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Abstract 
 
Safety systems are designed to prevent the occurrence of certain conditions and their 
future development into a hazardous situation. The consequence of the failure of a 
safety system of a potentially hazardous industrial system or process varies from 
minor inconvenience and cost, to personal injury, significant economic loss and death. 
To minimise the likelihood of a hazardous situation, safety systems must be designed 
to maximise their availability. The purpose of this paper is to describe a design 
optimization scheme using a multi-objective genetic algorithm applied to an offshore 
platform process. The optimization criteria involves unavailability, cost, spurious trip 
and maintenance down time to obtain an optimal safety system design.  
 
Analyses of individual system designs are carried out using the latest advantages of 
the fault tree analysis technique and the binary decision diagram approach. The 
improved strength Pareto evolutionary approach (SPEA2) is chosen to perform the 
system optimization  resulting in the final design specifications. The results produced 
using this method are compared to those using a single objective optimization 
approach. The overall conclusions show the benefit of using this technique for the 
application system. 
 
1. Introduction 
 
Safety systems installed on potentially hazardous plant require the maximum 
likelihood of working on demand. Therefore, it is imperative that the best use of 
available resources is made and an optimal not just adequate system design is 
produced.  
 
The traditional engineering design process involves a trial and error type approach, 
where a design is created, analysed, and compared with a predetermined criterion of 
acceptability. These approaches produce a resulting system design that is usually 
adequate rather than optimal. To find  an optimal system design a process is required 
which considers a number of design alternatives. It is highly unlikely that that the 
design parameters can be manually selected such that the optimal system performance 
is achieved within the available resources.  
 
The majority of safety systems involve objective functions and constraints that are too 
complicated to manipulate using linear programming and classical optimization 
techniques. The modern heuristic optimization techniques [1], have proved to be the 
more efficient and preferable for safety systems optimization, which have integer 
variable design parameters, small search space regions, and linear and nonlinear 
objective function characteristics. Nowadays the most powerful optimization method 
group is genetic algorithms (GAs) [2]. Other efficient techniques are Great Deluge, 
Threshold Accepting and Particle Swarm Optimization [1]. 
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During the last decade a number of engineers have applied various methods for 
different safety system optimizations. Cantoni [3] used a simulation approach for 
optimal industrial plant design (to determine the choice of system layout and 
components) under conflicting safety and economic constraints. Marseguerra [4] 
proposed the multiobjective optimization scheme for nuclear safety systems based on 
the effective coupling of genetic algorithms (MOGA) and Monte Carlo simulation. 
Martorell [5] considered a multiple-optimization problem, where the parameters of 
design, testing and maintenance act as the decision variables. This problem was 
solved by several methods, with the best results obtained by the SPEA2-based 
MOGA. Everson and Fieldsend [6] introduced the multi-objective optimization based 
on the GAs of safety related and critical systems. This research and others have 
shown the capability of the multi-objective approach and is the focus of this paper. 
 
Previous work has been performed on the high integrity protection system (HIPS) of 
an offshore platform, using simple GAs [7]. This paper considers improving the HIPS 
optimization procedure by adopting the improved strength Pareto evolutionary 
approach (SPEA2) [8], which is a multi-objective optimization technique. The 
technique is  combined with the fault tree [9] and binary decision diagram [10] 
methods. 
 
The remainder of this paper is divided into six sections. The first describes the high 
integrity protection system and the design considerations. The second  considers 
analysis of the system. The third overviews the optimization technique. The fourth 
represents the implementation of the SPEA2 algorithm to the HIPS optimization 
problem, and final sections discuss the obtained results and conclusions. 
 
2 The HIPS System 
 
The system design to be optimised is the High Integrity Protection System (HIPS) [7]. 
The main function of the HIPS is to prevent a high-pressure surge passing through it. 
Protection is provided for processing equipment whose pressure rating could be 
exceeded. The high pressure originates from a production well of a not normally 
manned offshore platform and the pieces of equipment to be protected are located 
downstream on the processing platform. Figure 1 represents the main features of the 
HIPS. 
 

 
Figure 1. High Integrity protection system 
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HIPS is divided into two separate subsystems. Sub-system 1 is the Emergency 
Shutdown or ESD sub-system. This is the first level of  protection of the HIPS. The 
ESD system acts to close the Wing and Master valves together  with any ESD valves 
that have been fitted when pressure in the pipeline exceeds the permitted value. This 
value is monitored using pressure transmitters (PT). 
 
Sub-system 2 provides an additional level of protection. Inclusion of the high-
integrity protection system incorporates this second level of redundancy. An 
important fact is that the latter sub-system is completely independent in operation. Its 
method of protection is the same as the ESD system. 
 
2.1 Main Design Variables 
 
The HIPS is a relatively simple system, yet there are a huge number of design options 
which can be considered. Ten main design variables describe this particular system. 
These variables, their description  and evaluation limits are shown in table 1. 
 
Variable Description Value 

2  ,1 θθ  Inspection intervals for subsystems 1 and 2 1 week – 2 years 

V Valve type 1 or 2 
P Pressure transmitter type 1 or 2 

,1N  

2N  

Number of pressure transmitters fitted in 
subsystem 1 and 2 respectively 

1 – 4 
0 – 4 

1K , 

2K  

Number of pressure transmitters required to trip 
(activate) for subsystem 1 and 2 respectively 

1 – 1N ,  

0 – 2N  

E Number of ESD valves fitted 0, 1, 2 
H Number of HIPS valves fitted 0, 1, 2 

 
Table 1. Main HIPS Variables 

 
It is assumed in the analysis that whatever valve type is selected all valves within the 
system are fitted as this type. This is true of the pressure transmitter type also. In 
addition, the number of pressure transmitters required to activate the closure of valves 
on subsystem 1 or 2 is a function of the number installed ( 1N , 2N ).  
 
The number of potential design variations considering just ten design variables is 
45,158,400. It would be impractical to evaluate exhaustively each potential design. 
Furthermore, it is a complex task to understand the interaction between all the design 
variables and is practically impossible for any design engineer to do by hand. A 
technique is required to determine the ‘best’ design option in a more practical manner. 
This is to be achieved using a computerised multi-objective optimisation algorithm.  
 
2.2 Failure Data and Design Limitations 
 
Each hardware component of the HIPS can fail either in a dormant mode or 
spuriously. A dormant failure can be described as the inability of the component to 
carry out its desired task on demand. In contrast, spurious failure results from the 
component carrying  out its desired function when its operation is not required. For 
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the optimisation procedure information is provided on the failure rate and mean repair 
time for each HIPS component in both dormant and spurious failure modes. This data 
will be used subsequently when calculating the unavailability and spurious trip 
probability of the HIPS. 
 
Each combination of HIPS variables gives a new system design. The choice of system 
design is not unlimited. In this case, there are three limitations on the available 
resources. The total cost of the system must be less than one thousand units. The 
average time each year that the system resides in the down state due to preventative 
maintenance is a maximum of one hundred and thirty hours. If the number of times 
that a spurious system shutdown occurs is more than once per year then it is deemed 
unacceptable. Hardware costs for each component in the system as well as times taken 
to service each component at each maintenance test are provided for the analysis. 
 
3. System Analysis 
 
The objective of the design optimization problem for the HIPS application system is 
to minimize four system optimization parameters (unavailability (Qsys), spurious trip 
frequency (Fsys), cost and maintenance down time) by manipulating the design 
variables such that limitations placed on them by constraints are not violated. 
Constraints involved in this problem fall into the category of either explicit or implicit 
constraints. The cost and maintenance down time can be represented by an explicit 
function of the design parameters. On the other hand, the system unavailability and 
the number of spurious trips can only be calculated by a full analysis of the system. 
The fault tree analysis technique combined with binary decision diagrams for 
quantification are implemented. 
 
3.1 Fault Tree Analysis 
 
As no explicit objective function exists, fault trees are used to quantify the system 
unavailability of each potential design. However, it is an impractical task to construct 
a fault tree for each design variation. This problem can be solved by including house 
events in the fault tree structure.  
 
House events are used to model two state events which either occur or do not occur, 
and, therefore, have probabilities 1 or 0 [9]. They provide a very effective means of 
turning sections of the fault tree on and off. One of the advantages of this is that the 
same fault tree can be used to model several scenarios.  
 
Figure 2 illustrates an example of a simple safety system, whose design may include 
two valves (A and B). The top event occurs if at least one the valves fail. Two house 
events (“Valve A fitted” and “Valve B fitted”) are used to represent the system design 
options.  
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Figure 2. Example of the Fault Tree with House Events 
 
 
As the system investigated is a safety system, its ability to function on demand or its 
availability is paramount. Therefore, the unavailability is one performance statistic 
used for determining the optimal design. The top event of the HIPS unavailability 
fault tree represents the causes of the system failing to protect the processing 
equipment. The top event ‘Safety system fails to protect’ will occur if all (Wing, 
Master, ESD and HIPS) valves along the pipeline fail to close. In total the fault tree 
consists of 154 gates, 38 basic events representing component failures, and 40 house 
events representing design options. 
 
The spurious trip frequency for each design is also an implicit constraint that requires 
the use of fault tree analysis to assess its value. House events are again used to 
construct a fault tree capable of representing each potential design for this failure 
mode. The causal relationship ‘HIPS fails spuriously’ is represented by the sub-events 
‘Wing or Master Valve Fails Spuriously’, ‘ESD Subsystem Fails Spuriously’ and 
‘HIPS Subsystem Fails Spuriously’ related by ‘OR’ logic. The fault tree consists of 
142 gates, 38 basic events and 40 house events. 
 
3.2 Binary Decision Diagrams 
 
The conversion of the fault tree to the BDD format  improves both the efficiency of 
determining the minimal cut sets of the fault tree and also the accuracy of the 
calculation procedure used to determine the top event parameters.  
 
A BDD can be described as a rooted, directed acyclic graph (Figure 3). All paths 
through the BDD start at the root vertex (A) and terminate in one of the two states, 
either 1 or 0. State 1 corresponds to the system failure, state 0, conversely, 
corresponds to a system success. Each BDD is composed of vertices, connected by 
branches, which are divided into terminal and non-terminal. Non-terminal vertices 
correspond to the basic events of the fault tree, i.e. vertices B, C and D for the 
example BDD. Vertices 1  and 0 are terminal. 
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Figure 3. Example of the Binary Decision Diagram 
 

The initial HIPS designs are created using the optimization approach. The 
corresponding house events within the fault tree are set to TRUE or FALSE for each 
design. The reduced fault tree is converted to the BDD for quantitative analysis. The 
probability values obtained from the analysis of the unavailability and spurious trip 
BDDs are used within the optimization algorithm to select the best designs. 
 
4. SPEA2 Overview 
 
SPEA2, designed by Zitzler, Laumanns and Thiele [8], is an improved version of the 
strength Pareto evolutionary algorithm (SPEA), developed by Zitzler and Thiele in 
1998 [11]. It is a relatively recent evolutionary technique for finding or approximating 
the optimal solution set for multiobjective optimization problems. SPEA2 has shown 
very good performance in comparison to other multiobjective genetic algorithms [8] 
and, therefore, has been selected for the HIPS optimization. The suggested  algorithm 
can be explained in six steps: 
  
Step 1. Initialization: Generate an initial population of potential designs and create 
the empty archive called external set. The resultant archive after the optimization is 
complete will hold the set of best designs. 
 
Step 2. Fitness assignment: Calculate fitness value of each potential design in the 
initial population. This fitness value represents the suitability of the design given by 
the optimization criteria. 
 
Step 3. Environmental selection: Copy all nondominated designs to the archive (given 
the optimization is a minimization problem, the nondominated solutions are those, 
which have at least one smallest optimization parameter value). If the archive is 
exceeded reduce it by means of the truncation operator, otherwise fill the archive with 
dominated designs from the initial population. The number of designs contained in the 
archive is to remain constant over time. 
 
Step 4. Termination: If the maximum number of generations is reached or another 
stopping criterion is satisfied then the set of possible designs are those in the archive. 
Algorithm complete. Else continue to step 5. 
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Step 5. Mating selection: Perform binary tournament selection with replacement on 
the archive in order to fill the mating pool (group of designs upon which genetic 
modification may occur), i.e.: 
 

a) Randomly (using uniformly distributed random numbers) select two 
individuals out of the archive. 

b) Copy the one with the better (i.e. lower for the HIPS optimization 
problem) fitness value to the mating pool. 

c) If the size of the mating pool is equal to the size of the archive, then 
stop, else go to step (a). 

  
Step 6. Variation: Apply recombination and mutation operators to the mating pool 
and set the archive to the resulting population (recombination is a process in which 
individual strings are copied according to their fitness values, and mutation is an 
operation that provides a random element in the search process).  Increment 
generation counter and go to Step 2. 
 
5. SPEA2 Implementation  
 
The C++ package was used to build the HIPS optimisation software called 
ISPEASSOP (Improved Strength Pareto Evolutionary Algorithm Safety System 
Optimization Procedure). There are three main parts of the ISPEASSOP program. 
Part one is responsible for the HIPS structure, part two is responsible for analysis 
using the Binary Decision Diagram method which calculates the HIPS unavailability 
and spurious trip frequency, and part three is an implemented SPEA2 algorithm for 
the HIPS optimisation. 
 
5.1 Coding and Initializing the Population 
 
The number of strings for the initial population (step 1 of the algorithm) for a problem 
is not defined, thus, based on the HIPS optimization by simple GAs [9], initial 
research has used 20. Each string represents a particular system design depending on 
the values assigned to each of its 10 parameters (Table 1), where each parameter is 
calculated according to the binary coding system.  
 
Each parameter must be allocated a particular length of the string, i.e. a particular 
number of bits, in order to accommodate the largest possible value in binary form. For 
example, the parameters governing the maintenance  test interval for subsystems 1 
and 2, 1θ  and 2θ  respectively, require 14 bits (7 bits each) of the total string to 
accommodate the maximum time span of 104 weeks each. In total, each string 
representing all design variables is 32 bits in length. It can be interpreted as a set of 
concatenated integers in binary form (Figure 4). 
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Figure 4. Binary Representation of Solution String 
 

The restricted range of values assigned to each parameter does not in each case 
correspond to the representative binary range on the solution string. For this reason a 
specialized procedure is used to code, to initialize and to check the feasibility of each 
string. In the initialization step infeasible strings are randomly regenerated. 
 
5.2 Optimization Parameters Evaluation 
 
Step two of the algorithm requires fitness assignment. Each fitness evaluation is 
dependent on the number of constraints: explicit and implicit. Explicit ones can be 
determined and easily evaluated from an explicit function of the design variables. In 
contrast, implicit constraints can only be evaluated by a full analysis of the system. 
Cost  of  the  HIPS  design  is  an  explicit constraint and is represented by equations 
(1 - 3): 
 

Cost = Cost(subsystem1)+Cost(subsystem2) 1000   ≤ ,                                  (1) 
Cost(subsystem1)= 261)()( 221112211 +++++ PPsVEVE CPCPNCCVCVE ,         (2) 

Cost(subsystem2)= 21)()( 221122211 +++++ PPsVHVH CPCPNCCVCVH ,        (3) 

 
where 11 VHVE CC =  is the cost of the valve type 1, 22 VHVE CC = is the cost of the valve 

type 2, 1PC  is the cost of the PT type 1, 2PC  is the cost of the PT type 2, andsC is the 

cost of the solenoid valves. 
 
The constant 261 (equation 2) and 21 units (equation 3) are fixed costs of both 
subsystems.  

 
Similarly, the average maintenance down time (MDT) is calculated as a sum of the 
maintenance down time subsystem 1 and subsystem 2 for each potential design 
(equations 4 - 6): 
    
   MDT  =  MDT(Subsystem1) + MDT(Subsystem2) 130   ≤ ,                                      (4) 
 

   MDT(Subsystem1) = ( ) ( )[ ]47
52

221112211
1

+++++ PPSVEVE MPMPNMMVMVE
θ

,    (5) 

   MDT(Subsystem2) = ( ) ( )[ ]13
52

221122211
2

+++++ PPSVHVH MPMPNMMVMVH
θ

.  (6) 
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where 11 VHVE MM =  is a test time of the valve type 1, 22 VHVE MM =  is the test time of 

the valve type 2, 1PM  is the test time of the pressure transmitter 1,  2PM  is the test 

time of the pressure transmitter 2, and SM  is the test time of the solenoid valve. 

 
The expression 52/θ  (equations 5 - 6) gives the number of times the system is down 
in a year. The constant 47 (equation 5) and 13 units (equation 6) represent the sum of 
the test times for the fixed components in each subsystem.  
 
The system unavailability and spurious trip frequency are calculated by setting to 
TRUE or FALSE corresponding house events in the fault tree given by the design 
parameters, then the BDD is formed and the required probability and frequency are 
calculated. Constraints are incorporated into the optimization by penalizing the 
unavailability when they are violated by the design (the constraint penalties are 
explained in detail in reference 9). Therefore, the overall unavailability of each string 
consists of four parts: 
 
 1) probability of the system failure, unavailability, sysQ ; 

 2) penalty for exceeding the total cost constraint, pC ; 

 3) penalty for exceeding the total maintenance down time constraint, pM ; 

 4) penalty for exceeding the spurious trip constraint, pS . 

 
Each penalty is subsequently added to the system unavailability. The resulting value 
is a penalised system unavailability sysQ ' , which participates in the optimization 
procedure: 
 

  pppsyssys SMCQQ +++=' .                                                                 (7) 

 

Fitness assignment requires the division of the population of designs into dominated 
and nondominated groups according to the following rules: since the optimization is a 
minimization problem, the design a dominates the design b if all a parameter values 
are equal to or smaller than b parameter values and at least one of parameter a value is 
smaller that the respective b parameter value. 
 
The design a is nondominated if there is no design in the population which dominates 
a. To avoid the situation that designs dominated by the same archive members have 
identical fitness values, for each individual both dominating and dominated solutions 
are taken into account. In detail, each design i in the archive and the population is 
assigned a strength value )(iS , representing the number of solutions it dominates. 
 
On the basis of the S values, the raw fitness )(iR of a design i  is calculated. This 
fitness is determined by the strengths of its dominators in both the archive and 
population.  
 
Although the raw fitness assignment provides a sort of niching mechanism based on 
the concept of Pareto dominance, it may fail when most designs do not dominate each 
other. Hence, additional information is incorporated to discriminate between designs 
having identical raw fitness values. The density estimation technique used in SPEA2 
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is an adaptation of the k-th nearest neighbour method [10], where the density at any 
point is a decreasing function of the distance to the k-th nearest data point. In this 
problem the inverse of the distance to the k-th nearest neighbour is taken as a density 
estimate ijσ , i.e. for each individual i the distances to all designs j in the archive and 

population are calculated using equation 8: 
 

2222 ))()(())()(())()(())()(( jFsysiFsysjQiQjMDTiMDTjCiCij −+−+−+−=σ , 

                                                            (8) 
 

where  C(i) is the cost of the i-th design, Q(i) is the i-th designs penalized system 
unavailability, j is from the interval [1,.., 20] with the condition that ji ≠ . Obtained 
distances are stored in a list or matrix. After sorting the list in increasing order, the k-
th element gives the distance sought, denoted as k

iσ , where k is equal to the square 

root of the population size. Afterwards, the density )(iD  corresponding to i  is 
defined by 
 

2
1

)(
+

= k
i

iD
σ

.                                                                                 (9) 

 
In the denominator, two is added to ensure that its value is greater that zero. Finally, 
adding )(iD  to the raw fitness value )(iR of the design i yields its fitness )(iF : 
 
 

   )()()( iDiRiF += .                                                                         (10) 
 
6. Results 
 
Several ISPEASSOP runs have been implemented to tailor the algorithm parameters 
for the HIPS system (used for comparison purposes with the simple GAs results [7]). 
Tables 2 and 3 represent the characteristics of the fittest designs obtained after 10 runs 
of the ISPEASSOP (100 generations each). The chosen designs are nondominated by 
most optimization parameter values. 
 

Run No. Cost MDT Fsys Qsys 
1 592 129.7008 0.455 4.5e-7 
2 512 129.6974 0.332 8.33e-4 
3 582 128.7361 0.324 6.8e-4 
4 922 128.2273 0.718 1e-6 
5 882 129.1590 0.166 1e-6 
6 992 129.2523 0.552 1e-6 
7 852 128.3286 0.245 6.55e-4 
8 542 128.9881 0.324 8.45e-4 
9 872 129.9032 0.377 1e-6 
10 862 129.7309 0.999 1e-6 

Average values 761 129.1724 0.449 3.01e-4 
 

Table 2. Fittest Designs by ISPEASSOP after 10 Runs of 100 Generations 
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Design Variables 
Run No. θθθθ1 θθθθ2 V P N1 N2 K1 K2 E H 

1 25 73 1 2 1 3 1 3 0 1 
2 27 105 2 2 1 0 1 0 1 0 
3 64 9 2 1 4 0 3 0 1 0 
4 33 96 1 1 2 3 1 3 1 1 
5 42 53 1 2 4 2 4 1 1 1 
6 34 90 2 2 2 3 2 2 1 2 
7 40 91 1 2 3 0 3 0 2 0 
8 27 118 2 1 2 0 2 0 1 0 
9 26 124 1 2 3 2 3 2 0 2 
10 42 46 1 2 2 2 1 2 1 1 

 
Table 3. Design variable values for Table 2 

 
Table 4 shows the fittest design produced by ISPEASSOP program after 10 runs and 
the best design obtained by single GAs [7] after 10 runs using the same parameter 
values (100 generations, 0.01 mutation rate and 0.7 crossover rate). 
 
 GAs ISPEASSOP 

No. of  ESD valves (E) 0 0 
No. of  PTs (N1) 2 1 
No. of  PTs  to trip system (K1) 1 1 

 
Subsystem 

1 
Maintenance test interval (θ1) 29 25 
No. of HIPS valves (H) 2 1 
No. of  PTs (N2) 3 3 
No. of  PTs to trip system (K2) 2 3 

 
Subsystem 

2 
Maintenance test interval (θ2) 32 73 

Valve type (V) 2 1 
PT type (P) 1 2 

MDT 128.43 129.7008 
Cost 822 592 

Spurious trip occurrence (Fsys) 0.717 0.455 
System unavailability (Qsys) 7.6e-4 4.5e-7 

 

Table 4. Results Comparison  
 

Table 4 shows that the SPEA2 optimization algorithm, implemented in the 
ISPEASSOP program, gives better results in that the Qsys is lower and all other 
parameters are within constraint limits. The available MDT resources are fully used 
(MDT is very closed to 130), the total system cost is smaller (a price reduction of 230 
units) as well as the spurious trip occurrence, Fsys (approximately 1.5 times smaller). 
 
In both optimization programs the maximum number of generations is equal to 100. 
The fittest design produced  by the simple GAs is achieved only in the 70th 
generation. In contrast, in all 10 runs of 100 generations of the ISPEASSOP the fittest 
strings occurred in the first 10 generations. Consequently, the ISPEASSOP program 
requires less computer memory recourses, which is an important advantage for large 
safety systems optimization problems. 
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7. Conclusions 
 

An automated robust design optimization process has been developed for the 
application to safety systems. The adequacy of the system performance in terms of 
availability calculation is assessed using fault tree analysis techniques. The causes 
of failure for each possible design alternative of a safety system is represented by 
a single fault tree by using the house events. The use of the BDD technique allows 
the solution of the fault tree in the most efficient manner. 
 
The SPEA2 has been successfully applied to a high integrity protection system 
(HIPS) and produced good results for system design optimization. The SPEA2 
produced improved results compared to those obtained by simple GAs. Another 
important advantage of the SPEA2 is that it is faster and requires less memory 
resources. 
 
The HIPS is a relatively simple example of a safety system.  Many systems are 
much more complex and have a much larger number of design variables. 
Therefore, the future work will be concentrated on testing the effectiveness of the  
technique on larger and more detailed safety system. 
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