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Short title:   New type of vibration dampers

Summary

One of the well-known ways of damping resonant flexural vibrations of different engineering

structures or their elements, e.g. finite plates or bars, is to reduce reflections of flexural waves

from their free edges. In the present paper, a new efficient method of reducing edge

reflections is described that utilises gradual change in thickness of a plate or a bar from the

value corresponding to the thickness of the basic plate to almost zero. It is proposed to use

specific power-law shapes of plates of variable thickness (wedges) that ideally provide zero

reflection even for negligibly small material attenuation – the so-called ‘acoustic black hole

effect’. In particular, for powers  m ≥ 2 - in free wedges, and  m ≥ 5/3 – in immersed wedges,

incident flexural waves become trapped near the edge and do not reflect back. Since, because

of ever-present edge truncations in real manufactured wedges, the corresponding reflection

coefficients are always far from zero, to make up for real wedges and make the systems more

efficient it is proposed to deposit absorbing thin layers on wedge surfaces. It is shown that the

deposition of thin damping layers on the wedge surfaces can dramatically reduce the

reflection coefficients. Thus, the combination of a wedge with power-law profile and of thin

damping layers can utilise the acoustic ‘black hole’ effect resulting in very effective damping

systems for flexural vibrations.

PACS no  43.20.Dk, 43.40.At, 43.40.Tm
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1. Introduction

It is well known that one of the efficient ways of damping resonant flexural vibrations of

different engineering structures or their elements, e.g. finite plates or bars, is to reduce

reflections of flexural waves from their free edges. This can be achieved, for example, by

introducing graded impedance interfaces along with placing damping material at the edges

[1]. In addition to engineering applications, such structures, that simulate semi-infinite or

infinite plates or bars, are of great interest for some physical experiments, e.g. on Anderson

localisation of bending waves  [2]. The main difficulty in this approach is to create suitable

graded impedance interfaces. The authors of the paper [1] have suggested to attach to the end

of the basic steel plate the graded impedance interface consisting of the combination of the

finite aluminium plate, Lucite plate, and composite plate, all of them being of the same

thickness as the basic steel plate. Using such a system the authors demonstrated

experimentally that as much as 60-80 % of the energy could be damped for frequencies in the

range of 2-10 kHz. This was much superior to the commonly used method of damping by

embedding of edges of plates in sand, which results only in at most 30 % of the energy to be

damped at frequencies above 2 kHz [3]. In spite of the encouraging results of reference [1],

the technological difficulties of building and attaching several additional plates of different

materials to the basic plate are restrictive for applying this method for practical purposes.

      The alternative way of creating matching impedance interfaces is considered in the

present paper. Instead of using combinations of finite plates made of different materials, it is

proposed to utilise gradual change in thickness of a plate or a bar from the value

corresponding to the thickness of the basic plate to almost zero. In other words, it is proposed

to use elastic wedges as gradual impedance interfaces for flexural waves in plates and bars.

The above-mentioned gradual change in thickness of a plate or a bar is to be made according
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to the special laws that ideally provide zero reflection even for negligibly small material

attenuation – the so-called ‘acoustic black hole effect’. To make up for real wedges and to

make the damping systems under consideration more efficient it is proposed to deposit thin

absorbing layers on wedge surfaces near the edges.

      To appreciate the ‘acoustic black hole effect’ for flexural waves one has to recall that

when flexural elastic waves propagate towards edges of elastic plates of variable thickness

gradually decreasing to zero, i.e. towards edges of thin elastic wedges of arbitrary shape, they

slow down and their amplitudes grow. After reflection from the edge, with the module of

reflection coefficient normally being equal to unity, the whole process repeats in the opposite

direction [4-8]. Especially interesting phenomena may occur in the special case of wedge

edges having cross sections described by a power law relationship between the local

thickness  h  and the distance from the edge x:  h(x)= εxm  (see Figure 1),  where  m  is a

positive rational number and  ε  is a constant [7-9].  In particular, for m ≥ 2 - in free wedges,

and for m ≥ 5/3 – in immersed wedges, the flexural waves incident at an arbitrary angle upon

a sharp edge can become trapped near the very edge and therefore never reflect back [8,9].

Thus, such structures materialise acoustic ‘black holes’, if to use the analogy with

corresponding astrophysical objects.  In the case of localised flexural waves propagating

along edges of such wedges (these waves are also known as wedge acoustic waves) the

phenomenon of acoustic ‘black holes’ implies that wedge acoustic wave velocities in such

structures become equal to zero [7,8]. This reflects the fact that the incident wave energy

becomes trapped near the edges and wedge acoustic waves simply do not propagate.

      Note that ‘black hole’ effects are known not only for flexural waves in wedges of power-

law profile. As has been demonstrated theoretically by several authors, the potential

possibility of the effects of zero reflection can also exist for wave phenomena of different

physical nature. In particular, these may occur for underwater sound propagation in a layer
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with sound velocity profile linearly decreasing to zero with increasing depth [10]. Similarly,

the reflection may be absent for internal waves in a horizontally inhomogeneous stratified

fluid [11,12] and for particle scattering in quantum mechanics [13]. For seismic interface

waves propagating in soft marine sediments with power-law shear speed exponent equal to

unity it is the wave velocity that may be equal to zero [14,15], exactly as in the case of the

above-mentioned wedge acoustic waves in elastic wedges with power-law profile [7,8].

     One must mention, however, that, whereas the conditions providing zero wave reflection

can hardly be found in real ocean environment or for real atomic potentials, wedges of

arbitrary power-law profile are relatively easy to manufacture. Thus, elastic solid wedges give

the unique opportunity to materialise the above-mentioned zero-reflection effects normally

associated with ‘black holes’ and to use them for practical purposes.

     The unusual effect of power-low profile on flexural wave propagation in elastic wedges

has attracted some initial attention in respect of their possible applications as vibration

absorbers.  Mironov [9] was the first to have pointed out that a flexural wave does not reflect

from the edge of a quadratically-shaped wedge in vacuum (m = 2), so that even a negligibly

small material attenuation may cause all the wave energy to be absorbed near the edge.

Unfortunately, because of the deviations of manufactured wedges from the ideal power-law

shapes, largely due to ever-present truncations of the wedge edges, real reflection coefficients

in such homogeneous wedges are always far from zero [9]. Therefore, in practice such

wedges can not be used as vibration absorbers.

      As it will be demonstrated in the following sections, the situation can be radically

improved by modifying the wedge surfaces. In particular, the deposition of thin damping

layers on the surfaces of wedges having power-law profile can drastically reduce the

reflection coefficients. Thus, the combination of a wedge with power-law profile and of thin

damping layers can result in very effective damping systems for flexural vibrations.
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2.  Theory

2.1. Flexural waves in free wedges of power-law profile

To explain the basic physics of the phenomenon let us consider the above-mentioned simplest

case of a plane flexural wave propagating in the normal direction towards the edge of a free

wedge described by a power-law relationship  h(x)= εxm,  where  m  is a positive rational

number and  ε  is a constant  (see Figure 1). Since flexural wave propagation in such wedges

can be described in the geometrical acoustics approximation (see [4-9] for more detail), the

integrated wave phase  Φ  resulting from the wave propagation from an arbitrary point  x  on

the wedge medium plane to the wedge tip (x = 0) can be written in the form:

∫=Φ
x

dxxk
0

)( .                                                                (1)

Here  k(x)  is a local wavenumber of a flexural wave for a wedge in contact with vacuum:

k(x) =121/4 kp
1/2(εxm)-1/2, where  kp = ω/cp  is the wavenumber of a symmetrical plate wave,

cp = 2ct(1-ct
2/cl

2 )1/2  is its phase velocity, and  cl  and  ct  are longitudinal and shear wave

velocities in a wedge material, and  ω =2πf  is circular frequency.  One can easily check that

the integral in equation (1) diverges for  m ≥ 2.  This means that the phase  Φ  becomes

infinite under these circumstances and the wave never reaches the edge. Therefore, it never

reflects back either, i.e. the wave becomes trapped, thus indicating that the above mentioned

ideal wedges represent acoustic ‘black holes’ for incident flexural waves.

     Real fabricated wedges, however, always have truncated edges. And this adversely affects

their performance as potential vibration dampers. If for ideal wedges of power-law shape

(with m ≥ 2) it follows from equation (1) that even an infinitely small material attenuation,

described by the imaginary part of  k(x), would be sufficient for the total wave energy to be

absorbed, this is not so for truncated wedges.  Indeed, for truncated wedges the lower
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integration limit in equation (1) must be changed from 0 to a certain value  x0  describing the

length of truncation, thus resulting in the amplitude of the total reflection coefficient  R0

being expressed in the form [9]

∫−=
x

x

dxxkR
0

))(Im2exp(0 .                                                   (2)

According to equation (2), for typical values of attenuation in the wedge materials, even very

small truncations  x0  result in  R0  becoming as large as 50-70 %.

2.2  Waves in wedges covered by thin absorbing layers

To improve the situation for real wedges (with truncations), let us now consider covering the

wedge surfaces by thin damping layers (films) of thickness  δ ,  e.g. by polymeric films. Note

in this connection that the idea of applying absorbing layers for damping flexural vibrations

of plates and beams is not new and has been successfully used since the 50-ies  (see, e.g. [16-

20]). The new aspect of this idea, which is discussed in the present paper, is the use of such

absorbing layers in combination with the specific power-law geometry of a plate of variable

thickness (a wedge) to achieve maximum damping.

      Two types of wedge geometry will be considered:  a symmetric wedge  (Figure 2a) and a

non-symmetric wedge bounded by a plain surface at one of the sides (Figure 2b). For each of

these cases either two or only one of the sides can be covered by absorbing layers. Note that

non-symmetric wedges are easier to manufacture as only one curved surface should be made.

Non-symmetric wedges also have technological advantage in depositing absorbing layers: the

latter can be deposited on a flat surface, which is much easier. From the point of view of

theoretical description, there is no difference between symmetrical and non-symmetrical

wedges as long as geometrical acoustics approximation is concerned and the wedge local
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thickness  h(x) = εxm  is much less than the flexural wavelength. A possible application of a

non-symmetric quadratic wedge-like damper covered by an absorbing film on one side is

illustrated on Figure 3. The thick end of a damper is glued to the edge of a basic plate

reflections from which are to be suppressed. To avoid reflections from the boundary between

the plate and the wedge that may be caused by a sudden change in geometry the shape of the

wedge is smoothened so that it gradually transforms into the plate with the thickness equal to

the thickness of the basic plate.

      Let us now discuss the effect of absorbing layers (films) covering wedge surfaces on

flexural wave reflection. In what follows we consider only one possible film-induced

attenuation mechanism – the one associated with in-plane deformations of the film under the

impact of flexural waves. Such deformations occur on wedge surfaces as a result of the well

known relationship between flexural displacements  uz  and longitudinal displacements  ux  in

a plate:  ux = -z(∂2uz/∂x2).  Not specifying physical mechanism of the material damping in the

film material, we assume for simplicity that it is linearly dependent on frequency, with non-

dimensional constant  ν  being the energy loss factor, or simply the loss factor.

       To analyse the effect of thin absorbing films on flexural wave propagation in a wedge in

the framework of geometrical acoustics approximation one should consider first the effect of

such films on flexural wave propagation in plates of constant thickness. The latter problem

can be approached in different ways. For example, it can be solved using the non-classical

boundary conditions taking into account the so-called ‘surface effects’ [21,22]. Alternatively,

the energy perturbation method developed by Auld [23] can be used. However, the simplest

way is to use the already known solutions for plates covered by damping layers of arbitrary

thickness obtained by different authors with regard to description of damped vibrations in

such sandwich plates [16-20].
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      In particular, for a plate of constant thickness  h  covered by a visco-elastic layer of

thickness  δ  on one of the surfaces the following expression for the additional loss factor  ξ

can be obtained (see, e.g. [17, 19]):

12
21

2
222 ))12((1 −++

=
ααβα

νξ .                                              (3)

Here  ν  is the loss factor of the material of the visco-elastic layer,  α2 = δ/h,  β2 = E2/E1,  and

α21 =  (1+ α2)/2,  where  E1  and  E2  are respectively theYoung’s moduli of the plate and of

the visco-elastic layer.  Note that formula (3) has been derived from the original more general

expression of Oberst [16] by assuming that  α2β2 = (δ/h)(E2/E1) << 1,  which is almost

always the case in practical applications. Note that equation (3) can be rewritten in the

equivalent form [17] that is also used widely:

)463(1
)463(
2

2
2

222

2
2222

αααβ
ααανβξ
+++

++= .                                              (4)

      Further simplification of the expression for the layer-induced additional loss factor  ξ  can

be obtained in the case of very thin absorbing layers, α2 = δ/h << 1.  In this case the

following linearised expression versus  α2 = δ/h  can be derived from equations (3) or (4):

ξ = 3α2β2ν .                                                                 (5)

      Using equation (5) and assuming that both surfaces of a wedge are covered by absorbing

layers (see Figure 2a), one can arrive to the formula that takes into account the effects of both
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damping layers and of the wedge material and geometry on the imaginary part of a flexural

wavenumber,  Im k(x):









+












= νδη

1

2
2/1

2/14/1

)(2
3

4)(
12

)(Im
E
E

xhxh
k

xk p .                                      (6)

Here  h(x)  is the local thickness of the wedge, and  η  is the loss factor of the wedge material.

The additional flexural wave attenuation caused by the damping layers and described by the

second term in (6) is proportional to the ratio of the film thickness  δ  to the plate’s local

thickness h(x), and to the ratio of the Young’s moduli, E2/E1, of the film and plate

respectively.

      In the case of a wedge with only one surface covered by a damping layer  (Figure 2b) the

additional damping is two times smaller and the expression for Im k(x) has the form









+












= νδη

1

2
2/1

2/14/1

)(4
3

4)(
12

)(Im
E
E

xhxh
k

xk p .                                      (7)

       Let us consider a wedge of quadratic shape, i.e. h(x) = εx2,  covered by damping layers

on both surfaces  (Figure 2a). Then, substituting equation (6) into (2) and performing the

integration, one can obtain the following analytical expression for the resulting reflection

coefficient R0:

R0 = exp(-2µ1 - 2µ2),                                                          (8)

where
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





=

0
2/1

2141

1 ln
4

12
x
xk /

p
/

ε
η

µ ,                                                            (9)







−

⋅
= 2

2
0

2
01

2
2/3

2/14/1

2 11
4

123
x
x

xE
Ek p

ε
νδ

µ .                                      (10)

As expected, in the absence of the damping film (δ = 0 or ν = 0, and hence µ2 = 0), the

equations (8)-(10) reduce to the results obtained in [9] (where a typographical misprint has

been noticed). If the damping film is present (δ ≠ 0 and ν ≠ 0), it brings the additional

reduction of the reflection coefficient that depends on the film loss factor  ν  and on the other

geometrical and physical parameters of the wedge and film.

        In the case of a wedge of quadratic shape covered by damping layers on one surface only

(Figure 2b) equations (8) and (9) remain unchanged, whereas equation (10) should be

replaced by







−

⋅
= 2

2
0

2
01

2
2/3

2/14/1

2 11
8

123
x
x

xE
Ek p

ε
νδ

µ .                                     (11)

In deriving equations (8)-(11) the effect of thin absorbing layers on flexural wave velocity has

been neglected.

      Note that geometrical acoustics approximation for the above-mentioned quadratic wedges

(m = 2)  is valid for all  x  provided that the following applicability condition is satisfied:

1>>
ε
ω
tc

,                                                                     (12)

where  ct  is shear wave velocity in the wedge material.  For the majority of practical

situations this condition can be easily satisfied even at very low frequencies.
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2.3  Waves in wedges covered by absorbing layers of arbitrary thickness

        The expressions (8)-(11) for the reflection coefficient of flexural waves in quadratic

wedges covered by absorbing layers are valid if the thickness of layers is much smaller that

the local thickness of the main wedge. Therefore, although being very useful and simple,

these expressions can only be applicable for wedges covered by very thin absorbing layers

(thin films). But even so, their applicability fails near wedge edges, where even very thin

films may become comparable or even larger than wedge local thickness. Obviously, for

equations (8)-(11) to be applicable for a wedge with truncation length  x0,  the wedge local

thickness at the point of truncation  h(x0) = εx0
2  must be much larger than the film thickness

δ:

εx0
2 >> δ .                                                            (13)

In practice this means that the film thickness  δ   should be at least 3-4 times smaller than

εx0
2.

       To extend the analysis to smaller values of wedge truncation and/or to thicker films one

has to consider flexural wave propagation in wedges covered by damping layers of arbitrary

thickness. As the wave phase behaviour near wedge edges is important for materialising the

acoustic ‘black hole’ effect, the influence of the film thickness on flexural wave velocity

dispersion in this case should be taken into account as well. Therefore, equations (3) and (4)

(as well as the original formula derived by Oberst [16]), that only take into account the effect

of an absorbing layer on the resulting loss factor, can no longer be used.

       A more general analysis of the effect of damping layers on complex flexural rigidity of a

sandwich plate with arbitrary parameters has been carried out in reference [17]. In what

follows we consider a wedge with only one surface covered by an absorbing layer. Then,
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using the results of [17] for complex flexural rigidity of a sandwich plate in the case  β2 =

E2/E1  << 1  and representing the surface mass density  ρs  of such plate as  ρs = ρwh + ρlδ,

where  ρw  and  ρl  are the mass densities of the wedge material and of the absorbing layer

respectively, one can derive the following expression for the complex wavenumber  k  of a

flexural wave propagating in a plate covered by an absorbing layer of arbitrary thickness  δ:

[ ]
4/1

2
2222

2
2/1

2/14/1

)463)(1()1(

~112









++−+−
+=

ααναβη
αρ

iih
k

k p .                 (14)

Here  kp = ω/cp  is the wavenumber of a symmetrical plate wave for the main wedge material,

cp = 2ct(1-ct
2/cl

2 )1/2  is the plate wave velocity,  cl  and  ct  are longitudinal and shear wave

velocities in a wedge material  (see also the discussion of equation (1)), and  wl ρρρ /~ = .

Other notations in equation (14) are the same as in the previous sections.

      Using the fact that in the majority of practical situations  η  << 1  and  ν << 1,  equation

(14) can be simplified to the form




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k p .            (15)

From equation (15) it follows that the expression for  Im k  can be written as

4/52
2222

2/1

2
2222

4/1
2

2/14/1

)]463(1[4

)]463([)~1(12
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k p .                      (16)
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As expected, in the limiting case of  α2 = δ/h << 1  equation  (16)  reduces to the earlier

derived equation (7) for a wedge covered by a thin absorbing film on one of its surfaces.

       Assuming that the wedge has a quadratic shape, i.e. α2 = α2(x) = δ/h(x) = δ/εx2  (see

Fig.2b), and substituting equation (16) into equation (2), one can obtain the following

expression for the resulting reflection coefficient  R0:













+++
++++

−= ∫
x

x

p dx
xxxxh

xxxxk
R

0

4/52
2222

2/1

2
2222

4/1
2

2/14/1

0 )])(4)(63)((1[)(2
)])(4)(63)(([))(~1(12

exp
αααβ

ααανβηαρ
.      (17)

Unfortunately, equation (17) can not be simplified any further, and the integration in it should

be carry out numerically.

3.  Numerical examples

       Let us first perform calculations according to the simplest formulae (8)-(11) and let us

choose for illustration purposes the following values of the film parameters: ν = 0.25  (i.e.,

consider the film as being highly absorbing),  E2/E1 = 0.3  and  δ = 15 µm.  Let the

parameters of the quadratically shaped wedge be:  ε = 0.05 m-1,  η = 0.01,  x0 = 2 cm,  x = 50

cm  and  cp = 3000 m/s.  Then, e.g. for a wedge covered by absorbing films on both sides and

at the frequency  f = 10 kHz  it follows from equations (8)-(10) that in the presence of the

damping film  R0 = 0.022  (i.e. 2.2 %), whereas in the absence of the damping film R0 =

0.542  (i.e. 54.2 %).  Thus, in the presence of the damping film the value of the reflection

coefficient is much smaller than for a wedge with the same value of truncation, but without a

film.  Obviously, it is both the specific geometrical properties of a quadratically-shaped

wedge in respect of wave propagation and the effect of thin damping layers that result in such
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a significant reduction of the reflection coefficient.  Note that almost all absorption of the

incident wave energy takes place in the vicinity of the sharp edge of a wedge.

       The effect of wedge truncation length  x0  on the reflection coefficient  R0  in the above

example is shown on Figure 4 for the value of film material loss factor  ν  = 0.15  and for the

values of  β2 = E2/E1  equal to  0.1,  0.2  and  0.3.  Calculations have been carried out

according to equations (8)-(10).  For comparison, the curve corresponding to the wedge not

covered by absorbing films is shown on the same Figure as well.  One can see that the

behaviour of the reflection coefficient  R0  as a function of  x0  is strongly influenced by the

parameter  β2 = E2/E1  describing relative stiffness of the absorbing film.  The larger the film

stiffness the higher values of truncation  x0  can be allowed to keep the reflection coefficient

low.  One should keep in mind, however, that, according to the applicability condition for

equations (8)-(11) following from the limitation on the absorbing film thickness (see equation

(13)), the results for  R0  obtained for very small values of truncation  x0  are not accurate.

This will be discussed later in more detail, when numerical calculations according to the more

precise equation (17) will be considered, instead of using simple analytical expressions (8)-

(11)

      The effect on the reflection coefficient  R0  of partial covering of a wedge by absorbing

thin films is shown on Figure 5 for the values of the film material loss factor  ν  equal to 0.10,

0.15,  0.20  and 0.25  respectively.  It is assumed that the films are partly covering both sides

of the wedge with the total length  x = 50 cm, starting from its truncated edge and finishing at

the symmetrically located points on the surfaces described by the coordinate  x1  of their

projections on the axis  x.  The value of the wedge truncation length  x0  is  2 cm,  and the

value of relative film stiffness  β2 = E2/E1  is 0.2.  Other parameters are the same as in Figure

4.  Calculations have been carried out according to equations (8)-(10), where  x  in equation

(10) has been replaced by  x1.  One can see that the effect of the film length, characterised by
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the projection  x1,  is noticeable only for small  x1.  This reflects the fact that most of the wave

energy loss occurs in the vicinity of the wedge edge. Naturally, the lower reflection

coefficients are achieved for higher values of the film material loss factor.

      Figure 6 illustrates the frequency dependence of the wedge reflection coefficient  R0  in

the example considered for the wedge covered by absorbing thin films with the values of film

material loss factor  ν  equal to 0.05,  0.10  and  0.15  respectively and for the uncovered

wedge.  Other parameters are the same as in Figure 5.   As one can see, for all values of the

film material loss factor the reflection coefficients decrease with the increase of frequency.

Although for larger values of the film material loss factor  (ν = 0.15)  such increase is more

rapid, the considered wedge-like structure seems to be more efficient as a damper at relatively

high frequencies (higher than 5 kHz in the example considered).

       Let us now turn to the calculations of the reflection coefficient  R0  according to the more

precise formula (17), where the integration should now be performed numerically.

      Figure 7 shows the reflection coefficient  R0  at frequency  f = 10 kHz  as a function of the

wedge truncation length  x0  for the non-symmetric wedge covered by the absorbing film on

one surface only (see Figure 2b).  The parameters of the wedge and film are:  ε = 0.05,  δ =

10 µm,  ν = 0.2,  η = 0.01,  x0 = 2 cm  and  E2/E1 = 0.3.  A dotted curve corresponds to the

reflection coefficient calculated according to the simple analytical expressions (8), (9) and

(11). A solid curve corresponds to the reflection coefficient calculated according to the more

precise formula (17).  For comparison, the behaviour of the reflection coefficient for an

uncovered wedge is shown on Figure 7 as well.  It is clearly seen that the curves calculated

according to the simplified equations and to the more precise formula (17) almost coincide

with each other everywhere except very small values of  x0,  where the approximation of thin

film becomes invalid.  As expected, the values of  R0  calculated for very small  x0  according

to equation (17) are always larger than zero since even for the ideal case of the absence of
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wedge truncation  (x0 = 0)  the presence of the film implies that as  x → 0  the wedge covered

by a film reduces gradually to a film of constant thickness only, and the reflection coefficient

is determined entirely by an absorbing film.  Nevertheless, the curve calculated according to

the simplified analytical formulae (equations (8), (9) and (11)) represents a very good

approximation of the reflection coefficient for realistic values of wedge truncation  x0.

       The reflection coefficient for a wedge covered by absorbing films of increasing thickness

is shown on Figure 8 as a function of  x0.  The values of the film thickness  δ  are:  10, 100

and 200 µm. Calculations have been carried out using equation (17).  Other parameters of the

wedge and film are the same as on Figure 7. As expected, thicker films result in lower values

of the reflection coefficient  R0  in a wider range of wedge truncation length  x0.

       Finally, Figure 9 shows the effect of relative film stiffness  β2 = E2/E1  on the behaviour

of the reflection coefficient  R0  for a wedge covered by a thick absorbing film (δ = 200 µm).

The values of  β2 = E2/E1  are  0.3, 0.03, and 0.003.  All other parameters are the same as on

Figure 7. Calculations have been carried out according to equation (17). It can be seen that in

the considered case of thick absorbing films even a very ‘soft’ film results in significant

reduction of the reflection coefficient for small values of the truncation length  x0.

4.  Conclusions

Some theoretical results have been reported on the possible practical utilisation of the

acoustic ‘black hole’ effect for flexural waves propagating in quadratically-shaped elastic

wedges covered by thin absorbing layers.  It has been demonstrated that the presence of thin

absorbing layers on the surfaces of quadratically-shaped elastic wedges can result in very low

reflection coefficients of flexural waves from their edges even in the presence of edge

truncations. As a result of this, such wedges can be used as efficient devices providing very

low reflection coefficients from edges of structural elements to be damped, e.g. finite plates
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or bars. This in turn would result in very efficient damping of basic structures’ resonant

vibrations. The additional advantage of using the proposed wedge-like vibration dampers

over traditional types of vibration absorbers lays in the fact that wedge-like dampers are

compact and relatively easy to manufacture. They can be produced as separate parts to be

attached to the structure to be damped, or they can be integrated into such a structure on a

design stage as its inseparable components.

      In spite of the promising theoretical results described in this paper, further theoretical and

experimental investigations are needed to validate the principle and to explore the most

efficient ways of developing the proposed wedge-like dampers of flexural vibrations.
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SEPARATE LIST OF FIGURE CAPTIONS

Figure 1.  Truncated elastic wedge of power-law profile.

Figure 2.  Truncated quadratic wedges covered by thin damping layers:  a) Symmetric wedge

covered on both sides;  b)  Non-symmetric wedge that is covered on one side only.

Figure 3.  Application of a non-symmetric quadratic wedge-like damper covered by an

absorbing film on one side (a) for suppression of flexural wave reflections from one

of the edges of an elastic plate (b).

Figure 4.  Effect of wedge truncation length  x0  (in m) on the reflection coefficient  R0:  solid

curve corresponds to an uncovered wedge,  dashed, dotted and dash-dotted curves

correspond to a wedge covered by absorbing films with the values of relative film

stiffness  E2/E1  equal to  0.1,  0.2  and  0.3.

Figure 5.  Effect of partial covering of a wedge by absorbing thin films on the reflection

coefficient  R0:  solid, dashed, dotted and dash-dotted curves correspond to the

values of the film material loss factor  ν  equal to 0.10,  0.15,  0.20  and 0.25

respectively;  the value of the wedge truncation length  x0  is  2 cm,  and the value

of relative film stiffness  β2 = E2/E1  is 0.2.  Other parameters are the same as in

Figure 4.
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Figure 6.  Frequency dependence of the reflection coefficient  R0:  solid curve corresponds to

the uncovered wedge,  dashed, dotted, and dash-dotted curves correspond to

wedges covered by thin absorbing films with the values of film material loss factor

ν  equal to 0.05,  0.10  and  0.15  respectively.  Other parameters are the same as in

Figure 5.

Figure 7.  Reflection coefficient  R0  for the non-symmetric wedge covered by the absorbing

film on one surface only as a function of the wedge truncation length  x0:  solid

curve corresponds to the calculations according to equation (17),  dotted curve

corresponds to the calculations according to the simplified equations (8), (9) and

(11),  dashed curve shows the reflection coefficient for the uncovered wedge;  the

parameters of the wedge and film are:  ε = 0.05,  δ = 10 µm,  ν = 0.2,  η = 0.01,  x0

= 2 cm,  E2/E1 = 0.3,  and  f = 10 kHz.

Figure 8.  Reflection coefficient for the wedge covered by a thick absorbing film: the values

of film thickness  δ  are:  10 µm   (solid curve),  100 µm  (dashed curve)  and 200

µm  (dotted curve), dash-dotted curve shows the behaviour of the reflection

coefficient for the uncovered wedge;  other parameters of the wedge and film are

the same as on Figure 7

Figure 9.  Effect of relative film stiffness  β2 = E2/E1  on the reflection coefficient  R0  for the

wedge covered by a thick absorbing film:  solid, dashed and dotted curves

correspond to the values of  E2/E1 equal to 0.3,  0.03,  and  0.003  respectively,

dash-dotted curve corresponds to the uncovered wedge;  the film thickness  δ   is

200 µm,  other parameters are the same as on Figure 7.
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FIGURES

                  x0                                h(x)=εxm

                       x

Figure 1.  Truncated elastic wedge of power-law profile
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Figure 2.  Truncated quadratic wedges covered by thin damping layers:  a) Symmetric wedge

covered on both sides;  b)  Non-symmetric wedge that is covered on one side only.
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Figure 3.  Application of a non-symmetric quadratic wedge-like damper covered by an

absorbing film on one side (a) for suppression of flexural wave reflections from one

of the edges of an elastic plate (b).

a b
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Figure 4.  Effect of wedge truncation length  x0  (in m) on the reflection coefficient  R0:

solid curve corresponds to an uncovered wedge,  dashed, dotted and dash-

dotted curves correspond to a wedge covered by absorbing films with the

values of relative film stiffness  E2/E1  equal to  0.1,  0.2  and  0.3

respectively;  the film material loss factor  ν   is  0.15,  and the film

thickness  δ  is 15 µm.
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Figure 5.  Effect of partial covering of a wedge by absorbing thin films on the

reflection coefficient  R0:  solid, dashed, dotted and dash-dotted curves

correspond to the values of the film material loss factor  ν  equal to

0.10,  0.15,  0.20  and 0.25  respectively;  the value of the wedge

truncation length  x0  is  2 cm,  and the value of relative film stiffness

β2 = E2/E1  is 0.2.  Other parameters are the same as in Figure 4.
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Figure 6.  Frequency dependence of the reflection coefficient  R0:  solid curve

corresponds to  the uncovered wedge,  dashed, dotted, and dash-dotted

curves correspond to wedges covered by thin absorbing films with the

values of film material loss factor  ν  equal to 0.05,  0.10  and  0.15

respectively.  Other parameters are the same as in Figure 5.
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Figure 7.  Reflection coefficient  R0  for the non-symmetric wedge covered by the

absorbing film on one surface only as a function of the wedge truncation

length  x0:  solid curve corresponds to the calculations according to

equation (17),  dotted curve corresponds to the calculations according to

the simplified equations (8), (9) and (11),  dashed curve shows the

reflection coefficient for the uncovered wedge;  the parameters of the

wedge and film are:  ε = 0.05,  δ = 10 µm,  ν = 0.2,  η = 0.01,  x0 = 2 cm,

E2/E1 = 0.3,  and  f = 10 kHz.
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Figure 8.  Reflection coefficient for the wedge covered by a thick absorbing film:

the values of film thickness  δ  are:  10 µm   (solid curve),  100 µm

(dashed curve)  and 200 µm  (dotted curve), dash-dotted curve shows the

behaviour of the reflection coefficient for the uncovered wedge;  other

parameters of the wedge and film are the same as on Figure 7.
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Figure 9.  Effect of relative film stiffness  β2 = E2/E1  on the reflection coefficient

R0  for the wedge covered by a thick absorbing film:  solid, dashed and

dotted curves correspond to the values of  E2/E1 equal to 0.3,  0.03,  and

0.003  respectively,  dash-dotted curve corresponds to the uncovered

wedge;  the film thickness  δ   is  200 µm,  other parameters are the

same as on Figure 7.
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