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 
Abstract—The monitoring of engineering systems is 

becoming more common place because of the increasing 
demands on reliability and safety. Being able to diagnose a 
fault has been facilitated by technology developments.  
This has resulted in the application of methods yielding an 
earlier detection and thus prompter mitigation of corrective 
measures.  The level of maturity of monitoring systems 
varies across domain areas, with more nascent systems in 
newly emerging technologies, such as fuel cells.   

With the increasing complexity of systems comes the 
inclusion of more sensors, and for expedient on-line 
diagnosis utilizing the information from the most 
appropriate sensors is key to enabling excellent diagnostic 
resolution.  In this paper, a novel sensor selection 
algorithm is proposed and its performance in Polymer 
Electrolyte Membrane (PEM) fuel cell on-line diagnosis is 
investigated. In the selection procedure, both sensor 
sensitivities to various failure modes and corresponding 
fuel cell degradation rates are considered. The optimal 
sensors determined from the proposed algorithm are 
compared with previous sensor selection techniques, 
where results show that the proposed algorithm can 
provide more efficient sensor selection results using less 
computational time, which makes this method better 
applied in practical PEM fuel cell systems for on-line 
diagnostic tasks.  
 

Index Terms—PEM fuel cell, on-line diagnosis, sensor 
selection. 
 
NOMENCLATURE 
 
 ௡                        Reversible voltage (V)ܧ
 Faraday constant (C/mol)                         ܨ
݅                          Current density (A/cmଶ) 
݅௢௖                       Exchange current density (A/cmଶ) 

ுܲమ                      Hydrogen pressure (bar) 

ைܲమ                      Oxygen pressure (bar) 
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ܴ                         Universal gas constant (J/mol.K) 
ܴ௠௘௠௕௥௔௡௘          Membrane resistance (Ω/cmଶ) 
ܶ                         Temperature (K) 
௖ܸ௘௟௟                     Fuel cell voltage (V) 
௔ܸ௖௧                     Activation loss (V) 
ிܸ஼                      Fuel crossover loss (V) 
௧ܸ௥௔௡௦                  Mass transport loss (V) 
௢ܸ௛௠                   Ohmic loss (V) 

 

I. INTRODUCTION 

he degree of automation in operation and monitoring of 
systems has increased drastically in the last few decades,  

fueled by increases in computer processing capability, 
monitoring hardware functionality and cost, and the drive for 
more reliable and safer systems.  More primitive monitoring 
systems allow for detection of faults but lack detail.  Methods 
of modern systems use mathematical process models, 
estimation methods and computer intelligence to allow a 
greater depth of detection and diagnosis.  Achieving this level 
of diagnostic capability requires research, especially for 
emerging technologies.  One such emerging technology is 
polymer electrolyte membrane (PEM) fuel cells, utilized as an 
alternative power source in a range of applications from 
portable devices to automotive engines.  Fuels cells have the 
potential characteristics of being zero-emission energy 
conversion and power generation devices, thus the drive for 
their inclusion to reduce the UK’s carbon footprint.  

Though seen within the marketplace, improvements in fuel 
cell reliability are still required, where application of health 
monitoring methods may serve to guide this improvement. A 
series of studies have been devoted to fuel cell fault diagnosis, 
including: model-based approaches, data-driven techniques, 
and knowledge-based methodologies. In model-based 
techniques, a numerical model of the system should be 
developed, and faults can be identified by considering the 
residuals between actual and model outputs [1-9]. Among these 
studies, fuel cell models with various levels of complexity are 
developed to express the fuel cell behaviour and then used for 
fault diagnosis. However, it should be noted that often 
assumptions are used in developing the model, which means 
the developed model can only identify specified faults and 
cannot be used to express fuel cell behaviour subject to 
different faults, although this may be experienced in practical 
applications. With a data-driven framework, classification of 
features extracted from a range of signal processing techniques 
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is applied to sensor measurements to discriminate between fuel 
cell faults [10-21]. Most of these studies apply data-driven 
techniques to single sensor measurements, which may not 
contain enough information to discriminate performance 
change due to different fuel cell faults. Moreover, in studies 
using multiple sensor measurements [11, 21], the 
computational time is relatively expensive due to the 
processing of large dataset sizes. Knowledge-based techniques 
have incorporated prior information or expert knowledge in the 
analysis to better interpret the fault causes and diagnostic 
results, using Bayesian networks [22-23], fuzzy-rules [24], etc. 
In all diagnostics, to alleviate the data explosion from 
increasing numbers of sensors located on current systems, a 
balance is required between computational time and diagnostic 
accuracy. On this basis, it is necessary to use the fewest sensors 
in fuel cell diagnostic analysis that provide reliable results 
using minimum computational time and sensor cost. 

Several studies have investigated selection of the optimal 
sensor set for health management of various systems, and these 
studies can be loosely divided into two groups. The first kind of 
approach defines the performance requirements to the sensors, 
such as diagnostic and prognostic performance, sensor 
reliability, electrical and physical attributes of sensors, and 
sensor cost. These requirements are then used to generate the 
optimization function, and algorithms like the genetic 
algorithm (GA) can be utilized to find the optimal solution 
[25-28]. The second approach uses a sensitivity-related 
analysis to evaluate sensor significance, which generates the 
relationship between sensors and key parameters to be 
monitored in the system [29-30]. However, only limited studies 
have been devoted in sensor selection techniques in fuel cell 
health management [31-32], and the performance of selected 
sensors in fuel cell fault diagnosis, especially on-line fault 
diagnosis, has not be fully investigated. Therefore, it is highly 
desirable to propose an effective sensor selection algorithm 
which can determine the optimal sensors with minimum 
computational cost, and provide reliable on-line diagnostic 
results for practical fuel cell applications. 

This paper proposes a novel sensor selection algorithm based 
on the fuel cell failure mode effects on system degradation, and 
investigates the performance of these selected sensors in 
on-line diagnosis of a practical PEM fuel cell system. The 
contribution of the present study is that compared to previous 
sensor selection techniques (evaluating the resistance of 
sensors to measurement/environment noise [32]), the proposed 
algorithm can determine the optimal sensors in less 
computational time, which will be further illustrated in section 
4. Therefore, the proposed algorithm is more aligned for the 
benefits to practical fuel cell systems, since reliability issues 
can be found with the selected sensors, hence the sensor 
selection process should be repeated without inclusion of 
unreliable sensors. With the proposed algorithm, the time for 
selecting sensors can be reduced significantly, which will not 
interrupt the normal operation of the fuel cell system, thus 
consistent monitoring can be provided with reasonable 
computational time for the fault diagnosis. In section 2, a PEM 
fuel cell model is developed and its performance is validated 

using the fuel cell test data. Based on the developed fuel cell 
model, the sensor sensitivity to fuel cell parameters is 
calculated in section 3. In section 4, with determined sensor 
sensitivities, a novel sensor selection algorithm is proposed 
based on the fuel cell failure mode effects on degradation, and 
performance of the proposed algorithm is compared to the 
previous sensor selection techniques in terms of computational 
time and performance of determined optimal sensors. 
Furthermore, the selected optimal sensors are applied to 
identify the fuel cell faults from a practical PEM fuel cell 
system using data-driven fault diagnostic approaches, and the 
results are compared to those utilizing all available sensors in 
section 5. From the findings, conclusions will be given in 
section 6. 

II. DEVELOPMENT OF PEM FUEL CELL MODEL AND ITS 

PERFORMANCE VALIDATION 

In order to calculate sensor sensitivities using an 
experimental study, a set of experiments should be performed 
to obtain sensor measurements at conditions where only one 
fuel cell system parameter is changed, which will be 
time-consuming and expensive. Therefore, a numerical fuel 
cell model is developed and used for the sensor sensitivity 
calculation in this study. The developed PEM fuel cell model 
includes five modules as shown in Figure 1(a), and fuel cell 
internal behavior is expressed with space differential equations, 
which have been commonly used in previous studies [32-36].  

In the stack voltage module, the fuel cell stack voltage can be 
calculated using equation (1): 

     ௖ܸ௘௟௟ ൌ ௡ܧ െ ௔ܸ௖௧ െ ிܸ஼ െ ௧ܸ௥௔௡௦ െ ௢ܸ௛௠                     (1) 
where ௖ܸ௘௟௟  is the single cell voltage, E୬  is the reversible 

voltage, ௔ܸ௖௧, ிܸ஼, ௧ܸ௥௔௡௦, ௢ܸ௛௠ are the activation loss, fuel 
crossover loss, mass transport loss, and Ohmic loss, 
respectively. Each of these terms can be expressed as follows: 

௡ܧ       ൌ െ ∆௛෡ି்∆௦̂

ଶி
൅ ோ்

ଶி
݈݊	ሺ ଵ

௉ಹమ௉ೀమ
భ/మሻ                                   (2) 

where  ∆෠݄ is the enthalpy change (J/mol), ∆̂ݏ is the entropy 
change (J/mol), F is the Faraday constant (C/mol), T is the fuel 
cell stack temperature (K), which is obtained in stack 
temperature module,  ுܲమ and ைܲమ are the hydrogen and oxygen 
pressure at anode and cathode (bar), respectively, which are 
determined in the anode mass flow and cathode mass flow 
modules shown in Figure 1(a). 

                ௔ܸ௖௧ ൌ
ோ்

ଶఈி
݈݊	ሺ ௜

௜೚೎
ሻ,                                              (3) 

where ܴ  is the universal gas constant (J/mol.K), ߙ  is the 
charge transfer coefficient, ݅ is the current density (ܣ/ܿ݉ଶ), ݅௢௖ 
is the exchange current density (ܣ/ܿ݉ଶ). 

                ிܸ஼ ൌ
ோ்

ଶఈி
ln	ሺ ௜೙

௜೚೎
ሻ                                                (4) 

where ݅௡ is the internal current density (ܣ/ܿ݉ଶ). 
                ௧ܸ௥௔௡௦ ൌ ݉௧௥௔௡௦. ݁௡೟ೝೌ೙ೞ.௜                                   (5) 
where  ݉௧௥௔௡௦ and ݊௧௥௔௡௦ are the mass transport loss voltage 

coefficients. 
                 ௢ܸ௛௠ ൌ ݅. ܴ௠௘௠௕௥௔௡௘                                         (6) 
where ܴ௠௘௠௕௥௔௡௘  is the membrane resistance (Ω/ܿ݉ଶ ), 

which is determined from the membrane hydration module 
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shown in Figure 1(a). 

Before using the developed fuel cell model to calculate 
sensor sensitivity, the performance of the developed fuel cell 
model should be validated. For this purpose, test data from two 
different PEM fuel cell systems are used [34-35]. Table 1 lists 
the PEM fuel cell parameters in these two tests. It can be seen 
that the two fuel cell systems have clearly different parameters, 
which can be used to better validate the performance of the 
developed model.  

With the configured fuel cell model, the polarization curve 
for these two different PEM fuel cell systems can be obtained 
and compared with that from the tested fuel cell system, and the 
results are shown in Figures 1(b) and (c). 

 
TABLE I 

PEM FUEL CELL SYSTEM PARAMETERS 

Parameter (unit)                          Test 1[34]          Test 2 [35] 

Single cell active area (cmଶ)                     232                 25 
Membrane thickness (݉ߤ)                     27                             178 

Hydrogen pressure (atm)                       3                       1.6 
Air pressure (atm)                       3                  1 
Stack temperature (ºC)                      75                  40 
   

 

 
(a) Block diagram of developed fuel cell model  

 
 

 
(b) Comparison of polarization curves from the model and test [34] 

     
(c) Comparison of polarization curves from the model and test [35] 
Fig.1 Block diagram of developed fuel cell model and its performance 
validation 

It can be observed from Figures 1(b) and 1(c) that the 
polarization curves from the tested fuel cell can be simulated 

using the developed model with good quality, the difference of 
polarization curve between simulated and test data is less than 
2%. 

III. SENSITIVITY ANALYSIS WITH THE DEVELOPED MODEL 

With the developed fuel cell model, the sensor sensitivity to 
fuel cell parameters can be calculated. In this study, three fuel 
cell parameters are selected, including membrane resistance, 
electrochemical active surface area (ECSA), and liquid water in 
the fuel cell. The selection is based on the previous studies 
[36-37] where membrane and electrodes are identified as the 
most critical components in PEM fuel cells, and these selected 
fuel cell parameters can effectively represent the performance 
variation of these components. The sensors used in this study 
are those commonly used in practical fuel cell systems, such as 
sensors for voltage, current, inlet / outlet flow, temperature at 
anode and cathode sides. In the analysis, a certain change (1% 
variation) is applied to the fuel cell parameters, and the 
variations in fuel cell responses (sensor outputs) can be 
obtained. From the results, sensor sensitivity to health 
parameters can be calculated with Eq. (7).  Where S represents 
the sensitivity value, ௜ܲ  is value of the ݅௧௛  fuel cell health 
parameter, R is the sensor measurements, 1 and 2 represent 
values before and after applying the certain change, ௜ܵ௝ is the 
݆௧௛ sensor sensitivity for the ݅௧௛ health parameter.  

It should be mentioned that the sensor sensitivity is defined 
as the percentage variation in sensors due to the unit change in 
fuel cell parameters, which can minimize the effect of different 
fuel cell parameters in various systems, thus can generalize the 
proposed approach in different fuel cell systems. 

In this study, multiple fuel cell failure effect is not 
considered, thus in each case, only one fuel cell parameter is 
changed.       

                                S୧୨ ൌ
ሺୖ୨మ‐ୖౠభሻ/ୖౠభ

଴.଴ଵൈ୔౟
                                     (7) 

For better comparison, the voltage sensitivities to the 
selected fuel cell parameters is normalized to a unit value, and 
sensitivities of the other sensors to the same fuel cell parameter 
will be changed accordingly. By doing so, the sensitivity of 
each sensor to various fuel cell parameters can be compared 
directly, which are listed in Table 2.  

 
TABLE II 

SENSITIVITY OF SENSORS TO SELECTED PARAMETERS 

Sensor output 

 
Health Parameter 

Membrane 
resistance 

Cell active 
area  

Liquid water 
inside cell 

    
Cell voltage           1       1                 1 
Stack temperature       0.035      0 .013                3.5 
Cathode inlet flow        0.371     0.335              68.55 
Anode outlet flow        0.268     0.322              65.07 
Cathode outlet flow        0.314     0.313              826.1 
Inlet water temp    0.00061     0.003              0.049 
Outlet water temp    0.00061    0.00046                 0 
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It should be mentioned that several sensors, including anode 

inlet flow, compressor temperature, and coolant inlet flow, 
have zero sensitivities to the fuel cell parameters, which means 
they will not be affected with corresponding fuel cell failure 
modes Therefore, these sensors are not listed in Table 2 and 
will not be selected in the optimal sensor set in the following 
analysis. 

IV. PROPOSED SENSOR SELECTION ALGORITHM 

In this section, a novel sensor selection algorithm will be 
proposed based on the above sensitivity analysis results and 
fuel cell failure mode effects. Moreover, its performance will 
be compared to previous sensor selection techniques in terms of 
selected sensors and computational time for the selection. 

4.1 Proposed sensor selection algorithm 

It can be seen from Table 2 that sensors may show various 
sensitivities to different fuel cell parameters, which will make 
sensor selection analysis more difficult in practical fuel cell 
systems, since information about fuel cell failure modes cannot 
be accessed in advance. On this basis, the failure mode 
weighting based selection method is proposed based on the fact 
that different failure modes may cause various levels of system 
performance degradation, thus in cases where prior knowledge 
of fuel cell faults is unavailable, sensors should be selected 
based on the severity of failure modes to the system 
performance, i.e. a sensor has higher probability to be selected 
if it is more sensitive to the failure mode causing faster system 
performance degradation, this can be expressed as 

                       ܱܵ௞ ൌ ∑ ௜/ܴ௜௞ܦ
௡
௜                                          (8) 

where ܱܵ௞ is overall performance of the k୲୦ sensor, ܦ௜ is the 
system degradation rate due to the ݅௧௛  system failure mode, 
which is listed in Table 3 from the prior knowledge through 
experimental or numerical analysis [37-38], ܴ௜௞ is rank of the 
݇௧௛   sensor sensitivity to the ݅௧௛ failure mode, this can be 
obtained from the sensitivity analysis shown in Table 2, n is the 
total number of considered system failure modes. 

With results from Eq. (8), available sensors can be ranked 
based on the corresponding overall performance, then the 
optimal sensor set can be determined by evaluating 
performance of the sensor set with various sizes (the size is 
increased gradually based on the sensor overall performance, 
which is listed in Table 4). 

 
TABLE III 

DEGRADATION RATES OF VARIOUS FUEL CELL FAILURE MODES 

Failure mode       Degradation rate (V/h) 

             Flooding              0.39 
  Membrane drying out              0.25                    
Reduction of cell active area              0.025        
  

 
TABLE IV 

SENSOR SETS USED IN THE ANALYSIS 

Sensor 
set       

                   Sensors included 

               
1 

Cathode inlet flow 

               
2 

Cathode inlet flow, Cathode outlet flow                                           

               
3 

Cathode inlet flow, Cathode outlet flow, Anode outlet flow;    

               
4 

Cathode inlet flow, Cathode outlet flow, Anode outlet flow, 
Stack temperature; 

               
5 

Cathode inlet flow, Cathode outlet flow, Anode outlet flow, 
Stack temperature, Water inlet temperature; 

  
 

 
In the current study, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) is selected to evaluate the performance of 
various sensor sets shown in Table 4, as it has already been 
proved to be effective in predicting fuel cell performance 
[41-43]. Moreover, the test data from [40] is used to analyze the 
performance of various sensor sets in expressing the fuel cell 
behavior. 

ANFIS structure is shown in Figure 2. Fuzzification is 
applied to the inputs based on the membership functions, and 
the rules can be generated and normalized to process the 
outputs from the fuzzification layer, before calculating the 
ANFIS outputs, defuzzification layer should be applied. These 
activities can be written with the following equations, and more 
details about ANFIS can be found in previous studies [41-43]. 

 
Fig.2 ANFIS structure 
 
Fuzzification: 

௜ݕ                   
ଵ ൌ ߤ

஺೔
ೕሺݔ௜

ଵሻ ൌ
ଵ

ଵାቤ
ೣ೔
భష೎೔
ೌ೔

ቤ
మ್೔

                           (9) 

where ߤ
஺೔
ೕ  is the fuzzy rule associated with ݅௧௛  input and ݆௧௛ 

fuzzy rule, ݕ௜
ଵ is the ݅௧௛ output at layer 1, ܽ௜, ܾ௜ and ܿ௜ are the 

parameters in the membership function, which will be adjusted 
during the training phase. 

Decision making unit: 
௜ݕ                    

ଶ ൌ ߱௜ ൌ ∏ ߤ
஺೔
ೕሺݔ௜

ଵሻ௜                                   (10) 

௜ݕ                    
ଷ ൌ ప߱തതത ൌ

ఠ೔
∑ ఠ೔
೔
భ

                                            (11) 

where ߱௜ is the firing strength of the rule. 
Defuzzification: 
௜ݕ                  

ସ ൌ ప߱തതത ௜݂ ൌ ప߱തതതሺܿଵ
௝ݔଵ ൅ ܿଶ

௝ݔଶ ൅ ܿଷ
௝ሻ               (12) 

Output: 
௜ݕ                           

ହ ൌ ∑ ప߱തതത ௜݂௜                                           (13) 
In this analysis, the inputs of the ANFIS are the 

measurements from the selected sensor set, and the output is the 
fuel cell voltage. The first 2/3rds of the data samples are used to 
train the ANFIS system, while the last 1/3rd of the data samples 
are used to validate the performance of selected sensors. Table 
5 list the mean prediction error and computation time for sensor 
sets in Table 4. 

TABLE V 
MEAN PREDICTION ERROR AND COMPUTATIONAL TIME FOR VARIOUS 

SENSOR SETS 

Sensor 
set       

                   Mean prediction error   
(V) 

         Computational 
time (s) 

     1   0.061                 10.8 
     2   0.052                                   77.6 
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     3   0.040                        99.6 
    4   0.014               162.1 
    5   0.014                522.3 
   

 

 
From Table 5, it can be seen that with increase of sensor 

number, the mean prediction error can be reduced effectively, 
but the computational time is increased. Therefore, by 
considering both the selected sensor set performance and 
computation time, optimal sensor set containing four sensors 
(Stack temperature, Water inlet temperature, Cathode outlet 
flow, Cathode inlet flow) is selected for the following fuel cell 
fault diagnosis, as the prediction performance cannot be 
improved with further increase of sensor numbers, while 
computational time will be increased significantly. 

4.2 Comparison study with previous sensor selection 
techniques 

In this study, two sensor selection techniques are used to 
validate the optimal sensors determined using the proposed 
algorithm, including exhaustive brute force searching and 
sensor noise resistance-based selection techniques mentioned 
in [32]. 

With the brute force searching method, all possible sensor 
combinations are searched to find the optimal sensors 
providing the best performance, which can be evaluated using 
the defined objective function written as the following 
equation. 

                     ݂ሺݔሻ ൌ ଵ

ே
∑ ௜ݒሺݏܾܽ െ ௜ሻ݌
ே
௜                             (14) 

where ݒ௜  is the actual fuel cell voltage, and ݌௜  is the 
corresponding prediction, N is the number of sample points in 
the analysis. 

ANFIS is used herein to evaluate the performance of 
different sensor combinations, and the optimal sensors can be 
determined by minimizing Eq.(14) using the smallest size of 
sensor set, which is listed in Table 6. 

 
TABLE VI 

SELECTED SENSORS FROM EXHAUSTIVE SEARCHING TECHNIQUE 

Sensor set       Objective function value 

Anode outlet temperature, Cathode outlet flow,  
Cathode inlet flow 

             0.0132 

Cathode inlet temperature, Cathode outlet flow,  
Cathode inlet flow 

             0.0135                   

Cathode outlet temperature, Cathode outlet flow,  
Cathode inlet flow 

             0.0135       
  

Anode inlet temperature, Cathode outlet flow,  
Cathode inlet flow 
 

             0.0136 

 

 
It can be found from Table 6 that the difference in the four 

selected sensor sets is that the thermometer is placed at 
different locations in these sensor sets. This is reasonable as in 
practical PEM fuel cell systems, it is difficult to measure the 
fuel cell temperature directly, and the thermometers are usually 
placed at the inlet/outlet of anode and cathode sides.  

The other technique included in the analysis is the sensor 
noise resistance-based selection method used in previous study 
[32], which considers sensor noise resistance with the 

following equation.                                          
    ሼܲߜሽ ൌ ሺ்ܵܵሻିଵ்ܵሼܴߜሽ=Gሼܴߜሽ                                   (15) 

where S is the sensitivity matrix, ሼܴߜሽ is the variation in sensor 
measurements, and ሼܲߜሽ  is the perturbations in fuel cell 
parameters.                    

The evaluation of noise resistance of these sensors can be 
performed using Eq. (15). A set of (say n sets) response errors 
are generated randomly to express the measurement noise, 
(േ2% of the sensor measurements is used herein). With the 
subset of gain matrix G, the corresponding fuel cell parameter 
errors (n sets) can be calculated using Eq. (15). From the fuel 
cell parameter errors, a statistical analysis is performed. For 
example, the error for a particular parameter ௜ܲ is denoted as 
ሼߜ ௜ܲሽ, which consists of n scalar components, the mean value 
௜ߤ  and standard deviation ߪ௜  are calculated from ሼߜ ௜ܲሽ . 
Theoretically speaking, ௜ߤ	  should be close to zero, thus the 
parameter error can be expressed using ߪ௜. The index SD can be 
defined by including  ߪ௜  from errors of all the fuel cell 
parameters  

ܦܵ                            ൌ ሾߪଵ		ߪଶ  ௣ሿ                              (16)ߪ		…
where p represents the number of fuel cell parameters, and the 
overall error can be used to express the noise resistance of the 
selected sensor set (NR),  

                          ܴܰ ൌ ௌ஽ߤ ൅        ௌ஽                            (17)ߤ/ௌ஽ߪ
With this method, three sensors are determined as optimal 

sensors, including stack temperature, cathode outlet flow and 
cathode inlet flow [32]. 

Table 7 lists the comparison results between the proposed 
algorithm and the other two sensor selection techniques, in 
terms of computational time for the determination of selected 
sensors, number of selected sensors and their performance.  

 
TABLE VII 

COMPARISON RESULTS OF THREE SENSOR SELECTION ALGORITHMS 

   
                   Selected 

sensors 
         Mean 

prediction error (V) 
Time  
(min) 

Proposed algorithm Stack temperature,  
Water inlet 
temperature, 
Cathode outlet flow,  
Cathode inlet flow 

       0.014     11    

Exhaustive 
searching 

Stack temperature,  
Cathode outlet flow,  
Cathode inlet flow 

      0.0132 >8530 

Noise-resistance 
based 

Stack temperature,  
Cathode outlet flow,  
Cathode inlet flow 

      0.0132    35 

    

 
It can be found from Table 7 that compared with the brute 

force searching method and sensor noise resistance based 
method, the proposed algorithm provides one more sensor in 
the optimal sensor set (water inlet temperature), but this will not 
affect the performance of expressing fuel cell behavior 
significantly. Moreover, the proposed algorithm uses minimum 
computational time for the optimal sensor determination, which 
will be beneficial in practical application, as computational 
time is usually critical for on-line diagnostic tasks.  

It should be noted that once the optimal sensors are 
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determined, the on-line fault diagnosis can be performed, 
which will be further illustrated in the following section. 
Moreover, in cases where reliability of selected sensors is 
reduced during the fuel cell operation, i.e. selected sensor start 
providing misleading readings, the proposed sensor selection 
technique should be performed again to update the optimal 
sensors. As minimum computational time is involved in the 
selection analysis, the proposed approach can minimize the 
interruption time of the fuel cell normal operation for selecting 
the optimal sensors.  

V. EFFECTIVENESS OF PROPOSED ALGORITHM IN PEM 

FUEL CELL ON-LINE DIAGNOSIS 

In this section, the performance of optimal sensor set in 
identifying fuel cell faults will be studied using test data from a 
PEM fuel cell system. In the diagnostic process, several 
data-driven approaches are applied to the measurements from 
the optimal sensor set, including kernel principal component 
analysis (KPCA), wavelet packet transform (WPT) and 
singular value decomposition (SVD), which will be described 
in the following section. Moreover, the results of fuel cell fault 
diagnostics using optimal sensor set will be compared to those 
with involvement of all the sensors to demonstrate the 
effectiveness of optimal sensors in fuel cell fault diagnosis. 

5.1. Description of sensor measurements  

As described before, test data from a PEM fuel cell system is 
used to study the performance of optimal sensors. In this study, 
a test rig with capability of 800W is used to provide the PEM 
fuel cell test data, which contains a fuel cell stack, air and 
hydrogen supply systems, cooling system, and TDI power load 
bank manufactured by Astrodyne TDI to consume the energy 
produced from the stack. Figure 3 depicts the tested PEM fuel 
cell system and Table 8 lists the sensors used in the PEM fuel 
cell system. It should be mentioned that the commonly used 
sensors in fuel cell systems are installed in the current PEM fuel 
cell systems, including stack voltage, load current, pressure, 
stack temperature, flow rates and pressures at anode and 
cathode sides. 

 
TABLE VIII 

SENSOR MEASUREMENTS FROM THE EC FUEL CELL SYSTEM 

Sensor (unit)                        Sensor (unit)     

     Stack voltage (V)            Load Current (A) 
     Anode reactant flow (SPLM)   Anode inlet pressure (bars)         
     Anode outlet pressure (bars)   Cathode inlet pressure (bars)      
Cathode outlet pressure (bars)   Cathode air inlet flow (SPLM) 

   Stack temperature (°C) 
Cathode relative humidity 

  Anode relative humidity 
  

  

 
In this study, the fuel cell electrode flooding is used to study 

the performance of selected sensors. The reason is that from 
previous studies [38-39], flooding can cause the fastest 
performance degradation in the PEM fuel cell system, and with 
prompt mitigation strategies, the fuel cell performance can be 
recovered from the flooding. 

In the test, the PEM fuel cell is firstly operated at nominal 

conditions (listed in Table 9) for a certain duration, then the 
current density is increased to produce more water to cause 
electrode flooding, this procedure is repeated three times. 
Figure 4 shows the current density used in the test and 
corresponding fuel cell stack voltage.  

 
Fig.3 Tested PEM fuel cell system 

 
TABLE IX 

NOMINAL PEM FUEL CELL OPERATING CONDITION 

Parameter       Value 

 Reactant stoichiometry 1/3 @ nominal (an/ca) 
  Voltage range 0.8-0.83V                       
Stack temperature 54-56 ºC 
  

 

 

 

 
Fig.4 Current density and stack voltage during the test 

 
It can be seen from Figure 4 that after the increase of current 

density, the stack voltage starts to decrease gradually, 
indicating the accumulation of liquid water and electrode 
flooding, while with lower current density, the stack voltage is 
increased and stay as a constant value, this means the fuel cell 
performance can be recovered effectively using proper 
mitigation strategies (reducing the current density herein).  
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5.2 Data-driven diagnostic approaches 

A data-driven diagnostic framework depicted in Figure 5 is 
used to identify the fuel cell faults using optimal sensors,. 
These approaches will be described briefly herein, and more 
details can be found in previous studies [14, 44-48]. It should be 
mentioned that the diagnostic approaches used herein have 
been widely used in several systems for fault diagnosis, and 
their performance has been deeply investigated. Therefore, the 
selection of these commonly used diagnostic approaches in this 
study can better illustrate the effectiveness of selected sensors 
in PEM fuel cell fault diagnosis. 

 
Fig.5 Flowchart of data-driven fault diagnostic framework 
 
The general idea of KPCA is a non-linear mapping of the 

original dataset to a higher-dimension space, where they vary 
linearly. KPCA firstly constructs and modifies the kernel 
matrix using the original dataset using the following equations.  

௜,௝ܭ                          ൌ ,௜ݔሺߢ  ௝ሻ                                         (18)ݔ
where K is the constructed kernel matrix, ߢ  is the kernel 
function, ,௜ݔ൫ߢ ௝൯ݔ ൌ ߶ሺݔ௜ሻ்߶ሺݔ௝ሻ , ߶  creates linearly 
independent variables from the original data ݔ௜	and ݔ௝ ; 

෩ܭ              ൌ ܭ െ 1௡ܭ െ 1௡ܭ ൅ 1௡1ܭ௡                            (19) 
where 1௡ is the n ൈ n matrix where all elements take the value 
of 1 n⁄  ;෩ is the modified kernel matrixܭ	,

With the modified kernel matrix, the highest L eigenvalues 
and corresponding eigenvector ( ܽଵ , ܽଶ , …, ܽ௅ ) can be 
calculated, and the original data can be projected to the new 
direction using: 

௟ݖ                     ൌ ∑ ܽ௟௡ߢሺݔ௜, ሻݔ
௡
௜ୀଵ                                      (20) 

where ݖ௟  is the l th element of the projected vector ( ݈ ∈
1,2,…  ௟௡ is the corresponding value in the above calculatedܽ ,(ܮ
eigenvectors . 

With the procedure, the high dimension dataset can be 
reduced significantly without losing useful information, which 
can be evaluated using equation (21),  

                               
∑ ఒ೔
ಽ
೔సభ

∑ ఒ೔
೙
೔సభ

൏ ܶ                                          (21) 

where  ߣ௜ is the ݅௧௛ principal component, n is the number of 
total principal component, and L is the selected number of 
principal components (with the selected principal components, 
useful information will not be lost), T is the threshold value 
(0.95 is selected in this case based on previous studies [18-19]). 

Based on Eq. (21), four principal components are selected 
herein to express the information in the original dataset with 
size of 22, and in the following analysis, the fault diagnosis will 
be performed at these principal directions. 

WPT is then applied to extract the features from the reduced 
dataset, in which the dataset is passed through filters to get 
low-pass (approximation) and high-pass results (detail). 
Compared to the conventional wavelet transform, WPT can 
provide more wavelet coefficients as both approximation and 
detail will be filtered to get the next level approximation and 
detail, respectively. Based on the wavelet coefficient, 
normalized energy is generated using the following equation. 

௣ܧ                        ൌ
ଵ

ே೛
∑ หܥ௝,௞

௣ ห
ଶ

௝.௞                                     (22) 

where  ܧ௣  is the normalized energy for specific wavelet 
packet ݌, ௣ܰ is the number of coefficients in wavelet packet ݌, 

and ܥ௝,௞
௣  is the coefficient in wavelet packet ݌. 

Finally SVD is used to select the features (normalized energy 
herein) for the fuel cell fault identification, as multiple features 
can be generated from the WPT. The principle of SVD is to 
identify and sort the features based on the contained 
information, and in this study, the two features contained the 
most information are selected and used in the analysis. 

5.3 Diagnostic performance with all the sensors 

Before evaluating the performance of optimal sensors, the 
diagnostic performance of all sensors will be studied in this 
section.  

It should be mentioned that in the analysis, only the test data 
at higher current density is selected, which corresponds to the 
fuel cell performance due to the electrode flooding. Moreover, 
the test data is divided into several categories, including normal 
state without voltage drop, transition state with voltage drop 
less than 3%, and flooding state with more than 3% voltage 
drop. With definition of these states, the performance of 
selected sensors in identifying fuel cell faults with different 
levels can be better illustrated. 

Figure 6 depicts the diagnostic results with all sensors using 
the described diagnostic procedure. It can be seen that with all 
the sensors, clearly boundaries between different fuel cell states 
(normal, transition and flooding) cannot be found at the 1st 
principal direction, especially for transition and flooding states. 
Moreover, compared to the results in the 1st principal direction, 
more misleading results can be observed in the 2nd principal 
direction, where features from all three states are close and 
cannot be discriminated. This indicates that with all available 
sensors, the early stage fuel cell flooding cannot be identified, 
thus mitigation strategies cannot be applied promptly to recover 
fuel cell performance. 

 
(a) 1st principal direction   (b) 2nd principal direction                            
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Fig. 6 Diagnostic results with all the sensors 

5.4 Diagnostic performance of optimal sensor set  

In this section, the diagnostic procedure described before 
will be applied to the measurements from the optimal sensor 
set. It should be mentioned that the same diagnostic process is 
used except that the KPCA will only be applied to the optimal 
sensors measurements. 

Figure 7 depicts the diagnostic results of the first two 
principal directions using optimal sensor set with 4 sensors, 
which are determined in section 4.1. Compared to results using 
all the sensors (shown in Figure 6), it can be seen that in all 
principal directions, the different fuel cell states can be clearly 
separated using selected sensors. Moreover, the normal state 
can be clearly discriminated from the transition and flooding 
states, indicating that with selected sensors, even the early stage 
performance degradation can be identified, which can be 
beneficial in practical applications to apply mitigation 
strategies for performance recovery.  

 
(a) 1st principal direction   (b) 2nd principal direction                            

Figure 7 Diagnostic results with selected sensors 
Tables 10 and 11 further compare the diagnostic 

performance using all the sensors and optimal sensors with a 
confusion matrix. It can be seen that with optimal sensor set, 
different fuel cell states can be discriminated with good quality. 
Moreover, compared to the computational time for diagnostic 
analysis using all the sensors (10min), the computational time 
of diagnostic analysis using selected sensor is reduced 
significantly (2min), this can better meet the requirement of 
on-line monitoring tasks for practical fuel cell systems. 

 
TABLE X 

CONFUSION MATRIX WITH ALL AVAILABLE SENSORS (SHOWN IN FIGURE 6) 

    

Predicted 

Normal Transition Flooding 

 
Actual 

Normal 83.3%      0   16.7% 
Transition 33.3%     50%   16.7% 
Flooding 8.3%     33.3%   58.4% 
    

 
TABLE XI 

CONFUSION MATRIX WITH SELECTED SENSORS (SHOWN IN FIGURE 7) 

    

Predicted 

Normal Transition Flooding 

 
Actual 

Normal 100%      0       0 
Transition    0     100%       0 
Flooding    0      0     100% 
    

 

VI. CONCLUSION 

In the paper, a novel sensor selection algorithm is proposed 
based on the sensor sensitivities and fuel cell failure mode 
effects, and the performance of selected sensors in PEM fuel 
cell on-line diagnosis is further investigated.  

In the analysis, sensitivity analysis is performed with the 
developed PEM fuel cell model. From the results, the available 
sensors can be ranked, and weights can be assigned to the 
sensors based on the failure mode effects on the fuel cell 
degradation. With weighted sensors and corresponding 
sensitivities, optimal sensors can be determined by evaluating 
performance of several candidate sensor sets. The performance 
of proposed algorithm is then compared with the previous 
sensor selection techniques, including exhaustive brute force 
searching and sensor noise-resistance based selection 
technique. Results demonstrate that the proposed algorithm can 
provide the optimal sensors with the minimum computational 
cost, thus it can be used in practical application for the fast 
decision of the optimal sensors. 

The diagnostic performance of optimal sensors is further 
studied using test data from a PEM fuel cell system. With 
data-driven approaches including KPCA, wavelet packet 
transform, and SVD, different levels in fuel cell flooding can be 
successfully identified using the optimal sensors. Compared to 
diagnostic results using all the available sensors, diagnostic 
results using optimal sensors provides less misclassifications of 
fuel cell state with less computational time, this can be better 
used in practical fuel cell systems to provide on-line health 
monitoring service.  

REFERENCES  
[1] A. Forrai, H. Funato, Y. Yanagita, Y. Kato, “Fuel-cell parameter 

estimation and diagnostics, ” IEEE Transactions on Energy Conversion, 
vol.20, pp.668-675, 2005. 

[2] N. Fouquet, C. Doulet, C. Nouillant, G.D. Tanguy, B.O. Bouamama, 
“Model based PEM fuel cell state-of-health monitoring via ac impedance 
measurements, ” Journal of Power Sources, vol.159, pp.905-913, 2006. 

[3] A. Ingimundarson, A.G. Stefanopoulou, D.A. McKay, “Model-based 
detection of hydrogen leaks in a fuel cell stack, ” IEEE Transactions on 
Control Systems Technology, vol.16, pp.1004-1012, 2008. 

[4] J.H. Ohs, U. Sauter, S. Maass, D, Stolten, “Modeling hydrogen starvation 
conditions in proton exchange membrane fuel cells, ” Journal of Power 
Sources, vol.196, pp.255-263, 2011. 

[5] M.A. Rubio, A. Urquia, S. Dormido, “Diagnosis of performance 
degradation phenomenon in PEM fuel cells,” International Journal of 
Hydrogen Energy, vol.35, pp.2586-2590, 2010. 

[6] A. Zeller, O. Rallieres, J. Regnier, C. Turpin, “Diagnosis of a 
hydrogen/air fuel cell by a statistical model-based method,” Vehicle 
Power and Propulsion Conference (VPPC), Lille, France 2010. 

[7] M.M. Kamal, D. Yu, “Model-based fault detection for proton exchange 
membrane fuel cell systems,” International Journal of Engineering, 
Science and Technology, vol.3, pp.1-15, 2011. 

[8] A. Mohammadi, A. Djerdir, D. Bouquain, B. Bouriot, D. Khaburi, “Fault 
sensitive modeling and diagnosis of PEM fuel cell for automotive 
applications,” Transportation Electrification Conference and Expo 
(ITEC), Detroit, USA, 2013. 

[9] R. Petrone, Z. Zheng, D. Hissel, M.C. Pera, C. Pianese, M. Sorrentino, M. 
Becherif, N. Yousfi-Steiner, “A review on model-based diagnosis 
methodologies for PEMFCs,” International Journal of Hydrogen Energy, 
vol.38, pp.7077-7091, 2013. 

[10] A. Narjiss, D. Depernet, D. Candusso, F. Custin, D. Hissel, “Online 
diagnosis of PEM fuel cell, ”  13th Power Electronics and Motion Control 
Conference, Poznan, Poland 2008. 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2795558, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
[11] B. Legros, P.X. Thivel, Y. Bultel, M. Boinet, R.P. Nogueira,  “Accoustic 

emission: towards a real-time diagnosis technique for proton exchange 
membrane fuel cell operation, ” Journal of Power Sources, vol.195, 
pp.8124-8133, 2010. 

[12] L. Placca, R. Kouta, D. Candusso, J.F. Blachot, W. Charon, “Analysis of 
PEM fuel cell experimental data using principle component analysis and 
multi linear regression, ” International Journal of Hydrogen Energy, 
vol.35, pp.4582-4591, 2010. 

[13] Z. Zheng, R. Petrone, M.C. Pera, D. Hissel, M. Becherif, C. Pianese, N.Y. 
Steiner, M. Sorrentino, “A review on non-model based diagnosis 
methodologies for PEM fuel cell stacks and systems, ” International 
Journal of Hydrogen Energy, vol.38, pp.8914-8926, 2013. 

[14] N.Y. Steiner, D. Hissel, P. Mocoteguy, D. Candusso, “Non intrusive 
diagnosis of polymer electrolyte fuel cells by wavelet packet transform, ” 
International Journal of Hydrogen Energy, vol.36, pp.740-746, 2011. 

[15] L. Zhongliang, R. Outbib, S. Giurgea, D. Hissel, Y. Li, “Fault detection 
and isolation for polymer electrolyte membrane fuel cell systems by 
analysing cell voltage generated space, ” Applied Energy, vol.148, 
pp.260-272, 2015. 

[16] J. Chen, B. Zhou, “Diagnosis of PEM fuel cell stack dynamic 
behaviours,” Journal of Power Sources, vol.177, pp.83-95, 2008. 

[17] M. Bonvini, M.D. Sohn, J. Granderson, M. Wetter, M.A. Piette. “Robust 
on-line fault detection diagnosis for HVAC components based on 
nonlinear state estimation techniques,” Applied Energy, vol.124, 
pp.156-166, 2014. 

[18] M. Kim, N. Jung, K. Eorn, S.J. Yoo, J.Y. Kim, J.H. Jang, H.J. Kim, B.K. 
Hong, E. Cho, “Effects of anode flooding on the performance degradation 
of polymer electrolyte membrane fuel cells, ” Journal of Power Sources, 
vol.266, pp.l332-340, 2014. 

[19] E. Pahon, N.Y. Steiner, S. Jemei, D. Hissel, P. Mocoteguy, “A 
signal-based method for fast PEMFC diagnosis, ” Applied Energy, 
vol.165, pp.748-758, 2016.  

[20] J.G. Kim, S. Mukherjee, A. Bates, B. Zickel, S. Park, B.R. Son, J.S. Choi, 
O. Kwon, D.H. Lee, H.Y. Chung, “Autocorrelation standard deviation 
and root mean square frequency analysis of polymer electrolyte 
membrane fuel cell to monitor for hydrogen and air undersupply, ” 
Journal of Power Sources, vol.300, pp.164-174, 2015. 

[21] L. Mao, L.M. Jackson, S.J. Dunnett, “Fault diagnosis of practical polymer 
electrolyte membrane (PEM) fuel cell system with data-driven 
approaches,” Fuel Cells, vol.17, pp.247-258, 2017. 

[22] L.A.M. Riascos, M.G. Simoes, P.E. Miyagi, “A Bayesian network fault 
diagnostic system for proton exchange membrane fuel cells, ” Journal of 
Power Sources, vol.165, pp.267-278, 2007. 

[23] L.A.M Riascos, M.G. Simoes, P.E. Miyagi, “On-line fault diagnostic 
system for proton exchange membrane fuel cells,” Journal of Power 
Sources, vol.175, pp.419-429, 2008. 

[24] B. Davies, L. Jackson, S. Dunnett, “Expert diagnosis of polymer 
electrolyte fuel cells,” International Journal of Hydrogen Energy, vol. 42, 
pp. 11724-11734, 2017. 

[25]  T.S. Sowers, G. Kopasakis, D.L. Simon, “Application of the systematic 
sensor selection strategy for turbofan engine diagnostics,” Turbo Expo 
2008 Gas Turbine Technical Congress and Exposition, Berlin, Germany 
2008. 

[26] D.L. Simon, S. Garg, “A systematic approach to sensor selection for 
aircraft engine health estimation,” 19th ISABE conference, Montreal, 
Canada 2009. 

[27] Y. Shuming, Q. Jing, L. Guanjun, “Sensor optimization selection model 
based on testability constraint,” Chinese Journal of Aeronautics, vol.25, 
pp.262-268, 2012. 

[28] A.M. William, K. George, M.S. Louis, S.S. Thomas, C. Amy, “Sensor 
Selection and Optimization for Health Assessment of Aerospace 
Systems,” Journal of Aerospace Computing, Information, and 
Communication, vol.5, pp.16-34, 2008. 

[29] P.M. Szecowka, A. Szczurek, M.A. Mazurowski, B.W. Licznerski, F. 
Pichler, “Neural network sensitivity analysis applied for the reduction of 
the sensor matrix, ” D.R. Moreno, F. Pichler, A.A. Quesada(eds.), 
Computer Aided System Theory - EUROCAST 2005, Springer, 
Heidelberg, pp. 27-32. 

[30] L. Kehong, T. Xiaodong, L. Guanjun, Z. Chenxu, “Sensor selection of 
helicopter transmission systems based on physical model and sensitivity 
analysis,” Chinese Journal of Aeronautics, vol.27, pp.643-654, 2014. 

[31] S.D. Lira, V. Puig, J. Quevedo, A. Husar, “LPV observer design for PEM 
fuel cell system: Application to fault detection,” Journal of Power 
Sources, vol.196, pp.4298-4305, 2011.  

[32] L. Mao, Jackson, L, “Selection of optimal sensors for predicting 
performance of polymer electrolyte membrane fuel cell,” Journal of 
Power Sources, vol.328, pp.151-160, 2016. 

[33] J.T. Pukrushpan, “Modeling and control of fuel cell systems and fuel 
processors,” Doctoral dissertation, The University of Michigan, USA 
2003. 

[34] M.J.Khan, M.T. Iqbal, “Modeling and analysis of electrochemical, 
termal, and reactant flow dynamics for a PEM fuel cell system .”. Fuel 
Cells, vol. 5, pp463-475. 

[35] S. Haji, “Analytical Modeling of PEM fuel cell i-V curve.” Renewable 
Energy, vol. 36, pp. 451-458. 

[36] M. Jouin, R. Gouriveau, D. Hissel, M.C. Pera, N. Zerhouni, 
“Degradations analysis and aging modeling for health assessment and 
prognostics of PEMFC. ” Reliability Engineering and System Safety, 
vol.148, pp.78-95, 2016. 

[37] J.M.L Canut, R.M. Abouatallah, D.A. Harrington, “Detection of 
membrane drying, fuel cell flooding, and anode catalyst poisoning on 
PEMFC stacks by electrochemical impedance spectroscopy,” Journal of 
the Electrochemical Society, vol.153, pp.857-864, 2006. 

[38] C.G. Chung, L. Kim, Y.W. Sung, J. Lee, J.S. Chung, “Degradation 
mechanism of electrocatalyst during long-term operation of PEMFC,” 
International Journal of Hydrogen Energy, vol.34, pp.8974-8981, 2009. 

[39] T. Ous, C. Arcoumanis, “Degradation aspects of water formation and 
transport in proton exchange membrane fuel cell: A review,” Journal of 
Power Sources, vol.240, pp.558-582, 2013.  

[40] FCLAB research. “IEEE PHM data challenge 2014,” 2014. 
http://eng.fclab.fr/ieee-phm-2014-data-challenge/ 

[41] Y. Vural, D.B. Ingham, M. Pourkashanian, “Performance prediction of a 
proton exchange membrane fuel cell using the ANFIS model,” 
International Journal of Hydrogen Energy, vol.34, pp.9181-9187, 2009. 

[42] S. Becker, V. Karri, “Predictive models for PEM-electrolyzer 
performance using adaptive neuro-fuzzy inference systems,” 
International Journal of Hydrogen Energy, vol.35, pp.9963-9972, 2010. 

[43] R.E. Silva, R. Gouriveau, S. Jemei, D. Hissel, L. Boulon, K. Agbossou, 
N.Y. Steiner, “Proton exchange membrane fuel cell degradation 
prediction based on adaptive neuro-fuzzy inference systems, ” 
International Journal of Hydrogen Energy, vol.39, pp.1-17, 2014. 

[44] H. Liu, H.Q. Tian, D.F. Pan, Y.F. Li, “Forecasting models for wind speed 
using wavelet, wavelet packet, time series and artificial neural networks, ” 
Applied Energy, vol.107, pp.191-208, 2013. 

[45] Z. Du, X. Jin, Y. Yang, “Fault diagnosis for temperature, flow rate and 
pressure sensors in VAV system using wavelet neural network,” Applied 
Energy, vol.86, pp.1624-1631, 2009. 

[46] E. Frappe, A.D. Bernardinis, O. Bethoux, D. Candusso, F. Harel, C. 
Marchand, G. Coquery, “PEM fuel cell fault detection and identification 
using differential method: simulation and experimental validation, ” The 
European Physical Journal Applied Physics, vol.54, pp.1-11, 2001. 

[47] Z. Li, R. Outbib, D. Hissel, S. Giurgea, “Online diagnosis of PEMFC by 
analyzing individual cell voltages,” European Control Conference, 
Zurich, Switzerland, 2013. 

[48] Z. Li, R. Outbib, D. Hissel, S. Giurgea. Data-driven diagnosis of PEM 
fuel cell: A comparative study,” Control Engineering Practice, vol.28, 
pp.1-12, 2014. 

 
 
 

Lei Mao received the BSc, MSc and PhD 
degrees from Hefei University of Technology, 
China, The University of Science and Technology 
of China, China, and The University of Edinburgh, 
UK, in 2004, 2007, and 2012, respectively. 
 From 2012 to 2013, he was a research 
associate with University of Portsmouth, UK. 
From 2013, he held a research associate position 
with Department of Aeronautical and Automotive 
Engineering, Loughborough University, UK. His 

research interests include system reliability analysis, development of 
intelligent health management system, fault diagnostic and prognostic 
techniques. 
  
 
 
 



This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2795558, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 
Lisa Jackson received the PhD degree from 
Loughborough University, UK in 2000.  
 From 2004, she became a member of 
academic staff in Department of Aeronautical and 
Automotive Engineering, Loughborough 
University. From 2010, she was promoted to 
senior lecturer with the Department of 
Aeronautical and Automotive Engineering, 
Loughborough University, UK. Her research has 
focused on multi-objective optimization applied to 

safety system design, fault diagnostic methods, enhancements in 
reliability assessment, and optimization techniques for demand 
modelling and resource allocation. 
 Dr. Jackson has gained funding from EPSRC, ESRC and a variety of 
industries. She is currently working on the Robust Lifecycle Design and 
Health Monitoring for Fuel-Cell Extended Performance (EP/K02101X/1) 
and the Adaptive Informatics for Intelligent Manufacturing 
(EP/K014137/1). 
 
 

 
Ben Davies was born in London, UK. He 
received the MSc degree in Aeronautical 
Engineering from Loughborough University, UK 
in 2013. 
 From 2013, he worked as a PhD researcher 
at Department of Aeronautical and Automotive 
Engineering, Loughborough University, UK. His 
research is mainly focused on the online 
diagnostic systems for fuel cells, as well as 
practical degradation testing for PEMFC 

systems. 
 
 
 
 
 
 


