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Abstract: The work presented here considers the complex mixing processes associated with a
three-dimensional non-isothermal convoluted mixing layer such as produced by scarfed
lobed mixers as used in aero-engine gas turbine exhaust ducts. Numerical simulations of the
compressible Navier–Stokes equations in Reynolds-averaged form with a k–1 turbulence
model are conducted. The discretization of the high-Reynolds-number form of the k–1 model
for the unstructured mesh numerical solver used is described. The discretization was verified
against two elemental flows that represent subcomponents of lobed mixer problems: a planar
shear layer and a developing boundary layer. A grid dependency study is also presented for
different grid types: purely quadrilateral, a purely triangular, and a mixed grid, to assess the
influence of different mesh types on predictions. Results for a two-dimensional planar shear
layer flow indicated that quadrilateral grids yielded best results for a given grid resolution.
This result was confirmed in the numerical simulations of three-dimensional convoluted
shear layers created by a generic lobed mixer geometry in which hexahedral grids yielded the
most accurate results relative to a purely tetrahedral grid and a mixed grid. The model was
finally used to simulate the flow field in an engine-representative scarfed mixer configuration
under non-isothermal flow conditions representative of current engine practice. Results
showed that the scarfed mixer introduced strong flow asymmetries in the azimuthal direction.
This caused adjacent vortical structures produced by the alternating short and long gullies of the
lobes to interact with one another and this behaviour dominated the flow evolution. Detailed
comparisons between predicted and measured temperature fields were also carried out and
generally showed encouraging agreement and capture of correct trends. The evolution of the
predicted thermal mixing layer slightly lagged the measured data as was also the case for the
velocity fields, indicating that improvements in the prediction of the thermal mixing layer
may be strongly dependent on correct prediction of the momentum transport process as well
as improved modelling of the turbulent heat fluxes.
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1 INTRODUCTION

Advances in computational methods have produced
a growing interest in simulating lobed mixer flows,

which are an important component of achieving
low specific fuel consumption in several modern
gas turbine turbofan engines [1–4]. Lobed mixers
contribute to improved engine efficiency and also
to reduced jet noise because they lead to a more
uniform radial profile emerging from the engine
exhaust. This is achieved via extra convective stirring
of fan and core streams by creation of streamwise
vorticity downstream of the lobed mixer. Clearly,
this has to be accomplished at minimum extra
weight and pressure drag penalties, and optimum
lobed mixer design represents a considerable
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engineering challenge. To assess the applicability of
the computational models used in simulating these
flows, detailed validation studies are needed to com-
pare predictions with experiments. In particular, the
choice of the turbulence model employed can have a
significant impact on the accurate prediction of
these flows. Of the various studies that have been
conducted to date, the most detailed validation
studies include the works of Koutmos and McGuirk
[5] and Salman et al. [6, 7]. The simulations of
Koutmos and McGuirk were the first to model the
flow around a complete lobed mixer geometry
using a Reynolds-averaged formulation with a k–1
turbulence model. Although validation of the
method against detailed experimental measure-
ments was considered, a fully conclusive outcome
on the performance of the model could not be
completed. Salman et al. [6, 7] performed detailed
validation against the experimental measurements
of Yu and Yip [8] and McCormick and Bennett [9].
By comparing both mean and turbulence quantities,
it was shown that good engineering predictions can
bemade of global parameters such as the axial devel-
opment of shear layer momentum thickness and
streamwise circulation. For local mean flow velocity
and turbulent Reynolds stresses, predictions indi-
cated a lag in the development of the convoluted
shear layer with respect to measurements.

The validation studies conducted on all of these
lobed mixer flows were for idealized (usually
coplanar) configurations and for isothermal flow
conditions only. In practice, however, lobed mixers
are of more complex (scarfed and scalloped) geome-
try and primarily used to mix the cold bypass stream
with the hot core flow of a turbofan engine. This gives
rise to mixing and transfer of both momentum and
thermal energy between the two streams. Although
validation studies under isothermal flow conditions
provided significant insight into the ability of the
model to capture the momentum exchange between
the two streams, a proper assessment of the ability to
predict the temperature field is lacking. One import-
ant issue to address, therefore, is to what extent can
predictions with a k–1 turbulence model reproduce
the three-dimensional convoluted thermal mixing
layer associated with lobed mixer flows. To address
this point, a simulation of the fully compressible
Navier–Stokes equations in the Favre-averaged
form is required to predict the temperature distri-
bution within the mixing duct downstream of the
mixer. Corresponding temperature measurements
will also be needed to validate the computed flow.
Such an experimental study of a model scale, but
engine-representative, lobed mixer with a detailed
survey of the temperature field was recently carried
out by Mead [10]. The temperature field was
measured at two planes transverse to the mean

flow direction downstream of the mixer. The three-
dimensional scarfed lobedmixer geometry and oper-
ating conditions used in these measurements were
typical of mixers found on modern gas turbine
engines. A scarfed mixer differs from a coplanar
lobed mixer in that the length of adjacent lobe gullies
alternately varies between short and long. Such lobed
mixer configurations have been found to produce
increased mixing rates relative to planar mixer con-
figurations. This has resulted in the widespread
deployment of scarfed mixers (and related designs
such as scalloped mixers) in real engines, although
the precise mechanism that allows scarfed geome-
tries to achieve improved performance is poorly
understood.

Scarfing introduces significant computational
challenges in simulating the mixer flow field. In
particular, generating appropriate computational
grids that allow stable and accurate simulations to
be performed is non-trivial, as evidenced by other
investigators [1, 2, 11], who employed structured or
block-structured grids in their simulations of non-
scarfed lobe geometries. An alternative approach
would be to employ unstructured tetrahedral grids,
as was carried out in the parametric studies of
O’Sullivan et al. [3]. This latter investigation did not,
however, address the accuracy and validity of the pre-
dicted vorticity-dominated mixing regions. The suit-
ability of unstructured tetrahedral meshes for these
complex flows remains, therefore, unclear and to clar-
ify this was the first objective of the present study.

To establish whether unstructured numerical
schemes best resolve the complications that arise
in simulating realistic lobed mixer flows, the
second objective of the work was to assess the influ-
ence of different mesh types on the predictability of
developing convoluted shear layers. An initial study
of this issue was reported in reference [6]. The aim
here was to identify and isolate any important
numerical artefacts before focusing on the validation
of the physical causes of convoluted thermal shear
layer predictions. To achieve this goal, an unstruc-
tured/mixed grid algorithm is employed, which
allows solution of the compressible form of the
Navier–Stokes equations on different grid types.
This motivated the use of three different grid types
to identify the optimum grid for simulating the
lobed mixer flow: purely hexahedral, purely tetrahe-
dral, and a mixed grid. Given the questions to be
addressed, three key objectives were, therefore,
identified for the present work. The first objective
was the addition and verification of the k–1 turbu-
lence model into the unstructured mesh numerical
algorithm employed. The second objective was to
gain an understanding of how the numerical predic-
tion of complex free shear flows depends on the type
of grid being employed in their simulation. Finally,
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the third objective was to gain a fundamental under-
standing of the flow field changes brought about by
the introduction of scarfing and the associated
effects on the prediction of the thermal mixing layer.

To present these contributions, the remainder of
the article is divided into five sections. The math-
ematical model is presented in section 2. Section 3
is the description of the discretization method
chosen for the k–1 turbulence model equations.
Section 4 describes the two mixer configurations
simulated in the present work and their correspond-
ing flow conditions. Section 5 discusses various grid
discretization issues and outlines the approach
adopted in the present work to study them. Results
are then presented for three separate flows, a
planar shear layer, a boundary layer, and finally, a
scarfed lobed mixer flow. Finally, conclusions and
recommendations for future work are given.

2 MATHEMATICAL MODEL

The mathematical model is based on the compressi-
ble Navier–Stokes equations in the Favre-averaged
form. These can be written using Cartesian tensor
notation as

@r

@t
þ @ruj

@xj
¼ 0 (1)
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g is the ratio of specific heat, which is taken as equal
to 1.4. The viscosity m(T ) in the viscous stress
expression is assumed to vary with temperature,
according to Sutherland’s law. r and p are Reynolds
unweighted time-averaged properties, whereas ui,
E, H, and T are density-weighted Favre-averaged
properties. The Reynolds stresses (ru0

iu
0
j) have been

modelled using the standard high-Reynolds-
number k–1 turbulence model equations of Launder
and Spalding [12]. This can be written as
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Cm ¼ 0:09, sk ¼ 1:0, s1 ¼ 1:3,

C11 ¼ 1:44, C12 ¼ 1:92 (10)

Following Liu and Zheng [13], the production term
Pk appearing in the source terms of the turbulence
equations is written in the following form
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This particular form is useful in that it shows that the
production term consists of a part which is always
positive and a term whose sign is dependent on
local conditions. This distinction between positive
and (possibly) negative parts of Pk becomes import-
ant when addressing the time integration of the
turbulence equations, as discussed in the next
section.

The effective (i.e. sum of viscous and turbulent)
stresses are given by

tij � ru0
iu

0
j ¼ (mþ mt)
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3
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3
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The effective (i.e. sum of molecular and turbulent)
heat fluxes are given by

qi þ rh0u0
i ¼ �(kþ kt)

@T

@xi
(13)

k ¼ mCp

Pr
, kt ¼ mtCp

Prt
(14)

In this work, the molecular (Pr) and turbulent
(Prt) Prandtl numbers were set to 0.72 and 0.9,
respectively.
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3 NUMERICAL DISCRETIZATION

The system of equations (1) to (14) comprises a
closed set of equations. Solutions are obtained
using an unstructured finite volume discretization
employing median dual control volumes with a for-
mulation given in terms of an edge-based data struc-
ture [14]. This yields a generic formulation allowing
different element types to be handled more easily.
The discretization of the inviscid fluxes in all trans-
port equations corresponds to central differencing
plus a fourth-order smoothing term. The fourth-
order smoothing is reformulated in terms of a modi-
fied pseudo-Laplacian [15] to improve the accuracy
of the scheme in regions where the mesh is not
smooth. Monotonic resolution of flow features
associated with sharp spatial gradients is obtained
by constructing the smoothing operator to include
a blend of second- and fourth-order differences.
The blending is introduced in the form of a non-
linear limiter.

The k–1 turbulence equations are coupled to the
mean flow equations through the eddy viscosity mt.
This weak coupling between the two systems of
equations motivates a decoupled solution pro-
cedure, in which the two systems are solved separ-
ately rather than as one complete system. This
approach has also been used by other workers
including references [16–19] and has the advantage
of providing code modularity for a range of turbu-
lence models. Denoting the conservative turbulent
state vector by Q ¼ (rk, r1)` and the convective
fluxes of Q by F ¼ (rku � n, r1u � n), the discrete con-
vective fluxes can be written as

Fij ¼ 1

2
Fij(Qi, nij)þ Fij(Qj, nij)
h i

� 1

2
jAijj

� 1

3
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where jAj is the Jacobian matrix given by

jAj ¼ ju � nj 0
0 ju � nj

� �
(16)

and n is the unit outward normal for the face lying
between nodes i and j. For consistency, the linearity
preserving pseudo-Laplacian L̂lp(Q) used in the
momentum equations is also used in the convective
fluxes of turbulence properties

L̂lp
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where Lj(x) ¼ (Ljx,Ljy,Ljz)
` and Ej is the set of

control volumes sharing a common face with control
volume j. The linearity preserving pseudo-Laplacian
corresponds to a fourth-order dissipation. To resolve
high gradients of the turbulence field monotonically,
a blending with a second-order dissipation term is
employed through a limiter C. The limiter used in
this work is given by

C ¼ min 1(2)
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where f is used to represent the primitive turbulent
variables k or 1. The coefficient 1(2) appearing in
equation (19) is set to 8.0.

The gradient of the turbulent state vector is com-
puted using the expression

rQj ¼
X
i[Ej

Dsij

2Vj
Qi þ Qj

� �
(20)

where Dsij is the area of the face shared by control
volumes i and j and Vj is the volume of element j.
The computation of the diffusive fluxes requires the
evaluation of rQ at the interfaces. To avoid spurious
high frequency modes in diffusion-dominated
regions, the diffusive fluxes are discretized according
to

rQij ¼ rQij � rQij � dsij �
(Qi � Qj)

jxi � xjj
� 	

dsij (21)

rQij ¼
1

2
rQi þ rQj

� �
(22)

dsij ¼
xi � xj

jxi � xjj (23)

which is analogous to the discretization of the mean
flow equations as described in reference [14].

To avoid the need to resolve the high gradients
near a no-slip boundary (solid wall), a high-Rey-
nolds-number form of the turbulence model is
employed. This requires a wall-matching procedure
to be used to correct the mean flow gradients and
turbulent quantities. To apply the wall-matching
procedure, the log-law of the wall is used to derive
three expressions that describe the wall shear
stress, turbulence production term Pk, and the turbu-
lence dissipation rate 1 for near-wall grid models.
The respective expressions for a node p located in
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the log-law region are

tw ¼ (ru)pC
1=4
m k1=2

p

1=kw ln (Ewyþp )
(24)

yþp ¼ ypC
1=4
m k1=2

p

n
(25)

kw ¼ 0:41, Ew ¼ 9:0 (26)
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(ru)pC
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m kp

yp ln (Ewyþp )

" #
(27)

ep ¼ C3=4
m k3=2

p

kwyp
(28)

To apply this procedure in an unstructured algor-
ithm that employs median dual control volumes,
the wall shear stress for control volume faces lying
above the boundary, as shown in Fig. 1, is computed
using equation (24). The velocity up represents the
wall-parallel component of the velocity vector at
point p, and yp is the orthogonal distance between
point p and the wall. This computed shear stress is
then resolved into x, y, and z components according
to

tiw ¼ twûti, i ¼ x,y,z (29)

where ûti denotes the Cartesian components of the
unit vector in the mean flow direction and tangent
to the wall. Similarly, the production term Pk and
the dissipation 1 appearing in the source terms of
the k–1 equations are computed in the correspond-
ing control volumes using equations (27) and (28).
For the dissipation equation, 1 is explicitly specified
at the grid nodes associated with near-wall control
volumes according to equation (28), amounting to
a Dirichlet boundary condition for the 1 equation.
A Neumann boundary condition is employed for
the turbulent kinetic energy.

With the spatial discretization completed, a time-
integration solution procedure is required to allow
a stable, positive definite integration of the turbu-
lence equations. To maintain consistency with the
mean flow equations, a five-stage Runge–Kutta

scheme is used [4]. First, consider a single-stage
scheme. This can be written as

DQn ¼ �DtR(Q)n ¼ �Dt(F 0C � F 0D � S0) (30)

where R is the residual operator of the system of
turbulence equations and includes contributions
from the convective fluxes (F

0C), diffusive fluxes
(F

0D), and the source terms (S0). To stabilize the
scheme, a point-implicit discretization of the
source terms is employed to give
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� �� 	
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@Q

� �� 	
 �
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Spalart and Allamaras [20] showed that to guarantee
positivity for such a scheme, the left-hand side
matrix operator for the vectorQnþ1 must be a diagon-
ally dominantmatrix with positive diagonal elements
and negative (or zero) off-diagonal elements. A key
property of such a matrix is that its inverse contains
only non-negative elements. In addition, they argued
that a positive matrix operator is also required for the
vector Qn on the right-hand side of equation (31). A
positive matrix operator is one that when applied
to a vector with non-negative elements will produce
a vector with non-negative elements. Given these
requirements, the source Jacobian (@S/@Q) can now
be chosen to ensure that the correct form of the
matrix on the left-hand side results. In the current
implementation, a diagonal Jacobian has been
used. This choice decouples the two turbulence vari-
able equations, thus simplifying the positivity analy-
sis. To evaluate the Jacobian, the dissipation term in
the turbulent kinetic energy equation is expressed in
terms of k through the eddy viscosity relation (9). The
resulting expressions for the negative part of the
source terms are
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Treating mt as a constant, the source Jacobian can
thus be written as
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Fig. 1 Representation of median-dual control volume

faces that are used for implementing the wall

functions (shown with dashed line pattern)
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This particular choice of the source Jacobian
provides no guarantee as to the positivity of the
complete matrix operator on the right-hand side of
equation (31). This is a result of the additional
convective and diffusive flux contributions that are
treated explicitly in the numerical scheme presented
here, which can outweigh the stabilising effects of the
point-implicit discretization of the source terms. To
compensate for this explicit treatment of the fluxes,
the source Jacobians are multiplied by an appropri-
ately chosen scaling matrix Y. In general, numerical
problems can arise when R0(f) . @S/@f. The scaling
matrix is, therefore, chosen to avoid this condition
and produces a stronger under-relaxation of the tur-
bulent equations.Y is chosen to be a diagonal matrix
whose elements are given by

Yf ¼ max 1:0, 1(4)
�R0(f)n

@Sf=@(rf)
 �n

( )
(37)

1(4) ¼ 1:5 (38)

The arguments presented earlier are valid for a
single-stage Runge–Kutta scheme. For a multi-
stage scheme, the updates at each stage (l) are
made with respect to the values at time step (n).
The time integration for a multi-stage scheme is,
therefore, modified to give

I � alDt Y l @S
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� �� 	
Qlþ1

¼ I � alDt F 0C � F 0D � S0 �Yl @S
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(39)
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0
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(r1)n

2
6664

3
7775 (40)

The time step Dt used to integrate the two
turbulence equations is computed from the stability
considerations of the convective and the diffusive
fluxes. Further details can be found in reference [4].

4 MIXER CONFIGURATIONS

Two separate mixer configurations have been
chosen to perform the simulations presented. The
first is a simplified (spanwise straightened) coplanar
mixer configuration based on the experimental
configuration of Yu and Yip [8], which has also
been modelled by Salman et al. [7] using an incom-
pressible Navier–Stokes multi–block structured
grid algorithm. Details of this mixer definition are

given in Fig. 2. To reduce the problem size and to
simplify the computations carried out here, a span-
wise periodic flow structure is assumed within the
mixing region. This simplification implies the pre-
sence of planes of symmetry between adjacent
streamwise vortices such that only half a lobe need
be modelled. This is in contrast to the predictions
of reference [6], which considered the full mixer
configuration.

The computations presented subsequently for this
mixer were carried out with the inlet boundary con-
dition as used in the incompressible structured
algorithm predictions of Salman et al. [7], corre-
sponding to the experimental conditions of the
Yu and Yip [8], data. The two streams were set at

Fig. 2 Definition of mixer configuration of Yu and

Yip [8]
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a static pressure and density ratio of 1.0. The axial
velocities were set to 6 ms21 (ulow) in the slow
(upper) stream and 10 ms21 (uhigh) in the fast
(lower) stream, corresponding to Mach numbers of
0.0176 and 0.0294, respectively, as were used in the
low-speed experiments of Yu and Yip [8]. The inlet
boundary conditions for the turbulence quantities
were evaluated on the basis of a turbulence intensity
of 1 per cent, matching that reported by the experi-
mentalists, and an eddy viscosity equal to the mol-
ecular viscosity. At inlet, spatially uniform profiles
were assumed. The top and bottom tunnel walls
were modelled as slip walls, but on the mixer surface,
a no-slip condition was used. Owing to the low vel-
ocities encountered for this case, the low Mach
number preconditioner of the unstructured algor-
ithm was employed. Further details of the low
Mach number preconditioner can be found in
reference [15].

The second mixer configuration computed is a
lobed mixer geometry with scarfing, as typically
found in modern engine representative applications.
An outline and a solid CAD model of this mixer are
shown in Fig. 3. The outline illustrates the overall
flow configuration together with the key components
that define the flow domain, namely, a central bullet,
the mixer, and the mixing duct (nozzle) outer wall.
The solid CAD model shows just two of these
components: the lobed mixer surface definition and
the bullet located on the centre-line. This mixer
configuration consists of six long lobe gullies and
six short gullies alternating circumferentially. The
scarfing introduced at the trailing edge of the lobes
is clearly seen on this three-dimensional CAD

model. Owing to the introduction of the scarfing,
the circumferential periodicity in this mixer is now
equivalent to one complete lobe wavelength of an
equivalent non-scarfed mixer. As there is no swirl
in the flow, symmetry boundary conditions can be
utilized and only half of one lobe wavelength
needs to be modelled. The modelled sector encom-
passes half a short lobe gully and half a long lobe
gully.

The scarfing introduced to the lobed mixer sur-
faces raises difficulties in unambiguously defining
certain geometrical parameters associated with the
lobes. Referring to the side view of the lobe surface
in Fig. 3(a), it is notable that a clear definition of
the mixer height is not at all obvious. The definition
adopted here has been based on an effective lobe
height (Heff). This is defined as the corresponding
height of a non-scarfed mixer in which the trailing
edge lies on the same plane as the lobe peak of the
scarfed mixer. Using this definition, the effective
lobe height is Heff ¼ 0.0452 m. The inlet plane was
located 6.5Heff upstream of the lobed mixer trailing
edge, whereas the exit plane of the mixing duct
was at a distance 6.3Heff downstream of the mixer
trailing edge. At the exit plane, the diameter of the
nozzle was equal to 4.29Heff.

This mixer configuration was recently the subject
of a detailed experimental study [10], in which temp-
erature measurements were made downstream of
the lobed mixer within the mixing duct. The test
conditions used in these experiments are tabulated
in Table 1. These conditions were employed in the
numerical simulations performed on this mixer.
The inlet turbulence levels were taken to be 3 per
cent of the local inlet velocities and the value of 1
was fixed on the basis of an eddy viscosity equal to
ten times the molecular viscosity, and it was checked
that this produced a realistic turbulence length scale.
Tests showed that the strong generation of turbu-
lence in the shear layers makes these types of pro-
blems relatively insensitive to inlet turbulence
conditions. The mixer, bullet, and nozzle boundaries
were all simulated as no-slip wall boundaries. At the
inlet, the Mach number of the bypass and core flows
were 0.42 and 0.41 corresponding to velocities of
155.22 and 229.67 ms21, respectively. The Mach
number at exit was equal to 0.83 corresponding to
a mixed out velocity of 326.54 ms21.

Fig. 3 Realistic mixer configuration

Table 1 Experimental test conditions used for model of

scarfed mixer

Properties

Ptotal

Pambient

� � Total
temperature

(K)

Ambient
pressure
(kPa)

Ambient
temperature

(K)

Bypass flow 1.6418 346.0 102.487 278.1
Core flow 1.5474 795.4 102.487 278.1

Non-isothermal three-dimensional mixing layer 405

JAERO66 # IMechE 2006 Proc. IMechE Vol. 220 Part G: J. Aerospace Engineering



5 GRID GENERATION

Three mesh types were employed for the mixer
configuration of Yu and Yip [8], to study the influ-
ence of mesh type on lobed mixer predictions. The
grids employed include a hexahedral grid, a tetrahe-
dral grid, and a mixed grid. All grids were generated
for a half lobe wavelength as described earlier, in
order to reduce the problem size. An important
factor that needs to be considered when comparing
solutions across different mesh types is the number
of unknowns being compared. Structured hexahe-
dral grids tend to have a comparable number of
cells and nodes, whereas three-dimensional unstruc-
tured tetrahedral grids contain five to six times as
many cells as there are nodes in a given mesh. The
number of unknowns will, therefore, be very different
depending on whether a cell-centred or a cell-vertex
scheme is being employed. The unstructured algor-
ithm used here is a cell-vertex method that stores
unknowns at the nodes of the primal grid. It is
important, therefore, to compare solutions across
different grid types that consist of the same
number of nodes. In the current work, all three
grids generated for the study regarding the influence
of different mesh types for lobed mixer flows con-
tained approximately 150 000 nodes.

The hexahedral grid generated with the software
ICEMHexa is shown in Fig. 4(a). This grid in fact con-
sists of a multi-block structured grid topology con-
taining seven blocks with matching nodes between
adjacent blocks at the interfaces. The benefits of
this topology are the improved grid orthogonality
within the mixing region and the ability to capture
the mixer surface with a body-fitted grid. Further
upstream, the grid orthogonality is sacrificed but
the flow there is predominantly uniform and invis-
cid. Hexahedral elements allow highly stretched
elements to be used without deterioration of solution
quality. This feature is employed in the streamwise
direction where high grid resolution is not required
as axial gradients were generally smaller than
gradients transverse to the mixing layer. An obvious
deficiency of this mesh type is the inefficient cluster-
ing of node (e.g. wasted elements in the upstream
region where the flow is essentially uniform).

The second meshing strategy employing a fully
automated process for generating the lobed mixer
grid is shown in Fig. 4(b). The grid consists of two
element types: prism elements and tetrahedral
elements. This approach allows the mixer geometry
to be captured easily and has the potential of being
easily extended to more complex mixers. A struc-
tured layer of prism elements is generated normal
to the mixer surface to resolve the boundary layer
efficiently. Tetrahedral elements are then used to
fill the remainder of the computational domain.

Unlike the hexahedral grid, this approach provides
a significant computational saving upstream of the
mixer where the flow is uniform and a much coarser
grid can be used. However, efficient resolution of the
boundary layer requires highly stretched elements in
the streamwise direction. As prism elements are

Fig. 4 Grids for mixer configuration of Yu and Yip
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generated from triangular elements on the surface,
anisotropic triangular elements are, therefore,
unavoidable. Additionally, a layer of highly stretched
tetrahedra joining the prisms would need to be gen-
erated. Generating such highly stretched elements
with the software used (ICEM Tetra) presented
problems. This limitation resulted in less efficient
resolution of the boundary layers with this grid. In
the present study, this grid is simply referred to as
the tetrahedral grid because only tetrahedral
elements were used within the free shear layer
mixing region where the focus of interest lies for
the current work.

The third mesh type employed hexahedral,
tetrahedral, and pyramidal elements and is shown
in Fig. 4(c). This meshing strategy provides an
intermediate approach, semi-automating the grid
generation, but allowing control of the hexahedral
parts of the grid. In principal, such an approach
should combine the advantages of both the first
two strategies. Tetrahedral grids are used in the
inviscid parts of the flow where the flow gradients
are much smaller and alignment of the grid with
the flow is not required. In regions where viscous
and turbulent effects are important, such as in
boundary and shear layers, hexahedral grids are
used. The ability to generate stretched hexahedral
elements that do not deteriorate solution quality
should allow these flow features to be resolved
more efficiently than with a tetrahedral grid. The
two mesh types are then joined together at the
interface through transition pyramidal elements. In
practice, one finds difficulties in using very highly
stretched hexahedral grids. Such grids cause
pyramidal elements with highly skewed surfaces to
be generated. Problems consequently arise in
generating the tetrahedral grids at the interface
with the pyramidal elements. To remedy this diffi-
culty, the grid resolution in the streamwise direction
was increased slightly to reduce the aspect ratios of
the quadrilateral faces, which form the bases of the
pyramidal elements. This modification allowed the
grid to be completed successfully with the grid gen-
eration software ICEM Tetra and ICEM Hexa. As
pointed out earlier, high grid resolution is required
primarily in a direction normal to the shear layer.
For brevity, in the text that follows, this grid will
simply be referred to as the mixed grid.

Motivated by the numerical results to be presented
subsequently, in which the influence of different
mesh types on the prediction of lobed mixer flow
was assessed, a purely hexahedral grid consisting of
550 000 nodes was used to discretize the compu-
tational domain of the scarfed mixer geometry. The
primary problem with the use of hexahedral grids is
related to the skewed end plane of the lobed mixer
scarfing which complicates the grid generation

process further. It was decided that a grid topology
similar to the one used for the non-scarfed (copla-
nar) mixer configurations studied by Salman et al.
[7] should be employed. This allowed the grids
shown in Figs 5(a) and (b) to be generated, consisting
of a nine-block topology. The figures show that the
lobed mixer surface is very well represented, despite
the addition of the scarfing. The main effect of the
scarfing on the generated grid is seen on the curvi-
linear surface in Figs 5(a) and (b) The whole surface
is distorted. This is in contrast to the equivalent sur-
face in a coplanar mixer in which the surface lies on a
plane perpendicular to the streamwise direction. The
distortion of this surface increases near the scarfed
mixer trailing edge. A feature that raised particular

Fig. 5 Hexahedral grid for realistic scarfed mixer

configuration
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problems was the cusped trailing edge of the long
lobe gully, which introduced severe skewness in the
generated hexahedral grids. Adopting careful nodal
distributions and smoothing strategies in the vicinity
of this region allowed acceptable grids to be
generated.

To clarify the nature of the grid topology and the
nodal distribution for this complex mixer configur-
ation, cross-sectional grids are presented in Fig. 6.
The four cross-sections were generated at locations
corresponding to (a) the inlet plane, (b) a plane
bisecting the length of the lobed mixer, (c) the
lobed mixer scarfed trailing edge, and (d) at a
location x/Heff ¼ 1.58 within the mixing duct. In
planes (b) and (c), the grids do not extend to the
centre-line because of the presence of the bullet. In
plane (c), the asymmetric grid is evident in the
vicinity of the scarfed lobed mixer trailing edge.
The four locations shown clearly illustrate the good
grid quality achieved throughout the computational
domain for this challenging geometry of a scarfed
mixer configuration.

6 RESULTS

The basic unstructuredmesh code used in references
[14, 15] did not contain a two-equation turbulence
model; hence, to verify the implementation of the
k–1 model in the code which is conducted as part
of the present work, two test cases were first pre-
dicted corresponding to a near-wall turbulent shear
layer and a free turbulent shear layer.

6.1 Developing boundary layer

An incompressible spatially developing two-dimen-
sional boundary layer was simulated to verify the
implementation of the high-Reynolds-number
model and wall functions. The zero pressure gradient
boundary layer can be defined by a thickness par-
ameter, usually taken to be themomentum thickness
Reynolds number Reu ¼ ueu/n, where ue is the vel-
ocity near the edge of the boundary layer. Bardina
et al. [21] performed detailed computations of this
flow providing comparisons of various parameters,
including the variation of the skin friction coefficient
Cf with Reu. The current work attempts to reproduce
these predictions with the standard k–1 model used
here. The tests help to verify the discretization
employed and to compare the predicted results
observed with both structured [7] and unstructured
algorithms [15].

The computations presented used a constant vel-
ocity of 10 ms21 at inlet. Inlet turbulence intensity
was set at 1 per cent and 1 was based on an assumed
eddy viscosity at inlet of 10 m. The bottom wall was
set to a no-slip boundary, whereas a slip wall was
assumed for the far-removed top boundary. Follow-
ing the guidelines provided by Bardina et al. [21],
the computational grid consisted of 125 nodes non-
uniformly distributed in the streamwise direction
and 124 nodes in the cross-stream direction.

Mean velocity profiles at Reu ¼ 100 000 are shown
in Fig. 7, together with the data taken from Bardina
et al. for Coles’ law [22]. The results indicate that
the log-law behaviour is well captured with all the
simulations carried out in good agreement with
Coles’ correlation. For comparison, the velocity

Fig. 6 Cross-sectional planes of mesh generated for the realistic mixer configuration

408 H Salman, J J McGuirk, and G J Page

Proc. IMechE Vol. 220 Part G: J. Aerospace Engineering JAERO66 # IMechE 2006



profiles computed using the structured algorithm
used by Salman et al. [7] have also been included.
With the structured algorithm, the velocity profile is
captured from y þ � 30. This value is around 50 for
the results computed with the unstructured algor-
ithm. The difference reflects the additional distance
introduced by the half control volumes that arise in
the near-wall median dual control volumes as seen
in Fig. 1. Nevertheless, both algorithms produce
results in close agreement. Figure 8 shows compari-
sons with Coles’ Cf correlation for the variation of
skin coefficient with Reu. Generally, results for the
skin friction coefficient are in very good agreement
in both cases. The results presented show that the
correct near-wall behaviour is reproduced. This

confirms the correct implementation of the high
Reynolds number k–1 turbulence model and
associated wall functions.

6.2 Planar-free shear layer

The free turbulent mixing layer is defined as the
region between two parallel streams moving at
different speeds. This flow is a simplification of the
convoluted shear layers that are produced by lobed
mixers and was considered a fundamental test case
in the development of turbulence models. This
flow, therefore, provides an important test case in
the prediction of lobed mixer flows.

An important property of the planar-free shear
layer is the concept of self-similarity, which the
flow attains at sufficiently large Reynolds numbers
and downstream distance. Under these conditions,
the mean and turbulence quantities at different
streamwise locations assume profiles, which, when
scaled with the local shear layer thickness, have the
same shape. This self-preserving behaviour is associ-
ated with a linear growth of the planar mixing layer.
The behaviour can be correctly predicted only if the
correct physical mixing rate is simulated. The
spreading rate parameter can, therefore, be used as
a quantitative measure of the level of mixing being
predicted. Together with the ability to predict the
mean velocity profile correctly, these are considered
the most significant parameters in this flow. Com-
parisons presented will, therefore, concentrate on
these two aspects.

The experimental data presented below have been
taken from Liepmann and Laufer [23]. These
experimental data were also used by Bardina et al.
[21], who carried out a computational study of the

Fig. 7 Predictions of turbulent boundary layer velocity

profile

Fig. 8 Variations of skin friction coefficient and shape

factor with Reynolds number
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incompressible planar mixing layer with several tur-
bulence models, including the Launder–Sharma
low-Reynolds-number k–1 model [24]. In deriving
the predicted spreading rates, the mixing layer thick-
ness, dlayer, was defined as the distance between
points in the mean velocity profile where the
square of the non-dimensional mean velocity is 0.1
and 0.9, respectively. The non-dimensional mean
velocity is given by

U� ¼ u� ulow

uhigh � ulow

(41)

where ulow and uhigh are the velocities of the low- and
high-speed streams. The mean velocity profiles are
plotted in terms of U

�
and the transverse distance

similarity parameter (h) is given by

h ¼ 2(y � dave)

dlayer

(42)

where dave is the position of the centre of the shear
layer defined as the point where u ¼ (ulow þuhigh)=2.
It should be noted that, in general, dave = 0 for free
shear layers, which often exhibits a skewing such
that the centre-line is tilted towards the slow
stream [25].

The results presented have been obtained with a
4 m � 4 m computational domain. At inlet, the flow
conditions were 6 ms21 for the slow stream and
10 ms21 for the fast stream, corresponding to Mach
numbers of 0.0176 and 0.0294, respectively, which
again necessitated the use of the low Mach number
preconditioner [15]. The static pressure and density
ratios of the two streams were set to unity. Slip
walls were imposed on the top and bottom bound-
aries of the domain, located at equal distances (2 m)
from the mixing layer. The inlet turbulent kinetic
energy was specified by assuming a turbulence inten-
sity (ti) of 1 per cent of the local free stream velocity
(u1). The inlet turbulence dissipation 1 was set on
the basis of an eddy viscosity equal to 10 m. The com-
putational grid used consisted of quadrilateral
elements with a resolution of 64 � 64 elements.

The experimental data of Liepmann and Laufer
were taken for a mixing layer in which one stream
was at rest. Townsend [26] has derived an expression
that relates velocity ratio with the mixing layer
spreading rate

uhigh þ ulow

uhigh � ulow

� �
ddlayer

dx
¼ constant (43)

This scaling was used to allow the experimental data
taken from Liepmann and Laufer to be compared
with the present simulations.

Profiles of the predicted spreading rates are shown
in Fig. 9(a), labelled as ‘unstructured quadrilateral’
predictions. For comparison, the spreading rate
obtained from the structured algorithm of Salman
et al. [7] has also been included. The predictions
obtained with the two algorithms are essentially
identical. The linear self-similar spreading rate pre-
dicted by both algorithms is 0.0245. This is in agree-
ment with the values quoted by Wilcox [27]. The
experimental value of 0.02875 derived from the
data of Liepmann and Laufer is also included. This
experimental value is quoted with an uncertainty of
about +10 per cent.

With the self-similar spreading behaviour demon-
strated, the velocity profile taken at a streamwise
location of x ¼ 3.5 m has been plotted in Fig. 9(b),

Fig. 9 Comparison of predicted shear layer properties

with experiments
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together with experimental data derived from
Liepmann and Laufer. Comparison of the velocity
profiles predicted by the two algorithms reveals
essentially identical predictions. The good agree-
ment with the measurements demonstrates again
that the self-similar behaviour has been captured
and completes the verification of the model
implementation for free shear flows.

The planar shear layer flow was now used as a
testbed for assessing the influence of a variety of
grid types on the accuracy of flow predictions of
free shear layers. Studying the sensitivity to the grid
of the predicted shear layers in this simplified flow
helps understand some of the underlying numerical
issues in modelling lobed mixer complex shear
layers. This illustrates the impact of using unstruc-
tured tetrahedral grids, predicting the convoluted
mixing layers arising in these flows accurately.
Computations for the planar shear layer were
repeated on the three grid types as shown in
Fig. 10. These included a purely quadrilateral mesh,
three triangular meshes, and a mixed mesh. Three
of these grids (Figs 10(a) to (c)) contained the same

nodal distribution within the shear layer region.
The nodal distribution was modified for the last
two grids shown in Fig. 10 for the reasons described
subsequently. Note that the same three meshing
strategies that were presented in section 5 for the
convoluted shear layer in the Yu and Yip lobed
mixer have been initially studied here for the
simple two-dimensional planar case.

Figure 11(a) presents the predicted spreading rate
of the mixing layer for grids (a), (b), and (c). A refer-
ence k–1 result for the self-similar spreading rate

Fig. 10 Planar shear layer grids at the inlet boundary

Fig. 11 Variation of shear layer thickness with

downstream distance
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taken from reference [27] has also been included.
Results for the quadrilateral grid (a) reveal the correct
spreading has been obtained, even though it con-
tains just eight nodes across the mixing layer by
x ¼ 4 m. The triangular mesh (b) of similar density
shows a very different behaviour. A very rapid
growth of the shear layer within the first 1 m is
observed. The spreading then decreases rapidly
such that it is �40 per cent of the correct spreading
rate by x ¼ 2 m. The mixed grid result is identical
to the quad mesh result. The meshes are identical
in the shear layer region, but the mixed grid has a
poorer quality and coarser mesh in the outer regions.
This result shows that the mesh quality in the outer
region has little effect.

To identify the reasons for these results, two
aspects of the discretization are considered. First,
differences in control volumes between the triangu-
lar and quadrilateral grids associated with cells
lying within the shear layer are shown in Fig. 12.
Additionally, recall from section 3 that the inviscid
fluxes include a smoothing term on the basis of the
one-dimensional decomposition along the grid
edges. This one-dimensional decomposition is per-
formed essentially in a direction transverse to the
control volume faces. In this shear layer flow, the
Cartesian transverse component of velocity is much
smaller than the Cartesian or streamwise com-
ponent. Therefore, the flow is more or less aligned
with the horizontal finite volume faces and normal
to the vertical faces. The numerical smoothing,
which results from the quadrilateral grid, is thus
very small. For control volume disposition relative
to the dominant flow direction as in the triangular
grid, as shown in Fig. 12, control volume faces
exist whose transverse direction is oblique to the
main flow direction. When performing the one-
dimensional decomposition into the characteristic
variables on such faces, a significant velocity
component will arise in the direction, resulting
in higher numerical smoothing than in the
quadrilateral grid. This accounts for the higher
spreading occurring in the early stages of the shear

layer, as indicated in Fig. 11(a). The increased
spreading reduces velocity gradients across the
layer, resulting in lower production of turbulent
energy and hence lower eddy viscosity. The rapid
decrease in spreading rate that follows is a direct
consequence of this drop in turbulent energy and
eddy viscosity.

The arguments presented earlier suggest that
reducing the angle (g) defined in Fig. 12, such that
the oblique control volume faces become more
aligned with the flow, would reduce the effects of
the numerical smoothing. This can be achieved by
either increasing the grid spacing (Dx) in the stream-
wise direction or reducing the cell height (Dy).
Calculations for triangular grids were, therefore,
repeated with two more cases. First, the grid
resolution across the shear layer was doubled
(Fig. 10(d)). Predictions for this case are shown in
Fig. 11(b), together with the quadrilateral and
coarse triangular grid solutions. A much lower
spreading is evident in the early stages. Further
downstream, the flow is able to recover reaching
the expected self-similar behaviour. The problems
encountered in the early stages are associated with
the low aspect ratio (Dx/Dy) cells present in this
region. A second refined grid was, therefore, studied,
which consisted of an equal number of nodes as in
Fig. 10(d), but with nodes redistributed across the
shear layer to increase the aspect ratios of cells at
the inlet (Fig. 10(e)). The shear layer spreading for
this case is also shown in Fig. 11(b) and clearly
demonstrates the reduced numerical smoothing
which results.

Unstructured triangular grids clearly have an
advantage in providing more efficient clustering of
the grid. However, this simple study has demon-
strated the superiority of quadrilateral elements in
terms of solution accuracy when shear layer spread-
ing is critical and the shear layer is disposed at an
angle to unstructured mesh edges. These findings
motivate a mixed grid approach for tackling the
shear layer problem. An example of a prediction
using a mixed quadrilateral/triangular grid is
included in Fig. 11(a), corresponding to the mesh
shown in Fig. 10(c). The grid consisted of 1531
nodes, compared with the 2880 nodes found in the
quadrilateral grid. The spreading rate coincides
with the solution from the quadrilateral grid. This
occurs as the shear layer remains within the
quadrilateral part of the grid throughout the length
of the solution domain, although the triangular
mesh in the outer inviscid regions has allowed a
smaller (i.e. cheaper) mesh to produce the same pre-
dictive accuracy. The solution quality clearly illus-
trates the potential for such an approach to produce
high quality numerical solutions at reduced compu-
tational cost.

Fig. 12 Form of control volumes within the shear layer

region obtained by using quadrilateral and

triangular grids
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6.3 Simplified coplanar lobed mixer flow field

The sensitivity of the predicted spreading rate of
the planar shear layer to different grid types suggests
that automatically generated unstructured grids
might not necessarily be well suited for predicting
lobed mixer convoluted shear layers. Although the
simple planar shear layer flow has highlighted the
primary causes behind the observed numerical
behaviour, the subsequent implications for general
lobed mixer shear layers of using unstructured tetra-
hedral grids remain unclear. It was decided that only
by performing and analysing the computations of
lobed mixer flows can the precise magnitude of
these numerical effects be identified. In this section,
the consequences of the numerical issues raised
earlier regarding the use of tetrahedral grids for
predicting convoluted shear layers are examined. In
particular, the generation of high aspect ratio tetra-
hedral elements is not easily achievable and thus
the accuracy of solutions for the three grid strategies
for lobed mixer geometry presented earlier is now
addressed.

Results for the three lobed mixer grids will be com-
pared in detail in the near field of the coplanar mixer
(02 3H). Figure 13 presents the results obtained at
four axial planes for the three different grids. Results
are presented in terms of streamwise velocity con-
tours normalized with the velocity difference
between the two streams (Du). The corresponding
cross-sectional grids at each location are also
shown. Figures 13(a) to (d) illustrate the downstream
evolution of the shear layer form of the lobed mixer
trailing edge for the purely hexahedral grid. Results
for the purely tetrahedral grid are presented in Figs
13(e) to (h). Beginning at location x/H ¼ 0.25, the
grid is clearly seen to be finely clustered along the
mixer trailing edge in both meshes. Already at this
location, the velocity contours exhibit a noticeably
different distribution within the shear layer in
Fig. 13(a). In particular, the low velocity contours
(u/Du , 1.25) in Figs 13(e) to (h) have been
smoothed out significantly. These contours are
associated with the boundary layers on the mixer’s
surface. The higher level of smoothing in the tetrahe-
dral grid has contributed to the smearing of the high
gradient region. Another significant difference seen
at the first active location is near the lobe trough
on the low-speed flow side, indicating a stronger
rotation of the shear layer in comparison with the
hexahedral results. Further downstream, the tetrahe-
dral grid is gradually coarsened as seen in Figs 13(f)
to (h) to allow a similar number of nodes to be
used in all the cases studied. The resulting effect on
the shear layer is higher numerical diffusion, evident
from the higher spreading of the shear layer.
Additionally, owing the convoluted shape of the

shear layer, it is not possible to distribute nodes effi-
ciently as the shear layer no longer lies along a region
identified readily with the mixer trailing edge geome-
try. An increase in numerical smoothing is noticed as
the shear layer moves into relatively coarse parts of
the grid. An example of this is seen at location x/
H ¼ 1.0 in Fig. 13(f), where a small part of the shear
layer remains aligned with the vertical mixer walls.
This portion is clearly less diffused than those parts
of the shear layer that have migrated further out
into the coarser regions of the grid, particularly
when compared with the hexahedral solution. An
important feature to note in Fig. 13(f) is the strong
‘kink’ in the shear layer when compared with corre-
sponding results from the hexahedral grid. This
implies that the streamwise vorticity responsible for
rotation is stronger than in the hexahedral case,
despite the higher level of numerical smoothing pre-
sent. This behaviour is associated with a higher
‘spurious’ vorticity field, which can arise in tetrahe-
dral grids as described in reference [4]. Numerical
smoothing continues further downstream to cause
the shear layer to become highly smeared in the
purely tetrahedral grid by x/H ¼ 3.0 when compared
with the hexahedral solution.

The results presented so far are reminiscent of the
numerical issues encountered in the study of the
two-dimensional planar shear layer. In that study,
the mixed grid provided the best approach in terms
of solution accuracy and computational cost. Results
for the mixed grid for the coplanar lobed mixer are
shown in Figs 13(i) to (l). Generally, the results for
this grid configuration are in much better agreement
with the purely hexahedral results. Although the
shear layer remains in the hexahedral part of the
grid (e.g. at x/H ¼ 0.25 and x/H ¼ 1.0), the shear
layer structure is seen to be very similar to that in
Figs 13(a) to (d). The level of shear layer movement
is essentially identical in both the hexahedral and
mixed grids. Further downstream, the shear layer
remains very well captured with higher numerical
diffusion occurring only locally, mainly in the
tetrahedral regions. Only by adopting an adaptive
meshing algorithm can the convoluted shear layer
be guaranteed to be always contained within the hex-
ahedral grid region. This capability, however, was not
available in the algorithm employed here. A purely
hexahedral grid strategy was, therefore, the optimum
for yielding the accurate numerical predictions of
three-dimensional complex shear layers.

6.4 Scarfed lobed mixer flow field

Given the conclusions reached in the grid depen-
dence studies discussed, numerical results for the
scarfed mixer were computed using the hexahedral
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gridding strategy presented in section 5. Predicted
Mach number contours at three streamwise
locations downstream of the lobe peak at the mixer
trailing edge are shown in Fig. 14. At x/Heff ¼ 1.0,
the contours show that a low subsonic flow exists
throughout the entire cross-section with the free
stream values in the bypass (upper) and core
(lower) streams equal to 0.5 and 0.4, respectively.

The higher Mach number in the bypass flow is a con-
sequence of the high temperature difference
between the two speeds, thus resulting in a higher
speed of sound in the core flow.

The Mach number contours around the trailing
edge of the mixer show an asymmetric distribution,
a result of the scarfing introduced into the lobes.
The distributions indicate that the strongest

Fig. 13 Normalized streamwise velocity contours with cross-sectional grids at corresponding

locations: (a) to (d) hexahedral grid, (e) to (h) tetrahedral grid, and (i) to (l) mixed grid
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distortions occur closer to the lobe troughs. Near the
lobe peak, very little evidence of the distortion of the
shear layer is present. Adjacent to the outer wall
(nozzle) surface, a region of low Mach number is
captured, reflecting the formation of boundary
layers on the nozzle wall. At x/Heff ¼ 2.765, the
strong gradients observed at the previous location
near the lobe troughs lead to the breakup of the con-
tours into two separate regions. An ‘island’ of low
Mach number fluid now exists in the vicinity of the
lobe peak. The structure is somewhat more rounded
than at the previous location and protrudes further
into the bypass stream, reflecting the influence of
the streamwise vorticity on the evolving flow field.
Near the lobe troughs, the bypass flow from the
long lobe gully is seen to protrude radially inward
further than the flow from the short trough into the
otherwise unmixed core flow. At x/Heff ¼ 6.3, a sig-
nificant increase in the Mach number levels is
observed due to the increasing velocity in response
to the reduction in cross-sectional area at the
nozzle outlet. The flow remains subsonic through-
out, but is almost choked at the exit plane. The
contour distributions at this location are more uni-
form than seen at the earlier locations, indicating
further mixing between the two streams. However,
unmixed regions do still remain at this plane and
are reflected by the strip of high Mach number
near the nozzle wall (unmixed bypass flow) and the
low Mach number zone in the lower region of the
computational domain near the centre-line
(unmixed core flow).

An analysis of the streamwise vorticity field is
now presented to understand the nature of the
secondary flow field produced by a scarfed mixer
and its impact on the mixing between the two
streams. Streamwise vorticity contours are presented

in Fig. 15 at the same three downstream locations
considered earlier. At x/Heff ¼ 1.0, oppositely signed
streamwise vorticity is seen to be concentrated
along the mixer’s vertical side walls. Near the lobe
troughs, high concentrations of oppositely signed
vorticity exist, which have already begun to depart
from the mixer trailing edge geometric profile. This
was also observed in the Mach number contours pre-
sented earlier. The stronger streamwise vorticity field
seen near the lobe troughs relative to values near the
lobe peak is related to the mixer surface profile illus-
trated in Fig. 5. Recalling that themixer configuration
under study consists of a curved surface at the lobe
peak, it is clear that the angle of the flow emanating
from the trailing edge near the lobe peak is reduced.
This is essentially what happens in corrugated split-
ter plates [28] where the radial velocity components
are reduced, leading to a corresponding reduction in
the streamwise vorticity. The reduction in the lobe
angle at the lobe peak has, therefore, caused the
weaker streamwise vorticity field seen in this
region. At x/Heff ¼ 2.765, a complex interaction
occurs between the adjacent but oppositely signed
vorticity fields. The positive vorticity is drawn into
the negative vorticity region because of the short/
long trough configuration, leading to a breakup of
the negative vorticity zone into three separate
regions. The interaction is very complex, leading to
a highly asymmetric vorticity distribution. At x/
Heff ¼ 6.3, the breakup of the negative vorticity
zone has lead to a vortex being located close to the
centre-line. It is this vortex that is responsible for
the enhanced mixing of the core flow provided by a
scarfed mixer. The scarfing has essentially lead to
the ejection of vortices towards the engine centre-
line, causing extra mixing in that region when com-
pared with a coplanar design. In the upper part of

Fig. 14 Mach number contours Fig. 15 Non-dimensional streamwise vorticity

contours
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the flow, the mixing behaviour is dictated by the
counter-rotating vortex pair.

The above discussion of the mean flow field
evolution now makes it possible to address the
important issue of temperature mixing in the scarfed
lobed mixer. Contours of the normalized total
temperature at the three downstream locations con-
sidered so far are given in Fig. 16. The temperature
field exhibits a similar distribution to the Mach
number contours presented earlier. The interface
between the two streams, however, is more clearly
defined in the temperature contours at all three
locations. Furthermore, the temperature field is, of
course, not sensitive to the reduction in cross-sec-
tional area near the exit plane of the mixing duct,
as observed in the Mach number contours. The
temperature field, therefore, provides a better
measure for assessing the level of mixing taking
place between the two streams.

At x/Heff ¼ 1.0, the interface between the hot and
cold flows is aligned with the mixer’s trailing edge
except near the lobe troughs, which is clearly remi-
niscent of the Mach number distributions observed
earlier. The interface is more clearly defined with
total temperature contours, as no smearing is intro-
duced near the lobe troughs because of boundary
layer thickening. At x/Heff ¼ 2.765, the deeper pen-
etration of the long trough bypass flow into the
core flow can be seen to be augmented by the pre-
sence of the clockwise vortex that distorts the inter-
face between the two streams and increases the
interfacial area for mixing. The secondary flow field
at slightly longer radial locations is dominated by
the counter-rotating vortex pair, which again has
led to the breaking up of the hot core flow into two
separate regions. This mimics the behaviour
seen in the Mach number. Further downstream at

x/Heff ¼ 6.3, the interface continues to stretch as
streamwise vorticity continues to have an effect
and diffusive mixing across the interface becomes
more evident. At this location, the main hot spots
that remain are in the hot plume formed in the
upper region and the unmixed core flow lying near
the centre-line. Unmixed cold regions also remain
with the flow just below the nozzle surface being
the most significant example of the hot gas in the
bypass flow. It is interesting to observe that while
the hot plume was located near the lobe peak
at x/Heff ¼ 2.765, the hot gas has been shifted
lower by x/Heff ¼ 6.3, following the increased
velocities associated with the reduction in cross-
sectional area.

A clear picture of how the streamwise vorticity con-
tributes to the mixing of the temperature field can be
obtained by considering the structure of the flow
streamlines within the mixing duct. These stream-
lines are presented in Fig. 17 with the scalar field
representing the total temperature. The three axial
planes shown in Fig. 17 correspond to the inlet
plane, the plane located at x/Heff ¼ 1.0, and the exit
plane at x/Heff ¼ 6.3. The figure illustrates how the
streamlines originating in the bypass flow and the
core flow interact together to produce the thermal
mixing layer. The streamlines in the mixing duct
clearly depict two of the three vortices seen in the vor-
ticity contours. These vortices play an important role
inmixing the two streams, as indicated by the stream-
lines associated with these vortices. Also shown is
how the upper vortex entrains fluid into its core. For
example, consider the streamlines passing through
the vertical portion of the mixing layer at the plane
x/Heff ¼ 1.0. These streamlines are eventually
entrained into the upper vortex further downstream.
Regions that are not entrained by the vortices are not
fully mixed out as seen from the streamlines that
remain unmixed up to the exit plane.

Fig. 16 Non-dimensional total temperature contours

Fig. 17 Streamlines within the mixing duct of the

scarfed mixer with contours of total

temperature
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These results have provided a clear picture of the
mixing mechanisms of a scarfedmixer configuration.
To assess the extent to which the simulations provide
a good representation of the thermal mixing layer,
comparisons with the experimental data are necess-
ary. For the scarfed mixer studied here, the only
experimental data available were the total tempera-
ture field [10]. As the temperature mixing is strongly
influenced by the mean flow as discussed earlier, a
comparison of the temperature field is believed to
reveal the general predictive capability of the current
formulation with a k–1 turbulence model of a realis-
tic scarfed mixer flow field. Measurements of the
temperature field were obtained over a 1808 sector.
To aid in directly comparing measurements and pre-
dictions, an identical region containing the predicted
temperature field was generated by the repetition of
the simulated 308 sector.

Figure 18 shows the 1808 annular sector containing
the temperature field in both predictions and
experiments at x/Heff ¼ 2.765 and x/Heff ¼ 6.3. The
experimental measurements shown on the left side
of the figure at x/Heff ¼ 2.765 show good circumfer-
ential periodicity. The predictions show the same
general flow behaviour as seen in the measured
data, with the flow in the long lobe troughs penetrat-
ing further into the core flow. The measured temp-
erature field shows a higher level of dilution of the
thermal mixing layer leading to a more spread out
distribution of the contours. In addition, the hot
plumes that form near the lobe peaks contain a sig-
nificantly smaller area of peak temperature than
that observed in the predictions, which reveal a
larger portion of unmixed core flow. The tightly
packed temperature contours in the predictions
also indicate a lower level of diffusion than seen in
the experiments, a result that is consistent with the
velocity comparisons presented by Salman et al. [7]
for a coplanar lobed mixer. Experiments also reveal
that the hot regions are located slightly closer to
the outer boundary than that in the predictions.
This is likely to be a result of the higher level of
diffusion present in the experiments.

At x/Heff ¼ 6.3, themeasured temperature field dis-
plays a reasonable degree of periodicity in the azi-
muthal direction. The outer hot spots have almost
fully mixed out, although remnants of the hot
plumes are clearly visible. The hot core flow located
close to the centre-line seen at the upstream location
has also undergone a significant level of mixing, lead-
ing to amore uniformly distributed temperature field.
Corresponding predictions show a similar trend,
although the hot regions of the flow have not fully
mixed out. In particular, hot regions remain in the
plumes and in areas located closer to the centre-line.

The above results indicate that the predicted
temperature mixing develops more slowly in the

predictions than in the experiments. It would be
possible to increase the predicted level of turbulent
mixing by reducing the value of the turbulent Prandtl
number st from 0.9 down to 0.5 or even lower. How-
ever, the observed behaviour is analogous to the
observations made in the previous isothermal
mixer predictions and thus suggests that the key
mechanism that is not being correctly predicted by
the model is the momentum transport rather than
the thermal energy transport. Despite this, the differ-
ent levels of diffusion observed in the temperature
contours imply that the modelling of the turbulent

Fig. 18 Comparison of measured and predicted non-

dimensionalized total temperature fields

(measurements shown on the left-hand side)
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heat fluxes by a constant turbulence Prandtl number
approach is also imperfect.

7 CONCLUSIONS

The high-Reynolds-number k–1 turbulence model
has been implemented into a mixed unstructured
grid algorithm as developed by Crumpton et al.
[14]. A stable time-integration procedure for the tur-
bulence quantities has been developed and the oper-
ation of the turbulence model was verified on two
elemental flows: the planar mixing layer and the
developing boundary layer. Results for these two
flows showed very good agreement with the pub-
lished experimental data and theoretical results.

A grid-type dependency study was conducted for
the planar shear layer flow. Three different grid
types were used: quadrilateral, triangular grid, and
mixed. Simulations revealed that triangular grids
were not well suited for predicting shear layer flows
in the current algorithm. These flows have the
characteristic of a predominant flow direction with
strong gradients normal to this direction. Quadrilat-
eral grids were found to be well suited: the alignment
of finite value faces with the two directions of charac-
teristic flow behaviour (axial convection and trans-
verse diffusion) gave acceptable levels of numerical
smoothing and thus the correct prediction of the tur-
bulent shear layer growth for a given number of node
points. A triangular grid with a similar number of
nodes gave spurious excess mixing in the initial
mixing region because of the numerical smoothing,
followed by a reduction in the mixing rate further
downstream due to the under-prediction of the tur-
bulence kinetic energy. A corresponding study was
performed for the three-dimensional convoluted
shear layer of a coplanar lobed mixer geometry
using similar three-dimensional grids. These
included a purely hexahedral grid, a tetrahedral
grid, and a mixed grid. The results for the three-
dimensional convoluted mixing layer confirmed the
results observed in the planar shear layer case. The
tetrahedral grid produced poor predictions of the
convoluted shear layer because of excessive numeri-
cal smoothing. Amixed grid, with aligned high aspect
ratio hexahedral elements in the shear layer region
and pyramids and tetrahedra linking to the outer
domain, appears to be the optimal grid for this type
of problem. However, grid alignment for the convo-
luted shear layer would require the use of an adaptive
method to fully realize the potential of this approach.

Accordingly, a purely hexahedral meshing strategy
was adopted for a Reynolds-averaged simulation of
a scarfed lobed mixer. The simulations were per-
formed under the non-isothermal flow conditions
typically encountered in the engine operation.

Consideration of the predicted Mach number, vorti-
city, and temperature fields illustrated the complex
nature of scarfed mixer flow fields. In particular,
strong interactions in the azimuthal direction
between the vortices produced by the short and long
gullies of the scarfed mixer were observed. This
resulted in a change of topology in the streamwise
vorticity field, leading to the formation of three vor-
tices within the mixing duct. One vortex was located
close to the centre-line and was seen to play an
important role in producing enhanced mixing of the
core flow. Detailed comparison of the predicted
temperature field with measurements reproduced
the trends seen in studies of isothermal mixing layer
predictions. In particular, although correct trends
were observed in comparison with the measured
data, the shear layer development occured more
slowly than observed in measurements. The results
imply that improvements in predicting lobed mixer
flows depend strongly on correctly capturing the
momentum transport within the mixing duct.
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