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1 INTRODUCTION  
Controlled explosions that take place above ground surface during military testing generate not only 
shock waves in air but also strong ground vibrations. It is convenient and much less expensive to 
study the associated sound and vibration phenomena using reduced-scale laboratory simulations, 
with a laser as a source of air shock waves interacting with large elastic plates modelling the 
ground1,2. Earlier, a semi-analytical model describing interaction of air shock waves with an elastic 
half space has been suggested by one of the present authors to describe generation of Rayleigh 
surface waves by electric spark discharge near the surface3.  
 
The aim of the present paper is to further develop the above-mentioned semi-analytical model3 and 
to apply it to the interaction of laser-initiated air shock waves with an infinite elastic plate. The 
impact of the incident shock wave is to be approximated by an equivalent cylindrically diverging 
surface force resulting from the surface pressure of the incident and reflected shock waves. The 
well-known analytical expressions for air particle velocity and pressure in the front of a shock wave 
are used to describe this surface force as a function of time and distance from the epicentre. The 
problem is then solved using the Green’s function method applied to an infinite plate. The resulting 
frequency spectra and time shapes of the generated flexural wave pulses are calculated for 
different values of the height of the laser-generated spark above the plate surface. The obtained 
theoretical results for time histories and frequency spectra of generated flexural waves are 
compared with the results of the reduced-scale model experiments on shock wave interaction with a 
large plastic plate.  
 
 
2 THEORETICAL BACKGROUND  

2.1 Specification of the Equivalent Surface Force 

According to Ref. 3, the pressure in the spherically diverging air shock wave can be approximated 
by the following simple analytical expression: 
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Here is a Heaviside step function, and are particle velocity and pressure in the 
front of a shock wave
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E  is the energy instantly released in the origin of the shock wave, 0ρ  is the mass density of the 

air, 41.1≈γ is the Poisson adiabat, and 0ζ  ≈ 0.93 is the dimensionless parameter characterizing 
the self-similar motion of the wave front4.  
 
As a result of interaction of the shock wave with an infinite plate, a considerable part of the incident 
wave energy is reflected back into the air, whereas the reminder is transformed into the energy of 
flexural plate vibrations. To evaluate the air pressure acting on the plate surface, the latter can be 
approximated as absolutely rigid. In this case, the surface pressure can be considered as the sum 
of the incident and reflected pressures. Using the usual linear acoustic reflection coefficient from a 
rigid surface (equal to 1), the resulting surface pressure can be expressed simply as twice the 
pressure in the incident wave . Thus, the equivalent normal surface force per unit area 3 sh

nF  created 
by the shock wave can be expressed using Eqns (1) - (3) as 
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In Eqn (4), the distance r  from the origin of laser-induced acoustic shock to a point of observation 

on the surface is equal to 22 h+ρ (see Figure 1).  
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Figure 1:  Interaction of laser-initiated air shock waves with a plate: (a) – geometry of 

the problem, (b) – experimental scheme. 
 
For further analysis, the frequency spectrum of the normal force  is required:  ),( ρtF sh
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Substituting Eqn (4) into Eqn (5), this frequency spectrum can be expressed as follows: 
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2.2 Modified Equivalent Surface Force 

In the previous section, the equivalent surface force (Eqn (4)) has been specified using Eqns (1)-
(3). The pressure due to the air shock wave in this description is an exponential function with its 
maximum value depending on the distance to the center of the laser-induced spark. The time 
history of the air pressure pulse calculated according to Eqns (1)-(3) can be seen in Figure 2 (a). 
Note however that a more detailed theoretical description and measurements of pressure pulses 
induced by shock waves show that, when the shock front approaches a given point, the pressure 
initially undergoes a discontinuous jump above the atmospheric pressure. Then it decreases below 
the atmospheric pressure (positive and negative phases), and finally returns to its initial value4.  
 
In the light of the above, the initial expression (1) can be modified to model shock wave pulses more 
realistically. For this purpose, an additional exponential term that helps to describe the negative 
pressure phase can be added to Eqn (1). The air pressure can then be expressed as follows (see 
also Fig. 2 (b)): 
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Figure 2:  Air pressure pulses calculated according to Eqn (1) - (a) and to Eqn (7) – (b). 

 
Using the above-mentioned modified expression for air pressure (Eqn (7)) and the acoustic 
approximation for the reflection coefficient, the equivalent surface force can be expressed as: 
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Using Fourier transform, the frequency spectrum of the above function can be expressed as follows: 
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Note that the above expressions for the equivalent surface force (Eqns (6) and (8)) have been 
derived using Eqns (2) and (3) for velocity and pressure of a strong air shock wave4. However, for 
distances  r  that are large enough, say , where  r0rr > 0  is the distance at which the particle 
velocity at a shock front becomes equal to the speed of sound, the above-mentioned expressions 
for surface forces are no longer valid. Figure 3 (a) shows how particle velocity at the shock front 
changes with the distance from the origin.  
In this case the air particle velocity and pressure beyond the distance 0084.00 =r  m (defined from 

Eqn (2) for m/s and J is the laser energy per pulse), have to be calculated using 

the characteristics of a normal acoustic wave propagating with the speed of sound . The wave 

pressure in this case is inversely proportional to the distance: 
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0v
rArP /)( = , where the constant A  

should be determined by equalising the air pressure in the shock wave to the acoustic wave 
pressure at . For an acoustic wave, Eqns (2) and (3) should be replaced by the following 
expressions: 
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Figure 3:  Shock front velocity as a function of height  of the laser spark and distanceh ρ  from 
the epicenter – (a);  pressure pulse in an acoustic wave according to Eqn (10) – (b). 

 
Using the above equations, one can obtain the following expression for  r > : 0r
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0

0
0 v

rr
t ac −

= .  Figure 3 (b) shows the pressure pulse according to Eqn (10).  
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Using again the linear acoustics approximation for the reflection coefficient, the equivalent normal 
surface force can be written down as the doubled incident pressure, and the frequency spectrum of 
the equivalent surface force can be expressed as: 
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2.3 Flexural Wave Generation in an Infinite Plate  

Since the problem under consideration is axisymmetric, the flexural response of the infinite plate to 
the spectral component of the applied normal force ),,( ωyxFn due to the air shock wave can be 
described by the equation in cylindrical coordinates, with the origin at the epicentre5: 
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Here )1(12/~ 23 ν−= dED  is bending stiffness of the plate, E~  is the Young’s modulus, d is the 
plate thickness, and ν  is the Poisson’s ratio. Equations (12) and (13) can be solved using the 
Green’s function method, which yields the following expression for bending displacement in the 
wavenumber-frequency domain5: 
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Here  is the plate flexural wavenumber, and 4/12 )/( Dhk sf ωρ= ),( kFn ω  is the Hankel 
transform of Eqn (13) which is to be calculated numerically:  
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The inverse Hankel transform describes the plate response to the acoustic shock in the space-
frequency domain: 
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Expressing the Bessel function in terms of Hankel functions and using the properties of Hankel 
functions, the bending displacement can be rewritten as: 
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The integral in Eqn (16) can be evaluated using the method of residues:  
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where the term in brackets represents the residue at fkk = . Using the well-known asymptotic 

formula for the Hankel function at 1>>ρfk , the expression for plate vertical displacement can be 
written as follows: 
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This expression, combined with the harmonic time factor , represents a cylindrical flexural 
wave propagating from the epicenter of the acoustic shock. Obviously, the vertical components of 
plate particle velocity and acceleration can be obtained from Eqn (18) as: 

tie ω−

),(),( ρωωρω wiw −=&   and                 ),(),( 2 ρωωρω ww −=&&
The time history of the displacement can be calculated from Eqn (18) using the inverse Fourier 
transform: 
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3 EXPERIMENTAL SIMULATIONS 
The rig used for the model experiments is shown in Figure 1 (b). Sparks were generated by a Q-
switch Surelite III-10 Nd: YAG laser with a 1064 nm wavelength and the energy of 0.8 J per pulse. 
For the measurements of flexural vibrations, a DJB A/20 accelerometer with the mass 18 g, 
sensitivity 35 pC/g and resonant frequency 28 kHz was used. The plate was made of laminated 
plastic material. Its horizontal dimensions and thickness were 1x1 m2 and 0.005 m respectively. 
Measurements were carried out for two heights of the laser generated spark over the plate surface:  
0.039 m and 0.003 m. The accelerometer was placed at two distances from the epicentre: 0.3 m 
and 0.6 m. Further details about the laboratory equipment and test rig can be found in Refs 1 and 2.  
 
 
4 COMPARISON OF THE THEORETICAL AND EXPERIMENTAL 

RESULTS 
In this section some of the results of theoretical modelling and experimental simulations are 
presented and compared (see Figures. 4 and 5). The material characteristics used in the analytical 
calculations are as follows: mass density 900=ρs  kg/m3, Young’s modulus 810.50~ =E N/m2, 

Poisson’s ratio .  3.0=ν
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Figure 4: Time history ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.3 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 
 

     
Figure 5: Time history ((a), (b)) and amplitude spectra ((c), (d)) of the plate acceleration at 

distance 0.6 m away from the epicenter: measured ((a), (c)) and calculated ((b),(d)). 
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The results shown in Figures 4 and 5 represent the time histories and amplitude spectra of the plate 
acceleration at distance 0.3 m and 0.6 m away from the epicenter. The height of the laser-
generated spark above the plate is 0.039 m and 0.003 m. Both series of graphs, experimental and 
theoretical, show oscillations at frequency about 5 kHz. Apparently, this behaviour is due to a 
coincidence phenomenon, when sound waves incident on a plate at a particular angle have a trace 
wavelength matching exactly to that of the plate bending wave.  
 
The experimental frequency spectra at h = 0.039 m are broader than the theoretical ones. At h = 
0.003 m the coincidence frequency is shifted slightly towards higher frequencies and some new 
peaks appear, whereas the theoretical ones do not change significantly. It was assumed that these 
discrepancies could be attributed to non-linear effects associated with reflection of shock waves. 
The non-linear reflection of shock waves has been taken into account in the later stage of this 
investigation using the well-known analytical formula for shock wave reflection from a rigid surface6. 
It has been shown, however, that taking into account the non-linear reflection simply increases the 
amplitude and slightly changes the shape of the pressure pulse, mainly in the zone of strong 
shocks. Beyond the critical distance 0r , the part of the pressure associated with non-linear 
reflection is small in comparison with that due to the linear one. As a result, the calculated time 
histories and amplitude spectra of the plate flexural waves do not differ significantly from those 
calculated using linear reflection. The only difference is in slightly increased amplitudes of the 
frequency spectra and time histories when non-linear reflection is taken into account.  
 
 
5 CONCLUSIONS 
In the present paper, a semi-analytical model of flexural wave generation in an infinite plate due to 
laser-initiated air shock waves has been developed. Analysis of the obtained results shows that the 
coincidence condition plays an important role in the observed phenomena, being responsible for 
harmonic oscillations around the coincidence frequency. The comparison of calculated theoretical 
results and experimentally observed data has shown reasonably good agreement. This proves that 
the developed semi-analytical model is reliable enough for prediction of flexural wave generation in 
an infinite plate due to laser-initiated air shock waves. Some observed discrepancies between 
experimental and theoretical results may be caused by different wave generation and propagation 
mechanisms that require further attention.  
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