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ABSTRACT

The two-dimensional, frictional tyre-road contact in-
teraction is investigated. A transient contact algo-
rithm is developed, consisting of an analytical belt
model, a non linear sidewall structure and a dis-
cretized viscoelastic tread foundation. The relation-
ship between the magnitude/shape of the predicted
two-dimensional pressure distribution and the corre-
sponding belt deformation is identified. The effect of
vertical load and the role of sidewall non linearity are
highlighted. The modal expansion/reduction method
is proposed for the increase of the computational ef-
ficiency and the effect of the degree of reduction on
the simulation accuracy is presented. The qualitative
results are physically explained through the participa-
tion of certain modes in the equilibrium solution, offer-
ing directions for the application of the modal reduc-
tion method in shear force oriented tyre models.

INTRODUCTION

Tyres play a crucial role in a vehicle’s dynamic be-
haviour potential, as the forces developed in the tyre-
road contact area are responsible for any change in
the vehicle’s motion. The developed forces simultane-
ously act as a transient excitation of the tyre structure
and a closed loop of interaction is established with
the developed response affecting the tyre force poten-
tial. The tyre’s contact behaviour non linearity and the
frictional nature of interaction, though, impose severe
difficulty in the simulation of the tyre-road interaction
mechanism.

The tyre contact strain and stress field along the inter-
face area has been the topic of extensive research, as
the resulting pressure distribution directly affects the
shear force potential of the tyre. Numerous methods
for the experimental derivation of the contact pres-
sure distribution have been proposed, such as pres-

sure sensing contact surfaces [1, 2, 3], light absorb-
tion/reflection techniques [4] and ultrasonic based
measurements [5]. The accurate simulation, though,
of the pressure distribution development still com-
prises a challenging research aim for reasons asso-
ciated with the tyre’s shape, structural anisotropy and
the viscoelastic phenomena related to the interaction.

The rapid development of the finite element methods
enabled the representation of tyre contact stress and
strain field with great accuracy [6, 7], but the neces-
sary fine discretization imposes a huge computational
load. If this shortcoming is overcome or neglected,
the discretized modelling approach can be extended
towards accurate transient tyre modelling [8]. If the
transient nature of tyre contact behaviour is, though,
neglected, analytical carcass deformation represen-
tations can predict the equilibrium pressure distribu-
tion. A membrane shell model, for example, was com-
bined with a contact stiffness foundation in [9, 10].

The well established ring on elastic foundation model,
introduced in [11], still represents the state-of-the-
art of two-dimensional tyre carcass modelling. Its
vibrational behaviour correlation with the actual tyre
structure has been experimentally verified in numer-
ous studies [12, 13, 14]. Although an analytical,
ring based, contact solution has been presented in
[1], in the majority of the ring model applications,
the solution is acquired through the modal expan-
sion/reduction technique [15], offering a great com-
putational advantage to the approach.

Ring based models have been often proposed as tyre
belt representations under the steady state [16] or the
transient approach [17]. For computational efficiency
reasons, though, the contact pressure field is not usu-
ally calculated as part of the computation algorithm
but artificially superimposed as an input to the friction
calculation sub-model ([17], SWIFT model described
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in [18]). Analytical parabolic/trapezoidal shaped verti-
cal pressure distribution is the common assumption
along the contact length when the friction potential
has to be calculated, as in [19]. This approach is
believed to moderate the transient validity and poten-
tial of the model, in comparison to studies where the
contact pressure field is incorporated in the simulation
process [20].

Although the necessary modal/frequency range of
study for the tyre behaviour simulation in vibration
and vibration transmission studies has been long ago
identified and discussed [21, 22, 23], the effect of
the breadth of the range in the accuracy of the rep-
resentation of the contact has not been investigated
in depth. In the present study, the interaction be-
tween the belt frictional contact deformation and the
predicted two-dimensional contact pressure distribu-
tion is investigated and the crucial role of the verti-
cal load/deformation is identified. The study of this
interaction is carried out with the development of a
physical-ring based- tyre model which enables the
qualitative study of the modal reduction effect on the
distribution simulation accuracy. This is accomplished
through the identification of the participation of each
mode in the tyre contact response.

A fully transient two-dimensional tyre model has been
developed and exploited for this investigation. The
nature of the developed algorithm and the qualitative
conclusions on the acceptable reduction level enable
the future transformation of the modelling approach
into a physical shear force generation simulation tool
with acceptable computational demands. The present
state of the research may offer guidelines for the ap-
plication of modal expansion/reduction method in var-
ious tyre models, the transient nature of which im-
poses the real time calculation of the contact inter-
action stresses [8, 19]. The huge computational load
of such discretized approaches can be significantly
reduced without major sacrifice of the prediction ac-
curacy.

MODEL DESCRIPTION

The model is composed by three interacting sections:

• belt

• sidewall structure

• tread foundation

BELT REPRESENTATION The core of the pro-
posed approach is the analytical ring on elastic foun-
dation model. Although the solution is acquired
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Figure 1: The mode shapes and the natural frequen-
cies of the nm = 1 to nm = 5 radial and the nm = 0
-breathing- tangential modes.

through the modal expansion method, the simulation
is accomplished in the time domain. The nature of
the examined problem and the friction induced non
linearity prevent the a priori association with a certain
frequency range or a certain modal response and ne-
cessitates the time domain solution [24]. The usual
ring inextensibility assumption is not applied here, as
the proposed modal range of solution is too broad for
this assumption to be valid. Additionally, the simula-
tion of inflation, permitted only with the inclusion of
an extensible belt, is vital for the solution in the non
linear sidewall case. The equations of motion of the
extensible ring are [15]:

D
R4 (u

′′′′
r − u

′′′
θ ) + K

R2 (ur + u
′
θ)+

N
R (2u

′
θ − u

′′
r ) + krur + bdρür = qr + N

R

(1a)

D
R4 (u

′′′
r − u

′′
θ )− K

R2 (u
′
r − u

′′
θ )−

N
R (2u

′
r + u

′′
θ ) + kθuθ + bdρüθ = qθ

(1b)

ur(θ) radial deformation
uθ(θ) tangential deformation
b width of the ring cross section
d height of the ring cross section
ρ material density
R ring radius
D = E b d3/12 bending stiffness of the ring
K = E b d membrane stiffness of the ring
P0 inflation pressure
N = P0 b inflation tension force
kr linear radial sidewall stiffness
kθ linear tangential sidewall stiffness
qr(θ) radial excitation
qθ(θ) tangential excitation
′ angle derivative
˙ time derivative

Double axis symmetry of the tyre imposes har-
monic deformation functions for the deformation
shapes of the modes. Each of them participates in
the modal expansion twice with a π

2nm
angle sep-

arating the corresponding mode shapes (nm being
the modal number of the mode). Two modal groups
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are predicted by the expansion method. The first,
low frequency, group corresponds to primarily radial
deformation, while the second, high frequency, one
is associated with tangential deformation. The mode
shapes and the natural frequencies for some of the
first modes are presented in fig.1.

For the radial and the tangential deformation of the jth
mode it may be respectively written:

Rj(θ) = Aj cos
(
nm(θ − ϕ)

)
Θj(θ) = Bj sin

(
nm(θ − ϕ)

) (2)

Rj(θ), Θj(θ) mode shape functions
Aj , Bj mode shape amplitudes
ϕ excitation defined orientation angle

Each mode participates in the response through
its modal participation factor, the time differential
equation of which reads:

η̈j(t) + λj

ρ·h · η̇j(t) + ω2
j · ηj(t) = Fmodal

j (t),
1 ≤ j ≤ m

(3)

ηi modal participation factor
λj viscous damping coefficient
ωj mode natural frequency
F modal

j modal force
m number of solution participating modes

Although the belt modes are analytically derived, a
constant space discretization process is applied to
the ring. This process coincides with the discretiza-
tion of the sidewall and tread foundations. In other
words every tread and sidewall element correspond
to a ring node. This permits the expression of the
excitation function as a vector of constant dimension,
which corresponds to the number of degrees of
freedom:

F2n×1(t) = Finflation(t)+Fcontact(t)
{

+Fsidewall(t)
}

(4)
where n is the total number of nodes. Each node is
associated with one radial and one tangential degree
of freedom (horizontal/vertical in the global system of
axis).

Under the linear sidewall assumption the sidewall ef-
fect is incorporated in the ring equations of motion
(eqn.1a and 1b) and the sidewall corresponding term
is not included in eqn.4. Under the non linear side-
wall assumption, though, the expansion method is
applied on a ring without sidewall foundation and the
corresponding effect is incorporated through the force
term.

The solution transformation between the modal and
the space domain is achieved through the constant
eigenvectors matrix Φ2n×m. The modal mass of the
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Figure 2: The radial string geometry and the resulting
sidewall forces.

jth mode is defined as:

Mj = ρ · d ·R · b ·
2n∑

i=1

Φ2
ij (5)

The modal force of each mode can be calculated as:

Fmodal(t) = ΦT × Fspace(t) ⇒
Fmodal

j (t) = 1
Mj

Fmodal
j (t) (6)

Finally, the deformation and velocity responses in the
space domain are calculated from the modal partici-
pation vector according to the equations:

U(t) = Φ×




η1(t)
...

ηm(t)


 , U̇(t) = Φ×




η̇1(t)
...

η̇m(t)




(7)

SIDEWALL REPRESENTATION Although the ring
equations of motion incorporate a two-dimensional
linear stiffness foundation (kr,kθ), representing the
sidewall of the tyre, this approach is known to result in
contact reaction force overestimation [11, 23, 25, 26].
The radial buckling-softening- behaviour of the actual
sidewall offers a force reduction mechanism. This be-
haviour is commonly modelled by a string under ten-
sion foundation, an approach also followed here, un-
der the inextensible discretized assumption.

The tension force of an inextensible string is given by:

T = P0 · r (8)

while the geometry presented in fig.2 proposes:

π−2w
lstring

= 1
r

cos w = L
2·r

}
⇒ L(π − 2w) = 2lstring · cos w (9)

T tension force
r string radius
w string angle (fig.2)
lstring string length
L wheel to belt distance
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Figure 3: The tread element and its contact deforma-
tion.

The non linear eqn.9 is solved by an iteration
procedure in every calculation step, using as inputs
the relative wheel to road displacement and the
deformation of the belt. The resulting string forces
are presented in fig.2 and their values are calculated
as:

TrX = −P ∗0 · lstring
sinw
π−2w cos v

TrY = P ∗0 · lstring
sinw
π−2w sin v

(10)

The string sidewall behaviour is decoupled from the
discretization effect by the normalization of the infla-
tion pressure value:

P ∗0 = P0
2 · π ·R

n
(11)

The tangential sidewall behaviour is assumed to re-
main linear, so the corresponding stiffness is in any
case incorporated in the tangential equation of mo-
tion (eqn.1b).

TREAD REPRESENTATION The tread modelling
approach is a viscoelastic (Maxwell-Voigt) extension
of the winkler contact stiffness theory, established in
numerous studies, as a stand alone tyre model [18],
or in combination with a separate carcass representa-
tion [16, 13, 20]. The tread elements are attached to
the belt nodes initially with radial orientation. Slip mo-
tion potential is included in the model through the in-
corporation of an additional viscoelastic element and
a corresponding degree of freedom. The second
tread element is dimensionless under no strain con-
dition and is attached to the free end of the radial el-
ement. Its deformation direction is vertical to the first
one, while the road contact is realized at the free end
of this element.

The tread viscoelastic properties are represented by
the stiffness and damping matrices:

K =
[−Kr 0

0 −Kt

]
, C =

[−Cr 0
0 −Ct

]

Kr radial stiffness
Kt tangential stiffness
Cr radial viscous damping
Ct tangential viscous damping

The contact reaction forces, in global terms, can
be calculated according to:
[
FCX

FCY

]
= TT (α) KT(α)

[
DX
DY

]
+TT (α) CT(α)

[
DẊ

DẎ

]

(12)
where T is the angular transformation matrix:

T(α) =
[

cos α sin α
− sin α cosα

]

The tread global orientation angle α is the sum of
the belt node rotation around the wheel centre, im-
posed by the corresponding tangential deformation
and the torsional local belt deformation-expressed by
the slope of the corresponding radial deformation.

α = uθ +
∂ur

∂θ
(13)

The total vertical deformation and deformation veloc-
ity of the combined element is kinematically defined
by the relative road-wheel distance and the belt de-
formation:

DY = Yroad − (Yb + ltread sin α)
DẎ = Ẏr − Ẏb

(14)

DY vertical tread deformation
Yroad road vertical profile
Yb belt node vertical position
ltread initial radial length

Horizontal slip motion is controlled by the differ-
ential equation of the horizontal degree of freedom,
which, under the massless assumption, transforms
into a simple force equilibrium equation:

ΣFX = mt DẌ ⇒ Ftread + Ffriction = 0 (15)

Ftread = −FCX tread viscoelastic force
Ffriction friction force
DX horizontal deformation
DẊ horizontal def. velocity

The integration of the relative slip velocity value
enables the calculation of horizontal deformation:

DX =
∫

DẊ dt (16)

A number of friction laws can be incorporated in the
model. The classic Coulomb one (described e.g. in
[27]) is adopted here for simplicity reasons.

TRANSIENT ALGORITHM The belt, sidewall and
tread sub-models are combined in a common tran-
sient algorithm. The flowchart of every discrete com-
putation time step can be summarized as:
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1. The global position of the out-of-contact tread el-
ements is calculated, as a function of the wheel
to road relative displacement, the belt response
and the tread angular orientation and deforma-
tion. Possible contact is examined through the
comparison of the global tread position with the
road under the no-penetration requirement.

2. The vertical deformation and deformation veloc-
ity is calculated for all the in-contact elements
(eqn.14). The friction law is applied to the hori-
zontal degree of freedom. Slip and slip velocity
are calculated, as is the contact reaction excita-
tion to the belt (eqn.15 and 16).

3. The criterion of conservation of contact FCY > 0
is examined for the in-contact elements. The pos-
sible non-fulfillment of it results in the termination
of contact.

4. The first order, initial condition, differential equa-
tion is solved for the out-of-contact elements with
sufficient remaining deformation.

5. The total belt excitation vector is synthesized
(eqn.4). The corresponding modal force for all
the participating modes is calculated (eqn.6).
The time differential equations of the modal par-
ticipation factors (eqn. 3) are solved with a nu-
merical method, while the transformation from
modal to space domain (eqn.7) offers the belt re-
sponse that will be used for the next time step
calculation.

The response to the inflation step excitation is ini-
tially defined, prior to the contact simulation. The
inflation corresponds to the breathing-0th tangential
mode-participation factor. The process results in in-
significant radius increase, it is, though, of great im-
portance in the non linear sidewall case, as it offers
the inflation equilibrium string geometry. Sufficient
time is also granted after the contact simulation, for
the establishment of equilibrium. The values of the
model properties assumed for the numerical simula-
tion are given in the Appendix.

THE COMPLETE MODEL AND ITS COMPUTA-
TIONAL LIMITATION

If the theoretical calculation potential of a proposed
space discretization is to be fully exploited, the re-
quired modal range can be identified by the simple ob-
servation that a wave length of a mode shape can be
described by a sequence of 5 nodes (fig.4), with the
last of them being shared with the following wave. The
expression of this observation through the arc corre-

R

α
n

belt nodes

mode shape
initial belt
conditionα

n
m

wheel
centre

Figure 4: The relationship between the space dis-
cretization and the modal range in a complete model.
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Figure 5: The total frequency range of the complete
model, for n = 400 nodes space discretization.

sponding angles reads:

αnm = 2π
nm

αn = 2π
n

}
αnm=4·αn−−−−−−−→ nm =

n

4
(17)

αnm modal wavelength angle
αn discretization angle
nm modal number
n number of nodes

A belt space discretization of 400 nodes (a satis-
factory coarseness for the description of the contact
area development) results in a modal range nm =
[0, . . . 100] and a total mode number m = 402. The
corresponding frequency range is presented in fig.5.
The emerging huge computational load is not only as-
sociated with the number of modes, as each of them
corresponds to a column of the matrix Φ, but also with
the assumed frequency range, imposing an extremely
small time step for the simulation process.

The distribution of the damping property (assumed
parallel to the stiffness one) results in the increase
of the damping ratio with the modal number. In re-
sult, all the modes above a critical frequency limit
demonstrate overcritical behaviour which makes their
participation in the transient response insignificant for
reasons associated with the energy content of their
corresponding deformation. The association of the
modal number of each mode with its solution partici-
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opment with deformation, under the linear sidewall as-
sumption.

pation will be later discussed and will offer a physical
explanation of the modal reduction effect on the cal-
culation accuracy, which is the main contribution of
this study.

THE CONTACT BEHAVIOUR OF THE LINEAR
SIDEWALL MODEL

Prior to analyzing the tyre contact behaviour through
the corresponding modal participation, it is vital to
identify the effect of deformation level, as the non-
linear contact geometry affects the interaction. The
vertical and tangential pressure distributions along
the contact length, predicted by the linear sidewall
model, are presented in figures 6 and 7 respectively,
for a range of vertical displacements d = 10mm to
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Figure 8: The effect of the deformation level on the
distribution shape, through the normalized pressure
values. The arrows indicate the deformation increase.

50mm. The typical parabolic shape of distribution for
small deformation level which transforms into trape-
zoidal as the deformation increases has been exper-
imentally verified in multiple studies [28, 1, 2, 4, 29].

The horizontal pressure distribution has a typical in-
wards direction, mainly attributed to the frictional re-
sistance to the outwards belt deformation, caused by
the conformation of the initially circular shape to the
plane road surface. It’s magnitude is insignificant in
the central area of the contact length, increases to-
wards the edges but rapidly deteriorates close to the
contact ends. Further discussion on the horizontal
pressure distribution development can be found in
[30, 28].

In order to highlight the effect of deformation level on
the distribution shape the effect of magnitude is re-
moved through the normalization of pressures with
respect to the maximum value along the contact.
The resulting pressure distributions are presented in
fig.8. The transition from parabolic to trapezoidal
shape with increasing deformation is evident. No
shape transformation emerges in the horizontal pres-
sure distribution, the maximum value of which moves
towards the edge of the contact length with the defor-
mation increase.

The identified distribution is associated with a cor-
responding variation in the belt contact deformation.
The reflection of the distribution and its shape devel-
opment on the equilibrium modal participation factors
is sought. The radial and tangential participation fac-
tors -in absolute terms- are presented in fig.9 for the
whole deformation range.

Contact deformation is associated primarily with ra-
dial modes excitation ,since the tangential participa-
tion factors are of much lower magnitude. The nm = 1
and nm = 2 (fig.1) radial modes are mainly excited by
the contact and the deformation increase results in

6



0 2 4 6 8 10
0

2

4

6

8

10

12

14

Modal number

P
ar

tic
ip

at
io

n 
fa

ct
or

 

 

10mm
20mm
30mm
40mm 
50mm 

(a) Radial modes

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

Modal number

P
ar

tic
ip

at
io

n 
fa

ct
or

 

 

10mm
20mm
30mm
40mm
50mm
inflation

(b) Tangential modes

Figure 9: The radial and tangential modes participa-
tion factors for every load/deformation case.

a corresponding increase of their participation. For
low deformation level, maximum participation corre-
sponds to the nm = 2 mode but for high deforma-
tion participation maximizes for the nm = 1 mode. In
all deformation cases radial participation factors de-
crease with the modal number, converging to zero
value.

Maximum tangential mode participation factor corre-
sponds to the nm = 0 mode (fig.1), and is associated
with the inflation process. The inflation only corre-
sponding participation is also presented for compar-
ison. Interestingly, the nm = 0 mode participation
decreases, as the deformation process is associated
with a radius decrease. The factors converge to in-
significant values faster than the radial modes. Evi-
dently, a critical modal number exists for both modal
groups, above which, participation in the final solution
can be neglected. This critical limit is lower for the
tangential group. In other words a shorter tangential
modal range can be used for the solution.

A better insight in the effect of deformation on the
modal participation factors is attempted through the
presentation of the normalized -to the maximum
value- participation in fig.10. Interestingly, lower de-
formation is associated with the participation of a
broader modal range. The relative participation val-
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Figure 10: The modal participation factors, normal-
ized to the maximum predicted value for every defor-
mation case.

ues decrease more rapidly with the modal number,
in the higher deformation cases (fig.10(a)). Higher
tangential modes, in contrast, participate more in the
equilibrium solution for increasing deformation level
(fig.10(b)). It is evident that a broader modal range
should be incorporated in the modally reduced model
for the study of low load/deformation tyre operating
conditions.

An explanation of this modal participation behaviour
is attempted through the shape correlation between
the belt contact deformation and the mode shapes.
This is accomplished in fig.11 for the d = 10mm
and d = 50mm deformation cases, where the mode
shapes of the first ten radial modes are also plotted.
Their deformation magnitude has been normalized to
the corresponding belt deformation for easier shape
comparison. The belt deformation pattern along the
contact length is better represented by the nm = 5
mode shape in the low load case, while the nm = 3
mode shape correlates better with the belt pattern in
the high load case, a direct result of the contact shape
nonlinearity and the relative contact length range de-
velopment.

The shape correlation with a higher modal number
mode shape in the low deformation case can offer an
explanation to the relatively higher modal range iden-
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tified in the relative participation factors presented in
fig.10(a). Additionally, although the belt deformation
pattern correlates tightly with a certain mode shape,
the correspondingly high participation factors of the
nearby modes reveals their importance in the total
shape representation. In other words, although the
contact length deformation is clearly associated with
a certain mode shape, a reduced contact model can-
not be generated only by this mode.

The above conclusions are evident in the time his-
tory of the nm = 3 and nm = 5 participation fac-
tors, presented in a normalized-to their maximum
values-manner in fig.12. The history of the normal-
ized deformation is also plotted for easier comparison
of the mode development. The 5th radial mode fol-
lows closely the deformation development in the early
stage of the deformation, while the development of
the 3rd one shows an initially lagging behaviour.

THE EFFECT OF THE RADIAL SIDEWALL NON-
LINEARITY ON THE CONTACT BEHAVIOUR

The incorporation of the non linear sidewall founda-
tion, affects not only the total reaction force magni-
tude but also the belt deformation shape and the re-
sulting pressure distribution. The vertical pressure
distributions under the non linear sidewall assump-
tion are presented in fig.13 for the whole deformation

range. The generation of a central concave forma-
tion is evident, the extent and magnitude of which
increase with the deformation level. This pressure
shape is of course accompanied by a correspond-
ing belt deformation, which is presented in fig.14 in
comparison to the linear sidewall model predicted de-
formation. The effect has been analytically and ex-
perimentally studied in [1]. The transformation from
parabolic/trapezoidal vertical distribution shape to the
concave one is better represented by the normal-
ized pressure values in fig.15. No significant variation
emerges in the shape of the horizontal pressure dis-
tribution shape, relatively to the linear sidewall case.
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Figure 13: The vertical pressure distribution develop-
ment with deformation, under the non linear sidewall
assumption.
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Figure 14: The belt deformation along the contact un-
der the linear and the non linear sidewall assumptions
for the whole deformation range.

The obvious question whether the non linear sidewall
effect can be identified through the modal participa-
tion factors is answered by the presentation of the
participation factors ratio (fig.16) to the correspond-
ing linear sidewall ones. Three deformation levels are
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Figure 15: The effect of deformation on the distribu-
tion shape, through the normalized pressure values
under the non linear sidewall assumption. The arrows
indicate the deformation level increase.

examined, d = 10, 30 and 50mm, while for the cal-
culation of the ratios the linear model has also been
modally expanded excluding the radial sidewall foun-
dation, the effect of which is included through the
equivalent force term (eqn.6).

The buckling/softening effect of the non linear side-
wall model permits the larger belt vertical deforma-
tion (evident in all cases of fig.14). This radial compli-
ance corresponds to higher participation of the modes
with modal numbers from nm = 1 nm = 6 evident
in fig.16(c). The following magnitude anomaly in the
participation ratios corresponds to the generation of
the central concave deformation pattern and the ac-
companying shape effects in the surrounding area.
Further similar areas with anomalies are repeated at
higher modal numbers.
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Figure 16: The ring-only participation ratios of the non
linear sidewall model to the linear one.

Interestingly, the effect is associated with higher
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Figure 17: The breathing mode participation for the
total deformation range under the linear and the non
linear sidewall assumptions.

modal number mode shapes in the low deformation
case. The first ratio anomaly area, is identified in the
mn = 26 mode (1401HZ) in the d = 10mm case.
Extension of the concave formation in a larger area
around the contact centre results in the involvement
of lower modal number mode shapes. The first peak
ratio value in the d = 30mm case corresponds to
the mn = 12 (570Hz) mode, while in the d = 50mm
case the nm = 9 (239Hz) mode is affected. It is ev-
ident that the accurate representation of the non lin-
ear sidewall induced belt contact behaviour requires
a broader modal range in the low deformation cases
where, though, the concave nature of the pressure
distribution is less apparent.

The evolution of the breathing mode participation fac-
tor is presented in fig.17. The linear sidewall model
predicts higher breathing mode participation in the in-
flation equilibrium compared to the non linear one, a
direct effect of the string stiffness increase with ra-
dius. For the non-linear model, the participation of the
breathing mode is higher for the same deformation
range, as the buckling effect permits the higher radial
deformation of the ring. Interestingly, the breathing
factor becomes negative above a deformation level, a
value that corresponds to radius decrease effect.

THE EFFECT OF MODAL REDUCTION

Having identified the interaction between the contact
pressure distribution and the belt deformation, ex-
pressed in terms of modal participation, the effect of
modal reduction on the prediction accuracy can be
investigated. The effect of the modal range partici-
pating in the solution on the accuracy of prediction of
the total vertical load will firstly be presented, while
the resulting pressure distributions will be discussed
later.

The total vertical load is presented in fig. 18 as a func-
tion of the induced deformation, for various frequency
ranges. The incorporated radial and tangential modes
in every reduction case are given in table 1. The
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Figure 18: The vertical load predicted for the range of
deformations for increasing frequency ranges of the
solution.
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Figure 19: Percentage deviation from the complete
model of the predicted vertical load as a function of
the frequency range of the solution for the whole de-
formation range.

shorter the frequency range, the stiffer contact be-
haviour is predicted by the model. The deviation from
the complete model increases with the deformation
level. The contact behaviour for a frequency range
narrower than 150Hz is even stiffer than the one of
the linear sidewall model (also presented in fig.18 for
comparison). In other words, the stiffening effect of
the incorporation of only the first three radial and the
breathing modes cancels out the buckling sidewall ef-
fect. A frequency range up to 180Hz (participation of
5 first radial and the breathing modes) seems to offer
a good prediction accuracy for the whole deformation
range.

The percentage deviation from the load prediction of
the complete, non-reduced solution, is presented in
fig. 19. Although an extremely narrow frequency
range leads to load overestimation in the high defor-
mation case, 350% in the 50mm case compared to
120% in the 10mm one for the participation of only 2
radial modes, this deviation decreases rapidly. At a
frequency limit between 150Hz and 300Hz, a larger

Table 1: Modal-frequency range correspondence
Frequency Radial Tangential
range [Hz] modes modes

110 2 0
130 3 0
150 4 0
180 5 0
400 11 0
600 15 0
800 18 1
1000 21 2

deviation is predicted for the d = 10mm deflection
compared to that of d = 50mm. It is obvious that
the broader modal participation range associated with
the low deformation level(fig.10(a)), results in higher
prediction error when a common modal range is as-
sumed in the solution of all deformation cases.

The vertical pressure distribution predicted under cer-
tain reduction assumptions is presented in fig. 20 for
the d = 10 and 50mm cases. Observation reveals
that achieving accuracy in the prediction of the actual

−0.025 0 0.025
−15

−10

−5

0

5

10

15

Contact length [m]

D
ev

ia
tio

n 
[%

]

 

 

1000 Hz
800 Hz
600 Hz
400 Hz

−30 %−85 %

(a) d = 10mm

−0.1 −0.05 0 0.05 0.1
−15

−10

−5

0

5

10

15

Contact length [m]

D
ev

ia
tio

n 
[%

]

 

 

1000 Hz
800 Hz
600 Hz
400 Hz

−29 %

−38 %
−100 %

(b) d = 50mm

Figure 20: Vertical pressure deviation from the com-
plete model along the contact for various levels of re-
duction.
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Figure 21: Horizontal pressure deviation from the
complete model along the contact for various levels
of reduction.

shape of the distribution requires a broader frequency
range than that required for the accurate caculation of
the total vertical load. In particular, 5% deviation in
the total load prediction is accomplished with a modal
range extending to 250Hz, while a similar accuracy
level in the distribution requires a modal range up to
1000Hz. Larger deviation is noted near the edges of
the contact in both examined cases, compared to the
deviation level in the central contact region. Accurate
pressure prediction in the edge areas of the contact
length is important, though, for the simulation of slip
development as the corresponding zones are initially
generated close to the contact ends [31].

The increase in the modal range of the solution leads
to the transition from parabolic to trapezoidal distribu-
tion shape in the low deformation case (fig. 20(a)).
A frequency range of 1000Hz is capable of predict-
ing less than 5% deviation along the whole length, al-
though the frequency required for capturing the con-
cave shape at the centre is much higher (1401Hz).

The shape effect of the solution frequency range in
the high deformation case is far more complicated
(fig.20(b)). It is evident that (excluding the areas very

close to the edges of the contact) the same reduction
level results in smaller deviation from the complete so-
lution, in comparison to the d = 10mm case. The re-
quirement of 5% maximum deviation is fulfilled by a
600Hz solution range. The reason for the better cor-
relation can be identified in the relative participation
factors of the modes (fig. 10(a)).

The effect of modal reduction on the prediction of the
horizontal pressure distribution is presented in fig. 21.
Although the deviation near both the edge and the
axis of symmetry of the contact seems to be huge, it
should be noted that the actual corresponding values
are insignificant. The shrinkage of the modal range
results in lower pressure values near the the contact
end but higher ones close to the centre, in the low
deformation case. A more complicated shape effect
is identified in the deviation of the high deformation
case.

CONCLUSIONS

A two dimensional transient tyre model has been de-
veloped and used for the simulation of the tyre con-
tact behaviour. The core of the model consists of the
established ring on elastic foundation model, subject
to a modal expansion/reduction process. The model
incorporates a sidewall structure with radial non lin-
earity and a discretized tread viscoelastic foundation
able to predict local slip/adhesional behaviour.

The contact simulation potential of the model is quali-
tatively validated with published experimental studies.
The non linear contact behaviour is investigated as
a function of the imposed vertical load/deformation.
The interaction between the carcass deformation pat-
tern and magnitude with the predicted vertical and
horizontal contact stress field is identified. The
parabolic distribution shape is transformed into trape-
zoidal and a central concave section is generated
for increasing load. Accordingly, a radially inwards-
concave-deformation section is created in the central
contact part of the belt.

Since the carcass deformation is simulated through
the modal expansion technique, the contact be-
haviour is for the first time associated with certain
modes participation in the resulting deformation re-
sponse. Increasing deformation, although resulting
in higher participation of the first modes, narrows the
range of the relative modal participation. As a result,
the modal range required for achieving a certain level
of accuracy in the prediction of the contact pressure
shrinks with the imposed load.

The central concave formation is associated with the

11



participation of certain modes, the modal number of
which depends on the extent of the effect. Cases
of low loads are associated with high modal number
modes, while increasing load results in the participa-
tion of lower modes.

The above results offer a satisfactory explanation
of the modal reduction effect across a deformation
range, not only in terms of total reaction force, but
also in terms of stress distribution along the contact
length. As expected, extended modal reduction re-
sults in stiffer contact behaviour, which might counter-
act the sidewall buckling/softening effect. Although for
extensive modal reduction the vertical force overesti-
mation is more intense in the high deformation case,
the computational error of the low deformation case
remains more significant as the level of modal reduc-
tion increases.

The broader modal range based solution captures
the transformation of the predicted vertical distribu-
tion shape from parabolic to trapezoidal in the low
deformation case, a result that can be qualitatively
predicted through the observation of the associated
mode shapes. The shape effect, though, in the high
deformation case cannot be easily identified, as the
level of prediction of the concave formation affects the
observed deviation along the contact length. In accor-
dance to the relative modal participation conclusions,
the same reduction level leads to larger relative devi-
ation values in the low load application. In any case,
the effect of the reduction is more evident near the
edges of the contact, significantly affecting the local
slip prediction potential of the model. Additionally, a
far broader modal range is required for the accurate
prediction of the pressure distribution, while the cal-
culation of the total vertical load appears to be less
demanding in this respect.

Imposing a certain cut-off frequency on the reduction
process bears a stronger computational error in the
prediction of the horizontal pressure field. As the tan-
gential belt modes, which mainly affect the horizon-
tal contact deformation, appear higher than the corre-
sponding radial ones in the general frequency order,
the frequency based reduction mainly cuts out tan-
gential modes. Underestimation near the edges and
overestimation near the centre is the obvious reduc-
tion effect in the low load case. No similar conclusion
can be drawn in the high deformation case, apart from
the prediction of lower deviation values.

The above results may offer valuable directions for the
application of modal expansion/reduction techniques
in many two-dimensional modelling approaches, as
the derived qualitative conclusions are based on the
actual physical mechanism involved and are not ex-

clusively associated with the ring model here ex-
ploited. The conclusions on the complicated relation-
ship between the frequency/modal range of solution
and the computational error can be applied for the sig-
nificant reduction of the solution time in various tyre
simulation studies.
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APPENDIX

MODEL PHYSICAL PROPERTIES

Ring propertiesa

elastic modulus E [ kgr
m·sec

] 10.4× 109

density ρ [ kgr
m3 ] 8.1× 109

radius r [m] 0.3
section height d [m] 3.1× 10−3

section width b [m] 15.2× 10−2

viscous factor λ [ kgr
m2 ] 0.1× 105

inflation pressure P0 [Pa] 2.2× 105

Sidewall properties
radial stiffnessa kr [ kgr

m·sec2
] 192.9× 106

tangential stiffnessa kt [ kgr
m·sec2

] 648.7× 105

string lengthb lstring [m] 12.2× 10−2

wheel radius Rw [m] 190.5× 10−3

Tread properties
radial stiffnessc Kr [ kgr

sec2
] 30.2× 104

radial damping coef. Cr [ kgr
sec

] 755
tangential stiffness Kt [ kgr

sec2
] 10.1× 104

tangential damping coef. Ct [ kgr
sec

] 253
radial length ltread [m] 10× 10−3

a after [13]
b non linear case
c after [23]
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