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Abstract: This paper presents a model predictive control approach for regulating the attitude
of magnetically actuated satellites. Unlike other contributions in this area, a predictive control
approach is developed which guarantees closed-loop stability of satellite configurations with
unstable open-loop pitch dynamics. With the pitch axis being unstable, two magnetic dipoles
are used exclusively for regulation of this axis. This allows the dynamics to be treated as a linear
time-invariant system, and a simple proportional–derivative (PD) scheme is implemented. A
model predictive controller is designed to regulate the lateral dynamics, with a Lyapunov
function derived to guarantee asymptotic stability of the closed-loop system. The regulation of
the lateral dynamics is achieved with a singe dipole moment, with a novel reformulation of the
lateral dynamics also providing an explicit link between the two controllers. Simulations
demonstrate the effectiveness and stability of the proposed algorithm when applied to the
European Space Agency’s GOCE satellite.

Keywords: model predictive control, magnetic attitude control, stability constrained
predictive control

1 INTRODUCTION

The area of spacecraft magnetic attitude control is

one that has attracted much recent attention in

research literature. Use of magnetic dipoles to

control the attitude of a spacecraft offers a light-

weight, smooth, and cost-effective method of con-

trol. Although this is the case, the torque generated

through use of magnetic dipoles is constrained to lie

in the plane orthogonal to the local magnetic field

vector, with one axis being instantaneously under-

actuated. If the satellite is on an inclined orbit,

suitable variation of the magnetic field allows

controllability in the long term, but presents a

significant challenge from a control perspective.

Several different approaches to the magnetic

attitude control problem have been proposed by

different authors, varying in type and complexity [1–

16]. Perhaps the most basic approach suggested is

use of a simple proportional–derivative (PD) con-

troller, with the control signal being calculated as if

full controllability were available. This ‘ideal’ control

signal is then projected onto the controllable plane.

This is an approach adopted in reference [1] and

more recently in reference [2]. The use of a PD-based

controller is also considered in reference [3],

although such a basic control law is not seen to be

suitable, and the controller is modified to vary as a

function of the magnetic field to improve roll axis

performance.

Although PD control is a simple approach to the

problem, it cannot always give the desired perfor-

mance. As a result, several authors try to exploit the

pseudo-periodic nature of the Earth’s magnetic field

to use periodic linear quadratic control theory. Such

an approach is presented in reference [4], with the

resulting control law depending on the solution of

the time-varying Riccati equation. Under certain

assumptions, the solution to the Riccati equation

tends to a constant value and hence the final

controller simplifies to a state feedback controller,

with the only time variance of the problem appear-

ing from the magnetic field vector (which can

easily be measured by onboard magnetometers). A
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periodic quadratic controller similar to this ap-

proach is presented in reference [5], but this is then

extended to consider optimal periodic disturbance

rejection.

In addition to optimal periodic control, research-

ers consider other approaches to the problem. A

time-varying PD-like control approach consisting of

full state feedback control is proposed in references

[6] and [7]. Almost global stability is demonstrated,

while also taking into account some practical as-

pects such as actuator failure and control with-

out rate feedback. A sliding mode controller as well

as an energy-based method are suggested as possi-

ble solutions to the attitude control problem in

reference [8].

Model predictive control (MPC) is potentially a

suitable candidate for dealing with the magnetic

attitude problem, with its ability to use the measured

magnetic field within the control law and to easily

include constraints within the optimization scheme.

In reference [9] a novel approach to the attitude

control problem is presented by considering the

system as time invariant, and introducing the time

variance through an appropriate set of constraints.

An explicit model predictive control scheme is

presented in reference [10], with an aim to reducing

the computational burden imposed as much as

possible. This approach suitably removes large initial

Euler angles and, when compared to other non-

linear controllers, presents onboard energy savings

of up to 50 per cent. Although both of these

approaches demonstrate good overall performance,

the issue of stability is not yet answered. Floquet

analysis is suggested to verify stability [9], although

this is an after-the-fact check and stability cannot be

guaranteed a priori.

On the stability of magnetic attitude regulation the

main recent contributions come from references [4],

[6], and [11], and all derive controllers based on

open-loop stable satellite configurations. These

provide some very interesting contributions to the

research literature but are inapplicable for the

regulation of satellites about an unstable equili-

brium. The Gravity Field and Steady State Ocean

Circulation Explorer (GOCE) satellite discussed in

this paper has mission requirements such that the

inertia distribution leads to unstable pitch dynamics.

Within the literature the only notable contributions

presenting stability analysis that can be applied to

satellites with unstable pitch dynamics are refer-

ences [5] and [15]. Both of these approaches rely on

the assumption that the magnetic field is periodic at

the orbital frequency, which is a common but strictly

incorrect assumption to make (a point also noted in

references [5] and [6]).

The main aim of the current paper is to provide

the first model predictive approach to magnetic

attitude control for which stability can be guaran-

teed a priori. In addition the analysis is designed

specifically to guarantee stability even for a satellite

with an open-loop unstable pitch configuration.

Finally the analysis is carried out without relying

on the frequently adopted assumption that the

Earth’s magnetic field is periodic at the orbital

frequency.

This paper is structured as follows. Section 2

introduces the benchmark satellite and the dynamic

equations. With the attitude regulation problem

being considered, a linear model is sufficient to fully

describe the attitude dynamics. Section 3 briefly

introduces the MPC approach, while section 4

considers a novel reformulation of the attitude

dynamics. This allows the pitch controller to be

considered as a linear time-variant (LTI) problem

while also providing an explicit equation to deter-

mine the magnetic dipole vector.

A stability enforced model predictive controller

consisting of full state feedback is proposed for

regulation of the lateral dynamics. A suitable

stability constraint is derived by consideration of a

velocity feedback controller, and asymptotic stability

about all three satellite axes is demonstrated. Section

5 considers performance of the proposed controller

design under initial conditions and also to a series of

environmental disturbances.

2 SPACECRAFT DYNAMICS UNDER MAGNETIC
CONTROL

Set for launch in 2008, the GOCE satellite is part of

the European Space Agency’s (ESA) living planet

programme. The main aim of the satellite is to

measure the Earth’s gravity field gradient and hence

the control aim is to cancel all non-gravitational

angular accelerations acting upon GOCE. The se-

lected orbit is a sun-synchronous, near-polar orbit of

96.5u inclination, at an altitude of 270 km, with an

orbital period of approximately 5400 s. The inertia

distribution is summarized in Table 1, leading to an

Table 1 Satellite inertia distribution

Satellite principal axis Inertia (kg m2)

Roll (Ixx) 152.2
Pitch (Iyy) 2690.8
Yaw (Izz) 2652.6
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unstable pitch and neutrally stable lateral config-

uration. For attitude regulation GOCE is equipped

with three mutually perpendicular magnetic dipole

rods each with 400 Am2 saturation limit. The perfor-

mance requirements of the attitude controller can be

found in Table 2, while the interested reader may

consult reference [3] for further information on the

GOCE mission.

Although the true spacecraft dynamics are fully

described by a series of non-linear differential equa-

tions, under certain assumptions these equations can

be linearized with minimal loss of accuracy. If

linearization is carried out about the equilibrium

nadir-pointing attitude – assuming a circular orbit,

small Euler angles, and deviation of body rates from

nominal values – the following linearized model can

be produced [4]. Once a satellite has acquired an Earth

pointing attitude on orbit (i.e. once the initial high

pointing angle and angular rates have been removed

through non-linear control), the satellite dynamics are

approximated well by such a linear model

_xx tð Þ~A x tð Þz
03, 3

I{1

� �
T tð Þ ð1Þ

where

A~

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

{4v2
0s1 0 0 0 0 v0 1{s1ð Þ

0 3v2
0s2 0 0 0 0

0 0 v2
0s3 {v0 1zs3ð Þ 0 0

2
666666666664

3
777777777775

x tð Þ~ Q h y vx vy vz

� �T

where w, h, y are the spacecraft pointing angles

about roll, pitch, and yaw axes respectively; vx, vy,

vz are the spacecraft angular rates about roll, pitch,

and yaw axes respectively; v0 is the orbital rate; I is

the inertia matrix; T is the control torque (with

components Tx, Ty, Tz); and si 5 (Ij 2 Ik)/Ii for the

index sets (1,2,3), (2,3,1), and (3,1,2).

Note that the co-ordinate system used throughout

this paper defines the spacecraft orientation relative

to a local-level co-ordinate system. The local-level

system has the +z axis pointing towards the nadir,

the y axis perpendicular to the orbital plane (defined

by position and velocity vector), and the x axis

defined by the right-hand rule.

When considering magnetically controlled space-

craft, torque-rods generate control torques through

interaction with the Earth’s own magnetic field. This

torque is perpendicular to the Earth’s magnetic field

vector and is described below in equation (2)

T~M|Bm ð2Þ

where M is the vector of magnetic dipole moments

(with components Mx, My, Mz) and Bm is the Earth’s

magnetic field vector (with components Bmx
,

Bmy
, Bmz

).

3 MODEL PREDICTIVE CONTROL

3.1 The MPC approach

MPC is an advanced control strategy based largely

around an internal model of the plant under control.

This model is used to predict the expected future

behaviour of the plant, with the resulting informa-

tion being used to determine the ‘optimal’ control

input to be applied. A typical MPC strategy adopts

the following basic procedure.

1. An internal model is used to predict the future

satellite behaviour over a finite future time period

known as the prediction horizon.

2. This predicted behaviour can be compared to a

desired reference trajectory, with an error vector

being generated.

3. The optimum control sequence is defined by

minimizing the predicted error over the predic-

tion horizon.

4. The first input in the ‘optimal’ control sequence is

applied to the plant, with the remaining sequence

being discarded and the whole process then

repeated at the next sampling interval.

Table 2 GOCE performance requirements

Axis Max. pointing angle (deg) Max. angular rate (rad/s) Max. angular acc. (rad/s2)

Roll 8 2e-4 1.8e-6
Pitch 3 3e-5 0.9e-6
Yaw 8 2e-4 0.9e-6
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3.2 Control problem formulation

Consider a discrete linear time-varying system of the

following form

x kz1ð Þ~Wx kð ÞzC kð Þu kð Þ ð3Þ

Equation (3) can be iterated over a finite future

period to form predictions of the future state vector

in terms of the current state and a future control

sequence

X~

W

W2

W3

..

.

WN

2
666666664

3
777777775

x kð Þ

z

C kð Þ 0 0 0

WC kð Þ C kz1ð Þ 0 0

W2C kð Þ WC kz1ð Þ P 0

..

. ..
.

P
..
.

WN{1C kð Þ WN{2C kz1ð Þ � � � C kzN{1ð Þ

2
6666666664

3
7777777775

U

ð4Þ

where

X~ x̂x kz1ð Þ x̂x kz2ð Þ � � � x̂x kzNð Þ½ �T

U~ ûu kð Þ ûu kz1ð Þ � � � ûu kzN{1ð Þ½ �T

X is the predicted future state vector, U is the future

predicted control sequence, and N is the prediction

horizon.

The predictions carried out in equation (4) can be

used to determine an optimal control sequence over

the prediction horizon to minimize a defined

performance index. The performance index to be

minimized typically takes the quadratic form shown

in equation (5)

J kð Þ~
XN

i~1

x̂x kzið ÞTQ x̂x kzið Þzûu kzi{1ð ÞTR ûu kzi{1ð Þ

zx̂x kzNð ÞTQT x̂x kzNð Þ ð5Þ

where Q . 0 is the state penalty weighting, R . 0 is

the control weighting matrix, and QT . 0 is the

terminal penalty providing an additional weighting

on the last state in the prediction horizon.

3.3 Stability enforced MPC

Stability of model predictive control is generally

achieved through use of a carefully chosen terminal

penalty (see reference [17]) or an explicit constraint

within the optimization process (see reference [18]).

The second method is relevant to this paper and is

briefly described. According to reference [18] if

the optimization problem in (5) is solved subject to

the constraint x(k + 1)TPx(k + 1) ( x(k)TPx(k) 2 d(k),

asymptotic stability of the closed-loop system is

guaranteed. The stability argument proceeds as

follows.

1. A discrete-time Lyapunov function is defined

such that at time k, V(k) 5 x(k)TPx(k).

2. At time k + 1 the Lyapunov function becomes

V(k + 1) 5 x(k + 1)TPx(k + 1).

3. The change of Lyapunov function is calculated as

V(k + 1) 2 V(k) 5 x(k + 1)TPx(k + 1) 2 x(k)TPx(k).

4. Substitution of the stability constraint leads to

V(k + 1) 2 V(k) ( 2d(k).

5. Providing d(k) . 0 the Lyapunov function de-

creases at each time step and asymptotic stability

is guaranteed.

This approach provides a simple and intuitive

method of guaranteeing stability; however, the

analysis does make the assumption that the optimi-

zation problem in equation (5) remains feasible

under the stability constraint. In order to implement

this approach and ensure the stability argument

remains valid, the P matrix must be carefully chosen

to ensure a feasible control solution exists. This is a

non-trivial problem for time-varying systems such as

the magnetic attitude control problem considered in

this paper. A systematic approach to tackle this

difficulty will be proposed in section 4.3.

4 CONTROLLER DESIGN

4.1 Pitch control

With the open-loop pitch dynamics unstable, the

initial concern is to stabilize this axis. Owing to the

nature of the Earth’s magnetic field this is always

possible. Figure 1 shows the variation of the Earth’s

magnetic field in spacecraft co-ordinates. A dipole

model assuming no Earth rotation and no orbit

precession is used (see reference [4]), but this is

adequate to illustrate the controllability about the

pitch axis.

From equation (2) the pitch torque can be

calculated as Ty~{Bmz
MxzBmx

Mz. It is clear from

Fig. 1 that the X and Z magnetic field components

622 M Wood and W H Chen
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will never both equal zero and hence controllability

of the pitch axis is always achievable through either

the Mx or Mz dipole moment. As a result both of

these dipoles are used specifically for control of the

pitch axis. This only leaves the My dipole to regulate

both the roll and yaw axes; however, this single

dipole control has already been shown to be feasible

when considering control of a momentum-biased

satellite [14–16].

With the pitch and lateral dynamics effectively

being treated separately, equation (1) is decoupled

to obtain the following relationship for the pitch

dynamics

_hh

_vvy

" #
~

0 1

3v2
0s2 0

� �
h

vy

� �
z

0

1
�

Iy

� �
Ty ð6Þ

With both the Mx and Mz dipoles available to control

the pitch dynamics, a simple PD controller is im-

plemented as

Ty~{kph{kdvy ð7Þ

where kp and kd are controller gains.

The controller gains are chosen to ensure the

closed-loop eigenvalues have negative real parts, and

hence asymptotic stability is guaranteed. Although

this provides a required torque, this must be

converted to equivalent dipole moments to be

implemented. To define an explicit method of carry-

ing this out, the lateral dynamics are reformulated.

4.2 Reformulation of lateral dynamics

From equation (1) the lateral dynamics can be

defined by equation (8)

_ww

_yy

_vvx

_vvz

2
666664

3
777775
~

0 0 1 0

0 0 0 1

{4v2
0s1 0 0 v0 1{s1ð Þ

0 v2
0s3 {v0 1zs3ð Þ 0

2
666664

3
777775

w

y

vx

vz

2
666664

3
777775

z

0 0

0 0

1=Ix 0

0 1=Iz

2
666664

3
777775

Tx

Tz

" #

ð8Þ

Fig. 1 Magnetic field in spacecraft co-ordinates
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From equation (2), representing the actuator dy-

namics, the control torques can be represented in

terms of magnetic dipole moments in equations (9)

and (10)

Tx

Tz

� �
~

Bmz

{Bmx

� �
MyzBmy

{Mz

Mx

� �
ð9Þ

{Bmz
MxzBmx

Mz~Ty ð10Þ

As a design choice it is also possible to define the dot

product of the dipole vector and magnetic field

vector equal to zero [9]. Practically this minimizes

the norm of the dipole vector and avoids applying

dipole moments in the direction of the magnetic

field, which produces zero torque and only serves to

waste energy

Bmx
MxzBmz

Mz~{Bmy
My ð11Þ

Combining equations (10) and (11) leads to the

following relationship

{Bmx
{Bmz

{Bmz
Bmx

� �
{Mz

Mx

� �
~

Ty

{Bmy
My

" #
ð12Þ

This can then be simplified to derive the following

relationship for the lateral dipole moments

{Mz

Mx

" #
~

1

{ B2
mx

zB2
mz

� � Bmx
{Bmy

Bmz

Bmz
Bmx

Bmy

" #
Ty

My

" #
ð13Þ

It should be noted that to avoid singularity prob-

lems when calculating the lateral dipole moments,

B2
mx

zB2
mz

� �
=0. The only time this condition does

not hold is for a satellite operating on an equatorial
orbit. As magnetically actuated satellites typically
operate on near-polar orbit, this numerical issue is
not of concern. Substitution of equation (13) into
equation (9) leads to

Tx

Tz

" #
~

1

B2
mx

zB2
mz

� �|

{Bmx
Bmy

Bmz
B2

mx
zB2

my
zB2

mz

� �

{Bmy
Bmz

{Bmx
B2

mx
zB2

my
zB2

mz

� �
2
64

3
75 Ty

My

" # ð14Þ

_ww

_yy

_vvx

_vvz

2
666664

3
777775
~

0 0 1 0

0 0 0 1

{4v2
0s1 0 0 v0 1{s1ð Þ

0 v2
0s3 {v0 1zs3ð Þ 0

2
666664

3
777775

|

w

y

vx

vz

2
666664

3
777775
z

1

B2
mx

zB2
mz

� �|

0 0

0 0

{Bmx
Bmy

�
Ix Bmz

B2
mx

zB2
my

zB2
mz

� �.
Ix

{Bmy
Bmz

�
Iz {Bmx

B2
mx

zB2
my

zB2
mz

� �.
Iz

2
6666664

3
7777775

Ty

My

" #

ð15Þ

For the purposes of the lateral controller design, Ty

may be treated as an external disturbance, with My

being the only control variable. As a result, equation

(15) is written in the more compact form

_xxlat~AlatxlatzBlatMy ð16Þ

where

Alat~

0 0 1 0

0 0 0 1

{4v2
0s1 0 0 v0 1{s1ð Þ

0 v2
0s3 {v0 1zs3ð Þ 0

2
666664

3
777775

Blat~D

0

0

Bmz
=Ix

{Bmx
=Iz

2
666664

3
777775

, D~
B2

mx
zB2

my
zB2

mz

� �

B2
mx

zB2
mz

� �

xlat~ w y vx vz½ �T

Remark 1. The reformulation of the dynamics now

offers an explicit link between the pitch and lateral

controllers. Once the pitch torque Ty has been

determined by the pitch controller and My by the

lateral controller, the full dipole vector can be

determined using equation (13).

Remark 2. The neglecting of the pitch torque Ty

for the purpose of the lateral controller design is a

reasonable assumption to make for two main
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reasons. First, the disturbance from the pitch control

is attributable to the Bmy
magnetic field component,

and in the spacecraft co-ordinate frame this is

comparatively small in relation to the Bmx
and Bmz

components. Second, as the longitudinal dynamics

are fully controllable, the closed-loop pitch dy-

namics are considerably faster than the lateral

dynamics; therefore th vysR 0 and Ty R 0 relatively

quickly. This assumption is analytically supported

through Lemma 2 in section 4.4.

4.3 Stability enforced model predictive control of
lateral dynamics

The system in equation (16) is considered under a

model predictive control scheme. This system is

discretized to provide the following discrete-time

model

xlat kz1ð Þ~Wlatxlat kð ÞzClat kð ÞMy kð Þ ð17Þ

where

Wlat~exp AlatTsð Þ, Clat~

ðTs

0

exp Alatgð Þdg

2
4

3
5Blat

and Ts is the controller sample time. This is directly

analogous to equation (3) and can be iterated

according to equation (4) to provide predictions of

the system response. The optimal control signal is

then calculated through minimization of the follow-

ing performance index

J kð Þ~
XN

i~1

x̂xlat kzið ÞTQx̂xlat kzið Þ

zM̂My kzi{1ð ÞTRM̂My kzi{1ð Þ

zx̂xlat kzNð ÞT nQð Þx̂xlat kzNð Þ ð18Þ

subject to

x̂xlat kz1ð ÞTPx̂xlat kz1ð Þ¡xlat kð ÞTPxlat kð Þ{d kð Þ ð19Þ

where Q . 0 is the state weighting matrix, R . 0 is the

control weighting matrix, N is the prediction hor-

izon, n is a positive integer, d(k) > 0, and P . 0.

The constraint in equation (19) is included to

enforce stability of the control law as described in

section 3.3. As already discussed, it is imperative the

constraint matrix P is chosen such that the optimi-

zation problem remains feasible. The problem of

choosing an appropriate matrix becomes particu-

larly challenging when considering time-varying

systems.

In this paper the problem of choosing a feasible

constraint matrix is tackled by first analysing the

stability of an auxiliary controller. If it can be shown

that a quadratic Lyapunov function exists under

another control strategy, this Lyapunov function

could be used as the constraint in equation (19),

guaranteeing that the predictive controller would

always have the option of implementing the auxiliary

control law to satisfy the constraint. The auxiliary

controller investigated is a simple velocity feedback

scheme.

Lemma 1 (Krasovskii-LaSalle) [19]. Suppose

there exists a function V : R+6Rn R R having the

same period as the system such that V is a positive

definite function and is radially unbounded, and

V̇ ( 0. Define R 5 {x [Rn : Zt > 0 such that V̇(t, x) 5 0}

and suppose R does not contain any trajectories of

the system other than the trivial trajectory. Then the

equilibrium 0 is asymptotically stable.

Theorem 1. The system described by equation

(16) is asymptotically stable under the velocity

feedback My~{Kv Bmz
vx{Bmx

vzð Þ for Kv . 0.

Proof. Consider the Lyapunov function

V ~xT
latP2xlat ð20Þ

where

P2~

4v2
0s1 Ix=Izð Þ 0 0 0

0 {v2
0s3 0 0

0 0 Ix=Iz 0

0 0 0 1

2
6664

3
7775

V . 0 as for a satellite with GOCE configuration

s1 . 0 and s3 , 0.

The time derivative of equation (20) is now shown

to be negative semi-definite

_VV ~ _xxT
latP2 _xxlatzxT

latP2 _xxlat ð21Þ

_VV ~xT
lat AlatzBlatKð ÞTP2xlat

zxT
latP2 AlatzBlatKð Þxlat ð22Þ

where

K~Kvt 0 0 {Bmz
Bmx

s

Equation (22) can be written as

Model predictive control of low Earth-orbiting satellites 625

JSCE505 F IMechE 2008 Proc. IMechE Vol. 222 Part I: J. Systems and Control Engineering



_VV ~xT
lat P2 AlatzBlatKð Þz P2 AlatzBlatKð Þ T
� 	

xlat

ð23Þ

where, from equations (16) and (20)

P2 AlatzBlatKð Þ~

0 0 4v2
0s1

Ix

Iz
0

0 0 0 {v2
0s3

{4v2
0s1

Ix

Iz
0 {KvDB2

mz

.
Iz v0 1zs3ð Þz KvDBmx Bmz

Iz

0 v2
0s3 {v0 1zs3ð Þz KvDBmx Bmz

Iz
{KvDB2

mx

.
Iz

2
66666664

3
77777775

Simplifying equation (23) allows the Lyapunov fun-

ction to be written in its final form

_VV ~{
2DKv

Iz
Bmz

vx{Bmx
vzð Þ2 ð24Þ

Hence V̇ ( 0 if Kv . 0.

It has been shown that the derivative of the

Lyapunov function candidate is less than or equal

to zero, which is a sufficient condition to establish

stability of the system. As the system is periodic,

asymptotic stability may be proven through Lem-

ma 1.

It has already been shown that there exists a

positive definite; function whose derivative is nega-

tive semi-definite; hence it need only be shown that

there exist no trajectories of the system in R. It can

be seen from equation (24) that V̇(t, x) 5 0 when the

following condition occurs

vz

vx
tð Þ~ Bmz

Bmx

tð Þ ð25Þ

The condition in equation (25) coincides with a

control input of My 5 0, and as a result it is quite

simple to prove that R does not contain any

trajectories of the open-loop dynamics. The Earth’s

magnetic field is periodic with a time period equal to

that of the Earth’s rotation (Te 5 24 h). Consider

some initial time t, such that Bmz
tð Þ~0. In order for

equation (25) to hold, vz(t) 5 0. As the Earth’s

magnetic field is periodic, Bmz
tznTeð Þ~0, where n

is an integer. The open-loop dynamics have approx-

imate period of Topen 5 5.6T0 (where T0 5 2p/v0 is

the orbital period). As the GOCE satellite completes

precisely 16 orbits per day, Tearth 5 2.86Topen. If

equation (25) is a trajectory of the system,

vz(t + n2.86Topen) 5 0, which clearly in general it will

not. The relationship in equation (25) does not

represent a trajectory of the system and hence

according to Lemma 1 it is concluded that the
system is asymptotically stable under the proposed
control action.

It has now been shown that there always exists a

control action My~{Kv Bmz
vx{Bmx

vzð Þ such that

the Lyapunov function V 5 xlat
T P2xlat has negative

semi-definite derivative. This directly implies that if

an equivalent discrete-time Lyapunov function is

defined as V(k) 5 xlat(k)TP2xlat(k), there exists a

control such that V(k + 1) ( V(k). If the stability

constraint in equation (19) is now chosen such that

P 5 P2, and d(k) is chosen to be less than or equal to

the reduction in the Lyapunov function achievable

under the velocity controller, the stability constraint

will always remain feasible. As it has now been

shown that the stability constraint is always feasible,

the system in equation (16) is locally asymptotically

stable under the stability-enforced predictive con-

troller according to the argument in section 3.3.

4.4 Three-axis stability

The analysis in the preceding sections is now

combined to demonstrate asymptotic stability about

all three axes.

Lemma 2 [20]. Consider the general system

_xx~f x, zð Þ ð26Þ

_zz~g zð Þ ð27Þ

Suppose the equilibrium x 5 0 of ẋ 5 f(x, 0) is locally

asymptotically stable, and the equilibrium z 5 0 of

ż 5 g(z) is locally asymptotically stable. Then the

equilibrium (x, z) 5 (0, 0) of the above system is

locally asymptotically stable.

Theorem 2. The system in equation (1) is

asymptotically stable with the origin under the

combination of the PD control of the pitch dynamics

in reference [7] and the model predictive control of

the lateral dynamics proposed in section 4.3.

Proof. The full lateral dynamics in equation (15)

can be written in the general form ẋlat 5 f(xlat, xlong).

Through the analysis in section 4.3 the lateral

dynamics are shown to be asymptotically stable

under the proposed stability-enforced MPC algo-

rithm, if the disturbance caused by the pitch axis

control is neglected. As the disturbance from the

pitch control is only zero when the state vector

reaches zero, section 4.3 demonstrates that xlat 5 0 of

ẋlat 5 f(xlat, 0) is locally asymptotically stable.

The pitch dynamics in equation (6) under the

control law in equation (7) can be written in the

� �
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general form ẋlong 5 g(xlong). Through the analysis in

section 4.1 the equilibrium xlong 5 0 of ẋlong 5 g(xlong)

is shown to be locally asymptotically stable.

Through Lemma 2, if the system in equation (1) is

subject to the proposed control action, the equili-

brium (xlat, xlong) 5 (0, 0) is locally asymptotically

stable.

Remark 3. The proposed controller has now been

shown to be asymptotically stable. Stability is

guaranteed without the assumption that the Earth’s

magnetic field is periodic at the orbital frequency.

Guaranteeing stability in this manner also provides

robustness to any orbital drift or magnetic field

modelling errors as, providing the current magnetic

field can be accurately measured, the stability

argument remains valid.

5 SIMULATION

To validate the analysis presented in section 4 and to

demonstrate the performance achievable through

the proposed controller, a simulation study is

presented. The controller tuning parameters are

summarized in Table 3. The controller sampling

time is chosen as 10 s which, owing to the slow

nature of the attitude dynamics, provides sufficiently

high sampling (a 0.1 Hz sampling rate corresponds

to 70 times the bandwidth frequency of the unstable

pitch dynamics). Use of a longer sampling time also

provides additional time to perform the necessary

online computations for the predictive controller.

Simulations have shown that long prediction and

control horizons do not offer performance benefits

for this constrained optimization problem and

therefore a prediction and control horizon of five

time steps gives the best performance at minimum

computational burden.

In order to evaluate the performance of the

proposed controller, the response is first assessed

to initial conditions of 1u pointing about each axis

and angular rates of 0.0005 deg/s (typical for this

phase of the attitude control). Figure 2 shows that

the initial conditions are effectively removed while

also demonstrating the stability of the controller.

The allocation of two dipoles for specific control of

the pitch axis easily handles the unstable dynamics.

Although only controlled by a single dipole moment

the roll/yaw dynamics are effectively handled, with

the numerical simulations validating the Lyapunov

function derived in the previous section.

As well as demonstrating good nominal perfor-

mance, the controller must successfully regulate the

satellite attitude when subjected to realistic distur-

bances due to the external environment. Owing to

the low Earth orbit of the GOCE satellite, the attitude

is significantly disturbed by aerodynamic torques

from the upper atmosphere. To avoid decay of the

satellite orbit, GOCE is also equipped with a thruster

assembly which further disturbs the satellite atti-

tude. Figures 3 to 6 demonstrate the ability of the

controller to regulate the satellite attitude and meet

the performance specifications, even in the presence

of these disturbances. The attitude is regulated

within 3u of the nadir with the angular rate and

accelerations remaining comfortably within required

bounds. The magnetic dipole history is shown in

Fig. 6 and shows the actuators operating well within

the saturation limits of 400 Am2.

The downside of a stability enforced approach is

the computation imposed. The addition of a stability

constraint means that the optimization problem

cannot be solved by quadratic programming, which

increases the computational burden. As already

discussed, good performance can be achieved

through a very short prediction horizon of just five

time steps, and this limits much of the computa-

tional burden that would normally be imposed by

much lengthier prediction horizons.

Table 3 Controller tuning parameters

Controller Tuning parameter Value

Pitch PD control Proportional gain (kp) 0.275
Derivative gain (kd) 37.7

Lateral MPC Prediction horizon (N) 5
Control horizon 5
Sampling interval 10 s
Control weighting (R) 1e-5
Terminal penalty (n) 500
State weighting matrix (Q) 570 0 0 0

0 1:3 0 0
0 0 1e9 0
0 0 0 1e10

2
664

3
775
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6 CONCLUSION

This paper has presented an asymptotically stable

control law to regulate the attitude of a magnetically

actuated spacecraft. A PD controller has been

implemented on the pitch dynamics, while a

stability constrained model predictive controller

has been implemented for regulation of the lateral

dynamics. A simulation study has investigated

performance of the controller when applied to the

GOCE satellite. Application of the stability enforced

predictive controller verifies stability of the control

scheme, presenting good performance even under

significant environmental disturbance.

By adopting a constraint on the first state within

the prediction horizon, the stability of the controller

does not depend on the assumption that the

geomagnetic field is periodic along the considered

orbit. Use of such a constraint also guarantees

stability in the presence of magnetic field modelling

errors, as the current magnetic field can be accu-

rately measured by onboard magnetometers.

Use of a stability enforced approach does lead to

an increase in computational burden owing to loss

Fig. 2 Response of controller to initial conditions

Fig. 3 Pointing time history subject to environmental disturbances
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of a quadratic programming optimization problem.

Results show, however, that good performance can

be achieved with very short prediction horizons,

which minimizes the computational burden im-

posed by the constraint.
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APPENDIX

Notation

A, Alat continuous-time system matrix

for full and lateral satellite

dynamics

B, Blat continuous-time control matrix for

full and lateral satellite dynamics

Bm Earth’s magnetic field vector in

spacecraft co-ordinates

I satellite inertia matrix

J cost function

K feedback gain for stable velocity

controller

kp, kd proportional and derivative gains for

pitch controller

Kv velocity feedback gain

M magnetic dipole vector

n terminal penalty

P Lyapunov function matrix

Q state weighting matrix

R control weighting matrix

T control torque

Te Earth’s rotational period

T0 orbital period

U predicted future control sequence

V Lyapunov function

x state vector

X predicted state vector

C discrete-time control matrix for gen-

eral time-varying system

s1, s2, s3 inertia ratios

Q, h, y pointing angle of spacecraft about

local-level co-ordinate frame

W discrete-time system matrix for gen-

eral time-varying system

vx, vy, vz angular rate of spacecraft about

local-level co-ordinate frame

v0 orbital rate
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