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Abstract—This paper develops a Bayesian estimation method
to estimate source parameters of a biochemical source using a
network of sensors. Based on existing models of continuous and
instantaneous releases, a model of discrete and periodic releases
is proposed, which has extra parameters such as the time interval
between two successive releases. Different from existing source
term estimation methods, based on the sensor characteristic of
chemical sensors, the zero readings of sensors are exploited in
our algorithm where the zero readings may be caused by the
concentration being below the threshold of the sensors. Two
types of Bayesian inference algorithms for key parameters of the
sources are developed and their particle filtering implementation
is discussed. The efficiency of the proposed algorithms for
periodic release is demonstrated and verified by simulation
where the algorithm with the exploitation of the zero readings
significantly outperforms that without.

Index Terms—Source-term estimation, Bayesian estimation,
Atmospheric dispersion model, Sensor networks

I. INTRODUCTION

Toxic or harmful materials released from biochemical
sources, which typically spread widely via winds in the atmo-
sphere, pose serious threats to both natural environment and
human lives. Motivated by the growing concern of potential
risks of biochemical accidents or attacks in the modern society,
recently increasing research attentions have been attracted to
early detection and rapid localisation of sources of biochemical
releases [1], [2].

To estimate the source parameters from the contaminant
detected in an area of interest, a set of measurement data on
the concentration of the contaminant in the atmosphere and a
relevant atmospheric transport and dispersion (ATD) model of
the contaminant are needed. To obtain the measurement data,
typically a network of static or mobile sensors are distributed
spatially at different locations to measure the concentration
of biochemical substance in the atmosphere [3], [4], [9]. On
the other hand, ATD models describe how the biochemical
materials spread in different atmospheric conditions [5]. Based
on an assumed ATD model and real-time measurement data
from sensors, various methods have been proposed to estimate
the parameters of the source releasing biochemical materials,
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of which the optimization-based technique and the Bayesian
technique are two typical approaches as reviewed in [2].
Compared with the optimization-based techniques [6], [7],
the Bayesian technique has the advantage that it quantifies
the estimation uncertainty by providing a probability density
distribution of the source-term parameter [8]. In this work, we
try to develop a Bayesian estimation approach for the source
term estimation (STE) problem using the measurment of a set
of static sensors.

How to localise and estimate a biochemical source that
releases discretely instead of continuously is our first research
motivation. As discussed in [17], most of existing researches
on source localisation are based on the assumption of con-
tinuously emitting sources. Such an assumption simplifies the
problem as the classic Gaussian plume model applies well.
However, the Gaussian plume model cannot be adapted to
discretely releasing sources because, as a steady-state model,
it cannot characterise the concentration distribution formed
by a series of discretely-releasing events. To bridge the gap,
we firstly develop an ATD model for the discretely-releasing
source based on the Gaussian puff model of instantaneously-
release source [17]. Specifically, the essential parameters of
the release starting time and the time interval between two
successive releases are both embedded in the developed model.

The second research motivation comes for the phenomenon
observed from experimental data of field tests on boichemical
source localisation. As described in [11]–[13], it is found that a
considerable number of sensors in the field tests do not report
any reading even though no faults happen in these sensors.
In practice, due to the intrinsic limits of sensors, a sensor
will not be triggered to output a reading if the concentration
level is less than the sensor’s threshold. Under turbulent
meteorological conditions, the concentration distribution of
biochemical contaminant in the atmosphere varies greatly from
location to location. As a result, the concentration at the
locations far away from the puff centre is highly likely to
be less than the threshold of the sensors. Traditionally, only
the valid measurements received from the sensors are used to
estimate the source-term parameters while all the ”silent” sen-
sors without readings are ignored. Actually, the non-existance
of reading itself does provide useful information. That is, the
concentrations at the locations of the ”silent” sensors are less



than the sensors’ threshold. Such hidden information, once
being exploited appropriately through information fusion, may
substantially improve estimation performance of the source
parameters.

The phenomenon of non-existence of readings has been no-
ticed and addressed in [18], [19], where a probabilistic model
of the existence and non-existence (called detection/non-
detection in [18], [19]) event was assumed. In this paper, we
will not follow such an assumption as the model parameters
might be difficult or impossible to known in real-world ap-
plications. Instead, we formalise the observation that sensors
will have no readings if and only if the concentration is below
the threshold of the sensors.

In this paper, a particle filter based algorithm is proposed
for the STE problem of the discretely-releasing source. First,
the STE problem is formally defined based on our proposed
Gaussian model for discrete releases. Then a particle filtering
framework is adopted to estimate the source parameters. In
particular, a customed importance weight updating step is put
forward in the proposed particle filtering algorithm that takes
into account of measurements of all sensors: both the ones
with and the ones without readings. Following the formula
of Bayes theorem, the hidden information of no reading
from sensors are incorporated explicitly in the process of
Bayesian inference. Simulations are presented to compare
the performance of our proposed algorithm to the one that
considers only sensors that report readings.

The remainder of the paper is organised as follows. In
Section II, preliminary knowledges of ATD models and the
measurement model are presented and the Gussian model
for discrete releases is developed. The STE problem we
investigate in this paper is formally presented in Section III.
In Section IV, the conceptual solution is described followed
by the sequential Bayesian algorithm used to implement the
conceptual solution. An illustrative run and Monte Carlo
simulations with other strategies are presented and discussed
in Section V. The paper is finally concluded and the future
research direction is put forward in Section VI.

II. PRELIMINARY MODELS

Depending on the release patterns of the source, e.g. contin-
uous or instantaneous, different ATD models are proposed to
describe the concentration distributions formed by the emitted
materials in the atmosphere. In this paper, we aim to estimate
source term parameters of discrete releases. To the end, we
first briefly introduce two established Gaussian models and
then extend them to modelling the atmospheric dispersion of
discrete releases. Based upon the proposed model, we define
the STE problem of discrete releases formally.

A. Gaussian plume and puff models

Two classic Gaussian models are widely used for describing
the ATD process. The Gaussian plume model applies well if
a steady atmospheric dispersion is formed by continuous bio-
chemical release, while the Gaussian puff model characterizes
the dispersion process after an instantaneous release.

Gaussian plume model: this model is derived from the
turbulent diffusion equation under the assumption of constant
wind speed and a point source continuously releases with
constant rate [5]. Define the downwind, crosswind and vertical
directions as the x-axis y-axis, and z-axis, respectively. The
concentration of the plume at location P is given as follows:

C1(x, y, z, θ1) =
qs

2πūσyσz
exp

(−(y − ys)2

2σ2
y

)
×
[

exp
(−(z − zs)2

2σ2
z

)
+ exp

(−(z + zs)
2

2σ2
z

)]
(1)

where (x, y, z) is the coordinate of the location P and θ1 is the
source-term parameter vector, i.e., θ1 =

[
qs xs ys zs

]T
,

and qs is the release rate, (xs, ys, zs) is the coordinate of
the source location, and ū is the mean wind speed. The
dispersion parameters σy and σz are the standard deviations of
the Gaussian model in the crosswind and vertical directions,
defined as a function of downwind distance:{

σy = a(x− xs)b

σz = c(x− xs)d
(2)

where the variables (a; b; c; d) are a function of stability
category, whose actual values are stochastic variables around
the reference values given for a specific stability category [5].
for example at Pascal stability category C, the reference values
are a = 0.66; b = 0.81; c = 0.17 and d = 1.

Gaussian puff model: this model is adopted to characterise
the ATD of an instantaneous rather than continuous release
[5], [17]. The model is given as follows:

C2(x, y, z, θ1, ts, t)
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where qs is the mass of instantaneous release, (x, y, z) is the
coordinate of the location P and (xs, ys, zs) is the coordinate
of the source location Ps, ū is the mean wind speed, and σx,
σy and σz are the dispersion coefficients. The coordinates of
the centroid of the puff (xc, yc) is moved by the wind over
time according to the following equations:{

xc = xs + ūx(t− ts)
yc = ys + ūy(t− ts)

(4)

where ts is the time of the instantaneous emission, ūx and
ūy are the wind components at the x-axis and y-axis. The
dispersion parameters σx,σy and σz have the same defination
as in the Gassian plume model except that σx = σy .

B. Gaussian model for discretely periodic release

Since the ATD process of materials released periodically
at discrete times cannot be described by the Gaussian plume
model (1) or the Gussian puff model (3), we first extend the
model (3) to describe the case of periodic release at discrete



times. Assume that the source starts the first release at time
instant ts, and then emits regularly at a fixed time interval τ .
The extended Gaussian model for discrete releases we propose
is given as follows:

C(x, y, z, θ, t) =: C(x, y, z, θ1, ts, τ, t)

=

d(t−ts)/τe−1∑
l=0

C2(x, y, z, ts + lτ, t)
(5)

where C2(·) is defined in (3), and d(t− ts)/τe represents
the number of release times between the first release time
instant ts and the current time instant t. The parameter vector
θ consists of 6 parameter variables, that is:

θ =
[
qs xs ys zs ts τ

]T
.

Note that the instantaneous model (3) is a special case of
the discrete model (5) by setting τ = +∞. On the other hand,
the discrete model (5) reduces to the steady Gaussian plume
model if the release interval τ → 0. From this perspective,
the proposed discrete model bridges the two existing Gaussian
models in a unified framework.

The discretely periodic release model can be further ex-
tended to model discrete (not necessarily periodic) releases
by relaxing the assumption that the time interval between
each two consecutive releases is constant. In this sense, the
proposed model is a starting point for researches on the STE
problem with discrete releases.

C. Measurement model

Various sensors are capable of measuring the concentration
of biochemical substance in the atmosphere, but all sensors
suffer measurement noises, which is commonly characterised
by a Gaussian white noise. Ideally, the measurement model of
a sensor at location (x, y, z) for discrete releases is given as
follows:

z(t) = C(x, y, z, θ, t) + ω(t) (6)

where C(·) takes the form of (5), and ω(t) is a zero-mean
Gaussian white noise with covariance W .

In practice, due to the intrinsic limits of sensors, a sensor
will not output reading if the concentration level is less than
the sensor’s threshold. A simulation example run of discrete
release is shown in Fig. 1, where the red star denotes the
static source position, 36 sensors measure the concentrations
and the colour map represents the concentration at positions
in the x and y frames. It is found that quite a few sensors
have no output readings. This kind of phenomenon is widely
encountered when measuring the biochemical concentration in
atmospheric environment.

To take into account the non-existance of readings due
to sensor thresholds, we propose the following measurement
model:

z(k) =

{
z(k), if z(k) > δ
∅, if z(k) ≤ δ (7)

where z(k) is the ideal measurement defined in (6), and δ is
the threshold of the sensor. If the measurement z(k) is not
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Fig. 1. Example plot of the concentration from a discretely-releasing source.
The red star indicates the origin of the source, the red dots indicate sensors
with readings while the black stars sensors without readings. The colour map
denotes the concentration at the correspondence position, generated from a
discrete release.

bigger that the threshold, then the sensor will not be triggered
to output a reading.

III. PROBLEM FORMULATION

In this paper, a point source is assumed to release bio-
chemical substance regularly at discrete times. Suppose that
n sensors with the same measurement threshold δ are placed
in arbitrary but known locations to measure the contaminant
concentration. The sensors send the measurement to a fusion
centre with a sampling interval T . Define the time instant
that the first time at least one sensor measures a non-zero
concentration as the time instant 0. The concentration mea-
surements from all n sensors at time instant kT is denoted as
z(k) =

[
z1(k), . . . , zn(k)

]T
.

Denote the location of the ith sensor by (xi, yi, zi) and the
measurement from the ith sensor by zi(t). Define the sets

Z1(k) = {zi(k)|zi(k) = ∅} (8)
Z2(k) = {zi(k)|zi(k) 6= ∅} (9)

A cumulative set of all temporal measurements available
up to time kT is denoted as Z(k) := {z(j), j = 0, . . . , k}.
More specifically, define the cumulative set of non-existance
of readings measurements Z1(k) := {zi(j)|zi(j) = ∅, i =
1, . . . , n, j = 0, . . . , k} and that of the real measurements
Z2(k) := {zi(j)|zi(j) 6= ∅, i = 1, . . . , n, j = 0, . . . , k}.

To exploit the information of nonexistance of sensor read-
ings in Bayesian estimation, the conditional probability of
the event of a sensor without reading is written explicitly as
follows:

Pr(zi(k) ∈ Z1(k)|θ) = Pr(zi(k)− δ ≤ 0)

= Φ
(δ − C(xi, yi, zi, θ, kT )

W
1
2

) (10)

where Φ(x) is the normalized form of the cumulative normal

distribution function Φ(x) = 1√
2π

x∫
0

e−t
2/2 dt.



Given the measurement sequence Z(k), the prior informa-
tion π(θ) of the source parameters and the knowledge of the
measurement model (7), we aim to obtain the probabilistic
distribution p(θ|Z(k)) of the source parameter θ at each time
step kT in a sequential approach.

IV. BAYESIAN ESTIMATION FOR STE

In this section, we present the Bayesian approach to the STE
problem of discretely-releasing source. To continuously update
the estimation based on new measurement data received in
sequences, the proposed approach is performed in a sequential
manner.

A. Conceptual solution

The STE problem is formulated in a Bayesian framework
that the source parameters are estimated using Bayes theorem
when new measurement data is obtained at each time step. The
posterior probability density of θ is derived in the following
recursive form:

p
(
θ|Z(k)

)
=
p
(
Z1(k), Z2(k)|θ,Z(k− 1)

)
p
(
θ|Z(k− 1)

)
p
(
Z1(k), Z2(k)|Z(k− 1)

)
∝ Pr

(
Z1(k)|θ

)
p
(
Z2(k)|θ

)
p
(
θ|Z(k− 1)

)
∝ Pr

(
Z1(k)|θ

)
Pr
(
Z1(k − 1)|θ

)
p
(
Z2(k)|θ

)
× p
(
Z2(k − 1)|θ

)
p
(
θ|Z(k− 2)

)
∝ π(θ)

k∏
j=0

Pr
(
Z1(j)|θ

)
p
(
Z2(j)|θ

)
(11)

where p
(
θ|Z(j)

)
refers to the posterior probability density of θ

given the measurement set Z(j), p
(
Z2(j)|θ

)
is the likelihood

function of measurement Z2(j), Pr
(
Z1(j)|θ

)
is the conditional

probability of non-existance of sensor reading Z1(j) given the
parameter θ, and π

(
θ
)

is the prior probability density of the
parameter θ.

Due to the independence of the observation noises over
different sensors, the likelihood p

(
Z2(j)|θ

)
can be written as:

p
(
Z2(j)|θ

)
=

n1∏
i=1

N
(
zi − C(xi, yi, zi, θ, kT ),W

1
2

)
(12)

where n1 is the number of sensors without readings.
Note that not only the readings from sensors Z2(k), but

also the non-existance of readings Z1(k) representing an extra
information, is taken into account in the above Bayesian
inference. Thus a more accurate estimate is expected to be
obtained.

B. Particle filter with non-existance of sensor readings

In general, when a measurement model is nonlinear/non-
Gaussian, there does not exist analytically closed-from solu-
tion to the posterior probabilistic density [10], [14]. Instead
numerically efficient approaches such as sequential Monte
Carlo methods are used. In the following subsection, we will
propose a sequential Monte Carlo method for STE based

on the basic sequential importance-resampling structure of
particle filter.

In this framework the posterior probabilistic density is
represented by a set of random samples {ωjk, θ

j
k}Nj=1 as

p
(
θ(k)|Z(k)

)
≈

N∑
j=1

ωjk∆(θ(k)− θjk) (13)

where N is the number of the samples (particles), ωjk is the
normalised importance weight of particle j, j = 1, . . . , N ,
∆(·) is the Dirac function. Each particle represents the source
parameter vector. Furthermore, the characteristics of interest
for source parameters can be approximated by the parti-
cles. For example, the mean of source parameters θ̄(k) =∑N
j=1 ω

j
kθ
j
k.

Before any measurement is received (at k = 0), the parti-
cles are initialised and generated from the prior probabilistic
density with equal initial weights ωj0 = 1/N . After receiving
measurement data z(k) (k = 1, 2, . . .), the importance weight
of the particles is updated according to

ω̃jk = Pr(Z1(k)|θjk)p(Z2(k)|θjk)ωjk−1 (14)

where ωjk−1 the normalized weight of particle j at the previous
time step k − 1, Pr(Z1(k)|θjk) is the probability of the non-
existance of readings given in (10), and p(Z2(k)|θjk) is the
likelihood given in (12). In this step, the extra information
that the concentration at the locations of the sensors without
readings is less than the sensors’ threshold is incorporated into
the process of Bayesian inference. The weights are further
normalized according to ωjk =

ω̃j
k∑N

j=1 ω̃
j
k

.
To prevent the degeneracy of the propagated particles, the

particles are resampled using the system resampling method
[15], and thus all weights of the particles equal to 1/N after
the resampling step.

Since the STE problem considered is essentilly a static
parameter estimation problem, the variety of particles will de-
crease with steps as all particles will stay at the same locations
by sampling from the stationary evolution θ(k) = θ(k − 1).
As a result, the particles may converge to a single point
very soon. To overcome the described deficiency, we adopt
the regularisation techniques to improve the sample diversity
[10], [16]. The particles are moved to new places according
to the Gaussian Kernel density. The complete details of the
proposed sequential Bayesian estimation method are described
in Algorithm 1.

Compared with the Markov chain Monte Carlo (MCMC)
based STE algorithms presented in [18], [19], the algorithm
proposed in this paper works in a sequential approach and
thus leads to less computation burden, which enables a fast
and real-time application for STE.

V. SIMULATIOND AND ANALYSIS

For briefness we only simulate the two-dimensional model
on the horizontal plane (the X-Y axis) though it is quite
straightforward to extend to the three-dimensional one. The



Input : {θik−1, ωik−1}Ni=1, zk
Output: {θjk, ω

j
k}Nj=1

1 for k = 1 : K do
2 for i = 1 : N do
3 Set θik = θik−1 ;
4 Calculate weight

ω̃ik = Pr(Z1(k)|θik)p(Z2(k)|θik)ωik−1 ;
// Update weights

5 end
6 Normalize ωik =

ω̃i
k∑N

i=1 ω̃
i
k

, and calculate

N̂eff = 1∑N
i=1(ω

i
k)

2 ;

7 if N̂eff ≤ Nt then
8 Resample particles according to ωik:[

{θjk,−, ij}Nj=1

]
= Resample

[
{θik, ωik}Ni=1

]
;

// Resample
9 for j = 1 : N do

10 Draw εj ∼ K from the Gaussian kernel K ;
11 Set θjk = θjk + εj ; // Regulisation
12 end
13 end
14 end

Algorithm 1: The SMC algorithm considering zero-
reading

simulation is set up as follows. The rectangular area to be
monitored with one biochemical source (indicated by the red
star) is shown in Fig.1. The parameters of source are: its
coordinates x = 300 m and y = 400 m, the release mass
q = 1200 g, the time interval between each two consecutive
releases τ = 20 s, and the release starting time ts = −300
s. An array of 36 sensors are uniformly distributed in the
square area where the bottom-left location is at (400 m, 300 m)
and the top-right location is at (700 m, 600 m). All sensor
are assumed to have the zero-mean Gaussian noise with
covariance 0.01. the threshold of the sensors is 1g/m (1ppm)
and the sampling time is 10 s.

The atmospheric condition are assumed to fall into Pas-
cal stability category C, then the values of the dispersion
parameters in (2) are a = 0.66; b = 0.81; c = 0.17 and
d = 1. The wind has a speed of 4 m/s and in the direction of
150 from the x-axis. A population of 5000 particles is used
in the simulation. The prior of all paramters are assumed
to be uniform distributions: qs ∼ [0, 2000], τ ∼ [0, 100],
ts ∼ [−600, 0], x ∼ [0, 500], and y ∼ [0, 500].

We have run two comparative simulations under the same
setup: our proposed method, labelled as method I thereafter,
considers the readings of all the sensors (including the ones
without readings) while the other one, labelled as method
II thereafter, considers only the readings reported by the
sensors (excluding the sensor without readings). Figs. 2-6
show an illustrative run where the posterior estimates of the
source parameters at different sampling instants are shown
in the histograms and the red line is the true value of the

parameters. It can be found from the simulation results that
both STE methods produce more accurate estimation as more
new measurement data are obtained with times. However, our
proposed method (method I) taking into all sensor output
yields better estimation performance. Such a conclusion is
further validated by comparison of the root-mean-square error
(RMSE) results after 100 Monte Carlo simulations as shown
in Table I.

TABLE I
THE RMSE COMPARISION OF THE TWO METHODS

RMSE Method I Method II
Release rate (g) 114.43 559.24
Release interval (s) 3.47 10.26
Release start time (s) 15.88 31.68
X coordinate (m) 69.67 71.39
Y coordinate (m) 15.54 19.17

(a) method I (b) method II
Fig. 2. The estimate of the release rate

(a) method I (b) method II
Fig. 3. The estimate of the release interval

(a) method I (b) method II
Fig. 4. The estimate of the release starting time

VI. CONCLUSION

In this paper, a sequential Bayesian estimation method has
been proposed to estimate the source term parameters of



(a) method I (b) method II
Fig. 5. The estimate of the x coordinate of the source location

(a) method I (b) method II
Fig. 6. The estimate of the y coordinate of the source location

discrete releases of biochemical material into the atmosphere.
A practical atmospheric transport and dispersion model of
discrete releases has been first proposed based on existing
model of instantaneous release and that of continuous releases.
To make the best of all sensors that measure the concentra-
tions of the biochemical materials in atmosphere, the sensors
that are not triggered to report readings are characterised
via an explicit probabilistic discription. Furthermore, such a
characterisation is embedded in the proposed particle filtering
algorithm for source term estimation. Simulations demonstrate
the effectiveness of our proposed method in estimating the
source term parameters of discrete releases.

In this paper, it is assumed as a priori that the releases
occur regularly in discrete times. In practical applications, it
is quite possible that it is not known beforehand whether the
release is continuous, discrete or instantaneous. Instead the
release model need to be estimated in real time. One of our
future research direction is to develop an estimation method
that is able to identify the release model and to estimate the
source parameters simultaneously using the multiple model
based particle filter techniques.
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