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Abstract

Safety systems are designed to prevent the ocagr@incertain conditions and their
future development into a hazardous situation. dtresequence of the failure of a
safety system of a potentially hazardous indussiatem or process varies from
minor inconvenience and cost, to personal injugnicant economic loss and death.
To minimise the likelihood of a hazardous situatisafety systems must be designed
to maximise their availability. The purpose of tlpaper is to describe a design
optimization scheme using a multi-objective genatgorithm applied to an offshore
platform process. The optimization criteria invauenavailability, cost, spurious trip
and maintenance down time to obtain an optimakgafestem design.

Analyses of individual system designs are carrietusing the latest advantages of
the fault tree analysis technique and the binargisttn diagram approach. The
improved strength Pareto evolutionary approach f&Es chosen to perform the
system optimization resulting in the final desgpecifications. The results produced
using this method are compared to those using glesiaobjective optimization
approach. The overall conclusions show the bemwéfitsing this technique for the
application system.

1. Introduction

Safety systems installed on potentially hazardolentprequire the maximum
likelihood of working on demand. Therefore, it mgderative that the best use of
available resources is made and an optimal not gusiquate system design is
produced.

The traditional engineering design process involvdsial and error type approach,
where a design is created, analysed, and compdtiedvpredetermined criterion of
acceptability. These approaches produce a resudtystem design that is usually
adequate rather than optimal. To find an optingatesn design a process is required
which considers a number of design alternativess highly unlikely that that the
design parameters can be manually selected sutcthéhaptimal system performance
is achieved within the available resources.

The majority of safety systems involve objectivadtions and constraints that are too
complicated to manipulate using linear programmangd classical optimization
techniques. The modern heuristic optimization tepnes [1], have proved to be the
more efficient and preferable for safety systemsnapation, which have integer
variable design parameters, small search spacensgand linear and nonlinear
objective function characteristics. Nowadays thestmpmwerful optimization method
group is genetic algorithms (GAs) [2]. Other effict techniques are Great Deluge,
Threshold Accepting and Particle Swarm Optimizafin
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During the last decade a number of engineers hapded various methods for
different safety system optimizations. Cantoni {&ed a simulation approach for
optimal industrial plant design (to determine thieoice of system layout and
components) under conflicting safety and econonuostraints. Marseguerra [4]
proposed the multiobjective optimization schemenfoclear safety systems based on
the effective coupling of genetic algorithms (MOGand Monte Carlo simulation.
Martorell [5] considered a multiple-optimizationgbtem, where the parameters of
design, testing and maintenance act as the decisoables. This problem was
solved by several methods, with the best resultsimdd by the SPEA2-based
MOGA. Everson and Fieldsend [Bjtroduced the multi-objective optimization based
on the GAs of safety related and critical systeiftsis research and others have
shown the capability of the multi-objective apprioand is the focus of this paper.

Previous work has been performed on the high iitjegrotection system (HIPS) of
an offshore platform, using simple GAs [7]. Thigppaconsiders improving the HIPS
optimization procedure by adopting the improvedersgth Pareto evolutionary
approach (SPEA2) [8], which is a multi-objectivetiopzation technique. The
technique is combined with the fault tree [9] apidary decision diagram [10]
methods.

The remainder of this paper is divided into sixtiees. The first describes the high
integrity protection system and the design consiilens. The second considers
analysis of the system. The third overviews thanoigation technique. The fourth
represents the implementation of the SPEA2 algoritb the HIPS optimization
problem, and final sections discuss the obtainsdlt®and conclusions.

2TheHIPS System

The system design to be optimised is the High hitie§rotection System (HIPS) [7].
The main function of the HIPS is to prevent a hggassure surge passing through it.
Protection is provided for processing equipment seh@ressure rating could be
exceeded. The high pressure originates from a ptmouwell of a not normally
manned offshore platform and the pieces of equiprteerbe protected are located
downstream on the processing platform. Figure tessmts the main features of the
HIPS.

Sub-system1 Sub-system 2

RO QO

Production ¥ Processing
well —Dq—Dq DQ-D\\I DQ—DQ— Platform

Equipment
Master Wing ESDV1 ESDV2 HIPS1 HIPS2

Figure 1. High Integrity protection system
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HIPS is divided into two separate subsystems. $atesy 1 is the Emergency
Shutdown or ESD sub-system. This is the first lefelprotection of the HIPS. The

ESD system acts to close the Wing and Master vdbgesther with any ESD valves

that have been fitted when pressure in the pipakeeeds the permitted value. This
value is monitored using pressure transmitters.(PT)

Sub-system 2 provides an additional level of pridec Inclusion of the high-

integrity protection system incorporates this secdevel of redundancy. An

important fact is that the latter sub-system is plately independent in operation. Its
method of protection is the same as the ESD system.

2.1 Main Design Variables
The HIPS is a relatively simple system, yet theeeaahuge number of design options

which can be considered. Ten main design variatéssribe this particular system.
These variables, their description and evaludtioits are shown in table 1.

Variable Description Value
01, 92 Inspection intervals for subsystems 1 and 2 1 we2kears

V Valve type lor2

P Pressure transmitter type lor2
N, Number of pressure transmitters fitted |in 1-4
N subsystem 1 and 2 respectively 0-4

2
K Number of pressure transmitters required to |trip 1-N

1’ . - 1
K2 (activate) for subsystem 1 and 2 respectively 0-N,

E Number of ESD valves fitted 0,1,2
H Number of HIPS valves fitted 0,1,2

Table 1. Main HIPS Variables

It is assumed in the analysis that whatever vajpe ts selected all valves within the
system are fitted as this type. This is true of pinessure transmitter type also. In
addition, the number of pressure transmitters reguio activate the closure of valves
on subsystem 1 or 2 is a function of the numbeallesi (N,, N,).

The number of potential design variations considgijust ten design variables is
45,158,400. It would be impractical to evaluate adtively each potential design.
Furthermore, it is a complex task to understandriteraction between all the design
variables and is practically impossible for anyigesengineer to do by hand. A
technique is required to determine the ‘best’ desigtion in a more practical manner.
This is to be achieved using a computerised mubiective optimisation algorithm.

2.2 Failure Data and Design Limitations
Each hardware component of the HIPS can fail eiiihea dormant mode or
spuriously. A dormant failure can be describedhesinability of the component to

carry out its desired task on demand. In contrsistiyious failure results from the
component carrying out its desired function whisnoperation is not required. For
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the optimisation procedure information is providedthe failure rate and mean repair
time for each HIPS component in both dormant anatisps failure modes. This data
will be used subsequently when calculating the aitability and spurious trip
probability of the HIPS.

Each combination of HIPS variables gives a newesgsdesign. The choice of system
design is not unlimited. In this case, there anedhlimitations on the available
resources. The total cost of the system must ke tleemn one thousand units. The
average time each year that the system residdgiddwn state due to preventative
maintenance is a maximum of one hundred and thiotyrs. If the number of times
that a spurious system shutdown occurs is more dhaa per year then it is deemed
unacceptable. Hardware costs for each componehéigystem as well as times taken
to service each component at each maintenancareeptovided for the analysis.

3. System Analysis

The objective of the design optimization problem tlee HIPS application system is
to minimize four system optimization parametersaftalability Qss), spurious trip
frequency FEgs), cost and maintenance down time) by manipulatimg design
variables such that limitations placed on them lopstraints are not violated.
Constraints involved in this problem fall into tbategory of either explicit or implicit
constraints. The cost and maintenance down timebearepresented by an explicit
function of the design parameters. On the othedhtre system unavailability and
the number of spurious trips can only be calculdtgd full analysis of the system.
The fault tree analysis technique combined withabindecision diagrams for
quantification are implemented.

3.1 Fault Tree Analysis

As no explicit objective function exists, fault éeare used to quantify the system
unavailability of each potential design. Howeveéisian impractical task to construct
a fault tree for each design variation. This prablean be solved by including house
events in the fault tree structure.

House events are used to model two state eventhwither occur or do not occur,
and, therefore, have probabilities 1 or O [9]. Tipegvide a very effective means of
turning sections of the fault tree on and off. @h¢he advantages of this is that the
same fault tree can be used to model several sosnar

Figure 2 illustrates an example of a simple sasgstem, whose design may include
two valves A andB). The top event occurs if at least one the vafa#ésTwo house
events (“ValveA fitted” and “ValveB fitted”) are used to represent the system design
options.
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Safety System Fails

A

[ I
Failure of Valve 4 Failure of Valve B

A a

Valve A

|
Valve B Fails

[
Valve 4 Fails

Valve B
fitte d

fitted

Figure 2. Example of the Fault Tree with House Esen

As the system investigated is a safety systenahitigty to function on demand or its
availability is paramount. Therefore, the unavaligbis one performance statistic
used for determining the optimal design. The topnéwf the HIPS unavailability
fault tree represents the causes of the systermdgatb protect the processing
equipment. The top event ‘Safety system fails totgmt’ will occur if all (Wing,
Master, ESD and HIPS) valves along the pipelinetéaclose. In total the fault tree
consists of 154 gates, 38 basic events represectimgponent failures, and 40 house
events representing design options.

The spurious trip frequency for each design is alsamplicit constraint that requires
the use of fault tree analysis to assess its vdlloeise events are again used to
construct a fault tree capable of representing gautkntial design for this failure
mode. The causal relationship ‘HIPS fails spuriguslrepresented by the sub-events
‘Wing or Master Valve Fails Spuriously’, ‘ESD Sulssgm Fails Spuriously’ and
‘HIPS Subsystem Fails Spuriously’ related by ‘OBgic. The fault tree consists of
142 gates, 38 basic events and 40 house events.

3.2 Binary Decision Diagrams

The conversion of the fault tree to the BDD formatproves both the efficiency of
determining the minimal cut sets of the fault ti@ed also the accuracy of the
calculation procedure used to determine the toptgya@rameters.

A BDD can be described as a rooted, directed acypiaph (Figure 3). All paths
through the BDD start at the root verte¥) @nd terminate in one of the two states,
either 1 or 0. State 1 corresponds to the systeiinrda state 0, conversely,
corresponds to a system success. Each BDD is caupufsvertices, connected by
branches, which are divided into terminal and remmitnal. Non-terminal vertices
correspond to the basic events of the fault tree, verticesB, C and D for the
example BDD. Verticet& andO are terminal.
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Root vertex

Terminal 1 vertex Terminal 0 vertex

Figure 3. Example of the Binary Decision Diagram

The initial HIPS designs are created using the nupttion approach. The
corresponding house events within the fault treesat to TRUE or FALSE for each
design. The reduced fault tree is converted toB® for quantitative analysis. The
probability values obtained from the analysis & tavailability and spurious trip
BDDs are used within the optimization algorithns®ect the best designs.

4. SPEA2 Overview

SPEAZ2, designed by Zitzler, Laumanns and Thielgif8&n improved version of the
strength Pareto evolutionary algorithm (SPEA), d@yed by Zitzler and Thiele in
1998 [11]. It is a relatively recent evolutionaeghnique for finding or approximating
the optimal solution set for multiobjective optiration problems. SPEA2 has shown
very good performance in comparison to other mjéctive genetic algorithms [8]
and, therefore, has been selected for the HIP$h@atiion. The suggested algorithm
can be explained in six steps:

Step 1. Initialization: Generate an initial population of potential desigand create
the empty archive called external set. The resubtachive after the optimization is
complete will hold the set of best designs.

Step 2. Fitness assignment: Calculate fitness value of each potential desigthe
initial population. This fitness value represerits suitability of the design given by
the optimization criteria.

Step 3. Environmental selection: Copy all nondominated designs to the archiveggiv
the optimization is a minimization problem, the dominated solutions are those,
which have at least one smallest optimization patamvalue). If the archive is
exceeded reduce it by means of the truncation tpeherwise fill the archive with
dominated designs from the initial population. Huenber of designs contained in the
archive is to remain constant over time.

Step 4. Termination: If the maximum number of generations is reache@rmther

stopping criterion is satisfied then the set ofgige designs are those in the archive.
Algorithm complete. Else continue to step 5.

43



Step 5. Mating selection: Perform binary tournament selection with replaeetron
the archive in order to fill the mating pool (groop designs upon which genetic
modification may occur), i.e.:

a) Randomly (using uniformly distributed random nun#)eselect two
individuals out of the archive.

b) Copy the one with the better (i.e. lower for thePBloptimization
problem) fitness value to the mating pool.

C) If the size of the mating pool is equal to the 9téhe archive, then

stop, else go to step (a).

Step 6. Variation: Apply recombination and mutation operators to mha&ting pool
and set the archive to the resulting populatioodmabination is a process in which
individual strings are copied according to thetndss values, and mutation is an
operation that provides a random element in theche@rocess). Increment
generation counter and go$tep 2.

5. SPEA2 I mplementation

The C++ package was used to build the HIPS optimisasoftware called

ISPEASSOP (Improved Strength Pareto EvolutionargoAthm Safety System
Optimization Procedure). There are three main pafrtthe ISPEASSOP program.
Part one is responsible for the HIPS structuret veo is responsible for analysis
using the Binary Decision Diagram method which ghtes the HIPS unavailability
and spurious trip frequency, and part three isnaplemented SPEA2 algorithm for
the HIPS optimisation.

5.1 Coding and I nitializing the Population

The number of strings for the initial populatiotefs 1 of the algorithm) for a problem
is not defined, thus, based on the HIPS optimipmaty simple GAs [9], initial
research has used 20. Each string representsieufarsystem design depending on
the values assigned to each of its 10 parametetslg€Tl), where each parameter is
calculated according to the binary coding system.

Each parameter must be allocated a particular heafthe string, i.e. a particular
number of bits, in order to accommodate the largessible value in binary form. For
example, the parameters governing the maintenaese interval for subsystems 1
and 2, 6 and 8, respectively, require 14 bits (7 bits each) of tbwl string to
accommodate the maximum time span of 104 weeks. dackotal, each string
representing all design variables is 32 bits irgtenlIt can be interpreted as a set of
concatenated integers in binary form (Figure 4).
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Figure 4. Binary Representation of Solution String

The restricted range of values assigned to eacanper does not in each case
correspond to the representative binary range ersofution string. For this reason a
specialized procedure is used to code, to inigadimd to check the feasibility of each
string. In the initialization step infeasible styggare randomly regenerated.

5.2 Optimization Parameters Evaluation

Step two of the algorithm requires fithess assigmme&ach fitness evaluation is
dependent on the number of constraints: expliait mmplicit. Explicit ones can be
determined and easily evaluated from an explicicfion of the design variables. In
contrast, implicit constraints can only be evaldabg a full analysis of the system.
Cost of the HIPS design is an explicit coaist and is represented by equations
(1-3):

Cost = Cost(subsysteml)+ Cost(subsystem?) < 1000, (2)
Cost(subsysteml)= E(V,Ce; +V,Ce, *+ C;) + Ny(RCp, + BCp,) +261, (2)
Cost(subsystem2)= H (V;Cy; +V,Cip, +C,) + No(RCp; + BCpp) +21, 3)

where C, =C,,, is the cost of the valve type C, ., =C,,,is the cost of the valve

type 2,C,, is the cost of the PT type T, is the cost of the PT type 2, adds the
cost of the solenoid valves.

The constant 261 (equation 2) and 21 units (equadp are fixed costs of both
subsystems.

Similarly, the average maintenance down tif() is calculated as a sum of the
maintenance down time subsystem 1 and subsysteor 2ach potential design
(equations 4 - 6):

MDT = MDT(Subsysteml) + MDT(Subsystem?) < 130, (4)

MDT(Subsystem1) = %Z[E(leva +V,Me, + Mg)+ Ny (M, + BM,,) +47],  (5)

1

5

MDT(Subsystem?) = ?2[H VM, +V,Myy, + M)+ N, (BM,, + BM,, ) +13). (6)

2
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where M, = M,,,, is a test time of the valve type M., = M,,,, is the test time of
the valve type 2M, is the test time of the pressure transmitteML,, is the test
time of the pressure transmitter 2, add is the test time of the solenoid valve.

The expression 52 (equations 5 - 6) gives the number of times thstesy is down
in a year. The constant 47 (equation 5) and 13aguation 6) represent the sum of
the test times for the fixed components in eaclsgstem.

The system unavailability and spurious trip frequyemare calculated by setting to
TRUE or FALSE corresponding house events in thdt fiaee given by the design
parameters, then the BDD is formed and the requrefability and frequency are
calculated. Constraints are incorporated into tlpéinozation by penalizing the
unavailability when they are violated by the desigine constraint penalties are
explained in detail in reference 9). Therefore, @lierall unavailability of each string
consists of four parts:

1) probability of the system failure, unavailaty)iQ, ;

2) penalty for exceeding the total cost constrant

3) penalty for exceeding the total maintenancerdtme constraintM ;
4) penalty for exceeding the spurious trip comstyss, .

Each penalty is subsequently added to the systawailability. The resulting value
is a penalised system unavailabiliQ'ys, which participates in the optimization
procedure:

Qs =Q,+C,+M_ +S,. )

Fitness assignment requires the division of theufason of designs into dominated
and nondominated groups according to the followirigs: since the optimization is a
minimization problem, the designdominates the designif all a parameter values
are equal to or smaller thrparameter values and at least one of pararaetaiue is
smaller that the respectilgparameter value.

The desigra is nondominated if there is no design in the pafoih which dominates
a. To avoid the situation that designs dominatedh@ysame archive members have
identical fitness values, for each individual bdtdminating and dominated solutions
are taken into account. In detail, each desigm the archive and the population is
assigned a strength val&i) , representing the number of solutions it dominates

On the basis of th& values, the raw fithes&(i) of a designi is calculated. This

fitness is determined by the strengths of its dewars in both the archive and
population.

Although the raw fitness assignment provides a gbrtiching mechanism based on
the concept of Pareto dominance, it may fail whe@stdesigns do not dominate each
other. Hence, additional information is incorpodate discriminate between designs
having identical raw fitness values. The densitynegtion technique used in SPEA2
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is an adaptation of thieth nearest neighbour method [10], where the dermdiany
point is a decreasing function of the distancehmkith nearest data point. In this
problem the inverse of the distance to ki@ nearest neighbour is taken as a density
estimateo; , i.e. for each individual the distances to all desigh# the archive and
population are calculated using equation 8:

g, =(C(i) ~C(j))* + (MDT(i) - MDT(}))* + (Q(i) - Q({))? + (Fsys(i) - Fsys(j))* .

8
where C(i) is the cost of the-th design,Q(i) is thei-th designs penalized system
unavailability,j is from the interval [1,.., 20] with the conditidhat i # j . Obtained
distances are stored in a list or matrix. Aftertisgrthe list in increasing order, the
th element gives the distance sought, denoted asvherek is equal to the square

root of the population size. Afterwards, the dendid(i) corresponding ta is
defined by

D)= - (9)

In the denominator, two is added to ensure thatatse is greater that zero. Finally,
adding D(i) to the raw fitness valu®(i) of the design yields its fithessF (i) :

F(@i)=R(@)+D(). (10)
6. Results

Several ISPEASSOP runs have been implementedlto the algorithm parameters
for the HIPS system (used for comparison purpos#stive simple GAs results [7]).
Tables 2 and 3 represent the characteristics dftthst designs obtained after 10 runs
of the ISPEASSOP (100 generations each). The chissigns are nondominated by
most optimization parameter values.

Run No. Cost MDT Fgs Qyys

1 592 129.7008 0.455 4.5e-7
2 512 129.6974 0.332 8.33e-4
3 582 128.7361 0.324 6.8e-4
4 922 128.2273 0.718 le-6

5 882 129.1590 0.166 le-6
6 992 129.2523 0.552 le-6

7 852 128.3286 0.245 6.55e-4
8 542 128.9881 0.324 8.45e-4
9 872 129.9032 0.377 le-6
10 862 129.7309 0.999 le-6

Average values 761 129.1724 0.449 3.01e-4

Table 2. Fittest Designs by ISPEASSOP after 10 RfiA®0 Generations
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Design Variables
Run No. 2 o \% P N1 N> K1 K> E H
1 25 73 1 2 1 3 1 3 0 1
2 27 105 2 2 1 0 1 0 1 0
3 64 9 2 1 4 0 3 0 1 0
4 33 96 1 1 2 3 1 3 1 1
5 42 53 1 2 4 2 4 1 1 1
6 34 90 2 2 2 3 2 2 1 2
7 40 91 1 2 3 0 3 0 2 0
8 27 118 2 1 2 0 2 0 1 0
9 26 124 1 2 3 2 3 2 0 2
10 42 46 1 2 2 2 1 2 1 1

Table 3. Design variable values for Table 2

Table 4 shows the fittest design produced by ISPEAS program after 10 runs and
the best design obtained by single GAs [7] afterdr’s using the same parameter
values (100 generations, 0.01 mutation rate androssover rate).

GAs | SPEASSOP
No. of ESD valvesH) 0 0
Subsystem | No. of PTs k) 2 1
1 No. of PTs to trip systenkK() 1 1
Maintenance test intervab}) 29 25
No. of HIPS valvesH) 2 1
Subsystem | No. of PTs k) 3 3
2 No. of PTs to trip systenkg) 2 3
Maintenance test intervat}) 32 73
Valve type V) 2 1
PT type P) 1 2
MDT 128.43 129.7008

Cost 822 592

Spurious trip occurrencé §s) 0.717 0.455

System unavailabilityQsys) 7.6e-4 4.5e-7

Table 4. Results Comparison

Table 4 shows that the SPEA2 optimization algorithimplemented in the
ISPEASSOP program, gives better results in thatQge is lower and all other
parameters are within constraint limits. The alddaMDT resources are fully used
(MDT is very closed to 130), the total system destmaller (a price reduction of 230
units) as well as the spurious trip occurreriigg, (approximately 1.5 times smaller).

In both optimization programs the maximum numbegeherations is equal to 100.
The fittest design produced by the simple GAs chieved only in the 70th
generation. In contrast, in all 10 runs of 100 gatens of the ISPEASSOP the fittest
strings occurred in the first 10 generations. Cquosatly, the ISPEASSOP program
requires less computer memory recourses, which isngaortant advantage for large
safety systems optimization problems.
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7. Conclusions

An automated robust design optimization process been developed for the
application to safety systems. The adequacy ofystem performance in terms of
availability calculation is assessed using fadetanalysis techniques. The causes
of failure for each possible design alternativeaafafety system is represented by
a single fault tree by using the house events.uBeeof the BDD technique allows
the solution of the fault tree in the most efficiemanner.

The SPEA2 has been successfully applied to a mtgygiity protection system

(HIPS) and produced good results for system desmgimmization. The SPEA2

produced improved results compared to those olatdiyesimple GAs. Another

important advantage of the SPEA2 is that it isdiasind requires less memory
resources.

The HIPS is a relatively simple example of a saftgtem. Many systems are
much more complex and have a much larger numbedesign variables.
Therefore, the future work will be concentratedtesting the effectiveness of the
technique on larger and more detailed safety system
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