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We study the viscous spatial linear stability characteristics of the time-averaged flow in
turbulent subsonic jets issuing from serrated (chevroned) nozzles, and compare them to
analogous round jet results. Linear parabolized stability equations (PSE) are used in
the calculations to account for the non-parallel base flow. By exploiting the symmetries
of the mean flow due to the regular arrangement of serrations, we obtain a series of
coupled two-dimensional PSE problems from the original three-dimensional problem.
This reduces the solution cost and manifests the symmetries of the stability modes. In
the parallel-flow linear stability theory (LST) calculations that are performed near the
nozzle to initiate the PSE, we find that the serrated nozzle reduces the growth rates
of the most unstable eigenmodes of the jet, but their phase speeds are approximately
similar. We obtain encouraging validation of our linear PSE instability wave results vis-
à-vis near-field hydrodynamic pressure data acquired on a phased microphone array in
experiments, after filtering the latter with proper orthogonal decomposition (POD) to
extract the energetically dominant coherent part. Additionally, a large-eddy simulation
database of the same serrated jet is investigated, and its POD-filtered pressure field is
found to compare favourably with the corresponding PSE solution within the jet plume.
We conclude that the coherent hydrodynamic pressure fluctuations of jets from both
round and serrated nozzles are reasonably consistent with the linear instability modes of
the turbulent mean flow.

1. Introduction

Jet noise is a concern for the continued expansion of aviation, and several passive and
active control techniques are being researched to address the issue. One such solution that
has been actually deployed on production aircraft is the addition of serrations called
chevrons at the nozzle trailing edge (see figure 1). The chevron tips impinge on the
jet shear layer and generate streamwise vortices that enhance mixing and shorten the
potential core (Bridges & Brown 2004; Alkislar et al. 2007). In fact, the time-averaged jet
cross-section becomes serrated corresponding to the chevrons on the nozzle. The nozzle
serrations reduce the low frequency mixing noise at aft angles (the loudest component
of jet noise), but typically increase high frequency noise at all angles (Bridges & Brown
2004).

The low-frequency aft-angle mixing noise in round jets has been linked with the kine-
matics of large-scale coherent structures within the turbulent jet plume, as reviewed
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Figure 1. Round (left) and a serrated (right) nozzles (among many) evaluated in experiments
by Bridges & Brown (2004).

recently by Jordan & Colonius (2013). The convecting coherent fluctuations appear as
wavepackets in narrow-band-frequency-filtered two-point cross correlations, especially in
the irrotational near pressure field, as observed first by Mollo-Christensen (1967). The
low-frequency wavepackets display significant coherence over streamwise domains that
are several times the nozzle exit diameter. Such observations have since prompted many
attempts at modeling turbulent coherent structures as linear instability modes of the
time-averaged flow field – the Kelvin-Helmholtz instability. As examples, we cite the
works of Crighton & Gaster (1976), Mankbadi & Liu (1984), Tam & Burton (1984),
and Goldstein & Leib (2005). Recent rigorous validations, made possible by the cur-
rent availability of detailed experimental data and well-validated large-eddy simulation
(LES) databases, have leant renewed credence to the linear stability model (Jordan &
Colonius 2013). Cavalieri et al. (2013) also provide empirical support for the assumption
of linearity of the low frequency low-azimuthal mode turbulent fluctuations, which are
responsible for most of the mixing noise due to their high coherence.

The models for coherent fluctuations in round jets have been constructed both from the
classical parallel-flow linear stability theory (LST) (e.g. Suzuki & Colonius 2006) and the
parabolized stability equation (PSE). PSE represents an improvement over LST whereby
mildly non-parallel base flows in convectively unstable flows (like jets) can be addressed
at little additional computational cost (Herbert 1997). The instability wave ansatz is
allowed to have slow streamwise variations in shape, growth rate and phase speed on the
order of the variations in the mean flow. Suitable numerical considerations (Li & Malik
1997) then allow the solution to be marched downstream. Linear PSE has been applied
successfully to predict the coherent wavepackets extracted from data of round jets, both
subsonic and supersonic (Gudmundsson & Colonius 2011; Cavalieri et al. 2013; Sinha
et al. 2014).

Based on the previous modeling success in round jets, we pursue herein the model-
ing of the low-frequency low-azimuthal mode coherent wavepacets observed in turbulent
jets issuing from serrated nozzles with PSE. These calculations are initiated near the
nozzle with the LST solution, so that the latter are also described. The LST problem
for round jets is one-dimensional – only the radial direction is inhomogeneous. The ma-
jor point of difference of the LST problem for jets issuing from serrated nozzles is its
two-dimensionality, given that the azimuthal direction is also inhomogeneous. Kawahara
et al. (2003) studied the inviscid temporal LST for a corrugated vortex sheet with ap-
plication to boundary layer stability. Gudmundsson & Colonius (2007) were the first to
solve the inviscid spatial LST problem for serrated jets, wherein they explicitly used the
azimuthal regularity of the serrations to substantially simplify and elucidate the theory.
In particular, they showed that the two-dimensional eigenproblem reduces to a set of
coupled Rayleigh equations in one (radial) dimension. Our approach in LST hews closely
to this earlier work, but we extend it to the viscous problem. The same framework is also



Parabolized stability analysis of jets from serrated nozzles 3

extended to the PSE calculations for tracking the downstream evolution of the unstable
wavepackets. In particular, the normally three-dimensional PSE problem for serrated jets
is simplified to a coupled set of two-dimensional ones. Recently, Uzun et al. (2015) revis-
ited the two-dimensional version of the inviscid LST and the three-dimensional version
of the inviscid PSE problem for serrated jets. Our formulation here allows significant
simplification but is otherwise equivalent, except for viscous effects. The closeness of our
mutual stability results reflects the minor role that viscosity plays in the problem.

Apart from the above mentioned theoretical advances made in the present work, the
other major contribution is a detailed validation of the model predictions using empirical
data. The time-averaged flow data for the stability calculations come from the parametric
experiments of Bridges & Brown (2004), who also acquired the near-field hydrodynamic
pressure on a phased array since it reveals the wavepacket nature of the shear layer
fluctuations most clearly (Suzuki & Colonius 2006; Jordan & Colonius 2013). Following
Gudmundsson & Colonius (2011), the pressure data is filtered with proper orthogonal
decomposition (POD) to extract the coherent wavepackets existing in the turbulence,
which are then used to validate the stability results. Another novel comparison pursued
here is with an LES database of the same serrated jet (Xia et al. 2009; Xia & Tucker
2012). The pressure component of this data (extracted in a cylindrical domain containing
the jet plume) is also POD-filtered to identify the wavepacket structure within the shear
layer. Reasonable agreement is demonstrated in both validation exercises, which lends
confidence to the proposed PSE-based model for coherent wavepackets in serrated jets.

2. Linear Parabolized Stability Equations for Serrated Jets

The flow field of the jet is described in cylindrical coordinates x = (x, r, θ) by q =

(ux, ur, uθ, p, ζ)
T

, which respectively denote the axial, radial and azimuthal components
of velocity, pressure, and specific volume. Linear dimensions are non-dimensionalized by
the nozzle exit diameter D, velocities by the ambient speed of sound c∞, and pressure by
ρ∞c

2
∞ (ρ∞ is the ambient density). PSE starts by decomposing q into a time-invariant

base flow (herein the turbulent mean flow) q, and the residual fluctuations q′. The set
of five non-dimensional governing equations for the viscous compressible flow linearized
about q, are compactly represented in matrix form as{

L0
+ Lt ∂

∂t
+ Lx ∂

∂x
+ Lr ∂

∂r
+ Lθ ∂

∂θ
+

∑
σ,τ∈{x,r,θ}

Lστ ∂2

∂σ∂τ

}
q′ = 0. (2.1)

The 5 × 5 coefficient matrices L are linear functions of q, and are parametrized by the
Reynolds number, Mach number and Prandtl number of the flow.

Since L’s are time-invariant, the solution is separable into its frequency components
(normal modes). Moreover, q is assumed to have gradual variations in the axial direction.
With this, the preliminary PSE ansatz for q′ in the serrated mean flow field is

q′ (x, t) = q̂ω (x) e−iωt + c.c., q̂ω (x) = Bω e
i
∫ x
x0
αω(ξ)dξ︸ ︷︷ ︸

=:χω

∞∑
m=−∞

q̃ω,m (x, r) eimθ. (2.2)

Here, the symbol m is the Fourier azimuthal mode. The frequency ω will be reported
subsequently in terms of the Strouhal number St based on the nozzle exit velocity Uj
and diameter D. In the above, q̃ω,m is the wavepacket shape function and αω is its
complex axial wavenumber, both assumed to have mild axial variation (commensurate
with the mildly non-parallel base flow), on scales that are significantly longer than the
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modal wavelength. The real and imaginary parts of αω, denoted αrω and αiω, signify the
local wavenumber and growth rate, respectively. For later convenience, we denote the
wave-part of the solution by χω. The complex amplitude of the wavepacket is set by Bω.

The nozzles typically have L chevrons distributed uniformly around the azimuth (e.g.,
L = 6 for SMC001 in figure 1). The resulting turbulent mean flow field has an L-fold
rotational symmetry so that q̂m vanishes for all m that are not integer multiples of L:

q (x, r, θ) =

∞∑
j=−∞

q̂Lj (x, r) eiLjθ. (2.3)

Substituting the foregoing ansatz in the linearized governing equations (2.1), we obtain

∞∑
j=−∞

[{
L̂
0

Lj − iωL̂
t

+ L̂
r

Lj

∂

∂r
+ L̂

rr

Lj

∂2

∂r2
+ i (m− Lj)

(
L̂
θ

Lj + L̂
rθ

Lj

∂

∂r

)
− (m− Lj)2 L̂

θθ

Lj

}

+iα

{
L̂
x

Lj + L̂
xr

Lj

∂

∂r
+ i (m− Lj) L̂

θx

Lj

}
+

{(
−α2 + i

∂α

∂x

)
L̂
xx

Lj

}
+

{
L̂
x

Lj + 2iαL̂
xx

Lj + L̂
xr

Lj

∂

∂r
+ i (m− Lj) L̂

θx

Lj

}
∂

∂x

]
q̃ω,m−Lj = 0. (2.4)

Here, L̂m is the mth azimuthal mode of the corresponding L, and it inherits the sparsity
of q indicated in (2.3). The neglect of ∂2q̃/∂x2 (with the assumed slow x-variation of q̃
in PSE) renders the equations approximately parabolic for convectively-unstable flows
such as the jet under consideration (Li & Malik 1997).

Equation (2.4) indicates that a given azimuthal mode, say q̃ω,m, is only coupled with
other azimuthal modes in the set {q̃ω,m−Ll}∞l=−∞. Evidently, there are only L unique
sets of this kind, each of which represents a separable solution of (2.4). We index these
sets by the lowest azimuthal mode appearing in them; i.e., Q̃M := {q̃ω,M−Ll}∞l=−∞,

for −L/2 < M 6 L/2 . The set Q̃M is termed the Mth ‘azimuthal order’ of the PSE
solution. These azimuthal orders also represent the L separable normal mode solutions:

q̂Mω (x, r, θ) = BMω e
i
∫ x
x0
αMω (ξ)dξ︸ ︷︷ ︸

=:χMω

∞∑
l=−∞

q̃ω,M−Ll (x, r) ei(M−Ll)θ. (2.5)

The dense m-coupling implied by (2.2) is thus clarified to be a set of sparse couplings,
with separate axial wavenumbers αMω (x). Moreover, the chevrons are usually mirror-
symmetric about their tip (and root) center planes. These symmetries of q bestow cor-
responding symmetries to the stability solutions as delineated in Appendix A.

The decomposition in (2.2) is ambiguous since the axial variation can be subsumed in
either q̃ or α. Following Herbert (1997), the following constraint is prescribed∫ ∞

0

∞∑
l=−∞

q̃†ω,M−LlW
∂q̃ω,M−Ll

∂x
rdr = 0, W := diag(1, 1, 1, 0, 0), (2.6)

where (·)† denotes the complex conjugate transpose. This aims to remove any exponential
dependence on x from q̃ (in the sense of a turbulent kinetic energy norm).

The infinite sums in the azimuthal modal domain indicated above must be truncated
in the computation. We assume that the azimuthal complexity of q (and hence L’s) is
such that the summation in (2.3) can be truncated to ±J . The summation in (2.5) (and
hence the degree of azimuthal coupling in (2.4)) is also truncated to ±N (> J), mirroring
the usual azimuthal discretization invoked in solving (2.1).
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Since the mean flow loses its serrated character far enough away from the chevrons, the
boundary conditions in the radial direction carry over from those in the round jet. These,
and other details of the PSE implementation (e.g. radial discretization and iterative axial
marching scheme), have been described by Gudmundsson & Colonius (2011) and Sinha
et al. (2014).

An upstream condition (akin to the initial condition for time marching) is required
to begin the axial march at x = x0. For this the classical parallel-flow LST problem is
solved based on the mean flow profile close to the nozzle exit, and the Kelvin-Helmholtz
eigen-solution is retrieved as the upstream condition. For the LST, (2.4) is modified in
the following ways. The last term in braces is neglected since the wave shape is assumed
to be unchanging in x. The second last term in braces is also neglected owing to the
unimportance of the α2 term in the high Reynolds number jets considered (Khorrami
& Malik 1993; Li & Malik 1997), and the constancy of α in x. Finally, the radial and
azimuthal components of mean velocity are neglected in the operators, as in the classical
parallel-flow theory. The other viscous terms are retained to avoid special treatment of
the critical layer (Lin 1955). The resulting matrix eigenvalue problem is solved with
the Arnoldi algorithm using the parallel computing version of ARPACK (Lehoucq et al.
1998). The solution of sparse linear systems arising in both LST and PSE are done using
the MUMPS package (Amestoy et al. 2001).

3. Experimental data and its analysis

Bridges & Brown (2004) performed a systematic parametric study of the effect of
nozzle chevrons on single flow jets in the Small Hot Jet Acoustic Rig (SHJAR) at the
NASA Glenn Research Center. The jets considered here are from this database; they were
operated at acoustic Mach number Ma = 0.9 and temperature ratio Tj/T∞ = 0.84 (the
SP7 set-point of Tanna (1977)). The Reynolds number was Rej = 1.6×106. Of the several
nozzles that were tested by Bridges & Brown (2004), we restrict our study to the round
nozzle (code SMC000) and the baseline chevron nozzle (SMC001) (see figure 1). The
latter had 6 isosceles chevrons distributed uniformly around the periphery that tapered
into the flow at 5◦ resulting in a radial penetration of 0.985 mm. This nozzle combined
the benefit of aft angle low frequency noise reduction with a low noise penalty at sideline
angles and higher frequencies. Both nozzles had a nominal exit diameter of 50.8 mm.

3.1. Velocity measurements and their processing

The three components of jet velocity were measured using stereoscopic particle image
velocimetry (PIV) at 12 different cross-stream planes. The setup of the PIV system has
been documented by Opalski et al. (2005). A total of 200 image pairs were recorded at
each cross section, and we extracted the ensemble-averaged axial velocity fields, ux. Fig-
ure 2(a) depicts these fields for the SMC001 nozzle at representative axial stations. The
ensemble-averaged ur and uθ fields were approximately 100 times smaller in maximum
magnitude compared to ux, and hence were neglected in the stability calculations.

The PSE formulation requires the mean velocity in polar coordinates, u(x, r, θ). The
first step to obtain this was to shift the ux data so that the axis of the polar coordinates
matches best with the geometric center of the velocity profiles (see Gudmundsson &
Colonius 2011). Subsequently, ux was transformed from the original Cartesian grid to a
polar grid using 2-D cubic-spline interpolation in MATLAB R©. After azimuthal Fourier
transform of the ux data, the modes that are not integer multiples of the chevron count (6
for SMC001) were indeed found to be close to zero. The remaining non-trivial azimuthal
modes are shown in figure 2(b) at the axial stations corresponding to figure 2(a). As
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Figure 2. (a) Contour plots of mean axial velocity in the serrated jet (SMC001) at selected
axial stations; contour levels are equally spaced between 0.1 and 0.9Uj . (b) Non-trivial azimuthal
Fourier modes (indicated by the numbers in the legend) at these stations. The radial profiles of
the round jet (SMC000) at these axial locations are also depicted in (b).

expected, the azimuthal complexity J decreases with downstream distance from the
nozzle exit. In fact, at x = 5, only modes 0 and 6 show significant values. Even at the
most upstream station considered in this work (x = 0.5), the only non-trivial azimuthal
modes are 0, 6, 12 and 18. The axisymmetric mode of the mean flow in the SMC000 case
is also presented in figure 2(b). At all the axial stations depicted, higher radial gradients
are displayed by the round jet compared to the m = 0 serrated jet mode.

To facilitate PSE calculations, the SMC001 ux profiles (in the azimuthal Fourier do-
main) were fitted with smoothing functions consisting of two (possibly truncated) Gaus-
sian curves (see Appendix D). The fit coefficients were, in turn, linearly interpolated
to the desired axial stations in the PSE calculations to recreate the ux thereat. The
Crocco-Busemann relation alongwith the ideal gas law (applied to the mean flow quanti-
ties) were used to calculate the mean specific volume ζ (which wasn’t available from the
experiments).

3.2. Pressure measurements and their processing

Pressure data were acquired on a 78-microphone phased-array at SHJAR, that was
specifically designed to detect instability waves in the hydrodynamic near field of the
jet (Suzuki & Colonius 2006). The microphone tips form a cone with half-angle of 11.3◦

that intercepts the x = 0 plane at r = 0.85. Six microphones were uniformly distributed
around the azimuth on each of thirteen axial planes spaced 0.625D apart, starting from
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x = 0.125. This allowed the detection of the most energetic azimuthal modes of near-field
pressure, viz. m = 0, 1 and 2.

The microphone signals were simultaneously sampled at 50 kHz for 10 sec. This time-
series is divided into 2976 contiguous segments, each with 168 samples. The consequent
frequency resolution in temporal Fourier transform is ∆St = 0.05. Azimuthal Fourier
transform is also applied to this data, so that 2976 realizations of complex pressure
fluctuations are obtained in the St −m domain, each realization having information si-
multaneously at all axial stations. In each St −m mode, the pressure amplitude (whose
dimensional unit is Pa /

√
Hz , but is herein reported in non-dimensional form) is com-

puted as the root mean square of the realizations.

4. LES database

The LES database used in this work was developed to simulate the jet issuing from
the SMC001 chevron nozzles at Ma = 0.9 and Tj/T∞ = 0.84, with Rej = 1.03 × 106

(the discrepancy in Rej with the experiments was unintentional, but it is expected to
be inconsequential). The numerical scheme was a hybrid of implicit LES coupled with
Spalart-Almaras near-wall RANS modeling. The flow solver, FLUXp, was based on a
cell-centered finite volume discretization for arbitrarily unstructured meshes. However,
hexahedral body-fitted meshes with conformed multi-block structured topologies were
used to avoid excessive cell skewness around the challenging chevron geometry. The time
integrator consists of a three-step backward Euler implicit scheme for the physical time
and a three-stage Runge-Kutta scheme for the pseudo time. The original calculation (Xia
et al. 2009) was performed on a 12.5 million cell mesh. Following the subsequent success
in simulating the SMC006 chevron case on a 20 million cell mesh (Xia & Tucker 2012),
the SMC001 case was also rerun on a mesh having 20 million cells. The simulation time
step was 5× 10−4D/Uj , and it was run for a flow time duration of 200D/Uj beyond the
initial transients.

Comparisons of the LES data with the experiments are presented in Appendix E.
Overall, the statistics are replicated well. However, the LES displays a laminar boundary
layer at the nozzle exit that transitions to turbulence by x ≈ 0.7, whereas the exper-
iments had a turbulent shear layer throughout. The discrepancies with experiment are
deemed acceptable given that (a) the LES database is only used to validate the modeling
approach, and (b) the base flow for this validation is the mean of the LES data itself.

For the purpose of the present validation, the simulation data was extracted on a
structured cylindrical grid having 200 radial grid points in 0 6 r 6 5, with clustering near
the lip-line. The uniform azimuthal grid had 120 points. The axial domain in 0 < x < 10
was sampled at 130 planes. In a departure from the experimental data, the mean radial
and azimuthal components of velocity of the LES data were found to be non-trivial
(about 1/10th of the mean axial velocity in maximum). This difference from experimental
observation may be attributed to the initial laminar state of the LES jet. The mean flow
data was processed for PSE calculations using the smoothing procedure described in
Appendix D.

The LES pressure fluctuation data must be transformed to the frequency domain
for comparison with the PSE solution. To obtain statistically significant results, the
LES time-series (which was sampled at intervals of 0.02D/Uj) was first divided into
75%-overlapping Hann-windowed segments. For estimating the St = 0.25 mode, each
segment length was chosen to be sufficient for resolving 1/4th of this frequency (i.e.,
it was 16D/Uj long). Thirty four such segments were obtained from the available data
record, and they were considered independent realizations. Similar considerations yielded
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Figure 3. Unstable portions of eigenspectra (growth rates −αi vs. phase speeds cp = ω/αr)
for the round (SMC000) and serrated (SMC001) jets in St = 0.35 mode, computed from exper-
imental data.

41 and 49 realizations of the St = 0.3 and 0.35 modes, respectively, and so on. Further
discussion of the data processing is deferred to § 5.3.

5. Results

5.1. Modal solutions from parallel-flow LST applied to experimental data

The PSE calculations are initiated from the appropriate LST eigensolutions near the
nozzle exit. Thus, we start by describing the characteristics of the latter. The base flow for
the results presented in this sub-section come from the experimental database discussed
in § 3. Converged eigensolutions were found with 800 radial grid points and N = 8 (the
degree of azimuthal modal coupling in (2.5)).

Figure 3 presents the unstable portion of the eigenspectra at three axial stations for
the representative St = 0.35 mode. We observe significant differences between the results
for the round and serrated jets. The round jet has at most one unstable mode in each
St −m pair, as has been repeatedly shown earlier (e.g. Batchelor & Gill 1962). The most
striking difference in the serrated jet is the multitude of unstable modes in several of the
St −M pairs shown. At x = 0.5, there are three unstable modes in M = 0 but five each
in M = 1 and 2. On the other hand, at x = 2 only the case of M = 1 has more than one
unstable modes. The eigenspectra at x = 1 present an intermediate picture. The M = 3
results are omitted for brevity in this article.

Near the nozzle, the most unstable mode for each M in the serrated jet has a slightly
higher growth rate but lower phase speed than that in the round jet. At x = 1 (the
next axial station for which mean flow data was available), the maximum growth rates
of the two jets are more comparable. By x = 2 and beyond, however, the serrated jet
has significantly reduced instability compared with the round jet. The phase speeds of
unstable modes in the serrated jet exceed those in the round jet at x = 2.

The rapid modification of the eigenspectrum with axial distance from the nozzle exit
reflects the rapidity of the mean flow changes in this region of the serrated jet. Since
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Figure 4. Real parts of pressure eigenfunctions computed at x = 1 in St = 0.35 mode for
the round jet SMC000 (top row) and serrated jet SMC001 (remaining rows). For the latter,
the modes (i)–(iii) correspond to the numbered eigenvalues in figure 3. The dark solid lines are
positive contours; light dotted lines are negative ones. Contour levels are equally spaced between
±0.95 of the maximum magnitudes of the respective eigenfunctions. Azimuths of maxima are
overlaid for reference. The chevron tips are in the y = 0 plane.

the LST assumes a parallel flow, one is led to question the physical meaning of the LST
results in this zone of rapid change. We choose to initiate the PSE calculations from
x = 1.0. Initiation from further downstream (where the instabilities grow milder) stands
to overlook the interesting effects of the serrated mean flow on stability.
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Figure 5. Real parts of pressure eigenfunctions of most unstable St = 0.35 modes computed
at x = 2 for the serrated jet (SMC001). The scheme of contour plots follow figure 4.

The geometrical structure of pressure fluctuations in the most unstable St = 0.35
eigenmodes at x = 1 are shown in figure 4. The presentation is more intuitive in the r−θ
space rather than the coupled azimuthal Fourier domain. The eigenfunctions of the round
jet have the expected monopole, dipole and quadrupole character in m = 0, 1 and 2, re-
spectively. Owing to coupling with higher order azimuthal Fourier modes, the results for
the corresponding azimuthal orders in the serrated jet display greater azimuthal complex-
ity. (Although not shown here, the magnitudes of the pressure eigenfunctions have the
6-fold azimuthal symmetries established in (A 1).) Since the mean flow is axisymmetric
away from lip-line, the higher-order coupled m-behavior of the pressure eigenfunctions is
strongest only within the shear layer. That is, the m = M mode dominates the centerline
region as well as the far field.

Next we consider the different instability modes of the serrated jet (only modes (i)
to (iii) are depicted). Although modes (i) and (ii) differ in their radial extents and rel-
ative azimuthal orientations, they display similar azimuthal complexity. Mode (iii) (and
the remaining instablities that are not shown) have higher azimuthal complexities, and
typically display narrower radial support; these suffer rapid damping downstream (see
figure 3), and hence will not be discussed in further detail.

The relative azimuthal orientations of modes (i) and (ii) are significant since they
are with respect to the lobes in the mean flow. In the mean flow contours presented
in figure 2(a), two extremal azimuthal angles are depicted – 0◦ corresponds to a ‘lobe’
whereas the contours are relatively ‘flat’ around 30◦. Of course, this pattern repeats every
60◦. The eigenfunctions in mode (i), which are the most unstable at x = 1, are seen to
reach their maxima (in absolute value) at the flats. Conversely, mode (ii) eigenfunctions,
which are significantly less unstable, have maxima at the lobes. This is true for all
azimuthal orders depicted in figure 4. The analysis in Appendix F proposes a tentative
explication of the multiple instabilities.

The most unstable St = 0.35 eigenfunctions calculated at x = 2 are presented in
figure 5. The azimuthal orientations of the most unstable modes at x = 2 resembles
those of mode (ii) at x = 1.0. Compared to the latter, the major difference is the increase
of radial support of the eigenfunctions, corresponding to the spread of the shear layer.
This result justifies the labeling of the unstable eigenmodes at x = 2 in figure 3.

In summary, the most unstable eigenmode near the nozzle, mode (i), displays peaks
at the flats of the mean flow contours. However, this eigenmode stabilizes by x ≈ 2. The
other unstable eigenmode with broad radial support, mode (ii), has peaks at the lobes,
and has much lower growth rate near the nozzle. However, this mode doesn’t decay very
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Figure 6. Growth rates and phase speeds of the unstable modes in the round (SMC000) and
serrated (SMC001) jets in M = 0 and 1 azimuthal orders and x = 1 and 2.

quickly, and in fact becomes the most unstable mode by x = 2. The other eigenmodes
that are unstable near the nozzle have all stabilized by this axial station (see figure 3).

The discussion of the eigenspectra of serrated jets is broadened to include other St–
modes in figure 6. The St–variation of the growth rates and phase speeds of the unstable
eigenmodes are shown for M = 0 and 1 at two axial stations. These plots bear out the
statements made previously regarding the relative instabilities of the round and serrated
jets. In particular, the serrated jet is slightly more unstable near the nozzle (for lower
frequencies), but this scenario is inverted by x = 2. The conclusions regarding the relative
phase speeds drawn from the St = 0.35 result are also replicated at all the St−M modes
studied.

5.2. Comparison of PSE solutions with near-field pressure recorded in experiments

The PSE method is now applied to the experimental mean flow data. The PSE formula-
tion forces the solution to approach the most unstable LST mode at each axial station in
the downstream march. Since the mode (ii) has been found to be the only unstable mode
for x > 2, we initiate the PSE calculations from the mode (ii) LST solutions computed
at x = 1; the choice of this axial station has been explained above. It is theoretically
possible to consider multiple modes in nonlinear PSE (Herbert 1994), but the indeter-
minacy of their relative initial amplitudes as well as the closure problem in the turbulent
flow being considered make this approach unsuitable.

The near-field pressure signature predicted by PSE is compared with the microphone
array measurements described in § 3.2. The phased microphone array, having six micro-
phones at each axial station, can resolve Fourier azimuthal modes up to m = 2; however,
we restrict the study to m = 0 and 1 since they are sufficient for clarifying the trends.

The instability waves being modeled here are coherent over large domains. However,
the pressure record contains fluctuations over a range of spatial scales. Thus, the two are
not directly comparable. Proper orthogonal decomposition (POD) is a filtering tool for
extracting the energetically-dominant coherent fluctuation modes from turbulent flows.
Gudmundsson & Colonius (2011) have described the application of the technique to the
round jet’s near-field pressure data sampled on the conical surface formed by the mi-
crophone array; the filtered signature is termed ‘cone-POD’ mode herein. These authors
demonstrated superior match of the instability waves (predicted using PSE) with the
first (most dominant) cone-POD mode rather than the unfiltered pressure signals. The
POD filtering is no different for the serrated jet; it is described briefly in Appendix B.
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Figure 7. Coherence of the near-field pressure in the round (SMC000) and serrated (SMC001)
jets in m = 0 and 1 over a range of St-modes. Coherence is measured as the fraction of the
pressure fluctuation energy accounted for by the first POD mode, i.e., λ(1)/

∑
i λ

(i).

The significance of the cone-POD modes is established in figure 7, which displays
the relative energy (a fraction between 0 and 1) represented by the first POD mode in
the two jets for salient St −m modes. A fast POD-spectral decay, reflected in a larger
value for λ(1)/

∑
i λ

(i), indicates greater coherence in the data. Conversely, a randomly
composed data set will show a flat spectrum, and thus a small value for this fraction. In
general, the round jet is more coherent than the serrated one. Thus, the impingement
of the nozzle chevrons on the shear layer makes this turbulent jet measurably more
‘complex’. The decrease in coherence at higher frequencies is due to the narrowness of
the energetic portion of the corresponding wavepacket (which we discuss later) compared
to the microphone spacing and array extent. The minimum in coherence of the serrated
jet around St = 0.15 is unexplained at this time. Overall, however, we conclude that the
first POD modes represent a substantial portion of the near-field pressure dynamics even
in the serrated jet.

The PSE model in (2.4) being linear and homogeneous, neither depends on nor deter-
mines the complex amplitude B of the wavepackets (see (2.5)). These are now determined
from a least-squares fit with the data (specifically the first pressure POD mode) as

[
BMω
]
Cone

=

〈
ψ̆
(1)
ω,M , χMω p̃ω,M

〉
Cone∣∣∣∣χMω p̃ω,M ∣∣∣∣2Cone

. (5.1)

We have used the azimuthal sparsity of the microphone array to retain the lowest order
azimuthal mode of the PSE wavepacket in the solution. Also, the inner product and norm
are per the definition in (B 1), with the PSE pressure solution p̃ extracted at the array.

The real parts of the PSE solution in various St −M modes are compared with the
real parts of the corresponding first POD modes of the data for both round and serrated
jets in figure 8. The results from both the experiments and the model are interpolated
for presentation. Several differences are observed in the pressure data between the two
jets in figure 8 that will be discussed now; the validity of the model will be addressed
subsequently. In general, the round jet displays lower levels near the nozzle but retains
larger amplitudes further downstream. This effect is linked to the corresponding differ-
ences in the streamwise evolution of turbulent kinetic energy in the two jets that have
been noted by several researchers (e.g., Bridges & Brown 2004; Opalski et al. 2005; Xia
et al. 2009). A related observation is the gradual amplification in the round jet vis-à-vis
the more abrupt rise in the serrated jet. This is due to the outward jetting effect of the
flow through the gaps in between the serrations of the nozzle. An observation of interest is
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Figure 8. Real part of (Fourier-transformed) pressure along the NASA microphone array for the
round (SMC000) and serrated (SMC001) jets in azimuthal orders (a) M = 0, and (b) M = 1.
The first POD mode of the data and the PSE predictions are shown for selected Strouhal
numbers.

the overall similarity of the phase speeds (proportional to the wavelengths) in the round
and serrated jets, although the latter displayed slightly higher phase speeds at x = 2 in
figure 6.

An aspect of the pressure evolution curves shown in figure 8 that is an artifact of
the geometry of the phased array measurement system, is the oscillation of amplitudes
recorded on alternate axial rings for M = 1, as evidenced by the localized spikes. Fig-
ure 9 shows that the azimuthal position of the microphones relative to the turbulence is
different in the two jets. For the serrated jet, all six microphones come equally close to
the lobes at x = 2, so that they yield an over-estimate of the pressure fluctuations that
would be measured had there been more sensors in between. Conversely, at the previous
and next rings, the microphones are located near the troughs of the contours, and thus
deliver under-estimates. The oscillations are strongest near the nozzle since the lobes of
the jet are most pronounced thereat. Actually the oscillations are more pronounced in
the original data prior to POD filtering (not shown), and also appear in the unfiltered
M = 0 amplitude envelopes.

We now turn to the comparison of prime interest in this work, which is the validation
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(a) (b)

Figure 9. Contours of total turbulence amplitudes (normalized by c∞) for the (a) round
(SMC000) and (b) serrated (SMC001) jets, along with the microphone ring at x = 2. The
circles on the ring denote its six microphones while the stars denote those on an adjacent ring.
Five contour levels are equally spaced between 0.04 and 0.2.

of the PSE predictions for the serrated jet. Considering the St = 0.35, M = 0 mode,
the match between the model and the first POD mode is noteworthy in figure 8. The
significantly earlier saturation of the instability waves in the serrated jet (compared to
those in the round jet) is faithfully replicated by the model. The phase variations of the
wavepacket is also captured well. The match is good in these respects for the St = 0.5,
M = 0 wavepacket too, although minor discrepancies are apparent in the downstream
decaying portion. However, the model reproduces the faster decay of the wavepackets,
compared to those at St = 0.35. The model is less successful for the lower frequency of
St = 0.25, M = 0 – a trend that carries over from the round jet model; see discussion
below.

Apart from the ring-to-ring oscillations of the POD modes (which our model is not
intended to replicate), the agreement is also quite satisfactory for the wavepacket at
St = 0.35, M = 1. The POD wavepacket at St = 0.5, M = 1 is dominated by the
artificial near-nozzle oscillation described above, which degrades the overall match with
the PSE model. The instability wave model is also less accurate at St = 0.25, M = 1 as
in the axisymmetric mode discussed above.

Considering the round jet results, figure 8 demonstrates that the PSE model predictions
are generally in good agreement with the first cone-POD mode. The model predictions
at St = 0.25, particularly in m = 0, are less accurate; this trend continues to lower
frequencies. Gudmundsson & Colonius (2011) reported similar deficiencies of the PSE
model for the round jet instabilities, and Baqui et al. (2013) observed the same behavior
for instability waves derived from linearized Euler equations. The discrepancy is likely
due to nonlinear effects on these modes, as well as a possible inadmissibility of the
mildly non-parallel assumption for these long-wavelength wavepackets (Gudmundsson &
Colonius 2011; Baqui et al. 2013; Sinha et al. 2014).

To quantify the foregoing comparisons, we propose the following ‘alignment’ metric

[
AMω

]
Cone

=

∣∣∣〈ψ̆(1)
ω,M , χMω p̃ω,M

〉
Cone

∣∣∣∣∣∣∣∣∣ψ̆(1)
ω,M

∣∣∣∣∣∣
Cone

∣∣∣∣χMω p̃ω,M ∣∣∣∣Cone

, (5.2)

where the notation carries over from (5.1). The intent is to determine, for a given M −ω
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Figure 10. Alignment of the near-hydrodynamic pressure of the PSE wavepackets with the
first POD modes of the corresponding experimental data for the round (SMC000) and serrated
(SMC001) jets in azimuthal orders M = 0 and 1 for various St modes.

pair, the degree of closeness (in the vector alignment sense) of the fundamental Fourier
azimuthal mode (m = M) in the PSE pressure wavepacket with the corresponding first
cone-POD mode of the experimental pressure data. The result is a number between 0
and 1, with 1 indicating perfect prediction and 0 representing failure of the model. An
analogous metric was considered by Sinha et al. (2014).

The alignment metrics are presented in figure 5.2 for a range of St-modes, computed
for both the round and serrated jets. A high degree of alignment (greater than 0.84) is
verified in the serrated jet for 0.2 6 St 6 0.45, both for M = 0 and 1. This reinforces the
qualitative agreement of the model demonstrated in figure 8. Also, the model predictions
display similar accuracy in the serrated jet as in the round jets. However, the relative
accuracies in the M = 0 and 1 are inverted in the two jets. This is due to the artificial
ring-to-ring oscillation that is prominent in the M = 1 POD modes of the serrated jet.
This is most apparent in the St = 0.5 case, which has been discussed in the context of
figure 8. The drastic degradation of accuracy of the serrated jet model for St < 0.2 may
be explained thus. The intense mixing generated by the chevrons results in a quick growth
of the shear layer. Compared to the round jet, this further belies the mildly non-parallel
base flow assumption for long-wavelength low-frequency wavepackets.

Lastly, we note that the alignment metric for the low-frequency modes in the round
jet isn’t as low as the results in figure 8 may have led one to expect. Actually, for a fairer
quantitative comparison across frequencies, the axial domain of the inner product should
be modified to include a certain number of wavelengths for each modal frequency being
studied. However, the limited axial extent of the microphone array as well as its axial
resolution disallow this exercise.

5.3. Comparison of PSE solutions with pressure extracted from the LES database

We now investigate the degree to which the PSE wavepackets describe the flow fluctu-
ations within the turbulent shear layer. Time-resolved experimental data is unavailable
for this purpose, so we turn to the LES database of the serrated jet with its space- and
time-resolved flow information. It has been remarked in § 4 that the near-nozzle region
of the flow observed in experiments is not replicated completely by the LES database.
This affects the LST eigenmodes that constitute the initial condition of the PSE, as well
as the PSE calculations themselves.

The LST eigenvalues computed from the LES mean flow field at x = 1 and 2 are
presented in figure 11. The most prominent difference in the results is the presence of
only one unstable eigenmode at each St −M condition in the case of the LES, instead of
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Figure 11. (a) Growth rates and (b) phase speeds of unstable LST eigenmodes of the serrated
(SMC001) LES jet evaluated at x = 1 and 2.

(a) (b)

Figure 12. Representative positive and negative isosurfaces of the real part of pressure in the
PSE solution for the serrated (SMC001) LES jet for St = 0.3 corresponding to azimuthal orders
(a) M = 0, and (b) M = 1. The chevron tips are in the y = 0 plane.

the multitude found with experimental mean flow. Moreover, although the trends with
St , M and x are similar to the results for instability mode (ii) obtained with experimental
data (see figure 6), the growth rates are diminished. Both these discrepancies may be
attributed to the increased thickness of the shear layer in the LES jet. The differences in
the phase speeds between the two cases do not support any distinct pattern.

A depiction of the wavepacket nature of the PSE solution is presented in figure 12.
This clearly show the serrated nature of the near-nozzle PSE that couples higher order
azimuthal modes. The solution tends to lose the serrated character further downstream,
and resembles those computed in round jets.

The wavepacket structure embedded in turbulence is clearest in the pressure fluctua-
tion field (Sinha et al. 2014). To identify the wavepackets, ‘volumetric’ POD filtering is
performed on the pressure data extracted on the structured cylindrical grid mentioned
in § 4 using the method described in Appendix C. The coherence of this data, as mea-
sured by Λ(1)/

∑
i Λ(i), is shown in figure 13. The M = 0 and 1 fluctuations are more

ordered than those in higher azimuthal orders, an observation that carries over from
supersonic round jets (Sinha et al. 2014). There is also a monotonic decrease of coher-
ence with frequency – a phenomenon that was not observed in the supersonic round jet.
The impingement of the nozzle serrations on the jet shear layer appears to be selectively
reducing the organization of the turbulent structures at higher frequencies.

As in the case of near-field pressure comparisons in § 5.2, the complex amplitudes of
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Figure 13. Coherence of the pressure field in the serrated (SMC001) LES jet, measured as
the fraction of the pressure fluctuation energy accounted for by the first POD mode, i.e.,
Λ(1)/

∑
i Λ(i).

the PSE modes are fitted to the LES pressure data as follows

[
BMω
]
Vol

=

〈
φ̂M,(1)
ω , χMω p̃

M
ω

〉
Vol∣∣∣∣χMω p̃Mω ∣∣∣∣2Vol

. (5.3)

Note that all the coupled azimuthal modes of the solution and data are considered in the
above. The inner product and norm are per the definition in (C 1).

The real parts of the lowest-order azimuthal modes (i.e., m = 0 in case of M = 0 and
m = 1 in case of M = 1) of pressure in the the PSE solution are depicted in figure 14
alongside the corresponding first POD modes from the LES data. The wavelength (and
hence the phase speeds) of the predicted wavepackets are seen to resemble those in the
data in all cases. The amplitude of the wavepackets also display a fair match, although the
decaying zones are typically under-predicted. This behaviour of stability-based models
has been discussed by Rodŕıguez et al. (2015). The m = 1 mode comparisons are better
than those for m = 0, an observation that carries over from PSE models of round jets
(Sinha et al. 2014).

The following ‘alignment’ metric quantifies the comparison between the PSE pressure
solution and the corresponding first POD mode of LES (see also (5.2))

[
AMω

]
Vol

:=

∣∣∣〈p̂Mω , φ̂M,(1)
ω

〉
Vol

∣∣∣∣∣∣∣p̂Mω ∣∣∣∣Vol

∣∣∣∣∣∣φ̂M,(1)
ω

∣∣∣∣∣∣
Vol

. (5.4)

The calculated values of the alignment metric are presented in figure 15 for two az-
imuthal orders over a range of frequencies. Overall, we demonstrate a high degree of
alignment, further justifying the use of PSE for predicting wavepackets that are actu-
ally present in the turbulent serrated jet. The alignment is generally better in case of
M = 1, as also noted from figure 14. The apparent inversion of this trend in the near-field
pressure results of § 5.2 has been explained as an artifact of the microphone array design.

The drastic degradation of alignment of the PSE solutions for frequencies beyond
St = 0.4 can be explained with reference to the LST results at the initial axial station.
Figure 11 shows that these modes are close to stable already, and in fact they are stable
at the next axial step. Thus, these wavepackets start to decay very close to the nozzle
exit, and the PSE method is unable to replicate the decay behaviour well. In the LST
solution, the M = 1 mode stabilizes at a lower frequency compared to the M = 0 mode
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Figure 14. Real parts of least-order azimuthal modes of pressure in PSE solution (left panels)
compared with corresponding components of first POD mode from LES database (right panels)
for St = 0.2, 0.3 & 0.4 and azimuthal orders M = 0 & 1. Contour levels are identical between
each pair of left and right panels, but not across rows.

– a fact that explains the corresponding poorer alignment of the M = 1 PSE solutions
for St > 0.4 in figure 15.

A detailed picture of the azimuthal variation of a wavepacket is presented in figure 16.
The PSE pressure solution for the St = 0.3, M = 1 case is scaled by the complex
amplitude B found in (5.3), and its real part is compared with the corresponding first
pressure POD mode of the LES data at various cross-sections. The POD modes retain
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Figure 15. Alignment of the pressure component of the PSE wavepackets with the first POD
modes of the corresponding LES data for the serrated (SMC001) jets in azimuthal orders M = 0
and 1 for various St modes.

Figure 16. Real parts of pressure in PSE solution (top row) and first POD mode of LES data
(bottom row) at various cross sections in the St = 0.3, M = 1 case. Contour levels are equally
spaced between ±0.9 of the maximum value found in the entire domain.

some uncertainty, which could have been reduced if a longer time record were available.
We note significant similarities in the rotational phase variation and the radial shape.
The quantitative comparison of these cross-sectional shapes is a part of the alignment
metric of (5.4).

6. Summary and conclusions

We solve the mildy non-parallel linear parabolized stability equations (PSE) for a nat-
ural turbulent jet issuing from a nozzle with serrations (chevrons) distributed uniformly
around the periphery. The time-averaged flow field, which displays corresponding ser-
rations in its contour plots, is used as the base flow for the stability calculations. The
streamwise evolution of linear perturbations of this base flow is intended to model the
large-scale coherent structures in the serrated jet. The PSE calculations are initiated near
the nozzle from eigensolutions of the classical parallel-flow linear stability theory (LST).
In the past, this approach has delivered good match with experimental and numerical
datasets of turbulent round jets.

Unlike the 2-D (i.e., x− r) PSE of round jets wherein the Fourier azimuthal modes (in
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addition to the frequency modes) are decoupled, the non-axisymmetry of the serrated
jets leads to a 3-D (i.e., x− r− θ) PSE problem. However, we show here that due to the
regular arrangement of the serrations (say L in number), the corresponding serrations of
the mean flow field have an L-fold rotational symmetry. An additional mirror symmetry
exists in the mean flow since the individual serrations are typically mirrored about a
center plane. These symmetries are exploited here to derive a series of equivalent 2-D
PSE problems, each with sparse coupling in the Fourier azimuthal domain. Compared to
the 3-D problem, the individual 2-D problems have reduced dimensionality by a factor
of L or L/2, depending on the particular member of the series considered. Aside from
the computational efficiency, an advantage of the coupled 2-D PSE formulation is the
clarification it provides regarding the geometrical structure of the solutions. The LST
problem, which is solved at the near-nozzle cross-section of the jet to initiate the PSE
calculations, also has corresponding simplifications.

We investigate the nominal (SMC001) serrated jet and the corresponding (SMC000)
round jet that were operated cold at Mach 0.9 in experiments at NASA by Bridges &
Brown (2004). Using their ensemble-averaged velocity fields as base flows, the LST reveals
multiple unstable eigenmodes in the serrated jet at cross-sections very near the nozzle;
round jets have at most one unstable mode at any cross-section. These new instability
modes arise due to the azimuthal shear in the mean flow field. Alternatively, they can
be viewed as consequences of the Fourier azimuthal coupling of the 1-D eigenproblems.
Very near the nozzle exit (i.e., at x = 0.5), the most unstable modes in the serrated
jet display slightly higher growth rates compared to the corresponding round jet modes.
However, the growth rates of the serrated jet modes decrease dramatically by x = 2, and
are much less unstable than their round jet counterparts thereat. In fact, beyond x = 2,
the most unstable eigenmode observed near the nozzle stabilizes and a less unstable mode
prevails. The phase speeds of the most unstable serrated jet modes start out as lower than
the corresponding round jet modes near the nozzle, but become approximately similar
further downstream.

The recent literature has provided a method to educe wavepackets from a natural
turbulent flow by filtering its near-field hydrodynamic pressure data with proper or-
thogonal decomposition (POD). The PSE solutions are compared with the wavepackets
thus extracted from the NASA experiments on the serrated jet. A reasonable match is
demonstrated between the two over the Strouhal number range of 0.2 6 St 6 0.45. The
failure at higher frequencies is arguably attributable to the data, but that at lower fre-
quencies possibly implicates nonlinear effects. The degree of matching in serrated jets is
quite similar to that in round jets, even though the POD spectral decay is considerably
slower in the former case (which indicates its lower coherence). The data (which the PSE
model replicates) reveals that the near-field hydrodynamic pressure fluctuations are more
energetic in the round jet compared to the serrated jet.

To validate the detailed structure of the wavepackets predicted by our PSE model
within the shear layer of the jet, we utilize an LES database that simulates the same
serrated jet. The LES jet has a transitional nature up to x ≈ 0.7, so that the near-nozzle
region of the experimental jet isn’t replicated exactly. In particular, at most one unstable
mode is obtained in the LST of this jet at all relevant cross-sections. The shapes of the
PSE pressure solution are compared visually and quantitatively with the POD-filtered
pressure modes of the LES data over a cylindrical domain extending from x = 1 to
x = 10. Encouraging agreement is obtained across the St-range mentioned above.

We conclude that the PSE model captures the major features of the coherent wavepack-
ets observed in the hydrodynamic pressure field of the turbulent serrated jet.
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Appendix A. Properties of the stability solution

The rotational and mirror symmetries of the mean flow field delineated in § 2 result
in the following properties of the linear PSE solutions.

Property 1. L−fold symmetry

q̂Mω (x, r, θ + 2πk/L ) = ei2πkM/L q̂Mω (x, r, θ) . (A 1)

Property 2. Mirror symmetry

α−Mω = αMω , (A 2a)

(ũθ)ω,−m = −(ũθ)ω,m; q̃ω,−m = q̃ω,m, q̃ ∈
{
ũx, ũr, p̃, ζ̃

}
, (A 2b)

(ûθ)
−M
ω (·, θ) = − (ûθ)

M
ω (·,−θ) ; q̂−Mω (·, θ) = q̂Mω (·,−θ) , q̂ ∈

{
ûx, ûr, p̂, ζ̂

}
. (A 2c)

As a corollary of (A 2c), we only need to solve for azimuthal orders in the range
0 6 M 6 L/2 . Moreover, (A 2b) indicates that only N + 1 out of the 2N + 1 coupled
azimuthal modes in Q̃0 are independent, and that (ũθ)ω,0 ≡ 0. Finally, for the Nyquist

azimuthal order Q̃L/2, only half of the coupled modes are independent. These symmetries
further reduce the stability problem dimensionality in the respective azimuthal orders.

Appendix B. Cone-POD modes of the jet hydrodynamic near field

As described in § 3.2, the pressure time series recorded on the near-field phased micro-
phone array encasing the jet is divided into segments that are considered independent
realizations, and each of these are Fourier transformed in time and azimuth. Let us de-
note the consequent signal in the kth segment at ring axial location x, frequency ω and

Fourier azimuthal mode m as P̆ [k]
ω,m(x), the radial coordinate being redundant on the

conical surface of the array. The azimuthal resolution of the array isn’t fine enough to
evince the coupling due to the lobed azimuthal stochastic structure of the flow; thus the
different m-modes are considered independent. The inner product for the cone-POD is

defined for two realizations P̆ [i]
ω,m and P̆ [j]

ω,m as〈
P̆ [i]
ω,m , P̆ [j]

ω,m

〉
Cone

=

∫ {
P̆ [j]
ω,m(x)

}†
P̆ [i]
ω,m(x)dx, (B 1)

where (·)† denotes complex conjugation, and the integration is over the axial domain of
measurement. With this, the integral eigenvalue (POD) problem is (Lumley 1967)∫

E

[
P̆ [k]
ω,m (x1)

{
P̆ [k]
ω,m (x2)

}†]
ψ̆ω,m (x2) dx2 = λω,mψ̆ω,m (x1) , (B 2)

where E (·) denotes the expectation over the different realizations, so that the kernel is
the 2-point cross-correlation tensor. The eigenvalues λ are non-negative, and the eigen-
function ψ̆ corresponding to the largest λ is the most energetic coherent structure in
the data per POD theory. The normalization of the nth POD eigenfunction is such that∣∣∣∣∣∣ψ̆(n)

ω,m

∣∣∣∣∣∣
Cone

= λ
(n)
ω,m, where ||·||Cone is the norm induced by the inner product in (B 1).
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Appendix C. Volume-POD modes of the serrated jet

The complex pressure at frequency ω is denoted P̂ω(x, r, θ). As explained in § 4, we

obtain sufficient realizations of this from the LES data, the kth being denoted P̂
[k]
ω . The

inner product for the volume-POD is defined for two such fields P̂
[i]
ω and P̂

[j]
ω as

〈
P̂ [i]
ω , P̂ [j]

ω

〉
Vol

=

∫ π

−π

∫ ∞
0

∫ X2

X1

{
P̂ [j]
ω (x, r, θ)

}†
P̂ [i]
ω (x, r, θ) rdxdrdθ. (C 1)

Here X1 and X2 are respectively the upstream and downstream extents of the data.

As in Appendix B, the consequent POD problem is

∫∫∫
r
1/2
1 E

[
P̂ [k]
ω (x1)

{
P̂ [k]
ω (x2)

}†]
r
1/2
2 r

1/2
2 φ̂ω (x2) dx2 = Λωr

1/2
1 φ̂ω (x1, r1, θ1) . (C 2)

The integration limits are omitted for notational convenience. The r1/2 weightings are
introduced to make the problem Hermitian (Baker 1977).

The serrated flow geometry has L symmetric lobes. Thus, we expect that the cross-
correlation will be the same if the reference angle is shifted by 2πk/L as long as the
angular difference between the two correlated quantities is maintained. This symmetry is
used to ‘augment’ the data ensemble size, in a manner analogous to POD in the presence
of a homogeneous direction (Sirovich 1987). With the usual definition of azimuthal Fourier
transform, and introducing the notation y = (x, r), this results in the simplified kernel

E

[
P̂ [k]
ω (y1, θ + ϑ)

{
P̂ [k]
ω (y2, θ)

}†]
=

∞∑
m,l=−∞

E

[
P̆ [k]
ω,m (y1)

{
P̆

[k]
ω,m−lL (y2)

}†]
ei(mϑ+lLθ).

Substituting this in (C 2) and applying azimuthal Fourier transform to the result yields

C∑
l=−C

∫∫
r
1/2
1 E

[
P̆ [k]
ω,m (y1)

{
P̆

[k]
ω,m−lL (y2)

}†]
r2φ̆ω,m−lL (y2) dy2 = Λω,mr

1/2
1 φ̆ω,m (y1) ,

(C 3)
This represents the reduced POD problem in the presence of the serrated mean flow. The
restriction of the summation to ±C reflects the limit of the azimuthal grid resolution of
the data, or the vanishing of coupling across a large m-range. As an aside, note that for
the round jet L→∞, so that l can only be zero, and we retrieve the fully decoupled set
of POD problems as expected.

The azimuthal coupling exhibited by (C 3) is similar to the PSE problem in § 2. In-
voking analogous arguments and using the definition of M , we only need to solve for
the sets M ∈ [0, d(L− 1) /2e], the corresponding eigensolutions being denoted by ΛMω ,

φ̂Mω (x). Owing to the mirror symmetry of the serrations, the +m and −m will have
the same statistics, which is to be used to augment the expectation operation in the
computation of the kernel (Sirovich 1987). In the actual implementation, the equivalent
snapshot method is used (Sirovich 1987; Sinha et al. 2014).
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Appendix D. Mean flow field fitting functions

The following are the fitting functions for the mean flow variables (in the Fourier
azimuthal domain), chosen after studying the data (e.g., figure 2(b)).

(
ûx
)
m=0

=


Ux0, r 6 rx0,

Ux0

(
ax0e

− (r−rx0)2

δ2x01 + (1− ax0)e
− (r−rx0)2

δ2x02

)
, r > rx0.

(D 1a)

(
ûx
)
m>0

=

(
Uxm1e

− (r−rxm1)2

δ2xm1 + Uxm2e
− (r−rxm2)2

δ2xm2

)
σ (r) . (D 1b)

(
ûr
)
m=0

=
Ur0

1 + e−
r−rr01
δr01

(
ar0

1 + e
r−rr02
δr02

− 1

)
e−

r
δr03 σ (r) , (D 1c)

(
ûr
)
m>0

=

 Urme
− (r−rrm)2

δ2rm1 σ (r) , r < rrm,

Urme
− (r−rrm)2

δ2rm2 σ (r) , r > rrm.

(D 1d)

(
ûθ
)
m=0

= 0. (D 1e)(
ûθ
)
m>0

=

(
Uθm1e

− (r−rθm1)2

δ2
θm1 + Uθm2e

− (r−rθm2)2

δ2
θm2

)
σ (r) . (D 1f )

ζ̂m=0 =

 1 + ζ01, r 6 rζ01,

1 + ζ01e
−

(r−rζ01)2

δ2
ζ01 + ζ02e

−
(r−rζ02)2

δ2
ζ02 , r > rζ01.

(D 1g)

ζ̂m>0 =

(
ζm1e

−
(r−rζm1)2

δ2
ζm1 + ζm2e

−
(r−rζm2)2

δ2
ζm2

)
σ (r) . (D 1h)

σ (r) =
2(

1 + e−20r
) − 1. (D 1i)

The sigmoid function σ (r) is designed to ensure vanishing values at the centerline for
specific quantities. All the coefficients are functions of x, and are obtained by least-squares
fit from data.

Appendix E. LES database validation results

Figures 17 and 18 present the comparison of the time-averaged LES data against the
NASA PIV data (described in § 3.1). The centerline velocity and the normal Reynolds
stress component are matched well. The radial profiles of these quantites also show signif-
icant similarity. However, the LES predicts a somewhat thicker shear layer in the chevron
tip plane, especially near the nozzle exit. Xia & Tucker (2012) demonstrated favorable
agreement of the far-field sound predictions (using a Ffowcs-Williams Hawkings solver)
with measured values for the SMC006 nozzle case computed using the same numerical
setup.

Appendix F. Analysis of the multiple LST eigensolutions

Figure 19 presents the results of an exercise undertaken to seek the origin of the
two instability modes in the serrated jet – modes (i) and (ii) – described in § 5.1. The
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Figure 17. (a) Mean axial velocity and (b) its standard deviation along the centerline from
LES (curves) compared with experimental data (symbols).
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Figure 18. Mean axial velocity (top row) and its standard deviation (bottom row) from LES
(solid) compared with experimental data (dotted). The profiles for the root and tip planes of
the chevrons are shown in the left and right columns, respectively.

azimuthal complexity of the mean flow profile is identified by J (see § 2), and it proves
interesting to examine the eigenspectra resulting from separate computations where we
retain successively fewer azimuthal modes in the mean flow at x = 1. The mean axial
velocity contours are depicted in figure 19(a), and their radial derivatives along the two
extremal azimuths (viz. flat and lobe) are presented in figure 19(b). The lobes become
successively broader as J is decreased from 3 to 1. However, the magnitude of the radial
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Figure 19. (a) Contour plots of mean axial velocity in the serrated jet at x = 1.0 for decreasing
azimuthal complexity, J ; contour levels are equally spaced between 0.1 and 0.9Uj . (b) Radial
derivative of mean axial velocity for varying J at the two extremal azimuthal angles shown in
(a). (c) Effect of J (indicated in legend) on the eigenspectra in M = 0 and 1 modes for St = 0.35.

gradient at the lobe actually increases with decreasing J . The flats, on the other hand,
remain substantially unchanged for 1 6 J 6 3.

Figure 19(c) shows the effect of these mean flow modifications on modes (i) and (ii)
in M = 0 and 1 at St = 0.35. The growth rate in mode (i), which peaks at the flats,
reduces successively. Conversely, the growth rate in mode (ii), which peaks at the lobes,
is enhanced as J is decreased. If we simplistically consider round jets consisting of either
the flat or lobe profiles, and modes (i) and (ii) to be dictated solely by these respective
profiles, then the modification of the mean flow gradients indicated above serve to explain
the trends in these growth rates. We conclude that mode (i) is primarily associated with
the maximum radial shear occurring at the flats of the mean flow profile (where it peaks
in figure 4), and hence has the highest growth rate. Mode (ii), on the other hand, is
associated with the second (much weaker) extremal of radial shear at the lobes, and
hence displays lower growth rates. The other instability modes display higher azimuthal
complexity, and are not covered by this explanation. Note the considerable reduction in
both the number and growth rates of these other unstable modes as J is decreased.
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