

This item was submitted to Loughborough's Institutional Repository by the author and is made available under the following Creative Commons Licence conditions.

COMMONS DEED				
Attribution-NonCommercial-NoDerivs 2.5				
You are free:				
 to copy, distribute, display, and perform the work 				
Under the following conditions:				
Attribution . You must attribute the work in the manner specified by the author or licensor.				
Noncommercial. You may not use this work for commercial purposes.				
No Derivative Works. You may not alter, transform, or build upon this work.				
 For any reuse or distribution, you must make clear to others the license terms of this work. 				
 Any of these conditions can be waived if you get permission from the copyright holder. 				
Your fair use and other rights are in no way affected by the above.				
This is a human-readable summary of the Legal Code (the full license).				
Disclaimer 🖵				

For the full text of this licence, please go to: http://creativecommons.org/licenses/by-nc-nd/2.5/ THE DEPARTMENT OF AERONAUTICAL AND AUTOMOTIVE ENGINEERING

SYSTEMS, RISK AND RELIABILITY GROUP

Safety System Optimization By Improved Strength Pareto Evolutionary Approach (SPEA2)

Jelena Borisevic and Lisa M Bartlett

1 Introduction

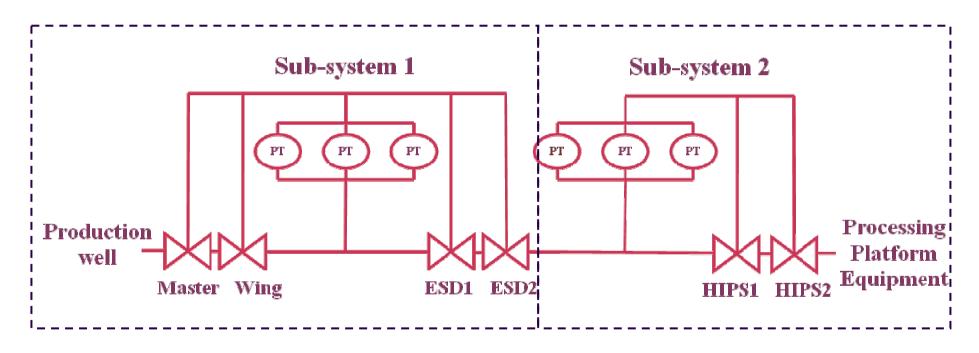
A safety system is an essential part of an industrial system as it operates to prevent the occurrence of certain conditions and their future development into a hazardous situation.

2 Aim of Work

To investigate a design optimisation scheme which yields an optimal safety system design by fully utilizing available resources.

3 Optimization Criteria

Unavailability


- Cost
- Spurious trip frequency
- Maintenance down time

AR²TS

4.1 The HIPS System

General Structure of the High Integrity Protection System (HIPS):

4.2 The HIPS System

Variable	Description	Value
θ_1, θ_2	Inspection intervals for subsystems 1 and 2	1 week - 2 years
V	Valve type	1 or 2
Р	Pressure transmitter type	1 or 2
N_{1} ,	Number of pressure transmitters fitted in	1 - 4
N_2	subsystem 1 and 2 respectively	0 - 4
<i>K</i> ₁ ,	Number of pressure transmitters required to trip	$1 - N_I$,
K_2	(activate) for subsystem 1 and 2 respectively	$0 - N_2$
E	Number of ESD valves fitted	0, 1, 2
Н	Number of HIPS valves fitted	0, 1, 2

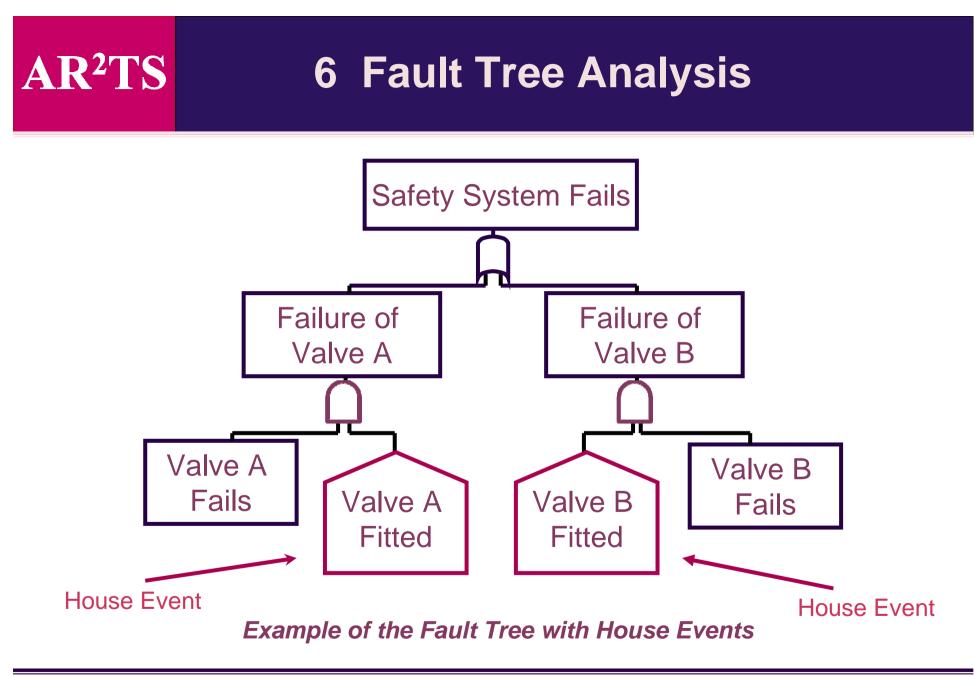
Main HIPS Variables

4.3 The HIPS System

Limitation	Maximum Value
Total system cost (COST)	< 1000 units
Maintenance down-time (MDT)	< 130 hours
System spurious failure frequency (Fsys)	1 time per year

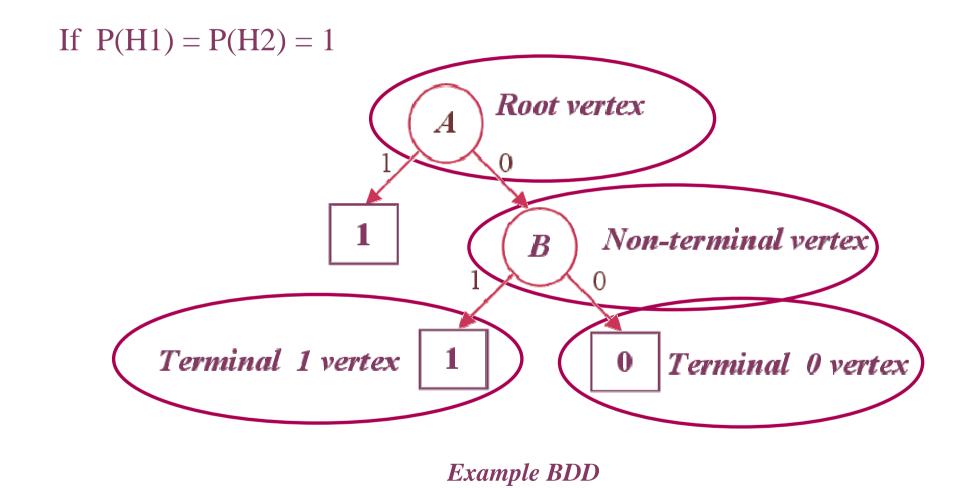
HIPS Design Limitations

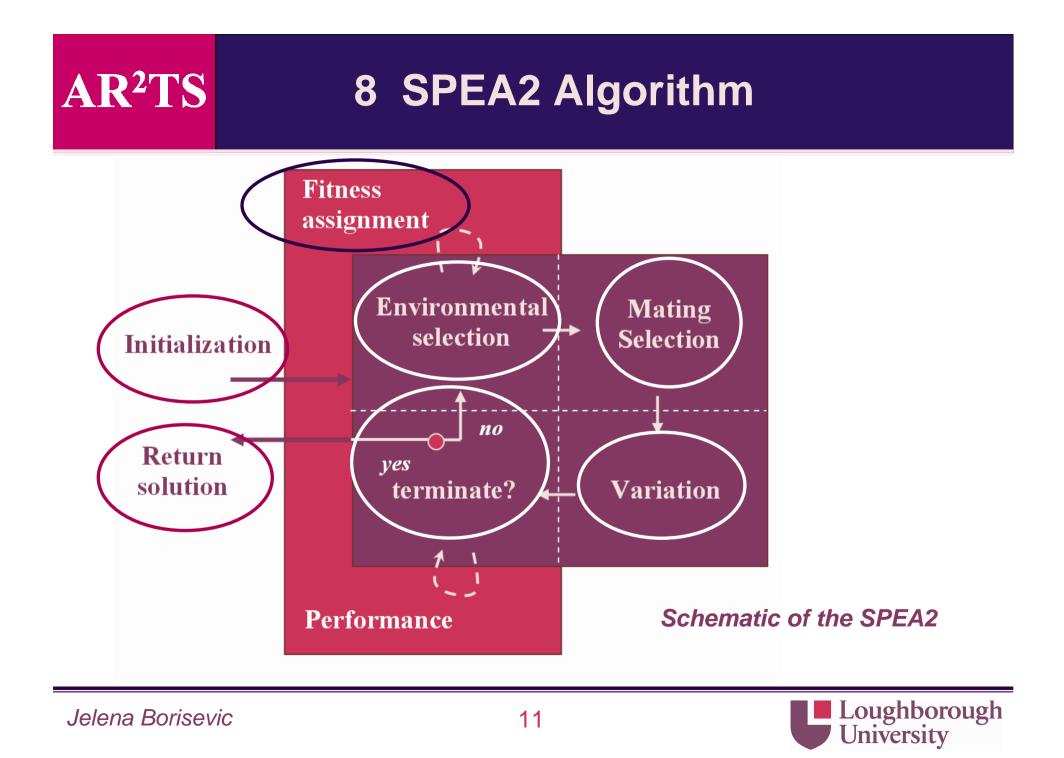
Fault Tree Analysis


+

Binary Decision Diagrams

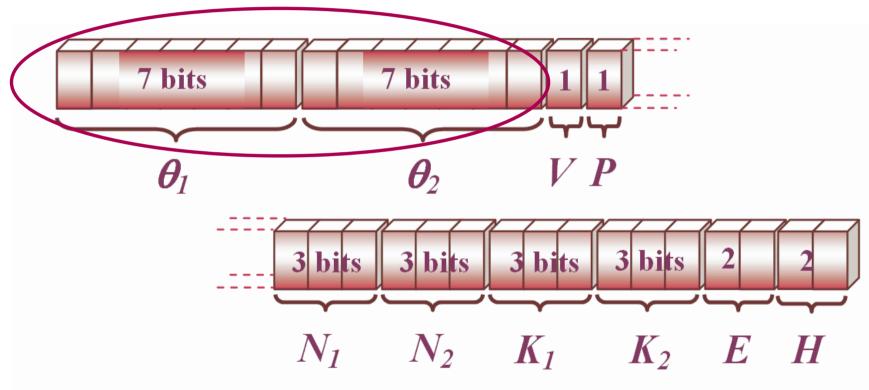
+


Improved Strength Pareto Evolutionary Approach (SPEA2)



7 Binary Decision Diagrams

AR²TS



9.1 SPEA2 Implementation

Coding and Initializing the Population:

Total length = 32 bits

9.2 SPEA2 Implementation

Optimization Parameters Evaluation:

- MDT = MDT(subsystem1) + MDT(subsystem2) < 130 (2)
- $\square Penalized Qsys = Qsys + Penalties$ (3)

where

Penalties = Cost_pen + MDT_pen + Spurious_trip_pen

10.1 Results

Run No.	Cost	MDT	F_{sys}	$\mathcal{Q}_{\mathrm{sys}}$
1	592	129.7008	0.455	4.5e-7
2	512	129.6974	0.332	8.33e-4
3	582	128.7361	0.324	6.8e-4
4	922	128.2273	0.718	1e-6
5	882	129.1590	0.166	1e-6
6	992	129.2523	0.552	1e-6
7	852	128.3286	0.245	6.55e-4
8	542	128.9881	0.324	8.45e-4
9	872	129.9032	0.377	1e-6
10	862	129 7309	0 999	1e-6
Average values	761	129.1724	0.449	3.01e-4

Fittest Designs after 10 Runs of SPEA2 Program (100 generations each)

10.2 Results

		GAs	SPEA2
	No. of ESD valves (E)	0	0
Subsystem	No. of PTs (N_I)	2	1
1	No. of PTs to trip system (K_1)	1	1
	Maintenance test interval (θ_I)	29	25
	No. of HIPS valves (H)	2	1
Subsystem	No. of PTs (N_2)	3	3
2	No. of PTs to trip system (K_2)	2	3
	Maintenance test interval (θ_2)	32	73
Valve type (V)		2	1
PT type (P)		1	2
MDT		128.43	129.7008
Cost		822	592
Spurious trip occurrence (F_{sys})		(0.717	0.455)
Sys	tem unavailability (Q_{sys})	7.6e-4	4.5e-7

Results Comparison

11 Conclusions

- The proposed technique has been successfully applied to a high integrity protection system (HIPS) and produced better results for system design optimization comparing to those obtained by the simple GAs.
- Important advantage of the SPEA2 is that it is faster and requires less memory resources.

12 Future Work

Application of the technique to the larger and more detailed safety system.

Testing the effectiveness of the technique on the system with dependencies.

Thank You Very Much!

