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Abstract 
Three different approaches to partitioning mixed-mode delaminations are assessed for their 

ability to predict the interfacial fracture toughness of generally laminated composite beams. This 

is by using published data from some thorough and comprehensive experimental tests carried out 

by independent researchers (Davidson et al., 2000 and 2006). Wang and Harvey’s (2012) Euler 

beam partition theory is found to give very accurate prediction of interfacial fracture toughness 

for arbitrary layups, thickness ratios and loading conditions. Davidson et al.’s (2000) non-

singular-field partition theory has excellent agreement with Wang and Harvey’s Euler beam 

partition theory for unidirectional layups. Although Davidson et al.’s partition theory predicts the 

interfacial fracture toughness of multidirectional layups reasonably well, overall Wang and 

Harvey’s Euler beam partition theory is found to give better predictions. In general, the singular-

field approach based on 2D elasticity and the finite element method gives poor predictions of 

fracture toughness. 

Keywords: Composite materials, Delamination, Fracture toughness, Mixed-mode tests, Mixed-

mode partition 
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NOMENCLATURE 

1A , 2A , A  extensional stiffness of upper, lower and intact beams 
b  beam width 

1B , 2B , B  coupling stiffness of upper, lower and intact beams 

1D , 2D , D  bending stiffness of upper, lower and intact beams 
E  Young’s modulus 

f1E  flexural modulus 

IG , IIG , G  mode I, mode II and total energy release rate 

IcG , IIcG , cG  mode I, mode II and total fracture toughness 

1h , 2h , h  thicknesses of upper, lower and intact arms 

1M , 2M  bending moments on upper and lower arms 

BM1 , BM 2  bending moments at crack tip on upper and lower arms 

cM , cN  concentrated crack tip moment and force 

1n , 2n  numbers of plies in the upper and lower arms 

1N , 2N  axial forces on upper and lower arms 

BN1 , BN2  axial forces at crack tip on upper and lower arms 
β , β ′  pure mode II relationships from the first and second set 
γ  thickness ratio 12 hh  
θ , θ ′  pure mode I relationships from the first and second set 
µ  shear modulus 
ν  Poisson’s ratio 
σ  standard deviation 
Ω  mode mix parameter 
 
Abbreviations 
CUD constrained unidirectional 
DCB double cantilever beam 
ENF end-notched flexure 
ERR energy release rate 
MMB mixed-mode bending 
MD multidirectional 
SSLB symmetric single leg bending 
UD unidirectional 
UENF unsymmetric end-notched flexure 
USLB unsymmetric single leg bending 
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1. Introduction 

Delamination is a major concern in the application of laminated composite materials and has 

attracted the attention of many researchers for decades. Although delamination generally occurs 

as mixed-mode fracture with all three opening, shearing and tearing actions (i.e. mode I, II and 

III), 1D delamination has received more attention as it is simpler, still captures the essential 

mechanics, and also serves as a stepping stone towards the study of general mixed-mode 

delamination. The expression ‘1D delamination’ means that a delamination propagates in one 

direction with mode I and mode II action only. Examples of 1D delamination include through-

width delamination in double cantilever beams (DCBs), and blisters in laminated composite 

plates and shells. A central task in studying 1D delamination is to partition the total energy 

release rate (ERR) G  of a mixed-mode fracture into its individual mode I and II ERR 

components, that is, IG and IIG , which govern the propagation of the mixed-mode fracture. 

Several relatively well-known partition theories for beam structures are Williams’ partition 

theory [1], Suo and Hutchinson’s partition theory [2,3], Davidson et al.’s partition theories [4-6] 

and Wang and Harvey’s partition theories [8-12]. All these theories assume a rigid crack 

interface, that is, they assume that no relative crack tip separation occurs before crack growth. 

Therefore these theories effectively consider brittle fracture. It is worth noting that the 

assumption of a rigid crack interface has profound mechanical implications on mixed-mode 

partitioning. Some further points regarding this will be given later. Williams’ partition theory [1] 

is based on Euler beam theory, and for rigid interfaces is applicable to midplane delamination in 

laminated unidirectional (UD) composite beams only. It is often called the ‘global partition 

theory’. Suo and Hutchinson’s partition theory [2,3] is based on 2D-elasticity theory and stress 

intensity factors and is applicable to both midplane delamination and offset delamination (i.e. not 

on the midplane) in laminated UD composite beams. It is often called the ‘local partition theory’. 

Davidson et al.’s partition theories [4-6] include a singular-field partition theory and a non-
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singular-field partition theory. Both theories are derived by using a combined analytical and 

numerical approach based on 2D elasticity with stress intensity factors. Experimental data are 

also used in the derivation of the non-singular-field partition theory [4-6]. Both are applicable to 

delamination in laminated composite beams with arbitrary through-thickness location and with 

arbitrary layup. Wang and Harvey’s partition theories [8-12] include an Euler beam partition 

theory, a Timoshenko beam partition theory, and a partition theory for 2D elasticity. These 

theories are completely analytical and derived by discovering a fundamentally different and 

powerful methodology. Stress intensity factors are not used. All of them are applicable to 

delamination in laminated composite beams with arbitrary through-thickness location and with 

arbitrary layup. 

Which of the above partition theories [1-12] can best complete the central task: to partition the 

total ERR G  into IG  and IIG , and in doing so, predict the fracture toughness? Only 

measurements from experimental tests are able to answer this question. Although there are 

numerous experimental investigations reported in literature, the ones in Refs. [5-7,11,13-16] may 

represent some of the most comprehensive and convincing ones. By using a linear failure locus 

(found to be a good approximation for the tested composite material), an experimental 

investigation for delamination in UD laminates is reported in Ref. [15] for the assessment of 

Williams’ partition theory [1] and Suo and Hutchinson’s 2D-elasticity partition theory [2,3]. The 

conclusion of those researchers was that the former agrees with the linear failure locus much 

better than the latter does. The experimental investigations reported in Refs. [5-7] are for both 

UD and multidirectional (MD) laminates. No specific failure locus is assumed, and instead a 

failure locus is experimentally determined in terms of the total critical ERR cG  and GGII /  by 

using the test data for midplane delamination in UD laminates. All the partition theories agree on 

this particular case and so the failure locus is reliably obtained. Then, the assessment of different 

partition theories is made against this midplane failure locus for delamination at various through-
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thickness locations and with various layups. The experimental investigation in Ref. [5] assesses 

Williams’ partition theory [1] and Davidson et al.’s 2D-elasticity singular field and non-singular-

field partition theories [4-6]. Quoting from Ref. [5], the conclusions are: (1) “a singular-field-

based definition of mode mix will not produce accurate delamination growth predictions for 

certain composite materials and loadings”; (2) “an alternative definition of mode mix, originally 

developed by Williams and successfully applied to other composite systems [14-16], is not 

universally applicable”; (3) the non-singular-field partition theory “would appear to be more 

appropriate than the classical approach for many current continuous fibre composites.” Even 

more comprehensive experimental assessments are given in Refs. [6,7] for Davidson et al.’s 2D-

elasticity singular-field partition theory and non-singular-field partition theory [4-6], including 

results from various finite element simulations. A large number of UD and MD laminates are 

tested in different bending and tension configurations. The assessment methodology is the same 

as that in the study [5], that is, a failure locus is experimentally determined in terms of the total 

critical ERR cG  and GGII /  by testing UD laminates with midplane delamination. Different 

partition theories are then assessed against this failure locus using test specimens with 

delamination at various through-thickness locations and with various layups. The assessment 

concluded that Davidson et al.’s 2D-elasticity non-singular-field partition theory [4-6] provides 

highly accurate delamination growth predictions for a variety of laminate layups and loadings. 

Conversely, the 2D-elasticity singular-field partition theory [4-6] is shown to have relatively poor 

accuracy. 

Recently, the authors have made a detailed experimental assessment [11] of Williams’ [1], 

Suo and Hutchinson’s [2,3], and Wang and Harvey’s [8-11] partition theories using the same 

methodology and test data as that used in the study in Ref. [15]. It was shown that the predictions 

from Wang and Harvey’s Euler beam partition theory [8-11] have the best agreement with the 

linear failure locus that was originally suggested in Ref. [15] for the composite material in 
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question, following it extremely closely. The predictions from Wang and Harvey’s partition 

theories for Timoshenko beams and for 2D elasticity, and from Suo and Hutchinson’s 2D-

elasticity partition theory, are far away from the failure locus, and Williams’ partition theory [1] 

performs much better than them. The very latest work [17] on the topic is also highly regarded. 

The same assessment methodology to that used in Refs. [5-7] is used (see above). It is shown that 

Wang and Harvey’s Euler beam partition theory [8-11] and Davidson et al.’s non-singular-field 

partition theory [4-6] have similar performance. Although the authors conclude that none of the 

current analytical partition theories “are able to predict failure in asymmetric composite 

laminates”, the data presented in the paper shows that both Davidson et al.’s non-singular-field 

partition theory [4-6] and Wang and Harvey’s Euler beam partition theory [8-11] actually show 

quite reasonable agreement with the midplane failure locus. 

In conclusion, from these four independent assessments it appears that both Wang and 

Harvey’s Euler beam partition theory [8-11] and Davidson et al.’s non-singular-field partition 

theories [4-6] provide the best ERR partitions, IG  and IIG , which govern the growth of 

delamination. These two partition theories, however, are derived from very different approaches. 

The former is based on Euler beam theory and is derived completely analytically, while the latter 

is based on 2D-elasticity theory and is derived by using a combined analytical, numerical and 

experimental approach. A detailed explanation is given in Ref. [11] for why Wang and Harvey’s 

Euler beam partition theory [8-11] agrees so well with the test data and for why it must correctly 

capture the underlying mechanics. To summarise the explanation in Ref. [11], it appears that the 

brittle nature of delamination growth on a rigid interface is governed by global ERR partitions. 

‘Global partitions’ are those calculated over the whole length of the interface that is mechanically 

affected by the crack tip [8-11]. Note that ‘global’ in this context has a different meaning to when 

it is used to describe Williams’ partition theory [1], which as explained above, is often described 

as global. Using global ERR partitions, both Wang and Harvey’s Timoshenko beam and 2D-
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elasticity partition theories converge to Wang and Harvey’s Euler beam partition theory [8-11]. 

The same is true for partitions obtained globally from finite element method simulations [11]. 

Williams’ partition theory [1] is in fact a partially-global partition theory (this will be explained 

later). This explains why it performs much better in the assessment in Ref. [11] than the other 

partition theories except for Wang and Harvey’s Euler beam partition theory [8-11]. Now, it is 

reasonable to speculate that Davidson et al.’s 2D-elasticity non-singular-field partition theory [4-

6] approaches to Wang and Harvey’s Euler beam partition theory [8-11] by introducing the mode 

mix parameter Ω  which is obtained with the aid of experimental data. The present work aims to 

assess these two theories thoroughly using the experimental data in Refs. [6,7] and to explore 

their connections. 

The structure of the paper is as follows. The two partition theories are briefly given in Section 

2. In Section 3, data from the experimental tests described in Refs [6,7] is analysed using the two 

partition theories. Finally, conclusions are given in Section 4. 

2. Mixed-mode partition theories 

2.1. Wang and Harvey’s Euler beam partition theory [8-11] 

Wang and Harvey’s partition theories are for 1D fractures in straight beams and axisymmetric 

plates made of either isotropic or laminated composite materials. Full details of the theories are 

given in Refs. [8-11]. Only a brief introduction is given in this paper for a laminated composite 

DCB as shown in Fig. 1a with its associated geometry and DCB tip bending moments and axial 

forces. Fig. 1b shows the two bending moments and two axial forces at the crack tip at location 

B. The total ERR G is calculated as follows [8,10]: 
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 iiii DBAA 2* −=     ,    iiii DABB −= 2*     ,    iiii ABDD 2* −=  (3) 

The total ERR G  is of quadratic form in terms of the crack tip moments and forces BM1 , 

BM 2 , BN1  and BN2 . The coefficient matrix [ ]C  is given in full in Appendix A. The extensional, 

coupling and bending stiffnesses are denoted by A , B  and D  respectively. The range of i  is 1- 

2, which refers to the upper and lower arms respectively. No subscript is used for the intact part 

of the laminate. 1A  is therefore the extensional stiffness of the upper beam and A  is the 

extensional stiffness of the intact part of the laminate, etc. Note that these quantities take 

different values under the plane-strain assumption from those under the plane-stress assumption; 

however, there is no difference between the two assumptions in the following development. 

According to Wang and Harvey’s Euler beam partition theory [11], the mode I and II 

components of the total ERRG , denoted by IEG  and IIEG  respectively, are 
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where IEc  and IIEc  are two constants, and ( )ii βθ ,  and ( )ii βθ ′′,  represent the two sets of 

orthogonal pure modes where the range of i  is from 1 to 3. For example, when BB MM 112 θ=  and 

021 == BB NN , pure mode I occurs because the relative shearing displacement just behind the 

crack tip is zero. This pure-mode-I mode is denoted by 1θ . Its orthogonal pure-mode-II mode is 

1β , which corresponds to zero crack tip opening force. Here, the mathematical meaning of 

‘orthogonal’ is 

 { }[ ]{ } 0001001 11 =TC βθ  (6) 

For simplicity, Eq. (6) can be written as ( )11 orthogonal βθ = . Similarly, when BB MM 112 θ ′=  

and 021 == BB NN , pure mode I occurs because the crack tip shearing force is zero. This pure-

mode-I mode is denoted by 1θ′ . Its orthogonal pure-mode-II mode is 1β ′ , which corresponds to 
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zero crack tip opening displacement. An important feature of the pure modes from Euler beam 

theory is that the two sets of pure modes do not necessarily coincide. For example, the 1θ  pure-

mode-I mode corresponds to zero relative shearing displacement but with non-zero crack tip 

shearing stress. Also, the 1β  pure-mode-II mode corresponds to zero opening crack tip stress but 

with non-zero crack tip relative opening displacement. These characteristics arise from the 

rigidity of the interfaces and result in ‘stealthy interaction’ [8-11] between the iθ  pure-mode-I 

modes and the iβ  pure-mode-II modes. Eq. (6) shows that the interaction between the 1θ  pure-

mode-I mode and the 1β  pure-mode-II mode produces zero net ERR due to their orthogonality; 

however, this does not mean there is no interaction between them. In fact, interactions do exist 

between them as shown by Eqs. (4) and (5). The crack tip opening stress in the iθ  pure-mode-I 

mode does work on the non-zero opening displacement in the iβ  pure-mode-II mode while the 

non-zero crack tip shearing stress in the iθ  pure-mode-I mode does work on the shearing 

displacement in the iβ  pure-mode-II mode. These interactions change the mode I and II ERR 

partitions and are called ‘stealthy interaction’ in Refs. [8-11] because they produce zero net ERR 

and their action is not immediately obvious. 

In Timoshenko beam theory the two sets of pure modes coincide on the first set resulting in no 

stealthy interaction. It is worth noting that when ERR is calculated using the whole length of the 

interface that is mechanically affected by the crack tip, numerical simulations show that Euler 

beam, Timoshenko beam and 2D elasticity partitions are the same as that of Euler beam 

partitions in Eqs. (4) and (5), hence, the Euler beam partitions are also called global partitions.  

It is important to note that the orthogonal property demonstrated in Eq. (6) exists between any 

pair of pure modes in the first set of pure modes ( )ii βθ , , that is, ( )iorthogonal βθ =i . This 

property also applies to any pair of pure modes in the second set of pure modes ( )ii βθ ′′, , that is, 

( )iorthogonal βθ ′=′i . Therefore, as long as one pure mode from each set, say 1θ  in the first set 
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and 1θ ′  in the second set, is found then the others can be determined by using orthogonal 

condition in Eq. (6). The details of IEc , IIEc , ( )ii βθ ,  and ( )ii βθ ′′,  are given in Appendix B. It is 

also worth noting that the two sets of pure modes ( )ii βθ ,  and ( )ii βθ ′′,  coincide at the first set for 

non-rigid interfaces, even in Euler beam theory [18]. 

Eqs. (4) and (5) are easily reduced for isotropic materials. A thickness ratio 12 hh=γ  is now 

introduced. The partitions become 
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where  

 γBBBe NNN 211 −=  (9) 

The details of IEc , IIEc , ( )ii βθ ,  and ( )ii βθ ′′,  are given in Appendix C. Williams’ partition theory 

[1] only uses the ( )11, βθ ′′  pure-mode pair in Eqs. (7) and (8) to partition a mixed-mode crack in a 

DCB with bending moments at the crack tip BM1  and BM 2 . That is why it is only applicable 

when 1=γ  (for rigid interfaces) and why it is also a partially-global partition theory. Eqs. (4), 

(5), (7) and (8) give the full global partition theory. 

2.2. Davidson et al.’s 2D-elasticity non-singular-field partition theory [4-6] 

Davidson et al.’s non-singular partition theory [4-6], which is based on 2D elasticity, is given 

by the following formula: 
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where cN  and cM  are the concentrated crack tip force and moment respectively. Details of all 

the quantities in Eq. (10) can be found in Refs. [4-6] and are not copied here; however, giving the 

details of Ω , which is called the ‘mode mix parameter’, is worthwhile. 
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Note that η  in Eq. (11) is given by ( )γη 10loγ= . The mode mix parameter Ω  is determined with 

the aid of experimental data. 

3. Assessment 

As far as the authors’ knowledge is concerned, the work in Refs. [5-7] represents some of the 

most comprehensive and thorough experimental test data available for the study of interfacial 

delamination toughness in generally laminated composite beams. As stated earlier in the 

Introduction, the present work aims to assess the relative performances of Wang and Harvey’s 

Euler beam partition theory [8-11] and Davidson et al.’s non-singular-field partition theory [4-6] 

as they have been identified as the best performers in several different experimental assessment 

exercises [5-7,11,17]. The same format as Refs. [5-7] is followed. Three groups of test specimens 

are considered, namely, UD specimens, constrained unidirectional specimens (CUD) and MD 

specimens. Three partition approaches are compared. They are Wang and Harvey’s Euler beam 

partition theory [8-11], Davidson et al.’s non-singular-field partition theory [4-6], and finite 

element method simulation based on 2D elasticity to obtain the singular-field partition. The 

partition results from the latter two are mostly just reproduced from the work in Refs. [6,7] with 

two exceptions which are noted later. The readers are referred to Refs. [6,7] for the full details. 

Two sets of graphite/epoxy laminates are considered. They are C12K/R6376 of low toughness 

and T800H/3900-2 of high toughness. The UD material properties from Refs. [6,7] are 

reproduced in Table 1. Note that, as in Refs. [6,7], the experimentally-determined flexural 

modulus f1E  is used to calculate the laminate stiffnesses in place of the manufacturer-quoted 

11E . 
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3.1. Unidirectional specimens 

UD specimens made from C12K/R6376 material with midplane and offset delaminations are 

considered in this sub-section. The results are shown in Table 2 and Fig. 2. Note that in Table 2, 

the column 12 / MM  represents the bending moment ratio applied to the upper and lower arms. 

For the UENF specimens with Wang and Harvey’s Euler beam partition theory, contact has to be 

considered and this will slightly modify the actual bending moment ratio at the crack tip, and 

these are the additional values that are given in brackets. Details of the contact calculation can be 

found in Refs. [9,10]. 

As expected, all three partition approaches give largely identical partition results for midplane 

delaminations. By using these results, a failure locus is experimentally determined in terms of the 

total critical ERR cG  and the partition GGII  and this is shown in Fig. 2 as the solid piecewise 

straight line. The error bars show plus/minus one standard deviation from each data point based 

on Davidson et al.’s testing of at least five specimens for each test [6,7]. Up to plus/minus one 

standard deviation of the failure locus is also shown by the shadowed area. The different partition 

theories are assessed against this failure locus for offset delamination. It is seen that Wang and 

Harvey’s Euler beam partition theory and Davidson et al.’s non-singular-field partition theory 

again give largely identical partition results and agree very well with the failure locus; however, 

the singular-field partition results are generally not in good agreement with this failure locus. 

It is surprising to see the excellent—almost identical—agreement between Wang and 

Harvey’s Euler beam partition theory and Davidson et al.’s non-singular-field partition theory, 

because the former is derived completely analytically, and the latter is derived with the aid of 

experimental work. In order to investigate this observation further, Fig. 3 shows the difference 

between the partitions GGII /  from both partition theories over a range of bending moment 

ratios, BB MM 12 , and thickness ratios, ( )γ1loγ10 . Within the range 331 << γ , or with 

reference to Eq. (11), the range 468.0468.0 <<− η , the two approaches are approximately 
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identical, which is strong support for the theoretical basis behind Wang and Harvey’s Euler beam 

partition theory. Cross data markers for each UD specimen test point ( )γ,12 BB MM  tested in 

Ref. [6] are also overlaid onto Fig. 3. It is interesting to note that every test point lies in the 

region where there is excellent agreement between the two partition theories. This begs the 

question, outside of the region 331 << γ , which theory is better? Although this is not 

conclusive, the data presented in Ref. [17] shows that Wang and Harvey’s Euler beam partition 

theory agrees well with the experimental measurements when 31<γ  and much better than 

Davidson et al.’s non-singular-field partition theory. 

3.2. Constrained unidirectional specimens 

CUD specimens made from C12K/R6376 material are considered in this sub-section with 

midplane and offset delaminations. The specimen layups are given at the bottom of Table 3 and 

the partition results are shown in Table 3 and Fig. 4. It is seen that the partition results from the 

three approaches are largely the same as their counterparts in the UD specimen. That is, the 

addition of the 015± angle plies, sandwiching the two 00 fracture layers, has negligible effect on 

the partition; however, the fracture toughness has some changes. Some are significant. For 

example, the toughness of UD UENF 20/12 in Table 2 is 1259 N/m while the toughness of CUD 

UENF 20/12 in Table 3 is 976 N/m. Wang and Harvey’s Euler beam partition theory and 

Davidson et al.’s non-singular-field partition theory both agree well with the failure locus, except 

for the UENF specimen. It is noted that the singular-field partition approach has similar 

performance to that observed for the UD specimens in Table 2 and Fig. 2. 

3.3. Multidirectional specimens 

MD specimens made from C12K/R6376 material are considered in this sub-section with offset 

delaminations. The specimen layups are given at the bottom of Table 4 and the partition results 

are shown in Table 4 and Fig. 5. The partition results from singular-field partition approach are 
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still in poor agreement with the failure locus. The partition results from Wang and Harvey’s 

Euler beam partition theory and Davidson et al.’s non-singular-field partition theory have 

significant differences. Although they are both still in a better agreement with the failure locus 

than the singular field approach, the agreement is not as good as that seen for the UD and CUD 

specimens. 

Two test configurations in particular are far from the failure locus: (1) for the USLB 12/24 

specimen with layup F, the partitions obtained from both partition theories are far beyond one 

standard deviation away from the mean value. (2) For the USLB 24/12 specimen with layup F, 

the partition result from Davidson et al.’s non-singular-field partition theory is also far beyond 

one standard deviation away. The following three possible causes are explored: 

(1) Errors in the experiments. The experimental work in Refs. [6,7] is some of the most 

comprehensive and thorough reported in literature so far, and as stated in these references, the 

aim was to obtain the most accurate results. Each test was repeated at least five times. From 

Table 4, it is seen that one standard deviation of the fracture toughness is only about 6% of the 

total fracture toughness for both specimens; therefore, significant errors in the experiments can 

be discounted. 

(2) Effect of layup on the accuracy of the partition theory—Does either of the partition 

theories work correctly for MD layups? To show the effect of the layup on each partition theory, 

the partition results for offset delamination in all the specimens in Tables 2, 3 and 4 for the 

loading case 0/ 12 =MM  are collected together in Table 5. Note that the results in the brackets 

are from Table 6 for the second set of MD specimens in Ref. [7] as well as the two USLB UD 

specimens in this same reference, made from T800H/3900-2 graphite/epoxy. These will be 

discussed shortly. Specimens of different layups are grouped according to the thickness ratioγ . It 

is seen that the partition results from Wang and Harvey’s Euler beam partition theory are almost 

independent of layup and material properties, and only depends on the thickness ratio γ . The 
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partition results from Davidson et al.’s non-singular-field partition theory and the singular-field 

approach are both insensitive to material properties; however, they both depend on the layup and 

the thickness ratio γ . It is more important however to note that each group of specimens made 

from the same material have similar fracture toughness except for the 12/24 USLB specimen 

with layup F, which is made from C12K/R6376 material. This observation strongly suggests that 

Wang and Harvey’s Euler beam partition theory provides the correct partition and is more 

accurate than the other two approaches. In order to confirm this suggestion the third possible 

cause needs to be explored. 

(3) Effect of the different fracture toughness values, IcG  and IIcG , between two different crack 

interfaces, for example, 0/0  vs. 45/0 . It is obvious that if the fracture toughness values IcG  and 

IIcG  of the angle ply interfaces in the MD specimens are different from that of the UD 

specimens, even the correct partition results for MD specimens will not agree well with the 

failure locus determined from the midplane UD specimens. 

In order to purely assess the accuracy of partition theories without influence of the third 

possible cause, the second set of MD specimens [7] which are made from T800H/3900-2 

graphite epoxy material is considered. Since the material has high toughness, it is expected that 

an angle ply interface and a UD ply interface should have approximately the same fracture 

toughness values, IcG  and IIcG . It is then reasonable to assume that the two interfaces have the 

same failure locus. Therefore, the correct partition should produce the same failure locus. Thus 

the effect of the difference between the fracture toughness values IcG  and IIcG  from two different 

interfaces can be eliminated. The second set of MD specimens [7] have the same layups as those 

from the first set in Table 4. The partition results are given in Table 6 and Fig. 6. The straight line 

in Fig. 6 is the failure locus obtained from UD midplane delamination tests. As the test results 

fall almost exactly on the line, they are not plotted on the figure for clarity. It is impressive to see 

that partition results from Wang and Harvey’s Euler beam partition theory for the MD specimens 
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fall almost exactly on the line except for the 24/12 USLB specimen with layup E. This test 

however has a large standard deviation for its fracture toughness measurements. Reference [7] 

says that there may have been some errors in the testing of this specimen. Overall, this data for 

the second set of MD specimens [7] clearly shows that Wang and Harvey’s Euler beam partition 

theory is likely to be the most accurate one. It is also noted that both Davidson et al.’s non-

singular-field partition theory [4-6] and the singular field approach have better agreement with 

the failure locus than they do for the first set of MD specimens in Table 4 and Fig. 5. 

We therefore conclude that the relatively poor performance of the three approaches for the 

first set of MD specimens with low toughness is due to difference between the fracture toughness 

values, IcG  and IIcG , for angle ply and UD ply interfaces. To explore this point further, Fig. 2 is 

redrawn in the form of IG  vs. IIG  in Fig. 7. It is seen that a linear failure locus is a good 

approximation for the midplane delamination of UD specimens. The linear failure loci for offset 

delamination from both Wang and Harvey’s Euler beam partition theory and Davidson et al.’s 

non-singular-field partition theory are also plotted. The former almost exactly coincides with the 

midplane failure locus and the latter agrees very well. Based on this observation, it is assumed 

that the angle ply interfaces in the MD specimens in Table 4 and Fig. 5 also have linear failure 

locus. It is shown in Fig. 7 for the MD specimens with layup F (the layup with the worst 

agreement), that the value of IcG  is over 400 N/m, which is considerably larger than that of the 

UD one. This further supports the conclusion above. 

4. Conclusions 

By using some of the most comprehensive and thorough experimental test data to be found in 

the literature [6,7], three approaches to partitioning a mixed mode are assessed. They are: (1) 

Wang and Harvey’s Euler beam partition theory [8-11]; (2) Davidson et al.’s non-singular-field 

partition theory [4-6]; and (3) finite element simulation based on 2D elasticity to obtain the 
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singular-field partition. Wang and Harvey’s Euler beam partition theory [8-11] is derived 

completely analytically while Davidson et al.’s non-singular-field partition theory [4-6] is 

derived with the aid of experimental test results. 

Wang and Harvey’s Euler beam partition theory [8-11] has excellent agreement with 

experimental test results and gives very accurate predictions of interfacial fracture toughness 

laminated composite beams with arbitrary layups, various thickness ratios and various loading 

conditions. It is a very valuable theory for academic research of fracture and fatigue of advanced 

materials. Furthermore, it can play a very valuable role in the design of engineering structures 

made of layered materials. 

Davidson et al.’s non-singular-field partition theory [4-6] has excellent agreement with 

experimental test results and with Wang and Harvey’s Euler beam partition theory [8-11] (inside 

the range 331 << γ ) for UD laminated composite materials. Its accuracy is still very good for 

MD laminated composite beams; however, it has been observed and argued that overall Wang 

and Harvey’s Euler beam partition theory [8-11] offers improved accuracy. In general, the 

singular-field approach based on 2D elasticity and the finite element method give poor 

predictions. 

Finally, it is worth noting that different fracture toughness values, IcG  and IIcG , for angle ply 

and UD ply interfaces results in different failure loci. Therefore care has to be taken when 

making comparisons between the two in order to compare like with like. 
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Appendix A. The coefficient matrix ][C  of the ERR G in Eq. (1) 

The symmetric coefficient matrix of quadratic form given in Eq (1) is 
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where symmetrical terms are denoted by ‘…’. 

Appendix B. The details of IEc , IIEc , ( )ii βθ ,  and ( )ii βθ ′′,  ( 3,2,1=i ) in Eqs. (4) and (5) 
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Appendix C. The details of IEc , IIEc , ( )ii βθ ,  and ( )ii βθ ′′,  in Eqs. (7) and (8) 
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Figure captions 

Fig. 1: A double cantilever beam. (a) General description. (b) Crack tip forces. 

Fig. 2: Fracture toughness of midplane and offset delaminations in unidirectional laminates made 

from C12K/R6376 [6]. 

Fig. 3: Difference between GGII  from Wang and Harvey’s Euler beam partition theory [8-11] 

and Davidson et al.’s partition theory [4-6] with overlaid test points for unidirectional beams [6]. 

Fig. 4: Fracture toughness of midplane and offset delaminations in constrained unidirectional 

laminates made from C12K/R6376 [6]. 

Fig. 5: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

made from C12K/R6376 [6]. 

Fig. 6: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

T800H/3900-2 [7]. 

Fig. 7: Mixed-mode failure loci for laminates made from C12K/R6376 with a unidirectional 

layup and with multidirectional layup F [6]. 
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Table captions 

Table 1: Unidirectional material properties [6,7]. 

Table 2: Fracture toughness of midplane and offset delaminations in unidirectional laminates 

made from C12K/R6376 [6]. 

Table 3: Fracture toughness of midplane and offset delaminations in constrained unidirectional 

laminates made from C12K/R6376 [6]. 

Table 4: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

made from C12K/R6376 [6]. 

Table 5: Fracture toughness of offset delaminations under the loading case 0/ 12 =MM  [6,7]. 

Table 6: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

T800H/3900-2 [7]. 
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Fig. 1: A double cantilever beam. (a) General description. (b) Crack tip forces. 
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Fig. 2: Fracture toughness of midplane and offset delaminations in unidirectional laminates made 

from C12K/R6376 [6]. 
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Fig. 3: Difference between GGII  from Wang and Harvey’s Euler beam partition theory [8-11] 

and Davidson et al.’s partition theory [4-6] with overlaid test points for unidirectional beams [6]. 
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Fig. 4: Fracture toughness of midplane and offset delaminations in constrained unidirectional 

laminates made from C12K/R6376 [6]. 
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Fig. 5: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

made from C12K/R6376 [6]. 
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Fig. 6: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

T800H/3900-2 [7]. 
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Fig. 7: Mixed-mode failure loci for laminates made from C12K/R6376 with a unidirectional 

layup and with multidirectional layup F [6]. 
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Table 1: Unidirectional material properties [6,7]. 

 C12K/R6376 graphite/epoxy T800H/3900-2 graphite/epoxy 

11E  (GPa) 146.86 154.72 

22E , 33E  (GPa) 10.62 7.58 

12µ , 13µ  (GPa) 5.45 4.27 

23µ  (GPa) 3.99 2.88 

12ν , 13ν , 23ν  0.33 0.32 

f1E  (GPa) 114.15 143.13 
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Table 2: Fracture toughness of midplane and offset delaminations in unidirectional laminates 

made from C12K/R6376 [6]. 

    Calculated partition, GGII    

Test 21 nn  12 hh=γ ** 12 MM  SF [6] Davidson et 
al. [6] Euler ( )N/m cG  ( )N/m σ±  

error 

DCB 16/16 1.00 -1.00 0.00 0.00 0.00 341 12 

SSLB 16/16 1.00 0.00 0.40 0.43 0.43 438 34 

ENF 16/16 1.00 1.00 1.00 1.00 1.00 1284 196 

MMB* 12/12 1.00 -0.23 0.21 0.23 0.23 352 46 

MMB* 12/12 1.00 0.01 0.40 0.44 0.44 438 34 

MMB* 12/12 1.00 0.21 0.61 0.64 0.64 529 86 

MMB* 12/12 1.00 0.44 0.80 0.83 0.83 727 51 

MMB* 12/12 1.00 0.59 0.91 0.92 0.92 1060 178 

MMB* 12/12 1.00 1.00 1.00 1.00 1.00 1284 196 

USLB 8/24 2.94 0.00 0.34 0.18 0.15 353 38 

USLB 12/20 1.67 0.00 0.36 0.28 0.28 395 17 

USLB 20/12 0.60 0.00 0.43 0.60 0.58 521 24 

USLB 24/8 0.34 0.00 0.49 0.73 0.73 697 47 

UENF 25/5 0.21 0.02 (0.004) 0.72 0.92 0.91 893 52 

UENF 20/10 0.50 0.17 (0.10) 0.89 0.99 0.96 1130 70 

UENF 20/12 0.58 0.24 (0.18) 0.93 0.99 0.98 1259 65 

* 24-ply UD MMB laminates, ply thickness mm 155.0=pt (for all other UD laminates, ply thickness 
mm 146.0=pt ) 

** These thickness ratios refer to the actual average thickness ratio as measured from the test specimens [6] 
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Table 3: Fracture toughness of midplane and offset delaminations in constrained unidirectional 

laminates made from C12K/R6376 [6]. 

     Calculated partition, GGII    

Test 21 nn  12 hh=γ  Stacking 
sequence 12 MM  SF [6] Davidson 

et al. [6] Euler ( )N/m cG  ( )N/m σ±  
error 

DCB 16/16 1.00 A -1.00 0.00 0.00 0.00 336 20 

SSLB 16/16 1.00 A 0.00 0.39 0.43 0.43 378 35 

ENF 16/16 1.00 A 1.00 1.00 1.00 1.00 1220 46 

USLB 12/20 1.67 B 0.00 0.34 0.28 0.28 355 37 

USLB 20/12 0.60 C 0.00 0.42 0.60 0.58 511 21 

UENF 20/12 0.60 C 0.22 (0.22) 0.93 0.97 1.00 976 94 

Stacking sequence (ply thickness mm 159.0=pt ): 

A : [ ]s10 d/0/10/15/0/15/10/0 −−  

B : ( ) ( ) ( )[ ]43 0/15/0/0/15/0/d/0/15/0 ±  

C : ( ) ( ) ( )[ ]34 0/15/0/0/15/0/d/0/15/0 ±  
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Table 4: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

made from C12K/R6376 [6]. 

     Calculated partition, GGII    

Test 21 nn  12 hh=γ  Stacking 
sequence 12 MM  SF [6] Davidson 

et al. [6] Euler ( )N/m cG  ( )N/m σ±  
error 

USLB 8/24 3.00 D 0.00 0.18 0.10 0.14 376 48 

USLB 24/8 0.33 D 0.00 0.63 0.80 0.72 757 43 

USLB 12/24 2.00 E 0.00 0.23 0.20 0.23 341 29 

USLB 24/12 0.50 E 0.00 0.57 0.68 0.63 680 40 

UENF 24/12 0.50 E 0.17 (0.14) 0.95 0.99 0.99 1139 133 

USLB 12/24 2.00 F 0.00 0.38 0.35 0.24 511 32 

USLB 24/12 0.50 F 0.00 0.44 0.56 0.65 682 40 

UENF 24/12 0.50 F 0.11 (0.06) 0.81 0.93 0.94 1061 26 

Stacking sequence (ply thickness mm 152.0=pt ): 

D : ( ) ( ) ( )[ ]ss2s 90/45/0/45/90/0/45/0/90/45/d/45/900/  −  

E : ( ) ( )[ ]ss22 0/45/45/0/d/45/0/45/45/0/45  ±±±  

F : ( ) ( )[ ]45/0/45//d45/0/45 8s8  ±±  
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Table 5: Fracture toughness of offset delaminations under the loading case 0/ 12 =MM  [6,7]. 

    Calculated partition, GGII    

Test 21 nn  12 hh=γ  Stacking 
sequence SF [6] ([7]) Davidson et 

al. [6] ([7]) Euler ( )N/m cG  
[6] ([7]) 

( )N/m σ±  
error [6] ([7]) 

USLB 8/24 3.00 D 0.18 (0.16) 0.10 (0.09) 0.14 (0.14) 376 (951) 48 (85) 

USLB 8/24 2.94 UD 0.34 0.18 0.15 353 38 

USLB 12/24 2.00 E 0.23 (0.21) 0.20 (0.19) 0.23 (0.23) 341 (1024) 29 (55) 

USLB 12/24 2.00 F 0.38 0.35 0.24 511 32 

USLB 12/20 1.67 UD 0.36 0.28 0.28 395 17 

USLB 12/20 1.67 B 0.34 0.28 0.28 355 37 

USLB 20/12 0.60 UD 0.43 0.60 0.58 521 24 

USLB 20/12 0.60 C 0.42 0.60 0.58 511 21 

USLB 24/12 0.50 E 0.57 (0.59) 0.68 (0.69) 0.63 (0.62) 680 (1419) 40 (145) 

USLB 24/12 0.50 F 0.44 (0.46) 0.56 (0.55) 0.65 (0.65) 682 (1526) 40 (21) 

USLB 24/8 0.34 UD 0.49 (0.49) 0.73 (0.73) 0.73 (0.73) 697 (1807) 47 (91) 

USLB 24/8 0.33 D 0.63 (0.64) 0.80 (0.81) 0.72 (0.72) 757 (1624) 43 (34) 

USLB* 18/6 0.33 UD (0.48) (0.73) (0.73) (1682) (166) 

* For this specimen only, ply thickness mm 182.0=pt , otherwise see Tables 2, 3, 4 and 6. 
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Table 6: Fracture toughness of midplane and offset delaminations in multidirectional laminates 

T800H/3900-2 [7]. 

     Calculated partition, GGII    

Test 21 nn  12 hh=γ  Stacking 
sequence 12 MM  SF [6] Davidson 

et al. [6] Euler ( )N/m cG  ( )N/m σ±  
error 

USLB 8/24 3.00 D 0.00 0.16 0.09 0.14 951 85 

USLB 12/24 2.00 E 0.00 0.21 0.19 0.23 1024 55 

USLB 24/12 0.50 F 0.00 0.46 0.55 0.65 1526 21 

USLB 24/12 0.50 E 0.00 0.59 0.69 0.62 1419 145 

USLB 24/8 0.33 D 0.00 0.64 0.81 0.72 1624 34 

UENF 24/12 0.50 F 0.10 (0.07) 0.87 0.89 0.96 1954 31 

UENF 24/12 0.50 E 0.17 (0.15) 0.97 0.99 0.99 1926 51 

Stacking sequence (ply thickness mm 179.0=pt ): 

D : ( ) ( ) ( )[ ]ss2s 90/45/0/45/90/0/45/0/90/45/d/45/900/  −  

E : ( ) ( )[ ]ss22 0/45/45/0/d/45/0/45/45/0/45  ±±±  

F : ( ) ( )[ ]45/0/45//d45/0/45 8s8  ±±  
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