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ABSTRACT: Tyre modal testing is frequently used for validation of numerical tyre models and 

identification of structural tyre model parameters. Most studies deal with the case of a tyre fitted to a 

rigidly mounted rim and focus primarily on in-plane dynamic behaviour. Here, an identification 

method of in-plane tire dynamics is developed for the case of a free tyre-rim combination. This 

particular case is important when the aim is to construct a full tyre model from modal testing, capable 

of predicting ride and NVH phenomena involving the whole vehicle. Key attributes of the proposed 

approach include ease of implementation and efficient processing of measurements. For each type of 

excitation, i.e. radial and tangential, both radial and tangential responses are recorded. Compounding 

of the corresponding radial/tangential eigenvectors results in smooth mode shapes, which are found to 

agree with those published in other analytical and experimental studies. 
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Introduction 

Recent advances in automotive industry introduced the requirement for accurate and efficient 

transient tyre simulation, which imposes the need for tyre belt modelling. To this end, the usual 

method of attack has been to either model the tyre belt by interconnected finite elements, see [1] to [3], 

or via physical modelling, using springs, dampers and point masses, see [4] to [6]. Finite element tyre 

models tend to be accurate and reliable at the expense of high demands of computational power. Both 

categories require extensive identification of either tyre or material properties. An alternative 

approach is the prediction of tyre belt response as the superposition of the contribution of a finite 

number of flexible modes included in the frequency range of interest. This approach combines 

efficient simulation along with feasible identification procedures. The aim of the present work is to 

demonstrate these procedures and the resulting tyre modal properties. 

 

Experimental procedure 

One of the first critical parameters to be determined, with regards to the experimental layout, is the 

boundary condition of the wheel assembly. The broader scope of the present research, which is the 

development of a transient tyre model directly from experimentally identified modal parameters, leads 

to the adoption of the free tyre/rim boundary condition. The key point in understanding the selection 

of the particular boundary condition is the nature of the eigenvectors and the eigenvalues of any 

structure. In general, these quantities represent the solution of the eigenproblem formulated by the 

homogeneous system of differential equations of motion. Any constraint imposed on the rim would 

result in the omission of the respective rows and columns from this system of equations and, 

consequently, the derived modal quantities would not be characteristic of the tyre structure as they 

would depend on the particular constraint type and geometry as well. Another problematic 

phenomenon associated with a rigidly mounted rim is the excitation of the attachment structure at 

natural frequencies close to the ones of the tyre belt. That case would jeopardise the experimental data 

and it would lead to unreliable eigenproperties. 



The circumference of the tyre is divided in 30 equally separated nodes, capable of moving in the two 

dimensional in-plane space. The radial and the tangential modes of the tyre belt are excited using an 

electromagnetic modal shaker by applying a force along the respective direction of the first node. The 

consequent response is obtained by placing the accelerometer at each node and by aligning its 

measuring axis with the radial or the tangential nodal direction. For each type of excitation 

(radial/tangential) both responses of every node are acquired.  

The modal shaker is driven by an amplified white Gaussian noise signal. In order to minimize the 

effect of experimental errors and environmental noise on measured data, each test is repeated five 

times and the respective transfer functions are averaged. In total, for each one of the 2 mode 

categories, 60 transfer functions are obtained. The experimental layout is presented in figure 1 and the 

equipment used along with the experimental parameters may be found in table 1. 

 

Post processing  

Having obtained the necessary transfer functions, the next step is the identification of the modal 

properties associated with each mode. The approach is divided into two distinct procedures. Initially, 

the eigenvalues located in the frequency band of interest are identified using a MDOF rational fraction 

polynomial method followed by the identification of the residuals of each mode using an extended 

version of the general inverse analysis method to account for the non-proportional viscous damping 

witnessed in pneumatic tyres
[7]

. 

Experimentally induced errors along with numerical inaccuracies led to several different residuals 

instead of a single exact value, affecting the form of the resulting frequency response function, see 

figure 2. In order to overcome this issue and define the most appropriate residue value amongst the 

calculated ones, an ad hoc selection criterion is implemented according to which each individual 

estimated frequency response function has a dominant effect on the – experimentally measured – total 

frequency response function within a frequency band close to the associated mode, see figure 3. 

Since the driving point residue is available, the radial and tangential eigenvectors can be calculated. 

Due to the non-proportional viscous damping demonstrated in tyres and the associated mode 



complexity, the mode shapes derived from the calculated eigenvectors represent travelling waves 

along the tyre belt circumference. In order to depict these mode shapes and make a first visual check 

of the acquired data quality, one has to transform these complex modes into real ones, which are 

obtained by calculating the eigenvectors and the eigenvalues of an undamped system possessing the 

same mass and stiffness properties of the one examined above, see figures 4 to 7) . 

From the resulting real modes it is evident that, with the current experimental layout, and by 

comparing the quality of the purely radial modes (figure 4) to the quality of the purely tangential ones 

(figure 7), the former are more effectively excited than the latter. Nevertheless, the existence of 

numerically induced inaccuracy and experimental errors is apparent in both radial and tangential 

modes. In order to obtain a set of mode shapes capable of being used in a simulation environment, a 

digital filtering procedure must locate and indicate all those spatial frequencies around the 

circumference of the tyre which distort the fundamental waveform of each mode. The outcome of this 

attempt is presented in figures 8 to 13 and it is a set of smooth real mode shapes which, when coupled 

with the initial complex phase component, transforms to a spatially noise-free set of complex modes. 

 

Results 

The identified natural frequencies and damping ratios corresponding to radial modes are 

presented in table 2. Note that each mode is associated with two eigenvalues, and hence with 

two natural frequencies and two damping ratios, due to the cross talking between radial and 

tangential modes meaning that radial excitation of the tyre will result in both radial and 

tangential responses. The same applies in the case of tangential excitation. 

In theory, the natural frequency derived by the radial component of each mode should be 

identical to the one derived by the tangential component. In practice this is not the case but it 

isnoteworthythatthemaximumdeviationbetweenthesetwovaluesis2.58%(column“Delta”

in table 2), proving the reliability of the experimental procedure and the quality of the 

identified data. Figures 8 and 9 demonstrate the mode shapes associated with the radial and 



the tangential response respectively and the compounded mode shapes are presented in 

Figure 10. 

With regards to the tangential modes, the identified natural frequencies and damping ratios 

can be found in table 3. Once again, there is agreement between natural frequencies 

corresponding to radial and tangential response, as the maximum value of Delta function is 

3%. This particular table includes two additional tangential modes, compared to the radial 

ones, the existence of which is predicted by analytical tyre-related research[8]
 but it has never 

been measured before (tangential modes 1 and 6). The explanation of this phenomenon is that 

due to the free-free boundary condition the respective radial modes have been transformed 

from flexible to rigid-body modes and as a result they have migrated to the rigid-body 

frequency band. Moreover, the tangential mode shapes corresponding to radial and tangential 

response can be found in figures 11 and 12 and the tangential mode shapes of the coupled 

response are presented in figure 13. 

Examination of figures 10 and 13 reveals a series of repeated mode shapes, namely the first 

two radial modes, the first three tangential modes and the 5
th

 and the 6
th

 tangential modes as 

well. This phenomenon is not in accordance with published literature and, in order to 

understand its origin, the motion of the rim was acquired and analysed. For the case of radial 

excitation, this process revealed a resonance of the rim close to 132Hz, which is the natural 

frequency of the second repeated radial mode shape. Similarly, for the case of tangential 

excitation, the analysis of rim motion revealed three resonances close to the first, the second 

and the sixth tangential mode. What this observation means is that although the mode shapes 

are similar within each one of these three cases, they actually describe a different state of the 

tyre/rim assembly. In the first case consisting of two repeated radial modes, the first mode 

describes tyre belt deformation only, while the second radial mode includes the same tyre belt 

deformation along with motion or deformation of the rim. An identical interpretation of the 



rim modes applies to the remaining two cases, where the third and the fifth tangential mode 

demonstrate tyre belt deformation only. The remaining tangential modes – at 108Hz, 116Hz 

and at 196Hz) - include rim modes along with the deformation of the tyre belt. The 

determination of whether these rim modes are flexible or they describe rigid-body motion is 

beyond the scope of the present work. 

 

Conclusion 

An experimental procedure to obtain the eigenvalues and the eigenvectors of a pneumatic 

tyre has been designed. The tyre is freely suspended and divided into 30 nodes. The 

excitation signal is applied on the first node and the corresponding tyre response is acquired 

along the radial and the tangential direction of every node. Each test is performed 5 times in 

order to eliminate noise and the influent of experimental errors on the acquired data.  

Having obtained the excitation and the response in the time domain, they are transformed to 

the frequency domain and the resulting frequency response functions are calculated. Using a 

typical FRP algorithm, the eigenvalues of the system have been calculated. In order to 

accommodate for out of band modes, the general inverse analysis method was adopted and 

modified to allow for non-proportional viscous damping witnessed in tyres. 

The identification of the system eigenvalues led to the natural frequency and the damping ratio of 

each mode. As expected from previously published works, there is agreement in terms of natural 

frequencies for the same mode along different directions and between radial and tangential modes. 

One interesting finding is the observation of two additional tangential modes, which is predicted by 

previous analytical work but it has never been experimentally verified before. 

The identified complex modes of the structure enabled the calculation of the respected real ones. The 

quality of the corresponding mode shapes, especially in the cases which involved either tangential 

excitation or tangential response, led to the requirement of filtering out all spatial frequencies but the 



one forming the mode shape along the tyre circumference. Without losing any piece of fundamental 

information, the mode shape quality is significantly enhanced. 
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TABLE 1 – Experimental equipment and parameters 

Tyre Continental  195/50 R15 

Sampling Rate 20000 [Hz] 

Frequency Band [1 3000] [Hz] 

Force Transducer Brüel & Kjær – Type 8230 

Accelerometer Brüel & Kjær – Type 4332 

Charge Amplifier 

Brüel & Kjær – Nexus 

Type 2691-A-0S2 

Modal Shaker Brüel & Kjær – LDS V201 

Acquisition Card NI PCIe-6259 

 

TABLE 2 – Identified natural frequencies and damping ratios of radial modes 

Mode 

Nat. Freq. [Hz] 

(radial resp.) 

Nat Freq. [Hz] 

(tangential resp.) 

Delta [%] 

𝚫𝛚 =
|𝛚𝐫 −𝛚𝐭|

(𝛚𝐫 +𝛚𝐭) 𝟐⁄
 

Damp. Ratio [%] 

(radial resp.) 

Damp. Ratio [%] 

(tangential resp.) 

1 115 118 2.58 3.63 3.81 

2 131 133 1.51 6.19 5.91 

3 155 153 1.30 6.61 6.28 

4 180 180 0.00 5.93 6.26 

5 208 207 0.48 5.48 6.05 

6 242 241 0.41 3.28 2.35 

7 275 276 0.36 5.81 5.91 

8 320 321 0.31 5.61 6.71 

9 371 370 0.27 6.87 6.87 

10 413 420 1.68 7.05 5.77 



TABLE 3 – Identified natural frequencies and damping ratios of tangential modes 

Mode 

Nat. Freq. [Hz] 

(radial resp.) 

Nat Freq. [Hz] 

(tangential resp.) 

Delta [%] 

𝚫𝛚 =
|𝛚𝐫 −𝛚𝐭|

(𝛚𝐫 +𝛚𝐭) 𝟐⁄
 

Damp. Ratio [%] 

(radial resp.) 

Damp. Ratio [%] 

(tangential resp.) 

1 108 106 1.87 4.14 3.54 

2 116 117 0.86 4.22 4.09 

3 134 135 0.74 6.50 6.63 

4 153 150 1.98 6.06 6.25 

5 177 177 0.00 5.28 6.48 

6 196 198 1.02 4.23 8.18 

7 207 208 0.48 4.64 5.26 

8 236 238 0.84 4.47 4.24 

9 273 272 0.37 4.51 4.56 

10 318 318 0.00 4.74 4.58 

11 375 375 0.00 5.95 5.18 

12 404 403 0.25 4.06 4.59 

13 473 459 3.00 1.64 2.20 
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FIG. 1 – Experimental layout 

 

 

FIG. 2 – Calculated frequency response functions corresponding to a range of calculated 

residue values 

 

 

FIG. 3 – Selection of the residue value generating the FRF closer to the experimentally 

obtained mode 

 



 

FIG. 4 – Real mode shapes (radial excitation, radial response) 

 

 

FIG. 5 – Real mode shapes (radial excitation, tangential response)
a
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FIG. 6 – Real mode shapes (tangential excitation, radial response) 

 

 

FIG. 7 – Real mode shapes (tangential excitation, tangential response)
 a
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FIG. 8 – Noise-free real mode shapes (radial excitation, radial response) 

 

 

FIG. 9 – Noise-free real mode shapes (radial excitation, tangential response)
 a

 

 

Radial modes - Radial response
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Radial modes - Tangential response
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FIG. 10 – Noise-free real radial mode shapes 
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FIG. 11 – Noise-free real mode shapes (tangential excitation, radial response) 

 

 

FIG. 12 – Noise-free real mode shapes (tangential excitation, tangential response)
 a

 

 

Tangential modes - Radial response
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Tangential modes - Tangential response
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FIG. 13 – Noise-free real tangential mode shapes 

 

 

 

 

 

 

 

a
 For clarity, tangential response is presented as radial with clockwise tangential deformation 

being replaced by a radially outwards one and vice versa. 
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