

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

International Journal of Automation and Computing 04(1), January 2007, 100-106

DOI: 10.1007/s10453-004-5872-7

Experimental Tests of Autonomous Ground Vehicles

with Preview

Cunjia Liu1,∗ Wen-Hua Chen1 John Andrews2

1Department of Aeronautical and Automotive Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
2Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.

Abstract: This paper describes the design and experimental tests of a path planning and reference tracking algorithm for autonomous
ground vehicles. The ground vehicles under consideration are equipped with forward looking sensors that provide a preview capability
over a certain horizon. A two-level control framework is proposed for real-time implementation of the Model Predictive Control (MPC)
algorithm, where the high-level performs on-line optimization to generat the best possible local reference respect to various constraints
and the low-level commands the vehicle to follow realistic trajectories generated by the high-level controller. The proposed control
scheme is implemented on an indoor testbed through networks with satisfactory performance.

Keywords: Model predictive control, Autonomous vehicle, Online optimization.

1 Introduction

There has been an increasing interest in the develop-
ment of autonomous ground vehicles from both industry
and academia in the past decades. Versatile tasks can be
performed by autonomous vehicles to replace the human or
human operated vehicles. Individual autonomous ground
vehicles, for example, can perform explorations instead of
humans in unknown and dangerous environments, whereas
coordinated multi-vehicles can carry out more appealing
tasks such as distributed sensor networks. An essential
function required for an autonomous vehicle performing a
task is to track reference trajectories or waypoints either
pre-planned beforehand or dynamically generated by a su-
pervisory layer. Such a function relies on the tracking con-
trol of the vehicle.

The kinematics of a ground vehicle are commonly de-
scribed by a nonholonomic model, which is a highly nonlin-
ear system, and therefore draws particular attention from
control community. The related motion control problem for
ground vehicles has been studied for many years, and nu-
merous algorithms have been developed[1, 2]. More recently,
Model Predictive Control (MPC) has gained more and more
attentions. As all autonomous vehicles are equipped with
sensors that can provide local information within a certain
range, MPC (also known as receding horizon control) pro-
vides a promising, natural framework for this problem since
the environment information is changed/updated as the ve-
hicle proceeds. Both vehicle dynamics and environmental
information can be considered using this approach. There-
fore, it is argued that MPC may offer a number of advan-
tages over other methods[3]. On the other hand, MPC has
the property of handling with the control saturations and
state constraints which naturally arise from practical prob-
lems. The application of MPC on nonholonomic mobile
robots can be found in [4− 6]. The corresponding stability
issues have also been discussed in [7, 8].

Manuscript received date; revised date
*Corresponding author. E-mail: c.liu5@lboro.ac.uk

In the MPC scheme, an optimization problem (OP) has
to be solved within each sampling interval. This is the main
obstacle of applying MPC into plants with fast dynamics
such as vehicles. Although few MPC algorithms in this
field have been implemented in real-time, they are based
on linear settings[9, 10]. The linearized model is only valid
when the vehicle is close to the reference trajectory. For
the nonlinear vehicle model and more general setting, a
computationally intensive nonlinear optimization problem
is involved in calculating the control command[3]. Real-time
implementation of nonlinear MPC on autonomous vehicles
still poses a major challenge[11].

Focusing on the real-time implementation of the MPC al-
gorithm, this paper proposes an optimization based control
framework which combines MPC with traditional control
techniques. Instead of attempting to implement a single
nonlinear MPC, the proposed framework employs a two-
level control structure. The high-level controller uses a non-
linear MPC algorithm to solve the tracking control prob-
lem with respect to the vehicle’s nonholonomic constraint
and other environment constraints. The low-level controller
is designed based on the linearization around a reference
trajectory provided by the high-level controller to stabi-
lize the vehicle in the presence of disturbances and uncer-
tainties. These two level controllers are operated at dif-
ferent time scales. The high-level MPC strategy runs at
a lower sampling rate allowing enough time for performing
online nonlinear optimization, while the low-level controller
is executed in a much higher sampling rate to respond to
external disturbances. Therefore, the proposed optimiza-
tion based two-level control framework facilitates real-time
implementation since it can simultaneously cope with the
heavy computational burden demanded by the online opti-
mization solver and the fast feedback as required by vehicle
stabilization and control.

Both the simulation and experimental results are pre-
sented in this paper to verify the proposed approach. The
time settings related to the MPC implementation are dis-
cussed. Furthermore, the hardware structure of the control

2 International Journal of Automation and Computing 04(1), January 2007

framework is introduced, and it shows the flexibility to test
the MPC algorithms on other physical plants with fast dy-
namics in real-time.

The rest of this paper is organized as follows. Section
2 describes the vehicle model. In Section 3, the high-level
MPC is formulated in a discrete time setting with an em-
phasis on implementation, followed by simulation results.
The two-level control framework including the design of the
low-level controller is introduced in Section 4. Then the ex-
periment setting is described and experimental results are
presented to verify the proposed approach. Section 5 con-
cludes this paper.

2 Vehicle model

The autonomous vehicle under consideration in this pa-
per is a rear wheel driving ground vehicle and is equipped
with forward looking sensors to provide preview for the path
and the surroundings over a certain horizon. The configu-
ration of the rear-wheel driving vehicle, as the TT01 radio
controlled model car used in the Autonomous System Lab
at Loughborough University, is shown in Fig. 1.

(a) Vehicle schematic

(b) Experiment vehicle

Fig. 1 Ground vehicle

The states of the model are x = [x y θ]
′
, where

(x, y) are the coordinates of the centre point of the rear
axle, θ is the heading angle of the car body with respect to
the x axis. Angle ϕ in Fig. 1(a) is the steering angle of the
front wheels with respect to the vehicle’s longitudinal line,
which can be seen as a control input. Another parameter
of the model is the distance between the front axle and the
rear axle, which is l in the Fig. 1(a). The kinematical rela-
tionship can be described using the following mathematical
model:

ẋ = v · cos θ

ẏ = v · sin θ
θ̇ = v · tanϕ

l
= v · c

(1)

where the control inputs for the vehicle are: ϕ the steering
angle and v the line velocity. The curvature can be defined
as:

c = tanϕ/l (2)

For simplicity of control design, c is used as an input.
That is, u = [c v]

′
. If the input c is calculated, the

steering angle ϕ can be derived from the relationship (2).
The nonholonomic constraint can be represented as fol-

lows [6]:

ẋ sin (θ + ϕ)− ẏ cos (θ + ϕ)− θ̇ cos θ · l = 0 (3)

One can easily verify that the nonholonomic constraint (3)
is involved in this model. In terms of the control constraints,
the steering angle is usually restricted within a special range
imposed by the actual mechanical saturation. The steering
angle limit also imposes a minimum turning radius on the
vehicle, which is:

Rmin = |cmax|−1 = l/ tanϕmax (4)

The constraints on the car velocity can also be added in the
same way.

3 Tracking control using MPC

Obviously, the kinematic constraints, i.e. the nonholo-
nomic constraint, and the input constraints prohibit the
vehicle from tracking arbitrary trajectories. Therefore, a
tracking controller needs to address both the local trajec-
tory regeneration and the tracking problems. That means
to provide the optimal, at least a feasible, trajectory to fol-
low as well as the corresponding control sequence, based on
a given reference trajectory or way points.

3.1 Time setting

MPC is an optimal control strategy that uses the model
of the plant to obtain the optimal control sequence by min-
imizing an objective function which penalizes the unex-
pected errors. At each sampling instant, a model is used
to predict the future behavior of the plant over a predic-
tion horizon[12]. Based on these predictions, the objective
function is minimized with respect to the future sequence
of inputs. Thus MPC requires the solution of a constrained
OP at each sampling instant. Although prediction and op-
timization are performed over the future time horizon, only
the control inputs for the current sampling step or first few
steps are eventually used to drive the system. The same
procedure is repeated at the next sampling instant with
updated system states for a receding horizon.

In order to exploit the MPC strategy, the vehicle tracking
problem needs to be formulated into the MPC formation.
Moreover, since the online optimization is performed on a
digital computer, it is necessary to represent the original
problem in a discrete form. Considering a time step Td,
the discrete vehicle model can be obtained, for example, by
using Euler approximation as follows:

x(k + 1) = x(k) + Td · v(k) · cos θ(k)

y(k + 1) = y(k) + Td · v(k) · sin θ(k)

θ(k + 1) = θ(k) + Td · v(k) · c(k)

(5)

The compact form of (5) is x(k + 1) = f(x(k), u(k)). The
prediction of vehicle states at sampling instant k is repre-
sented as follows:

x(k + j + 1|k) = f(x(k + j|k), u(k + j|k)) (6)

C. Liu et al. / Preparation of Papers for International Journal of Automation and Computing 3

where, k indicates the present sampling instant, and k + j
indicates the j-th predicted step evolved from step k.

The time step Td is a crucial parameter. Because of the
Euler approximation, there is an error between the discrete
model and the continuous model which monotonically in-
creases with Td. The MPC designed on the discrete model
can stabilize the original continuous model if Td is small
enough[13]. However, this time interval is the duration in
which the nonlinear optimization should be finished. To
avoid this conflict, this paper introduces another important
parameter Ts defined as the MPC sampling time, which
decides the interval of the controller updating the current
states and generating a new control sequence. Ts is usually
decided by the maximum OP solution time. In the conven-
tional MPC setting Ts usually equals Td. Considering the
intractable optimization problem within Td, the MPC sam-
pling time can be chosen to be greater than time step Td.
We choose the MPC sampling time as Ts = N · Td. Hence,
the time allowed for solving the OP is enlarged. Conse-
quently, during one sampling interval, the first N steps in
the optimized control sequence need to be applied.

To clearly explain the time setting, an example is illus-
trated in Fig. 2. In this example N is set to 2, so the sam-
pling interval is Ts = 2Td, which is also the time allowing to
solve the OP. The prediction horizon H is 4 MPC sampling
intervals. At each sampling instant KjN , j = 0, 1, 2 . . .,
the MPC obtains the new system states and calculates the
new control sequence in which the first N steps are actually
applied to the plant.

Fig. 2 Sampling time index

3.2 Controller design

Under the above time setting, the discrete MPC is em-
ployed for real-time application. By defining the reference
trajectory xr and the tracking error xe = xr − x, we can
formulate the following objective function to be minimized:

J(k) =

H−1∑
i=0

N−1∑
j=0

L(x(k + iN + j|k), u(k + in+ j|k))

+ F (x(k +HN |k)) (7)

L(x(k), xr(k), u(k)) = xe(k)
′
Qxe(k) + u(k)

′
Ru(k)

F (x(k +HN), xr(k)) = xe(k +HN)
′
Pxe(k +HN)

where, L(x(k), xr(k), u(k))is the penalty for each time
step, F (x(k + HN), xr(k)) is the terminal penalty, H is
the prediction horizon and P , Q and R are the positive
definite weighting matrices.

The nonlinear optimization problem that minimizes the
objective function subjected to various constraints can be
stated as:

xref , uref = arg min
x, u

J(k) (8)

subject to:

x(k + j + 1|k) = f(x(k + j|k), u(k + j|k))

x(k + j|k) ∈ X

u(k + j|k) ∈ U

j = 0, 2, · · · , N − 1

x(k|k) = x0

where the first term is the compact form of vehicle dynam-
ics, and X, U are control and state constraints, respectively.
This optimization problem must be solved at each sampling
instant, producing the local reference trajectory xref , and
the optimal control sequence uref . The related MPC sta-
bility issue has been discussed in ref. [7], and is beyond the
scope of this paper, where we will focus on the strategy of
real-time implementation.

3.3 Numerical simulation

To show the performance of the MPC strategy, the sim-
ulation was firstly carried out based on parameters for the
Subaru TT01 model car in our lab. After various driving
tests in the lab, the model of the vehicle has been built.
Simulations for a number of tasks have been carried out. A
classical task is to track an eight shape trajectory defined
as follows:

xr(t) = 1.5 · sin(t/4)

yr(t) = 3 · sin(t/8)

θr(t) = arctan 2(ẋr(t), ẏr(t))

(9)

where the function arctan2 is a four-quadrant inverse tan-
gent function.

In the simulation, the matrices Q and R in the cost func-
tion of MPC are chosen as diag(1, 1, 0.5) and diag(0.2, 0.2)
respectively. The terminal penalty weighting P is chosen as
diag(10, 10, 5). The discrete sampling time of model Td is
0.1 s and the MPC sampling time Ts is set to 0.5 s, which
means each control sequence is applied for the first 5 steps.
The prediction horizon H is set to 4 steps, which implies
the overall prediction duration is 2 s. In terms of input
constraints, the steering angle ϕ is limited from −0.4 rad
to 0.4 rad and the speed from 0.15 m/s to 0.8 m/s.

(a) Tracking result

4 International Journal of Automation and Computing 04(1), January 2007

(b) Control inputs

Fig. 3 Eight-shape tracking

The simulation results are shown in Fig. 3. It can be seen
that although the initial position of the vehicle is not on the
reference trajectory, the controller drives the vehicle back
to the reference track. The average OP solving time is less
than 0.05 second using a computer with 2.3GHz CPU in a
Matlab environment, however the maximum time can reach
to 0.4 seconds when the measured error states are far away
from the reference at the beginning.

Another task in the simulations is to force the car to
follow a square trajectory which by no means can be tracked
by a car-like vehicle accurately. However, the MPC based
controller can provide an optimized smooth local trajectory
to follow.

(a) Tracking result

(b) Control inputs

Fig. 4 Square tracking

The simulation results can be found in Fig. 4. The track-
ing trajectory is smooth and the constraints for both steer-
ing angle and speed are satisfied. Parameter settings are the
same as the previous simulation except that the prediction
horizon is enlarged to 6 steps (i.e. 3 seconds). It can be seen
that at the corner of the trajectory, the speed of the car is
reduced to get a better turning as a human driver does. The

big error at each corner is caused by the minimum turning
radius of the vehicle. For the vehicle with l = 0.25 m and
maximum steering angle 0.4 rad the minimum turning ra-
dius based on (4) is about 0.6 m. The computation load
of this optimisation problem is heavier than the previous
one. This is because there are more control variables to
be optimised due to the increased prediction horizon, and
there is no input reference during the turning, thereby the
initial guess of the control variables are much different from
their optimal values. The maximum solving time during the
simulation is approaching 0.5 seconds.

4 Real-time implementation using two-
level framewwork

4.1 Control framework

The premise of using MPC in vehicle control is that the
formulated optimization problem can be solved within one
sampling interval. If the computation time is too long,
i.e. the sampling time Ts is too large, the MPC scheme
would become a piecewise open-loop optimal control. Un-
fortunately, due to the mismatch between the mathematical
model and the real plant, the noises and disturbances in the
process, this kind of optimal control will not perform well
as being designed.

In order to avoid these difficulties in the implementation,
a two-level structure was adopted in the control framework
(see Fig. 5). The high-level controller is the original MPC,
which can provide an optimized reference trajectory and
the corresponding control inputs, whereas the low-level con-
troller is a traditional controller which tracks the reference
trajectory and provides the stability around the reference
trajectory in the presence of disturbances and uncertainties.
The high-level controller runs at a lower sampling rate to
adapt to the calculation time required to solve the nonlinear
optimization problem. In contrast, the low-level controller
works at a higher sampling rate to respond to the latest
vehicle states and the external environment.

Fig. 5 Two-level control framework

4.2 Low-level controller design

The low level control has to be designed to accommodate
the characteristic of the experimental vehicle. Intuitively,
two PID controllers can be employed in the low-level con-
trol. One is the steering local controller, and another is the
local velocity controller used to regulate the car’s speed.

In the implementation, the high-level MPC provides the
optimal state reference and also the corresponding optimal
control inputs. The low-level controller measures the cur-
rent state and then compares it with the high-level state
reference. The error signals are used to generate compensa-

C. Liu et al. / Preparation of Papers for International Journal of Automation and Computing 5

tion control efforts through the local controller. The overall
control inputs applied to the vehicle consist of two parts:
the reference control inputs and the compensation control
generated by the local controller. The strategy is shown in
Fig. 6.

Fig. 6 Two-level control configuration

In a systematic way, the low-level controller can be de-
signed based on perturbation models around the reference
state produced by the high-level MPC. Since the low-level
control works in a much higher sampling rate, the controller
design can be performed in the continuous time domain.
The vehicle model (1) can be linearized around the nomi-
nal trajectory and nominal inputs (xref , uref) as following:

ẋ = f(x, u) ≈ f(xref , uref) +
∂f

∂x

∣∣∣∣
xref

(x− xref)

+
∂f

∂u

∣∣∣∣
uref

(u− uref) (10)

By defining the error state ∆x = x − xref and control
compensation ∆u = u − uref . The error system can be
stated as:

∆ẋ =
∂f

∂x

∣∣∣∣
xref

∆x +
∂f

∂u

∣∣∣∣
uref

∆u = A∆x +B∆u (11)

where,

A =

0 0 −vref · sin θref

0 0 vref · cos θref

0 0 0

 (12)

and

B =

 0 cos θref

0 sin θref

vref cref

 (13)

In terms of the vehicle tracking control, a novel time
varying feedback control law is proposed as in (14).

K =

−k1
sin θref

v2
ref

k1
cos θref

v2
ref

k2
1

vref

k3 cos θref k3 sin θref 0

 (14)

where k1, k2 and k3 are control parameters to be tuned, the
other parameters depend on the high-level reference. Then
the state transition matrix of the closed-loop error system
∆ẋ = (A−BK)∆x is derived in (15):

−k3 cos2 θ −k3 cos θ sin θ −v sin θ

−k3 cos θ sin θ −k3 sin2 θ v cos θ

k1
sin θ

v
− k3c cos θ −k1

cos θ

v
− k3c sin θ −k2

(15)

For the sake of simplicity, the subscripts for the reference
states are omitted. The resulting close-loop system is a lin-
ear time-varying system. However, the closed-loop system
has a very nice property. That is, its eigenvalues are always
constant under the proposed control law. It can be shown
from the characteristic equation of the closed-loop system
given by (16).

det(sI − (A−BK)) = (s2 + k2s+ k1)(s+ k3) (16)

where s is the Laplace operator.
Remark. There is no term depending on the reference

trajectory in the characteristic equation (16). Therefore,
constant eigenvalues are guaranteed by the proposed lo-
cal control strategy for any feasible trajectory as long as
the control parameters are chosen as positive. In terms a
slowly varying system, this condition indicates the stability.
On the other hand, the tracking performance can be eas-
ily tuned by assigning the poles to the required locations
through properly choosing control parameters k1, k2 and
k3. This greatly simplifies the control parameter tuning
process, as compared to other local controllers[10, 14].

4.3 Real-time implementation

The implementation of the two-level control framework
in real-time is achieved by integrating Matlab and its xPC
target real-time environment. The low-level controller is
located on xPC target, and the high-level controller is exe-
cuted on another computer in the Matlab environment us-
ing the SQP algorithm to solve the optimization problem
online. The information exchange between them relies on
the local area network (LAN) with UDP protocol (Fig. 7).
The synchronization between the two computers is guaran-
teed by the real-time xPC target application calling Matlab
program based on its own timer. The xPC target also inte-
grates interfaces to the sensors and radio controller which
measure the vehicle states and send control signals, respec-
tively.

Fig. 7 Two-level control configuration

The experiment we considered is the square tracking
since it is more computationally intensive. Due to the in-
tractable optimization problem, the sampling time Ts for
high-level controller is set to 0.5 seconds, which means that
in every 0.5 seconds the MPC program fetches the current
state of the vehicle, compares with the target trajectory and
solves the formulated optimization problem, consequently
producing the optimized state reference and control inputs.
These outcomes are transferred to the low-level controller as
references. The low-level controller running on the xPC tar-
get takes charge of tracking this reference trajectory. The

6 International Journal of Automation and Computing 04(1), January 2007

sampling time of the low-level controller Td is 0.02 seconds
(50Hz).

Notice that although the high-level controller works at
the sampling rate of 0.5 seconds, the actual step time of
the discrete model used in the prediction, Td, is 0.1 sec-
onds to guarantee the prediction accuracy. Since the pre-
diction horizon H is set to 6 steps, the prediction and
the corresponding control sequence cover a duration of
N × Ts = 3 seconds. The number of optimization vari-
ables is calculated as N ×Ts/Td, which is 30 sets of control
variables. In total, there are 60 variables to be optimized.

Generally, an MPC scheme assumes instantaneous ac-
quisition of the control sequence after the state updated.
However, due to the existence of the computational delay,
the previous control sequence is executed until the new opti-
mization result is available. The related problem has been
investigated in ref. [15], in this paper we follow the rela-
tionship represented in Fig. 8. At time Ki, the low-level
controller sends the current states back to the high-level
controller, expecting the new control sequence as a refer-
ence. Then the high-level controller takes Tc to solve the
optimization problem and send results back. The control
actions being applied in one control sequence may cover a
period of Ts+Tc, indicated by the ‘applied horizon’ in Fig. 8.
Tc in most cases is a small number, however when the OP is
difficult to solve the time increases significantly. During the
design process, we need to choose Ts greater than the maxi-
mum Tc. In the worst case, if the computational time is too
long, the optimization should be terminated and output a
feasible result. Within this calculation period, the low-level
plays an important role, whereas the high-level controller
does not have a chance to respond to the external distur-
bances.

Fig. 8 Execution time index

The experiment tracking results are shown in Fig. 9. The
star point in the Fig. 9(a) is the vehicle position at the mo-
ment when the low-level controller sends the vehicle state
back to the high-level controller. The solid line evolved from
each star point is the regenerated local trajectory for the
vehicle to track. So the connection of all these star points
is the actual tracking result, and the triangles represent for
the original square reference trajectory. The corresponding
control inputs are shown in Fig. 9(b).

5 Conclusion

This paper describes a two-level control framework us-
ing the MPC strategy for autonomous vehicle trajectory
tracking. The two-level framework overcomes the barriers
of implementing computationally intensive MPC on vehicles
with fast dynamics, making the MPC strategy more afford-
able and reliable. The design of the discrete nonliner MPC
and low-level tacking control are presented. The hardware

and software environment for the implementation are also
described. This facility provides a convenient platform for
further research on MPC algorithms and their applications
in autonomous vehicles.

Based on our tests, the MPC based control framework
has the capability to implement online optimization and
provide stability to a nonlinear system. This two-level con-
trol framework has the potential to be applied on more com-
plicated plants such as unmanned helicopters. In terms of
the vehicle motion control, it is very convenient to put ob-
stacle avoidance algorithms into the high-level MPC, and
that can be further expanded by including a vehicle dynam-
ics model to improve the performance.

(a) Tracking result

(b) Control inputs

Fig. 9 Square tracking experiment

References

[1] I. Kolmanovsky and N. H. McClamroch. Developments in
nonholonomic control problems. Control Systems Magazine,
IEEE, 15(6):20–36, 1995. ID: 1.

[2] P. Morin and C. Samson. Trajectory tracking for non-
holonomic vehicles: overview and case study. pages 139–
153, 2004. ID: 1.

[3] Yongsoon Yoon, Jongho Shin, H. Jin Kim, Yongwoon Park,
and Shankar Sastry. Model-predictive active steering and
obstacle avoidance for autonomous ground vehicles. Control
Engineering Practice, 17(7):741–750, 7 2009.

[4] A. Ollero and O. Amidi. Predictive path tracking of mobile
robots. application to the cmu navlab. pages 1081–1086
vol.2, 1991. ID: 1.

C. Liu et al. / Preparation of Papers for International Journal of Automation and Computing 7

[5] Dongbing Gu and Huosheng Hu. Neural predictive control
for a car-like mobile robot. Robotics and Autonomous Sys-
tems, 39(2):73–86, 5/31 2002.

[6] W. Xi and J. S. Baras. Mpc based motion control of car-
like vehicle swarms. In Control and Automation, 2007.
MED’07. Mediterranean Conference on, pages 1–6, 2007.

[7] D. Gu and H. Hu. Receding horizon tracking control of
wheeled mobile robots. IEEE Transactions on Control Sys-
tems Technology, 14(4):743, 2006.

[8] Y. Zhu and U. Ozguner. Constrained model predictive con-
trol for nonholonomic vehicle regulation problem. In Pro-
ceedings of the 17th IFAC World Congress, 2008.

[9] F. Kuhne, W. F. Lages, and J. M. G. da Silva Jr. Model
predictive control of a mobile robot using linearization. In
Proceedings of Mechatronics and Robotics, 2004.

[10] Gregor Klanar and Igor krjanc. Tracking-error model-based
predictive control for mobile robots in real time. Robotics
and Autonomous Systems, 55(6):460–469, 6/30 2007.

[11] K. Kanjanawanishkul and A. Zell. Path following for an om-
nidirectional mobile robot based on model predictive con-
trol. In Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 3341–3346, May 2009.

[12] D. Q. [Reference to Mayne], J. B. [Reference to Rawl-
ings], C. V. [Reference to Rao], and P. O. M. [Reference
to Scokaert]. Constrained model predictive control: Stabil-
ity and optimality. Automatica, 36(6):789 – 814, 2000.

[13] Eva Gyurkovics and Ahmed M. Elaiw. Stabilization of
sampled-data nonlinear systems by receding horizon control
via discrete-time approximations. Automatica, 40(12):2017
– 2028, 2004.

[14] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi. A
stable tracking control method for a non-holonomic mobile
robot. pages 1236–1241 vol.3, 1991. ID: 1.

[15] W.-H. Chen, D.J. Ballance, and J. O’Reilly. Model pre-
dictive control of nonlinear systems: computational burden
and stability. Control Theory and Applications, IEE Pro-
ceedings -, 147(4):387–394, Jul 2000.

Cunjia Liu received a B. Eng in Detection,
Guidance and Control technology (2005), a
M. Eng in Guidance, Navigation and Control
(2008) from Beijing University of Aeronautics
and Astronautics, Beijing, China. He cur-
rently is a PhD student in the Department
of Aeronautical and Automotive Engineering
at Loughborough University, UK. His research
interests include the optimization based con-
trol, flight control and path planning of Un-

manned Aerial Vehicles.

Wen-Hua Chen received his M. Sc and
Ph. D. degrees from Department of Automatic
Control at Northeast University, China, in
1989 and 1991, respectively. From 1991 to
1996, he was a lecturer in Department of Auto-
matic Control at Nanjing University of Aero-
nautics and Astronautics, China. He held a
research position and then a lectureship in
control engineering in Center for Systems and
Control at University of Glasgow, UK, from

1997 to 2000. He currently holds a senior lectureship in flight
control systems in Department of Aeronautical and Automotive
Engineering at Loughborough University, UK.

He has published one book and more than 100 papers on jour-
nals and conferences. His research interests include the devel-
opment of advanced control strategies and their applications in
aerospace engineering.

John Andrews is the Royal Academy of
Engineering Professor of Infrastructure Asset
Management at the Nottingham Transporta-
tion Engineering Centre (NTEC) at Univer-
sity of Nottingham. Prior to this he spent 20
years at loughborough University. The prime
focus of his research has been on methods for
predicting system reliability in terms of the
component failure probabilities and a repre-
sentation of the system structure. Much of

this work has concentrated on the Fault Tree technique and the
use of the Binary Decision Diagrams (BDDs) as an efficient and
accurate solution method.

He is the author of around 200 research papers on this topic.
John is Founding Editor of the Journal of Risk and Reliability
(part O of the IMechE Proceedings). He is also a member of the
Editorial Boards for Reliability Engineering and System Safety,
and Quality and Reliability Engineering International.

