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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

To calculate the dynamic energy release rate of a crack is important for understanding a structure’s fracture behavior under 
transient or varying loads, such as impact and cyclic loads, when the inertial effect can be significant. In this work, a method is 
proposed to derive an analytic expression for the dynamic energy release rate of a stationary crack under general applied 
displacement. An asymmetric double cantilever beam with one very thin layer is considered as a special case, with vibration 
superimposed onto a constant displacement rate applied to the free end. The resulting expression for dynamic energy release rate 
is verified using the finite-element method (FEM) in conjunction with the virtual crack closure technique. The mode-mixity of 
the dynamic energy release rate is also calculated. The predicted total dynamic energy release rate and its components, GI and 
GII, are both in close agreement with results from FEM simulations. 
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1. Introduction 

Dynamic fracture has been an active research topic for several decades. During this time, various physical 
quantities have been derived as direct counterparts to those from quasi-static fracture, such as dynamic stress 
intensity factor and dynamic energy release rate. It is important to be able to calculate these quantities to understand 
the fracture behavior of a structure under transient or varying loads. In some engineering applications, loading can 
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be considered as applied displacement (e.g. the response of a vehicle suspension system; the earthquake response of 
a structure; the drilling of a plate at a prescribed feed rate); and in others as applied load (e.g. buildings or off-shore 
structures subject to wind or wave loading). In this work it is convenient to consider applied displacement. 

The dynamic effects on a structure result from its inertia and the material’s strain-rate sensitivity. In this study, 
only the inertial effect is investigated. Conventionally, dynamic fracture is studied with either stress-based 
approaches or energy-based approaches. Stress-based approaches include the transmission of sudden load through 
stress wave propagation and superposition of stresses near the crack tip (Green’s method), and the Laplace 
transform technique (Wiener-Hopf method) to solve initial-boundary value problems (Freund, 1990). Energy-based 
approaches include applying the ‘crack tip energy flux integral’. For an engineering structure, however, there appear 
to be few analytic solutions for dynamic energy release rate or dynamic stress intensity factor, although some 
approximation methods have been used, such as the ‘kinetic energy distribution’ method (Blackman et al., 1996) 
and the ‘displacement rate’ method (Smiley and Pipes, 1987), but these only considered constant loading rates and 
assumed the dynamic deflection the same as the static deflection. 

In this work, an analytic expression for the dynamic energy release rate of a stationary crack is derived for 
general applied displacement. An asymmetric double cantilever beam with one very thin layer (Fig. 1a) is 
considered as a special case, with vibration superimposed onto a constant displacement rate applied to the free end. 

�
Fig. 1. (a) an asymmetric double cantilever beam; (b) effective boundary condition on beam section ① 

2. Theory 

2.1. Assumptions 

For the beam structure shown in Fig. 1a, the energy release rate at the crack tip at point B is given by Eq. (1), 
where 1BM , 2BM , BM  are bending moments of beam section ①,②,③ at crack tip, respectively; and 1I , 2I , I  are 
corresponding secondary moments of area. Note that any undefined nomenclature has its conventional meaning. 

2 2 2
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.   (1) 

The beam thickness is assumed to be thin (i.e. Euler-Bernoulli beam theory can be applied) and axial forces 
insignificant. For a thin-layered structure, where 2 1h h , beam sections ② and ③ can be treated as rigid 
compared to beam section ① (i.e. B B 0M I   and 2B 2B 0M I  ). The total energy release rate for this thin beam 
configuration therefore becomes 
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.   (2) 

Consequently, the boundary condition of beam section ① at the crack tip B is effectively as shown in Fig. 1b. 
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2.2. Beam’s transverse deflection under general displacement excitation 

If the general applied displacement  0w t  can be expanded into the summation of several functions  

   0 0
1

n

j
j

w t w t


  .   (3) 

with each having a finite number of linearly-independent derivatives (Grant, 1983), or of periodic functions, then 
shifting functions can be introduced to derive the transverse deflection of the beam by forcing homogenous 
conditions. Under the above conditions, the transverse deflection of the beam is of the form 

       fv 0
1

, ,
n

j j
j

w x t w x t F x w t


  .   (4) 

where  fv ,w x t  is the free vibration of the beam and  jF x  are the shape functions. 
To demonstrate the process and facilitate the derivation, the applied displacement is taken here as the sum of one 

linear term and one harmonic term, that is,    2
0 sinw t vt H t  . 

The governing equation for vibration of an Euler-Bernoulli beam (Rao, 2007) is 

     4 , , 0EIw x t Aw x t  .   (5) 

The transverse deflection is thus assumed to be of the form as 

         2
fv 1 2, , sinw x t w x t F x vt F x H t   .  (6) 

By combining Eqs. (5) and (6) and forcing homogenous conditions, the following differential equations are 
obtained: 

     4
fv fv, , 0EIw x t Aw x t  ,       4

1 0F x  ,         4 4
2 2 0EIF x A F x   .  (7) 

The boundary conditions for the first of Eqs. (7) are  fv 0, 0w t  ,    1
fv 0, 0w t  ,  fv , 0w L t  ,    2

fv , 0w L t  . 

Note that  fv ,w x t  is the free vibration of a fixed-pinned beam. 
The solution for the free vibration of an Euler-Bernoulli beam can be found by using the separation method (Rao, 

2007; Blevins, 1979) as 
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where  iW x  is the ith normal mode given in 
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and iA  and iB  are determined by initial conditions. In Eq. (9), i  is given in Eq. (10), and i  is a dimensionless 
parameter determined solely from the boundary conditions.  

cos cosh
sin sinh

i i
i

i i

 


 





.   (10) 

The solution for the shifting function  1F x  is 

  3 2
1 3 2

1 3
2 2

F x x x
L L

   .   (11) 

and the solution for  2F x  is 

 2 1 2 3 4sin cos sinh coshF x C kx C kx C kx C kx    .  (12) 

where 4k A EI    and the coefficients 1C , 2C , 3C  and 4C  are determined from 
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2.3. Dynamic energy release rate 

Substituting Eqs. (8), (11) and (12) into Eq. (6), the deflection of beam under the supposed displacement is 
derived. Now the bending moment at crack tip B is obtained from 

   2
1B 0,M EIw t    (14) 

Finally, by expanding Eq. (14) and combining with Eq. (2), the total dynamic energy release rate at the crack tip B is 
obtained in Eq. (15), and 1iK , 2iK , 3iK  and 4iK are given in Eq. (16). 
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and  i x  is 
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.  (17) 

Note that the dynamic energy release rate in Eq. (15) is the total energy release rate. For the majority of 
engineering applications where the fracture toughness is mode-mixity-dependent, the total dynamic energy release 
has to be partitioned into its components, IG  and IIG . Wood et al. (2017), building on Harvey and Wang (2012), 
provided a partition theory for a thin layer on a thick substrate, which can be applied in this study. 

3. Numerical verification 

To verify the analytical expression for dynamic energy release rate derived above, the asymmetric double 
cantilever beam shown in Fig. 2 is considered, with vibration superimposed onto a constant displacement rate 
applied to the free end. 

�
Fig. 2. Geometry for numerical verification. 

An isotropic elastic material is assumed with a Young’s modulus of 50 GPa and a Poisson’s ratio of 0.3. For the 
applied displacement, the constant loading rate is 10 mm s-1 together with a vibration of amplitude of 1 μm and an 
angular frequency of 160 000 rad s-1. 

The finite-element method is used here in conjunction with the virtual crack closure technique to determine the 
dynamic energy release numerically. For a plane-stress problem, the comparison between numerical and analytical 
methods for total dynamic energy release rate is shown in Fig. 3. 

�
Fig. 3. Comparison of results for total dynamic energy release rate. 

Wood et al.'s (2017) partition theory for a thin layer on a thick substrate gives I 0.6227G G   (or equivalently, 
II 0.3773G G  ). These values can be applied directly to partition the analytical total dynamic energy release rate; 

the comparisons of its components, IG  and IIG , are shown in Fig. 4. 
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�
Fig. 4. Comparison of results for components of dynamic energy release rate: (a) Mode I, IG ; (b) Mode II, IIG . 

The analytical results for both the total dynamic energy release rate and its components are in very good 
agreement with the results from the numerical simulation. The analytical solution captures not only the amplitude of 
dynamic energy release rate but also the frequency of its variation. 

It should be noted that the analytical solution for the present problem of an asymmetric double cantilever with 
one very thin layer can be directly applied to a symmetric double cantilever beam with equal and opposite applied 
displacements. This is because the boundary condition in Fig. 1b applies in both cases. The dynamic energy release 
rate is double that in Eq.(15), and its partition is I 1G G   (or equivalently, II 0G G  ). 

4. Conclusion 

A method has been proposed to derive an analytic expression for the dynamic energy release rate of a stationary 
crack under general applied displacement. When the method is applied to an asymmetric double cantilever beam 
with one very thin layer, and with vibration superimposed onto a constant displacement rate acting at the free end, 
very good agreement is obtained with results from FEM simulation. Furthermore, the analytical components of 
dynamic energy release rate, IG  and IIG , calculated by using Wood et al.’s (2017) partition theory for a thin layer 
on a thick substrate, are also in very close agreement with the FEM simulation results. 

This work is foundational for the consideration of crack propagation under transient or varying loads, and with 
arbitrary through-thickness crack locations. These extensions are under active development by the authors and will 
provide classical solutions that are relevant to numerous modern and relevant engineering problems. 
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