, Model Order Reduction.  

I. INTRODUCTION 
HERE are many papers exploring MIMO dynamic model 
system identification, with most broadly falling into 

categories of those employing neural networks (NN) and 
genetic algorithms, frequency domain methods, probabilistic 
approaches and in a few cases Kalman filtering and recursive 
least squares.  Numerous examples of NN achieve excellent 
identified model performance, but in a black-box format 
which gives no insight into the plant dynamics. They typically 
employ high numbers of tuned parameters, with associated 
concerns over applicable domains of operation and parameter 
conditioning.  Classical alternatives designed to address 
conditioning within a smaller parameter set include the well-
known references on system identification (eg [1]) and papers 
using complicated statistical probability methods, eg [2,3].  
While effective at solving theoretical and complex practical 
cases for identification, these are mathematically impenetrable 
to most engineers.  Simpler processes, using frequency 
domain identification of SISO models in combinations are 
explored by many – eg [4,5] and these can be more effective at 
replicating higher frequency modes. However, translation into 
accurate time domain models is not always easily achieved 
and appropriate combination of the SISO cases can be 
problematic. 

In this paper the well-known Kalman filter is applied to 
system identification.  It too has found uses previously in this 
field, but in earlier research by the author [6,7] and in 
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literature searches [8,9] Kalman filters have previously only 
been effective in identifying a subset of unknown parameters 
in an existing known model structure.  Here we address many 
of the concerns above, identifying a whole model of unknown 
structure and minimum parameter set using an iterative time-
domain approach.  One previous paper operates in a similar 
way, using a recursive least-squares method [10] but this 
assumes a discrete model of known order.  In this new 
method, the most appropriate model order can also be 
determined.  Ultimately the best conditioned, lowest order 
model is identified in modal canonical form, which has the 
added advantage of revealing the most significant system 
eigenvalues.  

II. THE GENERALISED IDENTIFYING FILTER (GIF) 

 The standard Extended Kalman Filter (EKF) operates on 
nonlinear system and sensor models f and h, which relate the 
state vector x, measured sensor set y, known inputs u and 
model parameters θ at any instant k according to 

 ( ), ,k k k k k= +x f x u θ ω  (1) 

 ( ), ,k k k k k= +y h x u θ υ  (2) 
ω  represents state propagation and modelling error, υ is the 

sensor error, and an optimal filter can be derived using 
estimates, or expectations of the error covariance matrices : 

 ( ) ( ) ( ),  ,  T T T
k k k k k k k k kE E E= = = =Q ω ω S ω υ 0 R υ υ

 (3) 
 The EKF also requires model Jacobians to be evaluated at 

each time step, defined 
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 Examples which employ and detail the full IEKF are given 
in [6,7]. In this paper we seek to identify a linear model 

 k k k= +x Ax Bu  (5) 
 k k k= +y Cx Du   

 Through recorded time-histories of the (single or multiple) 
input(s) u and single or multiple output(s) y only.  We do not 
know, or seek to impose any physical structure in the model, 
so cannot attribute physical meaning to the states, though we 
will need to decide on the model order, and hence the number 
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of states. 
 In order to prescribe an appropriate, minimal number of 

parameters in the model, a suitable generic structure must be 
imposed on the model matrices.  This could be any structure 
which assigns suitably independent states in a sparse system 
(A) matrix – ie a canonical form – and we will see advantages 
in prescribing a modal canonical form. This defines A in terms 
of the system eigenvalues, a choice which delivers dynamic 
information about the identified model and which also ensures 
identification of a well conditioned model.  An appropriate 
prescription for a 5 state case is 
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and this is expanded or contracted in an obvious way for a 
different number of inputs / outputs or a different choice of 
model order (number of states).  Note that the eigenvalues are 
expected in complex conjugate pairs, jλ σ ω= +  where 
possible; this is a sensible first assumption, but if initial results 
show some pairs with zero eigenfrequency it is easy to modify 
the structure to introduce more real eigenvalues. 

 One further constraint is then necessary, which can be 
applied in a number of ways. As written above, the excitation 
of each state by the inputs is scaled by the B matrix, but each 
output is then scaled again by the C matrix. Intuitively, if one 
considers a SISO case, only the B or the C parameters need to 
be uniquely identified to achieve a fully constrained system; 
one set of 5 parameters can be set to 1. It turns out that the 
required constraint for any n state model is to constrain 
exactly n of the c or b parameters regardless of the number of 
inputs or outputs.  The best choice is to leave B to be 
identified and constrain only elements of the C matrix. (We 
need to allow very low, or zero parameters to develop in B, 
since any given single input will not generally excite all 
eigenvalues.)  In a single output case, set C = [1 1 1 ….] and 
in models for multiple outputs, distribute the constraint to ‘tie’ 
given eigenvalue pairs (σ, ω) to given outputs. Eg in eqns 6 
choose c11 = c12 = c23 = c24 = c25 = 1.  The risk of poor 
conditioning in the result is then minimised, as the eigenvalue 
parameters will be identified in the order in which they are 
most influential within each output; we will see an example of 
this in Section IV. 

 The identification is achieved by concatenation of the states 
and all of the parameters to be identified into one large 
modified state vector, with m elements (34 in the example), eg 

1 2 5 1 1 2 2 3 11 12

52 11 12 25 11 22
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 

(7) 

  
With the model f(z) defined as above for the true states, and 

with expected propagation of the parameter states set to zero : 
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and the output model  h = Cx + Du  

 Now the GIF also requires the Jacobian matrices (equations 
4) and these follow a simple structure, due to the above linear 
definitions.  The easiest way to construct them is to define f 
and h in a symbolic computing environment such as Maple, or 
Matlab’s symbolic toolbox, and find the differential matrix 
with respect to the full state set z – eg using Matlab’s 
jacobian command.  The pattern of the Jacobian is also 
easily illustrated using our example; given the definitions in 
equations 6 & 7 – eg 

 1 1 6 1 7 2 11 1 16 2z z z z z u z u= = + + +z f  (9) 
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where 021-34 indicates zero elements in columns 21-34 and 

6
340  indicates zeros in rows 6 – 34. A similar simple and 

predictable structure arises for H ∂
=

∂
h
z

. 

 Execution of the GIF requires a set of equations to be 
computed in sequence at each time step of the recorded time 
histories : 

 k k k k k k

−
 = + 

1T TK P H H P H R  (11) 

 [ ]*
k k k k= −P I K H P  (12) 

 * * *
1k k k k k kT+  = + + + 

TP P F P P F Q  (13) 

 ( )1ˆ ˆk k k k k kT+ = + + −z z f K y h  (14) 
where T is the time step length, which should be small relative 
to the system dynamics to ensure filter stability and accuracy.  
Error expectation matrices Q and R can be chosen nominally, 
as R = I and mλ ′=Q I .  Where m′I  is the m x m  identity 
matrix with zeros set for the true states (first 5 diagonal 
elements in this example) and also for the constrained c 
parameters.  λ is the only tuning parameter needed to run the 



 

 

GIF and it is typically set λ < 1, with higher values eliciting 
faster parameter migration, though with associated risk of 
instability in the filter if λ is set too high. 

III. IDENTIFICATION METHOD AND EXAMPLE 

A nominal linear model is used here as a test platform to 
illustrate appropriate data collection to apply to the GIF and 
explore its performance, convergence, robustness and 
flexibility.  This test ‘plant to be identified’ is 
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in which most matrix elements (parameters) were set 
arbitrarily, with some deliberately zero, but with A and the 
first row of C set to conform to a possible identified model 
structure.  This is in order for performance to be illustrated in 
terms of the parameter match and not solely in terms of 
accuracy in the outputs. 

The key to successful identification lies as much in the test 
(input) data used to excite the unknown plant as in the method 
which operates on the resulting u and y data.  Here, test data is 
obtained by stimulating the test plant using a 100 second 
sequence of normally distributed white noise, sampled at a 
nominally high sampling rate of 500Hz (T=0.002) and then 
filtered to remove content above 25Hz.  A small offset is also 
applied to each signal : 

 ( )1 0,1 0.1u N= +  ( )2 0,1 0.1u N= −  (0 – 25Hz) (16) 

In practice the filtered noise signal can be approximated by 
defining a vector of 5000 normally distributed random 
numbers, treating these as points timed in the range 0-100 
seconds at 50Hz, and then interpolating the data to increase 
the sampling rate to 500Hz.   

White noise data is used to ensure excitation of the system 
dynamics across all frequencies, making no prior assumptions 
about system resonance frequencies, and a high sampling rate 
is required to reduce error or instability of the filter.  Here the 
25Hz low pass filter is not a requirement for the GIF to 
function, but improves the speed of convergence by allowing 
higher setting of the tuning parameter λ. The offset on each 
input is valuable to identify any system which is known to, or 
may contain non-zero elements in D.  Its presence provides a 
significant zero frequency content, forcing separated 
determination of the C and D matrices. 

Note that very little a priori knowledge of the system has 
been assumed here – the cutoff at 25Hz is simply ‘well above’ 
the highest dynamic frequencies of interest, and the 

appropriate range could easily be determined for any entirely 
unknown system by observation of output PSD in response to 
high bandwidth white noise inputs.  Alternative input types 
could be considered, and these are likely to be effective, but 
the resulting models may be reliable only in the frequency 
range of the prescribed inputs; of course this might be done 
deliberately to identify a simple model for a specific limited 
purpose. 

Output data was obtained by simulation of model eqns (15) 
from zero initial conditions and with outputs sampled at the 
same rate as the inputs.   Only input and output data vectors 
(u, y) defined at each of the time samples k=1-50000 are 
provided to the GIF.  Note that, in general it is wise to 
normalise both u and y prior to identification, eg by scaling 
according to the RMS of each signal, in order to maximise 
conditioning in the identified model, but in the examples 
shown here the outputs naturally emerge with similar 
magnitudes to the inputs, so this is unnecessary.  For its first 
iteration the GIF is initialised with ‘true’ states 1 0nz − = , with 
parameter states associated with the eigenvalues, ( )1 2 1n nz + − = −  

and with most of the remaining parameter states ( )2 1 0n mz + − = ; 

constrained c parameters within ( )2 1n mz + − are set to 1.  This 

ensures the identified model initialises in a stable form but 
with unknown parameters.  Various alternative starting 
conditions, using randomised ( )2 1n mz + − and a range of 

alternative (negative) ( )1 2n nz + −  have been tested without 

significant variation in the results.  A fast setting of λ = 1 is 
used for the majority of results discussed below and (although 
it is insensitive), P can sensibly be initialised P0 = Q. 

The GIF is operated over the available 100 seconds of data 
repeatedly – essentially ‘rinsing’ the data through the filter 
multiple times.  At the start of each iteration the true states are 
(appropriately) reset to zero, but all the parameter states, K 
and P matrices are carried over from the last step of the 
previous iteration. 

IV. IDENTIFICATION RESULTS 

A. Convergence 
First consider a simplified test, identifying model equations 

(15) from the two inputs to just the first output.  In the first 
two iterations of the GIF, illustrated in Fig 1, all parameters 
rapidly diverge and some then start to converge, with the set at 
the end of iteration 2 providing output accuracy R = 99.4%  

 
Fig. 1: Development of parameter values in the first two iterations 
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Here we use the ‘percentage explanation’ measure of 
performance 
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In subsequent iterations accuracy rapidly reaches very 
nearly 100% (Fig. 2a) while the parameters take around 100 
iterations to converge finally to a settled, final value (Fig. 2b). 
On the mid-range PC used to conduct these tests, 100 
iterations took around 4.4 minutes. Trace(P) provides a simple 
single variable which can be used to detect convergence (Fig. 
2c); the P matrix is the covariance of expected error in the 
states, so when all parameter states converge, so do their 
expected error.  Alternatively a sum of the parameter states 
could be used for the same purpose.  Note how different 
combinations of parameters achieve very close to 100% 
accuracy through iterations 2 – 100, yet the final parameter 
values conform very accurately to the original model (table 1).  
Interestingly the identified b51 parameter is not accurate – this 
demonstrates its relative insensitivity in influencing the 
output.  One of the eigenvalues has also converged 
‘incorrectly’ with real part -9.5 rather than -8 and in fact this 
will be true of most identification results shown here. 

 

 

 
Fig. 2: Explanation and parameter convergence metrics (to 1 output) 

Table 1: Final identified parameters (to 1 output) 
Identified parameters (source model parameters) 
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Repeating the exercise with the GIF applied to all three 

outputs illustrates the point further.  Fig. 3 shows parameter 
and trace(P) divergence, in spite of 100% accuracy, and table 
2 highlights the unexpected results, including a coupled pair of 
ill-conditioned and insensitive parameters; in practice 
however, any model taken beyond around the 10th iteration is 
accurate and successful. 

 

 

 
Fig. 3: Explanation and parameter convergence metrics (to 3 outputs) 

Table 2: Final identified parameters (to 3 outputs) 
Identified parameters (source model parameters) 

-15.95 
(-4) 0 0 0 0 0.029 

(0.1) 
-37.6 
(0.1) 

0 -13.94 
(-15) 

0.57 
(10) 0 0 4.39 

(0.3) 
41.55 
(-3) 

0 -0.57  
(-10) 

-13.94 
(-15) 0 0 -2.19 

(1.5) 
-6.94 
(0) 

0 0 0 -9.46  
(-8) 

39.32 
(40) 

9.75 
(10) 

-0.36  
(-0.5) 

0 0 0 -39.32  
(-40) 

-9.46  
(-8) 

-0.17 
(0.7) 

1.00 
(1) 

1 1 1 1 1 0.0108 
(0) 

-0.002 
(0) 

-0.367 
(2) 

-0.606 
(0.3) 

-1.55 
(0.35) 

-1.36  
(-1.35) 

-0.054 
(-0.06) 

1.49 
(1.5) 

0.670 
(0.67) 

7.25  
(-2.75) 

9.45  
(-1.3) 

16.84 
(3.6) 

1.41 
(1.4) 

0.756 
(0.77) 

-0.182 
(-0.2) 

1.40 
(1.4) 

0 20 40 60 80 100
-40

-30

-20

-10

0

10

M
od

el
 p

ar
am

et
er

 v
al

ue
s

0 20 40 60 80 100
0

20

40

60

80

100

%
 E

xp
la

na
tio

n 
(R

)

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

Tr
ac

e(
P

)

Iteration

0 20 40 60 80 100
-40

-30

-20

-10

0

10

20

M
od

el
 p

ar
am

et
er

 v
al

ue
s

0 20 40 60 80 100
0

50

100

%
 E

xp
la

na
tio

ns
 (

R
)

0 20 40 60 80 100
0

200

400

600

800

Tr
ac

e(
P)

Iteration

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 



 

 

In the above example c parameters were constrained only in 
the first output, to allow easier comparison of identified 
parameters.  However the suggested method prescribes 
sharing the c constraints across all three outputs, and we 
should have constrained as 
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It was suggested this would allow a better conditioned model 
to evolve.  

 

 

 
Fig. 4: Explanation and parameter convergence metrics  

(with better constraints to 3 outputs) 
 

Table 3: Final identified parameters  
(with better constraints to 3 outputs) 

Identified parameters (source model parameters only given 
here where comparison is meaningful) 

-4.10 
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0 -14.93 
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Indeed this is the case; Fig. 4 shows better convergence and 

table 3 gives the final model, this time with many variables 
not directly comparable to the original model due to the 
revised constraint structure. As in table 1, only parameter b51 
is now ‘incorrect’.  Note that in this and the above 
experiments the identified model states are actually identified 
in a different order to that of equations (15), so the states (and 
hence model parameters) have been re-ordered to aid 
comparison in the tables. 

B. Robustness to Noise 
Returning to a single output case, zero mean white noise 

was added to the output in proportion to its RMS in ratios 10, 
30, 50 and 70% prior to identification.  The GIF converged in 
all cases, with predictably lower performance (table 4) but 
note that when the identified model outputs were then 
compared with noise-free original data, R0 in the table, 
performance remains above 99% even in the worst case.  
Identified model parameters vary slightly as noise increases, 
but the technique and ultimate performance of the underlying 
models remains robust.  Although not illustrated, similar 
results were seen from models identified for all three outputs.  
Of course any systematic bias in the noise would result in a 
model with modes identified to explain that bias. 

 
Table 4: Converged model explanations under  

the influence of noise in the output 
 Added noise ratio 

Explanation 10% 30% 50% 70% 
R (of noisy data) 98.97 91.75 79.45 66.84 
R0 (of clean data) 99.96 99.97 99.60 99.90 

 

C. Reduced and Higher order Models 
If we assume inputs and outputs have been collected 

without knowledge of the source model order, it should be 
possible to establish the best order choice by running a series 
of identifications with incremental n.  Consider identifications 
from all three outputs of model equations (15) with C 
constraints as prescribed in the method, ie 
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Accuracy, trace(P) and parameter convergence results for 
3rd – 7th order fitted models are compared in Fig. 5; some 
results in Fig 5a and Fig 5b have been scaled here – the 
intention is to illustrate their divergent or convergent nature, 
and for this reason Fig 5a illustrates only the most divergent 
parameter in the set. 

These results shed some light on the full output 5th order 
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results seen earlier.  Here we see that all order choices apart 
from n=4 and n=5 result in divergent P and some divergent or 
slowly varying parameters; conversely we see very fast 
convergence in the 4th order result.  As we would expect, final 
accuracy increases with model order; clearly any well-posed 
model with a greater number of parameters should fit the data 
with higher accuracy, and all results with n above 3 produce 
excellent explanations.  Clearly the result at n=3 would be 
rejected, but results at n=6 or 7 are also undesirable, since P 
diverges markedly, even though most of the parameters do  
seem to settle (with some drift, as seen in the most divergent 
parameters illustrated). 

 

 

 
Fig. 5: Explanation and parameter convergence metrics  

(with varying n) 
 
We know the original model has five eigenvalues, but the 

best trade-off between accuracy and a consistent (well 
conditioned) identified model is achieved with four.  This is 
because the dynamic influence of the source model’s 
eigenvalue at -4 is very weak in combination with the other 
modes; it turns out that the source model itself has been 
arbitrarily devised with poor conditioning.  Identifications 
with five states and more than one output can yield unreliable 
estimates for the single eigenvalue, along with corresponding 
divergent parameters associated with it (in the C matrix).  
Provided the objective of any real identification is extraction 
of the best possible model to describe the outputs, the four 
state solution here is an excellent result, regardless of the fact 
it doesn’t replicate the original model.  For comparison, it’s 
eigenvalues are identified at 1,2 9.57 39.38 jλ = − ±  and 

1,2 12.68 10.27 jλ = − ± . 

The GIF is an effective identification tool because a) results 
above demonstrate it can perfectly identify even a poorly 
conditioned model, and b) by incremental exploration of 
required model order, it is easy to establish the lowest order 
model which best explains the outputs. 

V. CONCLUSION 
A novel method for system identification using a simplified 

extended Kalman Filter has been presented. The filter 
identifies a linear model of any order from multiple input and 
multiple output data sources alone, without the need for any 
understanding of the underlying system dynamics.  The model 
is identified in a modal canonical form, and the presented 
example shows that it can be identically matched where there 
is no noise, and matched with a high level of accuracy under 
high levels of noise, provided the noise does not correlate with 
the system.  The method has just one tuning parameter, which 
influences speed, but not accuracy of convergence, and clear 
convergence metrics have been demonstrated.  Further, by 
progressively incrementing model order it is easy to identify a 
reduced order model to approximate a complex system, and it 
is straightforward for the user to determine the best 
compromise between accuracy and good conditioning.  
Finally, it is in fact also very straightforward to extend the 
remit of this method beyond linear identification.  Any 
smoothly nonlinear model structure can be identified using the 
same approach, and results exploring nonlinear model 
identification will be explored in future publications. 
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