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Abstract  

 

        In the present paper, an efficient method of damping structural vibrations using the 

acoustic black hole effect is further investigated experimentally. This method is based on 

some specific properties of flexural wave propagation in tapered plates (wedges) of power-

law profile that have to be partially covered by narrow thin strips of absorbing layers. Ideally, 
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if the power-law exponent of the profile is equal or larger than two, the flexural wave never 

reaches the sharp edge and therefore never reflects back, which constitutes the acoustic black 

hole effect. It has been previously established theoretically and confirmed experimentally that 

this method of damping structural vibrations is very efficient even in the presence of edge 

truncations. The present work describes the results of the experimental studies of the effects 

of manufacturing intolerances on damping flexural vibrations in wedge-like structures of 

power-law profile. In particular, the effect of mechanical damage resulting from the use of 

cutting tools to wedge tips is investigated, including tip curling and early truncation, as well 

as the placement of absorbing layers on different wedge surfaces. Also, the effects of welded 

and glued bonding of wedge attachments to basic rectangular plates (strips) are investigated. 

The results show that, although the above-mentioned geometrical and material imperfections 

reduce the damping efficiency by varying degrees, the method of damping structural 

vibrations using the acoustic black hole effect is robust enough and can be used widely 

without the need of high precision manufacturing.  

 

Keywords:  Vibration damping; Acoustic black hole effect; Wedges of power-law profile; 

Geometrical and material imperfections.  

 

 

1 Introduction  

 

       Damping of unwanted structural vibrations remains a major issue in many branches of 

engineering, particularly in transport engineering. There are many methods of damping 

structural vibrations, the most common of which being attaching absorbing layers to the 
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surfaces of vibrating structures resulting in increase of structural wave attenuation [1-4]. An 

alternative way of damping applicable to finite structures is to reduce reflections of structural 

waves from their free edges and thus to reduce the amplitudes of structural resonances [1, 2].  

      An efficient method of reducing edge reflections of flexural waves from free edges of 

plates or bars has been recently considered theoretically [5, 6] and confirmed experimentally 

[7]. The method described in [5-7] utilises a gradual change in local thickness of a plate or a 

bar, also partly covered by a thin damping layer, from the value corresponding to the 

thickness of the basic plate or bar to almost zero (see Fig. 1). If the local thickness  h(x) of a 

plate or a bar is described by a power-law relationship:  h(x) = εxm,  where  x  is the distance 

from the edge along the median plane and  ε  and  m  are positive numbers, then flexural 

waves propagating towards the sharp edge slow down and grow in amplitude. According to 

the geometrical acoustics approximation used in [5, 6], for  m ≥ 2  the waves never reach the 

edge and thus become trapped, never reflecting back either. Therefore, it can be said that 

sharp edges of such power-law structures materialise acoustic ‘black holes’ for flexural 

waves.  

        Note that the above-mentioned ‘unusual’ effect of wedges of power-low profile in 

respect of their possible applications as vibration dampers has been first described in [8]. 

However, because of the inherent intolerances present in the production process, the physical 

or manufactured wedges do not have perfect ideal power-law shapes, largely due to ever-

present truncations at their edges. Therefore, real reflection coefficients are high [8] and such 

structures alone can not be used as practical vibration dampers. The reflection coefficients, 

however, can be drastically reduced by depositing the above-mentioned thin strips of 

absorbing layers on surfaces of the wedges, very close to their sharp edges [5-7]. Thus, the 

combined effect of power-law geometry and of thin absorbing layers results in very efficient 

damping systems for flexural vibrations.  
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      One of the advantages of the above-mentioned acoustic black holes as dampers of 

structural vibrations is that they are effective even for relatively thin and narrow strips of 

attached absorbing layers. Among their potential practical applications one can mention 

damping of excessive resonant vibrations in turbine and fan blades [7, 9] and damping of 

impact-induced vibrations in tennis racquets and golf clubs [9]. They can be used also for 

vibration damping in numerous engineering structures containing different types of plates and 

bars. In addition to the above-mentioned tapered plates and bars representing one-dimensional 

acoustic black holes, one can also use pits of power-law profile, or two-dimensional black 

holes that open new possibilities for applications. In particular, they can be made inside plate 

components of different aerospace structures, not compromising their overall rigidity [9]. In 

the same time, such pits combined with patches of thin absorbing layers can reduce quite 

substantially the levels of unwanted structural vibrations. 

        Subsequent theoretical and experimental investigations have confirmed the advantages 

of using the acoustic black hole effect for damping structural vibrations. In particular, the 

efficient damping of flexural vibrations of finite beams with tapered edges of power-law 

profile has been observed in [10]. The vibration damping effect of a tapered hole of power-

law profile placed in one of the foci of an elliptical plate has been studied in [11, 12] using a 

scanning laser vibrometer. It has been shown in these investigations that if a shaker is applied 

to another focus then flexural waves are focused at the tapered hole, and the damping effect is 

strongly amplified. This was also confirmed using a one-dimensional numerical model [12]. 

In the papers [13-15], the numerical modelling and experimental measurements of point 

mobilities in rectangular plates with attached power-law wedges and in circular plates with 

central tapered holes have been carried out. The results show that substantial damping of 

resonant peaks takes place in rectangular plates with attached wedges, whereas in circular 
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plates with central tapered holes damping is not as large, which was expected since there was 

no focusing in this case.  

        Obviously, the geometry and material properties of wedges of power-law profile are very 

important for damping systems utilising the acoustic black hole effect. However, there were 

no investigations so far in which the influence of geometrical or material imperfections of 

power-law wedges on damping structural vibrations has been examined. The aim of the 

present paper is to undertake experimental investigation of the effects of geometrical and 

material imperfections on vibration damping in structures containing elastic wedges of power-

law profile.  

      Initially, the effect of mechanical damage to wedge tips resulting from the use of cutting 

tools will be investigated, including tip curling and early truncation. Also, the placement of 

absorbing layers on different wedge surfaces will be studied. Then, the effects of welded and 

glued bonding of wedge attachments to basic rectangular plates (strips) will be investigated. 

Finally, the conclusions will be drawn regarding the effects of material and geometrical 

imperfections on damping structural vibrations.  

 

 

2 Theoretical background  

 

       To understand the basic principle of the acoustic black hole effect it is instructive to 

consider the simplest case of a plane flexural wave propagating in the normal direction 

towards the edge of a free wedge described by a power-law relationship  h(x)= εxm,  where  m  

is a positive rational number and  ε   is a positive constant. Since flexural wave propagation in 

such wedges can be described in the geometrical acoustics approximation (see [5, 6] for more 

detail), the integrated wave phase  Φ  resulting from the wave propagation from an arbitrary 



 6 

point  x  on the wedge medium plane to the wedge tip (x = 0), which defines the wave 

solution in the geometrical acoustics approximation, can be written in the form:  

 

∫=Φ
x

dxxk
0

)( .                                                               (1) 

 

Here  k(x)  is a local wavenumber of a flexural wave for a wedge in contact with vacuum:  

k(x) =121/4 kp
1/2(εxm)-1/2, where  kp = ω/cp  is the wavenumber of a symmetrical plate wave,   

cp = 2ct(1-ct
2/cl

2 )1/2  is its phase velocity, and  cl  and  ct  are longitudinal and shear wave 

velocities in a wedge material, and  ω =2πf  is circular frequency.  It can be seen that the 

integral in equation (1) diverges for  m ≥ 2.  This means that the integrated phase  Φ  becomes 

infinite under these circumstances and the wave never reaches the edge. Therefore, it never 

reflects back either, i.e. the corresponding reflection coefficient  R0  is zero and the wave 

becomes trapped, thus indicating that the above mentioned ideal wedges can be considered as 

‘acoustic black holes’ for incident flexural waves. 

       Real fabricated wedges, however, always have truncated edges. And this adversely 

affects their performance as acoustic black holes. If for ideal wedges of power-law profile 

(with m ≥ 2) it follows from equation (1) that even an infinitely small material attenuation, 

described by an imaginary part of  k(x), would be sufficient for the total wave energy to be 

absorbed, this is not so for truncated wedges. Indeed, for truncated wedges the lower 

integration limit in equation (1) must be changed from  0  to a certain value  x0  describing the 

length of truncation. This implies that for typical values of attenuation in wedge materials, 

even very small truncations  x0  result in values of  R0  being as large as 50-70 %  [5, 6], 

which destroys almost completely the expected acoustic black hole effect.  



 7 

        To radically improve the situation for real manufactured wedges (with truncations), it 

has been proposed to use covering the wedge surfaces by thin damping layers (films) [5-7], 

e.g. by polymeric films. Using the approach based on the geometrical acoustics 

approximation (see [5, 6] for more detail), the corresponding analytical expressions have been 

derived for the reflection coefficients of flexural waves from the edges of truncated wedges 

covered by thin absorbing layers. For example, for a truncated wedge of quadratic shape,  h(x) 

= εx2,  covered by a thin damping layer on one surface only, the following analytical 

expression has been derived for the resulting reflection coefficient  R0  at arbitrary distance  x  

from the centre of the coordinate system  x = 0  associated with the tip of an ideal (non-

truncated) wedge [5, 6]: 

 

R0 = exp(-2µ1 - 2µ2).                                                        (2) 

 

Here  









=

0
2/1

2141

1 ln
4

12
x
xk /

p
/

ε
η

µ ,                                                      (3) 

 

and  

 











−

⋅
= 2

2
0

2
01

2
2/3

2/14/1

2 11
8

123
x
x

xE
Ek p

ε
νδ

µ ,                                      (4) 

 

where  x0  is the length of the truncation,  η  and  ν   are the energy loss factors for the wedge 

and film materials respectively,  δ  is the film thickness, and  E1  and  E2  are Young’s moduli 

of the wedge and film materials; other notations have been explained earlier.  
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       Note that the expressions (2)-(4) for reflection coefficients of flexural waves are valid if 

the thickness of absorbing layers (films)  δ  is much smaller that the local thickness of the 

main wedge. Therefore, although being very useful and simple, these expressions can only be 

applicable either to wedges covered by very thin absorbing layers (thin films) or to wedges 

with large values of truncation  x0.  

      To extend the analysis to smaller values of wedge truncation and/or to thicker damping 

films one has to consider flexural wave propagation in wedges covered by damping layers of 

arbitrary thickness. Such an analysis has been undertaken in Ref. [6] using a more general 

approach to the description of the effect of damping layers on complex flexural rigidity of a 

sandwich plate. Using this approach, a more general expression for the reflection coefficient  

R0  of a quadratic wedge covered by an absorbing layer on one side has been derived, which is 

not reproduced here for shortness. Although this expression has been derived under a number 

of simplifying assumptions, it is rather cumbersome and contains the integration that should 

be carried out numerically.  

       Numerical calculations according to the above-mentioned simple formulae (2)-(4) show 

that for typical parameters of metal wedges and polymeric damping films the values of the 

reflection coefficient  R0  at frequencies around 10 kHz can be as low as 3-6 %. Thus, in the 

presence of a damping film the values of the reflection coefficient from the tip of a truncated 

wedge of power-law profile are usually much smaller than those for a wedge with the same 

value of truncation  x0, but without a film. Obviously, it is both the specific geometrical 

properties of a power-law-shaped wedge in respect of flexural wave propagation and the 

effect of thin damping layers that result in such a significant reduction in the reflection 

coefficient. Note that almost all absorption of the incident wave energy takes place in the 

vicinity of the sharp edge of a wedge.  
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3 Manufacturing of experimental wedges  

 

       As it must be clear from the previous section, the manufacturing process is of great 

importance for practical implementation of wedges of power law profile as one could 

anticipate that a high level of precision is required in the formation of the profile to ensure 

maximum damping. Experimental samples in the present work were manufactured from 5 

mm thick hot drawn mild steel sheets, which are more resistant to mechanical stresses 

incurred in the manufacturing process than cold drawn steels. Resilience to mechanical 

stresses results in fewer internal defects that could lead to increased elastic wave scattering. 

Plate and damping layer material properties are listed in Table 1, whereas sample dimensions 

are given in Table 2.  

      Wedges of power law profile, with  m = 2.2,  were milled at one end of the plates (strips). 

The milling machine was accurate to 0.01 mm, and the cutter head was inclined to reduce 

machining stresses. The cutter rotated at speed of 600 rpm in a manner that resulted in a 

pushing cut. This safeguarded the leading edge, thus reducing the damage. The main problem 

incurred by this method of manufacture was in obtaining a thin cut at the end of the wedge. 

To produce the correct power-law profile the plate was cut extremely thin, and as a result, it 

was susceptible to curling and damage to the tip of the profile due to heat and machining 

stresses (Fig. 2).  

       For the production of welded and glued samples (see Fig. 3), the following order of 

manufacture was used. The metal sheet was first cut into strips. The glued and homogeneous 

samples were profiled before the glued wedges were cut off. In the case of welded samples, to 

avoid damage to the profile due to the heat from welding, the un-profiled ends were cut and 

welded before profiling. A mild steel filler was used for both welds (Fig. 4), and the excess 
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weld material was removed from the top and bottom of the strip to minimise weight gain and 

ensure similar strip shape. This was to ensure that the welded samples remained as similar as 

possible to the reference strip.  

      Two types of weld have been used (see Fig. 4):  (a) - Tungsten inert gas (TIG) weld (this 

method applies a separate filler rod and welding torch, and it is used for straight edge 

truncation welds); (b) – Metal inert gas (MIG) weld (in this method the filler rod is 

incorporated into the welding torch and generally requires a slanted cut in the materials to 

bond them together).  

 

 

4 Experimental set-up  

 

       The experimental set-up was designed to allow almost free vibration of the sample plates, 

take the weight of the plate and introduce least damping to the system. A string suspension 

arrangement (Fig. 5) was chosen to support the test samples as it provides the least damping 

effect and nearly free boundary conditions, while still maintaining adequate strength to 

support the weight of the test sample.  

       An electromagnetic shaker provided the excitation input to the centre of the plate via a 

force transducer (Bruel and Kjaer Type 8200) attached to the surface of the plate via wax. 

Note that attachment via glue was tested as well. It was shown that below 3.8 kHz there was 

almost no difference in responses between the two attachment methods, whereas after this 

point the glue attachment resulted in increasingly greater damped response, particularly above 

7 kHz where an increased damping of up to 5 dB could be seen. Therefore, wax was used as 

the attachment method for all the experiments of this paper.  
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       The response was recorded by a broadband accelerometer (Bruel & Kjaer Type 4371) 

that was attached to the upper surface of the test sample, directly above the force transducer, 

also via wax (see Fig. 6). A broadband white noise signal was generated by the analyser and 

transferred to the test piece via a shaker. A Bruel & Kjaer Type 2035 analyser and amplifier 

were used to acquire the results. A schematic view of the experimental set-up is shown in Fig. 

7. Point accelerance was measured in each test case. A measurement range of 0.015 - 9 kHz 

was used.  

 

 

5 Results and discussion  

 

5.1 Effect of an attached wedge of power-law profile on damping flexural vibrations 

 

      Two sets of initial measurements are described in this section:  the effect of profiling a 

wedge with an added damping layer at the edge of a homogeneous narrow plate (strip), when 

compared to a reference strip, and the effect of adding a damping layer to a homogeneous 

wedge, when compared to an uncovered wedge.  

       Figure 8 shows a measured accelerance for a homogeneous profiled sample (m = 2.2) 

with an additional damping layer, as compared to the reference strip of constant thickness. It 

can be seen that there is little wedge-induced damping in the low frequency range, below 1.5 

kHz. Then, there is a noticeable reduction (of about 6 dB) at 1.50 kHz. A smaller reduction of 

4.5 and 2.5 dB compared to the reference peak is then recorded at 3.7 and 4.6 kHz 

respectively. The resonant peaks after this show a growing reduction with increasing 

frequency, ranging from 5.5 - 8.0 dB between 5.5 and 7.2 kHz. Finally, there is a slightly 

reduced damping effect shown at 7.2 kHz, where the reduction in peak amplitude is about 6 
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dB, with the greatest reduction of 8 dB occurring at 5.8 kHz. Due to the structural changes 

incurred when a wedge is profiled at one edge of a strip, a shift in resonant peaks is expected 

and can clearly be seen in Fig. 8. Note that the damping effect of a wedge of power-law 

profile has been documented earlier [5-7]. The present measurements extend these earlier 

results to the case of a wedge added to a strip.  

       Figure 9 shows measurement results for a homogeneous sample (m = 2.2) with early 

truncation and no wedge tip damage, with and without an additional damping layer. It can be 

seen that generally there is a small reduction in peak amplitudes for a wedge with added 

damping layer, increasing with frequency and ranging between 1.6 and 5 dB. These results 

confirm that the attachment of a damping layer to the wedge tip results in reduction in 

resonant peak amplitudes in comparison with a free wedge. The observed reductions though 

are much smaller than those observed in [7], which is likely to be caused by the large value of 

edge truncation in the present sample.  

 

5.2 Effect of tip damage and early truncation of a wedge 

 

      This section describes the effect of tip damage in a wedge of the maximum possible 

(extended) length of 49 mm on its performance when compared to the same wedge when it 

has been cut to a reduced length of 39 mm, i.e. with a premature truncation.  

      Figure 10 shows the values of measured accelerance for a TIG welded sample (extended 

sample) of power-law profile (m = 2.2) compared to the TIG welded truncated sample. It can 

be seen that, in spite of the wedge tip damage, the resonant peaks of the extended sample 

show an increased amplitude reduction with increasing frequency. It ranges from 8.5 to 12.5 

dB between 3.8 and 7.8 kHz, with a larger reduction of 15 dB recorded at around 8 kHz. This 

agrees with the predictions of [5, 6] (see also equations (2)-(4)) that the reflections from 
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truncated wedge tips increase with the increased truncation, thus resulting in poor damping 

characteristics in samples containing truncated power-law wedges.  

      The same measurements were performed with the glued bond (not shown here for 

brevity). The results followed a similar trend as in the case of the TIG welded sample, with 

the extended sample consistently performing better than the truncated sample. The maximum 

reduction of 7 dB occurred at 7.2 kHz in this case. The MIG welded sample and the 

homogeneous sample followed the same damping trend again, but with smaller increases in 

damping performance (not shown). The extended MIG welded sample achieved the maximum 

increase of 5.5 dB compared to the truncated sample and the extended homogeneous sample 

showed a 4.5 dB reduction over the truncated sample. 

       Despite the damage to the extended wedge tip, the increased length and resultant decrease 

in tip thickness provided the most efficient damping, thus demonstrating that the longer and 

thinner the wedge tip the greater the contribution of the acoustic black hole effect into the 

overall vibration damping.  

 

5.3 Effect of the damping layer placement  

 

       According to the geometrical acoustics theory of the acoustic black hole effect [5, 6], the 

position of the damping layer in relation to which surface it is attached to should make no 

difference to the level of damping achieved. However the measured results shown below 

seem to contradict this statement when real manufactured wedges are considered.  

      The damping layer has been placed on the flat underside of the wedge tip and also on the 

profile side, as can be seen in Fig. 11. The results are shown in Fig. 12. It can be seen that a 

greater damping effect occurs when the damping layer is placed on the underside flat surface 
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of the wedge, the difference in the damping effect being quite noticeable. Even at low 

frequencies there is a difference between the two.  

      In order to obtain some statistical backing for this observation, the above measurements 

have been repeated for different pieces of damping tape taken from the same roll. The results 

showing the difference in the damping associated with placement of different pieces of 

damping tape on flat and curved surfaces can be seen in Table 3 for several peak frequencies. 

As it can be seen, the difference in the damping effect is preserved.  

      Possible reasons for this difference lie in the differences between the theoretical 

assumptions and the practicality of producing a wedge to meet the theoretical standards. The 

most likely reason is that due to the stepped nature of the top of the profile the damping layer 

does not make full contact with the entire surface beneath the strip, thus resulting in the 

reduced damping effect. Following from these results, the damping layers in all subsequent 

experiments of the present work have been placed on the flat underside of the wedge profile 

to attain the maximum damping possible.  

 

5.4 Effect of bonding of a wedge to a strip 

 

      The present section describes the effects of bonding wedges to a constant thickness strip 

(Fig. 3). The wedges were bonded to a strip using two different types of weld, TIG and MIG 

(see Fig. 4), and also by glue. Each of these structures is compared to a reference strip and to 

a homogeneous structure that contains a wedge.  

      Figure 13 shows measured values of accelerance for a sample with the TIG-welded 

power-law profile (m = 2.2) in comparison with the results for the reference plate. It can be 

seen that there is a significant reduction in resonant peaks with increasing frequency, up to 8.0 

- 10 dB between 5.5-9 kHz, with the greatest reduction of about 10 dB occurring at 7.2 kHz.  
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      Figure 14 presents the measured accelerance for a sample with the MIG-welded power-

law profile (m = 2.2) compared to the reference plate. Again, there is little damping in the low 

frequency range, below 1.5 kHz (a slight increase can in fact be seen at 0.29 and 0.81 kHz). A 

reduction of 6 dB compared to the reference peak is recorded at 3.7 kHz, and there is no 

change to the peak at 4.60 kHz. The resonant peaks after this show an increasing reduction 

with increasing frequency ranging from 6.5 to 7.5 dB between 5.5-9 kHz, with the greatest 

reduction of 7.5 dB occurring at 5.5 kHz. 

       Figure 15 shows the accelerance for a sample with the glued wedge of power-law profile 

(m = 2.2) compared to the reference plate. There is little to no damping in the low frequency 

range, below 1.50 kHz, except for a reduction of about 3 dB in the amplitude of the reference 

resonant peak located at 0.81 kHz. This reduction increases to 7.5 dB at 1.50 kHz. The 

resonant peaks then show an increased reduction with increasing frequency ranging from 8.5 

to 10 dB between 4.6-9 kHz.  

       In order to account for statistical deviations in the effect of imperfections in the joining 

method used, the glued sample bond was broken, cleaned and reattached again. This 

procedure has been repeated five times. The results for the damping at several peak 

frequencies (compared to the reference plate) are shown in Table 4. As can be seen, in all five 

cases the amplitudes of the resonant peaks altered by no more than 2dB. Any discrepancies 

can be put down to the application method of the bonding agent and that it was not always 

possible to ensure an identical amount was added in each case. The trend however is 

consistent.  

       Finally, Fig. 16 shows the measured results for a homogeneous sample with power-law 

profile (m = 2.2) compared to the TIG-welded sample. There is little difference in damping 

performance in the frequency range below 4.5 kHz. After 4.5 kHz, the TIG-welded sample 
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consistently performs better than the homogeneous sample, with the reductions in comparison 

with the homogeneous sample by 4.5-6.0 dB. 

       It can be seen that the MIG-welded wedge performed the worst out of the three bonded 

samples, with a maximum damping of only 7.5 dB occurring at 5.5 kHz. The glued wedge 

performs better than the TIG-welded wedge at frequencies below 3.7 kHz, while the TIG-

welded wedge performs better than the glued wedge over the remaining frequency range 3.7 –

9 kHz. Out of the three bonds tested, the TIG-welded wedge proved to yield the most 

significant reductions in comparison with the amplitudes of the reference strip resonance 

peaks over the largest range. The greatest reduction seen across the three samples was 10 dB 

occurring at 7.2 kHz, this reduction was seen in both the TIG and glued samples.  

       As expected, neither of the welds matches the damping performance of the homogeneous 

sample, however the TIG-welded sample above 4.5 kHz unexpectedly performs better than 

the homogeneous sample. The glued wedge also has a better damping performance than the 

homogeneous sample after this point.  

       The above differences may be due to flexural wave reflections from the material 

boundaries. For the weld used in this investigation, a mild steel filler was used for mild steel 

sheet metal, however the properties of the two metals were not identical, and the difference 

could increase after heating. Obviously, higher frequency waves could be affected more by 

the break in the plate and subsequent bonding. Note that the thermal cycles endured by the 

base metal during the welding process tend to alter the structure and properties of the metal 

considerably [16]. The most prominent defect resulting from heat in the welding process is 

the formation of a Martensite polycrystalline structure that could result in increased wave 

scattering and reflections on either side of the weld. Note that this effect can be reduced by 

preheating the steel before welding.  



 17 

      Although these increased reflections as a result of Martensite formation hinder waves 

from propagating into the wedge, it is possible that to some extent the waves that enter the 

wedge and are reflected from the truncation will in turn be reflected back into the wedge. The 

initial reflection is however the dominant factor with respect to the damping performance of 

the wedge. Therefore, the greater the Martensite formation the less effective the welded 

wedge would be. 

       The TIG-welded wedge still shows significant reductions in the magnitude of the 

resonance peaks. Theoretically this is expected as the wave should propagate more efficiently 

and with less reflection through this type of weld as there is very little weld material between 

the wedge and strip.  

       The MIG-welded sample appears to have been more adversely affected by the welding 

process than the TIG-welded sample, and as a result, its reflection coefficient is greater, 

reflecting a greater proportion of the waves passing through the weld. It is quite possible that, 

due to the shape of the MIG weld, the materials towards the points at the centre of the weld 

have been affected to a greater extent than the straight edges of the TIG weld. This could 

result in higher levels of reflection from the Martensite area. To reduce the reflection 

coefficient at the two boundaries, materials with similar velocities and mass densities should 

be used for the filler and wedge.  

      In the case of the glued sample, the glue was pasted thinly and evenly between the wedge 

and the strip, ensuring a uniformed bond with little to no air gaps. Although the glue creates a 

greater impedance change in the bond than that of the welds, the glue layer itself is very thin. 

Moreover, the metal surrounding the bond is not exposed to the thermal cycles induced by 

weld formation, and therefore not affected by the heat defects that are associated with welded 

bonds. There are however limited practical applications for a glued bond as it is weak and can 

be easily broken.  
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6 Conclusions  

 

      In the present work, the effects of deviations of real manufactured wedge-like structures 

from ideal elastic wedges of power-law profile on damping flexural vibrations have been 

investigated experimentally. In particular, the effect of mechanical damage to wedge tips has 

been investigated, including tip curling and early truncation, as well as the placement of 

absorbing layers on different wedge surfaces. Also, the effects of welded and glued bonding 

of wedge attachments to basic rectangular plates (strips) have been studied. 

      It has been demonstrated that the effect of tip damage (curling) in a wedge of the 

maximum possible (extended) length allowed by manufacturing is not detrimental for its 

performance when compared to the same wedge that has been cut to a reduced length 

(truncated) in order to avoid curling. Despite the damage to the extended wedge tip, the 

increased length and resultant decrease in tip thickness provided the most efficient damping 

of flexural vibrations. The longer and thinner the wedge tip the greater the contribution of the 

acoustic black hole effect into the overall vibration damping, in spite of the resulting 

technological damage to the tip. Despite this increased damping performance, the practical 

applications of an extended tip are limited though due to an increased possibility of the tip 

braking off because of its increased fragility, although this can in part be countered by the 

addition of a damping layer. 

      It has been shown that the position of the damping layer in relation to which surface it is 

attached does make difference to the level of damping achieved, contrary to the predictions 

following from the geometrical-acoustics theory applied to idealised wedges. The measured 

results show that a greater damping effect occurs when the damping layer is placed on the 

underside flat surface of the wedge. The most likely reason for that is that due to the stepped 
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nature of the top of the profile the damping layer does not make full contact with the entire 

surface beneath the strip, thus resulting in the reduced damping effect.  

      It has been demonstrated that attaching power-low profiled wedges to a rectangular plate 

(strip) by welding or via glue results in damping performances that generally isn’t any worse 

than the performance of a homogeneous sample containing the same wedge.  

       In particular, the experiments show that the glued wedge performs better than the TIG-

welded wedge at frequencies below 3.7 kHz, while the TIG-welded wedge is performing 

better than the glued wedge over the remaining frequency range 3.7 –9 kHz. Out of the three 

bonds tested, the TIG-welded wedge proved to yield the most significant reductions in the 

amplitude of the reference strip resonance peaks over the largest frequency range.  

      In all four samples, the TIG-welded, MIG-welded, glued and homogeneous sample, the 

increased extended length results in an overall increased damping effect despite significant 

machining damage to the extended tip. The tears and small holes also result in enhanced 

damping performance due to increased scattering.   

       The main conclusion that can be drawn from the present experimental work is as follows. 

Although the above-mentioned geometrical and material imperfections generally reduce the 

damping efficiency to various degrees, the method of damping structural vibrations using the 

acoustic black hole effect is robust enough and can be used widely without the need of high 

precision manufacturing.  
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Figure captions  

 

Fig. 1.  Wedge of power-law profile.  

 

Fig. 2.  Machine damage to a wedge tip.  

 

Fig. 3.  Bonded wedge samples: (a) –TIG-welded wedge, (b) –MIG-welded wedge, 

(c) - glued wedge (standard ‘super glue’), (d) - homogeneous wedge.  

 

Fig. 4.  Types of weld:  (a) - Tungsten inert gas (TIG) weld; (b) – Metal inert gas 

(MIG) weld; dark grey – weld material/fusion zone, light grey – heat affected 

area, white – base material.  

 

Fig. 5.  Experimental set-up.  

 

Fig. 6.  Locations of the shaker (Force) and of the accelerometer (Response) on an 

experimental sample.  

 

Fig. 7.  Schematic view of the experimental set-up utilising the Bruel & Kjaer analyser.  

 

Fig. 8.  Measured accelerance for the homogeneous wedge-profiled sample (m = 2.2) with an 

added damping layer (solid curve) compared to the reference plate of constant 

thickness (dashed curve).  
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Fig. 9.  Measured accelerance for the homogeneous wedge-profiled sample (m = 2.2) with 

early truncation and no wedge tip damage with (solid curve) and without an added 

damping layer (dashed curve).  

 

Fig. 10.  Measured accelerance for a TIG-welded sample (solid curve) of power-law 

profile (m = 2.2) compared to the TIG-welded truncated sample (dashed 

curve).  

 

Fig. 11. Positioning of damping layer on a homogeneous one-sided wedge of power-law 

profile  (m = 2.2).  

 

Fig. 12. Effect of the positioning of the damping layer in relation to which surface of the 

wedge it is applied to: damping layer placed on the profiled surface (dashed line), 

damping layer placed on the flat surface (solid line).  

 

Fig. 13. Measured accelerance for a sample with the TIG-welded power-law profile 

(m = 2.2) (solid curve) compared to the reference plate (dashed curve).  

 

Fig. 14.  Measured accelerance for a sample with the MIG-welded power-law profile 

(m = 2.2) (solid curve) compared to the reference plate (dashed curve).  

 

Fig. 15.  Measured accelerance for a sample with the glued power-law profile (m = 

2.2) (solid curve) compared to the reference plate (dashed curve).  
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Fig. 16.  Measured results for a homogeneous sample with power-law profile (m = 

2.2) (dashed curve) compared to the TIG-welded sample (solid curve).  
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Table captions  

 

 

Table 1.  Material properties of plates and damping layers.  

 

Table 2.  Sample dimensions.  

 

Table 3.  Peak amplitude reduction due to the repeated attachment of pieces of damping 

tape to the flat side of a homogeneous wedge, in comparison with their 

attachment to the profiled side.  

 

Table 4.  Peak amplitude reduction for five glued samples containing a wedge of 

power-law profile, in comparison with the reference plate.  
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Fig. 1.  Wedge of power-law profile.  

 

 

 

 

Tip  

Root 

x 

y z 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.  Machine damage to a wedge tip.  
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(a) (b) (c) (d) 

 

 

 

 

Fig. 3.  Bonded wedge samples: (a) –TIG-welded wedge, (b) –MIG-welded 

wedge, (c) - glued wedge (standard ‘super glue’), (d) - homogeneous 

wedge.  
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Fig. 4.  Types of weld:  (a) - Tungsten inert gas (TIG) weld; (b) – Metal inert 

gas (MIG) weld; dark grey – weld material/fusion zone, light grey – 

heat affected area, white – base material.  
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Fig. 5.  Experimental set-up.  
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Fig. 6.  Locations of the shaker (Force) and of the accelerometer (Response) 

on an experimental sample.  
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Fig. 7.  Schematic view of the experimental set-up utilising the Bruel & Kjaer analyser. 
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Fig. 8.  Measured accelerance for the homogeneous wedge-profiled sample (m = 2.2) 

with an added damping layer (solid curve) compared to the reference plate of 

constant thickness (dashed curve).  
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Fig. 9.  Measured accelerance for the homogeneous wedge-profiled sample (m = 2.2) 

with early truncation and no wedge tip damage with (solid curve) and without an 

added damping layer (dashed curve).  
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Fig. 10.  Measured accelerance for a TIG-welded sample (solid curve) of 

power-law profile (m = 2.2) compared to the TIG-welded truncated 

sample (dashed curve).  
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Fig. 11. Positioning of damping layer on a homogeneous one-sided wedge of 

power-law profile  (m = 2.2).  
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Fig. 12. Effect of the positioning of the damping layer in relation to which surface of the 

wedge it is applied to: damping layer placed on the profiled surface (dashed 

line), damping layer placed on the flat surface (solid line).  
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Fig. 13. Measured accelerance for a sample with the TIG-welded power-law 

profile (m = 2.2) (solid curve) compared to the reference plate 

(dashed curve).  
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Fig. 14.  Measured accelerance for a sample with the MIG-welded power-law 

profile (m = 2.2) (solid curve) compared to the reference plate 

(dashed curve).  
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Fig. 15.  Measured accelerance for a sample with the glued power-law profile 

(m = 2.2) (solid curve) compared to the reference plate (dashed curve).  
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Fig. 16.  Measured results for a homogeneous sample with power-law profile 

(m = 2.2) (dashed curve) compared to the TIG-welded sample (solid 

curve).  
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Tables  

 

 

 

 

 

 

 

 

 

Table 1.  Material properties of plates and damping layers.  

 

 

 

 

 

 
Thickness 

Young’s 

modulus 
Density 

Poisons 

ratio 

Loss 

factor 

Plate 5.04 mm 190 GPa 

 

7000 kg/m3 0.3 0.6 % 

Damping 

tape 

0.08 mm - 300 kg/m3 - 6 % 
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Table 2.  Sample dimensions.  

 

 

 

 

 

 

 

 

 Reference 

plate (strip) 

Extended 

samples 

Homogeneous 

sample 

Bonded 

samples 

Length 300mm 349mm 339mm 339mm 

Width 50mm 50mm 50mm 50mm 
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Sample Homogeneous 

Peak Frequency (kHz) 2 3.5 5 6 7.2 

1 Peak Reduction (dB) 1.87 4.56 2.72 1.44 0.46 

2 Peak Reduction (dB) 1.78 4.32 2.61 1.34 0.32 

3 Peak Reduction (dB) 2.05 4.95 3.07 1.33 0.82 

4 Peak Reduction (dB) 1.85 4.68 2.57 1.29 0.37 

- Average Reduction (dB) 1.89 4.63 2.74 1.35 0.49 
 

 

 

 

Table 3.  Peak amplitude reduction due to the repeated attachment of pieces of 

damping tape to the flat side of a homogeneous wedge, in comparison 

with their attachment to the profiled side.  

 

 

 

 

 

 

 

 

 



 46 

 

 

 

 

Sample Glued 

Peak Frequency (kHz) 1.8 4 5.5 7.2 
1 Peak Reduction (dB) 7.5 5.5 5 7 
2 Peak Reduction (dB) 7.2 5.6 5.2 7.1 
3 Peak Reduction (dB) 6 4.8 4.2 6.6 
4 Peak Reduction (dB) 6.9 4.6 4.4 6.3 

5 Peak Reduction (dB) 7.2 5.4 5.3 7.3 
 

 

 

 

 

 

 

Table 4.  Peak amplitude reduction for five glued samples containing a wedge of 

power-law profile, in comparison with the reference plate.  
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