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Abstract: This article considers a novel method for estimating parameters in a vehicle-handling
dynamic model using a recursive filter. The well-known extended Kalman filter – which is
widely used for real-time state estimation of vehicle dynamics – is used here in an unorthodox
fashion; a model is prescribed for the sensors alone, and the state vector is replaced by a set of
unknown model parameters. With the aid of two simple tuning parameters, the system self-
regulates its estimates of parameter and sensor errors, and hence smoothly identifies optimal
parameter choices.
The method makes one contentious assumption that vehicle lateral velocity (or body sideslip

angle) is available as a measurement, along with the more conventionally available yaw velocity
state. However, the article demonstrates that by using the new generation of combined GPS/
inertial body motion measurement systems, a suitable lateral velocity signal is indeed measur-
able. The system identification is thus demonstrated in simulation, and also proved by success-
ful parametrization of a model, using test vehicle data. The identifying extended Kalman filter
has applications in model validation – for example, acting as a reference between vehicle beha-
viour and higher-order multi-body models – and it could also be operated in a real-time
capacity to adapt parameters in model-based vehicle control applications.

Keywords: vehicle handling dynamics, Kalman filter, system identification, vehicle parameter

1 INTRODUCTION

Both on and off the vehicle, computing power con-
tinues to increase, making ever more complex
models more practical for simulation experiments,
vehicle design, and real-time applications such as
chassis control. There is, however, still a significant
role for simplified models, especially where a good
correlation with measured vehicle behaviour is
required. Complex multi-body models have the
advantage of potential accuracy, but their vast para-
meter set often makes direct correlation with vehicle
responses difficult – not because accurate sensor
tracking is not possible, but rather in that multiple

parameter combinations exist, which would achieve
the same aim.

Conversely, the restricted parameter set of simpler
models can be chosen to optimize the match with
the vehicle, using a process of system identification.
A suitable low-order model, with optimized par-
ameter set can then be validated against both com-
plex multi-body models and test vehicles, to
provide a correlation process over a range of model
orders. The reduced set of model parameters can
also be adapted to the time-varying environment
variables, vehicle inertia, tyre wear and pressure,
and road friction.

Within the field of chassis control, the Kalman
filter is now recognized as an effective tool for
observing the dynamic states of a system – e.g. for
vehicle ride [1] and handling control [2, 3]. It also
uses a simplified vehicle model, along with available
sensor measurements, effectively supplementing the
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sensor information with predictions of state and
sensor propagation from the model.

In this article, a new use for the extended, or non-
linear, Kalman filter is explored, applying it in a
modified form to perform the function of system
identification rather than real-time estimation.
The identifying extended Kalman filter (IEKF) oper-
ates in an unconventional way, in that its own
internal model is restricted to prediction of the
sensor set. The innovation sequence (modelled
versus measured sensor errors) is then used to
modify a ‘state’ vector that is defined as the
subset of parameters to be identified. The basic pre-
mise is that, provided the available sensors are
assumed to include the full state of the vehicle,
the best model parameters can be derived from
this – a standard assumption in the process of
system identification, but novel in its execution by
Kalman filter.

The method uses a bold and perhaps contentious
assumption, however; by requiring the full state
vector in the sensor set, it assumes knowledge of
the traditionally hard to measure lateral velocity
state. However, recent developments of combined
differential GPS/inertial measurement systems
make the assumption more reasonable, with com-
mercially available (albeit expensive) systems cur-
rently declaring accuracies of 0.1 m/s in lateral
velocity; in this article, one such system is used to
prove that IEKF is practicable.

The IEKF design is first outlined in section 2. It is
then examined in the simulation environment, with
a two-degree-of-freedom non-linear handling
model (section 3) identified from data generated on
a more complex model in section 4. Finally, the
method is proved using data measured from a test
vehicle, in section 5.

2 IDENTIFYING EXTENDED KALMAN FILTER

The standard extended Kalman filter (EKF) operates
on non-linear system and sensor models f and h,
which relate the true state vector x̄, measured
sensor set y, known inputs u, and model parameters
u at any instant k according to

_�xk ¼ f(�xk , uk, uk)þvk (1)

yk ¼ h(�xk, uk, uk)þ yk (2)

(see for example reference [4]). v thus describes the
state propagation modelling error, and y gives the
sensor error. y is often misleadingly referred to as
the measurement error, when in reality it aggregates
measurement noise within y, and sensor modelling
errors in h.

An optimal filter can be derived if the error
sequences obey the following

E(vk) ¼ 0, E(yk) ¼ 0, 8k (3)

E(vjv
T
k) ¼ 0, E(yjy

T
k) ¼ 0, 8( j = k) (4)

Qk ¼ E(vkv
T
k), Sk ¼ E(vky

T
k) ¼ 0,

Rk ¼ E(yky
T
k) (5)

where the error covariance matricesQk, Rk, and Sk are
assumed known. In practice, they are difficult to esti-
mate and their setting is a topic of continuing interest
(see for example reference [5]). They are often assumed
to be time-invariant, and are approximated, or even set
nominally, with S often neglected as approximately
zero. In this application, only initial conditions
required for these matrices will be shown, with the
true covariances being identified within the algorithm.

The EKF also requires model Jacobians to be eval-
uated at each time step, defined

F(x̂k) ¼ @f(x, uk,uk)

@x

����
x¼x̂k

H(x̂k) ¼ @h(x,uk,uk)

@x

����
x¼x̂k

(6)

and the full set of equations for the standard, real-
time state estimation application are

F�
k ¼ F(x̂k)� SR�1H(x̂k) (7)

Kk ¼ PkH
T(x̂k)½H(x̂k)PkH

T(x̂k)þ R��1 (8)

P�
k ¼ ½I�KkH(x̂k)�Pk (9)

Pkþ1 ¼ P�
k þ T ½Q� SR�1ST

þ F�(x̂k)P�
k þ P�

kF
�T(x̂k)� (10)

x̂kþ1 ¼ x̂k þKk(yk � h(x̂k))þ T ½f(x̂k)
þ SR�1(yk � h(x̂k))� (11)

where the filter sample time T is used to provide a
simple Euler integration of the state derivatives.

Now the premise adopted in reference [6] is that an
EKF can have its state vector augmented to include a
subset of the model parameters. The resulting filter
assumes no known model for the parameter vari-
ation, and simply ensures slow adaptation by adjust-
ing the expectation of errors related to the parameter
changes; so equation (1) becomes

_�zk ¼
_�xk
_�u

" #
¼ f(xk ,uk,uk)

0

� �
þ v(x)

k

v(u )
k

" #
(12)

and the covariance E(v(u)
k v(u)T

k ) is then set as a tuning
parameter, to adjust the rate of adaptation, ensuring
this is ‘slow’ compared with the state propagation
dynamics.
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The proposed identifying Kalman filter, IEKF takes
this formulation one step further; provided the state
vector is entirely represented as a subset of the
sensor set, xk [ yk, the state vector can be formed
entirely as a set of the parameters, such that
equations (1) and (2) become

u̇ k ¼ vk (13)

yk ¼ h(yk�1,uk�1, uk�1)þ yk (14)

where the sensor equation is simply modified to
include an Euler integrated propagation of each vari-
able over a time step, to avoid identity equations.
This reduces the system such that the entire model
is represented within h alone. Note, however, that
it also reduces the system to a form where the error
covariance matrices can be determined from the
noise sequences vk and yk, as these are now directly
calculable. The form of equations (1) and (2)
depends on the unknown x̄k, so the error covariances
cannot be explicitly determined within that filter.

The IEKF propagates its own error covariances, so
Qk, Rk, and Sk are now time varying. Applying
equations (13) and (14) to the EKF formulae of
equations (7)–(11), and noting that now f ¼ 0 and
F ¼ 0

H(ûk) ¼ @h(xk ,uk, u)

@u

����
u¼ûk

(15)

Kk ¼ PkH
T(ûk)½H(ûk)PkH

T(ûk)þ Rk��1 (16)

P�
k ¼ ½I�KkH(ûk)�Pk (17)

Pkþ1 ¼ P�
k þ T ½Qk � SkR

�1
k STk

� SkR
�1
k H(ûk)P

�
k þ P�

kH(ûk)R
�1
k STk � (18)

ûkþ1 ¼ ûk þ (Kk þ TSkR
�1
k )

� (yk � h(yk ,uk, ûk)) (19)

where

Qkþ1 ¼ (1� a)Qk þ al2vkv
T
k (20)

Skþ1 ¼ (1� a)Sk þ alvky
T
k (21)

Rkþ1 ¼ (1� a)Rk þ ayky
T
k (22)

with

vk ¼ 1

T
(ûkþ1 � ûk) (23)

yk ¼ ykþ1 � h(yk,uk, ûk) (24)

Apart from suitable nominal initial conditions forQ0,
R0, and S0, two tuning parameters are now required,
a and l. a applies an exponentially weighted moving
average to the propagation of the noise matrices in

order to introduce an appropriate memory of the
error history into the covariance. It can better be
interpreted in terms of the filtering time constant, t
it introduces, using

a ¼ 1� e(T=t) (25)

l performs a similar function to the design covari-
ance E(v(u)

k v(u)T
k ) in reference [6]. Set in the range

0 , l , 1, it diminishes the expectation of error in
the change in parameters, stabilising the identifi-
cation. The filter causes parameter adaptation,
which induces (a desirable) non-zero _uk. However,
these changes are errors according to the zero
model of equation (13), and if their total magnitude
is interpreted as error, Qk becomes relatively large
compared with Rk, which results in an increase in
the feedback gain Kk to provide greater correction
to the u. Subsequent parameter corrections are
then larger, and this induces instability. l provides
a means of balancing the filter such that the changes
in Qk are, correctly, not interpreted entirely as error.

3 IDENTIFIED AND SOURCE MODELS

A means of testing the method within a known
environment is sought to explore variations of
tuning parameters and define measures of success.
A non-linear identification model is clearly required,
so the simple ‘bicycle’ model (see for example, refer-
ence [7]), with Pacejka tyre non-linearity (see refer-
ence [8]) is used

_v ¼ (Fyf þ Fyr)

mM0 � ur
(26)

_r ¼ (aFyf � (L� a)Fyr)

iIZZ0
(27)

with front and rear tyre forces aggregated over the
two tyres at each axle

Fyf=r ¼ pf=rF0 sin½cf=r tan�1

{ �af=r � ef=r( �af=r � tan�1 ( �af=r))}�
(28)

based on normalized slip angles

�af=r ¼ gf=rCa0af=r

cf=rpf=rF0
(29)

where f/r refers to front/rear axles appropriately, and
the slip angles are given by

af ¼ (�v � ar)

uþ d
, ar ¼ (�v þ (L� a)r)

u
(30)
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Table 1 lists default values for the model par-
ameters, which are set to emulate an E class, large
executive saloon (from an Appendix of reference [9]),
and thus provide a test comparable with the vehicle
identification as shown, in section 5. The inertia
values are specified as multiples of two parameters
in order to normalize the variables that might be
identified. In section 4, u is chosen as a subset of
[a,m, i, pf, gf, cf, ef, pr, gr, cr, er] with the remaining par-
ameters set to default values. As the Kalman filter
objective is minimization of trace(P), selection of par-
ameters of equal order allows approximately equal
priority to be placed on each identified parameter.

From equations (26) and (27) the required defi-
nition of the IEKF model of equation (14) is

y ¼ v

r

� �
,

hk ¼
vk�1 þ

T {(Fyf þ Fyr)

mM0 � ur}

����
k

rk�1 þ
T (aFyf � (L� a)Fyr)

iIZZ0

����
k

2
664

3
775 (31)

and for implementation, the H Jacobian is formed
using the analytical Math toolbox (Symbolic Maths
in Matlab), with the resulting expression copied
into the Kalman filter code.

The source data are generated using a higher-order
model [10], incorporating roll and longitudinal
dynamics, and four load-dependent friction circle
limited tyres with appropriate relaxation lags; the
precise model equations and parameter set are pro-
vided in the Appendix 2. Note that the detail of this

model and, even to some extent, the accuracy of
the source data are themselves of secondary
importance; the study should reveal similar results
for any suitably formulated high-order model. It is
the extent to which the identified parameters can
approximate the source model within the context
of the simpler identification model, which is key
here.

4 SIMULATION EXPERIMENT

In this section, the aims are to explore the operation
and tuning of IEKF and conduct a full identifi-
cation to test the method. First, note from equations
(26) – (30) that the full parameter set cannot be opti-
mized together; the system is over-determined, and
the optimization would be confounded by combi-
nations of g, m, and i. Therefore a two-stage process
is conducted, starting with a low-amplitude test to
establish the ‘inertia’ parameter set

u ¼ m i a
� �T

within the linear region of the tyres; the remaining
parameters are set at their u0 values in Table 1.

Source model test data are generated on a random
steer input at fixed speed u ¼ 25 m/s. (Constant for-
ward speed is maintained by a simple proportional
feedback control on the applied engine torque in
the source model.) The input is 60 s of Gaussian
white noise with a sampling period T ¼ 0.01 – also
used for the IEKF. This is filtered in the frequency
domain to remove all frequencies .5 Hz in order to
restrict the input frequencies to those which a
human driver could be expected to achieve in a real
vehicle. The signal amplitude is then scaled to give
an RMS steer angle dRMS ¼ 0.578, in order to achieve
peak lateral accelerations of around 4 m/s2.

The source data are applied to the IEKF, with no
additional measurement noise – the significant
differences between source and identified model
structure comprise the only error sources at this
stage. Four cases are considered, to explore the
importance of particular choices of t, l, and u0;
these are listed in Table 2. In all cases, the parameter
error covariance matrices have been initialized nom-
inally, as Q0 ¼ 1024 I, S0 ¼ 0. R0 is then set by

Table 1 Identification model parameters emulating an

executive saloon

Parameter Value (default) Units

Wheelbase L 3.1 m
Normalizing mass M0 2000 kg
Normalizing yaw

moment of inertia
IZZ0 4800 kg m2

Normalizing peak lateral
tyre force (2 tyres)

F0 9320 N

Normalizing cornering
stiffness (2 tyres)

Ca0 227 kN/rad

CG to front axle distance a 1.3 m
Mass multiplier m 0.9 –
Yaw inertia multiplier i 0.9 –
Peak tyre force

multiplier
pf, pr 1, 1 –

Tyre force gain
(cornering stiffness)
multiplier

gf, gr 1, 1 –

Tyre model shape
parameter
(Pacejka, C)

cf, cr 1.4, 1.4 –

Tyre model shape
parameter
(Pacejka, E)

ef, er 20.2, 20.2 –

Table 2 IEKF parameter and initialization settings

Case m0 i0 a0 t l

1 0.45 0.45 0.65 60 0.01
2 0.9 0.9 1.3 60 0.01
3 0.9 0.9 1.3 600 0.01
4 0.9 0.9 1.3 60 0.1
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calculating a time history for yk from equation (24),
using the source and initial identification model,
and setting R0 ¼ cov(yk).

Given the recursive configuration of the IEKF, to
establish an averaged result, the source data are
repeatedly passed through the filter with the free
variables allowed to vary continuously throughout.
Figure 1 shows the results over 30 iterations to illus-
trate convergence. Plots (a)–(c) show the parameter
variation, and (d)–(f) illustrate the variations of
selected, but typical components within the error
matrices. It should be noted that values in P and Q
reflect the filter’s estimate of error, whereas Rk pro-
vides a more verifiable measure of performance –
the filter versus source error in the measurements
(the innovations). Trace(R) shows the aggregated
performance over the two sensors.

As an independent measure of performance, the
converged parameter sets are applied in an open-
loop validation of the identification model, with uk

and dk provided from the source model, over a separ-
ate but similar band limited white noise test. Results
are summarized in Table 3.

The results are good, with an average 72 per cent
reduction in v̂ error and 48 per cent reduction in r̂
error in the successful cases 1–3. The identified par-
ameters are close to the anticipated values; a perfect
match of course is not expected, as the identified
values achieve a better match to the data, compen-
sating the differences between the model structures.

Trace(R) and plots (a)–(c) also show that conver-
gence is possible within just 10–15 iterations.

There is a small difference between the parameters
identified by cases 1 and 2, which differ only in their
starting points, u0. This is because the IEKF operates
on the local gradient function Hk, and the sensor
error is adapting multiple parameters to minimize
the scalar, trace(P). The method will therefore find
the local minimum from a given starting point, and
uniqueness will also depend on the conditioning of
the parameter space. Tuning of the IEKF does not
alter the converged results, but the performance
difference is reasonably small and remains small
for other starting points that were tried.

t ¼ 60 has been set nominally to match the test
duration, and case 3 considers an alternative,
higher setting. The effect is two-fold; the parameter
convergence is slowed because t directly slows adap-
tation of the error covariance matrices (plots (d)–(f)).
This maintains Q at higher values for longer, causing
more parameter variation within each iteration,
because greater expectation of parameter (‘process’)
error increases the sensor error feedback by increas-
ing the Kalman gain K. The converged parameters in
Table 3 are very similar to case 2, however, (note that
i continues to increase beyond iteration 30 – not
shown) and provided t is not ‘small’, it can be set
nominally. Similarly, the initial setting of Q0 can be
set nominally, and/or adjusted to control the
higher-frequency parameter variations.

Fig. 1 Parameter and error covariance convergence
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Selection of l is more critical, as this governs the
(fixed) proportion of parameter changes, which is
interpreted as error. Higher settings of l have a simi-
lar effect on Q as high t or Q0, but here this can lead
to instability as R reduces. The effect is illustrated by
case 4, where l ¼ 0.1 is very close to the limit of stab-
ility. The parameters still converge, but the time his-
tories of P, Q, and R all show the result to be invalid.
As with t, l does not need to be finely tuned, pro-
vided a suitably low setting is made.

The identification is completed by now fixing the
inertia parameters (from case 2) and optimizing the
four Pacejka tyre parameters governing lateral force

at each axle

u ¼ pf gf cf ef pr gr cr er
� �T

To excite the full range of force and slip, the same
white noise process is employed, but now it is scaled
up to dRMS ¼ 2.38 to induce peak lateral accelerations
of 8 m/s2.

With t, l, and Q0, R0, S0 set as for cases 1 and 2, the
IEKF results are given in Fig. 2. A higher number of
iterations is now required, because of the increased
order of the parameter space and the inter-dependence
of the variables, but the process is not computationally
expensive – 50 iterations take,3 minon themid-range
PC running Matlab used here. Table 4 lists the final
identified model parameters and again the perform-
ance on independent validation data is considered;
Fig. 3 shows the initial and final model response over
a typical section of this data.

It is interesting that both reference and the ident-
ified tyre models over-estimate the tyre forces,
when compared with the source model tyre data
(Fig. 2(e) and (f)). The reference model error is largely
due to neglecting load transfers that reduce the total

Table 3 Identified inertia model and performance

Error variance
(�1023)

Reference
(u0) Case 1 Case 2 Case 3 Case 4

v̂ 9.02 2.89 2.36 2.33 2.18
r̂ 0.272 0.146 0.136 0.141 0.899

Identified
parameters
m (0.90) 1.28 1.25 1.25 0.80
i (0.90) 0.97 1.12 1.13 1.50
a (1.30) 1.49 1.53 1.54 2.06

Fig. 2 Tyre parameter convergence
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tyre force in the source model (and in reality); the
identified model generates lower forces (see p and
g values in Table 4), but still seems to over-estimate.
The model is consistent, however, as it operates with
a mass estimation 25 per cent higher than the source
model (m̂ ¼ 1:25). Hence, both achieve similar lat-
eral accelerations, and the states are accurately
tracked as seen in Table 4 and Fig. 3. Of course, the
tyre and inertia parameters are inter-dependent, so
the inertia values would be lower if g had been set
at a lower default value in the identification of
u ¼ m i a

� �T
. In reality, tyre and inertia values

would not be simultaneously unknown, or (more
practically) the parameters could separately be
determined using other vehicle modes – e.g. ride
or powertrain dynamics to determine mass, and
longitudinal/lateral motion to determine tyres.

5 TEST VEHICLE EXPERIMENT

In order to prove that it is possible to use measured
lateral velocity to good effect within the IEKF, and

that the filter is a practicable concept, it is now
applied to data recorded from an instrumented test
vehicle; a Jaguar XJ8 saloon equipped with an
RT3200 GPS/inertial measurement system was
used. The vehicle CAN steering wheel measurement
was synchronized with u, v, r, and ay signals from
the RT3200 and recorded at 100 Hz.

Test drives were conducted on a flat proving
ground circuit in wet weather with some patches
of standing water. Three test scenarios were
considered:

(a) constant speed (u ¼ 15 m/s), random steer;
(b) constant speed (u ¼ 20 m/s) track circuits com-

prising a range of steady-state cornering with
some additional step-steer events superimposed;

(c) track circuits as (b) but with additional accelera-
tion and braking events included in combination
with steering.

Interestingly, the IEKF did not prove to be effective
on the random-steer test. The parameters converged,
but the identification model performance was disap-
pointing, with large phase errors blighting the lateral
velocity estimate. Subsequent tests show that the
IEKF/identification model combination is capable
of good performance, so the conclusion at this
stage is that the measurement of v is not sufficiently
accurate in this type of test – the absence of steady-
state cornering is a likely cause.

The identification is thus carried out on test (b),
with test (c) used as a validation sequence. Also, as
the wet track conditions limited peak lateral accel-
eration, both inertia and tyre identification are con-
ducted on the same test. A total of 150 s of data
was recorded for test (b) and the IEKF result for

Fig. 3 Simulation experiment validation

Table 4 Validation of identified model (simulated)

Error variance (�1023) Reference (u0) IEKF

v̂ 78.3 28.0
r̂ 4.89 1.01

Identified parameters
m 0.9 1.25
i 0.9 1.12
a 1.3 1.53
pf, pr 1.0, 1.0 0.87, 0.79
gf, gr 1.0, 1.0 0.96, 0.94
cf, cr 1.4, 1.4 1.08, 1.17
ef, er 20.2, 20.2 21.05, 0.05
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t ¼ 100, l ¼ 0.01, Q0 ¼ 1024I, S0 ¼ 0 is summarized
in Fig. 4.

As previously, these results were achieved in two
stages, with inertia parameters (plots (a) and (b))
conducted first and then m, i, and a fixed for the
tyre identification process (plots (c)–(f)). The par-
ameter convergence is good, taking just 15 iterations,
and note that the tyre shape parameters, c and e
converge more slowly than the peak and cornering
coefficient variables p and g. c and e act in combi-
nation to adjust the shape of the tyre model –
particularly at higher slip angles, and these are less
critical in establishing the basic force / slip relation-
ship. P and Q are not plotted, as these behave in a
very similar way to that seen in the simulation
experiment.

The only unexpected result is g � 0.5. Early results
for m and i showed inertia figures between 2 and
2.5 – values which are known to be incorrect.
However, these were based on the setting g ¼ 1,
and as the default tyre model is entirely nominal
and the road conditions wet, the inertia values were
reoptimized with g ¼ 0.5. Of course, this decision
then causes g to be identified very close to 0.5 in

the subsequent tyre identification on the same
data; whereas the setting of g can be criticized as
arbitrary, and the resulting inertia parameters as
inconclusive, the results still represent an optimal
combination.

The identified model is summarized in Table 5,
and its performance is compared with the reference
model (also having g ¼ 0.5) on the identification
source data and the independent validation data.
The relationship between identified and reference
parameters is similar to that seen in the simulation
study, with the expected similarity in order of magni-
tudes (except in c and e for the reasons discussed
earlier). Further, the convergence of pf ¼ 0.74,
pr ¼ 0.78 is very encouraging, as p is essentially the
model friction coefficient, and these values corre-
spond very well to expectations of a wet road surface.

Time histories for these results are shown in Figs 5
and 6, respectively. The performance is excellent, with
near-perfect tracking of r and also ay – recall that the
IEKF does not include ay as a sensor. The reference
result is quite poor, largely because the peak forces
(p) are assumed higher, which results in exaggerated
peaks in all of v, r, and ay. The comparison might

Fig. 4 Vehicle identification; parameter and error covariance convergence
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seem to flatter the identified model (the reference
could be improved by a simple reduction in the
road surface friction coefficient), but it should be
borne in mind that both identified and reference
time histories are open-loop simulations, using only
the measured steer input and vehicle speed.

The traces of v are particularly encouraging, as the
sceptical vehicle dynamicist may not expect a good
enough lateral velocity measurement for this appli-
cation. Looking at Fig. 5, it can be seen that higher
frequency variations are not tracked reliably in v,
but that the gross variations are – and note the very
low lateral velocities that are generated here. The
noise-to-signal ratio in v is very high (87 per cent

RMS error to RMS signal after optimization); yet the
IEKF remains stable and returns parameters that
yield a 10-fold improvement in estimation of v.

The validation data show greater lateral accelera-
tions and velocities, due in part to the combined
longitudinal acceleration, so the challenge for the
model is greater, yet the performance is similarly
impressive.

6 CONCLUDING REMARKS

The results show the IEKF to be a versatile, stable,
and an easily configured process for system identifi-
cation. The technique has been shown to be effec-
tive, both within the simulated environment – and
hence for model-order reduction applications –
and in identification from test vehicle data. More-
over, the very high levels of error between modelled
and measured lateral velocity did not present an
obstacle to success.

The method addresses three factors, which other
more common system identification processes lack.

1. Any subset of parameters can be identified
within a general non-linear form of model. The
only restrictions are that the model must be
smoothly non-linear, and the parameters must
be suitably independent of each other.

2. The filter self-regulates and depends on just two
tuning parameters, both of which can be set nom-
inally within generous bounds.

Fig. 5 Vehicle identification; fit to source data

Table 5 Validation of identified model (test vehicle)

Error variance (�1023) Reference (u0) IEKF

Source data test (b)
v̂ 36.8 3.94
r̂ 3.03 0.05

Validation data test (c)
v̂ 292.6 24.6
r̂ 11.6 0.57

Identified parameters
m 1.0 1.14
i 1.0 0.93
a 1.5 1.18
pf, pr 1.0, 1.0 0.74, 0.78
gf, gr 0.5, 0.5 0.51, 0.50
cf, cr 1.4, 1.4 1.23, 1.43
ef, er 20.2, 20.2 21.15, 0.04

Identifying extended Kalman filter 95

JMBD68 # IMechE 2007 Proc. IMechE Vol. 221 Part K: J. Multi-body Dynamics



3. By varying the filter time constant, it can be set to
operate over a long or short time-frame. Thus, it
can be employed for off-line identification from
a data set, or for on-line parameter adaptation to
compensate changes in the vehicle environment.

The next steps for development are to conduct
further vehicle-based experiments and to explore
slightly higher-order identification model struc-
tures, particularly with a view to providing ride
and drivetrain parameters, along with combined
lateral/longitudinal tyre force models. Given the
success of this first experiment, IEKF should
become a valuable tool for all applications of
reduced-order models.
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APPENDIX 1

Notation

ay CG lateral acceleration (m/s2)
f non-linear system model
F system model Jacobian
h non-linear sensors model
H sensors model Jacobian

Fig. 6 Vehicle identification; fit to validation data
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K optimal gain matrix
P state error covariance matrix
Q process error covariance matrix
r yaw rate (rad/s)
R sensors error covariance matrix
S sensors/process error cross covariance

matrix
T filter sampling interval(s)
u forward velocity (m/s)
u vector of inputs
v sideslip velocity (m/s)
x state vector
y sensors vector

a moving average constant (see t)
t moving average time constant for noise

matrix ‘memory’
d (front) wheel steer angle (rad)
u parameters vector
l parameter error scaling factor
y sensors error
v process (model) error
^ caret denotes estimated value

Subscripts

k,f,r subscripts denote time step, front, and
rear, respectively

Superscripts

(x), (u) superscripts, relating to state or
parameter errors, respectively

APPENDIX 2

Source model dynamics

The source model is based on the well-known three-
degree-of-freedom model, simulating yaw, roll, and
sideslip using a load-dependent, combined-slip
Pacejka tyre model. A fourth, longitudinal degree-
of-freedom is also included, as are additional
dynamics for wheel-spin, and first-order lags for
tyre relaxation. The principal model notation and
parameter values are given in Table 6.

The equations of motion are longitudinal

M _u ¼
X
i¼1,4

Fxi þMrv þMhrp (32)

lateral

M _v þMh _p ¼
X
i¼1,4

Fyi �Mur (33)

yaw

Izz _r þ (1Izz � Ixz) _p ¼ a
X
i¼1,2

Fyi � b
X
i¼3,4

Fyi (34)

roll

� Ixz _r þMh _v þ (Ixx � 1Ixz) _p

¼ �Mhur � (Bf þ Br)pþ (Mgh� Kf � Kr)f

þ (hf � h0)
X
i¼1,2

Fyi þ (hr � h0)
X
i¼3,4

Fyi (35)

roll kinematics

_f ¼ p (36)

Standard SAE axes are used [7] fixed relative to the
vehicle wheelbase; the wheels are labelled (1–4) in
ascending order as front-left, front-right, rear-left,
rear-right.

The forces (Fxi, Fyi) controlling the vehicle motion
allow for large steer angles

Fx1,2 ¼ F�
t x1,2 cos d� F�

t y1,2 sin d, Fx 3,4 ¼ F�
t x3,4

Fy1,2 ¼ F�
t y1,2 cos d� F�

t x1,2 sin d, Fy 3,4 ¼ F�
t y3,4

(37)

Table 6 Source vehicle model notation and parameter

values

States and dynamic variables (units)

u vehicle forward velocity (m/s)
v sideslip velocity (m/s)
p roll angular velocity (rad/s)
r yaw angular velocity (rad/s)
f roll angle (rad)
Ti driveline or brake torque at wheel i
v wheel angular velocity (rad/s)
w magnitude of tyre vertical load (N)

Parameters (value, units)
Ixx body roll moment of inertia (500 kg m2)
Izz yaw moment of inertia (4800 kg m2)
Ixz roll/yaw product of inertia (0 kg m2)
Iw wheel (plus associated driveline) moment

of inertia (5 kg m2)
M vehicle mass (2000 kg)
a longitudinal distance of C of G to front axle (1.5 m)
b longitudinal distance of C of G to rear axle (1.6 m)
h C of G height above roll axis (0.45 m)
h0 ground plane to roll axis distance

below C of G (0.22 m)
hf front suspension roll centre height

above ground (0.06 m)
hr rear suspension roll centre height

above ground (0.4 m)
tf front track (1.55 m)
tr rear track (1.55 m)
rr tyre rolling radius (0.3 m)
Kf front roll stiffness (27.8 kNm/rad)
Kr rear roll stiffness (20.4 kNm/rad)
Bf front roll damping (1800 Nms/rad)
Br rear roll damping (1800 Nms/rad)
B, C, D, E Pacejka formula coefficients

(1.0, 1.4, 1.0, 20.2 – dimensionless)
c1, c2 cornering stiffness parameters (69 kN/rad, 1.4 kN)
t time-constant for tyre relaxation (0.025 s)
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based on lagged tyre forces, where each of the eight
elements are lagged to simulate relaxation within
the tyre

_F
�
tx=y,i ¼ t�1(Ftx=y,i � F�

tx=y,i) (38)

where the tyre forces (Ftxi,Ftyi) are modelled accor-
ding to the Pacejka magic formula

P(a) ¼ P(a;B,C,D,E) ; D sin

(C tan�1 (Ba� E(Ba� tan�1 Ba))) (39)

using normalized slip and isotropic similarity scaling
(see references [8] and [11]). In more detail, the nor-
malized slip vector is defined

k ¼ kx
ky

� �
¼ Ca

Fp

s
tana

� �
(40)

where s is the longitudinal slip ratio, and a is the slip
angle; these are calculated for each tyre from steer
angle d and velocities v, u, r, and v (see for example
reference [7]). The friction circle at each tyre contact
patch is defined by the following simple analytic
function of vertical load w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
tx þ F2

ty

q
4 Fp(w) ¼ w

1þ (3w=2Mg)3
(41)

and the load-dependent cornering/longitudinal stiff-
ness for each tyre is of the form

Ca(w) ¼ c1 1� e�w=c2

 �

(42)

(see Table 1 for values) and the resulting tyre force
vector is

Ftx

Fty

� �
¼ P( kj j)Fp

kj j
kx
ky

� �
(43)

Vertical tyre loads are calculated from static weight
distribution, and modified to accommodate lateral
load transfer according to

Dlatwf=r ¼
P

Fyf=rhf=r þ Kf=rfþ Bf=rpþMgh sinf

tf=r

(44)

and to accommodate longitudinal load transfer,
approximated as

Dlongw ¼
P

i Fxi � (h0 þ h)

(aþ b)
(45)

with Dlatwf=r and Dlongw added or subtracted from the
static load on each tyre in an obvious way.

This tyre model is only broadly representative of
real tyre behaviour, but is thought to incorporate
sufficiently realistic aspects of force saturation and
load dependence to properly test the IEKF identi-
fication process. Wheel rotational dynamics are
modelled as

_vi ¼ I�1
w (Ti � rrFtxi) (46)

where Ti is the drive torque (positive) or brake torque
(negative) torque, and Iw ¼ 5 kg m2 is the nominal
wheel inertia, incorporating tyre, engine, and drive-
line components. The drive torques Ti are directly
commanded and apportioned equally between left
and right wheels, and in the case of brake torque,
apportioned in the ratio 60:40 between front and
rear axles. Drive torque is apportioned entirely to
the rear (RWD).
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