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Local heat transfer on a finite width surface with laminar boundary1

layer flow2

M. E. Taliaferro*, M. Angelino*, F. Gori**, R. J. Goldstein*†3

The effect of a lateral discontinuity in the thermal boundary conditions in two dimensional laminar flow on a flat4

plate is investigated with numerical and analytical modeling. When the thermal and momentum boundary layers start5

at the same location, the resulting self-similar two dimensional boundary layer equations were solved numerically.6

For flow with an unheated starting length, three dimensional numerical simulations were required. For both the two7

and three dimensional thermal simulations, the Blasius solution for a two dimensional momentum boundary layer8

was assumed. It is found that all the Nusselt numbers collapse to a single curve when graphed as a function of a9

spanwise similarity variable. Simple correlations for the local Nusselt number on a rectangular flat plate are10

presented for a variety of boundary conditions.11
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1 Introduction16

Cooling of electronic components is an important design consideration for digital systems. Many of these17

have discrete rectangular heat sources that are cooled in a channel, but modeling both the fluid flow and18

the conduction in the substrate can be a prohibitively expensive task. Many studies seek to simplify the19

modeling by presenting heat transfer coefficient correlations for the boundary conditions of the conduction20

problem.21

Several studies have investigated the heat transfer coefficient from finite flat plates. Baker conducted22

one of the first studies of small heaters [1], and noted that the average heat transfer coefficient could be more23

than an order of magnitude more than predicted by the canonical two dimensional flat plate correlations.24

Other studies have reported heat transfer coefficient correlations that also take into account the conductivity25

of the substrate [2, 3]. Bhowmik [4] recently published a short review of the subject.26

However, to accurately predict the temperature of the electronic device, knowledge of the local Nusselt27

number is required. Ortega and Ramanathan [5] propose using point source solutions for the energy equation28

assuming bulk flow, and then superposing them to form a general equation for the convection losses from29

rectangles and line sources. Instead of assuming constant heat flux [5], Yovanovich and Teertstra [6] report30

the average Nu for an isothermal plate by averaging the solutions for the diffusive limit and convective limit31

(i.e. for low and high Re).32

This paper presents several correlations that describe the lateral variation of the Nu for use with discrete33

rectangular heat sources that are flush with the substrate surface for several types of boundary conditions.34

These correlations can then be used as a basis for modeling the more complicated problem of conjugated35

heat transfer between the air flow and the substrate.36
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1.1 Governing Equations37

For steady and incompressible flow with constant properties, the energy equation from Kays, Crawford and38

Weigand [7] is39

~V · ∇T = α∇2T (1)

A sketch of the problem domain appears in figure 1. If the streamwise conduction is assumed negligible,

ξ

y
xz

δ δT
Hot plate

Cold plate

Figure 1: Problem domain showing orientation and boundary layer development
40

then equation 1 can be simplified as followed. For two dimensional flow, w = 0, so41

u
∂T

∂x
+ v

∂T

∂y
= α

(
∂2T

∂y2
+
∂2T

∂z2

)
(2)

If the momentum and thermal boundary layers start at the same position (ξ = 0) and the following two42

variables are defined, as done by Hauptmann and Rotem [8],43

η = y

√
U∞
νx

, ζ = z

√
U∞
νx

(3)

and f is the solution to the two dimensional momentum boundary layer equation, equation 2 can be reduced44

to the following two dimensional equation45

−Pr

2

(
ζf ′

∂Θ

∂ζ
+ f

∂Θ

∂η

)
=
∂2Θ

∂η2
+
∂2Θ

∂ζ2
(4)

Four types of boundary conditions were solved for, and are summarized in table 1.

Table 1: Boundary conditions

Case Heated Surface Undeated Surface

1 Isothermal Isothermal
2 Isothermal Adiabatic
3 Isoflux Isothermal
4 Isoflux Adiabatic

46

2 Results47

Very close to the surface of the plate, conduction is the main mode of thermal transport, and the spanwise48

changes in the Nu can be attributed to the discontinuity in the z direction at the lateral edge of the plate.49

The height of the domain far from the edge, ∆c, is assumed to only change in the streamwise direction.50

Therefore, near the surface of the plate, the temperature distribution is expected to be well represented by51
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the temperature field of the analogous conduction problems shown in figure 2 and figure 3. Under these52

conditions, u = v = 0, simplifying equation 2 to Laplace’s equation in two dimensions.53

0 =
∂2T

∂y2
+
∂2T

∂z2
(5)

2.1 Conduction Solution54

In this section the conduction solution for the different boundary conditions will be presented. Case 155

and case 4 can readily be solved using Fourier series, but the analytical solution for case 2 and case 3 are56

difficult to formulate, so approximate solutions are presented. The conduction domain, as shown in figure 257

and figure 3 is a y − z plane taken out the region described in figure 1. Integration was performed with58

Wolfram|Alpha.59

2.1.1 Case 160

The eigenfunctions for the boundary conditions for figure 2, are given by Ozisik [9] as

θ1,λ(y, z)

θw
= Aλ,1exp(−λn,T z) sin(λn,T y) , z > 0 (6a)

θ2,λ(y, z)

θw
= Aλ,2exp(λn,T z) sin(λn,T y) , z < 0 (6b)

where θ is temperature relative to the free stream temperature. The eigenvalues, λn,T , are given by61

λn,T =
nπ

∆c
, n = 1, 2, 3, ... (7)

Noting that as z → ∞ the solution tends towards the one dimensional linear solution, as z → −∞ the
solution tends towards zero, and enforcing temperature and lateral flux continuity at the interface results in
the solution shown in equation 8.

z

y

θ = 0

θ = θwθ = 0

∆c

y = 0

Domain 2 Domain 1

Figure 2: Sketch of domain for conduction problem for boundary condition case 1

θ1(y, z)

θw
= 1− y

∆c
−
∞∑
n=1

exp(−λn,T z)
nπ

sin(λn,T y) , z > 0 (8a)

θ2(y, z)

θw
=
∞∑
n=1

exp(λn,T z)

nπ
sin(λn,T y) , z < 0 (8b)

The quantity of interest is the flux from the surface, which is proportional to the temperature gradient62

evaluated at the surface. For domain 1, the temperature gradient at y = 0 is63

1

θw

∂θ1

∂y

∣∣∣∣
0

= − 1

∆c

1 +
1

exp
(
nπ z

∆c

)
− 1

 (9)
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2.1.2 Case 464

Similar to the solution procedure presented for case 1 in section 2.1.1, a solution can be constructed for the65

conduction problem shown in figure 3.

z

y

θ = 0

−k ∂θ∂y = q′′w
∂θ
∂y = 0

∆c

y = 0

Domain 2 Domain 1

Figure 3: Sketch of domain for conduction problem for boundary condition case 4
66

The eigenfunctions for the boundary conditions for figure 3, are given by Ozisik [9] as

θ1,λ(y, z) = Bλ,1exp(−λn,F z) cos(λn,F y) , z > 0 (10a)

θ2,λ(y, z) = Bλ,2exp(λn,F z) cos(λn,F y) , z < 0 (10b)

where the eigenvalues, λn,F , are given by67

λn,F =
(2n+ 1)π

2∆c
, n = 0, 1, 2, ... (11)

With these eigenvalues and eigenfunctions, the full solution for case 2 is68

k

q′′w∆c
θ1(y, z) = 1− y

∆c
− 4

π2

∞∑
n=0

exp(−λn,F z)
(2n+ 1)2 cos(λn,F y) , z > 0 (12a)

69

k

q′′w∆c
θ2(y, z) =

4

π2

∞∑
n=0

exp(λn,F z)

(2n+ 1)2 cos(λn,F y) , z < 0 (12b)

Note that equation 12 equals 1/2 when z = 0 and the temperature evaluated at y = 0 is an odd function70

shifted up by 1/2.71

2.1.3 Cases 2 and 372

For cases 2 and 3 a closed form analytical solution is difficult to formulate, but a reasonably accurate
approximate solution is presented. To approximate the analytical solution, the result was assumed to be a
linear sum of the eigenfunctions in equation 6 and equation 10. The linear sum of eigenfunctions were fitted
to a numerical conduction solution found with OpenFOAM with the same boundary conditions to find the
coefficients Aλ and Bλ. The linear best fit gave an approximate solution for case 2 as

θ1(y, z)

θw
= 1− y

∆c
− 0.162

∞∑
n=1

exp(−λn,T z)
n1.4525

sin(λn,T y) , z > 0 (13a)

θ2(y, z)

θw
= 0.492

∞∑
n=0

exp(λn,F z)

(2n+ 1)1.5706 cos(λn,F y) , z < 0 (13b)
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The temperature gradient evaluated at the wall for the heated section73

1

θw

∂θ

∂y

∣∣∣∣
0

= − 1

∆c

1 + 0.509

∞∑
n=1

exp
(
−nπ z

∆c

)
n0.4525

 (14)

For case 3, the temperature is approximated by74

k

q′′w∆c
θ1(y, z) = 1− y

∆c
− 0.492

∞∑
n=0

exp(−λn,F z)
(2n+ 1)1.5706 cos(λn,F y) , z > 0 (15a)

75

k

q′′w∆c
θ2(y, z) = 0.162

∞∑
n=1

exp(λn,T z)

n1.4525
sin(λn,T y) , z < 0 (15b)

Due to the approximations used in formulating equation 13 and equation 15, the temperatures do not match76

at z = 0. The difference in the nondimensional temperature is about 0.02. The error for the lateral flux at77

the interface was a little more difficult to quantify because of the Gibbs phenomena near the discontinuity78

on the wall.79

2.2 Convection Correlations80

The conduction solution outlined above can be extended to model the Nu for a flat plate with a laminar flow81

boundary layer. To match the Nu as z → ∞, ∆c is taken to be the conduction thickness of the thermal82

boundary layer far from the lateral edge of the plate.83

∆c =
x

Nu2d
(16)

where Nu2d is the Nu far from the edge at the same x location. The value for ∆c is readily available using84

Nu correlations for the two dimensional flow over a flat plate in terms of Re,Pr , and the unheated starting85

length ξ.86

Inspecting the gradients at the wall from the conduction solution, it is apparent that z appears with ∆c

as a ratio. If a new dimensionless parameter, ζ∗, is defined as

ζ∗ =
z

∆c
=
z

x
Nu2d (17)

= −ζ ∂T
∂η

∣∣∣∣
η=0,ζ→∞

then the conduction solutions and ζ∗ can be combined to find Nu over the whole plate. For case 1, using87

equations 17 and 9, Nu is equivalent to88

Nu

Nu2d
= 1 +

1

exp(πζ∗)− 1
(18)

For case 4, Nu is equivalent to89

Nu

Nu2d
=

1

1− 4
π2 exp

(
−π

2 ζ
∗
) ∞∑
n=0

exp(−nπζ∗)
(2n+1)2

(19)
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Note that Nu/Nu2d is the reciprocal of the nondimensional temperature θk/q′′w∆c evaluated at y = 0. For90

case 2, Nu is approximately91

Nu

Nu2d
= 1 + 0.509

∞∑
n=1

exp(−nπζ∗)
n0.4525

(20)

For case 3, Nu is approximately92

Nu

Nu2d
=

1

1− 0.614exp
(
−π

2 ζ
∗
) ∞∑
n=0

exp(−nπζ∗)
(2n+1)1.5706

(21)

Equations 18 through 20 are compared with the two and three dimensional numerical simulations in93

figures 6 through 8, as discussed below.94

Since equation 21 does not capture the behavior of the Nu as ζ∗ → 0, and equation 20 is slow to95

converge, alternate correlations will be constructed. Following the method outlined by Churchill [10], a96

p-norm will be taken that captures the behavior as ζ∗ → 0 and ζ∗ → ∞. The two dimensional data97

modeled by equation 4 will be used to fit the correlation. As seen in figure 7 and figure 8, as ζ∗ → 0, then98

Nu
Nu2d

∝ ζ∗−1/2 , so the correlation is99

Nu

Nu2d
=

[(
c

ζ∗
1/2

)m
+ 1

]1/m
(22)

Fitting equation 22 for case 2 results in m = 3.708 and c = 0.8771 for a maximum relative error of 2.5 %.100

For case 3 results in m = 3.855 and c = 0.9692 with a maximum relative error of 2.2 %.101

2.3 Computational Details102

For the cases with no unheated starting lengths, the passive scalar θ in equation 4 was numerically solved103

using the solver scalarTransportFoam from the open-source code OpenFOAM. The size of the domain was104

−20 < η < 20 and 0 < ζ < 20. The grid is made of 2048× 1024 cells with a minimum size at η = ζ = 0105

of about
(
4× 10−4η

)
×
(
4× 10−4ζ

)
. The boundary conditions for the wall are specified according the106

particular case being modeled, zero temperature at the top and left boundaries, and zero gradient at the right107

boundary.108

For the cases with unheated starting lengths, the passive scalar T in equation 1 was numerically solved109

using the solver scalarTransportFoam from the open-source code OpenFOAM and the velocity field was110

initialized with the Blasius solution for a two dimensional momentum boundary layer. The 3D geometry111

consists of a rectangular box with−0.02L < (x−ξ) < L, 0 < y < 0.3L, and−0.1L < z < 0.1L, where L112

is the length of the heated plate. The distance from the leading edge is denoted by x, while ξ is the unheated113

starting length, so that the heated plate is the part of the wall limited by (x − ξ) > 0 and z > 0. Two114

unheated starting lengths were studied, corresponding to Reξ = 5 × 103 and 5 × 104. The grid is made of115

192× 64× 256 cells with a minimum size at x = ξ and z = 0 of about (10−4L)× (10−4L)× (3× 10−5L).116

Three different Prandtl numbers were used: 0.7, 2.28, and 6. The boundary conditions for the wall are117

specified according to the particular case being modeled, adiabatic at the top, the outlet, and the left and118

right boundaries, and zero temperature at the inlet.119

Grid independence was checked by comparing the Nu profiles on the heated plate obtained with three120

different meshes: the mesh described in the preceding paragraph, used for all the 3D simulations of the121

present study; a finer mesh with same number of cells but halved domain in the y and z direction; and a122

coarser mesh with same number of cells but doubled domain in the y and z direction. The results for case 1123

are shown in figure 4, together with expected result from equation 18. It is clear that the cells closer to the124
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lateral edge of the heated plate diverge from the theoretical solution. This is expected, given that the gradient125

tends to infinity as ζ → 0 as predicted by equation 18, and the progressively finer meshes in figure 4 seem126

to imply the same phenomena. However, there can only be a finite amount of cells in that region, so refining127

the mesh just shifts the problem closer to the lateral edge. Therefore, no possible refinement of the cartesian128

grid can capture the infinite gradient at the lateral discontinuity. The choice of the grid was then determined129

by considerations of the domain size, which had to be large enough for the boundaries to be far from the130

effects of the plate.131

10−3 10−2 10−1 100 101 102
100

101

102

103

ζ∗

N
u

N
u
2
d

fine
coarse
current study
Equation 18

Figure 4: Grid independence study for case 1

3 Discussion of Results132

3.1 Comparison of Analytical Correlations with Numerical Models133

Figure 5a through figure 5d show the nondimensional temperature contours of the two-dimensional solution134

of equation 4. The nondimensional heat transfer (Nu/
√
Re) at the surface can be found by taking the partial135

derivative of the nondimensional temperature field with respect to η at η = 0. These figures show that the136

depth of the effect into the temperature field from the edge is similar in magnitude to the two dimensional137

thermal boundary layer thickness. The bulge in figure 5a and figure 5c is caused by the zero temperature138

boundary condition at the surface.139

As shown in figure 6 through figure 9, the extension of the analogous conduction solution to the three140

dimensional domain by equating the height of the domain to the streamwise conduction thickness works141

remarkably well. While it might seem the assumption of a constant conduction thickness in the lateral142

direction would cause difficulties, this turns out to not affect the solution near the edge of the plate. So while143

the conduction thickness does change near the edge of the plate, the local heat transfer is dominated by the144

nearby lateral discontinuity.145

The local Nu for the heated plate is shown in figure 6 through figure 9 for the two and three dimensional146

simulations. The data points for the three dimensional case were taken at a specific x location so the graph147

was not cluttered, but the data collapses to the same curve for all x locations sufficiently far from the148

leading edge. The agreement with equation 18 through equation 22 is very good for every Pr , even with the149

introduction of an unheated starting length.150

Figure 10 through figure 13 compare the correlations with the numerical data where the relative errors151

are the largest. Clearly figures 11 and 12 show that case 2 and case 3 are the least accurate and don’t152
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(a) Case 1, Pr = 1
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(b) Case 2, Pr = 1
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(c) Case 3, Pr = 1
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(d) Case 4, Pr = 1

Figure 5: Nondimensional temperature contours from solution of equation 4
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Pr = 0.7, Reξ = 5000
Pr = 2.28, Reξ = 5000
Pr = 6, Reξ = 5000
Pr = 0.7, Reξ = 50000
Pr = 2.28, Reξ = 50000
Pr = 6, Reξ = 50000
2D Pr = 1
Equation 18

Figure 6: Comparison of numerical and analytical Nu for case 1
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2D Pr = 1
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Figure 7: Comparison of numerical and analytical Nu for case 2
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Equation 22

Figure 8: Comparison of numerical and analytical Nu for case 3
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Figure 9: Comparison of numerical and analytical Nu for case 4
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completely capture the way the Nu increases near the edge. However, the relative errors are not very large,153

and the scaling for both large and small ζ∗ is correct.154

10−0.4 10−0.2 100 100.2 100.4
0.8

1

1.2

1.4

1.6

1.8

ζ∗

N
u

N
u
2
d

Pr = 0.7, Reξ = 5000
Pr = 2.28, Reξ = 5000
Pr = 6, Reξ = 5000
Pr = 0.7, Reξ = 50000
Pr = 2.28, Reξ = 50000
Pr = 6, Reξ = 50000
2D Pr = 1
Equation 18

Figure 10: Comparison of numerical and analytical Nu for case 1

3.2 Scaling Near the Lateral Edge155

Cases 1, 2, and 3 show power law scaling as ζ∗ → 0. This can easily be shown for case 1 by expanding156

exp(πζ∗) with a Taylor series in equation 18, and taking the limit for ζ∗ → 0, which results in the scaling157

Nu/Nu2d ∝ 1/ζ∗. This can be simplified further by noting that Nu2d cancels on both sides, so that158

Nu = x/(πz) as ζ∗ → 0. The power law behavior for cases 2 and 3 is not so easily extracted from159

equation 20 and equation 21, but figure 7 and figure 8 clearly indicate scaling of Nu/Nu2d ∝ 1/ζ∗
1/2 . The160

scaling for case 2 is not unexpected, as Deegan, Bakajin, Dupont, Huber, Nagel, and Witten [9] reported161

the same power scaling for the analogous problem of diffusive evaporation droplet as the contact angle162

approaches 0.163

3.3 Heat Transfer at the Lateral Edge164

The large increase of Nu at the edge will affect the average Nu on the heated plate, especially for small165

plates. For case 1, not only is the local Nu infinite at the edge, but the average spanwise Nu is infinite due166

the scaling of 1/ζ∗ as mentioned in section 3.3. For case 2, the local heat flux at the lateral edge is infinite.167

Case 3 requires a heat flux across an infinitesimal temperature difference at the edge, leading to an infinite168

Nu at the edge. So while these sets of boundary conditions are unphysical, requiring an infinite amount of169

energy at the lateral edge to model, equation 18, equation 20, equation 21, and equation 22 are useful tools170

for modeling problems that have approximately these conditions. Case 4 does not suffer the problem of171

having an infinite Nu at the lateral edge.172
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Figure 11: Comparison of numerical and analytical Nu for case 2
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Figure 12: Comparison of numerical and analytical Nu for case 3
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Figure 13: Comparison of numerical and analytical Nu for case 4

3.4 Depth of Lateral effect173

A simple measure of the depth of lateral effect can be seen in the definition of ζ∗ (equation 17). The174

conduction thickness at the same streamwise position is the key parameter that defines the non dimensional175

temperature and Nu . However, there are two more length scales that can describe the data. The first is the176

intersection of the two power laws that define the scaling for small and large ζ∗, and the second is when177

the Nu reaches a given multiple of its centerline value. The intersection of the power scaling with the178

horizontal line was found using the correlations, while the coordinate where the Nu approaches a multiple179

of the centerline value was found using the three dimensional numerical data.180

Table 2: Length scales

Boundary Condition Intersection 1.05 Nu
Nu2d

Case 1 1/π 0.929
Case 2 0.937 0.767
Case 3 0.984 1.48
Case 4 — 1.26

3.5 Leading Edge Effects181

The convection correlations were shown to be fairly accurate in describing the Nu near the lateral edge182

of the heated plate. However, they should be used with caution near the leading and trailing edges of the183

plate, as the presented correlations will underestimate the local Nu due to large streamwise gradients. The184

numerical simulations showed that the expected two dimensional behavior was established very close to the185

leading edge (Rex−ξ > 50), but more research is required to definitively say how close to the leading and186

13



trailing edges the proposed theory is valid. In addition, these correlations are only expected to be valid for187

the range of Pr > 0.5. If Pr is low, then streamwise conduction would become a large enough to affect the188

results.189

3.6 Comparison with Published Results190

The correlation from Ortega [5] was constructed using a conduction solution for a moving heat source.191

Comparison with the proposed correlation, seen in figure 14, shows that Ortega [5] overestimated the extent192

of the edge effect by assuming uniform flow and neglecting the boundary layer. As stated by Ortega [5],193

their correlation provides the largest Nu possible for a given free stream velocity. However, their model does194

offer a prediction of the thermal wake behind the heated surface, which is not addressed by the proposed195

model.
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Equation 19

Figure 14: Comparison of equation 19 with [5]
196

4 CONCLUSIONS197

Due to the lack of spanwise advection of energy in the laminar boundary layer, the conduction solution for198

analogous boundary conditions results a good correlation for Nu over the whole surface of a finite width flat199

plate. By extending the conduction solution to the laminar flow regime using the conduction thickness of the200

thermal boundary layer, Nu was shown to be a function of the nondimensional streamwise variable ζ∗. The201

derived correlations compared well with numerical results from OpenFOAM without any parameter fitting.202

In practical applications, the boundary conditions may not be well represented by the four cases studied203

here, but these results are useful limiting solutions. In general, the influence of the lateral discontinuity on204

the temperature and heat flux in the spanwise direction was comparable in length to the thermal boundary205

layer.206
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