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This paper considers identification of all significant vehicle handling and driveline dynamics of a 
test vehicle, including identification of a combined-slip tyre model, using only those sensors 
currently available on most vehicle CAN buses.  The method extends previous work using 
augmented Kalman Filter state estimators to concentrate wholly on parameter identification, and it 
compares Extended and Unscented Kalman filter algorithms.  Using an appropriately simple but 
efficient model structure, all of the independent parameters are found from test vehicle data, with 
the resulting model accuracy demonstrated on independent validation data.  The method is suited 
to applications of system identification, but also in on-line model predictive controllers or 
estimators.  It can also operate in real-time, so the model could be continuously identified to 
maintain accuracy with each new journey. 
 

Topics / Vehicle Dynamics, Tyre Model, Modeling and Simulation, State Estimation, System Identification 

1. INTRODUCTION 
Several previous publications have considered 

estimation of individual parameters of a vehicle 
dynamic model, particularly for tyre and friction 
coefficient estimation [1,2].  The validity of these 
(necessarily simplified) models also depends on many 
other fixed, estimated parameters. Usually, even if these 
other values are physically accurately set, the simplified 
model can be made to perform better if they are tuned or 
also identified. 

Here we embark on an ambitious attempt to identify 
all the independent parameters in a simplified whole 
vehicle handling model, including yaw and roll 
freedoms, independent combined-slip load dependent 
tyres and appropriate drivetrain lags.  This is achievable, 
given recent findings that Kalman filter methods can be 
applied to identify all parameters in any well- 
conditioned model structure [3]. 

In the extended abstract we demonstrated the 
principle by simulated identification of longitudinal tyre 
dynamics, including wheel-spin and lock, using an 
Extended Kalman Filter.  In this final paper we consider 
data collected from a test vehicle carrying out medium 
to high magnitude manoeuvres including wheel-spin 
and terminal understeer, in order to build a model which 
is valid over the whole range of the tyres.  We also 
consider the relative advantages over EKF of using the 
more computationally efficient, Unscented Kalman 
Filter for the identification process. 
 
2. IDENTIFYING EXTENDED KALMAN FILTER 

The standard Extended Kalman Filter (EKF) operates 
on nonlinear system and sensor models f and h, which 
relate the state vector x, measured sensor set y, known 
inputs u and model parameters θ through 

 ( ), ,= +x f x u θ ω  (1) 

 ( ), ,= +y h x u θ υ  (2) 
ω  represents state propagation and modelling error, 

υ is the sensor error, and an optimal filter can be 
derived using estimates or expectations of the error 
covariance matrices : 

 ( ) ( )     T TE E= =Q ωω R υυ  (3) 
The EKF also requires model Jacobians to be 

evaluated at each time step, defined 
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For further details of the full EKF see [2].  
The Identifying EKF (IEKF) takes advantage of the 

fact that f and h are general nonlinear functions of x and 
θ, defining an extended state vector z with extended 
state derivatives set zero for the parameter states : 
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 (5) 
It is computed using a sequence of equations which 
develop a time-varying estimate of state error 
covariance, Pk and Kalman gain Kk; at each time step of 
the recorded time histories, compute 
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The final equation in set (6) combines Euler 
integration of the system using time step T with state 
and parameter adaptation driven by the output error, 
(known as the innovation sequence).   
 
3. UNSCENTED KALMAN FILTER 

The unscented Kalman filter (UKF) identifies its 
own error statistics at each iteration, and hence avoids 
the need to use Jacobians.  According to [4],[5], a 
sample of (2n+1) so called sigma points are selected 
around the nth order state vector, at each instant k in 
time: 
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where { }( ) k i
n k+ P  is the ith column of the matrix 

square root of ( ) kn k+ P (obtained here using Cholesky 
decomposition) and Pk is the current estimate of state 
error covariance.  These sigma points are propagated by 
the model, here as for IEKF, using Euler approximation: 

 ( 1) ( , , )i k ik kT+ =χ f χ u θ  (8) 

and intermediate estimates for the propagated state and 
covariance matrix are computed by weighted averages: 
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Similarly, average outputs are obtained according to 
the output model : 

 ( 1) ( , , )i k ik k+ϒ = h χ u θ   

 1 ( 1)
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The UKF then propagates output error covariance 
according to the transformed sigma points: 
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and uses this together with a cross correlation estimate 
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to find the Kalman gain by 
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State and covariance estimates are then updated 

using the innovation sequence, in a similar way to 
IEKF: 

*
1 1 1 1

T
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The above UKF derivation is common to all 
implementations of state and parameter estimation, so 
the simple substitution of x in the above, with z from 
eqn (5) provides the identifying filter. 

 
4. VEHICLE MODEL 

The vehicle model is based on the well-known three 
degree of freedom model, simulating yaw, roll, and 
sideslip using a load dependent, combined-slip Pacejka 
tyre model.  A fourth, longitudinal degree of freedom is 
included, so the principal equations of motion are 
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roll kinematics: pϕ =  (18) 

Standard SAE axes are used, fixed relative to the 
vehicle wheelbase, and the wheels are labelled (1-4) in 
ascending order as (front-left, front-right, rear-left, rear-
right). Equal half-track c is assumed, with axles 
separated distances a and b from the front and rear axles 
respectively, and vertical suspension geometry is based 
on fixed roll centres hR(f,r) and CG height hG such that  

 ( )0
r
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The forces controlling the vehicle body motion 
( , )x i y iF F  allow for large steer angles 
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based on lagged tyre forces, where each of the 8 
elements are lagged to simulate relaxation within the 
tyre 
 * 1 *

/ , / , / ,( )tx y i tx y i tx y iF F Ft −= −   (21) 

The tyre forces ( , )t x i t y iF F  are modelled according 
to a slightly simplified Pacejka magic formula 
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using normalized slip and isotropic similarity scaling 
[6],[7].  The normalized slip vector is 
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where S is the longitudinal slip ratio, and a is the slip 
angle at each tyre contact patch, 
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based on wheel oriented velocities   
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The resulting tyre force vector is then  
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Vertical tyre loads Fz are calculated from static 
weight distribution, modified to accommodate lateral 
load transfer using separate front/rear distributions 
according to : 
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and longitudinal load transfer, according to a rigid, 
zero pitch approximation 
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5. IMPLEMENTATION 
Test data were obtained from a ’08 MY Jaguar XF 

equipped with an OXTS 3200 inertial navigation (IN) 
device, driven on a dry proving ground.  For the 
identification, input data is comprised of steer angle and 
the four wheel speeds, and the outputs are CG 
longitudinal and lateral accelerations and body roll rate, 
modeled as 
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All the above measurements with the exception of 
body roll rate were taken from the vehicle CAN; 
although roll was measured using the IN, this sensor 
may already be available in other CAN sets, or would 
be cheap to add.  IN measured vehicle speed, roll angle, 
yaw rate and lateral velocity are also used for validation 
of the identified model. 

A range of high and low magnitude, separated and 
combined slip manoeuvres were conducted, exciting 
both dynamic and steady-state vehicle responses.  One 
100 second test covering dynamic, combined excitation 
of steering, brake and acceleration inputs was used as 

the identification set, with a variety of other tests used 
for validation.  The CAN data was inter-sampled at a 
constant 100Hz  to match the IN (setting T=0.01) and all 
data was then digitally filtered at 10Hz to remove higher 
frequency noise; this is necessary to prevent instability 
in both Kalman filters, as they are propagated by Euler 
integration.  Although here we perform a batch data 
process, the identifying KFs are designed to work 
equally well in real-time, and real-time parameter tuning 
could easily be achieved using a combination of 
dynamic low pass filters and/or higher sampling rate T. 

Identification is achieved iteratively by ‘rinsing’ the 
data repeatedly through either Kalman filter, starting 
with an initial, nominal parameter set.  Both filters 
require covariance estimates and here Q is fixed 
throughout as Q = ρI, with ρ =1e-7 (see [3] for more 
detail).  For any given estimate θ̂ of the identified 
parameters, R can be obtained numerically from the 
covariance of υ using eqn (2).  Here, R is recomputed 
after each iteration.  Finally, P0 = Q, and for the UKF 
k = 1. 

The only difficult task is the decision of which 
parameters to adapt in the identification, and which to 
fix.  The KFs can identify any number of parameters, 
but if they are not independent in their influence on the 
recorded outputs, the parameters will diverge.  
Following various trials the following identification set 
was established as the minimum non-divergent set: 

id [ , , , , , , , ,

, , , , , ]
G zz xf xr f r

f f f r r r

h I K B K K C C
C D E C D E

φ φ a a=θ 

 

This allows full identification of separate front and 
rear individual tyre-suspension models but with roll 
stiffness and damping applied at a constant ratio, known 
from manufacturer supplied data.  The remaining fixed 
parameters constrain the weight balance, roll inertia and 
essential geometry (L=wheelbase), and are set 

fix [ 9567, 8635, 696,

0.08, 0.125, 0.79, 2.91]
f r xx

Rf Rr

W W I
h h c L

= = = =

= = = =

θ 

 

Friction is identified via the tyre D parameters, so 
we set µ=1.  To illustrate the effect of identifying too 
many parameters, we will also consider the case of 
adding roll centre heights hRf and hRr to the identified 
set; these are referred to below as the h+ case. 
 
6. RESULTS 

Fig. 1 and Table 1 illustrate convergence results 
over 200 passes (iterations) through the 100 seconds of 
identification data for IEKF, UKF and h+ (IEKF) cases. 
The resulting parameters are generally in the range 
expected, with the front tyre having lower stiffness and 
quicker saturation than the rear; this is consistent with 
expected front steer compliance seen in an earlier study 
[8]. 

Most striking is that although the methods are very 
different, the IEKF and UKF results are almost 
identical, not just in the final model, but throughout the 



convergence process; only the magnitude of trace(Pk) 
varies between them.   

The decision over which of IEKF and UKF is 
‘better’ therefore depends only on computational 
efficiency and complexity of code.  UKF has the 
advantage that Jacobians are not required, so it is 
simpler to code, though Matlab’s Symbolic toolbox 
means this overhead in complexity is slight.  The CPU 
time needed to evaluate F and H might make the UKF 
preferable, and this is likely to be significant for state 
estimation applications where the state vector is smaller.  
Here the long state vector z means the UKF computes 
55 sigma points at each time step, so it does not operate 
much quicker than IEKF; for each iteration UKF took 
212 seconds, where IEKF took 266.  We can therefore 
conclude UKF is the better method, being simpler and 
faster, though this may not be the case if the parameter 
count rose significantly. 

The h+ case sees a slight performance advantage in 
roll rate, but this is at the expense of a converged, 
physically interpretable model.  Note that the result in 
Table 1 is a snapshot at the 200th iteration, showing 
unrealistic negative hRf and high Kφ and hG; the 
parameters are also divergent, with Kφ and hG both 
rising. Interestingly, the ‘snapshot’ h+ model still 
delivers excellent performance across all outputs (see 
below). 

 

 

 
Fig. 1:  Identification convergence and resulting tyre 

 

Table 1 : Parameters identified 

Parameter IEKF UKF  h+  
hG (m) 0.533 0.532 0.633 
hRf (m) (0.08) (0.08) -0.344 
hRr (m) (0.125) (0.125) 0.223 
Izz (x1000 kgm2) 2.069 2.086 2.214 
Kφ (x100 kNm/rad)  1.152 1.147 1.692 
Bφ (x10 kNms/rad) 0.615 0.608 1.010 
Kxf  3.299 3.291 3.116 
Kxr 0.966 0.966 1.036 
Caf (x100 kN/rad) 0.625 0.627 0.665 
Car (x100 kN/rad) 1.283 1.286 1.311 
Cf 2.042 2.043 1.801 
Df 1.103 1.102 1.051 
Ef 0.630 0.632 0.724 
Cr 1.653 1.652 1.085 
Dr 0.954 0.955 1.155 
Er 0.720 0.714 0.711 
 

 

 

 

 
Fig. 2:  Model fit to measured, fitted output data 
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Fig. 3:  Model fit to unfitted measurements in the 

identification data 

 
Fig. 2 shows performance of the identified models 

on the fitted outputs and Fig. 3 shows good fits to 
additional unfitted outputs that were also measured.  

Validation of the models on an independent test, a 
step steer followed by combined braking, is presented in 
fig. 4.  Some error is introduced to lateral acceleration 
when the brake is applied, at 17-18 seconds, but the 
model is still acceptable.  Sadly there was a problem 
with calibration of the lateral velocity sensor – fig. 4 
shows that the model matches the essential dynamic 
behavior, but the measurement shows drift error over 
the first 10 seconds of this test, where the vehicle 
actually followed a straight path.   

 

 

 

 

 
Fig. 4:  Identified model fit to validation test 

 

Finally, figs 5 and 6 show a very positive result, 
validating the combined-slip tyre/suspension model in 
single-slip tests.  Here we see very accurate results for a 
straight line braking and acceleration test under zero 
steer; the modeled longitudinal acceleration is 
indistinguishable from the measured data despite the 
high kx excursions caused by wheel-spin. And fig. 6 sees 
high accuracy for a constant speed, random steer 
manoeuvre.  Both of these tests explore the tyre in low 
to medium magnitude and also in over-slip saturation 
conditions. 
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Fig. 5:  Model fit to straight-line brake / accel test 

 

 

 

 
Fig. 6:  Model fit to constant speed, random steer test 

CONCLUSIONS 
A full set of the independent parameters of a 

simplified 4-dof nonlinear handling model has been 
identified, including combined-slip tyre/suspension 
characteristics identified over their full range up to and 
beyond saturation.  Results show excellent acceleration 
fits in both single and combined slip validation tests, 
and the model also performs well on independent output 
variables.   

Unscented and Extended Kalman Filters have been 
tested, with the UKF proving slightly easier to 
implement and faster to run, but with both identifying 
identical models.  The choice of which parameters to 
identify and which to fix can be critical, but the 
convergence characteristics of the identified parameters 
make it easy to determine unphysical and/or under-
determined combinations. 
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